MySQL 5.6 Reference Manual
Table of Contents
1.1. About This Manual
1.2. Typographical and Syntax Conventions
1.3. Overview of the MySQL Database Management System
1.3.1. What is MySQL?
1.3.2. The Main Features of MySQL
1.3.3. History of MySQL
1.4. What Is New in MySQL 5.6
1.5. MySQL Development History
1.6. MySQL Information Sources
1.6.1. MySQL Mailing Lists
1.6.2. MySQL Community Support at the MySQL Forums
1.6.3. MySQL Community Support on Internet Relay Chat (IRC)
1.6.4. MySQL Enterprise
1.7. How to Report Bugs or Problems
1.8. MySQL Standards Compliance
1.8.1. What Standards MySQL Follows
1.8.2. Selecting SQL Modes
1.8.3. Running MySQL in ANSI Mode
1.8.4. MySQL Extensions to Standard SQL
1.8.5. MySQL Differences from Standard SQL
1.8.6. How MySQL Deals with Constraints
1.9. Credits
1.9.1. Contributors to MySQL
1.9.2. Documenters and translators
1.9.3. Packages that support MySQL
1.9.4. Tools that were used to create MySQL
1.9.5. Supporters of MySQL
2. Installing and Upgrading MySQL
2.1. General Installation Guidance
2.1.1. Operating Systems Supported by MySQL Community Server
2.1.2. Choosing Which MySQL Distribution to Install
2.1.3. How to Get MySQL
2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
2.1.5. Installation Layouts
2.1.6. Compiler-Specific Build Characteristics
2.2. Installing MySQL from Generic Binaries on Unix/Linux
2.3. Installing MySQL on Microsoft Windows
2.3.1. MySQL Installation Layout on Microsoft Windows
2.3.2. Choosing An Installation Package
2.3.3. Installing MySQL on Microsoft Windows Using MySQL Installer
2.3.4. Installing MySQL on Microsoft Windows Using a noinstall Zip Archive
2.3.5. Troubleshooting a Microsoft Windows MySQL Server Installation
2.3.6. Upgrading MySQL on Windows
2.3.7. Windows Postinstallation Procedures
2.4. Installing MySQL on Mac OS X
2.4.1. General Notes on Installing MySQL on Mac OS X
2.4.2. Installing MySQL on Mac OS X Using Native Packages
2.4.3. Installing the MySQL Startup Item
2.4.4. Installing and Using the MySQL Preference Pane
2.4.5. Using the Bundled MySQL on Mac OS X Server
2.5. Installing MySQL on Linux
2.5.1. Installing MySQL from RPM Packages on Linux
2.5.2. Installing MySQL on Linux using Native Package Manager
2.6. Installing MySQL on Solaris and OpenSolaris
2.6.1. Installing MySQL on Solaris using a Solaris PKG
2.6.2. Installing MySQL on OpenSolaris using IPS
2.7. Installing MySQL on HP-UX
2.7.1. General Notes on Installing MySQL on HP-UX
2.7.2. Installing MySQL on HP-UX using DEPOT
2.8. Installing MySQL on FreeBSD
2.9. Installing MySQL from Source
2.9.1. MySQL Layout for Source Installation
2.9.2. Installing MySQL from a Standard Source Distribution
2.9.3. Installing MySQL from a Development Source Tree
2.9.4. MySQL Source-Configuration Options
2.9.5. Dealing with Problems Compiling MySQL
2.9.6. MySQL Configuration and Third-Party Tools
2.10. Postinstallation Setup and Testing
2.10.1. Unix Postinstallation Procedures
2.10.2. Securing the Initial MySQL Accounts
2.11. Upgrading or Downgrading MySQL
2.11.1. Upgrading MySQL
2.11.2. Downgrading MySQL
2.11.3. Checking Whether Tables or Indexes Must Be Rebuilt
2.11.4. Rebuilding or Repairing Tables or Indexes
2.11.5. Copying MySQL Databases to Another Machine
2.12. Environment Variables
2.13. Perl Installation Notes
2.13.1. Installing Perl on Unix
2.13.2. Installing ActiveState Perl on Windows
2.13.3. Problems Using the Perl DBI/DBD Interface
3.1. Connecting to and Disconnecting from the Server
3.2. Entering Queries
3.3. Creating and Using a Database
3.3.1. Creating and Selecting a Database
3.3.2. Creating a Table
3.3.3. Loading Data into a Table
3.3.4. Retrieving Information from a Table
3.4. Getting Information About Databases and Tables
3.5. Using mysql in Batch Mode
3.6. Examples of Common Queries
3.6.1. The Maximum Value for a Column
3.6.2. The Row Holding the Maximum of a Certain Column
3.6.3. Maximum of Column per Group
3.6.4. The Rows Holding the Group-wise Maximum of a Certain Column
3.6.5. Using User-Defined Variables
3.6.6. Using Foreign Keys
3.6.7. Searching on Two Keys
3.6.8. Calculating Visits Per Day
3.6.9. Using AUTO_INCREMENT
3.7. Using MySQL with Apache
4.1. Overview of MySQL Programs
4.2. Using MySQL Programs
4.2.1. Invoking MySQL Programs
4.2.2. Connecting to the MySQL Server
4.2.3. Specifying Program Options
4.2.4. Setting Environment Variables
4.3. MySQL Server and Server-Startup Programs
4.3.1. mysqld — The MySQL Server
4.3.2. mysqld_safe — MySQL Server Startup Script
4.3.3. mysql.server — MySQL Server Startup Script
4.3.4. mysqld_multi — Manage Multiple MySQL Servers
4.4. MySQL Installation-Related Programs
4.4.1. comp_err — Compile MySQL Error Message File
4.4.2. mysqlbug — Generate Bug Report
4.4.3. mysql_install_db — Initialize MySQL Data Directory
4.4.4. mysql_plugin — Configure MySQL Server Plugins
4.4.5. mysql_secure_installation — Improve MySQL Installation Security
4.4.6. mysql_tzinfo_to_sql — Load the Time Zone Tables
4.4.7. mysql_upgrade — Check and Upgrade MySQL Tables
4.5. MySQL Client Programs
4.5.1. mysql — The MySQL Command-Line Tool
4.5.2. mysqladmin — Client for Administering a MySQL Server
4.5.3. mysqlcheck — A Table Maintenance Program
4.5.4. mysqldump — A Database Backup Program
4.5.5. mysqlimport — A Data Import Program
4.5.6. mysqlshow — Display Database, Table, and Column Information
4.5.7. mysqlslap — Load Emulation Client
4.6. MySQL Administrative and Utility Programs
4.6.1. innochecksum — Offline InnoDB File Checksum Utility
4.6.2. myisam_ftdump — Display Full-Text Index information
4.6.3. myisamchk — MyISAM Table-Maintenance Utility
4.6.4. myisamlog — Display MyISAM Log File Contents
4.6.5. myisampack — Generate Compressed, Read-Only MyISAM Tables
4.6.6. mysql_config_editor — MySQL Configuration Utility
4.6.7. mysqlaccess — Client for Checking Access Privileges
4.6.8. mysqlbinlog — Utility for Processing Binary Log Files
4.6.9. mysqldumpslow — Summarize Slow Query Log Files
4.6.10. mysqlhotcopy — A Database Backup Program
4.6.11. mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
4.6.12. mysql_find_rows — Extract SQL Statements from Files
4.6.13. mysql_fix_extensions — Normalize Table File Name Extensions
4.6.14. mysql_setpermission — Interactively Set Permissions in Grant Tables
4.6.15. mysql_waitpid — Kill Process and Wait for Its Termination
4.6.16. mysql_zap — Kill Processes That Match a Pattern
4.7. MySQL Program Development Utilities
4.7.1. msql2mysql — Convert mSQL Programs for Use with MySQL
4.7.2. mysql_config — Display Options for Compiling Clients
4.7.3. my_print_defaults — Display Options from Option Files
4.7.4. resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
4.8. Miscellaneous Programs
4.8.1. perror — Explain Error Codes
4.8.2. replace — A String-Replacement Utility
4.8.3. resolveip — Resolve Host name to IP Address or Vice Versa
5. MySQL Server Administration
5.1. The MySQL Server
5.1.1. Server Option and Variable Reference
5.1.2. Server Configuration Defaults
5.1.3. Server Command Options
5.1.4. Server System Variables
5.1.5. Using System Variables
5.1.6. Server Status Variables
5.1.7. Server SQL Modes
5.1.8. Server Plugins
5.1.9. IPv6 Support
5.1.10. Server-Side Help
5.1.11. Server Response to Signals
5.1.12. The Shutdown Process
5.2. MySQL Server Logs
5.2.1. Selecting General Query and Slow Query Log Output Destinations
5.2.2. The Error Log
5.2.3. The General Query Log
5.2.4. The Binary Log
5.2.5. The Slow Query Log
5.2.6. Server Log Maintenance
5.3. Managing Disk I/O and File Space for InnoDB Tables
5.3.1. InnoDB Disk I/O
5.3.2. File Space Management
5.3.3. InnoDB Checkpoints
5.3.4. Defragmenting a Table
5.4. Creating and Using InnoDB Tables and Indexes
5.4.1. Managing InnoDB Tablespaces
5.4.2. Grouping DML Operations with Transactions
5.4.3. Converting Tables from MyISAM to InnoDB
5.4.4. AUTO_INCREMENT Handling in InnoDB
5.4.5. InnoDB and FOREIGN KEY Constraints
5.4.6. Working with InnoDB Compressed Tables
5.4.7. InnoDB File-Format Management
5.4.8. How InnoDB Stores Variable-Length Columns
5.5. Online DDL for InnoDB Tables
5.5.1. Overview of Online DDL
5.5.2. Performance and Concurrency Considerations for Online DDL
5.5.3. SQL Syntax for Online DDL
5.5.4. Combining or Separating DDL Statements
5.5.5. Examples of Online DDL
5.5.6. Implementation Details of Online DDL
5.5.7. How Crash Recovery Works with Online DDL
5.5.8. DDL for Partitioned Tables
5.5.9. Limitations of Online DDL
5.6. Running Multiple MySQL Instances on One Machine
5.6.1. Setting Up Multiple Data Directories
5.6.2. Running Multiple MySQL Instances on Windows
5.6.3. Running Multiple MySQL Instances on Unix
5.6.4. Using Client Programs in a Multiple-Server Environment
5.7. Tracing mysqld Using DTrace
5.7.1. mysqld DTrace Probe Reference
6.1. General Security Issues
6.1.1. Security Guidelines
6.1.2. Keeping Passwords Secure
6.1.3. Making MySQL Secure Against Attackers
6.1.4. Security-Related mysqld Options and Variables
6.1.5. How to Run MySQL as a Normal User
6.1.6. Security Issues with LOAD DATA LOCAL
6.1.7. Client Programming Security Guidelines
6.2. The MySQL Access Privilege System
6.2.1. Privileges Provided by MySQL
6.2.2. Privilege System Grant Tables
6.2.3. Specifying Account Names
6.2.4. Access Control, Stage 1: Connection Verification
6.2.5. Access Control, Stage 2: Request Verification
6.2.6. When Privilege Changes Take Effect
6.2.7. Causes of Access-Denied Errors
6.3. MySQL User Account Management
6.3.1. User Names and Passwords
6.3.2. Adding User Accounts
6.3.3. Removing User Accounts
6.3.4. Setting Account Resource Limits
6.3.5. Assigning Account Passwords
6.3.6. Password Expiration and Sandbox Mode
6.3.7. Pluggable Authentication
6.3.8. Proxy Users
6.3.9. Using SSL for Secure Connections
6.3.10. Connecting to MySQL Remotely from Windows with SSH
6.3.11. MySQL Enterprise Audit Log Plugin
6.3.12. SQL-Based MySQL Account Activity Auditing
7.1. Backup and Recovery Types
7.2. Database Backup Methods
7.3. Example Backup and Recovery Strategy
7.3.1. Establishing a Backup Policy
7.3.2. Using Backups for Recovery
7.3.3. Backup Strategy Summary
7.4. Using mysqldump for Backups
7.4.1. Dumping Data in SQL Format with mysqldump
7.4.2. Reloading SQL-Format Backups
7.4.3. Dumping Data in Delimited-Text Format with mysqldump
7.4.4. Reloading Delimited-Text Format Backups
7.4.5. mysqldump Tips
7.5. Point-in-Time (Incremental) Recovery Using the Binary Log
7.5.1. Point-in-Time Recovery Using Event Times
7.5.2. Point-in-Time Recovery Using Event Positions
7.6. MyISAM Table Maintenance and Crash Recovery
7.6.1. Using myisamchk for Crash Recovery
7.6.2. How to Check MyISAM Tables for Errors
7.6.3. How to Repair MyISAM Tables
7.6.4. MyISAM Table Optimization
7.6.5. Setting Up a MyISAM Table Maintenance Schedule
8.1. Optimization Overview
8.2. Optimizing SQL Statements
8.2.1. Optimizing SELECT Statements
8.2.2. Optimizing DML Statements
8.2.3. Optimizing Database Privileges
8.2.4. Optimizing INFORMATION_SCHEMA Queries
8.2.5. Other Optimization Tips
8.3. Optimization and Indexes
8.3.1. How MySQL Uses Indexes
8.3.2. Using Primary Keys
8.3.3. Using Foreign Keys
8.3.4. Column Indexes
8.3.5. Multiple-Column Indexes
8.3.6. Verifying Index Usage
8.3.7. InnoDB and MyISAM Index Statistics Collection
8.3.8. Comparison of B-Tree and Hash Indexes
8.4. Optimizing Database Structure
8.4.1. Optimizing Data Size
8.4.2. Optimizing MySQL Data Types
8.4.3. Optimizing for Many Tables
8.5. Optimizing for InnoDB Tables
8.5.1. Optimizing Storage Layout for InnoDB Tables
8.5.2. Optimizing InnoDB Transaction Management
8.5.3. Optimizing InnoDB Logging
8.5.4. Bulk Data Loading for InnoDB Tables
8.5.5. Optimizing InnoDB Queries
8.5.6. Optimizing InnoDB DDL Operations
8.5.7. Optimizing InnoDB Disk I/O
8.5.8. Optimizing InnoDB Configuration Variables
8.5.9. Optimizing InnoDB for Systems with Many Tables
8.6. Optimizing for MyISAM Tables
8.6.1. Optimizing MyISAM Queries
8.6.2. Bulk Data Loading for MyISAM Tables
8.6.3. Speed of REPAIR TABLE Statements
8.7. Optimizing for MEMORY Tables
8.8. Understanding the Query Execution Plan
8.8.1. Optimizing Queries with EXPLAIN
8.8.2. EXPLAIN Output Format
8.8.3. EXPLAIN EXTENDED Output Format
8.8.4. Estimating Query Performance
8.8.5. Controlling the Query Optimizer
8.9. Buffering and Caching
8.9.1. The InnoDB Buffer Pool
8.9.2. The MyISAM Key Cache
8.9.3. The MySQL Query Cache
8.9.4. Caching of Prepared Statements and Stored Programs
8.10. Optimizing Locking Operations
8.10.1. Internal Locking Methods
8.10.2. Table Locking Issues
8.10.3. Concurrent Inserts
8.10.4. Metadata Locking
8.10.5. External Locking
8.11. Optimizing the MySQL Server
8.11.1. System Factors and Startup Parameter Tuning
8.11.2. Tuning Server Parameters
8.11.3. Optimizing Disk I/O
8.11.4. Optimizing Memory Use
8.11.5. Optimizing Network Use
8.11.6. The Thread Pool Plugin
8.12. Measuring Performance (Benchmarking)
8.12.1. Measuring the Speed of Expressions and Functions
8.12.2. The MySQL Benchmark Suite
8.12.3. Using Your Own Benchmarks
8.12.4. Measuring Performance with performance_schema
8.12.5. Examining Thread Information
8.13. Internal Details of MySQL Optimizations
8.13.1. Range Optimization
8.13.2. Index Merge Optimization
8.13.3. Engine Condition Pushdown Optimization
8.13.4. Index Condition Pushdown Optimization
8.13.5. Use of Index Extensions
8.13.6. IS NULL Optimization
8.13.7. LEFT JOIN and RIGHT JOIN Optimization
8.13.8. Nested-Loop Join Algorithms
8.13.9. Nested Join Optimization
8.13.10. Outer Join Simplification
8.13.11. Multi-Range Read Optimization
8.13.12. Block Nested-Loop and Batched Key Access Joins
8.13.13. ORDER BY Optimization
8.13.14. GROUP BY Optimization
8.13.15. DISTINCT Optimization
8.13.16. Subquery Optimization
9.1. Literal Values
9.1.1. String Literals
9.1.2. Number Literals
9.1.3. Date and Time Literals
9.1.4. Hexadecimal Literals
9.1.5. Boolean Literals
9.1.6. Bit-Field Literals
9.1.7. NULL Values
9.2. Schema Object Names
9.2.1. Identifier Qualifiers
9.2.2. Identifier Case Sensitivity
9.2.3. Mapping of Identifiers to File Names
9.2.4. Function Name Parsing and Resolution
9.3. Reserved Words
9.4. User-Defined Variables
9.5. Expression Syntax
9.6. Comment Syntax
10.1. Character Set Support
10.1.1. Character Sets and Collations in General
10.1.2. Character Sets and Collations in MySQL
10.1.3. Specifying Character Sets and Collations
10.1.4. Connection Character Sets and Collations
10.1.5. Configuring the Character Set and Collation for Applications
10.1.6. Character Set for Error Messages
10.1.7. Collation Issues
10.1.8. String Repertoire
10.1.9. Operations Affected by Character Set Support
10.1.10. Unicode Support
10.1.11. Upgrading from Previous to Current Unicode Support
10.1.12. UTF-8 for Metadata
10.1.13. Column Character Set Conversion
10.1.14. Character Sets and Collations That MySQL Supports
10.2. Setting the Error Message Language
10.3. Adding a Character Set
10.3.1. Character Definition Arrays
10.3.2. String Collating Support for Complex Character Sets
10.3.3. Multi-Byte Character Support for Complex Character Sets
10.4. Adding a Collation to a Character Set
10.4.1. Collation Implementation Types
10.4.2. Choosing a Collation ID
10.4.3. Adding a Simple Collation to an 8-Bit Character Set
10.4.4. Adding a UCA Collation to a Unicode Character Set
10.5. Character Set Configuration
10.6. MySQL Server Time Zone Support
10.6.1. Staying Current with Time Zone Changes
10.6.2. Time Zone Leap Second Support
10.7. MySQL Server Locale Support
11.1. Data Type Overview
11.1.1. Numeric Type Overview
11.1.2. Date and Time Type Overview
11.1.3. String Type Overview
11.2. Numeric Types
11.2.1. Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
11.2.2. Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC
11.2.3. Floating-Point Types (Approximate Value) - FLOAT, DOUBLE
11.2.4. Bit-Value Type - BIT
11.2.5. Numeric Type Attributes
11.2.6. Out-of-Range and Overflow Handling
11.3. Date and Time Types
11.3.1. The DATE, DATETIME, and TIMESTAMP Types
11.3.2. The TIME Type
11.3.3. The YEAR Type
11.3.4. YEAR(2) Limitations and Migrating to YEAR(4)
11.3.5. Automatic Initialization and Updating for TIMESTAMP and DATETIME
11.3.6. Fractional Seconds in Time Values
11.3.7. Conversion Between Date and Time Types
11.3.8. Two-Digit Years in Dates
11.4. String Types
11.4.1. The CHAR and VARCHAR Types
11.4.2. The BINARY and VARBINARY Types
11.4.3. The BLOB and TEXT Types
11.4.4. The ENUM Type
11.4.5. The SET Type
11.5. Data Type Default Values
11.6. Data Type Storage Requirements
11.7. Choosing the Right Type for a Column
11.8. Using Data Types from Other Database Engines
12.1. Function and Operator Reference
12.2. Type Conversion in Expression Evaluation
12.3. Operators
12.3.1. Operator Precedence
12.3.2. Comparison Functions and Operators
12.3.3. Logical Operators
12.3.4. Assignment Operators
12.4. Control Flow Functions
12.5. String Functions
12.5.1. String Comparison Functions
12.5.2. Regular Expressions
12.6. Numeric Functions and Operators
12.6.1. Arithmetic Operators
12.6.2. Mathematical Functions
12.7. Date and Time Functions
12.8. What Calendar Is Used By MySQL?
12.9. Full-Text Search Functions
12.9.1. Natural Language Full-Text Searches
12.9.2. Boolean Full-Text Searches
12.9.3. Full-Text Searches with Query Expansion
12.9.4. Full-Text Stopwords
12.9.5. Full-Text Restrictions
12.9.6. Fine-Tuning MySQL Full-Text Search
12.9.7. Adding a Collation for Full-Text Indexing
12.10. Cast Functions and Operators
12.11. XML Functions
12.12. Bit Functions
12.13. Encryption and Compression Functions
12.14. Information Functions
12.15. GTID Functions
12.16. Miscellaneous Functions
12.17. Functions and Modifiers for Use with GROUP BY Clauses
12.17.1. GROUP BY (Aggregate) Functions
12.17.2. GROUP BY Modifiers
12.17.3. MySQL Extensions to GROUP BY
12.18. Spatial Extensions
12.18.1. Introduction to MySQL Spatial Support
12.18.2. The OpenGIS Geometry Model
12.18.3. Supported Spatial Data Formats
12.18.4. Creating a Spatially Enabled MySQL Database
12.18.5. Spatial Analysis Functions
12.18.6. Optimizing Spatial Analysis
12.18.7. MySQL Conformance and Compatibility
12.19. Precision Math
12.19.1. Types of Numeric Values
12.19.2. DECIMAL Data Type Changes
12.19.3. Expression Handling
12.19.4. Rounding Behavior
12.19.5. Precision Math Examples
13.1. Data Definition Statements
13.1.1. ALTER DATABASE Syntax
13.1.2. ALTER EVENT Syntax
13.1.3. ALTER FUNCTION Syntax
13.1.4. ALTER PROCEDURE Syntax
13.1.5. ALTER SERVER Syntax
13.1.6. ALTER TABLE Syntax
13.1.7. ALTER VIEW Syntax
13.1.8. CREATE DATABASE Syntax
13.1.9. CREATE EVENT Syntax
13.1.10. CREATE FUNCTION Syntax
13.1.11. CREATE INDEX Syntax
13.1.12. CREATE PROCEDURE and CREATE FUNCTION Syntax
13.1.13. CREATE SERVER Syntax
13.1.14. CREATE TABLE Syntax
13.1.15. CREATE TRIGGER Syntax
13.1.16. CREATE VIEW Syntax
13.1.17. DROP DATABASE Syntax
13.1.18. DROP EVENT Syntax
13.1.19. DROP FUNCTION Syntax
13.1.20. DROP INDEX Syntax
13.1.21. DROP PROCEDURE and DROP FUNCTION Syntax
13.1.22. DROP SERVER Syntax
13.1.23. DROP TABLE Syntax
13.1.24. DROP TRIGGER Syntax
13.1.25. DROP VIEW Syntax
13.1.26. RENAME TABLE Syntax
13.1.27. TRUNCATE TABLE Syntax
13.2. Data Manipulation Statements
13.2.1. CALL Syntax
13.2.2. DELETE Syntax
13.2.3. DO Syntax
13.2.4. HANDLER Syntax
13.2.5. INSERT Syntax
13.2.6. LOAD DATA INFILE Syntax
13.2.7. LOAD XML Syntax
13.2.8. REPLACE Syntax
13.2.9. SELECT Syntax
13.2.10. Subquery Syntax
13.2.11. UPDATE Syntax
13.3. MySQL Transactional and Locking Statements
13.3.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax
13.3.2. Statements That Cannot Be Rolled Back
13.3.3. Statements That Cause an Implicit Commit
13.3.4. SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax
13.3.5. LOCK TABLES and UNLOCK TABLES Syntax
13.3.6. SET TRANSACTION Syntax
13.3.7. XA Transactions
13.4. Replication Statements
13.4.1. SQL Statements for Controlling Master Servers
13.4.2. SQL Statements for Controlling Slave Servers
13.5. SQL Syntax for Prepared Statements
13.5.1. PREPARE Syntax
13.5.2. EXECUTE Syntax
13.5.3. DEALLOCATE PREPARE Syntax
13.6. MySQL Compound-Statement Syntax
13.6.1. BEGIN ... END Compound-Statement Syntax
13.6.2. Statement Label Syntax
13.6.3. DECLARE Syntax
13.6.4. Variables in Stored Programs
13.6.5. Flow Control Statements
13.6.6. Cursors
13.6.7. Condition Handling
13.7. Database Administration Statements
13.7.1. Account Management Statements
13.7.2. Table Maintenance Statements
13.7.3. Plugin and User-Defined Function Statements
13.7.4. SET Syntax
13.7.5. SHOW Syntax
13.7.6. Other Administrative Statements
13.8. MySQL Utility Statements
13.8.1. DESCRIBE Syntax
13.8.2. EXPLAIN Syntax
13.8.3. HELP Syntax
13.8.4. USE Syntax
14.1. Setting the Storage Engine
14.2. The InnoDB Storage Engine
14.2.1. Getting Started with InnoDB Tables
14.2.2. Administering InnoDB
14.2.3. InnoDB Concepts and Architecture
14.2.4. InnoDB Performance Tuning and Troubleshooting
14.2.5. InnoDB Features for Flexibility, Ease of Use and Reliability
14.2.6. InnoDB Startup Options and System Variables
14.2.7. Limits on InnoDB Tables
14.2.8. MySQL and the ACID Model
14.2.9. InnoDB Integration with memcached
14.3. The MyISAM Storage Engine
14.3.1. MyISAM Startup Options
14.3.2. Space Needed for Keys
14.3.3. MyISAM Table Storage Formats
14.3.4. MyISAM Table Problems
14.4. The MEMORY Storage Engine
14.5. The CSV Storage Engine
14.5.1. Repairing and Checking CSV Tables
14.5.2. CSV Limitations
14.6. The ARCHIVE Storage Engine
14.7. The BLACKHOLE Storage Engine
14.8. The MERGE Storage Engine
14.8.1. MERGE Table Advantages and Disadvantages
14.8.2. MERGE Table Problems
14.9. The FEDERATED Storage Engine
14.9.1. FEDERATED Storage Engine Overview
14.9.2. How to Create FEDERATED Tables
14.9.3. FEDERATED Storage Engine Notes and Tips
14.9.4. FEDERATED Storage Engine Resources
14.10. The EXAMPLE Storage Engine
14.11. Other Storage Engines
14.12. Overview of MySQL Storage Engine Architecture
14.12.1. Pluggable Storage Engine Architecture
14.12.2. The Common Database Server Layer
15. High Availability and Scalability
15.1. Oracle VM Template for MySQL Enterprise Edition
15.2. Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linux
15.3. Overview of MySQL with Windows Failover Clustering
15.4. Using MySQL within an Amazon EC2 Instance
15.4.1. Setting Up MySQL on an EC2 AMI
15.4.2. EC2 Instance Limitations
15.4.3. Deploying a MySQL Database Using EC2
15.5. Using ZFS Replication
15.5.1. Using ZFS for File System Replication
15.5.2. Configuring MySQL for ZFS Replication
15.5.3. Handling MySQL Recovery with ZFS
15.6. Using MySQL with memcached
15.6.1. Installing memcached
15.6.2. Using memcached
15.6.3. Developing a memcached Application
15.6.4. Getting memcached Statistics
15.6.5. memcached FAQ
15.7. MySQL Proxy
15.7.1. MySQL Proxy Supported Platforms
15.7.2. Installing MySQL Proxy
15.7.3. MySQL Proxy Command Options
15.7.4. MySQL Proxy Scripting
15.7.5. Using MySQL Proxy
15.7.6. MySQL Proxy FAQ
16.1. Replication Configuration
16.1.1. How to Set Up Replication
16.1.2. Replication Formats
16.1.3. Replication with Global Transaction Identifiers
16.1.4. Replication and Binary Logging Options and Variables
16.1.5. Common Replication Administration Tasks
16.2. Replication Implementation
16.2.1. Replication Implementation Details
16.2.2. Replication Relay and Status Logs
16.2.3. How Servers Evaluate Replication Filtering Rules
16.3. Replication Solutions
16.3.1. Using Replication for Backups
16.3.2. Using Replication with Different Master and Slave Storage Engines
16.3.3. Using Replication for Scale-Out
16.3.4. Replicating Different Databases to Different Slaves
16.3.5. Improving Replication Performance
16.3.6. Switching Masters During Failover
16.3.7. Setting Up Replication Using SSL
16.3.8. Semisynchronous Replication
16.3.9. Delayed Replication
16.4. Replication Notes and Tips
16.4.1. Replication Features and Issues
16.4.2. Replication Compatibility Between MySQL Versions
16.4.3. Upgrading a Replication Setup
16.4.4. Troubleshooting Replication
16.4.5. How to Report Replication Bugs or Problems
17.1. Overview of Partitioning in MySQL
17.2. Partitioning Types
17.2.1. RANGE Partitioning
17.2.2. LIST Partitioning
17.2.3. COLUMNS Partitioning
17.2.4. HASH Partitioning
17.2.5. KEY Partitioning
17.2.6. Subpartitioning
17.2.7. How MySQL Partitioning Handles NULL
17.3. Partition Management
17.3.1. Management of RANGE and LIST Partitions
17.3.2. Management of HASH and KEY Partitions
17.3.3. Exchanging Partitions and Subpartitions with Tables
17.3.4. Maintenance of Partitions
17.3.5. Obtaining Information About Partitions
17.4. Partition Pruning
17.5. Partition Selection
17.6. Restrictions and Limitations on Partitioning
17.6.1. Partitioning Keys, Primary Keys, and Unique Keys
17.6.2. Partitioning Limitations Relating to Storage Engines
17.6.3. Partitioning Limitations Relating to Functions
17.6.4. Partitioning and Locking
18.1. Defining Stored Programs
18.2. Using Stored Routines (Procedures and Functions)
18.2.1. Stored Routine Syntax
18.2.2. Stored Routines and MySQL Privileges
18.2.3. Stored Routine Metadata
18.2.4. Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
18.3. Using Triggers
18.3.1. Trigger Syntax
18.3.2. Trigger Metadata
18.4. Using the Event Scheduler
18.4.1. Event Scheduler Overview
18.4.2. Event Scheduler Configuration
18.4.3. Event Syntax
18.4.4. Event Metadata
18.4.5. Event Scheduler Status
18.4.6. The Event Scheduler and MySQL Privileges
18.5. Using Views
18.5.1. View Syntax
18.5.2. View Processing Algorithms
18.5.3. Updatable and Insertable Views
18.5.4. View Metadata
18.6. Access Control for Stored Programs and Views
18.7. Binary Logging of Stored Programs
19.1. The INFORMATION_SCHEMA CHARACTER_SETS Table
19.2. The INFORMATION_SCHEMA COLLATIONS Table
19.3. The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
19.4. The INFORMATION_SCHEMA COLUMNS Table
19.5. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
19.6. The INFORMATION_SCHEMA ENGINES Table
19.7. The INFORMATION_SCHEMA EVENTS Table
19.8. The INFORMATION_SCHEMA FILES Table
19.9. The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
19.10. The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
19.11. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
19.12. The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
19.13. The INFORMATION_SCHEMA PARAMETERS Table
19.14. The INFORMATION_SCHEMA PARTITIONS Table
19.15. The INFORMATION_SCHEMA PLUGINS Table
19.16. The INFORMATION_SCHEMA PROCESSLIST Table
19.17. The INFORMATION_SCHEMA PROFILING Table
19.18. The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
19.19. The INFORMATION_SCHEMA ROUTINES Table
19.20. The INFORMATION_SCHEMA SCHEMATA Table
19.21. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
19.22. The INFORMATION_SCHEMA STATISTICS Table
19.23. The INFORMATION_SCHEMA TABLES Table
19.24. The INFORMATION_SCHEMA TABLESPACES Table
19.25. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
19.26. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
19.27. The INFORMATION_SCHEMA TRIGGERS Table
19.28. The INFORMATION_SCHEMA USER_PRIVILEGES Table
19.29. The INFORMATION_SCHEMA VIEWS Table
19.30. INFORMATION_SCHEMA Tables for InnoDB
19.30.1. The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
19.30.2. The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
19.30.3. The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
19.30.4. The INFORMATION_SCHEMA INNODB_TRX Table
19.30.5. The INFORMATION_SCHEMA INNODB_LOCKS Table
19.30.6. The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table
19.30.7. The INFORMATION_SCHEMA INNODB_SYS_TABLES Table
19.30.8. The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table
19.30.9. The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table
19.30.10. The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table
19.30.11. The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table
19.30.12. The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table
19.30.13. The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View
19.30.14. The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
19.30.15. The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
19.30.16. The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
19.30.17. The INFORMATION_SCHEMA INNODB_METRICS Table
19.30.18. The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
19.30.19. The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
19.30.20. The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table
19.30.21. The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table
19.30.22. The INFORMATION_SCHEMA INNODB_FT_DELETED Table
19.30.23. The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table
19.31. Thread Pool INFORMATION_SCHEMA Tables
19.31.1. The INFORMATION_SCHEMA TP_THREAD_STATE Table
19.31.2. The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table
19.31.3. The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table
19.32. Extensions to SHOW Statements
20.1. Performance Schema Quick Start
20.2. Performance Schema Configuration
20.2.1. Performance Schema Build Configuration
20.2.2. Performance Schema Startup Configuration
20.2.3. Performance Schema Runtime Configuration
20.3. Performance Schema Queries
20.4. Performance Schema Instrument Naming Conventions
20.5. Performance Schema Status Monitoring
20.6. Performance Schema Atom and Molecule Events
20.7. Performance Schema Statement Digests
20.8. Performance Schema General Table Characteristics
20.9. Performance Schema Table Descriptions
20.9.1. Performance Schema Setup Tables
20.9.2. Performance Schema Instance Tables
20.9.3. Performance Schema Wait Event Tables
20.9.4. Performance Schema Stage Event Tables
20.9.5. Performance Schema Statement Event Tables
20.9.6. Performance Schema Connection Tables
20.9.7. Performance Schema Connection Attribute Tables
20.9.8. Performance Schema Summary Tables
20.9.9. Performance Schema Miscellaneous Tables
20.10. Performance Schema Option and Variable Reference
20.11. Performance Schema Command Options
20.12. Performance Schema System Variables
20.13. Performance Schema Status Variables
20.14. Performance Schema and Plugins
20.15. Using the Performance Schema to Diagnose Problems
21.1. MySQL Connector/ODBC
21.1.1. Connector/ODBC Versions
21.1.2. Connector/ODBC Introduction
21.1.3. Connector/ODBC Installation
21.1.4. Configuring Connector/ODBC
21.1.5. Connector/ODBC Examples
21.1.6. Connector/ODBC Reference
21.1.7. Connector/ODBC Notes and Tips
21.1.8. Connector/ODBC Support
21.2. MySQL Connector/Net
21.2.1. Connector/Net Versions
21.2.2. Connector/Net Installation
21.2.3. Connector/Net Visual Studio Integration
21.2.4. Connector/Net Tutorials
21.2.5. Connector/Net Programming
21.2.6. Connector/Net Connection String Options Reference
21.2.7. Connector/Net API Reference
21.2.8. Connector/Net Support
21.2.9. Connector/Net FAQ
21.3. MySQL Connector/J
21.3.1. Overview of MySQL Connector/J
21.3.2. Connector/J Versions
21.3.3. Connector/J Installation
21.3.4. Connector/J Examples
21.3.5. Connector/J (JDBC) Reference
21.3.6. JDBC Concepts
21.3.7. Connection Pooling with Connector/J
21.3.8. Load Balancing with Connector/J
21.3.9. Failover with Connector/J
21.3.10. Using the Connector/J Interceptor Classes
21.3.11. Using Connector/J with Tomcat
21.3.12. Using Connector/J with JBoss
21.3.13. Using Connector/J with Spring
21.3.14. Using Connector/J with GlassFish
21.3.15. Troubleshooting Connector/J Applications
21.3.16. Connector/J Support
21.4. MySQL Connector/C++
21.4.1. How to Get MySQL Connector/C++
21.4.2. Installing MySQL Connector/C++ from a Binary Distribution
21.4.3. Installing MySQL Connector/C++ from Source
21.4.4. Building MySQL Connector/C++ Windows Applications with Microsoft Visual Studio
21.4.5. Building MySQL Connector/C++ Linux Applications with NetBeans
21.4.6. MySQL Connector/C++ Getting Started: Usage Examples
21.4.7. MySQL Connector/C++ Tutorials
21.4.8. MySQL Connector/C++ Debug Tracing
21.4.9. MySQL Connector/C++ Usage Notes
21.4.10. MySQL Connector/C++ Known Bugs and Issues
21.4.11. MySQL Connector/C++ Support
21.5. MySQL Connector/C
21.5.1. MySQL Connector/C Supported Platforms
21.5.2. MySQL Connector/C Distribution Contents
21.5.3. Obtaining MySQL Connector/C
21.5.4. Installing MySQL Connector/C from a Binary Distribution
21.5.5. Installing MySQL Connector/C from Source
21.5.6. Testing MySQL Connector/C
21.5.7. Building MySQL Connector/C Applications
21.6. MySQL Connector/Python
21.6.1. Guidelines for Python Developers
21.6.2. Connector/Python Versions
21.6.3. Connector/Python Installation
21.6.4. Connector/Python Coding Examples
21.6.5. Connector/Python Tutorials
21.6.6. Connector/Python Connection Arguments
21.6.7. Connector/Python API Reference
21.6.8. Connector/Python FAQ
21.7. libmysqld, the Embedded MySQL Server Library
21.7.1. Compiling Programs with libmysqld
21.7.2. Restrictions When Using the Embedded MySQL Server
21.7.3. Options with the Embedded Server
21.7.4. Embedded Server Examples
21.8. MySQL C API
21.8.1. MySQL C API Implementations
21.8.2. Example C API Client Programs
21.8.3. Building and Running C API Client Programs
21.8.4. C API Data Structures
21.8.5. C API Function Overview
21.8.6. C API Function Descriptions
21.8.7. C API Prepared Statements
21.8.8. C API Prepared Statement Data Structures
21.8.9. C API Prepared Statement Function Overview
21.8.10. C API Prepared Statement Function Descriptions
21.8.11. C API Threaded Function Descriptions
21.8.12. C API Embedded Server Function Descriptions
21.8.13. C API Client Plugin Functions
21.8.14. Common Questions and Problems When Using the C API
21.8.15. Controlling Automatic Reconnection Behavior
21.8.16. C API Support for Multiple Statement Execution
21.8.17. C API Prepared Statement Problems
21.8.18. C API Prepared Statement Handling of Date and Time Values
21.8.19. C API Support for Prepared CALL Statements
21.9. MySQL PHP API
21.9.1. Overview of the MySQL PHP drivers
21.9.2. Original MySQL API (Mysql)
21.9.3. MySQL Improved Extension (Mysqli)
21.9.4. MySQL Functions (PDO_MYSQL) (MySQL (PDO))
21.9.5. MySQL Native Driver (Mysqlnd)
21.9.6. Mysqlnd replication and load balancing plugin (mysqlnd_ms)
21.9.7. Mysqlnd query result cache plugin (mysqlnd_qc)
21.9.8. Mysqlnd user handler plugin (mysqlnd_uh)
21.9.9. Mysqlnd connection multiplexing plugin (mysqlnd_mux)
21.9.10. Mysqlnd Memcache plugin (mysqlnd_memcache)
21.9.11. Connector/PHP
21.9.12. Common Problems with MySQL and PHP
21.9.13. Enabling Both mysql and mysqli in PHP
21.10. MySQL Perl API
21.11. MySQL Python API
21.12. MySQL Ruby APIs
21.12.1. The MySQL/Ruby API
21.12.2. The Ruby/MySQL API
21.13. MySQL Tcl API
21.14. MySQL Eiffel Wrapper
22.1. MySQL Internals
22.1.1. MySQL Threads
22.1.2. The MySQL Test Suite
22.2. The MySQL Plugin API
22.2.1. Plugin API Characteristics
22.2.2. Plugin API Components
22.2.3. Types of Plugins
22.2.4. Writing Plugins
22.2.5. MySQL Services for Plugins
22.3. Adding New Functions to MySQL
22.3.1. Features of the User-Defined Function Interface
22.3.2. Adding a New User-Defined Function
22.3.3. Adding a New Native Function
22.4. Debugging and Porting MySQL
22.4.1. Debugging a MySQL Server
22.4.2. Debugging a MySQL Client
22.4.3. The DBUG Package
23.1. MySQL Enterprise Monitor
23.2. MySQL Enterprise Backup
23.3. MySQL Enterprise Security
23.4. MySQL Enterprise Audit
23.5. MySQL Thread Pool
25.1. Installing and Configuring
25.2. Edit MySQL Data
25.3. Import MySQL Data
25.4. Append MySQL Data
25.5. Export MySQL Data
25.6. MySQL for Excel FAQ
A. Licenses for Third-Party Components
A.1. Ant-Contrib License
A.2. ANTLR 3.3 License
A.3. Boost Library License
A.4. c3p0 JDBC Library License
A.5. dtoa.c License
A.6. Editline Library (libedit) License
A.7. Facebook Fast Checksum Patch License
A.8. Facebook Patches License
A.9. FindGTest.cmake License
A.10. Fred Fish's Dbug Library License
A.11. getarg License
A.12. GLib License (for MySQL Proxy)
A.13. GNU General Public License Version 2.0, June 1991
A.14. GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library Exception Version 3.1, 31 March 2009
A.15. GNU Lesser General Public License Version 2.1, February 1999
A.16. GNU Libtool License
A.17. GNU Readline License
A.18. GNU Standard C++ Library (libstdc++) License
A.19. Google Controlling Master Thread I/O Rate Patch License
A.20. Google Perftools (TCMalloc utility) License
A.21. Google SMP Patch License
A.22. jboss-common-jdbc-wrapper.jar License
A.23. lib_sql.cc License
A.24. Libaio License
A.25. libevent License
A.26. Libiconv License
A.27. libintl License
A.28. Linux-PAM License
A.29. LPeg Library License
A.30. Lua (liblua) License
A.31. LuaFileSystem Library License
A.32. md5 (Message-Digest Algorithm 5) License
A.33. memcached License
A.34. mkpasswd.pl License
A.35. nt_servc (Windows NT Service class library) License
A.36. OpenPAM License
A.37. OpenSSL v1.0 License
A.38. PCRE License
A.39. Percona Multiple I/O Threads Patch License
A.40. Red HAT RPM Spec File License
A.41. RegEX-Spencer Library License
A.42. RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License
A.43. Richard A. O'Keefe String Library License
A.44. SHA-1 in C License
A.45. Simple Logging Facade for Java (SLF4J) License
A.46. Unicode Data Files
A.47. zlib License
A.48. ZLIB.NET License
B. MySQL 5.6 Frequently Asked Questions
B.1. MySQL 5.6 FAQ: General
B.2. MySQL 5.6 FAQ: Storage Engines
B.3. MySQL 5.6 FAQ: Server SQL Mode
B.4. MySQL 5.6 FAQ: Stored Procedures and Functions
B.5. MySQL 5.6 FAQ: Triggers
B.6. MySQL 5.6 FAQ: Views
B.7. MySQL 5.6 FAQ: INFORMATION_SCHEMA
B.8. MySQL 5.6 FAQ: Migration
B.9. MySQL 5.6 FAQ: Security
B.10. MySQL 5.6 FAQ: MySQL Cluster
B.11. MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
B.12. MySQL 5.6 FAQ: Connectors & APIs
B.13. MySQL 5.6 FAQ: Replication
B.14. MySQL 5.6 FAQ: MySQL Enterprise Scalability Thread Pool
C. Errors, Error Codes, and Common Problems
C.1. Sources of Error Information
C.2. Types of Error Values
C.3. Server Error Codes and Messages
C.4. Client Error Codes and Messages
C.5. Problems and Common Errors
C.5.1. How to Determine What Is Causing a Problem
C.5.2. Common Errors When Using MySQL Programs
C.5.3. Installation-Related Issues
C.5.4. Administration-Related Issues
C.5.5. Query-Related Issues
C.5.6. Optimizer-Related Issues
C.5.7. Table Definition-Related Issues
C.5.8. Known Issues in MySQL
E.1. Restrictions on Stored Programs
E.2. Restrictions on Condition Handling
E.3. Restrictions on Server-Side Cursors
E.4. Restrictions on Subqueries
E.5. Restrictions on Views
E.6. Restrictions on XA Transactions
E.7. Restrictions on Character Sets
E.8. Restrictions on Performance Schema
E.9. Restrictions on Pluggable Authentication
E.10. Limits in MySQL
E.10.1. Limits of Joins
E.10.2. Limits on Number of Databases and Tables
E.10.3. Limits on Table Size
E.10.4. Limits on Table Column Count and Row Size
E.10.5. Limits Imposed by .frm File Structure
E.10.6. Windows Platform Limitations
Transaction Isolation Level Index
MySQL 5.6 Reference Manual
Abstract
This is the MySQL™ Reference Manual. It documents MySQL 5.6 through 5.6.12.
MySQL Cluster is currently not supported in MySQL 5.6. For information about MySQL Cluster, please see MySQL Cluster NDB 7.2.
MySQL 5.6 features. This manual describes features that are not included in every edition of MySQL 5.6; such features may not be included in the edition of MySQL 5.6 licensed to you. If you have any questions about the features included in your edition of MySQL 5.6, refer to your MySQL 5.6 license agreement or contact your Oracle sales representative.
For release notes detailing the changes in each release, see the MySQL 5.6 Release Notes.
For legal information, see the Legal Notices.
Document generated on: 2013-04-16 (revision: 34905)
Preface and Legal Notices
This is the Reference Manual for the MySQL Database System, version 5.6, through release 5.6.12. Differences between minor versions of MySQL 5.6 are noted in the present text with reference to release numbers (5.6.x). For license information, see the Legal Notices. This product may contain third-party code. For license information on third-party code, see Appendix A, Licenses for Third-Party Components.
This manual is not intended for use with older versions of the MySQL software due to the many functional and other differences between MySQL 5.6 and previous versions. If you are using an earlier release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.5 Reference Manual covers the 5.5 series of MySQL software releases.
Legal Notices
Copyright © 1997, 2013, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/or its affiliates, and shall not be used without Oracle's express written authorization. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this material is subject to the terms and conditions of your Oracle Software License and Service Agreement, which has been executed and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided below. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.
This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms:
You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights to this documentation not expressly granted above.
For more information on the terms of this license, or for details on how the MySQL documentation is built and produced, please visit MySQL Contact & Questions.
For additional licensing information, including licenses for third-party libraries used by MySQL products, see Preface and Legal Notices.
For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other MySQL users.
For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL Documentation Library.
Chapter 1. General Information
Table of Contents
1.2. Typographical and Syntax Conventions
1.3. Overview of the MySQL Database Management System
1.3.1. What is MySQL?
1.3.2. The Main Features of MySQL
1.3.3. History of MySQL
1.5. MySQL Development History
1.6. MySQL Information Sources
1.6.1. MySQL Mailing Lists
1.6.2. MySQL Community Support at the MySQL Forums
1.6.3. MySQL Community Support on Internet Relay Chat (IRC)
1.6.4. MySQL Enterprise
1.7. How to Report Bugs or Problems
1.8. MySQL Standards Compliance
1.8.1. What Standards MySQL Follows
1.8.2. Selecting SQL Modes
1.8.3. Running MySQL in ANSI Mode
1.8.4. MySQL Extensions to Standard SQL
1.8.5. MySQL Differences from Standard SQL
1.8.6. How MySQL Deals with Constraints
1.9.1. Contributors to MySQL
1.9.2. Documenters and translators
1.9.3. Packages that support MySQL
1.9.4. Tools that were used to create MySQL
1.9.5. Supporters of MySQL
The MySQL™ software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/or its affiliates, and shall not be used by Customer without Oracle's express written authorization. Other names may be trademarks of their respective owners.
The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open Source product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or can purchase a standard commercial license from Oracle. See http://www.mysql.com/company/legal/licensing/ for more information on our licensing policies.
The following list describes some sections of particular interest in this manual:
For a discussion of MySQL Database Server capabilities, see Section 1.3.2, “The Main Features of MySQL”.
For an overview of new MySQL features, see Section 1.4, “What Is New in MySQL 5.6”. For information about the changes in each version, see the Release Notes.
For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about upgrading MySQL, see Section 2.11.1, “Upgrading MySQL”.
For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.
For information about configuring and administering MySQL Server, see Chapter 5, MySQL Server Administration.
For information about security in MySQL, see Chapter 6, Security.
For information about setting up replication servers, see Chapter 16, Replication.
For information about MySQL Enterprise, the commercial MySQL release with advanced features and management tools, see Chapter 23, MySQL Enterprise Edition.
For answers to a number of questions that are often asked concerning the MySQL Database Server and its capabilities, see Appendix B, MySQL 5.6 Frequently Asked Questions.
For a history of new features and bugfixes, see the Release Notes.
Important
To report problems or bugs, please use the instructions at Section 1.7, “How to Report Bugs or Problems”. If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an email message to <secalert_us@oracle.com>. Exception: Support customers should report all problems, including security bugs, to Oracle Support.
1.1. About This Manual
This is the Reference Manual for the MySQL Database System, version 5.6, through release 5.6.12. Differences between minor versions of MySQL 5.6 are noted in the present text with reference to release numbers (5.6.x). For license information, see the Legal Notices. This product may contain third-party code. For license information on third-party code, see Appendix A, Licenses for Third-Party Components.
This manual is not intended for use with older versions of the MySQL software due to the many functional and other differences between MySQL 5.6 and previous versions. If you are using an earlier release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.5 Reference Manual covers the 5.5 series of MySQL software releases.
Because this manual serves as a reference, it does not provide general instruction on SQL or relational database concepts. It also does not teach you how to use your operating system or command-line interpreter.
The MySQL Database Software is under constant development, and the Reference Manual is updated frequently as well. The most recent version of the manual is available online in searchable form at http://dev.mysql.com/doc/. Other formats also are available there, including HTML, PDF, and EPUB versions.
The Reference Manual source files are written in DocBook XML format. The HTML version and other formats are produced automatically, primarily using the DocBook XSL stylesheets. For information about DocBook, see http://docbook.org/
If you have questions about using MySQL, you can ask them using our mailing lists or forums. See Section 1.6.1, “MySQL Mailing Lists”, and Section 1.6.2, “MySQL Community Support at the MySQL Forums”. If you have suggestions concerning additions or corrections to the manual itself, please send them to the http://www.mysql.com/company/contact/.
This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by the MySQL Documentation Team, consisting of Paul DuBois, Stefan Hinz, Philip Olson, John Russell, and Jon Stephens.
1.2. Typographical and Syntax Conventions
This manual uses certain typographical conventions:
Text in this style is used for SQL statements; database, table, and column names; program listings and source code; and environment variables. Example: “To reload the grant tables, use the FLUSH PRIVILEGES statement.”
Text in this style indicates input that you type in examples.
Text in this style indicates the names of executable programs and scripts, examples being mysql (the MySQL command-line client program) and mysqld (the MySQL server executable).
Text in this style is used for variable input for which you should substitute a value of your own choosing.
Text in this style is used for emphasis.
Text in this style is used in table headings and to convey especially strong emphasis.
Text in this style is used to indicate a program option that affects how the program is executed, or that supplies information that is needed for the program to function in a certain way. Example: “The --host option (short form -h) tells the mysql client program the hostname or IP address of the MySQL server that it should connect to”.
File names and directory names are written like this: “The global my.cnf file is located in the /etc directory.”
Character sequences are written like this: “To specify a wildcard, use the ‘%’ character.”
When commands are shown that are meant to be executed from within a particular program, the prompt shown preceding the command indicates which command to use. For example, shell> indicates a command that you execute from your login shell, root-shell> is similar but should be executed as root, and mysql> indicates a statement that you execute from the mysql client program:
shell> type a shell command here
root-shell> type a shell command as root here
mysql> type a mysql statement here
In some areas different systems may be distinguished from each other to show that commands should be executed in two different environments. For example, while working with replication the commands might be prefixed with master and slave:
master> type a mysql command on the replication master here
slave> type a mysql command on the replication slave here
The “shell” is your command interpreter. On Unix, this is typically a program such as sh, csh, or bash. On Windows, the equivalent program is command.com or cmd.exe, typically run in a console window.
When you enter a command or statement shown in an example, do not type the prompt shown in the example.
Database, table, and column names must often be substituted into statements. To indicate that such substitution is necessary, this manual uses db_name, tbl_name, and col_name. For example, you might see a statement like this:
mysql> SELECT col_name FROM db_name.tbl_name;
This means that if you were to enter a similar statement, you would supply your own database, table, and column names, perhaps like this:
mysql> SELECT author_name FROM biblio_db.author_list;
SQL keywords are not case sensitive and may be written in any lettercase. This manual uses uppercase.
In syntax descriptions, square brackets (“[” and “]”) indicate optional words or clauses. For example, in the following statement, IF EXISTS is optional:
DROP TABLE [IF EXISTS] tbl_name
When a syntax element consists of a number of alternatives, the alternatives are separated by vertical bars (“|”). When one member from a set of choices may be chosen, the alternatives are listed within square brackets (“[” and “]”):
TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)
When one member from a set of choices must be chosen, the alternatives are listed within braces (“{” and “}”):
{DESCRIBE | DESC} tbl_name [col_name | wild]
An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter version of more complex syntax. For example, SELECT ... INTO OUTFILE is shorthand for the form of SELECT statement that has an INTO OUTFILE clause following other parts of the statement.
An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In the following example, multiple reset_option values may be given, with each of those after the first preceded by commas:
RESET reset_option [,reset_option] ...
Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence to set the CC environment variable and run the configure command looks like this in Bourne shell syntax:
shell> CC=gcc ./configure
If you are using csh or tcsh, you must issue commands somewhat differently:
shell> setenv CC gcc
shell> ./configure
1.3. Overview of the MySQL Database Management System
1.3.1. What is MySQL?
MySQL, the most popular Open Source SQL database management system, is developed, distributed, and supported by Oracle Corporation.
The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL software.
MySQL is a database management system.
A database is a structured collection of data. It may be anything from a simple shopping list to a picture gallery or the vast amounts of information in a corporate network. To add, access, and process data stored in a computer database, you need a database management system such as MySQL Server. Since computers are very good at handling large amounts of data, database management systems play a central role in computing, as standalone utilities, or as parts of other applications.
MySQL databases are relational.
A relational database stores data in separate tables rather than putting all the data in one big storeroom. The database structures are organized into physical files optimized for speed. The logical model, with objects such as databases, tables, views, rows, and columns, offers a flexible programming environment. You set up rules governing the relationships between different data fields, such as one-to-one, one-to-many, unique, required or optional, and “pointers” between different tables. The database enforces these rules, so that with a well-designed database, your application never sees inconsistent, duplicate, orphan, out-of-date, or missing data.
The SQL part of “MySQL” stands for “Structured Query Language”. SQL is the most common standardized language used to access databases. Depending on your programming environment, you might enter SQL directly (for example, to generate reports), embed SQL statements into code written in another language, or use a language-specific API that hides the SQL syntax.
SQL is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92” refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999, and “SQL:2003” refers to the current version of the standard. We use the phrase “the SQL standard” to mean the current version of the SQL Standard at any time.
MySQL software is Open Source.
Open Source means that it is possible for anyone to use and modify the software. Anybody can download the MySQL software from the Internet and use it without paying anything. If you wish, you may study the source code and change it to suit your needs. The MySQL software uses the GPL (GNU General Public License), http://www.fsf.org/licenses/, to define what you may and may not do with the software in different situations. If you feel uncomfortable with the GPL or need to embed MySQL code into a commercial application, you can buy a commercially licensed version from us. See the MySQL Licensing Overview for more information (http://www.mysql.com/company/legal/licensing/).
The MySQL Database Server is very fast, reliable, scalable, and easy to use.
If that is what you are looking for, you should give it a try. MySQL Server can run comfortably on a desktop or laptop, alongside your other applications, web servers, and so on, requiring little or no attention. If you dedicate an entire machine to MySQL, you can adjust the settings to take advantage of all the memory, CPU power, and I/O capacity available. MySQL can also scale up to clusters of machines, networked together.
You can find a performance comparison of MySQL Server with other database managers on our benchmark page. See Section 8.12.2, “The MySQL Benchmark Suite”.
MySQL Server was originally developed to handle large databases much faster than existing solutions and has been successfully used in highly demanding production environments for several years. Although under constant development, MySQL Server today offers a rich and useful set of functions. Its connectivity, speed, and security make MySQL Server highly suited for accessing databases on the Internet.
MySQL Server works in client/server or embedded systems.
The MySQL Database Software is a client/server system that consists of a multi-threaded SQL server that supports different backends, several different client programs and libraries, administrative tools, and a wide range of application programming interfaces (APIs).
We also provide MySQL Server as an embedded multi-threaded library that you can link into your application to get a smaller, faster, easier-to-manage standalone product.
A large amount of contributed MySQL software is available.
MySQL Server has a practical set of features developed in close cooperation with our users. It is very likely that your favorite application or language supports the MySQL Database Server.
The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we do not mind if you pronounce it as “my sequel” or in some other localized way.
1.3.2. The Main Features of MySQL
This section describes some of the important characteristics of the MySQL Database Software. See also Section 1.5, “MySQL Development History”. In most respects, the roadmap applies to all versions of MySQL. For information about features as they are introduced into MySQL on a series-specific basis, see the “In a Nutshell” section of the appropriate Manual:
MySQL 5.6: MySQL 5.6 in a Nutshell
MySQL 5.5: MySQL 5.5 in a Nutshell
MySQL 5.1: MySQL 5.1 in a Nutshell
MySQL 5.0: MySQL 5.0 in a Nutshell
Internals and Portability:
Written in C and C++.
Tested with a broad range of different compilers.
Works on many different platforms. See Section 2.1.1, “Operating Systems Supported by MySQL Community Server”.
For portability, uses CMake in MySQL 5.5 and up. Previous series use GNU Automake, Autoconf, and Libtool.
Tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool (http://developer.kde.org/~sewardj/).
Uses multi-layered server design with independent modules.
Designed to be fully multi-threaded using kernel threads, to easily use multiple CPUs if they are available.
Provides transactional and nontransactional storage engines.
Uses very fast B-tree disk tables (MyISAM) with index compression.
Designed to make it relatively easy to add other storage engines. This is useful if you want to provide an SQL interface for an in-house database.
Uses a very fast thread-based memory allocation system.
Executes very fast joins using an optimized nested-loop join.
Implements in-memory hash tables, which are used as temporary tables.
Implements SQL functions using a highly optimized class library that should be as fast as possible. Usually there is no memory allocation at all after query initialization.
Provides the server as a separate program for use in a client/server networked environment, and as a library that can be embedded (linked) into standalone applications. Such applications can be used in isolation or in environments where no network is available.
Data Types:
Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR, VARCHAR, BINARY, VARBINARY, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET, ENUM, and OpenGIS spatial types. See Chapter 11, Data Types.
Fixed-length and variable-length string types.
Statements and Functions:
Full operator and function support in the SELECT list and WHERE clause of queries. For example:
mysql> SELECT CONCAT(first_name, ' ', last_name)
-> FROM citizen
-> WHERE income/dependents > 10000 AND age > 30;
Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(), AVG(), STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).
Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC syntax.
Support for aliases on tables and columns as required by standard SQL.
Support for DELETE, INSERT, REPLACE, and UPDATE to return the number of rows that were changed (affected), or to return the number of rows matched instead by setting a flag when connecting to the server.
Support for MySQL-specific SHOW statements that retrieve information about databases, storage engines, tables, and indexes. MySQL 5.0 adds support for the INFORMATION_SCHEMA database, implemented according to standard SQL.
An EXPLAIN statement to show how the optimizer resolves a query.
Independence of function names from table or column names. For example, ABS is a valid column name. The only restriction is that for a function call, no spaces are permitted between the function name and the “(” that follows it. See Section 9.3, “Reserved Words”.
You can refer to tables from different databases in the same statement.
Security:
A privilege and password system that is very flexible and secure, and that enables host-based verification.
Password security by encryption of all password traffic when you connect to a server.
Scalability and Limits:
Support for large databases. We use MySQL Server with databases that contain 50 million records. We also know of users who use MySQL Server with 200,000 tables and about 5,000,000,000 rows.
Support for up to 64 indexes per table (32 before MySQL 4.1.2). Each index may consist of 1 to 16 columns or parts of columns. The maximum index width is 767 bytes for InnoDB tables, or 1000 for MyISAM; before MySQL 4.1.2, the limit is 500 bytes. An index may use a prefix of a column for CHAR, VARCHAR, BLOB, or TEXT column types.
Connectivity:
Clients can connect to MySQL Server using several protocols:
Clients can connect using TCP/IP sockets on any platform.
On Windows systems in the NT family (NT, 2000, XP, 2003, or Vista), clients can connect using named pipes if the server is started with the --enable-named-pipe option. In MySQL 4.1 and higher, Windows servers also support shared-memory connections if started with the --shared-memory option. Clients can connect through shared memory by using the --protocol=memory option.
On Unix systems, clients can connect using Unix domain socket files.
MySQL client programs can be written in many languages. A client library written in C is available for clients written in C or C++, or for any language that provides C bindings.
APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, enabling MySQL clients to be written in many languages. See Chapter 21, Connectors and APIs.
The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use ODBC (Open Database Connectivity) connections. For example, you can use MS Access to connect to your MySQL server. Clients can be run on Windows or Unix. Connector/ODBC source is available. All ODBC 2.5 functions are supported, as are many others. See Section 21.1, “MySQL Connector/ODBC”.
The Connector/J interface provides MySQL support for Java client programs that use JDBC connections. Clients can be run on Windows or Unix. Connector/J source is available. See Section 21.3, “MySQL Connector/J”.
MySQL Connector/Net enables developers to easily create .NET applications that require secure, high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and integrates into ADO.NET aware tools. Developers can build applications using their choice of .NET languages. MySQL Connector/Net is a fully managed ADO.NET driver written in 100% pure C#. See Section 21.2, “MySQL Connector/Net”.
Localization:
The server can provide error messages to clients in many languages. See Section 10.2, “Setting the Error Message Language”.
Full support for several different character sets, including latin1 (cp1252), german, big5, ujis, and more. For example, the Scandinavian characters “å”, “ä” and “ö” are permitted in table and column names. Unicode support is available as of MySQL 4.1.
All data is saved in the chosen character set.
Sorting and comparisons are done according to the chosen character set and collation (using latin1 and Swedish collation by default). It is possible to change this when the MySQL server is started. To see an example of very advanced sorting, look at the Czech sorting code. MySQL Server supports many different character sets that can be specified at compile time and runtime.
As of MySQL 4.1, the server time zone can be changed dynamically, and individual clients can specify their own time zone. Section 10.6, “MySQL Server Time Zone Support”.
Clients and Tools:
MySQL includes several client and utility programs. These include both command-line programs such as mysqldump and mysqladmin, and graphical programs such as MySQL Workbench.
MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These statements are available from the command line through the mysqlcheck client. MySQL also includes myisamchk, a very fast command-line utility for performing these operations on MyISAM tables. See Chapter 4, MySQL Programs.
MySQL programs can be invoked with the --help or -? option to obtain online assistance.
1.3.3. History of MySQL
We started out with the intention of using the mSQL database system to connect to our tables using our own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that mSQL was not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our database but with almost the same API interface as mSQL. This API was designed to enable third-party code that was written for use with mSQL to be ported easily for use with MySQL.
MySQL is named after co-founder Monty Widenius's daughter, My.
The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose Twebaze, an Open Source software developer from Swaziland, Africa. According to Ambrose, the feminine name Sakila has its roots in SiSwati, the local language of Swaziland. Sakila is also the name of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.
1.4. What Is New in MySQL 5.6
This section summarizes what has been added to and removed from MySQL 5.6.
Added Features
The following features have been added to MySQL 5.6:
Security improvements. These security improvements were made:
MySQL now provides a method for storing authentication credentials encrypted in an option file named .mylogin.cnf. To create the file, use the mysql_config_editor utility. The file can be read later by MySQL client programs to obtain authentication credentials for connecting to a MySQL server. mysql_config_editor writes the .mylogin.cnf file using encryption so the credentials are not stored as clear text, and its contents when decrypted by client programs are used only in memory. In this way, passwords can be stored in a file in non-cleartext format and used later without ever needing to be exposed on the command line or in an environment variable. For more information, see Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.
MySQL now supports stronger encryption for user account passwords, available through an authentication plugin named sha256_password that implements SHA-256 password hashing. This plugin is built in, so it is always available and need not be loaded explicitly. For more information, including instructions for creating accounts that use SHA-256 passwords, see Section 6.3.7.2, “The SHA-256 Authentication Plugin”.
The mysql.user table now has a password_expired column. Its default value is 'N', but can be set to 'Y' with the new ALTER USER statement. After an account's password has been expired, all operations performed in subsequent connections to the server using the account result in an error until the user issues a SET PASSWORD statement to establish a new account password. For more information, see Section 13.7.1.1, “ALTER USER Syntax”.
MySQL now has provision for checking password security:
In statements that assign a password supplied as a cleartext value, the value is checked against the current password policy and rejected if it is weak (the statement returns an ER_NOT_VALID_PASSWORD error). This affects the CREATE USER, GRANT, and SET PASSWORD statements. Passwords given as arguments to the PASSWORD() and OLD_PASSWORD() functions are checked as well.
The strength of potential passwords can be assessed using the new VALIDATE_PASSWORD_STRENGTH() SQL function, which takes a password argument and returns an integer from 0 (weak) to 100 (strong).
Both capabilities are implemented by the validate_password plugin. For more information, see Section 6.1.2.6, “The Password Validation Plugin”.
mysql_upgrade now produces a warning if it finds user accounts with passwords hashed with the older pre-4.1 hashing method. Such accounts should be updated to use more secure password hashing. See Section 6.1.2.4, “Password Hashing in MySQL”
On Unix platforms, mysql_install_db supports a new option, --random-passwords, that provides for more secure MySQL installation. Invoking mysql_install_db with --random-passwords causes it to assign a random password to the MySQL root accounts, set the “password expired” flag for those accounts, and remove the anonymous-user MySQL accounts. For additional details, see Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”.
Logging has been modified so that passwords do not appear in plain text in statements written to the general query log, slow query log, and binary log. See Section 6.1.2.3, “Passwords and Logging”.
The mysql client no longer logs to its history file statements that refer to passwords. See Section 4.5.1.3, “mysql Logging”.
START SLAVE syntax has been modified to permit connection parameters to be specified for connecting to the master. This provides an alternative to storing the password in the master.info file. See Section 13.4.2.5, “START SLAVE Syntax”.
Changes to server defaults. Beginning with MySQL 5.6.6, several MySQL Server parameter defaults differ from the defaults in previous releases. The motivation for these changes is to provide better out-of-box performance and to reduce the need for database administrators to change settings manually. For more information, see Section 5.1.2.1, “Changes to Server Defaults”.
InnoDB enhancements. These InnoDB enhancements were added:
You can create FULLTEXT indexes on InnoDB tables, and query them using the MATCH() ... AGAINST syntax. This feature includes a new proximity search operator (@) and several new configuration options and INFORMATION_SCHEMA tables: See Section 14.2.3.12.3, “FULLTEXT Indexes” for more information.
Several ALTER TABLE operations can be performed without copying the table, without blocking inserts, updates, and deletes to the table, or both. These enhancements are known collectively as online DDL. See Section 5.5, “Online DDL for InnoDB Tables” for details.
You have more flexibility to move around the .ibd files files created in file-per-table mode to suit your storage devices and database servers. When creating a table, you can designate a location outside the MySQL data directory to hold the .ibd file, for example to put a busy table on an SSD device or a huge table on a high-capacity HDD device. You can export a table from one MySQL instance and import it in a different instance, without inconsistencies or mismatches caused by buffered data, in-progress transactions, and internal bookkeeping details such as the space ID and LSN. See Section 14.2.4.2.34, “Improved Tablespace Management” for details.
You can now set the InnoDB page size for uncompressed tables to 8KB or 4KB, as an alternative to the default 16KB. This setting is controlled by the innodb_page_size configuration option. You specify the size when creating the MySQL instance. All InnoDB tablespaces within an instance share the same page size. Smaller page sizes can help to avoid redundant or inefficient I/O for certain combinations of workload and storage devices, particularly SSD devices with small block sizes.
Improvements to the algorithms for adaptive flushing make I/O operations more efficient and consistent under a variety of workloads. The new algorithm and default configuration values are expected to improve performance and concurrency for most users. Advanced users can fine-tune their I/O responsiveness through several configuration options. See Section 14.2.4.2.9, “Improvements to Buffer Pool Flushing” for details.
You can code MySQL applications that access InnoDB tables through a NoSQL-style API. This feature uses the popular memcached daemon to relay requests such as ADD, SET, and GET for key-value pairs. These simple operations to store and retrieve data avoid the SQL overhead such as parsing and constructing a query execution plan. You can access the same data through the NoSQL API and SQL. For example, you might use the NoSQL API for fast updates and lookups, and SQL for complex queries and compatibility with existing applications. See Section 14.2.9, “InnoDB Integration with memcached” for details.
Optimizer statistics for InnoDB tables are gathered at more predictable intervals and can persist across server restarts, for improved plan stability. You can also control the amount of sampling done for InnoDB indexes, to make the optimizer statistics more accurate and improve the query execution plan. See Section 14.2.4.2.10, “Persistent Optimizer Statistics for InnoDB Tables” for details.
New optimizations apply to read-only transactions, improving performance and concurrency for ad-hoc queries and report-generating applications. These optimizations are applied automatically when practical, or you can specify START TRANSACTION READ ONLY to ensure the transaction is read-only. See Section 14.2.4.2.3, “Optimizations for Read-Only Transactions” for details.
You can move the InnoDB undo log out of the system tablespace into one or more separate tablespaces. The I/O patterns for the undo log make these new tablespaces good candidates to move to SSD storage, while keeping the system tablespace on hard disk storage. For details, see Section 14.2.4.2.4, “Separate Tablespaces for InnoDB Undo Logs”.
The InnoDB redo log files now have a maximum combined size of 512GB, increased from 4GB. You can specify the larger values through the innodb_log_file_size option. The startup behavior now automatically handles the situation where the size of the existing redo log files does not match the size specified by innodb_log_file_size and innodb_log_files_in_group.
The --innodb-read-only option lets you run a MySQL server in read-only mode. You can access InnoDB tables on read-only media such as a DVD or CD, or set up a data warehouse with multiple instances all sharing the same data directory. See Section 14.2.5.1, “Support for Read-Only Media” for usage details.
Several new InnoDB-related INFORMATION_SCHEMA tables provide information about the InnoDB buffer pool, metadata about tables, indexes, and foreign keys from the InnoDB data dictionary, and low-level information about performance metrics that complements the information from the Performance Schema tables.
InnoDB now limits the memory used to hold table information when many tables are opened.
InnoDB has several internal performance enhancements, including reducing contention by splitting the kernel mutex, moving flushing operations from the main thread to a separate thread, enabling multiple purge threads, and reducing contention for the buffer pool on large-memory systems.
InnoDB uses a new, faster algorithm to detect deadlocks. Information about all InnoDB deadlocks can be written to the MySQL server error log, to help diagnose application issues.
To avoid a lengthy warmup period after restarting the server, particularly for instances with large InnoDB buffer pools, you can reload pages into the buffer pool immediately after a restart. MySQL can dump a compact data file at shutdown, then consult that data file to find the pages to reload on the next restart. You can also manually dump or reload the buffer pool at any time, for example during benchmarking or after complex report-generation queries. See Section 14.2.4.2.8, “Faster Restart by Preloading the InnoDB Buffer Pool” for details.
Partitioning. These table-partitioning enhancements were added:
The maximum number of partitions is increased to 8192. This number includes all partitions and all subpartitions of the table.
It is now possible to exchange a partition of a partitioned table or a subpartition of a subpartitioned table with a nonpartitioned table that otherwise has the same structure using the ALTER TABLE ... EXCHANGE PARTITION statement. This can be used, for example, to import and export partitions. For more information and examples, see Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”.
Explicit selection of one or more partitions or subpartitions is now supported for queries, as well as for many data modification statements, that act on partitioned tables. For example, assume a table t with some integer column c has 4 partitions named p0, p1, p2, and p3. Then the query SELECT * FROM t PARTITION (p0, p1) WHERE c < 5 returns only those rows from partitions p0 and p1 for which c is less than 5.
The following statements support explicit partition selection:
For syntax, see the descriptions of the individual statements. For additional information and examples, see Section 17.5, “Partition Selection”.
Partition lock pruning greatly improves performance of many DML and DDL statements acting on tables with many partitions by helping to eliminate locks on partitions that are not affected by these statements. Such statements include many SELECT, SELECT ... PARTITION, UPDATE, REPLACE, INSERT, as well as many other statements. For more information, including a complete listing of the statements whose performance has thus been improved, see Section 17.6.4, “Partitioning and Locking”.
Performance Schema. The Performance Schema includes several new features:
Instrumentation for table input and output. Instrumented operations include row-level accesses to persistent base tables or temporary tables. Operations that affect rows are fetch, insert, update, and delete.
Event filtering by table, based on schema and/or table names.
Event filtering by thread. More information is collected for threads.
Summary tables for table and index I/O, and for table locks.
Instrumentation for statements and stages within statements.
Configuration of instruments and consumers at server startup, which previously was possible only at runtime.
Replication and logging. These replication enhancements were added:
MySQL now supports transaction-based replication using global transaction identifiers (also known as “GTIDs”). This makes it possible to identify and track each transaction when it is committed on the originating server and as it is applied by any slaves.
Enabling of GTIDs in a replication setup is done primarily using the new --gtid-mode and --enforce-gtid-consistency server options. For information about additional options and variables introduced in support of GTIDs, see Section 16.1.4.5, “Global Transaction ID Options and Variables”.
When using GTIDs it is not necessary to refer to log files or positions within those files when starting a new slave or failing over to a new master, which greatly simplifies these tasks. For more information about provisioning servers for GTID replication with or without referring to binary log files, see Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”.
GTID-based replication is completely transaction-based, which makes it simple to check the consistency of masters and slaves. If all transactions committed on a given master are also committed on a given slave, consistency between the two servers is guaranteed.
For more complete information about the implementation and use of GTIDs in MySQL Replication, see Section 16.1.3, “Replication with Global Transaction Identifiers”.
MySQL row-based replication now supports row image control. By logging only those columns required for uniquely identifying and executing changes on each row (as opposed to all columns) for each row change, it is possible to save disk space, network resources, and memory usage. You can determine whether full or minimal rows are logged by setting the binlog_row_image server system variable to one of the values minimal (log required columns only), full (log all columns), or noblob (log all columns except for unneeded BLOB or TEXT columns). See System variables used with the binary log, for more information.
Binary logs written and read by the MySQL Server are now crash-safe, because only complete events (or transactions) are logged or read back. By default, the server logs the length of the event as well as the event itself and uses this information to verify that the event was written correctly. You can also cause the server to write checksums for the events using CRC32 checksums by setting the binlog_checksum system variable. To cause the server to read checksums from the binary log, use the master_verify_checksum system variable. The --slave-sql-verify-checksum system variable causes the slave SQL thread to read checksums from the relay log.
MySQL now supports logging of master connection information and of slave relay log information to tables as well as files. Use of these tables can be controlled independently, by the --master-info-repository and --relay-log-info-repository server options. Setting --master-info-repository to TABLE causes connection information to be logged in the slave_master_info table; setting --relay-log-info-repository to TABLE causes relay log information to be logged to the slave_relay_log_info table. Both of these tables are created automatically, in the mysql system database.
In order for replication to be crash-safe, the slave_master_info and slave_relay_log_info tables must each use a transactional storage engine, and beginning with MySQL 5.6.6, these tables are created using InnoDB for this reason. (Bug #13538891) If you are using a previous MySQL 5.6 release in which both of these tables use MyISAM, this means that, prior to starting replication, you must convert both of them to a transactional storage engine (such as InnoDB) if you wish for replication to be crash-safe. You can do this in such cases by means of the appropriate ALTER TABLE ... ENGINE=... statements. You should not attempt to change the storage engine used by either of these tables while replication is actually running.
Note
In order to guarantee crash safety on the slave, you must also run the slave with the --relay-log-recovery option enabled.
mysqlbinlog now has the capability to back up a binary log in its original binary format. When invoked with the --read-from-remote-server and --raw options, mysqlbinlog connects to a server, requests the log files, and writes output files in the same format as the originals. See Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”.
MySQL now supports delayed replication such that a slave server deliberately lags behind the master by at least a specified amount of time. The default delay is 0 seconds. Use the new MASTER_DELAY option for CHANGE MASTER TO to set the delay.
Delayed replication can be used for purposes such as protecting against user mistakes on the master (a DBA can roll back a delayed slave to the time just before the disaster) or testing how the system behaves when there is a lag. See Section 16.3.9, “Delayed Replication”.
A replication slave having multiple network interfaces can now be caused to use only one of these (to the exclusion of the others) by using the MASTER_BIND option when issuing a CHANGE MASTER TO statement.
The log_bin_basename system variable has been added. This variable contains the complete filename and path to the binary log file. Whereas the log_bin system variable shows only whether or not binary logging is enabled, log_bin_basename reflects the name set with the --log-bin server option.
Similarly, the relay_log_basename system variable shows the filename and complete path to the relay log file.
MySQL Replication now supports parallel execution of transactions with multi-threading on the slave. When parallel execution is enabled, the slave SQL thread acts as the coordinator for a number of slave worker threads as determined by the value of the slave_parallel_workers server system variable. The current implementation of multi-threading on the slave assumes that data and updates are partitioned on a per-database basis, and that updates within a given database occur in the same relative order as they do on the master. However, it is not necessary to coordinate transactions between different databases. Transactions can then also be distributed per database, which means that a worker thread on the slave slave can process successive transactions on a given database without waiting for updates to other databases to complete.
Since transactions on different databases can occur in a different order on the slave than on the master, simply checking for the most recently executed transaction is not a guarantee that all previous transactions on the master have been executed on the slave. This has implications for logging and recovery when using a multi-threaded slave. For information about how to interpret binary logging information when using multi-threading on the slave, see Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”.
Optimizer enhancements. These query optimizer improvements were implemented:
The optimizer now more efficiently handles queries (and subqueries) of the following form:
SELECT ... FROM single_table ... ORDER BY non_index_column [DESC] LIMIT [M,]N;
That type of query is common in web applications that display only a few rows from a larger result set. For example:
SELECT col1, ... FROM t1 ... ORDER BY name LIMIT 10;
SELECT col1, ... FROM t1 ... ORDER BY RAND() LIMIT 15;
The sort buffer has a size of sort_buffer_size. If the sort elements for N rows are small enough to fit in the sort buffer (M+N rows if M was specified), the server can avoid using a merge file and perform the sort entirely in memory. For details, see Section 8.2.1.3, “Optimizing LIMIT Queries”.
The optimizer implements Disk-Sweep Multi-Range Read. Reading rows using a range scan on a secondary index can result in many random disk accesses to the base table when the table is large and not stored in the storage engine's cache. With the Disk-Sweep Multi-Range Read (MRR) optimization, MySQL tries to reduce the number of random disk access for range scans by first scanning the index only and collecting the keys for the relevant rows. Then the keys are sorted and finally the rows are retrieved from the base table using the order of the primary key. The motivation for Disk-sweep MRR is to reduce the number of random disk accesses and instead achieve a more sequential scan of the base table data. For more information, see Section 8.13.11, “Multi-Range Read Optimization”.
The optimizer implements Index Condition Pushdown (ICP), an optimization for the case where MySQL retrieves rows from a table using an index. Without ICP, the storage engine traverses the index to locate rows in the base table and returns them to the MySQL server which evaluates the WHERE condition for the rows. With ICP enabled, and if parts of the WHERE condition can be evaluated by using only fields from the index, the MySQL server pushes this part of the WHERE condition down to the storage engine. The storage engine then evaluates the pushed index condition by using the index entry and only if this is satisfied is base row be read. ICP can reduce the number of accesses the storage engine has to do against the base table and the number of accesses the MySQL server has to do against the storage engine. For more information, see Section 8.13.4, “Index Condition Pushdown Optimization”.
The EXPLAIN statement now provides execution plan information for DELETE, INSERT, REPLACE, and UPDATE statements. Previously, EXPLAIN provided information only for SELECT statements. In addition, the EXPLAIN statement now can produce output in JSON format. See Section 13.8.2, “EXPLAIN Syntax”.
The optimizer more efficiently handles subqueries in the FROM clause (that is, derived tables). Materialization of subqueries in the FROM clause is postponed until their contents are needed during query execution, which improves performance. In addition, during query execution, the optimizer may add an index to a derived table to speed up row retrieval from it. For more information, see Section 8.13.16.3, “Optimizing Subqueries in the FROM Clause (Derived Tables)”.
The optimizer uses semi-join and materialization strategies to optimize subquery execution. See Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”, and Section 8.13.16.2, “Optimizing Subqueries with Subquery Materialization”.
A Batched Key Access (BKA) join algorithm is now available that uses both index access to the joined table and a join buffer. The BKA algorithm supports inner join, outer join, and semi-join operations, including nested outer joins and nested semi-joins. Benefits of BKA include improved join performance due to more efficient table scanning. For more information, see Section 8.13.12, “Block Nested-Loop and Batched Key Access Joins”.
The optimizer now has a tracing capability, primarily for use by developers. The interface is provided by a set of optimizer_trace_xxx system variables and the INFORMATION_SCHEMA.OPTIMIZER_TRACE table. For details, see MySQL Internals: Tracing the Optimizer.
Condition handling. MySQL now supports the GET DIAGNOSTICS statement. GET DIAGNOSTICS provides applications a standardized way to obtain information from the diagnostics area, such as whether the previous SQL statement produced an exception and what it was. For more information, see Section 13.6.7.3, “GET DIAGNOSTICS Syntax”.
In addition, several deficiencies in condition handler processing rules were corrected so that MySQL behavior is more like standard SQL:
Block scope is used in determining which handler to select. Previously, a stored program was treated as having a single scope for handler selection.
Condition precedence is more accurately resolved.
Diagnostics area clearing has changed. Bug #55843 caused handled conditions to be cleared from the diagnostics area before activating the handler. This made condition information unavailable within the handler. Now condition information is available to the handler, which can inspect it with the GET DIAGNOSTICS statement. The condition information is cleared when the handler exits, if it has not already been cleared during handler execution.
Previously, handlers were activated as soon as a condition occurred. Now they are not activated until the statement in which the condition occurred finishes execution, at which point the most appropriate handler is chosen. This can make a difference for statements that raise multiple conditions, if a condition raised later during statement execution has higher precedence than an earlier condition and there are handlers in the same scope for both conditions. Previously, the handler for the first condition raised would be chosen, even if it had a lower precedence than other handlers. Now the handler for the condition with highest precedence is chosen, even if it is not the first condition raised by the statement.
For more information, see Section 13.6.7.6, “Scope Rules for Handlers”.
Data types. These data type changes have been implemented:
MySQL now permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to microseconds (6 digits) precision. See Section 11.3.6, “Fractional Seconds in Time Values”.
Previously, at most one TIMESTAMP column per table could be automatically initialized or updated to the current date and time. This restriction has been lifted. Any TIMESTAMP column definition can have any combination of DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP clauses. In addition, these clauses now can be used with DATETIME column definitions. For more information, see Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”.
In MySQL, the TIMESTAMP data type differs in nonstandard ways from other data types in terms of default value and assignment of automatic initialization and update attributes. These behaviors remain the default but now are deprecated, and can be turned off by enabling the explicit_defaults_for_timestamp system variable at server startup. See Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”, and Section 5.1.4, “Server System Variables”.
The YEAR(2) data type is now deprecated. YEAR(2) columns in existing tables are treated as before, but YEAR(2) in new or altered tables are converted to YEAR(4). For more information, see Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”.
Host cache. MySQL now provides more information about the causes of errors that occur when clients connect to the server, as well as improved access to the host cache, which contains client IP address and host name information and is used to avoid DNS lookups. These changes have been implemented:
New Connection_errors_xxx status variables provide information about connection errors that do not apply to specific client IP addresses.
Counters have been added to the host cache to track errors that do apply to specific IP addresses, and a new host_cache Performance Schema table exposes the contents of the host cache so that it can be examined using SELECT statements. Access to host cache contents makes it possible to answer questions such as how many hosts are cached, what kinds of connection errors are occurring for which hosts, or how close host error counts are to reaching the max_connect_errors system variable limit.
The host cache size now is configurable using the host_cache_size system variable.
For more information, see Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”, and Section 20.9.9.1, “The host_cache Table”.
OpenGIS. The OpenGIS specification defines functions that test the relationship between two geometry values. MySQL originally implemented these functions such that they used object bounding rectangles and returned the same result as the corresponding MBR-based functions. Corresponding versions are now available that use precise object shapes. These versions are named with an ST_ prefix. For example, Contains() uses object bounding rectangles, whereas ST_Contains() uses object shapes. For more information, see Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”.
Removed Features
The following constructs are obsolete and have been removed in MySQL 5.6. Where alternatives are shown, applications should be updated to use them.
The --log server option and the log system variable. Instead, use the --general_log option to enable the general query log and the --general_log_file=file_name option to set the general query log file name.
The --log-slow-queries server option and the log_slow_queries system variable. Instead, use the --slow_query_log option to enable the slow query log and the --slow_query_log_file=file_name option to set the slow query log file name.
The --one-thread server option. Use --thread_handling=no-threads instead.
The --safe-mode server option.
The --skip-thread-priority server option.
The --table-cache server option. Use the table_open_cache system variable instead.
The --init-rpl-role and --rpl-recovery-rank options, the rpl_recovery_rank system variable, and the Rpl_status status variable.
The engine_condition_pushdown system variable. Use the engine_condition_pushdown flag of the optimizer_switch variable instead.
The have_csv, have_innodb, have_ndbcluster, and have_partitioning system variables. Use SHOW ENGINES instead.
The sql_big_tables system variable. Use big_tables instead.
The sql_low_priority_updates system variable. Use low_priority_updates instead.
The sql_max_join_size system variable. Use max_join_size instead.
The max_long_data_size system variable. Use max_allowed_packet instead.
The FLUSH MASTER and FLUSH SLAVE statements. Use the RESET MASTER and RESET SLAVE statements instead.
The SLAVE START and SLAVE STOP statements. Use The START SLAVE and STOP SLAVE statements.
The SHOW AUTHORS and SHOW CONTRIBUTORS statements.
The OPTION and ONE_SHOT modifiers for the SET statement.
It is explicitly disallowed to assign the value DEFAULT to stored procedure or function parameters or stored program local variables (for example with a SET var_name = DEFAULT statement). It remains permissible to assign DEFAULT to system variables, as before.
1.5. MySQL Development History
This section describes the general MySQL development history, provides an overview about features that have been implemented in previous series and that are new in MySQL 5.6, the release series covered in this manual. The maturity level this release series is general availability. Information about maturity levels can be found in Section 2.1.2.1, “Choosing Which Version of MySQL to Install”.
Before upgrading from one release series to the next, please see the notes in Section 2.11.1, “Upgrading MySQL”.
The most requested features and the versions in which they were implemented are summarized in the following table.
Feature	MySQL Series
Unions	4.0
Subqueries	4.1
R-trees	4.1 (for the MyISAM storage engine)
Stored procedures and functions	5.0
Views	5.0
Cursors	5.0
XA transactions	5.0
Triggers	5.0 and 5.1
Event scheduler	5.1
Partitioning	5.1
Pluggable storage engine API	5.1
Plugin API	5.1
Row-based replication	5.1
Server log tables	5.1
Scalability and performance improvements	5.1 (with InnoDB Plugin)
DTrace support	5.5
Semisynchronous replication	5.5
SIGNAL/RESIGNAL support in stored routines	5.5
Performance Schema	5.5
Supplementary Unicode characters	5.5
1.6. MySQL Information Sources	
This section lists sources of additional information that you may find helpful, such as the MySQL mailing lists and user forums, and Internet Relay Chat.	
1.6.1. MySQL Mailing Lists	
This section introduces the MySQL mailing lists and provides guidelines as to how the lists should be used. When you subscribe to a mailing list, you receive all postings to the list as email messages. You can also send your own questions and answers to the list.	
To subscribe to or unsubscribe from any of the mailing lists described in this section, visit http://lists.mysql.com/. For most of them, you can select the regular version of the list where you get individual messages, or a digest version where you get one large message per day.	
Please do not send messages about subscribing or unsubscribing to any of the mailing lists, because such messages are distributed automatically to thousands of other users.	
Your local site may have many subscribers to a MySQL mailing list. If so, the site may have a local mailing list, so that messages sent from lists.mysql.com to your site are propagated to the local list. In such cases, please contact your system administrator to be added to or dropped from the local MySQL list.	
To have traffic for a mailing list go to a separate mailbox in your mail program, set up a filter based on the message headers. You can use either the List-ID: or Delivered-To: headers to identify list messages.	
The MySQL mailing lists are as follows:	
announce	
The list for announcements of new versions of MySQL and related programs. This is a low-volume list to which all MySQL users should subscribe.	
mysql	
The main list for general MySQL discussion. Please note that some topics are better discussed on the more-specialized lists. If you post to the wrong list, you may not get an answer.	
bugs	
The list for people who want to stay informed about issues reported since the last release of MySQL or who want to be actively involved in the process of bug hunting and fixing. See Section 1.7, “How to Report Bugs or Problems”.	
internals	
The list for people who work on the MySQL code. This is also the forum for discussions on MySQL development and for posting patches.	
mysqldoc	
The list for people who work on the MySQL documentation.	
benchmarks	
The list for anyone interested in performance issues. Discussions concentrate on database performance (not limited to MySQL), but also include broader categories such as performance of the kernel, file system, disk system, and so on.	
packagers	
The list for discussions on packaging and distributing MySQL. This is the forum used by distribution maintainers to exchange ideas on packaging MySQL and on ensuring that MySQL looks and feels as similar as possible on all supported platforms and operating systems.	
java	
The list for discussions about the MySQL server and Java. It is mostly used to discuss JDBC drivers such as MySQL Connector/J.	
win32	
The list for all topics concerning the MySQL software on Microsoft operating systems, such as Windows 9x, Me, NT, 2000, XP, and 2003.	
myodbc	
The list for all topics concerning connecting to the MySQL server with ODBC.	
gui-tools	
The list for all topics concerning MySQL graphical user interface tools such as MySQL Workbench.	
cluster	
The list for discussion of MySQL Cluster.	
dotnet	
The list for discussion of the MySQL server and the .NET platform. It is mostly related to MySQL Connector/Net.	
plusplus	
The list for all topics concerning programming with the C++ API for MySQL.	
perl	
The list for all topics concerning Perl support for MySQL with DBD::mysql.	
If you're unable to get an answer to your questions from a MySQL mailing list or forum, one option is to purchase support from Oracle. This puts you in direct contact with MySQL developers.	
The following MySQL mailing lists are in languages other than English. These lists are not operated by Oracle.	
<mysql-france-subscribe@yahoogroups.com>	
A French mailing list.	
A Korean mailing list. To subscribe, email subscribe mysql your@email.address to this list.	
<mysql-de-request@lists.4t2.com>	
A German mailing list. To subscribe, email subscribe mysql-de your@email.address to this list. You can find information about this mailing list at http://www.4t2.com/mysql/.	
<mysql-br-request@listas.linkway.com.br>	
A Portuguese mailing list. To subscribe, email subscribe mysql-br your@email.address to this list.	
A Spanish mailing list. To subscribe, email subscribe mysql your@email.address to this list.	
1.6.1.1. Guidelines for Using the Mailing Lists	
Please do not post mail messages from your browser with HTML mode turned on. Many users do not read mail with a browser.	
When you answer a question sent to a mailing list, if you consider your answer to have broad interest, you may want to post it to the list instead of replying directly to the individual who asked. Try to make your answer general enough that people other than the original poster may benefit from it. When you post to the list, please make sure that your answer is not a duplication of a previous answer.	
Try to summarize the essential part of the question in your reply. Do not feel obliged to quote the entire original message.	
When answers are sent to you individually and not to the mailing list, it is considered good etiquette to summarize the answers and send the summary to the mailing list so that others may have the benefit of responses you received that helped you solve your problem.	
1.6.2. MySQL Community Support at the MySQL Forums	
The forums at http://forums.mysql.com are an important community resource. Many forums are available, grouped into these general categories:	
Migration	
MySQL Usage	
MySQL Connectors	
Programming Languages	
Tools	
3rd-Party Applications	
Storage Engines	
MySQL Technology	
SQL Standards	
Business	
1.6.3. MySQL Community Support on Internet Relay Chat (IRC)	
In addition to the various MySQL mailing lists and forums, you can find experienced community people on Internet Relay Chat (IRC). These are the best networks/channels currently known to us:	
freenode (see http://www.freenode.net/ for servers)	
#mysql is primarily for MySQL questions, but other database and general SQL questions are welcome. Questions about PHP, Perl, or C in combination with MySQL are also common.	
If you are looking for IRC client software to connect to an IRC network, take a look at xChat (http://www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as for Windows platforms (a free Windows build of X-Chat is available at http://www.silverex.org/download/).	
1.6.4. MySQL Enterprise	
Oracle offers technical support in the form of MySQL Enterprise. For organizations that rely on the MySQL DBMS for business-critical production applications, MySQL Enterprise is a commercial subscription offering which includes:	
MySQL Enterprise Server	
MySQL Enterprise Monitor	
Monthly Rapid Updates and Quarterly Service Packs	
MySQL Knowledge Base	
24x7 Technical and Consultative Support	
1.7. How to Report Bugs or Problems	
Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been reported already:	
Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try to keep the manual up to date by updating it frequently with solutions to newly found problems. In addition, the release notes accompanying the manual can be particularly useful since it is quite possible that a newer version contains a solution to your problem. The release notes are available at the location just given for the manual.	
If you get a parse error for an SQL statement, please check your syntax closely. If you cannot find something wrong with it, it is extremely likely that your current version of MySQL Server doesn't support the syntax you are using. If you are using the current version and the manual doesn't cover the syntax that you are using, MySQL Server doesn't support your statement.	
If the manual covers the syntax you are using, but you have an older version of MySQL Server, you should check the MySQL change history to see when the syntax was implemented. In this case, you have the option of upgrading to a newer version of MySQL Server.	
For solutions to some common problems, see Section C.5, “Problems and Common Errors”.	
Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and fixed.	
Search the MySQL mailing list archives at http://lists.mysql.com/. See Section 1.6.1, “MySQL Mailing Lists”.	
You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual) that are located at the MySQL Web site.	
If you cannot find an answer in the manual, the bugs database, or the mailing list archives, check with your local MySQL expert. If you still cannot find an answer to your question, please use the following guidelines for reporting the bug.	
The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs database. This database is public and can be browsed and searched by anyone. If you log in to the system, you can enter new reports.	
Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are noted in the release notes.	
If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an email message to <secalert_us@oracle.com>. Exception: Support customers should report all problems, including security bugs, to Oracle Support at http://support.oracle.com/.	
To discuss problems with other users, you can use one of the MySQL mailing lists. Section 1.6.1, “MySQL Mailing Lists”.	
Writing a good bug report takes patience, but doing it right the first time saves time both for us and for yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix the bug in the next release. This section helps you write your report correctly so that you do not waste your time doing things that may not help us much or at all. Please read this section carefully and make sure that all the information described here is included in your report.	
Preferably, you should test the problem using the latest production or development version of MySQL Server before posting. Anyone should be able to repeat the bug by just using mysql test < script_file on your test case or by running the shell or Perl script that you include in the bug report. Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.	
It is most helpful when a good description of the problem is included in the bug report. That is, give a good example of everything you did that led to the problem and describe, in exact detail, the problem itself. The best reports are those that include a full example showing how to reproduce the bug or problem. See MySQL Internals: Porting to Other Systems.	
Remember that it is possible for us to respond to a report containing too much information, but not to one containing too little. People often omit facts because they think they know the cause of a problem and assume that some details do not matter. A good principle to follow is that if you are in doubt about stating something, state it. It is faster and less troublesome to write a couple more lines in your report than to wait longer for the answer if we must ask you to provide information that was missing from the initial report.	
The most common errors made in bug reports are (a) not including the version number of the MySQL distribution that you use, and (b) not fully describing the platform on which the MySQL server is installed (including the platform type and version number). These are highly relevant pieces of information, and in 99 cases out of 100, the bug report is useless without them. Very often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version, or that a bug described in a report has been fixed in newer MySQL versions. Errors often are platform-dependent. In such cases, it is next to impossible for us to fix anything without knowing the operating system and the version number of the platform.	
If you compiled MySQL from source, remember also to provide information about your compiler if it is related to the problem. Often people find bugs in compilers and think the problem is MySQL-related. Most compilers are under development all the time and become better version by version. To determine whether your problem depends on your compiler, we need to know what compiler you used. Note that every compiling problem should be regarded as a bug and reported accordingly.	
If a program produces an error message, it is very important to include the message in your report. If we try to search for something from the archives, it is better that the error message reported exactly matches the one that the program produces. (Even the lettercase should be observed.) It is best to copy and paste the entire error message into your report. You should never try to reproduce the message from memory.	
If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it with your report. See Section 21.1.8.2, “How to Report Connector/ODBC Problems or Bugs”.	
If your report includes long query output lines from test cases that you run with the mysql command-line tool, you can make the output more readable by using the --vertical option or the \G statement terminator. The EXPLAIN SELECT example later in this section demonstrates the use of \G.	
Please include the following information in your report:	
The version number of the MySQL distribution you are using (for example, MySQL 5.0.19). You can find out which version you are running by executing mysqladmin version. The mysqladmin program can be found in the bin directory under your MySQL installation directory.	
The manufacturer and model of the machine on which you experience the problem.	
The operating system name and version. If you work with Windows, you can usually get the name and version number by double-clicking your My Computer icon and pulling down the “Help/About Windows” menu. For most Unix-like operating systems, you can get this information by executing the command uname -a.	
Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.	
If you are using a source distribution of the MySQL software, include the name and version number of the compiler that you used. If you have a binary distribution, include the distribution name.	
If the problem occurs during compilation, include the exact error messages and also a few lines of context around the offending code in the file where the error occurs.	
If mysqld died, you should also report the statement that crashed mysqld. You can usually get this information by running mysqld with query logging enabled, and then looking in the log after mysqld crashes. See MySQL Internals: Porting to Other Systems.	
If a database table is related to the problem, include the output from the SHOW CREATE TABLE db_name.tbl_name statement in the bug report. This is a very easy way to get the definition of any table in a database. The information helps us create a situation matching the one that you have experienced.	
The SQL mode in effect when the problem occurred can be significant, so please report the value of the sql_mode system variable. For stored procedure, stored function, and trigger objects, the relevant sql_mode value is the one in effect when the object was created. For a stored procedure or function, the SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION statement shows the relevant SQL mode, or you can query INFORMATION_SCHEMA for the information:	
SELECT ROUTINE_SCHEMA, ROUTINE_NAME, SQL_MODE	
FROM INFORMATION_SCHEMA.ROUTINES;	
For triggers, you can use this statement:	
SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE, TRIGGER_NAME, SQL_MODE	
FROM INFORMATION_SCHEMA.TRIGGERS;	
For performance-related bugs or problems with SELECT statements, you should always include the output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT statement produces. You should also include the output from SHOW CREATE TABLE tbl_name for each table that is involved. The more information you provide about your situation, the more likely it is that someone can help you.	
The following is an example of a very good bug report. The statements are run using the mysql command-line tool. Note the use of the \G statement terminator for statements that would otherwise provide very long output lines that are difficult to read.	
mysql> SHOW VARIABLES;	
mysql> SHOW COLUMNS FROM ...\G	
<output from SHOW COLUMNS>	
mysql> EXPLAIN SELECT ...\G	
<output from EXPLAIN>	
mysql> FLUSH STATUS;	
mysql> SELECT ...;	
<A short version of the output from SELECT,	
including the time taken to run the query>	
mysql> SHOW STATUS;	
<output from SHOW STATUS>	
If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the anomaly. This script should include any necessary source files. The more closely the script can reproduce your situation, the better. If you can make a reproducible test case, you should upload it to be attached to the bug report.	
If you cannot provide a script, you should at least include the output from mysqladmin variables extended-status processlist in your report to provide some information on how your system is performing.	
If you cannot produce a test case with only a few rows, or if the test table is too big to be included in the bug report (more than 10 rows), you should dump your tables using mysqldump and create a README file that describes your problem. Create a compressed archive of your files using tar and gzip or zip. After you initiate a bug report for our bugs database at http://bugs.mysql.com/, click the Files tab in the bug report for instructions on uploading the archive to the bugs database.	
If you believe that the MySQL server produces a strange result from a statement, include not only the result, but also your opinion of what the result should be, and an explanation describing the basis for your opinion.	
When you provide an example of the problem, it is better to use the table names, variable names, and so forth that exist in your actual situation than to come up with new names. The problem could be related to the name of a table or variable. These cases are rare, perhaps, but it is better to be safe than sorry. After all, it should be easier for you to provide an example that uses your actual situation, and it is by all means better for us. If you have data that you do not want to be visible to others in the bug report, you can upload it using the Files tab as previously described. If the information is really top secret and you do not want to show it even to us, go ahead and provide an example using other names, but please regard this as the last choice.	
Include all the options given to the relevant programs, if possible. For example, indicate the options that you use when you start the mysqld server, as well as the options that you use to run any MySQL client programs. The options to programs such as mysqld and mysql, and to the configure script, are often key to resolving problems and are very relevant. It is never a bad idea to include them. If your problem involves a program written in a language such as Perl or PHP, please include the language processor's version number, as well as the version for any modules that the program uses. For example, if you have a Perl script that uses the DBI and DBD::mysql modules, include the version numbers for Perl, DBI, and DBD::mysql.	
If your question is related to the privilege system, please include the output of mysqlaccess, the output of mysqladmin reload, and all the error messages you get when trying to connect. When you test your privileges, you should first run mysqlaccess. After this, execute mysqladmin reload version and try to connect with the program that gives you trouble. mysqlaccess can be found in the bin directory under your MySQL installation directory.	
If you have a patch for a bug, do include it. But do not assume that the patch is all we need, or that we can use it, if you do not provide some necessary information such as test cases showing the bug that your patch fixes. We might find problems with your patch or we might not understand it at all. If so, we cannot use it.	
If we cannot verify the exact purpose of the patch, we will not use it. Test cases help us here. Show that the patch handles all the situations that may occur. If we find a borderline case (even a rare one) where the patch will not work, it may be useless.	
Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the MySQL team cannot guess such things without first using a debugger to determine the real cause of a bug.	
Indicate in your bug report that you have checked the reference manual and mail archive so that others know you have tried to solve the problem yourself.	
If your data appears corrupt or you get errors when you access a particular table, first check your tables with CHECK TABLE. If that statement reports any errors:	
The InnoDB crash recovery mechanism handles cleanup when the server is restarted after being killed, so in typical operation there is no need to “repair” tables. If you encounter an error with InnoDB tables, restart the server and see whether the problem persists, or whether the error affected only cached data in memory. If data is corrupted on disk, consider restarting with the innodb_force_recovery option enabled so that you can dump the affected tables.	
For non-transactional tables, try to repair them with REPAIR TABLE or with myisamchk. See Chapter 5, MySQL Server Administration.	
If you are running Windows, please verify the value of lower_case_table_names using the SHOW VARIABLES LIKE 'lower_case_table_names' statement. This variable affects how the server handles lettercase of database and table names. Its effect for a given value should be as described in Section 9.2.2, “Identifier Case Sensitivity”.	
If you often get corrupted tables, you should try to find out when and why this happens. In this case, the error log in the MySQL data directory may contain some information about what happened. (This is the file with the .err suffix in the name.) See Section 5.2.2, “The Error Log”. Please include any relevant information from this file in your bug report. Normally mysqld should never crash a table if nothing killed it in the middle of an update. If you can find the cause of mysqld dying, it is much easier for us to provide you with a fix for the problem. See Section C.5.1, “How to Determine What Is Causing a Problem”.	
If possible, download and install the most recent version of MySQL Server and check whether it solves your problem. All versions of the MySQL software thoroughly tested and should work without problems. We believe in making everything as backward-compatible as possible, and you should be able to switch MySQL versions without difficulty. See Section 2.1.2, “Choosing Which MySQL Distribution to Install”.	
1.8. MySQL Standards Compliance	
This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many extensions to the SQL standard, and here you can find out what they are and how to use them. You can also find information about functionality missing from MySQL Server, and how to work around some of the differences.	
The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92” refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999, “SQL:2003” refers to the standard released in 2003, and “SQL:2008” refers to the most recent version of the standard, released in 2008. We use the phrase “the SQL standard” or “standard SQL” to mean the current version of the SQL Standard at any time.	
One of our main goals with the product is to continue to work toward compliance with the SQL standard, but without sacrificing speed or reliability. We are not afraid to add extensions to SQL or support for non-SQL features if this greatly increases the usability of MySQL Server for a large segment of our user base. The HANDLER interface is an example of this strategy. See Section 13.2.4, “HANDLER Syntax”.	
We continue to support transactional and nontransactional databases to satisfy both mission-critical 24/7 usage and heavy Web or logging usage.	
MySQL Server was originally designed to work with medium-sized databases (10-100 million rows, or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-sized databases, but the code can also be compiled in a reduced version suitable for hand-held and embedded devices. The compact design of the MySQL server makes development in both directions possible without any conflicts in the source tree.	
Currently, we are not targeting real-time support, although MySQL replication capabilities offer significant functionality.	
MySQL supports high-availability database clustering using the NDBCLUSTER storage engine. See MySQL Cluster NDB 7.2.	
We implement XML functionality which supports most of the W3C XPath standard. See Section 12.11, “XML Functions”.	
1.8.1. What Standards MySQL Follows	
Our aim is to support the full ANSI/ISO SQL standard, but without making concessions to speed and quality of the code.	
ODBC levels 0 to 3.51.	
1.8.2. Selecting SQL Modes	
The MySQL server can operate in different SQL modes, and can apply these modes differentially for different clients. This capability enables each application to tailor the server's operating mode to its own requirements.	
SQL modes control aspects of server operation such as what SQL syntax MySQL should support and what kind of data validation checks it should perform. This makes it easier to use MySQL in different environments and to use MySQL together with other database servers.	
You can set the default SQL mode by starting mysqld with the --sql-mode="mode_value" option. You can also change the mode at runtime by setting the sql_mode system variable with a SET [GLOBAL	SESSION] sql_mode='mode_value' statement.
For more information on setting the SQL mode, see Section 5.1.7, “Server SQL Modes”.	
1.8.3. Running MySQL in ANSI Mode	
You can tell mysqld to run in ANSI mode with the --ansi startup option. Running the server in ANSI mode is the same as starting it with the following options:	
--transaction-isolation=SERIALIZABLE --sql-mode=ANSI	
You can achieve the same effect at runtime by executing these two statements:	
SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;	
SET GLOBAL sql_mode = 'ANSI';	
You can see that setting the sql_mode system variable to 'ANSI' enables all SQL mode options that are relevant for ANSI mode as follows:	
mysql> SET GLOBAL sql_mode='ANSI';	
mysql> SELECT @@global.sql_mode;	
-> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'	
Running the server in ANSI mode with --ansi is not quite the same as setting the SQL mode to 'ANSI'. The --ansi option affects the SQL mode and also sets the transaction isolation level. Setting the SQL mode to 'ANSI' has no effect on the isolation level.	
See Section 5.1.3, “Server Command Options”, and Section 1.8.2, “Selecting SQL Modes”.	
1.8.4. MySQL Extensions to Standard SQL	
MySQL Server supports some extensions that you probably won't find in other SQL DBMSs. Be warned that if you use them, your code won't be portable to other SQL servers. In some cases, you can write code that includes MySQL extensions, but is still portable, by using comments of the following form:	
/*! MySQL-specific code */	
In this case, MySQL Server parses and executes the code within the comment as it would any other SQL statement, but other SQL servers will ignore the extensions. For example, MySQL Server recognizes the STRAIGHT_JOIN keyword in the following statement, but other servers will not:	
SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...	
If you add a version number after the “!” character, the syntax within the comment is executed only if the MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword in the following comment is executed only by servers from MySQL 3.23.02 or higher:	
CREATE /*!32302 TEMPORARY */ TABLE t (a INT);	
The following descriptions list MySQL extensions, organized by category.	
Organization of data on disk	
MySQL Server maps each database to a directory under the MySQL data directory, and maps tables within a database to file names in the database directory. This has a few implications:	
Database and table names are case sensitive in MySQL Server on operating systems that have case-sensitive file names (such as most Unix systems). See Section 9.2.2, “Identifier Case Sensitivity”.	
You can use standard system commands to back up, rename, move, delete, and copy tables that are managed by the MyISAM storage engine. For example, it is possible to rename a MyISAM table by renaming the .MYD, .MYI, and .frm files to which the table corresponds. (Nevertheless, it is preferable to use RENAME TABLE or ALTER TABLE ... RENAME and let the server rename the files.)	
General language syntax	
By default, strings can be enclosed by either “"” or “'”, not just by “'”. (If the ANSI_QUOTES SQL mode is enabled, strings can be enclosed only by “'” and the server interprets strings enclosed by “"” as identifiers.)	
“\” is the escape character in strings.	
In SQL statements, you can access tables from different databases with the db_name.tbl_name syntax. Some SQL servers provide the same functionality but call this User space. MySQL Server doesn't support tablespaces such as used in statements like this: CREATE TABLE ralph.my_table ... IN my_tablespace.	
SQL statement syntax	
The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.	
The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See Section 13.1.8, “CREATE DATABASE Syntax”, Section 13.1.17, “DROP DATABASE Syntax”, and Section 13.1.1, “ALTER DATABASE Syntax”.	
The DO statement.	
EXPLAIN SELECT to obtain a description of how tables are processed by the query optimizer.	
The SET statement. See Section 13.7.4, “SET Syntax”.	
The SHOW statement. See Section 13.7.5, “SHOW Syntax”. The information produced by many of the MySQL-specific SHOW statements can be obtained in more standard fashion by using SELECT to query INFORMATION_SCHEMA. See Chapter 19, INFORMATION_SCHEMA Tables.	
Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle's LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.	
Use of RENAME TABLE. See Section 13.1.26, “RENAME TABLE Syntax”.	
Use of REPLACE instead of DELETE plus INSERT. See Section 13.2.8, “REPLACE Syntax”.	
Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in ALTER TABLE statements. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE statement. See Section 13.1.6, “ALTER TABLE Syntax”.	
Use of index names, indexes on a prefix of a column, and use of INDEX or KEY in CREATE TABLE statements. See Section 13.1.14, “CREATE TABLE Syntax”.	
Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.	
Use of IF EXISTS with DROP TABLE and DROP DATABASE.	
The capability of dropping multiple tables with a single DROP TABLE statement.	
The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.	
INSERT INTO tbl_name SET col_name = ... syntax.	
The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.	
Use of INTO OUTFILE or INTO DUMPFILE in SELECT statements. See Section 13.2.9, “SELECT Syntax”.	
Options such as STRAIGHT_JOIN or SQL_SMALL_RESULT in SELECT statements.	
You don't need to name all selected columns in the GROUP BY clause. This gives better performance for some very specific, but quite normal queries. See Section 12.17, “Functions and Modifiers for Use with GROUP BY Clauses”.	
You can specify ASC and DESC with GROUP BY, not just with ORDER BY.	
The ability to set variables in a statement with the := assignment operator. See Section 9.4, “User-Defined Variables”.	
Data types	
Functions and operators	
To make it easier for users who migrate from other SQL environments, MySQL Server supports aliases for many functions. For example, all string functions support both standard SQL syntax and ODBC syntax.	
MySQL Server understands the	
Use of COUNT(DISTINCT value_list) where value_list has more than one element.	
String comparisons are case-insensitive by default, with sort ordering determined by the collation of the current character set, which is latin1 (cp1252 West European) by default. If you don't like this, you should declare your columns with the BINARY attribute or use the BINARY cast, which causes comparisons to be done using the underlying character code values rather than a lexical ordering.	
The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is supported for C programmers and for compatibility with PostgreSQL.	
The =, <>, <=, <, >=, >, <<, >>, <=>, AND, OR, or LIKE operators may be used in expressions in the output column list (to the left of the FROM) in SELECT statements. For example:	
mysql> SELECT col1=1 AND col2=2 FROM my_table;	
The LAST_INSERT_ID() function returns the most recent AUTO_INCREMENT value. See Section 12.14, “Information Functions”.	
LIKE is permitted on numeric values.	
The REGEXP and NOT REGEXP extended regular expression operators.	
CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server, these functions can take a variable number of arguments.)	
The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(), ENCRYPT(), MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(), TO_DAYS(), and WEEKDAY() functions.	
Use of TRIM() to trim substrings. Standard SQL supports removal of single characters only.	
The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and GROUP_CONCAT(). See Section 12.17, “Functions and Modifiers for Use with GROUP BY Clauses”.	
1.8.5. MySQL Differences from Standard SQL	
We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but MySQL Server performs operations differently in some cases:	
There are several differences between the MySQL and standard SQL privilege systems. For example, in MySQL, privileges for a table are not automatically revoked when you delete a table. You must explicitly issue a REVOKE statement to revoke privileges for a table. For more information, see Section 13.7.1.6, “REVOKE Syntax”.	
The CAST() function does not support cast to REAL or BIGINT. See Section 12.10, “Cast Functions and Operators”.	
1.8.5.1. SELECT INTO TABLE Differences	
MySQL Server doesn't support the SELECT ... INTO TABLE Sybase SQL extension. Instead, MySQL Server supports the INSERT INTO ... SELECT standard SQL syntax, which is basically the same thing. See Section 13.2.5.1, “INSERT ... SELECT Syntax”. For example:	
INSERT INTO tbl_temp2 (fld_id)	
SELECT tbl_temp1.fld_order_id	
FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;	
Alternatively, you can use SELECT ... INTO OUTFILE or CREATE TABLE ... SELECT.	
You can use SELECT ... INTO with user-defined variables. The same syntax can also be used inside stored routines using cursors and local variables. See Section 13.2.9.1, “SELECT ... INTO Syntax”.	
1.8.5.2. UPDATE Differences	
If you access a column from the table to be updated in an expression, UPDATE uses the current value of the column. The second assignment in the following statement sets col2 to the current (updated) col1 value, not the original col1 value. The result is that col1 and col2 have the same value. This behavior differs from standard SQL.	
UPDATE t1 SET col1 = col1 + 1, col2 = col1;	
1.8.5.3. Transaction and Atomic Operation Differences	
MySQL Server (version 3.23-max and all versions 4.0 and above) supports transactions with the InnoDB transactional storage engine. In MySQL 5.5 and up, newly created tables use InnoDB by default, as explained in Section 14.2.1.1, “InnoDB as the Default MySQL Storage Engine”. By default, InnoDB provides full ACID compliance; see Section 14.2.8, “MySQL and the ACID Model” for ways that you can adjust settings to balance ACID compliance with raw performance. For information about InnoDB differences from standard SQL with regard to treatment of transaction errors, see Section 14.2.3.14, “InnoDB Error Handling”.	
The nontransactional storage engines in MySQL Server (such as MyISAM) follow a different paradigm for data integrity called “atomic operations”. MyISAM tables effectively always operate in autocommit = 1 mode. Because changed data is written to disk one statement at a time, it is harder to guarantee the consistency of a sequence of related DML operations, which could be interrupted partway through. Thus, this mode is suitable for read-mostly workloads. In transactional terms, while each specific update is running, no other user can interfere with it, there can never be an automatic rollback, and there are no dirty reads. However, these features apply to single operations, not related updates that succeed or fail as a unit. Workarounds such as the LOCK TABLES statement limit concurrent write access to nontransactional tables.	
You can choose which paradigm to use, even for different tables within the same application: transactional features for reliability combined with high performance, or atomic operations for non-critical, read-mostly data (for example, on replication slave servers).	
Transactional storage engines such as InnoDB offer many significant features to support high reliability for heavy read/write workloads. As a result, transactional tables can have higher memory and disk space requirements, and more CPU overhead. MySQL Server's modular design enables the concurrent use of different storage engines to suit different requirements and deliver optimum performance in all situations.	
Workarounds for Reliability with Non-Transactional Tables	
But how do you use the features of MySQL Server to maintain integrity even with the nontransactional MyISAM tables, and how do these features compare with the transactional storage engines?	
If your applications are written in a way that is dependent on being able to call ROLLBACK rather than COMMIT in critical situations, transactions are more convenient. Transactions also ensure that unfinished updates or corrupting activities are not committed to the database; the server is given the opportunity to do an automatic rollback and your database is saved.	
If you use nontransactional tables, you must resolve potential problems at the application level by including checks before updates and by running scripts that check the databases for inconsistencies and automatically repair or warn if such an inconsistency occurs. You can normally fix tables with no data integrity loss by using the MySQL log or even adding one extra log.	
Sometimes, critical transactional updates can be rewritten to be atomic. Multiple DML operations can be done with LOCK TABLES or atomic updates, ensuring that there are no deadlocks by limiting concurrent write access. If you obtain a READ LOCAL lock (as opposed to a write lock) for a table that enables concurrent inserts at the end of the table, reads are permitted, as are inserts by other clients. The newly inserted records are not be seen by the client that has the read lock until it releases the lock. With INSERT DELAYED, you can write inserts that go into a local queue until the locks are released, without having the client wait for the insert to complete. See Section 8.10.3, “Concurrent Inserts”, and Section 13.2.5.2, “INSERT DELAYED Syntax”.	
To be safe with MySQL Server, regardless of what kinds of tables you use, make regular backups and have binary logging turned on. It is always good to have backups, regardless of which database system you use.	
Following are some techniques for working with nontransactional tables:	
Loops that need transactions normally can be coded with the help of LOCK TABLES, and you don't need cursors to update records on the fly.	
To avoid using ROLLBACK, you can employ the following strategy:	
Use LOCK TABLES to lock all the tables you want to access.	
Test the conditions that must be true before performing the update.	
Update if the conditions are satisfied.	
Use UNLOCK TABLES to release your locks.	
Note	
This solution does not handle the situation when someone kills the threads in the middle of an update. In that case, all locks are released but some of the updates may not have been executed.	
You can also use functions to update records in a single operation, using the following techniques:	
Modify columns relative to their current value. This makes the update correct even if another client has changed the column values in the meantime.	
Update only those columns that actually have changed. This is a good database practice in general.	
When managing unique identifiers, you can avoid statements such as LOCK TABLES or ROLLBACK by using an AUTO_INCREMENT column and either the LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. See Section 12.14, “Information Functions”, and Section 21.8.6.37, “mysql_insert_id()”.	
For situations that require row-level locking, use InnoDB tables. Otherwise, with MyISAM tables, you can use a flag column in the table and do something like the following:	
UPDATE tbl_name SET row_flag=1 WHERE id=ID;	
MySQL returns 1 for the number of affected rows if the row was found and row_flag wasn't 1 in the original row. You can think of this as though MySQL Server changed the preceding statement to:	
UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;	
1.8.5.4. Foreign Key Differences	
The InnoDB storage engine supports checking of foreign key constraints, including CASCADE, ON DELETE, and ON UPDATE. See Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”.	
For storage engines other than InnoDB, MySQL Server parses the FOREIGN KEY syntax in CREATE TABLE statements, but does not use or store it. In the future, the implementation will be extended to store this information in the table specification file so that it may be retrieved by mysqldump and ODBC. At a later stage, foreign key constraints will be implemented for MyISAM tables as well.	
Foreign key enforcement offers several benefits to database developers:	
Assuming proper design of the relationships, foreign key constraints make it more difficult for a programmer to introduce an inconsistency into the database.	
Centralized checking of constraints by the database server makes it unnecessary to perform these checks on the application side. This eliminates the possibility that different applications may not all check the constraints in the same way.	
Using cascading updates and deletes can simplify the application code.	
Properly designed foreign key rules aid in documenting relationships between tables.	
Do keep in mind that these benefits come at the cost of additional overhead for the database server to perform the necessary checks. Additional checking by the server affects performance, which for some applications may be sufficiently undesirable as to be avoided if possible. (Some major commercial applications have coded the foreign key logic at the application level for this reason.)	
MySQL gives database developers the choice of which approach to use. If you don't need foreign keys and want to avoid the overhead associated with enforcing referential integrity, you can choose another storage engine instead, such as MyISAM. (For example, the MyISAM storage engine offers very fast performance for applications that perform only INSERT and SELECT operations. In this case, the table has no holes in the middle and the inserts can be performed concurrently with retrievals. See Section 8.10.3, “Concurrent Inserts”.)	
If you choose not to take advantage of referential integrity checks, keep the following considerations in mind:	
In the absence of server-side foreign key relationship checking, the application itself must handle relationship issues. For example, it must take care to insert rows into tables in the proper order, and to avoid creating orphaned child records. It must also be able to recover from errors that occur in the middle of multiple-record insert operations.	
If ON DELETE is the only referential integrity capability an application needs, you can achieve a similar effect as of MySQL Server 4.0 by using multiple-table DELETE statements to delete rows from many tables with a single statement. See Section 13.2.2, “DELETE Syntax”.	
A workaround for the lack of ON DELETE is to add the appropriate DELETE statements to your application when you delete records from a table that has a foreign key. In practice, this is often as quick as using foreign keys and is more portable.	
Be aware that the use of foreign keys can sometimes lead to problems:	
Foreign key support addresses many referential integrity issues, but it is still necessary to design key relationships carefully to avoid circular rules or incorrect combinations of cascading deletes.	
It is not uncommon for a DBA to create a topology of relationships that makes it difficult to restore individual tables from a backup. (MySQL alleviates this difficulty by enabling you to temporarily disable foreign key checks when reloading a table that depends on other tables. See Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”. As of MySQL 4.1.1, mysqldump generates dump files that take advantage of this capability automatically when they are reloaded.)	
Foreign keys in SQL are used to check and enforce referential integrity, not to join tables. If you want to get results from multiple tables from a SELECT statement, you do this by performing a join between them:	
SELECT * FROM t1 INNER JOIN t2 ON t1.id = t2.id;	
See Section 13.2.9.2, “JOIN Syntax”, and Section 3.6.6, “Using Foreign Keys”.	
The FOREIGN KEY syntax without ON DELETE ... is often used by ODBC applications to produce automatic WHERE clauses.	
1.8.5.5. '--' as the Start of a Comment	
Standard SQL uses the C syntax /* this is a comment */ for comments, and MySQL Server supports this syntax as well. MySQL also support extensions to this syntax that enable MySQL-specific SQL to be embedded in the comment, as described in Section 9.6, “Comment Syntax”.	
Standard SQL uses “--” as a start-comment sequence. MySQL Server uses “#” as the start comment character. MySQL Server 3.23.3 and up also supports a variant of the “--” comment style. That is, the “--” start-comment sequence must be followed by a space (or by a control character such as a newline). The space is required to prevent problems with automatically generated SQL queries that use constructs such as the following, where we automatically insert the value of the payment for payment:	
UPDATE account SET credit=credit-payment	
Consider about what happens if payment has a negative value such as -1:	
UPDATE account SET credit=credit--1	
credit--1 is a valid expression in SQL, but “--” is interpreted as the start of a comment, part of the expression is discarded. The result is a statement that has a completely different meaning than intended:	
UPDATE account SET credit=credit	
The statement produces no change in value at all. This illustrates that permitting comments to start with “--” can have serious consequences.	
Using our implementation requires a space following the “--” for it to be recognized as a start-comment sequence in MySQL Server 3.23.3 and newer. Therefore, credit--1 is safe to use.	
Another safe feature is that the mysql command-line client ignores lines that start with “--”.	
The following information is relevant only if you are running a MySQL version earlier than 3.23.3:	
If you have an SQL script in a text file that contains “--” comments, you should use the replace utility as follows to convert the comments to use “#” characters before executing the script:	
shell> replace " --" " #" < text-file-with-funny-comments.sql \	
mysql db_name	
That is safer than executing the script in the usual way:
shell> mysql db_name < text-file-with-funny-comments.sql
You can also edit the script file “in place” to change the “--” comments to “#” comments:
shell> replace " --" " #" -- text-file-with-funny-comments.sql
Change them back with this command:
shell> replace " #" " --" -- text-file-with-funny-comments.sql
See Section 4.8.2, “replace — A String-Replacement Utility”.
1.8.6. How MySQL Deals with Constraints
MySQL enables you to work both with transactional tables that permit rollback and with nontransactional tables that do not. Because of this, constraint handling is a bit different in MySQL than in other DBMSs. We must handle the case when you have inserted or updated a lot of rows in a nontransactional table for which changes cannot be rolled back when an error occurs.
The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect while parsing a statement to be executed, and tries to recover from any errors that occur while executing the statement. We do this in most cases, but not yet for all.
The options MySQL has when an error occurs are to stop the statement in the middle or to recover as well as possible from the problem and continue. By default, the server follows the latter course. This means, for example, that the server may coerce invalid values to the closest valid values.
Several SQL mode options are available to provide greater control over handling of bad data values and whether to continue statement execution or abort when errors occur. Using these options, you can configure MySQL Server to act in a more traditional fashion that is like other DBMSs that reject improper input. The SQL mode can be set globally at server startup to affect all clients. Individual clients can set the SQL mode at runtime, which enables each client to select the behavior most appropriate for its requirements. See Section 5.1.7, “Server SQL Modes”.
The following sections describe how MySQL Server handles different types of constraints.
1.8.6.1. PRIMARY KEY and UNIQUE Index Constraints
Normally, errors occurs for data-change statements (such as INSERT or UPDATE) that would violate primary-key, unique-key, or foreign-key constraints. If you are using a transactional storage engine such as InnoDB, MySQL automatically rolls back the statement. If you are using a nontransactional storage engine, MySQL stops processing the statement at the row for which the error occurred and leaves any remaining rows unprocessed.
MySQL supports an IGNORE keyword for INSERT, UPDATE, and so forth. If you use it, MySQL ignores primary-key or unique-key violations and continues processing with the next row. See the section for the statement that you are using (Section 13.2.5, “INSERT Syntax”, Section 13.2.11, “UPDATE Syntax”, and so forth).
You can get information about the number of rows actually inserted or updated with the mysql_info() C API function. You can also use the SHOW WARNINGS statement. See Section 21.8.6.35, “mysql_info()”, and Section 13.7.5.41, “SHOW WARNINGS Syntax”.
Currently, only InnoDB tables support foreign keys. See Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”.
1.8.6.2. FOREIGN KEY Constraints
Foreign keys let you cross-reference related data across tables, and foreign key constraints help keep this spread-out data consistent.
MySQL supports ON UPDATE and ON DELETE foreign key references in CREATE TABLE and ALTER TABLE statements. The available referential actions are RESTRICT (the default), CASCADE, SET NULL, and NO ACTION.
SET DEFAULT is also supported by the MySQL Server but is currently rejected as invalid by InnoDB. Since MySQL does not support deferred constraint checking, NO ACTION is treated as RESTRICT. For the exact syntax supported by MySQL for foreign keys, see Section 13.1.14.2, “Using FOREIGN KEY Constraints”.
MATCH FULL, MATCH PARTIAL, and MATCH SIMPLE are allowed, but their use should be avoided, as they cause the MySQL Server to ignore any ON DELETE or ON UPDATE clause used in the same statement. MATCH options do not have any other effect in MySQL, which in effect enforces MATCH SIMPLE semantics full-time.
MySQL requires that foreign key columns be indexed; if you create a table with a foreign key constraint but no index on a given column, an index is created.
You can obtain information about foreign keys from the INFORMATION_SCHEMA.KEY_COLUMN_USAGE table. An example of a query against this table is shown here:
mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
> FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
> WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+---------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+---------------+-------------+-----------------+
| fk1 | myuser | myuser_id | f |
| fk1 | product_order | customer_id | f2 |
| fk1 | product_order | product_id | f1 |
+--------------+---------------+-------------+-----------------+
3 rows in set (0.01 sec)
Information about foreign keys on InnoDB tables can also be found in the INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables, in the INFORMATION_SCHEMA database.
Currently, only InnoDB tables support foreign keys. See Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”, for information specific to foreign key support in InnoDB.
Deviations from SQL Standards
MySQL's implementation of foreign keys differs from the SQL standard in the following key respects:
If there are several rows in the parent table that have the same referenced key value, InnoDB acts in foreign key checks as if the other parent rows with the same key value do not exist. For example, if you have defined a RESTRICT type constraint, and there is a child row with several parent rows, InnoDB does not permit the deletion of any of those parent rows.
InnoDB performs cascading operations through a depth-first algorithm, based on records in the indexes corresponding to the foreign key constraints.
A FOREIGN KEY constraint that references a non-UNIQUE key is not standard SQL but rather an InnoDB extension.
If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has previously updated during the same cascade, it acts like RESTRICT. This means that you cannot use self-referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent infinite loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the other hand, is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not be nested more than 15 levels deep.
In an SQL statement that inserts, deletes, or updates many rows, foreign key constraints (like unique constraints) are checked row-by-row. When performing foreign key checks, InnoDB sets shared row-level locks on child or parent records that it must examine. MySQL checks foreign key constraints immediately; the check is not deferred to transaction commit. According to the SQL standard, the default behavior should be deferred checking. That is, constraints are only checked after the entire SQL statement has been processed. This means that it is not possible to delete a row that refers to itself using a foreign key.
For information how InnoDB foreign keys differ from the SQL standard, see Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”.
1.8.6.3. Constraints on Invalid Data
By default, MySQL is forgiving of invalid or improper data values and coerces them to valid values for data entry. However, you can change the server SQL mode to select more traditional treatment of bad values such that the server rejects them and aborts the statement in which they occur. See Section 5.1.7, “Server SQL Modes”.
This section describes the default (forgiving) behavior of MySQL, as well as the strict SQL mode and how it differs.
If you are not using strict mode, then whenever you insert an “incorrect” value into a column, such as a NULL into a NOT NULL column or a too-large numeric value into a numeric column, MySQL sets the column to the “best possible value” instead of producing an error: The following rules describe in more detail how this works:
If you try to store an out of range value into a numeric column, MySQL Server instead stores zero, the smallest possible value, or the largest possible value, whichever is closest to the invalid value.
For strings, MySQL stores either the empty string or as much of the string as can be stored in the column.
If you try to store a string that doesn't start with a number into a numeric column, MySQL Server stores 0.
Invalid values for ENUM and SET columns are handled as described in Section 1.8.6.4, “ENUM and SET Constraints”.
MySQL enables you to store certain incorrect date values into DATE and DATETIME columns (such as '2000-02-31' or '2000-02-00'). The idea is that it is not the job of the SQL server to validate dates. If MySQL can store a date value and retrieve exactly the same value, MySQL stores it as given. If the date is totally wrong (outside the server's ability to store it), the special “zero” date value '0000-00-00' is stored in the column instead.
If you try to store NULL into a column that doesn't take NULL values, an error occurs for single-row INSERT statements. For multiple-row INSERT statements or for INSERT INTO ... SELECT statements, MySQL Server stores the implicit default value for the column data type. In general, this is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date and time types. Implicit default values are discussed in Section 11.5, “Data Type Default Values”.
If an INSERT statement specifies no value for a column, MySQL inserts its default value if the column definition includes an explicit DEFAULT clause. If the definition has no such DEFAULT clause, MySQL inserts the implicit default value for the column data type.
The reason for using the preceding rules in nonstrict mode is that we can't check these conditions until the statement has begun executing. We can't just roll back if we encounter a problem after updating a few rows, because the storage engine may not support rollback. The option of terminating the statement is not that good; in this case, the update would be “half done,” which is probably the worst possible scenario. In this case, it is better to “do the best you can” and then continue as if nothing happened.
In MySQL 5.0.2 and up, you can select stricter treatment of input values by using the STRICT_TRANS_TABLES or STRICT_ALL_TABLES SQL modes:
SET sql_mode = 'STRICT_TRANS_TABLES';
SET sql_mode = 'STRICT_ALL_TABLES';
STRICT_TRANS_TABLES enables strict mode for transactional storage engines, and also to some extent for nontransactional engines. It works like this:
For transactional storage engines, bad data values occurring anywhere in a statement cause the statement to abort and roll back.
For nontransactional storage engines, a statement aborts if the error occurs in the first row to be inserted or updated. (When the error occurs in the first row, the statement can be aborted to leave the table unchanged, just as for a transactional table.) Errors in rows after the first do not abort the statement, because the table has already been changed by the first row. Instead, bad data values are adjusted and result in warnings rather than errors. In other words, with STRICT_TRANS_TABLES, a wrong value causes MySQL to roll back all updates done so far, if that can be done without changing the table. But once the table has been changed, further errors result in adjustments and warnings.
For even stricter checking, enable STRICT_ALL_TABLES. This is the same as STRICT_TRANS_TABLES except that for nontransactional storage engines, errors abort the statement even for bad data in rows following the first row. This means that if an error occurs partway through a multiple-row insert or update for a nontransactional table, a partial update results. Earlier rows are inserted or updated, but those from the point of the error on are not. To avoid this for nontransactional tables, either use single-row statements or else use STRICT_TRANS_TABLES if conversion warnings rather than errors are acceptable. To avoid problems in the first place, do not use MySQL to check column content. It is safest (and often faster) to let the application ensure that it passes only valid values to the database.
With either of the strict mode options, you can cause errors to be treated as warnings by using INSERT IGNORE or UPDATE IGNORE rather than INSERT or UPDATE without IGNORE.
1.8.6.4. ENUM and SET Constraints
ENUM and SET columns provide an efficient way to define columns that can contain only a given set of values. See Section 11.4.4, “The ENUM Type”, and Section 11.4.5, “The SET Type”. However, before MySQL 5.0.2, ENUM and SET columns do not provide true constraints on entry of invalid data:
ENUM columns always have a default value. If you specify no default value, then it is NULL for columns that can have NULL, otherwise it is the first enumeration value in the column definition.
If you insert an incorrect value into an ENUM column or if you force a value into an ENUM column with IGNORE, it is set to the reserved enumeration value of 0, which is displayed as an empty string in string context.
If you insert an incorrect value into a SET column, the incorrect value is ignored. For example, if the column can contain the values 'a', 'b', and 'c', an attempt to assign 'a,x,b,y' results in a value of 'a,b'.
As of MySQL 5.0.2, you can configure the server to use strict SQL mode. See Section 5.1.7, “Server SQL Modes”. With strict mode enabled, the definition of a ENUM or SET column does act as a constraint on values entered into the column. An error occurs for values that do not satisfy these conditions:
An ENUM value must be one of those listed in the column definition, or the internal numeric equivalent thereof. The value cannot be the error value (that is, 0 or the empty string). For a column defined as ENUM('a','b','c'), values such as '', 'd', or 'ax' are invalid and are rejected.
A SET value must be the empty string or a value consisting only of the values listed in the column definition separated by commas. For a column defined as SET('a','b','c'), values such as 'd' or 'a,b,c,d' are invalid and are rejected.
Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE IGNORE. In this case, a warning is generated rather than an error. For ENUM, the value is inserted as the error member (0). For SET, the value is inserted as given except that any invalid substrings are deleted. For example, 'a,x,b,y' results in a value of 'a,b'.
1.9. Credits
The following sections list developers, contributors, and supporters that have helped to make MySQL what it is today.
1.9.1. Contributors to MySQL
Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and the MySQL manual, we wish to recognize those who have made contributions of one kind or another to the MySQL distribution. Contributors are listed here, in somewhat random order:
Gianmassimo Vigazzola <qwerg@mbox.vol.it> or <qwerg@tin.it>
The initial port to Win32/NT.
Per Eric Olsson
For constructive criticism and real testing of the dynamic record format.
Irena Pancirov <irena@mail.yacc.it>
Win32 port with Borland compiler. mysqlshutdown.exe and mysqlwatch.exe.
David J. Hughes
For the effort to make a shareware SQL database. At TcX, the predecessor of MySQL AB, we started with mSQL, but found that it couldn't satisfy our purposes so instead we wrote an SQL interface to our application builder Unireg. mysqladmin and mysql client are programs that were largely influenced by their mSQL counterparts. We have put a lot of effort into making the MySQL syntax a superset of mSQL. Many of the API's ideas are borrowed from mSQL to make it easy to port free mSQL programs to the MySQL API. The MySQL software doesn't contain any code from mSQL. Two files in the distribution (client/insert_test.c and client/select_test.c) are based on the corresponding (noncopyrighted) files in the mSQL distribution, but are modified as examples showing the changes necessary to convert code from mSQL to MySQL Server. (mSQL is copyrighted David J. Hughes.)
Patrick Lynch
For helping us acquire http://www.mysql.com/.
Fred Lindberg
For setting up qmail to handle the MySQL mailing list and for the incredible help we got in managing the MySQL mailing lists.
Igor Romanenko <igor@frog.kiev.ua>
mysqldump (previously msqldump, but ported and enhanced by Monty).
Yuri Dario
For keeping up and extending the MySQL OS/2 port.
Tim Bunce
Author of mysqlhotcopy.
Zarko Mocnik <zarko.mocnik@dem.si>
Sorting for Slovenian language.
"TAMITO" <tommy@valley.ne.jp>
The _MB character set macros and the ujis and sjis character sets.
Joshua Chamas <joshua@chamas.com>
Base for concurrent insert, extended date syntax, debugging on NT, and answering on the MySQL mailing list.
Yves Carlier <Yves.Carlier@rug.ac.be>
mysqlaccess, a program to show the access rights for a user.
Rhys Jones <rhys@wales.com> (And GWE Technologies Limited)
For one of the early JDBC drivers.
Dr Xiaokun Kelvin ZHU <X.Zhu@brad.ac.uk>
Further development of one of the early JDBC drivers and other MySQL-related Java tools.
James Cooper <pixel@organic.com>
For setting up a searchable mailing list archive at his site.
