
1

2

PHIL FACTOR
GRANT FRITCHEY 	
K. BRIAN KELLEY
MICKEY STUEWE
IKE ELLIS
JONATHAN ALLEN
LOUIS DAVIDSON

Database
Performance
Tips for
Developers
As a developer, you may or may not need to go into
the database and write queries, or design tables and
indexes, or help determine configuration of your SQL
Server systems. But if you do, these tips should help
to make that a more pain free process.

4

Contents
Tips 1-5
ORM Tips

Tips 6-24
T-SQL Tips

Tips 25-40
Index Tips

Tips 41-45
Database Design Tips

5

7

12

17

5

ORM Tips
More and more people are using Object to Relational Mapping
(ORM) tools to jump the divide between application code that is
object oriented and a database that stores information in a relational
manner. These tools are excellent and radically improve development
speed, but there are a few ‘gotchas’ to know about.

1
Avoid following the ‘Hello World’ examples provided
with your ORM tool that turns it into an Object to
Object Mapping. Database storage is not the same as
objects for a reason. You should still have a relational
storage design within a relational storage engine such
as SQL Server.

Parameterized queries are exactly the same as stored
procedures in terms of performance and memory
management. Since most ORM tools can use either
stored procedures or parameterized queries, be sure
you’re coding to these constructs and not hard-coding
values into your T-SQL queries.

2

6

Create, Read, Update, and Delete (CRUD) queries can
all be generated from the ORM tool without the need
for intervention. But, the Read queries generated are
frequently very inefficient. Consider writing a stored
procedure for complex Read queries.

Since the code generated from the ORM can frequently
be ad hoc, ensure that the SQL Server instance has
‘Optimize for Ad Hoc’ enabled. This will store a plan
stub in memory the first time a query is passed, rather
than storing a full plan. This can help with memory
management.

Be sure your code is generating a parameter size
equivalent to the data type defined within the table in
the database. Some ORM tools size the parameter to
the size of the value passed. This can lead to serious
performance problems.

3

4

5

7

T-SQL Tips
While much of your code may be generated, at least some of it will
have to be written by hand. If you are writing some or all of your
T-SQL code, these tips will help you avoid problems.

SELECT * is not always a bad thing, but it’s a good idea
to only move the data you really need to move and only
when you really need it, in order to avoid network, disk,
and memory contention on your server.

Keep transactions as short as possible
and never use them unnecessarily.
The longer a lock is held the more
likely it is that another user will be
blocked. Never hold a transaction
open after control is passed back
to the application – use optimistic
locking instead.

6

7

For small sets of data that are
infrequently updated such as lookup
values, build a method of caching
them in memory on your application
server rather than constantly querying
them in the database.

8

8

If doing processing within a transaction, leave the
updates until last if possible, to minimize the need for
exclusive locks.

Cursors within SQL Server can cause severe
performance bottlenecks. Avoid them. The WHILE loop
within SQL Server is just as bad as a cursor.

Ensure your variables and parameters are the same data
types as the columns. An implicit or explicit conversion
can lead to table scans and slow performance.

9

10

11

A function on columns in the WHERE clause or JOIN
criteria means that SQL Server can’t use indexes
appropriately and will lead to table scans and slow
performance.

12

9

Don’t use DISTINCT, ORDER BY, or UNION
unnecessarily.

Table variables have no statistics within SQL Server.
This makes them useful for working in situations where
a statement level recompile can slow performance. But,
that lack of statistics makes them very inefficient where
you need to do searches or joins. Use table variables only
where appropriate.

13

14

Multi-statement user-defined functions work through
table variables. Because of this, they also don’t work well
in situations where statistics are required. If a join or
filtering is required, avoid using them, especially if you
are working with more than approximately 50 rows in
the data set.

15

10

Query hints are actually commands to the query
optimizer to control how a query plan is generated.
These should be used very sparingly and only where
appropriate.

One of the most abused query hints is NO_LOCK. This
can lead to extra or missing rows in data sets. Instead
of using NO_LOCK consider using a snapshot isolation
level such as READ_COMMITTED_SNAPSHOT.