Rick Mehalick <Rick_Mehalick@i-o.com>
For xmysql, a graphical X client for MySQL Server.
Doug Sisk <sisk@wix.com>
For providing RPM packages of MySQL for Red Hat Linux.
Diemand Alexander V. <axeld@vial.ethz.ch>
For providing RPM packages of MySQL for Red Hat Linux-Alpha.
Antoni Pamies Olive <toni@readysoft.es>
For providing RPM versions of a lot of MySQL clients for Intel and SPARC.
Jay Bloodworth <jay@pathways.sde.state.sc.us>
For providing RPM versions for MySQL 3.21.
David Sacerdote <davids@secnet.com>
Ideas for secure checking of DNS host names.
Wei-Jou Chen <jou@nematic.ieo.nctu.edu.tw>
Some support for Chinese(BIG5) characters.
Wei He <hewei@mail.ied.ac.cn>
A lot of functionality for the Chinese(GBK) character set.
Jan Pazdziora <adelton@fi.muni.cz>
Czech sorting order.
Zeev Suraski <bourbon@netvision.net.il>
FROM_UNIXTIME() time formatting, ENCRYPT() functions, and bison advisor. Active mailing list member.
Luuk de Boer <luuk@wxs.nl>
Ported (and extended) the benchmark suite to DBI/DBD. Have been of great help with crash-me and running benchmarks. Some new date functions. The mysql_setpermission script.
Alexis Mikhailov <root@medinf.chuvashia.su>
User-defined functions (UDFs); CREATE FUNCTION and DROP FUNCTION.
Andreas F. Bobak <bobak@relog.ch>
The AGGREGATE extension to user-defined functions.
Ross Wakelin <R.Wakelin@march.co.uk>
Help to set up InstallShield for MySQL-Win32.
Jethro Wright III <jetman@li.net>
The libmysql.dll library.
James Pereria <jpereira@iafrica.com>
Mysqlmanager, a Win32 GUI tool for administering MySQL Servers.
Curt Sampson <cjs@portal.ca>
Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.
Martin Ramsch <m.ramsch@computer.org>
Examples in the MySQL Tutorial.
Steve Harvey
For making mysqlaccess more secure.
Konark IA-64 Centre of Persistent Systems Private Limited
http://www.pspl.co.in/konark/. Help with the Win64 port of the MySQL server.
Albert Chin-A-Young.
Configure updates for Tru64, large file support and better TCP wrappers support.
John Birrell
Emulation of pthread_mutex() for OS/2.
Benjamin Pflugmann
Extended MERGE tables to handle INSERTS. Active member on the MySQL mailing lists.
Jocelyn Fournier
Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery code).
Marc Liyanage
Maintaining the Mac OS X packages and providing invaluable feedback on how to create Mac OS X packages.
Robert Rutherford
Providing invaluable information and feedback about the QNX port.
Previous developers of NDB Cluster
Lots of people were involved in various ways summer students, master thesis students, employees. In total more than 100 people so too many to mention here. Notable name is Ataullah Dabaghi who up until 1999 contributed around a third of the code base. A special thanks also to developers of the AXE system which provided much of the architectural foundations for NDB Cluster with blocks, signals and crash tracing functionality. Also credit should be given to those who believed in the ideas enough to allocate of their budgets for its development from 1992 to present time.
Google Inc.
We wish to recognize Google Inc. for contributions to the MySQL distribution: Mark Callaghan's SMP Performance patches and other patches.
Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wojciech Tryc, Luca Berra, Zarko Mocnik, Wim Bonis, Elmar Haneke, <jehamby@lightside>, <psmith@BayNetworks.com>, <duane@connect.com.au>, Ted Deppner <ted@psyber.com>, Mike Simons, Jaakko Hyvatti.
And lots of bug report/patches from the folks on the mailing list.
A big tribute goes to those that help us answer questions on the MySQL mailing lists:
Daniel Koch <dkoch@amcity.com>
Irix setup.
Luuk de Boer <luuk@wxs.nl>
Benchmark questions.
Tim Sailer <tps@users.buoy.com>
DBD::mysql questions.
Boyd Lynn Gerber <gerberb@zenez.com>
SCO-related questions.
Richard Mehalick <RM186061@shellus.com>
xmysql-related questions and basic installation questions.
Zeev Suraski <bourbon@netvision.net.il>
Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-related questions and other general questions.
Francesc Guasch <frankie@citel.upc.es>
General questions.
Jonathan J Smith <jsmith@wtp.net>
Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need some work.
David Sklar <sklar@student.net>
Using MySQL from PHP and Perl.
Alistair MacDonald <A.MacDonald@uel.ac.uk>
Is flexible and can handle Linux and perhaps HP-UX.
John Lyon <jlyon@imag.net>
Questions about installing MySQL on Linux systems, using either .rpm files or compiling from source.
Lorvid Ltd. <lorvid@WOLFENET.com>
Simple billing/license/support/copyright issues.
Patrick Sherrill <patrick@coconet.com>
ODBC and VisualC++ interface questions.
Randy Harmon <rjharmon@uptimecomputers.com>
DBD, Linux, some SQL syntax questions.
1.9.2. Documenters and translators
The following people have helped us with writing the MySQL documentation and translating the documentation or error messages in MySQL.
Paul DuBois
Ongoing help with making this manual correct and understandable. That includes rewriting Monty's and David's attempts at English into English as other people know it.
Kim Aldale
Helped to rewrite Monty's and David's early attempts at English into English.
Michael J. Miller Jr. <mke@terrapin.turbolift.com>
For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into the MySQL manual a long time ago).
Yan Cailin
First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which the Big5 and HK coded (http://mysql.hitstar.com/) versions were based. Personal home page at linuxdb.yeah.net.
Jay Flaherty <fty@mediapulse.com>
Big parts of the Perl DBI/DBD section in the manual.
Paul Southworth <pauls@etext.org>, Ray Loyzaga <yar@cs.su.oz.au>
Proof-reading of the Reference Manual.
Therrien Gilbert <gilbert@ican.net>, Jean-Marc Pouyot <jmp@scalaire.fr>
French error messages.
Petr Snajdr, <snajdr@pvt.net>
Czech error messages.
Jaroslaw Lewandowski <jotel@itnet.com.pl>
Polish error messages.
Miguel Angel Fernandez Roiz
Spanish error messages.
Roy-Magne Mo <rmo@www.hivolda.no>
Norwegian error messages and testing of MySQL 3.21.xx.
Timur I. Bakeyev <root@timur.tatarstan.ru>
Russian error messages.
<brenno@dewinter.com> & Filippo Grassilli <phil@hyppo.com>
Italian error messages.
Dirk Munzinger <dirk@trinity.saar.de>
German error messages.
Billik Stefan <billik@sun.uniag.sk>
Slovak error messages.
Stefan Saroiu <tzoompy@cs.washington.edu>
Romanian error messages.
Peter Feher
Hungarian error messages.
Roberto M. Serqueira
Portuguese error messages.
Carsten H. Pedersen
Danish error messages.
Arjen Lentz
Dutch error messages, completing earlier partial translation (also work on consistency and spelling).
1.9.3. Packages that support MySQL
The following is a list of creators/maintainers of some of the most important API/packages/applications that a lot of people use with MySQL.
We cannot list every possible package here because the list would then be way to hard to maintain. For other packages, please refer to the software portal at http://solutions.mysql.com/software/.
Tim Bunce, Alligator Descartes
For the DBD (Perl) interface.
Andreas Koenig <a.koenig@mind.de>
For the Perl interface for MySQL Server.
Jochen Wiedmann <wiedmann@neckar-alb.de>
For maintaining the Perl DBD::mysql module.
Eugene Chan <eugene@acenet.com.sg>
For porting PHP for MySQL Server.
Georg Richter
MySQL 4.1 testing and bug hunting. New PHP 5.0 mysqli extension (API) for use with MySQL 4.1 and up.
Giovanni Maruzzelli <maruzz@matrice.it>
For porting iODBC (Unix ODBC).
Xavier Leroy <Xavier.Leroy@inria.fr>
The author of LinuxThreads (used by the MySQL Server on Linux).
1.9.4. Tools that were used to create MySQL
The following is a list of some of the tools we have used to create MySQL. We use this to express our thanks to those that has created them as without these we could not have made MySQL what it is today.
Free Software Foundation
From whom we got an excellent compiler (gcc), an excellent debugger (gdb and the libc library (from which we have borrowed strto.c to get some code working in Linux).
Free Software Foundation & The XEmacs development team
For a really great editor/environment.
Julian Seward
Author of valgrind, an excellent memory checker tool that has helped us find a lot of otherwise hard to find bugs in MySQL.
Dorothea Lütkehaus and Andreas Zeller
For DDD (The Data Display Debugger) which is an excellent graphical front end to gdb).
1.9.5. Supporters of MySQL
Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and the MySQL manual, we wish to recognize the following companies, which helped us finance the development of the MySQL server, such as by paying us for developing a new feature or giving us hardware for development of the MySQL server.
VA Linux / Andover.net
Funded replication.
NuSphere
Editing of the MySQL manual.
Stork Design studio
The MySQL Web site in use between 1998-2000.
Intel
Contributed to development on Windows and Linux platforms.
Compaq
Contributed to Development on Linux/Alpha.
SWSoft
Development on the embedded mysqld version.
FutureQuest
The --skip-show-database option.
Chapter 2. Installing and Upgrading MySQL
Table of Contents
2.1. General Installation Guidance
2.1.1. Operating Systems Supported by MySQL Community Server
2.1.2. Choosing Which MySQL Distribution to Install
2.1.3. How to Get MySQL
2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
2.1.5. Installation Layouts
2.1.6. Compiler-Specific Build Characteristics
2.2. Installing MySQL from Generic Binaries on Unix/Linux
2.3. Installing MySQL on Microsoft Windows
2.3.1. MySQL Installation Layout on Microsoft Windows
2.3.2. Choosing An Installation Package
2.3.3. Installing MySQL on Microsoft Windows Using MySQL Installer
2.3.4. Installing MySQL on Microsoft Windows Using a noinstall Zip Archive
2.3.5. Troubleshooting a Microsoft Windows MySQL Server Installation
2.3.6. Upgrading MySQL on Windows
2.3.7. Windows Postinstallation Procedures
2.4. Installing MySQL on Mac OS X
2.4.1. General Notes on Installing MySQL on Mac OS X
2.4.2. Installing MySQL on Mac OS X Using Native Packages
2.4.3. Installing the MySQL Startup Item
2.4.4. Installing and Using the MySQL Preference Pane
2.4.5. Using the Bundled MySQL on Mac OS X Server
2.5. Installing MySQL on Linux
2.5.1. Installing MySQL from RPM Packages on Linux
2.5.2. Installing MySQL on Linux using Native Package Manager
2.6. Installing MySQL on Solaris and OpenSolaris
2.6.1. Installing MySQL on Solaris using a Solaris PKG
2.6.2. Installing MySQL on OpenSolaris using IPS
2.7. Installing MySQL on HP-UX
2.7.1. General Notes on Installing MySQL on HP-UX
2.7.2. Installing MySQL on HP-UX using DEPOT
2.8. Installing MySQL on FreeBSD
2.9. Installing MySQL from Source
2.9.1. MySQL Layout for Source Installation
2.9.2. Installing MySQL from a Standard Source Distribution
2.9.3. Installing MySQL from a Development Source Tree
2.9.4. MySQL Source-Configuration Options
2.9.5. Dealing with Problems Compiling MySQL
2.9.6. MySQL Configuration and Third-Party Tools
2.10. Postinstallation Setup and Testing
2.10.1. Unix Postinstallation Procedures
2.10.2. Securing the Initial MySQL Accounts
2.11. Upgrading or Downgrading MySQL
2.11.1. Upgrading MySQL
2.11.2. Downgrading MySQL
2.11.3. Checking Whether Tables or Indexes Must Be Rebuilt
2.11.4. Rebuilding or Repairing Tables or Indexes
2.11.5. Copying MySQL Databases to Another Machine
2.13.1. Installing Perl on Unix
2.13.2. Installing ActiveState Perl on Windows
2.13.3. Problems Using the Perl DBI/DBD Interface
This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later sections provide the details. If you plan to upgrade an existing version of MySQL to a newer version rather than install MySQL for the first time, see Section 2.11.1, “Upgrading MySQL”, for information about upgrade procedures and about issues that you should consider before upgrading.
If you are interested in migrating to MySQL from another database system, you may wish to read Section B.8, “MySQL 5.6 FAQ: Migration”, which contains answers to some common questions concerning migration issues.
Installation of MySQL generally follows the steps outlined here:
Determine whether MySQL runs and is supported on your platform.
Please note that not all platforms are equally suitable for running MySQL, and that not all platforms on which MySQL is known to run are officially supported by Oracle Corporation:
Choose which distribution to install.
Several versions of MySQL are available, and most are available in several distribution formats. You can choose from pre-packaged distributions containing binary (precompiled) programs or source code. When in doubt, use a binary distribution. We also provide public access to our current source tree for those who want to see our most recent developments and help us test new code. To determine which version and type of distribution you should use, see Section 2.1.2, “Choosing Which MySQL Distribution to Install”.
Download the distribution that you want to install.
For instructions, see Section 2.1.3, “How to Get MySQL”. To verify the integrity of the distribution, use the instructions in Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or GnuPG”.
Install the distribution.
To install MySQL from a binary distribution, use the instructions in Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”.
To install MySQL from a source distribution or from the current development source tree, use the instructions in Section 2.9, “Installing MySQL from Source”.
Perform any necessary postinstallation setup.
After installing MySQL, read Section 2.10, “Postinstallation Setup and Testing”. This section contains important information about making sure the MySQL server is working properly. It also describes how to secure the initial MySQL user accounts, which have no passwords until you assign passwords. The section applies whether you install MySQL using a binary or source distribution.
If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See Section 2.13, “Perl Installation Notes”.
Instructions for installing MySQL on different platforms and environments is available on a platform by platform basis:
Unix, Linux, FreeBSD
For instructions on installing MySQL on most Linux and Unix platforms using a generic binary (for example, a .tar.gz package), see Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”.
For information on building MySQL entirely from the source code distributions or the source code repositories, see Section 2.9, “Installing MySQL from Source”
For specific platform help on installation, configuration, and building from source see the corresponding platform section:
Linux, including notes on distribution specific methods, see Section 2.5, “Installing MySQL on Linux”.
Solaris and OpenSolaris, including PKG and IPS formats, see Section 2.6, “Installing MySQL on Solaris and OpenSolaris”.
IBM AIX, see Section 2.6, “Installing MySQL on Solaris and OpenSolaris”.
Hewlett-Packard HP-UX, including the DEPOT package format, see Section 2.7, “Installing MySQL on HP-UX”.
FreeBSD, see Section 2.8, “Installing MySQL on FreeBSD”.
Microsoft Windows
For instructions on installing MySQL on Microsoft Windows, using either a Zipped binary or an MSI package, see Section 2.3, “Installing MySQL on Microsoft Windows”.
For details and instructions on building MySQL from source code using Microsoft Visual Studio, see Section 2.9, “Installing MySQL from Source”.
Mac OS X
For installation on Mac OS X, including using both the binary package and native PKG formats, see Section 2.4, “Installing MySQL on Mac OS X”.
For information on making use of the MySQL Startup Item to automatically start and stop MySQL, see Section 2.4.3, “Installing the MySQL Startup Item”.
For information on the MySQL Preference Pane, see Section 2.4.4, “Installing and Using the MySQL Preference Pane”.
2.1. General Installation Guidance
The immediately following sections contain the information necessary to choose, download, and verify your distribution. The instructions in later sections of the chapter describe how to install the distribution that you choose. For binary distributions, see the instructions at Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux” or the corresponding section for your platform if available. To build MySQL from source, use the instructions in Section 2.9, “Installing MySQL from Source”.
2.1.1. Operating Systems Supported by MySQL Community Server
This section lists the operating systems on which MySQL Community Server is known to run.
Important
Oracle Corporation does not necessarily provide official support for all the platforms listed in this section. For information about those platforms that are officially supported, see http://www.mysql.com/support/supportedplatforms.html on the MySQL Web site.
We use CMake, so it is possible to port MySQL to all modern systems that have a C++ compiler and a working implementation of POSIX threads. (Thread support is needed for the server. To compile only the client code, the only requirement is a C++ compiler.)
MySQL has been reported to compile successfully on the following combinations of operating system and thread package.
FreeBSD 5.x and up with native threads. See Section 2.8, “Installing MySQL on FreeBSD”.
HP-UX 11.x with the native threads. See Section 2.7, “Installing MySQL on HP-UX”.
Linux. Builds on all recent Linux distributions based on the 2.6 kernel. See Section 2.5, “Installing MySQL on Linux”.
Mac OS X. See Section 2.4, “Installing MySQL on Mac OS X”.
Solaris 2.8 on SPARC and x86, including support for native threads. See Section 2.6, “Installing MySQL on Solaris and OpenSolaris”.
Windows XP, Windows Vista, Windows Server 2003, and Windows Server 2008. See Section 2.3, “Installing MySQL on Microsoft Windows”.
MySQL has also been known to run on other systems in the past. See Section 2.1, “General Installation Guidance”. Some porting effort might be required for current versions of MySQL on these systems.
Not all platforms are equally well-suited for running MySQL. How well a certain platform is suited for a high-load mission-critical MySQL server is determined by the following factors:
General stability of the thread library. A platform may have an excellent reputation otherwise, but MySQL is only as stable as the thread library it calls, even if everything else is perfect.
The capability of the kernel and the thread library to take advantage of symmetric multi-processor (SMP) systems. In other words, when a process creates a thread, it should be possible for that thread to run on a CPU different from the original process.
The capability of the kernel and the thread library to run many threads that acquire and release a mutex over a short critical region frequently without excessive context switches. If the implementation of pthread_mutex_lock() is too anxious to yield CPU time, this hurts MySQL tremendously. If this issue is not taken care of, adding extra CPUs actually makes MySQL slower.
General file system stability and performance.
Table size. If your tables are large, performance is affected by the ability of the file system to deal with large files and dealing with them efficiently.
Our level of expertise here at Oracle Corporation with the platform. If we know a platform well, we enable platform-specific optimizations and fixes at compile time. We can also provide advice on configuring your system optimally for MySQL.
The amount of testing we have done internally for similar configurations.
The number of users that have run MySQL successfully on the platform in similar configurations. If this number is high, the likelihood of encountering platform-specific surprises is much smaller.
2.1.2. Choosing Which MySQL Distribution to Install
When preparing to install MySQL, you should decide which version to use. MySQL development occurs in several release series, and you can pick the one that best fits your needs. After deciding which version to install, you can choose a distribution format. Releases are available in binary or source format.
2.1.2.1. Choosing Which Version of MySQL to Install
The first decision to make is whether you want to use a production (stable) release or a development release. In the MySQL development process, multiple release series co-exist, each at a different stage of maturity.
Production Releases
MySQL 5.6: Latest General Availability (Production) release
MySQL 5.5: Previous General Availability (Production) release
MySQL 5.1: Older General Availability (Production) release
MySQL 5.0: Older Production release nearing the end of the product lifecycle
MySQL 4.1, 4.0, and 3.23 are old releases that are no longer supported.
See http://www.mysql.com/about/legal/lifecycle/ for information about support policies and schedules.
Normally, if you are beginning to use MySQL for the first time or trying to port it to some system for which there is no binary distribution, use the most recent General Availability series listed in the preceding descriptions. All MySQL releases, even those from development series, are checked with the MySQL benchmarks and an extensive test suite before being issued.
If you are running an older system and want to upgrade, but do not want to take the chance of having a nonseamless upgrade, you should upgrade to the latest version in the same release series you are using (where only the last part of the version number is newer than yours). We have tried to fix only fatal bugs and make only small, relatively “safe” changes to that version.
If you want to use new features not present in the production release series, you can use a version from a development series. Be aware that development releases are not as stable as production releases.
We do not use a complete code freeze because this prevents us from making bugfixes and other fixes that must be done. We may add small things that should not affect anything that currently works in a production release. Naturally, relevant bugfixes from an earlier series propagate to later series.
If you want to use the very latest sources containing all current patches and bugfixes, you can use one of our source code repositories (see Section 2.9.3, “Installing MySQL from a Development Source Tree”). These are not “releases” as such, but are available as previews of the code on which future releases are to be based.
The naming scheme in MySQL 5.6 uses release names that consist of three numbers and a suffix; for example, mysql-5.6.1-m1. The numbers within the release name are interpreted as follows:
The first number (5) is the major version and describes the file format. All MySQL 5 releases have the same file format.
The second number (6) is the release level. Taken together, the major version and release level constitute the release series number.
The third number (1) is the version number within the release series. This is incremented for each new release. Usually you want the latest version for the series you have chosen.
For each minor update, the last number in the version string is incremented. When there are major new features or minor incompatibilities with previous versions, the second number in the version string is incremented. When the file format changes, the first number is increased.
Release names also include a suffix to indicates the stability level of the release. Releases within a series progress through a set of suffixes to indicate how the stability level improves. The possible suffixes are:
mN (for example, m1, m2, m3, ...) indicate a milestone number. MySQL development uses a milestone model, in which each milestone proceeds through a small number of versions with a tight focus on a small subset of thoroughly tested features. Following the releases for one milestone, development proceeds with another small number of releases that focuses on the next small set of features, also thoroughly tested. Features within milestone releases may be considered to be of pre-production quality.
rc indicates a Release Candidate. Release candidates are believed to be stable, having passed all of MySQL's internal testing, and with all known fatal runtime bugs fixed. However, the release has not been in widespread use long enough to know for sure that all bugs have been identified. Only minor fixes are added.
If there is no suffix, it indicates that the release is a General Availability (GA) or Production release. GA releases are stable, having successfully passed through all earlier release stages and are believed to be reliable, free of serious bugs, and suitable for use in production systems. Only critical bugfixes are applied to the release.
All releases of MySQL are run through our standard tests and benchmarks to ensure that they are relatively safe to use. Because the standard tests are extended over time to check for all previously found bugs, the test suite keeps getting better.
All releases have been tested at least with these tools:
An internal test suite. The mysql-test directory contains an extensive set of test cases. We run these tests for every server binary. See Section 22.1.2, “The MySQL Test Suite”, for more information about this test suite.
The MySQL benchmark suite. This suite runs a range of common queries. It is also a test to determine whether the latest batch of optimizations actually made the code faster. See Section 8.12.2, “The MySQL Benchmark Suite”.
We also perform additional integration and nonfunctional testing of the latest MySQL version in our internal production environment. Integration testing is done with different connectors, storage engines, replication modes, backup, partitioning, stored programs, and so forth in various combinations. Additional nonfunctional testing is done in areas of performance, concurrency, stress, high volume, upgrade and downgrade.
2.1.2.2. Choosing a Distribution Format
After choosing which version of MySQL to install, you should decide whether to use a binary distribution or a source distribution. In most cases, you should probably use a binary distribution, if one exists for your platform. Binary distributions are available in native format for many platforms, such as RPM files for Linux or PKG package installers for Mac OS X or Solaris. Distributions also are available as Zip archives or compressed tar files.
Reasons to choose a binary distribution include the following:
Binary distributions generally are easier to install than source distributions.
To satisfy different user requirements, we provide several servers in binary distributions. mysqld is an optimized server that is a smaller, faster binary. mysqld-debug is compiled with debugging support.
Each of these servers is compiled from the same source distribution, though with different configuration options. All native MySQL clients can connect to servers from either MySQL version.
Under some circumstances, you may be better off installing MySQL from a source distribution:
You want to install MySQL at some explicit location. The standard binary distributions are ready to run at any installation location, but you might require even more flexibility to place MySQL components where you want.
You want to configure mysqld to ensure that features are available that might not be included in the standard binary distributions. Here is a list of the most common extra options that you may want to use to ensure feature availability:
-DWITH_LIBWRAP=1 for TCP wrappers support.
-DWITH_ZLIB={system|bundled} for features that depend on compression
-DWITH_DEBUG=1 for debugging support
You want to configure mysqld without some features that are included in the standard binary distributions. For example, distributions normally are compiled with support for all character sets. If you want a smaller MySQL server, you can recompile it with support for only the character sets you need.
You want to use the latest sources from one of the Bazaar repositories to have access to all current bugfixes. For example, if you have found a bug and reported it to the MySQL development team, the bugfix is committed to the source repository and you can access it there. The bugfix does not appear in a release until a release actually is issued.
You want to read (or modify) the C and C++ code that makes up MySQL. For this purpose, you should get a source distribution, because the source code is always the ultimate manual.
Source distributions contain more tests and examples than binary distributions.
2.1.2.3. How and When Updates Are Released
MySQL is evolving quite rapidly and we want to share new developments with other MySQL users. We try to produce a new release whenever we have new and useful features that others also seem to have a need for.
We also try to help users who request features that are easy to implement. We take note of what our licensed users want, and we especially take note of what our support customers want and try to help them in this regard.
No one is required to download a new release. The Release Notes help you determine whether the new release has something you really want.
We use the following policy when updating MySQL:
Enterprise Server releases are meant to appear every 18 months, supplemented by quarterly service packs and monthly rapid updates. Community Server releases are meant to appear 2 to 3 times per year.
Releases are issued within each series. For each release, the last number in the version is one more than the previous release within the same series.
Binary distributions for some platforms are made by us for major releases. Other people may make binary distributions for other systems, but probably less frequently.
We make fixes available as soon as we have identified and corrected small or noncritical but annoying bugs. The fixes are available in source form immediately from our public Bazaar repositories, and are included in the next release.
If by any chance a security vulnerability or critical bug is found in a release, our policy is to fix it in a new release as soon as possible. (We would like other companies to do this, too!)
2.1.3. How to Get MySQL
Check our downloads page at http://dev.mysql.com/downloads/ for information about the current version of MySQL and for downloading instructions. For a complete up-to-date list of MySQL download mirror sites, see http://dev.mysql.com/downloads/mirrors.html. You can also find information there about becoming a MySQL mirror site and how to report a bad or out-of-date mirror.
To obtain the latest development source, see Section 2.9.3, “Installing MySQL from a Development Source Tree”.
2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
After you have downloaded the MySQL package that suits your needs and before you attempt to install it, you should make sure that it is intact and has not been tampered with. There are three means of integrity checking:
MD5 checksums
Cryptographic signatures using GnuPG, the GNU Privacy Guard
For RPM packages, the built-in RPM integrity verification mechanism
The following sections describe how to use these methods.
If you notice that the MD5 checksum or GPG signatures do not match, first try to download the respective package one more time, perhaps from another mirror site.
2.1.4.1. Verifying the MD5 Checksum
After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches the one provided on the MySQL download pages. Each package has an individual checksum that you can verify against the package that you downloaded. The correct MD5 checksum is listed on the downloads page for each MySQL product, and you will compare it against the MD5 checksum of the file (product) that you download.
Each operating system and setup offers its own version of tools for checking the MD5 checksum. Typically the command is named md5sum, or it may be named md5, and some operating systems do not ship it at all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide range of platforms. You can also download the source code from http://www.gnu.org/software/textutils/. If you have OpenSSL installed, you can use the command openssl md5 package_name instead. A Windows implementation of the md5 command line utility is available from http://www.fourmilab.ch/md5/. winMd5Sum is a graphical MD5 checking tool that can be obtained from http://www.nullriver.com/index/products/winmd5sum. Our Microsoft Windows examples will assume the name md5.exe.
Linux and Microsoft Windows examples:
shell> md5sum mysql-standard-5.6.12-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945 mysql-standard-5.6.12-linux-i686.tar.gz
shell> md5.exe mysql-installer-community-5.6.12.msi
aaab65abbec64d5e907dcd41b8699945 mysql-installer-community-5.6.12.msi
You should verify that the resulting checksum (the string of hexadecimal digits) matches the one displayed on the download page immediately below the respective package.
Note
Make sure to verify the checksum of the archive file (for example, the .zip, .tar.gz, or .msi file) and not of the files that are contained inside of the archive. In other words, verify the file before extracting its contents.
2.1.4.2. Signature Checking Using GnuPG
Another method of verifying the integrity and authenticity of a package is to use cryptographic signatures. This is more reliable than using MD5 checksums, but requires more work.
We sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See http://www.gnupg.org/ for more information about GnuPG and how to obtain and install it on your system. Most Linux distributions ship with GnuPG installed by default. For more information about GnuPG, see http://www.openpgp.org/.
To verify the signature for a specific package, you first need to obtain a copy of our public GPG build key, which you can download from http://pgp.mit.edu/. The key that you want to obtain is named mysql-build@oss.oracle.com. Alternatively, you can cut and paste the key directly from the following text:
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: PGP Universal 2.9.1 (Build 347)
mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep
rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q2TXlTUUwgUmVs
ZWFzZSBFbmdpbmVlcmluZyA8bXlzcWwtYnVpbGRAb3NzLm9yYWNsZS5jb20+iGYE
ExECACYCGyMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAUCTnc+KgUJE/sCFQAKCRCM
cY07UHLh9SbMAJ4l1+qBz2BZNSGCZwwA6YbhGPC7FwCgp8z5TzIw4YQuL5NGJ/sy
0oSazqmJASIEEAECAAwFAk53QS4FAwASdQAACgkQlxC4m8pXrXwJ8Qf/be/UO9mq
foc2sMyhwMpN4/fdBWwfLkA12FXQDOQMvwH9HsmEjnfUgYKXschZRi+DuHXe1P7l
8G2aQLubhBsQf9ejKvRFTzuWMQkdIq+6Koulxv6ofkCcv3d1xtO2W7nb5yxcpVBP
rRfGFGebJvZa58DymCNgyGtAU6AOz4veavNmI2+GIDQsY66+tYDvZ+CxwzdYu+HD
V9HmrJfc6deM0mnBn7SRjqzxJPgoTQhihTav6q/R5/2p5NvQ/H84OgS6GjosfGc2
duUDzCP/kheMRKfzuyKCOHQPtJuIj8++gfpHtEU7IDUX1So3c9n0PdpeBvclsDbp
RnCNxQWU4mBot7kCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWsEN/lxaZo
JYc3a6M02WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLmRDRiRjd1
DTCHqeyX7CHhcghj/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hkAWzE7zaD
5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkbf4fmLe11
EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8Ilbf5vSYHbuE5p/1oI
Dznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQf+Lwqqa8CG
rRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPDsDD9MZ1ZaSafanFv
wFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGoTbOWI39E
cyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev42LmuQT5N
dKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkKHt926s/y
mfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUOetdZWhe7
0YGNPw1yjWJT1IhUBBgRAgAMBQJOdz3tBQkT+wG4ABIHZUdQRwABAQkQjHGNO1By
4fUUmwCbBYr2+bBEn/L2BOcnw9Z/QFWuhRMAoKVgCFm5fadQ3Afi+UQlAcOphrnJ
=Eto8
-----END PGP PUBLIC KEY BLOCK-----
To import the build key into your personal public GPG keyring, use gpg --import. For example, if you have saved the key in a file named mysql_pubkey.asc, the import command looks like this:
shell> gpg --import mysql_pubkey.asc
gpg: key 5072E1F5: public key "MySQL Release Engineering
<mysql-build@oss.oracle.com>" imported
gpg: Total number processed: 1
gpg: imported: 1
gpg: no ultimately trusted keys found
You can also download the key from the public keyserver using the public key id, 5072E1F5:
shell> gpg --recv-keys 5072E1F5
gpg: requesting key 5072E1F5 from hkp server keys.gnupg.net
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
1 new user ID
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
53 new signatures
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: new user IDs: 1
gpg: new signatures: 53
If you want to import the key into your RPM configuration to validate RPM install packages, you should be able to import the key directly:
shell> rpm --import mysql_pubkey.asc
If you experience problems or require RPM specific information, see Section 2.1.4.4, “Signature Checking Using RPM”.
After you have downloaded and imported the public build key, download your desired MySQL package and the corresponding signature, which also is available from the download page. The signature file has the same name as the distribution file with an .asc extension, as shown by the examples in the following table.
Table 2.1. MySQL Package and Signature Files for Source files
File Type | File Name |
---|---|
Distribution file | mysql-standard-5.6.12-linux-i686.tar.gz |
Signature file | mysql-standard-5.6.12-linux-i686.tar.gz.asc |
Make sure that both files are stored in the same directory and then run the following command to verify the signature for the distribution file:
shell> gpg --verify package_name.asc
If the downloaded package is valid, you will see a "Good signature" similar to:
shell> gpg --verify mysql-standard-5.6.12-linux-i686.tar.gz.asc
gpg: Signature made Tue 01 Feb 2011 02:38:30 AM CST using DSA key ID 5072E1F5
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"
The Good signature message indicates that the file signature is valid, when compared to the signature listed on our site. But you might also see warnings, like so:
shell> gpg --verify mysql-standard-5.6.12-linux-i686.tar.gz.asc
gpg: Signature made Wed 23 Jan 2013 02:25:45 AM PST using DSA key ID 5072E1F5
gpg: checking the trustdb
gpg: no ultimately trusted keys found
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5
That is normal, as they depend on your setup and configuration. Here are explanations for these warnings:
gpg: no ultimately trusted keys found: This means that the specific key is not "ultimately trusted" by you or your web of trust, which is okay for the purposes of verifying file signatures.
WARNING: This key is not certified with a trusted signature! There is no indication that the signature belongs to the owner.: This refers to your level of trust in your belief that you possess our real public key. This is a personal decision. Ideally, a MySQL developer would hand you the key in person, but more commonly, you downloaded it. Was the download tampered with? Probably not, but this decision is up to you. Setting up a web of trust is one method for trusting them.
See the GPG documentation for more information on how to work with public keys.
2.1.4.3. Signature Checking Using Gpg4win for Windows
The Section 2.1.4.2, “Signature Checking Using GnuPG” section describes how to verify MySQL downloads using GPG. That guide also applies to Microsoft Windows, but another option is to use a GUI tool like Gpg4win. You may use a different tool but our examples are based on Gpg4win, and utilize its bundled Kleopatra GUI.
Download and install Gpg4win, and then load Kleopatra. The dialog should look similar to:
Figure 2.1. Initial screen after loading Kleopatra
Next, add the MySQL Release Engineering certificate. Do this by clicking File, Lookup Certificates on Server. Type "Mysql Release Engineering" into the search box and press Search.
Figure 2.2. Finding the MySQL Release Engineering certificate
Select the "MySQL Release Engineering" certificate. The Fingerprint and Key-ID must be "5072E1F5", or choose Details... to confirm the certificate is valid. Now, import it by clicking Import. An import dialog will be displayed, choose Okay, and this certificate will now be listed under the Imported Certificates tab.
Next, configure the trust level for our certificate. Select our certificate, then from the main menu select Certificates, Change Owner Trust.... We suggest choosing I believe checks are very accurate for our certificate, as otherwise you might not be able to verify our signature. Select I believe checks are very accurate and then press OK.
Figure 2.3. Changing the Trust level
Next, verify the downloaded MySQL package file. This requires files for both the packaged file, and the signature. The signature file must have the same name as the packaged file but with an appended .asc extension, as shown by the example in the following table. The signature is linked to on the downloads page for each MySQL product. You must create the .asc file with this signature.
Table 2.2. MySQL Package and Signature Files for MySQL Installer for Microsoft Windows
File Type | File Name |
---|---|
Distribution file | mysql-installer-community-5.6.12.msi |
Signature file | mysql-installer-community-5.6.12.msi.asc |
Make sure that both files are stored in the same directory and then run the following command to verify the signature for the distribution file. Either drag and drop the signature (.asc) file into Kleopatra, or load the dialog from File, Decrypt/Verify Files..., and then choose either the .msi or .asc file.
Figure 2.4. The Decrypt/Verify Files dialog
Click Decrypt/Verify to check the file. The two most common results will look like the following, and although the yellow warning looks problematic, the following means that the file check passed with success. You may now run this installer.
Figure 2.5. The Decrypt/Verify Results: Good
Seeing a red "The signature is bad" error means the file is invalid. Do not execute the MSI file if you see this error.
Figure 2.6. The Decrypt/Verify Results: Bad
The Section 2.1.4.2, “Signature Checking Using GnuPG” section explains why you probably don't see a green Good signature result.
2.1.4.4. Signature Checking Using RPM
For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and MD5 checksum. You can verify a package by running the following command:
shell> rpm --checksig package_name.rpm
Example:
shell> rpm --checksig MySQL-server-5.6.12-0.glibc23.i386.rpm
MySQL-server-5.6.12-0.glibc23.i386.rpm: md5 gpg OK
Note
If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING KEYS: GPG#5072e1f5), even though you have imported the MySQL public build key into your own GPG keyring, you need to import the key into the RPM keyring first. RPM 4.1 no longer uses your personal GPG keyring (or GPG itself). Rather, RPM maintains a separate keyring because it is a system-wide application and a user's GPG public keyring is a user-specific file. To import the MySQL public key into the RPM keyring, first obtain the key, then use rpm --import to import the key. For example:
shell> gpg --export -a 5072e1f5 > 5072e1f5.asc
shell> rpm --import 5072e1f5.asc
Alternatively, rpm also supports loading the key directly from a URL, and you can use this manual page:
shell> rpm --import http://dev.mysql.com/doc/refman/5.6/en/checking-gpg-signature.html
If you need to obtain the MySQL public key, see Section 2.1.4.2, “Signature Checking Using GnuPG”.
2.1.5. Installation Layouts
The installation layout differs for different installation types (for example, native packages, binary tarballs, and source tarballs), which can lead to confusion when managing different systems or using different installation sources. The individual layouts are given in the corresponding installation type or platform chapter, as described following. Note that the layout of installations from vendors other than Oracle may differ from these layouts.
Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”
Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”
2.1.6. Compiler-Specific Build Characteristics
In some cases, the compiler used to build MySQL affects the features available for use. The notes in this section apply for binary distributions provided by Oracle Corporation or that you compile yourself from source.
icc (Intel C++ Compiler) Builds
A server built with icc has these characteristics:
SSL support is not included.
2.2. Installing MySQL from Generic Binaries on Unix/Linux
Oracle provides a set of binary distributions of MySQL. These include binary distributions in the form of compressed tar files (files with a .tar.gz extension) for a number of platforms, as well as binaries in platform-specific package formats for selected platforms.
This section covers the installation of MySQL from a compressed tar file binary distribution. For other platform-specific package formats, see the other platform-specific sections. For example, for Windows distributions, see Section 2.3, “Installing MySQL on Microsoft Windows”.
To obtain MySQL, see Section 2.1.3, “How to Get MySQL”.
MySQL compressed tar file binary distributions have names of the form mysql-VERSION-OS.tar.gz, where VERSION is a number (for example, 5.6.12), and OS indicates the type of operating system for which the distribution is intended (for example, pc-linux-i686 or winx64).
To install MySQL from a compressed tar file binary distribution, your system must have GNU gunzip to uncompress the distribution and a reasonable tar to unpack it. If your tar program supports the z option, it can both uncompress and unpack the file.
GNU tar is known to work. The standard tar provided with some operating systems is not able to unpack the long file names in the MySQL distribution. You should download and install GNU tar, or if available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is available from http://www.gnu.org/software/tar/.
Warning
If you have previously installed MySQL using your operating system native package management system, such as yum or apt-get, you may experience problems installing using a native binary. Make sure your previous MySQL previous installation has been removed entirely (using your package management system), and that any additional files, such as old versions of your data files, have also been removed. You should also check the existence of configuration files such as /etc/my.cnf or the /etc/mysql directory have been deleted.
If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How to Report Bugs or Problems”.
On Unix, to install a compressed tar file binary distribution, unpack it at the installation location you choose (typically /usr/local/mysql). This creates the directories shown in the following table.
Table 2.3. MySQL Installation Layout for Generic Unix/Linux Binary Package
Directory | Contents of Directory |
---|---|
bin | Client programs and the mysqld server |
data | Log files, databases |
docs | Manual in Info format |
man | Unix manual pages |
include | Include (header) files |
lib | Libraries |
scripts | mysql_install_db |
share | Miscellaneous support files, including error messages, sample configuration files, SQL for database installation |
sql-bench | Benchmarks |
Debug versions of the mysqld binary are available as mysqld-debug. To compile your own debug version of MySQL from a source distribution, use the appropriate configuration options to enable debugging support. For more information on compiling from source, see Section 2.9, “Installing MySQL from Source”.
To install and use a MySQL binary distribution, the basic command sequence looks like this:
shell> groupadd mysql
shell> useradd -r -g mysql mysql
shell> cd /usr/local
shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql data
Next command is optional
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> bin/mysqld_safe --user=mysql &
Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server
A more detailed version of the preceding description for installing a binary distribution follows.
Note
This procedure assumes that you have root (administrator) access to your system. Alternatively, you can prefix each command using the sudo (Linux) or pfexec (OpenSolaris) command.
The procedure does not set up any passwords for MySQL accounts. After following the procedure, proceed to Section 2.10, “Postinstallation Setup and Testing”.
Create a mysql User and Group
If your system does not already have a user and group for mysqld to run as, you may need to create one. The following commands add the mysql group and the mysql user. You might want to call the user and group something else instead of mysql. If so, substitute the appropriate name in the following instructions. The syntax for useradd and groupadd may differ slightly on different versions of Unix, or they may have different names such as adduser and addgroup.
shell> groupadd mysql
shell> useradd -r -g mysql mysql
Note
Because the user is required only for ownership purposes, not login purposes, the useradd command uses the -r option to create a user that does not have login permissions to your server host. Omit this option to permit logins for the user (or if your useradd does not support the option).
Obtain and Unpack the Distribution
Pick the directory under which you want to unpack the distribution and change location into it. The example here unpacks the distribution under /usr/local. The instructions, therefore, assume that you have permission to create files and directories in /usr/local. If that directory is protected, you must perform the installation as root.
shell> cd /usr/local
Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”. For a given release, binary distributions for all platforms are built from the same MySQL source distribution.
Unpack the distribution, which creates the installation directory. Then create a symbolic link to that directory. tar can uncompress and unpack the distribution if it has z option support:
shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
shell> ln -s full-path-to-mysql-VERSION-OS mysql
The tar command creates a directory named mysql-VERSION-OS. The ln command makes a symbolic link to that directory. This enables you to refer more easily to the installation directory as /usr/local/mysql.
If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack it. Replace the preceding tar command with the following alternative command to uncompress and extract the distribution:
shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
Perform Postinstallation Setup
The remainder of the installation process involves setting up the configuration file, creating the core databases, and starting the MySQL server. For instructions, see Section 2.10, “Postinstallation Setup and Testing”.
Note
The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Section 2.10, “Postinstallation Setup and Testing”.
2.3. Installing MySQL on Microsoft Windows
MySQL for Microsoft Windows is available in a number of different forms. A Microsoft Windows operating system such as Windows Vista, Windows 7, Windows 8, Windows Server 2008, or Windows Server 2012. Both 32-bit and 64-bit versions are supported. For supported platform information, see http://www.mysql.com/support/supportedplatforms/database.html.
In addition to running MySQL as a standard application, you can also run the MySQL server as a Windows service. By using a service you can monitor and control the operation of the server through the standard Windows service management tools. For more information, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.
Generally, you should install MySQL on Windows using an account that has administrator rights. Otherwise, you may encounter problems with certain operations such as editing the PATH environment variable or accessing the Service Control Manager. Once installed, MySQL does not need to be executed using a user with Administrator privileges.
For a list of limitations within the Windows version of MySQL, see Section E.10.6, “Windows Platform Limitations”.
In addition to the MySQL Server package, you may need or want additional components to use MySQL with your application or development environment. These include, but are not limited to:
If you plan to connect to the MySQL server using ODBC, you need a Connector/ODBC driver. For more information, including installation and configuration instructions, see Section 21.1, “MySQL Connector/ODBC”. But note that MySQL Installer will install and configure Connector/ODBC for you.
If you plan to use MySQL server with .NET applications, you need the Connector/Net driver. For more information, including installation and configuration instructions, see Section 21.2, “MySQL Connector/Net”. But note that MySQL Installer will install and configure Connector/NET for you.
MySQL distributions for Windows can be downloaded from http://dev.mysql.com/downloads/. See Section 2.1.3, “How to Get MySQL”.
MySQL for Windows is available in several distribution formats, detailed below. Generally speaking, you should use MySQL Installer. It is simpler to use than the ZIP file, and you need no additional tools to get MySQL up and running. MySQL Installer will automatically install MySQL Server, install additional MySQL products, create an options file, starts the server, and allow you to create default user accounts. For more information on choosing a package, see Section 2.3.2, “Choosing An Installation Package”.
MySQL Installer. It includes MySQL Server and additional MySQL products including MySQL Workbench, MySQL Notifier, and MySQL for Excel. And MySQL Installer can also be used to upgrade these product in the future.
For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”.
Standard binary distribution format packaged as a Zip file containing all of the necessary files that you unpack into your chosen location. This package contains all of the files in the full Windows MSI Installer package, but does not include an installation program.
For instructions on installing MySQL using the Zip file, see Section 2.3.4, “Installing MySQL on Microsoft Windows Using a noinstall Zip Archive”.
The source distribution contains all the code and support files for building the executables using the Visual Studio compiler system.
For instructions on building MySQL from source on Windows, see Section 2.9, “Installing MySQL from Source”.
MySQL on Windows considerations:
Large Table Support
If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer file system. Do not forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables. See Section 13.1.14, “CREATE TABLE Syntax”.
MySQL and Virus Checking Software
Using virus scanning software such as Norton/Symantec Anti-Virus on directories containing MySQL data and temporary tables can cause issues, both in terms of the performance of MySQL and the virus-scanning software mis-identifying the contents of the files as containing spam. This is because of the fingerprinting mechanism used by the virus scanning software, and the way in which MySQL rapidly updates different files, which may be identified as a potential security risk.
After installing MySQL Server, it is recommended that you disable virus scanning on the main directory (datadir) being used to store your MySQL table data. There is usually a system built into the virus scanning software to permit certain directories to be specifically ignored during virus scanning.
In addition, by default, MySQL creates temporary files in the standard Windows temporary directory. To prevent the temporary files also being scanned, you should configure a separate temporary directory for MySQL temporary files and add this to the virus scanning exclusion list. To do this, add a configuration option for the tmpdir parameter to your my.ini configuration file. For more information, see Section 2.3.4.2, “Creating an Option File”.
2.3.1. MySQL Installation Layout on Microsoft Windows
For MySQL 5.6 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL Server 5.6. Some Windows users prefer to install in C:\mysql, the directory that formerly was used as the default. However, the layout of the subdirectories remains the same.
All of the files are located within this parent directory, using the structure shown in the following table.
Table 2.4. MySQL Installation Layout for Windows
Directory	Contents of Directory
bin | Client programs and the mysqld server |
C:\Documents and Settings\All Users\Application Data\MySQL | Log files, databases (Windows XP, Windows Server 2003) |
C:\ProgramData\MySQL | Log files, databases (Windows 7, Windows Server 2008, and newer) |
examples | Example programs and scripts |
include | Include (header) files |
lib | Libraries |
scripts | Utility scripts |
share | Miscellaneous support files, including error messages, character set files, sample configuration files, SQL for database installation |
If you install MySQL using the MySQL Installer, this package creates and sets up the data directory that the installed server will use, but also creates a pristine “template” data directory named data under the installation directory. After an installation has been performed using this package, the template data directory can be copied to set up additional MySQL instances. See Section 5.6, “Running Multiple MySQL Instances on One Machine”.
2.3.2. Choosing An Installation Package
For MySQL 5.6, there are installation package formats to choose from when installing MySQL on Windows:
MySQL Installer: This package has a file name similar to mysql-installer-community-5.6.12.0.msi or mysql-installer-commercial-5.6.12.0.msi, and utilizes MSI's to automatically install MySQL server and other products. It will download and apply updates to itself, and for each of the installed products. It also configures the additional non-server products.
The installed products are configurable, and this includes: documentation with samples and examples, connectors (such as C, C++, J, NET, and ODBC), MySQL Workbench, MySQL Notifier for Microsoft Windows, MySQL for Excel, and the MySQL Server with its components.
MySQL Installer will run on all Windows platforms that are supported by MySQL. Note: because MySQL is not a native component of Windows and depends on .NET, it will not work on minimal installation options like the "Server Core" version of Windows Server 2008.
For instructions on installing MySQL using MySQL Installer, see Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”.
The Noinstall Archive: This package has a file name similar to mysql-5.6.12-win32.zip or mysql-5.6.12-winx64.zip, and contains all the files found in the Complete install package, with the exception of the GUI. This package does not include an automated installer, and must be manually installed and configured.
Your choice of install package affects the installation process you must follow. If you choose to use MySQL Installer, see Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”. If you choose to install a Noinstall archive, see Section 2.3.4, “Installing MySQL on Microsoft Windows Using a noinstall Zip Archive”.
2.3.3. Installing MySQL on Microsoft Windows Using MySQL Installer
MySQL Installer is an application that simplifies the installation and updating process for a wide range of MySQL products, including MySQL Notifier for Microsoft Windows, MySQL Workbench, and MySQL for Excel. From this central application, you can see which MySQL products are already installed, configure them, and update or remove them if necessary. The installer can also install plugins, documentation, tutorials, and example databases. The MySQL Installer is only available for Microsoft Windows, and includes both a GUI and command-line interface.
Community edition
Download the community edition of MySQL Installer at http://dev.mysql.com/downloads/installer/. It will install the community version of all MySQL products.
Commercial edition
Download the commercial edition of MySQL Installer at either My Oracle Support (MOS) or https://edelivery.oracle.com/. It will install the commercial version of all MySQL products, including Workbench SE. It also integrates with your MOS account, so enter in your MOS credentials to automatically receive updates for your commercial MySQL products.
For release notes detailing the changes in each release of MySQL Installer, see MySQL Installer Release Notes.
MySQL Installer is compatible with pre-existing installations, and adds them to its list of installed components. And while the MySQL Installer is bundled with a specific version of MySQL Server, a single MySQL Installer instance can install and manage multiple MySQL Server versions. For example, a single MySQL Installer instance can install versions 5.1, 5.5, and 5.6. It can also manage either commercial or community editions of the MySQL Server.
Note
A single host can not have both community and commercial editions of MySQL Server installed. For example, if you want both MySQL Server 5.5 and 5.6 installed on a single host, then both must be the same commercial or community edition.
MySQL Installer handles the initial configuration and setup of the applications. For example:
It will create MySQL Server connections in MySQL Workbench.
It creates the configuration file (my.ini) that is used to configure the MySQL Server. The values written to this file are influenced by choices you make during the installation process.
It imports example databases.
It creates MySQL Server user accounts with configurable permissions based on general roles, such as DB Administrator, DB Designer, and Backup Admin. It optionally creates a Windows user named MysqlSys with limited privileges, which would then run the MySQL Server.
This feature is only available during the initial installation of the MySQL Server, and not during future updates. User accounts may also be added with MySQL Workbench.
If the "Advanced Configuration" option is checked, then the Logging Options are also configured. This includes defining file paths for the error log, general log, slow query log (including the configuration of seconds it requires to execute a query), and the binary log.
MySQL Installer can optionally check for updated components and download them for you automatically.
2.3.3.1. MySQL Installer GUI
After installation of the GUI version, the installer will have add its own Start Menu item under MySQL.
Note
Files that are generated by MySQL Installer grant full permissions to the user that executes MySQL Installer, including my.ini. This does not apply to files and directories for specific products such as the MySQL Server data directory in ProgramData, that is owned by SYSTEM.
After the installer itself has been installed and started, the following screen is displayed:
Figure 2.7. MySQL Installer - Welcome Screen
There are three main options:
Install MySQL Products - The Installation Wizard.
About MySQL - Learn about MySQL products and features.
Resources - Information to help install and configure MySQL.
To Install MySQL Products after executing MySQL Installer for the first time, you must accept the license agreement before proceeding with the installation process.
Figure 2.8. MySQL Installer - License Agreement
If you are connected to the Internet, then the Installer will search for the latest MySQL components and add them to the installation bundle. Click Connect to the Internet to complete this step, or otherwise check the Skip checkbox and then Continue.
Figure 2.9. MySQL Installer - Find latest products
If you chose "Connect to the Internet," the next page will show the progress of MySQL Installer's search for available updates. When the search is complete (or if you opted to skip the search), you will be taken to the Choose Setup Type page:
Figure 2.10. MySQL Installer - Choosing a Setup Type
Determine the option most compatible with your preferences by reading the Setup Type Description descriptions.
The Installation and Data paths are also defined here, and a caution flag will notify you if the data path you define already exists.
After you select a setup type, the MySQL Installer will check your system for the necessary external requirements and download then install missing components onto your system.
Figure 2.11. MySQL Installer - Check Requirements
The next window lists the MySQL products that are scheduled to be installed:
Figure 2.12. MySQL Installer - Installation Progress
As components are installed, you'll see their status change from "to be installed" to "install success."
Figure 2.13. MySQL Installer - Installation Progress status
After all components are installed, the next step involves configuring the products. The Configuration Overview window displays the progress and then loads a configuration window if it is required.
Figure 2.14. MySQL Installer - Configuration Overview
The ideal MySQL Server configuration depends on your intended use, as explained in the next window. Choose the description that most closely applies to your machine.
You may enable TCP/IP Networking here as otherwise only localhost connections are allowed.
Checking the "Advanced Configuration" option provides additional Logging Options to configure. This includes defining file paths for the error log, general log, slow query log (including the configuration of seconds it requires to execute a query), and the binary log.
Figure 2.15. MySQL Installer - MySQL Server Configuration: Define platform, networking, and logging options
Next, choose your account information. Defining a root password is required, whereas it's optional to create additional users. There are several different predefined user roles that each have different permission levels. For example, a "DB Admin" will have more privileges than a "DB Designer.".
Figure 2.16. MySQL Installer - MySQL Server Configuration: User accounts
Note
If the MySQL Server is already installed, then the Current Root Password will also be needed.
Next, configure the Windows Service Details. This includes the service name, how the MySQL Server should be loaded at startup, and how the Windows Service for MySQL Server will be run.
Figure 2.17. MySQL Installer - MySQL Server Configuration: Windows service details
Note
When configuring Run Windows Services as ... using a Custom User, the custom user must have privileges to log on to Windows as a service. And the Next button will be disabled until this user is given these user rights.
On Microsoft Windows 7, this is configured by loading the Start Menu, Control Panel, Administrative Tools, Local Security Policy, Local Policies, User Rights Assignment, then Log On As A Service. Choose Add User or Group here to add the custom user, and then OK, OK to save.
The final configuration step is available if the Advanced Configuration option was checked, and it includes configuration options related to log file names:
Figure 2.18. MySQL Installer - MySQL Server Configuration: Logging options
After the MySQL Installer configuration process is completed, you may save the installation log, and then load MySQL Workbench if the Start MySQL Workbench after Setup option is checked:
Figure 2.19. MySQL Installer - Installation Complete
You can now open MySQL Installer from the Microsoft Windows Start menu under the MySQL group, which will load the MySQL Installer Maintenance Screen. This is used to add, update, and remove features.
Figure 2.20. MySQL Installer - Maintenance Screen
Note
An Update Screen screen is shown if MySQL Installer is used on a machine with older products installed, as opposed to the Maintenance Screen shown above. However, the functionality remains the same.
Add/Modify Products and Features will list all installed and available MySQL products.
Figure 2.21. MySQL Installer - Add/Modify Products and Features
The installation is now complete. MySQL Server should be running, and most MySQL products installed and available for use.
See also the MySQL Workbench documentation (http://dev.mysql.com/doc/workbench/en/).
2.3.3.2. MySQL Installer Console
MySQLInstallerConsole provides functionality similar to the GUI version of MySQL Installer, but from the command-line. It is installed when MySQL Installer is initially executed, and then available within the MySQL Installer directory. Typically that is in C:\Program Files (x86)\MySQL\MySQL Installer\, and the console must be executed with administrative privileges.
To use, invoke the Command Prompt with administrative privileges by choosing Start, Accessories, then right-click on Command Prompt and choose Run as administrator. And from the command-line, optionally change the directory to where MySQLInstallerConsole is located:
C:\> cd "C:\Program Files (x86)\MySQL\MySQL Installer"
MySQLInstallerConsole supports the following options, which are specified on the command line:
--help, -h, or -?
Displays a help message with usage examples, and then exits.
C:\> MySQLInstallerConsole --help
--updates (or -u)
Checks for new products before any further action is taken. Disabled by default.
--nowait
Skips the final pause when the program finishes. Otherwise, a "Press Enter to continue." dialogue is generated. It is used in conjunction with other options.
--catalog=catalog_name (or -c)
Sets the default catalog. Use --list to view a list of available catalogs.
--type=installation_type (or -t)
Sets the installation type.
The possible values for installation_type are: developer, server, client, full, and custom.
--action=action_name
The action being performed.
The possible values are: install, remove, upgrade, list, and status.
install: Installs a product or products, as defined by --products
upgrade: Upgrades a product or products, as defined by --products.
remove: Removes a product or products, as defined by --products.
list: Lists the product manifest, both installed and available products.
status: Shows the status after another action is performed.
--product=product_name[:feature1],[feature2], [...] (or -p)
Set the feature list of a product. Use --list to view available products, or pass in --product=* (an asterisk) to install all available products.
--config=product_name:passwd=root_password[;parameter1=value],[;parameter2=value], ...
The configuration parameters for the most recently listed products.
--user=product_name:name=username,host:hostname,role=rolename,password=password or --user=product_name:name=username,host:hostname,role=rolename,tokens=tokens
Creates a new user.
Requires: name, host, role, and the password or tokens. Tokens are separated by pipe ("|") characters.
2.3.4. Installing MySQL on Microsoft Windows Using a noinstall Zip Archive
Users who are installing from the noinstall package can use the instructions in this section to manually install MySQL. The process for installing MySQL from a Zip archive is as follows:
Extract the archive to the desired install directory
Create an option file
Choose a MySQL server type
Start the MySQL server
Secure the default user accounts
This process is described in the sections that follow.
2.3.4.1. Extracting the Install Archive
To install MySQL manually, do the following:
If you are upgrading from a previous version please refer to Section 2.3.6, “Upgrading MySQL on Windows”, before beginning the upgrade process.
Make sure that you are logged in as a user with administrator privileges.
Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. The MySQL Installer installs MySQL under C:\Program Files\MySQL. If you do not install MySQL at C:\mysql, you must specify the path to the install directory during startup or in an option file. See Section 2.3.4.2, “Creating an Option File”.
Extract the install archive to the chosen installation location using your preferred Zip archive tool. Some tools may extract the archive to a folder within your chosen installation location. If this occurs, you can move the contents of the subfolder into the chosen installation location.
2.3.4.2. Creating an Option File
If you need to specify startup options when you run the server, you can indicate them on the command line or place them in an option file. For options that are used every time the server starts, you may find it most convenient to use an option file to specify your MySQL configuration. This is particularly true under the following circumstances:
The installation or data directory locations are different from the default locations (C:\Program Files\MySQL\MySQL Server 5.6 and C:\Program Files\MySQL\MySQL Server 5.6\data).
You need to tune the server settings, such as memory, cache, or InnoDB configuration information.
When the MySQL server starts on Windows, it looks for option files in several locations, such as the Windows directory, C:\, and the MySQL installation directory (for the full list of locations, see Section 4.2.3.3, “Using Option Files”). The Windows directory typically is named something like C:\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable using the following command:
C:\> echo %WINDIR%
MySQL looks for options in each location first in the my.ini file, and then in the my.cnf file. However, to avoid confusion, it is best if you use only one file. If your PC uses a boot loader where C: is not the boot drive, your only option is to use the my.ini file. Whichever option file you use, it must be a plain text file.
Note
When using the MySQL Installer to install MySQL Server, it will create the my.ini at the default location. And as of MySQL Server 5.5.27, the user running MySQL Installer is granted full permissions to this new my.ini.
In other words, be sure that the MySQL Server user has permission to read the my.ini file.
You can also make use of the example option files included with your MySQL distribution; see Section 5.1.2, “Server Configuration Defaults”.
An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL is installed in E:\mysql and the data directory is in E:\mydata\data, you can create an option file containing a [mysqld] section to specify values for the basedir and datadir options:
[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=E:/mydata/data
Note that Windows path names are specified in option files using (forward) slashes rather than backslashes. If you do use backslashes, double them:
[mysqld]
set basedir to your installation path
basedir=E:\\mysql
set datadir to the location of your data directory
datadir=E:\\mydata\\data
The rules for use of backslash in option file values are given in Section 4.2.3.3, “Using Option Files”.
The data directory is located within the AppData directory for the user running MySQL.
If you would like to use a data directory in a different location, you should copy the entire contents of the data directory to the new location. For example, if you want to use E:\mydata as the data directory instead, you must do two things:
Move the entire data directory and all of its contents from the default location (for example C:\Program Files\MySQL\MySQL Server 5.6\data) to E:\mydata.
Use a --datadir option to specify the new data directory location each time you start the server.
2.3.4.3. Selecting a MySQL Server Type
The following table shows the available servers for Windows in MySQL 5.6.
Binary	Description
mysqld | Optimized binary with named-pipe support |
mysqld-debug | Like mysqld, but compiled with full debugging and automatic memory allocation checking |
All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel i386-class or higher processor.
Each of the servers in a distribution support the same set of storage engines. The SHOW ENGINES statement displays which engines a given server supports.
All Windows MySQL 5.6 servers have support for symbolic linking of database directories.
MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows support named pipes as indicated in the following list. However, the default is to use TCP/IP regardless of platform. (Named pipes are slower than TCP/IP in many Windows configurations.)
Named pipes are enabled only if you start the server with the --enable-named-pipe option. It is necessary to use this option explicitly because some users have experienced problems with shutting down the MySQL server when named pipes were used.
2.3.4.4. Starting the Server for the First Time
This section gives a general overview of starting the MySQL server. The following sections provide more specific information for starting the MySQL server from the command line or as a Windows service.
The information here applies primarily if you installed MySQL using the Noinstall version, or if you wish to configure and test MySQL manually rather than with the GUI tools.
Note
The MySQL server will automatically start after using the MySQL Installer, and the MySQL Notifier for Microsoft Windows GUI can be used to start/stop/restart at any time.
The examples in these sections assume that MySQL is installed under the default location of C:\Program Files\MySQL\MySQL Server 5.6. Adjust the path names shown in the examples if you have MySQL installed in a different location.
Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports named-pipe connections.
MySQL for Windows also supports shared-memory connections if the server is started with the --shared-memory option. Clients can connect through shared memory by using the --protocol=MEMORY option.
For information about which server binary to run, see Section 2.3.4.3, “Selecting a MySQL Server Type”.
Testing is best done from a command prompt in a console window (or “DOS window”). In this way you can have the server display status messages in the window where they are easy to see. If something is wrong with your configuration, these messages make it easier for you to identify and fix any problems.
To start the server, enter this command:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld" --console
For a server that includes InnoDB support, you should see the messages similar to those following as it starts (the path names and sizes may differ):
InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started
When the server finishes its startup sequence, you should see something like this, which indicates that the server is ready to service client connections:
mysqld: ready for connections
Version: '5.6.12' socket: '' port: 3306
The server continues to write to the console any further diagnostic output it produces. You can open a new console window in which to run client programs.
If you omit the --console option, the server writes diagnostic output to the error log in the data directory (C:\Program Files\MySQL\MySQL Server 5.6\data by default). The error log is the file with the .err extension, and may be set using the --log-error option.
Note
The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Section 2.10, “Postinstallation Setup and Testing”.
2.3.4.5. Starting MySQL from the Windows Command Line
The MySQL server can be started manually from the command line. This can be done on any version of Windows.
Note
The MySQL Notifier for Microsoft Windows GUI can also be used to start/stop/restart the MySQL server.
To start the mysqld server from the command line, you should start a console window (or “DOS window”) and enter this command:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld"
The path to mysqld may vary depending on the install location of MySQL on your system.
You can stop the MySQL server by executing this command:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqladmin" -u root shutdown
Note
If the MySQL root user account has a password, you need to invoke mysqladmin with the -p option and supply the password when prompted.
This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to shut down. The command connects as the MySQL root user, which is the default administrative account in the MySQL grant system. Note that users in the MySQL grant system are wholly independent from any login users under Windows.
If mysqld doesn't start, check the error log to see whether the server wrote any messages there to indicate the cause of the problem. By default, the error log is located in the C:\Program Files\MySQL\MySQL Server 5.6\data directory. It is the file with a suffix of .err, or may be specified by passing in the --log-error option. Alternatively, you can try to start the server as mysqld --console; in this case, you may get some useful information on the screen that may help solve the problem.
The last option is to start mysqld with the --standalone and --debug options. In this case, mysqld writes a log file C:\mysqld.trace that should contain the reason why mysqld doesn't start. See MySQL Internals: Porting to Other Systems.
Use mysqld --verbose --help to display all the options that mysqld supports.
2.3.4.6. MySQL Notifier for Microsoft Windows
The MySQL Notifier for Microsoft Windows is a tool that allows you to monitor and adjust the status of your local MySQL Server instances through an indicator that resides in the system tray. The MySQL Notifier for Microsoft Windows also gives quick access to several MySQL GUI tools (such as MySQL Workbench) through its context menu.
The MySQL Notifier for Microsoft Windows is installed by MySQL Installer, and (by default) will start-up when Microsoft Windows is started.
Note
To install, download and execute the MySQL Installer, be sure the MySQL Notifier for Microsoft Windows product is selected, then proceed with the installation. See the MySQL Installer manual for additional details.
For release notes detailing the changes in each release of MySQL Notifier for Microsoft Windows, see MySQL Notifier Release Notes.
Visit the MySQL Notifier forum for additional MySQL Notifier for Microsoft Windows help and support.
Features include:
Start, Stop, and Restart instances of the MySQL Server.
Automatically detects (and adds) new MySQL Server services. These are listed under Manage Services, and may also be configured.
The Tray icon changes, depending on the status. It's green if all monitored MySQL Server instances are running, or red if at least one service is stopped.
Links to other applications like MySQL Workbench, Windows Installer, and the MySQL Utilities. For example, choosing Configure Instance will load the MySQL Workbench Server Administration window for that particular instance.
If MySQL Workbench is also installed, then the Configure Instance and SQL Editor options are available.
The MySQL Notifier for Microsoft Windows resides in the system tray and provides visual status information for your MySQL Server instances. A green icon is displayed at the top left corner of the tray icon if the current MySQL Server is running, or a red icon if the service is stopped.
The MySQL Notifier for Microsoft Windows automatically adds discovered MySQL Services on the local machine, and each service is saved and configurable. By default, the Automatically add new services that match this pattern option is enabled and set to .*mysqld.*. Related Notifications Options include being notified when new services are either discovered or experience status changes, and are also enabled by default. And uninstalling a service will also remove the service from the MySQL Notifier for Microsoft Windows.
Clicking the system tray icon will reveal several options, as seen in the screenshots below:
The Service Instance menu is the main MySQL Notifier for Microsoft Windows window, and allows you to Stop, Start, and Restart the MySQL Server.
Figure 2.22. MySQL Notifier for Microsoft Windows Service Instance menu
The Actions menu actions include several links to external applications (if they are installed).
Note
The main menu will not show the Actions menu when there are no services being monitored by MySQL Notifier for Microsoft Windows.
Figure 2.23. MySQL Notifier for Microsoft Windows Actions menu
The Actions, Options menu configures MySQL Notifier for Microsoft Windows and includes options to:
Use colorful status icons: Enables a colorful style of icons for the tray of the MySQL Notifier for Microsoft Windows.
Run at Windows Startup: Allows the application to be loaded when Microsoft Windows starts.
Automatically Check For Updates Every # Weeks: Checks for a new version of MySQL Notifier for Microsoft Windows, and runs this check every # weeks.
Automatically add new services that match this pattern: A custom regular expression that filters the monitored services, and also filters the list of the Microsoft Windows services for the Add New Service dialog.
Notify me when a service is automatically added: Will display a notification from the taskbar when a newly discovered service is added to the monitored services list.
Notify me when a service changes status: Will display a notification from the taskbar when a monitored service changes its status.
Figure 2.24. MySQL Notifier for Microsoft Windows Options menu
The Actions, Manage Services menu allows you to configure the monitored services.
Figure 2.25. MySQL Notifier for Microsoft Windows Service Instance menu
Adding a service (after clicking Add in the Manage Services window) allows you to select a running Microsoft Windows service, and configure MySQL Notifier for Microsoft Windows to monitor it. Add a new service by clicking service name from the list, then OK to accept. Multiple services may be selected.
Figure 2.26. MySQL Notifier for Microsoft Windows Adding a new services
2.3.4.7. Customizing the PATH for MySQL Tools
To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory to your Windows system PATH environment variable:
On the Windows desktop, right-click the My Computer icon, and select Properties.
Next select the Advanced tab from the System Properties menu that appears, and click the Environment Variables button.
Under System Variables, select Path, and then click the Edit button. The Edit System Variable dialogue should appear.
Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter the complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL\MySQL Server 5.6\bin)
Note
There must be a semicolon separating this path from any values present in this field.
Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were opened have been dismissed. You should now be able to invoke any MySQL executable program by typing its name at the DOS prompt from any directory on the system, without having to supply the path. This includes the servers, the mysql client, and all MySQL command-line utilities such as mysqladmin and mysqldump.
You should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL servers on the same machine.
Warning
You must exercise great care when editing your system PATH by hand; accidental deletion or modification of any portion of the existing PATH value can leave you with a malfunctioning or even unusable system.
2.3.4.8. Starting MySQL as a Windows Service
On Windows, the recommended way to run MySQL is to install it as a Windows service, so that MySQL starts and stops automatically when Windows starts and stops. A MySQL server installed as a service can also be controlled from the command line using NET commands, or with the graphical Services utility. Generally, to install MySQL as a Windows service you should be logged in using an account that has administrator rights.
Note
The MySQL Notifier for Microsoft Windows GUI can also be used to monitor the status of the MySQL service.
The Services utility (the Windows Service Control Manager) can be found in the Windows Control Panel (under Administrative Tools on Windows 2000, XP, Vista, and Server 2003). To avoid conflicts, it is advisable to close the Services utility while performing server installation or removal operations from the command line.
Before installing MySQL as a Windows service, you should first stop the current server if it is running by using the following command:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqladmin"
-u root shutdown
Note
If the MySQL root user account has a password, you need to invoke mysqladmin with the -p option and supply the password when prompted.
This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to shut down. The command connects as the MySQL root user, which is the default administrative account in the MySQL grant system. Note that users in the MySQL grant system are wholly independent from any login users under Windows.
Install the server as a service using this command:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld" --install
The service-installation command does not start the server. Instructions for that are given later in this section.
To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory to your Windows system PATH environment variable:
On the Windows desktop, right-click the My Computer icon, and select Properties.
Next select the Advanced tab from the System Properties menu that appears, and click the Environment Variables button.
Under System Variables, select Path, and then click the Edit button. The Edit System Variable dialogue should appear.
Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter the complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL\MySQL Server 5.6\bin), Note that there should be a semicolon separating this path from any values present in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were opened have been dismissed. You should now be able to invoke any MySQL executable program by typing its name at the DOS prompt from any directory on the system, without having to supply the path. This includes the servers, the mysql client, and all MySQL command-line utilities such as mysqladmin and mysqldump.
You should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL servers on the same machine.
Warning
You must exercise great care when editing your system PATH by hand; accidental deletion or modification of any portion of the existing PATH value can leave you with a malfunctioning or even unusable system.
The following additional arguments can be used when installing the service:
You can specify a service name immediately following the --install option. The default service name is MySQL.
If a service name is given, it can be followed by a single option. By convention, this should be --defaults-file=file_name to specify the name of an option file from which the server should read options when it starts.
The use of a single option other than --defaults-file is possible but discouraged. --defaults-file is more flexible because it enables you to specify multiple startup options for the server by placing them in the named option file.
You can also specify a --local-service option following the service name. This causes the server to run using the LocalService Windows account that has limited system privileges. This account is available only for Windows XP or newer. If both --defaults-file and --local-service are given following the service name, they can be in any order.
For a MySQL server that is installed as a Windows service, the following rules determine the service name and option files that the server uses:
If the service-installation command specifies no service name or the default service name (MySQL) following the --install option, the server uses the a service name of MySQL and reads options from the [mysqld] group in the standard option files.
If the service-installation command specifies a service name other than MySQL following the --install option, the server uses that service name. It reads options from the [mysqld] group and the group that has the same name as the service in the standard option files. This enables you to use the [mysqld] group for options that should be used by all MySQL services, and an option group with the service name for use by the server installed with that service name.
If the service-installation command specifies a --defaults-file option after the service name, the server reads options the same way as described in the previous item, except that it reads options only from the the named file and ignores the standard option files.
As a more complex example, consider the following command:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld"
--install MySQL --defaults-file=C:\my-opts.cnf
Here, the default service name (MySQL) is given after the --install option. If no --defaults-file option had been given, this command would have the effect of causing the server to read the [mysqld] group from the standard option files. However, because the --defaults-file option is present, the server reads options from the [mysqld] option group, and only from the named file.
You can also specify options as Start parameters in the Windows Services utility before you start the MySQL service.
Once a MySQL server has been installed as a service, Windows starts the service automatically whenever Windows starts. The service also can be started immediately from the Services utility, or by using a NET START MySQL command. The NET command is not case sensitive.
When run as a service, mysqld has no access to a console window, so no messages can be seen there. If mysqld does not start, check the error log to see whether the server wrote any messages there to indicate the cause of the problem. The error log is located in the MySQL data directory (for example, C:\Program Files\MySQL\MySQL Server 5.6\data). It is the file with a suffix of .err.
When a MySQL server has been installed as a service, and the service is running, Windows stops the service automatically when Windows shuts down. The server also can be stopped manually by using the Services utility, the NET STOP MySQL command, or the mysqladmin shutdown command.
You also have the choice of installing the server as a manual service if you do not wish for the service to be started automatically during the boot process. To do this, use the --install-manual option rather than the --install option:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld" --install-manual
To remove a server that is installed as a service, first stop it if it is running by executing NET STOP MySQL. Then use the --remove option to remove it:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld" --remove
If mysqld is not running as a service, you can start it from the command line. For instructions, see Section 2.3.4.5, “Starting MySQL from the Windows Command Line”.
If you encounter difficulties during installation. see Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”.
2.3.4.9. Testing The MySQL Installation
You can test whether the MySQL server is working by executing any of the following commands:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqlshow"
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqlshow" -u root mysql
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqladmin" version status proc
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql" test
If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem with your DNS. In this case, start mysqld with the --skip-name-resolve option and use only localhost and IP addresses in the Host column of the MySQL grant tables.
You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the --pipe or --protocol=PIPE option, or by specifying . (period) as the host name. Use the --socket option to specify the name of the pipe if you do not want to use the default pipe name.
Note that if you have set a password for the root account, deleted the anonymous account, or created a new user account, then you must use the appropriate -u and -p options with the commands shown above to connect with the MySQL Server. See Section 4.2.2, “Connecting to the MySQL Server”.
For more information about mysqlshow, see Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”.
2.3.5. Troubleshooting a Microsoft Windows MySQL Server Installation
When installing and running MySQL for the first time, you may encounter certain errors that prevent the MySQL server from starting. This section helps you diagnose and correct some of these errors.
Your first resource when troubleshooting server issues is the error log. The MySQL server uses the error log to record information relevant to the error that prevents the server from starting. The error log is located in the data directory specified in your my.ini file. The default data directory location is C:\Program Files\MySQL\MySQL Server 5.6\data, or C:\ProgramData\Mysql on Windows 7 and Windows Server 2008. The C:\ProgramData directory is hidden by default. You need to change your folder options to see the directory and contents. For more information on the error log and understanding the content, see Section 5.2.2, “The Error Log”.
For information regarding possible errors, also consult the console messages displayed when the MySQL service is starting. Use the NET START MySQL command from the command line after installing mysqld as a service to see any error messages regarding the starting of the MySQL server as a service. See Section 2.3.4.8, “Starting MySQL as a Windows Service”.
The following examples show other common error messages you might encounter when installing MySQL and starting the server for the first time:
If the MySQL server cannot find the mysql privileges database or other critical files, it displays these messages:
System error 1067 has occurred.
Fatal error: Can't open and lock privilege tables:
Table 'mysql.user' doesn't exist
These messages often occur when the MySQL base or data directories are installed in different locations than the default locations (C:\Program Files\MySQL\MySQL Server 5.6 and C:\Program Files\MySQL\MySQL Server 5.6\data, respectively).
This situation can occur when MySQL is upgraded and installed to a new location, but the configuration file is not updated to reflect the new location. In addition, old and new configuration files might conflict. Be sure to delete or rename any old configuration files when upgrading MySQL.
If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server 5.6, ensure that the MySQL server is aware of this through the use of a configuration (my.ini) file. Put the my.ini file in your Windows directory, typically C:\WINDOWS. To determine its exact location from the value of the WINDIR environment variable, issue the following command from the command prompt:
C:\> echo %WINDIR%
You can create or modify an option file with any text editor, such as Notepad. For example, if MySQL is installed in E:\mysql and the data directory is D:\MySQLdata, you can create the option file and set up a [mysqld] section to specify values for the basedir and datadir options:
[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=D:/MySQLdata
Note that Windows path names are specified in option files using (forward) slashes rather than backslashes. If you do use backslashes, double them:
[mysqld]
set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.6
set datadir to the location of your data directory
datadir=D:\\MySQLdata
The rules for use of backslash in option file values are given in Section 4.2.3.3, “Using Option Files”.
If you change the datadir value in your MySQL configuration file, you must move the contents of the existing MySQL data directory before restarting the MySQL server.
If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service and install MySQL using the MySQL Installer, you might see this error:
Error: Cannot create Windows service for MySql. Error: 0
This occurs when the Configuration Wizard tries to install the service and finds an existing service with the same name.
One solution to this problem is to choose a service name other than mysql when using the configuration wizard. This enables the new service to be installed correctly, but leaves the outdated service in place. Although this is harmless, it is best to remove old services that are no longer in use.
To permanently remove the old mysql service, execute the following command as a user with administrative privileges, on the command line:
C:\> sc delete mysql
[SC] DeleteService SUCCESS
If the sc utility is not available for your version of Windows, download the delsrv utility from http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv mysql syntax.
2.3.6. Upgrading MySQL on Windows
This section lists some of the steps to take when upgrading MySQL on Windows.
Review Section 2.11.1, “Upgrading MySQL”, for additional information on upgrading MySQL that is not specific to Windows.
Always back up your current MySQL installation before performing an upgrade. See Section 7.2, “Database Backup Methods”.
Download the latest Windows distribution of MySQL from http://dev.mysql.com/downloads/.
Before upgrading MySQL, stop the server. If the server is installed as a service, stop the service with the following command from the command prompt:
C:\> NET STOP MySQL
If you are not running the MySQL server as a service, use mysqladmin to stop it. For example, before upgrading from MySQL 5.5 to 5.6, use mysqladmin from MySQL 5.5 as follows:
C:\> "C:\Program Files\MySQL\MySQL Server 5.5\bin\mysqladmin" -u root shutdown
Note
If the MySQL root user account has a password, invoke mysqladmin with the -p option and supply the password when prompted.
Before upgrading to MySQL 5.6 from a version previous to 4.1.5, or from a version of MySQL installed from a Zip archive to a version of MySQL installed with the MySQL Installation Wizard, you must first manually remove the previous installation and MySQL service (if the server is installed as a service).
To remove the MySQL service, use the following command:
C:\> C:\mysql\bin\mysqld --remove
If you do not remove the existing service, the MySQL Installation Wizard may fail to properly install the new MySQL service.
If you are using the MySQL Installer, start it as described in Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”.
If you are installing MySQL from a Zip archive, extract the archive. You may either overwrite your existing MySQL installation (usually located at C:\mysql), or install it into a different directory, such as C:\mysql5. Overwriting the existing installation is recommended.
If you were running MySQL as a Windows service and you had to remove the service earlier in this procedure, reinstall the service. (See Section 2.3.4.8, “Starting MySQL as a Windows Service”.)
Restart the server. For example, use NET START MySQL if you run MySQL as a service, or invoke mysqld directly otherwise.
As Administrator, run mysql_upgrade to check your tables, attempt to repair them if necessary, and update your grant tables if they have changed so that you can take advantage of any new capabilities. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
If you encounter errors, see Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”.
2.3.7. Windows Postinstallation Procedures
GUI tools exist that perform most of the tasks described below, including:
MySQL Installer: Used to install and upgrade MySQL products.
MySQL Workbench: Manages the MySQL server and edits SQL queries.
MySQL Notifier: Starts, stops, or restarts the MySQL server, and monitors its status.
MySQL for Excel: Edits MySQL data with Microsoft Excel.
On Windows, you need not create the data directory and the grant tables. MySQL Windows distributions include the grant tables with a set of preinitialized accounts in the mysql database under the data directory. Regarding passwords, if you installed MySQL using the MySQL Installer, you may have already assigned passwords to the accounts. (See Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”.) Otherwise, use the password-assignment procedure given in Section 2.10.2, “Securing the Initial MySQL Accounts”.
Before setting up passwords, you might want to try running some client programs to make sure that you can connect to the server and that it is operating properly. Make sure that the server is running (see Section 2.3.4.4, “Starting the Server for the First Time”), and then issue the following commands to verify that you can retrieve information from the server. You may need to specify directory different from C:\mysql\bin on the command line. If you used the MySQL Installer, the default directory is C:\Program Files\MySQL\MySQL Server 5.6, and the mysql and mysqlshow client programs are in C:\Program Files\MySQL\MySQL Server 5.6\bin. See Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”, for more information.
Use mysqlshow to see what databases exist:
C:\> C:\mysql\bin\mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
The list of installed databases may vary, but will always include the minimum of mysql and information_schema. In most cases, the test database will also be installed automatically.
The preceding command (and commands for other MySQL programs such as mysql) may not work if the correct MySQL account does not exist. For example, the program may fail with an error, or you may not be able to view all databases. If you installed using MySQL Installer, then the root user will have been created automatically with the password you supplied. In this case, you should use the -u root and -p options. (You will also need to use the -u root and -p options if you have already secured the initial MySQL accounts.) With -p, you will be prompted for the root password. For example:
C:\> C:\mysql\bin\mysqlshow -u root -p
Enter password: (enter root password here)
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
If you specify a database name, mysqlshow displays a list of the tables within the database:
C:\> C:\mysql\bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| event |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| plugin |
| proc |
| procs_priv |
| servers |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+
Use the mysql program to select information from a table in the mysql database:
C:\> C:\mysql\bin\mysql -e "SELECT Host,Db,User FROM mysql.db"
+------+--------+------+
| host | db | user |
+------+--------+------+
| % | test | |
| % | test_% | |
+------+--------+------+
For more information about mysqlshow and mysql, see Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”, and Section 4.5.1, “mysql — The MySQL Command-Line Tool”.
If you are running a version of Windows that supports services, you can set up the MySQL server to run automatically when Windows starts. See Section 2.3.4.8, “Starting MySQL as a Windows Service”.
2.4. Installing MySQL on Mac OS X
MySQL for Mac OS X is available in a number of different forms:
Native Package Installer format, which uses the native Mac OS X installer to walk you through the installation of MySQL. For more information, see Section 2.4.2, “Installing MySQL on Mac OS X Using Native Packages”. You can use the package installer with Mac OS X 10.3 and later, and the package is available for both PowerPC and Intel architectures, and 32-bit and 64-bit architectures. There is no Universal Binary available using the package installation method. The user you use to perform the installation must have administrator privileges.
Tar package format, which uses a file packaged using the Unix tar and gzip commands. To use this method, you will need to open a Terminal window. You do not need administrator privileges using this method, as you can install the MySQL server anywhere using this method. For more information on using this method, you can use the generic instructions for using a tarball, Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”.You can use the package installer with Mac OS X 10.3 and later, and available for both PowerPC and Intel architectures, and both 32-bit and 64-bit architectures. A Universal Binary, incorporating both Power PC and Intel architectures and 32-bit and 64-bit binaries is available.
In addition to the core installation, the Package Installer also includes Section 2.4.3, “Installing the MySQL Startup Item” and Section 2.4.4, “Installing and Using the MySQL Preference Pane”, both of which simplify the management of your installation.
Mac OS X server includes a version of MySQL as standard. If you want to use a more recent version than that supplied with the Mac OS X server release, you can make use of the package or tar formats. For more information on using the MySQL bundled with Mac OS X, see Section 2.4.5, “Using the Bundled MySQL on Mac OS X Server”.
For additional information on using MySQL on Mac OS X, see Section 2.4.1, “General Notes on Installing MySQL on Mac OS X”.
2.4.1. General Notes on Installing MySQL on Mac OS X
You should keep the following issues and notes in mind:
The default location for the MySQL Unix socket is different on Mac OS X and Mac OS X Server depending on the installation type you chose. The following table shows the default locations by installation type.
Table 2.5. MySQL Unix Socket Locations on Mac OS X by Installation Type
Installation Type	Socket Location
Package Installer from MySQL | /tmp/mysql.sock |
Tarball from MySQL | /tmp/mysql.sock |
MySQL Bundled with Mac OS X Server | /var/mysql/mysql.sock |
To prevent issues, you should either change the configuration of the socket used within your application (for example, changing php.ini), or you should configure the socket location using a MySQL configuration file and the socket option. For more information, see Section 5.1.3, “Server Command Options”.
You may need (or want) to create a specific mysql user to own the MySQL directory and data. On Mac OS X 10.4 and lower you can do this by using the Netinfo Manager application, located within the Utilities folder within the Applications folder. On Mac OS X 10.5 and later you can do this through the Directory Utility. From Mac OS X 10.5 and later (including Mac OS X Server 10.5) the mysql should already exist. For use in single user mode, an entry for _mysql (note the underscore prefix) should already exist within the system /etc/passwd file.
Due to a bug in the Mac OS X package installer, you may see this error message in the destination disk selection dialog:
You cannot install this software on this disk. (null)
If this error occurs, click the Go Back button once to return to the previous screen. Then click Continue to advance to the destination disk selection again, and you should be able to choose the destination disk correctly. We have reported this bug to Apple and it is investigating this problem.
If you get an “insecure startup item disabled” error when MySQL launches, use the following procedure. Adjust the pathnames appropriately for your system.
Modify the mysql.script using this command (enter it on a single line):
shell> sudo /Applications/TextEdit.app/Contents/MacOS/TextEdit
/usr/local/mysql/support-files/mysql.server
Locate the option file that defines the basedir value and modify it to contain these lines:
basedir=/usr/local/mysql
datadir=/usr/local/mysql/data
In the /Library/StartupItems/MySQLCOM/ directory, make the following group ID changes from staff to wheel:
shell> sudo chgrp wheel MySQLCOM StartupParameters.plist
Start the server from System Preferences or Terminal.app.
Because the MySQL package installer installs the MySQL contents into a version and platform specific directory, you can use this to upgrade and migrate your database between versions. You will need to either copy the data directory from the old version to the new version, or alternatively specify an alternative datadir value to set location of the data directory.
You might want to add aliases to your shell's resource file to make it easier to access commonly used programs such as mysql and mysqladmin from the command line. The syntax for bash is:
alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin
For tcsh, use:
alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin
Even better, add /usr/local/mysql/bin to your PATH environment variable. You can do this by modifying the appropriate startup file for your shell. For more information, see Section 4.2.1, “Invoking MySQL Programs”.
After you have copied over the MySQL database files from the previous installation and have successfully started the new server, you should consider removing the old installation files to save disk space. Additionally, you should also remove older versions of the Package Receipt directories located in /Library/Receipts/mysql-VERSION.pkg.
2.4.2. Installing MySQL on Mac OS X Using Native Packages
You can install MySQL on Mac OS X 10.3.x (“Panther”) or newer using a Mac OS X binary package in PKG format instead of the binary tarball distribution. Please note that older versions of Mac OS X (for example, 10.1.x or 10.2.x) are not supported by this package.
The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking its icon in the Finder. It should then mount the image and display its contents.
Note
Before proceeding with the installation, be sure to stop all running MySQL server instances by using either the MySQL Manager Application (on Mac OS X Server) or mysqladmin shutdown on the command line.
When installing from the package version, you should also install the MySQL Preference Pane, which will enable you to control the startup and execution of your MySQL server from System Preferences. For more information, see Section 2.4.4, “Installing and Using the MySQL Preference Pane”.
When installing using the package installer, the files are installed into a directory within /usr/local matching the name of the installation version and platform. For example, the installer file mysql-5.1.39-osx10.5-x86_64.pkg installs MySQL into /usr/local/mysql-5.1.39-osx10.5-x86_64 . The following table shows the layout of the installation directory.
Table 2.6. MySQL Installation Layout on Mac OS X
Directory | Contents of Directory |
---|---|
bin | Client programs and the mysqld server |
data | Log files, databases |
docs | Manual in Info format |
include | Include (header) files |
lib | Libraries |
man | Unix manual pages |
mysql-test | MySQL test suite |
scripts | mysql_install_db |
share | Miscellaneous support files, including error messages, sample configuration files, SQL for database installation |
sql-bench | Benchmarks |
support-files | Scripts and sample configuration files |
/tmp/mysql.sock | Location of the MySQL Unix socket |
During the package installer process, a symbolic link from /usr/local/mysql to the version/platform specific directory created during installation will be created automatically.
Download and open the MySQL package installer, which is provided on a disk image (.dmg) that includes the main MySQL installation package, the MySQLStartupItem.pkg installation package, and the MySQL.prefPane. Double-click the disk image to open it.
Double-click the MySQL installer package. It will be named according to the version of MySQL you have downloaded. For example, if you have downloaded MySQL 5.1.39, double-click mysql-5.1.39-osx10.5-x86.pkg.
You will be presented with the opening installer dialog. Click Continue to begin installation.
A copy of the installation instructions and other important information relevant to this installation are displayed. Click Continue .
If you have downloaded the community version of MySQL, you will be shown a copy of the relevant GNU General Public License. Click Continue .
Select the drive you want to use to install the MySQL Startup Item. The drive must have a valid, bootable, Mac OS X operating system installed. Click Continue.
You will be asked to confirm the details of the installation, including the space required for the installation. To change the drive on which the startup item is installed, click either Go Back or Change Install Location.... To install the startup item, click Install.
Once the installation has been completed successfully, you will be shown an Install Succeeded message.
For convenience, you may also want to install the startup item and preference pane. See Section 2.4.3, “Installing the MySQL Startup Item”, and Section 2.4.4, “Installing and Using the MySQL Preference Pane”.
2.4.3. Installing the MySQL Startup Item
The MySQL Installation Package includes a startup item that can be used to automatically start and stop MySQL.
To install the MySQL Startup Item:
Download and open the MySQL package installer, which is provided on a disk image (.dmg) that includes the main MySQL installation package, the MySQLStartupItem.pkg installation package, and the MySQL.prefPane. Double-click the disk image to open it.
Double-click the MySQLStartItem.pkg file to start the installation process.
You will be presented with the Install MySQL Startup Item dialog.
Click Continue to continue the installation process.
A copy of the installation instructions and other important information relevant to this installation are displayed. Click Continue .
Select the drive you want to use to install the MySQL Startup Item. The drive must have a valid, bootable, Mac OS X operating system installed. Click Continue.
You will be asked to confirm the details of the installation. To change the drive on which the startup item is installed, click either Go Back or Change Install Location.... To install the startup item, click Install.
Once the installation has been completed successfully, you will be shown an Install Succeeded message.
The Startup Item for MySQL is installed into /Library/StartupItems/MySQLCOM. The Startup Item installation adds a variable MYSQLCOM=-YES- to the system configuration file /etc/hostconfig. If you want to disable the automatic startup of MySQL, change this variable to MYSQLCOM=-NO-.
After the installation, you can start and stop MySQL by running the following commands in a terminal window. You must have administrator privileges to perform these tasks, and you may be prompted for your password.
If you have installed the Startup Item, use this command to start the server:
shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM start
If you have installed the Startup Item, use this command to stop the server:
shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM stop
2.4.4. Installing and Using the MySQL Preference Pane
The MySQL Package installer disk image also includes a custom MySQL Preference Pane that enables you to start, stop, and control automated startup during boot of your MySQL installation.
To install the MySQL Preference Pane:
Download and open the MySQL package installer package, which is provided on a disk image (.dmg) that includes the main MySQL installation package, the MySQLStartupItem.pkg installation package, and the MySQL.prefPane. Double-click the disk image to open it.
Double-click the MySQL.prefPane. The MySQL System Preferences will open.
If this is the first time you have installed the preference pane, you will be asked to confirm installation and whether you want to install the preference pane for all users, or only the current user. To install the preference pane for all users you will need administrator privileges. If necessary, you will be prompted for the username and password for a user with administrator privileges.
If you already have the MySQL Preference Pane installed, you will be asked to confirm whether you want to overwrite the existing MySQL Preference Pane.
Note
The MySQL Preference Pane only starts and stops MySQL installation installed from the MySQL package installation that have been installed in the default location.
Once the MySQL Preference Pane has been installed, you can control your MySQL server instance using the preference pane. To use the preference pane, open the System Preferences... from the Apple menu. Select the MySQL preference pane by clicking the MySQL logo within the Other section of the preference panes list.
The MySQL Preference Pane shows the current status of the MySQL server, showing stopped (in red) if the server is not running and running (in green) if the server has already been started. The preference pane also shows the current setting for whether the MySQL server has been set to start automatically.
To start MySQL using the preference pane:
Click Start MySQL Server. You may be prompted for the username and password of a user with administrator privileges to start the MySQL server.
To stop MySQL using the preference pane:
Click Stop MySQL Server. You may be prompted for the username and password of a user with administrator privileges to stop the MySQL server.
To automatically start the MySQL server when the system boots:
Check the check box next to Automatically Start MySQL Server on Startup.
To disable automatic MySQL server startup when the system boots:
Uncheck the check box next to Automatically Start MySQL Server on Startup.
You can close the System Preferences... window once you have completed your settings.
2.4.5. Using the Bundled MySQL on Mac OS X Server
If you are running Mac OS X Server, a version of MySQL should already be installed. The following table shows the versions of MySQL that ship with Mac OS X Server versions.
Table 2.7. MySQL Versions Preinstalled with Mac OS X Server
Mac OS X Server Version | MySQL Version |
---|---|
10.2-10.2.2 | 3.23.51 |
10.2.3-10.2.6 | 3.23.53 |
10.3 | 4.0.14 |
10.3.2 | 4.0.16 |
10.4.0 | 4.1.10a |
10.5.0 | 5.0.45 |
10.6.0 | 5.0.82 |
The following table shows the installation layout of MySQL on Mac OS X Server.
Table 2.8. MySQL Directory Layout for Preinstalled MySQL Installations on Mac OS X Server
Directory | Contents of Directory |
---|---|
/usr/bin | Client programs |
/var/mysql | Log files, databases |
/usr/libexec | The mysqld server |
/usr/share/man | Unix manual pages |
/usr/share/mysql/mysql-test | MySQL test suite |
/usr/share/mysql | Miscellaneous support files, including error messages, character set files, sample configuration files, SQL for database installation |
/var/mysql/mysql.sock | Location of the MySQL Unix socket |
Additional Resources
For more information on managing the bundled MySQL instance in Mac OS X Server 10.5, see Mac OS X Server: Web Technologies Administration For Version 10.5 Leopard.
For more information on managing the bundled MySQL instance in Mac OS X Server 10.6, see Mac OS X Server: Web Technologies Administration Version 10.6 Snow Leopard.
The MySQL server bundled with Mac OS X Server does not include the MySQL client libraries and header files required to access and use MySQL from a third-party driver, such as Perl DBI or PHP. For more information on obtaining and installing MySQL libraries, see Mac OS X Server version 10.5: MySQL libraries available for download. Alternatively, you can ignore the bundled MySQL server and install MySQL from the package or tarball installation.
2.5. Installing MySQL on Linux
Linux supports a number of different solutions for installing MySQL. The recommended method is to use one of the distributions from Oracle. If you choose this method, there are three options available:
Installing from a generic binary package in .tar.gz format. See Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux” for more information.
Extracting and compiling MySQL from a source distribution. For detailed instructions, see Section 2.9, “Installing MySQL from Source”.
Installing using a pre-compiled RPM package. For more information on using the RPM solution, see Section 2.5.1, “Installing MySQL from RPM Packages on Linux”.
As an alternative, you can use the native package manager within your Linux distribution to automatically download and install MySQL for you. Native package installations can take of the download and dependencies required to run MySQL, but the MySQL version will often be some way behind the currently available release. You will also normally be unable to install developmental releases, as these are not usually made available in the native repository. For more information on using the native package installers, see Section 2.5.2, “Installing MySQL on Linux using Native Package Manager”.
Note
For many Linux installations, you will want to set up MySQL to be started automatically when your machine starts. Many of the native package installations perform this operation for you, but for source, binary and RPM solutions you may need to set this up separately. The required script, mysql.server, can be found in the support-files directory under the MySQL installation directory or in a MySQL source tree. You can install it as /etc/init.d/mysql for automatic MySQL startup and shutdown. See Section 2.10.1.2, “Starting and Stopping MySQL Automatically”.
2.5.1. Installing MySQL from RPM Packages on Linux
Note
To install or upgrade to MySQL 5.6.11, be sure to read the special instructions at the end of this section.
The recommended way to install MySQL on RPM-based Linux distributions is by using the RPM packages. The RPMs that we provide to the community should work on all versions of Linux that support RPM packages and use glibc 2.3. To obtain RPM packages, see Section 2.1.3, “How to Get MySQL”.
For non-RPM Linux distributions, you can install MySQL using a .tar.gz package. See Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”.
Installations created from our Linux RPM distributions result in files under the following system directories.
Table 2.9. MySQL Installation Layout for Linux RPM
Directory | Contents of Directory |
---|---|
/usr/bin | Client programs and scripts |
/usr/sbin | The mysqld server |
/var/lib/mysql | Log files, databases |
/usr/share/info | Manual in Info format |
/usr/share/man | Unix manual pages |
/usr/include/mysql | Include (header) files |
/usr/lib/mysql | Libraries |
/usr/share/mysql | Miscellaneous support files, including error messages, character set files, sample configuration files, SQL for database installation |
/usr/share/sql-bench | Benchmarks |
Note
RPM distributions of MySQL are also provided by other vendors. Be aware that they may differ from those built by us in features, capabilities, and conventions (including communication setup), and that the instructions in this manual do not necessarily apply to installing them. The vendor's instructions should be consulted instead. Because of these differences, RPM packages built by us check whether such RPMs built by other vendors are installed. If so, the RPM does not install and produces a message explaining this.
In most cases, you need to install only the MySQL-server and MySQL-client packages to get a functional MySQL installation. The other packages are not required for a standard installation.
As of MySQL 5.6.8, new RPM install operations (not upgrades) invoke mysql_install_db with the --random-passwords option that provides for more secure MySQL installation. Invoking mysql_install_db with --random-passwords causes it to assign a random password to the MySQL root accounts, set the “password expired” flag for those accounts, and remove the anonymous-user MySQL accounts. It will be necessary after installation to start the server, connect as root using the password written to the $HOME/.mysql_secret file, and assign a new root password. Until this is done, root cannot do anything else. This must be done for each root account you intend to use. To change the password, you can use the SET PASSWORD statement (for example, with the mysql client). You can also use mysqladmin or mysql_secure_installation. For additional details, see Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”. (Install operations using RPMs for Unbreakable Linux Network are unaffected because they do not use mysql_install_db.)
RPMs for MySQL Cluster. Standard MySQL server RPMs built by MySQL do not provide support for the NDBCLUSTER storage engine.
Important
When upgrading a MySQL Cluster RPM installation, you must upgrade all installed RPMs, including the Server and Client RPMs.
For more information about installing MySQL Cluster from RPMs, see MySQL Cluster Installation and Upgrades.
For upgrades, if your installation was originally produced by installing multiple RPM packages, it is best to upgrade all the packages, not just some. For example, if you previously installed the server and client RPMs, do not upgrade just the server RPM.
If you get a dependency failure when trying to install MySQL packages (for example, error: removing these packages would break dependencies: libmysqlclient.so.10 is needed by ...), you should also install the MySQL-shared-compat package, which includes the shared libraries for older releases for backward compatibility.
The RPM packages shown in the following list are available. The names shown here use a suffix of .glibc23.i386.rpm, but particular packages can have different suffixes, described later.
MySQL-server-VERSION.glibc23.i386.rpm
The MySQL server. You need this unless you only want to connect to a MySQL server running on another machine.
MySQL-client-VERSION.glibc23.i386.rpm
The standard MySQL client programs. You probably always want to install this package.
MySQL-devel-VERSION.glibc23.i386.rpm
The libraries and include files that are needed if you want to compile other MySQL clients, such as the Perl modules.
MySQL-shared-VERSION.glibc23.i386.rpm
This package contains the shared libraries (libmysqlclient.so*) that certain languages and applications need to dynamically load and use MySQL. It contains single-threaded and thread-safe libraries.
MySQL-shared-compat-VERSION.glibc23.i386.rpm
This package includes the shared libraries for older releases, but not the libraries for the current release. It contains single-threaded and thread-safe libraries. Install this package if you have applications installed that are dynamically linked against older versions of MySQL but you want to upgrade to the current version without breaking the library dependencies.
As of MySQL 5.6.5, the MySQL-shared-compat RPM package enables users of Red Hat-provided mysql-*-5.1 RPM packages to migrate to Oracle-provided MySQL-*-5.5 packages. MySQL-shared-compat replaces the Red Hat mysql-libs package by replacing libmysqlclient.so files of the latter package, thus satisfying dependencies of other packages on mysql-libs. This change affects only users of Red Hat (or Red Hat-compatible) RPM packages. Nothing is different for users of Oracle RPM packages.
MySQL-embedded-VERSION.glibc23.i386.rpm
The embedded MySQL server library.
MySQL-test-VERSION.glibc23.i386.rpm
This package includes the MySQL test suite.
MySQL-VERSION.src.rpm
This contains the source code for all of the previous packages. It can also be used to rebuild the RPMs on other architectures (for example, Alpha or SPARC).
The suffix of RPM package names (following the VERSION value) has the following syntax:
.PLATFORM.CPU.rpm
The PLATFORM and CPU values indicate the type of system for which the package is built. PLATFORM indicates the platform and CPU indicates the processor type or family.
All packages are dynamically linked against glibc 2.3. The PLATFORM value indicates whether the package is platform independent or intended for a specific platform, as shown in the following table.
Table 2.10. MySQL Linux Installation Packages
PLATFORM Value | Intended Use |
---|---|
glibc23 | Platform independent, should run on any Linux distribution that supports glibc 2.3 |
rhel4, rhel5 | Red Hat Enterprise Linux 4 or 5 |
el6 | Enterprise Linux 6 |
sles10, sles11 | SuSE Linux Enterprise Server 10 or 11 |
In MySQL 5.6, only glibc23 packages are available currently.
The CPU value indicates the processor type or family for which the package is built.
Table 2.11. MySQL Installation Packages for Linux CPU Identifier
CPU Value | Intended Processor Type or Family |
---|---|
i386, i586, i686 | Pentium processor or better, 32 bit |
x86_64 | 64-bit x86 processor |
ia64 | Itanium (IA-64) processor |
To see all files in an RPM package (for example, a MySQL-server RPM), run a command like this:
shell> rpm -qpl MySQL-server-VERSION.glibc23.i386.rpm
To perform a standard minimal installation, install the server and client RPMs:
shell> rpm -i MySQL-server-VERSION.glibc23.i386.rpm
shell> rpm -i MySQL-client-VERSION.glibc23.i386.rpm
To install only the client programs, install just the client RPM:
shell> rpm -i MySQL-client-VERSION.glibc23.i386.rpm
RPM provides a feature to verify the integrity and authenticity of packages before installing them. If you would like to learn more about this feature, see Section 2.1.4, “Verifying Package Integrity Using MD5 Checksums or GnuPG”.
The server RPM places data under the /var/lib/mysql directory. The RPM also creates a login account for a user named mysql (if one does not exist) to use for running the MySQL server, and creates the appropriate entries in /etc/init.d/ to start the server automatically at boot time. (This means that if you have performed a previous installation and have made changes to its startup script, you may want to make a copy of the script so that you do not lose it when you install a newer RPM.) See Section 2.10.1.2, “Starting and Stopping MySQL Automatically”, for more information on how MySQL can be started automatically on system startup.
In MySQL 5.6, during a new installation, the server boot scripts are installed, but the MySQL server is not started at the end of the installation, since the status of the server during an unattended installation is not known.
In MySQL 5.6, during an upgrade installation using the RPM packages, if the MySQL server is running when the upgrade occurs, the MySQL server is stopped, the upgrade occurs, and the MySQL server is restarted. If the MySQL server is not already running when the RPM upgrade occurs, the MySQL server is not started at the end of the installation.
If something goes wrong, you can find more information in the binary installation section. See Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”.
Note
The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Section 2.10, “Postinstallation Setup and Testing”.
During RPM installation, a user named mysql and a group named mysql are created on the system. This is done using the useradd, groupadd, and usermod commands. Those commands require appropriate administrative privileges, which is required for locally managed users and groups (as listed in the /etc/passwd and /etc/group files) by the RPM installation process being run by root.
If you log in as the mysql user, you may find that MySQL displays “Invalid (old?) table or database name” errors that mention .mysqlgui, lost+found, .mysqlgui, .bash_history, .fonts.cache-1, .lesshst, .mysql_history, .profile, .viminfo, and similar files created by MySQL or operating system utilities. You can safely ignore these error messages or remove the files or directories that cause them if you do not need them.
For nonlocal user management (LDAP, NIS, and so forth), the administrative tools may require additional authentication (such as a password), and will fail if the installing user does not provide this authentication. Even if they fail, the RPM installation will not abort but succeed, and this is intentional. If they failed, some of the intended transfer of ownership may be missing, and it is recommended that the system administrator then manually ensures some appropriate user and group exists and manually transfers ownership following the actions in the RPM spec file.
In MySQL 5.6.11, the RPM spec file has been updated, which has the following consequences:
For a non-upgrade installation (no existing MySQL version installed), it possible to install MySQL using yum.
For upgrades, it is necessary to clean up any earlier MySQL installations. In effect, the update is performed by removing the old installations and installing the new one.
Additional details follow.
For a non-upgrade installation of MySQL 5.6.11, it is possible to install using yum:
shell> yum install MySQL-server-NEWVERSION.glibc23.i386.rpm
For upgrades to MySQL 5.6.11, the upgrade is performed by removing the old installation and installing the new one. To do this, use the following procedure:
Remove the existing 5.6.X installation. OLDVERSION is the version to remove.
shell> rpm -e MySQL-server-OLDVERSION.glibc23.i386.rpm
Repeat this step for all installed MySQL RPMs.
Install the new version. NEWVERSION is the version to install.
shell> rpm -ivh MySQL-server-NEWVERSION.glibc23.i386.rpm
Alternatively, the removal and installation can be done using yum:
shell> yum remove MySQL-server-OLDVERSION.glibc23.i386.rpm
shell> yum install MySQL-server-NEWVERSION.glibc23.i386.rpm
2.5.2. Installing MySQL on Linux using Native Package Manager
Many Linux distributions include a version of the MySQL server, client tools, and development components into the standard package management system built into distributions such as Fedora, Debian, Ubuntu, and Gentoo. This section provides basic instructions for installing MySQL using these systems.
Important
Native package installations can take care of the download and dependencies required to run MySQL, but the MySQL version will often be some way behind the currently available release. You will also normally be unable to install developmental releases, as these are not usually made available in the native repository.
Distribution specific instructions are shown below:
Red Hat Linux, Fedora, CentOS
For Red Hat and similar distributions, the MySQL distribution is divided into a number of separate packages, mysql for the client tools, mysql-server for the server and associated tools, and mysql-libs for the libraries. The libraries are required if you want to provide connectivity from different languages and environments such as Perl, Python and others.
To install, use the yum command to specify the packages that you want to install. For example:
root-shell> yum install mysql mysql-server mysql-libs mysql-server
Loaded plugins: presto, refresh-packagekit
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package mysql.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-libs.x86_64 0:5.1.48-2.fc13 set to be updated
---> Package mysql-server.x86_64 0:5.1.48-2.fc13 set to be updated
--> Processing Dependency: perl-DBD-MySQL for package: mysql-server-5.1.48-2.fc13.x86_64
--> Running transaction check
---> Package perl-DBD-MySQL.x86_64 0:4.017-1.fc13 set to be updated
--> Finished Dependency Resolution
Dependencies Resolved
==
Package Arch Version Repository Size
==
Installing:
mysql x86_64 5.1.48-2.fc13 updates 889 k
mysql-libs x86_64 5.1.48-2.fc13 updates 1.2 M
mysql-server x86_64 5.1.48-2.fc13 updates 8.1 M
Installing for dependencies:
perl-DBD-MySQL x86_64 4.017-1.fc13 updates 136 k
Transaction Summary
==
Install 4 Package(s)
Upgrade 0 Package(s)
Total download size: 10 M
Installed size: 30 M
Is this ok [y/N]: y
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata
Package(s) data still to download: 10 M
(1/4): mysql-5.1.48-2.fc13.x86_64.rpm | 889 kB 00:04
(2/4): mysql-libs-5.1.48-2.fc13.x86_64.rpm | 1.2 MB 00:06
(3/4): mysql-server-5.1.48-2.fc13.x86_64.rpm | 8.1 MB 00:40
(4/4): perl-DBD-MySQL-4.017-1.fc13.x86_64.rpm | 136 kB 00:00
--
Total 201 kB/s | 10 MB 00:52
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : mysql-libs-5.1.48-2.fc13.x86_64 1/4
Installing : mysql-5.1.48-2.fc13.x86_64 2/4
Installing : perl-DBD-MySQL-4.017-1.fc13.x86_64 3/4
Installing : mysql-server-5.1.48-2.fc13.x86_64 4/4
Installed:
mysql.x86_64 0:5.1.48-2.fc13 mysql-libs.x86_64 0:5.1.48-2.fc13
mysql-server.x86_64 0:5.1.48-2.fc13
Dependency Installed:
perl-DBD-MySQL.x86_64 0:4.017-1.fc13
Complete!
MySQL and the MySQL server should now be installed. A sample configuration file is installed into /etc/my.cnf. An init script, to start and stop the server, will have been installed into /etc/init.d/mysqld. To start the MySQL server use service:
root-shell> service mysqld start
To enable the server to be started and stopped automatically during boot, use chkconfig:
root-shell> chkconfig --levels 235 mysqld on
Which enables the MySQL server to be started (and stopped) automatically at the specified the run levels.
The database tables will have been automatically created for you, if they do not already exist. You should, however, run mysql_secure_installation to set the root passwords on your server.
Debian, Ubuntu, Kubuntu
On Debian and related distributions, there are two packages, mysql-client and mysql-server, for the client and server components respectively. You should specify an explicit version, for example mysql-client-5.1, to ensure that you install the version of MySQL that you want.
To download and install, including any dependencies, use the apt-get command, specifying the packages that you want to install.
Note
Before installing, make sure that you update your apt-get index files to ensure you are downloading the latest available version.
A sample installation of the MySQL packages might look like this (some sections trimmed for clarity):
root-shell> apt-get install mysql-client-5.1 mysql-server-5.1
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
linux-headers-2.6.28-11 linux-headers-2.6.28-11-generic
Use 'apt-get autoremove' to remove them.
The following extra packages will be installed:
bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
mysql-common postfix
Suggested packages:
dbishell libipc-sharedcache-perl tinyca procmail postfix-mysql postfix-pgsql
postfix-ldap postfix-pcre sasl2-bin resolvconf postfix-cdb
The following NEW packages will be installed
bsd-mailx libdbd-mysql-perl libdbi-perl libhtml-template-perl
libmysqlclient15off libmysqlclient16 libnet-daemon-perl libplrpc-perl mailx
mysql-client-5.1 mysql-common mysql-server-5.1 postfix
0 upgraded, 13 newly installed, 0 to remove and 182 not upgraded.
Need to get 1907kB/25.3MB of archives.
After this operation, 59.5MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
Get: 1 http://gb.archive.ubuntu.com jaunty-updates/main mysql-common 5.1.30really5.0.75-0ubuntu10.5 [63.6kB]
Get: 2 http://gb.archive.ubuntu.com jaunty-updates/main libmysqlclient15off 5.1.30really5.0.75-0ubuntu10.5 [1843kB]
Fetched 1907kB in 9s (205kB/s)
Preconfiguring packages ...
Selecting previously deselected package mysql-common.
(Reading database ... 121260 files and directories currently installed.)
...
Processing 1 added doc-base file(s)...
Registering documents with scrollkeeper...
Setting up libnet-daemon-perl (0.43-1) ...
Setting up libplrpc-perl (0.2020-1) ...
Setting up libdbi-perl (1.607-1) ...
Setting up libmysqlclient15off (5.1.30really5.0.75-0ubuntu10.5) ...
Setting up libdbd-mysql-perl (4.008-1) ...
Setting up libmysqlclient16 (5.1.31-1ubuntu2) ...
Setting up mysql-client-5.1 (5.1.31-1ubuntu2) ...
Setting up mysql-server-5.1 (5.1.31-1ubuntu2) ...
* Stopping MySQL database server mysqld
...done.
100825 11:46:15 InnoDB: Started; log sequence number 0 46409
100825 11:46:15 InnoDB: Starting shutdown...
100825 11:46:17 InnoDB: Shutdown completed; log sequence number 0 46409
100825 11:46:17 [Warning] Forcing shutdown of 1 plugins
* Starting MySQL database server mysqld
...done.
* Checking for corrupt, not cleanly closed and upgrade needing tables.
...
Processing triggers for libc6 ...
ldconfig deferred processing now taking place
Note
The apt-get command will install a number of packages, including the MySQL server, in order to provide the typical tools and application environment. This can mean that you install a large number of packages in addition to the main MySQL package.
During installation, the initial database will be created, and you will be prompted for the MySQL root password (and confirmation). A configuration file will have been created in /etc/mysql/my.cnf. An init script will have been created in /etc/init.d/mysql.
The server will already be started. You can manually start and stop the server using:
root-shell> service mysql [start|stop]
The service will automatically be added to the 2, 3 and 4 run levels, with stop scripts in the single, shutdown and restart levels.
Gentoo Linux
As a source-based distribution, installing MySQL on Gentoo involves downloading the source, patching the Gentoo specifics, and then compiling the MySQL server and installing it. This process is handled automatically by the emerge command. Depending on the version of MySQL that you want to install, you may need to unmask the specific version that you want for your chosen platform.
The MySQL server and client tools are provided within a single package, dev-db/mysql. You can obtain a list of the versions available to install by looking at the portage directory for the package:
root-shell> ls /usr/portage/dev-db/mysql/mysql-5.1*
mysql-5.1.39-r1.ebuild
mysql-5.1.44-r1.ebuild
mysql-5.1.44-r2.ebuild
mysql-5.1.44-r3.ebuild
mysql-5.1.44.ebuild
mysql-5.1.45-r1.ebuild
mysql-5.1.45.ebuild
mysql-5.1.46.ebuild
To install a specific MySQL version, you must specify the entire atom. For example:
root-shell> emerge =dev-db/mysql-5.1.46
A simpler alternative is to use the virtual/mysql-5.1 package, which will install the latest version:
root-shell> emerge =virtual/mysql-5.1
If the package is masked (because it is not tested or certified for the current platform), use the ACCEPT_KEYWORDS environment variable. For example:
root-shell> ACCEPT_KEYWORDS="~x86" emerge =virtual/mysql-5.1
After installation, you should create a new database using mysql_install_db, and set the password for the root user on MySQL. You can use the configuration interface to set the password and create the initial database:
root-shell> emerge --config =dev-db/mysql-5.1.46
A sample configuration file will have been created for you in /etc/mysql/my.cnf, and an init script will have been created in /etc/init.d/mysql.
To enable MySQL to start automatically at the normal (default) run levels, you can use:
root-shell> rc-update add mysql default
2.6. Installing MySQL on Solaris and OpenSolaris
MySQL on Solaris and OpenSolaris is available in a number of different formats.
For information on installing using the native Solaris PKG format, see Section 2.6.1, “Installing MySQL on Solaris using a Solaris PKG”.
On OpenSolaris, the standard package repositories include MySQL packages specially built for OpenSolaris that include entries for the Service Management Framework (SMF) to enable control of the installation using the SMF administration commands. For more information, see Section 2.6.2, “Installing MySQL on OpenSolaris using IPS”.
To use a standard tar binary installation, use the notes provided in Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”. Check the notes and hints at the end of this section for Solaris specific notes that you may need before or after installation.
To obtain a binary MySQL distribution for Solaris in tarball or PKG format, http://dev.mysql.com/downloads/mysql/5.6.html.
Additional notes to be aware of when installing and using MySQL on Solaris:
If you want to use MySQL with the mysql user and group, use the groupadd and useradd commands:
groupadd mysql
useradd -g mysql mysql
If you install MySQL using a binary tarball distribution on Solaris, you may run into trouble even before you get the MySQL distribution unpacked, as the Solaris tar cannot handle long file names. This means that you may see errors when you try to unpack MySQL.
If this occurs, you must use GNU tar (gtar) to unpack the distribution. In Solaris 10 and OpenSolaris gtar is normally located in /usr/sfw/bin/gtar, but may not be included in the default path definition.
When using Solaris 10 for x86_64, you should mount any file systems on which you intend to store InnoDB files with the forcedirectio option. (By default mounting is done without this option.) Failing to do so will cause a significant drop in performance when using the InnoDB storage engine on this platform.
If you would like MySQL to start automatically, you can copy support-files/mysql.server to /etc/init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.
If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL log:
Error in accept: Protocol error
You might try starting the server with the --back_log=50 option as a workaround for this.
To configure the generation of core files on Solaris you should use the coreadm command. Because of the security implications of generating a core on a setuid() application, by default, Solaris does not support core files on setuid() programs. However, you can modify this behavior using coreadm. If you enable setuid() core files for the current user, they will be generated using the mode 600 and owned by the superuser.
2.6.1. Installing MySQL on Solaris using a Solaris PKG
You can install MySQL on Solaris and OpenSolaris using a binary package using the native Solaris PKG format instead of the binary tarball distribution.
To use this package, download the corresponding mysql-VERSION-solaris10-PLATFORM.pkg.gz file, then decompress it. For example:
shell> gunzip mysql-5.6.12-solaris10-x86_64.pkg.gz
To install a new package, use pkgadd and follow the onscreen prompts. You must have root privileges to perform this operation:
shell> pkgadd -d mysql-5.6.12-solaris10-x86_64.pkg
The following packages are available:
1 mysql MySQL Community Server (GPL)
(i86pc) 5.6.12
Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]:
The PKG installer installs all of the files and tools needed, and then initializes your database if one does not exist. To complete the installation, you should set the root password for MySQL as provided in the instructions at the end of the installation. Alternatively, you can run the mysql_secure_installation script that comes with the installation.
The default installation directory is /opt/mysql. You can only change the root path of the installation when using pkgadd, which can be used to install MySQL in a different Solaris zone. If you need to install in a specific directory, use the binary tar file.
The pkg installer copies a suitable startup script for MySQL into /etc/init.d/mysql. To enable MySQL to startup and shutdown automatically, you should create a link between this file and the init script directories. For example, to ensure safe startup and shutdown of MySQL you could use the following commands to add the right links:
shell> ln /etc/init.d/mysql /etc/rc3.d/S91mysql
shell> ln /etc/init.d/mysql /etc/rc0.d/K02mysql
To remove MySQL, the installed package name is mysql. You can use this in combination with the pkgrm command to remove the installation.
To upgrade when using the Solaris package file format, you must remove the existing installation before installing the updated package. Removal of the package does not delete the existing database information, only the server, binaries and support files. The typical upgrade sequence is therefore:
shell> mysqladmin shutdown
shell> pkgrm mysql
shell> pkgadd -d mysql-5.6.12-solaris10-x86_64.pkg
shell> mysqld_safe &
shell> mysql_upgrade
You should check the notes in Section 2.11, “Upgrading or Downgrading MySQL” before performing any upgrade.
2.6.2. Installing MySQL on OpenSolaris using IPS
OpenSolaris includes standard packages for MySQL in the core repository. The MySQL packages are based on a specific release of MySQL and updated periodically. For the latest release you must use either the native Solaris PKG, tar, or source installations. The native OpenSolaris packages include SMF files so that you can easily control your MySQL installation, including automatic startup and recovery, using the native service management tools.
To install MySQL on OpenSolaris, use the pkg command. You will need to be logged in as root, or use the pfexec tool, as shown in the example below:
shell> pfexec pkg install SUNWmysql56
The package set installs three individual packages, SUNWmysql56lib, which contains the MySQL client libraries; SUNWmysql56r which contains the root components, including SMF and configuration files; and SUNWmysql56u which contains the scripts, binary tools and other files. You can install these packages individually if you only need the corresponding components.
The MySQL files are installed into /usr/mysql which symbolic links for the sub directories (bin, lib, etc.) to a version specific directory. For MySQL 5.6, the full installation is located in /usr/mysql/5.6. The default data directory is /var/mysql/5.6/data. The configuration file is installed in /etc/mysql/5.6/my.cnf. This layout permits multiple versions of MySQL to be installed, without overwriting the data and binaries from other versions.
Once installed, you must run mysql_install_db to initialize the database, and use the mysql_secure_installation to secure your installation.
Using SMF to manage your MySQL installation
Once installed, you can start and stop your MySQL server using the installed SMF configuration. The service name is mysql, or if you have multiple versions installed, you should use the full version name, for example mysql:version_56. To start and enable MySQL to be started at boot time:
shell> svcadm enable mysql
To disable MySQL from starting during boot time, and shut the MySQL server down if it is running, use:
shell> svcadm disable mysql
To restart MySQL, for example after a configuration file changes, use the restart option:
shell> svcadm restart mysql
You can also use SMF to configure the data directory and enable full 64-bit mode. For example, to set the data directory used by MySQL:
shell> svccfg
svc:> select mysql:version_56
svc:/application/database/mysql:version_56> setprop mysql/data=/data0/mysql
By default, the 32-bit binaries are used. To enable the 64-bit server on 64-bit platforms, set the enable_64bit parameter. For example:
svc:/application/database/mysql:version_56> setprop mysql/enable_64bit=1
You need to refresh the SMF after settings these options:
shell> svcadm refresh mysql
2.7. Installing MySQL on HP-UX
MySQL for HP-UX is available in a number of different forms:
Using a DEPOT distribution provided at http://dev.mysql.com/downloads/. Please read the general notes on HP-UX installation before continuing. For more information on DEPOT installations, see Section 2.7.2, “Installing MySQL on HP-UX using DEPOT”.
Using a binary tarball distribution provided at http://dev.mysql.com/downloads/. Please read the general notes on HP-UX installation before continuing. For more information on binary installations, see Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”.
2.7.1. General Notes on Installing MySQL on HP-UX
Some additional notes on installing and using MySQL on HP-UX:
If you install MySQL using a binary tarball distribution on HP-UX, you may run into trouble even before you get the MySQL distribution unpacked, as the HP-UX tar cannot handle long file names. This means that you may see errors when you try to unpack MySQL.
If this occurs, you must use GNU tar (gtar) to unpack the distribution.
Because of some critical bugs in the standard HP-UX libraries, you should install the following patches before trying to run MySQL on HP-UX 11.0:
PHKL_22840 Streams cumulative
PHNE_22397 ARPA cumulative
This solves the problem of getting EWOULDBLOCK from recv() and EBADF from accept() in threaded applications.
2.7.2. Installing MySQL on HP-UX using DEPOT
The HP-UX DEPOT format packages can be installed using the swinstall command. You should install the ncurses and zlib libraries before installing the MySQL DEPOT package. You can use the free software depothelper tool to install these packages and any dependencies for you automatically.
To install using the MySQL DEPOT packages, follow this guide:
Download the MySQL DEPOT package from http://dev.mysql.com/downloads/. You must decompress the package before installation:
root-shell> gunzip mysql-5.1.48-hpux11.31-ia64-64bit.depot.gz
Install the DEPOT package using swinstall:
root-shell> swinstall -s mysql-5.1.49-hpux11.31-ia64-64bit.depot
MySQL will be installed into a directory matching the depot package name, within /usr/local. For convenience, you may want to create a symbolic link to the installed directory, for example:
root-shell> ln -s mysql-5.1.49-hpux11.31-ia64-64bit mysql
Your package is now installed. You should complete the configuration of MySQL by creating a user and group:
root-shell> /usr/sbin/groupadd mysql
root-shell> /usr/sbin/useradd -g mysql -d /var/lib/mysql/ -s /bin/false mysql
Create the standard database using the new user/group you have created, and set the permissions:
root-shell> cd /usr/local/
root-shell> scripts/mysql_install_db --user=mysql
root-shell> chown -R root .
root-shell> chown -R mysql data
Finally, secure your new installation by setting the root passwords, and then start your MySQL server using the mysql user:
root-shell> mysql_secure_installation
root-shell> mysqld_safe --user=mysql &
2.8. Installing MySQL on FreeBSD
This section provides information about installing MySQL on variants of FreeBSD Unix.
You can install MySQL on FreeBSD by using the binary distribution provided by Oracle. For more information, see Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”.
The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client ports available at http://www.freebsd.org/. Using these ports gives you the following benefits:
A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.
Automatic configuration and build.
Startup scripts installed in /usr/local/etc/rc.d.
The ability to use pkg_info -L to see which files are installed.
The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.
The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you must install it first before compiling MySQL.
To install using the ports system:
cd /usr/ports/databases/mysql51-server
make
...
cd /usr/ports/databases/mysql51-client
make
...
The standard port installation places the server into /usr/local/libexec/mysqld, with the startup script for the MySQL server placed in /usr/local/etc/rc.d/mysql-server.
Some additional notes on the BSD implementation:
To remove MySQL after installation using the ports system:
cd /usr/ports/databases/mysql51-server
make deinstall
...
cd /usr/ports/databases/mysql51-client
make deinstall
...
If you get problems with the current date in MySQL, setting the TZ variable should help. See Section 2.12, “Environment Variables”.
2.9. Installing MySQL from Source
Building MySQL from the source code enables you to customize build parameters, compiler optimizations, and installation location. For a list of systems on which MySQL is known to run, see Section 2.1.1, “Operating Systems Supported by MySQL Community Server”.
Before you proceed with an installation from source, check whether Oracle produces a precompiled binary distribution for your platform and whether it works for you. We put a great deal of effort into ensuring that our binaries are built with the best possible options for optimal performance. Instructions for installing binary distributions are available in Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”.
Source Installation Methods
There are two methods for installing MySQL from source:
Use a standard MySQL source distribution. To obtain a standard distribution, see Section 2.1.3, “How to Get MySQL”. For instructions on building from a standard distribution, see Section 2.9.2, “Installing MySQL from a Standard Source Distribution”.
Standard distributions are available as compressed tar files, Zip archives, or RPM packages. Distribution files have names of the form mysql-VERSION.tar.gz, mysql-VERSION.zip, or mysql-VERSION.rpm, where VERSION is a number like 5.6.12. File names for source distributions can be distinguished from those for precompiled binary distributions in that source distribution names are generic and include no platform name, whereas binary distribution names include a platform name indicating the type of system for which the distribution is intended (for example, pc-linux-i686 or winx64).
Use a MySQL development tree. Development trees have not necessarily received the same level of testing as standard release distributions, so this installation method is usually required only if you need the most recent code changes. For information on building from one of the development trees, see Section 2.9.3, “Installing MySQL from a Development Source Tree”.
Source Installation System Requirements
Installation of MySQL from source requires several development tools. Some of these tools are needed no matter whether you use a standard source distribution or a development source tree. Other tool requirements depend on which installation method you use.
To install MySQL from source, your system must have the following tools, regardless of installation method:
CMake, which is used as the build framework on all platforms. CMake can be downloaded from http://www.cmake.org.
A good make program. Although some platforms come with their own make implementations, it is highly recommended that you use GNU make 3.75 or newer. It may already be available on your system as gmake. GNU make is available from http://www.gnu.org/software/make/.
A working ANSI C++ compiler. GCC 4.2.1 or later, Sun Studio 10 or later, Visual Studio 2008 or later, and many current vendor-supplied compilers are known to work.
Perl is needed if you intend to run test scripts. Most Unix-like systems include Perl. On Windows, you can use a version such as ActiveState Perl.
To install MySQL from a standard source distribution, one of the following tools is required to unpack the distribution file:
For a .tar.gz compressed tar file: GNU gunzip to uncompress the distribution and a reasonable tar to unpack it. If your tar program supports the z option, it can both uncompress and unpack the file.
GNU tar is known to work. The standard tar provided with some operating systems is not able to unpack the long file names in the MySQL distribution. You should download and install GNU tar, or if available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is available from http://www.gnu.org/software/tar/.
For a .zip Zip archive: WinZip or another tool that can read .zip files.
For an .rpm RPM package: The rpmbuild program used to build the distribution unpacks it.
To install MySQL from a development source tree, the following additional tools are required:
To obtain the source tree, you must have Bazaar installed. The Bazaar VCS Web site has instructions for downloading and installing Bazaar on different platforms. Bazaar is supported on any platform that supports Python, and is therefore compatible with any Linux, Unix, Windows, or Mac OS X host.
bison is needed to generate sql_yacc.cc from sql_yacc.yy You should use the latest version of bison where possible. Versions 1.75 and 2.1 are known to work. There have been reported problems with bison 1.875. If you experience problems, upgrade to a later, rather than earlier, version.
bison is available from http://www.gnu.org/software/bison/. bison for Windows can be downloaded from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the package labeled “Complete package, excluding sources”. On Windows, the default location for bison is the C:\Program Files\GnuWin32 directory. Some utilities may fail to find bison because of the space in the directory name. Also, Visual Studio may simply hang if there are spaces in the path. You can resolve these problems by installing into a directory that does not contain a space; for example C:\GnuWin32.
On OpenSolaris and Solaris Express, m4 must be installed in addition to bison. m4 is available from http://www.gnu.org/software/m4/.
Note
If you have to install any programs, modify your PATH environment variable to include any directories in which the programs are located. See Section 4.2.4, “Setting Environment Variables”.
If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How to Report Bugs or Problems”.
2.9.1. MySQL Layout for Source Installation
By default, when you install MySQL after compiling it from source, the installation step installs files under /usr/local/mysql. The component locations under the installation directory are the same as for binary distributions. See Table 2.3, “MySQL Installation Layout for Generic Unix/Linux Binary Package”, and Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”. To configure installation locations different from the defaults, use the options described at Section 2.9.4, “MySQL Source-Configuration Options”.
2.9.2. Installing MySQL from a Standard Source Distribution
To install MySQL from a standard source distribution:
Verify that your system satisfies the tool requirements listed at Section 2.9, “Installing MySQL from Source”.
Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.
Configure, build, and install the distribution using the instructions in this section.
Perform postinstallation procedures using the instructions in Section 2.10, “Postinstallation Setup and Testing”.
In MySQL 5.6, CMake is used as the build framework on all platforms. The instructions given here should enable you to produce a working installation. For additional information on using CMake to build MySQL, see How to Build MySQL Server with CMake.
If you start from a source RPM, use the following command to make a binary RPM that you can install. If you do not have rpmbuild, use rpm instead.
shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm
The result is one or more binary RPM packages that you install as indicated in Section 2.5.1, “Installing MySQL from RPM Packages on Linux”.
The sequence for installation from a compressed tar file or Zip archive source distribution is similar to the process for installing from a generic binary distribution (see Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”), except that it is used on all platforms and includes steps to configure and compile the distribution. For example, with a compressed tar file source distribution on Unix, the basic installation command sequence looks like this:
Preconfiguration setup
shell> groupadd mysql
shell> useradd -r -g mysql mysql
Beginning of source-build specific instructions
shell> tar zxvf mysql-VERSION.tar.gz
shell> cd mysql-VERSION
shell> cmake .
shell> make
shell> make install
End of source-build specific instructions
Postinstallation setup
shell> cd /usr/local/mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql data
Next command is optional
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> bin/mysqld_safe --user=mysql &
Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server
A more detailed version of the source-build specific instructions is shown following.
Note
The procedure shown here does not set up any passwords for MySQL accounts. After following the procedure, proceed to Section 2.10, “Postinstallation Setup and Testing”, for postinstallation setup and testing.
Perform Preconfiguration Setup
On Unix, set up the mysql user and group that will be used to run and execute the MySQL server and own the database directory. For details, see Creating a mysql System User and Group, in Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”. Then perform the following steps as the mysql user, except as noted.
Obtain and Unpack the Distribution
Pick the directory under which you want to unpack the distribution and change location into it.
Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.
Unpack the distribution into the current directory:
To unpack a compressed tar file, tar can uncompress and unpack the distribution if it has z option support:
shell> tar zxvf mysql-VERSION.tar.gz
If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack it:
shell> gunzip < mysql-VERSION.tar.gz | tar xvf -
Alternatively, CMake can uncompress and unpack the distribution:
shell> cmake -E tar zxvf mysql-VERSION.tar.gz
To unpack a Zip archive, use WinZip or another tool that can read .zip files.
Unpacking the distribution file creates a directory named mysql-VERSION.
Configure the Distribution
Change location into the top-level directory of the unpacked distribution:
shell> cd mysql-VERSION
Configure the source directory. The minimum configuration command includes no options to override configuration defaults:
shell> cmake .
On Windows, specify the development environment. For example, the following commands configure MySQL for 32-bit or 64-bit builds, respectively:
shell> cmake . -G "Visual Studio 9 2008"
shell> cmake . -G "Visual Studio 9 2008 Win64"
On Mac OS X, to use the Xcode IDE:
shell> cmake . -G Xcode
When you run cmake, you might want to add options to the command line. Here are some examples:
-DBUILD_CONFIG=mysql_release: Configure the source with the same build options used by Oracle to produce binary distributions for official MySQL releases.
-DCMAKE_INSTALL_PREFIX=dir_name: Configure the distribution for installation under a particular location.
-DCPACK_MONOLITHIC_INSTALL=1: Cause make package to generate a single installation file rather than multiple files.
-DWITH_DEBUG=1: Build the distribution with debugging support.
For a more extensive list of options, see Section 2.9.4, “MySQL Source-Configuration Options”.
To list the configuration options, use one of the following commands:
shell> cmake . -L # overview
shell> cmake . -LH # overview with help text
shell> cmake . -LAH # all params with help text
shell> ccmake . # interactive display
If CMake fails, you might need to reconfigure by running it again with different options. If you do reconfigure, take note of the following:
If CMake is run after it has previously been run, it may use information that was gathered during its previous invocation. This information is stored in CMakeCache.txt. When CMake starts up, it looks for that file and reads its contents if it exists, on the assumption that the information is still correct. That assumption is invalid when you reconfigure.
Each time you run CMake, you must run make again to recompile. However, you may want to remove old object files from previous builds first because they were compiled using different configuration options.
To prevent old object files or configuration information from being used, run these commands on Unix before re-running CMake:
shell> make clean
shell> rm CMakeCache.txt
Or, on Windows:
shell> devenv MySQL.sln /clean
shell> del CMakeCache.txt
If you build out of the source tree (as described later), the CMakeCache.txt file and all built files are in the build directory, so you can remove that directory to object files and cached configuration information.
If you are going to send mail to a MySQL mailing list to ask for configuration assistance, first check the files in the CMakeFiles directory for useful information about the failure. To file a bug report, please use the instructions in Section 1.7, “How to Report Bugs or Problems”.
Build the Distribution
On Unix:
shell> make
shell> make VERBOSE=1
The second command sets VERBOSE to show the commands for each compiled source.
Use gmake instead on systems where you are using GNU make and it has been installed as gmake.
On Windows:
shell> devenv MySQL.sln /build RelWithDebInfo
It is possible to build out of the source tree to keep the tree clean. If the top-level source directory is named mysql-src under your current working directory, you can build in a directory named build at the same level like this:
shell> mkdir build
shell> cd build
shell> cmake ../mysql-src
If you have gotten to the compilation stage, but the distribution does not build, see Section 2.9.5, “Dealing with Problems Compiling MySQL”, for help. If that does not solve the problem, please enter it into our bugs database using the instructions given in Section 1.7, “How to Report Bugs or Problems”. If you have installed the latest versions of the required tools, and they crash trying to process our configuration files, please report that also. However, if you get a command not found error or a similar problem for required tools, do not report it. Instead, make sure that all the required tools are installed and that your PATH variable is set correctly so that your shell can find them.
Install the Distribution
On Unix:
shell> make install
This installs the files under the configured installation directory (by default, /usr/local/mysql). You might need to run the command as root.
To install in a specific directory, add a DESTDIR parameter to the command line:
shell> make install DESTDIR="/opt/mysql"
Alternatively, generate installation package files that you can install where you like:
shell> make package
This operation produces one or more .tar.gz files that can be installed like generic binary distribution packages. See Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”. If you run CMake with -DCPACK_MONOLITHIC_INSTALL=1, the operation produces a single file. Otherwise, it produces multiple files.
On Windows, generate the data directory, then create a .zip archive installation package:
shell> devenv MySQL.sln /build RelWithDebInfo /project initial_database
shell> devenv MySQL.sln /build RelWithDebInfo /project package
You can install the resulting .zip archive where you like. See Section 2.3.4, “Installing MySQL on Microsoft Windows Using a noinstall Zip Archive”.
Perform Postinstallation Setup
The remainder of the installation process involves setting up the configuration file, creating the core databases, and starting the MySQL server. For instructions, see Section 2.10, “Postinstallation Setup and Testing”.
Note
The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Section 2.10, “Postinstallation Setup and Testing”.
2.9.3. Installing MySQL from a Development Source Tree
This section discusses how to install MySQL from the latest development source code. Development trees have not necessarily received the same level of testing as standard release distributions, so this installation method is usually required only if you need the most recent code changes. Do not use a development tree for production systems. If your goal is simply to get MySQL up and running on your system, you should use a standard release distribution (either a binary or source distribution). See Section 2.1.3, “How to Get MySQL”.
MySQL development projects are hosted on Launchpad. MySQL projects, including MySQL Server, MySQL Workbench, and others are available from the Oracle/MySQL Engineering page. For the repositories related only to MySQL Server, see the MySQL Server page.
To install MySQL from a development source tree, your system must satisfy the tool requirements listed at Section 2.9, “Installing MySQL from Source”, including the requirements for Bazaar and bison.
To create a local branch of the MySQL development tree on your machine, use this procedure:
To obtain a copy of the MySQL source code, you must create a new Bazaar branch. If you do not already have a Bazaar repository directory set up, you must initialize a new directory:
shell> mkdir mysql-server
shell> bzr init-repo --trees mysql-server
This is a one-time operation.
Assuming that you have an initialized repository directory, you can branch from the public MySQL server repositories to create a local source tree. To create a branch of a specific version:
shell> cd mysql-server
shell> bzr branch lp:mysql-server/5.6 mysql-5.6
This is a one-time operation per source tree. You can branch the source trees for several versions of MySQL under the mysql-server directory.
The initial download will take some time to complete, depending on the speed of your connection. Please be patient. Once you have downloaded the first tree, additional trees should take significantly less time to download.
When building from the Bazaar branch, you may want to create a copy of your active branch so that you can make configuration and other changes without affecting the original branch contents. You can achieve this by branching from the original branch:
shell> bzr branch mysql-5.6 mysql-5.6-build
To obtain changes made after you have set up the branch initially, update it using the pull option periodically. Use this command in the top-level directory of the local copy:
shell> bzr pull
To examine the changeset comments for the tree, use the log option to bzr:
shell> bzr log
You can also browse changesets, comments, and source code online at the Launchpad MySQL Server page.
If you see diffs (changes) or code that you have a question about, do not hesitate to send email to the MySQL internals mailing list. See Section 1.6.1, “MySQL Mailing Lists”. If you think you have a better idea on how to do something, send an email message to the list with a patch.
After you have the local branch, you can build MySQL server from the source code. For information, see Section 2.9.2, “Installing MySQL from a Standard Source Distribution”, except that you skip the part about obtaining and unpacking the distribution.
Be careful about installing a build from a distribution source tree on a production machine. The installation command may overwrite your live release installation. If you already have MySQL installed and do not want to overwrite it, run CMake with values for the CMAKE_INSTALL_PREFIX, MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options different from those used by your production server. For additional information about preventing multiple servers from interfering with each other, see Section 5.6, “Running Multiple MySQL Instances on One Machine”.
Play hard with your new installation. For example, try to make new features crash. Start by running make test. See Section 22.1.2, “The MySQL Test Suite”.
2.9.4. MySQL Source-Configuration Options
The CMake program provides a great deal of control over how you configure a MySQL source distribution. Typically, you do this using options on the CMake command line. For information about options supported by CMake, run either of these commands in the top-level source directory:
shell> cmake . -LH
shell> ccmake .
You can also affect CMake using certain environment variables. See Section 2.12, “Environment Variables”.
The following table shows the available CMake options. In the Default column, PREFIX stands for the value of the CMAKE_INSTALL_PREFIX option, which specifies the installation base directory. This value is used as the parent location for several of the installation subdirectories.
Table 2.12. MySQL Source-Configuration Option Reference (CMake)
Formats	Description	Default	Introduced	Removed
BUILD_CONFIG	Use same build options as official releases			
CMAKE_BUILD_TYPE	Type of build to produce	RelWithDebInfo		
CMAKE_INSTALL_PREFIX	Installation base directory	/usr/local/mysql		
COMPILATION_COMMENT	Comment about compilation environment			
CPACK_MONOLITHIC_INSTALL	Whether package build produces single file	OFF		
DEFAULT_CHARSET	The default server character set	latin1		
DEFAULT_COLLATION	The default server collation	latin1_swedish_ci		
ENABLE_DEBUG_SYNC	Whether to enable Debug Sync support	ON		
ENABLE_DOWNLOADS	Whether to download optional files	OFF		
ENABLE_DTRACE	Whether to include DTrace support			
ENABLE_GCOV	Whether to include gcov support	5.6.3		
ENABLE_GPROF	Enable gprof (optimized Linux builds only)	OFF	5.6.6	
ENABLED_LOCAL_INFILE	Whether to enable LOCAL for LOAD DATA INFILE	OFF		
ENABLED_PROFILING	Whether to enable query profiling code	ON		
IGNORE_AIO_CHECK	With -DBUILD_CONFIG=mysql_release, ignore libaio check	OFF	5.6.1	
INSTALL_BINDIR	User executables directory	PREFIX/bin		
INSTALL_DOCDIR	Documentation directory	PREFIX/docs		
INSTALL_DOCREADMEDIR	README file directory	PREFIX		
INSTALL_INCLUDEDIR	Header file directory	PREFIX/include		
INSTALL_INFODIR	Info file directory	PREFIX/docs		
INSTALL_LAYOUT	Select predefined installation layout	STANDALONE		
INSTALL_LIBDIR	Library file directory	PREFIX/lib		
INSTALL_MANDIR	Manual page directory	PREFIX/man		
INSTALL_MYSQLSHAREDIR	Shared data directory	PREFIX/share		
INSTALL_MYSQLTESTDIR	mysql-test directory	PREFIX/mysql-test		
INSTALL_PLUGINDIR	Plugin directory	PREFIX/lib/plugin		
INSTALL_SBINDIR	Server executable directory	PREFIX/bin		
INSTALL_SCRIPTDIR	Scripts directory	PREFIX/scripts		
INSTALL_SHAREDIR	aclocal/mysql.m4 installation directory	PREFIX/share		
INSTALL_SQLBENCHDIR	sql-bench directory	PREFIX		
INSTALL_SUPPORTFILESDIR	Extra support files directory	PREFIX/support-files		
MYSQL_DATADIR	Data directory			
MYSQL_MAINTAINER_MODE	Whether to enable MySQL maintainer-specific development environment	OFF		
MYSQL_PROJECT_NAME	Windows/Mac OS X project name	3306	5.6.5	
MYSQL_TCP_PORT	TCP/IP port number	3306		
MYSQL_UNIX_ADDR	Unix socket file	/tmp/mysql.sock		
ODBC_INCLUDES	ODBC includes directory			
ODBC_LIB_DIR	ODBC library directory			
OPTIMIZER_TRACE	Whether to support optimizer tracing	5.6.3		
SYSCONFDIR	Option file directory			
WITH_DEBUG	Whether to include debugging support	OFF		
WITH_DEFAULT_COMPILER_OPTIONS	Whether to use default compiler options	ON	5.6.6	
WITH_DEFAULT_FEATURE_SET	Whether to use default feature set	ON	5.6.6	
WITH_EMBEDDED_SERVER	Whether to build embedded server	OFF		
WITH_xxx_STORAGE_ENGINE	Compile storage engine xxx statically into server			
WITH_EXTRA_CHARSETS	Which extra character sets to include	all		
WITH_LIBEDIT	Use bundled libedit library	ON		
WITH_LIBWRAP	Whether to include libwrap (TCP wrappers) support	OFF		
WITH_READLINE	Use bundled readline library	OFF	5.6.5	
WITH_SSL	Type of SSL support	no		
WITH_UNIXODBC	Enable unixODBC support	OFF		
WITH_ZLIB	Type of zlib support	system		
WITHOUT_xxx_STORAGE_ENGINE	Exclude storage engine xxx from build			
The following sections provide more information about CMake options.				
For boolean options, the value may be specified as 1 or ON to enable the option, or as 0 or OFF to disable the option.				
Many options configure compile-time defaults that can be overridden at server startup. For example, the CMAKE_INSTALL_PREFIX, MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options that configure the default installation base directory location, TCP/IP port number, and Unix socket file can be changed at server startup with the --basedir, --port, and --socket options for mysqld. Where applicable, configuration option descriptions indicate the corresponding mysqld startup option.				
General Options				
-DBUILD_CONFIG=mysql_release				
This option configures a source distribution with the same build options used by Oracle to produce binary distributions for official MySQL releases.				
-DCMAKE_BUILD_TYPE=type				
The type of build to produce:				
RelWithDebInfo: Enable optimizations and generate debugging information. This is the default MySQL build type.				
Debug: Disable optimizations and generate debugging information. This build type is also used if the WITH_DEBUG option is enabled. That is, -DWITH_DEBUG=1 has the same effect as -DCMAKE_BUILD_TYPE=Debug.				
-DCPACK_MONOLITHIC_INSTALL=bool				
This option affects whether the make package operation produces multiple installation package files or a single file. If disabled, the operation produces multiple installation package files, which may be useful if you want to install only a subset of a full MySQL installation. If enabled, it produces a single file for installing everything.				
Installation Layout Options				
The CMAKE_INSTALL_PREFIX option indicates the base installation directory. Other options with names of the form INSTALL_xxx that indicate component locations are interpreted relative to the prefix and their values are relative pathnames. Their values should not include the prefix.				
-DCMAKE_INSTALL_PREFIX=dir_name				
The installation base directory.				
This value can be set at server startup with the --basedir option.				
-DINSTALL_BINDIR=dir_name				
Where to install user programs.				
-DINSTALL_DOCDIR=dir_name				
Where to install documentation.				
-DINSTALL_DOCREADMEDIR=dir_name				
Where to install README files.				
-DINSTALL_INCLUDEDIR=dir_name				
Where to install header files.				
-DINSTALL_INFODIR=dir_name				
Where to install Info files.				
-DINSTALL_LAYOUT=name				
Select a predefined installation layout:				
STANDALONE: Same layout as used for .tar.gz and .zip packages. This is the default.				
RPM: Layout similar to RPM packages.				
SVR4: Solaris package layout.				
DEB: DEB package layout (experimental).				
You can select a predefined layout but modify individual component installation locations by specifying other options. For example:				
shell> cmake . -DINSTALL_LAYOUT=SVR4 -DMYSQL_DATADIR=/var/mysql/data				
-DINSTALL_LIBDIR=dir_name				
Where to install library files.				
-DINSTALL_MANDIR=dir_name				
Where to install manual pages.				
-DINSTALL_MYSQLSHAREDIR=dir_name				
Where to install shared data files.				
-DINSTALL_MYSQLTESTDIR=dir_name				
Where to install the mysql-test directory. As of MySQL 5.6.12, to suppress installation of this directory, explicitly set the option to the empty value (-DINSTALL_MYSQLTESTDIR=).				
-DINSTALL_PLUGINDIR=dir_name				
The location of the plugin directory.				
This value can be set at server startup with the --plugin_dir option.				
-DINSTALL_SBINDIR=dir_name				
Where to install the mysqld server.				
-DINSTALL_SCRIPTDIR=dir_name				
Where to install mysql_install_db.				
-DINSTALL_SHAREDIR=dir_name				
Where to install aclocal/mysql.m4.				
-DINSTALL_SQLBENCHDIR=dir_name				
Where to install the sql-bench directory. To suppress installation of this directory, explicitly set the option to the empty value (-DINSTALL_SQLBENCHDIR=).				
-DINSTALL_SUPPORTFILESDIR=dir_name				
Where to install extra support files.				
-DMYSQL_DATADIR=dir_name				
The location of the MySQL data directory.				
This value can be set at server startup with the --datadir option.				
-DOPTIMIZER_TRACE=bool				
Whether to support optimizer tracing. See MySQL Internals: Tracing the Optimizer. This option was added in MySQL 5.6.3.				
-DSYSCONFDIR=dir_name				
The default my.cnf option file directory.				
This location cannot be set at server startup, but you can start the server with a given option file using the --defaults-file=file_name option, where file_name is the full path name to the file.				
-DODBC_INCLUDES=dir_name				
The location of the ODBC includes directory, and may be used while configuring Connector/ODBC.				
-DODBC_LIB_DIR=dir_name				
The location of the ODBC library directory, and may be used while configuring Connector/ODBC.				
Storage Engine Options				
Storage engines are built as plugins. You can build a plugin as a static module (compiled into the server) or a dynamic module (built as a dynamic library that must be installed into the server using the INSTALL PLUGIN statement or the --plugin-load option before it can be used). Some plugins might not support static or dynamic building.				
The MyISAM, MERGE, MEMORY, and CSV engines are mandatory (always compiled into the server) and need not be installed explicitly.				
To compile a storage engine statically into the server, use -DWITH_engine_STORAGE_ENGINE=1. Some permissible engine values are ARCHIVE, BLACKHOLE, EXAMPLE, FEDERATED, INNOBASE (InnoDB), PARTITION (partitioning support), and PERFSCHEMA (Performance Schema). Examples:				
-DWITH_INNOBASE_STORAGE_ENGINE=1				
-DWITH_ARCHIVE_STORAGE_ENGINE=1				
-DWITH_BLACKHOLE_STORAGE_ENGINE=1				
-DWITH_PERFSCHEMA_STORAGE_ENGINE=1				
To exclude a storage engine from the build, use -DWITHOUT_engine_STORAGE_ENGINE=1. Examples:				
-DWITHOUT_EXAMPLE_STORAGE_ENGINE=1				
-DWITHOUT_FEDERATED_STORAGE_ENGINE=1				
-DWITHOUT_PARTITION_STORAGE_ENGINE=1				
If neither -DWITH_engine_STORAGE_ENGINE nor -DWITHOUT_engine_STORAGE_ENGINE are specified for a given storage engine, the engine is built as a shared module, or excluded if it cannot be built as a shared module.				
Feature Options				
-DCOMPILATION_COMMENT=string				
A descriptive comment about the compilation environment.				
-DDEFAULT_CHARSET=charset_name				
The server character set. By default, MySQL uses the latin1 (cp1252 West European) character set.				
charset_name may be one of binary, armscii8, ascii, big5, cp1250, cp1251, cp1256, cp1257, cp850, cp852, cp866, cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8, greek, hebrew, hp8, keybcs2, koi8r, koi8u, latin1, latin2, latin5, latin7, macce, macroman, sjis, swe7, tis620, ucs2, ujis, utf8, utf8mb4, utf16, utf16le, utf32. The permissible character sets are listed in the cmake/character_sets.cmake file as the value of CHARSETS_AVAILABLE.				
This value can be set at server startup with the --character_set_server option.				
-DDEFAULT_COLLATION=collation_name				
The server collation. By default, MySQL uses latin1_swedish_ci. Use the SHOW COLLATION statement to determine which collations are available for each character set.				
This value can be set at server startup with the --collation_server option.				
-DENABLE_DEBUG_SYNC=bool				
Whether to compile the Debug Sync facility into the server. This facility is used for testing and debugging. This option is enabled by default, but has no effect unless MySQL is configured with debugging enabled. If debugging is enabled and you want to disable Debug Sync, use -DENABLE_DEBUG_SYNC=0.				
When compiled in, Debug Sync is disabled by default at runtime. To enable it, start mysqld with the --debug-sync-timeout=N option, where N is a timeout value greater than 0. (The default value is 0, which disables Debug Sync.) N becomes the default timeout for individual synchronization points.				
For a description of the Debug Sync facility and how to use synchronization points, see MySQL Internals: Test Synchronization.				
-DENABLE_DOWNLOADS=bool				
Whether to download optional files. For example, with this option enabled, CMake downloads the Google Test distribution that is used by the test suite to run unit tests.				
-DENABLE_DTRACE=bool				
Whether to include support for DTrace probes. For information about DTrace, wee Section 5.7, “Tracing mysqld Using DTrace”				
-DENABLE_GCOV=bool				
Whether to include gcov support (Linux only).				
-DENABLE_GPROF=bool				
Whether to enable gprof (optimized Linux builds only). This option was added in MySQL 5.6.6.				
-DENABLED_LOCAL_INFILE=bool				
Whether to enable LOCAL capability in the client library for LOAD DATA INFILE.				
This option controls client-side LOCAL capability, but the capability can be set on the server side at server startup with the --local-infile option. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”.				
-DENABLED_PROFILING=bool				
Whether to enable query profiling code (for the SHOW PROFILE and SHOW PROFILES statements).				
-DIGNORE_AIO_CHECK=bool				
If the -DBUILD_CONFIG=mysql_release option is given on Linux, the libaio library must be linked in by default. If you do not have libaio or do not want to install it, you can suppress the check for it by specifying -DIGNORE_AIO_CHECK=1. This option was added in MySQL 5.6.1.				
-DMYSQL_MAINTAINER_MODE=bool				
Whether to enable a MySQL maintainer-specific development environment. If enabled, this option causes compiler warnings to become errors.				
-DMYSQL_PROJECT_NAME=name				
For Windows or Mac OS X, the project name to incorporate into the project file name. This option was added in MySQL 5.6.5.				
-DMYSQL_TCP_PORT=port_num				
The port number on on which the server listens for TCP/IP connections. The default is 3306.				
This value can be set at server startup with the --port option.				
-DMYSQL_UNIX_ADDR=file_name				
The Unix socket file path on which the server listens for socket connections. This must be an absolute path name. The default is /tmp/mysql.sock.				
This value can be set at server startup with the --socket option.				
-DWITH_DEBUG=bool				
Whether to include debugging support.				
Configuring MySQL with debugging support enables you to use the --debug="d,parser_debug" option when you start the server. This causes the Bison parser that is used to process SQL statements to dump a parser trace to the server's standard error output. Typically, this output is written to the error log.				
-DWITH_DEFAULT_COMPILER_OPTIONS=bool				
Whether to use the flags from cmake/build_configurations/compiler_options.cmake. This option was added in MySQL 5.6.6.				
-DWITH_DEFAULT_FEATURE_SET=bool				
Whether to use the flags from cmake/build_configurations/feature_set.cmake. This option was added in MySQL 5.6.6.				
-DWITH_EMBEDDED_SERVER=bool				
Whether to build the libmysqld embedded server library.				
-DWITH_EXTRA_CHARSETS=name				
Which extra character sets to include:				
all: All character sets. This is the default.				
complex: Complex character sets.				
none: No extra character sets.				
-DWITH_LIBEDIT=bool				
Whether to use the libedit library bundled with the distribution.				
-DWITH_LIBWRAP=bool				
Whether to include libwrap (TCP wrappers) support.				
-DWITH_READLINE=bool				
Whether to use the readline library bundled with the distribution. This option was removed in MySQL 5.6.5 because readline is no longer bundled.				
-DWITH_SSL=ssl_type				
The type of SSL support to include, if any:				
no: No SSL support. This is the default before MySQL 5.6.6. As of 5.6.6, this is no longer a permitted value and the default is bundled.				
yes: Use the system SSL library if present, else the library bundled with the distribution.				
bundled: Use the SSL library bundled with the distribution. This is the default as of MySQL 5.6.6.				
system: Use the system SSL library.				
path_name: As of MySQL 5.6.7, it is permitted to specify the path name to the OpenSSL installation to use. This can be useful instead of a value of system when CMake detects an older or incorrect installed OpenSSL version. (Another permitted way to do the same thing is to set the CMAKE_PREFIX_PATH option to path_name.)				
For information about using SSL support, see Section 6.3.9, “Using SSL for Secure Connections”.				
-DWITH_ZLIB=zlib_type				
Some features require that the server be built with compression library support, such as the COMPRESS() and UNCOMPRESS() functions, and compression of the client/server protocol. The WITH_ZLIB indicates the source of zlib support:				
bundled: Use the zlib library bundled with the distribution.				
system: Use the system zlib library. This is the default.				
-DWITH_UNIXODBC=1				
Enables unixODBC support, for Connector/ODBC.				
Compiler Flags				
To specify compiler flags, set the CFLAGS and CXXFLAGS environment variables before running CMake. Example:				
shell> CFLAGS=-DHAVE_EMBEDDED_PRIVILEGE_CONTROL				
shell> CXXFLAGS=-DHAVE_EMBEDDED_PRIVILEGE_CONTROL				
shell> export CFLAGS CXXFLAGS				
shell> cmake [options]				
The following flags control configuration features:				
HAVE_EMBEDDED_PRIVILEGE_CONTROL				
By default, authentication for connections to the embedded server is disabled. To enable connection authentication, define this flag.				
2.9.5. Dealing with Problems Compiling MySQL				
The solution to many problems involves reconfiguring. If you do reconfigure, take note of the following:				
If CMake is run after it has previously been run, it may use information that was gathered during its previous invocation. This information is stored in CMakeCache.txt. When CMake starts up, it looks for that file and reads its contents if it exists, on the assumption that the information is still correct. That assumption is invalid when you reconfigure.				
Each time you run CMake, you must run make again to recompile. However, you may want to remove old object files from previous builds first because they were compiled using different configuration options.				
To prevent old object files or configuration information from being used, run these commands on Unix before re-running CMake:				
shell> make clean				
shell> rm CMakeCache.txt				
Or, on Windows:				
shell> devenv MySQL.sln /clean				
shell> del CMakeCache.txt				
If you build out of the source tree, remove and recreate your build directory before re-running CMake. For instructions on building outside of the source tree, see How to Build MySQL Server with CMake.				
On some systems, warnings may occur due to differences in system include files. The following list describes other problems that have been found to occur most often when compiling MySQL:				
To define flags to be used by your C or C++ compilers, specify them using the CFLAGS and CXXFLAGS environment variables. You can also specify the compiler names this way using CC and CXX. For example:				
shell> CC=gcc				
shell> CFLAGS=-O3				
shell> CXX=g++				
shell> CXXFLAGS=-O3				
shell> export CC CFLAGS CXX CXXFLAGS				
To see what flags you might need to specify, invoke mysql_config with the --cflags and --cxxflags options.				
If compilation fails, check whether the MYSQL_MAINTAINER_MODE option is enabled. This mode causes compiler warnings to become errors, so disabling it may enable compilation to proceed.				
If your compile fails with errors such as any of the following, you must upgrade your version of make to GNU make:				
make: Fatal error in reader: Makefile, line 18:				
Badly formed macro assignment				
Or:				
make: file `Makefile' line 18: Must be a separator (:				
Or:				
pthread.h: No such file or directory				
Solaris and FreeBSD are known to have troublesome make programs.				
GNU make 3.75 is known to work.				
The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not need to create sql_yacc.cc because MySQL comes with a pregenerated copy. However, if you do need to re-create it, you might encounter this error:				
"sql_yacc.yy", line xxx fatal: default action causes potential...				
This is a sign that your version of yacc is deficient. You probably need to install bison (the GNU version of yacc) and use that instead.				
Versions of bison older than 1.75 may report this error:				
sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded				
The maximum table size is not actually exceeded; the error is caused by bugs in older versions of bison.				
For information about acquiring or updating tools, see the system requirements in Section 2.9, “Installing MySQL from Source”.				
2.9.6. MySQL Configuration and Third-Party Tools				
Third-party tools that need to determine the MySQL version from the MySQL source can read the VERSION file in the top-level source directory. The file lists the pieces of the version separately. For example, if the version is 5.5.8, the file looks like this:				
MYSQL_VERSION_MAJOR=5				
MYSQL_VERSION_MINOR=5				
MYSQL_VERSION_PATCH=8				
MYSQL_VERSION_EXTRA=				
If the source is not for a General Availability (GA) release, the MYSQL_VERSION_EXTRA value will be nonempty. For example, the value for a Release Candidate release would look like this:				
MYSQL_VERSION_EXTRA=rc				
To construct a five-digit number from the version components, use this formula:				
MYSQL_VERSION_MAJOR*10000 + MYSQL_VERSION_MINOR*100 + MYSQL_VERSION_PATCH				
2.10. Postinstallation Setup and Testing				
After installing MySQL, there are some issues that you should address. For example, on Unix, you should initialize the data directory and create the MySQL grant tables. On all platforms, an important security concern is that the initial accounts in the grant tables have no passwords. You should assign passwords to prevent unauthorized access to the MySQL server. Optionally, you can create time zone tables to enable recognition of named time zones.				
The following sections include postinstallation procedures that are specific to Windows systems and to Unix systems. Another section, Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”, applies to all platforms; it describes what to do if you have trouble getting the server to start. Section 2.10.2, “Securing the Initial MySQL Accounts”, also applies to all platforms. You should follow its instructions to make sure that you have properly protected your MySQL accounts by assigning passwords to them.				
When you are ready to create additional user accounts, you can find information on the MySQL access control system and account management in Section 6.2, “The MySQL Access Privilege System”, and Section 6.3, “MySQL User Account Management”.				
2.10.1. Unix Postinstallation Procedures				
After installing MySQL on Unix, you must initialize the grant tables, start the server, and make sure that the server works satisfactorily. You may also wish to arrange for the server to be started and stopped automatically when your system starts and stops. You should also assign passwords to the accounts in the grant tables.				
On Unix, the grant tables are set up by the mysql_install_db program. For some installation methods, this program is run for you automatically if an existing database cannot be found.				
If you install MySQL on Linux using RPM distributions, the server RPM runs mysql_install_db.				
Using the native packaging system on many platforms, including Debian Linux, Ubuntu Linux, Gentoo Linux and others, the mysql_install_db command is run for you.				
If you install MySQL on Mac OS X using a PKG distribution, the installer runs mysql_install_db.				
For other platforms and installation types, including generic binary and source installs, you will need to run mysql_install_db yourself.				
The following procedure describes how to initialize the grant tables (if that has not previously been done) and start the server. It also suggests some commands that you can use to test whether the server is accessible and working properly. For information about starting and stopping the server automatically, see Section 2.10.1.2, “Starting and Stopping MySQL Automatically”.				
After you complete the procedure and have the server running, you should assign passwords to the accounts created by mysql_install_db and perhaps restrict access to test databases. For instructions, see Section 2.10.2, “Securing the Initial MySQL Accounts”.				
In the examples shown here, the server runs under the user ID of the mysql login account. This assumes that such an account exists. Either create the account if it does not exist, or substitute the name of a different existing login account that you plan to use for running the server. For information about creating the account, see Creating a mysql System User and Group, in Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”.				
Change location into the top-level directory of your MySQL installation, represented here by BASEDIR:				
shell> cd BASEDIR				
BASEDIR is the installation directory for your MySQL instance. It is likely to be something like /usr/local/mysql or /usr/local. The following steps assume that you have changed location to this directory.				
You will find several files and subdirectories in the BASEDIR directory. The most important for installation purposes are the bin and scripts subdirectories:				
The bin directory contains client programs and the server. You should add the full path name of this directory to your PATH environment variable so that your shell finds the MySQL programs properly. See Section 2.12, “Environment Variables”.				
The scripts directory contains the mysql_install_db script used to initialize the mysql database containing the grant tables that store the server access permissions.				
If necessary, ensure that the distribution contents are accessible to mysql. If you installed the distribution as mysql, no further action is required. If you installed the distribution as root, its contents will be owned by root. Change its ownership to mysql by executing the following commands as root in the installation directory. The first command changes the owner attribute of the files to the mysql user. The second changes the group attribute to the mysql group.				
shell> chown -R mysql .				
shell> chgrp -R mysql .				
If necessary, run the mysql_install_db program to set up the initial MySQL grant tables containing the privileges that determine how users are permitted to connect to the server. You will need to do this if you used a distribution type for which the installation procedure does not run the program for you.				
shell> scripts/mysql_install_db --user=mysql				
Typically, mysql_install_db needs to be run only the first time you install MySQL, so you can skip this step if you are upgrading an existing installation, However, mysql_install_db does not overwrite any existing privilege tables, so it should be safe to run in any circumstances.				
It might be necessary to specify other options such as --basedir or --datadir if mysql_install_db does not identify the correct locations for the installation directory or data directory. For example:				
shell> scripts/mysql_install_db --user=mysql \				
--basedir=/opt/mysql/mysql \				
--datadir=/opt/mysql/mysql/data				
The mysql_install_db script creates the server's data directory with mysql as the owner. Under the data directory, it creates directories for the mysql database that holds the grant tables and the test database that you can use to test MySQL. The script also creates privilege table entries for root and anonymous-user accounts. The accounts have no passwords initially. Section 2.10.2, “Securing the Initial MySQL Accounts”, describes the initial privileges. Briefly, these privileges permit the MySQL root user to do anything, and permit anybody to create or use databases with a name of test or starting with test_. See Section 6.2, “The MySQL Access Privilege System”, for a complete listing and description of the grant tables.				
For a more secure installation, invoke mysql_install_db with the --random-passwords option. This causes it to assign a random password to the MySQL root accounts, set the “password expired” flag for those accounts, and remove the anonymous-user MySQL accounts. For additional details, see Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”. (Install operations using RPMs for Unbreakable Linux Network are unaffected because they do not use mysql_install_db.)				
It is important to make sure that the database directories and files are owned by the mysql login account so that the server has read and write access to them when you run it later. To ensure this if you run mysql_install_db as root, include the --user option as shown. Otherwise, you should execute the script while logged in as mysql, in which case you can omit the --user option from the command.				
If you do not want to have the test database, you can remove it after starting the server, using the instructions in Section 2.10.2, “Securing the Initial MySQL Accounts”.				
If you have trouble with mysql_install_db at this point, see Section 2.10.1.1, “Problems Running mysql_install_db”.				
Most of the MySQL installation can be owned by root if you like. The exception is that the data directory must be owned by mysql. To accomplish this, run the following commands as root in the installation directory:				
shell> chown -R root .				
shell> chown -R mysql data				
If the plugin directory (the directory named by the plugin_dir system variable) is writable by the server, it may be possible for a user to write executable code to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making plugin_dir read only to the server or by setting --secure-file-priv to a directory where SELECT writes can be made safely.				
If you installed MySQL using a source distribution, you may want to optionally copy one of the provided configuration files from the support-files directory into your /etc directory. There are different sample configuration files for different use cases, server types, and CPU and RAM configurations. If you want to use one of these standard files, you should copy it to /etc/my.cnf, or /etc/mysql/my.cnf and edit and check the configuration before starting your MySQL server for the first time.				
If you do not copy one of the standard configuration files, the MySQL server will be started with the default settings.				
If you want MySQL to start automatically when you boot your machine, you can copy support-files/mysql.server to the location where your system has its startup files. More information can be found in the mysql.server script itself, and in Section 2.10.1.2, “Starting and Stopping MySQL Automatically”.				
Start the MySQL server:				
shell> bin/mysqld_safe --user=mysql &				
It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure this if you run mysqld_safe as root, include the --user option as shown. Otherwise, you should execute the script while logged in as mysql, in which case you can omit the --user option from the command.				
For further instructions for running MySQL as an unprivileged user, see Section 6.1.5, “How to Run MySQL as a Normal User”.				
If the command fails immediately and prints mysqld ended, look for information in the error log (which by default is the host_name.err file in the data directory).				
If you neglected to create the grant tables by running mysql_install_db before proceeding to this step, the following message appears in the error log file when you start the server:				
mysqld: Can't find file: 'host.frm'				
This error also occurs if you run mysql_install_db as root without the --user option. Remove the data directory and run mysql_install_db with the --user option as described previously.				
If you have other problems starting the server, see Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”. For more information about mysqld_safe, see Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.				
Use mysqladmin to verify that the server is running. The following commands provide simple tests to check whether the server is up and responding to connections:				
shell> bin/mysqladmin version				
shell> bin/mysqladmin variables				
The output from mysqladmin version varies slightly depending on your platform and version of MySQL, but should be similar to that shown here:				
shell> bin/mysqladmin version				
mysqladmin Ver 14.12 Distrib 5.6.12, for pc-linux-gnu on i686				
...				
Server version 5.6.12				
Protocol version 10				
Connection Localhost via UNIX socket				
UNIX socket /var/lib/mysql/mysql.sock				
Uptime: 14 days 5 hours 5 min 21 sec				
Threads: 1 Questions: 366 Slow queries: 0				
Opens: 0 Flush tables: 1 Open tables: 19				
Queries per second avg: 0.000				
To see what else you can do with mysqladmin, invoke it with the --help option.				
Verify that you can shut down the server:				
shell> bin/mysqladmin -u root shutdown				
Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld directly. For example:				
shell> bin/mysqld_safe --user=mysql &				
If mysqld_safe fails, see Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”.				
Run some simple tests to verify that you can retrieve information from the server. The output should be similar to what is shown here:				
shell> bin/mysqlshow				
+--------------------+				
Databases				
+--------------------+				
information_schema				
mysql				
test				
+--------------------+				
shell> bin/mysqlshow mysql				
Database: mysql				
+---------------------------+				
Tables				
+---------------------------+				
columns_priv				
db				
event				
func				
help_category				
help_keyword				
help_relation				
help_topic				
host				
plugin				
proc				
procs_priv				
servers				
tables_priv				
time_zone				
time_zone_leap_second				
time_zone_name				
time_zone_transition				
time_zone_transition_type				
user				
+---------------------------+				
shell> bin/mysql -e "SELECT Host,Db,User FROM db" mysql				
+------+--------+------+				
host	db	user		
+------+--------+------+				
%	test			
%	test_%			
+------+--------+------+				
There is a benchmark suite in the sql-bench directory (under the MySQL installation directory) that you can use to compare how MySQL performs on different platforms. The benchmark suite is written in Perl. It requires the Perl DBI module that provides a database-independent interface to the various databases, and some other additional Perl modules:				
DBI				
DBD::mysql				
Data::Dumper				
Data::ShowTable				
These modules can be obtained from CPAN (http://www.cpan.org/). See also Section 2.13.1, “Installing Perl on Unix”.				
The sql-bench/Results directory contains the results from many runs against different databases and platforms. To run all tests, execute these commands:				
shell> cd sql-bench				
shell> perl run-all-tests				
If you do not have the sql-bench directory, you probably installed MySQL using RPM files other than the source RPM. (The source RPM includes the sql-bench benchmark directory.) In this case, you must first install the benchmark suite before you can use it. There are separate benchmark RPM files named mysql-bench-VERSION.i386.rpm that contain benchmark code and data.				
If you have a source distribution, there are also tests in its tests subdirectory that you can run. For example, to run auto_increment.tst, execute this command from the top-level directory of your source distribution:				
shell> mysql -vvf test < ./tests/auto_increment.tst				
The expected result of the test can be found in the ./tests/auto_increment.res file.				
At this point, you should have the server running. However, none of the initial MySQL accounts have a password, and the server permits permissive access to test databases. To tighten security, follow the instructions in Section 2.10.2, “Securing the Initial MySQL Accounts”.				
The MySQL 5.6 installation procedure creates time zone tables in the mysql database but does not populate them. To do so, use the instructions in Section 10.6, “MySQL Server Time Zone Support”.				
To make it more convenient to invoke programs installed in the bin directory under the installation directory, you can add that directory to your PATH environment variable setting. That enables you to run a program by typing only its name, not its entire path name. See Section 4.2.4, “Setting Environment Variables”.				
You can set up new accounts using the bin/mysql_setpermission script if you install the DBI and DBD::mysql Perl modules. See Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”. For Perl module installation instructions, see Section 2.13, “Perl Installation Notes”.				
If you would like to use mysqlaccess and have the MySQL distribution in some nonstandard location, you must change the location where mysqlaccess expects to find the mysql client. Edit the bin/mysqlaccess script at approximately line 18. Search for a line that looks like this:				
$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable				
Change the path to reflect the location where mysql actually is stored on your system. If you do not do this, a Broken pipe error will occur when you run mysqlaccess.				
2.10.1.1. Problems Running mysql_install_db				
The purpose of the mysql_install_db script is to generate new MySQL privilege tables. It does not overwrite existing MySQL privilege tables, and it does not affect any other data.				
If you want to re-create your privilege tables, first stop the mysqld server if it is running. Then rename the mysql directory under the data directory to save it, and then run mysql_install_db. Suppose that your current directory is the MySQL installation directory and that mysql_install_db is located in the bin directory and the data directory is named data. To rename the mysql database and re-run mysql_install_db, use these commands.				
shell> mv data/mysql data/mysql.old				
shell> scripts/mysql_install_db --user=mysql				
When you run mysql_install_db, you might encounter the following problems:				
mysql_install_db fails to install the grant tables				
You may find that mysql_install_db fails to install the grant tables and terminates after displaying the following messages:				
Starting mysqld daemon with databases from XXXXXX				
mysqld ended				
In this case, you should examine the error log file very carefully. The log should be located in the directory XXXXXX named by the error message and should indicate why mysqld did not start. If you do not understand what happened, include the log when you post a bug report. See Section 1.7, “How to Report Bugs or Problems”.				
There is a mysqld process running				
This indicates that the server is running, in which case the grant tables have probably been created already. If so, there is no need to run mysql_install_db at all because it needs to be run only once (when you install MySQL the first time).				
Installing a second mysqld server does not work when one server is running				
This can happen when you have an existing MySQL installation, but want to put a new installation in a different location. For example, you might have a production installation, but you want to create a second installation for testing purposes. Generally the problem that occurs when you try to run a second server is that it tries to use a network interface that is in use by the first server. In this case, you should see one of the following error messages:				
Can't start server: Bind on TCP/IP port:				
Address already in use				
Can't start server: Bind on unix socket...				
For instructions on setting up multiple servers, see Section 5.6, “Running Multiple MySQL Instances on One Machine”.				
You do not have write access to the /tmp directory				
If you do not have write access to create temporary files or a Unix socket file in the default location (the /tmp directory) or the TMP_DIR environment variable, if it has been set, an error occurs when you run mysql_install_db or the mysqld server.				
You can specify different locations for the temporary directory and Unix socket file by executing these commands prior to starting mysql_install_db or mysqld, where some_tmp_dir is the full path name to some directory for which you have write permission:				
shell> TMPDIR=/some_tmp_dir/				
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock				
shell> export TMPDIR MYSQL_UNIX_PORT				
Then you should be able to run mysql_install_db and start the server with these commands:				
shell> scripts/mysql_install_db --user=mysql				
shell> bin/mysqld_safe --user=mysql &				
If mysql_install_db is located in the scripts directory, modify the first command to scripts/mysql_install_db.				
See Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”, and Section 2.12, “Environment Variables”.				
There are some alternatives to running the mysql_install_db script provided in the MySQL distribution:				
If you want the initial privileges to be different from the standard defaults, you can modify mysql_install_db before you run it. However, it is preferable to use GRANT and REVOKE to change the privileges after the grant tables have been set up. In other words, you can run mysql_install_db, and then use mysql -u root mysql to connect to the server as the MySQL root user so that you can issue the necessary GRANT and REVOKE statements.				
If you want to install MySQL on several machines with the same privileges, you can put the GRANT and REVOKE statements in a file and execute the file as a script using mysql after running mysql_install_db. For example:				
shell> scripts/mysql_install_db --user=mysql				
shell> bin/mysql -u root < your_script_file				
By doing this, you can avoid having to issue the statements manually on each machine.				
It is possible to re-create the grant tables completely after they have previously been created. You might want to do this if you are just learning how to use GRANT and REVOKE and have made so many modifications after running mysql_install_db that you want to wipe out the tables and start over.				
To re-create the grant tables, remove all the .frm, .MYI, and .MYD files in the mysql database directory. Then run the mysql_install_db script again.				
You can start mysqld manually using the --skip-grant-tables option and add the privilege information yourself using mysql:				
shell> bin/mysqld_safe --user=mysql --skip-grant-tables &				
shell> bin/mysql mysql				
From mysql, manually execute the SQL commands contained in mysql_install_db. Make sure that you run mysqladmin flush-privileges or mysqladmin reload afterward to tell the server to reload the grant tables.				
Note that by not using mysql_install_db, you not only have to populate the grant tables manually, you also have to create them first.				
2.10.1.2. Starting and Stopping MySQL Automatically				
Generally, you start the mysqld server in one of these ways:				
Invoke mysqld directly. This works on any platform.				
Run the MySQL server as a Windows service. The service can be set to start the server automatically when Windows starts, or as a manual service that you start on request. For instructions, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.				
Invoke mysqld_safe, which tries to determine the proper options for mysqld and then runs it with those options. This script is used on Unix and Unix-like systems. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.				
Invoke mysql.server. This script is used primarily at system startup and shutdown on systems that use System V-style run directories (that is, /etc/init.d and run-level specific directories), where it usually is installed under the name mysql. The mysql.server script starts the server by invoking mysqld_safe. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.				
On Mac OS X, install a separate MySQL Startup Item package to enable the automatic startup of MySQL on system startup. The Startup Item starts the server by invoking mysql.server. See Section 2.4.3, “Installing the MySQL Startup Item”, for details. A MySQL Preference Pane also provides control for starting and stopping MySQL through the System Preferences, see Section 2.4.4, “Installing and Using the MySQL Preference Pane”.				
Use the Solaris/OpenSolaris service management framework (SMF) system to initiate and control MySQL startup. For more information, see Section 2.6.2, “Installing MySQL on OpenSolaris using IPS”.				
The mysqld_safe and mysql.server scripts, Windows server, Solaris/OpenSolaris SMF, and the Mac OS X Startup Item (or MySQL Preference Pane) can be used to start the server manually, or automatically at system startup time. mysql.server and the Startup Item also can be used to stop the server.				
To start or stop the server manually using the mysql.server script, invoke it with start or stop arguments:				
shell> mysql.server start				
shell> mysql.server stop				
Before mysql.server starts the server, it changes location to the MySQL installation directory, and then invokes mysqld_safe. If you want the server to run as some specific user, add an appropriate user option to the [mysqld] group of the /etc/my.cnf option file, as shown later in this section. (It is possible that you will need to edit mysql.server if you've installed a binary distribution of MySQL in a nonstandard location. Modify it to change location into the proper directory before it runs mysqld_safe. If you do this, your modified version of mysql.server may be overwritten if you upgrade MySQL in the future, so you should make a copy of your edited version that you can reinstall.)				
mysql.server stop stops the server by sending a signal to it. You can also stop the server manually by executing mysqladmin shutdown.				
To start and stop MySQL automatically on your server, you need to add start and stop commands to the appropriate places in your /etc/rc* files.				
If you use the Linux server RPM package (MySQL-server-VERSION.rpm), or a native Linux package installation, the mysql.server script may be installed in the /etc/init.d directory with the name mysql. See Section 2.5.1, “Installing MySQL from RPM Packages on Linux”, for more information on the Linux RPM packages.				
Some vendors provide RPM packages that install a startup script under a different name such as mysqld.				
If you install MySQL from a source distribution or using a binary distribution format that does not install mysql.server automatically, you can install it manually. The script can be found in the support-files directory under the MySQL installation directory or in a MySQL source tree.				
To install mysql.server manually, copy it to the /etc/init.d directory with the name mysql, and then make it executable. Do this by changing location into the appropriate directory where mysql.server is located and executing these commands:				
shell> cp mysql.server /etc/init.d/mysql				
shell> chmod +x /etc/init.d/mysql				
Note				
Older Red Hat systems use the /etc/rc.d/init.d directory rather than /etc/init.d. Adjust the preceding commands accordingly. Alternatively, first create /etc/init.d as a symbolic link that points to /etc/rc.d/init.d:				
shell> cd /etc				
shell> ln -s rc.d/init.d .				
After installing the script, the commands needed to activate it to run at system startup depend on your operating system. On Linux, you can use chkconfig:				
shell> chkconfig --add mysql				
On some Linux systems, the following command also seems to be necessary to fully enable the mysql script:				
shell> chkconfig --level 345 mysql on				
On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8) manual page states that scripts in this directory are executed only if their basename matches the *.sh shell file name pattern. Any other files or directories present within the directory are silently ignored. In other words, on FreeBSD, you should install the mysql.server script as /usr/local/etc/rc.d/mysql.server.sh to enable automatic startup.				
As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/init.d/boot.local to start additional services on startup. To start up MySQL using this method, you could append a command like the one following to the appropriate startup file:				
/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'				
For other systems, consult your operating system documentation to see how to install startup scripts.				
You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf file might look like this:				
[mysqld]				
datadir=/usr/local/mysql/var				
socket=/var/tmp/mysql.sock				
port=3306				
user=mysql				
[mysql.server]				
basedir=/usr/local/mysql				
The mysql.server script supports the following options: basedir, datadir, and pid-file. If specified, they must be placed in an option file, not on the command line. mysql.server supports only start and stop as command-line arguments.				
The following table shows which option groups the server and each startup script read from option files.				
Table 2.13. MySQL Startup scripts and supported server option groups				
Script	Option Groups			
---	---			
mysqld	[mysqld], [server], [mysqld-major_version]			
mysqld_safe	[mysqld], [server], [mysqld_safe]			
mysql.server	[mysqld], [mysql.server], [server]			
[mysqld-major_version] means that groups with names like [mysqld-5.5] and [mysqld-5.6] are read by servers having versions 5.5.x, 5.6.x, and so forth. This feature can be used to specify options that can be read only by servers within a given release series.				
For backward compatibility, mysql.server also reads the [mysql_server] group and mysqld_safe also reads the [safe_mysqld] group. However, you should update your option files to use the [mysql.server] and [mysqld_safe] groups instead when using MySQL 5.6.				
For more information on MySQL configuration files and their structure and contents, see Section 4.2.3.3, “Using Option Files”.				
2.10.1.3. Starting and Troubleshooting the MySQL Server				
This section provides troubleshooting suggestions for problems starting the server on Unix. If you are using Windows, see Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”.				
If you have problems starting the server, here are some things to try:				
Check the error log to see why the server does not start. Log files are located in the data directory (typically C:\Program Files\MySQL\MySQL Server 5.6\data on Windows, /usr/local/mysql/data for a Unix binary distribution, and /usr/local/var for a Unix source distribution). Look in the data directory for files with names of the form host_name.err and host_name.log, where host_name is the name of your server host. Then examine the last few lines of these files. On Unix, use tail to display them:				
shell> tail host_name.err				
shell> tail host_name.log				
Specify any special options needed by the storage engines you are using. You can create a my.cnf file and specify startup options for the engines that you plan to use. If you are going to use storage engines that support transactional tables (InnoDB, NDB), be sure that you have them configured the way you want before starting the server. If you are using InnoDB tables, see Section 14.2.1.2, “Configuring InnoDB” for guidelines and Section 14.2.6, “InnoDB Startup Options and System Variables” for option syntax.				
Although storage engines use default values for options that you omit, Oracle recommends that you review the available options and specify explicit values for any options whose defaults are not appropriate for your installation.				
Make sure that the server knows where to find the data directory. The mysqld server uses this directory as its current directory. This is where it expects to find databases and where it expects to write log files. The server also writes the pid (process ID) file in the data directory.				
The default data directory location is hardcoded when the server is compiled. To determine what the default path settings are, invoke mysqld with the --verbose and --help options. If the data directory is located somewhere else on your system, specify that location with the --datadir option to mysqld or mysqld_safe, on the command line or in an option file. Otherwise, the server will not work properly. As an alternative to the --datadir option, you can specify mysqld the location of the base directory under which MySQL is installed with the --basedir, and mysqld looks for the data directory there.				
To check the effect of specifying path options, invoke mysqld with those options followed by the --verbose and --help options. For example, if you change location into the directory where mysqld is installed and then run the following command, it shows the effect of starting the server with a base directory of /usr/local:				
shell> ./mysqld --basedir=/usr/local --verbose --help				
You can specify other options such as --datadir as well, but --verbose and --help must be the last options.				
Once you determine the path settings you want, start the server without --verbose and --help.				
If mysqld is currently running, you can find out what path settings it is using by executing this command:				
shell> mysqladmin variables				
Or:				
shell> mysqladmin -h host_name variables				
host_name is the name of the MySQL server host.				
Make sure that the server can access the data directory. The ownership and permissions of the data directory and its contents must allow the server to read and modify them.				
If you get Errcode 13 (which means Permission denied) when starting mysqld, this means that the privileges of the data directory or its contents do not permit server access. In this case, you change the permissions for the involved files and directories so that the server has the right to use them. You can also start the server as root, but this raises security issues and should be avoided.				
On Unix, change location into the data directory and check the ownership of the data directory and its contents to make sure the server has access. For example, if the data directory is /usr/local/mysql/var, use this command:				
shell> ls -la /usr/local/mysql/var				
If the data directory or its files or subdirectories are not owned by the login account that you use for running the server, change their ownership to that account. If the account is named mysql, use these commands:				
shell> chown -R mysql /usr/local/mysql/var				
shell> chgrp -R mysql /usr/local/mysql/var				
Even with correct ownership, MySQL might fail to start up if there is other security software running on your system that manages application access to various parts of the file system. In this case, reconfigure that software to enable mysqld to access the directories it uses during normal operation.				
Verify that the network interfaces the server wants to use are available.				
If either of the following errors occur, it means that some other program (perhaps another mysqld server) is using the TCP/IP port or Unix socket file that mysqld is trying to use:				
Can't start server: Bind on TCP/IP port: Address already in use				
Can't start server: Bind on unix socket...				
Use ps to determine whether you have another mysqld server running. If so, shut down the server before starting mysqld again. (If another server is running, and you really want to run multiple servers, you can find information about how to do so in Section 5.6, “Running Multiple MySQL Instances on One Machine”.)				
If no other server is running, execute the command telnet your_host_name tcp_ip_port_number. (The default MySQL port number is 3306.) Then press Enter a couple of times. If you do not get an error message like telnet: Unable to connect to remote host: Connection refused, some other program is using the TCP/IP port that mysqld is trying to use. Track down what program this is and disable it, or tell mysqld to listen to a different port with the --port option. In this case, specify the same non-default port number for client programs when connecting to the server using TCP/IP.				
Another reason the port might be inaccessible is that you have a firewall running that blocks connections to it. If so, modify the firewall settings to permit access to the port.				
If the server starts but you cannot connect to it, make sure that you have an entry in /etc/hosts that looks like this:				
127.0.0.1 localhost				
If you cannot get mysqld to start, try to make a trace file to find the problem by using the --debug option. See MySQL Internals: Porting to Other Systems.				
2.10.2. Securing the Initial MySQL Accounts				
Part of the MySQL installation process is to set up the mysql database that contains the grant tables:				
Windows distributions contain preinitialized grant tables.				
On Unix, the mysql_install_db program populates the grant tables. Some installation methods run this program for you. Others require that you execute it manually. For details, see Section 2.10.1, “Unix Postinstallation Procedures”.				
The mysql.user grant table defines the initial MySQL user accounts and their access privileges:				
Some accounts have the user name root. These are superuser accounts that have all privileges and can do anything. The initial root account passwords are empty, so anyone can connect to the MySQL server as root without a password and be granted all privileges.				
On Windows, root accounts are created that permit connections from the local host only. Connections can be made by specifying the host name localhost, the IP address 127.0.0.1, or the IPv6 address ::1. If the user selects the Enable root access from remote machines option during installation, the Windows installer creates another root account that permits connections from any host.				
On Unix, each root account permits connections from the local host. Connections can be made by specifying the host name localhost, the IP address 127.0.0.1, the IPv6 address ::1, or the actual host name or IP address.				
An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account. However, this fails if the server is run with the --skip-name-resolve option, so the 127.0.0.1 account is useful in that case. The ::1 account is used for IPv6 connections.				
Some accounts are for anonymous users. These have an empty user name. The anonymous accounts have no password, so anyone can use them to connect to the MySQL server.				
On Windows, there is one anonymous account that permits connections from the local host. Connections can be made by specifying a host name of localhost.				
On Unix, each anonymous account permits connections from the local host. Connections can be made by specifying a host name of localhost for one of the accounts, or the actual host name or IP address for the other.				
To display which accounts exist in the mysql.user table and check whether their passwords are empty, use the following statement:				
mysql> SELECT User, Host, Password FROM mysql.user;				
+------+--------------------+----------+				
User	Host	Password		
+------+--------------------+----------+				
root	localhost			
root	myhost.example.com			
root	127.0.0.1			
root	::1			
	localhost			
	myhost.example.com			
+------+--------------------+----------+				
This output indicates that there are several root and anonymous-user accounts, none of which have passwords. The output might differ on your system, but the presence of accounts with empty passwords means that your MySQL installation is unprotected until you do something about it:				
You should assign a password to each MySQL root account.				
If you want to prevent clients from connecting as anonymous users without a password, you should either assign a password to each anonymous account or else remove the accounts.				
In addition, the mysql.db table contains rows that permit all accounts to access the test database and other databases with names that start with test_. This is true even for accounts that otherwise have no special privileges such as the default anonymous accounts. This is convenient for testing but inadvisable on production servers. Administrators who want database access restricted only to accounts that have permissions granted explicitly for that purpose should remove these mysql.db table rows.				
The following instructions describe how to set up passwords for the initial MySQL accounts, first for the root accounts, then for the anonymous accounts. The instructions also cover how to remove the anonymous accounts, should you prefer not to permit anonymous access at all, and describe how to remove permissive access to test databases. Replace newpwd in the examples with the password that you want to use. Replace host_name with the name of the server host. You can determine this name from the output of the preceding SELECT statement. For the output shown, host_name is myhost.example.com.				
Note				
For additional information about setting passwords, see Section 6.3.5, “Assigning Account Passwords”. If you forget your root password after setting it, see Section C.5.4.1, “How to Reset the Root Password”.				
You might want to defer setting the passwords until later, to avoid the need to specify them while you perform additional setup or testing. However, be sure to set them before using your installation for production purposes.				
To set up additional accounts, see Section 6.3.2, “Adding User Accounts”.				
Assigning root Account Passwords				
The root account passwords can be set several ways. The following discussion demonstrates three methods:				
Use the SET PASSWORD statement				
Use the UPDATE statement				
Use the mysqladmin command-line client program				
To assign passwords using SET PASSWORD, connect to the server as root and issue a SET PASSWORD statement for each root account listed in the mysql.user table. Be sure to encrypt the password using the PASSWORD() function.				
For Windows, do this:				
shell> mysql -u root				
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');				
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('newpwd');				
mysql> SET PASSWORD FOR 'root'@'::1' = PASSWORD('newpwd');				
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('newpwd');				
The last statement is unnecessary if the mysql.user table has no root account with a host value of %.				
For Unix, do this:				
shell> mysql -u root				
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');				
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('newpwd');				
mysql> SET PASSWORD FOR 'root'@'::1' = PASSWORD('newpwd');				
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('newpwd');				
You can also use a single statement that assigns a password to all root accounts by using UPDATE to modify the mysql.user table directly. This method works on any platform:				
shell> mysql -u root				
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')				
-> WHERE User = 'root';				
mysql> FLUSH PRIVILEGES;				
The FLUSH statement causes the server to reread the grant tables. Without it, the password change remains unnoticed by the server until you restart it.				
To assign passwords to the root accounts using mysqladmin, execute the following commands:				
shell> mysqladmin -u root password "newpwd"				
shell> mysqladmin -u root -h host_name password "newpwd"				
Those commands apply both to Windows and to Unix. The double quotation marks around the password are not always necessary, but you should use them if the password contains spaces or other characters that are special to your command interpreter.				
The mysqladmin method of setting the root account passwords does not work for the 'root'@'127.0.0.1' or 'root'@'::1' account. Use the SET PASSWORD method shown earlier.				
After the root passwords have been set, you must supply the appropriate password whenever you connect as root to the server. For example, to shut down the server with mysqladmin, use this command:				
shell> mysqladmin -u root -p shutdown				
Enter password: (enter root password here)				
Assigning Anonymous Account Passwords				
The mysql commands in the following instructions include a -p option based on the assumption that you have set the root account passwords using the preceding instructions and must specify that password when connecting to the server.				
To assign passwords to the anonymous accounts, connect to the server as root, then use either SET PASSWORD or UPDATE. Be sure to encrypt the password using the PASSWORD() function.				
To use SET PASSWORD on Windows, do this:				
shell> mysql -u root -p				
Enter password: (enter root password here)				
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');				
To use SET PASSWORD on Unix, do this:				
shell> mysql -u root -p				
Enter password: (enter root password here)				
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');				
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('newpwd');				
To set the anonymous-user account passwords with a single UPDATE statement, do this (on any platform):				
shell> mysql -u root -p				
Enter password: (enter root password here)				
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')				
-> WHERE User = '';				
mysql> FLUSH PRIVILEGES;				
The FLUSH statement causes the server to reread the grant tables. Without it, the password change remains unnoticed by the server until you restart it.				
Removing Anonymous Accounts				
If you prefer to remove any anonymous accounts rather than assigning them passwords, do so as follows on Windows:				
shell> mysql -u root -p				
Enter password: (enter root password here)				
mysql> DROP USER ''@'localhost';				
On Unix, remove the anonymous accounts like this:				
shell> mysql -u root -p				
Enter password: (enter root password here)				
mysql> DROP USER ''@'localhost';				
mysql> DROP USER ''@'host_name';				
Securing Test Databases				
By default, the mysql.db table contains rows that permit access by any user to the test database and other databases with names that start with test_. (These rows have an empty User column value, which for access-checking purposes matches any user name.) This means that such databases can be used even by accounts that otherwise possess no privileges. If you want to remove any-user access to test databases, do so as follows:				
shell> mysql -u root -p				
Enter password: (enter root password here)				
mysql> DELETE FROM mysql.db WHERE Db LIKE 'test%';				
mysql> FLUSH PRIVILEGES;				
The FLUSH statement causes the server to reread the grant tables. Without it, the privilege change remains unnoticed by the server until you restart it.				
With the preceding change, only users who have global database privileges or privileges granted explicitly for the test database can use it. However, if you do not want the database to exist at all, drop it:				
mysql> DROP DATABASE test;				
Note				
On Windows, you can also perform the process described in this section during installation with MySQL Installer (see Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”). On other platforms, the MySQL distribution includes mysql_secure_installation, a command-line utility that automates much of the process of securing a MySQL installation. And MySQL Workbench is available on all platforms, and also offers the ability to manage user accounts (see Chapter 24, MySQL Workbench).				
2.11. Upgrading or Downgrading MySQL				
This section describes the steps to upgrade or downgrade a MySQL installation.				
Upgrading is a common procedure, as you pick up bug fixes within the same MySQL release series or significant features between major MySQL releases. You perform this procedure first on some test systems to make sure everything works smoothly, and then on the production systems.				
Downgrading is less common. Typically, you undo an upgrade because of some compatibility or performance issue that occurs on a production system, and was not uncovered during initial upgrade verification on the test systems. As with the upgrade procedure, perform and verify the downgrade procedure on some test systems first, before using it on a production system.				
2.11.1. Upgrading MySQL				
As a general rule, to upgrade from one release series to another, go to the next series rather than skipping a series. To upgrade from a release series previous to MySQL 5.5, upgrade to each successive release series in turn until you have reached MySQL 5.5, and then proceed with the upgrade to MySQL 5.6. For example, if you currently are running MySQL 5.1 and wish to upgrade to a newer series, upgrade to MySQL 5.5 first before upgrading to 5.6, and so forth. For information on upgrading to MySQL 5.5, see the MySQL 5.5 Reference Manual.				
To upgrade to MySQL 5.6, use the items in the following checklist as a guide:				
Before any upgrade, back up your databases, including the mysql database that contains the grant tables. See Section 7.2, “Database Backup Methods”.				
Read all the notes in Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”. These notes enable you to identify upgrade issues that apply to your current MySQL installation. Some incompatibilities discussed in that section require your attention before upgrading. Others require some action after upgrading.				
Read the Release Notes as well, which provide information about features that are new in MySQL 5.6 or differ from from those found in earlier MySQL releases.				
After upgrading to a new version of MySQL, run mysql_upgrade (see Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”). This program checks your tables, and attempts to repair them if necessary. It also updates your grant tables to make sure that they have the current structure so that you can take advantage of any new capabilities. (Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or features.)				
mysql_upgrade does not upgrade the contents of the help tables. For upgrade instructions, see Section 5.1.10, “Server-Side Help”.				
mysql_upgrade should not be used when the server is running with --gtid-mode=ON, since it may make changes in nontransactional system tables in the mysql database, many of which are MyISAM and cannot be changed to use a different storage engine. See GTID mode and mysql_upgrade.				
If you run MySQL Server on Windows, see Section 2.3.6, “Upgrading MySQL on Windows”.				
If you use replication, see Section 16.4.3, “Upgrading a Replication Setup”, for information on upgrading your replication setup.				
If you upgrade an installation originally produced by installing multiple RPM packages, it is best to upgrade all the packages, not just some. For example, if you previously installed the server and client RPMs, do not upgrade just the server RPM.				
If you have created a user-defined function (UDF) with a given name and upgrade MySQL to a version that implements a new built-in function with the same name, the UDF becomes inaccessible. To correct this, use DROP FUNCTION to drop the UDF, and then use CREATE FUNCTION to re-create the UDF with a different nonconflicting name. The same is true if the new version of MySQL implements a built-in function with the same name as an existing stored function. See Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server interprets references to different kinds of functions.				
For upgrades between versions of a MySQL release series that has reached General Availability status, you can move the MySQL format files and data files between different versions on systems with the same architecture. For upgrades to a version of a MySQL release series that is in development status, that is not necessarily true. Use of development releases is at your own risk.				
If you are cautious about using new versions, you can always rename your old mysqld before installing a newer one. For example, if you are using a version of MySQL 5.5 and want to upgrade to 5.6, rename your current server from mysqld to mysqld-5.5. If your new mysqld then does something unexpected, you can simply shut it down and restart with your old mysqld.				
If problems occur, such as that the new mysqld server does not start or that you cannot connect without a password, verify that you do not have an old my.cnf file from your previous installation. You can check this with the --print-defaults option (for example, mysqld --print-defaults). If this command displays anything other than the program name, you have an active my.cnf file that affects server or client operation.				
If, after an upgrade, you experience problems with compiled client programs, such as Commands out of sync or unexpected core dumps, you probably have used old header or library files when compiling your programs. In this case, check the date for your mysql.h file and libmysqlclient.a library to verify that they are from the new MySQL distribution. If not, recompile your programs with the new headers and libraries. Recompilation might also be necessary for programs compiled against the shared client library if the library major version number has changed (for example from libmysqlclient.so.15 to libmysqlclient.so.16.				
If your MySQL installation contains a large amount of data that might take a long time to convert after an in-place upgrade, you might find it useful to create a “dummy” database instance for assessing what conversions might be needed and the work involved to perform them. Make a copy of your MySQL instance that contains a full copy of the mysql database, plus all other databases without data. Run your upgrade procedure on this dummy instance to see what actions might be needed so that you can better evaluate the work involved when performing actual data conversion on your original database instance.				
It is a good idea to rebuild and reinstall the Perl DBD::mysql module whenever you install a new release of MySQL. The same applies to other MySQL interfaces as well, such as PHP mysql extensions and the Python MySQLdb module.				
2.11.1.1. Upgrading from MySQL 5.5 to 5.6				
Note				
Beginning with MySQL 5.6.6, several MySQL Server parameters have defaults that differ from previous releases. See the notes regarding these changes later in this section, particularly regarding overriding them to preserve backward compatibility if that is a concern.				
Note				
It is good practice to back up your data before installing any new version of software. Although MySQL works very hard to ensure a high level of quality, protect your data by making a backup.				
To upgrade to 5.6 from any previous version, MySQL recommends that you dump your tables with mysqldump before upgrading and reload the dump file after upgrading. Use the --all-databases option to include all databases in the dump. If your databases include stored programs, use the --routines and --events options as well.				
In general, do the following when upgrading from MySQL 5.5 to 5.6:				
Read all the items in these sections to see whether any of them might affect your applications:				
Section 2.11.1, “Upgrading MySQL”, has general update information.				
The items in the change lists provided later in this section enable you to identify upgrade issues that apply to your current MySQL installation. Some incompatibilities discussed there require your attention before upgrading. Others should be dealt with after upgrading.				
The MySQL 5.6 Release Notes describe significant new features you can use in 5.6 or that differ from those found in earlier MySQL releases. Some of these changes may result in incompatibilities.				
Note particularly any changes that are marked Known issue or Incompatible change. These incompatibilities with earlier versions of MySQL may require your attention before you upgrade. Our aim is to avoid these changes, but occasionally they are necessary to correct problems that would be worse than an incompatibility between releases. If any upgrade issue applicable to your installation involves an incompatibility that requires special handling, follow the instructions given in the incompatibility description. Sometimes this involves dumping and reloading tables, or use of a statement such as CHECK TABLE or REPAIR TABLE.				
For dump and reload instructions, see Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”. Any procedure that involves REPAIR TABLE with the USE_FRM option must be done before upgrading. Use of this statement with a version of MySQL different from the one used to create the table (that is, using it after upgrading) may damage the table. See Section 13.7.2.5, “REPAIR TABLE Syntax”.				
Before upgrading to a new version of MySQL, Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, to see whether changes to table formats or to character sets or collations were made between your current version of MySQL and the version to which you are upgrading. If so and these changes result in an incompatibility between MySQL versions, you will need to upgrade the affected tables using the instructions in Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.				
After upgrading to a new version of MySQL, run mysql_upgrade (see Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”). This program checks your tables, and attempts to repair them if necessary. It also updates your grant tables to make sure that they have the current structure so that you can take advantage of any new capabilities. (Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or features.)				
mysql_upgrade does not upgrade the contents of the help tables. For upgrade instructions, see Section 5.1.10, “Server-Side Help”.				
If you run MySQL Server on Windows, see Section 2.3.6, “Upgrading MySQL on Windows”.				
If you use replication, see Section 16.4.3, “Upgrading a Replication Setup”, for information on upgrading your replication setup.				
If your MySQL installation contains a large amount of data that might take a long time to convert after an in-place upgrade, you might find it useful to create a “dummy” database instance for assessing what conversions might be needed and the work involved to perform them. Make a copy of your MySQL instance that contains a full copy of the mysql database, plus all other databases without data. Run your upgrade procedure on this dummy instance to see what actions might be needed so that you can better evaluate the work involved when performing actual data conversion on your original database instance.				
Read all the items in the following sections to see whether any of them might affect your applications:				
Configuration Changes				
Beginning with MySQL 5.6.6, several MySQL Server parameters have defaults that differ from previous releases. The motivation for these changes is to provide better out-of-box performance and to reduce the need for the database administrator to change settings manually. These changes are subject to possible revision in future releases as we gain feedback.				
In some cases, a parameter has a different static default value. In other cases, the server autosizes a parameter at startup using a formula based on other related parameters or server host configuration, rather than using a static value. For example, the setting for back_log now is its previous default of 50, adjusted up by an amount proportional to the value of max_connections. The idea behind autosizing is that when the server has information available to make a decision about a parameter setting likely to be better than a fixed default, it will.				
The following table summarizes changes to defaults. Any of these can be overridden by specifying an explicit value at server startup.				
Parameter	Old Default	New Default		
---	---	---		
back_log	50	Autosized using max_connections		
binlog_checksum	NONE	CRC32		
--binlog-row-event-max-size	1024	8192		
flush_time	1800 (on Windows)	0		
innodb_autoextend_increment	8	64		
innodb_buffer_pool_instances	1	8 (platform dependent)		
innodb_checksum_algorithm	INNODB	CRC32		
innodb_concurrency_tickets	500	5000		
innodb_file_per_table	0	1		
innodb_old_blocks_time	0	1000		
innodb_open_files	300	Autosized using innodb_file_per_table, table_open_cache		
innodb_stats_on_metadata	ON	OFF		
join_buffer_size	128KB	256KB		
max_allowed_packet	1MB	4MB		
max_connect_errors	10	100		
sync_master_info	0	10000		
sync_relay_log	0	10000		
sync_relay_log_info	0	10000		
With regard to compatibility with previous releases, the most important changes are:				
innodb_file_per_table is enabled (previously disabled).				
innodb_checksum_algorithm is CRC32 (previously INNODB).				
binlog_checksum is CRC32 (previously NONE).				
Therefore, if you are upgrading an existing MySQL installation, have not already changed the values of these parameters from their previous defaults, and backward compatibility is a concern, you may want to explicitly set these parameters to their previous defaults. For example, put these lines in the server option file:				
[mysqld]				
innodb_file_per_table=0				
innodb_checksum_algorithm=INNODB				
binlog_checksum=NONE				
Those settings preserve compatibility as follows:				
With the new default of innodb_file_per_table enabled, ALTER TABLE operations following an upgrade will move InnoDB tables that are in the system tablespace to individual .ibd files. Using innodb_file_per_table=0 will prevent this from happening.				
Setting innodb_checksum_algorithm=INNODB permits binary downgrades after upgrading to this release. With a setting of CRC32, InnoDB would use checksumming that older MySQL versions cannot use.				
With binlog_checksum=NONE, the server can be used as a replication master without causing failure of older slaves that do not understand binary log checksums.				
Server Changes				
Incompatible change: As of MySQL 5.6, the full-text stopword file is loaded and searched using latin1 if character_set_server is ucs2, utf16, utf16le, or utf32. If any table was created with FULLTEXT indexes while the server character set was ucs2, utf16, utf16le, or utf32, repair it using this statement:				
REPAIR TABLE tbl_name QUICK;				
Incompatible change: MySQL 5.6.11 and later supports CREATE TABLE ... [SUB]PARTITION BY ALGORITHM=n [LINEAR] KEY (...), which can be used to create a table whose KEY partitioning is compatible with a MySQL 5.1 server (n=1). (Bug #14521864, Bug #66462) This syntax is not accepted by MySQL 5.6.10 and earlier, although it is supported in MySQL 5.5 beginning with MySQL 5.5.31. mysqldump in MySQL 5.5.31 and later MySQL 5.5 releases includes the ALGORITHM option when dumping tables using this option, but surrounds it with conditional comments, like this:				
CREATE TABLE t1 (a INT)				
/*!50100 PARTITION BY KEY */ /*!50531 ALGORITHM = 1 */ /*!50100 ()				
PARTITIONS 3 */				
When importing a dump containing such CREATE TABLE statements into a MySQL 5.6.10 or earlier MySQL 5.6 server, the versioned comment is not ignored, which causes a syntax error. Therefore, prior to importing such a dump file, you must either change the comments so that the MySQL 5.6 server ignores them (by removing the string !50531 or replacing it with !50611, wherever it occurs), or remove them.				
This is not an issue with dump files made using MySQL 5.6.11 or later, where the ALGORITHM option is written using /*!50611 ... */.				
SQL Changes				
Some keywords may be reserved in MySQL 5.6 that were not reserved in MySQL 5.5. See Section 9.3, “Reserved Words”.				
The YEAR(2) data type has certain issues that you should consider before choosing to use it. As of MySQL 5.6.6, YEAR(2) is deprecated. YEAR(2) columns in existing tables are treated as before, but YEAR(2) in new or altered tables are converted to YEAR(4). For more information, see Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”.				
As of MySQL 5.6.6, it is explicitly disallowed to assign the value DEFAULT to stored procedure or function parameters or stored program local variables (for example with a SET var_name = DEFAULT statement). This was not previously supported, or documented as permitted, but is flagged as an incompatible change in case existing code inadvertantly used this construct. It remains permissible to assign DEFAULT to system variables, as before, but assigning DEFAULT to parameters or local variables now results in a syntax error.				
After an upgrade to MySQL 5.6.6 or later, existing stored programs that use this construct produce a syntax error when invoked. If a mysqldump file from 5.6.5 or earlier is loaded into 5.6.6 or later, the load operation fails and affected stored program definitions must be changed.				
In MySQL, the TIMESTAMP data type differs in nonstandard ways from other data types:				
TIMESTAMP columns not explicitly declared with the NULL attribute are assigned the NOT NULL attribute. (Columns of other data types, if not explicitly declared as NOT NULL, permit NULL values.) Setting such a column to NULL sets it to the current timestamp.				
The first TIMESTAMP column in a table, if not declared with the NULL attribute or an explicit DEFAULT or ON UPDATE clause, is automatically assigned the DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP attributes.				
TIMESTAMP columns following the first one, if not declared with the NULL attribute or an explicit DEFAULT clause, are automatically assigned DEFAULT '0000-00-00 00:00:00' (the “zero” timestamp). For inserted rows that specify no explicit value for such a column, the column is assigned '0000-00-00 00:00:00' and no warning occurs.				
Those nonstandard behaviors remain the default for TIMESTAMP but as of MySQL 5.6.6 are deprecated and this warning appears at startup:				
[Warning] TIMESTAMP with implicit DEFAULT value is deprecated.				
Please use --explicit_defaults_for_timestamp server option (see				
documentation for more details).				
As indicated by the warning, to turn off the nonstandard behaviors, enable the new explicit_defaults_for_timestamp system variable at server startup. With this variable enabled, the server handles TIMESTAMP as follows instead:				
TIMESTAMP columns not explicitly declared as NOT NULL permit NULL values. Setting such a column to NULL sets it to NULL, not the current timestamp.				
No TIMESTAMP column is assigned the DEFAULT CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP attributes automatically. Those attributes must be explicitly specified.				
TIMESTAMP columns declared as NOT NULL and without an explicit DEFAULT clause are treated as having no default value. For inserted rows that specify no explicit value for such a column, the result depends on the SQL mode. If strict SQL mode is enabled, an error occurs. If strict SQL mode is not enabled, the column is assigned the implicit default of '0000-00-00 00:00:00' and a warning occurs. This is similar to how MySQL treats other temporal types such as DATETIME.				
To upgrade servers used for replication, upgrade the slaves first, then the master. Replication between the master and its slaves should work provided that all use the same value of explicit_defaults_for_timestamp:				
Bring down the slaves, upgrade them, configure them with the desired value of explicit_defaults_for_timestamp, and bring them back up.				
The slaves will recognize from the format of the binary logs received from the master that the master is older (predates the introduction of explicit_defaults_for_timestamp) and that operations on TIMESTAMP columns coming from the master use the old TIMESTAMP behavior.				
Bring down the master, upgrade it, and configure it with the same explicit_defaults_for_timestamp value used on the slaves, and bring it back up.				
2.11.2. Downgrading MySQL				
This section describes what to do to downgrade to an older MySQL version, in the unlikely case that the previous version worked better than the new one.				
It is always a good idea to make a backup beforehand, in case a downgrade fails and leaves the instance in an unusable state.				
To downgrade between General Availability (GA) status versions within the same release series, typically you just install the new binaries on top of the old ones and do not make any changes to the databases.				
Downgrades between milestone releases (or from a GA release to a milestone release) within the same release series are not supported and you may encounter issues.				
The following items form a checklist of things to do whenever you perform a downgrade:				
Read the upgrading section for the release series from which you are downgrading to be sure that it does not have any features you really need. See Section 2.11.1, “Upgrading MySQL”.				
If there is a downgrading section for that version, read that as well.				
To see which new features were added between the version to which you are downgrading and your current version, see the Release Notes.				
Check Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, to see whether changes to table formats or to character sets or collations were made between your current version of MySQL and the version to which you are downgrading. If so and these changes result in an incompatibility between MySQL versions, you will need to downgrade the affected tables using the instructions in Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.				
In most cases, you can move the MySQL format files and data files between different GA versions on the same architecture as long as you stay within versions for the same release series of MySQL.				
If you downgrade from one release series to another, there may be incompatibilities in table storage formats. In this case, use mysqldump to dump your tables before downgrading. After downgrading, reload the dump file using mysql or mysqlimport to re-create your tables. For examples, see Section 2.11.5, “Copying MySQL Databases to Another Machine”.				
A typical symptom of a downward-incompatible table format change when you downgrade is that you cannot open tables. In that case, use the following procedure:				
Stop the older MySQL server that you are downgrading to.				
Restart the newer MySQL server you are downgrading from.				
Dump any tables that were inaccessible to the older server by using mysqldump to create a dump file.				
Stop the newer MySQL server and restart the older one.				
Reload the dump file into the older server. Your tables should be accessible.				
If system tables in the mysql database changed, downgrading might introduce some loss of functionality or require some adjustments. Here are some examples:				
Trigger creation requires the TRIGGER privilege as of MySQL 5.1. In MySQL 5.0, there is no TRIGGER privilege and SUPER is required instead. If you downgrade from MySQL 5.1 to 5.0, you will need to give the SUPER privilege to those accounts that had the TRIGGER privilege in 5.1.				
Triggers were added in MySQL 5.0, so if you downgrade from 5.0 to 4.1, you cannot use triggers at all.				
The mysql.proc.comment column definition changed between MySQL 5.1 and 5.5. After a downgrade from 5.5 to 5.1, this table is seen as corrupt and in need of repair. To workaround this problem, execute mysql_upgrade from the version of MySQL to which you downgraded.				
2.11.2.1. Downgrading to MySQL 5.5				
When downgrading to MySQL 5.5 from MySQL 5.6, keep in mind the following issues relating to features found in MySQL 5.6, but not in MySQL 5.5:				
System Tables				
The mysql.user table in MySQL 5.6 has a password_expired column. The mysql.user table in MySQL 5.5 does not. This means that an account with an expired password in MySQL 5.6 will work normally in MySQL 5.5.				
InnoDB				
InnoDB search indexes (with a type of FULLTEXT), introduced in MySQL 5.6.4, are not compatible with earlier versions of MySQL, including earlier releases in the 5.6 series. Drop such indexes before performing a downgrade.				
InnoDB small page sizes specified by the innodb_page_size configuration option, introduced in MySQL 5.6.4, are not compatible with earlier versions of MySQL, including earlier releases in the 5.6 series. Dump all InnoDB tables in instances that use a smaller InnoDB page size, drop the tables, and re-create and reload them after the downgrade.				
Replication				
As of MySQL 5.6, the relay-log.info file contains a line count and a replication delay value, so the file format differs from that in older versions. See Section 16.2.2.2, “Slave Status Logs”. If you downgrade a slave server to a version older than MySQL 5.6, the older server will not read the file correctly. To address this, modify the file in a text editor to delete the initial line containing the number of lines.				
Beginning with MySQL 5.6.6, the MySQL Server employs Version 2 binary log events when writing the binary log. Binary logs written using Version 2 log events cannot by read by earlier versions of MySQL Server. To generate a binary log that is written using Version 1 log events readable by older servers, start the MySQL 5.6.6 or later server using --log-bin-use-v1-row-events=1, which forces the server to employ Version 1 events when writing the binary log.				
2.11.3. Checking Whether Tables or Indexes Must Be Rebuilt				
A binary upgrade or downgrade is one that installs one version of MySQL “in place” over an existing version, without dumping and reloading tables:				
Stop the server for the existing version if it is running.				
Install a different version of MySQL. This is an upgrade if the new version is higher than the original version, a downgrade if the version is lower.				
Start the server for the new version.				
In many cases, the tables from the previous version of MySQL can be used without problem by the new version. However, sometimes changes occur that require tables or table indexes to be rebuilt, as described in this section. If you have tables that are affected by any of the issues described here, rebuild the tables or indexes as necessary using the instructions given in Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.				
Table Incompatibilities				
After a binary upgrade to MySQL 5.1 from a MySQL 5.0 installation that contains ARCHIVE tables, accessing those tables causes the server to crash, even if you have run mysql_upgrade or CHECK TABLE ... FOR UPGRADE. To work around this problem, use mysqldump to dump all ARCHIVE tables before upgrading, and reload them into MySQL 5.1 after upgrading. The same problem occurs for binary downgrades from MySQL 5.1 to 5.0.				
The upgrade problem is fixed in MySQL 5.6.4: The server can open ARCHIVE tables created in MySQL 5.0. However, it remains the recommended upgrade procedure to dump 5.0 ARCHIVE tables before upgrading and reload them after upgrading.				
Index Incompatibilities				
In MySQL 5.6.3, the length limit for index prefix keys is increased from 767 bytes to 3072 bytes, for InnoDB tables using ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED. See Section 14.2.7, “Limits on InnoDB Tables” for details. This change is also backported to MySQL 5.5.14. If you downgrade from one of these releases or higher, to an earlier release with a lower length limit, the index prefix keys could be truncated at 767 bytes or the downgrade could fail. This issue could only occur if the configuration option innodb_large_prefix was enabled on the server being downgraded.				
If you perform a binary upgrade without dumping and reloading tables, you cannot upgrade directly from MySQL 4.1 to 5.1 or higher. This occurs due to an incompatible change in the MyISAM table index format in MySQL 5.0. Upgrade from MySQL 4.1 to 5.0 and repair all MyISAM tables. Then upgrade from MySQL 5.0 to 5.1 and check and repair your tables.				
Modifications to the handling of character sets or collations might change the character sort order, which causes the ordering of entries in any index that uses an affected character set or collation to be incorrect. Such changes result in several possible problems:				
Comparison results that differ from previous results				
Inability to find some index values due to misordered index entries				
Misordered ORDER BY results				
Tables that CHECK TABLE reports as being in need of repair				
The solution to these problems is to rebuild any indexes that use an affected character set or collation, either by dropping and re-creating the indexes, or by dumping and reloading the entire table. In some cases, it is possible to alter affected columns to use a different collation. For information about rebuilding indexes, see Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.				
To check whether a table has indexes that must be rebuilt, consult the following list. It indicates which versions of MySQL introduced character set or collation changes that require indexes to be rebuilt. Each entry indicates the version in which the change occurred and the character sets or collations that the change affects. If the change is associated with a particular bug report, the bug number is given.				
The list applies both for binary upgrades and downgrades. For example, Bug #27877 was fixed in MySQL 5.1.24 and 5.4.0, so it applies to upgrades from versions older than 5.1.24 to 5.1.24 or newer, and to downgrades from 5.1.24 or newer to versions older than 5.1.24.				
In many cases, you can use CHECK TABLE ... FOR UPGRADE to identify tables for which index rebuilding is required. It will report this message:				
Table upgrade required.				
Please do "REPAIR TABLE `tbl_name`" or dump/reload to fix it!				
In these cases, you can also use mysqlcheck --check-upgrade or mysql_upgrade, which execute CHECK TABLE. However, the use of CHECK TABLE applies only after upgrades, not downgrades. Also, CHECK TABLE is not applicable to all storage engines. For details about which storage engines CHECK TABLE supports, see Section 13.7.2.2, “CHECK TABLE Syntax”.				
These changes cause index rebuilding to be necessary:				
MySQL 5.1.24, 5.4.0 (Bug #27877)				
Affects indexes that use the utf8_general_ci or ucs2_general_ci collation for columns that contain 'ß' LATIN SMALL LETTER SHARP S (German). The bug fix corrected an error in the original collations but introduced an incompatibility such that 'ß' compares equal to characters with which it previously compared different.				
Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.30, 5.4.0 (see Bug #40053).				
A workaround for this issue is implemented as of MySQL 5.1.62, 5.5.21, and 5.6.5. The workaround involves altering affected columns to use the utf8_general_mysql500_ci and ucs2_general_mysql500_ci collations, which preserve the original pre-5.1.24 ordering of utf8_general_ci and ucs2_general_ci.				
MySQL 5.0.48, 5.1.23 (Bug #27562)				
Affects indexes that use the ascii_general_ci collation for columns that contain any of these characters: '`' GRAVE ACCENT, '[' LEFT SQUARE BRACKET, '\' REVERSE SOLIDUS, ']' RIGHT SQUARE BRACKET, '~' TILDE				
Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29, 5.4.0 (see Bug #39585).				
MySQL 5.0.48, 5.1.21 (Bug #29461)				
Affects indexes for columns that use any of these character sets: eucjpms, euc_kr, gb2312, latin7, macce, ujis				
Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29, 5.4.0 (see Bug #39585).				
2.11.4. Rebuilding or Repairing Tables or Indexes				
This section describes how to rebuild a table, following changes to MySQL such as how data types or character sets are handled. For example, an error in a collation might have been corrected, requiring a table rebuild to update the indexes for character columns that use the collation. (For examples, see Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”.) You might also need to repair or upgrade a table, as indicated by a table check operation such as that performed by CHECK TABLE, mysqlcheck, or mysql_upgrade.				
Methods for rebuilding a table include dumping and reloading it, or using ALTER TABLE or REPAIR TABLE.				
Note				
If you are rebuilding tables because a different version of MySQL will not handle them after a binary (in-place) upgrade or downgrade, you must use the dump-and-reload method. Dump the tables before upgrading or downgrading using your original version of MySQL. Then reload the tables after upgrading or downgrading.				
If you use the dump-and-reload method of rebuilding tables only for the purpose of rebuilding indexes, you can perform the dump either before or after upgrading or downgrading. Reloading still must be done afterward.				
To rebuild a table by dumping and reloading it, use mysqldump to create a dump file and mysql to reload the file:				
shell> mysqldump db_name t1 > dump.sql				
shell> mysql db_name < dump.sql				
To rebuild all the tables in a single database, specify the database name without any following table name:				
shell> mysqldump db_name > dump.sql				
shell> mysql db_name < dump.sql				
To rebuild all tables in all databases, use the --all-databases option:				
shell> mysqldump --all-databases > dump.sql				
shell> mysql < dump.sql				
To rebuild a table with ALTER TABLE, use a “null” alteration; that is, an ALTER TABLE statement that “changes” the table to use the storage engine that it already has. For example, if t1 is a MyISAM table, use this statement:				
mysql> ALTER TABLE t1 ENGINE = MyISAM;				
If you are not sure which storage engine to specify in the ALTER TABLE statement, use SHOW CREATE TABLE to display the table definition.				
If you must rebuild a table because a table checking operation indicates that the table is corrupt or needs an upgrade, you can use REPAIR TABLE if that statement supports the table's storage engine. For example, to repair a MyISAM table, use this statement:				
mysql> REPAIR TABLE t1;				
For storage engines such as InnoDB that REPAIR TABLE does not support, use mysqldump to create a dump file and mysql to reload the file, as described earlier.				
For specifics about which storage engines REPAIR TABLE supports, see Section 13.7.2.5, “REPAIR TABLE Syntax”.				
mysqlcheck --repair provides command-line access to the REPAIR TABLE statement. This can be a more convenient means of repairing tables because you can use the --databases or --all-databases option to repair all tables in specific databases or all databases, respectively:				
shell> mysqlcheck --repair --databases db_name ...				
shell> mysqlcheck --repair --all-databases				
For incompatibilities introduced in MySQL 5.1.24 by the fix for Bug #27877 that corrected the utf8_general_ci and ucs2_general_ci collations, a workaround is implemented as of MySQL 5.1.62, 5.5.21, and 5.6.5. Upgrade to one of those versions, then convert each affected table using one of the following methods. In each case, the workaround altering affected columns to use the utf8_general_mysql500_ci and ucs2_general_mysql500_ci collations, which preserve the original pre-5.1.24 ordering of utf8_general_ci and ucs2_general_ci.				
To convert an affected table after a binary upgrade that leaves the table files in place, alter the table to use the new collation. Suppose that the table t1 contains one or more problematic utf8 columns. To convert the table at the table level, use a statement like this:				
ALTER TABLE t1				
CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_mysql500_ci;				
To apply the change on a column-specific basis, use a statement like this (be sure to repeat the column definition as originally specified except for the COLLATE clause):				
ALTER TABLE t1				
MODIFY c1 CHAR(N) CHARACTER SET utf8 COLLATE utf8_general_mysql500_ci;				
To upgrade the table using a dump and reload procedure, dump the table using mysqldump, modify the CREATE TABLE statement in the dump file to use the new collation, and reload the table.				
After making the appropriate changes, CHECK TABLE should report no error.				
2.11.5. Copying MySQL Databases to Another Machine				
You can copy the .frm, .MYI, and .MYD files for MyISAM tables between different architectures that support the same floating-point format. (MySQL takes care of any byte-swapping issues.) See Section 14.3, “The MyISAM Storage Engine”.				
In cases where you need to transfer databases between different architectures, you can use mysqldump to create a file containing SQL statements. You can then transfer the file to the other machine and feed it as input to the mysql client.				
Use mysqldump --help to see what options are available.				
The easiest (although not the fastest) way to move a database between two machines is to run the following commands on the machine on which the database is located:				
shell> mysqladmin -h 'other_hostname' create db_name				
shell> mysqldump db_name	mysql -h 'other_hostname' db_name			
If you want to copy a database from a remote machine over a slow network, you can use these commands:				
shell> mysqladmin create db_name				
shell> mysqldump -h 'other_hostname' --compress db_name	mysql db_name			
You can also store the dump in a file, transfer the file to the target machine, and then load the file into the database there. For example, you can dump a database to a compressed file on the source machine like this:				
shell> mysqldump --quick db_name	gzip > db_name.gz			
Transfer the file containing the database contents to the target machine and run these commands there:				
shell> mysqladmin create db_name				
shell> gunzip < db_name.gz	mysql db_name			
You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is much faster than simply using mysqldump. In the following commands, DUMPDIR represents the full path name of the directory you use to store the output from mysqldump.				
First, create the directory for the output files and dump the database:				
shell> mkdir DUMPDIR				
shell> mysqldump --tab=DUMPDIR db_name				
Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine and load the files into MySQL there:				
shell> mysqladmin create db_name # create database				
shell> cat DUMPDIR/*.sql	mysql db_name # create tables in database			
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables				
Do not forget to copy the mysql database because that is where the grant tables are stored. You might have to run commands as the MySQL root user on the new machine until you have the mysql database in place.				
After you import the mysql database on the new machine, execute mysqladmin flush-privileges so that the server reloads the grant table information.				
2.12. Environment Variables				
This section lists all the environment variables that are used directly or indirectly by MySQL. Most of these can also be found in other places in this manual.				
Note that any options on the command line take precedence over values specified in option files and environment variables, and values in option files take precedence over values in environment variables.				
In many cases, it is preferable to use an option file instead of environment variables to modify the behavior of MySQL. See Section 4.2.3.3, “Using Option Files”.				
Variable	Description			
---	---			
CXX	The name of your C++ compiler (for running CMake).			
CC	The name of your C compiler (for running CMake).			
CFLAGS	Flags for your C compiler (for running CMake).			
CXXFLAGS	Flags for your C++ compiler (for running CMake).			
DBI_USER	The default user name for Perl DBI.			
DBI_TRACE	Trace options for Perl DBI.			
HOME	The default path for the mysql history file is $HOME/.mysql_history.			
LD_RUN_PATH	Used to specify the location of libmysqlclient.so.			
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN	Enable mysql_clear_password authentication plugin; see Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”.			
LIBMYSQL_PLUGIN_DIR	Directory in which to look for client plugins.			
LIBMYSQL_PLUGINS	Client plugins to preload.			
MYSQL_DEBUG	Debug trace options when debugging.			
MYSQL_GROUP_SUFFIX	Option group suffix value (like specifying --defaults-group-suffix).			
MYSQL_HISTFILE	The path to the mysql history file. If this variable is set, its value overrides the default for $HOME/.mysql_history.			
MYSQL_HISTIGNORE	Patterns specifying statements not to log to $HOME/.mysql_history.			
MYSQL_HOME	The path to the directory in which the server-specific my.cnf file resides.			
MYSQL_HOST	The default host name used by the mysql command-line client.			
MYSQL_PS1	The command prompt to use in the mysql command-line client.			
MYSQL_PWD	The default password when connecting to mysqld. Note that using this is insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.			
MYSQL_TCP_PORT	The default TCP/IP port number.			
MYSQL_TEST_LOGIN_FILE	The name of the .mylogin.cnf login file.			
MYSQL_UNIX_PORT	The default Unix socket file name; used for connections to localhost.			
PATH	Used by the shell to find MySQL programs.			
TMPDIR	The directory where temporary files are created.			
TZ	This should be set to your local time zone. See Section C.5.4.6, “Time Zone Problems”.			
UMASK	The user-file creation mode when creating files. See note following table.			
UMASK_DIR	The user-directory creation mode when creating directories. See note following table.			
USER	The default user name on Windows when connecting to mysqld.			
For information about the mysql history file, see Section 4.5.1.3, “mysql Logging”.				
MYSQL_TEST_LOGIN_FILE is the path name of the login file (the file created by mysql_config_editor). If not set, the default value is %APPDATA%\MySQL\.mylogin.cnf directory on Windows and $HOME/.mylogin.cnf on non-Windows systems. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.				
The UMASK and UMASK_DIR variables, despite their names, are used as modes, not masks:				
If UMASK is set, mysqld uses ($UMASK	0600) as the mode for file creation, so that newly created files have a mode in the range from 0600 to 0666 (all values octal).			
If UMASK_DIR is set, mysqld uses ($UMASK_DIR	0700) as the base mode for directory creation, which then is AND-ed with ~(~$UMASK & 0666), so that newly created directories have a mode in the range from 0700 to 0777 (all values octal). The AND operation may remove read and write permissions from the directory mode, but not execute permissions.			
MySQL assumes that the value for UMASK or UMASK_DIR is in octal if it starts with a zero.				
2.13. Perl Installation Notes				
The Perl DBI module provides a generic interface for database access. You can write a DBI script that works with many different database engines without change. To use DBI, you must install the DBI module, as well as a DataBase Driver (DBD) module for each type of database server you want to access. For MySQL, this driver is the DBD::mysql module.				
Perl, and the DBD::MySQL module for DBI must be installed if you want to run the MySQL benchmark scripts; see Section 8.12.2, “The MySQL Benchmark Suite”.				
Note				
Perl support is not included with MySQL distributions. You can obtain the necessary modules from http://search.cpan.org for Unix, or by using the ActiveState ppm program on Windows. The following sections describe how to do this.				
The DBI/DBD interface requires Perl 5.6.0, and 5.6.1 or later is preferred. DBI does not work if you have an older version of Perl. You should use DBD::mysql 4.009 or higher. Although earlier versions are available, they do not support the full functionality of MySQL 5.6.				
2.13.1. Installing Perl on Unix				
MySQL Perl support requires that you have installed MySQL client programming support (libraries and header files). Most installation methods install the necessary files. If you install MySQL from RPM files on Linux, be sure to install the developer RPM as well. The client programs are in the client RPM, but client programming support is in the developer RPM.				
The files you need for Perl support can be obtained from the CPAN (Comprehensive Perl Archive Network) at http://search.cpan.org.				
The easiest way to install Perl modules on Unix is to use the CPAN module. For example:				
shell> perl -MCPAN -e shell				
cpan> install DBI				
cpan> install DBD::mysql				
The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local MySQL server using the default user name and password. (The default user name is your login name on Unix, and ODBC on Windows. The default password is “no password.”) If you cannot connect to the server with those values (for example, if your account has a password), the tests fail. You can use force install DBD::mysql to ignore the failed tests.				
DBI requires the Data::Dumper module. It may be installed; if not, you should install it before installing DBI.				
It is also possible to download the module distributions in the form of compressed tar archives and build the modules manually. For example, to unpack and build a DBI distribution, use a procedure such as this:				
Unpack the distribution into the current directory:				
shell> gunzip < DBI-VERSION.tar.gz	tar xvf -			
This command creates a directory named DBI-VERSION.				
Change location into the top-level directory of the unpacked distribution:				
shell> cd DBI-VERSION				
Build the distribution and compile everything:				
shell> perl Makefile.PL				
shell> make				
shell> make test				
shell> make install				
The make test command is important because it verifies that the module is working. Note that when you run that command during the DBD::mysql installation to exercise the interface code, the MySQL server must be running or the test fails.				
It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new release of MySQL. This ensures that the latest versions of the MySQL client libraries are installed correctly.				
If you do not have access rights to install Perl modules in the system directory or if you want to install local Perl modules, the following reference may be useful: http://servers.digitaldaze.com/extensions/perl/modules.html#modules				
Look under the heading “Installing New Modules that Require Locally Installed Modules.”				
2.13.2. Installing ActiveState Perl on Windows				
On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:				
Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.				
Open a console window.				
If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:				
C:\> set HTTP_proxy=my.proxy.com:3128				
Start the PPM program:				
C:\> C:\perl\bin\ppm.pl				
If you have not previously done so, install DBI:				
ppm> install DBI				
If this succeeds, run the following command:				
ppm> install DBD-mysql				
This procedure should work with ActiveState Perl 5.6 or newer.				
If you cannot get the procedure to work, you should install the ODBC driver instead and connect to the MySQL server through ODBC:				
use DBI;				
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password)				
die "Got error $DBI::errstr when connecting to $dsn\n";				
2.13.3. Problems Using the Perl DBI/DBD Interface				
If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl cannot locate the libmysqlclient.so shared library. You should be able to fix this problem by one of the following methods:				
Copy libmysqlclient.so to the directory where your other shared libraries are located (probably /usr/lib or /lib).				
Modify the -L options used to compile DBD::mysql to reflect the actual location of libmysqlclient.so.				
On Linux, you can add the path name of the directory where libmysqlclient.so is located to the /etc/ld.so.conf file.				
Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH environment variable. Some systems use LD_LIBRARY_PATH instead.				
Note that you may also need to modify the -L options if there are other libraries that the linker fails to find. For example, if the linker cannot find libc because it is in /lib and the link command specifies -L/usr/lib, change the -L option to -L/lib or add -L/lib to the existing link command.				
If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary compiled with gcc):				
/usr/bin/perl: can't resolve symbol '__moddi3'				
/usr/bin/perl: can't resolve symbol '__divdi3'				
Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built (check the output from make for mysql.so when you compile the Perl client). The -L option should specify the path name of the directory where libgcc.a is located on your system.				
Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this case, you can solve the mismatch by compiling both with gcc.				
Chapter 3. Tutorial				
Table of Contents				
3.1. Connecting to and Disconnecting from the Server				
3.3. Creating and Using a Database				
3.3.1. Creating and Selecting a Database				
3.3.2. Creating a Table				
3.3.3. Loading Data into a Table				
3.3.4. Retrieving Information from a Table				
3.4. Getting Information About Databases and Tables				
3.5. Using mysql in Batch Mode				
3.6. Examples of Common Queries				
3.6.1. The Maximum Value for a Column				
3.6.2. The Row Holding the Maximum of a Certain Column				
3.6.3. Maximum of Column per Group				
3.6.4. The Rows Holding the Group-wise Maximum of a Certain Column				
3.6.5. Using User-Defined Variables				
3.6.6. Using Foreign Keys				
3.6.7. Searching on Two Keys				
3.6.8. Calculating Visits Per Day				
3.6.9. Using AUTO_INCREMENT				
This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client program to create and use a simple database. mysql (sometimes referred to as the “terminal monitor” or just “monitor”) is an interactive program that enables you to connect to a MySQL server, run queries, and view the results. mysql may also be used in batch mode: you place your queries in a file beforehand, then tell mysql to execute the contents of the file. Both ways of using mysql are covered here.				
To see a list of options provided by mysql, invoke it with the --help option:				
shell> mysql --help				
This chapter assumes that mysql is installed on your machine and that a MySQL server is available to which you can connect. If this is not true, contact your MySQL administrator. (If you are the administrator, you need to consult the relevant portions of this manual, such as Chapter 5, MySQL Server Administration.)				
This chapter describes the entire process of setting up and using a database. If you are interested only in accessing an existing database, you may want to skip over the sections that describe how to create the database and the tables it contains.				
Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant sections of the manual for more information on the topics covered here.				
3.1. Connecting to and Disconnecting from the Server				
To connect to the server, you will usually need to provide a MySQL user name when you invoke mysql and, most likely, a password. If the server runs on a machine other than the one where you log in, you will also need to specify a host name. Contact your administrator to find out what connection parameters you should use to connect (that is, what host, user name, and password to use). Once you know the proper parameters, you should be able to connect like this:				
shell> mysql -h host -u user -p				
Enter password: ********				
host and user represent the host name where your MySQL server is running and the user name of your MySQL account. Substitute appropriate values for your setup. The ******** represents your password; enter it when mysql displays the Enter password: prompt.				
If that works, you should see some introductory information followed by a mysql> prompt:				
shell> mysql -h host -u user -p				
Enter password: ********				
Welcome to the MySQL monitor. Commands end with ; or \g.				
Your MySQL connection id is 25338 to server version: 5.6.12-standard				
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.				
mysql>				
The mysql> prompt tells you that mysql is ready for you to enter commands.				
If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply use the following:				
shell> mysql -u user -p				
If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2), it means that the MySQL server daemon (Unix) or service (Windows) is not running. Consult the administrator or see the section of Chapter 2, Installing and Upgrading MySQL that is appropriate to your operating system.				
For help with other problems often encountered when trying to log in, see Section C.5.2, “Common Errors When Using MySQL Programs”.				
Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server running on the local host. If this is the case on your machine, you should be able to connect to that server by invoking mysql without any options:				
shell> mysql				
After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the mysql> prompt:				
mysql> QUIT				
Bye				
On Unix, you can also disconnect by pressing Control+D.				
Most examples in the following sections assume that you are connected to the server. They indicate this by the mysql> prompt.				
3.2. Entering Queries				
Make sure that you are connected to the server, as discussed in the previous section. Doing so does not in itself select any database to work with, but that is okay. At this point, it is more important to find out a little about how to issue queries than to jump right in creating tables, loading data into them, and retrieving data from them. This section describes the basic principles of entering commands, using several queries you can try out to familiarize yourself with how mysql works.				
Here is a simple command that asks the server to tell you its version number and the current date. Type it in as shown here following the mysql> prompt and press Enter:				
mysql> SELECT VERSION(), CURRENT_DATE;				
+--------------+--------------+				
VERSION()	CURRENT_DATE			
+--------------+--------------+				
5.6.1-m4-log	2010-08-06			
+--------------+--------------+				
1 row in set (0.01 sec)				
mysql>				
This query illustrates several things about mysql:				
A command normally consists of an SQL statement followed by a semicolon. (There are some exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to others later.)				
When you issue a command, mysql sends it to the server for execution and displays the results, then prints another mysql> prompt to indicate that it is ready for another command.				
mysql displays query output in tabular form (rows and columns). The first row contains labels for the columns. The rows following are the query results. Normally, column labels are the names of the columns you fetch from database tables. If you're retrieving the value of an expression rather than a table column (as in the example just shown), mysql labels the column using the expression itself.				
mysql shows how many rows were returned and how long the query took to execute, which gives you a rough idea of server performance. These values are imprecise because they represent wall clock time (not CPU or machine time), and because they are affected by factors such as server load and network latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining examples in this chapter.)				
Keywords may be entered in any lettercase. The following queries are equivalent:				
mysql> SELECT VERSION(), CURRENT_DATE;				
mysql> select version(), current_date;				
mysql> SeLeCt vErSiOn(), current_DATE;				
Here is another query. It demonstrates that you can use mysql as a simple calculator:				
mysql> SELECT SIN(PI()/4), (4+1)*5;				
+------------------+---------+				
SIN(PI()/4)	(4+1)*5			
+------------------+---------+				
0.70710678118655	25			
+------------------+---------+				
1 row in set (0.02 sec)				
The queries shown thus far have been relatively short, single-line statements. You can even enter multiple statements on a single line. Just end each one with a semicolon:				
mysql> SELECT VERSION(); SELECT NOW();				
+--------------+				
VERSION()				
+--------------+				
5.6.1-m4-log				
+--------------+				
1 row in set (0.00 sec)				
+---------------------+				
NOW()				
+---------------------+				
2010-08-06 12:17:13				
+---------------------+				
1 row in set (0.00 sec)				
A command need not be given all on a single line, so lengthy commands that require several lines are not a problem. mysql determines where your statement ends by looking for the terminating semicolon, not by looking for the end of the input line. (In other words, mysql accepts free-format input: it collects input lines but does not execute them until it sees the semicolon.)				
Here is a simple multiple-line statement:				
mysql> SELECT				
-> USER()				
-> ,				
-> CURRENT_DATE;				
+---------------+--------------+				
USER()	CURRENT_DATE			
+---------------+--------------+				
jon@localhost	2010-08-06			
+---------------+--------------+				
In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that feedback, you can always be aware of what mysql is waiting for.				
If you decide you do not want to execute a command that you are in the process of entering, cancel it by typing \c:				
mysql> SELECT				
-> USER()				
-> \c				
mysql>				
Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to indicate that mysql is ready for a new command.				
The following table shows each of the prompts you may see and summarizes what they mean about the state that mysql is in.				
Prompt	Meaning			
---	---			
mysql>	Ready for new command.			
->	Waiting for next line of multiple-line command.			
'>	Waiting for next line, waiting for completion of a string that began with a single quote (“'”).			
">	Waiting for next line, waiting for completion of a string that began with a double quote (“"”).			
`>	Waiting for next line, waiting for completion of an identifier that began with a backtick (“`”).			
/*>	Waiting for next line, waiting for completion of a comment that began with /*.			
Multiple-line statements commonly occur by accident when you intend to issue a command on a single line, but forget the terminating semicolon. In this case, mysql waits for more input:				
mysql> SELECT USER()				
->				
If this happens to you (you think you've entered a statement but the only response is a -> prompt), most likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you might sit there for a while before realizing what you need to do. Enter a semicolon to complete the statement, and mysql executes it:				
mysql> SELECT USER()				
-> ;				
+---------------+				
USER()				
+---------------+				
jon@localhost				
+---------------+				
The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting for completion of a string). In MySQL, you can write strings surrounded by either “'” or “"” characters (for example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When you see a '> or "> prompt, it means that you have entered a line containing a string that begins with a “'” or “"” quote character, but have not yet entered the matching quote that terminates the string. This often indicates that you have inadvertently left out a quote character. For example:				
mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;				
'>				
If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The string 'Smith is missing the second single quotation mark.)				
At this point, what do you do? The simplest thing is to cancel the command. However, you cannot just type \c in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter the closing quote character (so mysql knows you've finished the string), then type \c:				
mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;				
'> '\c				
mysql>				
The prompt changes back to mysql>, indicating that mysql is ready for a new command.				
The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not completed a backtick-quoted identifier.				
It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter an unterminated string, any further lines you type appear to be ignored by mysql—including a line containing QUIT. This can be quite confusing, especially if you do not know that you need to supply the terminating quote before you can cancel the current command.				
3.3. Creating and Using a Database				
Once you know how to enter commands, you are ready to access a database.				
Suppose that you have several pets in your home (your menagerie) and you would like to keep track of various types of information about them. You can do so by creating tables to hold your data and loading them with the desired information. Then you can answer different sorts of questions about your animals by retrieving data from the tables. This section shows you how to perform the following operations:				
Create a database				
Create a table				
Load data into the table				
Retrieve data from the table in various ways				
Use multiple tables				
The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations in which a similar type of database might be used. For example, a database like this could be used by a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie distribution containing some of the queries and sample data used in the following sections can be obtained from the MySQL Web site. It is available in both compressed tar file and Zip formats at http://dev.mysql.com/doc/.				
Use the SHOW statement to find out what databases currently exist on the server:				
mysql> SHOW DATABASES;				
+----------+				
Database				
+----------+				
mysql				
test				
tmp				
+----------+				
The mysql database describes user access privileges. The test database often is available as a workspace for users to try things out.				
The list of databases displayed by the statement may be different on your machine; SHOW DATABASES does not show databases that you have no privileges for if you do not have the SHOW DATABASES privilege. See Section 13.7.5.15, “SHOW DATABASES Syntax”.				
If the test database exists, try to access it:				
mysql> USE test				
Database changed				
USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon if you like; it does no harm.) The USE statement is special in another way, too: it must be given on a single line.				
You can use the test database (if you have access to it) for the examples that follow, but anything you create in that database can be removed by anyone else with access to it. For this reason, you should probably ask your MySQL administrator for permission to use a database of your own. Suppose that you want to call yours menagerie. The administrator needs to execute a command like this:				
mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';				
where your_mysql_name is the MySQL user name assigned to you and your_client_host is the host from which you connect to the server.				
3.3.1. Creating and Selecting a Database				
If the administrator creates your database for you when setting up your permissions, you can begin using it. Otherwise, you need to create it yourself:				
mysql> CREATE DATABASE menagerie;				
Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is also true for table names. (Under Windows, this restriction does not apply, although you must refer to databases and tables using the same lettercase throughout a given query. However, for a variety of reasons, the recommended best practice is always to use the same lettercase that was used when the database was created.)				
Note				
If you get an error such as ERROR 1044 (42000): Access denied for user 'monty'@'localhost' to database 'menagerie' when attempting to create a database, this means that your user account does not have the necessary privileges to do so. Discuss this with the administrator or see Section 6.2, “The MySQL Access Privilege System”.				
Creating a database does not select it for use; you must do that explicitly. To make menagerie the current database, use this command:				
mysql> USE menagerie				
Database changed				
Your database needs to be created only once, but you must select it for use each time you begin a mysql session. You can do this by issuing a USE statement as shown in the example. Alternatively, you can select the database on the command line when you invoke mysql. Just specify its name after any connection parameters that you might need to provide. For example:				
shell> mysql -h host -u user -p menagerie				
Enter password: ********				
Important				
menagerie in the command just shown is not your password. If you want to supply your password on the command line after the -p option, you must do so with no intervening space (for example, as -pmypassword, not as -p mypassword). However, putting your password on the command line is not recommended, because doing so exposes it to snooping by other users logged in on your machine.				
Note				
You can see at any time which database is currently selected using SELECT DATABASE().				
3.3.2. Creating a Table				
Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:				
mysql> SHOW TABLES;				
Empty set (0.00 sec)				
The harder part is deciding what the structure of your database should be: what tables you need and what columns should be in each of them.				
You want a table that contains a record for each of your pets. This can be called the pet table, and it should contain, as a bare minimum, each animal's name. Because the name by itself is not very interesting, the table should contain other information. For example, if more than one person in your family keeps pets, you might want to list each animal's owner. You might also want to record some basic descriptive information such as species and sex.				
How about age? That might be of interest, but it is not a good thing to store in a database. Age changes as time passes, which means you'd have to update your records often. Instead, it is better to store a fixed value such as date of birth. Then, whenever you need age, you can calculate it as the difference between the current date and the birth date. MySQL provides functions for doing date arithmetic, so this is not difficult. Storing birth date rather than age has other advantages, too:				
You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If you think this type of query is somewhat silly, note that it is the same question you might ask in the context of a business database to identify clients to whom you need to send out birthday greetings in the current week or month, for that computer-assisted personal touch.)				
You can calculate age in relation to dates other than the current date. For example, if you store death date in the database, you can easily calculate how old a pet was when it died.				
You can probably think of other types of information that would be useful in the pet table, but the ones identified so far are sufficient: name, owner, species, sex, birth, and death.				
Use a CREATE TABLE statement to specify the layout of your table:				
mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),				
-> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);				
VARCHAR is a good choice for the name, owner, and species columns because the column values vary in length. The lengths in those column definitions need not all be the same, and need not be 20. You can normally pick any length from 1 to 65535, whatever seems most reasonable to you. If you make a poor choice and it turns out later that you need a longer field, MySQL provides an ALTER TABLE statement.				
Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or perhaps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.				
The use of the DATE data type for the birth and death columns is a fairly obvious choice.				
Once you have created a table, SHOW TABLES should produce some output:				
mysql> SHOW TABLES;				
+---------------------+				
Tables in menagerie				
+---------------------+				
pet				
+---------------------+				
To verify that your table was created the way you expected, use a DESCRIBE statement:				
mysql> DESCRIBE pet;				
+---------+-------------+------+-----+---------+-------+				
Field	Type	Null	Key	Default
+---------+-------------+------+-----+---------+-------+				
name	varchar(20)	YES		NULL
owner	varchar(20)	YES		NULL
species	varchar(20)	YES		NULL
sex	char(1)	YES		NULL
birth	date	YES		NULL
death	date	YES		NULL
+---------+-------------+------+-----+---------+-------+				
You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or what types they have.				
For more information about MySQL data types, see Chapter 11, Data Types.				
3.3.3. Loading Data into a Table				
After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful for this.				
Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates in 'YYYY-MM-DD' format; this may be different from what you are used to.)				
name	owner	species	sex	birth
---	---	---	---	---
Fluffy	Harold	cat	f	1993-02-04
Claws	Gwen	cat	m	1994-03-17
Buffy	Harold	dog	f	1989-05-13
Fang	Benny	dog	m	1990-08-27
Bowser	Diane	dog	m	1979-08-31
Chirpy	Gwen	bird	f	1998-09-11
Whistler	Gwen	bird	1997-12-09	
Slim	Benny	snake	m	1996-04-29
Because you are beginning with an empty table, an easy way to populate it is to create a text file containing a row for each of your animals, then load the contents of the file into the table with a single statement.				
You could create a text file pet.txt containing one record per line, with values separated by tabs, and given in the order in which the columns were listed in the CREATE TABLE statement. For missing values (such as unknown sexes or death dates for animals that are still living), you can use NULL values. To represent these in your text file, use \N (backslash, capital-N). For example, the record for Whistler the bird would look like this (where the whitespace between values is a single tab character):				
Whistler Gwen bird \N 1997-12-09 \N				
To load the text file pet.txt into the pet table, use this statement:				
mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;				
If you created the file on Windows with an editor that uses \r\n as a line terminator, you should use this statement instead:				
mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet				
-> LINES TERMINATED BY '\r\n';				
(On an Apple machine running OS X, you would likely want to use LINES TERMINATED BY '\r'.)				
You can specify the column value separator and end of line marker explicitly in the LOAD DATA statement if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to read the file pet.txt properly.				
If the statement fails, it is likely that your MySQL installation does not have local file capability enabled by default. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”, for information on how to change this.				
When you want to add new records one at a time, the INSERT statement is useful. In its simplest form, you supply values for each column, in the order in which the columns were listed in the CREATE TABLE statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new record using an INSERT statement like this:				
mysql> INSERT INTO pet				
-> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);				
String and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL directly to represent a missing value. You do not use \N like you do with LOAD DATA.				
From this example, you should be able to see that there would be a lot more typing involved to load your records initially using several INSERT statements rather than a single LOAD DATA statement.				
3.3.4. Retrieving Information from a Table				
The SELECT statement is used to pull information from a table. The general form of the statement is:				
SELECT what_to_select				
FROM which_table				
WHERE conditions_to_satisfy;				
what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause is optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows must satisfy to qualify for retrieval.				
3.3.4.1. Selecting All Data				
The simplest form of SELECT retrieves everything from a table:				
mysql> SELECT * FROM pet;				
+----------+--------+---------+------+------------+------------+				
name	owner	species	sex	birth
+----------+--------+---------+------+------------+------------+				
Fluffy	Harold	cat	f	1993-02-04
Claws	Gwen	cat	m	1994-03-17
Buffy	Harold	dog	f	1989-05-13
Fang	Benny	dog	m	1990-08-27
Bowser	Diane	dog	m	1979-08-31
Chirpy	Gwen	bird	f	1998-09-11
Whistler	Gwen	bird	NULL	1997-12-09
Slim	Benny	snake	m	1996-04-29
Puffball	Diane	hamster	f	1999-03-30
+----------+--------+---------+------+------------+------------+				
This form of SELECT is useful if you want to review your entire table, for example, after you've just loaded it with your initial data set. For example, you may happen to think that the birth date for Bowser doesn't seem quite right. Consulting your original pedigree papers, you find that the correct birth year should be 1989, not 1979.				
There are at least two ways to fix this:				
Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD DATA:				
mysql> DELETE FROM pet;				
mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;				
However, if you do this, you must also re-enter the record for Puffball.				
Fix only the erroneous record with an UPDATE statement:				
mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';				
The UPDATE changes only the record in question and does not require you to reload the table.				
3.3.4.2. Selecting Particular Rows				
As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause from the SELECT statement. But typically you don't want to see the entire table, particularly when it becomes large. Instead, you're usually more interested in answering a particular question, in which case you specify some constraints on the information you want. Let's look at some selection queries in terms of questions about your pets that they answer.				
You can select only particular rows from your table. For example, if you want to verify the change that you made to Bowser's birth date, select Bowser's record like this:				
mysql> SELECT * FROM pet WHERE name = 'Bowser';				
+--------+-------+---------+------+------------+------------+				
name	owner	species	sex	birth
+--------+-------+---------+------+------------+------------+				
Bowser	Diane	dog	m	1989-08-31
+--------+-------+---------+------+------------+------------+				
The output confirms that the year is correctly recorded as 1989, not 1979.				
String comparisons normally are case-insensitive, so you can specify the name as 'bowser', 'BOWSER', and so forth. The query result is the same.				
You can specify conditions on any column, not just name. For example, if you want to know which animals were born during or after 1998, test the birth column:				
mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';				
+----------+-------+---------+------+------------+-------+				
name	owner	species	sex	birth
+----------+-------+---------+------+------------+-------+				
Chirpy	Gwen	bird	f	1998-09-11
Puffball	Diane	hamster	f	1999-03-30
+----------+-------+---------+------+------------+-------+				
You can combine conditions, for example, to locate female dogs:				
mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';				
+-------+--------+---------+------+------------+-------+				
name	owner	species	sex	birth
+-------+--------+---------+------+------------+-------+				
Buffy	Harold	dog	f	1989-05-13
+-------+--------+---------+------+------------+-------+				
The preceding query uses the AND logical operator. There is also an OR operator:				
mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';				
+----------+-------+---------+------+------------+-------+				
name	owner	species	sex	birth
+----------+-------+---------+------+------------+-------+				
Chirpy	Gwen	bird	f	1998-09-11
Whistler	Gwen	bird	NULL	1997-12-09
Slim	Benny	snake	m	1996-04-29
+----------+-------+---------+------+------------+-------+				
AND and OR may be intermixed, although AND has higher precedence than OR. If you use both operators, it is a good idea to use parentheses to indicate explicitly how conditions should be grouped:				
mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')				
-> OR (species = 'dog' AND sex = 'f');				
+-------+--------+---------+------+------------+-------+				
name	owner	species	sex	birth
+-------+--------+---------+------+------------+-------+				
Claws	Gwen	cat	m	1994-03-17
Buffy	Harold	dog	f	1989-05-13
+-------+--------+---------+------+------------+-------+				
3.3.4.3. Selecting Particular Columns				
If you do not want to see entire rows from your table, just name the columns in which you are interested, separated by commas. For example, if you want to know when your animals were born, select the name and birth columns:				
mysql> SELECT name, birth FROM pet;				
+----------+------------+				
name	birth			
+----------+------------+				
Fluffy	1993-02-04			
Claws	1994-03-17			
Buffy	1989-05-13			
Fang	1990-08-27			
Bowser	1989-08-31			
Chirpy	1998-09-11			
Whistler	1997-12-09			
Slim	1996-04-29			
Puffball	1999-03-30			
+----------+------------+				
To find out who owns pets, use this query:				
mysql> SELECT owner FROM pet;				
+--------+				
owner				
+--------+				
Harold				
Gwen				
Harold				
Benny				
Diane				
Gwen				
Gwen				
Benny				
Diane				
+--------+				
Notice that the query simply retrieves the owner column from each record, and some of them appear more than once. To minimize the output, retrieve each unique output record just once by adding the keyword DISTINCT:				
mysql> SELECT DISTINCT owner FROM pet;				
+--------+				
owner				
+--------+				
Benny				
Diane				
Gwen				
Harold				
+--------+				
You can use a WHERE clause to combine row selection with column selection. For example, to get birth dates for dogs and cats only, use this query:				
mysql> SELECT name, species, birth FROM pet				
-> WHERE species = 'dog' OR species = 'cat';				
+--------+---------+------------+				
name	species	birth		
+--------+---------+------------+				
Fluffy	cat	1993-02-04		
Claws	cat	1994-03-17		
Buffy	dog	1989-05-13		
Fang	dog	1990-08-27		
Bowser	dog	1989-08-31		
+--------+---------+------------+				
3.3.4.4. Sorting Rows				
You may have noticed in the preceding examples that the result rows are displayed in no particular order. It is often easier to examine query output when the rows are sorted in some meaningful way. To sort a result, use an ORDER BY clause.				
Here are animal birthdays, sorted by date:				
mysql> SELECT name, birth FROM pet ORDER BY birth;				
+----------+------------+				
name	birth			
+----------+------------+				
Buffy	1989-05-13			
Bowser	1989-08-31			
Fang	1990-08-27			
Fluffy	1993-02-04			
Claws	1994-03-17			
Slim	1996-04-29			
Whistler	1997-12-09			
Chirpy	1998-09-11			
Puffball	1999-03-30			
+----------+------------+				
On character type columns, sorting—like all other comparison operations—is normally performed in a case-insensitive fashion. This means that the order is undefined for columns that are identical except for their case. You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY BINARY col_name.				
The default sort order is ascending, with smallest values first. To sort in reverse (descending) order, add the DESC keyword to the name of the column you are sorting by:				
mysql> SELECT name, birth FROM pet ORDER BY birth DESC;				
+----------+------------+				
name	birth			
+----------+------------+				
Puffball	1999-03-30			
Chirpy	1998-09-11			
Whistler	1997-12-09			
Slim	1996-04-29			
Claws	1994-03-17			
Fluffy	1993-02-04			
Fang	1990-08-27			
Bowser	1989-08-31			
Buffy	1989-05-13			
+----------+------------+				
You can sort on multiple columns, and you can sort different columns in different directions. For example, to sort by type of animal in ascending order, then by birth date within animal type in descending order (youngest animals first), use the following query:				
mysql> SELECT name, species, birth FROM pet				
-> ORDER BY species, birth DESC;				
+----------+---------+------------+				
name	species	birth		
+----------+---------+------------+				
Chirpy	bird	1998-09-11		
Whistler	bird	1997-12-09		
Claws	cat	1994-03-17		
Fluffy	cat	1993-02-04		
Fang	dog	1990-08-27		
Bowser	dog	1989-08-31		
Buffy	dog	1989-05-13		
Puffball	hamster	1999-03-30		
Slim	snake	1996-04-29		
+----------+---------+------------+				
The DESC keyword applies only to the column name immediately preceding it (birth); it does not affect the species column sort order.				
3.3.4.5. Date Calculations				
MySQL provides several functions that you can use to perform calculations on dates, for example, to calculate ages or extract parts of dates.				
To determine how many years old each of your pets is, use the TIMESTAMPDIFF() function. Its arguments are the unit in which you want the result expressed, and the two date for which to take the difference. The following query shows, for each pet, the birth date, the current date, and the age in years. An alias (age) is used to make the final output column label more meaningful.				
mysql> SELECT name, birth, CURDATE(),				
-> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age				
-> FROM pet;				
+----------+------------+------------+------+				
name	birth	CURDATE()	age	
+----------+------------+------------+------+				
Fluffy	1993-02-04	2003-08-19	10	
Claws	1994-03-17	2003-08-19	9	
Buffy	1989-05-13	2003-08-19	14	
Fang	1990-08-27	2003-08-19	12	
Bowser	1989-08-31	2003-08-19	13	
Chirpy	1998-09-11	2003-08-19	4	
Whistler	1997-12-09	2003-08-19	5	
Slim	1996-04-29	2003-08-19	7	
Puffball	1999-03-30	2003-08-19	4	
+----------+------------+------------+------+				
The query works, but the result could be scanned more easily if the rows were presented in some order. This can be done by adding an ORDER BY name clause to sort the output by name:				
mysql> SELECT name, birth, CURDATE(),				
-> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age				
-> FROM pet ORDER BY name;				
+----------+------------+------------+------+				
name	birth	CURDATE()	age	
+----------+------------+------------+------+				
Bowser	1989-08-31	2003-08-19	13	
Buffy	1989-05-13	2003-08-19	14	
Chirpy	1998-09-11	2003-08-19	4	
Claws	1994-03-17	2003-08-19	9	
Fang	1990-08-27	2003-08-19	12	
Fluffy	1993-02-04	2003-08-19	10	
Puffball	1999-03-30	2003-08-19	4	
Slim	1996-04-29	2003-08-19	7	
Whistler	1997-12-09	2003-08-19	5	
+----------+------------+------------+------+				
To sort the output by age rather than name, just use a different ORDER BY clause:				
mysql> SELECT name, birth, CURDATE(),				
-> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age				
-> FROM pet ORDER BY age;				
+----------+------------+------------+------+				
name	birth	CURDATE()	age	
+----------+------------+------------+------+				
Chirpy	1998-09-11	2003-08-19	4	
Puffball	1999-03-30	2003-08-19	4	
Whistler	1997-12-09	2003-08-19	5	
Slim	1996-04-29	2003-08-19	7	
Claws	1994-03-17	2003-08-19	9	
Fluffy	1993-02-04	2003-08-19	10	
Fang	1990-08-27	2003-08-19	12	
Bowser	1989-08-31	2003-08-19	13	
Buffy	1989-05-13	2003-08-19	14	
+----------+------------+------------+------+				
A similar query can be used to determine age at death for animals that have died. You determine which animals these are by checking whether the death value is NULL. Then, for those with non-NULL values, compute the difference between the death and birth values:				
mysql> SELECT name, birth, death,				
-> TIMESTAMPDIFF(YEAR,birth,death) AS age				
-> FROM pet WHERE death IS NOT NULL ORDER BY age;				
+--------+------------+------------+------+				
name	birth	death	age	
+--------+------------+------------+------+				
Bowser	1989-08-31	1995-07-29	5	
+--------+------------+------------+------+				
The query uses death IS NOT NULL rather than death <> NULL because NULL is a special value that cannot be compared using the usual comparison operators. This is discussed later. See Section 3.3.4.6, “Working with NULL Values”.				
What if you want to know which animals have birthdays next month? For this type of calculation, year and day are irrelevant; you simply want to extract the month part of the birth column. MySQL provides several functions for extracting parts of dates, such as YEAR(), MONTH(), and DAYOFMONTH(). MONTH() is the appropriate function here. To see how it works, run a simple query that displays the value of both birth and MONTH(birth):				
mysql> SELECT name, birth, MONTH(birth) FROM pet;				
+----------+------------+--------------+				
name	birth	MONTH(birth)		
+----------+------------+--------------+				
Fluffy	1993-02-04	2		
Claws	1994-03-17	3		
Buffy	1989-05-13	5		
Fang	1990-08-27	8		
Bowser	1989-08-31	8		
Chirpy	1998-09-11	9		
Whistler	1997-12-09	12		
Slim	1996-04-29	4		
Puffball	1999-03-30	3		
+----------+------------+--------------+				
Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is April. Then the month value is 4 and you can look for animals born in May (month 5) like this:				
mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;				
+-------+------------+				
name	birth			
+-------+------------+				
Buffy	1989-05-13			
+-------+------------+				
There is a small complication if the current month is December. You cannot merely add one to the month number (12) and look for animals born in month 13, because there is no such month. Instead, you look for animals born in January (month 1).				
You can write the query so that it works no matter what the current month is, so that you do not have to use the number for a particular month. DATE_ADD() enables you to add a time interval to a given date. If you add a month to the value of CURDATE(), then extract the month part with MONTH(), the result produces the month in which to look for birthdays:				
mysql> SELECT name, birth FROM pet				
-> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));				
A different way to accomplish the same task is to add 1 to get the next month after the current one after using the modulo function (MOD) to wrap the month value to 0 if it is currently 12:				
mysql> SELECT name, birth FROM pet				
-> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;				
MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between 0 and 11. So the addition has to be after the MOD(), otherwise we would go from November (11) to January (1).				
3.3.4.6. Working with NULL Values				
The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing unknown value” and it is treated somewhat differently from other values.				
To test for NULL, use the IS NULL and IS NOT NULL operators, as shown here:				
mysql> SELECT 1 IS NULL, 1 IS NOT NULL;				
+-----------+---------------+				
1 IS NULL	1 IS NOT NULL			
+-----------+---------------+				
0	1			
+-----------+---------------+				
You cannot use arithmetic comparison operators such as =, <, or <> to test for NULL. To demonstrate this for yourself, try the following query:				
mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;				
+----------+-----------+----------+----------+				
1 = NULL	1 <> NULL	1 < NULL	1 > NULL	
+----------+-----------+----------+----------+				
NULL	NULL	NULL	NULL	
+----------+-----------+----------+----------+				
Because the result of any arithmetic comparison with NULL is also NULL, you cannot obtain any meaningful results from such comparisons.				
In MySQL, 0 or NULL means false and anything else means true. The default truth value from a boolean operation is 1.				
This special treatment of NULL is why, in the previous section, it was necessary to determine which animals are no longer alive using death IS NOT NULL instead of death <> NULL.				
Two NULL values are regarded as equal in a GROUP BY.				
When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if you do ORDER BY ... DESC.				
A common error when working with NULL is to assume that it is not possible to insert a zero or an empty string into a column defined as NOT NULL, but this is not the case. These are in fact values, whereas NULL means “not having a value.” You can test this easily enough by using IS [NOT] NULL as shown:				
mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;				
+-----------+---------------+------------+----------------+				
0 IS NULL	0 IS NOT NULL	'' IS NULL	'' IS NOT NULL	
+-----------+---------------+------------+----------------+				
0	1	0	1	
+-----------+---------------+------------+----------------+				
Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact NOT NULL. See Section C.5.5.3, “Problems with NULL Values”.				
3.3.4.7. Pattern Matching				
MySQL provides standard SQL pattern matching as well as a form of pattern matching based on extended regular expressions similar to those used by Unix utilities such as vi, grep, and sed.				
SQL pattern matching enables you to use “_” to match any single character and “%” to match an arbitrary number of characters (including zero characters). In MySQL, SQL patterns are case-insensitive by default. Some examples are shown here. You do not use = or <> when you use SQL patterns; use the LIKE or NOT LIKE comparison operators instead.				
To find names beginning with “b”:				
mysql> SELECT * FROM pet WHERE name LIKE 'b%';				
+--------+--------+---------+------+------------+------------+				
name	owner	species	sex	birth
+--------+--------+---------+------+------------+------------+				
Buffy	Harold	dog	f	1989-05-13
Bowser	Diane	dog	m	1989-08-31
+--------+--------+---------+------+------------+------------+				
To find names ending with “fy”:				
mysql> SELECT * FROM pet WHERE name LIKE '%fy';				
+--------+--------+---------+------+------------+-------+				
name	owner	species	sex	birth
+--------+--------+---------+------+------------+-------+				
Fluffy	Harold	cat	f	1993-02-04
Buffy	Harold	dog	f	1989-05-13
+--------+--------+---------+------+------------+-------+				
To find names containing a “w”:				
mysql> SELECT * FROM pet WHERE name LIKE '%w%';				
+----------+-------+---------+------+------------+------------+				
name	owner	species	sex	birth
+----------+-------+---------+------+------------+------------+				
Claws	Gwen	cat	m	1994-03-17
Bowser	Diane	dog	m	1989-08-31
Whistler	Gwen	bird	NULL	1997-12-09
+----------+-------+---------+------+------------+------------+				
To find names containing exactly five characters, use five instances of the “_” pattern character:				
mysql> SELECT * FROM pet WHERE name LIKE '_____';				
+-------+--------+---------+------+------------+-------+				
name	owner	species	sex	birth
+-------+--------+---------+------+------------+-------+				
Claws	Gwen	cat	m	1994-03-17
Buffy	Harold	dog	f	1989-05-13
+-------+--------+---------+------+------------+-------+				
The other type of pattern matching provided by MySQL uses extended regular expressions. When you test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and NOT RLIKE, which are synonyms).				
The following list describes some characteristics of extended regular expressions:				
“.” matches any single character.				
A character class “[...]” matches any character within the brackets. For example, “[abc]” matches “a”, “b”, or “c”. To name a range of characters, use a dash. “[a-z]” matches any letter, whereas “[0-9]” matches any digit.				
“*” matches zero or more instances of the thing preceding it. For example, “x*” matches any number of “x” characters, “[0-9]*” matches any number of digits, and “.*” matches any number of anything.				
A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This differs from a LIKE pattern match, which succeeds only if the pattern matches the entire value.)				
To anchor a pattern so that it must match the beginning or end of the value being tested, use “^” at the beginning or “$” at the end of the pattern.				
To demonstrate how extended regular expressions work, the LIKE queries shown previously are rewritten here to use REGEXP.				
To find names beginning with “b”, use “^” to match the beginning of the name:				
mysql> SELECT * FROM pet WHERE name REGEXP '^b';				
+--------+--------+---------+------+------------+------------+				
name	owner	species	sex	birth
+--------+--------+---------+------+------------+------------+				
Buffy	Harold	dog	f	1989-05-13
Bowser	Diane	dog	m	1989-08-31
+--------+--------+---------+------+------------+------------+				
If you really want to force a REGEXP comparison to be case sensitive, use the BINARY keyword to make one of the strings a binary string. This query matches only lowercase “b” at the beginning of a name:				
mysql> SELECT * FROM pet WHERE name REGEXP BINARY '^b';				
To find names ending with “fy”, use “$” to match the end of the name:				
mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';				
+--------+--------+---------+------+------------+-------+				
name	owner	species	sex	birth
+--------+--------+---------+------+------------+-------+				
Fluffy	Harold	cat	f	1993-02-04
Buffy	Harold	dog	f	1989-05-13
+--------+--------+---------+------+------------+-------+				
To find names containing a “w”, use this query:				
mysql> SELECT * FROM pet WHERE name REGEXP 'w';				
+----------+-------+---------+------+------------+------------+				
name	owner	species	sex	birth
+----------+-------+---------+------+------------+------------+				
Claws	Gwen	cat	m	1994-03-17
Bowser	Diane	dog	m	1989-08-31
Whistler	Gwen	bird	NULL	1997-12-09
+----------+-------+---------+------+------------+------------+				
Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in the previous query to put a wildcard on either side of the pattern to get it to match the entire value like it would be if you used an SQL pattern.				
To find names containing exactly five characters, use “^” and “$” to match the beginning and end of the name, and five instances of “.” in between:				
mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';				
+-------+--------+---------+------+------------+-------+				
name	owner	species	sex	birth
+-------+--------+---------+------+------------+-------+				
Claws	Gwen	cat	m	1994-03-17
Buffy	Harold	dog	f	1989-05-13
+-------+--------+---------+------+------------+-------+				
You could also write the previous query using the {n} (“repeat-n-times”) operator:				
mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';				
+-------+--------+---------+------+------------+-------+				
name	owner	species	sex	birth
+-------+--------+---------+------+------------+-------+				
Claws	Gwen	cat	m	1994-03-17
Buffy	Harold	dog	f	1989-05-13
+-------+--------+---------+------+------------+-------+				
Section 12.5.2, “Regular Expressions”, provides more information about the syntax for regular expressions.				
3.3.4.8. Counting Rows				
Databases are often used to answer the question, “How often does a certain type of data occur in a table?” For example, you might want to know how many pets you have, or how many pets each owner has, or you might want to perform various kinds of census operations on your animals.				
Counting the total number of animals you have is the same question as “How many rows are in the pet table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to count your animals looks like this:				
mysql> SELECT COUNT(*) FROM pet;				
+----------+				
COUNT(*)				
+----------+				
9				
+----------+				
Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to find out how many pets each owner has:				
mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;				
+--------+----------+				
owner	COUNT(*)			
+--------+----------+				
Benny	2			
Diane	2			
Gwen	3			
Harold	2			
+--------+----------+				
The preceding query uses GROUP BY to group all records for each owner. The use of COUNT() in conjunction with GROUP BY is useful for characterizing your data under various groupings. The following examples show different ways to perform animal census operations.				
Number of animals per species:				
mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;				
+---------+----------+				
species	COUNT(*)			
+---------+----------+				
bird	2			
cat	2			
dog	3			
hamster	1			
snake	1			
+---------+----------+				
Number of animals per sex:				
mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;				
+------+----------+				
sex	COUNT(*)			
+------+----------+				
NULL	1			
f	4			
m	4			
+------+----------+				
(In this output, NULL indicates that the sex is unknown.)				
Number of animals per combination of species and sex:				
mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;				
+---------+------+----------+				
species	sex	COUNT(*)		
+---------+------+----------+				
bird	NULL	1		
bird	f	1		
cat	f	1		
cat	m	1		
dog	f	1		
dog	m	2		
hamster	f	1		
snake	m	1		
+---------+------+----------+				
You need not retrieve an entire table when you use COUNT(). For example, the previous query, when performed just on dogs and cats, looks like this:				
mysql> SELECT species, sex, COUNT(*) FROM pet				
-> WHERE species = 'dog' OR species = 'cat'				
-> GROUP BY species, sex;				
+---------+------+----------+				
species	sex	COUNT(*)		
+---------+------+----------+				
cat	f	1		
cat	m	1		
dog	f	1		
dog	m	2		
+---------+------+----------+				
Or, if you wanted the number of animals per sex only for animals whose sex is known:				
mysql> SELECT species, sex, COUNT(*) FROM pet				
-> WHERE sex IS NOT NULL				
-> GROUP BY species, sex;				
+---------+------+----------+				
species	sex	COUNT(*)		
+---------+------+----------+				
bird	f	1		
cat	f	1		
cat	m	1		
dog	f	1		
dog	m	2		
hamster	f	1		
snake	m	1		
+---------+------+----------+				
If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present that names those same columns. Otherwise, the following occurs:				
If the ONLY_FULL_GROUP_BY SQL mode is enabled, an error occurs:				
mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';				
Query OK, 0 rows affected (0.00 sec)				
mysql> SELECT owner, COUNT(*) FROM pet;				
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT()...)				
with no GROUP columns is illegal if there is no GROUP BY clause				
If ONLY_FULL_GROUP_BY is not enabled, the query is processed by treating all rows as a single group, but the value selected for each named column is indeterminate. The server is free to select the value from any row:				
mysql> SET sql_mode = '';				
Query OK, 0 rows affected (0.00 sec)				
mysql> SELECT owner, COUNT(*) FROM pet;				
+--------+----------+				
owner	COUNT(*)			
+--------+----------+				
Harold	8			
+--------+----------+				
1 row in set (0.00 sec)				
See also Section 12.17.3, “MySQL Extensions to GROUP BY”.				
3.3.4.9. Using More Than one Table				
The pet table keeps track of which pets you have. If you want to record other information about them, such as events in their lives like visits to the vet or when litters are born, you need another table. What should this table look like? It needs to contain the following information:				
The pet name so that you know which animal each event pertains to.				
A date so that you know when the event occurred.				
A field to describe the event.				
An event type field, if you want to be able to categorize events.				
Given these considerations, the CREATE TABLE statement for the event table might look like this:				
mysql> CREATE TABLE event (name VARCHAR(20), date DATE,				
-> type VARCHAR(15), remark VARCHAR(255));				
As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file containing the following information.				
name	date	type	remark	
---	---	---	---	
Fluffy	1995-05-15	litter	4 kittens, 3 female, 1 male	
Buffy	1993-06-23	litter	5 puppies, 2 female, 3 male	
Buffy	1994-06-19	litter	3 puppies, 3 female	
Chirpy	1999-03-21	vet	needed beak straightened	
Slim	1997-08-03	vet	broken rib	
Bowser	1991-10-12	kennel		
Fang	1991-10-12	kennel		
Fang	1998-08-28	birthday	Gave him a new chew toy	
Claws	1998-03-17	birthday	Gave him a new flea collar	
Whistler	1998-12-09	birthday	First birthday	
Load the records like this:				
mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;				
Based on what you have learned from the queries that you have run on the pet table, you should be able to perform retrievals on the records in the event table; the principles are the same. But when is the event table by itself insufficient to answer questions you might ask?				
Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to calculate ages from two dates. The litter date of the mother is in the event table, but to calculate her age on that date you need her birth date, which is stored in the pet table. This means the query requires both tables:				
mysql> SELECT pet.name,				
-> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,				
-> remark				
-> FROM pet INNER JOIN event				
-> ON pet.name = event.name				
-> WHERE event.type = 'litter';				
+--------+------+-----------------------------+				
name	age	remark		
+--------+------+-----------------------------+				
Fluffy	2	4 kittens, 3 female, 1 male		
Buffy	4	5 puppies, 2 female, 3 male		
Buffy	5	3 puppies, 3 female		
+--------+------+-----------------------------+				
There are several things to note about this query:				
The FROM clause joins two tables because the query needs to pull information from both of them.				
When combining (joining) information from multiple tables, you need to specify how records in one table can be matched to records in the other. This is easy because they both have a name column. The query uses an ON clause to match up records in the two tables based on the name values.				
The query uses an INNER JOIN to combine the tables. An INNER JOIN permits rows from either table to appear in the result if and only if both tables meet the conditions specified in the ON clause. In this example, the ON clause specifies that the name column in the pet table must match the name column in the event table. If a name appears in one table but not the other, the row will not appear in the result because the condition in the ON clause fails.				
Because the name column occurs in both tables, you must be specific about which table you mean when referring to the column. This is done by prepending the table name to the column name.				
You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself, if you want to compare records in a table to other records in that same table. For example, to find breeding pairs among your pets, you can join the pet table with itself to produce candidate pairs of males and females of like species:				
mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species				
-> FROM pet AS p1 INNER JOIN pet AS p2				
-> ON p1.species = p2.species AND p1.sex = 'f' AND p2.sex = 'm';				
+--------+------+--------+------+---------+				
name	sex	name	sex	species
+--------+------+--------+------+---------+				
Fluffy	f	Claws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
+--------+------+--------+------+---------+				
In this query, we specify aliases for the table name to refer to the columns and keep straight which instance of the table each column reference is associated with.				
3.4. Getting Information About Databases and Tables				
What if you forget the name of a database or table, or what the structure of a given table is (for example, what its columns are called)? MySQL addresses this problem through several statements that provide information about the databases and tables it supports.				
You have previously seen SHOW DATABASES, which lists the databases managed by the server. To find out which database is currently selected, use the DATABASE() function:				
mysql> SELECT DATABASE();				
+------------+				
DATABASE()				
+------------+				
menagerie				
+------------+				
If you have not yet selected any database, the result is NULL.				
To find out what tables the default database contains (for example, when you are not sure about the name of a table), use this command:				
mysql> SHOW TABLES;				
+---------------------+				
Tables_in_menagerie				
+---------------------+				
event				
pet				
+---------------------+				
The name of the column in the output produced by this statement is always Tables_in_db_name, where db_name is the name of the database. See Section 13.7.5.38, “SHOW TABLES Syntax”, for more information.				
If you want to find out about the structure of a table, the DESCRIBE statement is useful; it displays information about each of a table's columns:				
mysql> DESCRIBE pet;				
+---------+-------------+------+-----+---------+-------+				
Field	Type	Null	Key	Default
+---------+-------------+------+-----+---------+-------+				
name	varchar(20)	YES		NULL
owner	varchar(20)	YES		NULL
species	varchar(20)	YES		NULL
sex	char(1)	YES		NULL
birth	date	YES		NULL
death	date	YES		NULL
+---------+-------------+------+-----+---------+-------+				
Field indicates the column name, Type is the data type for the column, NULL indicates whether the column can contain NULL values, Key indicates whether the column is indexed, and Default specifies the column's default value. Extra displays special information about columns: If a column was created with the AUTO_INCREMENT option, the value will be auto_increment rather than empty.				
DESC is a short form of DESCRIBE. See Section 13.8.1, “DESCRIBE Syntax”, for more information.				
You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW CREATE TABLE statement. See Section 13.7.5.12, “SHOW CREATE TABLE Syntax”.				
If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See Section 13.7.5.23, “SHOW INDEX Syntax”, for more about this statement.				
3.5. Using mysql in Batch Mode				
In the previous sections, you used mysql interactively to enter queries and view the results. You can also run mysql in batch mode. To do this, put the commands you want to run in a file, then tell mysql to read its input from the file:				
shell> mysql < batch-file				
If you are running mysql under Windows and have some special characters in the file that cause problems, you can do this:				
C:\> mysql -e "source batch-file"				
If you need to specify connection parameters on the command line, the command might look like this:				
shell> mysql -h host -u user -p < batch-file				
Enter password: ********				
When you use mysql this way, you are creating a script file, then executing the script.				
If you want the script to continue even if some of the statements in it produce errors, you should use the --force command-line option.				
Why use a script? Here are a few reasons:				
If you run a query repeatedly (say, every day or every week), making it a script enables you to avoid retyping it each time you execute it.				
You can generate new queries from existing ones that are similar by copying and editing script files.				
Batch mode can also be useful while you're developing a query, particularly for multiple-line commands or multiple-statement sequences of commands. If you make a mistake, you don't have to retype everything. Just edit your script to correct the error, then tell mysql to execute it again.				
If you have a query that produces a lot of output, you can run the output through a pager rather than watching it scroll off the top of your screen:				
shell> mysql < batch-file	more			
You can catch the output in a file for further processing:				
shell> mysql < batch-file > mysql.out				
You can distribute your script to other people so that they can also run the commands.				
Some situations do not allow for interactive use, for example, when you run a query from a cron job. In this case, you must use batch mode.				
The default output format is different (more concise) when you run mysql in batch mode than when you use it interactively. For example, the output of SELECT DISTINCT species FROM pet looks like this when mysql is run interactively:				
+---------+				
species				
+---------+				
bird				
cat				
dog				
hamster				
snake				
+---------+				
In batch mode, the output looks like this instead:				
species				
bird				
cat				
dog				
hamster				
snake				
If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output the commands that are executed, use mysql -vvv.				
You can also use scripts from the mysql prompt by using the source command or \. command:				
mysql> source filename;				
mysql> \. filename				
See Section 4.5.1.5, “Executing SQL Statements from a Text File”, for more information.				
3.6. Examples of Common Queries				
Here are examples of how to solve some common problems with MySQL.				
Some of the examples use the table shop to hold the price of each article (item number) for certain traders (dealers). Supposing that each trader has a single fixed price per article, then (article, dealer) is a primary key for the records.				
Start the command-line tool mysql and select a database:				
shell> mysql your-database-name				
(In most MySQL installations, you can use the database named test).				
You can create and populate the example table with these statements:				
CREATE TABLE shop (
article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,				
dealer CHAR(20) DEFAULT '' NOT NULL,				
price DOUBLE(16,2) DEFAULT '0.00' NOT NULL,				
PRIMARY KEY(article, dealer));				
INSERT INTO shop VALUES				
(1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),				
(3,'C',1.69),(3,'D',1.25),(4,'D',19.95);				
After issuing the statements, the table should have the following contents:				
SELECT * FROM shop;				
+---------+--------+-------+				
article	dealer	price		
+---------+--------+-------+				
0001	A	3.45		
0001	B	3.99		
0002	A	10.99		
0003	B	1.45		
0003	C	1.69		
0003	D	1.25		
0004	D	19.95		
+---------+--------+-------+				
3.6.1. The Maximum Value for a Column				
“What is the highest item number?”				
SELECT MAX(article) AS article FROM shop;				
+---------+				
article				
+---------+				
4				
+---------+				
3.6.2. The Row Holding the Maximum of a Certain Column				
Task: Find the number, dealer, and price of the most expensive article.				
This is easily done with a subquery:				
SELECT article, dealer, price				
FROM shop				
WHERE price=(SELECT MAX(price) FROM shop);				
+---------+--------+-------+				
article	dealer	price		
+---------+--------+-------+				
0004	D	19.95		
+---------+--------+-------+				
Other solutions are to use a LEFT JOIN or to sort all rows descending by price and get only the first row using the MySQL-specific LIMIT clause:				
SELECT s1.article, s1.dealer, s1.price				
FROM shop s1				
LEFT JOIN shop s2 ON s1.price < s2.price				
WHERE s2.article IS NULL;				
SELECT article, dealer, price				
FROM shop				
ORDER BY price DESC				
LIMIT 1;				
Note				
If there were several most expensive articles, each with a price of 19.95, the LIMIT solution would show only one of them.				
3.6.3. Maximum of Column per Group				
Task: Find the highest price per article.				
SELECT article, MAX(price) AS price				
FROM shop				
GROUP BY article;				
+---------+-------+				
article	price			
+---------+-------+				
0001	3.99			
0002	10.99			
0003	1.69			
0004	19.95			
+---------+-------+				
3.6.4. The Rows Holding the Group-wise Maximum of a Certain Column				
Task: For each article, find the dealer or dealers with the most expensive price.				
This problem can be solved with a subquery like this one:				
SELECT article, dealer, price				
FROM shop s1				
WHERE price=(SELECT MAX(s2.price)				
FROM shop s2				
WHERE s1.article = s2.article);				
+---------+--------+-------+				
article	dealer	price		
+---------+--------+-------+				
0001	B	3.99		
0002	A	10.99		
0003	C	1.69		
0004	D	19.95		
+---------+--------+-------+				
The preceding example uses a correlated subquery, which can be inefficient (see Section 13.2.10.7, “Correlated Subqueries”). Other possibilities for solving the problem are to use an uncorrelated subquery in the FROM clause or a LEFT JOIN.				
Uncorrelated subquery:				
SELECT s1.article, dealer, s1.price				
FROM shop s1				
JOIN (
SELECT article, MAX(price) AS price				
FROM shop				
GROUP BY article) AS s2				
ON s1.article = s2.article AND s1.price = s2.price;				
LEFT JOIN:				
SELECT s1.article, s1.dealer, s1.price				
FROM shop s1				
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price				
WHERE s2.article IS NULL;				
The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no s2.price with a greater value and the s2 rows values will be NULL. See Section 13.2.9.2, “JOIN Syntax”.				
3.6.5. Using User-Defined Variables				
You can employ MySQL user variables to remember results without having to store them in temporary variables in the client. (See Section 9.4, “User-Defined Variables”.)				
For example, to find the articles with the highest and lowest price you can do this:				
mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;				
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;				
+---------+--------+-------+				
article	dealer	price		
+---------+--------+-------+				
0003	D	1.25		
0004	D	19.95		
+---------+--------+-------+				
Note				
It is also possible to store the name of a database object such as a table or a column in a user variable and then to use this variable in an SQL statement; however, this requires the use of a prepared statement. See Section 13.5, “SQL Syntax for Prepared Statements”, for more information.				
3.6.6. Using Foreign Keys				
In MySQL, InnoDB tables support checking of foreign key constraints. See Section 14.2, “The InnoDB Storage Engine”, and Section 1.8.5.4, “Foreign Key Differences”.				
A foreign key constraint is not required merely to join two tables. For storage engines other than InnoDB, it is possible when defining a column to use a REFERENCES tbl_name(col_name) clause, which has no actual effect, and serves only as a memo or comment to you that the column which you are currently defining is intended to refer to a column in another table. It is extremely important to realize when using this syntax that:				
MySQL does not perform any sort of CHECK to make sure that col_name actually exists in tbl_name (or even that tbl_name itself exists).				
MySQL does not perform any sort of action on tbl_name such as deleting rows in response to actions taken on rows in the table which you are defining; in other words, this syntax induces no ON DELETE or ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON UPDATE clause as part of the REFERENCES clause, it is also ignored.)				
This syntax creates a column; it does not create any sort of index or key.				
You can use a column so created as a join column, as shown here:				
CREATE TABLE person (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,				
name CHAR(60) NOT NULL,				
PRIMARY KEY (id)				
);				
CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,				
style ENUM('t-shirt', 'polo', 'dress') NOT NULL,				
color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,				
owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),				
PRIMARY KEY (id)				
);				
INSERT INTO person VALUES (NULL, 'Antonio Paz');				
SELECT @last := LAST_INSERT_ID();				
INSERT INTO shirt VALUES				
(NULL, 'polo', 'blue', @last),				
(NULL, 'dress', 'white', @last),				
(NULL, 't-shirt', 'blue', @last);				
INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');				
SELECT @last := LAST_INSERT_ID();				
INSERT INTO shirt VALUES				
(NULL, 'dress', 'orange', @last),				
(NULL, 'polo', 'red', @last),				
(NULL, 'dress', 'blue', @last),				
(NULL, 't-shirt', 'white', @last);				
SELECT * FROM person;				
+----+---------------------+				
id	name			
+----+---------------------+				
1	Antonio Paz			
2	Lilliana Angelovska			
+----+---------------------+				
SELECT * FROM shirt;				
+----+---------+--------+-------+				
id	style	color	owner	
+----+---------+--------+-------+				
1	polo	blue	1	
2	dress	white	1	
3	t-shirt	blue	1	
4	dress	orange	2	
5	polo	red	2	
6	dress	blue	2	
7	t-shirt	white	2	
+----+---------+--------+-------+				
SELECT s.* FROM person p INNER JOIN shirt s				
ON s.owner = p.id				
WHERE p.name LIKE 'Lilliana%'				
AND s.color <> 'white';				
+----+-------+--------+-------+				
id	style	color	owner	
+----+-------+--------+-------+				
4	dress	orange	2	
5	polo	red	2	
6	dress	blue	2	
+----+-------+--------+-------+				
When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE TABLE or DESCRIBE:				
SHOW CREATE TABLE shirt\G				
*************************** 1. row ***************************				
Table: shirt				
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,				
`style` enum('t-shirt','polo','dress') NOT NULL,				
`color` enum('red','blue','orange','white','black') NOT NULL,				
`owner` smallint(5) unsigned NOT NULL,				
PRIMARY KEY (`id`)				
) ENGINE=MyISAM DEFAULT CHARSET=latin1				
The use of REFERENCES in this way as a comment or “reminder” in a column definition works with MyISAM tables.				
3.6.7. Searching on Two Keys				
An OR using a single key is well optimized, as is the handling of AND.				
The one tricky case is that of searching on two different keys combined with OR:				
SELECT field1_index, field2_index FROM test_table				
WHERE field1_index = '1' OR field2_index = '1'				
This case is optimized. See Section 8.13.2, “Index Merge Optimization”.				
You can also solve the problem efficiently by using a UNION that combines the output of two separate SELECT statements. See Section 13.2.9.4, “UNION Syntax”.				
Each SELECT searches only one key and can be optimized:				
SELECT field1_index, field2_index				
FROM test_table WHERE field1_index = '1'				
UNION				
SELECT field1_index, field2_index				
FROM test_table WHERE field2_index = '1';				
3.6.8. Calculating Visits Per Day				
The following example shows how you can use the bit group functions to calculate the number of days per month a user has visited a Web page.				
CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,				
day INT(2) UNSIGNED ZEROFILL);				
INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),				
(2000,2,23),(2000,2,23);				
The example table contains year-month-day values representing visits by users to the page. To determine how many different days in each month these visits occur, use this query:				
SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1				
GROUP BY year,month;				
Which returns:				
+------+-------+------+				
year	month	days		
+------+-------+------+				
2000	01	3		
2000	02	2		
+------+-------+------+				
The query calculates how many different days appear in the table for each year/month combination, with automatic removal of duplicate entries.				
3.6.9. Using AUTO_INCREMENT				
The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:				
CREATE TABLE animals (
id MEDIUMINT NOT NULL AUTO_INCREMENT,				
name CHAR(30) NOT NULL,				
PRIMARY KEY (id)				
);				
INSERT INTO animals (name) VALUES				
('dog'),('cat'),('penguin'),				
('lax'),('whale'),('ostrich');				
SELECT * FROM animals;				
Which returns:				
+----+---------+				
id	name			
+----+---------+				
1	dog			
2	cat			
3	penguin			
4	lax			
5	whale			
6	ostrich			
+----+---------+				
No value was specified for the AUTO_INCREMENT column, so MySQL assigned sequence numbers automatically. You can also explicitly assign NULL or 0 to the column to generate sequence numbers.				
You can retrieve the most recent AUTO_INCREMENT value with the LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. These functions are connection-specific, so their return values are not affected by another connection which is also performing inserts.				
Use the smallest integer data type for the AUTO_INCREMENT column that is large enough to hold the maximum sequence value you will need. When the column reaches the upper limit of the data type, the next attempt to generate a sequence number fails. Use the UNSIGNED attribute if possible to allow a greater range. For example, if you use TINYINT, the maximum permissible sequence number is 127. For TINYINT UNSIGNED, the maximum is 255. See Section 11.2.1, “Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT” for the ranges of all the integer types.				
Note				
For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id() actually return the AUTO_INCREMENT key from the first of the inserted rows. This enables multiple-row inserts to be reproduced correctly on other servers in a replication setup.				
If the AUTO_INCREMENT column is part of multiple indexes, MySQL generates sequence values using the index that begins with the AUTO_INCREMENT column, if there is one. For example, if the animals table contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would ignore the PRIMARY KEY for generating sequence values. As a result, the table would contain a single sequence, not a sequence per grp value.				
To start with an AUTO_INCREMENT value other than 1, set that value with CREATE TABLE or ALTER TABLE, like this:				
mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;				
InnoDB Notes				
For InnoDB tables, be careful if you modify the column containing the auto-increment value in the middle of a sequence of INSERT statements. For example, if you use an UPDATE statement to put a new, larger value in the auto-increment column, a subsequent INSERT could encounter a “Duplicate entry” error. The test whether an auto-increment value is already present occurs if you do a DELETE followed by more INSERT statements, or when you COMMIT the transaction, but not after an UPDATE statement.				
MyISAM Notes				
For MyISAM tables, you can specify AUTO_INCREMENT on a secondary column in a multiple-column index. In this case, the generated value for the AUTO_INCREMENT column is calculated as MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when you want to put data into ordered groups.				
CREATE TABLE animals (
grp ENUM('fish','mammal','bird') NOT NULL,				
id MEDIUMINT NOT NULL AUTO_INCREMENT,				
name CHAR(30) NOT NULL,				
PRIMARY KEY (grp,id)				
) ENGINE=MyISAM;				
INSERT INTO animals (grp,name) VALUES				
('mammal','dog'),('mammal','cat'),				
('bird','penguin'),('fish','lax'),('mammal','whale'),				
('bird','ostrich');				
SELECT * FROM animals ORDER BY grp,id;				
Which returns:				
+--------+----+---------+				
grp	id	name		
+--------+----+---------+				
fish	1	lax		
mammal	1	dog		
mammal	2	cat		
mammal	3	whale		
bird	1	penguin		
bird	2	ostrich		
+--------+----+---------+				
In this case (when the AUTO_INCREMENT column is part of a multiple-column index), AUTO_INCREMENT values are reused if you delete the row with the biggest AUTO_INCREMENT value in any group. This happens even for MyISAM tables, for which AUTO_INCREMENT values normally are not reused.				
Further Reading				
More information about AUTO_INCREMENT is available here:				
How to assign the AUTO_INCREMENT attribute to a column: Section 13.1.14, “CREATE TABLE Syntax”, and Section 13.1.6, “ALTER TABLE Syntax”.				
How AUTO_INCREMENT behaves depending on the NO_AUTO_VALUE_ON_ZERO SQL mode: Section 5.1.7, “Server SQL Modes”.				
How to use the LAST_INSERT_ID() function to find the row that contains the most recent AUTO_INCREMENT value: Section 12.14, “Information Functions”.				
Setting the AUTO_INCREMENT value to be used: Section 5.1.4, “Server System Variables”.				
AUTO_INCREMENT and replication: Section 16.4.1.1, “Replication and AUTO_INCREMENT”.				
Server-system variables related to AUTO_INCREMENT (auto_increment_increment and auto_increment_offset) that can be used for replication: Section 5.1.4, “Server System Variables”.				
3.7. Using MySQL with Apache				
There are programs that let you authenticate your users from a MySQL database and also let you write your log files into a MySQL table.				
You can change the Apache logging format to be easily readable by MySQL by putting the following into the Apache configuration file:				
LogFormat \				
"\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \				
\"%U\",\"%{Referer}i\",\"%{User-Agent}i\""				
To load a log file in that format into MySQL, you can use a statement something like this:				
LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name				
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'				
The named table should be created to have columns that correspond to those that the LogFormat line writes to the log file.				
Chapter 4. MySQL Programs				
Table of Contents				
4.1. Overview of MySQL Programs				
4.2.1. Invoking MySQL Programs				
4.2.2. Connecting to the MySQL Server				
4.2.3. Specifying Program Options				
4.2.4. Setting Environment Variables				
4.3. MySQL Server and Server-Startup Programs				
4.3.1. mysqld — The MySQL Server				
4.3.2. mysqld_safe — MySQL Server Startup Script				
4.3.3. mysql.server — MySQL Server Startup Script				
4.3.4. mysqld_multi — Manage Multiple MySQL Servers				
4.4. MySQL Installation-Related Programs				
4.4.1. comp_err — Compile MySQL Error Message File				
4.4.2. mysqlbug — Generate Bug Report				
4.4.3. mysql_install_db — Initialize MySQL Data Directory				
4.4.4. mysql_plugin — Configure MySQL Server Plugins				
4.4.5. mysql_secure_installation — Improve MySQL Installation Security				
4.4.6. mysql_tzinfo_to_sql — Load the Time Zone Tables				
4.4.7. mysql_upgrade — Check and Upgrade MySQL Tables				
4.5.1. mysql — The MySQL Command-Line Tool				
4.5.2. mysqladmin — Client for Administering a MySQL Server				
4.5.3. mysqlcheck — A Table Maintenance Program				
4.5.4. mysqldump — A Database Backup Program				
4.5.5. mysqlimport — A Data Import Program				
4.5.6. mysqlshow — Display Database, Table, and Column Information				
4.5.7. mysqlslap — Load Emulation Client				
4.6. MySQL Administrative and Utility Programs				
4.6.1. innochecksum — Offline InnoDB File Checksum Utility				
4.6.2. myisam_ftdump — Display Full-Text Index information				
4.6.3. myisamchk — MyISAM Table-Maintenance Utility				
4.6.4. myisamlog — Display MyISAM Log File Contents				
4.6.5. myisampack — Generate Compressed, Read-Only MyISAM Tables				
4.6.6. mysql_config_editor — MySQL Configuration Utility				
4.6.7. mysqlaccess — Client for Checking Access Privileges				
4.6.8. mysqlbinlog — Utility for Processing Binary Log Files				
4.6.9. mysqldumpslow — Summarize Slow Query Log Files				
4.6.10. mysqlhotcopy — A Database Backup Program				
4.6.11. mysql_convert_table_format — Convert Tables to Use a Given Storage Engine				
4.6.12. mysql_find_rows — Extract SQL Statements from Files				
4.6.13. mysql_fix_extensions — Normalize Table File Name Extensions				
4.6.14. mysql_setpermission — Interactively Set Permissions in Grant Tables				
4.6.15. mysql_waitpid — Kill Process and Wait for Its Termination				
4.6.16. mysql_zap — Kill Processes That Match a Pattern				
4.7. MySQL Program Development Utilities				
4.7.1. msql2mysql — Convert mSQL Programs for Use with MySQL				
4.7.2. mysql_config — Display Options for Compiling Clients				
4.7.3. my_print_defaults — Display Options from Option Files				
4.7.4. resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols				
4.8.1. perror — Explain Error Codes				
4.8.2. replace — A String-Replacement Utility				
4.8.3. resolveip — Resolve Host name to IP Address or Vice Versa				
This chapter provides a brief overview of the MySQL command-line programs provided by Oracle Corporation. It also discusses the general syntax for specifying options when you run these programs. Most programs have options that are specific to their own operation, but the option syntax is similar for all of them. Finally, the chapter provides more detailed descriptions of individual programs, including which options they recognize.				
4.1. Overview of MySQL Programs				
There are many different programs in a MySQL installation. This section provides a brief overview of them. Later sections provide a more detailed description of each one. Each program's description indicates its invocation syntax and the options that it supports.				
Most MySQL distributions include all of these programs, except for those programs that are platform-specific. (For example, the server startup scripts are not used on Windows.) The exception is that RPM distributions are more specialized. There is one RPM for the server, another for client programs, and so forth. If you appear to be missing one or more programs, see Chapter 2, Installing and Upgrading MySQL, for information on types of distributions and what they contain. It may be that you have a distribution that does not include all programs and you need to install an additional package.				
Each MySQL program takes many different options. Most programs provide a --help option that you can use to get a description of the program's different options. For example, try mysql --help.				
You can override default option values for MySQL programs by specifying options on the command line or in an option file. See Section 4.2, “Using MySQL Programs”, for general information on invoking programs and specifying program options.				
The MySQL server, mysqld, is the main program that does most of the work in a MySQL installation. The server is accompanied by several related scripts that assist you in starting and stopping the server:				
The SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running, because clients gain access to databases by connecting to the server. See Section 4.3.1, “mysqld — The MySQL Server”.				
A server startup script. mysqld_safe attempts to start mysqld. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.				
A server startup script. This script is used on systems that use System V-style run directories containing scripts that start system services for particular run levels. It invokes mysqld_safe to start the MySQL server. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.				
A server startup script that can start or stop multiple servers installed on the system. See Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”.				
Several programs perform setup operations during MySQL installation or upgrading:				
This program is used during the MySQL build/installation process. It compiles error message files from the error source files. See Section 4.4.1, “comp_err — Compile MySQL Error Message File”.				
This script creates the MySQL database, initializes the grant tables with default privileges, and sets up the InnoDB system tablespace. It is usually executed only once, when first installing MySQL on a system. See Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”, Section 2.10.1, “Unix Postinstallation Procedures”, and Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”.				
This program configures MySQL server plugins. See Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”.				
This program enables you to improve the security of your MySQL installation. SQL. See Section 4.4.5, “mysql_secure_installation — Improve MySQL Installation Security”.				
This program loads the time zone tables in the mysql database using the contents of the host system zoneinfo database (the set of files describing time zones). SQL. See Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”.				
This program is used after a MySQL upgrade operation. It checks tables for incompatibilities and repairs them if necessary, and updates the grant tables with any changes that have been made in newer versions of MySQL. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.				
MySQL client programs that connect to the MySQL server:				
The command-line tool for interactively entering SQL statements or executing them from a file in batch mode. See Section 4.5.1, “mysql — The MySQL Command-Line Tool”.				
A client that performs administrative operations, such as creating or dropping databases, reloading the grant tables, flushing tables to disk, and reopening log files. mysqladmin can also be used to retrieve version, process, and status information from the server. See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.				
A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 4.5.3, “mysqlcheck — A Table Maintenance Program”.				
A client that dumps a MySQL database into a file as SQL, text, or XML. See Section 4.5.4, “mysqldump — A Database Backup Program”.				
A client that imports text files into their respective tables using LOAD DATA INFILE. See Section 4.5.5, “mysqlimport — A Data Import Program”.				
A client that displays information about databases, tables, columns, and indexes. See Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”.				
A client that is designed to emulate client load for a MySQL server and report the timing of each stage. It works as if multiple clients are accessing the server. See Section 4.5.7, “mysqlslap — Load Emulation Client”.				
MySQL administrative and utility programs:				
An offline InnoDB offline file checksum utility. See Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”.				
A utility that displays information about full-text indexes in MyISAM tables. See Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”.				
A utility to describe, check, optimize, and repair MyISAM tables. See Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.				
A utility that processes the contents of a MyISAM log file. See Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”.				
A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”.				
A utility that enables you to store authentication credentials in a secure, encrypted login file named .mylogin.cnf. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.				
A script that checks the access privileges for a host name, user name, and database combination. See Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”.				
A utility for reading statements from a binary log. The log of executed statements contained in the binary log files can be used to help recover from a crash. See Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”.				
A utility to read and summarize the contents of a slow query log. See Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”.				
A utility that quickly makes backups of MyISAM tables while the server is running. See Section 4.6.10, “mysqlhotcopy — A Database Backup Program”.				
A utility that converts tables in a database to use a given storage engine. See Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”.				
A utility that reads files containing SQL statements (such as update logs) and extracts statements that match a given regular expression. See Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”.				
A utility that converts the extensions for MyISAM table files to lowercase. This can be useful after transferring the files from a system with case-insensitive file names to a system with case-sensitive file names. See Section 4.6.13, “mysql_fix_extensions — Normalize Table File Name Extensions”.				
A utility for interactively setting permissions in the MySQL grant tables. See Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”.				
A utility that kills the process with a given process ID. See Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”.				
A utility that kills processes that match a pattern. See Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”.				
MySQL program-development utilities:				
A shell script that converts mSQL programs to MySQL. It doesn't handle every case, but it gives a good start when converting. See Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with MySQL”.				
A shell script that produces the option values needed when compiling MySQL programs. See Section 4.7.2, “mysql_config — Display Options for Compiling Clients”.				
A utility that shows which options are present in option groups of option files. See Section 4.7.3, “my_print_defaults — Display Options from Option Files”.				
A utility program that resolves a numeric stack trace dump to symbols. See Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”.				
Miscellaneous utilities:				
A utility that displays the meaning of system or MySQL error codes. See Section 4.8.1, “perror — Explain Error Codes”.				
A utility program that performs string replacement in the input text. See Section 4.8.2, “replace — A String-Replacement Utility”.				
A utility program that resolves a host name to an IP address or vice versa. See Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”.				
Oracle Corporation also provides the MySQL Workbench GUI tool, which is used to administer MySQL servers and databases, to create, execute, and evaluate queries, and to migrate schemas and data from other relational database management systems for use with MySQL. Additional GUI tools include MySQL Notifier for Microsoft Windows and MySQL for Excel.				
MySQL client programs that communicate with the server using the MySQL client/server library use the following environment variables.				
Environment Variable	Meaning			
---	---			
MYSQL_UNIX_PORT	The default Unix socket file; used for connections to localhost			
MYSQL_TCP_PORT	The default port number; used for TCP/IP connections			
MYSQL_PWD	The default password			
MYSQL_DEBUG	Debug trace options when debugging			
TMPDIR	The directory where temporary tables and files are created			
For a full list of environment variables used by MySQL programs, see Section 2.12, “Environment Variables”.				
Use of MYSQL_PWD is insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.				
4.2. Using MySQL Programs				
4.2.1. Invoking MySQL Programs				
To invoke a MySQL program from the command line (that is, from your shell or command prompt), enter the program name followed by any options or other arguments needed to instruct the program what you want it to do. The following commands show some sample program invocations. “shell>” represents the prompt for your command interpreter; it is not part of what you type. The particular prompt you see depends on your command interpreter. Typical prompts are $ for sh, ksh, or bash, % for csh or tcsh, and C:\> for the Windows command.com or cmd.exe command interpreters.				
shell> mysql --user=root test				
shell> mysqladmin extended-status variables				
shell> mysqlshow --help				
shell> mysqldump -u root personnel				
Arguments that begin with a single or double dash (“-”, “--”) specify program options. Options typically indicate the type of connection a program should make to the server or affect its operational mode. Option syntax is described in Section 4.2.3, “Specifying Program Options”.				
Nonoption arguments (arguments with no leading dash) provide additional information to the program. For example, the mysql program interprets the first nonoption argument as a database name, so the command mysql --user=root test indicates that you want to use the test database.				
Later sections that describe individual programs indicate which options a program supports and describe the meaning of any additional nonoption arguments.				
Some options are common to a number of programs. The most frequently used of these are the --host (or -h), --user (or -u), and --password (or -p) options that specify connection parameters. They indicate the host where the MySQL server is running, and the user name and password of your MySQL account. All MySQL client programs understand these options; they enable you to specify which server to connect to and the account to use on that server. Other connection options are --port (or -P) to specify a TCP/IP port number and --socket (or -S) to specify a Unix socket file on Unix (or named pipe name on Windows). For more information on options that specify connection options, see Section 4.2.2, “Connecting to the MySQL Server”.				
You may find it necessary to invoke MySQL programs using the path name to the bin directory in which they are installed. This is likely to be the case if you get a “program not found” error whenever you attempt to run a MySQL program from any directory other than the bin directory. To make it more convenient to use MySQL, you can add the path name of the bin directory to your PATH environment variable setting. That enables you to run a program by typing only its name, not its entire path name. For example, if mysql is installed in /usr/local/mysql/bin, you can run the program by invoking it as mysql, and it is not necessary to invoke it as /usr/local/mysql/bin/mysql.				
Consult the documentation for your command interpreter for instructions on setting your PATH variable. The syntax for setting environment variables is interpreter-specific. (Some information is given in Section 4.2.4, “Setting Environment Variables”.) After modifying your PATH setting, open a new console window on Windows or log in again on Unix so that the setting goes into effect.				
4.2.2. Connecting to the MySQL Server				
For a client program to be able to connect to the MySQL server, it must use the proper connection parameters, such as the name of the host where the server is running and the user name and password of your MySQL account. Each connection parameter has a default value, but you can override them as necessary using program options specified either on the command line or in an option file.				
The examples here use the mysql client program, but the principles apply to other clients such as mysqldump, mysqladmin, or mysqlshow.				
This command invokes mysql without specifying any connection parameters explicitly:				
shell> mysql				
Because there are no parameter options, the default values apply:				
The default host name is localhost. On Unix, this has a special meaning, as described later.				
The default user name is ODBC on Windows or your Unix login name on Unix.				
No password is sent if neither -p nor --password is given.				
For mysql, the first nonoption argument is taken as the name of the default database. If there is no such option, mysql does not select a default database.				
To specify the host name and user name explicitly, as well as a password, supply appropriate options on the command line:				
shell> mysql --host=localhost --user=myname --password=mypass mydb				
shell> mysql -h localhost -u myname -pmypass mydb				
For password options, the password value is optional:				
If you use a -p or --password option and specify the password value, there must be no space between -p or --password= and the password following it.				
If you use a -p or --password option but do not specify the password value, the client program prompts you to enter the password. The password is not displayed as you enter it. This is more secure than giving the password on the command line. Other users on your system may be able to see a password specified on the command line by executing a command such as ps auxw. See Section 6.1.2.1, “End-User Guidelines for Password Security”.				
As just mentioned, including the password value on the command line can be a security risk. To avoid this problem, specify the --password or -p option without any following password value:				
shell> mysql --host=localhost --user=myname --password mydb				
shell> mysql -h localhost -u myname -p mydb				
When the password option has no password value, the client program prints a prompt and waits for you to enter the password. (In these examples, mydb is not interpreted as a password because it is separated from the preceding password option by a space.)				
On some systems, the library routine that MySQL uses to prompt for a password automatically limits the password to eight characters. That is a problem with the system library, not with MySQL. Internally, MySQL does not have any limit for the length of the password. To work around the problem, change your MySQL password to a value that is eight or fewer characters long, or put your password in an option file.				
On Unix, MySQL programs treat the host name localhost specially, in a way that is likely different from what you expect compared to other network-based programs. For connections to localhost, MySQL programs attempt to connect to the local server by using a Unix socket file. This occurs even if a --port or -P option is given to specify a port number. To ensure that the client makes a TCP/IP connection to the local server, use --host or -h to specify a host name value of 127.0.0.1, or the IP address or name of the local server. You can also specify the connection protocol explicitly, even for localhost, by using the --protocol=TCP option. For example:				
shell> mysql --host=127.0.0.1				
shell> mysql --protocol=TCP				
The --protocol option enables you to establish a particular type of connection even when the other options would normally default to some other protocol.				
If the server is configured to accept IPv6 connections, client can connect over IPv6 using --host=::1. See Section 5.1.9, “IPv6 Support”.				
On Windows, you can force a MySQL client to use a named-pipe connection by specifying the --pipe or --protocol=PIPE option, or by specifying . (period) as the host name. If named-pipe connections are not enabled, an error occurs. Use the --socket option to specify the name of the pipe if you do not want to use the default pipe name.				
Connections to remote servers always use TCP/IP. This command connects to the server running on remote.example.com using the default port number (3306):				
shell> mysql --host=remote.example.com				
To specify a port number explicitly, use the --port or -P option:				
shell> mysql --host=remote.example.com --port=13306				
You can specify a port number for connections to a local server, too. However, as indicated previously, connections to localhost on Unix will use a socket file by default. You will need to force a TCP/IP connection as already described or any option that specifies a port number will be ignored.				
For this command, the program uses a socket file on Unix and the --port option is ignored:				
shell> mysql --port=13306 --host=localhost				
To cause the port number to be used, invoke the program in either of these ways:				
shell> mysql --port=13306 --host=127.0.0.1				
shell> mysql --port=13306 --protocol=TCP				
The following list summarizes the options that can be used to control how client programs connect to the server:				
--host=host_name, -h host_name				
The host where the server is running. The default value is localhost.				
--password[=pass_val], -p[pass_val]				
The password of the MySQL account. As described earlier, the password value is optional, but if given, there must be no space between -p or --password= and the password following it. The default is to send no password.				
--pipe, -W				
On Windows, connect to the server using a named pipe. The server must be started with the --enable-named-pipe option to enable named-pipe connections.				
--port=port_num, -P port_num				
The port number to use for the connection, for connections made using TCP/IP. The default port number is 3306.				
--protocol={TCP	SOCKET	PIPE	MEMORY}	
This option explicitly specifies a protocol to use for connecting to the server. It is useful when the other connection parameters normally would cause a protocol to be used other than the one you want. For example, connections on Unix to localhost are made using a Unix socket file by default:				
shell> mysql --host=localhost				
To force a TCP/IP connection to be used instead, specify a --protocol option:				
shell> mysql --host=localhost --protocol=TCP				
The following table shows the permissible --protocol option values and indicates the platforms on which each value may be used. The values are not case sensitive.				
--protocol Value	Connection Protocol	Permissible Operating Systems		
---	---	---		
TCP	TCP/IP connection to local or remote server	All		
SOCKET	Unix socket file connection to local server	Unix only		
PIPE	Named-pipe connection to local or remote server	Windows only		
MEMORY	Shared-memory connection to local server	Windows only		
--shared-memory-base-name=name				
On Windows, the shared-memory name to use, for connections made using shared memory to a local server. The default value is MYSQL. The shared-memory name is case sensitive.				
The server must be started with the --shared-memory option to enable shared-memory connections.				
--socket=file_name, -S file_name				
On Unix, the name of the Unix socket file to use, for connections made using a named pipe to a local server. The default Unix socket file name is /tmp/mysql.sock.				
On Windows, the name of the named pipe to use, for connections to a local server. The default Windows pipe name is MySQL. The pipe name is not case sensitive.				
The server must be started with the --enable-named-pipe option to enable named-pipe connections.				
--ssl*				
Options that begin with --ssl are used for establishing a secure connection to the server using SSL, if the server is configured with SSL support. For details, see Section 6.3.9.4, “SSL Command Options”.				
--user=user_name, -u user_name				
The user name of the MySQL account you want to use. The default user name is ODBC on Windows or your Unix login name on Unix.				
It is possible to specify different default values to be used when you make a connection so that you need not enter them on the command line each time you invoke a client program. This can be done in a couple of ways:				
You can specify connection parameters in the [client] section of an option file. The relevant section of the file might look like this:				
[client]				
host=host_name				
user=user_name				
password=your_pass				
Section 4.2.3.3, “Using Option Files”, discusses option files further.				
You can specify some connection parameters using environment variables. The host can be specified for mysql using MYSQL_HOST. The MySQL user name can be specified using USER (this is for Windows only). The password can be specified using MYSQL_PWD, although this is insecure; see Section 6.1.2.1, “End-User Guidelines for Password Security”. For a list of variables, see Section 2.12, “Environment Variables”.				
4.2.3. Specifying Program Options				
There are several ways to specify options for MySQL programs:				
List the options on the command line following the program name. This is common for options that apply to a specific invocation of the program.				
List the options in an option file that the program reads when it starts. This is common for options that you want the program to use each time it runs.				
List the options in environment variables (see Section 4.2.4, “Setting Environment Variables”). This method is useful for options that you want to apply each time the program runs. In practice, option files are used more commonly for this purpose, but Section 5.6.3, “Running Multiple MySQL Instances on Unix”, discusses one situation in which environment variables can be very helpful. It describes a handy technique that uses such variables to specify the TCP/IP port number and Unix socket file for the server and for client programs.				
Options are processed in order, so if an option is specified multiple times, the last occurrence takes precedence. The following command causes mysql to connect to the server running on localhost:				
shell> mysql -h example.com -h localhost				
If conflicting or related options are given, later options take precedence over earlier options. The following command runs mysql in “no column names” mode:				
shell> mysql --column-names --skip-column-names				
MySQL programs determine which options are given first by examining environment variables, then by reading option files, and then by checking the command line. This means that environment variables have the lowest precedence and command-line options the highest.				
You can take advantage of the way that MySQL programs process options by specifying default option values for a program in an option file. That enables you to avoid typing them each time you run the program while enabling you to override the defaults if necessary by using command-line options.				
An option can be specified by writing it in full or as any unambiguous prefix. For example, the --compress option can be given to mysqldump as --compr, but not as --comp because the latter is ambiguous:				
shell> mysqldump --comp				
mysqldump: ambiguous option '--comp' (compatible, compress)				
Be aware that the use of option prefixes can cause problems in the event that new options are implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.				
4.2.3.1. Using Options on the Command Line				
Program options specified on the command line follow these rules:				
Options are given after the command name.				
An option argument begins with one dash or two dashes, depending on whether it is a short form or long form of the option name. Many options have both short and long forms. For example, -? and --help are the short and long forms of the option that instructs a MySQL program to display its help message.				
Option names are case sensitive. -v and -V are both legal and have different meanings. (They are the corresponding short forms of the --verbose and --version options.)				
Some options take a value following the option name. For example, -h localhost or --host=localhost indicate the MySQL server host to a client program. The option value tells the program the name of the host where the MySQL server is running.				
For a long option that takes a value, separate the option name and the value by an “=” sign. For a short option that takes a value, the option value can immediately follow the option letter, or there can be a space between: -hlocalhost and -h localhost are equivalent. An exception to this rule is the option for specifying your MySQL password. This option can be given in long form as --password=pass_val or as --password. In the latter case (with no password value given), the program prompts you for the password. The password option also may be given in short form as -ppass_val or as -p. However, for the short form, if the password value is given, it must follow the option letter with no intervening space. The reason for this is that if a space follows the option letter, the program has no way to tell whether a following argument is supposed to be the password value or some other kind of argument. Consequently, the following two commands have two completely different meanings:				
shell> mysql -ptest				
shell> mysql -p test				
The first command instructs mysql to use a password value of test, but specifies no default database. The second instructs mysql to prompt for the password value and to use test as the default database.				
Within option names, dash (“-”) and underscore (“_”) may be used interchangeably. For example, --skip-grant-tables and --skip_grant_tables are equivalent. (However, the leading dashes cannot be given as underscores.)				
For options that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 10243. For example, the following command tells mysqladmin to ping the server 1024 times, sleeping 10 seconds between each ping:				
mysql> mysqladmin --count=1K --sleep=10 ping				
Option values that contain spaces must be quoted when given on the command line. For example, the --execute (or -e) option can be used with mysql to pass SQL statements to the server. When this option is used, mysql executes the statements in the option value and exits. The statements must be enclosed by quotation marks. For example, you can use the following command to obtain a list of user accounts:				
mysql> mysql -u root -p --execute="SELECT User, Host FROM mysql.user"				
Enter password: ******				
+------+-----------+				
User	Host			
+------+-----------+				
	gigan			
root	gigan			
	localhost			
jon	localhost			
root	localhost			
+------+-----------+				
shell>				
Note that the long form (--execute) is followed by an equals sign (=).				
If you wish to use quoted values within a statement, you will either need to escape the inner quotation marks, or use a different type of quotation marks within the statement from those used to quote the statement itself. The capabilities of your command processor dictate your choices for whether you can use single or double quotation marks and the syntax for escaping quote characters. For example, if your command processor supports quoting with single or double quotation marks, you can use double quotation marks around the statement, and single quotation marks for any quoted values within the statement.				
Multiple SQL statements may be passed in the option value on the command line, separated by semicolons:				
shell> mysql -u root -p -e "SELECT VERSION();SELECT NOW()"				
Enter password: ******				
+-----------------+				
VERSION()				
+-----------------+				
5.1.5-alpha-log				
+-----------------+				
+---------------------+				
NOW()				
+---------------------+				
2006-01-05 21:19:04				
+---------------------+
4.2.3.2. Program Option Modifiers
Some options are “boolean” and control behavior that can be turned on or off. For example, the mysql client supports a --column-names option that determines whether or not to display a row of column names at the beginning of query results. By default, this option is enabled. However, you may want to disable it in some instances, such as when sending the output of mysql into another program that expects to see only data and not an initial header line.
To disable column names, you can specify the option using any of these forms:
--disable-column-names
--skip-column-names
--column-names=0
The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the option off.
The “enabled” form of the option may be specified in any of these ways:
--column-names
--enable-column-names
--column-names=1
As of MySQL 5.6.2, the values ON, TRUE, OFF, and FALSE are also recognized for boolean options (not case sensitive).
If an option is prefixed by --loose, a program does not exit with an error if it does not recognize the option, but instead issues only a warning:
shell> mysql --loose-no-such-option
mysql: WARNING: unknown option '--no-such-option'
The --loose prefix can be useful when you run programs from multiple installations of MySQL on the same machine and list options in an option file, An option that may not be recognized by all versions of a program can be given using the --loose prefix (or loose in an option file). Versions of the program that recognize the option process it normally, and versions that do not recognize it issue a warning and ignore it.
mysqld enables a limit to be placed on how large client programs can set dynamic system variables. To do this, use a --maximum prefix with the variable name. For example, --maximum-query_cache_size=4M prevents any client from making the query cache size larger than 4MB.
4.2.3.3. Using Option Files
Most MySQL programs can read startup options from option files (also sometimes called configuration files). Option files provide a convenient way to specify commonly used options so that they need not be entered on the command line each time you run a program. For the MySQL server, MySQL provides a number of preconfigured option files.
To determine whether a program reads option files, invoke it with the --help option. (For mysqld, use --verbose and --help.) If the program reads option files, the help message indicates which files it looks for and which option groups it recognizes.
The .mylogin.cnf file that contains login path options is created by the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”. A “login path” is an option group that permits only a limited set of options: host, user, and password. Client programs specify which login path to read from .mylogin.cnf using the --login-path option.
On Windows, MySQL programs read startup options from the following files, in the specified order (top items are used first).
File Name | Purpose |
---|---|
%WINDIR%\my.ini, %WINDIR%\my.cnf | Global options |
C:\my.ini, C:\my.cnf | Global options |
INSTALLDIR\my.ini, INSTALLDIR\my.cnf | Global options |
defaults-extra-file | The file specified with --defaults-extra-file=path, if any |
%APPDATA%\MySQL\.mylogin.cnf | Login path options |
%WINDIR% represents the location of your Windows directory. This is commonly C:\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable using the following command:
C:\> echo %WINDIR%
INSTALLDIR represents the MySQL installation directory. This is typically C:\PROGRAMDIR\MySQL\MySQL 5.6 Server where PROGRAMDIR represents the programs directory (usually Program Files on English-language versions of Windows), when MySQL 5.6 has been installed using the installation and configuration wizards. See Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”.
%APPDATA% represents the value of the Windows application data directory. You can determine its exact location from the value of the APPDATA environment variable using the following command:
C:\> echo %APPDATA%
On Unix, Linux and Mac OS X, MySQL programs read startup options from the following files, in the specified order (top items are used first).
File Name | Purpose |
---|---|
/etc/my.cnf | Global options |
/etc/mysql/my.cnf | Global options |
SYSCONFDIR/my.cnf | Global options |
$MYSQL_HOME/my.cnf | Server-specific options |
defaults-extra-file | The file specified with --defaults-extra-file=path, if any |
~/.my.cnf | User-specific options |
~/.mylogin.cnf | Login path options |
~ represents the current user's home directory (the value of $HOME).
SYSCONFDIR represents the directory specified with the SYSCONFDIR option to CMake when MySQL was built. By default, this is the etc directory located under the compiled-in installation directory.
MYSQL_HOME is an environment variable containing the path to the directory in which the server-specific my.cnf file resides. If MYSQL_HOME is not set and you start the server using the mysqld_safe program, mysqld_safe attempts to set MYSQL_HOME as follows:
Let BASEDIR and DATADIR represent the path names of the MySQL base directory and data directory, respectively.
If there is a my.cnf file in DATADIR but not in BASEDIR, mysqld_safe sets MYSQL_HOME to DATADIR.
Otherwise, if MYSQL_HOME is not set and there is no my.cnf file in DATADIR, mysqld_safe sets MYSQL_HOME to BASEDIR.
In MySQL 5.6, use of DATADIR as the location for my.cnf is deprecated.
Typically, DATADIR is /usr/local/mysql/data for a binary installation or /usr/local/var for a source installation. Note that this is the data directory location that was specified at configuration time, not the one specified with the --datadir option when mysqld starts. Use of --datadir at runtime has no effect on where the server looks for option files, because it looks for them before processing any options.
MySQL looks for option files in the order just described and reads any that exist. If an option file that you want to use does not exist, create it with a plain text editor.
If multiple instances of a given option are found, the last instance takes precedence. There is one exception: For mysqld, the first instance of the --user option is used as a security precaution, to prevent a user specified in an option file from being overridden on the command line.
Note
On Unix platforms, MySQL ignores configuration files that are world-writable. This is intentional as a security measure.
Any long option that may be given on the command line when running a MySQL program can be given in an option file as well. To get the list of available options for a program, run it with the --help option.
The syntax for specifying options in an option file is similar to command-line syntax (see Section 4.2.3.1, “Using Options on the Command Line”). However, in an option file, you omit the leading two dashes from the option name and you specify only one option per line. For example, --quick and --host=localhost on the command line should be specified as quick and host=localhost on separate lines in an option file. To specify an option of the form --loose-opt_name in an option file, write it as loose-opt_name.
Empty lines in option files are ignored. Nonempty lines can take any of the following forms:
#comment, ;comment
Comment lines start with “#” or “;”. A “#” comment can start in the middle of a line as well.
[group]
group is the name of the program or group for which you want to set options. After a group line, any option-setting lines apply to the named group until the end of the option file or another group line is given. Option group names are not case sensitive.
opt_name
This is equivalent to --opt_name on the command line.
opt_name=value
This is equivalent to --opt_name=value on the command line. In an option file, you can have spaces around the “=” character, something that is not true on the command line. You can optionally enclose the value within single quotation marks or double quotation marks, which is useful if the value contains a “#” comment character.
Leading and trailing spaces are automatically deleted from option names and values.
You can use the escape sequences “\b”, “\t”, “\n”, “\r”, “\\”, and “\s” in option values to represent the backspace, tab, newline, carriage return, backslash, and space characters. The escaping rules in option files are:
If a backslash is followed by a valid escape sequence character, the sequence is converted to the character represented by the sequence. For example, “\s” is converted to a space.
If a backslash is not followed by a valid escape sequence character, it remains unchanged. For example, “\S” is retained as is.
The preceding rules mean that a literal backslash can be given as “\\”, or as “\” if it is not followed by a valid escape sequence character.
The rules for escape sequences in option files differ slightly from the rules for escape sequences in string literals in SQL statements. In the latter context, if “x” is not a value escape sequence character, “\x” becomes “x” rather than “\x”. See Section 9.1.1, “String Literals”.
The escaping rules for option file values are especially pertinent for Windows path names, which use “\” as a path name separator. A separator in a Windows path name must be written as “\\” if it is followed by an escape sequence character. It can be written as “\\” or “\” if it is not. Alternatively, “/” may be used in Windows path names and will be treated as “\”. Suppose that you want to specify a base directory of C:\Program Files\MySQL\MySQL Server 5.6 in an option file. This can be done several ways. Some examples:
basedir="C:\Program Files\MySQL\MySQL Server 5.6"
basedir="C:\\Program Files\\MySQL\\MySQL Server 5.6"
basedir="C:/Program Files/MySQL/MySQL Server 5.6"
basedir=C:\\Program\sFiles\\MySQL\\MySQL\sServer\s5.6
If an option group name is the same as a program name, options in the group apply specifically to that program. For example, the [mysqld] and [mysql] groups apply to the mysqld server and the mysql client program, respectively.
The [client] option group is read by all client programs (but not by mysqld). This enables you to specify options that apply to all clients. For example, [client] is the perfect group to use to specify the password that you use to connect to the server. (But make sure that the option file is readable and writable only by yourself, so that other people cannot find out your password.) Be sure not to put an option in the [client] group unless it is recognized by all client programs that you use. Programs that do not understand the option quit after displaying an error message if you try to run them.
Here is a typical global option file:
[client]
port=3306
socket=/tmp/mysql.sock
[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M
[mysqldump]
quick
The preceding option file uses var_name=value syntax for the lines that set the key_buffer_size and max_allowed_packet variables.
Here is a typical user option file:
[client]
The following password will be sent to all standard MySQL clients
password="my_password"
[mysql]
no-auto-rehash
connect_timeout=2
[mysqlhotcopy]
interactive-timeout
If you want to create option groups that should be read by mysqld servers from a specific MySQL release series only, you can do this by using groups with names of [mysqld-5.5], [mysqld-5.6], and so forth. The following group indicates that the --new option should be used only by MySQL servers with 5.6.x version numbers:
[mysqld-5.6]
new
It is possible to use !include directives in option files to include other option files and !includedir to search specific directories for option files. For example, to include the /home/mydir/myopt.cnf file, use the following directive:
!include /home/mydir/myopt.cnf
To search the /home/mydir directory and read option files found there, use this directive:
!includedir /home/mydir
There is no guarantee about the order in which the option files in the directory will be read.
Note
Currently, any files to be found and included using the !includedir directive on Unix operating systems must have file names ending in .cnf. On Windows, this directive checks for files with the .ini or .cnf extension.
Write the contents of an included option file like any other option file. That is, it should contain groups of options, each preceded by a [group] line that indicates the program to which the options apply.
While an included file is being processed, only those options in groups that the current program is looking for are used. Other groups are ignored. Suppose that a my.cnf file contains this line:
!include /home/mydir/myopt.cnf
And suppose that /home/mydir/myopt.cnf looks like this:
[mysqladmin]
force
[mysqld]
key_buffer_size=16M
If my.cnf is processed by mysqld, only the [mysqld] group in /home/mydir/myopt.cnf is used. If the file is processed by mysqladmin, only the [mysqladmin] group is used. If the file is processed by any other program, no options in /home/mydir/myopt.cnf are used.
The !includedir directive is processed similarly except that all option files in the named directory are read.
4.2.3.4. Command-Line Options that Affect Option-File Handling
Most MySQL programs that support option files handle the following options. They affect option-file handling, so they must be given on the command line and not in an option file. To work properly, each of these options must be given before other options, with these exceptions:
--print-defaults may be used immediately after --defaults-file or --defaults-extra-file.
On Windows, if the server is started with the --defaults-file and --install options, --install must be first. See Section 2.3.4.8, “Starting MySQL as a Windows Service”.
When specifying file names, you should avoid the use of the “~” shell metacharacter because it might not be interpreted as you expect.
--defaults-extra-file=file_name
Read this option file after the global option file but (on Unix) before the user option file. If the file does not exist or is otherwise inaccessible, the program exits with an error. file_name is interpreted relative to the current directory if given as a relative path name rather than a full path name.
Use only the given option file. If the file does not exist or is otherwise inaccessible, the program exits with an error. file_name is interpreted relative to the current directory if given as a relative path name rather than a full path name.
If this option is given, the program reads not only its usual option groups, but also groups with the usual names and a suffix of str. For example, the mysql client normally reads the [client] and [mysql] groups. If the --defaults-group-suffix=_other option is given, mysql also reads the [client_other] and [mysql_other] groups.
Read options from the named login path in the .mylogin.cnf login file. A “login path” is an option group that permits only a limited set of options: host, user, and password. Think of a login path as a set of values that indicate the server host and the credentials for authenticating with the server. To create the login file, use the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”. This option was added in MySQL 5.6.6.
Do not read any option files. If a program does not start because it is reading unknown options from an option file, --no-defaults can be used to prevent the program from reading them.
The exception is that the .mylogin.cnf file, if it exists, is read in all cases. This permits passwords to be specified in a safer way than on the command line even when --no-defaults is used. (.mylogin.cnf is created by the mysql_config_editor utility. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.)
Print the program name and all options that it gets from option files.
4.2.3.5. Using Options to Set Program Variables
Many MySQL programs have internal variables that can be set at runtime using the SET statement. See Section 13.7.4, “SET Syntax”, and Section 5.1.5, “Using System Variables”.
Most of these program variables also can be set at server startup by using the same syntax that applies to specifying program options. For example, mysql has a max_allowed_packet variable that controls the maximum size of its communication buffer. To set the max_allowed_packet variable for mysql to a value of 16MB, use either of the following commands:
shell> mysql --max_allowed_packet=16777216
shell> mysql --max_allowed_packet=16M
The first command specifies the value in bytes. The second specifies the value in megabytes. For variables that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 10243. (For example, when used to set max_allowed_packet, the suffixes indicate units of kilobytes, megabytes, or gigabytes.)
In an option file, variable settings are given without the leading dashes:
[mysql]
max_allowed_packet=16777216
Or:
[mysql]
max_allowed_packet=16M
If you like, underscores in a variable name can be specified as dashes. The following option groups are equivalent. Both set the size of the server's key buffer to 512MB:
[mysqld]
key_buffer_size=512M
[mysqld]
key-buffer-size=512M
A variable can be specified by writing it in full or as any unambiguous prefix. For example, the max_allowed_packet variable can be set for mysql as --max_a, but not as --max because the latter is ambiguous:
shell> mysql --max=1000000
mysql: ambiguous option '--max=1000000' (max_allowed_packet, max_join_size)
Be aware that the use of variable prefixes can cause problems in the event that new variables are implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.
Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value using an expression, which is not true when you set a variable at server startup. For example, the first of the following lines is legal at server startup, but the second is not:
shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024
Conversely, the second of the following lines is legal at runtime, but the first is not:
mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;
4.2.3.6. Option Defaults, Options Expecting Values, and the = Sign
By convention, long forms of options that assign a value are written with an equals (=) sign, like this:
shell> mysql --host=tonfisk --user=jon
For options that require a value (that is, not having a default value), the equals sign is not required, and so the following is also valid:
shell> mysql --host tonfisk --user jon
In both cases, the mysql client attempts to connect to a MySQL server running on the host named “tonfisk” using an account with the user name “jon”.
Due to this behavior, problems can occasionally arise when no value is provided for an option that expects one. Consider the following example, where a user connects to a MySQL server running on host tonfisk as user jon:
shell> mysql --host 85.224.35.45 --user jon
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.6.12 Source distribution
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| jon@% |
+----------------+
1 row in set (0.00 sec)
Omitting the required value for one of these option yields an error, such as the one shown here:
shell> mysql --host 85.224.35.45 --user
mysql: option '--user' requires an argument
In this case, mysql was unable to find a value following the --user option because nothing came after it on the command line. However, if you omit the value for an option that is not the last option to be used, you obtain a different error that you may not be expecting:
shell> mysql --host --user jon
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)
Because mysql assumes that any string following --host on the command line is a host name, --host --user is interpreted as --host=--user, and the client attempts to connect to a MySQL server running on a host named “--user”.
Options having default values always require an equals sign when assigning a value; failing to do so causes an error. For example, the MySQL server --log-error option has the default value host_name.err, where host_name is the name of the host on which MySQL is running. Assume that you are running MySQL on a computer whose host name is “tonfisk”, and consider the following invocation of mysqld_safe:
shell> mysqld_safe &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>
After shutting down the server, restart it as follows:
shell> mysqld_safe --log-error &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>
The result is the same, since --log-error is not followed by anything else on the command line, and it supplies its own default value. (The & character tells the operating system to run MySQL in the background; it is ignored by MySQL itself.) Now suppose that you wish to log errors to a file named my-errors.err. You might try starting the server with --log-error my-errors, but this does not have the intended effect, as shown here:
shell> mysqld_safe --log-error my-errors &
[1] 31357
shell> 080111 22:53:31 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080111 22:53:32 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended
[1]+ Done ./mysqld_safe --log-error my-errors
The server attempted to start using /usr/local/mysql/var/tonfisk.err as the error log, but then shut down. Examining the last few lines of this file shows the reason:
shell> tail /usr/local/mysql/var/tonfisk.err
080111 22:53:32 InnoDB: Started; log sequence number 0 46409
/usr/local/mysql/libexec/mysqld: Too many arguments (first extra is 'my-errors').
Use --verbose --help to get a list of available options
080111 22:53:32 [ERROR] Aborting
080111 22:53:32 InnoDB: Starting shutdown...
080111 22:53:34 InnoDB: Shutdown completed; log sequence number 0 46409
080111 22:53:34 [Note] /usr/local/mysql/libexec/mysqld: Shutdown complete
080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended
Because the --log-error option supplies a default value, you must use an equals sign to assign a different value to it, as shown here:
shell> mysqld_safe --log-error=my-errors &
[1] 31437
shell> 080111 22:54:15 mysqld_safe Logging to '/usr/local/mysql/var/my-errors.err'.
080111 22:54:15 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>
Now the server has been started successfully, and is logging errors to the file /usr/local/mysql/var/my-errors.err.
Similar issues can arise when specifying option values in option files. For example, consider a my.cnf file that contains the following:
[mysql]
host
user
When the mysql client reads this file, these entries are parsed as --host --user or --host=--user, with the result shown here:
shell> mysql
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)
However, in option files, an equals sign is not assumed. Suppose the my.cnf file is as shown here:
[mysql]
user jon
Trying to start mysql in this case causes a different error:
shell> mysql
mysql: unknown option '--user jon'
A similar error would occur if you were to write host tonfisk in the option file rather than host=tonfisk. Instead, you must use the equals sign:
[mysql]
user=jon
Now the login attempt succeeds:
shell> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 5.6.12 Source distribution
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+
1 row in set (0.00 sec)
This is not the same behavior as with the command line, where the equals sign is not required:
shell> mysql --user jon --host tonfisk
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.6.12 Source distribution
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@tonfisk |
+---------------+
1 row in set (0.00 sec)
In MySQL 5.6, specifying an option requiring a value without a value in an option file causes the server to abort with an error. Suppose that my.cnf contains the following:
[mysqld]
log_error
relay_log
relay_log_index
This causes the server to fail on startup, as shown here:
shell> mysqld_safe &
090514 09:48:39 mysqld_safe Logging to '/home/jon/bin/mysql-5.5/var/tonfisk.err'.
090514 09:48:39 mysqld_safe Starting mysqld daemon with databases from /home/jon/bin/mysql-5.5/var
090514 09:48:39 mysqld_safe mysqld from pid file /home/jon/bin/mysql-5.5/var/tonfisk.pid ended
The --log-error option does not require an argument; however, the --relay-log option requires one, as shown in the error log (which in the absence of a specified value, defaults to datadir/hostname.err):
shell> tail -n 3 ../var/tonfisk.err
090514 09:48:39 mysqld_safe Starting mysqld daemon with databases from /home/jon/bin/mysql-5.5/var
090514 9:48:39 [ERROR] /home/jon/bin/mysql-5.5/libexec/mysqld: option '--relay-log' requires an argument
090514 9:48:39 [ERROR] Aborting
This is a change from previous behavior, where the server would have interpreted the last two lines in the example my.cnf file as --relay-log=relay_log_index and created a relay log file using “relay_log_index” as the basename. (Bug #25192)
4.2.4. Setting Environment Variables
Environment variables can be set at the command prompt to affect the current invocation of your command processor, or set permanently to affect future invocations. To set a variable permanently, you can set it in a startup file or by using the interface provided by your system for this purpose. Consult the documentation for your command interpreter for specific details. Section 2.12, “Environment Variables”, lists all environment variables that affect MySQL program operation.
To specify a value for an environment variable, use the syntax appropriate for your command processor. For example, on Windows, you can set the USER variable to specify your MySQL account name. To do so, use this syntax:
SET USER=your_name
The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number using the MYSQL_TCP_PORT variable. Typical syntax (such as for sh, ksh, bash, zsh, and so on) is as follows:
MYSQL_TCP_PORT=3306
export MYSQL_TCP_PORT
The first command sets the variable, and the export command exports the variable to the shell environment so that its value becomes accessible to MySQL and other processes.
For csh and tcsh, use setenv to make the shell variable available to the environment:
setenv MYSQL_TCP_PORT 3306
The commands to set environment variables can be executed at your command prompt to take effect immediately, but the settings persist only until you log out. To have the settings take effect each time you log in, use the interface provided by your system or place the appropriate command or commands in a startup file that your command interpreter reads each time it starts.
On Windows, you can set environment variables using the System Control Panel (under Advanced).
On Unix, typical shell startup files are .bashrc or .bash_profile for bash, or .tcshrc for tcsh.
Suppose that your MySQL programs are installed in /usr/local/mysql/bin and that you want to make it easy to invoke these programs. To do this, set the value of the PATH environment variable to include that directory. For example, if your shell is bash, add the following line to your .bashrc file:
PATH=${PATH}:/usr/local/mysql/bin
bash uses different startup files for login and nonlogin shells, so you might want to add the setting to .bashrc for login shells and to .bash_profile for nonlogin shells to make sure that PATH is set regardless.
If your shell is tcsh, add the following line to your .tcshrc file:
setenv PATH ${PATH}:/usr/local/mysql/bin
If the appropriate startup file does not exist in your home directory, create it with a text editor.
After modifying your PATH setting, open a new console window on Windows or log in again on Unix so that the setting goes into effect.
4.3. MySQL Server and Server-Startup Programs
This section describes mysqld, the MySQL server, and several programs that are used to start the server.
4.3.1. mysqld — The MySQL Server
mysqld, also known as MySQL Server, is the main program that does most of the work in a MySQL installation. MySQL Server manages access to the MySQL data directory that contains databases and tables. The data directory is also the default location for other information such as log files and status files.
When MySQL server starts, it listens for network connections from client programs and manages access to databases on behalf of those clients.
The mysqld program has many options that can be specified at startup. For a complete list of options, run this command:
shell> mysqld --verbose --help
MySQL Server also has a set of system variables that affect its operation as it runs. System variables can be set at server startup, and many of them can be changed at runtime to effect dynamic server reconfiguration. MySQL Server also has a set of status variables that provide information about its operation. You can monitor these status variables to access runtime performance characteristics.
For a full description of MySQL Server command options, system variables, and status variables, see Section 5.1, “The MySQL Server”. For information about installing MySQL and setting up the initial configuration, see Chapter 2, Installing and Upgrading MySQL.
4.3.2. mysqld_safe — MySQL Server Startup Script
mysqld_safe is the recommended way to start a mysqld server on Unix. mysqld_safe adds some safety features such as restarting the server when an error occurs and logging runtime information to an error log file. A description of error logging is given later in this section.
mysqld_safe tries to start an executable named mysqld. To override the default behavior and specify explicitly the name of the server you want to run, specify a --mysqld or --mysqld-version option to mysqld_safe. You can also use --ledir to indicate the directory where mysqld_safe should look for the server.
Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.1.3, “Server Command Options”.
Options unknown to mysqld_safe are passed to mysqld if they are specified on the command line, but ignored if they are specified in the [mysqld_safe] group of an option file. See Section 4.2.3.3, “Using Option Files”.
mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in option files. For example, if you specify a [mysqld] section like this, mysqld_safe will find and use the --log-error option:
[mysqld]
log-error=error.log
For backward compatibility, mysqld_safe also reads [safe_mysqld] sections, although you should rename such sections to [mysqld_safe] in MySQL 5.6 installations.
mysqld_safe supports the following options. It also reads option files and supports the options for processing them described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
Table 4.1. mysqld_safe Options
Format	Option File	Description
--basedir=path | basedir | The path to the MySQL installation directory |
--core-file-size=size | core-file-size | The size of the core file that mysqld should be able to create |
--datadir=path | datadir | The path to the data directory |
--defaults-extra-file=path | defaults-extra-file | The name of an option file to be read in addition to the usual option files |
--defaults-file=file_name | defaults-file | The name of an option file to be read instead of the usual option files |
--help | Display a help message and exit | |
--ledir=path | ledir | Use this option to indicate the path name to the directory where the server is located |
--log-error=file_name | log-error | Write the error log to the given file |
--malloc-lib=[lib-name] | malloc-lib | Alternative malloc library to use for mysqld |
--mysqld=prog_name | mysqld | The name of the server program (in the ledir directory) that you want to start |
--mysqld-version=suffix | mysqld-version | This option is similar to the --mysqld option, but you specify only the suffix for the server program name |
--nice=priority | nice | Use the nice program to set the server's scheduling priority to the given value |
--no-defaults | no-defaults | Do not read any option files |
--open-files-limit=count | open-files-limit | The number of files that mysqld should be able to open |
--pid-file=file_name | pid-file=file_name | The path name of the process ID file |
--plugin-dir=path | plugin-dir=path | The directory where plugins are located |
--port=number | port | The port number that the server should use when listening for TCP/IP connections |
--skip-kill-mysqld | skip-kill-mysqld | Do not try to kill stray mysqld processes |
--skip-syslog | skip-syslog | Do not write error messages to syslog; use error log file |
--socket=path | socket | The Unix socket file that the server should use when listening for local connections |
--syslog | syslog | Tag suffix for messages written to syslog |
--timezone=timezone | timezone | Set the TZ time zone environment variable to the given option value |
--user={user_name|user_id} | user | Run the mysqld server as the user having the name user_name or the numeric user ID user_id |
Display a help message and exit.
The path to the MySQL installation directory.
The size of the core file that mysqld should be able to create. The option value is passed to ulimit -c.
The path to the data directory.
The name of an option file to be read in addition to the usual option files. This must be the first option on the command line if it is used. If the file does not exist or is otherwise inaccessible, the server will exit with an error.
The name of an option file to be read instead of the usual option files. This must be the first option on the command line if it is used.
If mysqld_safe cannot find the server, use this option to indicate the path name to the directory where the server is located.
Write the error log to the given file. See Section 5.2.2, “The Error Log”.
The name of the library to use for memory allocation instead of the system malloc() library. Any library can be used by specifying its path name, but there is a shortcut form to enable use of the tcmalloc library that is shipped with binary MySQL distributions for Linux in MySQL 5.6.
The --malloc-lib option works by modifying the LD_PRELOAD environment value to affect dynamic linking to enable the loader to find the memory-allocation library when mysqld runs:
If the option is not given, or is given without a value (--malloc-lib=), LD_PRELOAD is not modified and no attempt is made to use tcmalloc.
If the option is given as --malloc-lib=tcmalloc, mysqld_safe looks for a tcmalloc library in /usr/lib and then in the MySQL pkglibdir location (for example, /usr/local/mysql/lib or whatever is appropriate). If tmalloc is found, its path name is added to the beginning of the LD_PRELOAD value for mysqld. If tcmalloc is not found, mysqld_safe aborts with an error.
If the option is given as --malloc-lib=/path/to/some/library, that full path is added to the beginning of the LD_PRELOAD value. If the full path points to a nonexistent or unreadable file, mysqld_safe aborts with an error.
For cases where mysqld_safe adds a path name to LD_PRELOAD, it adds the path to the beginning of any existing value the variable already has.
Linux users can use the libtcmalloc_minimal.so included in binary packages by adding these lines to the my.cnf file:
[mysqld_safe]
malloc-lib=tcmalloc
Those lines also suffice for users on any platform who have installed a tcmalloc package in /usr/lib. To use a specific tcmalloc library, specify its full path name. Example:
[mysqld_safe]
malloc-lib=/opt/lib/libtcmalloc_minimal.so
The name of the server program (in the ledir directory) that you want to start. This option is needed if you use the MySQL binary distribution but have the data directory outside of the binary distribution. If mysqld_safe cannot find the server, use the --ledir option to indicate the path name to the directory where the server is located.
This option is similar to the --mysqld option, but you specify only the suffix for the server program name. The basename is assumed to be mysqld. For example, if you use --mysqld-version=debug, mysqld_safe starts the mysqld-debug program in the ledir directory. If the argument to --mysqld-version is empty, mysqld_safe uses mysqld in the ledir directory.
Use the nice program to set the server's scheduling priority to the given value.
Do not read any option files. This must be the first option on the command line if it is used.
The number of files that mysqld should be able to open. The option value is passed to ulimit -n. Note that you need to start mysqld_safe as root for this to work properly!
The path name of the process ID file.
The path name of the plugin directory.
The port number that the server should use when listening for TCP/IP connections. The port number must be 1024 or higher unless the server is started by the root system user.
Do not try to kill stray mysqld processes at startup. This option works only on Linux.
The Unix socket file that the server should use when listening for local connections.
--syslog causes error messages to be sent to syslog on systems that support the logger program. --skip-syslog suppresses the use of syslog; messages are written to an error log file.
When syslog is used, the daemon.err syslog priority/facility is used for all log messages.
For logging to syslog, messages from mysqld_safe and mysqld are written with a tag of mysqld_safe and mysqld, respectively. To specify a suffix for the tag, use --syslog-tag=tag, which modifies the tags to be mysqld_safe-tag and mysqld-tag.
Set the TZ time zone environment variable to the given option value. Consult your operating system documentation for legal time zone specification formats.
Run the mysqld server as the user having the name user_name or the numeric user ID user_id. (“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)
If you execute mysqld_safe with the --defaults-file or --defaults-extra-file option to name an option file, the option must be the first one given on the command line or the option file will not be used. For example, this command will not use the named option file:
mysql> mysqld_safe --port=port_num --defaults-file=file_name
Instead, use the following command:
mysql> mysqld_safe --defaults-file=file_name --port=port_num
The mysqld_safe script is written so that it normally can start a server that was installed from either a source or a binary distribution of MySQL, even though these types of distributions typically install the server in slightly different locations. (See Section 2.1.5, “Installation Layouts”.) mysqld_safe expects one of the following conditions to be true:
The server and databases can be found relative to the working directory (the directory from which mysqld_safe is invoked). For binary distributions, mysqld_safe looks under its working directory for bin and data directories. For source distributions, it looks for libexec and var directories. This condition should be met if you execute mysqld_safe from your MySQL installation directory (for example, /usr/local/mysql for a binary distribution).
If the server and databases cannot be found relative to the working directory, mysqld_safe attempts to locate them by absolute path names. Typical locations are /usr/local/libexec and /usr/local/var. The actual locations are determined from the values configured into the distribution at the time it was built. They should be correct if MySQL is installed in the location specified at configuration time.
Because mysqld_safe tries to find the server and databases relative to its own working directory, you can install a binary distribution of MySQL anywhere, as long as you run mysqld_safe from the MySQL installation directory:
shell> cd mysql_installation_directory
shell> bin/mysqld_safe &
If mysqld_safe fails, even when invoked from the MySQL installation directory, you can specify the --ledir and --datadir options to indicate the directories in which the server and databases are located on your system.
In MySQL 5.6.5 and later, mysqld_safe tries to use the sleep and date system utilities to determine how many times it has attempted to start this second, and—if these are present and this is greater than 5 times—is forced to wait 1 full second before starting again. This is intended to prevent excessive CPU usage in the event of repeated failures. (Bug #11761530, Bug #54035)
When you use mysqld_safe to start mysqld, mysqld_safe arranges for error (and notice) messages from itself and from mysqld to go to the same destination.
There are several mysqld_safe options for controlling the destination of these messages:
--syslog: Write error messages to syslog on systems that support the logger program.
--skip-syslog: Do not write error messages to syslog. Messages are written to the default error log file (host_name.err in the data directory), or to a named file if the --log-error option is given.
--log-error=file_name: Write error messages to the named error file.
If none of these options is given, the default is --skip-syslog.
If --syslog and --log-error are both given, a warning is issued and --log-error takes precedence.
When mysqld_safe writes a message, notices go to the logging destination (syslog or the error log file) and stdout. Errors go to the logging destination and stderr.
Normally, you should not edit the mysqld_safe script. Instead, configure mysqld_safe by using command-line options or options in the [mysqld_safe] section of a my.cnf option file. In rare cases, it might be necessary to edit mysqld_safe to get it to start the server properly. However, if you do this, your modified version of mysqld_safe might be overwritten if you upgrade MySQL in the future, so you should make a copy of your edited version that you can reinstall.
4.3.3. mysql.server — MySQL Server Startup Script
MySQL distributions on Unix include a script named mysql.server. It can be used on systems such as Linux and Solaris that use System V-style run directories to start and stop system services. It is also used by the Mac OS X Startup Item for MySQL.
mysql.server can be found in the support-files directory under your MySQL installation directory or in a MySQL source distribution.
If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server script will be installed in the /etc/init.d directory with the name mysql. You need not install it manually. See Section 2.5.1, “Installing MySQL from RPM Packages on Linux”, for more information on the Linux RPM packages.
Some vendors provide RPM packages that install a startup script under a different name such as mysqld.
If you install MySQL from a source distribution or using a binary distribution format that does not install mysql.server automatically, you can install it manually. Instructions are provided in Section 2.10.1.2, “Starting and Stopping MySQL Automatically”.
mysql.server reads options from the [mysql.server] and [mysqld] sections of option files. For backward compatibility, it also reads [mysql_server] sections, although you should rename such sections to [mysql.server] when using MySQL 5.6.
mysql.server supports the following options.
The path to the MySQL installation directory.
The path to the MySQL data directory.
The path name of the file in which the server should write its process ID.
--service-startup-timeout=file_name
How long in seconds to wait for confirmation of server startup. If the server does not start within this time, mysql.server exits with an error. The default value is 900. A value of 0 means not to wait at all for startup. Negative values mean to wait forever (no timeout).
Use mysqld_safe to start the server. This is the default.
The login user name to use for running mysqld.
4.3.4. mysqld_multi — Manage Multiple MySQL Servers
mysqld_multi is designed to manage several mysqld processes that listen for connections on different Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status.
mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the --config-file option). N can be any positive integer. This number is referred to in the following discussion as the option group number, or GNR. Group numbers distinguish option groups from one another and are used as arguments to mysqld_multi to specify which servers you want to start, stop, or obtain a status report for. Options listed in these groups are the same that you would use in the [mysqld] group used for starting mysqld. (See, for example, Section 2.10.1.2, “Starting and Stopping MySQL Automatically”.) However, when using multiple servers, it is necessary that each one use its own value for options such as the Unix socket file and TCP/IP port number. For more information on which options must be unique per server in a multiple-server environment, see Section 5.6, “Running Multiple MySQL Instances on One Machine”.
To invoke mysqld_multi, use the following syntax:
shell> mysqld_multi [options] {start|stop|reload|report} [GNR[,GNR] ...]
start, stop, reload (stop and restart), and report indicate which operation to perform. (reload is available as of MySQL 5.6.3.) You can perform the designated operation for a single server or multiple servers, depending on the GNR list that follows the option name. If there is no list, mysqld_multi performs the operation for all servers in the option file.
Each GNR value represents an option group number or range of group numbers. The value should be the number at the end of the group name in the option file. For example, the GNR for a group named [mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group ranges can be specified on the command line, separated by commas. There must be no whitespace characters (spaces or tabs) in the GNR list; anything after a whitespace character is ignored.
This command starts a single server using option group [mysqld17]:
shell> mysqld_multi start 17
This command stops several servers, using option groups [mysqld8] and [mysqld10] through [mysqld13]:
shell> mysqld_multi stop 8,10-13
For an example of how you might set up an option file, use this command:
shell> mysqld_multi --example
mysqld_multi searches for option files as follows:
With --no-defaults, no option files are read.
With --defaults-file=file_name, only the named file is read.
Otherwise, option files in the standard list of locations are read, including any file named by the --defaults-extra-file=file_name option, if one is given. (If the option is given multiple times, the last value is used.)
Option files read are searched for [mysqld_multi] and [mysqldN] option groups. The [mysqld_multi] group can be used for options to mysqld_multi itself. [mysqldN] groups can be used for options passed to specific mysqld instances.
The [mysqld] or [mysqld_safe] groups can be used for common options read by all instances of mysqld or mysqld_safe. You can specify a --defaults-file=file_name option to use a different configuration file for that instance, in which case the [mysqld] or [mysqld_safe] groups from that file will be used for that instance.
mysqld_multi supports the following options.
Display a help message and exit.
Display a sample option file.
Specify the name of the log file. If the file exists, log output is appended to it.
The mysqladmin binary to be used to stop servers.
The mysqld binary to be used. Note that you can specify mysqld_safe as the value for this option also. If you use mysqld_safe to start the server, you can include the mysqld or ledir options in the corresponding [mysqldN] option group. These options indicate the name of the server that mysqld_safe should start and the path name of the directory where the server is located. (See the descriptions for these options in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.) Example:
[mysqld38]
mysqld = mysqld-debug
ledir = /opt/local/mysql/libexec
Print log information to stdout rather than to the log file. By default, output goes to the log file.
The password of the MySQL account to use when invoking mysqladmin. Note that the password value is not optional for this option, unlike for other MySQL programs.
Silent mode; disable warnings.
Connect to each MySQL server through the TCP/IP port instead of the Unix socket file. (If a socket file is missing, the server might still be running, but accessible only through the TCP/IP port.) By default, connections are made using the Unix socket file. This option affects stop and report operations.
The user name of the MySQL account to use when invoking mysqladmin.
Be more verbose.
Display version information and exit.
Some notes about mysqld_multi:
Most important: Before using mysqld_multi be sure that you understand the meanings of the options that are passed to the mysqld servers and why you would want to have separate mysqld processes. Beware of the dangers of using multiple mysqld servers with the same data directory. Use separate data directories, unless you know what you are doing. Starting multiple servers with the same data directory does not give you extra performance in a threaded system. See Section 5.6, “Running Multiple MySQL Instances on One Machine”.
Important
Make sure that the data directory for each server is fully accessible to the Unix account that the specific mysqld process is started as. Do not use the Unix root account for this, unless you know what you are doing. See Section 6.1.5, “How to Run MySQL as a Normal User”.
Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin program) has the same user name and password for each server. Also, make sure that the account has the SHUTDOWN privilege. If the servers that you want to manage have different user names or passwords for the administrative accounts, you might want to create an account on each server that has the same user name and password. For example, you might set up a common multi_admin account by executing the following commands for each server:
shell> mysql -u root -S /tmp/mysql.sock -p
Enter password:
mysql> GRANT SHUTDOWN ON *.*
-> TO 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';
See Section 6.2, “The MySQL Access Privilege System”. You have to do this for each mysqld server. Change the connection parameters appropriately when connecting to each one. Note that the host name part of the account name must permit you to connect as multi_admin from the host where you want to run mysqld_multi.
The Unix socket file and the TCP/IP port number must be different for every mysqld. (Alternatively, if the host has multiple network addresses, you can use --bind-address to cause different servers to listen to different interfaces.)
The --pid-file option is very important if you are using mysqld_safe to start mysqld (for example, --mysqld=mysqld_safe) Every mysqld should have its own process ID file. The advantage of using mysqld_safe instead of mysqld is that mysqld_safe monitors its mysqld process and restarts it if the process terminates due to a signal sent using kill -9 or for other reasons, such as a segmentation fault. Please note that the mysqld_safe script might require that you start it from a certain place. This means that you might have to change location to a certain directory before running mysqld_multi. If you have problems starting, please see the mysqld_safe script. Check especially the lines:
--
MY_PWD=`pwd`
Check if we are starting this relative (for the binary release)
if test -d $MY_PWD/data/mysql -a \
-f ./share/mysql/english/errmsg.sys -a \
-x ./bin/mysqld
--
The test performed by these lines should be successful, or you might encounter problems. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.
You might want to use the --user option for mysqld, but to do this you need to run the mysqld_multi script as the Unix superuser (root). Having the option in the option file doesn't matter; you just get a warning if you are not the superuser and the mysqld processes are started under your own Unix account.
The following example shows how you might set up an option file for use with mysqld_multi. The order in which the mysqld programs are started or stopped depends on the order in which they appear in the option file. Group numbers need not form an unbroken sequence. The first and fifth [mysqldN] groups were intentionally omitted from the example to illustrate that you can have “gaps” in the option file. This gives you more flexibility.
This file should probably be in your home dir (~/.my.cnf)
or /etc/my.cnf
Version 2.1 by Jani Tolonen
[mysqld_multi]
mysqld = /usr/local/bin/mysqld_safe
mysqladmin = /usr/local/bin/mysqladmin
user = multi_admin
password = multipass
[mysqld2]
socket = /tmp/mysql.sock2
port = 3307
pid-file = /usr/local/mysql/var2/hostname.pid2
datadir = /usr/local/mysql/var2
language = /usr/local/share/mysql/english
user = john
[mysqld3]
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/var3/hostname.pid3
datadir = /usr/local/mysql/var3
language = /usr/local/share/mysql/swedish
user = monty
[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/var4/hostname.pid4
datadir = /usr/local/mysql/var4
language = /usr/local/share/mysql/estonia
user = tonu
[mysqld6]
socket = /tmp/mysql.sock6
port = 3311
pid-file = /usr/local/mysql/var6/hostname.pid6
datadir = /usr/local/mysql/var6
language = /usr/local/share/mysql/japanese
user = jani
See Section 4.2.3.3, “Using Option Files”.
4.4. MySQL Installation-Related Programs
The programs in this section are used when installing or upgrading MySQL.
4.4.1. comp_err — Compile MySQL Error Message File
comp_err creates the errmsg.sys file that is used by mysqld to determine the error messages to display for different error codes. comp_err normally is run automatically when MySQL is built. It compiles the errmsg.sys file from the plaintext file located at sql/share/errmsg.txt in MySQL source distributions.
comp_err also generates mysqld_error.h, mysqld_ername.h, and sql_state.h header files.
For more information about how error messages are defined, see the MySQL Internals Manual.
Invoke comp_err like this:
shell> comp_err [options]
comp_err supports the following options.
--help, -?
Display a help message and exit.
--charset=path, -C path
The character set directory. The default is ../sql/share/charsets.
--debug=debug_options, -# debug_options
Write a debugging log. A typical debug_options string is 'd:t:O,file_name'. The default is 'd:t:O,/tmp/comp_err.trace'.
--debug-info, -T
Print some debugging information when the program exits.
--header_file=file_name, -H file_name
The name of the error header file. The default is mysqld_error.h.
--in_file=file_name, -F file_name
The name of the input file. The default is ../sql/share/errmsg.txt.
--name_file=file_name, -N file_name
The name of the error name file. The default is mysqld_ername.h.
--out_dir=path, -D path
The name of the output base directory. The default is ../sql/share/.
--out_file=file_name, -O file_name
The name of the output file. The default is errmsg.sys.
--statefile=file_name, -S file_name
The name for the SQLSTATE header file. The default is sql_state.h.
--version, -V
Display version information and exit.
4.4.2. mysqlbug — Generate Bug Report
This program is obsolete.
The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs database. This database is public and can be browsed and searched by anyone. If you log in to the system, you can enter new reports.
4.4.3. mysql_install_db — Initialize MySQL Data Directory
mysql_install_db initializes the MySQL data directory and creates the system tables that it contains, if they do not exist. It also initializes the system tablespace and related data structures needed to manage InnoDB tables. As of MySQL 5.6.8, mysql_install_db is a Perl script and can be used on any system with Perl installed. Before 5.6.8, it is a shell script and is available only on Unix platforms.
As of MySQL 5.6.8, on Unix platforms, mysql_install_db creates a default option file named my.cnf in the base installation directory. This file is created from a template included in the distribution package named my-default.cnf. You can find the template in or under the base installation directory. When started using mysqld_safe, the server uses my.cnf file by default. If my.cnf already exists, mysql_install_db assumes it to be in use and writes a new file named my-new.cnf instead.
With one exception, the settings in the default option file are commented and have no effect. The exception is that the file changes the sql_mode system variable from its default of NO_ENGINE_SUBSTITUTION to also include STRICT_TRANS_TABLES. This setting produces a server configuration that results in errors rather than warnings for bad data in operations that modify transactional tables. See Section 5.1.7, “Server SQL Modes”.
To invoke mysql_install_db, use the following syntax:
shell> mysql_install_db [options]
Because the MySQL server, mysqld, needs to access the data directory when it runs later, you should either run mysql_install_db from the same system account that will be used for running mysqld or run it as root and use the --user option to indicate the user name that mysqld will run as. It might be necessary to specify other options such as --basedir or --datadir if mysql_install_db does not use the correct locations for the installation directory or data directory. For example:
shell> scripts/mysql_install_db --user=mysql \
--basedir=/opt/mysql/mysql \
--datadir=/opt/mysql/mysql/data
mysql_install_db needs to invoke mysqld with the --bootstrap and --skip-grant-tables options.
Note
If you have set a custom TMPDIR environment variable when performing the installation, and the specified directory is not accessible, mysql_install_db may fail. If so, unset TMPDIR or set TMPDIR to point to the system temporary directory (usually /tmp).
After mysql_install_db sets up the InnoDB system tablespace, changes to some of tablespace characteristics require setting up a whole new instance. This includes the file name of the first file in the system tablespace and the number of undo logs. If you do not want to use the default values, make sure that the settings for the innodb_data_file_path and innodb_log_file_size configuration options are in place in the MySQL configuration file before running mysql_install_db.
mysql_install_db supports the following options, which can be specified on the command line or in the [mysql_install_db] group of an option file. (Options that are common to mysqld can also be specified in the [mysqld] group.) Other options are passed to mysqld. For information about option files, see Section 4.2.3.3, “Using Option Files”. mysql_install_db also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
The path to the MySQL installation directory.
The path to the MySQL data directory. Beginning with MySQL 5.6.8, mysql_install_db is more strict about the option value. Only the last component of the path name is created if it does not exist; the parent directory must already exist or an error occurs.
Cause mysql_install_db to run even if DNS does not work. Grant table entries that normally use host names will use IP addresses.
On Unix platforms, this option provides for more secure MySQL installation. Invoking mysql_install_db with --random-passwords causes it to perform the following actions in addition to its normal operation:
Create a random password, assign it to the initial MySQL root accounts, and set the “password expired” flag for those accounts.
Write the initial password file to the .mysql_secret file in the directory named by the HOME environment variable. Depending on operating system, using a command such as sudo may cause the value of HOME to refer to the home directory of the root system user.
If .mysql_secret already exists, the new password information is appended to it. Each password entry includes a timestamp so that in the event of multiple install operations it is possible to determine the password associated with each one.
.mysql_secret is created with mode 600 to be accessible only to the system user for whom it is created.
Remove the anonymous-user MySQL accounts.
As a result of these actions, it is necessary after installation to start the server, connect as root using the password written to the .mysql_secret file, and to assign a new root password. Until this is done, root cannot do anything else. This must be done for each root account you intend to use. To change the password, you can use the SET PASSWORD statement (for example, with the mysql client). You can also use mysqladmin or mysql_secure_installation.
New RPM install operations (not upgrades) invoke mysql_install_db with the --random-passwords option. (Install operations using RPMs for Unbreakable Linux Network are unaffected because they do not use mysql_install_db.)
As of MySQL 5.6.9, new Solaris PKG install operations (not upgrades) invoke mysql_install_db with the --random-passwords option.
For install operations using a binary .tar.gz distribution or a source distribution, you can invoke mysql_install_db with the --random-passwords option manually to make your MySQL installation more secure. This is recommended, particularly for sites with sensitive data.
This option was added in MySQL 5.6.8.
For internal use. This option is used during the MySQL installation process for install operations performed using RPM packages.
Use IP addresses rather than host names when creating grant table entries. This option can be useful if your DNS does not work.
For internal use. This option specifies the directory under which mysql_install_db looks for support files such as the error message file and the file for populating the help tables.
The system (login) user name to use for running mysqld. Files and directories created by mysqld will be owned by this user. You must be root to use this option. By default, mysqld runs using your current login name and files and directories that it creates will be owned by you.
Verbose mode. Print more information about what the program does.
For internal use. This option is used for creating Windows distributions.
4.4.4. mysql_plugin — Configure MySQL Server Plugins
The mysql_plugin utility enables MySQL administrators to manage which plugins a MySQL server loads. It provides an alternative to manually specifying the --plugin-load option at server startup or using the INSTALL PLUGIN and UNINSTALL PLUGIN statements at runtime. mysql_plugin is available as of MySQL 5.6.3.
Depending on whether mysql_plugin is invoked to enable or disable plugins, it inserts or deletes rows in the mysql.plugin table that serves as a plugin registry. (To perform this operation, mysql_plugin invokes the MySQL server in bootstrap mode. This means that the server must not already be running.) For normal server startups, the server loads and enables plugins listed in mysql.plugin automatically. For additional control over plugin activation, use --plugin_name options named for specific plugins, as described in Section 5.1.8.1, “Installing and Uninstalling Plugins”.
Each invocation of mysql_plugin reads a configuration file to determine how to configure the plugins contained in a single plugin library object file. To invoke mysql_plugin, use this syntax:
mysql_plugin [options] plugin {ENABLE|DISABLE}
plugin is the name of the plugin to configure. ENABLE or DISABLE (not case sensitive) specify whether to enable or disable components of the plugin library named in the configuration file. The order of the plugin and ENABLE or DISABLE arguments does not matter.
For example, to configure components of a plugin library file named myplugins.so on Linux or myplugins.dll on Windows, specify a plugin value of myplugins. Suppose that this plugin library contains three plugins, plugin1, plugin2, and plugin3, all of which should be configured under mysql_plugin control. By convention, configuration files have a suffix of .ini and the same basename as the plugin library, so the default configuration file name for this plugin library is myplugins.ini. The configuration file contents look like this:
myplugins
plugin1
plugin2
plugin3
The first line in the myplugins.ini file is the name of the library object file, without any extension such as .so or .dll. The remaining lines are the names of the components to be enabled or disabled. Each value in the file should be on a separate line. Lines on which the first character is '#' are taken as comments and ignored.
To enable the plugins listed in the configuration file, invoke mysql_plugin this way:
shell> mysql_plugin myplugins ENABLE
To disable the plugins, use DISABLE rather than ENABLE.
An error occurs if mysql_plugin cannot find the configuration file or plugin library file, or if mysql_plugin cannot start the MySQL server.
mysql_plugin supports the following options, which can be specified on the command line or in the [mysqld] group of any option file. For options specified in a [mysqld] group, mysql_plugin recognizes the --basedir, --datadir, and --plugin-dir options and ignores others. For information about option files, see Section 4.2.3.3, “Using Option Files”.
Table 4.2. mysql_plugin Options
Format	Option File	Description
--basedir=path	basedir=path	The server base directory
--datadir=path	datadir=path	The server data directory
--help	Display help message and exit	
--my-print-defaults=path	my-print-defaults=path	The path to my_print_defaults
--mysqld=path	mysqld=path	The path to the server
--no-defaults	no-defaults	Do not read configuration file
--plugin-dir=path	plugin-dir=path	The directory where plugins are located
--plugin-ini=file_name	plugin-ini=file_name	The plugin configuration file
--print-defaults	print-defaults	Show configuration file defaults
--verbose	Verbose mode	
--version	Display version information and exit	
--help, -?		
Display a help message and exit.		
--basedir=path, -b path		
The server base directory.		
--datadir=path, -d path		
The server data directory.		
--my-print-defaults=path, -b path		
The path to the my_print_defaults program.		
--mysqld=path, -b path		
The path to the mysqld server.		
--no-defaults, -p		
Do not read values from the configuration file. This option enables an administrator to skip reading defaults from the configuration file.		
With mysql_plugin, this option need not be given first on the command line, unlike most other MySQL programs that support --no-defaults.		
--plugin-dir=path, -p path		
The server plugin directory.		
--plugin-ini=file_name, -i file_name		
The mysql_plugin configuration file. Relative path names are interpreted relative to the current directory. If this option is not given, the default is plugin.ini in the plugin directory, where plugin is the plugin argument on the command line.		
--print-defaults, -P		
Display the default values from the configuration file. This option causes mysql_plugin to print the defaults for --basedir, --datadir, and --plugin-dir if they are found in the configuration file. If no value for a variable is found, nothing is shown.		
With mysql_plugin, this option need not be given first on the command line, unlike most other MySQL programs that support --print-defaults.		
--verbose, -v		
Verbose mode. Print more information about what the program does. This option can be used multiple times to increase the amount of information.		
--version, -V		
Display version information and exit.		
4.4.5. mysql_secure_installation — Improve MySQL Installation Security		
This program enables you to improve the security of your MySQL installation in the following ways:		
You can set a password for root accounts.		
You can remove root accounts that are accessible from outside the local host.		
You can remove anonymous-user accounts.		
You can remove the test database (which by default can be accessed by all users, even anonymous users), and privileges that permit anyone to access databases with names that start with test_.		
mysql_secure_installation helps you implement security recommendations similar to those described at Section 2.10.2, “Securing the Initial MySQL Accounts”.		
Invoke mysql_secure_installation without arguments:		
shell> mysql_secure_installation		
The script will prompt you to determine which actions to perform.		
mysql_secure_installation is not available on Windows.		
4.4.6. mysql_tzinfo_to_sql — Load the Time Zone Tables		
The mysql_tzinfo_to_sql program loads the time zone tables in the mysql database. It is used on systems that have a zoneinfo database (the set of files describing time zones). Examples of such systems are Linux, FreeBSD, Solaris, and Mac OS X. One likely location for these files is the /usr/share/zoneinfo directory (/usr/share/lib/zoneinfo on Solaris). If your system does not have a zoneinfo database, you can use the downloadable package described in Section 10.6, “MySQL Server Time Zone Support”.		
mysql_tzinfo_to_sql can be invoked several ways:		
shell> mysql_tzinfo_to_sql tz_dir		
shell> mysql_tzinfo_to_sql tz_file tz_name		
shell> mysql_tzinfo_to_sql --leap tz_file		
For the first invocation syntax, pass the zoneinfo directory path name to mysql_tzinfo_to_sql and send the output into the mysql program. For example:		
shell> mysql_tzinfo_to_sql /usr/share/zoneinfo	mysql -u root mysql	
mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them. mysql processes those statements to load the time zone tables.		
The second syntax causes mysql_tzinfo_to_sql to load a single time zone file tz_file that corresponds to a time zone name tz_name:		
shell> mysql_tzinfo_to_sql tz_file tz_name	mysql -u root mysql	
If your time zone needs to account for leap seconds, invoke mysql_tzinfo_to_sql using the third syntax, which initializes the leap second information. tz_file is the name of your time zone file:		
shell> mysql_tzinfo_to_sql --leap tz_file	mysql -u root mysql	
After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to use any previously cached time zone data.		
4.4.7. mysql_upgrade — Check and Upgrade MySQL Tables		
mysql_upgrade examines all tables in all databases for incompatibilities with the current version of MySQL Server. mysql_upgrade also upgrades the system tables so that you can take advantage of new privileges or capabilities that might have been added.		
mysql_upgrade should be executed each time you upgrade MySQL.		
If mysql_upgrade finds that a table has a possible incompatibility, it performs a table check and, if problems are found, attempts a table repair. If the table cannot be repaired, see Section 2.11.4, “Rebuilding or Repairing Tables or Indexes” for manual table repair strategies.		
Note		
On Windows Server 2008, Vista, and newer, you must run mysql_upgrade with administrator privileges. You can do this by running a Command Prompt as Administrator and running the command. Failure to do so may result in the upgrade failing to execute correctly.		
Caution		
You should always back up your current MySQL installation before performing an upgrade. See Section 7.2, “Database Backup Methods”.		
Some upgrade incompatibilities may require special handling before you upgrade your MySQL installation and run mysql_upgrade. See Section 2.11.1, “Upgrading MySQL”, for instructions on determining whether any such incompatibilities apply to your installation and how to handle them.		
To use mysql_upgrade, make sure that the server is running, and then invoke it like this:		
shell> mysql_upgrade [options]		
After running mysql_upgrade, stop the server and restart it so that any changes made to the system tables take effect.		
mysql_upgrade executes the following commands to check and repair tables and to upgrade the system tables:		
mysqlcheck --all-databases --check-upgrade --auto-repair		
mysql < fix_priv_tables		
mysqlcheck --all-databases --check-upgrade --fix-db-names --fix-table-names		
Notes about the preceding commands:		
Because mysql_upgrade invokes mysqlcheck with the --all-databases option, it processes all tables in all databases, which might take a long time to complete. Each table is locked and therefore unavailable to other sessions while it is being processed. Check and repair operations can be time-consuming, particularly for large tables.		
For details about what checks the --check-upgrade option entails, see the description of the FOR UPGRADE option of the CHECK TABLE statement (see Section 13.7.2.2, “CHECK TABLE Syntax”).		
fix_priv_tables represents a script generated internally by mysql_upgrade that contains SQL statements to upgrade the tables in the mysql database.		
All checked and repaired tables are marked with the current MySQL version number. This ensures that next time you run mysql_upgrade with the same version of the server, it can tell whether there is any need to check or repair the table again.		
mysql_upgrade also saves the MySQL version number in a file named mysql_upgrade_info in the data directory. This is used to quickly check whether all tables have been checked for this release so that table-checking can be skipped. To ignore this file and perform the check regardless, use the --force option.		
If you install MySQL from RPM packages on Linux, you must install the server and client RPMs. mysql_upgrade is included in the server RPM but requires the client RPM because the latter includes mysqlcheck. (See Section 2.5.1, “Installing MySQL from RPM Packages on Linux”.)		
mysql_upgrade does not upgrade the contents of the help tables. For upgrade instructions, see Section 5.1.10, “Server-Side Help”.		
mysql_upgrade supports the following options, which can be specified on the command line or in the [mysql_upgrade] and [client] groups of an option file. Other options are passed to mysqlcheck. For example, it might be necessary to specify the --password[=password] option. mysql_upgrade also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.		
Display a short help message and exit.		
The path to the MySQL installation directory. This option is accepted for backward compatibility but ignored.		
The path to the data directory. This option is accepted for backward compatibility but ignored.		
Print some debugging information when the program exits.		
--debug-info, -T		
Print debugging information and memory and CPU usage statistics when the program exits.		
The client-side authentication plugin to use. See Section 6.3.7, “Pluggable Authentication”.		
This option was added in MySQL 5.6.2.		
Ignore the mysql_upgrade_info file and force execution of mysqlcheck even if mysql_upgrade has already been executed for the current version of MySQL.		
The directory in which to look for plugins. It may be necessary to specify this option if the --default-auth option is used to specify an authentication plugin but mysql_upgrade does not find it. See Section 6.3.7, “Pluggable Authentication”.		
This option was added in MySQL 5.6.2.		
--tmpdir=path, -t path		
The path name of the directory to use for creating temporary files.		
Upgrade only the system tables, do not upgrade data.		
--user=user_name, -u user_name		
The MySQL user name to use when connecting to the server. The default user name is root.		
Verbose mode. Print more information about what the program does.		
--version-check, -k		
Check the version of the server to which mysql_upgrade is connecting to verify that it is the same as the version for which mysql_upgrade was built. If not, mysql_upgrade exits. This option is enabled by default; to disable the check, use --skip-version-check. This option was added in MySQL 5.6.12.		
Cause binary logging to be enabled while mysql_upgrade runs. In MySQL 5.6.6 and earlier, this was the default behavior. (To disable binary logging during the upgrade, it was necessary to use the inverse of this option, by starting the program with --skip-write-binlog.) Beginning with MySQL 5.6.7, binary logging by mysql_upgrade is disabled by default (Bug #14221043), and you must invoke the program explicitly with --write-binlog if you want its actions to be written to the binary log. (Also beginning with MySQL 5.6.7, the --skip-write-binlog option effectively does nothing.)		
Running mysql_upgrade is not recommended with a MySQL Server that is running with global transaction identifiers enabled (Bug #13833710). This is because enabling GTIDs means that any updates which mysql_upgrade might need to perform on system tables using a nontransactional storage engine such as MyISAM to fail. See Section 16.1.3.4, “Restrictions on Replication with GTIDs”, for more information.		
4.5. MySQL Client Programs		
This section describes client programs that connect to the MySQL server.		
4.5.1. mysql — The MySQL Command-Line Tool		
mysql is a simple SQL shell with input line editing capabilities. It supports interactive and noninteractive use. When used interactively, query results are presented in an ASCII-table format. When used noninteractively (for example, as a filter), the result is presented in tab-separated format. The output format can be changed using command options.		
If you have problems due to insufficient memory for large result sets, use the --quick option. This forces mysql to retrieve results from the server a row at a time rather than retrieving the entire result set and buffering it in memory before displaying it. This is done by returning the result set using the mysql_use_result() C API function in the client/server library rather than mysql_store_result().		
Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:		
shell> mysql db_name		
Or:		
shell> mysql --user=user_name --password=your_password db_name		
Then type an SQL statement, end it with “;”, \g, or \G and press Enter.		
Typing Control+C causes mysql to attempt to kill the current statement. If this cannot be done, or Control+C is typed again before the statement is killed, mysql exits.		
You can execute SQL statements in a script file (batch file) like this:		
shell> mysql db_name < script.sql > output.tab		
On Unix, the mysql client logs statements executed interactively to a history file. See Section 4.5.1.3, “mysql Logging”.		
4.5.1.1. mysql Options		
mysql supports the following options, which can be specified on the command line or in the [mysql] and [client] groups of an option file. mysql also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.		
Table 4.3. mysql Options		
Format	Option File	Description
---	---	---
--auto-rehash	auto-rehash	Enable automatic rehashing
--auto-vertical-output	auto-vertical-output	Enable automatic vertical result set display
--batch	batch	Don't use history file
--binary-mode	binary-mode	Disable \r\n - to - \n translation and treatment of \0 as end-of-query
--bind-address=ip_address	bind-address	Use the specified network interface to connect to the MySQL Server
--character-sets-dir=path	character-sets-dir	Set the default character set
--column-names	column-names	Write column names in results
--column-type-info	column-type-info	Display result set metadata
--comments	comments	Whether to retain or strip comments in statements sent to the server
--compress	compress	Compress all information sent between the client and the server
--connect-expired-password	Indicate to server that client can handle expired-password sandbox mode.	5.6.12
--connect_timeout=value	connect_timeout	The number of seconds before connection timeout
--database=dbname	database	The database to use
--debug[=debug_options]	debug	Write a debugging log
--debug-check	debug-check	Print debugging information when the program exits
--debug-info	debug-info	Print debugging information, memory and CPU statistics when the program exits
--default-auth=plugin	default-auth=plugin	The authentication plugin to use
--default-character-set=charset_name	default-character-set	Use charset_name as the default character set
--delimiter=str	delimiter	Set the statement delimiter
--enable-cleartext-plugin	enable-cleartext-plugin	Enable cleartext authentication plugin
--execute=statement	execute	Execute the statement and quit
--force	force	Continue even if an SQL error occurs
--help	Display help message and exit	
--histignore=pattern_list	histignore	Patterns specifying which statements to ignore for logging
--host=host_name	host	Connect to the MySQL server on the given host
--html	html	Produce HTML output
--ignore-spaces	ignore-spaces	Ignore spaces after function names
--init-command=str	init-command	SQL statement to execute after connecting
--line-numbers	line-numbers	Write line numbers for errors
--local-infile[={0	1}]	local-infile
--login-path=name	Read login path options from .mylogin.cnf	5.6.6
--max_allowed_packet=value	max_allowed_packet	The maximum packet length to send to or receive from the server
--max_join_size=value	max_join_size	The automatic limit for rows in a join when using --safe-updates
--named-commands	named-commands	Enable named mysql commands
--net_buffer_length=value	net_buffer_length	The buffer size for TCP/IP and socket communication
--no-auto-rehash	Disable automatic rehashing	
--no-beep	no-beep	Do not beep when errors occur
--one-database	one-database	Ignore statements except those for the default database named on the command line
--pager[=command]	pager	Use the given command for paging query output
--password[=password]	password	The password to use when connecting to the server
--plugin-dir=path	plugin-dir=path	The directory where plugins are located
--port=port_num	port	The TCP/IP port number to use for the connection
--prompt=format_str	prompt	Set the prompt to the specified format
--protocol=type	protocol	The connection protocol to use
--quick	quick	Do not cache each query result
--raw	raw	Write column values without escape conversion
--reconnect	reconnect	If the connection to the server is lost, automatically try to reconnect
--safe-updates	safe-updates	Allow only UPDATE and DELETE statements that specify key values
--secure-auth	secure-auth	Do not send passwords to the server in old (pre-4.1.1) format
--select_limit=value	select_limit	The automatic limit for SELECT statements when using --safe-updates
--server-public-key-path=file_name	server-public-key-path=file_name	Display help message and exit
--show-warnings	show-warnings	Show warnings after each statement if there are any
--sigint-ignore	sigint-ignore	Ignore SIGINT signals (typically the result of typing Control+C)
--silent	silent	Silent mode
--skip-auto-rehash	skip-auto-rehash	Disable automatic rehashing
--skip-column-names	skip-column-names	Do not write column names in results
--skip-line-numbers	skip-line-numbers	Skip line numbers for errors
--skip-named-commands	skip-named-commands	Disable named mysql commands
--skip-pager	skip-pager	Disable paging
--skip-reconnect	skip-reconnect	Disable reconnecting
--socket=path	socket	For connections to localhost
--ssl-ca=file_name	ssl-ca	The path to a file that contains a list of trusted SSL CAs
--ssl-capath=dir_name	ssl-capath	The path to a directory that contains trusted SSL CA certificates in PEM format
--ssl-cert=file_name	ssl-cert	The name of the SSL certificate file to use for establishing a secure connection
--ssl-cipher=cipher_list	ssl-cipher	A list of allowable ciphers to use for SSL encryption
--ssl-crl=file_name	ssl-crl	The path to a file that contains certificate revocation lists
--ssl-crlpath=dir_name	ssl-crlpath	The path to a directory that contains certificate revocation list files
--ssl-key=file_name	ssl-key	The name of the SSL key file to use for establishing a secure connection
--ssl-verify-server-cert	ssl-verify-server-cert	The server's Common Name value in its certificate is verified against the host name used when connecting to the server
--table	table	Display output in tabular format
--tee=file_name	tee	Append a copy of output to the given file
--unbuffered	unbuffered	Flush the buffer after each query
--user=user_name	user	MySQL user name to use when connecting to server
--verbose	Verbose mode	
--version	Display version information and exit	
--vertical	vertical	Print query output rows vertically (one line per column value)
--wait	wait	If the connection cannot be established, wait and retry instead of aborting
--xml	xml	Produce XML output
--help, -?		
Display a help message and exit.		
Enable automatic rehashing. This option is on by default, which enables database, table, and column name completion. Use --disable-auto-rehash to disable rehashing. That causes mysql to start faster, but you must issue the rehash command if you want to use name completion.		
To complete a name, enter the first part and press Tab. If the name is unambiguous, mysql completes it. Otherwise, you can press Tab again to see the possible names that begin with what you have typed so far. Completion does not occur if there is no default database.		
Cause result sets to be displayed vertically if they are too wide for the current window, and using normal tabular format otherwise. (This applies to statements terminated by ; or \G.)		
--batch, -B		
Print results using tab as the column separator, with each row on a new line. With this option, mysql does not use the history file.		
Batch mode results in nontabular output format and escaping of special characters. Escaping may be disabled by using raw mode; see the description for the --raw option.		
This option helps when processing mysqlbinlog output that may contain BLOB values. By default, mysql translates \r\n in statement strings to \n and interprets \0 as the statement terminator. --binary-mode disables both features. It also disables all mysql commands except charset and delimiter in non-interactive mode (for input piped to mysql or loaded using the source command).		
This option was added in MySQL 5.6.3.		
On a computer having multiple network interfaces, this option can be used to select which interface is employed when connecting to the MySQL server.		
This option is supported beginning with MySQL 5.6.1.		
The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.		
Write column names in results.		
Display result set metadata.		
--comments, -c		
Whether to preserve comments in statements sent to the server. The default is --skip-comments (discard comments), enable with --comments (preserve comments).		
--compress, -C		
Compress all information sent between the client and the server if both support compression.		
Indicate to the server that the client is can handle sandbox mode if the account used to connect has an expired password. This can be useful for noninteractive invocations of mysql because normally the server disconnects noninteractive clients that attempt to connect using an account with an expired password. (See Section 6.3.6, “Password Expiration and Sandbox Mode”.) This option was added in MySQL 5.6.12.		
--database=db_name, -D db_name		
The database to use. This is useful primarily in an option file.		
--debug[=debug_options], -# [debug_options]		
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o,/tmp/mysql.trace'.		
Print some debugging information when the program exits.		
--debug-info, -T		
Print debugging information and memory and CPU usage statistics when the program exits.		
The client-side authentication plugin to use. See Section 6.3.7, “Pluggable Authentication”.		
--default-character-set=charset_name		
Use charset_name as the default character set for the client and connection.		
A common issue that can occur when the operating system uses utf8 or another multi-byte character set is that output from the mysql client is formatted incorrectly, due to the fact that the MySQL client uses the latin1 character set by default. You can usually fix such issues by using this option to force the client to use the system character set instead.		
See Section 10.5, “Character Set Configuration”, for more information.		
Set the statement delimiter. The default is the semicolon character (“;”).		
Disable named commands. Use the * form only, or use named commands only at the beginning of a line ending with a semicolon (“;”). mysql starts with this option enabled by default. However, even with this option, long-format commands still work from the first line. See Section 4.5.1.2, “mysql Commands”.		
Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”.) This option was added in MySQL 5.6.7.		
--execute=statement, -e statement		
Execute the statement and quit. The default output format is like that produced with --batch. See Section 4.2.3.1, “Using Options on the Command Line”, for some examples. With this option, mysql does not use the history file.		
--force, -f		
Continue even if an SQL error occurs.		
A colon-separated list of one or more patterns specifying statements to ignore for logging purposes. These patterns are added to the default pattern list ("*IDENTIFIED*:*PASSWORD*"). The value specified for this option affects logging of statements written to the history file. For more information, see Section 4.5.1.3, “mysql Logging”. This option was added in MySQL 5.6.8.		
--host=host_name, -h host_name		
Connect to the MySQL server on the given host.		
--html, -H		
Produce HTML output.		
--ignore-spaces, -i		
Ignore spaces after function names. The effect of this is described in the discussion for the IGNORE_SPACE SQL mode (see Section 5.1.7, “Server SQL Modes”).		
SQL statement to execute after connecting to the server. If auto-reconnect is enabled, the statement is executed again after reconnection occurs.		
Write line numbers for errors. Disable this with --skip-line-numbers.		
Enable or disable LOCAL capability for LOAD DATA INFILE. With no value, the option enables LOCAL. The option may be given as --local-infile=0 or --local-infile=1 to explicitly disable or enable LOCAL. Enabling LOCAL has no effect if the server does not also support it.		
--named-commands, -G		
Enable named mysql commands. Long-format commands are permitted, not just short-format commands. For example, quit and \q both are recognized. Use --skip-named-commands to disable named commands. See Section 4.5.1.2, “mysql Commands”.		
--no-auto-rehash, -A		
This has the same effect as -skip-auto-rehash. See the description for --auto-rehash.		
--no-beep, -b		
Do not beep when errors occur.		
--one-database, -o		
Ignore statements except those that occur while the default database is the one named on the command line. This option is rudimentary and should be used with care. Statement filtering is based only on USE statements.		
Initially, mysql executes statements in the input because specifying a database db_name on the command line is equivalent to inserting USE db_name at the beginning of the input. Then, for each USE statement encountered, mysql accepts or rejects following statements depending on whether the database named is the one on the command line. The content of the statements is immaterial.		
Suppose that mysql is invoked to process this set of statements:		
DELETE FROM db2.t2;		
USE db2;		
DROP TABLE db1.t1;		
CREATE TABLE db1.t1 (i INT);		
USE db1;		
INSERT INTO t1 (i) VALUES(1);		
CREATE TABLE db2.t1 (j INT);		
If the command line is mysql --force --one-database db1, mysql handles the input as follows:		
The DELETE statement is executed because the default database is db1, even though the statement names a table in a different database.		
The DROP TABLE and CREATE TABLE statements are not executed because the default database is not db1, even though the statements name a table in db1.		
The INSERT and CREATE TABLE statements are executed because the default database is db1, even though the CREATE TABLE statement names a table in a different database.		
Use the given command for paging query output. If the command is omitted, the default pager is the value of your PAGER environment variable. Valid pagers are less, more, cat [> filename], and so forth. This option works only on Unix and only in interactive mode. To disable paging, use --skip-pager. Section 4.5.1.2, “mysql Commands”, discusses output paging further.		
--password[=password], -p[password]		
The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the option and the password. If you omit the password value following the --password or -p option on the command line, mysql prompts for one.		
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.		
--pipe, -W		
On Windows, connect to the server using a named pipe. This option applies only if the server supports named-pipe connections.		
The directory in which to look for plugins. It may be necessary to specify this option if the --default-auth option is used to specify an authentication plugin but mysql does not find it. See Section 6.3.7, “Pluggable Authentication”.		
--port=port_num, -P port_num		
The TCP/IP port number to use for the connection.		
Set the prompt to the specified format. The default is mysql>. The special sequences that the prompt can contain are described in Section 4.5.1.2, “mysql Commands”.		
--protocol={TCP	SOCKET	PIPE
The connection protocol to use for connecting to the server. It is useful when the other connection parameters normally would cause a protocol to be used other than the one you want. For details on the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.		
--quick, -q		
Do not cache each query result, print each row as it is received. This may slow down the server if the output is suspended. With this option, mysql does not use the history file.		
--raw, -r		
For tabular output, the “boxing” around columns enables one column value to be distinguished from another. For nontabular output (such as is produced in batch mode or when the --batch or --silent option is given), special characters are escaped in the output so they can be identified easily. Newline, tab, NUL, and backslash are written as \n, \t, \0, and \\. The --raw option disables this character escaping.		
The following example demonstrates tabular versus nontabular output and the use of raw mode to disable escaping:		
% mysql		
mysql> SELECT CHAR(92);		
+----------+		
CHAR(92)		
+----------+		
\		
+----------+
% mysql -s
mysql> SELECT CHAR(92);
CHAR(92)
\\
% mysql -s -r
mysql> SELECT CHAR(92);
CHAR(92)
\
If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt is made each time the connection is lost. To suppress reconnection behavior, use --skip-reconnect.
--safe-updates, --i-am-a-dummy, -U
Permit only those UPDATE and DELETE statements that specify which rows to modify by using key values. If you have set this option in an option file, you can override it by using --safe-updates on the command line. See Section 4.5.1.6, “mysql Tips”, for more information about this option.
Do not send passwords to the server in old (pre-4.1.1) format. This prevents connections except for servers that use the newer password format. As of MySQL 5.6.7, this option is enabled by default; use --skip-secure-auth to disable it.
--server-public-key-path=file_name
The path name to a file containing the server RSA public key. The file must be in PEM format. The public key is used for RSA encryption of the client password for connections to the server made using accounts that authenticate with the sha256_password plugin. This option is ignored for client accounts that do not authenticate with that plugin. It is also ignored if password encryption is not needed, as is the case when the client connects to the server using an SSL connection.
The server sends the public key to the client as needed, so it is not necessary to use this option for RSA password encryption to occur. It is more efficient to do so because then the server need not send the key.
For additional discussion regarding use of the sha256_password plugin, including how to get the RSA public key, see Section 6.3.7.2, “The SHA-256 Authentication Plugin”.
This option is available only if MySQL was built using OpenSSL. It was added in MySQL 5.6.6 under the name --server-public-key and renamed in 5.6.7 to --server-public-key-path.
Cause warnings to be shown after each statement if there are any. This option applies to interactive and batch mode.
Ignore SIGINT signals (typically the result of typing Control+C).
--silent, -s
Silent mode. Produce less output. This option can be given multiple times to produce less and less output.
This option results in nontabular output format and escaping of special characters. Escaping may be disabled by using raw mode; see the description for the --raw option.
Do not write column names in results.
Do not write line numbers for errors. Useful when you want to compare result files that include error messages.
--socket=path, -S path
For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.
--ssl*
Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to find SSL keys and certificates. See Section 6.3.9.4, “SSL Command Options”.
--table, -t
Display output in table format. This is the default for interactive use, but can be used to produce table output in batch mode.
Append a copy of output to the given file. This option works only in interactive mode. Section 4.5.1.2, “mysql Commands”, discusses tee files further.
--unbuffered, -n
Flush the buffer after each query.
--user=user_name, -u user_name
The MySQL user name to use when connecting to the server.
--verbose, -v
Verbose mode. Produce more output about what the program does. This option can be given multiple times to produce more and more output. (For example, -v -v -v produces table output format even in batch mode.)
--version, -V
Display version information and exit.
--vertical, -E
Print query output rows vertically (one line per column value). Without this option, you can specify vertical output for individual statements by terminating them with \G.
--wait, -w
If the connection cannot be established, wait and retry instead of aborting.
--xml, -X
Produce XML output.
<field name="column_name">NULL</field>
The output when --xml is used with mysql matches that of mysqldump --xml. See Section 4.5.4, “mysqldump — A Database Backup Program” for details.
The XML output also uses an XML namespace, as shown here:
shell> mysql --xml -uroot -e "SHOW VARIABLES LIKE 'version%'"
<?xml version="1.0"?>
<resultset statement="SHOW VARIABLES LIKE 'version%'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<row>
<field name="Variable_name">version</field>
<field name="Value">5.0.40-debug</field>
</row>
<row>
<field name="Variable_name">version_comment</field>
<field name="Value">Source distribution</field>
</row>
<row>
<field name="Variable_name">version_compile_machine</field>
<field name="Value">i686</field>
</row>
<row>
<field name="Variable_name">version_compile_os</field>
<field name="Value">suse-linux-gnu</field>
</row>
</resultset>
(See Bug #25946.)
You can also set the following variables by using --var_name=value.
connect_timeout
The number of seconds before connection timeout. (Default value is 0.)
max_allowed_packet
The maximum packet length to send to or receive from the server. (Default value is 16MB.)
The automatic limit for rows in a join when using --safe-updates. (Default value is 1,000,000.)
The buffer size for TCP/IP and socket communication. (Default value is 16KB.)
select_limit
The automatic limit for SELECT statements when using --safe-updates. (Default value is 1,000.)
4.5.1.2. mysql Commands
mysql sends each SQL statement that you issue to the server to be executed. There is also a set of commands that mysql itself interprets. For a list of these commands, type help or \h at the mysql> prompt:
mysql> help
List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
? (\?) Synonym for `help'.
clear (\c) Clear command.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile]. Append everything into given
outfile.
use (\u) Use another database. Takes database name as argument.
charset (\C) Switch to another charset. Might be needed for processing
binlog with multi-byte charsets.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.
For server side help, type 'help contents'
If mysql is invoked with the --binary-mode option, all mysql commands are disabled except charset and delimiter in non-interactive mode (for input piped to mysql or loaded using the source command).
Each command has both a long and short form. The long form is not case sensitive; the short form is. The long form can be followed by an optional semicolon terminator, but the short form should not.
The use of short-form commands within multi-line /* ... */ comments is not supported.
help [arg], \h [arg], \? [arg], ? [arg]
Display a help message listing the available mysql commands.
If you provide an argument to the help command, mysql uses it as a search string to access server-side help from the contents of the MySQL Reference Manual. For more information, see Section 4.5.1.4, “mysql Server-Side Help”.
charset charset_name, \C charset_name
Change the default character set and issue a SET NAMES statement. This enables the character set to remain synchronized on the client and server if mysql is run with auto-reconnect enabled (which is not recommended), because the specified character set is used for reconnects.
clear, \c
Clear the current input. Use this if you change your mind about executing the statement that you are entering.
connect [db_name host_name]], \r [db_name host_name]]
Reconnect to the server. The optional database name and host name arguments may be given to specify the default database or the host where the server is running. If omitted, the current values are used.
delimiter str, \d str
Change the string that mysql interprets as the separator between SQL statements. The default is the semicolon character (“;”).
The delimiter string can be specified as an unquoted or quoted argument on the delimiter command line. Quoting can be done with either single quote ('), double quote ("), or backtick (`) characters. To include a quote within a quoted string, either quote the string with a different quote character or escape the quote with a backslash (“\”) character. Backslash should be avoided outside of quoted strings because it is the escape character for MySQL. For an unquoted argument, the delimiter is read up to the first space or end of line. For a quoted argument, the delimiter is read up to the matching quote on the line.
mysql interprets instances of the delimiter string as a statement delimiter anywhere it occurs, except within quoted strings. Be careful about defining a delimiter that might occur within other words. For example, if you define the delimiter as X, you will be unable to use the word INDEX in statements. mysql interprets this as INDE followed by the delimiter X.
When the delimiter recognized by mysql is set to something other than the default of “;”, instances of that character are sent to the server without interpretation. However, the server itself still interprets “;” as a statement delimiter and processes statements accordingly. This behavior on the server side comes into play for multiple-statement execution (see Section 21.8.16, “C API Support for Multiple Statement Execution”), and for parsing the body of stored procedures and functions, triggers, and events (see Section 18.1, “Defining Stored Programs”).
edit, \e
Edit the current input statement. mysql checks the values of the EDITOR and VISUAL environment variables to determine which editor to use. The default editor is vi if neither variable is set.
The edit command works only in Unix.
ego, \G
Send the current statement to the server to be executed and display the result using vertical format.
exit, \q
Exit mysql.
go, \g
Send the current statement to the server to be executed.
nopager, \n
Disable output paging. See the description for pager.
The nopager command works only in Unix.
notee, \t
Disable output copying to the tee file. See the description for tee.
nowarning, \w
Enable display of warnings after each statement.
pager [command], \P [command]
Enable output paging. By using the --pager option when you invoke mysql, it is possible to browse or search query results in interactive mode with Unix programs such as less, more, or any other similar program. If you specify no value for the option, mysql checks the value of the PAGER environment variable and sets the pager to that. Pager functionality works only in interactive mode.
Output paging can be enabled interactively with the pager command and disabled with nopager. The command takes an optional argument; if given, the paging program is set to that. With no argument, the pager is set to the pager that was set on the command line, or stdout if no pager was specified.
Output paging works only in Unix because it uses the popen() function, which does not exist on Windows. For Windows, the tee option can be used instead to save query output, although it is not as convenient as pager for browsing output in some situations.
print, \p
Print the current input statement without executing it.
prompt [str], \R [str]
Reconfigure the mysql prompt to the given string. The special character sequences that can be used in the prompt are described later in this section.
If you specify the prompt command with no argument, mysql resets the prompt to the default of mysql>.
quit, \q
Exit mysql.
rehash, \#
Rebuild the completion hash that enables database, table, and column name completion while you are entering statements. (See the description for the --auto-rehash option.)
source file_name, \. file_name
Read the named file and executes the statements contained therein. On Windows, you can specify path name separators as / or \\.
status, \s
Provide status information about the connection and the server you are using. If you are running in --safe-updates mode, status also prints the values for the mysql variables that affect your queries.
system command, \! command
Execute the given command using your default command interpreter.
The system command works only in Unix.
tee [file_name], \T [file_name]
By using the --tee option when you invoke mysql, you can log statements and their output. All the data displayed on the screen is appended into a given file. This can be very useful for debugging purposes also. mysql flushes results to the file after each statement, just before it prints its next prompt. Tee functionality works only in interactive mode.
You can enable this feature interactively with the tee command. Without a parameter, the previous file is used. The tee file can be disabled with the notee command. Executing tee again re-enables logging.
use db_name, \u db_name
Use db_name as the default database.
warnings, \W
Enable display of warnings after each statement (if there are any).
Here are a few tips about the pager command:
You can use it to write to a file and the results go only to the file:
mysql> pager cat > /tmp/log.txt
You can also pass any options for the program that you want to use as your pager:
mysql> pager less -n -i -S
In the preceding example, note the -S option. You may find it very useful for browsing wide query results. Sometimes a very wide result set is difficult to read on the screen. The -S option to less can make the result set much more readable because you can scroll it horizontally using the left-arrow and right-arrow keys. You can also use -S interactively within less to switch the horizontal-browse mode on and off. For more information, read the less manual page:
shell> man less
The -F and -X options may be used with less to cause it to exit if output fits on one screen, which is convenient when no scrolling is necessary:
mysql> pager less -n -i -S -F -X
You can specify very complex pager commands for handling query output:
mysql> pager cat | tee /dr1/tmp/res.txt \
| tee /dr2/tmp/res2.txt | less -n -i -S
In this example, the command would send query results to two files in two different directories on two different file systems mounted on /dr1 and /dr2, yet still display the results onscreen using less.
You can also combine the tee and pager functions. Have a tee file enabled and pager set to less, and you are able to browse the results using the less program and still have everything appended into a file the same time. The difference between the Unix tee used with the pager command and the mysql built-in tee command is that the built-in tee works even if you do not have the Unix tee available. The built-in tee also logs everything that is printed on the screen, whereas the Unix tee used with pager does not log quite that much. Additionally, tee file logging can be turned on and off interactively from within mysql. This is useful when you want to log some queries to a file, but not others.
The prompt command reconfigures the default mysql> prompt. The string for defining the prompt can contain the following special sequences.
Option | Description |
---|---|
\c | A counter that increments for each statement you issue |
\D | The full current date |
\d | The default database |
\h | The server host |
\l | The current delimiter |
\m | Minutes of the current time |
\n | A newline character |
\O | The current month in three-letter format (Jan, Feb, …) |
\o | The current month in numeric format |
\P | am/pm |
\p | The current TCP/IP port or socket file |
\R | The current time, in 24-hour military time (0–23) |
\r | The current time, standard 12-hour time (1–12) |
\S | Semicolon |
\s | Seconds of the current time |
\t | A tab character |
\U | Your full user_name@host_name account name |
\u | Your user name |
\v | The server version |
\w | The current day of the week in three-letter format (Mon, Tue, …) |
\Y | The current year, four digits |
\y | The current year, two digits |
_ | A space |
\ | A space (a space follows the backslash) |
\' | Single quote |
\" | Double quote |
\\ | A literal “\” backslash character |
\x | x, for any “x” not listed above |
You can set the prompt in several ways:
Use an environment variable. You can set the MYSQL_PS1 environment variable to a prompt string. For example:
shell> export MYSQL_PS1="(\u@\h) [\d]> "
Use a command-line option. You can set the --prompt option on the command line to mysql. For example:
shell> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>
Use an option file. You can set the prompt option in the [mysql] group of any MySQL option file, such as /etc/my.cnf or the .my.cnf file in your home directory. For example:
[mysql]
prompt=(\\u@\\h) [\\d]>_
In this example, note that the backslashes are doubled. If you set the prompt using the prompt option in an option file, it is advisable to double the backslashes when using the special prompt options. There is some overlap in the set of permissible prompt options and the set of special escape sequences that are recognized in option files. (The rules for escape sequences in option files are listed in Section 4.2.3.3, “Using Option Files”.) The overlap may cause you problems if you use single backslashes. For example, \s is interpreted as a space rather than as the current seconds value. The following example shows how to define a prompt within an option file to include the current time in HH:MM:SS> format:
[mysql]
prompt="\\r:\\m:\\s> "
Set the prompt interactively. You can change your prompt interactively by using the prompt (or \R) command. For example:
mysql> prompt (\u@\h) [\d]>_
PROMPT set to '(\u@\h) [\d]>_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>
4.5.1.3. mysql Logging
On Unix, the mysql client logs statements executed interactively to a history file. By default, this file is named .mysql_history in your home directory. To specify a different file, set the value of the MYSQL_HISTFILE environment variable.
How Logging Occurs
Statement logging occurs as follows:
Statements are logged only when executed interactively. Statements are noninteractive, for example, when read from a file or a pipe. It is also possible to suppress statement logging by using the --batch or --execute option.
Statements are ignored and not logged if they match any pattern in the “ignore” list. This list is described later.
mysql logs each nonignored, nonempty statement line individually.
If a nonignored statement spans multiple lines (not including the terminating delimiter), mysql concatenates the lines to form the complete statement, maps newlines to spaces, and logs the result, plus a delimiter.
Consequently, an input statement that spans multiple lines can be logged twice. Consider this input:
mysql> SELECT
-> 'Today is'
-> ,
-> CONCAT()
-> ;
In this case, mysql logs the “SELECT”, “'Today is'”, “,”, “CONCAT()”, and “;” lines as it reads them. It also logs the complete statement, after mapping SELECT\n'Today is'\n,\nCURDATE() to SELECT 'Today is' , CURDATE(), plus a delimiter. Thus, these lines appear in logged output:
SELECT
'Today is'
,
CURDATE()
;
SELECT 'Today is' , CURDATE();
As of MySQL 5.6.8, mysql ignores for logging purposes statements that match any pattern in the “ignore” list. By default, the pattern list is "*IDENTIFIED*:*PASSWORD*", to ignore statements that refer to passwords. Pattern matching is not case sensitive. Within patterns, two characters are special:
? matches any single character.
* matches any sequence of zero or more characters.
To specify additional patterns, use the --histignore option or set the MYSQL_HISTIGNORE environment variable. (If both are specified, the option value takes precedence.) The value should be a colon-separated list of one or more patterns, which are appended to the default pattern list.
Patterns specified on the command line might need to be quoted or escaped to prevent your command interpreter from treating them specially. For example, to suppress logging for UPDATE and DELETE statements in addition to statements that refer to passwords, invoke mysql like this:
shell> mysql --histignore="*UPDATE*:*DELETE*"
Controlling the History File
The .mysql_history file should be protected with a restrictive access mode because sensitive information might be written to it, such as the text of SQL statements that contain passwords. See Section 6.1.2.1, “End-User Guidelines for Password Security”.
If you do not want to maintain a history file, first remove .mysql_history if it exists. Then use either of the following techniques to prevent it from being created again:
Set the MYSQL_HISTFILE environment variable to /dev/null. To cause this setting to take effect each time you log in, put it in one of your shell's startup files.
Create .mysql_history as a symbolic link to /dev/null; this need be done only once:
shell> ln -s /dev/null $HOME/.mysql_history
4.5.1.4. mysql Server-Side Help
mysql> help search_string
If you provide an argument to the help command, mysql uses it as a search string to access server-side help from the contents of the MySQL Reference Manual. The proper operation of this command requires that the help tables in the mysql database be initialized with help topic information (see Section 5.1.10, “Server-Side Help”).
If there is no match for the search string, the search fails:
mysql> help me
Nothing found
Please try to run 'help contents' for a list of all accessible topics
Use help contents to see a list of the help categories:
mysql> help contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the
following categories:
Account Management
Administration
Data Definition
Data Manipulation
Data Types
Functions
Functions and Modifiers for Use with GROUP BY
Geographic Features
Language Structure
Plugins
Storage Engines
Stored Routines
Table Maintenance
Transactions
Triggers
If the search string matches multiple items, mysql shows a list of matching topics:
mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
SHOW
SHOW BINARY LOGS
SHOW ENGINE
SHOW LOGS
Use a topic as the search string to see the help entry for that topic:
mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS
Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-binary-logs], that shows how
to determine which logs can be purged.
mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+
The search string can contain the the wildcard characters “%” and “_”. These have the same meaning as for pattern-matching operations performed with the LIKE operator. For example, HELP rep% returns a list of topics that begin with rep:
mysql> HELP rep%
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following
topics:
REPAIR TABLE
REPEAT FUNCTION
REPEAT LOOP
REPLACE
REPLACE FUNCTION
4.5.1.5. Executing SQL Statements from a Text File
The mysql client typically is used interactively, like this:
shell> mysql db_name
However, it is also possible to put your SQL statements in a file and then tell mysql to read its input from that file. To do so, create a text file text_file that contains the statements you wish to execute. Then invoke mysql as shown here:
shell> mysql db_name < text_file
If you place a USE db_name statement as the first statement in the file, it is unnecessary to specify the database name on the command line:
shell> mysql < text_file
If you are already running mysql, you can execute an SQL script file using the source command or \. command:
mysql> source file_name
mysql> \. file_name
Sometimes you may want your script to display progress information to the user. For this you can insert statements like this:
SELECT '<info_to_display>' AS ' ';
The statement shown outputs <info_to_display>.
You can also invoke mysql with the --verbose option, which causes each statement to be displayed before the result that it produces.
mysql ignores Unicode byte order mark (BOM) characters at the beginning of input files. Previously, it read them and sent them to the server, resulting in a syntax error. Presence of a BOM does not cause mysql to change its default character set. To do that, invoke mysql with an option such as --default-character-set=utf8.
For more information about batch mode, see Section 3.5, “Using mysql in Batch Mode”.
4.5.1.6. mysql Tips
This section describes some techniques that can help you use mysql more effectively.
4.5.1.6.1. Input-Line Editing
mysql supports input-line editing, which enables you to modify the current input line in place or recall previous input lines. For example, the left-arrow and right-arrow keys move horizontally within the current input line, and the up-arror and down-arrow keys move up and down through the set of previously entered lines. Backspace deletes the character before the cursor and typing new characters enters them at the cursor position. To enter the line, press Enter.
On Windows, the editing key sequences are the same as supported for command editing in console windows. On Unix, the key sequences depend on the input library used to build mysql (for example, the libedit or readline library).
Documentation for the libedit and readline libraries is available online. To change the set of key sequences permitted by a given input library, define key bindings in the library startup file. This is a file in your home directory: .editrc for libedit and .inputrc for readline.
For example, in libedit, Control+W deletes everything before the current cursor position and Control+U deletes the entire line. In readline, Control+W deletes the word before the cursor and Control+U deletes everything before the current cursor position. If mysql was built using libedit, a user who prefers the readline behavior for these two keys can put the following lines in the .editrc file (creating the file if necessary):
bind "^W" ed-delete-prev-word
bind "^U" vi-kill-line-prev
To see the current set of key bindings, temporarily put a line that says only bind at the end of .editrc. mysql will show the bindings when it starts.
4.5.1.6.2. Unicode Support on Windows
Windows provides APIs based on UTF-16LE for reading from and writing to the console. As of MySQL 5.6.2, the mysql client for Windows is able to use these APIs. As of 5.6.3, the Windows installer creates an item in the MySQL menu named MySQL command line client - Unicode. This item invokes the mysql client with properties set to communicate through the console to the MySQL server using Unicode.
To take advantage of this support manually, run mysql within a console that uses a compatible Unicode font and set the default character set to a Unicode character set that is supported for communication with the server:
Open a console window.