16

17

Avoid creating stored procedures that have a wide range
of data supplied to them as parameters. These are
compiled to use just one query plan.

18

Try not to interleave data definition language with your
data manipulation language queries within SQL Server.
This can lead to recompiles which hurts performance.

19

Temporary tables have statistics which get updated as
data is inserted into them. As these updates occur, you
can get recompiles. Where possible, substitute table
variables to avoid this issue.

20

11

If possible, avoid NULL values in your database. If not,
use the appropriate IS NULL and IS NOT NULL code.21

A view is meant to mask or modify how tables are
presented to the end user. These are fine constructs. But
when you start joining one view to another or nesting
views within views, performance will suffer. Refer only
to tables within a view.

22

Use extended
events to monitor
the queries in your
system in order
to identify slow
running queries.
If you’re on a 2005
or earlier system
you’ll need to use a
server-side trace.

24

If you need to insert many rows at once into a table,
use, where possible, the multi-row VALUES clause in
INSERT statements.

23

12

Index Tips
Indexing tables is not an exact science. It requires some trial and
error combined with lots of testing to get things just right. Even then,
the performance metrics will change over time as you add more and
more data.

You get exactly one clustered index on a table. Ensure
you have it in the right place. First choice is the most
frequently accessed column, which may or may not
be the primary key. Second choice is a column that
structures the storage in a way that helps performance.
This is a must for partitioning data.

Clustered indexes work well on columns that are used
a lot for ‘range’ WHERE clauses such as BETWEEN and
LIKE, where it is frequently used in ORDER BY clauses
or in GROUP BY clauses.

25

26

13

If clustered indexes are narrow (involve few columns)
then this will mean that less storage is needed for non-
clustered indexes for that table.

You do not have to make the primary key the clustered
index. This is default behavior but can be directly
controlled.

You should have a clustered index on every table in
the database. There are exceptions, but the exceptions
should be exceptional.

27

28

29

Avoid using a column in a clustered index that has
values that are frequently updated. 30

14

Only create non-clustered indexes on tables when you
know they’ll be used through testing. You can seriously
hurt performance by creating too many indexes on a
table.

Keep your indexes as narrow as possible. This means
reducing the number and size of the columns used in
the index key. This helps make the index more efficient.

31

32

Always index your foreign key columns if you are likely
to delete rows from the referenced table. This avoids a
table scan.

33

15

A clustered index on a GUID can lead to serious
fragmentation of the index due to the random
nature of the GUID. You can use the function
NEWSEQUENTIALID() to generate a GUID that will
not lead to as much fragmentation.

Performance is enhanced when indexes are placed on
columns used in WHERE, JOIN, ORDER BY, GROUP,
and TOP. Always test to ensure that the index does help
performance.

34

35

If a non-clustered index is useful to your queries, but
doesn’t have all the columns needed by the query, you
can consider using the INCLUDE option to store the
extra columns at the leaf level of the index.

36

16

If temporary tables are in use, you can add indexes to
those tables to enhance their performance.

Where possible, make the indexes unique. This is
especially true of the clustered index (one of the reasons
that the primary key is by default clustered). A unique
index absolutely performs faster than a non-unique
index, even with the same values.

37

38

Ensure that the selectivity of the data in the indexes is
high. Very few unique values makes an index much less
likely to be used well by the query optimizer.

It is almost always better to let SQL Server update
statistics automatically.

39

40

17

Database Design Tips
Again, you may not be delving much into this, but there are a few tips
to keep in mind.

While it is possible to over-normalize a database,
under-normalization is much more prevalent. This
leads to repetition of data, inefficient storage, and poor
performance. Data normalization is a performance
tuning technique as well as a storage mechanism.

Referential integrity constraints such as foreign keys
actually help performance, because the optimizer can
recognize these enforced constraints and make better
choices for joins and other data access.

41

42

18

Make sure your database doesn’t hold ‘historic’ data
that is no longer used. Archive it out, either into a
special ‘archive’ database, a reporting OLAP database,
or on file. Large tables mean longer table scans and
deeper indexes. This in turn can mean that locks are
held for longer. Admin tasks such as Statistics
updates, DBCC checks, and index builds take longer,
as do backups.