Go to the console window properties, select the font tab, and choose Lucida Console or some other compatible Unicode font. This is necessary because console windows start by default using a DOS raster font that is inadequate for Unicode.
Execute mysql.exe with the --default-character-set=utf8 (or utf8mb4) option. This option is necessary because utf16le is not supported as a connection character set.
With those changes, mysql will use the Windows APIs to communicate with the console using UTF-16LE, and communicate with the server using UTF-8. (The menu item mentioned previously sets the font and character set as just described.)
To avoid those steps each time you run mysql, you can create a shortcut that invokes mysql.exe. The shortcut should set the console font to Lucida Console or some other compatible Unicode font, and pass the --default-character-set=utf8 (or utf8mb4) option to mysql.exe.
Alternatively, create a shortcut that only sets the console font, and set the character set in the [mysql] group of your my.ini file:
[mysql]
default-character-set=utf8
4.5.1.6.3. Displaying Query Results Vertically
Some query results are much more readable when displayed vertically, instead of in the usual horizontal table format. Queries can be displayed vertically by terminating the query with \G instead of a semicolon. For example, longer text values that include newlines often are much easier to read with vertical output:
mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G
*************************** 1. row ***************************
msg_nro: 3068
date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Monty
reply: monty@no.spam.com
mail_to: "Thimble Smith" <tim@no.spam.com>
sbj: UTF-8
txt: >>>>> "Thimble" == Thimble Smith writes:
Thimble> Hi. I think this is a good idea. Is anyone familiar
Thimble> with UTF-8 or Unicode? Otherwise, I'll put this on my
Thimble> TODO list and see what happens.
Yes, please do that.
Regards,
Monty
file: inbox-jani-1
hash: 190402944
1 row in set (0.09 sec)
4.5.1.6.4. Using the --safe-updates Option
For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has the same effect). It is helpful for cases when you might have issued a DELETE FROM tbl_name statement but forgotten the WHERE clause. Normally, such a statement deletes all rows from the table. With --safe-updates, you can delete rows only by specifying the key values that identify them. This helps prevent accidents.
When you use the --safe-updates option, mysql issues the following statement when it connects to the MySQL server:
SET sql_safe_updates=1, sql_select_limit=1000, max_join_size=1000000;
See Section 5.1.4, “Server System Variables”.
The SET statement has the following effects:
You are not permitted to execute an UPDATE or DELETE statement unless you specify a key constraint in the WHERE clause or provide a LIMIT clause (or both). For example:
UPDATE tbl_name SET not_key_column=val WHERE key_column=val;
UPDATE tbl_name SET not_key_column=val LIMIT 1;
The server limits all large SELECT results to 1,000 rows unless the statement includes a LIMIT clause.
The server aborts multiple-table SELECT statements that probably need to examine more than 1,000,000 row combinations.
To specify limits different from 1,000 and 1,000,000, you can override the defaults by using the --select_limit and --max_join_size options:
shell> mysql --safe-updates --select_limit=500 --max_join_size=10000
4.5.1.6.5. Disabling mysql Auto-Reconnect
If the mysql client loses its connection to the server while sending a statement, it immediately and automatically tries to reconnect once to the server and send the statement again. However, even if mysql succeeds in reconnecting, your first connection has ended and all your previous session objects and settings are lost: temporary tables, the autocommit mode, and user-defined and session variables. Also, any current transaction rolls back. This behavior may be dangerous for you, as in the following example where the server was shut down and restarted between the first and second statements without you knowing it:
mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)
mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test
Query OK, 1 row affected (1.30 sec)
mysql> SELECT * FROM t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)
The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it is important to have mysql terminate with an error if the connection has been lost, you can start the mysql client with the --skip-reconnect option.
For more information about auto-reconnect and its effect on state information when a reconnection occurs, see Section 21.8.15, “Controlling Automatic Reconnection Behavior”.
4.5.2. mysqladmin — Client for Administering a MySQL Server
mysqladmin is a client for performing administrative operations. You can use it to check the server's configuration and current status, to create and drop databases, and more.
Invoke mysqladmin like this:
shell> mysqladmin [options] command [command-arg] [command [command-arg]] ...
mysqladmin supports the following commands. Some of the commands take an argument following the command name.
create db_name
Create a new database named db_name.
debug
Tell the server to write debug information to the error log. Format and content of this information is subject to change.
This includes information about the Event Scheduler. See Section 18.4.5, “Event Scheduler Status”.
drop db_name
Delete the database named db_name and all its tables.
extended-status
Display the server status variables and their values.
flush-hosts
Flush all information in the host cache.
flush-logs
Flush all logs.
flush-privileges
Reload the grant tables (same as reload).
flush-status
Clear status variables.
flush-tables
Flush all tables.
flush-threads
Flush the thread cache.
kill id,id,...
Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.
old-password new-password
This is like the password command but stores the password using the old (pre-4.1) password-hashing format. (See Section 6.1.2.4, “Password Hashing in MySQL”.)
password new-password
Set a new password. This changes the password to new-password for the account that you use with mysqladmin for connecting to the server. Thus, the next time you invoke mysqladmin (or any other client program) using the same account, you will need to specify the new password.
If the new-password value contains spaces or other characters that are special to your command interpreter, you need to enclose it within quotation marks. On Windows, be sure to use double quotation marks rather than single quotation marks; single quotation marks are not stripped from the password, but rather are interpreted as part of the password. For example:
shell> mysqladmin password "my new password"
In MySQL 5.6, the new password can be omitted following the password command. In this case, mysqladmin prompts for the password value, which enables you to avoid specifying the password on the command line. Omitting the password value should be done only if password is the final command on the mysqladmin command line. Otherwise, the next argument is taken as the password.
Caution
Do not use this command used if the server was started with the --skip-grant-tables option. No password change will be applied. This is true even if you precede the password command with flush-privileges on the same command line to re-enable the grant tables because the flush operation occurs after you connect. However, you can use mysqladmin flush-privileges to re-enable the grant table and then use a separate mysqladmin password command to change the password.
ping
Check whether the server is available. The return status from mysqladmin is 0 if the server is running, 1 if it is not. This is 0 even in case of an error such as Access denied, because this means that the server is running but refused the connection, which is different from the server not running.
processlist
Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement. If the --verbose option is given, the output is like that of SHOW FULL PROCESSLIST. (See Section 13.7.5.30, “SHOW PROCESSLIST Syntax”.)
reload
Reload the grant tables.
refresh
Flush all tables and close and open log files.
shutdown
Stop the server.
start-slave
Start replication on a slave server.
status
Display a short server status message.
stop-slave
Stop replication on a slave server.
variables
Display the server system variables and their values.
version
Display version information from the server.
All commands can be shortened to any unique prefix. For example:
shell> mysqladmin proc stat
+----+-------+-----------+----+---------+------+-------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+---------+------+-------+------------------+
| 51 | monty | localhost | | Query | 0 | | show processlist |
+----+-------+-----------+----+---------+------+-------+------------------+
Uptime: 1473624 Threads: 1 Questions: 39487
Slow queries: 0 Opens: 541 Flush tables: 1
Open tables: 19 Queries per second avg: 0.0268
The mysqladmin status command result displays the following values:
The number of seconds the MySQL server has been running.
Threads
The number of active threads (clients).
The number of questions (queries) from clients since the server was started.
Slow queries
The number of queries that have taken more than long_query_time seconds. See Section 5.2.5, “The Slow Query Log”.
Opens
The number of tables the server has opened.
Flush tables
The number of flush-*, refresh, and reload commands the server has executed.
Open tables
The number of tables that currently are open.
If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file, mysqladmin waits until the server's process ID file has been removed, to ensure that the server has stopped properly.
mysqladmin supports the following options, which can be specified on the command line or in the [mysqladmin] and [client] groups of an option file. mysqladmin also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
Table 4.4. mysqladmin Options
Format | Option File | Description | Introduced |
---|---|---|---|
--bind-address=ip_address | bind-address | Use the specified network interface to connect to the MySQL Server | |
--compress | compress | Compress all information sent between the client and the server | |
--connect_timeout=seconds | connect_timeout | The number of seconds before connection timeout | |
--count=# | count | The number of iterations to make for repeated command execution | |
--debug[=debug_options] | debug | Write a debugging log | |
--debug-check | debug-check | Print debugging information when the program exits | |
--debug-info | debug-info | Print debugging information, memory and CPU statistics when the program exits | |
--default-auth=plugin | default-auth=plugin | The authentication plugin to use | |
--default-character-set=charset_name | default-character-set | Use charset_name as the default character set | |
--enable-cleartext-plugin | enable-cleartext-plugin | Enable cleartext authentication plugin | 5.6.7 |
--force | force | Continue even if an SQL error occurs | |
--help | Display help message and exit | ||
--host=host_name | host | Connect to the MySQL server on the given host | |
--login-path=name | Read login path options from .mylogin.cnf | 5.6.6 | |
--no-beep | no-beep | Do not beep when errors occur | |
--password[=password] | password | The password to use when connecting to the server | |
--pipe | On Windows, connect to server using a named pipe | ||
--plugin-dir=path | plugin-dir=path | The directory where plugins are located | |
--port=port_num | port | The TCP/IP port number to use for the connection | |
--protocol=type | protocol | The connection protocol to use | |
--relative | relative | Show the difference between the current and previous values when used with the --sleep option | |
--shutdown_timeout=seconds | shutdown_timeout | The maximum number of seconds to wait for server shutdown | |
--silent | silent | Silent mode | |
--sleep=delay | sleep | Execute commands repeatedly, sleeping for delay seconds in between | |
--socket=path | socket | For connections to localhost | |
--ssl-ca=file_name | ssl-ca | The path to a file that contains a list of trusted SSL CAs | |
--ssl-capath=dir_name | ssl-capath | The path to a directory that contains trusted SSL CA certificates in PEM format | |
--ssl-cert=file_name | ssl-cert | The name of the SSL certificate file to use for establishing a secure connection | |
--ssl-cipher=cipher_list | ssl-cipher | A list of allowable ciphers to use for SSL encryption | |
--ssl-crl=file_name | ssl-crl | The path to a file that contains certificate revocation lists | 5.6.3 |
--ssl-crlpath=dir_name | ssl-crlpath | The path to a directory that contains certificate revocation list files | 5.6.3 |
--ssl-key=file_name | ssl-key | The name of the SSL key file to use for establishing a secure connection | |
--ssl-verify-server-cert | ssl-verify-server-cert | The server's Common Name value in its certificate is verified against the host name used when connecting to the server | |
--user=user_name, | user | MySQL user name to use when connecting to server | |
--verbose | Verbose mode | ||
--version | Display version information and exit | ||
--vertical | vertical | Print query output rows vertically (one line per column value) | |
--wait | wait | If the connection cannot be established, wait and retry instead of aborting |
--help, -?
Display a help message and exit.
On a computer having multiple network interfaces, this option can be used to select which interface is employed when connecting to the MySQL server.
This option is supported beginning with MySQL 5.6.1.
The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.
--compress, -C
Compress all information sent between the client and the server if both support compression.
--count=N, -c N
The number of iterations to make for repeated command execution if the --sleep option is given.
--debug[=debug_options], -# [debug_options]
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o,/tmp/mysqladmin.trace'.
Print some debugging information when the program exits.
Print debugging information and memory and CPU usage statistics when the program exits.
The client-side authentication plugin to use. See Section 6.3.7, “Pluggable Authentication”.
--default-character-set=charset_name
Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.
Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”.) This option was added in MySQL 5.6.7.
--force, -f
Do not ask for confirmation for the drop db_name command. With multiple commands, continue even if an error occurs.
--host=host_name, -h host_name
Connect to the MySQL server on the given host.
--no-beep, -b
Suppress the warning beep that is emitted by default for errors such as a failure to connect to the server.
--password[=password], -p[password]
The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the option and the password. If you omit the password value following the --password or -p option on the command line, mysqladmin prompts for one.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
--pipe, -W
On Windows, connect to the server using a named pipe. This option applies only if the server supports named-pipe connections.
The directory in which to look for plugins. It may be necessary to specify this option if the --default-auth option is used to specify an authentication plugin but mysqladmin does not find it. See Section 6.3.7, “Pluggable Authentication”.
--port=port_num, -P port_num
The TCP/IP port number to use for the connection.
--protocol={TCP|SOCKET|PIPE|MEMORY}
The connection protocol to use for connecting to the server. It is useful when the other connection parameters normally would cause a protocol to be used other than the one you want. For details on the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.
--relative, -r
Show the difference between the current and previous values when used with the --sleep option. This option works only with the extended-status command.
--silent, -s
Exit silently if a connection to the server cannot be established.
--sleep=delay, -i delay
Execute commands repeatedly, sleeping for delay seconds in between. The --count option determines the number of iterations. If --count is not given, mysqladmin executes commands indefinitely until interrupted.
--socket=path, -S path
For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.
--ssl*
Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to find SSL keys and certificates. See Section 6.3.9.4, “SSL Command Options”.
--user=user_name, -u user_name
The MySQL user name to use when connecting to the server.
--verbose, -v
Verbose mode. Print more information about what the program does.
--version, -V
Display version information and exit.
--vertical, -E
Print output vertically. This is similar to --relative, but prints output vertically.
--wait[=count], -w[count]
If the connection cannot be established, wait and retry instead of aborting. If a count value is given, it indicates the number of times to retry. The default is one time.
You can also set the following variables by using --var_name=value.
connect_timeout
The maximum number of seconds before connection timeout. The default value is 43200 (12 hours).
shutdown_timeout
The maximum number of seconds to wait for server shutdown. The default value is 3600 (1 hour).
4.5.3. mysqlcheck — A Table Maintenance Program
The mysqlcheck client performs table maintenance: It checks, repairs, optimizes, or analyzes tables.
Each table is locked and therefore unavailable to other sessions while it is being processed, although for check operations, the table is locked with a READ lock only (see Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”, for more information about READ and WRITE locks). Table maintenance operations can be time-consuming, particularly for large tables. If you use the --databases or --all-databases option to process all tables in one or more databases, an invocation of mysqlcheck might take a long time. (This is also true for mysql_upgrade because that program invokes mysqlcheck to check all tables and repair them if necessary.)
mysqlcheck is similar in function to myisamchk, but works differently. The main operational difference is that mysqlcheck must be used when the mysqld server is running, whereas myisamchk should be used when it is not. The benefit of using mysqlcheck is that you do not have to stop the server to perform table maintenance.
mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the operation you want to perform, and then sends the statements to the server to be executed. For details about which storage engines each statement works with, see the descriptions for those statements in Section 13.7.2, “Table Maintenance Statements”.
The MyISAM storage engine supports all four maintenance operations, so mysqlcheck can be used to perform any of them on MyISAM tables. Other storage engines do not necessarily support all operations. In such cases, an error message is displayed. For example, if test.t is a MEMORY table, an attempt to check it produces this result:
shell> mysqlcheck test t
test.t
note : The storage engine for the table doesn't support check
If mysqlcheck is unable to repair a table, see Section 2.11.4, “Rebuilding or Repairing Tables or Indexes” for manual table repair strategies. This will be the case, for example, for InnoDB tables, which can be checked with CHECK TABLE, but not repaired with REPAIR TABLE.
Caution
It is best to make a backup of a table before performing a table repair operation; under some circumstances the operation might cause data loss. Possible causes include but are not limited to file system errors.
There are three general ways to invoke mysqlcheck:
shell> mysqlcheck [options] db_name [tbl_name ...]
shell> mysqlcheck [options] --databases db_name ...
shell> mysqlcheck [options] --all-databases
If you do not name any tables following db_name or if you use the --databases or --all-databases option, entire databases are checked.
mysqlcheck has a special feature compared to other client programs. The default behavior of checking tables (--check) can be changed by renaming the binary. If you want to have a tool that repairs tables by default, you should just make a copy of mysqlcheck named mysqlrepair, or make a symbolic link to mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs tables.
The names shown in the following table can be used to change mysqlcheck default behavior.
Command | Meaning |
---|---|
mysqlrepair | The default option is --repair |
mysqlanalyze | The default option is --analyze |
mysqloptimize | The default option is --optimize |
mysqlcheck supports the following options, which can be specified on the command line or in the [mysqlcheck] and [client] groups of an option file. mysqlcheck also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
Table 4.5. mysqlcheck Options
Format | Option File | Description | Introduced |
---|---|---|---|
--all-databases | all-databases | Check all tables in all databases | |
--all-in-1 | all-in-1 | Execute a single statement for each database that names all the tables from that database | |
--analyze | analyze | Analyze the tables | |
--auto-repair | auto-repair | If a checked table is corrupted, automatically fix it | |
--bind-address=ip_address | bind-address | Use the specified network interface to connect to the MySQL Server | |
--character-sets-dir=path | character-sets-dir | The directory where character sets are installed | |
--check | check | Check the tables for errors | |
--check-only-changed | check-only-changed | Check only tables that have changed since the last check | |
--check-upgrade | check-upgrade | Invoke CHECK TABLE with the FOR UPGRADE option | |
--compress | compress | Compress all information sent between the client and the server | |
--databases | databases | Process all tables in the named databases | |
--debug[=debug_options] | debug | Write a debugging log | |
--debug-check | debug-check | Print debugging information when the program exits | |
--debug-info | debug-info | Print debugging information, memory and CPU statistics when the program exits | |
--default-auth=plugin | default-auth=plugin | The authentication plugin to use | 5.6.2 |
--default-character-set=charset_name | default-character-set | Use charset_name as the default character set | |
--extended | extended | Check and repair tables | |
--fast | fast | Check only tables that have not been closed properly | |
--fix-db-names | fix-db-names | Convert database names to 5.1 format | |
--fix-table-names | fix-table-names | Convert table names to 5.1 format | |
--force | force | Continue even if an SQL error occurs | |
--help | Display help message and exit | ||
--host=host_name | host | Connect to the MySQL server on the given host | |
--login-path=name | Read login path options from .mylogin.cnf | 5.6.6 | |
--medium-check | medium-check | Do a check that is faster than an --extended operation | |
--optimize | optimize | Optimize the tables | |
--password[=password] | password | The password to use when connecting to the server | |
--pipe | On Windows, connect to server using a named pipe | ||
--plugin-dir=path | plugin-dir=path | The directory where plugins are located | 5.6.2 |
--port=port_num | port | The TCP/IP port number to use for the connection | |
--protocol=type | protocol | The connection protocol to use | |
--quick | quick | The fastest method of checking | |
--repair | repair | Perform a repair that can fix almost anything except unique keys that are not unique | |
--silent | silent | Silent mode | |
--skip-database=db_name | skip-database | Omit this database from performed operations | 5.6.11 |
--socket=path | socket | For connections to localhost | |
--ssl-ca=file_name | ssl-ca | The path to a file that contains a list of trusted SSL CAs | |
--ssl-capath=dir_name | ssl-capath | The path to a directory that contains trusted SSL CA certificates in PEM format | |
--ssl-cert=file_name | ssl-cert | The name of the SSL certificate file to use for establishing a secure connection | |
--ssl-cipher=cipher_list | ssl-cipher | A list of allowable ciphers to use for SSL encryption | |
--ssl-crl=file_name | ssl-crl | The path to a file that contains certificate revocation lists | 5.6.3 |
--ssl-crlpath=dir_name | ssl-crlpath | The path to a directory that contains certificate revocation list files | 5.6.3 |
--ssl-key=file_name | ssl-key | The name of the SSL key file to use for establishing a secure connection | |
--ssl-verify-server-cert | ssl-verify-server-cert | The server's Common Name value in its certificate is verified against the host name used when connecting to the server | |
--tables | tables | Overrides the --databases or -B option | |
--use-frm | use-frm | For repair operations on MyISAM tables | |
--user=user_name, | user | MySQL user name to use when connecting to server | |
--verbose | Verbose mode | ||
--version | Display version information and exit | ||
--write-binlog | write-binlog | Log ANALYZE, OPTIMIZE, REPAIR statements to binary log. --skip-write-binlog adds NO_WRITE_TO_BINLOG to these statements. |
--help, -?
Display a help message and exit.
--all-databases, -A
Check all tables in all databases. This is the same as using the --databases option and naming all the databases on the command line.
--all-in-1, -1
Instead of issuing a statement for each table, execute a single statement for each database that names all the tables from that database to be processed.
--analyze, -a
Analyze the tables.
If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables have been checked.
--bind-address=ip_address
On a computer having multiple network interfaces, this option can be used to select which interface is employed when connecting to the MySQL server.
This option is supported beginning with MySQL 5.6.1.
The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.
--check, -c
Check the tables for errors. This is the default operation.
Check only tables that have changed since the last check or that have not been closed properly.
--check-upgrade, -g
Invoke CHECK TABLE with the FOR UPGRADE option to check tables for incompatibilities with the current version of the server. This option automatically enables the --fix-db-names and --fix-table-names options.
Compress all information sent between the client and the server if both support compression.
--databases, -B
Process all tables in the named databases. Normally, mysqlcheck treats the first name argument on the command line as a database name and following names as table names. With this option, it treats all name arguments as database names.
--debug[=debug_options], -# [debug_options]
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o'.
Print some debugging information when the program exits.
Print debugging information and memory and CPU usage statistics when the program exits.
--default-character-set=charset_name
Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.
--extended, -e
If you are using this option to check tables, it ensures that they are 100% consistent but takes a long time.
If you are using this option to repair tables, it runs an extended repair that may not only take a long time to execute, but may produce a lot of garbage rows also!
The client-side authentication plugin to use. See Section 6.3.7, “Pluggable Authentication”.
This option was added in MySQL 5.6.2.
--fast, -F
Check only tables that have not been closed properly.
Convert database names to 5.1 format. Only database names that contain special characters are affected.
Convert table names to 5.1 format. Only table names that contain special characters are affected. This option also applies to views.
--force, -f
Continue even if an SQL error occurs.
--host=host_name, -h host_name
Connect to the MySQL server on the given host.
--medium-check, -m
Do a check that is faster than an --extended operation. This finds only 99.99% of all errors, which should be good enough in most cases.
--optimize, -o
Optimize the tables.
--password[=password], -p[password]
The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the option and the password. If you omit the password value following the --password or -p option on the command line, mysqlcheck prompts for one.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
--pipe, -W
On Windows, connect to the server using a named pipe. This option applies only if the server supports named-pipe connections.
The directory in which to look for plugins. It may be necessary to specify this option if the --default-auth option is used to specify an authentication plugin but mysqlcheck does not find it. See Section 6.3.7, “Pluggable Authentication”.
This option was added in MySQL 5.6.2.
--port=port_num, -P port_num
The TCP/IP port number to use for the connection.
--protocol={TCP|SOCKET|PIPE|MEMORY}
The connection protocol to use for connecting to the server. It is useful when the other connection parameters normally would cause a protocol to be used other than the one you want. For details on the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.
--quick, -q
If you are using this option to check tables, it prevents the check from scanning the rows to check for incorrect links. This is the fastest check method.
If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest repair method.
--repair, -r
Perform a repair that can fix almost anything except unique keys that are not unique.
--silent, -s
Silent mode. Print only error messages.
Do not include the named database (case sensitive) in the operations performed by mysqlcheck. This option was added in MySQL 5.6.11.
--socket=path, -S path
For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.
--ssl*
Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to find SSL keys and certificates. See Section 6.3.9.4, “SSL Command Options”.
Override the --databases or -B option. All name arguments following the option are regarded as table names.
For repair operations on MyISAM tables, get the table structure from the .frm file so that the table can be repaired even if the .MYI header is corrupted.
--user=user_name, -u user_name
The MySQL user name to use when connecting to the server.
--verbose, -v
Verbose mode. Print information about the various stages of program operation.
--version, -V
Display version information and exit.
This option is enabled by default, so that ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements generated by mysqlcheck are written to the binary log. Use --skip-write-binlog to cause NO_WRITE_TO_BINLOG to be added to the statements so that they are not logged. Use the --skip-write-binlog when these statements should not be sent to replication slaves or run when using the binary logs for recovery from backup.
4.5.4. mysqldump — A Database Backup Program
The mysqldump client is a utility that performs logical backups, producing a set of SQL statements that can be run to reproduce the original schema objects, table data, or both. It dumps one or more MySQL database for backup or transfer to another SQL server. The mysqldump command can also generate output in CSV, other delimited text, or XML format.
mysqldump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped views, TRIGGER for dumped triggers, and LOCK TABLES if the --single-transaction option is not used. Certain options might require other privileges as noted in the option descriptions.
To reload a dump file, you must have the same privileges needed to create each of the dumped objects by issuing CREATE statements manually.
Performance and Scalability Considerations
mysqldump advantages include the convenience and flexibility of viewing or even editing the output before restoring. You can clone databases for development and DBA work, or produce slight variations of an existing database for testing. It is not intended as a fast or scalable solution for backing up substantial amounts of data. With large data sizes, even if the backup step takes a reasonable time, restoring the data can be very slow because replaying the SQL statements involves disk I/O for insertion, index creation, and so on.
For large-scale backup and restore, a physical backup is more appropriate, to copy the data files in their original format that can be restored quickly:
If your tables are primarily InnoDB tables, or if you have a mix of InnoDB and MyISAM tables, consider using the mysqlbackup command of the MySQL Enterprise Backup product. (Available as part of the Enterprise subscription.) It provides the best performance for InnoDB backups with minimal disruption; it can also back up tables from MyISAM and other storage engines; and it provides a number of convenient options to accommodate different backup scenarios. See MySQL Enterprise Backup User's Guide (Version 3.8.1).
If your tables are primarily MyISAM tables, consider using the mysqlhotcopy instead, for better performance than mysqldump of backup and restore operations. See Section 4.6.10, “mysqlhotcopy — A Database Backup Program”.
mysqldump can retrieve and dump table contents row by row, or it can retrieve the entire content from a table and buffer it in memory before dumping it. Buffering in memory can be a problem if you are dumping large tables. To dump tables row by row, use the --quick option (or --opt, which enables --quick). The --opt option (and hence --quick) is enabled by default, so to enable memory buffering, use --skip-quick.
If you are using a recent version of mysqldump to generate a dump to be reloaded into a very old MySQL server, use the --skip-opt option instead of the --opt or --extended-insert option.
For additional information about mysqldump, see Section 7.4, “Using mysqldump for Backups”.
Syntax
There are three general ways to invoke mysqldump, to dump progressively more data:
shell> mysqldump [options] db_name [tbl_name ...]
shell> mysqldump [options] --databases db_name ...
shell> mysqldump [options] --all-databases
To dump entire databases, do not name any tables following db_name, or use the --databases or --all-databases option.
To see a list of the options your version of mysqldump supports, issue the command mysqldump --help.
Option Syntax - Alphabetical Summary
mysqldump supports the following options, which can be specified on the command line or in the [mysqldump] and [client] groups of an option file. mysqldump also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
Table 4.6. mysqldump Options
Format | Option File | Description | Introduced |
---|---|---|---|
--add-drop-database | add-drop-database | Add a DROP DATABASE statement before each CREATE DATABASE statement | |
--add-drop-table | add-drop-table | Add a DROP TABLE statement before each CREATE TABLE statement | |
--add-drop-trigger | add-drop-trigger | Add a DROP TRIGGER statement before each CREATE TRIGGER statement | |
--add-locks | add-locks | Surround each table dump with LOCK TABLES and UNLOCK TABLES statements | |
--all-databases | all-databases | Dump all tables in all databases | |
--allow-keywords | allow-keywords | Allow creation of column names that are keywords | |
--apply-slave-statements | apply-slave-statements | Include STOP SLAVE prior to CHANGE MASTER statement and START SLAVE at end of output | |
--bind-address=ip_address | bind-address | Use the specified network interface to connect to the MySQL Server | |
--comments | comments | Add comments to the dump file | |
--compact | compact | Produce more compact output | |
--compatible=name[,name,...] | compatible | Produce output that is more compatible with other database systems or with older MySQL servers | |
--complete-insert | complete-insert | Use complete INSERT statements that include column names | |
--create-options | create-options | Include all MySQL-specific table options in CREATE TABLE statements | |
--databases | databases | Dump several databases | |
--debug[=debug_options] | debug | Write a debugging log | |
--debug-check | debug-check | Print debugging information when the program exits | |
--debug-info | debug-info | Print debugging information, memory and CPU statistics when the program exits | |
--default-auth=plugin | default-auth=plugin | The authentication plugin to use | |
--default-character-set=charset_name | default-character-set | Use charset_name as the default character set | |
--delayed-insert | delayed-insert | Write INSERT DELAYED statements rather than INSERT statements | |
--delete-master-logs | delete-master-logs | On a master replication server, delete the binary logs after performing the dump operation | |
--disable-keys | disable-keys | For each table, surround the INSERT statements with statements to disable and enable keys | |
--dump-date | dump-date | Include dump date as "Dump completed on" comment if --comments is given | |
--dump-slave[=value] | dump-slave | Include CHANGE MASTER statement that lists binary log coordinates of slave's master | |
--events | events | Dump events from the dumped databases | |
--extended-insert | extended-insert | Use multiple-row INSERT syntax that include several VALUES lists | |
--fields-enclosed-by=string | fields-enclosed-by | This option is used with the --tab option and has the same meaning as the corresponding clause for LOAD DATA INFILE | |
--fields-escaped-by | fields-escaped-by | This option is used with the --tab option and has the same meaning as the corresponding clause for LOAD DATA INFILE | |
--fields-optionally-enclosed-by=string | fields-optionally-enclosed-by | This option is used with the --tab option and has the same meaning as the corresponding clause for LOAD DATA INFILE | |
--fields-terminated-by=string | fields-terminated-by | This option is used with the --tab option and has the same meaning as the corresponding clause for LOAD DATA INFILE | |
--flush-logs | flush-logs | Flush the MySQL server log files before starting the dump | |
--flush-privileges | flush-privileges | Emit a FLUSH PRIVILEGES statement after dumping the mysql database | |
--help | Display help message and exit | ||
--hex-blob | hex-blob | Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263) | |
--host | host | Host to connect to (IP address or hostname) | |
--ignore-table=db_name.tbl_name | ignore-table | Do not dump the given table | |
--include-master-host-port | include-master-host-port | Include MASTER_HOST/MASTER_PORT options in CHANGE MASTER statement produced with --dump-slave | |
--insert-ignore | insert-ignore | Write INSERT IGNORE statements rather than INSERT statements | |
--lines-terminated-by=string | lines-terminated-by | This option is used with the --tab option and has the same meaning as the corresponding clause for LOAD DATA INFILE | |
--lock-all-tables | lock-all-tables | Lock all tables across all databases | |
--lock-tables | lock-tables | Lock all tables before dumping them | |
--log-error=file_name | log-error | Append warnings and errors to the named file | |
--login-path=name | Read login path options from .mylogin.cnf | 5.6.6 | |
--master-data[=value] | master-data | Write the binary log file name and position to the output | |
--max_allowed_packet=value | max_allowed_packet | The maximum packet length to send to or receive from the server | |
--net_buffer_length=value | net_buffer_length | The buffer size for TCP/IP and socket communication | |
--no-autocommit | no-autocommit | Enclose the INSERT statements for each dumped table within SET autocommit = 0 and COMMIT statements | |
--no-create-db | no-create-db | This option suppresses the CREATE DATABASE statements | |
--no-create-info | no-create-info | Do not write CREATE TABLE statements that re-create each dumped table | |
--no-data | no-data | Do not dump table contents | |
--no-set-names | no-set-names | Same as --skip-set-charset | |
--no-tablespaces | no-tablespaces | Do not write any CREATE LOGFILE GROUP or CREATE TABLESPACE statements in output | |
--opt | opt | Shorthand for --add-drop-table --add-locks --create-options --disable-keys --extended-insert --lock-tables --quick --set-charset. | |
--order-by-primary | order-by-primary | Dump each table's rows sorted by its primary key, or by its first unique index | |
--password[=password] | password | The password to use when connecting to the server | |
--pipe | On Windows, connect to server using a named pipe | ||
--plugin-dir=path | plugin-dir=path | The directory where plugins are located | |
--port=port_num | port | The TCP/IP port number to use for the connection | |
--quick | quick | Retrieve rows for a table from the server a row at a time | |
--quote-names | quote-names | Quote identifiers within backtick characters | |
--replace | replace | Write REPLACE statements rather than INSERT statements | |
--result-file=file | result-file | Direct output to a given file | |
--routines | routines | Dump stored routines (procedures and functions) from the dumped databases | |
--set-charset | set-charset | Add SET NAMES default_character_set to output | |
--set-gtid-purged=value | set-gtid-purged | Whether to add SET @@GLOBAL.GTID_PURGED to output | 5.6.9 |
--single-transaction | single-transaction | This option issues a BEGIN SQL statement before dumping data from the server | |
--skip-add-drop-table | skip-add-drop-table | Do not add a DROP TABLE statement before each CREATE TABLE statement | |
--skip-add-locks | skip-add-locks | Do not add locks | |
--skip-comments | skip-comments | Do not add comments to the dump file | |
--skip-compact | skip-compact | Do not produce more compact output | |
--skip-disable-keys | skip-disable-keys | Do not disable keys | |
--skip-extended-insert | skip-extended-insert | Turn off extended-insert | |
--skip-opt | skip-opt | Turn off the options set by --opt | |
--skip-quick | skip-quick | Do not retrieve rows for a table from the server a row at a time | |
--skip-quote-names | skip-quote-names | Do not quote identifiers | |
--skip-set-charset | skip-set-charset | Suppress the SET NAMES statement | |
--skip-triggers | skip-triggers | Do not dump triggers | |
--skip-tz-utc | skip-tz-utc | Turn off tz-utc | |
--ssl-ca=file_name | ssl-ca | The path to a file that contains a list of trusted SSL CAs | |
--ssl-capath=dir_name | ssl-capath | The path to a directory that contains trusted SSL CA certificates in PEM format | |
--ssl-cert=file_name | ssl-cert | The name of the SSL certificate file to use for establishing a secure connection | |
--ssl-cipher=cipher_list | ssl-cipher | A list of allowable ciphers to use for SSL encryption | |
--ssl-crl=file_name | ssl-crl | The path to a file that contains certificate revocation lists | 5.6.3 |
--ssl-crlpath=dir_name | ssl-crlpath | The path to a directory that contains certificate revocation list files | 5.6.3 |
--ssl-key=file_name | ssl-key | The name of the SSL key file to use for establishing a secure connection | |
--ssl-verify-server-cert | ssl-verify-server-cert | The server's Common Name value in its certificate is verified against the host name used when connecting to the server | |
--tab=path | tab | Produce tab-separated data files | |
--tables | tables | Override the --databases or -B option | |
--triggers | triggers | Dump triggers for each dumped table | |
--tz-utc | tz-utc | Add SET TIME_ZONE='+00:00' to the dump file | |
--user=user_name | user | MySQL user name to use when connecting to server | |
--verbose | Verbose mode | ||
--version | Display version information and exit | ||
--where='where_condition' | where | Dump only rows selected by the given WHERE condition | |
--xml | xml | Produce XML output |
Connection Options
The mysqldump command logs into a MySQL server to extract information. The following options specify how to connect to the MySQL server, either on the same machine or a remote system.
On a computer having multiple network interfaces, this option can be used to select which interface is employed when connecting to the MySQL server.
This option is supported beginning with MySQL 5.6.1.
--compress, -C
Compress all information sent between the client and the server if both support compression.
--default-auth=plugin
The client-side authentication plugin to use. See Section 6.3.7, “Pluggable Authentication”.
--host=host_name, -h host_name
Dump data from the MySQL server on the given host. The default host is localhost.
--password[=password], -p[password]
The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the option and the password. If you omit the password value following the --password or -p option on the command line, mysqldump prompts for one.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
--pipe, -W
On Windows, connect to the server using a named pipe. This option applies only if the server supports named-pipe connections.
--plugin-dir=path
The directory in which to look for plugins. It may be necessary to specify this option if the --default-auth option is used to specify an authentication plugin but mysqldump does not find it. See Section 6.3.7, “Pluggable Authentication”.
--port=port_num, -P port_num
The TCP/IP port number to use for the connection.
--protocol={TCP|SOCKET|PIPE|MEMORY}
The connection protocol to use for connecting to the server. It is useful when the other connection parameters normally would cause a protocol to be used other than the one you want. For details on the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.
--socket=path, -S path
For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.
--ssl*
Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to find SSL keys and certificates. See Section 6.3.9.4, “SSL Command Options”.
--user=user_name, -u user_name
The MySQL user name to use when connecting to the server.
You can also set the following variables by using --var_name=value syntax:
max_allowed_packet
The maximum size of the buffer for client/server communication. The maximum is 1GB.
net_buffer_length
The initial size of the buffer for client/server communication. When creating multiple-row INSERT statements (as with the --extended-insert or --opt option), mysqldump creates rows up to net_buffer_length length. If you increase this variable, ensure that the net_buffer_length variable in the MySQL server is at least this large.
DDL Options
Usage scenarios for mysqldump include setting up an entire new MySQL instance (including database tables), and replacing data inside an existing instance with existing databases and tables. The following options let you specify which things to tear down and set up when restoring a dump, by encoding various DDL statements within the dump file.
--add-drop-database
Add a DROP DATABASE statement before each CREATE DATABASE statement. This option is typically used in conjunction with the --all-databases or --databases option because no CREATE DATABASE statements are written unless one of those options is specified.
--add-drop-table
Add a DROP TABLE statement before each CREATE TABLE statement.
--add-drop-trigger
Add a DROP TRIGGER statement before each CREATE TRIGGER statement.
--all-tablespaces, -Y
Adds to a table dump all SQL statements needed to create any tablespaces used by an NDB table. This information is not otherwise included in the output from mysqldump. This option is currently relevant only to MySQL Cluster tables.
--no-create-db, -n
This option suppresses the CREATE DATABASE statements that are otherwise included in the output if the --databases or --all-databases option is given.
--no-create-info, -t
Do not write CREATE TABLE statements that re-create each dumped table.
Note
This option does not not exclude statements creating log file groups or tablespaces from mysqldump output; however, you can use the --no-tablespaces option for this purpose.
--no-tablespaces, -y
This option suppresses all CREATE LOGFILE GROUP and CREATE TABLESPACE statements in the output of mysqldump.
--replace
Debug Options
The following options print debugging information, encode debugging information in the dump file, or let the dump operation proceed regardless of potential problems.
--allow-keywords
Permit creation of column names that are keywords. This works by prefixing each column name with the table name.
--comments, -i
Write additional information in the dump file such as program version, server version, and host. This option is enabled by default. To suppress this additional information, use --skip-comments.
--debug[=debug_options], -# [debug_options]
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default value is 'd:t:o,/tmp/mysqldump.trace'.
--debug-check
Print some debugging information when the program exits.
--debug-info
Print debugging information and memory and CPU usage statistics when the program exits.
--dump-date
If the --comments option is given, mysqldump produces a comment at the end of the dump of the following form:
-- Dump completed on DATE
However, the date causes dump files taken at different times to appear to be different, even if the data are otherwise identical. --dump-date and --skip-dump-date control whether the date is added to the comment. The default is --dump-date (include the date in the comment). --skip-dump-date suppresses date printing.
--force, -f
Continue even if an SQL error occurs during a table dump.
One use for this option is to cause mysqldump to continue executing even when it encounters a view that has become invalid because the definition refers to a table that has been dropped. Without --force, mysqldump exits with an error message. With --force, mysqldump prints the error message, but it also writes an SQL comment containing the view definition to the dump output and continues executing.
--log-error=file_name
Log warnings and errors by appending them to the named file. The default is to do no logging.
--skip-comments
See the description for the --comments option.
--verbose, -v
Verbose mode. Print more information about what the program does.
Help Options
The following options display information about the mysqldump command itself.
--help, -?
Display a help message and exit.
--version, -V
Display version information and exit.
Internationalization Options
The following options change how the mysqldump command represents character data with national language settings.
--character-sets-dir=path
The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.
--default-character-set=charset_name
Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”. If no character set is specified, mysqldump uses utf8, and earlier versions use latin1.
--no-set-names, -N
Turns off the --set-charset setting, the same as specifying --skip-set-charset.
--set-charset
Add SET NAMES default_character_set to the output. This option is enabled by default. To suppress the SET NAMES statement, use --skip-set-charset.
Replication Options
The mysqldump command is frequently used to create an empty instance, or an instance including data, on a slave server in a replication configuration. The following options apply to dumping and restoring data on replication master and slave servers.
--apply-slave-statements
For a slave dump produced with the --dump-slave option, add a STOP SLAVE statement before the CHANGE MASTER TO statement and a START SLAVE statement at the end of the output.
--delete-master-logs
On a master replication server, delete the binary logs by sending a PURGE BINARY LOGS statement to the server after performing the dump operation. This option automatically enables --master-data.
--dump-slave[=value]
This option is similar to --master-data except that it is used to dump a replication slave server to produce a dump file that can be used to set up another server as a slave that has the same master as the dumped server. It causes the dump output to include a CHANGE MASTER TO statement that indicates the binary log coordinates (file name and position) of the dumped slave's master (rather than the coordinates of the dumped server, as is done by the --master-data option). These are the master server coordinates from which the slave should start replicating.
The option value is handled the same way as for --master-data and has the same effect as --master-data in terms of enabling or disabling other options and in how locking is handled.
This option causes mysqldump to stop the slave SQL thread before the dump and restart it again after.
In conjunction with --dump-slave, the --apply-slave-statements and --include-master-host-port options can also be used.
--include-master-host-port
For the CHANGE MASTER TO statement in a slave dump produced with the --dump-slave option, add MASTER_PORT and MASTER_PORT options for the host name and TCP/IP port number of the slave's master.
--master-data[=value]
Use this option to dump a master replication server to produce a dump file that can be used to set up another server as a slave of the master. It causes the dump output to include a CHANGE MASTER TO statement that indicates the binary log coordinates (file name and position) of the dumped server. These are the master server coordinates from which the slave should start replicating after you load the dump file into the slave.
If the option value is 2, the CHANGE MASTER TO statement is written as an SQL comment, and thus is informative only; it has no effect when the dump file is reloaded. If the option value is 1, the statement is not written as a comment and takes effect when the dump file is reloaded. If no option value is specified, the default value is 1.
This option requires the RELOAD privilege and the binary log must be enabled.
The --master-data option automatically turns off --lock-tables. It also turns on --lock-all-tables, unless --single-transaction also is specified, in which case, a global read lock is acquired only for a short time at the beginning of the dump (see the description for --single-transaction). In all cases, any action on logs happens at the exact moment of the dump.
It is also possible to set up a slave by dumping an existing slave of the master. To do this, use the following procedure on the existing slave:
Stop the slave's SQL thread and get its current status:
mysql> STOP SLAVE SQL_THREAD;
mysql> SHOW SLAVE STATUS;
From the output of the SHOW SLAVE STATUS statement, the binary log coordinates of the master server from which the new slave should start replicating are the values of the Relay_Master_Log_File and Exec_Master_Log_Pos fields. Denote those values as file_name and file_pos.
Dump the slave server:
shell> mysqldump --master-data=2 --all-databases > dumpfile
Using --master-data=2 works only if binary logging has been enabled on the slave. Otherwise, mysqldump fails with the error Binlogging on server not active. In this case you must handle any locking issues in another manner, using one or more of --add-locks, --lock-tables, --lock-all-tables, or --single-transaction, as required by your application and environment.
Restart the slave:
mysql> START SLAVE;
On the new slave, load the dump file:
shell> mysql < dumpfile
On the new slave, set the replication coordinates to those of the master server obtained earlier:
mysql> CHANGE MASTER TO
-> MASTER_LOG_FILE = 'file_name', MASTER_LOG_POS = file_pos;
The CHANGE MASTER TO statement might also need other parameters, such as MASTER_HOST to point the slave to the correct master server host. Add any such parameters as necessary.
Prior to MySQL 5.6.4, this option was required for dumping the replication log tables (see Section 16.2.2, “Replication Relay and Status Logs”).
--set-gtid-purged=value
This option enables control over global transaction ID (GTID) information written to the dump file, by indicating whether to add a SET @@global.gtid_purged statement to the output.
The following table shows the permitted option values. The default value is AUTO.
Value | Meaning |
---|---|
OFF | Add no SET statement to the output. |
ON | Add a SET statement to the output. An error occurs if GTIDs are not enabled on the server. |
AUTO | Add a SET statement to the output if GTIDs are enabled on the server. |
This option was added in MySQL 5.6.9.
Format Options
The following options specify how to represent the entire dump file or certain kinds of data in the dump file. They also control whether certain optional information is written to the dump file.
--compact
Produce more compact output. This option enables the --skip-add-drop-table, --skip-add-locks, --skip-comments, --skip-disable-keys, and --skip-set-charset options.
--compatible=name
Produce output that is more compatible with other database systems or with older MySQL servers. The value of name can be ansi, mysql323, mysql40, postgresql, oracle, mssql, db2, maxdb, no_key_options, no_table_options, or no_field_options. To use several values, separate them by commas. These values have the same meaning as the corresponding options for setting the server SQL mode. See Section 5.1.7, “Server SQL Modes”.
This option does not guarantee compatibility with other servers. It only enables those SQL mode values that are currently available for making dump output more compatible. For example, --compatible=oracle does not map data types to Oracle types or use Oracle comment syntax.
This option requires a server version of 4.1.0 or higher. With older servers, it does nothing.
--complete-insert, -c
Use complete INSERT statements that include column names.
--create-options
Include all MySQL-specific table options in the CREATE TABLE statements.
--fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-enclosed-by=..., --fields-escaped-by=...
These options are used with the --tab option and have the same meaning as the corresponding FIELDS clauses for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.
--hex-blob
Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The affected data types are BINARY, VARBINARY, the BLOB types, and BIT.
--lines-terminated-by=...
This option is used with the --tab option and has the same meaning as the corresponding LINES clause for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.
--quote-names, -Q
Quote identifiers (such as database, table, and column names) within “`” characters. If the ANSI_QUOTES SQL mode is enabled, identifiers are quoted within “"” characters. This option is enabled by default. It can be disabled with --skip-quote-names, but this option should be given after any option such as --compatible that may enable --quote-names.
--result-file=file_name, -r file_name
Direct output to a given file. This option should be used on Windows to prevent newline “\n” characters from being converted to “\r\n” carriage return/newline sequences. The result file is created and its previous contents overwritten, even if an error occurs while generating the dump.
--tab=path, -T path
Produce tab-separated text-format data files. For each dumped table, mysqldump creates a tbl_name.sql file that contains the CREATE TABLE statement that creates the table, and the server writes a tbl_name.txt file that contains its data. The option value is the directory in which to write the files.
Note
This option should be used only when mysqldump is run on the same machine as the mysqld server. You must have the FILE privilege, and the server must have permission to write files in the directory that you specify.
By default, the .txt data files are formatted using tab characters between column values and a newline at the end of each line. The format can be specified explicitly using the --fields-xxx and --lines-terminated-by options.
Column values are converted to the character set specified by the --default-character-set option.
--tz-utc
This option enables TIMESTAMP columns to be dumped and reloaded between servers in different time zones. mysqldump sets its connection time zone to UTC and adds SET TIME_ZONE='+00:00' to the dump file. Without this option, TIMESTAMP columns are dumped and reloaded in the time zones local to the source and destination servers, which can cause the values to change if the servers are in different time zones. --tz-utc also protects against changes due to daylight saving time. --tz-utc is enabled by default. To disable it, use --skip-tz-utc.
--xml, -X
Write dump output as well-formed XML.
NULL, 'NULL', and Empty Values: For a column named column_name, the NULL value, an empty string, and the string value 'NULL' are distinguished from one another in the output generated by this option as follows.
Value: | XML Representation: |
---|---|
NULL (unknown value) | <field name="column_name" xsi:nil="true" /> |
'' (empty string) | <field name="column_name"></field> |
'NULL' (string value) | <field name="column_name">NULL</field> |
The output from the mysql client when run using the --xml option also follows the preceding rules. (See Section 4.5.1.1, “mysql Options”.)
XML output from mysqldump includes the XML namespace, as shown here:
shell> mysqldump --xml -u root world City
<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<database name="world">
<table_structure name="City">
<field Field="ID" Type="int(11)" Null="NO" Key="PRI" Extra="auto_increment" />
<field Field="Name" Type="char(35)" Null="NO" Key="" Default="" Extra="" />
<field Field="CountryCode" Type="char(3)" Null="NO" Key="" Default="" Extra="" />
<field Field="District" Type="char(20)" Null="NO" Key="" Default="" Extra="" />
<field Field="Population" Type="int(11)" Null="NO" Key="" Default="0" Extra="" />
<key Table="City" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="ID"
Collation="A" Cardinality="4079" Null="" Index_type="BTREE" Comment="" />
<options Name="City" Engine="MyISAM" Version="10" Row_format="Fixed" Rows="4079"
Avg_row_length="67" Data_length="273293" Max_data_length="18858823439613951"
Index_length="43008" Data_free="0" Auto_increment="4080"
Create_time="2007-03-31 01:47:01" Update_time="2007-03-31 01:47:02"
Collation="latin1_swedish_ci" Create_options="" Comment="" />
</table_structure>
<table_data name="City">
<row>
<field name="ID">1</field>
<field name="Name">Kabul</field>
<field name="CountryCode">AFG</field>
<field name="District">Kabol</field>
<field name="Population">1780000</field>
</row>
...
<row>
<field name="ID">4079</field>
<field name="Name">Rafah</field>
<field name="CountryCode">PSE</field>
<field name="District">Rafah</field>
<field name="Population">92020</field>
</row>
</table_data>
</database>
</mysqldump>
Prior to MySQL 5.6.5, this option prevented the --routines option from working correctly—that is, no stored routines, triggers, or events could be dumped in XML format. (Bug #11760384, Bug #52792)
Filtering Options
The following options control which kinds of schema objects are written to the dump file: by category, such as triggers or events; by name, for example, choosing which databases and tables to dump; or even filtering rows from the table data using a WHERE clause.
--all-databases, -A
Dump all tables in all databases. This is the same as using the --databases option and naming all the databases on the command line.
Prior to MySQL 5.6.4, the slave_master_info and slave_relay_log_info tables (see Section 16.2.2, “Replication Relay and Status Logs”) were not included by this option.
--databases, -B
Dump several databases. Normally, mysqldump treats the first name argument on the command line as a database name and following names as table names. With this option, it treats all name arguments as database names. CREATE DATABASE and USE statements are included in the output before each new database.
--events, -E
Include Event Scheduler events for the dumped databases in the output.
--ignore-table=db_name.tbl_name
Do not dump the given table, which must be specified using both the database and table names. To ignore multiple tables, use this option multiple times. This option also can be used to ignore views.
--no-data, -d
Do not write any table row information (that is, do not dump table contents). This is useful if you want to dump only the CREATE TABLE statement for the table (for example, to create an empty copy of the table by loading the dump file).
--routines, -R
Include stored routines (procedures and functions) for the dumped databases in the output. Use of this option requires the SELECT privilege for the mysql.proc table. The output generated by using --routines contains CREATE PROCEDURE and CREATE FUNCTION statements to re-create the routines. However, these statements do not include attributes such as the routine creation and modification timestamps. This means that when the routines are reloaded, they will be created with the timestamps equal to the reload time.
If you require routines to be re-created with their original timestamp attributes, do not use --routines. Instead, dump and reload the contents of the mysql.proc table directly, using a MySQL account that has appropriate privileges for the mysql database.
Prior to MySQL 5.6.5, this option had no effect when used together with the --xml option. (Bug #11760384, Bug #52792)
--tables
Override the --databases or -B option. mysqldump regards all name arguments following the option as table names.
--triggers
Include triggers for each dumped table in the output. This option is enabled by default; disable it with --skip-triggers.
--where='where_condition', -w 'where_condition'
Dump only rows selected by the given WHERE condition. Quotes around the condition are mandatory if it contains spaces or other characters that are special to your command interpreter.
Examples:
--where="user='jimf'"
-w"userid>1"
-w"userid<1"
Performance Options
The following options are the most relevant for the performance particularly of the restore operations. For large data sets, restore operation (processing the INSERT statements in the dump file) is the most time-consuming part. When it is urgent to restore data quickly, plan and test the performance of this stage in advance. For restore times measured in hours, you might prefer an alternative backup and restore solution, such as MySQL Enterprise Backup for InnoDB-only and mixed-use databases, or mysqlhotcopy for MyISAM-only databases.
Performance is also affected by the transactional options, primarily for the dump operation.
--delayed-insert
For those nontransactional tables that support the INSERT DELAYED syntax, use that statement rather than regular INSERT statements.
As of MySQL 5.6.6, DELAYED inserts are deprecated, so this option will be removed in a future release.
--disable-keys, -K
For each table, surround the INSERT statements with /*!40000 ALTER TABLE tbl_name DISABLE KEYS */; and /*!40000 ALTER TABLE tbl_name ENABLE KEYS */; statements. This makes loading the dump file faster because the indexes are created after all rows are inserted. This option is effective only for nonunique indexes of MyISAM tables.
--extended-insert, -e
Use multiple-row INSERT syntax that include several VALUES lists. This results in a smaller dump file and speeds up inserts when the file is reloaded.
--insert-ignore
Write INSERT IGNORE statements rather than INSERT statements.
--opt
This option, enabled by default, is shorthand for the combination of --add-drop-table --add-locks --create-options --disable-keys --extended-insert --lock-tables --quick --set-charset. It gives a fast dump operation and produces a dump file that can be reloaded into a MySQL server quickly.
Because the --opt option is enabled by default, you only specify its converse, the --skip-opt to turn off several default settings. See the discussion of mysqldump option groups for information about selectively enabling or disabling a subset of the options affected by --opt.
--quick, -q
This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table from the server a row at a time rather than retrieving the entire row set and buffering it in memory before writing it out.
--skip-opt
See the description for the --opt option.
Transactional Options
The following options trade off the performance of the dump operation, against the reliability and consistency of the exported data.
--add-locks
Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in faster inserts when the dump file is reloaded. See Section 8.2.2.1, “Speed of INSERT Statements”.
--flush-logs, -F
Flush the MySQL server log files before starting the dump. This option requires the RELOAD privilege. If you use this option in combination with the --all-databases option, the logs are flushed for each database dumped. The exception is when using --lock-all-tables, --master-data, or --single-transaction: In this case, the logs are flushed only once, corresponding to the moment that all tables are locked. If you want your dump and the log flush to happen at exactly the same moment, you should use --flush-logs together with --lock-all-tables, --master-data, or --single-transaction.
--flush-privileges
Send a FLUSH PRIVILEGES statement to the server after dumping the mysql database. This option should be used any time the dump contains the mysql database and any other database that depends on the data in the mysql database for proper restoration.
--lock-all-tables, -x
Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration of the whole dump. This option automatically turns off --single-transaction and --lock-tables.
--lock-tables, -l
For each dumped database, lock all tables to be dumped before dumping them. The tables are locked with READ LOCAL to permit concurrent inserts in the case of MyISAM tables. For transactional tables such as InnoDB, --single-transaction is a much better option than --lock-tables because it does not need to lock the tables at all.
Because --lock-tables locks tables for each database separately, this option does not guarantee that the tables in the dump file are logically consistent between databases. Tables in different databases may be dumped in completely different states.
Some options, such as --opt, automatically enable --lock-tables. If you want to override this, use --skip-lock-tables at the end of the option list.
--no-autocommit
Enclose the INSERT statements for each dumped table within SET autocommit = 0 and COMMIT statements.
--order-by-primary
Dump each table's rows sorted by its primary key, or by its first unique index, if such an index exists. This is useful when dumping a MyISAM table to be loaded into an InnoDB table, but makes the dump operation take considerably longer.
--single-transaction
This option sets the transaction isolation mode to REPEATABLE READ and sends a START TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional tables such as InnoDB, because then it dumps the consistent state of the database at the time when START TRANSACTION was issued without blocking any applications.
When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent state. For example, any MyISAM or MEMORY tables dumped while using this option may still change state.
The --single-transaction option and the --lock-tables option are mutually exclusive because LOCK TABLES causes any pending transactions to be committed implicitly.
To dump large tables, combine the --single-transaction option with the --quick.
Option Groups
The --opt option turns on several settings that work together to perform a fast dump operation. All of these settings are on by default, because --opt is on by default. Thus you rarely if ever specify --opt. Instead, you can turn these settings off as a group by specifying --skip-opt, the optionally re-enable certain settings by specifying the associated options later on the command line.
The --compact option turns off several settings that control whether optional statements and comments appear in the output. Again, you can follow this option with other options that re-enable certain settings, or turn all the settings on by using the --skip-compact form.
When you selectively enable or disable the effect of a group option, order is important because options are processed first to last. For example, --disable-keys --lock-tables --skip-opt would not have the intended effect; it is the same as --skip-opt by itself.
Examples
To make a backup of an entire database:
shell> mysqldump db_name > backup-file.sql
To load the dump file back into the server:
shell> mysql db_name < backup-file.sql
Another way to reload the dump file:
shell> mysql -e "source /path-to-backup/backup-file.sql" db_name
mysqldump is also very useful for populating databases by copying data from one MySQL server to another:
shell> mysqldump --opt db_name | mysql --host=remote_host -C db_name
You can dump several databases with one command:
shell> mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql
To dump all databases, use the --all-databases option:
shell> mysqldump --all-databases > all_databases.sql
For InnoDB tables, mysqldump provides a way of making an online backup:
shell> mysqldump --all-databases --single-transaction > all_databases.sql
This backup acquires a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at the beginning of the dump. As soon as this lock has been acquired, the binary log coordinates are read and the lock is released. If long updating statements are running when the FLUSH statement is issued, the MySQL server may get stalled until those statements finish. After that, the dump becomes lock free and does not disturb reads and writes on the tables. If the update statements that the MySQL server receives are short (in terms of execution time), the initial lock period should not be noticeable, even with many updates.
For point-in-time recovery (also known as “roll-forward,” when you need to restore an old backup and replay the changes that happened since that backup), it is often useful to rotate the binary log (see Section 5.2.4, “The Binary Log”) or at least know the binary log coordinates to which the dump corresponds:
shell> mysqldump --all-databases --master-data=2 > all_databases.sql
Or:
shell> mysqldump --all-databases --flush-logs --master-data=2
> all_databases.sql
The --master-data and --single-transaction options can be used simultaneously, which provides a convenient way to make an online backup suitable for use prior to point-in-time recovery if tables are stored using the InnoDB storage engine.
For more information on making backups, see Section 7.2, “Database Backup Methods”, and Section 7.3, “Example Backup and Recovery Strategy”.
To select the effect of --opt except for some features, use the --skip option for each feature. To disable extended inserts and memory buffering, use --opt --skip-extended-insert --skip-quick. (Actually, --skip-extended-insert --skip-quick is sufficient because --opt is on by default.)
To reverse --opt for all features except index disabling and table locking, use --skip-opt --disable-keys --lock-tables.
Restrictions
mysqldump does not dump the INFORMATION_SCHEMA database by default. To dump INFORMATION_SCHEMA, name it explicitly on the command line and also use the --skip-lock-tables option.
mysqldump never dumps the performance_schema database.
Before MySQL 5.6.6, mysqldump does not dump the general_log or slow_query_log tables for dumps of the mysql database. As of 5.6.6, the dump includes statements to recreate those tables so that they are not missing after reloading the dump file. Log table contents are not dumped.
It is not recommended to restore from a dump made using mysqldump to a MySQL Server that has GTIDs enabled. See Section 16.1.3.4, “Restrictions on Replication with GTIDs”.
If you encounter problems backing up views due to insufficient privileges, see Section E.5, “Restrictions on Views” for a workaround.
4.5.5. mysqlimport — A Data Import Program
The mysqlimport client provides a command-line interface to the LOAD DATA INFILE SQL statement. Most options to mysqlimport correspond directly to clauses of LOAD DATA INFILE syntax. See Section 13.2.6, “LOAD DATA INFILE Syntax”.
Invoke mysqlimport like this:
shell> mysqlimport [options] db_name textfile1 [textfile2 ...]
For each text file named on the command line, mysqlimport strips any extension from the file name and uses the result to determine the name of the table into which to import the file's contents. For example, files named patient.txt, patient.text, and patient all would be imported into a table named patient.
mysqlimport supports the following options, which can be specified on the command line or in the [mysqlimport] and [client] groups of an option file. mysqlimport also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
Table 4.7. mysqlimport Options
Format | Option File | Description | Introduced |
---|---|---|---|
--bind-address=ip_address | bind-address | Use the specified network interface to connect to the MySQL Server | |
--columns=column_list | columns | This option takes a comma-separated list of column names as its value | |
--compress | compress | Compress all information sent between the client and the server | |
--debug[=debug_options] | debug | Write a debugging log | |
--debug-check | debug-check | Print debugging information when the program exits | |
--debug-info | debug-info | Print debugging information, memory and CPU statistics when the program exits | |
--default-auth=plugin | default-auth=plugin | The authentication plugin to use | 5.6.2 |
--default-character-set=charset_name | default-character-set | Use charset_name as the default character set | |
--delete | delete | Empty the table before importing the text file | |
--fields-enclosed-by=string | fields-enclosed-by | This option has the same meaning as the corresponding clause for LOAD DATA INFILE | |
--fields-escaped-by | fields-escaped-by | This option has the same meaning as the corresponding clause for LOAD DATA INFILE | |
--fields-optionally-enclosed-by=string | fields-optionally-enclosed-by | This option has the same meaning as the corresponding clause for LOAD DATA INFILE | |
--fields-terminated-by=string | fields-terminated-by | -- This option has the same meaning as the corresponding clause for LOAD DATA INFILE | |
--force | force | Continue even if an SQL error occurs | |
--help | Display help message and exit | ||
--host=host_name | host | Connect to the MySQL server on the given host | |
--ignore | ignore | See the description for the --replace option | |
--ignore-lines=# | ignore-lines | Ignore the first N lines of the data file | |
--lines-terminated-by=string | lines-terminated-by | This option has the same meaning as the corresponding clause for LOAD DATA INFILE | |
--local | local | Read input files locally from the client host | |
--lock-tables | lock-tables | Lock all tables for writing before processing any text files | |
--login-path=name | Read login path options from .mylogin.cnf | 5.6.6 | |
--low-priority | low-priority | Use LOW_PRIORITY when loading the table. | |
--password[=password] | password | The password to use when connecting to the server | |
--pipe | On Windows, connect to server using a named pipe | ||
--plugin-dir=path | plugin-dir=path | The directory where plugins are located | 5.6.2 |
--port=port_num | port | The TCP/IP port number to use for the connection | |
--protocol=type | protocol | The connection protocol to use | |
--replace | replace | The --replace and --ignore options control handling of input rows that duplicate existing rows on unique key values | |
--silent | silent | Produce output only when errors occur | |
--socket=path | socket | For connections to localhost | |
--ssl-ca=file_name | ssl-ca | The path to a file that contains a list of trusted SSL CAs | |
--ssl-capath=dir_name | ssl-capath | The path to a directory that contains trusted SSL CA certificates in PEM format | |
--ssl-cert=file_name | ssl-cert | The name of the SSL certificate file to use for establishing a secure connection | |
--ssl-cipher=cipher_list | ssl-cipher | A list of allowable ciphers to use for SSL encryption | |
--ssl-crl=file_name | ssl-crl | The path to a file that contains certificate revocation lists | 5.6.3 |
--ssl-crlpath=dir_name | ssl-crlpath | The path to a directory that contains certificate revocation list files | 5.6.3 |
--ssl-key=file_name | ssl-key | The name of the SSL key file to use for establishing a secure connection | |
--ssl-verify-server-cert | ssl-verify-server-cert | The server's Common Name value in its certificate is verified against the host name used when connecting to the server | |
--use-threads=# | use-threads | The number of threads for parallel file-loading | |
--user=user_name, | user | MySQL user name to use when connecting to server | |
--verbose | Verbose mode | ||
--version | Display version information and exit |
--help, -?
Display a help message and exit.
On a computer having multiple network interfaces, this option can be used to select which interface is employed when connecting to the MySQL server.
This option is supported beginning with MySQL 5.6.1.
The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.
--columns=column_list, -c column_list
This option takes a comma-separated list of column names as its value. The order of the column names indicates how to match data file columns with table columns.
--compress, -C
Compress all information sent between the client and the server if both support compression.
--debug[=debug_options], -# [debug_options]
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o'.
Print some debugging information when the program exits.
Print debugging information and memory and CPU usage statistics when the program exits.
--default-character-set=charset_name
Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.
The client-side authentication plugin to use. See Section 6.3.7, “Pluggable Authentication”.
This option was added in MySQL 5.6.2.
--delete, -D
Empty the table before importing the text file.
--fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-enclosed-by=..., --fields-escaped-by=...
These options have the same meaning as the corresponding clauses for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.
--force, -f
Ignore errors. For example, if a table for a text file does not exist, continue processing any remaining files. Without --force, mysqlimport exits if a table does not exist.
--host=host_name, -h host_name
Import data to the MySQL server on the given host. The default host is localhost.
--ignore, -i
See the description for the --replace option.
Ignore the first N lines of the data file.
This option has the same meaning as the corresponding clause for LOAD DATA INFILE. For example, to import Windows files that have lines terminated with carriage return/linefeed pairs, use --lines-terminated-by="\r\n". (You might have to double the backslashes, depending on the escaping conventions of your command interpreter.) See Section 13.2.6, “LOAD DATA INFILE Syntax”.
--local, -L
Read input files locally from the client host.
--lock-tables, -l
Lock all tables for writing before processing any text files. This ensures that all tables are synchronized on the server.
Use LOW_PRIORITY when loading the table. This affects only storage engines that use only table-level locking (such as MyISAM, MEMORY, and MERGE).
--password[=password], -p[password]
The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the option and the password. If you omit the password value following the --password or -p option on the command line, mysqlimport prompts for one.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
--pipe, -W
On Windows, connect to the server using a named pipe. This option applies only if the server supports named-pipe connections.
The directory in which to look for plugins. It may be necessary to specify this option if the --default-auth option is used to specify an authentication plugin but mysqlimport does not find it. See Section 6.3.7, “Pluggable Authentication”.
This option was added in MySQL 5.6.2.
--port=port_num, -P port_num
The TCP/IP port number to use for the connection.
--protocol={TCP|SOCKET|PIPE|MEMORY}
The connection protocol to use for connecting to the server. It is useful when the other connection parameters normally would cause a protocol to be used other than the one you want. For details on the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.
--replace, -r
The --replace and --ignore options control handling of input rows that duplicate existing rows on unique key values. If you specify --replace, new rows replace existing rows that have the same unique key value. If you specify --ignore, input rows that duplicate an existing row on a unique key value are skipped. If you do not specify either option, an error occurs when a duplicate key value is found, and the rest of the text file is ignored.
--silent, -s
Silent mode. Produce output only when errors occur.
--socket=path, -S path
For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.
--ssl*
Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to find SSL keys and certificates. See Section 6.3.9.4, “SSL Command Options”.
--user=user_name, -u user_name
The MySQL user name to use when connecting to the server.
Load files in parallel using N threads.
--verbose, -v
Verbose mode. Print more information about what the program does.
--version, -V
Display version information and exit.
Here is a sample session that demonstrates use of mysqlimport:
shell> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
shell> ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
shell> od -c imptest.txt
0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
shell> mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
shell> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+
4.5.6. mysqlshow — Display Database, Table, and Column Information
The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's columns or indexes.
mysqlshow provides a command-line interface to several SQL SHOW statements. See Section 13.7.5, “SHOW Syntax”. The same information can be obtained by using those statements directly. For example, you can issue them from the mysql client program.
Invoke mysqlshow like this:
shell> mysqlshow [options] [db_name [tbl_name [col_name]]]
If no database is given, a list of database names is shown.
If no table is given, all matching tables in the database are shown.
If no column is given, all matching columns and column types in the table are shown.
The output displays only the names of those databases, tables, or columns for which you have some privileges.
If the last argument contains shell or SQL wildcard characters (“*”, “?”, “%”, or “_”), only those names that are matched by the wildcard are shown. If a database name contains any underscores, those should be escaped with a backslash (some Unix shells require two) to get a list of the proper tables or columns. “*” and “?” characters are converted into SQL “%” and “_” wildcard characters. This might cause some confusion when you try to display the columns for a table with a “_” in the name, because in this case, mysqlshow shows you only the table names that match the pattern. This is easily fixed by adding an extra “%” last on the command line as a separate argument.
mysqlshow supports the following options, which can be specified on the command line or in the [mysqlshow] and [client] groups of an option file. mysqlshow also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
Table 4.8. mysqlshow Options
Format | Option File | Description | Introduced |
---|---|---|---|
--bind-address=ip_address | bind-address | Use the specified network interface to connect to the MySQL Server | |
--compress | compress | Compress all information sent between the client and the server | |
--count | count | Show the number of rows per table | |
--debug[=debug_options] | debug | Write a debugging log | |
--debug-check | debug-check | Print debugging information when the program exits | |
--debug-info | debug-info | Print debugging information, memory and CPU statistics when the program exits | |
--default-auth=plugin | default-auth=plugin | The authentication plugin to use | 5.6.2 |
--default-character-set=charset_name | default-character-set | Use charset_name as the default character set | |
--help | Display help message and exit | ||
--host=host_name | host | Connect to the MySQL server on the given host | |
--keys | keys | Show table indexes | |
--login-path=name | Read login path options from .mylogin.cnf | 5.6.6 | |
--password[=password] | password | The password to use when connecting to the server | |
--pipe | On Windows, connect to server using a named pipe | ||
--plugin-dir=path | plugin-dir=path | The directory where plugins are located | 5.6.2 |
--port=port_num | port | The TCP/IP port number to use for the connection | |
--protocol=type | protocol | The connection protocol to use | |
--show-table-type | Show a column indicating the table type | ||
--socket=path | socket | For connections to localhost | |
--ssl-ca=file_name | ssl-ca | The path to a file that contains a list of trusted SSL CAs | |
--ssl-capath=dir_name | ssl-capath | The path to a directory that contains trusted SSL CA certificates in PEM format | |
--ssl-cert=file_name | ssl-cert | The name of the SSL certificate file to use for establishing a secure connection | |
--ssl-cipher=cipher_list | ssl-cipher | A list of allowable ciphers to use for SSL encryption | |
--ssl-crl=file_name | ssl-crl | The path to a file that contains certificate revocation lists | 5.6.3 |
--ssl-crlpath=dir_name | ssl-crlpath | The path to a directory that contains certificate revocation list files | 5.6.3 |
--ssl-key=file_name | ssl-key | The name of the SSL key file to use for establishing a secure connection | |
--ssl-verify-server-cert | ssl-verify-server-cert | The server's Common Name value in its certificate is verified against the host name used when connecting to the server | |
--status | status | Display extra information about each table | |
--user=user_name, | user | MySQL user name to use when connecting to server | |
--verbose | Verbose mode | ||
--version | Display version information and exit |
--help, -?
Display a help message and exit.
On a computer having multiple network interfaces, this option can be used to select which interface is employed when connecting to the MySQL server.
This option is supported beginning with MySQL 5.6.1.
The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.
--compress, -C
Compress all information sent between the client and the server if both support compression.
Show the number of rows per table. This can be slow for non-MyISAM tables.
--debug[=debug_options], -# [debug_options]
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o'.
Print some debugging information when the program exits.
Print debugging information and memory and CPU usage statistics when the program exits.
--default-character-set=charset_name
Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.
The client-side authentication plugin to use. See Section 6.3.7, “Pluggable Authentication”.
This option was added in MySQL 5.6.2.
--host=host_name, -h host_name
Connect to the MySQL server on the given host.
--keys, -k
Show table indexes.
--password[=password], -p[password]
The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the option and the password. If you omit the password value following the --password or -p option on the command line, mysqlshow prompts for one.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
--pipe, -W
On Windows, connect to the server using a named pipe. This option applies only if the server supports named-pipe connections.
The directory in which to look for plugins. It may be necessary to specify this option if the --default-auth option is used to specify an authentication plugin but mysqlshow does not find it. See Section 6.3.7, “Pluggable Authentication”.
This option was added in MySQL 5.6.2.
--port=port_num, -P port_num
The TCP/IP port number to use for the connection.
--protocol={TCP|SOCKET|PIPE|MEMORY}
The connection protocol to use for connecting to the server. It is useful when the other connection parameters normally would cause a protocol to be used other than the one you want. For details on the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.
Show a column indicating the table type, as in SHOW FULL TABLES. The type is BASE TABLE or VIEW.
--socket=path, -S path
For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.
--ssl*
Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to find SSL keys and certificates. See Section 6.3.9.4, “SSL Command Options”.
--status, -i
Display extra information about each table.
--user=user_name, -u user_name
The MySQL user name to use when connecting to the server.
--verbose, -v
Verbose mode. Print more information about what the program does. This option can be used multiple times to increase the amount of information.
--version, -V
Display version information and exit.
4.5.7. mysqlslap — Load Emulation Client
mysqlslap is a diagnostic program designed to emulate client load for a MySQL server and to report the timing of each stage. It works as if multiple clients are accessing the server.
Invoke mysqlslap like this:
shell> mysqlslap [options]
Some options such as --create or --query enable you to specify a string containing an SQL statement or a file containing statements. If you specify a file, by default it must contain one statement per line. (That is, the implicit statement delimiter is the newline character.) Use the --delimiter option to specify a different delimiter, which enables you to specify statements that span multiple lines or place multiple statements on a single line. You cannot include comments in a file; mysqlslap does not understand them.
mysqlslap runs in three stages:
Create schema, table, and optionally any stored programs or data to use for the test. This stage uses a single client connection.
Run the load test. This stage can use many client connections.
Clean up (disconnect, drop table if specified). This stage uses a single client connection.
Examples:
Supply your own create and query SQL statements, with 50 clients querying and 200 selects for each (enter the command on a single line):
mysqlslap --delimiter=";"
--create="CREATE TABLE a (b int);INSERT INTO a VALUES (23)"
--query="SELECT * FROM a" --concurrency=50 --iterations=200
Let mysqlslap build the query SQL statement with a table of two INT columns and three VARCHAR columns. Use five clients querying 20 times each. Do not create the table or insert the data (that is, use the previous test's schema and data):
mysqlslap --concurrency=5 --iterations=20
--number-int-cols=2 --number-char-cols=3
--auto-generate-sql
Tell the program to load the create, insert, and query SQL statements from the specified files, where the create.sql file has multiple table creation statements delimited by ';' and multiple insert statements delimited by ';'. The --query file will have multiple queries delimited by ';'. Run all the load statements, then run all the queries in the query file with five clients (five times each):
mysqlslap --concurrency=5
--iterations=5 --query=query.sql --create=create.sql
--delimiter=";"
mysqlslap supports the following options, which can be specified on the command line or in the [mysqlslap] and [client] groups of an option file. mysqlslap also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
Table 4.9. mysqlslap Options
Format | Option File | Description | Introduced |
---|---|---|---|
--auto-generate-sql | auto-generate-sql | Generate SQL statements automatically when they are not supplied in files or using command options | |
--auto-generate-sql-add-autoincrement | auto-generate-sql-add-autoincrement | Add AUTO_INCREMENT column to automatically generated tables | |
--auto-generate-sql-execute-number=# | auto-generate-sql-execute-number | Specify how many queries to generate automatically | |
--auto-generate-sql-guid-primary | auto-generate-sql-guid-primary | Add a GUID-based primary key to automatically generated tables | |
--auto-generate-sql-load-type=type | auto-generate-sql-load-type | Specify how many queries to generate automatically | |
--auto-generate-sql-secondary-indexes=# | auto-generate-sql-secondary-indexes | Specify how many secondary indexes to add to automatically generated tables | |
--auto-generate-sql-unique-query-number=# | auto-generate-sql-unique-query-number | How many different queries to generate for automatic tests. | |
--auto-generate-sql-unique-write-number=# | auto-generate-sql-unique-write-number | How many different queries to generate for --auto-generate-sql-write-number | |
--auto-generate-sql-write-number=# | auto-generate-sql-write-number | How many row inserts to perform on each thread | |
--commit=# | commit | How many statements to execute before committing. | |
--compress | compress | Compress all information sent between the client and the server | |
--concurrency=# | concurrency | The number of clients to simulate when issuing the SELECT statement | |
--create=value | create | The file or string containing the statement to use for creating the table | |
--create-schema=value | create-schema | The schema in which to run the tests | |
--csv=[file] | csv | Generate output in comma-separated values format | |
--debug[=debug_options] | debug | Write a debugging log | |
--debug-check | debug-check | Print debugging information when the program exits | |
--debug-info | debug-info | Print debugging information, memory and CPU statistics when the program exits | |
--default-auth=plugin | default-auth=plugin | The authentication plugin to use | 5.6.2 |
--delimiter=str | delimiter | The delimiter to use in SQL statements | |
--detach=# | detach | Detach (close and reopen) each connection after each N statements | |
--enable-cleartext-plugin | enable-cleartext-plugin | Enable cleartext authentication plugin | 5.6.7 |
--engine=engine_name | engine | The storage engine to use for creating the table | |
--help | Display help message and exit | ||
--host=host_name | host | Connect to the MySQL server on the given host | |
--iterations=# | iterations | The number of times to run the tests | |
--login-path=name | Read login path options from .mylogin.cnf | 5.6.6 | |
--no-drop | no-drop | Do not drop any schema created during the test run | 5.6.3 |
--number-char-cols=# | number-char-cols | The number of VARCHAR columns to use if --auto-generate-sql is specified | |
--number-int-cols=# | number-int-cols | The number of INT columns to use if --auto-generate-sql is specified | |
--number-of-queries=# | number-of-queries | Limit each client to approximately this number of queries | |
--only-print | only-print | Do not connect to databases. mysqlslap only prints what it would have done | |
--password[=password] | password | The password to use when connecting to the server | |
--pipe | On Windows, connect to server using a named pipe | ||
--plugin-dir=path | plugin-dir=path | The directory where plugins are located | 5.6.2 |
--port=port_num | port | The TCP/IP port number to use for the connection | |
--post-query=value | post-query | The file or string containing the statement to execute after the tests have completed | |
--post-system=str | post-system | The string to execute using system() after the tests have completed | |
--pre-query=value | pre-query | The file or string containing the statement to execute before running the tests | |
--pre-system=str | pre-system | The string to execute using system() before running the tests | |
--protocol=type | protocol | The connection protocol to use | |
--query=value | query | The file or string containing the SELECT statement to use for retrieving data | |
--silent | silent | Silent mode | |
--socket=path | socket | For connections to localhost | |
--ssl-ca=file_name | ssl-ca | The path to a file that contains a list of trusted SSL CAs | |
--ssl-capath=dir_name | ssl-capath | The path to a directory that contains trusted SSL CA certificates in PEM format | |
--ssl-cert=file_name | ssl-cert | The name of the SSL certificate file to use for establishing a secure connection | |
--ssl-cipher=cipher_list | ssl-cipher | A list of allowable ciphers to use for SSL encryption | |
--ssl-crl=file_name | ssl-crl | The path to a file that contains certificate revocation lists | 5.6.3 |
--ssl-crlpath=dir_name | ssl-crlpath | The path to a directory that contains certificate revocation list files | 5.6.3 |
--ssl-key=file_name | ssl-key | The name of the SSL key file to use for establishing a secure connection | |
--ssl-verify-server-cert | ssl-verify-server-cert | The server's Common Name value in its certificate is verified against the host name used when connecting to the server | |
--user=user_name, | user | MySQL user name to use when connecting to server | |
--verbose | Verbose mode | ||
--version | Display version information and exit |
--help, -?
Display a help message and exit.
Generate SQL statements automatically when they are not supplied in files or using command options.
--auto-generate-sql-add-autoincrement
Add an AUTO_INCREMENT column to automatically generated tables.
--auto-generate-sql-execute-number=N
Specify how many queries to generate automatically.
--auto-generate-sql-guid-primary
Add a GUID-based primary key to automatically generated tables.
--auto-generate-sql-load-type=type
Specify the test load type. The permissible values are read (scan tables), write (insert into tables), key (read primary keys), update (update primary keys), or mixed (half inserts, half scanning selects). The default is mixed.
--auto-generate-sql-secondary-indexes=N
Specify how many secondary indexes to add to automatically generated tables. By default, none are added.
--auto-generate-sql-unique-query-number=N
How many different queries to generate for automatic tests. For example, if you run a key test that performs 1000 selects, you can use this option with a value of 1000 to run 1000 unique queries, or with a value of 50 to perform 50 different selects. The default is 10.
--auto-generate-sql-unique-write-number=N
How many different queries to generate for --auto-generate-sql-write-number. The default is 10.
--auto-generate-sql-write-number=N
How many row inserts to perform on each thread. The default is 100.
How many statements to execute before committing. The default is 0 (no commits are done).
--compress, -C
Compress all information sent between the client and the server if both support compression.
--concurrency=N, -c N
The number of clients to simulate when issuing the SELECT statement.
The file or string containing the statement to use for creating the table.
The schema in which to run the tests.
Note
If the --auto-generate-sql option is also given, mysqlslap drops the schema at the end of the test run. To avoid this, use the --no-drop option as well.
Generate output in comma-separated values format. The output goes to the named file, or to the standard output if no file is given.
--debug[=debug_options], -# [debug_options]
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o,/tmp/mysqlslap.trace'.
Print some debugging information when the program exits.
--debug-info, -T
Print debugging information and memory and CPU usage statistics when the program exits.
The client-side authentication plugin to use. See Section 6.3.7, “Pluggable Authentication”.
This option was added in MySQL 5.6.2.
--delimiter=str, -F str
The delimiter to use in SQL statements supplied in files or using command options.
Detach (close and reopen) each connection after each N statements. The default is 0 (connections are not detached).
Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”.) This option was added in MySQL 5.6.7.
--engine=engine_name, -e engine_name
The storage engine to use for creating tables.
--host=host_name, -h host_name
Connect to the MySQL server on the given host.
--iterations=N, -i N
The number of times to run the tests.
Prevent mysqlslap from dropping any schema it creates during the test run. This option was added in MySQL 5.6.3.
--number-char-cols=N, -x N
The number of VARCHAR columns to use if --auto-generate-sql is specified.
--number-int-cols=N, -y N
The number of INT columns to use if --auto-generate-sql is specified.
Limit each client to approximately this many queries. Query counting takes into account the statement delimiter. For example, if you invoke mysqlslap as follows, the ; delimiter is recognized so that each instance of the query string counts as two queries. As a result, 5 rows (not 10) are inserted.
shell> mysqlslap --delimiter=";" --number-of-queries=10
--query="use test;insert into t values(null)"
Do not connect to databases. mysqlslap only prints what it would have done.
--password[=password], -p[password]
The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the option and the password. If you omit the password value following the --password or -p option on the command line, mysqlslap prompts for one.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
--pipe, -W
On Windows, connect to the server using a named pipe. This option applies only if the server supports named-pipe connections.
The directory in which to look for plugins. It may be necessary to specify this option if the --default-auth option is used to specify an authentication plugin but mysqlslap does not find it. See Section 6.3.7, “Pluggable Authentication”.
This option was added in MySQL 5.6.2.
--port=port_num, -P port_num
The TCP/IP port number to use for the connection.
The file or string containing the statement to execute after the tests have completed. This execution is not counted for timing purposes.
--shared-memory-base-name=name
On Windows, the shared-memory name to use, for connections made using shared memory to a local server. This option applies only if the server supports shared-memory connections.
The string to execute using system() after the tests have completed. This execution is not counted for timing purposes.
The file or string containing the statement to execute before running the tests. This execution is not counted for timing purposes.
The string to execute using system() before running the tests. This execution is not counted for timing purposes.
--protocol={TCP|SOCKET|PIPE|MEMORY}
The connection protocol to use for connecting to the server. It is useful when the other connection parameters normally would cause a protocol to be used other than the one you want. For details on the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.
--query=value, -q value
The file or string containing the SELECT statement to use for retrieving data.
--silent, -s
Silent mode. No output.
--socket=path, -S path
For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.
--ssl*
Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to find SSL keys and certificates. See Section 6.3.9.4, “SSL Command Options”.
--user=user_name, -u user_name
The MySQL user name to use when connecting to the server.
--verbose, -v
Verbose mode. Print more information about what the program does. This option can be used multiple times to increase the amount of information.
--version, -V
Display version information and exit.
4.6. MySQL Administrative and Utility Programs
This section describes administrative programs and programs that perform miscellaneous utility operations.
4.6.1. innochecksum — Offline InnoDB File Checksum Utility
innochecksum prints checksums for InnoDB files. This tool reads an InnoDB tablespace file, calculates the checksum for each page, compares the calculated checksum to the stored checksum, and reports mismatches, which indicate damaged pages. It was originally developed to speed up verifying the integrity of tablespace files after power outages but can also be used after file copies. Because checksum mismatches will cause InnoDB to deliberately shut down a running server, it can be preferable to use this tool rather than waiting for a server in production usage to encounter the damaged pages.
innochecksum cannot be used on tablespace files that the server already has open. For such files, you should use CHECK TABLE to check tables within the tablespace.
If checksum mismatches are found, you would normally restore the tablespace from backup or start the server and attempt to use mysqldump to make a backup of the tables within the tablespace.
Invoke innochecksum like this:
shell> innochecksum [options] file_name
innochecksum supports the following options. For options that refer to page numbers, the numbers are zero-based.
-c
Print a count of the number of pages in the file.
-d
Debug mode; prints checksums for each page.
-e num
End at this page number.
-p num
Check only this page number.
-s num
Start at this page number.
-v
Verbose mode; print a progress indicator every five seconds.
4.6.2. myisam_ftdump — Display Full-Text Index information
myisam_ftdump displays information about FULLTEXT indexes in MyISAM tables. It reads the MyISAM index file directly, so it must be run on the server host where the table is located. Before using myisam_ftdump, be sure to issue a FLUSH TABLES statement first if the server is running.
myisam_ftdump scans and dumps the entire index, which is not particularly fast. On the other hand, the distribution of words changes infrequently, so it need not be run often.
Invoke myisam_ftdump like this:
shell> myisam_ftdump [options] tbl_name index_num
The tbl_name argument should be the name of a MyISAM table. You can also specify a table by naming its index file (the file with the .MYI suffix). If you do not invoke myisam_ftdump in the directory where the table files are located, the table or index file name must be preceded by the path name to the table's database directory. Index numbers begin with 0.
Example: Suppose that the test database contains a table named mytexttable that has the following definition:
CREATE TABLE mytexttable
(
id INT NOT NULL,
txt TEXT NOT NULL,
PRIMARY KEY (id),
FULLTEXT (txt)
) ENGINE=MyISAM;
The index on id is index 0 and the FULLTEXT index on txt is index 1. If your working directory is the test database directory, invoke myisam_ftdump as follows:
shell> myisam_ftdump mytexttable 1
If the path name to the test database directory is /usr/local/mysql/data/test, you can also specify the table name argument using that path name. This is useful if you do not invoke myisam_ftdump in the database directory:
shell> myisam_ftdump /usr/local/mysql/data/test/mytexttable 1
You can use myisam_ftdump to generate a list of index entries in order of frequency of occurrence like this:
shell> myisam_ftdump -c mytexttable 1 | sort -r
myisam_ftdump supports the following options:
--help, -h -?
Display a help message and exit.
--count, -c
Calculate per-word statistics (counts and global weights).
--dump, -d
Dump the index, including data offsets and word weights.
--length, -l
Report the length distribution.
--stats, -s
Report global index statistics. This is the default operation if no other operation is specified.
--verbose, -v
Verbose mode. Print more output about what the program does.
4.6.3. myisamchk — MyISAM Table-Maintenance Utility
The myisamchk utility gets information about your database tables or checks, repairs, or optimizes them. myisamchk works with MyISAM tables (tables that have .MYD and .MYI files for storing data and indexes).
You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables. See Section 13.7.2.2, “CHECK TABLE Syntax”, and Section 13.7.2.5, “REPAIR TABLE Syntax”.
The use of myisamchk with partitioned tables is not supported.
Caution
It is best to make a backup of a table before performing a table repair operation; under some circumstances the operation might cause data loss. Possible causes include but are not limited to file system errors.
Invoke myisamchk like this:
shell> myisamchk [options] tbl_name ...
The options specify what you want myisamchk to do. They are described in the following sections. You can also get a list of options by invoking myisamchk --help.
With no options, myisamchk simply checks your table as the default operation. To get more information or to tell myisamchk to take corrective action, specify options as described in the following discussion.
tbl_name is the database table you want to check or repair. If you run myisamchk somewhere other than in the database directory, you must specify the path to the database directory, because myisamchk has no idea where the database is located. In fact, myisamchk does not actually care whether the files you are working on are located in a database directory. You can copy the files that correspond to a database table into some other location and perform recovery operations on them there.
You can name several tables on the myisamchk command line if you wish. You can also specify a table by naming its index file (the file with the .MYI suffix). This enables you to specify all tables in a directory by using the pattern *.MYI. For example, if you are in a database directory, you can check all the MyISAM tables in that directory like this:
shell> myisamchk *.MYI
If you are not in the database directory, you can check all the tables there by specifying the path to the directory:
shell> myisamchk /path/to/database_dir/*.MYI
You can even check all tables in all databases by specifying a wildcard with the path to the MySQL data directory:
shell> myisamchk /path/to/datadir/*/*.MYI
The recommended way to quickly check all MyISAM tables is:
shell> myisamchk --silent --fast /path/to/datadir/*/*.MYI
If you want to check all MyISAM tables and repair any that are corrupted, you can use the following command:
shell> myisamchk --silent --force --fast --update-state \
--key_buffer_size=64M --myisam_sort_buffer_size=64M \
--read_buffer_size=1M --write_buffer_size=1M \
/path/to/datadir/*/*.MYI
This command assumes that you have more than 64MB free. For more information about memory allocation with myisamchk, see Section 4.6.3.6, “myisamchk Memory Usage”.
For additional information about using myisamchk, see Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.
Important
You must ensure that no other program is using the tables while you are running myisamchk. The most effective means of doing so is to shut down the MySQL server while running myisamchk, or to lock all tables that myisamchk is being used on.
Otherwise, when you run myisamchk, it may display the following error message:
warning: clients are using or haven't closed the table properly
This means that you are trying to check a table that has been updated by another program (such as the mysqld server) that hasn't yet closed the file or that has died without closing the file properly, which can sometimes lead to the corruption of one or more MyISAM tables.
If mysqld is running, you must force it to flush any table modifications that are still buffered in memory by using FLUSH TABLES. You should then ensure that no one is using the tables while you are running myisamchk
However, the easiest way to avoid this problem is to use CHECK TABLE instead of myisamchk to check tables. See Section 13.7.2.2, “CHECK TABLE Syntax”.
myisamchk supports the following options, which can be specified on the command line or in the [myisamchk] group of an option file. myisamchk also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
Table 4.10. myisamchk Options
Format | Option File | Description | Introduced | Deprecated |
---|---|---|---|---|
--analyze | analyze | Analyze the distribution of key values | ||
--backup | backup | Make a backup of the .MYD file as file_name-time.BAK | ||
--block-search=offset | block-search | Find the record that a block at the given offset belongs to | ||
--check | check | Check the table for errors | ||
--check-only-changed | check-only-changed | Check only tables that have changed since the last check | ||
--correct-checksum | correct-checksum | Correct the checksum information for the table | ||
--data-file-length=len | data-file-length | Maximum length of the data file (when re-creating data file when it is full) | ||
--debug[=debug_options] | debug | Write a debugging log | ||
decode_bits=# | decode_bits | Decode_bits | ||
--description | description | Print some descriptive information about the table | ||
--extend-check | extend-check | Do very thorough table check or repair that tries to recover every possible row from the data file | ||
--fast | fast | Check only tables that haven't been closed properly | ||
--force | force | Do a repair operation automatically if myisamchk finds any errors in the table | ||
--force | force-recover | Overwrite old temporary files. For use with the -r or -o option | ||
ft_max_word_len=# | ft_max_word_len | Maximum word length for FULLTEXT indexes | ||
ft_min_word_len=# | ft_min_word_len | Minimum word length for FULLTEXT indexes | ||
ft_stopword_file=value | ft_stopword_file | Use stopwords from this file instead of built-in list | ||
--HELP | Display help message and exit | |||
--help | Display help message and exit | |||
--information | information | Print informational statistics about the table that is checked | ||
key_buffer_size=# | key_buffer_size | The size of the buffer used for index blocks for MyISAM tables | ||
--keys-used=val | keys-used | A bit-value that indicates which indexes to update | ||
--max-record-length=len | max-record-length | Skip rows larger than the given length if myisamchk cannot allocate memory to hold them | ||
--medium-check | medium-check | Do a check that is faster than an --extend-check operation | ||
myisam_block_size=# | myisam_block_size | Block size to be used for MyISAM index pages | ||
myisam_sort_buffer_size=# | myisam_sort_buffer_size | The buffer that is allocated when sorting the index when doing a REPAIR or when creating indexes with CREATE INDEX or ALTER TABLE | 5.6.9 | |
--parallel-recover | parallel-recover | Uses the same technique as -r and -n, but creates all the keys in parallel, using different threads (beta) | ||
--quick | quick | Achieve a faster repair by not modifying the data file. | ||
read_buffer_size=# | read_buffer_size | Each thread that does a sequential scan allocates a buffer of this size for each table it scans | ||
--read-only | read-only | Don't mark the table as checked | ||
--recover | recover | Do a repair that can fix almost any problem except unique keys that aren't unique | ||
--safe-recover | safe-recover | Do a repair using an old recovery method that reads through all rows in order and updates all index trees based on the rows found | ||
--set-auto-increment[=value] | set-auto-increment | Force AUTO_INCREMENT numbering for new records to start at the given value | ||
--set-collation=name | set-collation | Specify the collation to use for sorting table indexes | ||
--silent | silent | Silent mode | ||
sort_buffer_size=# | sort_buffer_size | The buffer that is allocated when sorting the index when doing a REPAIR or when creating indexes with CREATE INDEX or ALTER TABLE | 5.6.9 | |
--sort-index | sort-index | Sort the index tree blocks in high-low order | ||
sort_key_blocks=# | sort_key_blocks | sort_key_blocks | ||
--sort-records=# | sort-records | Sort records according to a particular index | ||
--sort-recover | sort-recover | Force myisamchk to use sorting to resolve the keys even if the temporary files would be very large | ||
stats_method=value | stats_method | Specifies how MyISAM index statistics collection code should treat NULLs | ||
--tmpdir=path | tmpdir | Path of the directory to be used for storing temporary files | ||
--unpack | unpack | Unpack a table that was packed with myisampack | ||
--update-state | update-state | Store information in the .MYI file to indicate when the table was checked and whether the table crashed | ||
--verbose | Verbose mode | |||
--version | Display version information and exit | |||
write_buffer_size=# | write_buffer_size | Write buffer size |
4.6.3.1. myisamchk General Options
The options described in this section can be used for any type of table maintenance operation performed by myisamchk. The sections following this one describe options that pertain only to specific operations, such as table checking or repairing.
--help, -?
Display a help message and exit. Options are grouped by type of operation.
--HELP, -H
Display a help message and exit. Options are presented in a single list.
--debug=debug_options, -# debug_options
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o,/tmp/myisamchk.trace'.
--silent, -s
Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myisamchk very silent.
--verbose, -v
Verbose mode. Print more information about what the program does. This can be used with -d and -e. Use -v multiple times (-vv, -vvv) for even more output.
--version, -V
Display version information and exit.
--wait, -w
Instead of terminating with an error if the table is locked, wait until the table is unlocked before continuing. If you are running mysqld with external locking disabled, the table can be locked only by another myisamchk command.
You can also set the following variables by using --var_name=value syntax:
Variable | Default Value |
---|---|
decode_bits | 9 |
ft_max_word_len | version-dependent |
ft_min_word_len | 4 |
ft_stopword_file | built-in list |
key_buffer_size | 523264 |
myisam_block_size | 1024 |
myisam_sort_key_blocks | 16 |
read_buffer_size | 262136 |
sort_buffer_size | 2097144 |
sort_key_blocks | 16 |
stats_method | nulls_unequal |
write_buffer_size | 262136 |
The possible myisamchk variables and their default values can be examined with myisamchk --help:
sort_buffer_size is used when the keys are repaired by sorting keys, which is the normal case when you use --recover. As of MySQL 5.6.9, myisam_sort_buffer_size is available as an alternative name to sort_buffer_size. myisam_sort_buffer_size is preferable to sort_buffer_size because its name corresponds to the myisam_sort_buffer_size server system variable that has a similar meaning. sort_buffer_size should be considered deprecated.
key_buffer_size is used when you are checking the table with --extend-check or when the keys are repaired by inserting keys row by row into the table (like when doing normal inserts). Repairing through the key buffer is used in the following cases:
You use --safe-recover.
The temporary files needed to sort the keys would be more than twice as big as when creating the key file directly. This is often the case when you have large key values for CHAR, VARCHAR, or TEXT columns, because the sort operation needs to store the complete key values as it proceeds. If you have lots of temporary space and you can force myisamchk to repair by sorting, you can use the --sort-recover option.
Repairing through the key buffer takes much less disk space than using sorting, but is also much slower.
If you want a faster repair, set the key_buffer_size and myisam_sort_buffer_size variables to about 25% of your available memory. You can set both variables to large values, because only one of them is used at a time.
myisam_block_size is the size used for index blocks.
stats_method influences how NULL values are treated for index statistics collection when the --analyze option is given. It acts like the myisam_stats_method system variable. For more information, see the description of myisam_stats_method in Section 5.1.4, “Server System Variables”, and Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.
ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length for FULLTEXT indexes on MyISAM tables. ft_stopword_file names the stopword file. These need to be set under the following circumstances.
If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum and maximum word length and the stopword file unless you specify otherwise. This can result in queries failing.
The problem occurs because these parameters are known only by the server. They are not stored in MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length or the stopword file in the server, specify the same ft_min_word_len, ft_max_word_len, and ft_stopword_file values to myisamchk that you use for mysqld. For example, if you have set the minimum word length to 3, you can repair a table with myisamchk like this:
shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI
To ensure that myisamchk and the server use the same values for full-text parameters, you can place each one in both the [mysqld] and [myisamchk] sections of an option file:
[mysqld]
ft_min_word_len=3
[myisamchk]
ft_min_word_len=3
An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE TABLE, or ALTER TABLE. These statements are performed by the server, which knows the proper full-text parameter values to use.
4.6.3.2. myisamchk Check Options
myisamchk supports the following options for table checking operations:
--check, -c
Check the table for errors. This is the default operation if you specify no option that selects an operation type explicitly.
Check only tables that have changed since the last check.
--extend-check, -e
Check the table very thoroughly. This is quite slow if the table has many indexes. This option should only be used in extreme cases. Normally, myisamchk or myisamchk --medium-check should be able to determine whether there are any errors in the table.
If you are using --extend-check and have plenty of memory, setting the key_buffer_size variable to a large value helps the repair operation run faster.
See also the description of this option under table repair options.
For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with myisamchk”.
--fast, -F
Check only tables that haven't been closed properly.
--force, -f
Do a repair operation automatically if myisamchk finds any errors in the table. The repair type is the same as that specified with the --recover or -r option.
--information, -i
Print informational statistics about the table that is checked.
--medium-check, -m
Do a check that is faster than an --extend-check operation. This finds only 99.99% of all errors, which should be good enough in most cases.
--read-only, -T
Do not mark the table as checked. This is useful if you use myisamchk to check a table that is in use by some other application that does not use locking, such as mysqld when run with external locking disabled.
--update-state, -U
Store information in the .MYI file to indicate when the table was checked and whether the table crashed. This should be used to get full benefit of the --check-only-changed option, but you shouldn't use this option if the mysqld server is using the table and you are running it with external locking disabled.
4.6.3.3. myisamchk Repair Options
myisamchk supports the following options for table repair operations (operations performed when an option such as --recover or --safe-recover is given):
--backup, -B
Make a backup of the .MYD file as file_name-time.BAK
The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.
Correct the checksum information for the table.
--data-file-length=len, -D len
The maximum length of the data file (when re-creating data file when it is “full”).
--extend-check, -e
Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot of garbage rows. Do not use this option unless you are desperate.
See also the description of this option under table checking options.
For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with myisamchk”.
--force, -f
Overwrite old intermediate files (files with names like tbl_name.TMD) instead of aborting.
--keys-used=val, -k val
For myisamchk, the option value is a bit-value that indicates which indexes to update. Each binary bit of the option value corresponds to a table index, where the first index is bit 0. An option value of 0 disables updates to all indexes, which can be used to get faster inserts. Deactivated indexes can be reactivated by using myisamchk -r.
--no-symlinks, -l
Do not follow symbolic links. Normally myisamchk repairs the table that a symlink points to. This option does not exist as of MySQL 4.0 because versions from 4.0 on do not remove symlinks during repair operations.
Skip rows larger than the given length if myisamchk cannot allocate memory to hold them.
Use the same technique as -r and -n, but create all the keys in parallel, using different threads. This is beta-quality code. Use at your own risk!
--quick, -q
Achieve a faster repair by modifying only the index file, not the data file. You can specify this option twice to force myisamchk to modify the original data file in case of duplicate keys.
--recover, -r
Do a repair that can fix almost any problem except unique keys that are not unique (which is an extremely unlikely error with MyISAM tables). If you want to recover a table, this is the option to try first. You should try --safe-recover only if myisamchk reports that the table cannot be recovered using --recover. (In the unlikely case that --recover fails, the data file remains intact.)
If you have lots of memory, you should increase the value of myisam_sort_buffer_size.
--safe-recover, -o
Do a repair using an old recovery method that reads through all rows in order and updates all index trees based on the rows found. This is an order of magnitude slower than --recover, but can handle a couple of very unlikely cases that --recover cannot. This recovery method also uses much less disk space than --recover. Normally, you should repair first using --recover, and then with --safe-recover only if --recover fails.
If you have lots of memory, you should increase the value of key_buffer_size.
Change the character set used by the table indexes. This option was replaced by --set-collation in MySQL 5.0.3.
Specify the collation to use for sorting table indexes. The character set name is implied by the first part of the collation name.
--sort-recover, -n
Force myisamchk to use sorting to resolve the keys even if the temporary files would be very large.
--tmpdir=path, -t path
The path of the directory to be used for storing temporary files. If this is not set, myisamchk uses the value of the TMPDIR environment variable. --tmpdir can be set to a list of directory paths that are used successively in round-robin fashion for creating temporary files. The separator character between directory names is the colon (“:”) on Unix and the semicolon (“;”) on Windows.
--unpack, -u
Unpack a table that was packed with myisampack.
4.6.3.4. Other myisamchk Options
myisamchk supports the following options for actions other than table checks and repairs:
--analyze, -a
Analyze the distribution of key values. This improves join performance by enabling the join optimizer to better choose the order in which to join the tables and which indexes it should use. To obtain information about the key distribution, use a myisamchk --description --verbose tbl_name command or the SHOW INDEX FROM tbl_name statement.
--block-search=offset, -b offset
Find the record that a block at the given offset belongs to.
--description, -d
Print some descriptive information about the table. Specifying the --verbose option once or twice produces additional information. See Section 4.6.3.5, “Obtaining Table Information with myisamchk”.
--set-auto-increment[=value], -A[value]
Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if there are existing records with AUTO_INCREMENT values this large). If value is not specified, AUTO_INCREMENT numbers for new records begin with the largest value currently in the table, plus one.
--sort-index, -S
Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use indexes faster.
--sort-records=N, -R N
Sort records according to a particular index. This makes your data much more localized and may speed up range-based SELECT and ORDER BY operations that use this index. (The first time you use this option to sort a table, it may be very slow.) To determine a table's index numbers, use SHOW INDEX, which displays a table's indexes in the same order that myisamchk sees them. Indexes are numbered beginning with 1.
If keys are not packed (PACK_KEYS=0), they have the same length, so when myisamchk sorts and moves records, it just overwrites record offsets in the index. If keys are packed (PACK_KEYS=1), myisamchk must unpack key blocks first, then re-create indexes and pack the key blocks again. (In this case, re-creating indexes is faster than updating offsets for each index.)
4.6.3.5. Obtaining Table Information with myisamchk
To obtain a description of a MyISAM table or statistics about it, use the commands shown here. The output from these commands is explained later in this section.
Runs myisamchk in “describe mode” to produce a description of your table. If you start the MySQL server with external locking disabled, myisamchk may report an error for a table that is updated while it runs. However, because myisamchk does not change the table in describe mode, there is no risk of destroying data.
Adding -v runs myisamchk in verbose mode so that it produces more information about the table. Adding -v a second time produces even more information.
Shows only the most important information from a table. This operation is slow because it must read the entire table.
This is like -eis, but tells you what is being done.
The tbl_name argument can be either the name of a MyISAM table or the name of its index file, as described in Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Multiple tbl_name arguments can be given.
Suppose that a table named person has the following structure. (The MAX_ROWS table option is included so that in the example output from myisamchk shown later, some values are smaller and fit the output format more easily.)
CREATE TABLE person
(
id INT NOT NULL AUTO_INCREMENT,
last_name VARCHAR(20) NOT NULL,
first_name VARCHAR(20) NOT NULL,
birth DATE,
death DATE,
PRIMARY KEY (id),
INDEX (last_name, first_name),
INDEX (birth)
) MAX_ROWS = 1000000;
Suppose also that the table has these data and index file sizes:
-rw-rw---- 1 mysql mysql 9347072 Aug 19 11:47 person.MYD
-rw-rw---- 1 mysql mysql 6066176 Aug 19 11:47 person.MYI
Example of myisamchk -dvv output:
MyISAM file: person
Record format: Packed
Character set: latin1_swedish_ci (8)
File-version: 1
Creation time: 2009-08-19 16:47:41
Recover time: 2009-08-19 16:47:56
Status: checked,analyzed,optimized keys
Auto increment key: 1 Last value: 306688
Data records: 306688 Deleted blocks: 0
Datafile parts: 306688 Deleted data: 0
Datafile pointer (bytes): 4 Keyfile pointer (bytes): 3
Datafile length: 9347072 Keyfile length: 6066176
Max datafile length: 4294967294 Max keyfile length: 17179868159
Recordlength: 54
table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 4 unique long 1 99328 1024
2 6 20 multip. varchar prefix 512 3563520 1024
27 20 varchar 512
3 48 3 multip. uint24 NULL 306688 6065152 1024
Field Start Length Nullpos Nullbit Type
1 1 1
2 2 4 no zeros
3 6 21 varchar
4 27 21 varchar
5 48 3 1 1 no zeros
6 51 3 1 2 no zeros
Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the index file. “Record” and “row” are synonymous, as are “field” and “column.”
The initial part of the table description contains these values:
MyISAM file
Name of the MyISAM (index) file.
Record format
The format used to store table rows. The preceding examples use Fixed length. Other possible values are Compressed and Packed. (Packed corresponds to what SHOW TABLE STATUS reports as Dynamic.)
Chararacter set
The table default character set.
File-version
Version of MyISAM format. Currently always 1.
Creation time
When the data file was created.
Recover time
When the index/data file was last reconstructed.
Status
Table status flags. Possible values are crashed, open, changed, analyzed, optimized keys, and sorted index pages.
Auto increment key, Last value
The key number associated the table's AUTO_INCREMENT column, and the most recently generated value for this column. These fields do not appear if there is no such column.
Data records
The number of rows in the table.
Deleted blocks
How many deleted blocks still have reserved space. You can optimize your table to minimize this space. See Section 7.6.4, “MyISAM Table Optimization”.
Datafile parts
For dynamic-row format, this indicates how many data blocks there are. For an optimized table without fragmented rows, this is the same as Data records.
Deleted data
How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this space. See Section 7.6.4, “MyISAM Table Optimization”.
Datafile pointer
The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with 2 bytes, but this cannot be controlled from MySQL yet. For fixed tables, this is a row address. For dynamic tables, this is a byte address.
Keyfile pointer
The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2 bytes, but this is calculated automatically by MySQL. It is always a block address.
Max datafile length
How long the table data file can become, in bytes.
Max keyfile length
How long the table index file can become, in bytes.
Recordlength
How much space each row takes, in bytes.
The table description part of the output includes a list of all keys in the table. For each key, myisamchk displays some low-level information:
Key
This key's number. This value is shown only for the first column of the key. If this value is missing, the line corresponds to the second or later column of a multiple-column key. For the table shown in the example, there are two table description lines for the second index. This indicates that it is a multiple-part index with two parts.
Start
Where in the row this portion of the index starts.
Len
How long this portion of the index is. For packed numbers, this should always be the full length of the column. For strings, it may be shorter than the full length of the indexed column, because you can index a prefix of a string column. The total length of a multiple-part key is the sum of the Len values for all key parts.
Index
Whether a key value can exist multiple times in the index. Possible values are unique or multip. (multiple).
Type
What data type this portion of the index has. This is a MyISAM data type with the possible values packed, stripped, or empty.
Root
Address of the root index block.
Blocksize
The size of each index block. By default this is 1024, but the value may be changed at compile time when MySQL is built from source.
Rec/key
This is a statistical value used by the optimizer. It tells how many rows there are per value for this index. A unique index always has a value of 1. This may be updated after a table is loaded (or greatly changed) with myisamchk -a. If this is not updated at all, a default value of 30 is given.
The last part of the output provides information about each column:
Field
The column number.
Start
The byte position of the column within table rows.
Length
The length of the column in bytes.
Nullpos, Nullbit
For columns that can be NULL, MyISAM stores NULL values as a flag in a byte. Depending on how many nullable columns there are, there can be one or more bytes used for this purpose. The Nullpos and Nullbit values, if nonempty, indicate which byte and bit contains that flag indicating whether the column is NULL.
The position and number of bytes used to store NULL flags is shown in the line for field 1. This is why there are six Field lines for the person table even though it has only five columns.
Type
The data type. The value may contain any of the following descriptors:
constant
All rows have the same value.
no endspace
Do not store endspace.
no endspace, not_always
Do not store endspace and do not do endspace compression for all values.
no endspace, no empty
Do not store endspace. Do not store empty values.
table-lookup
The column was converted to an ENUM.
zerofill(N)
The most significant N bytes in the value are always 0 and are not stored.
no zeros
Do not store zeros.
always zero
Zero values are stored using one bit.
Huff tree
The number of the Huffman tree associated with the column.
Bits
The number of bits used in the Huffman tree.
The Huff tree and Bits fields are displayed if the table has been compressed with myisampack. See Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”, for an example of this information.
Example of myisamchk -eiv output:
Checking MyISAM file: person
Data records: 306688 Deleted blocks: 0
- check file-size
- check record delete-chain
No recordlinks
- check key delete-chain
block_size 1024:
- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 98% Packed: 0% Max levels: 3
- check data record references index: 2
Key: 2: Keyblocks used: 99% Packed: 97% Max levels: 3
- check data record references index: 3
Key: 3: Keyblocks used: 98% Packed: -14% Max levels: 3
Total: Keyblocks used: 98% Packed: 89%
- check records and index references*** LOTS OF ROW NUMBERS DELETED ***
Records: 306688 M.recordlength: 25 Packed: 83%
Recordspace used: 97% Empty space: 2% Blocks/Record: 1.00
Record blocks: 306688 Delete blocks: 0
Record data: 7934464 Deleted data: 0
Lost space: 256512 Linkdata: 1156096
User time 43.08, System time 1.68
Maximum resident set size 0, Integral resident set size 0
Non-physical pagefaults 0, Physical pagefaults 0, Swaps 0
Blocks in 0 out 7, Messages in 0 out 0, Signals 0
Voluntary context switches 0, Involuntary context switches 0
Maximum memory usage: 1046926 bytes (1023k)
myisamchk -eiv output includes the following information:
Data records
The number of rows in the table.
Deleted blocks
How many deleted blocks still have reserved space. You can optimize your table to minimize this space. See Section 7.6.4, “MyISAM Table Optimization”.
Key
The key number.
Keyblocks used
What percentage of the keyblocks are used. When a table has just been reorganized with myisamchk, the values are very high (very near theoretical maximum).
Packed
MySQL tries to pack key values that have a common suffix. This can only be used for indexes on CHAR and VARCHAR columns. For long indexed strings that have similar leftmost parts, this can significantly reduce the space used. In the preceding example, the second key is 40 bytes long and a 97% reduction in space is achieved.
Max levels
How deep the B-tree for this key is. Large tables with long key values get high values.
Records
How many rows are in the table.
M.recordlength
The average row length. This is the exact row length for tables with fixed-length rows, because all rows have the same length.
Packed
MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings achieved by doing this.
Recordspace used
What percentage of the data file is used.
Empty space
What percentage of the data file is unused.
Blocks/Record
Average number of blocks per row (that is, how many links a fragmented row is composed of). This is always 1.0 for fixed-format tables. This value should stay as close to 1.0 as possible. If it gets too large, you can reorganize the table. See Section 7.6.4, “MyISAM Table Optimization”.
Recordblocks
How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.
Deleteblocks
How many blocks (links) are deleted.
Recorddata
How many bytes in the data file are used.
Deleted data
How many bytes in the data file are deleted (unused).
Lost space
If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in bytes.
Linkdata
When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each). Linkdata is the sum of the amount of storage used by all such pointers.
4.6.3.6. myisamchk Memory Usage
Memory allocation is important when you run myisamchk. myisamchk uses no more memory than its memory-related variables are set to. If you are going to use myisamchk on very large tables, you should first decide how much memory you want it to use. The default is to use only about 3MB to perform repairs. By using larger values, you can get myisamchk to operate faster. For example, if you have more than 512MB RAM available, you could use options such as these (in addition to any other options you might specify):
shell> myisamchk --myisam_sort_buffer_size=256M \
--key_buffer_size=512M \
--read_buffer_size=64M \
--write_buffer_size=64M ...
Using --myisam_sort_buffer_size=16M is probably enough for most cases.
Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory file system, out of memory errors can easily occur. If this happens, run myisamchk with the --tmpdir=path option to specify a directory located on a file system that has more space.
When performing repair operations, myisamchk also needs a lot of disk space:
Twice the size of the data file (the original file and a copy). This space is not needed if you do a repair with --quick; in this case, only the index file is re-created. This space must be available on the same file system as the original data file, as the copy is created in the same directory as the original.
Space for the new index file that replaces the old one. The old index file is truncated at the start of the repair operation, so you usually ignore this space. This space must be available on the same file system as the original data file.
When using --recover or --sort-recover (but not when using --safe-recover), you need space on disk for sorting. This space is allocated in the temporary directory (specified by TMPDIR or --tmpdir=path). The following formula yields the amount of space required:
(largest_key + row_pointer_length) * number_of_rows * 2
You can check the length of the keys and the row_pointer_length with myisamchk -dv tbl_name (see Section 4.6.3.5, “Obtaining Table Information with myisamchk”). The row_pointer_length and number_of_rows values are the Datafile pointer and Data records values in the table description. To determine the largest_key value, check the Key lines in the table description. The Len column indicates the number of bytes for each key part. For a multiple-column index, the key size is the sum of the Len values for all key parts.
If you have a problem with disk space during repair, you can try --safe-recover instead of --recover.
4.6.4. myisamlog — Display MyISAM Log File Contents
myisamlog processes the contents of a MyISAM log file. To create such a file, start the server with a --log-isam=log_file option.
Invoke myisamlog like this:
shell> myisamlog [options] [file_name [tbl_name] ...]
The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates and deletes are done and errors are only counted. The default log file name is myisam.log if no log_file argument is given. If tables are named on the command line, only those tables are updated.
myisamlog supports the following options:
-?, -I
Display a help message and exit.
-c N
Execute only N commands.
-f N
Specify the maximum number of open files.
-i
Display extra information before exiting.
-o offset
Specify the starting offset.
-p N
Remove N components from path.
-r
Perform a recovery operation.
-R record_pos_file record_pos
Specify record position file and record position.
-u
Perform an update operation.
-v
Verbose mode. Print more output about what the program does. This option can be given multiple times to produce more and more output.
-w write_file
Specify the write file.
-V
Display version information.
4.6.5. myisampack — Generate Compressed, Read-Only MyISAM Tables
The myisampack utility compresses MyISAM tables. myisampack works by compressing each column in the table separately. Usually, myisampack packs the data file 40% to 70%.
When the table is used later, the server reads into memory the information needed to decompress columns. This results in much better performance when accessing individual rows, because you only have to uncompress exactly one row.
MySQL uses mmap() when possible to perform memory mapping on compressed tables. If mmap() does not work, MySQL falls back to normal read/write file operations.
Please note the following:
If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke myisampack if the table might be updated by the server during the packing process. It is safest to compress tables with the server stopped.
After packing a table, it becomes read only. This is generally intended (such as when accessing packed tables on a CD).
Invoke myisampack like this:
shell> myisampack [options] file_name ...
Each file name argument should be the name of an index (.MYI) file. If you are not in the database directory, you should specify the path name to the file. It is permissible to omit the .MYI extension.
After you compress a table with myisampack, you should use myisamchk -rq to rebuild its indexes. Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.
myisampack supports the following options. It also reads option files and supports the options for processing them described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
--help, -?
Display a help message and exit.
--backup, -b
Make a backup of each table's data file using the name tbl_name.OLD.
The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.
--debug[=debug_options], -# [debug_options]
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o'.
--force, -f
Produce a packed table even if it becomes larger than the original or if the intermediate file from an earlier invocation of myisampack exists. (myisampack creates an intermediate file named tbl_name.TMD in the database directory while it compresses the table. If you kill myisampack, the .TMD file might not be deleted.) Normally, myisampack exits with an error if it finds that tbl_name.TMD exists. With --force, myisampack packs the table anyway.
--join=big_tbl_name, -j big_tbl_name
Join all tables named on the command line into a single packed table big_tbl_name. All tables that are to be combined must have identical structure (same column names and types, same indexes, and so forth).
big_tbl_name must not exist prior to the join operation. All source tables named on the command line to be merged into big_tbl_name must exist. The source tables are read for the join operation but not modified. The join operation does not create a .frm file for big_tbl_name, so after the join operation finishes, copy the .frm file from one of the source tables and name it big_tbl_name.frm.
--silent, -s
Silent mode. Write output only when errors occur.
--test, -t
Do not actually pack the table, just test packing it.
--tmpdir=path, -T path
Use the named directory as the location where myisampack creates temporary files.
--verbose, -v
Verbose mode. Write information about the progress of the packing operation and its result.
--version, -V
Display version information and exit.
--wait, -w
Wait and retry if the table is in use. If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke myisampack if the table might be updated by the server during the packing process.
The following sequence of commands illustrates a typical table compression session:
shell> ls -l station.*
-rw-rw-r-- 1 monty my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 53248 Apr 17 19:00 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm
shell> myisamchk -dvv station
MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431
Recordlength: 834
Record format: Fixed length
table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1
Field Start Length Type
1 1 1
2 2 4
3 6 4
4 10 1
5 11 20
6 31 1
7 32 30
8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16
16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2
27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4
39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20
45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4
shell> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics
normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables
shell> ls -l station.*
-rw-rw-r-- 1 monty my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 55296 Apr 17 19:04 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm
shell> myisamchk -dvv station
MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed
table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1
Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0
6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9
15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0
25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9
37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9
41 417 4 always zero 2 9
42 421 4 no zeros 2 9
43 425 4 always zero 2 9
44 429 20 no empty 3 9
45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4
48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9
57 831 4 no zeros, zerofill(1) 2 9
myisampack displays the following kinds of information:
normal
The number of columns for which no extra packing is used.
empty-space
The number of columns containing values that are only spaces. These occupy one bit.
empty-zero
The number of columns containing values that are only binary zeros. These occupy one bit.
empty-fill
The number of integer columns that do not occupy the full byte range of their type. These are changed to a smaller type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte) if all its values are in the range from -128 to 127.
pre-space
The number of decimal columns that are stored with leading spaces. In this case, each value contains a count for the number of leading spaces.
end-space
The number of columns that have a lot of trailing spaces. In this case, each value contains a count for the number of trailing spaces.
table-lookup
The column had only a small number of different values, which were converted to an ENUM before Huffman compression.
zero
The number of columns for which all values are zero.
Original trees
The initial number of Huffman trees.
After join
The number of distinct Huffman trees left after joining trees to save some header space.
After a table has been compressed, the Field lines displayed by myisamchk -dvv include additional information about each column:
Type
The data type. The value may contain any of the following descriptors:
constant
All rows have the same value.
no endspace
Do not store endspace.
no endspace, not_always
Do not store endspace and do not do endspace compression for all values.
no endspace, no empty
Do not store endspace. Do not store empty values.
table-lookup
The column was converted to an ENUM.
zerofill(N)
The most significant N bytes in the value are always 0 and are not stored.
no zeros
Do not store zeros.
always zero
Zero values are stored using one bit.
Huff tree
The number of the Huffman tree associated with the column.
Bits
The number of bits used in the Huffman tree.
After you run myisampack, you must run myisamchk to re-create any indexes. At this time, you can also sort the index blocks and create statistics needed for the MySQL optimizer to work more efficiently:
shell> myisamchk -rq --sort-index --analyze tbl_name.MYI
After you have installed the packed table into the MySQL database directory, you should execute mysqladmin flush-tables to force mysqld to start using the new table.
To unpack a packed table, use the --unpack option to myisamchk.
4.6.6. mysql_config_editor — MySQL Configuration Utility
The mysql_config_editor utility (available as of MySQL 5.6.6) enables you to store authentication credentials in an encrypted login file named .mylogin.cnf. The file location is the %APPDATA%\MySQL directory on Windows and the current user's home directory on non-Windows systems. The file can be read later by MySQL client programs to obtain authentication credentials for connecting to MySQL Server.
To specify an alternate file name, set the MYSQL_TEST_LOGIN_FILE environment variable. This variable is used by the mysql-test-run.pl testing utility, but also is recognized by mysql_config_editor and by MySQL clients such as mysql, mysqladmin, and so forth.
mysql_config_editor encrypts the .mylogin.cnf file so it cannot be read as clear text, and its contents when decrypted by client programs are used only in memory. In this way, passwords can be stored in a file in non-cleartext format and used later without ever needing to be exposed on the command line or in an environment variable. mysql_config_editor provides a print command that enables the user to display the file contents, but even in this case, password values are masked so as never to appear in a way that other users can see them.
The encryption used by mysql_config_editor prevents passwords from appearing in .mylogin.cnf as clear text and provides a measure of security by preventing inadvertent password exposure. For example, if you display a regular unencrypted my.cnf option file on the screen, any passwords it contains are visible for anyone to see. With .mylogin.cnf, that is not true. But the encryption used will not deter a determined attacker and you should not consider it unbreakable. A user who can gain system administration privileges on your machine to access your files could decrypt the .mylogin.cnf file with some effort.
The login file must be readable and writable to the current user, and inaccessible to other users. Otherwise, mysql_config_editor ignores it, and the file is not used by client programs, either. On Windows, this constraint does not apply; instead, the user must have access to the %APPDATA%\MySQL directory.
The unencrypted format of the .mylogin.cnf login file consists of option groups, similar to other option files. Each option group in .mylogin.cnf is called a “login path,” which is a group that permits only a limited set of options: host, user, and password. Think of a login path as a set of values that indicate the server host and the credentials for authenticating with the server. Here is an example:
[myloginpath]
user = myname
password = mypass
host = 127.0.0.1
When you invoke a client program to connect to the server, .mylogin.cnf is used in conjunction with other option files. Its precedence is higher than other option files, but less than options specified explicitly on the client command line. For information about the order in which option files are used, see Section 4.2.3.3, “Using Option Files”.
Invoke mysql_config_editor like this:
shell> mysql_config_editor [program_options] command [command_options]
program_options consists of general mysql_config_editor options. command indicates what command to perform, and command_options indicates any additional options needed by the command.
The command indicates what action to perform on the .mylogin.cnf login file. For example, set writes a login path to the file, remove removes a login path, and print displays login path contents. Any options given provide information to the command, such as the login path name and the values to use in the login path.
The position of the command name within the set of program arguments is significant. For example, these command lines have the same arguments, but produce different results:
mysql_config_editor --help set
mysql_config_editor set --help
The first command line displays general mysql_config_editor help, and ignores the set command. The second command line displays help for the set command.
Suppose that you want to establish two login paths named local and remote for connecting to the local MySQL server and a server on the host remote.example.com. You want to authenticate to the local server with a user name and password of localuser and localpass, and to the remote server with a user name and password of remoteuser and remotepass. To set up the login paths in the .mylogin.cnf file, use the following set commands. Enter each command on a single line, then enter the appropriate password when prompted.
shell> mysql_config_editor set --login-path=local
--host=localhost --user=localuser --password
Enter password: enter password "localpass" here
shell> mysql_config_editor set --login-path=remote
--host=remote.example.com --user=remoteuser --password
Enter password: enter password "remotepass" here
To see what mysql_config_editor wrote to the .mylogin.cnf file, use the print command:
shell> mysql_config_editor print --all
[local]
user = localuser
password = *****
host = localhost
[remote]
user = remoteuser
password = *****
host = remote.example.com
The print command displays each login path as a set of lines beginning with a group header indicating the login path name in square brackets, followed by the option values for the login path. Password values are masked and do not appear as clear text.
As shown by the preceding examples, the .mylogin.cnf file can contain multiple login paths. In this way, mysql_config_editor makes it easy to set up multiple “personalities” for connecting to different MySQL servers. Any of these can be selected by name later using the --login-path option when you invoke a client program. For example, to connect to the local server, use this command:
shell> mysql --login-path=local
To connect to the remote server, use this command:
shell> mysql --login-path=remote
When you use the set command with mysql_config_editor to create a login path, you need not specify all three possible option values (host name, user name, and password). Only those values given are written to the path. Any missing values required later can be specified when you invoke a client path to connect to the MySQL server, either in other option files or on the command line. Also, any options specified on the command line override those in option files, including the .mylogin.cnf file. For example, if the credentials in the remote login path also apply for the host remote2.example.com, you can connect to the server on that host like this:
shell> mysql --login-path=remote --host=remote2.example.com
The .mylogin.cnf file, if it exists, is read in all cases, even when the --no-defaults option is used. This permits passwords to be specified in a safer way than on the command line even if --no-defaults is present.
mysql_config_editor Commands
This section describes the permitted mysql_config_editor commands, and the interpretation of options that have a command-specific meaning. In addition, mysql_config_editor takes other options that can be used with any command, such as --verbose to produce more information as mysql_config_editor executes. This option may be helpful in diagnosing problems if an operation does not have the effect you expect. For a list of supported options, see mysql_config_editor Options.
mysql_config_editor supports these commands:
help
Display a help message and exit.
print [options]
Print the contents of .mylogin.cnf in unencrypted form. Passwords are displayed as *****.
The print command takes these options:
Print all login paths.
Print the named login path.
If no login path is specified, the default path name is client. If both --all and --login-path are given, --all takes precedence.
remove [options]
Remove a login path from the .mylogin.cnf file.
The remove command takes these options:
Remove the host name from the login path.
The login path to remove. If this option is not given, the default path name is client.
Remove the password from the login path.
Remove the TCP/IP port number from the login path.
Remove the Unix socket file name from the login path.
Remove the user name from the login path.
The --host, --user, and --password options are supported for the remove command as of MySQL 5.6.9. The --port and --socket options are supported for the remove command as of MySQL 5.6.11
The remove command removes from the login path only such values as are specified with the --host, --password, --port, --socket, and --user options. If none of them is given, remove removes the entire login path. For example, this command removes only the user value from the client login path rather than the entire client login path:
mysql_config_editor remove --login-path=client --user
reset
Empty the contents of the .mylogin.cnf file. The file is created if it does not exist.
set [options]
Write a login path to the .mylogin.cnf file.
The set command takes these options:
The host name to write to the login path.
The login path to create. If this option is not given, the default path name is client.
Prompt for a password to write to the login path.
The TCP/IP port number to write to the login path.
The Unix socket file to write to the login path.
The user name to write to the login path.
The --port and --socket options are supported for the set command as of MySQL 5.6.11
The set command writes to the login path only such values as are specified with the --host, --password, --port, --socket, and --user options. If none of those options are given, mysql_config_editor writes the login path as an empty group.
To specify an empty password, use the set command with the --password option, then press Enter at the password prompt. The resulting login path written to .mylogin.cnf will include a line like this:
password =
If the login path already exists in .mylogin.cnf, the set command replaces it. To ensure that this is what the user wants, mysql_config_editor prints a warning and prompts for confirmation. To suppress the warning and prompt, use the --skip-warn option.
mysql_config_editor Options
mysql_config_editor supports the following options.
Table 4.11. mysql_config_editor Options
Format | Option File | Description | Introduced |
---|---|---|---|
--all | Print all login paths | ||
--debug[=debug_options] | Write a debugging log | ||
--help | Display help message and exit | ||
--host=host_name | Host to write to login file | ||
--login-path=name | Login path name | ||
--password | Solicit password to write to login file | ||
--port=port_num | port | The TCP/IP port number to write to login file | 5.6.11 |
--socket=path | socket | The Unix socket file name to write to login file | 5.6.11 |
--user=user_name | User name to write to login file | ||
--verbose | Verbose mode | ||
--version | Display version information and exit | ||
--warn | Warn and solicit confirmation for overwriting login path |
--help, -?
Display a help message and exit. If preceded by a command name such as set or remove, displays information about that command.
For the print command, print all login paths in the login file.
--debug[=debug_options], -# debug_options
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o,/tmp/mysql_config_editor.trace'.
--host=host_name, -h host_name
For the set command, the host name to write to to the login path. For the remove command, removes the host name from the login path.
--login-path=name, -G name
For the print, remove, and set commands, the login path to use in the .mylogin.cnf login file.
Client programs also support the --login-path option, to enable users to specify which login path to use for connecting to a MySQL server. For client programs, --login-path must be the first option given, which is not true for mysql_config_editor. See Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
--password, -p
For the set command, cause mysql_config_editor to prompt for a password and write the value entered by the user to the login path. After mysql_config_editor starts and displays the prompt, the user should type the password and press Enter. To prevent other users from seeing the password, mysql_config_editor does not echo it.
This option does not permit a password value following the option name. That is, with mysql_config_editor, you never enter a password on the command line where it might be seen by other users. This differs from most other MySQL programs, which permit the password to be given on the command line as --password=pass_val or -ppass_val. (That practice is insecure and should be avoided, however.)
For the remove command, removes the password from the login path.
--port=port_num, -P port_num
For the set command, the TCP/IP port number to write to the login path. For the remove command, removes the port number from the login path.
--socket=file_name, -S file_name
For the set command, the Unix socket file name to write to the login path. For the remove command, removes the socket file from the login path.
--user=user_name, -u user_name
For the set command, the user name to write to the login path. For the remove command, removes the user name from the login path.
--verbose, -v
Verbose mode. Print more information about what the program does.
--version, -V
Display version information and exit.
--warn, -w
For the set command, warn and prompt the user for confirmation if the command attempts to overwrite an existing login path. This option is enabled by default; use --skip-warn to disable it.
4.6.7. mysqlaccess — Client for Checking Access Privileges
mysqlaccess is a diagnostic tool that Yves Carlier has provided for the MySQL distribution. It checks the access privileges for a host name, user name, and database combination. Note that mysqlaccess checks access using only the user and db tables. It does not check table, column, or routine privileges specified in the tables_priv, columns_priv, or procs_priv tables.
Invoke mysqlaccess like this:
shell> mysqlaccess [host_name [user_name [db_name]]] [options]
mysqlaccess supports the following options.
Table 4.12. mysqlaccess Options
Format | Option File | Description |
---|---|---|
--brief | brief | Generate reports in single-line tabular format |
--commit | commit | Copy the new access privileges from the temporary tables to the original grant tables |
--copy | copy | Reload the temporary grant tables from original ones |
--db=db_name | db | Specify the database name |
--debug=# | debug | Specify the debug level |
--help | Display help message and exit | |
--host=host_name | host | Connect to the MySQL server on the given host |
--howto | howto | Display some examples that show how to use mysqlaccess |
--old_server | old_server | Assume that the server is an old MySQL server (prior to MySQL 3.21) |
--password[=password] | password | The password to use when connecting to the server |
--plan | plan | Display suggestions and ideas for future releases |
--preview | preview | Show the privilege differences after making changes to the temporary grant tables |
--relnotes | relnotes | Display the release notes |
--rhost=host_name | rhost | Connect to the MySQL server on the given host |
--rollback | rollback | Undo the most recent changes to the temporary grant tables. |
--spassword[=password] | spassword | The password to use when connecting to the server as the superuser |
--superuser=user_name | superuser | Specify the user name for connecting as the superuser |
--table | table | Generate reports in table format |
--user=user_name, | user | MySQL user name to use when connecting to server |
--version | Display version information and exit |
--help, -?
Display a help message and exit.
--brief, -b
Generate reports in single-line tabular format.
Copy the new access privileges from the temporary tables to the original grant tables. The grant tables must be flushed for the new privileges to take effect. (For example, execute a mysqladmin reload command.)
Reload the temporary grant tables from original ones.
--db=db_name, -d db_name
Specify the database name.
Specify the debug level. N can be an integer from 0 to 3.
--host=host_name, -h host_name
The host name to use in the access privileges.
Display some examples that show how to use mysqlaccess.
Assume that the server is an old MySQL server (before MySQL 3.21) that does not yet know how to handle full WHERE clauses.
--password[=password], -p[password]
The password to use when connecting to the server. If you omit the password value following the --password or -p option on the command line, mysqlaccess prompts for one.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.
Display suggestions and ideas for future releases.
Show the privilege differences after making changes to the temporary grant tables.
Display the release notes.
--rhost=host_name, -H host_name
Connect to the MySQL server on the given host.
Undo the most recent changes to the temporary grant tables.
--spassword[=password], -P[password]
The password to use when connecting to the server as the superuser. If you omit the password value following the --spassword or -p option on the command line, mysqlaccess prompts for one.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.
--superuser=user_name, -U user_name
Specify the user name for connecting as the superuser.
--table, -t
Generate reports in table format.
--user=user_name, -u user_name
The user name to use in the access privileges.
--version, -v
Display version information and exit.
If your MySQL distribution is installed in some nonstandard location, you must change the location where mysqlaccess expects to find the mysql client. Edit the mysqlaccess script at approximately line 18. Search for a line that looks like this:
$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable
Change the path to reflect the location where mysql actually is stored on your system. If you do not do this, a Broken pipe error will occur when you run mysqlaccess.
4.6.8. mysqlbinlog — Utility for Processing Binary Log Files
The server's binary log consists of files containing “events” that describe modifications to database contents. The server writes these files in binary format. To display their contents in text format, use the mysqlbinlog utility. You can also use mysqlbinlog to display the contents of relay log files written by a slave server in a replication setup because relay logs have the same format as binary logs. The binary log and relay log are discussed further in Section 5.2.4, “The Binary Log”, and Section 16.2.2, “Replication Relay and Status Logs”.
Invoke mysqlbinlog like this:
shell> mysqlbinlog [options] log_file ...
For example, to display the contents of the binary log file named binlog.000003, use this command:
shell> mysqlbinlog binlog.0000003
The output includes events contained in binlog.000003. For statement-based logging, event information includes the SQL statement, the ID of the server on which it was executed, the timestamp when the statement was executed, how much time it took, and so forth. For row-based logging, the event indicates a row change rather than an SQL statement. See Section 16.1.2, “Replication Formats”, for information about logging modes.
Events are preceded by header comments that provide additional information. For example:
at 141
#100309 9:28:36 server id 123 end_log_pos 245
Query thread_id=3350 exec_time=11 error_code=0
In the first line, the number following at indicates the starting position of the event in the binary log file.
The second line starts with a date and time indicating when the statement started on the server where the event originated. For replication, this timestamp is propagated to slave servers. server id is the server_id value of the server where the event originated. end_log_pos indicates where the next event starts (that is, it is the end position of the current event + 1). thread_id indicates which thread executed the event. exec_time is the time spent executing the event, on a master server. On a slave, it is the difference of the end execution time on the slave minus the beginning execution time on the master. The difference serves as an indicator of how much replication lags behind the master. error_code indicates the result from executing the event. Zero means that no error occurred.
The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql) to redo the statements in the log. This is useful for recovery operations after a server crash. For other usage examples, see the discussion later in this section and in Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”.
Normally, you use mysqlbinlog to read binary log files directly and apply them to the local MySQL server. It is also possible to read binary logs from a remote server by using the --read-from-remote-server option. To read remote binary logs, the connection parameter options can be given to indicate how to connect to the server. These options are --host, --password, --port, --protocol, --socket, and --user; they are ignored except when you also use the --read-from-remote-server option.
mysqlbinlog supports the following options, which can be specified on the command line or in the [mysqlbinlog] and [client] groups of an option file. mysqlbinlog also supports the options for processing option files described at Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”.
Table 4.13. mysqlbinlog Options
Format | Option File | Description | Introduced |
---|---|---|---|
--base64-output=value | base64-output | Print binary log entries using base-64 encoding | |
--bind-address=ip_address | bind-address | Use the specified network interface to connect to the MySQL Server | |
--binlog-row-event-max-size=# | binlog-row-event-max-size | Binary log max event size | |
--character-sets-dir=path | character-sets-dir | The directory where character sets are installed | |
--database=db_name | database | List entries for just this database | |
--debug[=debug_options] | debug | Write a debugging log | |
--debug-check | debug-check | Print debugging information when the program exits | |
--debug-info | debug-info | Print debugging information, memory and CPU statistics when the program exits | |
--default-auth=plugin | default-auth=plugin | The authentication plugin to use | 5.6.2 |
--disable-log-bin | disable-log-bin | Disable binary logging | |
--exclude-gtids=gtid_set | exclude-gtids | Do not show any of the groups in the GTID set provided | 5.6.5 |
--force-if-open | force-if-open | Read binary log files even if open or not closed properly | |
--force-read | force-read | If mysqlbinlog reads a binary log event that it does not recognize, it prints a warning | |
--help | Display help message and exit | ||
--hexdump | hexdump | Display a hex dump of the log in comments | |
--host=host_name | host | Connect to the MySQL server on the given host | |
--idempotent | idempotent | Cause the server to use idempotent mode while processing binary log updates from this session only | |
--include-gtids=gtid_set | include-gtids | Show only the groups in the GTID set provided | 5.6.5 |
--local-load=path | local-load | Prepare local temporary files for LOAD DATA INFILE in the specified directory | |
--login-path=name | Read login path options from .mylogin.cnf | 5.6.6 | |
--offset=# | offset | Skip the first N entries in the log | |
--password[=password] | password | The password to use when connecting to the server | |
--plugin-dir=path | plugin-dir=path | The directory where plugins are located | 5.6.2 |
--port=port_num | port | The TCP/IP port number to use for the connection | |
--protocol=type | protocol | The connection protocol to use | |
--raw | raw | Write events in raw (binary) format to output files | |
--read-from-remote-master=type | read-from-remote-master | Read the binary log from a MySQL master rather than reading a local log file | 5.6.5 |
--read-from-remote-server | read-from-remote-server | Read binary log from MySQL server rather than local log file | |
--result-file=name | result-file | Direct output to the given file | |
--server-id=id | server-id | Extract only those events created by the server having the given server ID | |
--set-charset=charset_name | set-charset | Add a SET NAMES charset_name statement to the output | |
--short-form | short-form | Display only the statements contained in the log | |
--skip-gtids[=true|false] | skip-gtids | Do not show any GTIDs; not recommended in production | 5.6.5 |
--socket=path | socket | For connections to localhost | |
--start-datetime=datetime | start-datetime | Read binary log from first event with timestamp equal to or later than datetime argument | |
--start-position=# | start-position | Read binary log from first event with position equal to or greater than argument | |
--stop-datetime=datetime | stop-datetime | Stop reading binary log at first event with timestamp equal to or greater than datetime argument | |
--stop-never | stop-never | Stay connected to server after reading last binary log file | |
--stop-never-slave-server-id=# | stop-never-slave-server-id | Slave server ID to report when connecting to server | |
--stop-position=# | stop-position | Stop reading binary log at first event with position equal to or greater than argument | |
--to-last-log | to-last-log | Do not stop at the end of requested binary log from a MySQL server, but rather continue printing to end of last binary log | |
--user=user_name, | user | MySQL user name to use when connecting to server | |
--verbose | Reconstruct row events as SQL statements | ||
--verify-binlog-checksum | Verify checksums in binary log | 5.6.1 | |
--version | Display version information and exit |
--help, -?
Display a help message and exit.
This option determines when events should be displayed encoded as base-64 strings using BINLOG statements. The option has these permissible values (not case sensitive):
AUTO ("automatic") or UNSPEC ("unspecified") displays BINLOG statements automatically when necessary (that is, for format description events and row events). If no --base64-output option is given, the effect is the same as --base64-output=AUTO.
Note
Automatic BINLOG display is the only safe behavior if you intend to use the output of mysqlbinlog to re-execute binary log file contents. The other option values are intended only for debugging or testing purposes because they may produce output that does not include all events in executable form.
NEVER causes BINLOG statements not to be displayed. mysqlbinlog exits with an error if a row event is found that must be displayed using BINLOG.
DECODE-ROWS specifies to mysqlbinlog that you intend for row events to be decoded and displayed as commented SQL statements by also specifying the --verbose option. Like NEVER, DECODE-ROWS suppresses display of BINLOG statements, but unlike NEVER, it does not exit with an error if a row event is found.
For examples that show the effect of --base64-output and --verbose on row event output, see Section 4.6.8.2, “mysqlbinlog Row Event Display”.
On a computer having multiple network interfaces, this option can be used to select which interface is employed when connecting to the MySQL server.
This option is supported beginning with MySQL 5.6.1.
Command-Line Format | --binlog-row-event-max-size=# | ||
Option-File Format | binlog-row-event-max-size | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 4294967040 | ||
Range | 256 .. 18446744073709547520 |
Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events smaller than this size if possible. The value should be a multiple of 256. The default is 4GB.
The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.
--database=db_name, -d db_name
This option causes mysqlbinlog to output entries from the binary log (local log only) that occur while db_name is been selected as the default database by USE.
The --database option for mysqlbinlog is similar to the --binlog-do-db option for mysqld, but can be used to specify only one database. If --database is given multiple times, only the last instance is used.
The effects of this option depend on whether the statement-based or row-based logging format is in use, in the same way that the effects of --binlog-do-db depend on whether statement-based or row-based logging is in use.
Statement-based logging. The --database option works as follows:
While db_name is the default database, statements are output whether they modify tables in db_name or a different database.
Unless db_name is selected as the default database, statements are not output, even if they modify tables in db_name.
There is an exception for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE. The database being created, altered, or dropped is considered to be the default database when determining whether to output the statement.
Suppose that the binary log was created by executing these statements using statement-based-logging:
INSERT INTO test.t1 (i) VALUES(100);
INSERT INTO db2.t2 (j) VALUES(200);
USE test;
INSERT INTO test.t1 (i) VALUES(101);
INSERT INTO t1 (i) VALUES(102);
INSERT INTO db2.t2 (j) VALUES(201);
USE db2;
INSERT INTO test.t1 (i) VALUES(103);
INSERT INTO db2.t2 (j) VALUES(202);
INSERT INTO t2 (j) VALUES(203);
mysqlbinlog --database=test does not output the first two INSERT statements because there is no default database. It outputs the three INSERT statements following USE test, but not the three INSERT statements following USE db2.
mysqlbinlog --database=db2 does not output the first two INSERT statements because there is no default database. It does not output the three INSERT statements following USE test, but does output the three INSERT statements following USE db2.
Row-based logging. mysqlbinlog outputs only entries that change tables belonging to db_name. The default database has no effect on this. Suppose that the binary log just described was created using row-based logging rather than statement-based logging. mysqlbinlog --database=test outputs only those entries that modify t1 in the test database, regardless of whether USE was issued or what the default database is.
If a server is running with binlog_format set to MIXED and you want it to be possible to use mysqlbinlog with the --database option, you must ensure that tables that are modified are in the database selected by USE. (In particular, no cross-database updates should be used.)
Prior to MySQL 5.6.10, the --database option did not work correctly with a log written by a GTID-enabled MySQL server. (Bug #15912728)
--debug[=debug_options], -# [debug_options]
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o,/tmp/mysqlbinlog.trace'.
Print some debugging information when the program exits.
Print debugging information and memory and CPU usage statistics when the program exits.
The client-side authentication plugin to use. See Section 6.3.7, “Pluggable Authentication”.
This option was added in MySQL 5.6.2.
Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-log option and are sending the output to the same MySQL server. This option also is useful when restoring after a crash to avoid duplication of the statements you have logged.
This option requires that you have the SUPER privilege. It causes mysqlbinlog to include a SET sql_log_bin = 0 statement in its output to disable binary logging of the remaining output. The SET statement is ineffective unless you have the SUPER privilege.
Do not display any of the groups listed in the gtid_set. Added in MySQL 5.6.5.
--force-if-open, -F
Read binary log files even if they are open or were not closed properly.
--force-read, -f
With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a warning, ignores the event, and continues. Without this option, mysqlbinlog stops if it reads such an event.
--hexdump, -H
Display a hex dump of the log in comments, as described in Section 4.6.8.1, “mysqlbinlog Hex Dump Format”. The hex output can be helpful for replication debugging.
--host=host_name, -h host_name
Get the binary log from the MySQL server on the given host.
Display only the groups listed in the gtid_set. Added in MySQL 5.6.5.
--local-load=path, -l path
Prepare local temporary files for LOAD DATA INFILE in the specified directory.
Important
These temporary files are not automatically removed by mysqlbinlog or any other MySQL program.
--offset=N, -o N
Skip the first N entries in the log.
--password[=password], -p[password]
The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the option and the password. If you omit the password value following the --password or -p option on the command line, mysqlbinlog prompts for one.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
The directory in which to look for plugins. It may be necessary to specify this option if the --default-auth option is used to specify an authentication plugin but mysqlbinlog does not find it. See Section 6.3.7, “Pluggable Authentication”.
This option was added in MySQL 5.6.2.
--port=port_num, -P port_num
The TCP/IP port number to use for connecting to a remote server.
--protocol={TCP|SOCKET|PIPE|MEMORY}
The connection protocol to use for connecting to the server. It is useful when the other connection parameters normally would cause a protocol to be used other than the one you want. For details on the permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.
By default, mysqlbinlog reads binary log files and writes events in text format. The --raw option tells mysqlbinlog to write them in their original binary format. Its use requires that --read-from-remote-server also be used because the files are requested from a server. mysqlbinlog writes one output file for each file read from the server. The --raw option can be used to make a backup of a server's binary log. With the --stop-never option, the backup is “live” because mysqlbinlog stays connected to the server. By default, output files are written in the current directory with the same names as the original log files. Output file names can be modified using the --result-file option. For more information, see Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”.
This option was added in MySQL 5.6.0.
--read-from-remote-master=type
Read binary logs from a MySQL server with the COM_BINLOG_DUMP or COM_BINLOG_DUMP_GTID commands by setting the option value to either BINLOG-DUMP-NON-GTIDS or BINLOG-DUMP-GTIDS, respectively. If --read-from-remote-master=BINLOG-DUMP-GTIDS is combined with --exclude-gtids, transactions can be filtered out on the master, avoiding unnecessary network traffic.
See also the description for --read-from-remote-server.
This option was added in MySQL 5.6.5.
Read the binary log from a MySQL server rather than reading a local log file. Any connection parameter options are ignored unless this option is given as well. These options are --host, --password, --port, --protocol, --socket, and --user.
This option requires that the remote server be running. It works only for binary log files on the remote server, not relay log files.
As of MySQL 5.6.5, this option is like --read-from-remote-master=BINLOG-DUMP-NON-GTIDS.
--result-file=name, -r name
Without the --raw option, this option indicates the file to which mysqlbinlog writes text output. With --raw, mysqlbinlog writes one binary output file for each log file transferred from the server, writing them by default in the current directory using the same names as the original log file. In this case, the --result-file option value is treated as a prefix that modifies output file names.
Display only those events created by the server having the given server ID.
Add a SET NAMES charset_name statement to the output to specify the character set to be used for processing log files.
--short-form, -s
Display only the statements contained in the log, without any extra information or row-based events. This is for testing only, and should not be used in production systems.
Do not display any GTIDs. Not recommended in production. Added in MySQL 5.6.5.
--socket=path, -S path
For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe to use.
Start reading the binary log at the first event having a timestamp equal to or later than the datetime argument. The datetime value is relative to the local time zone on the machine where you run mysqlbinlog. The value should be in a format accepted for the DATETIME or TIMESTAMP data types. For example:
shell> mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003
This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery Strategy”.
--start-position=N, -j N
Start reading the binary log at the first event having a position equal to or greater than N. This option applies to the first log file named on the command line.
This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery Strategy”.
Stop reading the binary log at the first event having a timestamp equal to or later than the datetime argument. This option is useful for point-in-time recovery. See the description of the --start-datetime option for information about the datetime value.
This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery Strategy”.
This option is used with --read-from-remote-server. It tells mysqlbinlog to remain connected to the server. Otherwise mysqlbinlog exits when the last log file has been transferred from the server. --stop-never implies --to-last-log, so only the first log file to transfer need be named on the command line.
--stop-never is commonly used with --raw to make a live binary log backup, but also can be used without --raw to maintain a continuous text display of log events as the server generates them.
This option was added in MySQL 5.6.0.
--stop-never-slave-server-id=id
With --stop-never, mysqlbinlog reports a server ID of 65535 when it connects to the server. --stop-never-slave-server-id explicitly specifies the server ID to report. It can be used to avoid a conflict with the ID of a slave server or another mysqlbinlog process. See Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”.
This option was added in MySQL 5.6.0.
Stop reading the binary log at the first event having a position equal to or greater than N. This option applies to the last log file named on the command line.
This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery Strategy”.
--to-last-log, -t
Do not stop at the end of the requested binary log from a MySQL server, but rather continue printing until the end of the last binary log. If you send the output to the same MySQL server, this may lead to an endless loop. This option requires --read-from-remote-server.
--user=user_name, -u user_name
The MySQL user name to use when connecting to a remote server.
--verbose, -v
Reconstruct row events and display them as commented SQL statements. If this option is given twice, the output includes comments to indicate column data types and some metadata.
For examples that show the effect of --base64-output and --verbose on row event output, see Section 4.6.8.2, “mysqlbinlog Row Event Display”.
Verify checksums in binary log files. This option was added in MySQL 5.6.1.
--version, -V
Display version information and exit.
Prior to MySQL 5.6.11, the mysqlbinlog version number shown was 3.3. In MySQL 5.6.11 and later, this is 3.4. (Bug #15894381, Bug #67643)
You can also set the following variable by using --var_name=value syntax:
open_files_limit
Specify the number of open file descriptors to reserve.
You can pipe the output of mysqlbinlog into the mysql client to execute the events contained in the binary log. This technique is used to recover from a crash when you have an old backup (see Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”). For example:
shell> mysqlbinlog binlog.000001 | mysql -u root -p
Or:
shell> mysqlbinlog binlog.[0-9]* | mysql -u root -p
If the statements produced by mysqlbinlog may contain BLOB values, these may cause problems when mysql processes them. In this case, invoke mysql with the --binary-mode option.
You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the statement log first (for example, to remove statements that you do not want to execute for some reason). After editing the file, execute the statements that it contains by using it as input to the mysql program:
shell> mysqlbinlog binlog.000001 > tmpfile
shell> ... edit tmpfile ...
shell> mysql -u root -p < tmpfile
When mysqlbinlog is invoked with the --start-position option, it displays only those events with an offset in the binary log greater than or equal to a given position (the given position must match the start of one event). It also has options to stop and start when it sees an event with a given date and time. This enables you to perform point-in-time recovery using the --stop-datetime option (to be able to say, for example, “roll forward my databases to how they were today at 10:30 a.m.”).
If you have more than one binary log to execute on the MySQL server, the safe method is to process them all using a single connection to the server. Here is an example that demonstrates what may be unsafe:
shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!
Processing binary logs this way using multiple connections to the server causes problems if the first log file contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that uses the temporary table. When the first mysql process terminates, the server drops the temporary table. When the second mysql process attempts to use the table, the server reports “unknown table.”
To avoid problems like this, use a single mysql process to execute the contents of all binary logs that you want to process. Here is one way to do so:
shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p
Another approach is to write all the logs to a single file and then process the file:
shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"
mysqlbinlog can produce output that reproduces a LOAD DATA INFILE operation without the original data file. mysqlbinlog copies the data to a temporary file and writes a LOAD DATA LOCAL INFILE statement that refers to the file. The default location of the directory where these files are written is system-specific. To specify a directory explicitly, use the --local-load option.
Because mysqlbinlog converts LOAD DATA INFILE statements to LOAD DATA LOCAL INFILE statements (that is, it adds LOCAL), both the client and the server that you use to process the statements must be configured with the LOCAL capability enabled. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”.
Warning
The temporary files created for LOAD DATA LOCAL statements are not automatically deleted because they are needed until you actually execute those statements. You should delete the temporary files yourself after you no longer need the statement log. The files can be found in the temporary file directory and have names like original_file_name-#-#.
4.6.8.1. mysqlbinlog Hex Dump Format
The --hexdump option causes mysqlbinlog to produce a hex dump of the binary log contents:
shell> mysqlbinlog --hexdump master-bin.000001
The hex output consists of comment lines beginning with #, so the output might look like this for the preceding command:
/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
at 4
#051024 17:24:13 server id 1 end_log_pos 98
Position Timestamp Type Master ID Size Master Pos Flags
00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00
00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|
00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|
00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|
Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
at startup
ROLLBACK;
Hex dump output currently contains the elements in the following list. This format is subject to change. (For more information about binary log format, see MySQL Internals: The Binary Log.
Position: The byte position within the log file.
Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the representation of '051024 17:24:13' in hexadecimal.
Type: The event type code. In the example shown, '0f' indicates a FORMAT_DESCRIPTION_EVENT. The following table lists the possible type codes.
Type | Name | Meaning |
---|---|---|
00 | UNKNOWN_EVENT | This event should never be present in the log. |
01 | START_EVENT_V3 | This indicates the start of a log file written by MySQL 4 or earlier. |
02 | QUERY_EVENT | The most common type of events. These contain statements executed on the master. |
03 | STOP_EVENT | Indicates that master has stopped. |
04 | ROTATE_EVENT | Written when the master switches to a new log file. |
05 | INTVAR_EVENT | Used for AUTO_INCREMENT values or when the LAST_INSERT_ID() function is used in the statement. |
06 | LOAD_EVENT | Used for LOAD DATA INFILE in MySQL 3.23. |
07 | SLAVE_EVENT | Reserved for future use. |
08 | CREATE_FILE_EVENT | Used for LOAD DATA INFILE statements. This indicates the start of execution of such a statement. A temporary file is created on the slave. Used in MySQL 4 only. |
09 | APPEND_BLOCK_EVENT | Contains data for use in a LOAD DATA INFILE statement. The data is stored in the temporary file on the slave. |
0a | EXEC_LOAD_EVENT | Used for LOAD DATA INFILE statements. The contents of the temporary file is stored in the table on the slave. Used in MySQL 4 only. |
0b | DELETE_FILE_EVENT | Rollback of a LOAD DATA INFILE statement. The temporary file should be deleted on the slave. |
0c | NEW_LOAD_EVENT | Used for LOAD DATA INFILE in MySQL 4 and earlier. |
0d | RAND_EVENT | Used to send information about random values if the RAND() function is used in the statement. |
0e | USER_VAR_EVENT | Used to replicate user variables. |
0f | FORMAT_DESCRIPTION_EVENT | This indicates the start of a log file written by MySQL 5 or later. |
10 | XID_EVENT | Event indicating commit of an XA transaction. |
11 | BEGIN_LOAD_QUERY_EVENT | Used for LOAD DATA INFILE statements in MySQL 5 and later. |
12 | EXECUTE_LOAD_QUERY_EVENT | Used for LOAD DATA INFILE statements in MySQL 5 and later. |
13 | TABLE_MAP_EVENT | Information about a table definition. Used in MySQL 5.1.5 and later. |
14 | PRE_GA_WRITE_ROWS_EVENT | Row data for a single table that should be created. Used in MySQL 5.1.5 to 5.1.17. |
15 | PRE_GA_UPDATE_ROWS_EVENT | Row data for a single table that needs to be updated. Used in MySQL 5.1.5 to 5.1.17. |
16 | PRE_GA_DELETE_ROWS_EVENT | Row data for a single table that should be deleted. Used in MySQL 5.1.5 to 5.1.17. |
17 | WRITE_ROWS_EVENT | Row data for a single table that should be created. Used in MySQL 5.1.18 and later. |
18 | UPDATE_ROWS_EVENT | Row data for a single table that needs to be updated. Used in MySQL 5.1.18 and later. |
19 | DELETE_ROWS_EVENT | Row data for a single table that should be deleted. Used in MySQL 5.1.18 and later. |
1a | INCIDENT_EVENT | Something out of the ordinary happened. Added in MySQL 5.1.18. |
Master ID: The server ID of the master that created the event.
Size: The size in bytes of the event.
Master Pos: The position of the next event in the original master log file.
Flags: 16 flags. Currently, the following flags are used. The others are reserved for future use.
Flag | Name | Meaning |
---|---|---|
01 | LOG_EVENT_BINLOG_IN_USE_F | Log file correctly closed. (Used only in FORMAT_DESCRIPTION_EVENT.) If this flag is set (if the flags are, for example, '01 00') in a FORMAT_DESCRIPTION_EVENT, the log file has not been properly closed. Most probably this is because of a master crash (for example, due to power failure). |
02 | Reserved for future use. | |
04 | LOG_EVENT_THREAD_SPECIFIC_F | Set if the event is dependent on the connection it was executed in (for example, '04 00'), for example, if the event uses temporary tables. |
08 | LOG_EVENT_SUPPRESS_USE_F | Set in some circumstances when the event is not dependent on the default database. |
4.6.8.2. mysqlbinlog Row Event Display
The following examples illustrate how mysqlbinlog displays row events that specify data modifications. These correspond to events with the WRITE_ROWS_EVENT, UPDATE_ROWS_EVENT, and DELETE_ROWS_EVENT type codes. The --base64-output=DECODE-ROWS and --verbose options may be used to affect row event output.
Suppose that the server is using row-based binary logging and that you execute the following sequence of statements:
CREATE TABLE t
(
id INT NOT NULL,
name VARCHAR(20) NOT NULL,
date DATE NULL
) ENGINE = InnoDB;
START TRANSACTION;
INSERT INTO t VALUES(1, 'apple', NULL);
UPDATE t SET name = 'pear', date = '2009-01-01' WHERE id = 1;
DELETE FROM t WHERE id = 1;
COMMIT;
By default, mysqlbinlog displays row events encoded as base-64 strings using BINLOG statements. Omitting extraneous lines, the output for the row events produced by the preceding statement sequence looks like this:
shell> mysqlbinlog log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
To see the row events as comments in the form of “pseudo-SQL” statements, run mysqlbinlog with the --verbose or -v option. The output will contain lines beginning with ###:
shell> mysqlbinlog -v log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'
Specify --verbose or -v twice to also display data types and some metadata for each column. The output will contain an additional comment following each column change:
shell> mysqlbinlog -vv log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
BINLOG '
fAS3SBMBAAAALAAAANoAAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBcBAAAAKAAAAAIBAAAQABEAAAAAAAEAA//8AQAAAAVhcHBsZQ==
'/*!*/;
INSERT INTO test.t
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
BINLOG '
fAS3SBMBAAAALAAAAC4BAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBgBAAAANgAAAGQBAAAQABEAAAAAAAEAA////AEAAAAFYXBwbGX4AQAAAARwZWFyIbIP
'/*!*/;
UPDATE test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */
SET
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
BINLOG '
fAS3SBMBAAAALAAAAJABAAAAABEAAAAAAAAABHRlc3QAAXQAAwMPCgIUAAQ=
fAS3SBkBAAAAKgAAALoBAAAQABEAAAAAAAEAA//4AQAAAARwZWFyIbIP
'/*!*/;
DELETE FROM test.t
WHERE
@1=1 /* INT meta=0 nullable=0 is_null=0 */
@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */
@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */
You can tell mysqlbinlog to suppress the BINLOG statements for row events by using the --base64-output=DECODE-ROWS option. This is similar to --base64-output=NEVER but does not exit with an error if a row event is found. The combination of --base64-output=DECODE-ROWS and --verbose provides a convenient way to see row events only as SQL statements:
shell> mysqlbinlog -v --base64-output=DECODE-ROWS log_file
...
at 218
#080828 15:03:08 server id 1 end_log_pos 258 Write_rows: table id 17 flags: STMT_END_F
INSERT INTO test.t
SET
@1=1
@2='apple'
@3=NULL
...
at 302
#080828 15:03:08 server id 1 end_log_pos 356 Update_rows: table id 17 flags: STMT_END_F
UPDATE test.t
WHERE
@1=1
@2='apple'
@3=NULL
SET
@1=1
@2='pear'
@3='2009:01:01'
...
at 400
#080828 15:03:08 server id 1 end_log_pos 442 Delete_rows: table id 17 flags: STMT_END_F
DELETE FROM test.t
WHERE
@1=1
@2='pear'
@3='2009:01:01'
Note
You should not suppress BINLOG statements if you intend to re-execute mysqlbinlog output.
The SQL statements produced by --verbose for row events are much more readable than the corresponding BINLOG statements. However, they do not correspond exactly to the original SQL statements that generated the events. The following limitations apply:
The original column names are lost and replaced by @N, where N is a column number.
Character set information is not available in the binary log, which affects string column display:
There is no distinction made between corresponding binary and nonbinary string types (BINARY and CHAR, VARBINARY and VARCHAR, BLOB and TEXT). The output uses a data type of STRING for fixed-length strings and VARSTRING for variable-length strings.
For multi-byte character sets, the maximum number of bytes per character is not present in the binary log, so the length for string types is displayed in bytes rather than in characters. For example, STRING(4) will be used as the data type for values from either of these column types:
CHAR(4) CHARACTER SET latin1
CHAR(2) CHARACTER SET ucs2
Due to the storage format for events of type UPDATE_ROWS_EVENT, UPDATE statements are displayed with the WHERE clause preceding the SET clause.
Proper interpretation of row events requires the information from the format description event at the beginning of the binary log. Because mysqlbinlog does not know in advance whether the rest of the log contains row events, by default it displays the format description event using a BINLOG statement in the initial part of the output.
If the binary log is known not to contain any events requiring a BINLOG statement (that is, no row events), the --base64-output=NEVER option can be used to prevent this header from being written.
4.6.8.3. Using mysqlbinlog to Back Up Binary Log Files
By default, mysqlbinlog reads binary log files and displays their contents in text format. This enables you to examine events within the files more easily or be re-execute them (for example, by using the output as input to mysql). mysqlbinlog can read log files directly from the local file system, or, with the --read-from-remote-server option, it can connect to a server and request binary log contents from that server. mysqlbinlog writes text output to its standard output, or to the file named as the value of the --result-file=file_name option if that option is given.
As of MySQL 5.6, mysqlbinlog can read binary log files and write new files containing the same content—that is, in binary format rather than text format. This capability enables you to easily back up a binary log in its original format. mysqlbinlog can make a static backup, backing up a set of log files and stopping when the end of the last file is reached. It can also make a continuous (“live”) backup, staying connected to the server when it reaches the end of the last log file and continuing to copy new events as they are generated. In continuous-backup operation, mysqlbinlog runs until the connection ends (for example, when the server exits) or mysqlbinlog is forcibly terminated. When the connection ends, mysqlbinlog does not wait and retry the connection, unlike a slave replication server. To continue a live backup after the server has been restarted, you must also restart mysqlbinlog.
Binary log backup requires that you invoke mysqlbinlog with two options at minimum:
The --read-from-remote-server (or -R) option tells mysqlbinlog to connect to a server and request its binary log. (This is similar to a slave replication server connecting to its master server.)
The --raw option tells mysqlbinlog to write raw (binary) output, not text output.
Along with --read-from-remote-server, it is common to specify other options: --host indicates where the server is running, and you may also need to specify connection options such as --user and --password.
Several other options are useful in conjunction with --raw:
--stop-never: Stay connected to the server after reaching the end of the last log file and continue to read new events.
--stop-never-slave-server-id=id: The server ID that mysqlbinlog reports to the server when --stop-never is used. The default is 65535. This can be used to avoid a conflict with the ID of a slave server or another mysqlbinlog process. See Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”.
--result-file: A prefix for output file names, as described later.
To back up a server's binary log files with mysqlbinlog, you must specify file names that actually exist on the server. If you do not know the names, connect to the server and use the SHOW BINARY LOGS statement to see the current names. Suppose that the statement produces this output:
mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000130 | 27459 |
| binlog.000131 | 13719 |
| binlog.000132 | 43268 |
+---------------+-----------+
With that information, you can use mysqlbinlog to back up the binary log to the current directory as follows (enter each command on a single line):
To make a static backup of binlog.000130 through binlog.000132, use either of these commands:
mysqlbinlog --read-from-remote-server --host=host_name --raw
binlog.000130 binlog.000131 binlog.000132
mysqlbinlog --read-from-remote-server --host=host_name --raw
--to-last-log binlog.000130
The first command specifies every file name explicitly. The second names only the first file and uses --to-last-log to read through the last. A difference between these commands is that if the server happens to open binlog.000133 before mysqlbinlog reaches the end of binlog.000132, the first command will not read it, but the second command will.
To make a live backup in which mysqlbinlog starts with binlog.000130 to copy existing log files, then stays connected to copy new events as the server generates them:
mysqlbinlog --read-from-remote-server --host=host_name --raw
--stop-never binlog.000130
With --stop-never, it is not necessary to specify --to-last-log to read to the last log file because that option is implied.
Output File Naming
Without --raw, mysqlbinlog produces text output and the --result-file option, if given, specifies the name of the single file to which all output is written. With --raw, mysqlbinlog writes one binary output file for each log file transferred from the server. By default, mysqlbinlog writes the files in the current directory with the same names as the original log files. To modify the output file names, use the --result-file option. In conjunction with --raw, the --result-file option value is treated as a prefix that modifies the output file names.
Suppose that a server currently has binary log files named binlog.000999 and up. If you use mysqlbinlog --raw to back up the files, the --result-file option produces output file names as shown in the following table. You can write the files to a specific directory by beginning the --result-file value with the directory path. If the --result-file value consists only of a directory name, the value must end with the pathname separator character. Output files are overwritten if they exist.
--result-file Option | Output File Names |
---|---|
--result-file=x | xbinlog.000999 and up |
--result-file=/tmp/ | /tmp/binlog.000999 and up |
--result-file=/tmp/x | /tmp/xbinlog.000999 and up |
Example: mysqldump + mysqlbinlog for Backup and Restore
The following example describes a simple scenario that shows how to use mysqldump and mysqlbinlog together to back up a server's data and binary log, and how to use the backup to restore the server if data loss occurs. The example assumes that the server is running on host host_name and its first binary log file is named binlog.000999. Enter each command on a single line.
Use mysqlbinlog to make a continuous backup of the binary log:
mysqlbinlog --read-from-remote-server --host=host_name --raw
--stop-never binlog.000999
Use mysqldump to create a dump file as a snapshot of the server's data. Use --all-databases, --events, and --routines to back up all data, and --master-data=2 to include the current binary log coordinates in the dump file.
mysqldump --host=host_name --all-databases --events --routines --master-data=2> dump_file
Execute the mysqldump command periodically to create newer snapshots as desired.
If data loss occurs (for example, if the server crashes), use the most recent dump file to restore the data:
mysql --host=host_name -u root -p < dump_file
Then use the binary log backup to re-execute events that were written after the coordinates listed in the dump file. Suppose that the coordinates in the file look like this:
-- CHANGE MASTER TO MASTER_LOG_FILE='binlog.001002', MASTER_LOG_POS=27284;
If the most recent backed-up log file is named binlog.001004, re-execute the log events like this:
mysqlbinlog --start-position=27284 binlog.001002 binlog.001003 binlog.001004
| mysql --host=host_name -u root -p
You might find it easier to copy the backup files (dump file and binary log files) to the server host to make it easier to perform the restore operation, or if MySQL does not allow remote root access.
4.6.8.4. Specifying the mysqlbinlog Server ID
When invoked with the --read-from-remote-server option, mysqlbinlog connects to a MySQL server, specifies a server ID to identify itself, and requests binary log files from the server. You can use mysqlbinlog to request log files from a server in several ways:
Specify an explicitly named set of files: For each file, mysqlbinlog connects and issues a Binlog dump command. The server sends the file and disconnects. There is one connection per file.
Specify the beginning file and --to-last-log: mysqlbinlog connects and issues a Binlog dump command for all files. The server sends all files and disconnects.
Specify the beginning file and --stop-never (which implies --to-last-log): mysqlbinlog connects and issues a Binlog dump command for all files. The server sends all files, but does not disconnect after sending the last one.
With --read-from-remote-server only, mysqlbinlog connects using a server ID of 0, which tells the server to disconnect after sending the last requested log file.
With --read-from-remote-server and --stop-never, mysqlbinlog connects using a nonzero server ID, so the server does not disconnect after sending the last log file. The server ID is 65535 by default, but this can be changed with --stop-never-slave-server-id.
Thus, for the first two ways of requesting files, the server disconnects because mysqlbinlog specifies a server ID of 0. It does not disconnect if --stop-never is given because mysqlbinlog specifies a nonzero server ID.
4.6.9. mysqldumpslow — Summarize Slow Query Log Files
The MySQL slow query log contains information about queries that take a long time to execute (see Section 5.2.5, “The Slow Query Log”). mysqldumpslow parses MySQL slow query log files and prints a summary of their contents.
Normally, mysqldumpslow groups queries that are similar except for the particular values of number and string data values. It “abstracts” these values to N and 'S' when displaying summary output. The -a and -n options can be used to modify value abstracting behavior.
Invoke mysqldumpslow like this:
shell> mysqldumpslow [options] [log_file ...]
mysqldumpslow supports the following options.
Table 4.14. mysqldumpslow Options
Format | Option File | Description |
---|---|---|
-a | Do not abstract all numbers to N and strings to S | |
-n num | Abstract numbers with at least the specified digits | |
--debug | debug | Write debugging information |
-g pattern | Only consider statements that match the pattern | |
--help | Display help message and exit | |
-h name | Host name of the server in the log file name | |
-i name | Name of the server instance | |
-l | Do not subtract lock time from total time | |
-r | Reverse the sort order | |
-s value | How to sort output | |
-t num | Display only first num queries | |
--verbose | verbose | Verbose mode |
Display a help message and exit.
-a
Do not abstract all numbers to N and strings to 'S'.
--debug, -d
Run in debug mode.
-g pattern
Consider only queries that match the (grep-style) pattern.
-h host_name
Host name of MySQL server for *-slow.log file name. The value can contain a wildcard. The default is * (match all).
-i name
Name of server instance (if using mysql.server startup script).
-l
Do not subtract lock time from total time.
-n N
Abstract numbers with at least N digits within names.
-r
Reverse the sort order.
-s sort_type
How to sort the output. The value of sort_type should be chosen from the following list:
t, at: Sort by query time or average query time
l, al: Sort by lock time or average lock time
r, ar: Sort by rows sent or average rows sent
c: Sort by count
By default, mysqldumpslow sorts by average query time (equivalent to -s at).
-t N
Display only the first N queries in the output.
--verbose, -v
Verbose mode. Print more information about what the program does.
Example of usage:
shell> mysqldumpslow
Reading mysql slow query log from /usr/local/mysql/data/mysqld51-apple-slow.log
Count: 1 Time=4.32s (4s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
insert into t2 select * from t1
Count: 3 Time=2.53s (7s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
insert into t2 select * from t1 limit N
Count: 3 Time=2.13s (6s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
insert into t1 select * from t1
4.6.10. mysqlhotcopy — A Database Backup Program
mysqlhotcopy is a Perl script that was originally written and contributed by Tim Bunce. It uses FLUSH TABLES, LOCK TABLES, and cp or scp to make a database backup. It is a fast way to make a backup of the database or single tables, but it can be run only on the same machine where the database directories are located. mysqlhotcopy works only for backing up MyISAM and ARCHIVE tables. It runs on Unix.
To use mysqlhotcopy, you must have read access to the files for the tables that you are backing up, the SELECT privilege for those tables, the RELOAD privilege (to be able to execute FLUSH TABLES), and the LOCK TABLES privilege (to be able to lock the tables).
shell> mysqlhotcopy db_name [/path/to/new_directory]
shell> mysqlhotcopy db_name_1 ... db_name_n /path/to/new_directory
Back up tables in the given database that match a regular expression:
shell> mysqlhotcopy db_name./regex/
The regular expression for the table name can be negated by prefixing it with a tilde (“~”):
shell> mysqlhotcopy db_name./~regex/
mysqlhotcopy supports the following options, which can be specified on the command line or in the [mysqlhotcopy] and [client] groups of an option file. For information about option files, see Section 4.2.3.3, “Using Option Files”.
Table 4.15. mysqlhotcopy Options
Format | Option File | Description |
---|---|---|
--addtodest | addtodest | Do not rename target directory (if it exists); merely add files to it |
--allowold | allowold | Do not abort if a target exists; rename it by adding an _old suffix |
--checkpoint=db_name.tbl_name | checkpoint | Insert checkpoint entries |
--chroot=path | chroot | Base directory of the chroot jail in which mysqld operates |
--debug | debug | Write a debugging log |
--dryrun | dryrun | Report actions without performing them |
--flushlog | flushlog | Flush logs after all tables are locked |
--help | Display help message and exit | |
--host=host_name | host | Connect to the MySQL server on the given host |
--keepold | keepold | Do not delete previous (renamed) target when done |
--method | method | The method for copying files |
--noindices | noindices | Do not include full index files in the backup |
--old_server | old_server | Connect to server that does not support FLUSH TABLES tbl_list WITH READ LOCK |
--password[=password] | password | The password to use when connecting to the server |
--port=port_num | port | The TCP/IP port number to use for the connection |
--quiet | quiet | Be silent except for errors |
--regexp | regexp | Copy all databases with names that match the given regular expression |
--resetmaster | resetmaster | Reset the binary log after locking all the tables |
--resetslave | resetslave | Reset the master.info file after locking all the tables |
--socket=path | socket | For connections to localhost |
--tmpdir=path | tmpdir | The temporary directory |
--user=user_name, | user | MySQL user name to use when connecting to server |
--help, -?
Display a help message and exit.
Do not rename target directory (if it exists); merely add files to it.
Do not abort if a target exists; rename it by adding an _old suffix.
Insert checkpoint entries into the specified database db_name and table tbl_name.
Base directory of the chroot jail in which mysqld operates. The path value should match that of the --chroot option given to mysqld.
Enable debug output.
--dryrun, -n
Report actions without performing them.
Flush logs after all tables are locked.
--host=host_name, -h host_name
The host name of the local host to use for making a TCP/IP connection to the local server. By default, the connection is made to localhost using a Unix socket file.
Do not delete previous (renamed) target when done.
The method for copying files (cp or scp). The default is cp.
Do not include full index files for MyISAM tables in the backup. This makes the backup smaller and faster. The indexes for reloaded tables can be reconstructed later with myisamchk -rq.
--password=password, -ppassword
The password to use when connecting to the server. The password value is not optional for this option, unlike for other MySQL programs.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
--port=port_num, -P port_num
The TCP/IP port number to use when connecting to the local server.
In MySQL 5.6, mysqlhotcopy uses FLUSH TABLES tbl_list WITH READ LOCK to flush and lock tables. Use the --old_server option if the server is older than 5.5.3, which is when that statement was introduced.
--quiet, -q
Be silent except for errors.
--record_log_pos=db_name.tbl_name
Record master and slave status in the specified database db_name and table tbl_name.
Copy all databases with names that match the given regular expression.
Reset the binary log after locking all the tables.
Reset the master.info file after locking all the tables.
--socket=path, -S path
The Unix socket file to use for connections to localhost.
The suffix to use for names of copied databases.
The temporary directory. The default is /tmp.
--user=user_name, -u user_name
The MySQL user name to use when connecting to the server.
Use perldoc for additional mysqlhotcopy documentation, including information about the structure of the tables needed for the --checkpoint and --record_log_pos options:
shell> perldoc mysqlhotcopy
4.6.11. mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_convert_table_format converts the tables in a database to use a particular storage engine (MyISAM by default). mysql_convert_table_format is written in Perl and requires that the DBI and DBD::mysql Perl modules be installed (see Section 2.13, “Perl Installation Notes”).
Invoke mysql_convert_table_format like this:
shell> mysql_convert_table_format [options]db_name
The db_name argument indicates the database containing the tables to be converted.
mysql_convert_table_format supports the options described in the following list.
Display a help message and exit.
Continue even if errors occur.
Connect to the MySQL server on the given host.
The password to use when connecting to the server. Note that the password value is not optional for this option, unlike for other MySQL programs.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
The TCP/IP port number to use for the connection.
For connections to localhost, the Unix socket file to use.
Specify the storage engine that the tables should be converted to use. The default is MyISAM if this option is not given.
The MySQL user name to use when connecting to the server.
Verbose mode. Print more information about what the program does.
Display version information and exit.
4.6.12. mysql_find_rows — Extract SQL Statements from Files
mysql_find_rows reads files containing SQL statements and extracts statements that match a given regular expression or that contain USE db_name or SET statements. The utility expects statements to be terminated with semicolon (;) characters.
Invoke mysql_find_rows like this:
shell> mysql_find_rows [options] [file_name ...]
Each file_name argument should be the name of file containing SQL statements. If no file names are given, mysql_find_rows reads the standard input.
Examples:
mysql_find_rows --regexp=problem_table --rows=20 < update.log
mysql_find_rows --regexp=problem_table update-log.1 update-log.2
mysql_find_rows supports the following options:
Display a help message and exit.
Display queries that match the pattern.
Quit after displaying N queries.
Do not include USE db_name statements in the output.
Start output from this row.
4.6.13. mysql_fix_extensions — Normalize Table File Name Extensions
mysql_fix_extensions converts the extensions for MyISAM (or ISAM) table files to their canonical forms. It looks for files with extensions matching any lettercase variant of .frm, .myd, .myi, .isd, and .ism and renames them to have extensions of .frm, .MYD, .MYI, .ISD, and .ISM, respectively. This can be useful after transferring the files from a system with case-insensitive file names (such as Windows) to a system with case-sensitive file names.
Invoke mysql_fix_extensions like this, where data_dir is the path name to the MySQL data directory.
shell> mysql_fix_extensions data_dir
4.6.14. mysql_setpermission — Interactively Set Permissions in Grant Tables
mysql_setpermission is a Perl script that was originally written and contributed by Luuk de Boer. It interactively sets permissions in the MySQL grant tables. mysql_setpermission is written in Perl and requires that the DBI and DBD::mysql Perl modules be installed (see Section 2.13, “Perl Installation Notes”).
Invoke mysql_setpermission like this:
shell> mysql_setpermission [options]
options should be either --help to display the help message, or options that indicate how to connect to the MySQL server. The account used when you connect determines which permissions you have when attempting to modify existing permissions in the grant tables.
mysql_setpermissions also reads options from the [client] and [perl] groups in the .my.cnf file in your home directory, if the file exists.
mysql_setpermission supports the following options:
Display a help message and exit.
Connect to the MySQL server on the given host.
The password to use when connecting to the server. Note that the password value is not optional for this option, unlike for other MySQL programs.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
The TCP/IP port number to use for the connection.
For connections to localhost, the Unix socket file to use.
The MySQL user name to use when connecting to the server.
4.6.15. mysql_waitpid — Kill Process and Wait for Its Termination
mysql_waitpid signals a process to terminate and waits for the process to exit. It uses the kill() system call and Unix signals, so it runs on Unix and Unix-like systems.
Invoke mysql_waitpid like this:
shell> mysql_waitpid [options] pid wait_time
mysql_waitpid sends signal 0 to the process identified by pid and waits up to wait_time seconds for the process to terminate. pid and wait_time must be positive integers.
If process termination occurs within the wait time or the process does not exist, mysql_waitpid returns 0. Otherwise, it returns 1.
If the kill() system call cannot handle signal 0, mysql_waitpid() uses signal 1 instead.
mysql_waitpid supports the following options:
--help, -?, -I
Display a help message and exit.
--verbose, -v
Verbose mode. Display a warning if signal 0 could not be used and signal 1 is used instead.
--version, -V
Display version information and exit.
4.6.16. mysql_zap — Kill Processes That Match a Pattern
mysql_zap kills processes that match a pattern. It uses the ps command and Unix signals, so it runs on Unix and Unix-like systems.
Invoke mysql_zap like this:
shell> mysql_zap [-signal] [-?Ift] pattern
A process matches if its output line from the ps command contains the pattern. By default, mysql_zap asks for confirmation for each process. Respond y to kill the process, or q to exit mysql_zap. For any other response, mysql_zap does not attempt to kill the process.
If the -signal option is given, it specifies the name or number of the signal to send to each process. Otherwise, mysql_zap tries first with TERM (signal 15) and then with KILL (signal 9).
mysql_zap supports the following additional options:
--help, -?, -I
Display a help message and exit.
-f
Force mode. mysql_zap attempts to kill each process without confirmation.
-t
Test mode. Display information about each process but do not kill it.
4.7. MySQL Program Development Utilities
This section describes some utilities that you may find useful when developing MySQL programs.
In shell scripts, you can use the my_print_defaults program to parse option files and see what options would be used by a given program. The following example shows the output that my_print_defaults might produce when asked to show the options found in the [client] and [mysql] groups:
shell> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash
Note for developers: Option file handling is implemented in the C client library simply by processing all options in the appropriate group or groups before any command-line arguments. This works well for programs that use the last instance of an option that is specified multiple times. If you have a C or C++ program that handles multiply specified options this way but that doesn't read option files, you need add only two lines to give it that capability. Check the source code of any of the standard MySQL clients to see how to do this.
Several other language interfaces to MySQL are based on the C client library, and some of them provide a way to access option file contents. These include Perl and Python. For details, see the documentation for your preferred interface.
4.7.1. msql2mysql — Convert mSQL Programs for Use with MySQL
Initially, the MySQL C API was developed to be very similar to that for the mSQL database system. Because of this, mSQL programs often can be converted relatively easily for use with MySQL by changing the names of the C API functions.
The msql2mysql utility performs the conversion of mSQL C API function calls to their MySQL equivalents. msql2mysql converts the input file in place, so make a copy of the original before converting it. For example, use msql2mysql like this:
shell> cp client-prog.c client-prog.c.orig
shell> msql2mysql client-prog.c
client-prog.c converted
Then examine client-prog.c and make any post-conversion revisions that may be necessary.
msql2mysql uses the replace utility to make the function name substitutions. See Section 4.8.2, “replace — A String-Replacement Utility”.
4.7.2. mysql_config — Display Options for Compiling Clients
mysql_config provides you with useful information for compiling your MySQL client and connecting it to MySQL. It is a shell script, so it is available only on Unix and Unix-like systems.
mysql_config supports the following options.
C Compiler flags to find include files and critical compiler flags and defines used when compiling the libmysqlclient library. The options returned are tied to the specific compiler that was used when the library was created and might clash with the settings for your own compiler. Use --include for more portable options that contain only include paths.
Like --cflags, but for C++ compiler flags. This option was added in MySQL 5.6.4.
Compiler options to find MySQL include files.
Libraries and options required to link with the MySQL embedded server.
Libraries and options required to link with the MySQL client library.
Libraries and options required to link with the thread-safe MySQL client library. In MySQL 5.6, all client libraries are thread-safe, so this option need not be used. The --libs option can be used in all cases.
The default plugin directory path name, defined when configuring MySQL.
The default TCP/IP port number, defined when configuring MySQL.
The default Unix socket file, defined when configuring MySQL.
Version number for the MySQL distribution.
If you invoke mysql_config with no options, it displays a list of all options that it supports, and their values:
shell> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:
--cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
--include [-I/usr/local/mysql/include/mysql]
--libs [-L/usr/local/mysql/lib/mysql -lmysqlclient
-lpthread -lm -lrt -lssl -lcrypto -ldl]
--libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r
-lpthread -lm -lrt -lssl -lcrypto -ldl]
--socket [/tmp/mysql.sock]
--port [3306]
--version [5.6.11]
--libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld
-lpthread -lm -lrt -lssl -lcrypto -ldl -lcrypt]
You can use mysql_config within a command line using backticks to include the output that it produces for a particular option. For example, to compile and link a MySQL client program, use mysql_config as follows:
shell> gcc -c `mysql_config --cflags` progname.c
shell> gcc -o progname progname.o `mysql_config --libs`
4.7.3. my_print_defaults — Display Options from Option Files
my_print_defaults displays the options that are present in option groups of option files. The output indicates what options will be used by programs that read the specified option groups. For example, the mysqlcheck program reads the [mysqlcheck] and [client] option groups. To see what options are present in those groups in the standard option files, invoke my_print_defaults like this:
shell> my_print_defaults mysqlcheck client
--user=myusername
--password=secret
--host=localhost
The output consists of options, one per line, in the form that they would be specified on the command line.
my_print_defaults supports the following options.
--help, -?
Display a help message and exit.
--config-file=file_name, --defaults-file=file_name, -c file_name
Read only the given option file.
--debug=debug_options, -# debug_options
Write a debugging log. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:o,/tmp/my_print_defaults.trace'.
--defaults-extra-file=file_name, --extra-file=file_name, -e file_name
Read this option file after the global option file but (on Unix) before the user option file.
--defaults-group-suffix=suffix, -g suffix
In addition to the groups named on the command line, read groups that have the given suffix.
--login-path=name, -l name
Read options from the named login path in the .mylogin.cnf login file. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”. This option was added in MySQL 5.6.6.
--no-defaults, -n
Return an empty string.
--verbose, -v
Verbose mode. Print more information about what the program does.
--version, -V
Display version information and exit.
4.7.4. resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
resolve_stack_dump resolves a numeric stack dump to symbols.
Invoke resolve_stack_dump like this:
shell> resolve_stack_dump [options] symbols_file [numeric_dump_file]
The symbols file should include the output from the nm --numeric-sort mysqld command. The numeric dump file should contain a numeric stack track from mysqld. If no numeric dump file is named on the command line, the stack trace is read from the standard input.
resolve_stack_dump supports the following options.
--help, -h
Display a help message and exit.
--numeric-dump-file=file_name, -n file_name
Read the stack trace from the given file.
--symbols-file=file_name, -s file_name
Use the given symbols file.
--version, -V
Display version information and exit.
4.8. Miscellaneous Programs
4.8.1. perror — Explain Error Codes
For most system errors, MySQL displays, in addition to an internal text message, the system error code in one of the following styles:
message ... (errno: #)
message ... (Errcode: #)
You can find out what the error code means by examining the documentation for your system or by using the perror utility.
perror prints a description for a system error code or for a storage engine (table handler) error code.
Invoke perror like this:
shell> perror [options] errorcode ...
Example:
shell> perror 13 64
OS error code 13: Permission denied
OS error code 64: Machine is not on the network
To obtain the error message for a MySQL Cluster error code, invoke perror with the --ndb option:
shell> perror --ndb errorcode
Note that the meaning of system error messages may be dependent on your operating system. A given error code may mean different things on different operating systems.
perror supports the following options.
Display a help message and exit.
Print the error message for a MySQL Cluster error code.
--silent, -s
Silent mode. Print only the error message.
--verbose, -v
Verbose mode. Print error code and message. This is the default behavior.
--version, -V
Display version information and exit.
4.8.2. replace — A String-Replacement Utility
The replace utility program changes strings in place in files or on the standard input.
Invoke replace in one of the following ways:
shell> replace from to [from to] ... -- file_name [file_name] ...
shell> replace from to [from to] ... < file_name
from represents a string to look for and to represents its replacement. There can be one or more pairs of strings.
Use the -- option to indicate where the string-replacement list ends and the file names begin. In this case, any file named on the command line is modified in place, so you may want to make a copy of the original before converting it. replace prints a message indicating which of the input files it actually modifies.
If the -- option is not given, replace reads the standard input and writes to the standard output.
replace uses a finite state machine to match longer strings first. It can be used to swap strings. For example, the following command swaps a and b in the given files, file1 and file2:
shell> replace a b b a -- file1 file2 ...
The replace program is used by msql2mysql. See Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with MySQL”.
replace supports the following options.
-?, -I
Display a help message and exit.
-#debug_options
Enable debugging.
-s
Silent mode. Print less information what the program does.
-v
Verbose mode. Print more information about what the program does.
-V
Display version information and exit.
4.8.3. resolveip — Resolve Host name to IP Address or Vice Versa
The resolveip utility resolves host names to IP addresses and vice versa.
Invoke resolveip like this:
shell> resolveip [options] {host_name|ip-addr} ...
resolveip supports the following options.
Display a help message and exit.
--silent, -s
Silent mode. Produce less output.
--version, -V
Display version information and exit.
Chapter 5. MySQL Server Administration
Table of Contents
5.1.1. Server Option and Variable Reference
5.1.2. Server Configuration Defaults
5.1.3. Server Command Options
5.1.4. Server System Variables
5.1.5. Using System Variables
5.1.6. Server Status Variables
5.1.7. Server SQL Modes
5.1.8. Server Plugins
5.1.9. IPv6 Support
5.1.10. Server-Side Help
5.1.11. Server Response to Signals
5.1.12. The Shutdown Process
5.2.1. Selecting General Query and Slow Query Log Output Destinations
5.2.2. The Error Log
5.2.3. The General Query Log
5.2.4. The Binary Log
5.2.5. The Slow Query Log
5.2.6. Server Log Maintenance
5.3. Managing Disk I/O and File Space for InnoDB Tables
5.3.1. InnoDB Disk I/O
5.3.2. File Space Management
5.3.3. InnoDB Checkpoints
5.3.4. Defragmenting a Table
5.4. Creating and Using InnoDB Tables and Indexes
5.4.1. Managing InnoDB Tablespaces
5.4.2. Grouping DML Operations with Transactions
5.4.3. Converting Tables from MyISAM to InnoDB
5.4.4. AUTO_INCREMENT Handling in InnoDB
5.4.5. InnoDB and FOREIGN KEY Constraints
5.4.6. Working with InnoDB Compressed Tables
5.4.7. InnoDB File-Format Management
5.4.8. How InnoDB Stores Variable-Length Columns
5.5. Online DDL for InnoDB Tables
5.5.1. Overview of Online DDL
5.5.2. Performance and Concurrency Considerations for Online DDL
5.5.3. SQL Syntax for Online DDL
5.5.4. Combining or Separating DDL Statements
5.5.5. Examples of Online DDL
5.5.6. Implementation Details of Online DDL
5.5.7. How Crash Recovery Works with Online DDL
5.5.8. DDL for Partitioned Tables
5.5.9. Limitations of Online DDL
5.6. Running Multiple MySQL Instances on One Machine
5.6.1. Setting Up Multiple Data Directories
5.6.2. Running Multiple MySQL Instances on Windows
5.6.3. Running Multiple MySQL Instances on Unix
5.6.4. Using Client Programs in a Multiple-Server Environment
5.7. Tracing mysqld Using DTrace
5.7.1. mysqld DTrace Probe Reference
This chapter provides an overview of MySQL Server, the mysqld command that does most of the work in a MySQL installation. It covers administration topics for mysqld and for the MySQL tables and indexes containing your data:
Configuring the server through command options and system variables. Checking the runtime status through status variables.
Understanding server activity and troubleshooting problems with the server log files.
Managing the physical aspects of MySQL server operations: disk space, memory, I/O, and CPU utilization related to queries, DML, and DDL.
Managing the logical structures within a MySQL server: databases, tables, tablespaces, and indexes.
Managing multiple servers on a single machine.
For additional information on administrative topics, see also:
5.1. The MySQL Server
mysqld is the MySQL server. The following discussion covers these MySQL server configuration topics:
Startup options that the server supports. You can specify these options on the command line, through configuration files, or both.
Server system variables. These variables reflect the current state and values of the startup options, some of which can be modified while the server is running.
Server status variables. These variables contain counters and statistics about runtime operation.
How to set the server SQL mode. This setting modifies certain aspects of SQL syntax and semantics, for example for compatibility with code from other database systems, or to control the error handling for particular situations.
The server shutdown process. There are performance and reliability considerations depending on the type of table (transactional or nontransactional) and whether you use replication.
Note
Not all storage engines are supported by all MySQL server binaries and configurations. To find out how to determine which storage engines your MySQL server installation supports, see Section 13.7.5.17, “SHOW ENGINES Syntax”.
5.1.1. Server Option and Variable Reference
The following table provides a list of all the command line options, server and status variables applicable within mysqld.
The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server system variables (System Var), and status variables (Status var) in one unified list, with notification of where each option/variable is valid. If a server option set on the command line or in an option file differs from the name of the corresponding server system or status variable, the variable name is noted immediately below the corresponding option. For status variables, the scope of the variable is shown (Scope) as either global, session, or both. Please see the corresponding sections for details on setting and using the options and variables. Where appropriate, a direct link to further information on the item as available.
Table 5.1. Option/Variable Summary
5.1.2. Server Configuration Defaults
The MySQL server has many operating parameters, which you can change at server startup using command-line options or configuration files (option files). It is also possible to change many parameters at runtime. For general instructions on setting parameters at startup or runtime, see Section 5.1.3, “Server Command Options”, and Section 5.1.4, “Server System Variables”.
5.1.2.1. Changes to Server Defaults
Beginning with MySQL 5.6.6, several MySQL Server parameter defaults differ from the defaults in previous releases. The motivation for these changes is to provide better out-of-box performance and to reduce the need for database administrators to change settings manually.
In some cases, a parameter has a different fixed default value. In other cases, the server autosizes a parameter at startup using a formula based on other related parameters or server host configuration, rather than using a fixed value. For example, the setting for back_log is its previous default of 50, adjusted up by an amount proportional to the value of max_connections. The idea behind autosizing is that when the server has information available to make a decision about a parameter setting likely to be better than a fixed default, it will.
The following table summarizes changes to defaults. The Version column indicates when each default changed. For variables that are autosized, the main variable description provides additional detail about the sizing algorithm. See Section 5.1.4, “Server System Variables”, and Section 14.2.6, “InnoDB Startup Options and System Variables”. Any of these default settings can be overridden by specifying an explicit value at server startup.
Table 5.2. Changes to Server Defaults in MySQL 5.6
In MySQL 5.6.6, the default for innodb_checksum_algorithm was changed from INNODB to CRC32. For compatibility reasons, the default was returned in 5.6.7 to INNODB.
5.1.2.2. Using a Sample Default Server Configuration File
As of MySQL 5.6.8, on Unix platforms, mysql_install_db creates a default option file named my.cnf in the base installation directory. This file is created from a template included in the distribution package named my-default.cnf. You can find the template in or under the base installation directory. When started using mysqld_safe, the server uses my.cnf file by default. If my.cnf already exists, mysql_install_db assumes it to be in use and writes a new file named my-new.cnf instead.
With one exception, the settings in the default option file are commented and have no effect. The exception is that the file changes the sql_mode system variable from its default of NO_ENGINE_SUBSTITUTION to also include STRICT_TRANS_TABLES. This setting produces a server configuration that results in errors rather than warnings for bad data in operations that modify transactional tables. See Section 5.1.7, “Server SQL Modes”.
The my-default.cnf template replaces the older sample option files formerly supplied with MySQL distributions (my-small.cnf, my-medium.cnf, my-large.cnf, and my-huge.cnf). As of MySQL 5.6.8, these older files are no longer distributed.
On Windows, MySQL Installer interacts with the user and creates a file named my.ini in the base installation directory as the default option file. If you install on Windows from a Zip archive, you can copy the my-default.ini template file in the base installation directory to my.ini and use the latter as the default option file.
Note
On Windows, the .ini or .cnf option file extension might not be displayed.
On any platform, after completing the installation process, you can edit the default option file at any time to modify the parameters used by the server. For example, to use a parameter setting in the file that is commented with a # character at the beginning of the line, remove the #, and modify the parameter value if necessary. To disable a To disable a setting, either add a # to the beginning of the line or remove it.
For additional information about option file format and syntax, see Section 4.2.3.3, “Using Option Files”.
Before MySQL 5.6.8, MySQL distributions include several sample option files that can be used as a basis for tuning the MySQL server. Look for files named my-small.cnf, my-medium.cnf, my-large.cnf, and my-huge.cnf, which are sample files for small, medium, large, and very large systems. On Windows, the extension is .ini rather than .cnf.
For a binary distribution, look for the sample files in or under your installation directory. If you have a source distribution, look in the support-files directory. To use a sample file as a base configuration file, rename a copy of it and place the copy in the appropriate location. Regarding names and appropriate location, see the general information provided in Section 4.2.3.3, “Using Option Files”.
5.1.3. Server Command Options
When you start the mysqld server, you can specify program options using any of the methods described in Section 4.2.3, “Specifying Program Options”. The most common methods are to provide options in an option file or on the command line. However, in most cases it is desirable to make sure that the server uses the same options each time it runs. The best way to ensure this is to list them in an option file. See Section 4.2.3.3, “Using Option Files”. That section also describes option file format and syntax.
mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options from the [mysqld], [server], [mysqld_safe], and [safe_mysqld] groups. mysql.server reads options from the [mysqld] and [mysql.server] groups.
An embedded MySQL server usually reads options from the [server], [embedded], and [xxxxx_SERVER] groups, where xxxxx is the name of the application into which the server is embedded.
mysqld accepts many command options. For a brief summary, execute mysqld --help. To see the full list, use mysqld --verbose --help.
The following list shows some of the most common server options. Additional options are described in other sections:
Options that affect security: See Section 6.1.4, “Security-Related mysqld Options and Variables”.
SSL-related options: See Section 6.3.9.4, “SSL Command Options”.
Binary log control options: See Section 5.2.4, “The Binary Log”.
Replication-related options: See Section 16.1.4, “Replication and Binary Logging Options and Variables”.
Options for loading plugins such as pluggable storage engines: See Section 5.1.8.1, “Installing and Uninstalling Plugins”.
Options specific to particular storage engines: See Section 14.2.6, “InnoDB Startup Options and System Variables” and Section 14.3.1, “MyISAM Startup Options”.
You can also set the values of server system variables by using variable names as options, as described at the end of this section.
Some options control the size of buffers or caches. For a given buffer, the server might need to allocate internal data structures. These structures typically are allocated from the total memory allocated to the buffer, and the amount of space required might be platform dependent. This means that when you assign a value to an option that controls a buffer size, the amount of space actually available might differ from the value assigned. In some cases, the amount might be less than the value assigned. It is also possible that the server will adjust a value upward. For example, if you assign a value of 0 to an option for which the minimal value is 1024, the server will set the value to 1024.
Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.
Some options take file name values. Unless otherwise specified, the default file location is the data directory if the value is a relative path name. To specify the location explicitly, use an absolute path name. Suppose that the data directory is /var/mysql/data. If a file-valued option is given as a relative path name, it will be located under /var/mysql/data. If the value is an absolute path name, its location is as given by the path name.
--help, -?
Command-Line Format | -? | ||
--help | |||
Option-File Format | help |
Display a short help message and exit. Use both the --verbose and --help options to see the full message.
Command-Line Format | --allow-suspicious-udfs | ||
Option-File Format | allow-suspicious-udfs | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
This option controls whether user-defined functions that have only an xxx symbol for the main function can be loaded. By default, the option is off and only UDFs that have at least one auxiliary symbol can be loaded; this prevents attempts at loading functions from shared object files other than those containing legitimate UDFs. See Section 22.3.2.6, “User-Defined Function Security Precautions”.
Command-Line Format | --ansi | ||
-a | |||
Option-File Format | ansi |
Use standard (ANSI) SQL syntax instead of MySQL syntax. For more precise control over the server SQL mode, use the --sql-mode option instead. See Section 1.8.3, “Running MySQL in ANSI Mode”, and Section 5.1.7, “Server SQL Modes”.
Command-Line Format | --basedir=path | ||
-b | |||
Option-File Format | basedir | ||
Option Sets Variable | Yes, basedir | ||
Variable Name | basedir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The path to the MySQL installation directory. All paths are usually resolved relative to this directory.
Version Removed | 5.6.1 | ||
Command-Line Format | --big-tables | ||
Option-File Format | big-tables | ||
Option Sets Variable | Yes, big_tables | ||
Variable Name | big-tables | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean |
Enable large result sets by saving all temporary sets in files. This option prevents most “table full” errors, but also slows down queries for which in-memory tables would suffice. Since MySQL 3.23.2, the server is able to handle large result sets automatically by using memory for small temporary tables and switching to disk tables where necessary.
Command-Line Format | --bind-address=addr | ||
Option-File Format | bind-address=addr | ||
Variable Name | bind-address | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | string | ||
Default | 0.0.0.0 | ||
Permitted Values (>= 5.6.6) | |||
Type | string | ||
Default | * |
The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound to a single address, but it is possible for an address to map onto multiple network interfaces. To specify an address, use the --bind-address=addr option at server startup, where addr is an IPv4 or IPv6 address or a host name. If addr is a host name, the server resolves the name to an IP address and binds to that address.
The server treats different types of addresses as follows:
If the address is *, the server accepts TCP/IP connections on all server host IPv6 and IPv4 interfaces if the server host supports IPv6, or accepts TCP/IP connections on all IPv4 addresses otherwise. Use this address to permit both IPv4 and IPv6 connections on all server interfaces. This value is permitted (and is the default) as of MySQL 5.6.6.
If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4 interfaces. This is the default before MySQL 5.6.6.
If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6 interfaces.
If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that address, in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1, clients can connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.
If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts TCP/IP connections only for that IPv4 or IPv6 address.
If you intend to bind the server to a specific address, be sure that the mysql.user grant table contains an account with administrative privileges that you can use to connect to that address. Otherwise, you will not be able to shut down the server. For example, if you bind the server to *, you can connect to it using all existing accounts. But if you bind the server to ::1, it accepts connections only on that address. In that case, first make sure that the 'root'@'::1' account is present in the mysql.user table so you can still connect to the server to shut it down.
--binlog-format={ROW|STATEMENT|MIXED}
Command-Line Format | --binlog-format=format | ||
Option-File Format | binlog-format=format | ||
Option Sets Variable | Yes, binlog_format | ||
Variable Name | binlog_format | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | STATEMENT | ||
Valid Values | ROW STATEMENT MIXED |
Specify whether to use row-based, statement-based, or mixed replication. Statement-based is the default in MySQL 5.6. See Section 16.1.2, “Replication Formats”.
Under some conditions, changing this variable at runtime is not possible, or causes replication to fail. See Section 5.2.4.2, “Setting The Binary Log Format”, for more information.
Setting the binary logging format without enabling binary logging sets the binlog_format global system variable and logs a warning.
Command-Line Format | --bootstrap | ||
Option-File Format | bootstrap |
This option is used by the mysql_install_db script to create the MySQL privilege tables without having to start a full MySQL server.
In MySQL 5.6.6 and later, replication and global transaction identifiers are automatically disabled whenever this option is used (Bug #1332602). See Section 16.1.3, “Replication with Global Transaction Identifiers”.
Command-Line Format | --character-sets-dir=path | ||
Option-File Format | character-sets-dir=path | ||
Option Sets Variable | Yes, character_sets_dir | ||
Variable Name | character-sets-dir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | directory name |
The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.
--character-set-client-handshake
Command-Line Format | --character-set-client-handshake | ||
Option-File Format | character-set-client-handshake | ||
Permitted Values | |||
Type | boolean | ||
Default | TRUE |
Do not ignore character set information sent by the client. To ignore client information and use the default server character set, use --skip-character-set-client-handshake; this makes MySQL behave like MySQL 4.0.
--character-set-filesystem=charset_name
Command-Line Format | --character-set-filesystem=name | ||
Option-File Format | character-set-filesystem | ||
Option Sets Variable | Yes, character_set_filesystem | ||
Variable Name | character_set_filesystem | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The file system character set. This option sets the character_set_filesystem system variable.
--character-set-server=charset_name, -C charset_name
Command-Line Format | --character-set-server | ||
Option-File Format | character-set-server | ||
Option Sets Variable | Yes, character_set_server | ||
Variable Name | character_set_server | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
Use charset_name as the default server character set. See Section 10.5, “Character Set Configuration”. If you use this option to specify a nondefault character set, you should also use --collation-server to specify the collation.
--chroot=path, -r path
Command-Line Format | --chroot=name | ||
-r name | |||
Option-File Format | chroot | ||
Permitted Values | |||
Type | file name |
Put the mysqld server in a closed environment during startup by using the chroot() system call. This is a recommended security measure. Note that use of this option somewhat limits LOAD DATA INFILE and SELECT ... INTO OUTFILE.
--collation-server=collation_name
Command-Line Format | --collation-server | ||
Option-File Format | collation-server | ||
Option Sets Variable | Yes, collation_server | ||
Variable Name | collation_server | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
Use collation_name as the default server collation. See Section 10.5, “Character Set Configuration”.
Command-Line Format | --console | ||
Option-File Format | console | ||
Platform Specific | windows |
(Windows only.) Write error log messages to stderr and stdout. mysqld does not close the console window if this option is used.
Passing in both --log-error and --console will write to the log file, but not to the console.
Command-Line Format | --core-file | ||
Option-File Format | core-file | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Write a core file if mysqld dies. The name and location of the core file is system dependent. On Linux, a core file named core.pid is written to the current working directory of the process, which for mysqld is the data directory. pid represents the process ID of the server process. On Mac OS X, a core file named core.pid is written to the /cores directory. On Solaris, use the coreadm command to specify where to write the core file and how to name it.
For some systems, to get a core file you must also specify the --core-file-size option to mysqld_safe. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”. On some systems, such as Solaris, you do not get a core file if you are also using the --user option. There might be additional restrictions or limitations. For example, it might be necessary to execute ulimit -c unlimited before starting the server. Consult your system documentation.
--datadir=path, -h path
Command-Line Format | --datadir=path | ||
-h | |||
Option-File Format | datadir | ||
Option Sets Variable | Yes, datadir | ||
Variable Name | datadir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The path to the data directory.
--debug[=debug_options], -# [debug_options]
Command-Line Format | --debug[=debug_options] | ||
Option-File Format | debug | ||
Variable Name | debug | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string | ||
Default | 'd:t:o,/tmp/mysqld.trace' |
If MySQL is configured with -DWITH_DEBUG=1, you can use this option to get a trace file of what mysqld is doing. A typical debug_options string is 'd:t:o,file_name'. The default is 'd:t:i:o,mysqld.trace'. See MySQL Internals: Porting to Other Systems.
Using -DWITH_DEBUG=1 to configure MySQL with debugging support enables you to use the --debug="d,parser_debug" option when you start the server. This causes the Bison parser that is used to process SQL statements to dump a parser trace to the server's standard error output. Typically, this output is written to the error log.
This option may be given multiple times. Values that begin with + or - are added to or subtracted from the previous value. For example, --debug=T --debug=+P sets the value to P:T.
Command-Line Format | --debug-sync-timeout[=#] | ||
Option-File Format | debug-sync-timeout | ||
Permitted Values | |||
Type | numeric |
Controls whether the Debug Sync facility for testing and debugging is enabled. Use of Debug Sync requires that MySQL be configured with the -DENABLE_DEBUG_SYNC=1 option (see Section 2.9.4, “MySQL Source-Configuration Options”). If Debug Sync is not compiled in, this option is not available. The option value is a timeout in seconds. The default value is 0, which disables Debug Sync. To enable it, specify a value greater than 0; this value also becomes the default timeout for individual synchronization points. If the option is given without a value, the timeout is set to 300 seconds.
For a description of the Debug Sync facility and how to use synchronization points, see MySQL Internals: Test Synchronization.
--default-authentication-plugin=plugin_name
Version Introduced | 5.6.6 | ||
Command-Line Format | --default-authentication-plugin=plugin_name | ||
Option-File Format | default-authentication-plugin=plugin_name | ||
Permitted Values | |||
Type | enumeration | ||
Default | mysql_native_password | ||
Valid Values | mysql_native_password sha256_password |
The default authentication plugin. Acceptable values are mysql_native_password (use MySQL native passwords) and sha256_password (use SHA-256 passwords). For more information about these plugins, see Section 6.3.7.1, “The Native Authentication Plugins”, and Section 6.3.7.2, “The SHA-256 Authentication Plugin”. This option was added in MySQL 5.6.6.
The value of this option affects these aspects of server operation:
It determines which plugin the server assigns to new accounts for which no plugin is explicitly specified.
It sets the old_passwords system variable at startup to the value that is consistent with the password hashing format required by the default plugin. This in turn affects the password hashing method used by the PASSWORD() function.
For an account created with either of the following statements, the server associates the account with the default authentication plugin and assigns the account the given password, hashed according to the value of old_passwords.
CREATE USER ... IDENTIFIED BY 'cleartext password';
GRANT ... IDENTIFIED BY 'cleartext password';
For an account created with either of the following statements, the statement fails if the password hash is not encrypted using the hash format required by the default authentication plugin. Otherwise, the server associates the account with the default authentication plugin and assigns the account the given password hash.
CREATE USER ... IDENTIFIED BY 'encrypted password';
GRANT ... IDENTIFIED BY 'encrypted password';
Note
If you use this option to change the default authentication method to a value other than mysql_native_password, clients older than MySQL 5.5.6 will no longer be able to connect because they will not understand the change to the authentication protocol.
Command-Line Format | --default-storage-engine=name | ||
Option-File Format | default-storage-engine | ||
Option Sets Variable | Yes, default_storage_engine | ||
Variable Name | default_storage_engine | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | InnoDB |
Set the default storage engine for tables. See Chapter 14, Storage Engines. As of MySQL 5.6.3, this option sets the storage engine for permanent tables only. To set the storage engine for TEMPORARY tables, set the default_tmp_storage_engine system variable.
If you disable the default storage engine at server startup, you must set the default engine for both permanent and TEMPORARY tables to a different engine or the server will not start.
Command-Line Format | --default-time-zone=name | ||
Option-File Format | default-time-zone | ||
Permitted Values | |||
Type | string |
Set the default server time zone. This option sets the global time_zone system variable. If this option is not given, the default time zone is the same as the system time zone (given by the value of the system_time_zone system variable.
--delay-key-write[={OFF|ON|ALL}]
Command-Line Format | --delay-key-write[=name] | ||
Option-File Format | delay-key-write | ||
Option Sets Variable | Yes, delay_key_write | ||
Variable Name | delay-key-write | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | ON | ||
Valid Values | ON OFF ALL |
Specify how to use delayed key writes. Delayed key writing causes key buffers not to be flushed between writes for MyISAM tables. OFF disables delayed key writes. ON enables delayed key writes for those tables that were created with the DELAY_KEY_WRITE option. ALL delays key writes for all MyISAM tables. See Section 8.11.2, “Tuning Server Parameters”, and Section 14.3.1, “MyISAM Startup Options”.
Note
If you set this variable to ALL, you should not use MyISAM tables from within another program (such as another MySQL server or myisamchk) when the tables are in use. Doing so leads to index corruption.
Command-Line Format | --des-key-file=file_name | ||
Option-File Format | des-key-file=file_name |
Read the default DES keys from this file. These keys are used by the DES_ENCRYPT() and DES_DECRYPT() functions.
Command-Line Format | --enable-named-pipe | ||
Option-File Format | enable-named-pipe | ||
Option Sets Variable | Yes, named_pipe | ||
Platform Specific | windows |
Enable support for named pipes. This option applies only on Windows.
--engine-condition-pushdown={ON|OFF}
Version Removed | 5.6.1 | ||
Command-Line Format | --engine-condition-pushdown | ||
Option-File Format | engine-condition-pushdown | ||
Option Sets Variable | Yes, engine_condition_pushdown | ||
Variable Name | engine_condition_pushdown | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Deprecated | 5.5.3, by optimizer_switch | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
Formerly, this option set the engine_condition_pushdown system variable; the option and the variable were both removed in MySQL 5.6.1. For more information, see Section 8.13.3, “Engine Condition Pushdown Optimization”.
Command-Line Format | --event-scheduler[=value] | ||
Option-File Format | event-scheduler | ||
Option Sets Variable | Yes, event_scheduler | ||
Variable Name | event_scheduler | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | OFF | ||
Valid Values | ON OFF DISABLED |
Enable or disable, and start or stop, the event scheduler.
For detailed information, see The --event-scheduler Option.
--exit-info[=flags], -T [flags]
Command-Line Format | --exit-info[=flags] | ||
-T [flags] | |||
Option-File Format | exit-info | ||
Permitted Values | |||
Type | numeric |
This is a bit mask of different flags that you can use for debugging the mysqld server. Do not use this option unless you know exactly what it does!
Command-Line Format | --external-locking | ||
Option-File Format | external-locking | ||
Option Sets Variable | Yes, skip_external_locking | ||
Disabled by | skip-external-locking | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Enable external locking (system locking), which is disabled by default as of MySQL 4.0. Note that if you use this option on a system on which lockd does not fully work (such as Linux), it is easy for mysqld to deadlock.
External locking affects only MyISAM table access. For more information, including conditions under which it can and cannot be used, see Section 8.10.5, “External Locking”.
Command-Line Format | --flush | ||
Option-File Format | flush | ||
Variable Name | flush | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Flush (synchronize) all changes to disk after each SQL statement. Normally, MySQL does a write of all changes to disk only after each SQL statement and lets the operating system handle the synchronizing to disk. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.
Command-Line Format | --gdb | ||
Option-File Format | gdb | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Install an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and disable stack tracing and core file handling. See MySQL Internals: Porting to Other Systems.
Command-Line Format | --general-log | ||
Option-File Format | general-log | ||
Option Sets Variable | Yes, general_log | ||
Variable Name | general_log | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Specify the initial general query log state. With no argument or an argument of 1, the --general-log option enables the log. If omitted or given with an argument of 0, the option disables the log.
Version Introduced | 5.6.3 | ||
Command-Line Format | --ignore-db-dir | ||
Option-File Format | ignore-db-dir | ||
Permitted Values | |||
Type | directory name |
This option tells the server to ignore the given directory name for purposes of the SHOW DATABASES statement or INFORMATION_SCHEMA tables. For example, if a MySQL configuration locates the data directory at the root of a file system on Unix, the system might create a lost+found directory there that the server should ignore. Starting the server with --ignore-db-dir=lost+found causes that name not to be listed as a database.
To specify more than one name, use this option multiple times, once for each name. Specifying the option with an empty value (that is, as --ignore-db-dir=) resets the directory list to the empty list.
Instances of this option given at server startup are used to set the ignore_db_dirs system variable.
This option was added in MySQL 5.6.3.
Command-Line Format | --init-file=file_name | ||
Option-File Format | init-file=file_name | ||
Option Sets Variable | Yes, init_file | ||
Variable Name | init_file | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
Read SQL statements from this file at startup. Each statement must be on a single line and should not include comments.
--innodb-xxx
Set an option for the InnoDB storage engine. The InnoDB options are listed in Section 14.2.6, “InnoDB Startup Options and System Variables”.
Command-Line Format | --install [service_name] |
(Windows only) Install the server as a Windows service that starts automatically during Windows startup. The default service name is MySQL if no service_name value is given. For more information, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.
--install-manual [service_name]
Command-Line Format | --install-manual [service_name] |
(Windows only) Install the server as a Windows service that must be started manually. It does not start automatically during Windows startup. The default service name is MySQL if no service_name value is given. For more information, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.
--language=lang_name, -L lang_name
Version Deprecated | 5.6.1 | ||
Command-Line Format | --language=name | ||
-L | |||
Option-File Format | language | ||
Option Sets Variable | Yes, language | ||
Variable Name | language | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Deprecated | 5.6.1 | ||
Permitted Values | |||
Type | directory name | ||
Default | /usr/local/mysql/share/mysql/english/ |
The language to use for error messages. lang_name can be given as the language name or as the full path name to the directory where the language files are installed. See Section 10.2, “Setting the Error Message Language”.
In MySQL 5.6, --lc-messages-dir and --lc-messages should be used rather than --language, which is deprecated as of MySQL 5.6.1 and handled as an alias for --lc-messages-dir. The --language option will be removed in a future MySQL release.
Command-Line Format | --large-pages | ||
Option-File Format | large-pages | ||
Option Sets Variable | Yes, large_pages | ||
Variable Name | large_pages | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Platform Specific | linux | ||
Permitted Values | |||
Type (linux) | boolean | ||
Default | FALSE |
Some hardware/operating system architectures support memory pages greater than the default (usually 4KB). The actual implementation of this support depends on the underlying hardware and operating system. Applications that perform a lot of memory accesses may obtain performance improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.
MySQL 5.6 supports the Linux implementation of large page support (which is called HugeTLB in Linux). See Section 8.11.4.2, “Enabling Large Page Support”. For Solaris support of large pages, see the description of the --super-large-pages option.
--large-pages is disabled by default.
Command-Line Format | --lc-messages=name | ||
Option-File Format | lc-messages | ||
Option Sets Variable | Yes, lc_messages | ||
Variable Name | lc-messages | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The locale to use for error messages. The server converts the argument to a language name and combines it with the value of the --lc-messages-dir to produce the location for the error message file. See Section 10.2, “Setting the Error Message Language”.
Command-Line Format | --lc-messages-dir=path | ||
Option-File Format | lc-messages-dir | ||
Option Sets Variable | Yes, lc_messages_dir | ||
Variable Name | lc-messages-dir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | directory name |
The directory where error messages are located. The value is used together with the value of --lc-messages to produce the location for the error message file. See Section 10.2, “Setting the Error Message Language”.
--log[=file_name], -l [file_name]
Version Removed | 5.6.1 | ||
Command-Line Format | --log[=name] | ||
-l | |||
Option-File Format | log | ||
Option Sets Variable | Yes, log | ||
Variable Name | log | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Deprecated | 5.1.29, by general-log | ||
Permitted Values | |||
Type | string | ||
Default | OFF |
The --log option was removed in MySQL 5.6.1 (along with the log system variable). Instead, use the --general_log option to enable the general query log and the --general_log_file=file_name option to set the general query log file name.
Command-Line Format | --log-error[=name] | ||
Option-File Format | log-error | ||
Option Sets Variable | Yes, log_error | ||
Variable Name | log_error | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
Log errors and startup messages to this file. See Section 5.2.2, “The Error Log”. If you omit the file name, MySQL uses host_name.err. If the file name has no extension, the server adds an extension of .err.
Command-Line Format | --log-isam[=name] | ||
Option-File Format | log-isam | ||
Permitted Values | |||
Type | file name |
Log all MyISAM changes to this file (used only when debugging MyISAM).
Command-Line Format | --log-output=name | ||
Option-File Format | log-output | ||
Option Sets Variable | Yes, log_output | ||
Variable Name | log_output | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | set | ||
Default | FILE | ||
Valid Values | TABLE FILE NONE |
This option determines the destination for general query log and slow query log output. The option value can be given as one or more of the words TABLE, FILE, or NONE. TABLE select logging to the general_log and slow_log tables in the mysql database as a destination. FILE selects logging to log files as a destination. NONE disables logging. If NONE is present in the option value, it takes precedence over any other words that are present. TABLE and FILE can both be given to select to both log output destinations.
This option selects log output destinations, but does not enable log output. To do that, use the --general_log and --slow_query_log options. For FILE logging, the --general_log_file and -slow_query_log_file options determine the log file location. For more information, see Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”.
--log-queries-not-using-indexes
Command-Line Format | --log-queries-not-using-indexes | ||
Option-File Format | log-queries-not-using-indexes | ||
Option Sets Variable | Yes, log_queries_not_using_indexes | ||
Variable Name | log_queries_not_using_indexes | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
If you are using this option with the slow query log enabled, queries that are expected to retrieve all rows are logged. See Section 5.2.5, “The Slow Query Log”. This option does not necessarily mean that no index is used. For example, a query that uses a full index scan uses an index but would be logged because the index would not limit the number of rows.
Version Introduced | 5.6.3 | ||
Command-Line Format | --log-raw[=value] | ||
Option-File Format | log-raw[=value] | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
As of MySQL 5.6.3, passwords in certain statements written to the general query log, slow query log, and binary log are rewritten by the server not to occur literally in plain text. Password rewriting can be suppressed for the general query log by starting the server with the --log-raw option. This option may be useful for diagnostic purposes, to see the exact text of statements as received by the server, but for security reasons is not recommended for production use.
Before MySQL 5.6.3, passwords in statements are not rewritten and the general query log should be protected. See Section 6.1.2.3, “Passwords and Logging”.
This option was added in MySQL 5.6.3.
Command-Line Format | --log-short-format | ||
Option-File Format | log-short-format | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Log less information to the binary log and slow query log, if they have been activated.
Command-Line Format | --log-slow-admin-statements | ||
Option-File Format | log-slow-admin-statements | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Include slow administrative statements in the statements written to the slow query log. Administrative statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, and REPAIR TABLE.
--log-slow-queries[=file_name]
Version Removed | 5.6.1 | ||
Command-Line Format | --log-slow-queries[=name] | ||
Option-File Format | log-slow-queries | ||
Option Sets Variable | Yes, log_slow_queries | ||
Variable Name | log_slow_queries | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Deprecated | 5.1.29, by slow-query-log | ||
Permitted Values | |||
Type | boolean |
The --log-slow-queries option was removed in MySQL 5.6.1 (along with the log_slow_queries system variable). Instead, use the --slow_query_log option to enable the slow query log and the --slow_query_log_file=file_name option to set the slow query log file name.
Command-Line Format | --log-tc=name | ||
Option-File Format | log-tc | ||
Permitted Values | |||
Type | file name | ||
Default | tc.log |
The name of the memory-mapped transaction coordinator log file (for XA transactions that affect multiple storage engines when the binary log is disabled). The default name is tc.log. The file is created under the data directory if not given as a full path name. Currently, this option is unused.
Command-Line Format | --log-tc-size=# | ||
Option-File Format | log-tc-size | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 24576 | ||
Max Value | 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 24576 | ||
Max Value | 18446744073709547520 |
The size in bytes of the memory-mapped transaction coordinator log. The default size is 24KB.
--log-warnings[=level], -W [level]
Command-Line Format | --log-warnings[=#] | ||
-W [#] | |||
Option-File Format | log-warnings | ||
Option Sets Variable | Yes, log_warnings | ||
Variable Name | log_warnings | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Disabled by | skip-log-warnings | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1 | ||
Range | 0 .. 18446744073709547520 |
Print out warnings such as Aborted connection... to the error log. Enabling this option is recommended, for example, if you use replication (you get more information about what is happening, such as messages about network failures and reconnections). This option is enabled (1) by default, and the default level value if omitted is 1. To disable this option, use --log-warnings=0. If the value is greater than 1, aborted connections are written to the error log, and access-denied errors for new connection attempts are written. See Section C.5.2.11, “Communication Errors and Aborted Connections”.
If a slave server was started with --log-warnings enabled, the slave prints messages to the error log to provide information about its status, such as the binary log and relay log coordinates where it starts its job, when it is switching to another relay log, when it reconnects after a disconnect, and so forth. The server logs messages about statements that are unsafe for statement-based logging only if --log-warnings is enabled.
Command-Line Format | --low-priority-updates | ||
Option-File Format | low-priority-updates | ||
Option Sets Variable | Yes, low_priority_updates | ||
Variable Name | low_priority_updates | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Give table-modifying operations (INSERT, REPLACE, DELETE, UPDATE) lower priority than selects. This can also be done using {INSERT | REPLACE | DELETE | UPDATE} LOW_PRIORITY ... to lower the priority of only one query, or by SET LOW_PRIORITY_UPDATES=1 to change the priority in one thread. This affects only storage engines that use only table-level locking (MyISAM, MEMORY, MERGE). See Section 8.10.2, “Table Locking Issues”.
--min-examined-row-limit=number
Command-Line Format | --min-examined-row-limit=# | ||
Option-File Format | min-examined-row-limit | ||
Variable Name | min_examined_row_limit | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 18446744073709547520 |
When this option is set, queries which examine fewer than number rows are not written to the slow query log. The default is 0.
Command-Line Format | --memlock | ||
Option-File Format | memlock | ||
Variable Name | locked_in_memory | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Lock the mysqld process in memory. This option might help if you have a problem where the operating system is causing mysqld to swap to disk.
--memlock works on systems that support the mlockall() system call; this includes Solaris, most Linux distributions that use a 2.4 or newer kernel, and perhaps other Unix systems. On Linux systems, you can tell whether or not mlockall() (and thus this option) is supported by checking to see whether or not it is defined in the system mman.h file, like this:
shell> grep mlockall /usr/include/sys/mman.h
If mlockall() is supported, you should see in the output of the previous command something like the following:
extern int mlockall (int __flags) __THROW;
Important
Use of this option may require you to run the server as root, which, for reasons of security, is normally not a good idea. See Section 6.1.5, “How to Run MySQL as a Normal User”.
On Linux and perhaps other systems, you can avoid the need to run the server as root by changing the limits.conf file. See the notes regarding the memlock limit in Section 8.11.4.2, “Enabling Large Page Support”.
You must not try to use this option on a system that does not support the mlockall() system call; if you do so, mysqld will very likely crash as soon as you try to start it.
Command-Line Format | --myisam-block-size=# | ||
Option-File Format | myisam-block-size | ||
Permitted Values | |||
Type | numeric | ||
Default | 1024 | ||
Range | 1024 .. 16384 |
The block size to be used for MyISAM index pages.
--myisam-recover-options[=option[,option]...]]
Command-Line Format | --myisam-recover-options[=name] | ||
Option-File Format | myisam-recover-options | ||
Option Sets Variable | Yes, myisam_recover_options | ||
Permitted Values | |||
Type | enumeration | ||
Default | OFF | ||
Valid Values | OFF DEFAULT BACKUP FORCE QUICK |
Set the MyISAM storage engine recovery mode. The option value is any combination of the values of OFF, DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by commas. Specifying the option with no argument is the same as specifying DEFAULT, and specifying with an explicit value of "" disables recovery (same as a value of OFF). If recovery is enabled, each time mysqld opens a MyISAM table, it checks whether the table is marked as crashed or was not closed properly. (The last option works only if you are running with external locking disabled.) If this is the case, mysqld runs a check on the table. If the table was corrupted, mysqld attempts to repair it.
The following options affect how the repair works.
Option | Description |
---|---|
OFF | No recovery. |
DEFAULT | Recovery without backup, forcing, or quick checking. |
BACKUP | If the data file was changed during recovery, save a backup of the tbl_name.MYD file as tbl_name-datetime.BAK. |
FORCE | Run recovery even if we would lose more than one row from the .MYD file. |
QUICK | Do not check the rows in the table if there are not any delete blocks. |
Before the server automatically repairs a table, it writes a note about the repair to the error log. If you want to be able to recover from most problems without user intervention, you should use the options BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but it keeps the old data file as a backup so that you can later examine what happened.
Command-Line Format | --old-alter-table | ||
Option-File Format | old-alter-table | ||
Option Sets Variable | Yes, old_alter_table | ||
Variable Name | old_alter_table | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
When this option is given, the server does not use the optimized method of processing an ALTER TABLE operation. It reverts to using a temporary table, copying over the data, and then renaming the temporary table to the original, as used by MySQL 5.0 and earlier. For more information on the operation of ALTER TABLE, see Section 13.1.6, “ALTER TABLE Syntax”.
Command-Line Format | --old-style-user-limits | ||
Option-File Format | old-style-user-limits | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Enable old-style user limits. (Before MySQL 5.0.3, account resource limits were counted separately for each host from which a user connected rather than per account row in the user table.) See Section 6.3.4, “Setting Account Resource Limits”.
Version Removed | 5.6.1 | ||
Command-Line Format | --one-thread | ||
Option-File Format | one-thread |
This option was removed in MySQL 5.6.1. Use --thread_handling=no-threads instead.
Command-Line Format | --open-files-limit=# | ||
Option-File Format | open-files-limit | ||
Option Sets Variable | Yes, open_files_limit | ||
Variable Name | open_files_limit | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.7) | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 65535 | ||
Permitted Values (>= 5.6.8) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | 0 .. 65535 |
Changes the number of file descriptors available to mysqld. You should try increasing the value of this option if mysqld gives you the error Too many open files. mysqld uses the option value to reserve descriptors with setrlimit(). If the requested number of file descriptors cannot be allocated, mysqld writes a warning to the error log.
mysqld may attempt to allocate more than the requested number of descriptors (if they are available), using the values of max_connections and table_open_cache to estimate whether more descriptors will be needed.
On Unix, the value cannot be set less than ulimit -n.
Command-Line Format | --partition | ||
Option-File Format | partition | ||
Option Sets Variable | Yes, have_partitioning | ||
Variable Name | partition | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Disabled by | skip-partition | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
Enables or disables user-defined partitioning support in the MySQL Server.
--performance-schema-xxx
Configure a Performance Schema option. For details, see Section 20.11, “Performance Schema Command Options”.
Command-Line Format | --pid-file=file_name | ||
Option-File Format | pid-file=file_name | ||
Option Sets Variable | Yes, pid_file | ||
Variable Name | pid_file | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The path name of the process ID file. The server creates the file in the data directory unless an absolute path name is given to specify a different directory. This file is used by other programs such as mysqld_safe to determine the server's process ID.
Specifies an option that pertains to a server plugin. For example, many storage engines can be built as plugins, and for such engines, options for them can be specified with a --plugin prefix. Thus, the --innodb_file_per_table option for InnoDB can be specified as --plugin-innodb_file_per_table.
For boolean options that can be enabled or disabled, the --skip prefix and other alternative formats are supported as well (see Section 4.2.3.2, “Program Option Modifiers”). For example, --skip-plugin-innodb_file_per_table disables innodb_file_per_table.
The rationale for the --plugin prefix is that it enables plugin options to be specified unambiguously if there is a name conflict with a built-in server option. For example, were a plugin writer to name a plugin “sql” and implement a “mode” option, the option name might be --sql-mode, which would conflict with the built-in option of the same name. In such cases, references to the conflicting name are resolved in favor of the built-in option. To avoid the ambiguity, users can specify the plugin option as --plugin-sql-mode. Use of the --plugin prefix for plugin options is recommended to avoid any question of ambiguity.
Command-Line Format | --plugin-load=plugin_list | ||
Option-File Format | plugin-load=plugin_list | ||
Permitted Values | |||
Type | string |
This option tells the server to load the named plugins at startup. The option value is a semicolon-separated list of name=plugin_library pairs. Each name is the name of the plugin, and plugin_library is the name of the shared library that contains the plugin code. Each library file must be located in the directory named by the plugin_dir system variable. For example, if plugins named myplug1 and myplug2 have library files myplug1.so and myplug2.so, use this option to load them at startup:
shell> mysqld --plugin-load="myplug1=myplug1.so;myplug2=myplug2.so"
Quotes are used around the argument value here because semicolon (;) is interpreted as a special character by some command interpreters. (Unix shells treat it as a command terminator, for example.)
If multiple --plugin-load options are given, only the last one is used. Additional plugins to load may be specified using --plugin-load-add options.
If a plugin library is named without any preceding plugin name, the server loads all plugins in the library.
Each plugin is loaded for a single invocation of mysqld only. After a restart, the plugin is not loaded unless --plugin-load is used again. This is in contrast to INSTALL PLUGIN, which adds an entry to the mysql.plugins table to cause the plugin to be loaded for every normal server startup.
Under normal startup, the server determines which plugins to load by reading the mysql.plugins system table. If the server is started with the --skip-grant-tables option, it does not consult the mysql.plugins table and does not load plugins listed there. --plugin-load enables plugins to be loaded even when --skip-grant-tables is given. --plugin-load also enables plugins to be loaded at startup under configurations when plugins cannot be loaded at runtime.
For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.
Version Introduced | 5.6.3 | ||
Command-Line Format | --plugin-load-add=plugin_list | ||
Option-File Format | plugin-load-add=plugin_list | ||
Permitted Values | |||
Type | string |
This option complements the --plugin-load option. --plugin-load-add adds a plugin or plugins to the set of plugins to be loaded at startup. The argument format is the same as for --plugin-load. --plugin-load-add can be used to avoid specifying a large set of plugins as a single long unwieldy --plugin-load argument. This option was added in MySQL 5.6.3.
--plugin-load-add can be given in the absence of --plugin-load, but any instance of --plugin-load-add that appears before --plugin-load. has no effect because --plugin-load resets the set of plugins to load. In other words, these options:
--plugin-load=x --plugin-load-add=y
are equivalent to this option:
--plugin-load="x;y"
But these options:
--plugin-load-add=y --plugin-load=x
are equivalent to this option:
--plugin-load=x
For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.
--port=port_num, -P port_num
Command-Line Format | --port=# | ||
-P | |||
Option-File Format | port | ||
Option Sets Variable | Yes, port | ||
Variable Name | port | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 3306 | ||
Range | 0 .. 65535 |
The port number to use when listening for TCP/IP connections. The port number must be 1024 or higher unless the server is started by the root system user.
Command-Line Format | --port-open-timeout=# | ||
Option-File Format | port-open-timeout | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 |
On some systems, when the server is stopped, the TCP/IP port might not become available immediately. If the server is restarted quickly afterward, its attempt to reopen the port can fail. This option indicates how many seconds the server should wait for the TCP/IP port to become free if it cannot be opened. The default is not to wait.
Command-Line Format | --remove [service_name] |
(Windows only) Remove a MySQL Windows service. The default service name is MySQL if no service_name value is given. For more information, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.
Version Removed | 5.6.6 | ||
Command-Line Format | --safe-mode | ||
Option-File Format | safe-mode | ||
Deprecated | 5.5.26 |
Skip some optimization stages. This option was removed in MySQL 5.6.6.
Command-Line Format | --safe-user-create | ||
Option-File Format | safe-user-create | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
If this option is enabled, a user cannot create new MySQL users by using the GRANT statement unless the user has the INSERT privilege for the mysql.user table or any column in the table. If you want a user to have the ability to create new users that have those privileges that the user has the right to grant, you should grant the user the following privilege:
GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';
This ensures that the user cannot change any privilege columns directly, but has to use the GRANT statement to give privileges to other users.
Command-Line Format | --secure-auth | ||
Option-File Format | secure-auth | ||
Option Sets Variable | Yes, secure_auth | ||
Variable Name | secure_auth | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.4) | |||
Type | boolean | ||
Default | OFF | ||
Permitted Values (>= 5.6.5) | |||
Type | boolean | ||
Default | ON |
This option causes the server to block connections by clients that attempt to use accounts that have passwords stored in the old (pre-4.1) format. Use it to prevent all use of passwords employing the old format (and hence insecure communication over the network). Before MySQL 5.6.5, this option is disabled by default. As of MySQL 5.6.5, it is enabled by default; to disable it, use --skip-secure-auth.
Server startup fails with an error if this option is enabled and the privilege tables are in pre-4.1 format. See Section C.5.2.4, “Client does not support authentication protocol”.
The mysql client also has a --secure-auth option, which prevents connections to a server if the server requires a password in old format for the client account.
Command-Line Format | --secure-file-priv=path | ||
Option-File Format | secure-file-priv=path | ||
Option Sets Variable | Yes, secure_file_priv | ||
Variable Name | secure-file-priv | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
This option limits the effect of the LOAD_FILE() function and the LOAD DATA and SELECT ... INTO OUTFILE statements to work only with files in the specified directory.
Enable shared-memory connections by local clients. This option is available only on Windows.
--shared-memory-base-name=name
The name of shared memory to use for shared-memory connections. This option is available only on Windows. The default name is MYSQL. The name is case sensitive.
Turn off the ability to select and insert at the same time on MyISAM tables. (This is to be used only if you think you have found a bug in this feature.) See Section 8.10.3, “Concurrent Inserts”.
Do not use external locking (system locking). This affects only MyISAM table access. For more information, including conditions under which it can and cannot be used, see Section 8.10.5, “External Locking”.
External locking has been disabled by default since MySQL 4.0.
Command-Line Format | --skip-event-scheduler | ||
--disable-event-scheduler | |||
Option-File Format | skip-event-scheduler |
Turns the Event Scheduler OFF. This is not the same as disabling the Event Scheduler, which requires setting --event-scheduler=DISABLED; see The --event-scheduler Option, for more information.
This option causes the server to start without using the privilege system at all, which gives anyone with access to the server unrestricted access to all databases. You can cause a running server to start using the grant tables again by executing mysqladmin flush-privileges or mysqladmin reload command from a system shell, or by issuing a MySQL FLUSH PRIVILEGES statement after connecting to the server. This option also suppresses loading of plugins that were installed with the INSTALL PLUGIN statement, user-defined functions (UDFs), and scheduled events. To cause plugins to be loaded anyway, use the --plugin-load option.
Note that FLUSH PRIVILEGES might be executed implicitly by other actions performed after startup. For example, mysql_upgrade flushes the privileges during the upgrade procedure.
Disable use of the internal host cache for faster name-to-IP resolution. In this case, the server performs a DNS lookup every time a client connects. See Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”.
Use of --skip-host-cache is similar to setting the host_cache_size system variable to 0, but host_cache_size is more flexible because it can also be used to resize, enable, or disable the host cache at runtime, not just at server startup.
If you start the server with --skip-host-cache, that does not prevent changes to the value of host_cache_size, but such changes have no effect and the cache is not re-enabled even if host_cache_size is set larger than 0.
Disable the InnoDB storage engine. In this case, because the default storage engine is InnoDB, the server will not start unless you also use --default-storage-engine and --default-tmp-storage-engine to set the default to some other engine for both permanent and TEMPORARY tables.
Do not resolve host names when checking client connections. Use only IP addresses. If you use this option, all Host column values in the grant tables must be IP addresses or localhost. See Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”.
Do not listen for TCP/IP connections at all. All interaction with mysqld must be made using named pipes or shared memory (on Windows) or Unix socket files (on Unix). This option is highly recommended for systems where only local clients are permitted. See Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”.
Command-Line Format | --skip-partition | ||
--disable-partition | |||
Option-File Format | skip-partition |
Disables user-defined partitioning. Partitioned tables can be seen using SHOW TABLES or by querying the INFORMATION_SCHEMA.TABLES table, but cannot be created or modified, nor can data in such tables be accessed. All partition-specific columns in the INFORMATION_SCHEMA.PARTITIONS table display NULL.
Since DROP TABLE removes table definition (.frm) files, this statement works on partitioned tables even when partitioning is disabled using the option. The statement, however, does not remove .par files associated with partitioned tables in such cases. For this reason, you should avoid dropping partitioned tables with partitioning disabled, or take action to remove the orphaned .par files manually.
--ssl*
Options that begin with --ssl specify whether to permit clients to connect using SSL and indicate where to find SSL keys and certificates. See Section 6.3.9.4, “SSL Command Options”.
Command-Line Format | --standalone | ||
Option-File Format | standalone | ||
Platform Specific | windows |
Available on Windows only; instructs the MySQL server not to run as a service.
Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available for recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or --skip-super-large-pages option.
--symbolic-links, --skip-symbolic-links
Command-Line Format | --symbolic-links | ||
Option-File Format | symbolic-links |
Enable or disable symbolic link support. This option has different effects on Windows and Unix:
On Windows, enabling symbolic links enables you to establish a symbolic link to a database directory by creating a db_name.sym file that contains the path to the real directory. See Section 8.11.3.1.3, “Using Symbolic Links for Databases on Windows”.
On Unix, enabling symbolic links means that you can link a MyISAM index file or data file to another directory with the INDEX DIRECTORY or DATA DIRECTORY options of the CREATE TABLE statement. If you delete or rename the table, the files that its symbolic links point to also are deleted or renamed. See Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”.
Command-Line Format | --skip-show-database | ||
Option-File Format | skip-show-database | ||
Option Sets Variable | Yes, skip_show_database | ||
Variable Name | skip_show_database | ||
Variable Scope | Global | ||
Dynamic Variable | No |
This option sets the skip_show_database system variable that controls who is permitted to use the SHOW DATABASES statement. See Section 5.1.4, “Server System Variables”.
Command-Line Format | --skip-stack-trace | ||
Option-File Format | skip-stack-trace |
Do not write stack traces. This option is useful when you are running mysqld under a debugger. On some systems, you also must use this option to get a core file. See MySQL Internals: Porting to Other Systems.
Version Removed | 5.6.1 | ||
Command-Line Format | --skip-thread-priority | ||
Option-File Format | skip-thread-priority | ||
Deprecated | 5.1.29 |
Disable using thread priorities for faster response time. This option was unused and was removed in MySQL 5.6.1.
Command-Line Format | --slow-query-log | ||
Option-File Format | slow-query-log | ||
Option Sets Variable | Yes, slow_query_log | ||
Variable Name | slow_query_log | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Specify the initial slow query log state. With no argument or an argument of 1, the --slow-query-log option enables the log. If omitted or given with an argument of 0, the option disables the log.
Version Introduced | 5.6.5 | ||
Command-Line Format | --slow-start-timeout=# | ||
Option-File Format | slow-start-timeout=# | ||
Permitted Values | |||
Type (windows) | numeric | ||
Default | 15000 |
This option controls the Windows service control manager's service start timeout. The value is the maximum number of milliseconds that the service control manager waits before trying to kill the windows service during startup. The default value is 15000 (15 seconds). If the MySQL service takes too long to start, you may need to increase this value. A value of 0 means there is no timeout.
Command-Line Format | --socket=name | ||
Option-File Format | socket | ||
Option Sets Variable | Yes, socket | ||
Variable Name | socket | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name | ||
Default | /tmp/mysql.sock |
On Unix, this option specifies the Unix socket file to use when listening for local connections. The default value is /tmp/mysql.sock. If this option is given, the server creates the file in the data directory unless an absolute path name is given to specify a different directory. On Windows, the option specifies the pipe name to use when listening for local connections that use a named pipe. The default value is MySQL (not case sensitive).
--sql-mode=value[,value[,value...]]
Command-Line Format | --sql-mode=name | ||
Option-File Format | sql-mode | ||
Option Sets Variable | Yes, sql_mode | ||
Variable Name | sql_mode | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type | set | ||
Default | '' | ||
Valid Values | ALLOW_INVALID_DATES ANSI_QUOTES ERROR_FOR_DIVISION_BY_ZERO HIGH_NOT_PRECEDENCE IGNORE_SPACE NO_AUTO_CREATE_USER NO_AUTO_VALUE_ON_ZERO NO_BACKSLASH_ESCAPES NO_DIR_IN_CREATE NO_ENGINE_SUBSTITUTION NO_FIELD_OPTIONS NO_KEY_OPTIONS NO_TABLE_OPTIONS NO_UNSIGNED_SUBTRACTION NO_ZERO_DATE NO_ZERO_IN_DATE ONLY_FULL_GROUP_BY PAD_CHAR_TO_FULL_LENGTH PIPES_AS_CONCAT REAL_AS_FLOAT STRICT_ALL_TABLES STRICT_TRANS_TABLES | ||
Permitted Values (>= 5.6.6) | |||
Type | set | ||
Default | NO_ENGINE_SUBSTITUTION | ||
Valid Values | ALLOW_INVALID_DATES ANSI_QUOTES ERROR_FOR_DIVISION_BY_ZERO HIGH_NOT_PRECEDENCE IGNORE_SPACE NO_AUTO_CREATE_USER NO_AUTO_VALUE_ON_ZERO NO_BACKSLASH_ESCAPES NO_DIR_IN_CREATE NO_ENGINE_SUBSTITUTION NO_FIELD_OPTIONS NO_KEY_OPTIONS NO_TABLE_OPTIONS NO_UNSIGNED_SUBTRACTION NO_ZERO_DATE NO_ZERO_IN_DATE ONLY_FULL_GROUP_BY PAD_CHAR_TO_FULL_LENGTH PIPES_AS_CONCAT REAL_AS_FLOAT STRICT_ALL_TABLES STRICT_TRANS_TABLES |
Set the SQL mode. Prior to MySQL 5.6.6, the default was '' (an empty string); beginning with MySQL 5.6.6, the default is NO_ENGINE_SUBSTITUTION. See Section 5.1.7, “Server SQL Modes”.
Command-Line Format | --sysdate-is-now | ||
Option-File Format | sysdate-is-now | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
SYSDATE() by default returns the time at which it executes, not the time at which the statement in which it occurs begins executing. This differs from the behavior of NOW(). This option causes SYSDATE() to be an alias for NOW(). For information about the implications for binary logging and replication, see the description for SYSDATE() in Section 12.7, “Date and Time Functions” and for SET TIMESTAMP in Section 5.1.4, “Server System Variables”.
--tc-heuristic-recover={COMMIT|ROLLBACK}
Command-Line Format | --tc-heuristic-recover=name | ||
Option-File Format | tc-heuristic-recover | ||
Permitted Values | |||
Type | enumeration | ||
Valid Values | COMMIT RECOVER |
The type of decision to use in the heuristic recovery process. Currently, this option is unused.
Command-Line Format | --temp-pool | ||
Option-File Format | temp-pool | ||
Permitted Values | |||
Type | boolean | ||
Default | TRUE |
This option causes most temporary files created by the server to use a small set of names, rather than a unique name for each new file. This works around a problem in the Linux kernel dealing with creating many new files with different names. With the old behavior, Linux seems to “leak” memory, because it is being allocated to the directory entry cache rather than to the disk cache. This option is ignored except on Linux.
Command-Line Format | --transaction-isolation=name | ||
Option-File Format | transaction-isolation | ||
Option Sets Variable | Yes, tx_isolation | ||
Permitted Values | |||
Type | enumeration | ||
Valid Values | READ-UNCOMMITTED READ-COMMITTED REPEATABLE-READ SERIALIZABLE |
Sets the default transaction isolation level. The level value can be READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 13.3.6, “SET TRANSACTION Syntax”.
The default transaction isolation level can also be set at runtime using the SET TRANSACTION statement or by setting the tx_isolation system variable.
Version Introduced | 5.6.5 | ||
Command-Line Format | --transaction-read-only | ||
Option-File Format | transaction-read-only | ||
Option Sets Variable | Yes, tx_read_only | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Sets the default transaction access mode. By default, read-only mode is disabled, so the mode is read/write.
To set the default transaction access mode at runtime, use the SET TRANSACTION statement or set the tx_read_only system variable. See Section 13.3.6, “SET TRANSACTION Syntax”.
This option was added in MySQL 5.6.5.
--tmpdir=path, -t path
Command-Line Format | --tmpdir=path | ||
-t | |||
Option-File Format | tmpdir | ||
Option Sets Variable | Yes, tmpdir | ||
Variable Name | tmpdir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The path of the directory to use for creating temporary files. It might be useful if your default /tmp directory resides on a partition that is too small to hold temporary tables. This option accepts several paths that are used in round-robin fashion. Paths should be separated by colon characters (“:”) on Unix and semicolon characters (“;”) on Windows. If the MySQL server is acting as a replication slave, you should not set --tmpdir to point to a directory on a memory-based file system or to a directory that is cleared when the server host restarts. For more information about the storage location of temporary files, see Section C.5.4.4, “Where MySQL Stores Temporary Files”. A replication slave needs some of its temporary files to survive a machine restart so that it can replicate temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost when the server restarts, replication fails.
--user={user_name|user_id}, -u {user_name|user_id}
Command-Line Format | --user=name | ||
-u name | |||
Option-File Format | user | ||
Permitted Values | |||
Type | string |
Run the mysqld server as the user having the name user_name or the numeric user ID user_id. (“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)
This option is mandatory when starting mysqld as root. The server changes its user ID during its startup sequence, causing it to run as that particular user rather than as root. See Section 6.1.1, “Security Guidelines”.
To avoid a possible security hole where a user adds a --user=root option to a my.cnf file (thus causing the server to run as root), mysqld uses only the first --user option specified and produces a warning if there are multiple --user options. Options in /etc/my.cnf and $MYSQL_HOME/my.cnf are processed before command-line options, so it is recommended that you put a --user option in /etc/my.cnf and specify a value other than root. The option in /etc/my.cnf is found before any other --user options, which ensures that the server runs as a user other than root, and that a warning results if any other --user option is found.
Use this option with the --help option for detailed help.
--version, -V
Display version information and exit.
You can assign a value to a server system variable by using an option of the form --var_name=value. For example, --key_buffer_size=32M sets the key_buffer_size variable to a value of 32MB.
Note that when you assign a value to a variable, MySQL might automatically correct the value to stay within a given range, or adjust the value to the closest permissible value if only certain values are permitted.
If you want to restrict the maximum value to which a variable can be set at runtime with SET, you can define this by using the --maximum-var_name=value command-line option.
You can change the values of most system variables for a running server with the SET statement. See Section 13.7.4, “SET Syntax”.
Section 5.1.4, “Server System Variables”, provides a full description for all variables, and additional information for setting them at server startup and runtime. Section 8.11.2, “Tuning Server Parameters”, includes information on optimizing the server by tuning system variables.
5.1.4. Server System Variables
The MySQL server maintains many system variables that indicate how it is configured. Each system variable has a default value. System variables can be set at server startup using options on the command line or in an option file. Most of them can be changed dynamically while the server is running by means of the SET statement, which enables you to modify operation of the server without having to stop and restart it. You can refer to system variable values in expressions.
There are several ways to see the names and values of system variables:
To see the values that a server will use based on its compiled-in defaults and any option files that it reads, use this command:
mysqld --verbose --help
To see the values that a server will use based on its compiled-in defaults, ignoring the settings in any option files, use this command:
mysqld --no-defaults --verbose --help
To see the current values used by a running server, use the SHOW VARIABLES statement.
This section provides a description of each system variable. Variables with no version indicated are present in all MySQL 5.6 releases. For historical information concerning their implementation, please see http://dev.mysql.com/doc/refman/5.0/en/, and http://dev.mysql.com/doc/refman/4.1/en/.
The following table lists all available system variables.
Table 5.3. System Variable Summary
For additional system variable information, see these sections:
Section 5.1.5, “Using System Variables”, discusses the syntax for setting and displaying system variable values.
Section 5.1.5.2, “Dynamic System Variables”, lists the variables that can be set at runtime.
Information on tuning system variables can be found in Section 8.11.2, “Tuning Server Parameters”.
Section 14.2.6, “InnoDB Startup Options and System Variables”, lists InnoDB system variables.
MySQL Cluster System Variables, lists system variables which are specific to MySQL Cluster.
For information on server system variables specific to replication, see Section 16.1.4, “Replication and Binary Logging Options and Variables”.
Note
Some of the following variable descriptions refer to “enabling” or “disabling” a variable. These variables can be enabled with the SET statement by setting them to ON or 1, or disabled by setting them to OFF or 0. However, before MySQL 5.6.2, to set such a variable on the command line or in an option file, you must set it to 1 or 0; setting it to ON or OFF will not work. For example, on the command line, --delay_key_write=1 works but --delay_key_write=ON does not. As of MySQL 5.6.2, boolean variables can be set at startup to the values ON, TRUE, OFF, and FALSE (not case sensitive). See Section 4.2.3.2, “Program Option Modifiers”.
Some system variables control the size of buffers or caches. For a given buffer, the server might need to allocate internal data structures. These structures typically are allocated from the total memory allocated to the buffer, and the amount of space required might be platform dependent. This means that when you assign a value to a system variable that controls a buffer size, the amount of space actually available might differ from the value assigned. In some cases, the amount might be less than the value assigned. It is also possible that the server will adjust a value upward. For example, if you assign a value of 0 to a variable for which the minimal value is 1024, the server will set the value to 1024.
Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.
Some system variables take file name values. Unless otherwise specified, the default file location is the data directory if the value is a relative path name. To specify the location explicitly, use an absolute path name. Suppose that the data directory is /var/mysql/data. If a file-valued variable is given as a relative path name, it will be located under /var/mysql/data. If the value is an absolute path name, its location is as given by the path name.
authentication_windows_log_level
Version Introduced | 5.6.10 | ||
Command-Line Format | --authentication_windows_log_level | ||
Option-File Format | authentication_windows_log_level | ||
Option Sets Variable | Yes, authentication_windows_log_level | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4 |
This variable is available only if the authentication_windows Windows authentication plugin is enabled and debugging code is enabled. See Section 6.3.7.4, “The Windows Native Authentication Plugin”.
This variable sets the logging level for the Windows authentication plugin. The following table shows the permitted values.
Value | Description |
---|---|
0 | No logging |
1 | Log only error messages |
2 | Log level 1 messages and warning messages |
3 | Log level 2 messages and information notes |
4 | Log level 3 messages and debug messages |
This variable was added in MySQL 5.6.10.
authentication_windows_use_principal_name
Version Introduced | 5.6.10 | ||
Command-Line Format | --authentication_windows_use_principal_name | ||
Option-File Format | authentication_windows_use_principal_name | ||
Option Sets Variable | Yes, authentication_windows_use_principal_name | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
This variable is available only if the authentication_windows Windows authentication plugin is enabled. See Section 6.3.7.4, “The Windows Native Authentication Plugin”.
A client that authenticates using the InitSecurityContext() function should provide a string identifying the service to which it connects (targetName). MySQL uses the principal name (UPN) of the account under which the server is running. The UPN has the form user_id@computer_name and need not be registered anywhere to be used. This UPN is sent by the server at the beginning of authentication handshake.
This variable controls whether the server sends the UPN in the initial challenge. By default, the variable is enabled. For security reasons, it can be disabled to avoid sending the server's account name to a client in clear text. If the variable is disabled, the server always sends a 0x00 byte in the first challenge, the client does not specify targetName, and as a result, NTLM authentication is used.
If the server fails to obtain its UPN (which will happen primarily in environments that do not support Kerberos authentication), the UPN is not sent by the server and NTLM authentication is used.
This variable was added in MySQL 5.6.10.
Command-Line Format | --autocommit[=#] | ||
Option-File Format | autocommit | ||
Option Sets Variable | Yes, autocommit | ||
Variable Name | autocommit | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean |
The autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0, you must use COMMIT to accept a transaction or ROLLBACK to cancel it. If autocommit is 0 and you change it to 1, MySQL performs an automatic COMMIT of any open transaction. Another way to begin a transaction is to use a START TRANSACTION or BEGIN statement. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.
By default, client connections begin with autocommit set to 1. To cause clients to begin with a default of 0, set the global autocommit value by starting the server with the --autocommit=0 option. To set the variable using an option file, include these lines:
[mysqld]
autocommit=0
Variable Name | automatic_sp_privileges | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | TRUE |
When this variable has a value of 1 (the default), the server automatically grants the EXECUTE and ALTER ROUTINE privileges to the creator of a stored routine, if the user cannot already execute and alter or drop the routine. (The ALTER ROUTINE privilege is required to drop the routine.) The server also automatically drops those privileges from the creator when the routine is dropped. If automatic_sp_privileges is 0, the server does not automatically add or drop these privileges.
The creator of a routine is the account used to execute the CREATE statement for it. This might not be the same as the account named as the DEFINER in the routine definition.
See also Section 18.2.2, “Stored Routines and MySQL Privileges”.
Command-Line Format | --back_log=# | ||
Option-File Format | back_log | ||
Option Sets Variable | Yes, back_log | ||
Variable Name | back_log | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 50 | ||
Range | 1 .. 65535 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | 1 .. 65535 |
The number of outstanding connection requests MySQL can have. This comes into play when the main MySQL thread gets very many connection requests in a very short time. It then takes some time (although very little) for the main thread to check the connection and start a new thread. The back_log value indicates how many requests can be stacked during this short time before MySQL momentarily stops answering new requests. You need to increase this only if you expect a large number of connections in a short period of time.
In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your operating system has its own limit on the size of this queue. The manual page for the Unix listen() system call should have more details. Check your OS documentation for the maximum value for this variable. back_log cannot be set higher than your operating system limit.
As of MySQL 5.6.6, the default value is based on the following formula, capped to a limit of 900:
50 + (max_connections / 5)
Before 5.6.6, the default is 50.
Command-Line Format | --basedir=path | ||
-b | |||
Option-File Format | basedir | ||
Option Sets Variable | Yes, basedir | ||
Variable Name | basedir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The MySQL installation base directory. This variable can be set with the --basedir option. Relative path names for other variables usually are resolved relative to the base directory.
If set to 1, all temporary tables are stored on disk rather than in memory. This is a little slower, but the error The table tbl_name is full does not occur for SELECT operations that require a large temporary table. The default value for a new connection is 0 (use in-memory temporary tables). Normally, you should never need to set this variable, because in-memory tables are automatically converted to disk-based tables as required.
Command-Line Format | --bind-address=addr | ||
Option-File Format | bind-address=addr | ||
Variable Name | bind-address | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | string | ||
Default | 0.0.0.0 | ||
Permitted Values (>= 5.6.6) | |||
Type | string | ||
Default | * |
The value of the --bind-address option. This variable was added in MySQL 5.6.1.
Command-Line Format | --bulk_insert_buffer_size=# | ||
Option-File Format | bulk_insert_buffer_size | ||
Option Sets Variable | Yes, bulk_insert_buffer_size | ||
Variable Name | bulk_insert_buffer_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 8388608 | ||
Range | 0 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 8388608 | ||
Range | 0 .. 18446744073709547520 |
MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT, INSERT ... VALUES (...), (...), ..., and LOAD DATA INFILE when adding data to nonempty tables. This variable limits the size of the cache tree in bytes per thread. Setting it to 0 disables this optimization. The default value is 8MB.
Variable Name | character_set_client | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The character set for statements that arrive from the client. The session value of this variable is set using the character set requested by the client when the client connects to the server. (Many clients support a --default-character-set option to enable this character set to be specified explicitly. See also Section 10.1.4, “Connection Character Sets and Collations”.) The global value of the variable is used to set the session value in cases when the client-requested value is unknown or not available, or the server is configured to ignore client requests:
The client is from a version of MySQL older than MySQL 4.1, and thus does not request a character set.
The client requests a character set not known to the server. For example, a Japanese-enabled client requests sjis when connecting to a server not configured with sjis support.
mysqld was started with the --skip-character-set-client-handshake option, which causes it to ignore client character set configuration. This reproduces MySQL 4.0 behavior and is useful should you wish to upgrade the server without upgrading all the clients.
ucs2, utf16, utf16le, and utf32 cannot be used as a client character set, which means that they also do not work for SET NAMES or SET CHARACTER SET.
Variable Name | character_set_connection | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The character set used for literals that do not have a character set introducer and for number-to-string conversion.
Variable Name | character_set_database | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Footnote | This option is dynamic, but only the server should set this information. You should not set the value of this variable manually. | ||
Permitted Values | |||
Type | string |
The character set used by the default database. The server sets this variable whenever the default database changes. If there is no default database, the variable has the same value as character_set_server.
Command-Line Format | --character-set-filesystem=name | ||
Option-File Format | character-set-filesystem | ||
Option Sets Variable | Yes, character_set_filesystem | ||
Variable Name | character_set_filesystem | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The file system character set. This variable is used to interpret string literals that refer to file names, such as in the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function. Such file names are converted from character_set_client to character_set_filesystem before the file opening attempt occurs. The default value is binary, which means that no conversion occurs. For systems on which multi-byte file names are permitted, a different value may be more appropriate. For example, if the system represents file names using UTF-8, set character_set_filesystem to 'utf8'.
Variable Name | character_set_results | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The character set used for returning query results such as result sets or error messages to the client.
Command-Line Format | --character-set-server | ||
Option-File Format | character-set-server | ||
Option Sets Variable | Yes, character_set_server | ||
Variable Name | character_set_server | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The server's default character set.
Variable Name | character_set_system | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The character set used by the server for storing identifiers. The value is always utf8.
Command-Line Format | --character-sets-dir=path | ||
Option-File Format | character-sets-dir=path | ||
Option Sets Variable | Yes, character_sets_dir | ||
Variable Name | character-sets-dir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | directory name |
The directory where character sets are installed.
Variable Name | collation_connection | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The collation of the connection character set.
Variable Name | collation_database | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Footnote | This option is dynamic, but only the server should set this information. You should not set the value of this variable manually. | ||
Permitted Values | |||
Type | string |
The collation used by the default database. The server sets this variable whenever the default database changes. If there is no default database, the variable has the same value as collation_server.
Command-Line Format | --collation-server | ||
Option-File Format | collation-server | ||
Option Sets Variable | Yes, collation_server | ||
Variable Name | collation_server | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The server's default collation.
Command-Line Format | --completion_type=# | ||
Option-File Format | completion_type | ||
Option Sets Variable | Yes, completion_type | ||
Variable Name | completion_type | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | NO_CHAIN | ||
Valid Values | NO_CHAIN CHAIN RELEASE 0 1 2 |
The transaction completion type. This variable can take the values shown in the following table. The variable can be assigned using either the name values or corresponding integer values.
Value | Description |
---|---|
NO_CHAIN (or 0) | COMMIT and ROLLBACK are unaffected. This is the default value. |
CHAIN (or 1) | COMMIT and ROLLBACK are equivalent to COMMIT AND CHAIN and ROLLBACK AND CHAIN, respectively. (A new transaction starts immediately with the same isolation level as the just-terminated transaction.) |
RELEASE (or 2) | COMMIT and ROLLBACK are equivalent to COMMIT RELEASE and ROLLBACK RELEASE, respectively. (The server disconnects after terminating the transaction.) |
completion_type affects transactions that begin with START TRANSACTION or BEGIN and end with COMMIT or ROLLBACK. It does not apply to implicit commits resulting from execution of the statements listed in Section 13.3.3, “Statements That Cause an Implicit Commit”. It also does not apply for XA COMMIT, XA ROLLBACK, or when autocommit=1.
Command-Line Format | --concurrent_insert[=#] | ||
Option-File Format | concurrent_insert | ||
Option Sets Variable | Yes, concurrent_insert | ||
Variable Name | concurrent_insert | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | AUTO | ||
Valid Values | NEVER AUTO ALWAYS 0 1 2 |
If AUTO (the default), MySQL permits INSERT and SELECT statements to run concurrently for MyISAM tables that have no free blocks in the middle of the data file. If you start mysqld with --skip-new, this variable is set to NEVER.
This variable can take the values shown in the following table. The variable can be assigned using either the name values or corresponding integer values.
Value | Description |
---|---|
NEVER (or 0) | Disables concurrent inserts |
AUTO (or 1) | (Default) Enables concurrent insert for MyISAM tables that do not have holes |
ALWAYS (or 2) | Enables concurrent inserts for all MyISAM tables, even those that have holes. For a table with a hole, new rows are inserted at the end of the table if it is in use by another thread. Otherwise, MySQL acquires a normal write lock and inserts the row into the hole. |
See also Section 8.10.3, “Concurrent Inserts”.
Command-Line Format | --connect_timeout=# | ||
Option-File Format | connect_timeout | ||
Option Sets Variable | Yes, connect_timeout | ||
Variable Name | connect_timeout | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 10 |
The number of seconds that the mysqld server waits for a connect packet before responding with Bad handshake. The default value is 10 seconds.
Increasing the connect_timeout value might help if clients frequently encounter errors of the form Lost connection to MySQL server at 'XXX', system error: errno.
Version Introduced | 5.6.2 | ||
Variable Name | core_file | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Whether to write a core file if the server crashes. This variable is set by the --core-file option. It was added in MySQL 5.6.2.
Command-Line Format | --datadir=path | ||
-h | |||
Option-File Format | datadir | ||
Option Sets Variable | Yes, datadir | ||
Variable Name | datadir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The MySQL data directory. This variable can be set with the --datadir option.
This variable is unused. It is deprecated as of MySQL 5.6.7 and will be removed in a future MySQL release.
This variable is unused. It is deprecated as of MySQL 5.6.7 and will be removed in a future MySQL release.
Command-Line Format | --debug[=debug_options] | ||
Option-File Format | debug | ||
Variable Name | debug | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string | ||
Default | 'd:t:o,/tmp/mysqld.trace' |
This variable indicates the current debugging settings. It is available only for servers built with debugging support. The initial value comes from the value of instances of the --debug option given at server startup. The global and session values may be set at runtime; the SUPER privilege is required, even for the session value.
Assigning a value that begins with + or - cause the value to added to or subtracted from the current value:
mysql> SET debug = 'T';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+
mysql> SET debug = '+P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| P:T |
+---------+
mysql> SET debug = '-P';
mysql> SELECT @@debug;
+---------+
| @@debug |
+---------+
| T |
+---------+
Variable Name | debug_sync | ||
Variable Scope | Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
This variable is the user interface to the Debug Sync facility. Use of Debug Sync requires that MySQL be configured with the -DENABLE_DEBUG_SYNC=1 option (see Section 2.9.4, “MySQL Source-Configuration Options”). If Debug Sync is not compiled in, this system variable is not available.
The global variable value is read only and indicates whether the facility is enabled. By default, Debug Sync is disabled and the value of debug_sync is OFF. If the server is started with --debug-sync-timeout=N, where N is a timeout value greater than 0, Debug Sync is enabled and the value of debug_sync is ON - current signal followed by the signal name. Also, N becomes the default timeout for individual synchronization points.
The session value can be read by any user and will have the same value as the global variable. The session value can be set by users that have the SUPER privilege to control synchronization points.
For a description of the Debug Sync facility and how to use synchronization points, see MySQL Internals: Test Synchronization.
Command-Line Format | --default-storage-engine=name | ||
Option-File Format | default-storage-engine | ||
Option Sets Variable | Yes, default_storage_engine | ||
Variable Name | default_storage_engine | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | InnoDB |
The default storage engine. As of MySQL 5.6.3, this variable sets the storage engine for permanent tables only. To set the storage engine for TEMPORARY tables, set the default_tmp_storage_engine system variable.
default_storage_engine should be used in preference to storage_engine, which is deprecated.
If you disable the default storage engine at server startup, you must set the default engine for both permanent and TEMPORARY tables to a different engine or the server will not start.
Version Introduced | 5.6.3 | ||
Command-Line Format | --default_tmp_storage_engine=name | ||
Option-File Format | default_tmp_storage_engine | ||
Option Sets Variable | Yes, default_tmp_storage_engine | ||
Variable Name | default_tmp_storage_engine | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | InnoDB |
The default storage engine for TEMPORARY tables (created with CREATE TEMPORARY TABLE). To set the storage engine for permanent tables, set the default_storage_engine system variable.
If you disable the default storage engine at server startup, you must set the default engine for both permanent and TEMPORARY tables to a different engine or the server will not start.
default_tmp_storage_engine was added in MySQL 5.6.3.
Command-Line Format | --default_week_format=# | ||
Option-File Format | default_week_format | ||
Option Sets Variable | Yes, default_week_format | ||
Variable Name | default_week_format | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 7 |
The default mode value to use for the WEEK() function. See Section 12.7, “Date and Time Functions”.
Command-Line Format | --delay-key-write[=name] | ||
Option-File Format | delay-key-write | ||
Option Sets Variable | Yes, delay_key_write | ||
Variable Name | delay-key-write | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | ON | ||
Valid Values | ON OFF ALL |
This option applies only to MyISAM tables. It can have one of the following values to affect handling of the DELAY_KEY_WRITE table option that can be used in CREATE TABLE statements.
Option | Description |
---|---|
OFF | DELAY_KEY_WRITE is ignored. |
ON | MySQL honors any DELAY_KEY_WRITE option specified in CREATE TABLE statements. This is the default value. |
ALL | All new opened tables are treated as if they were created with the DELAY_KEY_WRITE option enabled. |
If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on every index update, but only when the table is closed. This speeds up writes on keys a lot, but if you use this feature, you should add automatic checking of all MyISAM tables by starting the server with the --myisam-recover-options option (for example, --myisam-recover-options=BACKUP,FORCE). See Section 5.1.3, “Server Command Options”, and Section 14.3.1, “MyISAM Startup Options”.
Warning
If you enable external locking with --external-locking, there is no protection against index corruption for tables that use delayed key writes.
Version Deprecated | 5.6.7 | ||
Command-Line Format | --delayed_insert_limit=# | ||
Option-File Format | delayed_insert_limit | ||
Option Sets Variable | Yes, delayed_insert_limit | ||
Variable Name | delayed_insert_limit | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Deprecated | 5.6.7 | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 100 | ||
Range | 1 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 100 | ||
Range | 1 .. 18446744073709547520 |
After inserting delayed_insert_limit delayed rows into a nontransactional table, the INSERT DELAYED handler thread checks whether there are any SELECT statements pending. If so, it permits them to execute before continuing to insert delayed rows.
As of MySQL 5.6.7, this system variable is deprecated (because DELAYED inserts are deprecated), and will be removed in a future release.
Version Deprecated | 5.6.7 | ||
Command-Line Format | --delayed_insert_timeout=# | ||
Option-File Format | delayed_insert_timeout | ||
Option Sets Variable | Yes, delayed_insert_timeout | ||
Variable Name | delayed_insert_timeout | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Deprecated | 5.6.7 | ||
Permitted Values | |||
Type | numeric | ||
Default | 300 |
How many seconds an INSERT DELAYED handler thread should wait for INSERT statements before terminating.
As of MySQL 5.6.7, this system variable is deprecated (because DELAYED inserts are deprecated), and will be removed in a future release.
Version Deprecated | 5.6.7 | ||
Command-Line Format | --delayed_queue_size=# | ||
Option-File Format | delayed_queue_size | ||
Option Sets Variable | Yes, delayed_queue_size | ||
Variable Name | delayed_queue_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Deprecated | 5.6.7 | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 1000 | ||
Range | 1 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1000 | ||
Range | 1 .. 18446744073709547520 |
This is a per-table limit on the number of rows to queue when handling INSERT DELAYED statements for nontransactional tables. If the queue becomes full, any client that issues an INSERT DELAYED statement waits until there is room in the queue again.
As of MySQL 5.6.7, this system variable is deprecated (because DELAYED inserts are deprecated), and will be removed in a future release.
disconnect_on_expired_passwords
Version Introduced | 5.6.10 | ||
Command-Line Format | --disconnect_on_expired_passwords=# | ||
Option-File Format | disconnect_on_expired_passwords | ||
Option Sets Variable | Yes, disconnect_on_expired_passwords | ||
Variable Name | disconnect_on_expired_passwords | ||
Variable Scope | Session | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
This variable controls how the server handles clients with expired passwords:
If the client indicates that it can handle expires passwords, the value of disconnect_on_expired_passwords is irrelevant. The server permits the client to connect but puts it in sandbox mode.
If the client does not indicate that it can handle expires passwords, the server handles the client according to the value of disconnect_on_expired_passwords:
If disconnect_on_expired_passwords: is enabled, the server disconnects the client.
If disconnect_on_expired_passwords: is disabled, the server permits the client to connect but puts it in sandbox mode.
For more information about the interaction of client and server settings relating to expired-password handling, see Section 6.3.6, “Password Expiration and Sandbox Mode”.
This variable was added in MySQL 5.6.10.
Command-Line Format | --div_precision_increment=# | ||
Option-File Format | div_precision_increment | ||
Option Sets Variable | Yes, div_precision_increment | ||
Variable Name | div_precision_increment | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 4 | ||
Range | 0 .. 30 |
This variable indicates the number of digits by which to increase the scale of the result of division operations performed with the / operator. The default value is 4. The minimum and maximum values are 0 and 30, respectively. The following example illustrates the effect of increasing the default value.
mysql> SELECT 1/7;
+--------+
| 1/7 |
+--------+
| 0.1429 |
+--------+
mysql> SET div_precision_increment = 12;
mysql> SELECT 1/7;
+----------------+
| 1/7 |
+----------------+
| 0.142857142857 |
+----------------+
Version Removed | 5.6.1 | ||
Command-Line Format | --engine-condition-pushdown | ||
Option-File Format | engine-condition-pushdown | ||
Option Sets Variable | Yes, engine_condition_pushdown | ||
Variable Name | engine_condition_pushdown | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Deprecated | 5.5.3, by optimizer_switch | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
This variable was removed in MySQL 5.6.1. Use the engine_condition_pushdown flag of the optimizer_switch variable instead. See Section 8.8.5.2, “Controlling Switchable Optimizations”.
Version Introduced | 5.6.5 | ||
Variable Name | end_markers_in_json | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Whether optimizer JSON output should add end markers.
Version Introduced | 5.6.5 | ||
Command-Line Format | --eq_range_index_dive_limit=# | ||
Option-File Format | eq_range_index_dive_limit | ||
Option Sets Variable | Yes, eq_range_index_dive_limit | ||
Variable Name | eq_range_index_dive_limit | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 10 | ||
Range | 0 .. 4294967295 |
This variable indicates the number of equality ranges in an equality comparison condition when the optimizer should switch from using index dives to index statistics in estimating the number of qualifying rows. It applies to evaluation of expressions that have either of these equivalent forms, where the optimizer uses a nonunique index to look up col_name values:
col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN
In both cases, the expression contains N equality ranges. The optimizer can make row estimates using index dives or index statistics. If eq_range_index_dive_limit is greater than 0, the optimizer uses existing index statistics instead of index dives if there are eq_range_index_dive_limit or more equality ranges. Thus, to permit use of index dives for up to N equality ranges, set eq_range_index_dive_limit to N + 1. Set eq_range_index_dive_limit to 0 to disable use of index statistics and always use index dives regardless of N.
For more information, see Section 8.13.1.3, “Equality Range Optimization of Many-Valued Comparisons”.
This variable was added in MySQL 5.6.5. Before 5.6.5, the optimizer makes row estimates using index dives in all cases.
To update table index statistics for best estimates, use ANALYZE TABLE.
The number of errors that resulted from the last statement that generated messages. This variable is read only. See Section 13.7.5.18, “SHOW ERRORS Syntax”.
Command-Line Format | --event-scheduler[=value] | ||
Option-File Format | event-scheduler | ||
Option Sets Variable | Yes, event_scheduler | ||
Variable Name | event_scheduler | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | OFF | ||
Valid Values | ON OFF DISABLED |
This variable indicates the status of the Event Scheduler; possible values are ON, OFF, and DISABLED, with the default being OFF. This variable and its effects on the Event Scheduler's operation are discussed in greater detail in the Overview section of the Events chapter.
Command-Line Format | --expire_logs_days=# | ||
Option-File Format | expire_logs_days | ||
Option Sets Variable | Yes, expire_logs_days | ||
Variable Name | expire_logs_days | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 99 |
The number of days for automatic binary log file removal. The default is 0, which means “no automatic removal.” Possible removals happen at startup and when the binary log is flushed. Log flushing occurs as indicated in Section 5.2, “MySQL Server Logs”.
To remove binary log files manually, use the PURGE BINARY LOGS statement. See Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.
explicit_defaults_for_timestamp
Version Introduced | 5.6.6 | ||
Command-Line Format | --explicit_defaults_for_timestamp=# | ||
Option-File Format | explicit_defaults_for_timestamp | ||
Option Sets Variable | Yes, explicit_defaults_for_timestamp | ||
Variable Name | explicit_defaults_for_timestamp | ||
Variable Scope | Session | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
In MySQL, the TIMESTAMP data type differs in nonstandard ways from other data types:
TIMESTAMP columns not explicitly declared with the NULL attribute are assigned the NOT NULL attribute. (Columns of other data types, if not explicitly declared as NOT NULL, permit NULL values.) Setting such a column to NULL sets it to the current timestamp.
The first TIMESTAMP column in a table, if not declared with the NULL attribute or an explicit DEFAULT or ON UPDATE clause, is automatically assigned the DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP attributes.
TIMESTAMP columns following the first one, if not declared with the NULL attribute or an explicit DEFAULT clause, are automatically assigned DEFAULT '0000-00-00 00:00:00' (the “zero” timestamp). For inserted rows that specify no explicit value for such a column, the column is assigned '0000-00-00 00:00:00' and no warning occurs.
Those nonstandard behaviors remain the default for TIMESTAMP but as of MySQL 5.6.6 are deprecated and this warning appears at startup:
[Warning] TIMESTAMP with implicit DEFAULT value is deprecated.
Please use --explicit_defaults_for_timestamp server option (see
documentation for more details).
As indicated by the warning, to turn off the nonstandard behaviors, enable the new explicit_defaults_for_timestamp system variable at server startup. With this variable enabled, the server handles TIMESTAMP as follows instead:
TIMESTAMP columns not explicitly declared as NOT NULL permit NULL values. Setting such a column to NULL sets it to NULL, not the current timestamp.
No TIMESTAMP column is assigned the DEFAULT CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP attributes automatically. Those attributes must be explicitly specified.