Separate out the reporting functions from the OLTP
production functions. OLTP databases usually have
short transactions with a lot of updates whereas
reporting databases, such as OLAP and data warehouse
systems, have longer data-heavy queries. If possible, put
them on different servers.

44

45

Unique constraints also help performance because the
optimizer can use these in different ways to enhance its
query tuning.

43

19

Tools

SQL Prompt
Write, refactor, and explore SQL effortlessly with this
SQL Server Management Studio plug-in.

SQL Compare
Compare database schemas and deploy database
schema changes.

SQL Source Control
Connect your databases to your version control system
within SQL Server Management Studio.

SQL Backup Pro
Schedule backup jobs, verify with DBCC CHECKDB, and
compress backups by up to 95%.

SQL Index Manager
Analyze, manage, and fix database index fragmentation.

http://www.red-gate.com/products/sql-development/sql-prompt/
http://www.red-gate.com/products/sql-development/sql-prompt/
http://www.red-gate.com/products/sql-development/sql-compare/
http://www.red-gate.com/products/sql-development/sql-source-control/
http://www.red-gate.com/products/dba/sql-backup/
http://www.red-gate.com/products/dba/sql-index-manager/
http://www.red-gate.com/products/sql-development/sql-compare/
http://www.red-gate.com/products/sql-development/sql-source-control/
http://www.red-gate.com/products/dba/sql-backup/
http://www.red-gate.com/products/dba/sql-index-manager/

20

Books

SQL Server Execution Plans
by Grant Fritchey
Learn the basics of capturing plans, how to interrupt
them in their various forms, graphical or XML, and then
how to use the information you find. Diagnose the most
common causes of poor query performance so you
can optimize your SQL queries and improve your
indexing strategy.

SQL Server Concurrency: Locking, Blocking
and Row Versioning
by Kalen Delaney
Your application can have world-class indexes and
queries, but they won’t help you if you can’t get your data
because another application has it locked. That’s why
every DBA and developer must understand SQL Server
concurrency, and how to troubleshoot any issues.

SQL Server Transaction Log Management
by Tony Davis and Gail Shaw
Tony Davis and Gail Shaw strive to offer just the right level
of detail so that every DBA can perform all of the most
important aspects of transaction log management.

http://www.red-gate.com/community/books/sql-server-execution-plans
http://www.red-gate.com/community/books/sql-server-execution-plans
http://www.red-gate.com/community/books/sql-server-execution-plans
http://www.red-gate.com/community/books/sql-server-concurrency
http://www.red-gate.com/community/books/sql-server-concurrency
http://www.red-gate.com/community/books/sql-server-concurrency
http://www.red-gate.com/community/books/sql-server-transaction-log-management
http://www.red-gate.com/community/books/sql-server-transaction-log-management
http://www.red-gate.com/community/books/sql-server-concurrency
http://www.red-gate.com/community/books/sql-server-transaction-log-management

21

Troubleshooting SQL Server: A Guide for the
Accidental DBA
by Jonathan Kehayias and Ted Krueger
Three SQL Server MVPs provide fascinating insight into
the most common SQL Server problems, why they occur,
and how they can be diagnosed using tools such as
Performance Monitor, Dynamic Management Views, and
server-side tracing performance, so you can optimize
your SQL queries and improve your indexing strategy.

Defensive Database Programming
by Alex Kuznetsov
The goal of defensive database programming is to
help you to produce resilient T-SQL code that robustly
and gracefully handles cases of unintended use,
and is resilient to common changes to the database
environment.

http://www.red-gate.com/community/books/accidental-dba
http://www.red-gate.com/community/books/accidental-dba
http://www.red-gate.com/community/books/accidental-dba
http://www.red-gate.com/community/books/defensive-database-programming
http://www.red-gate.com/community/books/defensive-database-programming
http://www.red-gate.com/community/books/accidental-dba
http://www.red-gate.com/community/books/defensive-database-programming