TIMESTAMP columns declared as NOT NULL and without an explicit DEFAULT clause are treated as having no default value. For inserted rows that specify no explicit value for such a column, the result depends on the SQL mode. If strict SQL mode is enabled, an error occurs. If strict SQL mode is not enabled, the column is assigned the implicit default of '0000-00-00 00:00:00' and a warning occurs. This is similar to how MySQL treats other temporal types such as DATETIME.
This variable was added in MySQL 5.6.6.
Variable Name | external_user | ||
Variable Scope | Session | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The external user name used during the authentication process, as set by the plugin used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set the value, this variable is NULL. See Section 6.3.8, “Proxy Users”.
Command-Line Format | --flush | ||
Option-File Format | flush | ||
Variable Name | flush | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
If ON, the server flushes (synchronizes) all changes to disk after each SQL statement. Normally, MySQL does a write of all changes to disk only after each SQL statement and lets the operating system handle the synchronizing to disk. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”. This variable is set to ON if you start mysqld with the --flush option.
Command-Line Format | --flush_time=# | ||
Option-File Format | flush_time | ||
Option Sets Variable | Yes, flush_time | ||
Variable Name | flush_time | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type (windows) | numeric | ||
Default | 1800 | ||
Min Value | 0 | ||
Permitted Values (>= 5.6.6) | |||
Type (windows) | numeric | ||
Default | 0 | ||
Min Value | 0 |
If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources and synchronize unflushed data to disk. This option is best used only on systems with minimal resources. The default is 0 except that before MySQL 5.6.6, the default is 1800 on Windows.
If set to 1 (the default), foreign key constraints for InnoDB tables are checked. If set to 0, they are ignored. Typically you leave this setting enabled during normal operation, to enforce referential integrity. Disabling foreign key checking can be useful for reloading InnoDB tables in an order different from that required by their parent/child relationships. See Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”.
Setting foreign_key_checks to 0 also affects data definition statements: DROP SCHEMA drops a schema even if it contains tables that have foreign keys that are referred to by tables outside the schema, and DROP TABLE drops tables that have foreign keys that are referred to by other tables.
Note
Setting foreign_key_checks to 1 does not trigger a scan of the existing table data. Therefore, rows added to the table while foreign_key_checks = 0 will not be verified for consistency.
Command-Line Format | --ft_boolean_syntax=name | ||
Option-File Format | ft_boolean_syntax | ||
Variable Name | ft_boolean_syntax | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string | ||
Default | +-><()~*:""& |
The list of operators supported by boolean full-text searches performed using IN BOOLEAN MODE. See Section 12.9.2, “Boolean Full-Text Searches”.
The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as follows:
Operator function is determined by position within the string.
The replacement value must be 14 characters.
Each character must be an ASCII nonalphanumeric character.
Either the first or second character must be a space.
No duplicates are permitted except the phrase quoting operators in positions 11 and 12. These two characters are not required to be the same, but they are the only two that may be.
Positions 10, 13, and 14 (which by default are set to “:”, “&”, and “|”) are reserved for future extensions.
Command-Line Format | --ft_max_word_len=# | ||
Option-File Format | ft_max_word_len | ||
Option Sets Variable | Yes, ft_max_word_len | ||
Variable Name | ft_max_word_len | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Min Value | 10 |
The maximum length of the word to be included in a MyISAM FULLTEXT index.
Note
FULLTEXT indexes on MyISAM tables must be rebuilt after changing this variable. Use REPAIR TABLE tbl_name QUICK.
Command-Line Format | --ft_min_word_len=# | ||
Option-File Format | ft_min_word_len | ||
Option Sets Variable | Yes, ft_min_word_len | ||
Variable Name | ft_min_word_len | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 4 | ||
Min Value | 1 |
The minimum length of the word to be included in a MyISAM FULLTEXT index.
Note
FULLTEXT indexes on MyISAM tables must be rebuilt after changing this variable. Use REPAIR TABLE tbl_name QUICK.
Command-Line Format | --ft_query_expansion_limit=# | ||
Option-File Format | ft_query_expansion_limit | ||
Option Sets Variable | Yes, ft_query_expansion_limit | ||
Variable Name | ft_query_expansion_limit | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 20 | ||
Range | 0 .. 1000 |
The number of top matches to use for full-text searches performed using WITH QUERY EXPANSION.
Command-Line Format | --ft_stopword_file=file_name | ||
Option-File Format | ft_stopword_file=file_name | ||
Option Sets Variable | Yes, ft_stopword_file | ||
Variable Name | ft_stopword_file | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The file from which to read the list of stopwords for full-text searches on MyISAM tables. The server looks for the file in the data directory unless an absolute path name is given to specify a different directory. All the words from the file are used; comments are not honored. By default, a built-in list of stopwords is used (as defined in the storage/myisam/ft_static.c file). Setting this variable to the empty string ('') disables stopword filtering. See also Section 12.9.4, “Full-Text Stopwords”.
Note
FULLTEXT indexes on MyISAM tables must be rebuilt after changing this variable or the contents of the stopword file. Use REPAIR TABLE tbl_name QUICK.
Command-Line Format | --general-log | ||
Option-File Format | general-log | ||
Option Sets Variable | Yes, general_log | ||
Variable Name | general_log | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Whether the general query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to enable the log. The default value depends on whether the --general_log option is given. The destination for log output is controlled by the log_output system variable; if that value is NONE, no log entries are written even if the log is enabled.
Command-Line Format | --general-log-file=file_name | ||
Option-File Format | general_log_file | ||
Option Sets Variable | Yes, general_log_file | ||
Variable Name | general_log_file | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | file name | ||
Default | host_name.log |
The name of the general query log file. The default value is host_name.log, but the initial value can be changed with the --general_log_file option.
Command-Line Format | --group_concat_max_len=# | ||
Option-File Format | group_concat_max_len | ||
Option Sets Variable | Yes, group_concat_max_len | ||
Variable Name | group_concat_max_len | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 1024 | ||
Range | 4 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1024 | ||
Range | 4 .. 18446744073709547520 |
The maximum permitted result length in bytes for the GROUP_CONCAT() function. The default is 1024.
YES if the zlib compression library is available to the server, NO if not. If not, the COMPRESS() and UNCOMPRESS() functions cannot be used.
YES if the crypt() system call is available to the server, NO if not. If not, the ENCRYPT() function cannot be used.
YES if mysqld supports CSV tables, NO if not.
This variable was removed in MySQL 5.6.1. Use SHOW ENGINES instead.
YES if mysqld supports dynamic loading of plugins, NO if not.
YES if the server supports spatial data types, NO if not.
YES if mysqld supports InnoDB tables. DISABLED if --skip-innodb is used.
This variable was removed in MySQL 5.6.1. Use SHOW ENGINES instead.
This variable is an alias for have_ssl.
YES if mysqld supports partitioning.
This variable was removed in MySQL 5.6.1. Use SHOW ENGINES instead.
YES if statement profiling capability is present, NO if not. If present, the profiling system variable controls whether this capability is enabled or disabled. See Section 13.7.5.32, “SHOW PROFILES Syntax”.
This variable is deprecated in MySQL 5.6.8 and will be removed in a future MySQL release.
YES if mysqld supports the query cache, NO if not.
YES if RTREE indexes are available, NO if not. (These are used for spatial indexes in MyISAM tables.)
YES if mysqld supports SSL connections, NO if not. DISABLED indicates that the server was compiled with SSL support, but but was not started with the appropriate --ssl-xxx options. For more information, see Section 6.3.9.2, “Configuring MySQL for SSL”.
YES if symbolic link support is enabled, NO if not. This is required on Unix for support of the DATA DIRECTORY and INDEX DIRECTORY table options, and on Windows for support of data directory symlinks. If the server is started with the --skip-symbolic-links option, the value is DISABLED.
Version Introduced | 5.6.5 | ||
Command-Line Format | --host_cache_size=# | ||
Option-File Format | host_cache_size | ||
Option Sets Variable | Yes, host_cache_size | ||
Variable Name | host_cache_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.7) | |||
Type | numeric | ||
Default | 128 | ||
Range | 0 .. 65536 | ||
Permitted Values (>= 5.6.8) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | 0 .. 65536 |
The size of the internal host cache (see Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”). Setting the size to 0 disables the host cache. Changing the cache size at runtime implicitly causes a FLUSH HOSTS operation to clear the host cache and truncate the host_cache table.
The default value is 128, plus 1 for a value of max_connections up to 500, plus 1 for every increment of 20 over 500 in the max_connections value, capped to a limit of 2000. Before MySQL 5.6.8, the default is 128.
Use of --skip-host-cache is similar to setting the host_cache_size system variable to 0, but host_cache_size is more flexible because it can also be used to resize, enable, or disable the host cache at runtime, not just at server startup.
If you start the server with --skip-host-cache, that does not prevent changes to the value of host_cache_size, but such changes have no effect and the cache is not re-enabled even if host_cache_size is set larger than 0.
This variable was added in MySQL 5.6.5.
Variable Name | hostname | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The server sets this variable to the server host name at startup.
This variable is a synonym for the last_insert_id variable. It exists for compatibility with other database systems. You can read its value with SELECT @@identity, and set it using SET identity.
Version Introduced | 5.6.3 | ||
Variable Name | ignore_db_dirs | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
A comma-separated list of names that are not considered as database directories in the data directory. The value is set from any instances of --ignore-db-dir given at server startup.
This variable was added in MySQL 5.6.3.
Command-Line Format | --init-connect=name | ||
Option-File Format | init_connect | ||
Option Sets Variable | Yes, init_connect | ||
Variable Name | init_connect | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
A string to be executed by the server for each client that connects. The string consists of one or more SQL statements, separated by semicolon characters. For example, each client session begins by default with autocommit mode enabled. For older servers (before MySQL 5.5.8), there is no global autocommit system variable to specify that autocommit should be disabled by default, but as a workaround init_connect can be used to achieve the same effect:
SET GLOBAL init_connect='SET autocommit=0';
The init_connect variable can also be set on the command line or in an option file. To set the variable as just shown using an option file, include these lines:
[mysqld]
init_connect='SET autocommit=0'
The content of init_connect is not executed for users that have the SUPER privilege. This is done so that an erroneous value for init_connect does not prevent all clients from connecting. For example, the value might contain a statement that has a syntax error, thus causing client connections to fail. Not executing init_connect for users that have the SUPER privilege enables them to open a connection and fix the init_connect value.
Command-Line Format | --init-file=file_name | ||
Option-File Format | init-file=file_name | ||
Option Sets Variable | Yes, init_file | ||
Variable Name | init_file | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The name of the file specified with the --init-file option when you start the server. This should be a file containing SQL statements that you want the server to execute when it starts. Each statement must be on a single line and should not include comments. No statement terminator such as ;, \g, or \G should be given at the end of each statement.
innodb_xxx
InnoDB system variables are listed in Section 14.2.6, “InnoDB Startup Options and System Variables”. These variables control many aspects of storage, memory use, and I/O patterns for InnoDB tables, and are especially important now that InnoDB is the default storage engine.
The value to be used by the following INSERT or ALTER TABLE statement when inserting an AUTO_INCREMENT value. This is mainly used with the binary log.
Command-Line Format | --interactive_timeout=# | ||
Option-File Format | interactive_timeout | ||
Option Sets Variable | Yes, interactive_timeout | ||
Variable Name | interactive_timeout | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 28800 | ||
Min Value | 1 |
The number of seconds the server waits for activity on an interactive connection before closing it. An interactive client is defined as a client that uses the CLIENT_INTERACTIVE option to mysql_real_connect(). See also wait_timeout.
Command-Line Format | --join_buffer_size=# | ||
Option-File Format | join_buffer_size | ||
Option Sets Variable | Yes, join_buffer_size | ||
Variable Name | join_buffer_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values (>= 5.6.0, <= 5.6.5) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 131072 | ||
Range | 128 .. 18446744073709547520 | ||
Permitted Values (>= 5.6.0, <= 5.6.5) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 131072 | ||
Range | 128 .. 4294967295 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 262144 | ||
Range | 128 .. 4294967295 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 262144 | ||
Range | 128 .. 18446744073709547520 |
The minimum size of the buffer that is used for plain index scans, range index scans, and joins that do not use indexes and thus perform full table scans. Normally, the best way to get fast joins is to add indexes. Increase the value of join_buffer_size to get a faster full join when adding indexes is not possible. One join buffer is allocated for each full join between two tables. For a complex join between several tables for which indexes are not used, multiple join buffers might be necessary. There is no gain from setting the buffer larger than required to hold each matching row, and all joins allocate at least the minimum size, so use caution in setting this variable to a large value globally. It is better to keep the global setting small and change to a larger setting only in sessions that are doing large joins. Memory allocation time can cause substantial performance drops if the global size is larger than needed by most queries that use it.
The default is 256KB as of MySQL 5.6.6, 128KB before that. The maximum permissible setting for join_buffer_size is 4GB. Values larger than 4GB are permitted for 64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB with a warning).
For additional information about join buffering, see Section 8.13.8, “Nested-Loop Join Algorithms”.
Command-Line Format | --keep_files_on_create=# | ||
Option-File Format | keep_files_on_create | ||
Option Sets Variable | Yes, keep_files_on_create | ||
Variable Name | keep_files_on_create | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this behavior, set the keep_files_on_create variable to ON (1), in which case MyISAM will not overwrite existing files and returns an error instead. The default value is OFF (0).
If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing .MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified directory.
Command-Line Format | --key_buffer_size=# | ||
Option-File Format | key_buffer_size | ||
Option Sets Variable | Yes, key_buffer_size | ||
Variable Name | key_buffer_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 8388608 | ||
Range | 8 .. 4294967295 |
Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is the size of the buffer used for index blocks. The key buffer is also known as the key cache.
The maximum permissible setting for key_buffer_size is 4GB on 32-bit platforms. Values larger than 4GB are permitted for 64-bit platforms. The effective maximum size might be less, depending on your available physical RAM and per-process RAM limits imposed by your operating system or hardware platform. The value of this variable indicates the amount of memory requested. Internally, the server allocates as much memory as possible up to this amount, but the actual allocation might be less.
You can increase the value to get better index handling for all reads and multiple writes; on a system whose primary function is to run MySQL using the MyISAM storage engine, 25% of the machine's total memory is an acceptable value for this variable. However, you should be aware that, if you make the value too large (for example, more than 50% of the machine's total memory), your system might start to page and become extremely slow. This is because MySQL relies on the operating system to perform file system caching for data reads, so you must leave some room for the file system cache. You should also consider the memory requirements of any other storage engines that you may be using in addition to MyISAM.
For even more speed when writing many rows at the same time, use LOCK TABLES. See Section 8.2.2.1, “Speed of INSERT Statements”.
You can check the performance of the key buffer by issuing a SHOW STATUS statement and examining the Key_read_requests, Key_reads, Key_write_requests, and Key_writes status variables. (See Section 13.7.5, “SHOW Syntax”.) The Key_reads/Key_read_requests ratio should normally be less than 0.01. The Key_writes/Key_write_requests ratio is usually near 1 if you are using mostly updates and deletes, but might be much smaller if you tend to do updates that affect many rows at the same time or if you are using the DELAY_KEY_WRITE table option.
The fraction of the key buffer in use can be determined using key_buffer_size in conjunction with the Key_blocks_unused status variable and the buffer block size, which is available from the key_cache_block_size system variable:
1 - ((Key_blocks_unused * key_cache_block_size) / key_buffer_size)
This value is an approximation because some space in the key buffer is allocated internally for administrative structures. Factors that influence the amount of overhead for these structures include block size and pointer size. As block size increases, the percentage of the key buffer lost to overhead tends to decrease. Larger blocks results in a smaller number of read operations (because more keys are obtained per read), but conversely an increase in reads of keys that are not examined (if not all keys in a block are relevant to a query).
It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache individually, not as a group. See Section 8.9.2, “The MyISAM Key Cache”.
Command-Line Format | --key_cache_age_threshold=# | ||
Option-File Format | key_cache_age_threshold | ||
Option Sets Variable | Yes, key_cache_age_threshold | ||
Variable Name | key_cache_age_threshold | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 300 | ||
Range | 100 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 300 | ||
Range | 100 .. 18446744073709547520 |
This value controls the demotion of buffers from the hot sublist of a key cache to the warm sublist. Lower values cause demotion to happen more quickly. The minimum value is 100. The default value is 300. See Section 8.9.2, “The MyISAM Key Cache”.
Command-Line Format | --key_cache_block_size=# | ||
Option-File Format | key_cache_block_size | ||
Option Sets Variable | Yes, key_cache_block_size | ||
Variable Name | key_cache_block_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1024 | ||
Range | 512 .. 16384 |
The size in bytes of blocks in the key cache. The default value is 1024. See Section 8.9.2, “The MyISAM Key Cache”.
Command-Line Format | --key_cache_division_limit=# | ||
Option-File Format | key_cache_division_limit | ||
Option Sets Variable | Yes, key_cache_division_limit | ||
Variable Name | key_cache_division_limit | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 100 | ||
Range | 1 .. 100 |
The division point between the hot and warm sublists of the key cache buffer list. The value is the percentage of the buffer list to use for the warm sublist. Permissible values range from 1 to 100. The default value is 100. See Section 8.9.2, “The MyISAM Key Cache”.
Variable Name | large_files_support | ||
Variable Scope | Global | ||
Dynamic Variable | No |
Whether mysqld was compiled with options for large file support.
Command-Line Format | --large-pages | ||
Option-File Format | large-pages | ||
Option Sets Variable | Yes, large_pages | ||
Variable Name | large_pages | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Platform Specific | linux | ||
Permitted Values | |||
Type (linux) | boolean | ||
Default | FALSE |
Whether large page support is enabled (via the --large-pages option). See Section 8.11.4.2, “Enabling Large Page Support”.
Variable Name | large_page_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type (linux) | numeric | ||
Default | 0 |
If large page support is enabled, this shows the size of memory pages. Currently, large memory pages are supported only on Linux; on other platforms, the value of this variable is always 0. See Section 8.11.4.2, “Enabling Large Page Support”.
The value to be returned from LAST_INSERT_ID(). This is stored in the binary log when you use LAST_INSERT_ID() in a statement that updates a table. Setting this variable does not update the value returned by the mysql_insert_id() C API function.
Command-Line Format | --lc-messages=name | ||
Option-File Format | lc-messages | ||
Option Sets Variable | Yes, lc_messages | ||
Variable Name | lc-messages | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The locale to use for error messages. The server converts the value to a language name and combines it with the value of the lc_messages_dir to produce the location for the error message file. See Section 10.2, “Setting the Error Message Language”.
Command-Line Format | --lc-messages-dir=path | ||
Option-File Format | lc-messages-dir | ||
Option Sets Variable | Yes, lc_messages_dir | ||
Variable Name | lc-messages-dir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | directory name |
The directory where error messages are located. The value is used together with the value of lc_messages to produce the location for the error message file. See Section 10.2, “Setting the Error Message Language”.
Variable Name | lc_time_names | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
This variable specifies the locale that controls the language used to display day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and MONTHNAME() functions. Locale names are POSIX-style values such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of your system's locale setting. For further information, see Section 10.7, “MySQL Server Locale Support”.
Variable Name | license | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string | ||
Default | GPL |
The type of license the server has.
Variable Name | local_infile | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean |
Whether LOCAL is supported for LOAD DATA INFILE statements. If this variable is disabled, clients cannot use LOCAL in LOAD DATA statements. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”.
Command-Line Format | --lock_wait_timeout=# | ||
Option-File Format | lock_wait_timeout | ||
Option Sets Variable | Yes, lock_wait_timeout | ||
Variable Name | lock_wait_timeout | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 31536000 | ||
Range | 1 .. 31536000 |
This variable specifies the timeout in seconds for attempts to acquire metadata locks. The permissible values range from 1 to 31536000 (1 year). The default is 31536000.
This timeout applies to all statements that use metadata locks. These include DML and DDL operations on tables, views, stored procedures, and stored functions, as well as LOCK TABLES, FLUSH TABLES WITH READ LOCK, and HANDLER statements.
This timeout does not apply to implicit accesses to system tables in the mysql database, such as grant tables modified by GRANT or REVOKE statements or table logging statements. The timeout does apply to system tables accessed directly, such as with SELECT or UPDATE.
The timeout value applies separately for each metadata lock attempt. A given statement can require more than one lock, so it is possible for the statement to block for longer than the lock_wait_timeout value before reporting a timeout error. When lock timeout occurs, ER_LOCK_WAIT_TIMEOUT is reported.
lock_wait_timeout does not apply to delayed inserts, which always execute with a timeout of 1 year. This is done to avoid unnecessary timeouts because a session that issues a delayed insert receives no notification of delayed insert timeouts.
Variable Name | locked_in_memory | ||
Variable Scope | Global | ||
Dynamic Variable | No |
This variable removed in MySQL 5.6.1. Use general_log instead.
log_bin_trust_function_creators
Command-Line Format | --log-bin-trust-function-creators | ||
Option-File Format | log-bin-trust-function-creators | ||
Option Sets Variable | Yes, log_bin_trust_function_creators | ||
Variable Name | log_bin_trust_function_creators | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
This variable applies when binary logging is enabled. It controls whether stored function creators can be trusted not to create stored functions that will cause unsafe events to be written to the binary log. If set to 0 (the default), users are not permitted to create or alter stored functions unless they have the SUPER privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A setting of 0 also enforces the restriction that a function must be declared with the DETERMINISTIC characteristic, or with the READS SQL DATA or NO SQL characteristic. If the variable is set to 1, MySQL does not enforce these restrictions on stored function creation. This variable also applies to trigger creation. See Section 18.7, “Binary Logging of Stored Programs”.
Command-Line Format | --log-error[=name] | ||
Option-File Format | log-error | ||
Option Sets Variable | Yes, log_error | ||
Variable Name | log_error | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The location of the error log.
Command-Line Format | --log-output=name | ||
Option-File Format | log-output | ||
Option Sets Variable | Yes, log_output | ||
Variable Name | log_output | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | set | ||
Default | FILE | ||
Valid Values | TABLE FILE NONE |
The destination for general query log and slow query log output. The value can be a comma-separated list of one or more of the words TABLE (log to tables), FILE (log to files), or NONE (do not log to tables or files). The default value is FILE. NONE, if present, takes precedence over any other specifiers. If the value is NONE log entries are not written even if the logs are enabled. If the logs are not enabled, no logging occurs even if the value of log_output is not NONE. For more information, see Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”.
Command-Line Format | --log-queries-not-using-indexes | ||
Option-File Format | log-queries-not-using-indexes | ||
Option Sets Variable | Yes, log_queries_not_using_indexes | ||
Variable Name | log_queries_not_using_indexes | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Whether queries that do not use indexes are logged to the slow query log. See Section 5.2.5, “The Slow Query Log”.
Version Introduced | 5.6.11 | ||
Variable Name | log_slow_admin_statements | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Log slow administrative statements such as OPTIMIZE TABLE, ANALYZE TABLE, and ALTER TABLE to the slow query log. This variable was added in MySQL 5.6.11.
Version Removed | 5.6.1 | ||
Command-Line Format | --log-slow-queries[=name] | ||
Option-File Format | log-slow-queries | ||
Option Sets Variable | Yes, log_slow_queries | ||
Variable Name | log_slow_queries | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Deprecated | 5.1.29, by slow-query-log | ||
Permitted Values | |||
Type | boolean |
This variable was removed in MySQL 5.6.1. Use slow_query_log instead.
log_throttle_queries_not_using_indexes
Version Introduced | 5.6.5 | ||
Variable Name | log_throttle_queries_not_using_indexes | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 |
If log_queries_not_using_indexes is enabled, the log_throttle_queries_not_using_indexes variable limits the number of such queries per minute that can be written to the slow query log. A value of 0 (the default) means “no limit”. For more information, see Section 5.2.5, “The Slow Query Log”.
This variable was added in MySQL 5.6.5.
Command-Line Format | --log-warnings[=#] | ||
-W [#] | |||
Option-File Format | log-warnings | ||
Option Sets Variable | Yes, log_warnings | ||
Variable Name | log_warnings | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Disabled by | skip-log-warnings | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1 | ||
Range | 0 .. 18446744073709547520 |
Whether to produce additional warning messages to the error log. It is enabled (1) by default and can be disabled by setting it to 0. Aborted connections and access-denied errors for new connection attempts are logged if the value is greater than 1. The server logs messages about statements that are unsafe for statement-based logging only if the value is greater than 0.
Command-Line Format | --long_query_time=# | ||
Option-File Format | long_query_time | ||
Option Sets Variable | Yes, long_query_time | ||
Variable Name | long_query_time | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 10 | ||
Min Value | 0 |
If a query takes longer than this many seconds, the server increments the Slow_queries status variable. If the slow query log is enabled, the query is logged to the slow query log file. This value is measured in real time, not CPU time, so a query that is under the threshold on a lightly loaded system might be above the threshold on a heavily loaded one. The minimum and default values of long_query_time are 0 and 10, respectively. The value can be specified to a resolution of microseconds. For logging to a file, times are written including the microseconds part. For logging to tables, only integer times are written; the microseconds part is ignored. See Section 5.2.5, “The Slow Query Log”.
Command-Line Format | --low-priority-updates | ||
Option-File Format | low-priority-updates | ||
Option Sets Variable | Yes, low_priority_updates | ||
Variable Name | low_priority_updates | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until there is no pending SELECT or LOCK TABLE READ on the affected table. This affects only storage engines that use only table-level locking (such as MyISAM, MEMORY, and MERGE).
Command-Line Format | --lower_case_file_system[=#] | ||
Option-File Format | lower_case_file_system | ||
Option Sets Variable | Yes, lower_case_file_system | ||
Variable Name | lower_case_file_system | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean |
This variable describes the case sensitivity of file names on the file system where the data directory is located. OFF means file names are case sensitive, ON means they are not case sensitive. This variable is read only because it reflects a file system attribute and setting it would have no effect on the file system.
Command-Line Format | --lower_case_table_names[=#] | ||
Option-File Format | lower_case_table_names | ||
Option Sets Variable | Yes, lower_case_table_names | ||
Variable Name | lower_case_table_names | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 2 |
If set to 0, table names are stored as specified and comparisons are case sensitive. If set to 1, table names are stored in lowercase on disk and comparisons are not case sensitive. If set to 2, table names are stored as given but compared in lowercase. This option also applies to database names and table aliases. For additional information, see Section 9.2.2, “Identifier Case Sensitivity”.
You should not set this variable to 0 if you are running MySQL on a system that has case-insensitive file names (such as Windows or Mac OS X). If you set this variable to 0 on such a system and access MyISAM tablenames using different lettercases, index corruption may result. On Windows the default value is 1. On Mac OS X, the default value is 2.
If you are using InnoDB tables, you should set this variable to 1 on all platforms to force names to be converted to lowercase.
The setting of this variable in MySQL 5.6 affects the behavior of replication filtering options with regard to case sensitivity. This is a change from previous versions of MySQL. (Bug #51639) See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”, for more information.
In previous versions of MySQL, using different settings for lower_case_table_names on replication masters and slaves could cause replication to fail when the slave used a case-sensitive file system. This issue is resolved in MySQL 5.6.1. For more information, see Section 16.4.1.32, “Replication and Variables”.
Command-Line Format | --max_allowed_packet=# | ||
Option-File Format | max_allowed_packet | ||
Option Sets Variable | Yes, max_allowed_packet | ||
Variable Name | max_allowed_packet | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 1048576 | ||
Range | 1024 .. 1073741824 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | 4194304 | ||
Range | 1024 .. 1073741824 |
The maximum size of one packet or any generated/intermediate string, or any parameter sent by the mysql_stmt_send_long_data() C API function. The default is 4MB as of MySQL 5.6.6, 1MB before that.
The packet message buffer is initialized to net_buffer_length bytes, but can grow up to max_allowed_packet bytes when needed. This value by default is small, to catch large (possibly incorrect) packets.
You must increase this value if you are using large BLOB columns or long strings. It should be as big as the largest BLOB you want to use. The protocol limit for max_allowed_packet is 1GB. The value should be a multiple of 1024; nonmultiples are rounded down to the nearest multiple.
When you change the message buffer size by changing the value of the max_allowed_packet variable, you should also change the buffer size on the client side if your client program permits it. On the client side, max_allowed_packet has a default of 1GB. Some programs such as mysql and mysqldump enable you to change the client-side value by setting max_allowed_packet on the command line or in an option file.
The session value of this variable is read only.
Command-Line Format | --max_connect_errors=# | ||
Option-File Format | max_connect_errors | ||
Option Sets Variable | Yes, max_connect_errors | ||
Variable Name | max_connect_errors | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 10 | ||
Range | 1 .. 4294967295 | ||
Permitted Values (<= 5.6.5) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 10 | ||
Range | 1 .. 18446744073709547520 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 100 | ||
Range | 1 .. 4294967295 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 100 | ||
Range | 1 .. 18446744073709547520 |
If more than this many successive connection requests from a host are interrupted without a successful connection, the server blocks that host from further connections. You can unblock blocked hosts by flushing the host cache. To do so, issue a FLUSH HOSTS statement or execute a mysqladmin flush-hosts command. If a connection is established successfully within fewer than max_connect_errors attempts after a previous connection was interrupted, the error count for the host is cleared to zero. However, once a host is blocked, flushing the host cache is the only way to unblock it. The default is 100 as of MySQL 5.6.6, 10 before that.
Command-Line Format | --max_connections=# | ||
Option-File Format | max_connections | ||
Option Sets Variable | Yes, max_connections | ||
Variable Name | max_connections | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 151 | ||
Range | 1 .. 100000 |
The maximum permitted number of simultaneous client connections. By default, this is 151. See Section C.5.2.7, “Too many connections”, for more information.
Increasing this value increases the number of file descriptors that mysqld requires. See Section 8.4.3.1, “How MySQL Opens and Closes Tables”, for comments on file descriptor limits.
Connections refused because the max_connections limit is reached increment the Connection_errors_max_connections status variable.
Version Deprecated | 5.6.7 | ||
Command-Line Format | --max_delayed_threads=# | ||
Option-File Format | max_delayed_threads | ||
Option Sets Variable | Yes, max_delayed_threads | ||
Variable Name | max_delayed_threads | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Deprecated | 5.6.7 | ||
Permitted Values | |||
Type | numeric | ||
Default | 20 | ||
Range | 0 .. 16384 |
Do not start more than this number of threads to handle INSERT DELAYED statements for nontransactional tables. If you try to insert data into a new table after all INSERT DELAYED threads are in use, the row is inserted as if the DELAYED attribute was not specified. If you set this to 0, MySQL never creates a thread to handle DELAYED rows; in effect, this disables DELAYED entirely.
For the SESSION value of this variable, the only valid values are 0 or the GLOBAL value.
As of MySQL 5.6.7, this system variable is deprecated (because DELAYED inserts are deprecated), and will be removed in a future release.
Command-Line Format | --max_error_count=# | ||
Option-File Format | max_error_count | ||
Option Sets Variable | Yes, max_error_count | ||
Variable Name | max_error_count | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 64 | ||
Range | 0 .. 65535 |
The maximum number of error, warning, and note messages to be stored for display by the SHOW ERRORS and SHOW WARNINGS statements. This is the same as the number of condition areas in the diagnostics area, and thus the number of conditions that can be inspected by GET DIAGNOSTICS.
Command-Line Format | --max_heap_table_size=# | ||
Option-File Format | max_heap_table_size | ||
Option Sets Variable | Yes, max_heap_table_size | ||
Variable Name | max_heap_table_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 16777216 | ||
Range | 16384 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 16777216 | ||
Range | 16384 .. 1844674407370954752 |
This variable sets the maximum size to which user-created MEMORY tables are permitted to grow. The value of the variable is used to calculate MEMORY table MAX_ROWS values. Setting this variable has no effect on any existing MEMORY table, unless the table is re-created with a statement such as CREATE TABLE or altered with ALTER TABLE or TRUNCATE TABLE. A server restart also sets the maximum size of existing MEMORY tables to the global max_heap_table_size value.
This variable is also used in conjunction with tmp_table_size to limit the size of internal in-memory tables. See Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”.
max_heap_table_size is not replicated. See Section 16.4.1.20, “Replication and MEMORY Tables”, and Section 16.4.1.32, “Replication and Variables”, for more information.
Version Deprecated | 5.6.7 | ||
Variable Name | max_insert_delayed_threads | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Deprecated | 5.6.7 | ||
Permitted Values | |||
Type | numeric |
This variable is a synonym for max_delayed_threads.
As of MySQL 5.6.7, this system variable is deprecated (because DELAYED inserts are deprecated), and will be removed in a future release.
Command-Line Format | --max_join_size=# | ||
Option-File Format | max_join_size | ||
Option Sets Variable | Yes, max_join_size | ||
Variable Name | max_join_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 18446744073709551615 | ||
Range | 1 .. 18446744073709551615 |
Do not permit statements that probably need to examine more than max_join_size rows (for single-table statements) or row combinations (for multiple-table statements) or that are likely to do more than max_join_size disk seeks. By setting this value, you can catch statements where keys are not used properly and that would probably take a long time. Set it if your users tend to perform joins that lack a WHERE clause, that take a long time, or that return millions of rows.
Setting this variable to a value other than DEFAULT resets the value of sql_big_selects to 0. If you set the sql_big_selects value again, the max_join_size variable is ignored.
If a query result is in the query cache, no result size check is performed, because the result has previously been computed and it does not burden the server to send it to the client.
Command-Line Format | --max_length_for_sort_data=# | ||
Option-File Format | max_length_for_sort_data | ||
Option Sets Variable | Yes, max_length_for_sort_data | ||
Variable Name | max_length_for_sort_data | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1024 | ||
Range | 4 .. 8388608 |
The cutoff on the size of index values that determines which filesort algorithm to use. See Section 8.13.13, “ORDER BY Optimization”.
Command-Line Format | --max_prepared_stmt_count=# | ||
Option-File Format | max_prepared_stmt_count | ||
Option Sets Variable | Yes, max_prepared_stmt_count | ||
Variable Name | max_prepared_stmt_count | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 16382 | ||
Range | 0 .. 1048576 |
This variable limits the total number of prepared statements in the server. (The sum of the number of prepared statements across all sessions.) It can be used in environments where there is the potential for denial-of-service attacks based on running the server out of memory by preparing huge numbers of statements. If the value is set lower than the current number of prepared statements, existing statements are not affected and can be used, but no new statements can be prepared until the current number drops below the limit. The default value is 16,382. The permissible range of values is from 0 to 1 million. Setting the value to 0 disables prepared statements.
Command-Line Format | --max_relay_log_size=# | ||
Option-File Format | max_relay_log_size | ||
Option Sets Variable | Yes, max_relay_log_size | ||
Variable Name | max_relay_log_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 1073741824 |
If a write by a replication slave to its relay log causes the current log file size to exceed the value of this variable, the slave rotates the relay logs (closes the current file and opens the next one). If max_relay_log_size is 0, the server uses max_binlog_size for both the binary log and the relay log. If max_relay_log_size is greater than 0, it constrains the size of the relay log, which enables you to have different sizes for the two logs. You must set max_relay_log_size to between 4096 bytes and 1GB (inclusive), or to 0. The default value is 0. See Section 16.2.1, “Replication Implementation Details”.
Command-Line Format | --max_seeks_for_key=# | ||
Option-File Format | max_seeks_for_key | ||
Option Sets Variable | Yes, max_seeks_for_key | ||
Variable Name | max_seeks_for_key | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 4294967295 | ||
Range | 1 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 18446744073709547520 | ||
Range | 1 .. 18446744073709547520 |
Limit the assumed maximum number of seeks when looking up rows based on a key. The MySQL optimizer assumes that no more than this number of key seeks are required when searching for matching rows in a table by scanning an index, regardless of the actual cardinality of the index (see Section 13.7.5.23, “SHOW INDEX Syntax”). By setting this to a low value (say, 100), you can force MySQL to prefer indexes instead of table scans.
Command-Line Format | --max_sort_length=# | ||
Option-File Format | max_sort_length | ||
Option Sets Variable | Yes, max_sort_length | ||
Variable Name | max_sort_length | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1024 | ||
Range | 4 .. 8388608 |
The number of bytes to use when sorting data values. Only the first max_sort_length bytes of each value are used; the rest are ignored.
As of MySQL 5.6.9, max_sort_length is ignored for integer, decimal, floating-point, and temporal data types.
Command-Line Format | --max_sp_recursion_depth[=#] | ||
Option-File Format | max_sp_recursion_depth | ||
Option Sets Variable | Yes, max_sp_recursion_depth | ||
Variable Name | max_sp_recursion_depth | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Max Value | 255 |
The number of times that any given stored procedure may be called recursively. The default value for this option is 0, which completely disables recursion in stored procedures. The maximum value is 255.
Stored procedure recursion increases the demand on thread stack space. If you increase the value of max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value of thread_stack at server startup.
This variable is unused. It is deprecated as of MySQL 5.6.7 and will be removed in a future MySQL release.
Command-Line Format | --max_user_connections=# | ||
Option-File Format | max_user_connections | ||
Option Sets Variable | Yes, max_user_connections | ||
Variable Name | max_user_connections | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 |
The maximum number of simultaneous connections permitted to any given MySQL user account. A value of 0 (the default) means “no limit.”
This variable has a global value that can be set at server startup or runtime. It also has a read-only session value that indicates the effective simultaneous-connection limit that applies to the account associated with the current session. The session value is initialized as follows:
If the user account has a nonzero MAX_USER_CONNECTIONS resource limit, the session max_user_connections value is set to that limit.
Otherwise, the session max_user_connections value is set to the global value.
Account resource limits are specified using the GRANT statement. See Section 6.3.4, “Setting Account Resource Limits”, and Section 13.7.1.4, “GRANT Syntax”.
Command-Line Format | --max_write_lock_count=# | ||
Option-File Format | max_write_lock_count | ||
Option Sets Variable | Yes, max_write_lock_count | ||
Variable Name | max_write_lock_count | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 4294967295 | ||
Range | 1 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 18446744073709547520 | ||
Range | 1 .. 18446744073709547520 |
After this many write locks, permit some pending read lock requests to be processed in between.
Version Introduced | 5.6.4 | ||
Variable Name | metadata_locks_cache_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 1024 | ||
Range | 1 .. 1048576 |
The size of the metadata locks cache. The server uses this cache to avoid creation and destruction of synchronization objects. This is particularly helpful on systems where such operations are expensive, such as Windows XP. This variable was added in MySQL 5.6.4.
Version Introduced | 5.6.8 | ||
Variable Name | metadata_locks_hash_instances | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 8 | ||
Range | 1 .. 1024 |
The set of metadata locks can be partitioned into separate hashes to permit connections accessing different objects to use different locking hashes and reduce contention. The metadata_locks_hash_instances system variable specifies the number of hashes (default 8). This variable was added in MySQL 5.6.8.
Command-Line Format | --min-examined-row-limit=# | ||
Option-File Format | min-examined-row-limit | ||
Variable Name | min_examined_row_limit | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 18446744073709547520 |
Queries that examine fewer than this number of rows are not logged to the slow query log.
Command-Line Format | --myisam_data_pointer_size=# | ||
Option-File Format | myisam_data_pointer_size | ||
Option Sets Variable | Yes, myisam_data_pointer_size | ||
Variable Name | myisam_data_pointer_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 6 | ||
Range | 2 .. 7 |
The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no MAX_ROWS option is specified. This variable cannot be less than 2 or larger than 7. The default value is 6. See Section C.5.2.12, “The table is full”.
Command-Line Format | --myisam_max_sort_file_size=# | ||
Option-File Format | myisam_max_sort_file_size | ||
Option Sets Variable | Yes, myisam_max_sort_file_size | ||
Variable Name | myisam_max_sort_file_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 2147483648 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 9223372036854775807 |
The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be larger than this value, the index is created using the key cache instead, which is slower. The value is given in bytes.
The default value is 2GB. If MyISAM index files exceed this size and disk space is available, increasing the value may help performance. The space must be available in the file system containing the directory where the original index file is located.
Command-Line Format | --myisam_mmap_size=# | ||
Option-File Format | myisam_mmap_size | ||
Option Sets Variable | Yes, myisam_mmap_size | ||
Variable Name | myisam_mmap_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 4294967295 | ||
Range | 7 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 18446744073709547520 | ||
Range | 7 .. 18446744073709547520 |
The maximum amount of memory to use for memory mapping compressed MyISAM files. If many compressed MyISAM tables are used, the value can be decreased to reduce the likelihood of memory-swapping problems.
Variable Name | myisam_recover_options | ||
Variable Scope | Global | ||
Dynamic Variable | No |
The value of the --myisam-recover-options option. See Section 5.1.3, “Server Command Options”.
Command-Line Format | --myisam_repair_threads=# | ||
Option-File Format | myisam_repair_threads | ||
Option Sets Variable | Yes, myisam_repair_threads | ||
Variable Name | myisam_repair_threads | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 1 | ||
Range | 1 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1 | ||
Range | 1 .. 18446744073709547520 |
If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own thread) during the Repair by sorting process. The default value is 1.
Note
Multi-threaded repair is still beta-quality code.
Command-Line Format | --myisam_sort_buffer_size=# | ||
Option-File Format | myisam_sort_buffer_size | ||
Option Sets Variable | Yes, myisam_sort_buffer_size | ||
Variable Name | myisam_sort_buffer_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 8388608 | ||
Range | 4 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 8388608 | ||
Range | 4 .. 18446744073709547520 |
The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or when creating indexes with CREATE INDEX or ALTER TABLE.
The maximum permissible setting for myisam_sort_buffer_size is 4GB. Values larger than 4GB are permitted for 64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB with a warning).
Command-Line Format | --myisam_stats_method=name | ||
Option-File Format | myisam_stats_method | ||
Option Sets Variable | Yes, myisam_stats_method | ||
Variable Name | myisam_stats_method | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Valid Values | nulls_equal nulls_unequal nulls_ignored |
How the server treats NULL values when collecting statistics about the distribution of index values for MyISAM tables. This variable has three possible values, nulls_equal, nulls_unequal, and nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values are considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored, NULL values are ignored.
The method that is used for generating table statistics influences how the optimizer chooses indexes for query execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.
Command-Line Format | --myisam_use_mmap | ||
Option-File Format | myisam_use_mmap | ||
Option Sets Variable | Yes, myisam_use_mmap | ||
Variable Name | myisam_use_mmap | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Use memory mapping for reading and writing MyISAM tables.
Variable Name | named_pipe | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Platform Specific | windows | ||
Permitted Values | |||
Type (windows) | boolean | ||
Default | OFF |
(Windows only.) Indicates whether the server supports connections over named pipes.
Command-Line Format | --net_buffer_length=# | ||
Option-File Format | net_buffer_length | ||
Option Sets Variable | Yes, net_buffer_length | ||
Variable Name | net_buffer_length | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 16384 | ||
Range | 1024 .. 1048576 |
Each client thread is associated with a connection buffer and result buffer. Both begin with a size given by net_buffer_length but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer shrinks to net_buffer_length after each SQL statement.
This variable should not normally be changed, but if you have very little memory, you can set it to the expected length of statements sent by clients. If statements exceed this length, the connection buffer is automatically enlarged. The maximum value to which net_buffer_length can be set is 1MB.
The session value of this variable is read only.
Command-Line Format | --net_read_timeout=# | ||
Option-File Format | net_read_timeout | ||
Option Sets Variable | Yes, net_read_timeout | ||
Variable Name | net_read_timeout | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 30 | ||
Min Value | 1 |
The number of seconds to wait for more data from a connection before aborting the read. When the server is reading from the client, net_read_timeout is the timeout value controlling when to abort. When the server is writing to the client, net_write_timeout is the timeout value controlling when to abort. See also slave_net_timeout.
Command-Line Format | --net_retry_count=# | ||
Option-File Format | net_retry_count | ||
Option Sets Variable | Yes, net_retry_count | ||
Variable Name | net_retry_count | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 10 | ||
Range | 1 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 10 | ||
Range | 1 .. 18446744073709547520 |
If a read or write on a communication port is interrupted, retry this many times before giving up. This value should be set quite high on FreeBSD because internal interrupts are sent to all threads.
Command-Line Format | --net_write_timeout=# | ||
Option-File Format | net_write_timeout | ||
Option Sets Variable | Yes, net_write_timeout | ||
Variable Name | net_write_timeout | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 60 | ||
Min Value | 1 |
The number of seconds to wait for a block to be written to a connection before aborting the write. See also net_read_timeout.
Command-Line Format | --new | ||
-n | |||
Option-File Format | new | ||
Option Sets Variable | Yes, new | ||
Variable Name | new | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Disabled by | skip-new | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
This variable was used in MySQL 4.0 to turn on some 4.1 behaviors, and is retained for backward compatibility. In MySQL 5.6, its value is always OFF.
Command-Line Format | --old | ||
Option-File Format | old | ||
Variable Name | old | ||
Variable Scope | Global | ||
Dynamic Variable | No |
old is a compatibility variable. It is disabled by default, but can be enabled at startup to revert the server to behaviors present in older versions.
Currently, when old is enabled, it changes the default scope of index hints to that used prior to MySQL 5.1.17. That is, index hints with no FOR clause apply only to how indexes are used for row retrieval and not to resolution of ORDER BY or GROUP BY clauses. (See Section 13.2.9.3, “Index Hint Syntax”.) Take care about enabling this in a replication setup. With statement-based binary logging, having different modes for the master and slaves might lead to replication errors.
Command-Line Format | --old-alter-table | ||
Option-File Format | old-alter-table | ||
Option Sets Variable | Yes, old_alter_table | ||
Variable Name | old_alter_table | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
When this variable is enabled, the server does not use the optimized method of processing an ALTER TABLE operation. It reverts to using a temporary table, copying over the data, and then renaming the temporary table to the original, as used by MySQL 5.0 and earlier. For more information on the operation of ALTER TABLE, see Section 13.1.6, “ALTER TABLE Syntax”.
Variable Name | old_passwords | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type | boolean | ||
Default | 0 | ||
Permitted Values (>= 5.6.6) | |||
Type | enumeration | ||
Default | 0 | ||
Valid Values | 0 1 2 |
This variable determines the type of password hashing performed by the PASSWORD() function and statements such as CREATE USER and GRANT.
The following table shows the permitted values of old_passwords, as well as the type of password hashing each value produces, and the plugins that use each hashing type. These values are permitted as of MySQL 5.6.6. Before 5.6.6, the value can be 0 (or OFF), or 1 (or ON).
Value | Password Hashing Format | Intended Use |
---|---|---|
0 | MySQL 4.1 native hashing | Accounts that authenticate with the mysql_native_password plugin |
1 | Pre-4.1 (“old”) native hashing | Accounts that authenticate with the mysql_old_password plugin |
2 | SHA-256 hashing | Accounts that authenticate with the sha256_password plugin |
If old_passwords=1, PASSWORD('str') returns the same value as OLD_PASSWORD('str').
For information about authentication plugins and hashing formats, see Section 6.3.7, “Pluggable Authentication”, and Section 6.1.2.4, “Password Hashing in MySQL”. If you set If old_passwords=2, follow the instructions for using the sha256_password plugin at Section 6.3.7.2, “The SHA-256 Authentication Plugin”.
Command-Line Format | --open-files-limit=# | ||
Option-File Format | open-files-limit | ||
Option Sets Variable | Yes, open_files_limit | ||
Variable Name | open_files_limit | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.7) | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 65535 | ||
Permitted Values (>= 5.6.8) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | 0 .. 65535 |
The number of files that the operating system permits mysqld to open. The value of this variable at runtime is the real value permitted by the system and might be different from the value you specify at server startup. The value is 0 on systems where MySQL cannot change the number of open files.
The effective open_files_limit value is based on the value specified at system startup (if any) and the values of max_connections and table_open_cache, using these formulas:
1) 10 + max_connections + (table_open_cache * 2)
2) max_connections * 5
3) open_files_limit value specified at startup, 5000 if none
The server attempts to obtain the number of file descriptors using the maximum of those three values. If that many descriptors cannot be obtained, the server attempts to obtain as many as the system will permit.
Version Introduced | 5.6.1 | ||
Version Removed | 5.6.3 | ||
Command-Line Format | --optimizer_join_cache_level=# | ||
Option-File Format | optimizer_join_cache_level | ||
Option Sets Variable | Yes, optimizer_join_cache_level | ||
Variable Name | optimizer_join_cache_level | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 4 | ||
Range | 0 .. 4 |
Before MySQL 5.6.3, this variable is used for join buffer management. It controls how join buffers are used for join operations. As of MySQL 5.6.3, it is removed and the optimizer_switch variable is used instead. See Section 8.13.12, “Block Nested-Loop and Batched Key Access Joins”.
The following table shows the permissible optimizer_join_cache_level values.
Option | Description |
---|---|
0 | No join buffer is used for any join operation. This setting can be useful for assessing baseline join performance in comparison to performance with nonzero values that enable use of join buffering. |
1 | This is the default value. Join buffers are employed only for inner joins that are executed by the original Block Nested-Loop (BNL) join algorithm. When this algorithm is applied, rows of the inner table are accessed through a table scan, a plain index scan, or a range index scan. |
2 | The server employs an incremental join buffer for a join operation if its first operand is produced by a join operation that uses a join buffer itself. |
3 | The BNL algorithm is used for outer join operations with one inner table and for inner joins. |
4 | The BNL algorithm uses incremental buffers for inner tables. In this case, the BNL algorithm can be used for nested outer joins (outer joins with several inner tables). Such an operation can be executed only if incremental join buffers are used to join all inner tables but the first one. |
Command-Line Format | --optimizer_prune_level[=#] | ||
Option-File Format | optimizer_prune_level | ||
Option Sets Variable | Yes, optimizer_prune_level | ||
Variable Name | optimizer_prune_level | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | 1 |
Controls the heuristics applied during query optimization to prune less-promising partial plans from the optimizer search space. A value of 0 disables heuristics so that the optimizer performs an exhaustive search. A value of 1 causes the optimizer to prune plans based on the number of rows retrieved by intermediate plans.
Command-Line Format | --optimizer_search_depth[=#] | ||
Option-File Format | optimizer_search_depth | ||
Option Sets Variable | Yes, optimizer_search_depth | ||
Variable Name | optimizer_search_depth | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values (>= 5.6) | |||
Type | numeric | ||
Default | 62 | ||
Range | 0 .. 62 |
The maximum depth of search performed by the query optimizer. Values larger than the number of relations in a query result in better query plans, but take longer to generate an execution plan for a query. Values smaller than the number of relations in a query return an execution plan quicker, but the resulting plan may be far from being optimal. If set to 0, the system automatically picks a reasonable value.
Command-Line Format | --optimizer_switch=value | ||
Option-File Format | optimizer_switch | ||
optimizer_switch | |||
optimizer_switch | |||
Option Sets Variable | Yes, optimizer_switch | ||
Variable Name | optimizer_switch | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values (>= 5.6.1, <= 5.6.2) | |||
Type | set | ||
Valid Values | engine_condition_pushdown={on|off} index_condition_pushdown={on|off} index_merge={on|off} index_merge_intersection={on|off} index_merge_sort_union={on|off} index_merge_union={on|off} mrr={on|off} mrr_cost_based={on|off} | ||
Permitted Values (>= 5.6.3, <= 5.6.4) | |||
Type | set | ||
Valid Values | batched_key_access={on|off} block_nested_loop={on|off} engine_condition_pushdown={on|off} index_condition_pushdown={on|off} index_merge={on|off} index_merge_intersection={on|off} index_merge_sort_union={on|off} index_merge_union={on|off} mrr={on|off} mrr_cost_based={on|off} | ||
Permitted Values (>= 5.6.5, <= 5.6.6) | |||
Type | set | ||
Valid Values | batched_key_access={on|off} block_nested_loop={on|off} engine_condition_pushdown={on|off} firstmatch={on|off} index_condition_pushdown={on|off} index_merge={on|off} index_merge_intersection={on|off} index_merge_sort_union={on|off} index_merge_union={on|off} loosescan={on|off} materialization={on|off} mrr={on|off} mrr_cost_based={on|off} semijoin={on|off} | ||
Permitted Values (>= 5.6.7, <= 5.6.8) | |||
Type | set | ||
Valid Values | batched_key_access={on|off} block_nested_loop={on|off} engine_condition_pushdown={on|off} firstmatch={on|off} index_condition_pushdown={on|off} index_merge={on|off} index_merge_intersection={on|off} index_merge_sort_union={on|off} index_merge_union={on|off} loosescan={on|off} materialization={on|off} mrr={on|off} mrr_cost_based={on|off} semijoin={on|off} subquery_materialization_cost_based={on|off} | ||
Permitted Values (>= 5.6.9) | |||
Type | set | ||
Valid Values | batched_key_access={on|off} block_nested_loop={on|off} engine_condition_pushdown={on|off} firstmatch={on|off} index_condition_pushdown={on|off} index_merge={on|off} index_merge_intersection={on|off} index_merge_sort_union={on|off} index_merge_union={on|off} loosescan={on|off} materialization={on|off} mrr={on|off} mrr_cost_based={on|off} semijoin={on|off} subquery_materialization_cost_based={on|off} use_index_extensions={on|off} |
The optimizer_switch system variable enables control over optimizer behavior. The value of this variable is a set of flags, each of which has a value of on or off to indicate whether the corresponding optimizer behavior is enabled or disabled. This variable has global and session values and can be changed at runtime. The global default can be set at server startup.
To see the current set of optimizer flags, select the variable value:
mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
index_merge_sort_union=on,
index_merge_intersection=on,
engine_condition_pushdown=on,
index_condition_pushdown=on,
mrr=on,mrr_cost_based=on,
block_nested_loop=on,batched_key_access=off,
materialization=on,semijoin=on,loosescan=on,
firstmatch=on,
subquery_materialization_cost_based=on,
use_index_extensions=on
For more information about the syntax of this variable and the optimizer behaviors that it controls, see Section 8.8.5.2, “Controlling Switchable Optimizations”.
Version Introduced | 5.6.3 | ||
Variable Name | optimizer_trace | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
This variable controls optimizer tracing. For details, see MySQL Internals: Tracing the Optimizer. This variable was added in MySQL 5.6.3.
Version Introduced | 5.6.3 | ||
Variable Name | optimizer_trace_features | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
This variable enables or disables selected optimizer tracing features. For details, see MySQL Internals: Tracing the Optimizer. This variable was added in MySQL 5.6.3.
Version Introduced | 5.6.3 | ||
Variable Name | optimizer_trace_limit | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 |
The maximum number of optimizer traces to display. For details, see MySQL Internals: Tracing the Optimizer. This variable was added in MySQL 5.6.3.
Version Introduced | 5.6.3 | ||
Variable Name | optimizer_trace_max_mem_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 16384 |
The maximum cumulative size of stored optimizer traces. For details, see MySQL Internals: Tracing the Optimizer. This variable was added in MySQL 5.6.3.
Version Introduced | 5.6.3 | ||
Variable Name | optimizer_trace_offset | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | -1 |
The offset of optimizer traces to display. For details, see MySQL Internals: Tracing the Optimizer. This variable was added in MySQL 5.6.3.
performance_schema_xxx
Performance Schema system variables are listed in Section 20.12, “Performance Schema System Variables”. These variables may be used to configure Performance Schema operation.
Command-Line Format | --pid-file=file_name | ||
Option-File Format | pid-file=file_name | ||
Option Sets Variable | Yes, pid_file | ||
Variable Name | pid_file | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The path name of the process ID (PID) file. This variable can be set with the --pid-file option.
Command-Line Format | --plugin_dir=path | ||
Option-File Format | plugin_dir | ||
Option Sets Variable | Yes, plugin_dir | ||
Variable Name | plugin_dir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | directory name | ||
Default | BASEDIR/lib/plugin |
The path name of the plugin directory.
If the plugin directory is writable by the server, it may be possible for a user to write executable code to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making plugin_dir read only to the server or by setting --secure-file-priv to a directory where SELECT writes can be made safely.
Command-Line Format | --port=# | ||
-P | |||
Option-File Format | port | ||
Option Sets Variable | Yes, port | ||
Variable Name | port | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 3306 | ||
Range | 0 .. 65535 |
The number of the port on which the server listens for TCP/IP connections. This variable can be set with the --port option.
Command-Line Format | --preload_buffer_size=# | ||
Option-File Format | preload_buffer_size | ||
Option Sets Variable | Yes, preload_buffer_size | ||
Variable Name | preload_buffer_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 32768 | ||
Range | 1024 .. 1073741824 |
The size of the buffer that is allocated when preloading indexes.
If set to 0 or OFF (the default), statement profiling is disabled. If set to 1 or ON, statement profiling is enabled and the SHOW PROFILE and SHOW PROFILES statements provide access to profiling information. See Section 13.7.5.32, “SHOW PROFILES Syntax”.
This variable is deprecated in MySQL 5.6.8 and will be removed in a future MySQL release.
The number of statements for which to maintain profiling information if profiling is enabled. The default value is 15. The maximum value is 100. Setting the value to 0 effectively disables profiling. See Section 13.7.5.32, “SHOW PROFILES Syntax”.
This variable is deprecated in MySQL 5.6.8 and will be removed in a future MySQL release.
Variable Name | protocol_version | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric |
The version of the client/server protocol used by the MySQL server.
Variable Name | proxy_user | ||
Variable Scope | Session | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
If the current client is a proxy for another user, this variable is the proxy user account name. Otherwise, this variable is NULL. See Section 6.3.8, “Proxy Users”.
Version Introduced | 5.6.10 | ||
Variable Name | pseudo_slave_mode | ||
Variable Scope | Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric |
This variable is for internal server use. It was added in MySQL 5.6.10.
Variable Name | pseudo_thread_id | ||
Variable Scope | Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric |
This variable is for internal server use.
Command-Line Format | --query_alloc_block_size=# | ||
Option-File Format | query_alloc_block_size | ||
Option Sets Variable | Yes, query_alloc_block_size | ||
Variable Name | query_alloc_block_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 8192 | ||
Range | 1024 .. 4294967295 | ||
Block Size | 1024 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 8192 | ||
Range | 1024 .. 18446744073709547520 | ||
Block Size | 1024 |
The allocation size of memory blocks that are allocated for objects created during statement parsing and execution. If you have problems with memory fragmentation, it might help to increase this parameter.
Command-Line Format | --query_cache_limit=# | ||
Option-File Format | query_cache_limit | ||
Option Sets Variable | Yes, query_cache_limit | ||
Variable Name | query_cache_limit | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 1048576 | ||
Range | 0 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1048576 | ||
Range | 0 .. 18446744073709547520 |
Do not cache results that are larger than this number of bytes. The default value is 1MB.
Command-Line Format | --query_cache_min_res_unit=# | ||
Option-File Format | query_cache_min_res_unit | ||
Option Sets Variable | Yes, query_cache_min_res_unit | ||
Variable Name | query_cache_min_res_unit | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 4096 | ||
Range | 512 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 4096 | ||
Range | 512 .. 18446744073709547520 |
The minimum size (in bytes) for blocks allocated by the query cache. The default value is 4096 (4KB). Tuning information for this variable is given in Section 8.9.3.3, “Query Cache Configuration”.
Command-Line Format | --query_cache_size=# | ||
Option-File Format | query_cache_size | ||
Option Sets Variable | Yes, query_cache_size | ||
Variable Name | query_cache_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.7) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 18446744073709547520 | ||
Permitted Values (<= 5.6.7) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 | ||
Permitted Values (>= 5.6.8) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1048576 | ||
Range | 0 .. 18446744073709547520 | ||
Permitted Values (>= 5.6.8) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 1048576 | ||
Range | 0 .. 4294967295 |
The amount of memory allocated for caching query results. By default, the query cache is disabled. This is achieved using a default value of 1M, with a default for query_cache_type of 0. (Before MySQL 5.6.8, the default size is 0, with a default query_cache_type of 1. To reduce overhead significantly, you should also start the server with query_cache_type=0 if you will not be using the query cache.)
The permissible values are multiples of 1024; other values are rounded down to the nearest multiple. Note that query_cache_size bytes of memory are allocated even if query_cache_type is set to 0. See Section 8.9.3.3, “Query Cache Configuration”, for more information.
The query cache needs a minimum size of about 40KB to allocate its structures. (The exact size depends on system architecture.) If you set the value of query_cache_size too small, a warning will occur, as described in Section 8.9.3.3, “Query Cache Configuration”.
Command-Line Format | --query_cache_type=# | ||
Option-File Format | query_cache_type | ||
Option Sets Variable | Yes, query_cache_type | ||
Variable Name | query_cache_type | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.7) | |||
Type | enumeration | ||
Default | 1 | ||
Valid Values | 0 1 2 | ||
Permitted Values (>= 5.6.8) | |||
Type | enumeration | ||
Default | 0 | ||
Valid Values | 0 1 2 |
Set the query cache type. Setting the GLOBAL value sets the type for all clients that connect thereafter. Individual clients can set the SESSION value to affect their own use of the query cache. Possible values are shown in the following table.
Option | Description |
---|---|
0 or OFF | Do not cache results in or retrieve results from the query cache. Note that this does not deallocate the query cache buffer. To do that, you should set query_cache_size to 0. |
1 or ON | Cache all cacheable query results except for those that begin with SELECT SQL_NO_CACHE. |
2 or DEMAND | Cache results only for cacheable queries that begin with SELECT SQL_CACHE. |
This variable defaults to OFF as of MySQL 5.6.8, ON before that.
If the server is started with query_cache_type set to 0, it does not acquire the query cache mutex at all, which means that the query cache cannot be enabled at runtime and there is reduced overhead in query execution.
Command-Line Format | --query_cache_wlock_invalidate | ||
Option-File Format | query_cache_wlock_invalidate | ||
Option Sets Variable | Yes, query_cache_wlock_invalidate | ||
Variable Name | query_cache_wlock_invalidate | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Normally, when one client acquires a WRITE lock on a MyISAM table, other clients are not blocked from issuing statements that read from the table if the query results are present in the query cache. Setting this variable to 1 causes acquisition of a WRITE lock for a table to invalidate any queries in the query cache that refer to the table. This forces other clients that attempt to access the table to wait while the lock is in effect.
Command-Line Format | --query_prealloc_size=# | ||
Option-File Format | query_prealloc_size | ||
Option Sets Variable | Yes, query_prealloc_size | ||
Variable Name | query_prealloc_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 8192 | ||
Range | 8192 .. 4294967295 | ||
Block Size | 1024 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 8192 | ||
Range | 8192 .. 18446744073709547520 | ||
Block Size | 1024 |
The size of the persistent buffer used for statement parsing and execution. This buffer is not freed between statements. If you are running complex queries, a larger query_prealloc_size value might be helpful in improving performance, because it can reduce the need for the server to perform memory allocation during query execution operations.
The rand_seed1 and rand_seed2 variables exist as session variables only, and can be set but not read. The variables—but not their values—are shown in the output of SHOW VARIABLES.
The purpose of these variables is to support replication of the RAND() function. For statements that invoke RAND(), the master passes two values to the slave, where they are used to seed the random number generator. The slave uses these values to set the session variables rand_seed1 and rand_seed2 so that RAND() on the slave generates the same value as on the master.
See the description for rand_seed1.
Command-Line Format | --range_alloc_block_size=# | ||
Option-File Format | range_alloc_block_size | ||
Option Sets Variable | Yes, range_alloc_block_size | ||
Variable Name | range_alloc_block_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 4096 | ||
Range | 4096 .. 4294967295 | ||
Block Size | 1024 |
The size of blocks that are allocated when doing range optimization.
Command-Line Format | --read_buffer_size=# | ||
Option-File Format | read_buffer_size | ||
Option Sets Variable | Yes, read_buffer_size | ||
Variable Name | read_buffer_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 131072 | ||
Range | 8200 .. 2147479552 |
Each thread that does a sequential scan for a MyISAM table allocates a buffer of this size (in bytes) for each table it scans. If you do many sequential scans, you might want to increase this value, which defaults to 131072. The value of this variable should be a multiple of 4KB. If it is set to a value that is not a multiple of 4KB, its value will be rounded down to the nearest multiple of 4KB.
This option is also used in the following context for all search engines:
For caching the indexes in a temporary file (not a temporary table), when sorting rows for ORDER BY.
For bulk insert into partitions.
For caching results of nested queries.
and in one other storage engine-specific way: to determine the memory block size for MEMORY tables.
The maximum permissible setting for read_buffer_size is 2GB.
For more information about memory use during different operations, see Section 8.11.4.1, “How MySQL Uses Memory”.
Command-Line Format | --read-only | ||
Option-File Format | read_only | ||
Option Sets Variable | Yes, read_only | ||
Variable Name | read_only | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | false |
This variable is off by default. When it is enabled, the server permits no updates except from users that have the SUPER privilege or (on a slave server) from updates performed by slave threads. In replication setups, it can be useful to enable read_only on slave servers to ensure that slaves accept updates only from the master server and not from clients.
read_only does not apply to TEMPORARY tables, nor does it prevent the server from inserting rows into the log tables (see Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”). This variable does not prevent the use of ANALYZE TABLE or OPTIMIZE TABLE statements because its purpose is to prevent changes to table structure or contents. Analysis and optimization do not qualify as such changes. This means, for example, that consistency checks on read-only slaves can be performed with mysqlcheck --all-databases --analyze.
read_only exists only as a GLOBAL variable, so changes to its value require the SUPER privilege. Changes to read_only on a master server are not replicated to slave servers. The value can be set on a slave server independent of the setting on the master.
Important
In MySQL 5.6, enabling read_only prevents the use of the SET PASSWORD statement by any user not having the SUPER privilege. This is not necessarily the case for all MySQL release series. When replicating from one MySQL release series to another (for example, from a MySQL 5.0 master to a MySQL 5.1 or later slave), you should check the documentation for the versions running on both master and slave to determine whether the behavior of read_only in this regard is or is not the same, and, if it is different, whether this has an impact on your applications.
The following conditions apply:
If you attempt to enable read_only while you have any explicit locks (acquired with LOCK TABLES) or have a pending transaction, an error occurs.
If you attempt to enable read_only while other clients hold explicit table locks or have pending transactions, the attempt blocks until the locks are released and the transactions end. While the attempt to enable read_only is pending, requests by other clients for table locks or to begin transactions also block until read_only has been set.
read_only can be enabled while you hold a global read lock (acquired with FLUSH TABLES WITH READ LOCK) because that does not involve table locks.
In MySQL 5.6, attempts to set read_only block for active transactions that hold metadata locks until those transactions end.
Command-Line Format | --read_rnd_buffer_size=# | ||
Option-File Format | read_rnd_buffer_size | ||
Option Sets Variable | Yes, read_rnd_buffer_size | ||
Variable Name | read_rnd_buffer_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 262144 | ||
Range | 8200 .. 4294967295 |
When reading rows from a MyISAM table in sorted order following a key-sorting operation, the rows are read through this buffer to avoid disk seeks. See Section 8.13.13, “ORDER BY Optimization”. Setting the variable to a large value can improve ORDER BY performance by a lot. However, this is a buffer allocated for each client, so you should not set the global variable to a large value. Instead, change the session variable only from within those clients that need to run large queries.
The maximum permissible setting for read_rnd_buffer_size is 2GB.
For more information about memory use during different operations, see Section 8.11.4.1, “How MySQL Uses Memory”.
Command-Line Format | --relay_log_purge | ||
Option-File Format | relay_log_purge | ||
Option Sets Variable | Yes, relay_log_purge | ||
Variable Name | relay_log_purge | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | TRUE |
Disables or enables automatic purging of relay log files as soon as they are not needed any more. The default value is 1 (ON).
Command-Line Format | --relay_log_space_limit=# | ||
Option-File Format | relay_log_space_limit | ||
Option Sets Variable | Yes, relay_log_space_limit | ||
Variable Name | relay_log_space_limit | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 18446744073709547520 |
The maximum amount of space to use for all relay logs.
Command-Line Format | --report-host=host_name | ||
Option-File Format | report-host | ||
Option Sets Variable | Yes, report_host | ||
Variable Name | report-host | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The value of the --report-host option.
Command-Line Format | --report-password=name | ||
Option-File Format | report-password | ||
Option Sets Variable | Yes, report_password | ||
Variable Name | report-password | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The value of the --report-password option. Not the same as the password used for the MySQL replication user account.
Command-Line Format | --report-port=# | ||
Option-File Format | report-port | ||
Option Sets Variable | Yes, report_port | ||
Variable Name | report-port | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (>= 5.6.5) | |||
Type | numeric | ||
Default | [slave_port] | ||
Range | 0 .. 65535 |
The value of the --report-port option.
Command-Line Format | --report-user=name | ||
Option-File Format | report-user | ||
Option Sets Variable | Yes, report_user | ||
Variable Name | report-user | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The value of the --report-user option. Not the same as the name for the MySQL replication user account.
Variable Name | rpl_semi_sync_master_enabled | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Controls whether semisynchronous replication is enabled on the master. To enable or disable the plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Variable Name | rpl_semi_sync_master_timeout | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 10000 |
A value in milliseconds that controls how long the master waits on a commit for acknowledgment from a slave before timing out and reverting to asynchronous replication. The default value is 10000 (10 seconds).
This variable is available only if the master-side semisynchronous replication plugin is installed.
rpl_semi_sync_master_trace_level
Variable Name | rpl_semi_sync_master_trace_level | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 32 |
The semisynchronous replication debug trace level on the master. Currently, four levels are defined:
1 = general level (for example, time function failures)
16 = detail level (more verbose information)
32 = net wait level (more information about network waits)
64 = function level (information about function entry and exit)
This variable is available only if the master-side semisynchronous replication plugin is installed.
rpl_semi_sync_master_wait_no_slave
Variable Name | rpl_semi_sync_master_wait_no_slave | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
With semisynchronous replication, for each transaction, the master waits until timeout for acknowledgment of receipt from some semisynchronous slave. If no response occurs during this period, the master reverts to normal replication. This variable controls whether the master waits for the timeout to expire before reverting to normal replication even if the slave count drops to zero during the timeout period.
If the value is ON (the default), it is permissible for the slave count to drop to zero during the timeout period (for example, if slaves disconnect). The master still waits for the timeout, so as long as some slave reconnects and acknowledges the transaction within the timeout interval, semisynchronous replication continues.
If the value is OFF, the master reverts to normal replication if the slave count drops to zero during the timeout period.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Variable Name | rpl_semi_sync_slave_enabled | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Controls whether semisynchronous replication is enabled on the slave. To enable or disable the plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.
This variable is available only if the slave-side semisynchronous replication plugin is installed.
rpl_semi_sync_slave_trace_level
Variable Name | rpl_semi_sync_slave_trace_level | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 32 |
The semisynchronous replication debug trace level on the slave. See rpl_semi_sync_master_trace_level for the permissible values.
This variable is available only if the slave-side semisynchronous replication plugin is installed.
Command-Line Format | --secure-auth | ||
Option-File Format | secure-auth | ||
Option Sets Variable | Yes, secure_auth | ||
Variable Name | secure_auth | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.4) | |||
Type | boolean | ||
Default | OFF | ||
Permitted Values (>= 5.6.5) | |||
Type | boolean | ||
Default | ON |
If this variable is enabled, the server blocks connections by clients that attempt to use accounts that have passwords stored in the old (pre-4.1) format.
Enable this variable to prevent all use of passwords employing the old format (and hence insecure communication over the network). Before MySQL 5.6.5, this variable is disabled by default. As of MySQL 5.6.5, it is enabled by default.
Server startup fails with an error if this variable is enabled and the privilege tables are in pre-4.1 format. See Section C.5.2.4, “Client does not support authentication protocol”.
Command-Line Format | --secure-file-priv=path | ||
Option-File Format | secure-file-priv=path | ||
Option Sets Variable | Yes, secure_file_priv | ||
Variable Name | secure-file-priv | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
By default, this variable is empty. If set to the name of a directory, it limits the effect of the LOAD_FILE() function and the LOAD DATA and SELECT ... INTO OUTFILE statements to work only with files in that directory.
Command-Line Format | --server-id=# | ||
Option-File Format | server-id | ||
Option Sets Variable | Yes, server_id | ||
Variable Name | server_id | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 |
The server ID, used in replication to give each master and slave a unique identity. This variable is set by the --server-id option. For each server participating in replication, you should pick a positive integer in the range from 1 to 232 – 1 to act as that server's ID.
sha256_password_private_key_path
Version Introduced | 5.6.6 | ||
Variable Name | sha256_password_private_key_path | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name | ||
Default | private_key.pem |
The path name of the RSA private key file for the sha256_password authentication plugin. If the file is named as a relative path, it is interpreted relative to the server data directory. The file must be in PEM format. Because this file stores a private key, its access mode should be restricted so that only the MySQL server can read it.
For information about sha256_password, including instructions for creating the RSA key files, see Section 6.3.7.2, “The SHA-256 Authentication Plugin”.
This variable is available only if MySQL was built using OpenSSL. It was added in MySQL 5.6.6.
sha256_password_public_key_path
Version Introduced | 5.6.6 | ||
Variable Name | sha256_password_public_key_path | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name | ||
Default | public_key.pem |
The path name of the RSA public key file for the sha256_password authentication plugin. If the file is named as a relative path, it is interpreted relative to the server data directory. The file must be in PEM format. Because this file stores a public key, copies can be freely distributed to client users. (Clients that explicitly specify a public key when connecting to the server using RSA password encryption must use the same public key as that used by the server.)
For information about sha256_password, including instructions for creating the RSA key files and how clients specify the RSA public key, see Section 6.3.7.2, “The SHA-256 Authentication Plugin”.
This variable is available only if MySQL was built using OpenSSL. It was added in MySQL 5.6.6.
Variable Name | shared_memory | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Platform Specific | windows |
(Windows only.) Whether the server permits shared-memory connections.
Variable Name | shared_memory_base_name | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Platform Specific | windows |
(Windows only.) The name of shared memory to use for shared-memory connections. This is useful when running multiple MySQL instances on a single physical machine. The default name is MYSQL. The name is case sensitive.
This is OFF if mysqld uses external locking, ON if external locking is disabled. This affects only MyISAM table access.
This variable is set from the value of the --skip-name-resolve option. If it is ON, mysqld resolves host names when checking client connections. If OFF, mysqld uses only IP numbers and all Host column values in the grant tables must be IP addresses or localhost. See Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”.
This is ON if the server permits only local (non-TCP/IP) connections. On Unix, local connections use a Unix socket file. On Windows, local connections use a named pipe or shared memory. This variable can be set to ON with the --skip-networking option.
This prevents people from using the SHOW DATABASES statement if they do not have the SHOW DATABASES privilege. This can improve security if you have concerns about users being able to see databases belonging to other users. Its effect depends on the SHOW DATABASES privilege: If the variable value is ON, the SHOW DATABASES statement is permitted only to users who have the SHOW DATABASES privilege, and the statement displays all database names. If the value is OFF, SHOW DATABASES is permitted to all users, but displays the names of only those databases for which the user has the SHOW DATABASES or other privilege. (Note that any global privilege is considered a privilege for the database.)
Command-Line Format | --slow_launch_time=# | ||
Option-File Format | slow_launch_time | ||
Option Sets Variable | Yes, slow_launch_time | ||
Variable Name | slow_launch_time | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 2 |
If creating a thread takes longer than this many seconds, the server increments the Slow_launch_threads status variable.
Command-Line Format | --slow-query-log | ||
Option-File Format | slow-query-log | ||
Option Sets Variable | Yes, slow_query_log | ||
Variable Name | slow_query_log | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Whether the slow query log is enabled. The value can be 0 (or OFF) to disable the log or 1 (or ON) to enable the log. The default value depends on whether the --slow_query_log option is given. The destination for log output is controlled by the log_output system variable; if that value is NONE, no log entries are written even if the log is enabled.
“Slow” is determined by the value of the long_query_time variable. See Section 5.2.5, “The Slow Query Log”.
Command-Line Format | --slow-query-log-file=file_name | ||
Option-File Format | slow_query_log_file | ||
Option Sets Variable | Yes, slow_query_log_file | ||
Variable Name | slow_query_log_file | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | file name |
The name of the slow query log file. The default value is host_name-slow.log, but the initial value can be changed with the --slow_query_log_file option.
Command-Line Format | --socket=name | ||
Option-File Format | socket | ||
Option Sets Variable | Yes, socket | ||
Variable Name | socket | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name | ||
Default | /tmp/mysql.sock |
On Unix platforms, this variable is the name of the socket file that is used for local client connections. The default is /tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /var/lib/mysql for RPMs.)
On Windows, this variable is the name of the named pipe that is used for local client connections. The default value is MySQL (not case sensitive).
Command-Line Format | --sort_buffer_size=# | ||
Option-File Format | sort_buffer_size | ||
Option Sets Variable | Yes, sort_buffer_size | ||
Variable Name | sort_buffer_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.3) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 2097144 | ||
Range | 32768 .. 18446744073709547520 | ||
Permitted Values (<= 5.6.3) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 2097144 | ||
Range | 32768 .. 4294967295 | ||
Permitted Values (>= 5.6.4) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 262144 | ||
Range | 32768 .. 18446744073709547520 | ||
Permitted Values (>= 5.6.4) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 262144 | ||
Range | 32768 .. 4294967295 |
Each session that needs to do a sort allocates a buffer of this size. sort_buffer_size is not specific to any storage engine and applies in a general manner for optimization. See Section 8.13.13, “ORDER BY Optimization”, for example.
If you see many Sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot be improved with query optimization or improved indexing.
As of MySQL 5.6.4, the optimizer tries to work out how much space is needed but can allocate more, up to the limit. Before MySQL 5.6.4, the optimizer allocates the entire buffer even if it is not all needed. In either case, setting it larger than required globally will slow down most queries that sort. It is best to increase it as a session setting, and only for the sessions that need a larger size. On Linux, there are thresholds of 256KB and 2MB where larger values may significantly slow down memory allocation, so you should consider staying below one of those values. Experiment to find the best value for your workload. See Section C.5.4.4, “Where MySQL Stores Temporary Files”.
The maximum permissible setting for sort_buffer_size is 4GB. Values larger than 4GB are permitted for 64-bit platforms (except 64-bit Windows, for which large values are truncated to 4GB with a warning).
Variable Name | sql_auto_is_null | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | 0 |
If this variable is set to 1, then after a statement that successfully inserts an automatically generated AUTO_INCREMENT value, you can find that value by issuing a statement of the following form:
SELECT * FROM tbl_name WHERE auto_col IS NULL
If the statement returns a row, the value returned is the same as if you invoked the LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert, see Section 12.14, “Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the SELECT statement returns no row.
The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison is used by some ODBC programs, such as Access. See Section 21.1.7.1.1, “Obtaining Auto-Increment Values”. This behavior can be disabled by setting sql_auto_is_null to 0.
The default value of sql_auto_is_null is 0 in MySQL 5.6.
Variable Name | sql_big_selects | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | 1 |
If set to 0, MySQL aborts SELECT statements that are likely to take a very long time to execute (that is, statements for which the optimizer estimates that the number of examined rows exceeds the value of max_join_size). This is useful when an inadvisable WHERE statement has been issued. The default value for a new connection is 1, which permits all SELECT statements.
If you set the max_join_size system variable to a value other than DEFAULT, sql_big_selects is set to 0.
Variable Name | sql_buffer_result | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | 0 |
If set to 1, sql_buffer_result forces results from SELECT statements to be put into temporary tables. This helps MySQL free the table locks early and can be beneficial in cases where it takes a long time to send results to the client. The default value is 0.
Variable Name | sql_log_bin | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean |
This variable controls whether logging to the binary log is done. The default value is 1 (do logging). To change logging for the current session, change the session value of this variable. The session user must have the SUPER privilege to set this variable.
In MySQL 5.6, it is not possible to set @@session.sql_log_bin within a transaction or subquery. (Bug #53437)
Variable Name | sql_log_off | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | 0 |
This variable controls whether logging to the general query log is done. The default value is 0 (do logging). To change logging for the current session, change the session value of this variable. The session user must have the SUPER privilege to set this option. The default value is 0.
Command-Line Format | --sql-mode=name | ||
Option-File Format | sql-mode | ||
Option Sets Variable | Yes, sql_mode | ||
Variable Name | sql_mode | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type | set | ||
Default | '' | ||
Valid Values | ALLOW_INVALID_DATES ANSI_QUOTES ERROR_FOR_DIVISION_BY_ZERO HIGH_NOT_PRECEDENCE IGNORE_SPACE NO_AUTO_CREATE_USER NO_AUTO_VALUE_ON_ZERO NO_BACKSLASH_ESCAPES NO_DIR_IN_CREATE NO_ENGINE_SUBSTITUTION NO_FIELD_OPTIONS NO_KEY_OPTIONS NO_TABLE_OPTIONS NO_UNSIGNED_SUBTRACTION NO_ZERO_DATE NO_ZERO_IN_DATE ONLY_FULL_GROUP_BY PAD_CHAR_TO_FULL_LENGTH PIPES_AS_CONCAT REAL_AS_FLOAT STRICT_ALL_TABLES STRICT_TRANS_TABLES | ||
Permitted Values (>= 5.6.6) | |||
Type | set | ||
Default | NO_ENGINE_SUBSTITUTION | ||
Valid Values | ALLOW_INVALID_DATES ANSI_QUOTES ERROR_FOR_DIVISION_BY_ZERO HIGH_NOT_PRECEDENCE IGNORE_SPACE NO_AUTO_CREATE_USER NO_AUTO_VALUE_ON_ZERO NO_BACKSLASH_ESCAPES NO_DIR_IN_CREATE NO_ENGINE_SUBSTITUTION NO_FIELD_OPTIONS NO_KEY_OPTIONS NO_TABLE_OPTIONS NO_UNSIGNED_SUBTRACTION NO_ZERO_DATE NO_ZERO_IN_DATE ONLY_FULL_GROUP_BY PAD_CHAR_TO_FULL_LENGTH PIPES_AS_CONCAT REAL_AS_FLOAT STRICT_ALL_TABLES STRICT_TRANS_TABLES |
The current server SQL mode, which can be set dynamically. The default as of MySQL 5.6.6 is NO_ENGINE_SUBSTITUTION; previously it was an empty string. See Section 5.1.7, “Server SQL Modes”.
If set to 1 (the default), warnings of Note level increment warning_count and the server records them. If set to 0, Note warnings do not increment warning_count and the server does not record them. mysqldump includes output to set this variable to 0 so that reloading the dump file does not produce warnings for events that do not affect the integrity of the reload operation.
If set to 1 (the default), the server quotes identifiers for SHOW CREATE TABLE and SHOW CREATE DATABASE statements. If set to 0, quoting is disabled. This option is enabled by default so that replication works for identifiers that require quoting. See Section 13.7.5.12, “SHOW CREATE TABLE Syntax”, and Section 13.7.5.8, “SHOW CREATE DATABASE Syntax”.
If set to 1, MySQL aborts UPDATE or DELETE statements that do not use a key in the WHERE clause or a LIMIT clause. This makes it possible to catch UPDATE or DELETE statements where keys are not used properly and that would probably change or delete a large number of rows. The default value is 0.
Variable Name | sql_select_limit | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric |
The maximum number of rows to return from SELECT statements. The default value for a new connection is the maximum number of rows that the server permits per table. Typical default values are (232)–1 or (264)–1. If you have changed the limit, the default value can be restored by assigning a value of DEFAULT.
If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of sql_select_limit.
This variable controls whether single-row INSERT statements produce an information string if warnings occur. The default is 0. Set the value to 1 to produce an information string.
Command-Line Format | --ssl-ca=name | ||
Option-File Format | ssl-ca | ||
Option Sets Variable | Yes, ssl_ca | ||
Variable Name | ssl-ca | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The path to a file with a list of trusted SSL CAs.
Command-Line Format | --ssl-capath=name | ||
Option-File Format | ssl-capath | ||
Option Sets Variable | Yes, ssl_capath | ||
Variable Name | ssl-capath | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | directory name |
The path to a directory that contains trusted SSL CA certificates in PEM format.
Command-Line Format | --ssl-cert=name | ||
Option-File Format | ssl-cert | ||
Option Sets Variable | Yes, ssl_cert | ||
Variable Name | ssl-cert | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The name of the SSL certificate file to use for establishing a secure connection.
Command-Line Format | --ssl-cipher=name | ||
Option-File Format | ssl-cipher | ||
Option Sets Variable | Yes, ssl_cipher | ||
Variable Name | ssl-cipher | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
A list of permissible ciphers to use for SSL encryption.
Version Introduced | 5.6.3 | ||
Command-Line Format | --ssl-crl=name | ||
Option-File Format | ssl-crl | ||
Option Sets Variable | Yes, ssl_crl | ||
Variable Name | ssl-crl | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The path to a file containing certificate revocation lists in PEM format. Revocation lists work for MySQL distributions compiled against OpenSSL (but not yaSSL).
This variable was added in MySQL 5.6.3.
Version Introduced | 5.6.3 | ||
Command-Line Format | --ssl-crlpath=name | ||
Option-File Format | ssl-crlpath | ||
Option Sets Variable | Yes, ssl_crlpath | ||
Variable Name | ssl-crlpath | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | directory name |
The path to a directory that contains files containing certificate revocation lists in PEM format. Revocation lists work for MySQL distributions compiled against OpenSSL (but not yaSSL).
This variable was added in MySQL 5.6.3.
Command-Line Format | --ssl-key=name | ||
Option-File Format | ssl-key | ||
Option Sets Variable | Yes, ssl_key | ||
Variable Name | ssl-key | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The name of the SSL key file to use for establishing a secure connection.
Variable Name | storage_engine | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | InnoDB |
The default storage engine (table type). To set the storage engine at server startup, use the --default-storage-engine option. See Section 5.1.3, “Server Command Options”.
This variable is deprecated. Use default_storage_engine instead.
Version Introduced | 5.6.5 | ||
Command-Line Format | --stored-program-cache=# | ||
Option-File Format | stored_program_cache | ||
Variable Name | stored_program_cache | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 256 | ||
Range | 256 .. 524288 |
Sets a soft upper limit for the number of cached stored routines per connection. The value of this variable is specified in terms of the number of stored routines held in each of the two caches maintained by the MySQL Server for, respectively, stored procedures and stored functions.
Whenever a stored routine is executed this cache size is checked before the first or top-level statement in the routine is parsed; if the number of routines of the same type (stored procedures or stored functions according to which is being executed) exceeds the limit specified by this variable, the corresponding cache is flushed and memory previously allocated for cached objects is freed. This allows the cache to be flushed safely, even when there are dependencies between stored routines.
Command-Line Format | --sync-frm | ||
Option-File Format | sync_frm | ||
Option Sets Variable | Yes, sync_frm | ||
Variable Name | sync_frm | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | TRUE |
If this variable is set to 1, when any nontemporary table is created its .frm file is synchronized to disk (using fdatasync()). This is slower but safer in case of a crash. The default is 1.
Variable Name | system_time_zone | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The server system time zone. When the server begins executing, it inherits a time zone setting from the machine defaults, possibly modified by the environment of the account used for running the server or the startup script. The value is used to set system_time_zone. Typically the time zone is specified by the TZ environment variable. It also can be specified using the --timezone option of the mysqld_safe script.
The system_time_zone variable differs from time_zone. Although they might have the same value, the latter variable is used to initialize the time zone for each client that connects. See Section 10.6, “MySQL Server Time Zone Support”.
Command-Line Format | --table_definition_cache=# | ||
Option-File Format | table_definition_cache | ||
Option Sets Variable | Yes, table_definition_cache | ||
Variable Name | table_definition_cache | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.7) | |||
Type | numeric | ||
Default | 400 | ||
Range | 400 .. 524288 | ||
Permitted Values (>= 5.6.8) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | 400 .. 524288 |
The number of table definitions (from .frm files) that can be stored in the definition cache. If you use a large number of tables, you can create a large table definition cache to speed up opening of tables. The table definition cache takes less space and does not use file descriptors, unlike the normal table cache. The minimum value is 400. The default value is based on the following formula, capped to a limit of 2000:
400 + (table_open_cache / 2)
Before MySQL 5.6.8, the default is 400.
Command-Line Format | --table-open-cache=# | ||
Option-File Format | table_open_cache | ||
Variable Name | table_open_cache | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.7) | |||
Type | numeric | ||
Default | 400 | ||
Range | 400 .. 524288 | ||
Permitted Values (>= 5.6.8) | |||
Type | numeric | ||
Default | 2000 | ||
Range | 400 .. 524288 |
The number of open tables for all threads. Increasing this value increases the number of file descriptors that mysqld requires. You can check whether you need to increase the table cache by checking the Opened_tables status variable. See Section 5.1.6, “Server Status Variables”. If the value of Opened_tables is large and you do not use FLUSH TABLES often (which just forces all tables to be closed and reopened), then you should increase the value of the table_open_cache variable. For more information about the table cache, see Section 8.4.3.1, “How MySQL Opens and Closes Tables”.
Version Introduced | 5.6.6 | ||
Command-Line Format | --table-open-cache_instances=# | ||
Option-File Format | table_open_cache_instances | ||
Variable Name | table_open_cache_instances | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 |
The number of open tables cache instances (default 1). To improve scalability by reducing contention among sessions, the open tables cache can be partitioned into several smaller cache instances of size table_open_cache / table_open_cache_instances . A session need lock only one instance to access it for DML statements. This segments cache access among instances, permitting higher performance for operations that need to use the cache when many there are many sessions accessing tables. (DDL statements still require a lock on the entire cache, but such statements are much less frequent than DML statements.)
A value of 8 or 16 is recommended on systems that routinely use 16 or more cores.
This variable was added in MySQL 5.6.6.
Command-Line Format | --thread_cache_size=# | ||
Option-File Format | thread_cache_size | ||
Option Sets Variable | Yes, thread_cache_size | ||
Variable Name | thread_cache_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.7) | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 16384 | ||
Permitted Values (>= 5.6.8) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | 0 .. 16384 |
How many threads the server should cache for reuse. When a client disconnects, the client's threads are put in the cache if there are fewer than thread_cache_size threads there. Requests for threads are satisfied by reusing threads taken from the cache if possible, and only when the cache is empty is a new thread created. This variable can be increased to improve performance if you have a lot of new connections. Normally, this does not provide a notable performance improvement if you have a good thread implementation. However, if your server sees hundreds of connections per second you should normally set thread_cache_size high enough so that most new connections use cached threads. By examining the difference between the Connections and Threads_created status variables, you can see how efficient the thread cache is. For details, see Section 5.1.6, “Server Status Variables”.
The default value is based on the following formula, capped to a limit of 100:
8 + (max_connections / 100)
Before MySQL 5.6.8, the default is 0.
Version Deprecated | 5.6.1 | ||
Command-Line Format | --thread_concurrency=# | ||
Option-File Format | thread_concurrency | ||
Option Sets Variable | Yes, thread_concurrency | ||
Variable Name | thread_concurrency | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Deprecated | 5.6.1 | ||
Permitted Values | |||
Type | numeric | ||
Default | 10 | ||
Range | 1 .. 512 |
This variable is specific to Solaris systems, for which mysqld invokes the thr_setconcurrency() with the variable value. This function enables applications to give the threads system a hint about the desired number of threads that should be run at the same time.
This variable is deprecated as of MySQL 5.6.1 and will be removed in a future MySQL release.
Command-Line Format | --thread_handling=name | ||
Option-File Format | thread_handling=name | ||
Option Sets Variable | Yes, thread_handling | ||
Variable Name | thread_handling | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | enumeration | ||
Valid Values | no-threads one-thread-per-connection dynamically-loaded |
The thread-handling model used by the server for connection threads. The permissible values are no-threads (the server uses a single thread) and one-thread-per-connection (the server uses one thread to handle each client connection). no-threads is useful for debugging under Linux; see MySQL Internals: Porting to Other Systems.
If the thread pool plugin is enabled, the server sets the thread_handling value to dynamically-loaded. See Section 8.11.6.1, “Thread Pool Components and Installation”.
Version Introduced | 5.6.10 | ||
Command-Line Format | --thread_pool_algorithm=# | ||
Option-File Format | thread_pool_algorithm=# | ||
Option Sets Variable | Yes, thread_pool_algorithm | ||
Variable Name | thread_pool_algorithm | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 1 |
This variable controls which algorithm the thread pool plugin uses:
A value of 0 (the default) uses a conservative low-concurrency algorithm which is most well tested and is known to produce very good results.
A value of 1 increases the concurrency and uses a more aggressive algorithm which at times has been known to perform 5–10% better on optimal thread counts, but has degrading performance as the number of connections increases. Its use should be considered as experimental and not supported.
This variable was added in MySQL 5.6.10. It is available only if the thread pool plugin is enabled. See Section 8.11.6, “The Thread Pool Plugin”
thread_pool_high_priority_connection
Version Introduced | 5.6.10 | ||
Command-Line Format | --thread_pool_high_priority_connection=# | ||
Option-File Format | thread_pool_high_priority_connection=# | ||
Option Sets Variable | Yes, thread_pool_high_priority_connection | ||
Variable Name | thread_pool_high_priority_connection | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 1 |
This variable affects queuing of new statements prior to execution. If the value is 0 (false, the default), statement queuing uses both the low-priority and high-priority queues. If the value is 1 (true), queued statements always go to the high-priority queue.
This variable was added in MySQL 5.6.10. It is available only if the thread pool plugin is enabled. See Section 8.11.6, “The Thread Pool Plugin”
thread_pool_max_unused_threads
Version Introduced | 5.6.10 | ||
Command-Line Format | --thread_pool_max_unused_threads=# | ||
Option-File Format | thread_pool_max_unused_threads=# | ||
Option Sets Variable | Yes, thread_pool_max_unused_threads | ||
Variable Name | thread_pool_max_unused_threads | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4096 |
The maximum permitted number of unused threads in the thread pool. This variable makes it possible to limit the amount of memory used by sleeping threads.
A value of 0 (the default) means no limit on the number of sleeping threads. A value of N where N is greater than 0 means 1 consumer thread and N–1 reserve threads. In this case, if a thread is ready to sleep but the number of sleeping threads is already at the maximum, the thread exits rather than going to sleep.
A sleeping thread is either sleeping as a consumer thread or a reserve thread. The thread pool permits one thread to be the consumer thread when sleeping. If a thread goes to sleep and there is no existing consumer thread, it will sleep as a consumer thread. When a thread must be woken up, a consumer thread is selected if there is one. A reserve thread is selected only when there is no consumer thread to wake up.
This variable was added in MySQL 5.6.10. It is available only if the thread pool plugin is enabled. See Section 8.11.6, “The Thread Pool Plugin”
Version Introduced | 5.6.10 | ||
Command-Line Format | --thread_pool_prio_kickup_timer=# | ||
Option-File Format | thread_pool_prio_kickup_timer=# | ||
Option Sets Variable | Yes, thread_pool_prio_kickup_timer | ||
Variable Name | thread_pool_prio_kickup_timer | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1000 | ||
Range | 0 .. 4294967294 |
This variable affects statements waiting for execution in the low-priority queue. The value is the number of milliseconds before a waiting statement is moved to the high-priority queue. The default is 1000 (1 second). The range of values is 0 to 232 – 2.
This variable was added in MySQL 5.6.10. It is available only if the thread pool plugin is enabled. See Section 8.11.6, “The Thread Pool Plugin”
Version Introduced | 5.6.10 | ||
Command-Line Format | --thread_pool_size=# | ||
Option-File Format | thread_pool_size=# | ||
Option Sets Variable | Yes, thread_pool_size | ||
Variable Name | thread_pool_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 16 | ||
Range | 1 .. 64 |
The number of thread groups in the thread pool. This is the most important parameter controlling thread pool performance. It affects how many statements can execute simultaneously. The default value is 16, with a range from 1 to 64 of permissible values. If a value outside this range is specified, the thread pool plugin does not load and the server writes a message to the error log.
This variable was added in MySQL 5.6.10. It is available only if the thread pool plugin is enabled. See Section 8.11.6, “The Thread Pool Plugin”
Version Introduced | 5.6.10 | ||
Command-Line Format | --thread_pool_stall_limit=# | ||
Option-File Format | thread_pool_stall_limit=# | ||
Option Sets Variable | Yes, thread_pool_stall_limit | ||
Variable Name | thread_pool_stall_limit | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 6 | ||
Range | 4 .. 600 |
This variable affects executing statements. The value is the amount of time a statement has to finish after starting to execute before it becomes defined as stalled, at which point the thread pool permits the thread group to begin executing another statement. The value is measured in 10 millisecond units, so a value of 6 (the default) means 60ms. The range of values is 4 to 600 (40ms to 6s). Short wait values permit threads to start more quickly. Short values are also better for avoiding deadlock situations. Long wait values are useful for workloads that include long-running statements, to avoid starting too many new statements while the current ones execute.
This variable was added in MySQL 5.6.10. It is available only if the thread pool plugin is enabled. See Section 8.11.6, “The Thread Pool Plugin”
Command-Line Format | --thread_stack=# | ||
Option-File Format | thread_stack | ||
Option Sets Variable | Yes, thread_stack | ||
Variable Name | thread_stack | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 196608 | ||
Range | 131072 .. 4294967295 | ||
Block Size | 1024 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 262144 | ||
Range | 131072 .. 18446744073709547520 | ||
Block Size | 1024 |
The stack size for each thread. Many of the limits detected by the crash-me test are dependent on this value. See Section 8.12.2, “The MySQL Benchmark Suite”. The default of 192KB (256KB for 64-bit systems) is large enough for normal operation. If the thread stack size is too small, it limits the complexity of the SQL statements that the server can handle, the recursion depth of stored procedures, and other memory-consuming actions.
This variable is unused. It is deprecated as of MySQL 5.6.7 and will be removed in a future MySQL release.
Command-Line Format | --default_time_zone=string | ||
Option-File Format | default_time_zone | ||
Variable Name | time_zone | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The current time zone. This variable is used to initialize the time zone for each client that connects. By default, the initial value of this is 'SYSTEM' (which means, “use the value of system_time_zone”). The value can be specified explicitly at server startup with the --default-time-zone option. See Section 10.6, “MySQL Server Time Zone Support”.
Command-Line Format | --timed_mutexes | ||
Option-File Format | timed_mutexes | ||
Option Sets Variable | Yes, timed_mutexes | ||
Variable Name | timed_mutexes | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
This variable controls whether InnoDB mutexes are timed. If this variable is set to 0 or OFF (the default), mutex timing is disabled. If the variable is set to 1 or ON, mutex timing is enabled. With timing enabled, the os_wait_times value in the output from SHOW ENGINE INNODB MUTEX indicates the amount of time (in ms) spent in operating system waits. Otherwise, the value is 0.
timestamp = {timestamp_value | DEFAULT}
Set the time for this client. This is used to get the original timestamp if you use the binary log to restore rows. timestamp_value should be a Unix epoch timestamp, not a MySQL timestamp.
As of MySQL 5.6.4, timestamp is a DOUBLE rather than BIGINT because its value includes a microseconds part.
SET timestamp affects the value returned by NOW() but not by SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations of SYSDATE(). The server can be started with the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW(), in which case SET timestamp affects both functions.
Command-Line Format | --tmp_table_size=# | ||
Option-File Format | tmp_table_size | ||
Option Sets Variable | Yes, tmp_table_size | ||
Variable Name | tmp_table_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | system dependent | ||
Range | 1024 .. 4294967295 |
The maximum size of internal in-memory temporary tables. (The actual limit is determined as the minimum of tmp_table_size and max_heap_table_size.) If an in-memory temporary table exceeds the limit, MySQL automatically converts it to an on-disk MyISAM table. Increase the value of tmp_table_size (and max_heap_table_size if necessary) if you do many advanced GROUP BY queries and you have lots of memory. This variable does not apply to user-created MEMORY tables.
You can compare the number of internal on-disk temporary tables created to the total number of internal temporary tables created by comparing the values of the Created_tmp_disk_tables and Created_tmp_tables variables.
See also Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”.
Command-Line Format | --tmpdir=path | ||
-t | |||
Option-File Format | tmpdir | ||
Option Sets Variable | Yes, tmpdir | ||
Variable Name | tmpdir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The directory used for temporary files and temporary tables. This variable can be set to a list of several paths that are used in round-robin fashion. Paths should be separated by colon characters (“:”) on Unix and semicolon characters (“;”) on Windows.
The multiple-directory feature can be used to spread the load between several physical disks. If the MySQL server is acting as a replication slave, you should not set tmpdir to point to a directory on a memory-based file system or to a directory that is cleared when the server host restarts. A replication slave needs some of its temporary files to survive a machine restart so that it can replicate temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost when the server restarts, replication fails. You can set the slave's temporary directory using the slave_load_tmpdir variable. In that case, the slave will not use the general tmpdir value and you can set tmpdir to a nonpermanent location.
Command-Line Format | --transaction_alloc_block_size=# | ||
Option-File Format | transaction_alloc_block_size | ||
Option Sets Variable | Yes, transaction_alloc_block_size | ||
Variable Name | transaction_alloc_block_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 8192 | ||
Range | 1024 .. 4294967295 | ||
Block Size | 1024 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 8192 | ||
Range | 1024 .. 18446744073709547520 | ||
Block Size | 1024 |
The amount in bytes by which to increase a per-transaction memory pool which needs memory. See the description of transaction_prealloc_size.
Command-Line Format | --transaction_prealloc_size=# | ||
Option-File Format | transaction_prealloc_size | ||
Option Sets Variable | Yes, transaction_prealloc_size | ||
Variable Name | transaction_prealloc_size | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 4096 | ||
Range | 1024 .. 4294967295 | ||
Block Size | 1024 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 4096 | ||
Range | 1024 .. 18446744073709547520 | ||
Block Size | 1024 |
There is a per-transaction memory pool from which various transaction-related allocations take memory. The initial size of the pool in bytes is transaction_prealloc_size. For every allocation that cannot be satisfied from the pool because it has insufficient memory available, the pool is increased by transaction_alloc_block_size bytes. When the transaction ends, the pool is truncated to transaction_prealloc_size bytes.
By making transaction_prealloc_size sufficiently large to contain all statements within a single transaction, you can avoid many malloc() calls.
Variable Name | tx_isolation | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | REPEATABLE-READ | ||
Valid Values | READ-UNCOMMITTED READ-COMMITTED REPEATABLE-READ SERIALIZABLE |
The default transaction isolation level. Defaults to REPEATABLE-READ.
This variable can be set directly, or indirectly using the SET TRANSACTION statement. See Section 13.3.6, “SET TRANSACTION Syntax”. If you set tx_isolation directly to an isolation level name that contains a space, the name should be enclosed within quotation marks, with the space replaced by a dash. For example:
SET tx_isolation = 'READ-COMMITTED';
Any unique prefix of a valid value may be used to set the value of this variable.
The default transaction isolation level can also be set at startup using the --transaction-isolation server option.
Version Introduced | 5.6.5 | ||
Variable Name | tx_read_only | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
The default transaction access mode. The value can be OFF (read/write, the default) or ON (read only).
This variable can be set directly, or indirectly using the SET TRANSACTION statement. See Section 13.3.6, “SET TRANSACTION Syntax”.
To set the default transaction access mode at startup, use the --transaction-read-only server option.
This variable was added in MySQL 5.6.5.
Variable Name | unique_checks | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | 1 |
If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are performed. If set to 0, storage engines are permitted to assume that duplicate keys are not present in input data. If you know for certain that your data does not contain uniqueness violations, you can set this to 0 to speed up large table imports to InnoDB.
Note that setting this variable to 0 does not require storage engines to ignore duplicate keys. An engine is still permitted to check for them and issue duplicate-key errors if it detects them.
Command-Line Format | --updatable_views_with_limit=# | ||
Option-File Format | updatable_views_with_limit | ||
Option Sets Variable | Yes, updatable_views_with_limit | ||
Variable Name | updatable_views_with_limit | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | 1 |
This variable controls whether updates to a view can be made when the view does not contain all columns of the primary key defined in the underlying table, if the update statement contains a LIMIT clause. (Such updates often are generated by GUI tools.) An update is an UPDATE or DELETE statement. Primary key here means a PRIMARY KEY, or a UNIQUE index in which no column can contain NULL.
The variable can have two values:
1 or YES: Issue a warning only (not an error message). This is the default value.
0 or NO: Prohibit the update.
validate_password_xxx
The validate_password plugin implements a set of system variables having names of the form validate_password_xxx. These variables affect password testing by that plugin; see Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”.
Version Introduced | 5.6.11 | ||
Variable Name | validate_user_plugins | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
If this variable is enabled (the default), the server checks each user account and produces a warning if conditions are found that would make the account unusable:
The account requires an authentication plugin that is not loaded.
The account requires the sha256_password authentication plugin but the server was started with neither SSL nor RSA enabled as required by this plugin.
Enabling validate_user_plugins slows down server initialization and FLUSH PRIVILEGES. If you do not require the additional checking, you can disable this variable at startup to avoid the performance decrement.
This variable was added in MySQL 5.6.11.
The version number for the server. The value might also include a suffix indicating server build or configuration information. -log indicates that one or more of the general log, slow query log, or binary log are enabled. -debug indicates that the server was built with debugging support enabled.
Variable Name | version_comment | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The CMake configuration program has a COMPILATION_COMMENT option that permits a comment to be specified when building MySQL. This variable contains the value of that comment. See Section 2.9.4, “MySQL Source-Configuration Options”.
Variable Name | version_compile_machine | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The type of the server binary.
Variable Name | version_compile_os | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The type of operating system on which MySQL was built.
Command-Line Format | --wait_timeout=# | ||
Option-File Format | wait_timeout | ||
Option Sets Variable | Yes, wait_timeout | ||
Variable Name | wait_timeout | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 28800 | ||
Range | 1 .. 31536000 | ||
Permitted Values | |||
Type (windows) | numeric | ||
Default | 28800 | ||
Range | 1 .. 2147483 |
The number of seconds the server waits for activity on a noninteractive connection before closing it.
On thread startup, the session wait_timeout value is initialized from the global wait_timeout value or from the global interactive_timeout value, depending on the type of client (as defined by the CLIENT_INTERACTIVE connect option to mysql_real_connect()). See also interactive_timeout.
The number of errors, warnings, and notes that resulted from the last statement that generated messages. This variable is read only. See Section 13.7.5.41, “SHOW WARNINGS Syntax”.
5.1.5. Using System Variables
The MySQL server maintains many system variables that indicate how it is configured. Section 5.1.4, “Server System Variables”, describes the meaning of these variables. Each system variable has a default value. System variables can be set at server startup using options on the command line or in an option file. Most of them can be changed dynamically while the server is running by means of the SET statement, which enables you to modify operation of the server without having to stop and restart it. You can refer to system variable values in expressions.
The server maintains two kinds of system variables. Global variables affect the overall operation of the server. Session variables affect its operation for individual client connections. A given system variable can have both a global and a session value. Global and session system variables are related as follows:
When the server starts, it initializes all global variables to their default values. These defaults can be changed by options specified on the command line or in an option file. (See Section 4.2.3, “Specifying Program Options”.)
The server also maintains a set of session variables for each client that connects. The client's session variables are initialized at connect time using the current values of the corresponding global variables. For example, the client's SQL mode is controlled by the session sql_mode value, which is initialized when the client connects to the value of the global sql_mode value.
System variable values can be set globally at server startup by using options on the command line or in an option file. When you use a startup option to set a variable that takes a numeric value, the value can be given with a suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024, 10242 or 10243; that is, units of kilobytes, megabytes, or gigabytes, respectively. Thus, the following command starts the server with a query cache size of 16 megabytes and a maximum packet size of one gigabyte:
mysqld --query_cache_size=16M --max_allowed_packet=1G
Within an option file, those variables are set like this:
[mysqld]
query_cache_size=16M
max_allowed_packet=1G
The lettercase of suffix letters does not matter; 16M and 16m are equivalent, as are 1G and 1g.
If you want to restrict the maximum value to which a system variable can be set at runtime with the SET statement, you can specify this maximum by using an option of the form --maximum-var_name=value at server startup. For example, to prevent the value of query_cache_size from being increased to more than 32MB at runtime, use the option --maximum-query_cache_size=32M.
Many system variables are dynamic and can be changed while the server runs by using the SET statement. For a list, see Section 5.1.5.2, “Dynamic System Variables”. To change a system variable with SET, refer to it as var_name, optionally preceded by a modifier:
To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or @@global.. The SUPER privilege is required to set global variables.
To indicate explicitly that a variable is a session variable, precede its name by SESSION, @@session., or @@. Setting a session variable requires no special privilege, but a client can change only its own session variables, not those of any other client.
LOCAL and @@local. are synonyms for SESSION and @@session..
If no modifier is present, SET changes the session variable.
A SET statement can contain multiple variable assignments, separated by commas. If you set several system variables, the most recent GLOBAL or SESSION modifier in the statement is used for following variables that have no modifier specified.
Examples:
SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;
The @@var_name syntax for system variables is supported for compatibility with some other database systems.
If you change a session system variable, the value remains in effect until your session ends or until you change the variable to a different value. The change is not visible to other clients.
If you change a global system variable, the value is remembered and used for new connections until the server restarts. (To make a global system variable setting permanent, you should set it in an option file.) The change is visible to any client that accesses that global variable. However, the change affects the corresponding session variable only for clients that connect after the change. The global variable change does not affect the session variable for any client that is currently connected (not even that of the client that issues the SET GLOBAL statement).
To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that can only be used with SET SESSION or if you do not specify GLOBAL (or @@global.) when setting a global variable.
To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL default value, use the DEFAULT keyword. For example, the following two statements are identical in setting the session value of max_join_size to the global value:
SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;
Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.
You can refer to the values of specific global or session system variables in expressions by using one of the @@-modifiers. For example, you can retrieve values in a SELECT statement like this:
SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;
When you refer to a system variable in an expression as @@var_name (that is, when you do not specify @@global. or @@session.), MySQL returns the session value if it exists and the global value otherwise. (This differs from SET @@var_name = value, which always refers to the session value.)
Note
Some variables displayed by SHOW VARIABLES may not be available using SELECT @@var_name syntax; an Unknown system variable occurs. As a workaround in such cases, you can use SHOW VARIABLES LIKE 'var_name'.
Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value using an expression, which is not true when you set a variable at server startup. For example, the first of the following lines is legal at server startup, but the second is not:
shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024
Conversely, the second of the following lines is legal at runtime, but the first is not:
mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;
Note
Some system variables can be enabled with the SET statement by setting them to ON or 1, or disabled by setting them to OFF or 0. However, to set such a variable on the command line or in an option file, you must set it to 1 or 0; setting it to ON or OFF will not work. For example, on the command line, --delay_key_write=1 works but --delay_key_write=ON does not.
To display system variable names and values, use the SHOW VARIABLES statement:
mysql> SHOW VARIABLES;
+---------------------------------+-----------------------------------+
| Variable_name | Value |
+---------------------------------+-----------------------------------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
| automatic_sp_privileges | ON |
| back_log | 50 |
| basedir | /home/mysql/ |
| binlog_cache_size | 32768 |
| bulk_insert_buffer_size | 8388608 |
| character_set_client | latin1 |
| character_set_connection | latin1 |
| character_set_database | latin1 |
| character_set_results | latin1 |
| character_set_server | latin1 |
| character_set_system | utf8 |
| character_sets_dir | /home/mysql/share/mysql/charsets/ |
| collation_connection | latin1_swedish_ci |
| collation_database | latin1_swedish_ci |
| collation_server | latin1_swedish_ci |
...
| innodb_additional_mem_pool_size | 1048576 |
| innodb_autoextend_increment | 8 |
| innodb_buffer_pool_size | 8388608 |
| innodb_checksums | ON |
| innodb_commit_concurrency | 0 |
| innodb_concurrency_tickets | 500 |
| innodb_data_file_path | ibdata1:10M:autoextend |
| innodb_data_home_dir | |
...
| version | 5.1.6-alpha-log |
| version_comment | Source distribution |
| version_compile_machine | i686 |
| version_compile_os | suse-linux |
| wait_timeout | 28800 |
+---------------------------------+-----------------------------------+
With a LIKE clause, the statement displays only those variables that match the pattern. To obtain a specific variable name, use a LIKE clause as shown:
SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';
To get a list of variables whose name match a pattern, use the “%” wildcard character in a LIKE clause:
SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';
Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking, because “_” is a wildcard that matches any single character, you should escape it as “_” to match it literally. In practice, this is rarely necessary.
For SHOW VARIABLES, if you specify neither GLOBAL nor SESSION, MySQL returns SESSION values.
The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when retrieving them is to prevent problems in the future. If we were to remove a SESSION variable that has the same name as a GLOBAL variable, a client with the SUPER privilege might accidentally change the GLOBAL variable rather than just the SESSION variable for its own connection. If we add a SESSION variable with the same name as a GLOBAL variable, a client that intends to change the GLOBAL variable might find only its own SESSION variable changed.
5.1.5.1. Structured System Variables
A structured variable differs from a regular system variable in two respects:
Its value is a structure with components that specify server parameters considered to be closely related.
There might be several instances of a given type of structured variable. Each one has a different name and refers to a different resource maintained by the server.
MySQL 5.6 supports one structured variable type, which specifies parameters governing the operation of key caches. A key cache structured variable has these components:
This section describes the syntax for referring to structured variables. Key cache variables are used for syntax examples, but specific details about how key caches operate are found elsewhere, in Section 8.9.2, “The MyISAM Key Cache”.
To refer to a component of a structured variable instance, you can use a compound name in instance_name.component_name format. Examples:
hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size
For each structured system variable, an instance with the name of default is always predefined. If you refer to a component of a structured variable without any instance name, the default instance is used. Thus, default.key_buffer_size and key_buffer_size both refer to the same system variable.
Structured variable instances and components follow these naming rules:
For a given type of structured variable, each instance must have a name that is unique within variables of that type. However, instance names need not be unique across structured variable types. For example, each structured variable has an instance named default, so default is not unique across variable types.
The names of the components of each structured variable type must be unique across all system variable names. If this were not true (that is, if two different types of structured variables could share component member names), it would not be clear which default structured variable to use for references to member names that are not qualified by an instance name.
If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted identifier using backticks. For example, hot-cache is not legal, but `hot-cache` is.
global, session, and local are not legal instance names. This avoids a conflict with notation such as @@global.var_name for referring to nonstructured system variables.
Currently, the first two rules have no possibility of being violated because the only structured variable type is the one for key caches. These rules will assume greater significance if some other type of structured variable is created in the future.
With one exception, you can refer to structured variable components using compound names in any context where simple variable names can occur. For example, you can assign a value to a structured variable using a command-line option:
shell> mysqld --hot_cache.key_buffer_size=64K
In an option file, use this syntax:
[mysqld]
hot_cache.key_buffer_size=64K
If you start the server with this option, it creates a key cache named hot_cache with a size of 64KB in addition to the default key cache that has a default size of 8MB.
Suppose that you start the server as follows:
shell> mysqld --key_buffer_size=256K \
--extra_cache.key_buffer_size=128K \
--extra_cache.key_cache_block_size=2048
In this case, the server sets the size of the default key cache to 256KB. (You could also have written --default.key_buffer_size=256K.) In addition, the server creates a second key cache named extra_cache that has a size of 128KB, with the size of block buffers for caching table index blocks set to 2048 bytes.
The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:
shell> mysqld --key_buffer_size=6M \
--hot_cache.key_buffer_size=2M \
--cold_cache.key_buffer_size=2M
Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache named hot_cache to a size of 10MB, use either of these statements:
mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@global.hot_cache.key_buffer_size = 10*1024*1024;
To retrieve the cache size, do this:
mysql> SELECT @@global.hot_cache.key_buffer_size;
However, the following statement does not work. The variable is not interpreted as a compound name, but as a simple string for a LIKE pattern-matching operation:
mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';
This is the exception to being able to use structured variable names anywhere a simple variable name may occur.
5.1.5.2. Dynamic System Variables
Many server system variables are dynamic and can be set at runtime using SET GLOBAL or SET SESSION. You can also obtain their values using SELECT. See Section 5.1.5, “Using System Variables”.
The following table shows the full list of all dynamic system variables. The last column indicates for each variable whether GLOBAL or SESSION (or both) apply. The table also lists session options that can be set with the SET statement. Section 5.1.4, “Server System Variables”, discusses these options.
Variables that have a type of “string” take a string value. Variables that have a type of “numeric” take a numeric value. Variables that have a type of “boolean” can be set to 0, 1, ON or OFF. (If you set them on the command line or in an option file, use the numeric values.) Variables that are marked as “enumeration” normally should be set to one of the available values for the variable, but can also be set to the number that corresponds to the desired enumeration value. For enumerated system variables, the first enumeration value corresponds to 0. This differs from ENUM columns, for which the first enumeration value corresponds to 1.
Table 5.4. Dynamic Variable Summary
5.1.6. Server Status Variables
The server maintains many status variables that provide information about its operation. You can view these variables and their values by using the SHOW [GLOBAL | SESSION] STATUS statement (see Section 13.7.5.36, “SHOW STATUS Syntax”). The optional GLOBAL keyword aggregates the values over all connections, and SESSION shows the values for the current connection.
mysql> SHOW GLOBAL STATUS;
+-----------------------------------+------------+
| Variable_name | Value |
+-----------------------------------+------------+
| Aborted_clients | 0 |
| Aborted_connects | 0 |
| Bytes_received | 155372598 |
| Bytes_sent | 1176560426 |
...
| Connections | 30023 |
| Created_tmp_disk_tables | 0 |
| Created_tmp_files | 3 |
| Created_tmp_tables | 2 |
...
| Threads_created | 217 |
| Threads_running | 88 |
| Uptime | 1389872 |
+-----------------------------------+------------+
Many status variables are reset to 0 by the FLUSH STATUS statement.
The following table lists all available server status variables:
Table 5.5. Status Variable Summary
The status variables have the following meanings.
The number of connections that were aborted because the client died without closing the connection properly. See Section C.5.2.11, “Communication Errors and Aborted Connections”.
The number of failed attempts to connect to the MySQL server. See Section C.5.2.11, “Communication Errors and Aborted Connections”.
For additional connection-related information, check the Connection_errors_xxx status variables and the host_cache table.
The number of transactions that used the temporary binary log cache but that exceeded the value of binlog_cache_size and used a temporary file to store statements from the transaction.
The number of nontransactional statements that caused the binary log transaction cache to be written to disk is tracked separately in the Binlog_stmt_cache_disk_use status variable.
The number of transactions that used the binary log cache.
The number of nontransaction statements that used the binary log statement cache but that exceeded the value of binlog_stmt_cache_size and used a temporary file to store those statements.
The number of nontransactional statements that used the binary log statement cache.
The number of bytes received from all clients.
The number of bytes sent to all clients.
Com_xxx
The Com_xxx statement counter variables indicate the number of times each xxx statement has been executed. There is one status variable for each type of statement. For example, Com_delete and Com_update count DELETE and UPDATE statements, respectively. Com_delete_multi and Com_update_multi are similar but apply to DELETE and UPDATE statements that use multiple-table syntax.
If a query result is returned from query cache, the server increments the Qcache_hits status variable, not Com_select. See Section 8.9.3.4, “Query Cache Status and Maintenance”.
All of the Com_stmt_xxx variables are increased even if a prepared statement argument is unknown or an error occurred during execution. In other words, their values correspond to the number of requests issued, not to the number of requests successfully completed.
The Com_stmt_xxx status variables are as follows:
Com_stmt_prepare
Com_stmt_execute
Com_stmt_fetch
Com_stmt_send_long_data
Com_stmt_reset
Com_stmt_close
Those variables stand for prepared statement commands. Their names refer to the COM_xxx command set used in the network layer. In other words, their values increase whenever prepared statement API calls such as mysql_stmt_prepare(), mysql_stmt_execute(), and so forth are executed. However, Com_stmt_prepare, Com_stmt_execute and Com_stmt_close also increase for PREPARE, EXECUTE, or DEALLOCATE PREPARE, respectively. Additionally, the values of the older statement counter variables Com_prepare_sql, Com_execute_sql, and Com_dealloc_sql increase for the PREPARE, EXECUTE, and DEALLOCATE PREPARE statements. Com_stmt_fetch stands for the total number of network round-trips issued when fetching from cursors.
Com_stmt_reprepare indicates the number of times statements were automatically reprepared by the server after metadata changes to tables or views referred to by the statement. A reprepare operation increments Com_stmt_reprepare, and also Com_stmt_prepare.
Whether the client connection uses compression in the client/server protocol.
These variables provide information about errors that occur during the client connection process. They are global only and represent error counts aggregated across connections from all hosts. These variables track errors not accounted for by the host cache (see Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”), such as errors that are not associated with TCP connections, occur very early in the connection process (even before an IP address is known), or are not specific to any particular IP address (such as out-of-memory conditions). These variables were added in MySQL 5.6.5.
The number of errors that occurred during calls to accept() on the listening port.
The number of connections refused due to internal errors in the server, such as failure to start a new thread or an out-of-memory condition.
Connection_errors_max_connections
The number of connections refused because the server max_connections limit was reached.
The number of errors that occurred while searching for connecting client IP addresses.
The number of errors that occurred during calls to select() or poll() on the listening port. (Failure of this operation does not necessarily means a client connection was rejected.)
The number of connections refused by the libwrap library.
The number of connection attempts (successful or not) to the MySQL server.
The number of internal on-disk temporary tables created by the server while executing statements.
If an internal temporary table is created initially as an in-memory table but becomes too large, MySQL automatically converts it to an on-disk table. The maximum size for in-memory temporary tables is the minimum of the tmp_table_size and max_heap_table_size values. If Created_tmp_disk_tables is large, you may want to increase the tmp_table_size or max_heap_table_size value to lessen the likelihood that internal temporary tables in memory will be converted to on-disk tables.
You can compare the number of internal on-disk temporary tables created to the total number of internal temporary tables created by comparing the values of the Created_tmp_disk_tables and Created_tmp_tables variables.
See also Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”.
How many temporary files mysqld has created.
The number of internal temporary tables created by the server while executing statements.
You can compare the number of internal on-disk temporary tables created to the total number of internal temporary tables created by comparing the values of the Created_tmp_disk_tables and Created_tmp_tables variables.
See also Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”.
Each invocation of the SHOW STATUS statement uses an internal temporary table and increments the global Created_tmp_tables value.
The number of rows written with INSERT DELAYED for which some error occurred (probably duplicate key).
As of MySQL 5.6.7, this status variable is deprecated (because DELAYED inserts are deprecated), and will be removed in a future release.
The number of INSERT DELAYED handler threads in use for nontransactional tables.
As of MySQL 5.6.7, this status variable is deprecated (because DELAYED inserts are deprecated), and will be removed in a future release.
The number of INSERT DELAYED rows written to nontransactional tables.
As of MySQL 5.6.7, this status variable is deprecated (because DELAYED inserts are deprecated), and will be removed in a future release.
The number of times the server flushes tables, whether because a user executed a FLUSH TABLES statement or due to internal server operation. It is also incremented by receipt of a COM_REFRESH packet. This is in contrast to Com_flush, which indicates how many FLUSH statements have been executed, whether FLUSH TABLES, FLUSH LOGS, and so forth.
The number of internal COMMIT statements.
The number of times that rows have been deleted from tables.
The server increments this variable for each call to its external_lock() function, which generally occurs at the beginning and end of access to a table instance. There might be differences among storage engines. This variable can be used, for example, to discover for a statement that accesses a partitioned table how many partitions were pruned before locking occurred: Check how much the counter increased for the statement, subtract 2 (2 calls for the table itself), then divide by 2 to get the number of partitions locked. This variable was added in MySQL 5.6.2.
The number of times the server uses a storage engine's own Multi-Range Read implementation for table access. This variable was added in MySQL 5.6.1.
A counter for the prepare phase of two-phase commit operations.
The number of times the first entry in an index was read. If this value is high, it suggests that the server is doing a lot of full index scans; for example, SELECT col1 FROM foo, assuming that col1 is indexed.
The number of requests to read a row based on a key. If this value is high, it is a good indication that your tables are properly indexed for your queries.
The number of requests to read the last key in an index. With ORDER BY, the server will issue a first-key request followed by several next-key requests, whereas with With ORDER BY DESC, the server will issue a last-key request followed by several previous-key requests. This variable was added in MySQL 5.6.1.
The number of requests to read the next row in key order. This value is incremented if you are querying an index column with a range constraint or if you are doing an index scan.
The number of requests to read the previous row in key order. This read method is mainly used to optimize ORDER BY ... DESC.
The number of requests to read a row based on a fixed position. This value is high if you are doing a lot of queries that require sorting of the result. You probably have a lot of queries that require MySQL to scan entire tables or you have joins that do not use keys properly.
The number of requests to read the next row in the data file. This value is high if you are doing a lot of table scans. Generally this suggests that your tables are not properly indexed or that your queries are not written to take advantage of the indexes you have.
The number of requests for a storage engine to perform a rollback operation.
The number of requests for a storage engine to place a savepoint.
The number of requests for a storage engine to roll back to a savepoint.
The number of requests to update a row in a table.
The number of requests to insert a row in a table.
The total number of available InnoDB undo logs. Supplements the innodb_undo_logs system variable, which reports the number of active undo logs.
Innodb_buffer_pool_dump_status
The progress of an operation to record the pages held in the InnoDB buffer pool, triggered by the setting of innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now.
Innodb_buffer_pool_load_status
The progress of an operation to warm up the InnoDB buffer pool by reading in a set of pages corresponding to an earlier point in time, triggered by the setting of innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now. If the operation introduces too much overhead, you can cancel it by setting innodb_buffer_pool_load_abort.
The total number of bytes in the InnoDB buffer pool containing data. The number includes both dirty and clean pages. For more accurate memory usage calculations than with Innodb_buffer_pool_pages_data, when compressed tables cause the buffer pool to hold pages of different sizes.
The number of pages in the InnoDB buffer pool containing data. The number includes both dirty and clean pages.
Innodb_buffer_pool_bytes_dirty
The total current number of bytes held in dirty pages in the InnoDB buffer pool. For more accurate memory usage calculations than with Innodb_buffer_pool_pages_dirty, when compressed tables cause the buffer pool to hold pages of different sizes.
Innodb_buffer_pool_pages_dirty
The current number of dirty pages in the InnoDB buffer pool.
Innodb_buffer_pool_pages_flushed
The number of requests to flush pages from the InnoDB buffer pool.
The number of free pages in the InnoDB buffer pool.
Innodb_buffer_pool_pages_latched
The number of latched pages in the InnoDB buffer pool. These are pages currently being read or written, or that cannot be flushed or removed for some other reason. Calculation of this variable is expensive, so it is available only when the UNIV_DEBUG system is defined at server build time.
The number of pages in the InnoDB buffer pool that are busy because they have been allocated for administrative overhead, such as row locks or the adaptive hash index. This value can also be calculated as Innodb_buffer_pool_pages_total – Innodb_buffer_pool_pages_free – Innodb_buffer_pool_pages_data.
Innodb_buffer_pool_pages_total
The total size of the InnoDB buffer pool, in pages.
The number of pages read into the InnoDB buffer pool by the read-ahead background thread.
Innodb_buffer_pool_read_ahead_evicted
The number of pages read into the InnoDB buffer pool by the read-ahead background thread that were subsequently evicted without having been accessed by queries.
Innodb_buffer_pool_read_requests
The number of logical read requests made to the InnoDB buffer pool. These requests could be serviced by returning data that was already in memory, or by reading the data from disk into memory first.
The number of logical reads that InnoDB could not satisfy from the buffer pool, and had to read directly from disk.
Normally, writes to the InnoDB buffer pool happen in the background. When InnoDB needs to read or create a page and no clean pages are available, InnoDB flushes some dirty pages first and waits for that operation to finish. This counter counts instances of these waits. If innodb_buffer_pool_size has been set properly, this value should be small.
Innodb_buffer_pool_write_requests
The number of writes done to the InnoDB buffer pool.
The number of fsync() operations so far. The frequency of fsync() calls is influenced by the setting of the innodb_flush_method configuration option.
The current number of pending fsync() operations. The frequency of fsync() calls is influenced by the setting of the innodb_flush_method configuration option.
The current number of pending reads.
The current number of pending writes.
The amount of data read since the server was started.
The total number of data reads.
The total number of data writes.
The amount of data written so far, in bytes.
The number of pages that have been written to the doublewrite buffer. See Section 5.3.1, “InnoDB Disk I/O”.
The number of doublewrite operations that have been performed. See Section 5.3.1, “InnoDB Disk I/O”.
Indicates whether the server was built with atomic instructions.
The number of times that the log buffer was too small and a wait was required for it to be flushed before continuing.
The number of write requests for the InnoDB redo log.
The number of physical writes to the InnoDB redo log file.
The number of files InnoDB currently holds open.
The number of fsync() writes done to the InnoDB redo log files.
The number of pending fsync() operations for the InnoDB redo log files.
The number of pending writes to the InnoDB redo log files.
The number of bytes written to the InnoDB redo log files.
The compiled-in InnoDB page size (default 16KB). Many values are counted in pages; the page size enables them to be easily converted to bytes.
The number of pages created by operations on InnoDB tables.
The number of pages read by operations on InnoDB tables.
The number of pages written by operations on InnoDB tables.
The number of row locks currently being waited for by operations on InnoDB tables.
The total time spent in acquiring row locks for InnoDB tables, in milliseconds.
The average time to acquire a row lock for InnoDB tables, in milliseconds.
The maximum time to acquire a row lock for InnoDB tables, in milliseconds.
The number of times operations on InnoDB tables had to wait for a row lock.
The number of rows deleted from InnoDB tables.
The number of rows inserted into InnoDB tables.
The number of rows read from InnoDB tables.
The number of rows updated in InnoDB tables.
Innodb_truncated_status_writes
The number of times output from the SHOW ENGINE INNODB STATUS statement has been truncated.
The number of key blocks in the MyISAM key cache that have changed but have not yet been flushed to disk.
The number of unused blocks in the MyISAM key cache. You can use this value to determine how much of the key cache is in use; see the discussion of key_buffer_size in Section 5.1.4, “Server System Variables”.
The number of used blocks in the MyISAM key cache. This value is a high-water mark that indicates the maximum number of blocks that have ever been in use at one time.
The number of requests to read a key block from the MyISAM key cache.
The number of physical reads of a key block from disk into the MyISAM key cache. If Key_reads is large, then your key_buffer_size value is probably too small. The cache miss rate can be calculated as Key_reads/Key_read_requests.
The number of requests to write a key block to the MyISAM key cache.
The number of physical writes of a key block from the MyISAM key cache to disk.
The total cost of the last compiled query as computed by the query optimizer. This is useful for comparing the cost of different query plans for the same query. The default value of 0 means that no query has been compiled yet. The default value is 0. Last_query_cost has session scope.
The Last_query_cost value can be computed accurately only for simple “flat” queries, not complex queries such as those with subqueries or UNION. For the latter, the value is set to 0.
The number of iterations the query optimizer made in execution plan construction for the previous query. Last_query_cost has session scope. This variable was added in MySQL 5.6.5.
The maximum number of connections that have been in use simultaneously since the server started.
The number of rows waiting to be written to nontransactional tables in INSERT DELAYED queues.
As of MySQL 5.6.7, this status variable is deprecated (because DELAYED inserts are deprecated), and will be removed in a future release.
The number of files that are open. This count includes regular files opened by the server. It does not include other types of files such as sockets or pipes. Also, the count does not include files that storage engines open using their own internal functions rather than asking the server level to do so.
The number of streams that are open (used mainly for logging).
The number of cached .frm files.
The number of tables that are open.
The number of files that have been opened with my_open() (a mysys library function). Parts of the server that open files without using this function do not increment the count.
The number of .frm files that have been cached.
The number of tables that have been opened. If Opened_tables is big, your table_open_cache value is probably too small.
Performance_schema_xxx
Performance Schema status variables are listed in Section 20.13, “Performance Schema Status Variables”. These variables provide information about instrumentation that could not be loaded or created due to memory constraints.
The current number of prepared statements. (The maximum number of statements is given by the max_prepared_stmt_count system variable.)
The number of free memory blocks in the query cache.
The amount of free memory for the query cache.
The number of query cache hits.
The number of queries added to the query cache.
The number of queries that were deleted from the query cache because of low memory.
The number of noncached queries (not cacheable, or not cached due to the query_cache_type setting).
The number of queries registered in the query cache.
The total number of blocks in the query cache.
The number of statements executed by the server. This variable includes statements executed within stored programs, unlike the Questions variable. It does not count COM_PING or COM_STATISTICS commands.
The number of statements executed by the server. This includes only statements sent to the server by clients and not statements executed within stored programs, unlike the Queries variable. This variable does not count COM_PING, COM_STATISTICS, COM_STMT_PREPARE, COM_STMT_CLOSE, or COM_STMT_RESET commands.
The number of semisynchronous slaves.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Rpl_semi_sync_master_net_avg_wait_time
The average time in microseconds the master waited for a slave reply.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Rpl_semi_sync_master_net_wait_time
The total time in microseconds the master waited for slave replies.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Rpl_semi_sync_master_net_waits
The total number of times the master waited for slave replies.
This variable is available only if the master-side semisynchronous replication plugin is installed.
The number of times the master turned off semisynchronous replication.
This variable is available only if the master-side semisynchronous replication plugin is installed.
The number of commits that were not acknowledged successfully by a slave.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Whether semisynchronous replication currently is operational on the master. The value is ON if the plugin has been enabled and a commit acknowledgment has occurred. It is OFF if the plugin is not enabled or the master has fallen back to asynchronous replication due to commit acknowledgment timeout.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Rpl_semi_sync_master_timefunc_failures
The number of times the master failed when calling time functions such as gettimeofday().
This variable is available only if the master-side semisynchronous replication plugin is installed.
Rpl_semi_sync_master_tx_avg_wait_time
The average time in microseconds the master waited for each transaction.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Rpl_semi_sync_master_tx_wait_time
The total time in microseconds the master waited for transactions.
This variable is available only if the master-side semisynchronous replication plugin is installed.
The total number of times the master waited for transactions.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Rpl_semi_sync_master_wait_pos_backtraverse
The total number of times the master waited for an event with binary coordinates lower than events waited for previously. This can occur when the order in which transactions start waiting for a reply is different from the order in which their binary log events are written.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Rpl_semi_sync_master_wait_sessions
The number of sessions currently waiting for slave replies.
This variable is available only if the master-side semisynchronous replication plugin is installed.
The number of commits that were acknowledged successfully by a slave.
This variable is available only if the master-side semisynchronous replication plugin is installed.
Whether semisynchronous replication currently is operational on the slave. This is ON if the plugin has been enabled and the slave I/O thread is running, OFF otherwise.
This variable is available only if the slave-side semisynchronous replication plugin is installed.
The RSA public key value used by the sha256_password authentication plugin. The value is nonempty only if the server successfully initializes the private and public keys in the files named by the sha256_password_private_key_path and sha256_password_public_key_path system variables. The value of Rsa_public_key comes from the latter file.
For information about sha256_password, see Section 6.3.7.2, “The SHA-256 Authentication Plugin”.
This variable is available only if MySQL was built using OpenSSL. It was added in MySQL 5.6.6.
The number of joins that perform table scans because they do not use indexes. If this value is not 0, you should carefully check the indexes of your tables.
The number of joins that used a range search on a reference table.
The number of joins that used ranges on the first table. This is normally not a critical issue even if the value is quite large.
The number of joins without keys that check for key usage after each row. If this is not 0, you should carefully check the indexes of your tables.
The number of joins that did a full scan of the first table.
Shows the replication heartbeat interval (in seconds) on a replication slave.
Shows when the most recent heartbeat signal was received by a replication slave, as a TIMESTAMP value.
The number of temporary tables that the slave SQL thread currently has open. If the value is greater than zero, it is not safe to shut down the slave; see Section 16.4.1.21, “Replication and Temporary Tables”.
This counter increments with each replication heartbeat received by a replication slave since the last time that the slave was restarted or reset, or a CHANGE MASTER TO statement was issued.
The total number of times since startup that the replication slave SQL thread has retried transactions.
This is ON if this server is a replication slave that is connected to a replication master, and both the I/O and SQL threads are running; otherwise, it is OFF.
The number of threads that have taken more than slow_launch_time seconds to create.
The number of queries that have taken more than long_query_time seconds. This counter increments regardless of whether the slow query log is enabled. For information about that log, see Section 5.2.5, “The Slow Query Log”.
The number of merge passes that the sort algorithm has had to do. If this value is large, you should consider increasing the value of the sort_buffer_size system variable.
The number of sorts that were done using ranges.
The number of sorted rows.
The number of sorts that were done by scanning the table.
The number of negotiates needed to establish the connection.
The number of accepted SSL connections.
The number of callback cache hits.
The current SSL cipher (empty for non-SSL connections).
The list of possible SSL ciphers.
The number of SSL connection attempts to an SSL-enabled master.
The number of negotiates needed to establish the connection to an SSL-enabled master.
The SSL context verification depth (how many certificates in the chain are tested).
The SSL context verification mode.
The default SSL timeout.
The number of successful SSL connections to the server.
The number of successful slave connections to an SSL-enabled master.
The last date for which the SSL certificate is valid. This variable was added in MySQL 5.6.3.
The first date for which the SSL certificate is valid. This variable was added in MySQL 5.6.3.
The number of SSL session cache hits.
The number of SSL session cache misses.
The SSL session cache mode.
The number of SSL session cache overflows.
The SSL session cache size.
The number of SSL session cache timeouts.
How many SSL connections were reused from the cache.
Ssl_used_session_cache_entries
How many SSL session cache entries were used.
The verification depth for replication SSL connections.
The verification mode for replication SSL connections.
The SSL protocol version of the connection.
The number of times that a request for a table lock could be granted immediately.
The number of times that a request for a table lock could not be granted immediately and a wait was needed. If this is high and you have performance problems, you should first optimize your queries, and then either split your table or tables or use replication.
The number of hits for open tables cache lookups. This variable was added in MySQL 5.6.6.
The number of misses for open tables cache lookups. This variable was added in MySQL 5.6.6.
The number of overflows for the open tables cache. This is the number of times, after a table is opened or closed, a cache instance has an unused entry and the size of the instance is larger than table_open_cache / table_open_cache_instances. This variable was added in MySQL 5.6.6.
For the memory-mapped implementation of the log that is used by mysqld when it acts as the transaction coordinator for recovery of internal XA transactions, this variable indicates the largest number of pages used for the log since the server started. If the product of Tc_log_max_pages_used and Tc_log_page_size is always significantly less than the log size, the size is larger than necessary and can be reduced. (The size is set by the --log-tc-size option. Currently, this variable is unused: It is unneeded for binary log-based recovery, and the memory-mapped recovery log method is not used unless the number of storage engines capable of two-phase commit is greater than one. (InnoDB is the only applicable engine.)
The page size used for the memory-mapped implementation of the XA recovery log. The default value is determined using getpagesize(). Currently, this variable is unused for the same reasons as described for Tc_log_max_pages_used.
For the memory-mapped implementation of the recovery log, this variable increments each time the server was not able to commit a transaction and had to wait for a free page in the log. If this value is large, you might want to increase the log size (with the --log-tc-size option). For binary log-based recovery, this variable increments each time the binary log cannot be closed because there are two-phase commits in progress. (The close operation waits until all such transactions are finished.)
The number of threads in the thread cache.
The number of currently open connections.
The number of threads created to handle connections. If Threads_created is big, you may want to increase the thread_cache_size value. The cache miss rate can be calculated as Threads_created/Connections.
The number of threads that are not sleeping.
The number of seconds that the server has been up.
The number of seconds since the most recent FLUSH STATUS statement.
5.1.7. Server SQL Modes
The MySQL server can operate in different SQL modes, and can apply these modes differently for different clients. This capability enables each application to tailor the server's operating mode to its own requirements.
For answers to some questions that are often asked about server SQL modes in MySQL, see Section B.3, “MySQL 5.6 FAQ: Server SQL Mode”.
Modes define what SQL syntax MySQL should support and what kind of data validation checks it should perform. This makes it easier to use MySQL in different environments and to use MySQL together with other database servers.
When working with InnoDB tables, consider also the innodb_strict_mode configuration option. It enables additional error checks for InnoDB tables, as listed in Section 14.2.5.7, “InnoDB Strict Mode”.
Setting the SQL Mode
You can set the default SQL mode by starting mysqld with the --sql-mode="modes" option, or by using sql-mode="modes" in my.cnf (Unix operating systems) or my.ini (Windows). modes is a list of different modes separated by comma (“,”) characters. The default SQL mode in MySQL 5.6.6 and later is NO_ENGINE_SUBSTITUTION; in MySQL 5.6.5 and earlier, it was empty (no modes set). To clear the mode explicitly, set it to an empty string using --sql-mode="" on the command line, or with sql-mode="" in my.cnf on Unix systems or in my.ini on Windows.
You can change the SQL mode at runtime by using a SET [GLOBAL|SESSION] sql_mode='modes' statement to set the sql_mode system value. Setting the GLOBAL variable requires the SUPER privilege and affects the operation of all clients that connect from that time on. Setting the SESSION variable affects only the current client. Any client can change its own session sql_mode value at any time.
Important
SQL mode and user-defined partitioning. Changing the server SQL mode after creating and inserting data into partitioned tables can cause major changes in the behavior of such tables, and could lead to loss or corruption of data. It is strongly recommended that you never change the SQL mode once you have created tables employing user-defined partitioning.
When replicating partitioned tables, differing SQL modes on master and slave can also lead to problems. For best results, you should always use the same server SQL mode on the master and on the slave.
See Section 17.6, “Restrictions and Limitations on Partitioning”, for more information.
You can retrieve the current global or session sql_mode value with the following statements:
SELECT @@GLOBAL.sql_mode;
SELECT @@SESSION.sql_mode;
Most Important SQL Modes
The most important sql_mode values are probably these:
This mode changes syntax and behavior to conform more closely to standard SQL. It is one of the special combination modes listed at the end of this section.
If a value could not be inserted as given into a transactional table, abort the statement. For a nontransactional table, abort the statement if the value occurs in a single-row statement or the first row of a multiple-row statement. More detail is given later in this section.
Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is “give an error instead of a warning” when inserting an incorrect value into a column. It is one of the special combination modes listed at the end of this section.
Note
The INSERT/UPDATE aborts as soon as the error is noticed. This may not be what you want if you are using a nontransactional storage engine, because data changes made prior to the error may not be rolled back, resulting in a “partially done” update.
When this manual refers to “strict mode,” it means a mode where at least one of STRICT_TRANS_TABLES or STRICT_ALL_TABLES is enabled.
Full List of SQL Modes
The following list describes all supported modes:
Do not perform full checking of dates. Check only that the month is in the range from 1 to 12 and the day is in the range from 1 to 31. This is very convenient for Web applications where you obtain year, month, and day in three different fields and you want to store exactly what the user inserted (without date validation). This mode applies to DATE and DATETIME columns. It does not apply TIMESTAMP columns, which always require a valid date.
The server requires that month and day values be legal, and not merely in the range 1 to 12 and 1 to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate an error. To permit such dates, enable ALLOW_INVALID_DATES.
Treat “"” as an identifier quote character (like the “`” quote character) and not as a string quote character. You can still use “`” to quote identifiers with this mode enabled. With ANSI_QUOTES enabled, you cannot use double quotation marks to quote literal strings, because it is interpreted as an identifier.
Produce an error in strict mode (otherwise a warning) when a division by zero (or MOD(X,0)) occurs during an INSERT or UPDATE. If this mode is not enabled, MySQL instead returns NULL for divisions by zero. For INSERT IGNORE or UPDATE IGNORE, MySQL generates a warning for divisions by zero, but the result of the operation is NULL.
The precedence of the NOT operator is such that expressions such as NOT a BETWEEN b AND c are parsed as NOT (a BETWEEN b AND c). In some older versions of MySQL, the expression was parsed as (NOT a) BETWEEN b AND c. The old higher-precedence behavior can be obtained by enabling the HIGH_NOT_PRECEDENCE SQL mode.
mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
-> 0
mysql> SET sql_mode = 'HIGH_NOT_PRECEDENCE';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
-> 1
Permit spaces between a function name and the “(” character. This causes built-in function names to be treated as reserved words. As a result, identifiers that are the same as function names must be quoted as described in Section 9.2, “Schema Object Names”. For example, because there is a COUNT() function, the use of count as a table name in the following statement causes an error:
mysql> CREATE TABLE count (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax
The table name should be quoted:
mysql> CREATE TABLE `count` (i INT);
Query OK, 0 rows affected (0.00 sec)
The IGNORE_SPACE SQL mode applies to built-in functions, not to user-defined functions or stored functions. It is always permissible to have spaces after a UDF or stored function name, regardless of whether IGNORE_SPACE is enabled.
For further discussion of IGNORE_SPACE, see Section 9.2.4, “Function Name Parsing and Resolution”.
Prevent the GRANT statement from automatically creating new users if it would otherwise do so, unless authentication information is specified. The statement must specify a nonempty password using IDENTIFIED BY or an authentication plugin using IDENTIFIED WITH.
NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally, you generate the next sequence number for the column by inserting either NULL or 0 into it. NO_AUTO_VALUE_ON_ZERO suppresses this behavior for 0 so that only NULL generates the next sequence number.
This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (Storing 0 is not a recommended practice, by the way.) For example, if you dump the table with mysqldump and then reload it, MySQL normally generates new sequence numbers when it encounters the 0 values, resulting in a table with contents different from the one that was dumped. Enabling NO_AUTO_VALUE_ON_ZERO before reloading the dump file solves this problem. mysqldump now automatically includes in its output a statement that enables NO_AUTO_VALUE_ON_ZERO, to avoid this problem.
Disable the use of the backslash character (“\”) as an escape character within strings. With this mode enabled, backslash becomes an ordinary character like any other.
When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This option is useful on slave replication servers.
Control automatic substitution of the default storage engine when a statement such as CREATE TABLE or ALTER TABLE specifies a storage engine that is disabled or not compiled in.
Because storage engines can be pluggable at runtime, unavailable engines are treated the same way:
With NO_ENGINE_SUBSTITUTION disabled, for CREATE TABLE the default engine is used and a warning occurs if the desired engine is unavailable. For ALTER TABLE, a warning occurs and the table is not altered.
With NO_ENGINE_SUBSTITUTION enabled, an error occurs and the table is not created or altered if the desired engine is unavailable.
Do not print MySQL-specific column options in the output of SHOW CREATE TABLE. This mode is used by mysqldump in portability mode.
Do not print MySQL-specific index options in the output of SHOW CREATE TABLE. This mode is used by mysqldump in portability mode.
Do not print MySQL-specific table options (such as ENGINE) in the output of SHOW CREATE TABLE. This mode is used by mysqldump in portability mode.
By default, subtraction between integer operands produces an UNSIGNED result if any operand isUNSIGNED. When NO_UNSIGNED_SUBTRACTION is enabled, the subtraction result is signed, even if any operand is unsigned. For example, compare the type of column c2 in table t1 with that of column c2 in table t2:
mysql> SET sql_mode='';
mysql> CREATE TABLE test (c1 BIGINT UNSIGNED NOT NULL);
mysql> CREATE TABLE t1 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t1;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| c2 | bigint(21) unsigned | | | 0 | |
+-------+---------------------+------+-----+---------+-------+
mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
mysql> CREATE TABLE t2 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t2;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| c2 | bigint(21) | | | 0 | |
+-------+------------+------+-----+---------+-------+
Note that this means that BIGINT UNSIGNED is not 100% usable in all contexts. See Section 12.10, “Cast Functions and Operators”.
mysql> SET sql_mode = '';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| 18446744073709551615 |
+-------------------------+
mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+
In strict mode, do not permit '0000-00-00' as a valid date. You can still insert zero dates with the IGNORE option. When not in strict mode, the date is accepted but a warning is generated.
In strict mode, do not accept dates where the year part is nonzero but the month or day part is 0 (for example, '0000-00-00' is legal but '2010-00-01' and '2010-01-00' are not). If used with the IGNORE option, MySQL inserts a '0000-00-00' date for any such date. When not in strict mode, the date is accepted but a warning is generated.
Do not permit queries for which the select list or HAVING list or (as of MySQL 5.6.5) ORDER list refers to nonaggregated columns that are not named in the GROUP BY clause.
The following queries are invalid with ONLY_FULL_GROUP_BY enabled. The first is invalid because address in the select list is not named in the GROUP BY clause, and the second because max_age in the HAVING clause is not named in the GROUP BY clause:
mysql> SELECT name, address, MAX(age) FROM t GROUP BY name;
ERROR 1055 (42000): 't.address' isn't in GROUP BY
mysql> SELECT name, MAX(age) AS max_age FROM t GROUP BY name
-> HAVING max_age < 30;
Empty set (0.00 sec)
ERROR 1463 (42000): Non-grouping field 'max_age' is used in HAVING clause
In the second example, the query could be rewritten to use HAVING MAX(age) instead, so that the reference is to a column named in an aggregate function. (max_age fails because it is an aggregate function.)
In addition, if a query has aggregate functions and no GROUP BY clause, it cannot have nonaggregated columns in the select list or ORDER BY list:
mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...)
with no GROUP columns is illegal if there is no GROUP BY clause
For more information, see Section 12.17.3, “MySQL Extensions to GROUP BY”.
By default, trailing spaces are trimmed from CHAR column values on retrieval. If PAD_CHAR_TO_FULL_LENGTH is enabled, trimming does not occur and retrieved CHAR values are padded to their full length. This mode does not apply to VARCHAR columns, for which trailing spaces are retained on retrieval.
mysql> CREATE TABLE t1 (c1 CHAR(10));
Query OK, 0 rows affected (0.37 sec)
mysql> INSERT INTO t1 (c1) VALUES('xy');
Query OK, 1 row affected (0.01 sec)
mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------+-----------------+
| xy | 2 |
+------+-----------------+
1 row in set (0.00 sec)
mysql> SET sql_mode = 'PAD_CHAR_TO_FULL_LENGTH';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT c1, CHAR_LENGTH(c1) FROM t1;
+------------+-----------------+
| c1 | CHAR_LENGTH(c1) |
+------------+-----------------+
| xy | 10 |
+------------+-----------------+
1 row in set (0.00 sec)
Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for OR.
Treat REAL as a synonym for FLOAT. By default, MySQL treats REAL as a synonym for DOUBLE.
Enable strict mode for all storage engines. Invalid data values are rejected. Additional detail follows.
Enable strict mode for transactional storage engines, and when possible for nontransactional storage engines. Additional details follow.
Strict mode controls how MySQL handles input values that are invalid or missing. A value can be invalid for several reasons. For example, it might have the wrong data type for the column, or it might be out of range. A value is missing when a new row to be inserted does not contain a value for a non-NULL column that has no explicit DEFAULT clause in its definition. (For a NULL column, NULL is inserted if the value is missing.)
For transactional tables, an error occurs for invalid or missing values in a statement when either of the STRICT_ALL_TABLES or STRICT_TRANS_TABLES modes are enabled. The statement is aborted and rolled back.
For nontransactional tables, the behavior is the same for either mode, if the bad value occurs in the first row to be inserted or updated. The statement is aborted and the table remains unchanged. If the statement inserts or modifies multiple rows and the bad value occurs in the second or later row, the result depends on which strict option is enabled:
For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However, in this case, the earlier rows still have been inserted or updated. This means that you might get a partial update, which might not be what you want. To avoid this, it is best to use single-row statements because these can be aborted without changing the table.
For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the column and insert the adjusted value. If a value is missing, MySQL inserts the implicit default value for the column data type. In either case, MySQL generates a warning rather than an error and continues processing the statement. Implicit defaults are described in Section 11.5, “Data Type Default Values”.
Strict mode disallows invalid date values such as '2004-04-31'. It does not disallow dates with zero month or day parts such as '2004-04-00' or “zero” dates. To disallow these as well, enable the NO_ZERO_IN_DATE and NO_ZERO_DATE SQL modes in addition to strict mode.
If you are not using strict mode (that is, neither STRICT_TRANS_TABLES nor STRICT_ALL_TABLES is enabled), MySQL inserts adjusted values for invalid or missing values and produces warnings. In strict mode, you can produce this behavior by using INSERT IGNORE or UPDATE IGNORE. See Section 13.7.5.41, “SHOW WARNINGS Syntax”.
Strict mode does not affect whether foreign key constraints are checked. foreign_key_checks can be used for that. (See Section 5.1.4, “Server System Variables”.)
Combination Modes
The following special modes are provided as shorthand for combinations of mode values from the preceding list.
The descriptions include all mode values that are available in the most recent version of MySQL. For older versions, a combination mode does not include individual mode values that are not available except in newer versions.
Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE.
ANSI mode also causes the server to return an error for queries where a set function S with an outer reference S(outer_ref) cannot be aggregated in the outer query against which the outer reference has been resolved. This is such a query:
SELECT * FROM t1 WHERE t1.a IN (SELECT MAX(t1.b) FROM t2 WHERE ...);
Here, MAX(t1.b) cannot aggregated in the outer query because it appears in the WHERE clause of that query. Standard SQL requires an error in this situation. If ANSI mode is not enabled, the server treats S(outer_ref) in such queries the same way that it would interpret S(const).
Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.
Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.
Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.
Equivalent to NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.
Equivalent to NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.
Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.
Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS, NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.
Equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER, and NO_ENGINE_SUBSTITUTION.
5.1.8. Server Plugins
MySQL supports a plugin API that enables creation of server components. Plugins can be loaded at server startup, or loaded and unloaded at runtime without restarting the server. The components supported by this interface include, but are not limited to, storage engines, full-text parser plugins, partitioning support, and server extensions.
5.1.8.1. Installing and Uninstalling Plugins
Server plugins must be loaded in to the server before they can be used. MySQL enables you to load a plugin at server startup or at runtime. It is also possible to control the activation of loaded plugins at startup, and to unload them at runtime.
Installing Plugins
Server plugins must be known to the server before they can be used. A plugin can be made known several ways, as described here. In the following descriptions, plugin_name stands for a plugin name such as innodb or csv.
Built-in plugins:
A plugin that is built in to the server is known by the server automatically. Normally, the server enables the plugin at startup, although this can be changed with the --plugin_name option.
Plugins registered in the mysql.plugin table:
The mysql.plugin table serves as a registry of plugins. The server normally enables each plugin listed in the table at startup, although whether a given plugin is enabled can be changed with the --plugin_name option. If the server is started with the --skip-grant-tables option, it does not consult this table and does not load the plugins listed there.
Plugins named with command-line options:
A plugin that is located in a plugin library file can be loaded at server startup with the --plugin-load option. Normally, the server enables the plugin at startup, although this can be changed with the --plugin_name option.
The option value is a semicolon-separated list of name=plugin_library pairs. Each name is the name of the plugin, and plugin_library is the name of the shared library that contains the plugin code. If a plugin library is named without any preceding plugin name, the server loads all plugins in the library. Each library file must be located in the directory named by the plugin_dir system variable.
This option does not register any plugin in the mysql.plugin table. For subsequent restarts, the server loads the plugin again only if --plugin-load is given again. That is, this option effects a one-time installation that persists only for one server invocation.
--plugin-load enables plugins to be loaded even when --skip-grant-tables is given (which causes the server to ignore the mysql.plugin table). --plugin-load also enables plugins to be loaded at startup under configurations when plugins cannot be loaded at runtime.
The --plugin-load-add option complements the --plugin-load option. --plugin-load-add adds a plugin or plugins to the set of plugins to be loaded at startup. The argument format is the same as for --plugin-load. --plugin-load-add can be used to avoid specifying a large set of plugins as a single long unwieldy --plugin-load. argument. --plugin-load-add can be given in the absence of --plugin-load, but any instance of --plugin-load-add that appears before --plugin-load. has no effect because --plugin-load resets the set of plugins to load. In other words, these options:
--plugin-load=x --plugin-load-add=y
are equivalent to this option:
--plugin-load="x;y"
But these options:
--plugin-load-add=y --plugin-load=x
are equivalent to this option:
--plugin-load=x
Plugins installed with the INSTALL PLUGIN statement:
A plugin that is located in a plugin library file can be loaded at runtime with the INSTALL PLUGIN statement. The statement also registers the plugin in the mysql.plugin table to cause the server to load it on subsequent restarts. For this reason, INSTALL PLUGIN requires the INSERT privilege for the mysql.plugin table.
If a plugin is named both using a --plugin-load option and in the mysql.plugin table, the server starts but writes these messages to the error log:
100310 19:15:44 [ERROR] Function 'plugin_name' already exists
100310 19:15:44 [Warning] Couldn't load plugin named 'plugin_name'
with soname 'plugin_object_file'.
Example: The --plugin-load option installs a plugin at server startup. To install a plugin named myplugin in a plugin library file named somepluglib.so, use these lines in a my.cnf file:
[mysqld]
plugin-load=myplugin=somepluglib.so
In this case, the plugin is not registered in mysql.plugin. Restarting the server without the --plugin-load option causes the plugin not to be loaded at startup.
Alternatively, the INSTALL PLUGIN statement causes the server to load the plugin code from the library file at runtime:
mysql> INSTALL PLUGIN myplugin SONAME 'somepluglib.so';
INSTALL PLUGIN also causes “permanent” plugin registration: The server lists the plugin in the mysql.plugin table to ensure that it is loaded on subsequent server restarts.
Many plugins can be loaded either at server startup or at runtime. However, if a plugin is designed such that it must be loaded and initialized during server startup, use --plugin-load rather than INSTALL PLUGIN.
While a plugin is loaded, information about it is available at runtime from several sources, such as the INFORMATION_SCHEMA.PLUGINS table and the SHOW PLUGINS statement. For more information, see Section 5.1.8.2, “Obtaining Server Plugin Information”.
Controlling Plugin Activation
If the server knows about a plugin when it starts (for example, because the plugin is named using a --plugin-load option or registered in the mysql.plugin table), the server loads and enables the plugin by default. It is possible to control activation for such a plugin using a --plugin_name[=value] startup option named after the plugin. In the following descriptions, plugin_name stands for a plugin name such as innodb or csv. As with other options, dashes and underscores are interchangeable in option names. For example, --my_plugin=ON and --my-plugin=ON are equivalent.
--plugin_name=OFF
Tells the server to disable the plugin.
--plugin_name[=ON]
Tells the server to enable the plugin. (Specifying the option as --plugin_name without a value has the same effect.) If the plugin fails to initialize, the server runs with the plugin disabled.
--plugin_name=FORCE
Tells the server to enable the plugin, but if plugin initialization fails, the server does not start. In other words, this option forces the server to run with the plugin enabled or not at all.
--plugin_name=FORCE_PLUS_PERMANENT
Like FORCE, but in addition prevents the plugin from being unloaded at runtime. If a user attempts to do so with UNINSTALL PLUGIN, an error occurs.
The values OFF, ON, FORCE, and FORCE_PLUS_PERMANENT are not case sensitive.
The activation state for plugins is visible in the LOAD_OPTION column of the INFORMATION_SCHEMA.PLUGINS table.
Suppose that CSV, BLACKHOLE, and ARCHIVE are built-in pluggable storage engines and that you want the server to load them at startup, subject to these conditions: The server is permitted to run if CSV initialization fails, but must require that BLACKHOLE initialization succeeds, and ARCHIVE should be disabled. To accomplish that, use these lines in an option file:
[mysqld]
csv=ON
blackhole=FORCE
archive=OFF
The --enable-plugin_name option format is supported as a synonym for --plugin_name=ON. The --disable-plugin_name and --skip-plugin_name option formats are supported as synonyms for --plugin_name=OFF.
If a plugin is disabled, either explicitly with OFF or implicitly because it was enabled with ON but failed to initialize, aspects of server operation that require the plugin will change. For example, if the plugin implements a storage engine, existing tables for the storage engine become inaccessible, and attempts to create new tables for the storage engine result in tables that use the default storage engine unless the NO_ENGINE_SUBSTITUTION SQL mode has been enabled to cause an error to occur instead.
Disabling a plugin may require adjustment to other options. For example, if you start the server using --skip-innodb to disable InnoDB, other innodb_xxx options likely will need to be omitted from the startup command. In addition, because InnoDB is the default storage engine, it will not start unless you specify another available storage engine with --default_storage_engine. As of MySQL 5.6.3, you will also need to set --default_tmp_storage_engine.
Uninstalling Plugins
A plugin known to the server can be uninstalled to disable it at runtime with the UNINSTALL PLUGIN statement. The statement unloads the plugin and removes it from the mysql.plugin table if it is registered there. For this reason, UNINSTALL PLUGIN statement requires the DELETE privilege for the mysql.plugin table. With the plugin no longer registered in the table, the server will not load the plugin automatically for subsequent restarts.
UNINSTALL PLUGIN can unload plugins regardless of whether they were loaded with INSTALL PLUGIN or --plugin-load.
UNINSTALL PLUGIN is subject to these exceptions:
It cannot unload plugins that are built in to the server. These can be identified as those that have a library name of NULL in the output from INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.
It cannot unload plugins for which the server was started with --plugin_name=FORCE_PLUS_PERMANENT, which prevents plugin unloading at runtime. These can be identified from the LOAD_OPTION column of the INFORMATION_SCHEMA.PLUGINS table.
5.1.8.2. Obtaining Server Plugin Information
There are several ways to determine which plugins are installed in the server:
The INFORMATION_SCHEMA.PLUGINS table contains a row for each loaded plugin. Any that have a PLUGIN_LIBRARY value of NULL are built in and cannot be unloaded.
mysql> SELECT * FROM information_schema.PLUGINS\G
*************************** 1. row ***************************
PLUGIN_NAME: binlog
PLUGIN_VERSION: 1.0
PLUGIN_STATUS: ACTIVE
PLUGIN_TYPE: STORAGE ENGINE
PLUGIN_TYPE_VERSION: 50158.0
PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
PLUGIN_AUTHOR: MySQL AB
PLUGIN_DESCRIPTION: This is a pseudo storage engine to represent the binlog in a transaction
PLUGIN_LICENSE: GPL
LOAD_OPTION: FORCE
...
*************************** 10. row ***************************
PLUGIN_NAME: InnoDB
PLUGIN_VERSION: 1.0
PLUGIN_STATUS: ACTIVE
PLUGIN_TYPE: STORAGE ENGINE
PLUGIN_TYPE_VERSION: 50158.0
PLUGIN_LIBRARY: ha_innodb_plugin.so
PLUGIN_LIBRARY_VERSION: 1.0
PLUGIN_AUTHOR: Innobase Oy
PLUGIN_DESCRIPTION: Supports transactions, row-level locking,
and foreign keys
PLUGIN_LICENSE: GPL
LOAD_OPTION: ON
...
The SHOW PLUGINS statement displays a row for each loaded plugin. Any that have a Library value of NULL are built in and cannot be unloaded.
mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
Name: binlog
Status: ACTIVE
Type: STORAGE ENGINE
Library: NULL
License: GPL
...
*************************** 10. row ***************************
Name: InnoDB
Status: ACTIVE
Type: STORAGE ENGINE
Library: ha_innodb_plugin.so
License: GPL
...
The mysql.plugin table shows which plugins have been registered with INSTALL PLUGIN. The table contains only plugin names and library file names, so it does not provide as much information as the PLUGINS table or the SHOW PLUGINS statement.
5.1.9. IPv6 Support
Support for IPv6 in MySQL includes these capabilities:
MySQL Server can accept TCP/IP connections from clients connecting over IPv6. For example, this command connects over IPv6 to the MySQL server on the local host:
shell> mysql -h ::1
To use this capability, two things must be true:
Your system must be configured to support IPv6. See Section 5.1.9.1, “Verifying System Support for IPv6”.
The default MySQL server configuration permits only IPv4 connections, so the server must be configured for IPv6 connections. To permit IPv6 connections in addition to or instead of IPv4 connections, start the server with an appropriate --bind-address option. See Section 5.1.4, “Server System Variables”.
MySQL account names permit IPv6 addresses to enable DBAs to specify privileges for clients that connect to the server over IPv6. See Section 6.2.3, “Specifying Account Names”. IPv6 addresses can be specified in account names in statements such as CREATE USER, GRANT, and REVOKE. For example:
mysql> CREATE USER 'bill'@'::1' IDENTIFIED BY 'secret';
mysql> GRANT SELECT ON mydb.* TO 'bill'@'::1';
IPv6 functions enable conversion between string and internal format IPv6 address formats, and checking whether values represent valid IPv6 addresses. For example, INET6_ATON() and INET6_NTOA() are similar to INET_ATON() and INET_NTOA(), but handle IPv6 addresses in addition to IPv4 addresses. See Section 12.16, “Miscellaneous Functions”.
The following sections describe how to set up MySQL so that clients can connect to the server over IPv6.
5.1.9.1. Verifying System Support for IPv6
Before MySQL Server can accept IPv6 connections, the operating system on your server host must support IPv6. As a simple test to determine whether that is true, try this command:
shell> ping6 ::1
16 bytes from ::1, icmp_seq=0 hlim=64 time=0.171 ms
16 bytes from ::1, icmp_seq=1 hlim=64 time=0.077 ms
...
To produce a description of your system's network interfaces, invoke ifconfig -a and look for IPv6 addresses in the output.
If your host does not support IPv6, consult your system documentation for instructions on enabling it. It might be that you need only reconfigure an existing network interface to add an IPv6 address. Or a more extensive change might be needed, such as rebuilding the kernel with IPv6 options enabled.
These links may be helpful in setting up IPv6 on various platforms:
5.1.9.2. Configuring the MySQL Server to Permit IPv6 Connections
The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound to a single address, but it is possible for an address to map onto multiple network interfaces. To specify an address, use the --bind-address=addr option at server startup, where addr is an IPv4 or IPv6 address or a host name. (IPv6 addresses are not supported before MySQL 5.5.3.) If addr is a host name, the server resolves the name to an IP address and binds to that address.
The server treats different types of addresses as follows:
If the address is *, the server accepts TCP/IP connections on all server host IPv6 and IPv4 interfaces if the server host supports IPv6, or accepts TCP/IP connections on all IPv4 addresses otherwise. Use this address to permit both IPv4 and IPv6 connections on all server interfaces. This value is permitted (and is the default) as of MySQL 5.6.6.
If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4 interfaces. This is the default before MySQL 5.6.6.
If the address is ::, the server accepts TCP/IP connections on all server host IPv4 and IPv6 interfaces. Use this address to permit both IPv4 and IPv6 connections on all server interfaces.
If the address is an IPv4-mapped address, the server accepts TCP/IP connections for that address, in either IPv4 or IPv6 format. For example, if the server is bound to ::ffff:127.0.0.1, clients can connect using --host=127.0.0.1 or --host=::ffff:127.0.0.1.
If the address is a “regular” IPv4 or IPv6 address (such as 127.0.0.1 or ::1), the server accepts TCP/IP connections only for that IPv4 or IPv6 address.
If you intend to bind the server to a specific address, be sure that the mysql.user grant table contains an account with administrative privileges that you can use to connect to that address. Otherwise, you will not be able to shut down the server. For example, if you bind the server to *, you can connect to it using all existing accounts. But if you bind the server to ::1, it accepts connections only on that address. In that case, first make sure that the 'root'@'::1' account is present in the mysql.user table so you can still connect to the server to shut it down.
5.1.9.3. Connecting Using the IPv6 Local Host Address
The following procedure shows how to configure MySQL to permit IPv6 connections by clients that connect to the local server using the ::1 local host address. The instructions given here assume that your system supports IPv6.
Start the MySQL server with an appropriate --bind-address option to permit it to accept IPv6 connections. For example, put the following lines in your server option file and restart the server:
[mysqld]
bind-address = * # before 5.6.6, use :: rather than *
Alternatively, you can bind the server to ::1, but that makes the server more restrictive for TCP/IP connections. It accepts only IPv6 connections for that single address and rejects IPv4 connections. For more information, see Section 5.1.9.2, “Configuring the MySQL Server to Permit IPv6 Connections”.
As an administrator, connect to the server and create an account for a local user who will connect from the ::1 local IPv6 host address:
mysql> CREATE USER 'ipv6user'@'::1' IDENTIFIED BY 'ipv6pass';
For the permitted syntax of IPv6 addresses in account names, see Section 6.2.3, “Specifying Account Names”. In addition to the CREATE USER statement, you can issue GRANT statements that give specific privileges to the account, although that is not necessary for the remaining steps in this procedure.
Invoke the mysql client to connect to the server using the new account:
shell> mysql -h ::1 -u ipv6user -pipv6pass
Try some simple statements that show connection information:
mysql> STATUS
...
Connection: ::1 via TCP/IP
...
mysql> SELECT CURRENT_USER(), @@bind_address;
+----------------+----------------+
| CURRENT_USER() | @@bind_address |
+----------------+----------------+
| ipv6user@::1 | :: |
+----------------+----------------+
5.1.9.4. Connecting Using IPv6 Nonlocal Host Addresses
The following procedure shows how to configure MySQL to permit IPv6 connections by remote clients. It is similar to the preceding procedure for local clients, but the server and client hosts are distinct and each has its own nonlocal IPv6 address. The example uses these addresses:
Server host: 2001:db8:0:f101::1
Client host: 2001:db8:0:f101::2
These addresses are chosen from the nonroutable address range recommended by IANA for documentation purposes and suffice for testing on your local network. To accept IPv6 connections from clients outside the local network, the server host must have a public address. If your network provider assigns you an IPv6 address, you can use that. Otherwise, another way to obtain an address is to use an IPv6 broker; see Section 5.1.9.5, “Obtaining an IPv6 Address from a Broker”.
Start the MySQL server with an appropriate --bind-address option to permit it to accept IPv6 connections. For example, put the following lines in your server option file and restart the server:
[mysqld]
bind-address = * # before 5.6.6, use :: rather than *
Alternatively, you can bind the server to 2001:db8:0:f101::1, but that makes the server more restrictive for TCP/IP connections. It accepts only IPv6 connections for that single address and rejects IPv4 connections. For more information, see Section 5.1.9.2, “Configuring the MySQL Server to Permit IPv6 Connections”.
On the server host (2001:db8:0:f101::1), create an account for a user who will connect from the client host (2001:db8:0:f101::2):
mysql> CREATE USER 'remoteipv6user'@'2001:db8:0:f101::2' IDENTIFIED BY 'remoteipv6pass';
On the client host (2001:db8:0:f101::2), invoke the mysql client to connect to the server using the new account:
shell> mysql -h 2001:db8:0:f101::1 -u remoteipv6user -premoteipv6pass
Try some simple statements that show connection information:
mysql> STATUS
...
Connection: 2001:db8:0:f101::1 via TCP/IP
...
mysql> SELECT CURRENT_USER(), @@bind_address;
+-----------------------------------+----------------+
| CURRENT_USER() | @@bind_address |
+-----------------------------------+----------------+
| remoteipv6user@2001:db8:0:f101::2 | :: |
+-----------------------------------+----------------+
5.1.9.5. Obtaining an IPv6 Address from a Broker
If you do not have a public IPv6 address that enables your system to communicate over IPv6 outside your local network, you can obtain one from an IPv6 broker. The Wikipedia IPv6 Tunnel Broker page lists several brokers and their features, such as whether they provide static addresses and the supported routing protocols.
After configuring your server host to use a broker-supplied IPv6 address, start the MySQL server with an appropriate --bind-address option to permit the server to accept IPv6 connections. For example, put the following lines in the server option file and restart the server:
[mysqld]
bind-address = * # before 5.6.6, use :: rather than *
Alternatively, you can bind the server to to the specific IPv6 address provided by the broker, but that makes the server more restrictive for TCP/IP connections. It accepts only IPv6 connections for that single address and rejects IPv4 connections. For more information, see Section 5.1.9.2, “Configuring the MySQL Server to Permit IPv6 Connections”. In addition, if the broker allocates dynamic addresses, the address provided for your system might change the next time you connect to the broker. If so, any accounts you create that name the original address become invalid. To bind to a specific address but avoid this change-of-address problem, you may be able to arrange with the broker for a static IPv6 address.
The following example shows how to use Freenet6 as the broker and the gogoc IPv6 client package on Gentoo Linux.
Create a account at Freenet6 by visiting this URL and signing up:
http://gogonet.gogo6.com
After creating the account, go to this URL, sign in, and create a user ID and password for the IPv6 broker:
http://gogonet.gogo6.com/page/freenet6-registration
As root, install gogoc:
shell> emerge gogoc
Edit /etc/gogoc/gogoc.conf to set the userid and password values. For example:
userid=gogouser
passwd=gogopass
Start gogoc:
shell> /etc/init.d/gogoc start
To start gogoc each time your system boots, execute this command:
shell> rc-update add gogoc default
Use ping6 to try to ping a host:
shell> ping6 ipv6.google.com
To see your IPv6 address:
shell> ifconfig tun
5.1.10. Server-Side Help
MySQL Server supports a HELP statement that returns online information from the MySQL Reference manual (see Section 13.8.3, “HELP Syntax”). The proper operation of this statement requires that the help tables in the mysql database be initialized with help topic information, which is done by processing the contents of the fill_help_tables.sql script.
If you install MySQL using a binary or source distribution on Unix, help table setup occurs when you run mysql_install_db. For an RPM distribution on Linux or binary distribution on Windows, help table setup occurs as part of the MySQL installation process.
If you upgrade MySQL using a binary distribution, the help tables are not upgraded automatically, but you can upgrade them manually. Locate the fill_help_tables.sql file in the share or share/mysql directory. Change location into that directory and process the file with the mysql client as follows:
shell> mysql -u root mysql < fill_help_tables.sql
You can also obtain the latest fill_help_tables.sql at any time to upgrade your help tables. Download the proper file for your version of MySQL from http://dev.mysql.com/doc/index-other.html. After downloading and uncompressing the file, process it with mysql as described previously.
If you are working with Bazaar and a MySQL development source tree, you will need to download the fill_help_tables.sql file because the tree contains only a “stub” version.
5.1.11. Server Response to Signals
On Unix, signals can be sent to processes. mysqld responds to signals sent to it as follows:
SIGTERM causes the server to shut down.
SIGHUP causes the server to reload the grant tables and flush the logs (like FLUSH PRIVILEGES and FLUSH LOGS). It also writes a status report to the error log that has this format:
Status information:
Current dir: /var/mysql/data/
Running threads: 0 Stack size: 196608
Current locks:
Key caches:
default
Buffer_size: 8388600
Block_size: 1024
Division_limit: 100
Age_limit: 300
blocks used: 0
not flushed: 0
w_requests: 0
writes: 0
r_requests: 0
reads: 0
handler status:
read_key: 0
read_next: 0
read_rnd 0
read_first: 1
write: 0
delete 0
update: 0
Table status:
Opened tables: 5
Open tables: 0
Open files: 7
Open streams: 0
Alarm status:
Active alarms: 1
Max used alarms: 2
Next alarm time: 67
On some Mac OS X 10.3 versions, mysqld ignores SIGHUP and SIGQUIT.
5.1.12. The Shutdown Process
The server shutdown process takes place as follows:
The shutdown process is initiated.
This can occur initiated several ways. For example, a user with the SHUTDOWN privilege can execute a mysqladmin shutdown command. mysqladmin can be used on any platform supported by MySQL. Other operating system-specific shutdown initiation methods are possible as well: The server shuts down on Unix when it receives a SIGTERM signal. A server running as a service on Windows shuts down when the services manager tells it to.
The server creates a shutdown thread if necessary.
Depending on how shutdown was initiated, the server might create a thread to handle the shutdown process. If shutdown was requested by a client, a shutdown thread is created. If shutdown is the result of receiving a SIGTERM signal, the signal thread might handle shutdown itself, or it might create a separate thread to do so. If the server tries to create a shutdown thread and cannot (for example, if memory is exhausted), it issues a diagnostic message that appears in the error log:
Error: Can't create thread to kill server
The server stops accepting new connections.
To prevent new activity from being initiated during shutdown, the server stops accepting new client connections by closing the handlers for the network interfaces to which it normally listens for connections: the TCP/IP port, the Unix socket file, the Windows named pipe, and shared memory on Windows.
The server terminates current activity.
For each thread associated with a client connection, the server breaks the connection to the client and marks the thread as killed. Threads die when they notice that they are so marked. Threads for idle connections die quickly. Threads that currently are processing statements check their state periodically and take longer to die. For additional information about thread termination, see Section 13.7.6.4, “KILL Syntax”, in particular for the instructions about killed REPAIR TABLE or OPTIMIZE TABLE operations on MyISAM tables.
For threads that have an open transaction, the transaction is rolled back. Note that if a thread is updating a nontransactional table, an operation such as a multiple-row UPDATE or INSERT may leave the table partially updated because the operation can terminate before completion.
If the server is a master replication server, it treats threads associated with currently connected slaves like other client threads. That is, each one is marked as killed and exits when it next checks its state.
If the server is a slave replication server, it stops the I/O and SQL threads, if they are active, before marking client threads as killed. The SQL thread is permitted to finish its current statement (to avoid causing replication problems), and then stops. If the SQL thread is in the middle of a transaction at this point, the server waits until the current replication event group (if any) has finished executing, or until the user issues a KILL QUERY or KILL CONNECTION statement. See also Section 13.4.2.6, “STOP SLAVE Syntax”. Since nontransactional statements cannot be rolled back, in order to guarantee crash-safe replication, only transactional tables should be used.
Note
In order to guarantee crash safety on the slave, you must also run the slave with --relay-log-recovery enabled.
See also Section 16.2.2, “Replication Relay and Status Logs”).
The server shuts down or closes storage engines.
At this stage, the server flushes the table cache and closes all open tables.
Each storage engine performs any actions necessary for tables that it manages. InnoDB flushes its buffer pool to disk (unless innodb_fast_shutdown is 2), writes the current LSN to the tablespace, and terminates its own internal threads. MyISAM flushes any pending index writes for a table.
The server exits.
5.2. MySQL Server Logs
MySQL Server has several logs that can help you find out what activity is taking place.
Log Type | Information Written to Log |
---|---|
Error log | Problems encountered starting, running, or stopping mysqld |
General query log | Established client connections and statements received from clients |
Binary log | Statements that change data (also used for replication) |
Relay log | Data changes received from a replication master server |
Slow query log | Queries that took more than long_query_time seconds to execute |
By default, no logs are enabled (except the error log on Windows). The following log-specific sections provide information about the server options that enable logging.
By default, the server writes files for all enabled logs in the data directory. You can force the server to close and reopen the log files (or in some cases switch to a new log file) by flushing the logs. Log flushing occurs when you issue a FLUSH LOGS statement; execute mysqladmin with a flush-logs or refresh argument; or execute mysqldump with a --flush-logs or --master-data option. See Section 13.7.6.3, “FLUSH Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”, and Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is flushed when its size reaches the value of the max_binlog_size system variable.
You can control the general query and slow query logs during runtime. You can enable or disable logging, or change the log file name. You can tell the server to write general query and slow query entries to log tables, log files, or both. For details, see Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”, Section 5.2.3, “The General Query Log”, and Section 5.2.5, “The Slow Query Log”.
The relay log is used only on slave replication servers, to hold data changes from the master server that must also be made on the slave. For discussion of relay log contents and configuration, see Section 16.2.2.1, “The Slave Relay Log”.
For information about log maintenance operations such as expiration of old log files, see Section 5.2.6, “Server Log Maintenance”.
For information about keeping logs secure, see Section 6.1.2.3, “Passwords and Logging”.
5.2.1. Selecting General Query and Slow Query Log Output Destinations
MySQL Server provides flexible control over the destination of output to the general query log and the slow query log, if those logs are enabled. Possible destinations for log entries are log files or the general_log and slow_log tables in the mysql database. Either or both destinations can be selected.
Currently, logging to tables incurs significantly more server overhead than logging to files. If you enable the general log or slow query log and require highest performance, you should use file logging, not table logging.
Log control at server startup. The --log-output option specifies the destination for log output. This option does not in itself enable the logs. Its syntax is --log-output[=value,...]:
If --log-output is given with a value, the value should be a comma-separated list of one or more of the words TABLE (log to tables), FILE (log to files), or NONE (do not log to tables or files). NONE, if present, takes precedence over any other specifiers.
If --log-output is omitted, the default logging destination is FILE.
The general_log system variable controls logging to the general query log for the selected log destinations. If specified at server startup, general_log takes an optional argument of 1 or 0 to enable or disable the log. To specify a file name other than the default for file logging, set the general_log_file variable. Similarly, the slow_query_log variable controls logging to the slow query log for the selected destinations and setting slow_query_log_file specifies a file name for file logging. If either log is enabled, the server opens the corresponding log file and writes startup messages to it. However, further logging of queries to the file does not occur unless the FILE log destination is selected.
Examples:
To write general query log entries to the log table and the log file, use --log-output=TABLE,FILE to select both log destinations and --general_log to enable the general query log.
To write general and slow query log entries only to the log tables, use --log-output=TABLE to select tables as the log destination and --general_log and --slow_query_log to enable both logs.
To write slow query log entries only to the log file, use --log-output=FILE to select files as the log destination and --slow_query_log to enable the slow query log. (In this case, because the default log destination is FILE, you could omit the --log-output option.)
Log control at runtime. The system variables associated with log tables and files enable runtime control over logging:
The global log_output system variable indicates the current logging destination. It can be modified at runtime to change the destination.
The global general_log and slow_query_log variables indicate whether the general query log and slow query log are enabled (ON) or disabled (OFF). You can set these variables at runtime to control whether the logs are enabled.
The global general_log_file and slow_query_log_file variables indicate the names of the general query log and slow query log files. You can set these variables at server startup or at runtime to change the names of the log files.
To disable or enable general query logging for the current connection, set the session sql_log_off variable to ON or OFF.
The use of tables for log output offers the following benefits:
Log entries have a standard format. To display the current structure of the log tables, use these statements:
SHOW CREATE TABLE mysql.general_log;
SHOW CREATE TABLE mysql.slow_log;
Log contents are accessible through SQL statements. This enables the use of queries that select only those log entries that satisfy specific criteria. For example, to select log contents associated with a particular client (which can be useful for identifying problematic queries from that client), it is easier to do this using a log table than a log file.
Logs are accessible remotely through any client that can connect to the server and issue queries (if the client has the appropriate log table privileges). It is not necessary to log in to the server host and directly access the file system.
The log table implementation has the following characteristics:
In general, the primary purpose of log tables is to provide an interface for users to observe the runtime execution of the server, not to interfere with its runtime execution.
CREATE TABLE, ALTER TABLE, and DROP TABLE are valid operations on a log table. For ALTER TABLE and DROP TABLE, the log table cannot be in use and must be disabled, as described later.
By default, the log tables use the CSV storage engine that writes data in comma-separated values format. For users who have access to the .CSV files that contain log table data, the files are easy to import into other programs such as spreadsheets that can process CSV input.
The log tables can be altered to use the MyISAM storage engine. You cannot use ALTER TABLE to alter a log table that is in use. The log must be disabled first. No engines other than CSV or MyISAM are legal for the log tables.
To disable logging so that you can alter (or drop) a log table, you can use the following strategy. The example uses the general query log; the procedure for the slow query log is similar but uses the slow_log table and slow_query_log system variable.
SET @old_log_state = @@global.general_log;
SET GLOBAL general_log = 'OFF';
ALTER TABLE mysql.general_log ENGINE = MyISAM;
SET GLOBAL general_log = @old_log_state;
TRUNCATE TABLE is a valid operation on a log table. It can be used to expire log entries.
RENAME TABLE is a valid operation on a log table. You can atomically rename a log table (to perform log rotation, for example) using the following strategy:
USE mysql;
DROP TABLE IF EXISTS general_log2;
CREATE TABLE general_log2 LIKE general_log;
RENAME TABLE general_log TO general_log_backup, general_log2 TO general_log;
CHECK TABLE is a valid operation on a log table.
LOCK TABLES cannot be used on a log table.
INSERT, DELETE, and UPDATE cannot be used on a log table. These operations are permitted only internally to the server itself.
FLUSH TABLES WITH READ LOCK and the state of the global read_only system variable have no effect on log tables. The server can always write to the log tables.
Entries written to the log tables are not written to the binary log and thus are not replicated to slave servers. (Prior to MySQL 5.6.9, this was not always enforced correctly. See Bug #14741537.)
To flush the log tables or log files, use FLUSH TABLES or FLUSH LOGS, respectively.
Partitioning of log tables is not permitted.
Before MySQL 5.6.6, mysqldump does not dump the general_log or slow_query_log tables for dumps of the mysql database. As of 5.6.6, the dump includes statements to recreate those tables so that they are not missing after reloading the dump file. Log table contents are not dumped.
5.2.2. The Error Log
The error log contains information indicating when mysqld was started and stopped and also any critical errors that occur while the server is running. If mysqld notices a table that needs to be automatically checked or repaired, it writes a message to the error log.
On some operating systems, the error log contains a stack trace if mysqld dies. The trace can be used to determine where mysqld died. See MySQL Internals: Porting to Other Systems.
You can specify where mysqld writes the error log with the --log-error[=file_name] option. If the option is given with no file_name value, mysqld uses the name host_name.err by default. The server creates the file in the data directory unless an absolute path name is given to specify a different directory.
If you do not specify --log-error, or (on Windows) if you use the --console option, errors are written to stderr, the standard error output. Usually this is your terminal.
On Windows, error output is always written to the error log if --console is not given.
In addition, on Windows, events and error messages are written to the Windows Event Log within the Application log. Entries marked as Warning and Note are written to the Event Log, but informational messages (such as information statements from individual storage engines) are not copied to the Event Log. The log entries have a source of MySQL. You cannot disable writing information to the Windows Event Log.
If you flush the logs using FLUSH LOGS or mysqladmin flush-logs and mysqld is writing the error log to a file (for example, if it was started with the --log-error option), the server closes and reopens the log file. To rename the file, you can do so manually before flushing. Then flushing the logs reopens a new file with the original file name. For example, you can rename the file and create a new one using the following commands:
shell> mv host_name.err host_name.err-old
shell> mysqladmin flush-logs
shell> mv host_name.err-old backup-directory
On Windows, use rename rather than mv.
No error log renaming occurs when the logs are flushed if the server is not writing to a named file.
If you use mysqld_safe to start mysqld, mysqld_safe arranges for mysqld to write error messages to a log file or to syslog. mysqld_safe has three error-logging options, --syslog, --skip-syslog, and --log-error. The default with no logging options or with --skip-syslog is to use the default log file. To explicitly specify use of an error log file, specify --log-error=file_name to mysqld_safe, and mysqld_safe will arrange for mysqld to write messages to a log file. To use syslog instead, specify the --syslog option.
If you specify --log-error in an option file in a [mysqld], [server], or [mysqld_safe] section, mysqld_safe will find and use the option.
If mysqld_safe is used to start mysqld and mysqld dies unexpectedly, mysqld_safe notices that it needs to restart mysqld and writes a restarted mysqld message to the error log.
The --log-warnings option or log_warnings system variable can be used to control warning logging to the error log. The default value is enabled (1). Warning logging can be disabled using a value of 0. If the value is greater than 1, aborted connections are written to the error log, and access-denied errors for new connection attempts are written. See Section C.5.2.11, “Communication Errors and Aborted Connections”.
5.2.3. The General Query Log
The general query log is a general record of what mysqld is doing. The server writes information to this log when clients connect or disconnect, and it logs each SQL statement received from clients. The general query log can be very useful when you suspect an error in a client and want to know exactly what the client sent to mysqld.
mysqld writes statements to the query log in the order that it receives them, which might differ from the order in which they are executed. This logging order contrasts to the binary log, for which statements are written after they are executed but before any locks are released. (Also, the query log contains all statements, whereas the binary log does not contain statements that only select data.)
By default, the general query log is disabled. To specify the initial general query log state explicitly, use --general_log[={0|1}]. With no argument or an argument of 1, --general_log enables the log. With an argument of 0, this option disables the log. To specify a log file name, use --general_log_file=file_name. To specify the log destination, use --log-output (as described in Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”).
If you specify no name for the general query log file, the default name is host_name.log. The server creates the file in the data directory unless an absolute path name is given to specify a different directory.
To disable or enable the general query log or change the log file name at runtime, use the global general_log and general_log_file system variables. Set general_log to 0 (or OFF) to disable the log or to 1 (or ON) to enable it. Set general_log_file to specify the name of the log file. If a log file already is open, it is closed and the new file is opened.
When the general query log is enabled, the server writes output to any destinations specified by the --log-output option or log_output system variable. If you enable the log, the server opens the log file and writes startup messages to it. However, further logging of queries to the file does not occur unless the FILE log destination is selected. If the destination is NONE, the server writes no queries even if the general log is enabled. Setting the log file name has no effect on logging if the log destination value does not contain FILE.
Server restarts and log flushing do not cause a new general query log file to be generated (although flushing closes and reopens it). You can rename the file and create a new one by using the following commands:
shell> mv host_name.log host_name-old.log
shell> mysqladmin flush-logs
shell> mv host_name-old.log backup-directory
On Windows, use rename rather than mv.
You can also rename the general query log file at runtime by disabling the log:
SET GLOBAL general_log = 'OFF';
With the log disabled, rename the log file externally; for example, from the command line. Then enable the log again:
SET GLOBAL general_log = 'ON';
This method works on any platform and does not require a server restart.
The session sql_log_off variable can be set to ON or OFF to disable or enable general query logging for the current connection.
As of MySQL 5.6.3, passwords in statements written to the general query log are rewritten by the server not to occur literally in plain text. Password rewriting can be suppressed for the general query log by starting the server with the --log-raw option. This option may be useful for diagnostic purposes, to see the exact text of statements as received by the server, but for security reasons is not recommended for production use.
Before MySQL 5.6.3, passwords in statements are not rewritten and the general query log should be protected. See Section 6.1.2.3, “Passwords and Logging”.
5.2.4. The Binary Log
The binary log contains “events” that describe database changes such as table creation operations or changes to table data. It also contains events for statements that potentially could have made changes (for example, a DELETE which matched no rows), unless row-based logging is used. The binary log also contains information about how long each statement took that updated data. The binary log has two important purposes:
For replication, the binary log on a master replication server provides a record of the data changes to be sent to slave servers. The master server sends the events contained in its binary log to its slaves, which execute those events to make the same data changes that were made on the master. See Section 16.2, “Replication Implementation”.
Certain data recovery operations require use of the binary log. After a backup has been restored, the events in the binary log that were recorded after the backup was made are re-executed. These events bring databases up to date from the point of the backup. See Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”.
The binary log is not used for statements such as SELECT or SHOW that do not modify data. To log all statements (for example, to identify a problem query), use the general query log. See Section 5.2.3, “The General Query Log”.
Running a server with binary logging enabled makes performance slightly slower. However, the benefits of the binary log in enabling you to set up replication and for restore operations generally outweigh this minor performance decrement.
Beginning with MySQL 5.6.2, the binary log is crash-safe. Only complete events or transactions are logged or read back.
As of MySQL 5.6.3, passwords in statements written to the binary log are rewritten by the server not to occur literally in plain text. Before MySQL 5.6.3, passwords in statements are not rewritten and the binary log should be protected. See Section 6.1.2.3, “Passwords and Logging”.
The following discussion describes some of the server options and variables that affect the operation of binary logging. For a complete list, see Section 16.1.4.4, “Binary Log Options and Variables”.
To enable the binary log, start the server with the --log-bin[=base_name] option. If no base_name value is given, the default name is the value of the pid-file option (which by default is the name of host machine) followed by -bin. If the basename is given, the server writes the file in the data directory unless the basename is given with a leading absolute path name to specify a different directory. It is recommended that you specify a basename explicitly rather than using the default of the host name; see Section C.5.8, “Known Issues in MySQL”, for the reason.
If you supply an extension in the log name (for example, --log-bin=base_name.extension), the extension is silently removed and ignored.
mysqld appends a numeric extension to the binary log basename to generate binary log file names. The number increases each time the server creates a new log file, thus creating an ordered series of files. The server creates a new file in the series each time it starts or flushes the logs. The server also creates a new binary log file automatically after the current log's size reaches max_binlog_size. A binary log file may become larger than max_binlog_size if you are using large transactions because a transaction is written to the file in one piece, never split between files.
To keep track of which binary log files have been used, mysqld also creates a binary log index file that contains the names of all used binary log files. By default, this has the same basename as the binary log file, with the extension '.index'. You can change the name of the binary log index file with the --log-bin-index[=file_name] option. You should not manually edit this file while mysqld is running; doing so would confuse mysqld.
The term “binary log file” generally denotes an individual numbered file containing database events. The term “binary log” collectively denotes the set of numbered binary log files plus the index file.
A client that has the SUPER privilege can disable binary logging of its own statements by using a SET sql_log_bin=0 statement. See Section 5.1.4, “Server System Variables”.
By default, the server logs the length of the event as well as the event itself and uses this to verify that the event was written correctly. You can also cause the server to write checksums for the events by setting the binlog_checksum system variable. When reading back from the binary log, the master uses the event length by default, but can be made to use checksums if available by enabling the master_verify_checksum system variable. The slave I/O thread also verifies events received from the master. You can cause the slave SQL thread to use checksums if available when reading from the relay log by enabling the slave_sql_verify_checksum system variable.
The format of the events recorded in the binary log is dependent on the binary logging format. Three format types are supported, row-based logging, statement-based logging and mixed-base logging. The binary logging format used depends on the MySQL version. For general descriptions of the logging formats, see Section 5.2.4.1, “Binary Logging Formats”. For detailed information about the format of the binary log, see MySQL Internals: The Binary Log.
The server evaluates the --binlog-do-db and --binlog-ignore-db options in the same way as it does the --replicate-do-db and --replicate-ignore-db options. For information about how this is done, see Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”.
A replication slave server by default does not write to its own binary log any data modifications that are received from the replication master. To log these modifications, start the slave with the --log-slave-updates option in addition to the --log-bin option (see Section 16.1.4.3, “Replication Slave Options and Variables”). This is done when a slave is also to act as a master to other slaves in chained replication.
You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE BINARY LOGS. See Section 13.7.6.6, “RESET Syntax”, and Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.
If you are using replication, you should not delete old binary log files on the master until you are sure that no slave still needs to use them. For example, if your slaves never run more than three days behind, once a day you can execute mysqladmin flush-logs on the master and then remove any logs that are more than three days old. You can remove the files manually, but it is preferable to use PURGE BINARY LOGS, which also safely updates the binary log index file for you (and which can take a date argument). See Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.
You can display the contents of binary log files with the mysqlbinlog utility. This can be useful when you want to reprocess statements in the log for a recovery operation. For example, you can update a MySQL server from the binary log as follows:
shell> mysqlbinlog log_file | mysql -h server_name
mysqlbinlog also can be used to display replication slave relay log file contents because they are written using the same format as binary log files. For more information on the mysqlbinlog utility and how to use it, see Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”. For more information about the binary log and recovery operations, see Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”.
Binary logging is done immediately after a statement or transaction completes but before any locks are released or any commit is done. This ensures that the log is logged in commit order.
Updates to nontransactional tables are stored in the binary log immediately after execution.
Within an uncommitted transaction, all updates (UPDATE, DELETE, or INSERT) that change transactional tables such as InnoDB tables are cached until a COMMIT statement is received by the server. At that point, mysqld writes the entire transaction to the binary log before the COMMIT is executed.
Modifications to nontransactional tables cannot be rolled back. If a transaction that is rolled back includes modifications to nontransactional tables, the entire transaction is logged with a ROLLBACK statement at the end to ensure that the modifications to those tables are replicated.
When a thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to buffer statements. If a statement is bigger than this, the thread opens a temporary file to store the transaction. The temporary file is deleted when the thread ends.
The Binlog_cache_use status variable shows the number of transactions that used this buffer (and possibly a temporary file) for storing statements. The Binlog_cache_disk_use status variable shows how many of those transactions actually had to use a temporary file. These two variables can be used for tuning binlog_cache_size to a large enough value that avoids the use of temporary files.
The max_binlog_cache_size system variable (default 4GB, which is also the maximum) can be used to restrict the total size used to cache a multiple-statement transaction. If a transaction is larger than this many bytes, it fails and rolls back. The minimum value is 4096.
If you are using the binary log and row based logging, concurrent inserts are converted to normal inserts for CREATE ... SELECT or INSERT ... SELECT statements. This is done to ensure that you can re-create an exact copy of your tables by applying the log during a backup operation. If you are using statement-based logging, the original statement is written to the log.
The binary log format has some known limitations that can affect recovery from backups. See Section 16.4.1, “Replication Features and Issues”.
Binary logging for stored programs is done as described in Section 18.7, “Binary Logging of Stored Programs”.
Note that the binary log format differs in MySQL 5.6 from previous versions of MySQL, due to enhancements in replication. See Section 16.4.2, “Replication Compatibility Between MySQL Versions”.
Writes to the binary log file and binary log index file are handled in the same way as writes to MyISAM tables. See Section C.5.4.3, “How MySQL Handles a Full Disk”.
By default, the binary log is not synchronized to disk at each write. So if the operating system or machine (not only the MySQL server) crashes, there is a chance that the last statements of the binary log are lost. To prevent this, you can make the binary log be synchronized to disk after every N writes to the binary log, with the sync_binlog system variable. See Section 5.1.4, “Server System Variables”. 1 is the safest value for sync_binlog, but also the slowest. Even with sync_binlog set to 1, there is still the chance of an inconsistency between the table content and binary log content in case of a crash. For example, if you are using InnoDB tables and the MySQL server processes a COMMIT statement, it writes the whole transaction to the binary log and then commits this transaction into InnoDB. If the server crashes between those two operations, the transaction is rolled back by InnoDB at restart but still exists in the binary log. To resolve this, you should set --innodb_support_xa to 1. Although this option is related to the support of XA transactions in InnoDB, it also ensures that the binary log and InnoDB data files are synchronized.
For this option to provide a greater degree of safety, the MySQL server should also be configured to synchronize the binary log and the InnoDB logs to disk before committing the transaction. The InnoDB logs are synchronized by default, and sync_binlog=1 can be used to synchronize the binary log. The effect of this option is that at restart after a crash, after doing a rollback of transactions, the MySQL server cuts rolled back InnoDB transactions from the binary log. This ensures that the binary log reflects the exact data of InnoDB tables, and so, that the slave remains in synchrony with the master (not receiving a statement which has been rolled back).
If the MySQL server discovers at crash recovery that the binary log is shorter than it should have been, it lacks at least one successfully committed InnoDB transaction. This should not happen if sync_binlog=1 and the disk/file system do an actual sync when they are requested to (some do not), so the server prints an error message The binary log file_name is shorter than its expected size. In this case, this binary log is not correct and replication should be restarted from a fresh snapshot of the master's data.
The session values of the following system variables are written to the binary log and honored by the replication slave when parsing the binary log:
sql_mode (except that the NO_DIR_IN_CREATE mode is not replicated; see Section 16.4.1.32, “Replication and Variables”)
5.2.4.1. Binary Logging Formats
The server uses several logging formats to record information in the binary log. The exact format employed depends on the version of MySQL being used. There are three logging formats:
Replication capabilities in MySQL originally were based on propagation of SQL statements from master to slave. This is called statement-based logging. You can cause this format to be used by starting the server with --binlog-format=STATEMENT.
In row-based logging, the master writes events to the binary log that indicate how individual table rows are affected. You can cause the server to use row-based logging by starting it with --binlog-format=ROW.
A third option is also available: mixed logging. With mixed logging, statement-based logging is used by default, but the logging mode switches automatically to row-based in certain cases as described below. You can cause MySQL to use mixed logging explicitly by starting mysqld with the option --binlog-format=MIXED.
In MySQL 5.6, the default binary logging format is STATEMENT.
The logging format can also be set or limited by the storage engine being used. This helps to eliminate issues when replicating certain statements between a master and slave which are using different storage engines.
With statement-based replication, there may be issues with replicating nondeterministic statements. In deciding whether or not a given statement is safe for statement-based replication, MySQL determines whether it can guarantee that the statement can be replicated using statement-based logging. If MySQL cannot make this guarantee, it marks the statement as potentially unreliable and issues the warning, Statement may not be safe to log in statement format.
You can avoid these issues by using MySQL's row-based replication instead.
5.2.4.2. Setting The Binary Log Format
You can select the binary logging format explicitly by starting the MySQL server with --binlog-format=type. The supported values for type are:
STATEMENT causes logging to be statement based.
ROW causes logging to be row based.
MIXED causes logging to use mixed format.
In MySQL 5.6, the default binary logging format is STATEMENT.
The logging format also can be switched at runtime. To specify the format globally for all clients, set the global value of the binlog_format system variable:
mysql> SET GLOBAL binlog_format = 'STATEMENT';
mysql> SET GLOBAL binlog_format = 'ROW';
mysql> SET GLOBAL binlog_format = 'MIXED';
An individual client can control the logging format for its own statements by setting the session value of binlog_format:
mysql> SET SESSION binlog_format = 'STATEMENT';
mysql> SET SESSION binlog_format = 'ROW';
mysql> SET SESSION binlog_format = 'MIXED';
Note
Each MySQL Server can set its own and only its own binary logging format (true whether binlog_format is set with global or session scope). This means that changing the logging format on a replication master does not cause a slave to change its logging format to match. (When using STATEMENT mode, the binlog_format system variable is not replicated; when using MIXED or ROW logging mode, it is replicated but is ignored by the slave.) Changing the binary logging format on the master while replication is ongoing, or without also changing it on the slave can thus cause unexpected results, or even cause replication to fail altogether.
To change the global or session binlog_format value, you must have the SUPER privilege.
In addition to switching the logging format manually, a slave server may switch the format automatically. This happens when the server is running in either STATEMENT or MIXED format and encounters an event in the binary log that is written in ROW logging format. In that case, the slave switches to row-based replication temporarily for that event, and switches back to the previous format afterward.
There are several reasons why a client might want to set binary logging on a per-session basis:
A session that makes many small changes to the database might want to use row-based logging.
A session that performs updates that match many rows in the WHERE clause might want to use statement-based logging because it will be more efficient to log a few statements than many rows.
Some statements require a lot of execution time on the master, but result in just a few rows being modified. It might therefore be beneficial to replicate them using row-based logging.
There are exceptions when you cannot switch the replication format at runtime:
From within a stored function or a trigger
If the NDB storage engine is enabled
If the session is currently in row-based replication mode and has open temporary tables
Trying to switch the format in any of these cases results in an error.
If you are using InnoDB tables and the transaction isolation level is READ COMMITTED or READ UNCOMMITTED, only row-based logging can be used. It is possible to change the logging format to STATEMENT, but doing so at runtime leads very rapidly to errors because InnoDB can no longer perform inserts.
Switching the replication format at runtime is not recommended when any temporary tables exist, because temporary tables are logged only when using statement-based replication, whereas with row-based replication they are not logged. With mixed replication, temporary tables are usually logged; exceptions happen with user-defined functions (UDFs) and with the UUID() function.
With the binary log format set to ROW, many changes are written to the binary log using the row-based format. Some changes, however, still use the statement-based format. Examples include all DDL (data definition language) statements such as CREATE TABLE, ALTER TABLE, or DROP TABLE.
The --binlog-row-event-max-size option is available for servers that are capable of row-based replication. Rows are stored into the binary log in chunks having a size in bytes not exceeding the value of this option. The value must be a multiple of 256. The default value is 1024.
Warning
When using statement-based logging for replication, it is possible for the data on the master and slave to become different if a statement is designed in such a way that the data modification is nondeterministic; that is, it is left to the will of the query optimizer. In general, this is not a good practice even outside of replication. For a detailed explanation of this issue, see Section C.5.8, “Known Issues in MySQL”.
For information about logs kept by replication slaves, see Section 16.2.2, “Replication Relay and Status Logs”.
5.2.4.3. Mixed Binary Logging Format
When running in MIXED logging format, the server automatically switches from statement-based to row-based logging under the following conditions:
When a function contains UUID().
When one or more tables with AUTO_INCREMENT columns are updated and a trigger or stored function is invoked. Like all other unsafe statements, this generates a warning if binlog_format = STATEMENT.
For more information, see Section 16.4.1.1, “Replication and AUTO_INCREMENT”.
When the body of a view requires row-based replication, the statement creating the view also uses it. For example, this occurs when the statement creating a view uses the UUID() function.
When a call to a UDF is involved.
When any INSERT DELAYED is executed for a nontransactional table.
If a statement is logged by row and the session that executed the statement has any temporary tables, logging by row is used for all subsequent statements (except for those accessing temporary tables) until all temporary tables in use by that session are dropped.
This is true whether or not any temporary tables are actually logged.
Temporary tables cannot be logged using row-based format; thus, once row-based logging is used, all subsequent statements using that table are unsafe. The server approximates this condition by treating all statements executed during the session as unsafe until the session no longer holds any temporary tables.
When FOUND_ROWS() or ROW_COUNT() is used. (Bug #12092, Bug #30244)
When USER(), CURRENT_USER(), or CURRENT_USER is used. (Bug #28086)
When a statement refers to one or more system variables. (Bug #31168)
Exception. The following system variables, when used with session scope (only), do not cause the logging format to switch:
For information about determining system variable scope, see Section 5.1.5, “Using System Variables”.
For information about how replication treats sql_mode, see Section 16.4.1.32, “Replication and Variables”.
When one of the tables involved is a log table in the mysql database.
When the LOAD_FILE() function is used. (Bug #39701)
Note
A warning is generated if you try to execute a statement using statement-based logging that should be written using row-based logging. The warning is shown both in the client (in the output of SHOW WARNINGS) and through the mysqld error log. A warning is added to the SHOW WARNINGS table each time such a statement is executed. However, only the first statement that generated the warning for each client session is written to the error log to prevent flooding the log.
In addition to the decisions above, individual engines can also determine the logging format used when information in a table is updated. The logging capabilities of an individual engine can be defined as follows:
If an engine supports row-based logging, the engine is said to be row-logging capable.
If an engine supports statement-based logging, the engine is said to be statement-logging capable.
A given storage engine can support either or both logging formats. The following table lists the formats supported by each engine.
Storage Engine | Row Logging Supported | Statement Logging Supported |
---|---|---|
ARCHIVE | Yes | Yes |
BLACKHOLE | Yes | Yes |
CSV | Yes | Yes |
EXAMPLE | Yes | No |
FEDERATED | Yes | Yes |
HEAP | Yes | Yes |
InnoDB | Yes | Yes when the transaction isolation level is REPEATABLE READ or SERIALIZABLE; No otherwise. |
MyISAM | Yes | Yes |
MERGE | Yes | Yes |
NDB | Yes | No |
In MySQL 5.6, whether a statement is to be logged and the logging mode to be used is determined according to the type of statement (safe, unsafe, or binary injected), the binary logging format (STATEMENT, ROW, or MIXED), and the logging capabilities of the storage engine (statement capable, row capable, both, or neither). Statements may be logged with or without a warning; failed statements are not logged, but generate errors in the log. This is shown in the following decision table, where SLC stands for “statement-logging capable” and RLC stands for “row-logging capable”.
Condition | Action | ||||
---|---|---|---|---|---|
Type | binlog_format | SLC | RLC | Error / Warning | Logged as |
* | * | No | No | Error: Cannot execute statement: Binary logging is impossible since at least one engine is involved that is both row-incapable and statement-incapable. | - |
Safe | STATEMENT | Yes | No | - | STATEMENT |
Safe | MIXED | Yes | No | - | STATEMENT |
Safe | ROW | Yes | No | Error: Cannot execute statement: Binary logging is impossible since BINLOG_FORMAT = ROW and at least one table uses a storage engine that is not capable of row-based logging. | - |
Unsafe | STATEMENT | Yes | No | Warning: Unsafe statement binlogged in statement format, since BINLOG_FORMAT = STATEMENT | STATEMENT |
Unsafe | MIXED | Yes | No | Error: Cannot execute statement: Binary logging of an unsafe statement is impossible when the storage engine is limited to statement-based logging, even if BINLOG_FORMAT = MIXED. | - |
Unsafe | ROW | Yes | No | Error: Cannot execute statement: Binary logging is impossible since BINLOG_FORMAT = ROW and at least one table uses a storage engine that is not capable of row-based logging. | - |
Row Injection | STATEMENT | Yes | No | Error: Cannot execute row injection: Binary logging is not possible since at least one table uses a storage engine that is not capable of row-based logging. | - |
Row Injection | MIXED | Yes | No | Error: Cannot execute row injection: Binary logging is not possible since at least one table uses a storage engine that is not capable of row-based logging. | - |
Row Injection | ROW | Yes | No | Error: Cannot execute row injection: Binary logging is not possible since at least one table uses a storage engine that is not capable of row-based logging. | - |
Safe | STATEMENT | No | Yes | Error: Cannot execute statement: Binary logging is impossible since BINLOG_FORMAT = STATEMENT and at least one table uses a storage engine that is not capable of statement-based logging. | - |
Safe | MIXED | No | Yes | - | ROW |
Safe | ROW | No | Yes | - | ROW |
Unsafe | STATEMENT | No | Yes | Error: Cannot execute statement: Binary logging is impossible since BINLOG_FORMAT = STATEMENT and at least one table uses a storage engine that is not capable of statement-based logging. | - |
Unsafe | MIXED | No | Yes | - | ROW |
Unsafe | ROW | No | Yes | - | ROW |
Row Injection | STATEMENT | No | Yes | Error: Cannot execute row injection: Binary logging is not possible since BINLOG_FORMAT = STATEMENT. | - |
Row Injection | MIXED | No | Yes | - | ROW |
Row Injection | ROW | No | Yes | - | ROW |
Safe | STATEMENT | Yes | Yes | - | STATEMENT |
Safe | MIXED | Yes | Yes | - | ROW |
Safe | ROW | Yes | Yes | - | ROW |
Unsafe | STATEMENT | Yes | Yes | Warning: Unsafe statement binlogged in statement format since BINLOG_FORMAT = STATEMENT. | STATEMENT |
Unsafe | MIXED | Yes | Yes | - | ROW |
Unsafe | ROW | Yes | Yes | - | ROW |
Row Injection | STATEMENT | Yes | Yes | Error: Cannot execute row injection: Binary logging is not possible because BINLOG_FORMAT = STATEMENT. | - |
Row Injection | MIXED | Yes | Yes | - | ROW |
Row Injection | ROW | Yes | Yes | - | ROW |
When a warning is produced by the determination, a standard MySQL warning is produced (and is available using SHOW WARNINGS). The information is also written to the mysqld error log. Only one error for each error instance per client connection is logged to prevent flooding the log. The log message includes the SQL statement that was attempted.
If a slave server was started with --log-warnings enabled, the slave prints messages to the error log to provide information about its status, such as the binary log and relay log coordinates where it starts its job, when it is switching to another relay log, when it reconnects after a disconnect, and so forth.
5.2.4.4. Logging Format for Changes to mysql Database Tables
The contents of the grant tables in the mysql database can be modified directly (for example, with INSERT or DELETE) or indirectly (for example, with GRANT or CREATE USER). Statements that affect mysql database tables are written to the binary log using the following rules:
Data manipulation statements that change data in mysql database tables directly are logged according to the setting of the binlog_format system variable. This pertains to statements such as INSERT, UPDATE, DELETE, REPLACE, DO, LOAD DATA INFILE, SELECT, and TRUNCATE TABLE.
Statements that change the mysql database indirectly are logged as statements regardless of the value of binlog_format. This pertains to statements such as GRANT, REVOKE, SET PASSWORD, RENAME USER, CREATE (all forms except CREATE TABLE ... SELECT), ALTER (all forms), and DROP (all forms).
CREATE TABLE ... SELECT is a combination of data definition and data manipulation. The CREATE TABLE part is logged using statement format and the SELECT part is logged according to the value of binlog_format.
5.2.5. The Slow Query Log
The slow query log consists of SQL statements that took more than long_query_time seconds to execute and required at least min_examined_row_limit rows to be examined. The minimum and default values of long_query_time are 0 and 10, respectively. The value can be specified to a resolution of microseconds. For logging to a file, times are written including the microseconds part. For logging to tables, only integer times are written; the microseconds part is ignored.
By default, administrative statements are not logged, nor are queries that do not use indexes for lookups. This behavior can be changed using --log-slow-admin-statements and log_queries_not_using_indexes, as described later.
The time to acquire the initial locks is not counted as execution time. mysqld writes a statement to the slow query log after it has been executed and after all locks have been released, so log order might differ from execution order.
By default, the slow query log is disabled. To specify the initial slow query log state explicitly, use --slow_query_log[={0|1}]. With no argument or an argument of 1, --slow_query_log enables the log. With an argument of 0, this option disables the log. To specify a log file name, use --slow_query_log_file=file_name. To specify the log destination, use --log-output (as described in Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”).
If you specify no name for the slow query log file, the default name is host_name-slow.log. The server creates the file in the data directory unless an absolute path name is given to specify a different directory.
To disable or enable the slow query log or change the log file name at runtime, use the global slow_query_log and slow_query_log_file system variables. Set slow_query_log to 0 (or OFF) to disable the log or to 1 (or ON) to enable it. Set slow_query_log_file to specify the name of the log file. If a log file already is open, it is closed and the new file is opened.
When the slow query log is enabled, the server writes output to any destinations specified by the --log-output option or log_output system variable. If you enable the log, the server opens the log file and writes startup messages to it. However, further logging of queries to the file does not occur unless the FILE log destination is selected. If the destination is NONE, the server writes no queries even if the slow query log is enabled. Setting the log file name has no effect on logging if the log destination value does not contain FILE.
The server writes less information to the slow query log (and binary log) if you use the --log-short-format option.
To include slow administrative statements in the statements written to the slow query log, use the --log-slow-admin-statements server option. Administrative statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, and REPAIR TABLE.
To include queries that do not use indexes for row lookups in the statements written to the slow query log, enable the log_queries_not_using_indexes system variable. When such queries are logged, the slow query log may grow quickly. It is possible to put a rate limit on these queries by setting the log_throttle_queries_not_using_indexes system variable. By default, this variable is 0, which means there is no limit. Positive values impose a per-minute limit on logging of queries that do not use indexes. The first such query opens a 60-second window within which the server logs queries up to the given limit, then suppresses additional queries. If there are suppressed queries when the window ends, the server logs a summary that indicates how many there were and the aggregate time spent in them. The next 60-second window begins when the server logs the next query that does not use indexes.
The server uses the controlling parameters in the following order to determine whether to write a query to the slow query log:
The query must either not be an administrative statement, or --log-slow-admin-statements must have been specified.
The query must have taken at least long_query_time seconds, or log_queries_not_using_indexes must be enabled and the query used no indexes for row lookups.
The query must have examined at least min_examined_row_limit rows.
The query must not be suppressed according to the log_throttle_queries_not_using_indexes setting.
The server does not write queries handled by the query cache to the slow query log, nor queries that would not benefit from the presence of an index because the table has zero rows or one row.
By default, a replication slave does not write replicated queries to the slow query log. To change this, use the --log-slow-slave-statements server option.
As of MySQL 5.6.3, passwords in statements written to the slow query log are rewritten by the server not to occur literally in plain text. Before MySQL 5.6.3, passwords in statements are not rewritten and the slow query log should be protected. See Section 6.1.2.3, “Passwords and Logging”.
The slow query log can be used to find queries that take a long time to execute and are therefore candidates for optimization. However, examining a long slow query log can become a difficult task. To make this easier, you can process a slow query log file using the mysqldumpslow command to summarize the queries that appear in the log. See Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”.
5.2.6. Server Log Maintenance
As described in Section 5.2, “MySQL Server Logs”, MySQL Server can create several different log files to help you see what activity is taking place. However, you must clean up these files regularly to ensure that the logs do not take up too much disk space.
When using MySQL with logging enabled, you may want to back up and remove old log files from time to time and tell MySQL to start logging to new files. See Section 7.2, “Database Backup Methods”.
On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for this. If you installed MySQL from an RPM distribution, this script should have been installed automatically. Be careful with this script if you are using the binary log for replication. You should not remove binary logs until you are certain that their contents have been processed by all slaves.
On other systems, you must install a short script yourself that you start from cron (or its equivalent) for handling log files.
For the binary log, you can set the expire_logs_days system variable to expire binary log files automatically after a given number of days (see Section 5.1.4, “Server System Variables”). If you are using replication, you should set the variable no lower than the maximum number of days your slaves might lag behind the master. To remove binary logs on demand, use the PURGE BINARY LOGS statement (see Section 13.4.1.1, “PURGE BINARY LOGS Syntax”).
You can force MySQL to start using new log files by flushing the logs. Log flushing occurs when you issue a FLUSH LOGS statement or execute a mysqladmin flush-logs, mysqladmin refresh, mysqldump --flush-logs, or mysqldump --master-data command. See Section 13.7.6.3, “FLUSH Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”, and Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is flushed when its size reaches the value of the max_binlog_size system variable.
FLUSH LOGS supports optional modifiers to enable selective flushing of individual logs (for example, FLUSH BINARY LOGS).
A log-flushing operation does the following:
If general query logging or slow query logging to a log file is enabled, the server closes and reopens the general query log file or slow query log file.
If binary logging is enabled, the server closes the current binary log file and opens a new log file with the next sequence number.
If the server was started with the --log-error option to cause the error log to be written to a file, the server closes and reopens the log file.
The server creates a new binary log file when you flush the logs. However, it just closes and reopens the general and slow query log files. To cause new files to be created on Unix, rename the current log files before flushing them. At flush time, the server opens new log files with the original names. For example, if the general and slow query log files are named mysql.log and mysql-slow.log, you can use a series of commands like this:
shell> cd mysql-data-directory
shell> mv mysql.log mysql.old
shell> mv mysql-slow.log mysql-slow.old
shell> mysqladmin flush-logs
On Windows, use rename rather than mv.
At this point, you can make a backup of mysql.old and mysql-slow.old and then remove them from disk.
A similar strategy can be used to back up the error log file, if there is one.
You can rename the general query log or slow query log at runtime by disabling the log:
SET GLOBAL general_log = 'OFF';
SET GLOBAL slow_query_log = 'OFF';
With the logs disabled, rename the log files externally; for example, from the command line. Then enable the logs again:
SET GLOBAL general_log = 'ON';
SET GLOBAL slow_query_log = 'ON';
This method works on any platform and does not require a server restart.
5.3. Managing Disk I/O and File Space for InnoDB Tables
As a DBA, you must manage disk I/O to keep the I/O subsystem from becoming saturated, and manage disk space to avoid filling up storage devices. The ACID design model requires a certain amount of I/O that might seem redundant, but helps to ensure data reliability. Within these constraints, InnoDB tries to optimize the database work and the organization of disk files to minimize the amount of disk I/O. Sometimes, I/O is postponed until the database is not busy, or until everything needs to be brought to a consistent state, such as during a database restart after a fast shutdown.
This section discusses the main considerations for I/O and disk space with the default kind of MySQL tables (also known as InnoDB tables):
Controlling the amount of background I/O used to improve query performance.
Enabling or disabling features that provide extra durability at the expense of additional I/O.
Organizing tables into many small files, a few larger files, or a combination of both.
Balancing the size of redo log files against the I/O activity that occurs when the log files become full.
How to reorganize a table for optimal query performance.
5.3.1. InnoDB Disk I/O
InnoDB uses asynchronous disk I/O where possible, by creating a number of threads to handle I/O operations, while permitting other database operations to proceed while the I/O is still in progress. On Linux and Windows platforms, InnoDB uses the available OS and library functions to perform “native” asynchronous I/O. On other platforms, InnoDB still uses I/O threads, but the threads may actually wait for I/O requests to complete; this technique is known as “simulated” asynchronous I/O.
Read-Ahead
If InnoDB can determine there is a high probability that data might be needed soon, it performs read-ahead operations to bring that data into the buffer pool so that it is available in memory. Making a few large read requests for contiguous data can be more efficient than making several small, spread-out requests. There are two read-ahead heuristics in InnoDB:
In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the tablespace is sequential, it posts in advance a batch of reads of database pages to the I/O system.
In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the process of being fully read into the buffer pool, it posts the remaining reads to the I/O system.
Doublewrite Buffer
InnoDB uses a novel file flush technique involving a structure called the doublewrite buffer. It adds safety to recovery following an operating system crash or a power outage, and improves performance on most varieties of Unix by reducing the need for fsync() operations.
Before writing pages to a data file, InnoDB first writes them to a contiguous tablespace area called the doublewrite buffer. Only after the write and the flush to the doublewrite buffer has completed does InnoDB write the pages to their proper positions in the data file. If the operating system crashes in the middle of a page write (causing a torn page condition), InnoDB can later find a good copy of the page from the doublewrite buffer during recovery.
5.3.2. File Space Management
The data files that you define in the configuration file form the InnoDB system tablespace. The files are logically concatenated to form the tablespace. There is no striping in use. Currently, you cannot define where within the tablespace your tables are allocated. In a newly created tablespace, InnoDB allocates space starting from the first data file.
To avoid the issues that come with storing all tables and indexes inside the system tablespace, you can turn on the innodb_file_per_table configuration option, which stores each newly created table in a separate tablespace file (with extension .ibd). For tables stored this way, there is less fragmentation within the disk file, and when the table is truncated, the space is returned to the operating system rather than still being reserved by InnoDB within the system tablespace.
Pages, Extents, Segments, and Tablespaces
Each tablespace consists of database pages. Every tablespace in a MySQL instance has the same page size. By default, all tablespaces have a page size of 16KB; you can reduce the page size to 8KB or 4KB by specifying the innodb_page_size option when you create the MySQL instance.
The pages are grouped into extents of size 1MB (64 consecutive 16KB pages, or 128 8KB pages, or 256 4KB pages). The “files” inside a tablespace are called segments in InnoDB. (These segments are different from the rollback segment, which actually contains many tablespace segments.)
When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it one at a time. After that, InnoDB starts to allocate whole extents to the segment. InnoDB can add up to 4 extents at a time to a large segment to ensure good sequentiality of data.
Two segments are allocated for each index in InnoDB. One is for nonleaf nodes of the B-tree, the other is for the leaf nodes. Keeping the leaf nodes contiguous on disk enables better sequential I/O operations, because these leaf nodes contain the actual table data.
Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an InnoDB tablespace cannot be allocated to segments as a whole, but only as individual pages.
When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS statement, InnoDB reports the extents that are definitely free in the tablespace. InnoDB always reserves some extents for cleanup and other internal purposes; these reserved extents are not included in the free space.
When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether the freed space becomes available for other users depends on whether the pattern of deletes frees individual pages or extents to the tablespace. Dropping a table or deleting all rows from it is guaranteed to release the space to other users, but remember that deleted rows are physically removed only by the purge operation, which happens automatically some time after they are no longer needed for transaction rollbacks or consistent reads. (See Section 14.2.3.11, “InnoDB Multi-Versioning”.)
To see information about the tablespace, use the Tablespace Monitor. See Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”.
How Pages Relate to Table Rows
The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB and TEXT), is slightly less than half of a database page. That is, the maximum row length is about 8000 bytes. LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB and TEXT columns, must be less than 4GB.
If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a page, variable-length columns are chosen for external off-page storage until the row fits within half a page. For a column chosen for off-page storage, InnoDB stores the first 768 bytes locally in the row, and the rest externally into overflow pages. Each such column has its own list of overflow pages. The 768-byte prefix is accompanied by a 20-byte value that stores the true length of the column and points into the overflow list where the rest of the value is stored.
5.3.3. InnoDB Checkpoints
Making your log files very large may reduce disk I/O during checkpointing. It often makes sense to set the total size of the log files as large as the buffer pool or even larger. Although in the past large log files could make crash recovery take excessive time, starting with MySQL 5.5, performance enhancements to crash recovery make it possible to use large log files with fast startup after a crash. (Strictly speaking, this performance improvement is available for MySQL 5.1 with the InnoDB Plugin 1.0.7 and higher. It is with MySQL 5.5 that this improvement is available in the default InnoDB storage engine.)
How Checkpoint Processing Works
InnoDB implements a checkpoint mechanism known as fuzzy checkpointing. InnoDB flushes modified database pages from the buffer pool in small batches. There is no need to flush the buffer pool in one single batch, which would disrupt processing of user SQL statements during the checkpointing process.
During crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all modifications to the database before the label are present in the disk image of the database. Then InnoDB scans the log files forward from the checkpoint, applying the logged modifications to the database.
5.3.4. Defragmenting a Table
Random insertions into or deletions from a secondary index can cause the index to become fragmented. Fragmentation means that the physical ordering of the index pages on the disk is not close to the index ordering of the records on the pages, or that there are many unused pages in the 64-page blocks that were allocated to the index.
One symptom of fragmentation is that a table takes more space than it “should” take. How much that is exactly, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill factor may vary from 50% to 100%. Another symptom of fragmentation is that a table scan such as this takes more time than it “should” take:
SELECT COUNT(*) FROM t WHERE non_indexed_column <> 12345;
The preceding query requires MySQL to perform a full table scan, the slowest type of query for a large table.
To speed up index scans, you can periodically perform a “null” ALTER TABLE operation, which causes MySQL to rebuild the table:
ALTER TABLE tbl_name ENGINE=INNODB
Another way to perform a defragmentation operation is to use mysqldump to dump the table to a text file, drop the table, and reload it from the dump file.
If the insertions into an index are always ascending and records are deleted only from the end, the InnoDB filespace management algorithm guarantees that fragmentation in the index does not occur.
5.4. Creating and Using InnoDB Tables and Indexes
To create an InnoDB table, use the CREATE TABLE statement without any special clauses. Formerly, you needed the ENGINE=InnoDB clause, but not anymore now that InnoDB is the default storage engine. (You might still use that clause if you plan to use mysqldump or replication to replay the CREATE TABLE statement on a server running MySQL 5.1 or earlier, where the default storage engine is MyISAM.)
-- Default storage engine = InnoDB.
CREATE TABLE t1 (a INT, b CHAR (20), PRIMARY KEY (a));
-- Backwards-compatible with older MySQL.
CREATE TABLE t2 (a INT, b CHAR (20), PRIMARY KEY (a)) ENGINE=InnoDB;
Depending on the file-per-table setting, InnoDB creates each table and associated primary key index either in the system tablespace, or in a separate tablespace (represented by a .ibd file) for each table. MySQL creates t1.frm and t2.frm files in the test directory under the MySQL database directory. Internally, InnoDB adds an entry for the table to its own data dictionary. The entry includes the database name. For example, if test is the database in which the t1 table is created, the entry is for 'test/t1'. This means you can create a table of the same name t1 in some other database, and the table names do not collide inside InnoDB.
To see the properties of these tables, issue a SHOW TABLE STATUS statement:
SHOW TABLE STATUS FROM test LIKE 't%';
In the status output, you see the row format property of these first tables is Compact. Although that setting is fine for basic experimentation, to take advantage of the most powerful InnoDB performance features, you will quickly graduate to using other row formats such as Dynamic and Compressed. Using those values requires a little bit of setup first:
set global innodb_file_per_table=1;
set global innodb_file_format=barracuda;
CREATE TABLE t3 (a INT, b CHAR (20), PRIMARY KEY (a)) row_format=dynamic;
CREATE TABLE t4 (a INT, b CHAR (20), PRIMARY KEY (a)) row_format=compressed;
Always set up a primary key for each InnoDB table, specifying the column or columns that:
Are referenced by the most important queries.
Are never left blank.
Never have duplicate values.
Rarely if ever change value once inserted.
For example, in a table containing information about people, you would not create a primary key on (firstname, lastname) because more than one person can have the same name, some people have blank last names, and sometimes people change their names. With so many constraints, often there is not an obvious set of columns to use as a primary key, so you create a new column with a numeric ID to serve as all or part of the primary key. You can declare an auto-increment column so that ascending values are filled in automatically as rows are inserted:
-- The value of ID can act like a pointer between related items in different tables.
CREATE TABLE t5 (id INT AUTO_INCREMENT, b CHAR (20), PRIMARY KEY (id));
-- The primary key can consist of more than one column. Any autoinc column must come first.
CREATE TABLE t6 (id INT AUTO_INCREMENT, a INT, b CHAR (20), PRIMARY KEY (id,a));
Although the table works correctly without you defining a primary key, the primary key is involved with many aspects of performance and is a crucial design aspect for any large or frequently used table. Make a habit of always specifying one in the CREATE TABLE statement. (If you create the table, load data, and then do ALTER TABLE to add a primary key later, that operation is much slower than defining the primary key when creating the table.)
5.4.1. Managing InnoDB Tablespaces
Historically, all InnoDB tables and indexes were stored in the system tablespace. This monolithic approach was targeted at machines dedicated entirely to database processing, with carefully planned data growth, where any disk storage allocated to MySQL would never be needed for other purposes. InnoDB's file-per-table mode is a more flexible alternative, where you store each InnoDB table and its indexes in a separate file. Each such .ibd file represents a separate tablespace. This mode is controlled by the innodb_file_per_table configuration option, and is the default in MySQL 5.6.6 and higher.
Multiple tablespaces are useful in a number of situations:
You can reclaim disk space when truncating or dropping a table. For tables created when file-per-table mode is turned off, truncating or dropping them creates free space internally in the ibdata files. That free space can only be used for new InnoDB data.
You can store specific tables on separate storage devices, for I/O optimization, space management, or backup purposes. In previous releases, you had to move entire database directories to other drives and create symbolic links in the MySQL data directory, as described in Section 8.11.3.1, “Using Symbolic Links”. In MySQL 5.6 and higher, you can specify the location of each table using the syntax CREATE TABLE ... DATA DIRECTORY = absolute_path_to_directory, as explained in Section 5.4.1.2, “Specifying the Location of a Tablespace”.
You can copy individual InnoDB tables from one MySQL instance to another (known as the transportable tablespace feature).
You can enable compression for table and index data, using the compressed row format.
You can enable more efficient storage for tables with large BLOB or text columns using the dynamic row format.
You can back up or restore a single table quickly, without interrupting the use of other InnoDB tables, using the MySQL Enterprise Backup product. See Backing Up and Restoring a Single .ibd File for the procedure and restrictions.
5.4.1.1. Enabling and Disabling File-Per-Table Mode
To make file-per-table mode the default for a MySQL server, start the server with the --innodb_file_per_table command-line option, or add this line to the [mysqld] section of my.cnf:
[mysqld]
innodb_file_per_table
You can also issue the command while the server is running:
SET GLOBAL innodb_file_per_table=1;
With file-per-table mode enabled, InnoDB stores each newly created table in its own tbl_name.ibd file in the appropriate database directory. Unlike the MyISAM storage engine, with its separate tbl_name.MYD and tbl_name.MYI files for indexes and data, InnoDB stores the data and the indexes together in a single .ibd file. The tbl_name.frm file is still created as usual.
If you remove innodb_file_per_table from your startup options and restart the server, or turn it off with the SET GLOBAL command, InnoDB creates any new tables inside the system tablespace.
You can always read and write any InnoDB tables, regardless of the file-per-table setting.
To move a table from the system tablespace to its own tablespace, or vice versa, change the innodb_file_per_table setting and rebuild the table:
-- Move table from system tablespace to its own tablespace.
SET GLOBAL innodb_file_per_table=1;
ALTER TABLE table_name ENGINE=InnoDB;
-- Move table from its own tablespace to system tablespace.
SET GLOBAL innodb_file_per_table=0;
ALTER TABLE table_name ENGINE=InnoDB;
Note
InnoDB always needs the system tablespace because it puts its internal data dictionary and undo logs there. The .ibd files are not sufficient for InnoDB to operate.
When a table is moved out of the system tablespace into its own .ibd file, the data files that make up the system tablespace remain the same size. The space formerly occupied by the table can be reused for new InnoDB data, but is not reclaimed for use by the operating system. When moving large InnoDB tables out of the system tablespace, where disk space is limited, you might prefer to turn on innodb_file_per_table and then recreate the entire instance using the mysqldump command.
5.4.1.2. Specifying the Location of a Tablespace
To create a new InnoDB table in a specific location outside the MySQL data directory, use the DATA DIRECTORY = absolute_path_to_directory clause of the CREATE TABLE statement. (Plan the location in advance, because you cannot use this clause with the ALTER TABLE statement.) The directory you specify could be on another storage device with particular performance or capacity characteristics, such as a fast SSD or a high-capacity HDD.
Within the destination directory, MySQL creates a subdirectory corresponding to the database name, and within that a .ibd file for the new table. In the database directory underneath the MySQL DATADIR directory, MySQL creates a table_name.isl file containing the path name for the table. The .isl file is treated by MySQL like a symbolic link. (Using actual symbolic links has never been supported for InnoDB tables.)
The following example shows how you might run a small development or test instance of MySQL on a laptop with a primary hard drive that is 95% full, and place a new table EXTERNAL on a different storage device with more free space. The shell commands show the different paths to the LOCAL table in its default location under the DATADIR directory, and the EXTERNAL table in the location you specified:
mysql> \! df -k .
Filesystem 1024-blocks Used Available Capacity iused ifree %iused Mounted on
/dev/disk0s2 244277768 231603532 12418236 95% 57964881 3104559 95% /
mysql> use test;
Database changed
mysql> show variables like 'innodb_file_per_table';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| innodb_file_per_table | ON |
+-----------------------+-------+
1 row in set (0.00 sec)
mysql> \! pwd
/usr/local/mysql
mysql> create table local (x int unsigned not null primary key);
Query OK, 0 rows affected (0.03 sec)
mysql> \! ls -l data/test/local.ibd
-rw-rw---- 1 cirrus staff 98304 Nov 13 15:24 data/test/local.ibd
mysql> create table external (x int unsigned not null primary key) data directory = '/volumes/external1/data';
Query OK, 0 rows affected (0.03 sec)
mysql> \! ls -l /volumes/external1/data/test/external.ibd
-rwxrwxrwx 1 cirrus staff 98304 Nov 13 15:34 /volumes/external1/data/test/external.ibd
mysql> select count(*) from local;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.01 sec)
mysql> select count(*) from external;
+----------+
| count(*) |
+----------+
| 0 |
+----------+
1 row in set (0.01 sec)
Notes:
MySQL initially holds the .ibd file open, preventing you from dismounting the device, but might eventually close the table if the server is busy. Be careful not to accidentally dismount the external device while MySQL is running, or to start MySQL while the device is disconnected. Attempting to access a table when the associated .ibd file is missing causes a serious error that requires a server restart.
The server restart might fail if the .ibd file is still not at the expected path. In this case, manually remove the table_name.isl file in the database directory, and after restarting do a DROP TABLE to delete the .frm file and remove the information about the table from the data dictionary.
Do not put MySQL tables on an NFS-mounted volume. NFS uses a message-passing protocol to write to files, which could cause data inconsistency if network messages are lost or received out of order.
If you use an LVM snapshot, file copy, or other file-based mechanism to back up the .ibd file, always use the FLUSH TABLES ... FOR EXPORT statement first to make sure all changes that were buffered in memory are flushed to disk before the backup occurs.
The DATA DIRECTORY clause is a supported alternative to using symbolic links, which has always been problematic and was never supported for individual InnoDB tables.
5.4.1.3. Copying Tablespaces to Another Server (Transportable Tablespaces)
There are many reasons why you might copy an InnoDB table to a different database server:
To run reports without putting extra load on a production server.
To set up identical data for a table on a new slave server.
To restore a backed-up version of a table after a problem or mistake.
As a faster way of moving data around than importing the results of a mysqldump command. the data is available immediately, rather than having to be re-inserted and the indexes rebuilt.
Use the FLUSH TABLES statement with the FOR EXPORT clause. This puts the corresponding .ibd files into a consistent state so that they can be copied to another server. You copy a .cfg file along with the .ibd file; this extra file is used by ALTER TABLE ... IMPORT TABLESPACE to make any necessary adjustments within the tablespace file during the import process. See Section 13.7.6.3, “FLUSH Syntax” for the SQL semantics.
5.4.1.4. Moving the Undo Log out of the System Tablespace
Although tablespace management typically involves files holding tables and indexes, you can also divide the undo log into separate undo tablespace files. This layout is different from the default configuration where the undo log is part of the system tablespace. See Section 14.2.4.2.4, “Separate Tablespaces for InnoDB Undo Logs” for details.
5.4.2. Grouping DML Operations with Transactions
By default, connection to the MySQL server begins with autocommit mode enabled, which automatically commits every SQL statement as you execute it. This mode of operation might be unfamiliar if you have experience with other database systems, where it is standard practice to issue a sequence of DML statements and commit them or roll them back all together.
To use multiple-statement transactions, switch autocommit off with the SQL statement SET autocommit = 0 and end each transaction with COMMIT or ROLLBACK as appropriate. To leave autocommit on, begin each transaction with START TRANSACTION and end it with COMMIT or ROLLBACK. The following example shows two transactions. The first is committed; the second is rolled back.
shell> mysql test
mysql> CREATE TABLE customer (a INT, b CHAR (20), INDEX (a));
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do a transaction with autocommit turned on.
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> -- Do another transaction with autocommit turned off.
mysql> SET autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO customer VALUES (20, 'Paul');
Query OK, 1 row affected (0.00 sec)
mysql> DELETE FROM customer WHERE b = 'Heikki';
Query OK, 1 row affected (0.00 sec)
mysql> -- Now we undo those last 2 inserts and the delete.
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM customer;
+------+--------+
| a | b |
+------+--------+
| 10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>
Transactions in Client-Side Languages
In APIs such as PHP, Perl DBI, JDBC, ODBC, or the standard C call interface of MySQL, you can send transaction control statements such as COMMIT to the MySQL server as strings just like any other SQL statements such as SELECT or INSERT. Some APIs also offer separate special transaction commit and rollback functions or methods.
5.4.3. Converting Tables from MyISAM to InnoDB
If you have existing tables, and applications that use them, that you want to convert to InnoDB for better reliability and scalability, use the following guidelines and tips. This section assumes most such tables were originally MyISAM, which was formerly the default.
Reduce Memory Usage for MyISAM, Increase Memory Usage for InnoDB
As you transition away from MyISAM tables, lower the value of the key_buffer_size configuration option to free memory no longer needed for caching results. Increase the value of the innodb_buffer_pool_size configuration option, which performs a similar role of allocating cache memory for InnoDB tables. The InnoDB buffer pool caches both table data and index data, so it does double duty in speeding up lookups for queries and keeping query results in memory for reuse.
Allocate as much memory to this option as you can afford, often up to 80% of physical memory on the server.
If the operating system runs short of memory for other processes and begins to swap, reduce the innodb_buffer_pool_size value. Swapping is such an expensive operation that it drastically reduces the benefit of the cache memory.
If the innodb_buffer_pool_size value is several gigabytes or higher, consider increasing the values of innodb_buffer_pool_instances. Doing so helps on busy servers where many connections are reading data into the cache at the same time.
On a busy server, run benchmarks with the Query Cache turned off. The InnoDB buffer pool provides similar benefits, so the Query Cache might be tying up memory unnecessarily.
Watch Out for Too-Long Or Too-Short Transactions
Because MyISAM tables do not support transactions, you might not have paid much attention to the autocommit configuration option and the COMMIT and ROLLBACK statements. These keywords are important to allow multiple sessions to read and write InnoDB tables concurrently, providing substantial scalability benefits in write-heavy workloads.
While a transaction is open, the system keeps a snapshot of the data as seen at the beginning of the transaction, which can cause substantial overhead if the system inserts, updates, and deletes millions of rows while a stray transaction keeps running. Thus, take care to avoid transactions that run for too long:
If you are using a mysql session for interactive experiments, always COMMIT (to finalize the changes) or ROLLBACK (to undo the changes) when finished. Close down interactive sessions rather than leaving them open for long periods, to avoid keeping transactions open for long periods by accident.
Make sure that any error handlers in your application also ROLLBACK incomplete changes or COMMIT completed changes.
ROLLBACK is a relatively expensive operation, because INSERT, UPDATE, and DELETE operations are written to InnoDB tables prior to the COMMIT, with the expectation that most changes will be committed successfully and rollbacks will be rare. When experimenting with large volumes of data, avoid making changes to large numbers of rows and then rolling back those changes.
When loading large volumes of data with a sequence of INSERT statements, periodically COMMIT the results to avoid having transactions that last for hours. In typical load operations for data warehousing, if something goes wrong, you TRUNCATE TABLE and start over from the beginning rather than doing a ROLLBACK.
The preceding tips save memory and disk space that can be wasted during too-long transactions. When transactions are shorter than they should be, the problem is excessive I/O. With each COMMIT, MySQL makes sure each change is safely recorded to disk, which involves some I/O.
For most operations on InnoDB tables, you should use the setting autocommit=0. From an efficiency perspective, this avoids unnecessary I/O when you issue large numbers of consecutive INSERT, UPDATE, or DELETE statements. From a safety perspective, this allows you to issue a ROLLBACK statement to recover lost or garbled data if you make a mistake on the mysql command line, or in an exception handler in your application.
The time when autocommit=1 is suitable for InnoDB tables is when running a sequence of queries for generating reports or analyzing statistics. In this situation, there is no I/O penalty related to COMMIT or ROLLBACK, and InnoDB can automatically optimize the read-only workload.
If you make a series of related changes, finalize all those changes at once with a single COMMIT at the end. For example, if you insert related pieces of information into several tables, do a single COMMIT after making all the changes. Or if you run many consecutive INSERT statements, do a single COMMIT after all the data is loaded; if you are doing millions of INSERT statements, perhaps split up the huge transaction by issuing a COMMIT every ten thousand or hundred thousand records, so the transaction does not grow too large.
Remember that even a SELECT statement opens a transaction, so after running some report or debugging queries in an interactive mysql session, either issue a COMMIT or close the mysql session.
Don't Worry Too Much About Deadlocks
You might see warning messages referring to “deadlocks” in the MySQL error log, or the output of SHOW ENGINE INNODB STATUS. Despite the scary-sounding name, a deadlock is not a serious issue for InnoDB tables, and often does not require any corrective action. When two transactions start modifying multiple tables, accessing the tables in a different order, they can reach a state where each transaction is waiting for the other and neither can proceed. MySQL immediately detects this condition and cancels (rolls back) the “smaller” transaction, allowing the other to proceed.
Your applications do need error-handling logic to restart a transaction that is forcibly cancelled like this. When you re-issue the same SQL statements as before, the original timing issue no longer applies: either the other transaction has already finished and yours can proceed, or the other transaction is still in progress and your transaction waits until it finishes.
If deadlock warnings occur constantly, you might review the application code to reorder the SQL operations in a consistent way, or to shorten the transactions. You can test with the innodb_print_all_deadlocks option enabled to see all deadlock warnings in the MySQL error log, rather than only the last warning in the SHOW ENGINE INNODB STATUS output.
Plan the Storage Layout
To get the best performance from InnoDB tables, you can adjust a number of parameters related to storage layout.
When you convert MyISAM tables that are large, frequently accessed, and hold vital data, investigate and consider the innodb_file_per_table, innodb_file_format, and innodb_page_size configuration options, and the ROW_FORMAT and KEY_BLOCK_SIZE clauses of the CREATE TABLE statement.
During your initial experiments, the most important setting is innodb_file_per_table. Enabling this option before creating new InnoDB tables ensures that the InnoDB system tablespace files do not allocate disk space permanently for all the InnoDB data. With innodb_file_per_table enabled, DROP TABLE and TRUNCATE TABLE free disk space as you would expect.
Converting an Existing Table
To convert a non-InnoDB table to use InnoDB use ALTER TABLE:
ALTER TABLE table_name ENGINE=InnoDB;
Important
Do not convert MySQL system tables in the mysql database (such as user or host) to the InnoDB type. This is an unsupported operation. The system tables must always be of the MyISAM type.
Cloning the Structure of a Table
You might make an InnoDB table that is a clone of a MyISAM table, rather than doing the ALTER TABLE conversion, to test the old and new table side-by-side before switching.
Create an empty InnoDB table with identical column and index definitions. Use show create table table_name\G to see the full CREATE TABLE statement to use. Change the ENGINE clause to ENGINE=INNODB.
Transferring Existing Data
To transfer a large volume of data into an empty InnoDB table created as shown in the previous section, insert the rows with INSERT INTO innodb_table SELECT * FROM myisam_table ORDER BY primary_key_columns.
You can also create the indexes for the InnoDB table after inserting the data. Historically, creating new secondary indexes was a slow operation for InnoDB, but now you can create the indexes after the data is loaded with relatively little overhead from the index creation step.
If you have UNIQUE constraints on secondary keys, you can speed up a table import by turning off the uniqueness checks temporarily during the import operation:
SET unique_checks=0;... import operation ...
SET unique_checks=1;
For big tables, this saves disk I/O because InnoDB can use its insert buffer to write secondary index records as a batch. Be certain that the data contains no duplicate keys. unique_checks permits but does not require storage engines to ignore duplicate keys.
To get better control over the insertion process, you might insert big tables in pieces:
INSERT INTO newtable SELECT * FROM oldtable
WHERE yourkey > something AND yourkey <= somethingelse;
After all records have been inserted, you can rename the tables.
During the conversion of big tables, increase the size of the InnoDB buffer pool to reduce disk I/O, to a maximum of 80% of physical memory. You can also increase the sizes of the InnoDB log files.
Storage Requirements
By this point, as already mentioned, you should already have the innodb_file_per_table option enabled, so that if you temporarily make several copies of your data in InnoDB tables, you can recover all that disk space by dropping unneeded tables afterward.
Whether you convert the MyISAM table directly or create a cloned InnoDB table, make sure that you have sufficient disk space to hold both the old and new tables during the process. InnoDB tables require more disk space than MyISAM tables. If an ALTER TABLE operation runs out of space, it starts a rollback, and that can take hours if it is disk-bound. For inserts, InnoDB uses the insert buffer to merge secondary index records to indexes in batches. That saves a lot of disk I/O. For rollback, no such mechanism is used, and the rollback can take 30 times longer than the insertion.
In the case of a runaway rollback, if you do not have valuable data in your database, it may be advisable to kill the database process rather than wait for millions of disk I/O operations to complete. For the complete procedure, see Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”.
Carefully Choose a PRIMARY KEY for Each Table
The PRIMARY KEY clause is a critical factor affecting the performance of MySQL queries and the space usage for tables and indexes. Perhaps you have phoned a financial institution where you are asked for an account number. If you do not have the number, you are asked for a dozen different pieces of information to “uniquely identify” yourself. The primary key is like that unique account number that lets you get straight down to business when querying or modifying the information in a table. Every row in the table must have a primary key value, and no two rows can have the same primary key value.
Here are some guidelines for the primary key, followed by more detailed explanations.
Declare a PRIMARY KEY for each table. Typically, it is the most important column that you refer to in WHERE clauses when looking up a single row.
Declare the PRIMARY KEY clause in the original CREATE TABLE statement, rather than adding it later through an ALTER TABLE statement.
Choose the column and its data type carefully. Prefer numeric columns over character or string ones.
Consider using an auto-increment column if there is not another stable, unique, non-null, numeric column to use.
An auto-increment column is also a good choice if there is any doubt whether the value of the primary key column could ever change. Changing the value of a primary key column is an expensive operation, possibly involving rearranging data within the table and within each secondary index.
Consider adding a primary key to any table that does not already have one. Use the smallest practical numeric type based on the maximum projected size of the table. This can make each row slightly more compact, which can yield substantial space savings for large tables. The space savings are multiplied if the table has any secondary indexes, because the primary key value is repeated in each secondary index entry. In addition to reducing data size on disk, a small primary key also lets more data fit into the buffer pool, speeding up all kinds of operations and improving concurrency.
If the table already has a primary key on some longer column, such as a VARCHAR, consider adding a new unsigned AUTO_INCREMENT column and switching the primary key to that, even if that column is not referenced in queries. This design change can produce substantial space savings in the secondary indexes. You can designate the former primary key columns as UNIQUE NOT NULL to enforce the same constraints as the PRIMARY KEY clause, that is, to prevent duplicate or null values across all those columns.
If you spread related information across multiple tables, typically each table uses the same column for its primary key. For example, a personnel database might have several tables, each with a primary key of employee number. A sales database might have some tables with a primary key of customer number, and other tables with a primary key of order number. Because lookups using the primary key are very fast, you can construct efficient join queries for such tables.
If you leave the PRIMARY KEY clause out entirely, MySQL creates an invisible one for you. It is a 6-byte value that might be longer than you need, thus wasting space. Because it is hidden, you cannot refer to it in queries.
Application Performance Considerations
The extra reliability and scalability features of InnoDB do require more disk storage than equivalent MyISAM tables. You might change the column and index definitions slightly, for better space utilization, reduced I/O and memory consumption when processing result sets, and better query optimization plans making efficient use of index lookups.
If you do set up a numeric ID column for the primary key, use that value to cross-reference with related values in any other tables, particularly for join queries. For example, rather than accepting a country name as input and doing queries searching for the same name, do one lookup to determine the country ID, then do other queries (or a single join query) to look up relevant information across several tables. Rather than storing a customer or catalog item number as a string of digits, potentially using up several bytes, convert it to a numeric ID for storing and querying. A 4-byte unsigned INT column can index over 4 billion items (with the US meaning of billion: 1000 million). For the ranges of the different integer types, see Section 11.2.1, “Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT”.
Understand Files Associated with InnoDB Tables
InnoDB files require more care and planning than MyISAM files do:
You must not delete the ibdata files that represent the InnoDB system tablespace.
Copying InnoDB tables from one server to another requires issuing the FLUSH TABLES ... FOR EXPORT statement first, and copying the table_name.cfg file along with the table_name.ibd file.
5.4.4. AUTO_INCREMENT Handling in InnoDB
InnoDB provides an optimization that significantly improves scalability and performance of SQL statements that insert rows into tables with AUTO_INCREMENT columns. To use the AUTO_INCREMENT mechanism with an InnoDB table, an AUTO_INCREMENT column ai_col must be defined as part of an index such that it is possible to perform the equivalent of an indexed SELECT MAX(ai_col) lookup on the table to obtain the maximum column value. Typically, this is achieved by making the column the first column of some table index.
This section provides background information on the original (“traditional”) implementation of auto-increment locking in InnoDB, explains the configurable locking mechanism, documents the parameter for configuring the mechanism, and describes its behavior and interaction with replication.
5.4.4.1. Traditional InnoDB Auto-Increment Locking
The original implementation of auto-increment handling in InnoDB uses the following strategy to prevent problems when using the binary log for statement-based replication or for certain recovery scenarios.
If you specify an AUTO_INCREMENT column for an InnoDB table, the table handle in the InnoDB data dictionary contains a special counter called the auto-increment counter that is used in assigning new values for the column. This counter is stored only in main memory, not on disk.
InnoDB uses the following algorithm to initialize the auto-increment counter for a table t that contains an AUTO_INCREMENT column named ai_col: After a server startup, for the first insert into a table t, InnoDB executes the equivalent of this statement:
SELECT MAX(ai_col) FROM t FOR UPDATE;
InnoDB increments the value retrieved by the statement and assigns it to the column and to the auto-increment counter for the table. By default, the value is incremented by one. This default can be overridden by the auto_increment_increment configuration setting.
If the table is empty, InnoDB uses the value 1. This default can be overridden by the auto_increment_offset configuration setting.
If a SHOW TABLE STATUS statement examines the table t before the auto-increment counter is initialized, InnoDB initializes but does not increment the value and stores it for use by later inserts. This initialization uses a normal exclusive-locking read on the table and the lock lasts to the end of the transaction.
InnoDB follows the same procedure for initializing the auto-increment counter for a freshly created table.
After the auto-increment counter has been initialized, if you do not explicitly specify a value for an AUTO_INCREMENT column, InnoDB increments the counter and assigns the new value to the column. If you insert a row that explicitly specifies the column value, and the value is bigger than the current counter value, the counter is set to the specified column value.
If a user specifies NULL or 0 for the AUTO_INCREMENT column in an INSERT, InnoDB treats the row as if the value was not specified and generates a new value for it.
The behavior of the auto-increment mechanism is not defined if you assign a negative value to the column, or if the value becomes bigger than the maximum integer that can be stored in the specified integer type.
When accessing the auto-increment counter, InnoDB uses a special table-level AUTO-INC lock that it keeps to the end of the current SQL statement, not to the end of the transaction. The special lock release strategy was introduced to improve concurrency for inserts into a table containing an AUTO_INCREMENT column. Nevertheless, two transactions cannot have the AUTO-INC lock on the same table simultaneously, which can have a performance impact if the AUTO-INC lock is held for a long time. That might be the case for a statement such as INSERT INTO t1 ... SELECT ... FROM t2 that inserts all rows from one table into another.
InnoDB uses the in-memory auto-increment counter as long as the server runs. When the server is stopped and restarted, InnoDB reinitializes the counter for each table for the first INSERT to the table, as described earlier.
A server restart also cancels the effect of the AUTO_INCREMENT = N table option in CREATE TABLE and ALTER TABLE statements, which you can use with InnoDB tables to set the initial counter value or alter the current counter value.
You may see gaps in the sequence of values assigned to the AUTO_INCREMENT column if you roll back transactions that have generated numbers using the counter.
5.4.4.2. Configurable InnoDB Auto-Increment Locking
As described in the previous section, InnoDB uses a special lock called the table-level AUTO-INC lock for inserts into tables with AUTO_INCREMENT columns. This lock is normally held to the end of the statement (not to the end of the transaction), to ensure that auto-increment numbers are assigned in a predictable and repeatable order for a given sequence of INSERT statements.
In the case of statement-based replication, this means that when an SQL statement is replicated on a slave server, the same values are used for the auto-increment column as on the master server. The result of execution of multiple INSERT statements is deterministic, and the slave reproduces the same data as on the master. If auto-increment values generated by multiple INSERT statements were interleaved, the result of two concurrent INSERT statements would be nondeterministic, and could not reliably be propagated to a slave server using statement-based replication.
To make this clear, consider an example that uses this table:
CREATE TABLE t1 (
c1 INT(11) NOT NULL AUTO_INCREMENT,
c2 VARCHAR(10) DEFAULT NULL,
PRIMARY KEY (c1)
) ENGINE=InnoDB;
Suppose that there are two transactions running, each inserting rows into a table with an AUTO_INCREMENT column. One transaction is using an INSERT ... SELECT statement that inserts 1000 rows, and another is using a simple INSERT statement that inserts one row:
Tx1: INSERT INTO t1 (c2) SELECT 1000 rows from another table ...
Tx2: INSERT INTO t1 (c2) VALUES ('xxx');
InnoDB cannot tell in advance how many rows will be retrieved from the SELECT in the INSERT statement in Tx1, and it assigns the auto-increment values one at a time as the statement proceeds. With a table-level lock, held to the end of the statement, only one INSERT statement referring to table t1 can execute at a time, and the generation of auto-increment numbers by different statements is not interleaved. The auto-increment value generated by the Tx1 INSERT ... SELECT statement will be consecutive, and the (single) auto-increment value used by the INSERT statement in Tx2 will either be smaller or larger than all those used for Tx1, depending on which statement executes first.
As long as the SQL statements execute in the same order when replayed from the binary log (when using statement-based replication, or in recovery scenarios), the results will be the same as they were when Tx1 and Tx2 first ran. Thus, table-level locks held until the end of a statement make INSERT statements using auto-increment safe for use with statement-based replication. However, those locks limit concurrency and scalability when multiple transactions are executing insert statements at the same time.
In the preceding example, if there were no table-level lock, the value of the auto-increment column used for the INSERT in Tx2 depends on precisely when the statement executes. If the INSERT of Tx2 executes while the INSERT of Tx1 is running (rather than before it starts or after it completes), the specific auto-increment values assigned by the two INSERT statements are nondeterministic, and may vary from run to run.
InnoDB can avoid using the table-level AUTO-INC lock for a class of INSERT statements where the number of rows is known in advance, and still preserve deterministic execution and safety for statement-based replication. Further, if you are not using the binary log to replay SQL statements as part of recovery or replication, you can entirely eliminate use of the table-level AUTO-INC lock for even greater concurrency and performance, at the cost of permitting gaps in auto-increment numbers assigned by a statement and potentially having the numbers assigned by concurrently executing statements interleaved.
For INSERT statements where the number of rows to be inserted is known at the beginning of processing the statement, InnoDB quickly allocates the required number of auto-increment values without taking any lock, but only if there is no concurrent session already holding the table-level AUTO-INC lock (because that other statement will be allocating auto-increment values one-by-one as it proceeds). More precisely, such an INSERT statement obtains auto-increment values under the control of a mutex (a light-weight lock) that is not held until the statement completes, but only for the duration of the allocation process.
This new locking scheme enables much greater scalability, but it does introduce some subtle differences in how auto-increment values are assigned compared to the original mechanism. To describe the way auto-increment works in InnoDB, the following discussion defines some terms, and explains how InnoDB behaves using different settings of the innodb_autoinc_lock_mode configuration parameter, which you can set at server startup. Additional considerations are described following the explanation of auto-increment locking behavior.
First, some definitions:
“INSERT-like” statements
All statements that generate new rows in a table, including INSERT, INSERT ... SELECT, REPLACE, REPLACE ... SELECT, and LOAD DATA.
“Simple inserts”
Statements for which the number of rows to be inserted can be determined in advance (when the statement is initially processed). This includes single-row and multiple-row INSERT and REPLACE statements that do not have a nested subquery, but not INSERT ... ON DUPLICATE KEY UPDATE.
“Bulk inserts”
Statements for which the number of rows to be inserted (and the number of required auto-increment values) is not known in advance. This includes INSERT ... SELECT, REPLACE ... SELECT, and LOAD DATA statements, but not plain INSERT. InnoDB will assign new values for the AUTO_INCREMENT column one at a time as each row is processed.
“Mixed-mode inserts”
These are “simple insert” statements that specify the auto-increment value for some (but not all) of the new rows. An example follows, where c1 is an AUTO_INCREMENT column of table t1:
INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');
Another type of “mixed-mode insert” is INSERT ... ON DUPLICATE KEY UPDATE, which in the worst case is in effect an INSERT followed by a UPDATE, where the allocated value for the AUTO_INCREMENT column may or may not be used during the update phase.
There are three possible settings for the innodb_autoinc_lock_mode parameter:
innodb_autoinc_lock_mode = 0 (“traditional” lock mode)
This lock mode provides the same behavior as before innodb_autoinc_lock_mode existed. For all “INSERT-like” statements, a special table-level AUTO-INC lock is obtained and held to the end of the statement. This assures that the auto-increment values assigned by any given statement are consecutive.
This lock mode is provided for:
Backward compatibility.
Performance testing.
Working around issues with “mixed-mode inserts”, due to the possible differences in semantics described later.
innodb_autoinc_lock_mode = 1 (“consecutive” lock mode)
This is the default lock mode. In this mode, “bulk inserts” use the special AUTO-INC table-level lock and hold it until the end of the statement. This applies to all INSERT ... SELECT, REPLACE ... SELECT, and LOAD DATA statements. Only one statement holding the AUTO-INC lock can execute at a time.
With this lock mode, “simple inserts” (only) use a new locking model where a light-weight mutex is used during the allocation of auto-increment values, and no table-level AUTO-INC lock is used, unless an AUTO-INC lock is held by another transaction. If another transaction does hold an AUTO-INC lock, a “simple insert” waits for the AUTO-INC lock, as if it too were a “bulk insert”.
This lock mode ensures that, in the presence of INSERT statements where the number of rows is not known in advance (and where auto-increment numbers are assigned as the statement progresses), all auto-increment values assigned by any “INSERT-like” statement are consecutive, and operations are safe for statement-based replication.
Simply put, the important impact of this lock mode is significantly better scalability. This mode is safe for use with statement-based replication. Further, as with “traditional” lock mode, auto-increment numbers assigned by any given statement are consecutive. In this mode, there is no change in semantics compared to “traditional” mode for any statement that uses auto-increment, with one important exception.
The exception is for “mixed-mode inserts”, where the user provides explicit values for an AUTO_INCREMENT column for some, but not all, rows in a multiple-row “simple insert”. For such inserts, InnoDB will allocate more auto-increment values than the number of rows to be inserted. However, all values automatically assigned are consecutively generated (and thus higher than) the auto-increment value generated by the most recently executed previous statement. “Excess” numbers are lost.
innodb_autoinc_lock_mode = 2 (“interleaved” lock mode)
In this lock mode, no “INSERT-like” statements use the table-level AUTO-INC lock, and multiple statements can execute at the same time. This is the fastest and most scalable lock mode, but it is not safe when using statement-based replication or recovery scenarios when SQL statements are replayed from the binary log.
In this lock mode, auto-increment values are guaranteed to be unique and monotonically increasing across all concurrently executing “INSERT-like” statements. However, because multiple statements can be generating numbers at the same time (that is, allocation of numbers is interleaved across statements), the values generated for the rows inserted by any given statement may not be consecutive.
If the only statements executing are “simple inserts” where the number of rows to be inserted is known ahead of time, there will be no gaps in the numbers generated for a single statement, except for “mixed-mode inserts”. However, when “bulk inserts” are executed, there may be gaps in the auto-increment values assigned by any given statement.
The auto-increment locking modes provided by innodb_autoinc_lock_mode have several usage implications:
Using auto-increment with replication
If you are using statement-based replication, set innodb_autoinc_lock_mode to 0 or 1 and use the same value on the master and its slaves. Auto-increment values are not ensured to be the same on the slaves as on the master if you use innodb_autoinc_lock_mode = 2 (“interleaved”) or configurations where the master and slaves do not use the same lock mode.
If you are using row-based replication, all of the auto-increment lock modes are safe. Row-based replication is not sensitive to the order of execution of the SQL statements.
“Lost” auto-increment values and sequence gaps
In all lock modes (0, 1, and 2), if a transaction that generated auto-increment values rolls back, those auto-increment values are “lost”. Once a value is generated for an auto-increment column, it cannot be rolled back, whether or not the “INSERT-like” statement is completed, and whether or not the containing transaction is rolled back. Such lost values are not reused. Thus, there may be gaps in the values stored in an AUTO_INCREMENT column of a table.
Gaps in auto-increment values for “bulk inserts”
With innodb_autoinc_lock_mode set to 0 (“traditional”) or 1 (“consecutive”), the auto-increment values generated by any given statement will be consecutive, without gaps, because the table-level AUTO-INC lock is held until the end of the statement, and only one such statement can execute at a time.
With innodb_autoinc_lock_mode set to 2 (“interleaved”), there may be gaps in the auto-increment values generated by “bulk inserts,” but only if there are concurrently executing “INSERT-like” statements.
For lock modes 1 or 2, gaps may occur between successive statements because for bulk inserts the exact number of auto-increment values required by each statement may not be known and overestimation is possible.
Auto-increment values assigned by “mixed-mode inserts”
Consider a “mixed-mode insert,” where a “simple insert” specifies the auto-increment value for some (but not all) resulting rows. Such a statement will behave differently in lock modes 0, 1, and 2. For example, assume c1 is an AUTO_INCREMENT column of table t1, and that the most recent automatically generated sequence number is 100. Consider the following “mixed-mode insert” statement:
INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');
With innodb_autoinc_lock_mode set to 0 (“traditional”), the four new rows will be:
+-----+------+
| c1 | c2 |
+-----+------+
| 1 | a |
| 101 | b |
| 5 | c |
| 102 | d |
+-----+------+
The next available auto-increment value will be 103 because the auto-increment values are allocated one at a time, not all at once at the beginning of statement execution. This result is true whether or not there are concurrently executing “INSERT-like” statements (of any type).
With innodb_autoinc_lock_mode set to 1 (“consecutive”), the four new rows will also be:
+-----+------+
| c1 | c2 |
+-----+------+
| 1 | a |
| 101 | b |
| 5 | c |
| 102 | d |
+-----+------+
However, in this case, the next available auto-increment value will be 105, not 103 because four auto-increment values are allocated at the time the statement is processed, but only two are used. This result is true whether or not there are concurrently executing “INSERT-like” statements (of any type).
With innodb_autoinc_lock_mode set to mode 2 (“interleaved”), the four new rows will be:
+-----+------+
| c1 | c2 |
+-----+------+
| 1 | a |
| x | b |
| 5 | c |
| y | d |
+-----+------+
The values of x and y will be unique and larger than any previously generated rows. However, the specific values of x and y will depend on the number of auto-increment values generated by concurrently executing statements.
Finally, consider the following statement, issued when the most-recently generated sequence number was the value 4:
INSERT INTO t1 (c1,c2) VALUES (1,'a'), (NULL,'b'), (5,'c'), (NULL,'d');
With any innodb_autoinc_lock_mode setting, this statement will generate a duplicate-key error 23000 (Can't write; duplicate key in table) because 5 will be allocated for the row (NULL, 'b') and insertion of the row (5, 'c') will fail.
5.4.5. InnoDB and FOREIGN KEY Constraints
This section describes differences in the InnoDB storage engine' handling of foreign keys as compared with that of the MySQL Server.
Foreign Key Definitions
Foreign key definitions for InnoDB tables are subject to the following conditions:
InnoDB permits a foreign key to reference any index column or group of columns. However, in the referenced table, there must be an index where the referenced columns are listed as the first columns in the same order.
InnoDB does not currently support foreign keys for tables with user-defined partitioning. This means that no user-partitioned InnoDB table may contain foreign key references or columns referenced by foreign keys.
InnoDB allows a foreign key constraint to reference a non-unique key. This is an InnoDB extension to standard SQL.
Referential Actions
Referential actions for foreign keys of InnoDB tables are subject to the following conditions:
While SET DEFAULT is allowed by the MySQL Server, it is rejected as invalid by InnoDB. CREATE TABLE and ALTER TABLE statements using this clause are not allowed for InnoDB tables.
If there are several rows in the parent table that have the same referenced key value, InnoDB acts in foreign key checks as if the other parent rows with the same key value do not exist. For example, if you have defined a RESTRICT type constraint, and there is a child row with several parent rows, InnoDB does not permit the deletion of any of those parent rows.
InnoDB performs cascading operations through a depth-first algorithm, based on records in the indexes corresponding to the foreign key constraints.
If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has previously updated during the cascade, it acts like RESTRICT. This means that you cannot use self-referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent infinite loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the other hand, is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not be nested more than 15 levels deep.
Like MySQL in general, in an SQL statement that inserts, deletes, or updates many rows, InnoDB checks UNIQUE and FOREIGN KEY constraints row-by-row. When performing foreign key checks, InnoDB sets shared row-level locks on child or parent records it has to look at. InnoDB checks foreign key constraints immediately; the check is not deferred to transaction commit. According to the SQL standard, the default behavior should be deferred checking. That is, constraints are only checked after the entire SQL statement has been processed. Until InnoDB implements deferred constraint checking, some things will be impossible, such as deleting a record that refers to itself using a foreign key.
Foreign Key Usage and Error Information
You can obtain general information about foreign keys and their usage from querying the INFORMATION_SCHEMA.KEY_COLUMN_USAGE table, and more information more specific to InnoDB tables can be found in the INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables, also in the INFORMATION_SCHEMA database. See also Section 13.1.14.2, “Using FOREIGN KEY Constraints”.
In addition to SHOW ERRORS, in the event of a foreign key error involving InnoDB tables (usually Error 150 in the MySQL Server), you can obtain a detailed explanation of the most recent InnoDB foreign key error by checking the output of SHOW ENGINE INNODB STATUS.
5.4.6. Working with InnoDB Compressed Tables
By using the SQL syntax and MySQL configuration options for compression, you can create tables where the data is stored in compressed form. Compression can help to improve both raw performance and scalability. The compression means less data is transferred between disk and memory, and takes up less space on disk and in memory. The benefits are amplified for tables with secondary indexes, because index data is compressed also. Compression can be especially important for SSD storage devices, because they tend to have lower capacity than HDD devices.
5.4.6.1. Overview of Table Compression
Because processors and cache memories have increased in speed more than disk storage devices, many workloads are disk-bound. Data compression enables smaller database size, reduced I/O, and improved throughput, at the small cost of increased CPU utilization. Compression is especially valuable for read-intensive applications, on systems with enough RAM to keep frequently used data in memory.
An InnoDB table created with ROW_FORMAT=COMPRESSED can use a smaller page size on disk than the usual 16KB default. Smaller pages require less I/O to read from and write to disk, which is especially valuable for SSD devices.
The page size is specified through the KEY_BLOCK_SIZE parameter. The different page size means the table must be in its own .ibd file rather than in the system tablespace, which requires enabling the innodb_file_per_table option. The level of compression is the same regardless of the KEY_BLOCK_SIZE value. As you specify smaller values for KEY_BLOCK_SIZE, you get the I/O benefits of increasingly smaller pages. But if you specify a value that is too small, there is additional overhead to reorganize the pages when data values cannot be compressed enough to fit multiple rows in each page. There is a hard limit on how small KEY_BLOCK_SIZE can be for a table, based on the lengths of the key columns for each of its indexes. Specify a value that is too small, and the CREATE TABLE or ALTER TABLE statement fails.
In the buffer pool, the compressed data is held in small pages, with a page size based on the KEY_BLOCK_SIZE value. For extracting or updating the column values, MySQL also creates a 16KB page in the buffer pool with the uncompressed data. Within the buffer pool, any updates to the uncompressed page are also re-written back to the equivalent compressed page. You might need to size your buffer pool to accommodate the additional data of both compressed and uncompressed pages, although the uncompressed pages are evicted from the buffer pool when space is needed, and then uncompressed again on the next access.
5.4.6.2. Enabling Compression for a Table
Before creating a compressed table, make sure the innodb_file_per_table configuration option is enabled, and innodb_file_format is set to Barracuda. You can set these parameters in the MySQL configuration file my.cnf or my.ini, or with the SET statement without shutting down the MySQL server.
To enable compression for a table, you use the clauses ROW_FORMAT=COMPRESSED, KEY_BLOCK_SIZE, or both in a CREATE TABLE or ALTER TABLE statement.
To create a compressed table, you might use statements like these:
SET GLOBAL innodb_file_per_table=1;
SET GLOBAL innodb_file_format=Barracuda;
CREATE TABLE t1
(c1 INT PRIMARY KEY)
ROW_FORMAT=COMPRESSED
KEY_BLOCK_SIZE=8;
If you specify ROW_FORMAT=COMPRESSED, you can omit KEY_BLOCK_SIZE; the default compressed page size of 8KB is used.
If you specify KEY_BLOCK_SIZE, you can omit ROW_FORMAT=COMPRESSED; compression is enabled automatically.
To determine the best value for KEY_BLOCK_SIZE, typically you create several copies of the same table with different values for this clause, then measure the size of the resulting .ibd files and see how well each performs with a realistic workload.
For additional performance-related configuration options, see Section 5.4.6.3, “Tuning Compression for InnoDB Tables”.
The default uncompressed size of InnoDB data pages is 16KB. Depending on the combination of option values, MySQL uses a page size of 1KB, 2KB, 4KB, 8KB, or 16KB for the .ibd file of the table. The actual compression algorithm is not affected by the KEY_BLOCK_SIZE value; the value determines how large each compressed chunk is, which in turn affects how many rows can be packed into each compressed page.
Setting KEY_BLOCK_SIZE=16 typically does not result in much compression, since the normal InnoDB page size is 16KB. This setting may still be useful for tables with many long BLOB, VARCHAR or TEXT columns, because such values often do compress well, and might therefore require fewer overflow pages as described in Section 5.4.6.5, “How Compression Works for InnoDB Tables”.
All indexes of a table (including the clustered index) are compressed using the same page size, as specified in the CREATE TABLE or ALTER TABLE statement. Table attributes such as ROW_FORMAT and KEY_BLOCK_SIZE are not part of the CREATE INDEX syntax, and are ignored if they are specified (although you see them in the output of the SHOW CREATE TABLE statement).
Restrictions on Compressed Tables
Because MySQL versions prior to 5.1 cannot process compressed tables, using compression requires specifying the configuration parameter innodb_file_format=Barracuda, to avoid accidentally introducing compatibility issues.
Table compression is also not available for the InnoDB system tablespace. The system tablespace (space 0, the ibdata* files) can contain user data, but it also contains internal system information, and therefore is never compressed. Thus, compression applies only to tables (and indexes) stored in their own tablespaces, that is, created with the innodb_file_per_table option enabled.
Compression applies to an entire table and all its associated indexes, not to individual rows, despite the clause name ROW_FORMAT.
5.4.6.3. Tuning Compression for InnoDB Tables
Most often, the internal optimizations described in Section 5.4.6.5, “ InnoDB Data Storage and Compression ” ensure that the system runs well with compressed data. However, because the efficiency of compression depends on the nature of your data, you can make decisions that affect the performance of compressed tables:
Which tables to compress.
What compressed page size to use.
Whether to adjust the size of the buffer pool based on run-time performance characteristics, such as the amount of time the system spends compressing and uncompressing data. Whether the workload is more like a data warehouse (primarily queries) or an OLTP system (mix of queries and DML).
If the system performs DML operations on compressed tables, and the way the data is distributed leads to expensive compression failures at runtime, you might adjust additional advanced configuration options.
Use the guidelines in this section to help make those architectural and configuration choices. When you are ready to conduct long-term testing and put compressed tables into production, see Section 5.4.6.4, “Monitoring Compression at Runtime” for ways to verify the effectiveness of those choices under real-world conditions.
When to Use Compression
In general, compression works best on tables that include a reasonable number of character string columns and where the data is read far more often than it is written. Because there are no guaranteed ways to predict whether or not compression benefits a particular situation, always test with a specific workload and data set running on a representative configuration. Consider the following factors when deciding which tables to compress.
Data Characteristics and Compression
A key determinant of the efficiency of compression in reducing the size of data files is the nature of the data itself. Recall that compression works by identifying repeated strings of bytes in a block of data. Completely randomized data is the worst case. Typical data often has repeated values, and so compresses effectively. Character strings often compress well, whether defined in CHAR, VARCHAR, TEXT or BLOB columns. On the other hand, tables containing mostly binary data (integers or floating point numbers) or data that is previously compressed (for example JPEG or PNG images) may not generally compress well, significantly or at all.
You choose whether to turn on compression for each InnoDB table. A table and all of its indexes use the same (compressed) page size. It might be that the primary key (clustered) index, which contains the data for all columns of a table, compresses more effectively than the secondary indexes. For those cases where there are long rows, the use of compression might result in long column values being stored “off-page”, as discussed in Section 5.4.8.3, “DYNAMIC and COMPRESSED Row Formats”. Those overflow pages may compress well. Given these considerations, for many applications, some tables compress more effectively than others, and you might find that your workload performs best only with a subset of tables compressed.
To determine whether or not to compress a particular table, conduct experiments. You can get a rough estimate of how efficiently your data can be compressed by using a utility that implements LZ77 compression (such as gzip or WinZip) on a copy of the .ibd file for an uncompressed table. You can expect less compression from a MySQL compressed table than from file-based compression tools, because MySQL compresses data in chunks based on the page size, 16KB by default. In addition to user data, the page format includes some internal system data that is not compressed. File-based compression utilities can examine much larger chunks of data, and so might find more repeated strings in a huge file than MySQL can find in an individual page.
Another way to test compression on a specific table is to copy some data from your uncompressed table to a similar, compressed table (having all the same indexes) and look at the size of the resulting .ibd file. For example:
use test;
set global innodb_file_per_table=1;
set global innodb_file_format=Barracuda;
set global autocommit=0;
-- Create an uncompressed table with a million or two rows.
create table big_table as select * from information_schema.columns;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
commit;
alter table big_table add id int unsigned not null primary key auto_increment;
show create table big_table\G
select count(id) from big_table;
-- Check how much space is needed for the uncompressed table.
\! ls -l data/test/big_table.ibd
create table key_block_size_4 like big_table;
alter table key_block_size_4 key_block_size=4 row_format=compressed;
insert into key_block_size_4 select * from big_table;
commit;
-- Check how much space is needed for a compressed table
-- with particular compression settings.
\! ls -l data/test/key_block_size_4.ibd
This experiment produced the following numbers, which of course could vary considerably depending on your table structure and data:
-rw-rw---- 1 cirrus staff 310378496 Jan 9 13:44 data/test/big_table.ibd
-rw-rw---- 1 cirrus staff 83886080 Jan 9 15:10 data/test/key_block_size_4.ibd
To see whether compression is efficient for your particular workload:
For simple tests, use a MySQL instance with no other compressed tables and run queries against the INFORMATION_SCHEMA.INNODB_CMP table.
For more elaborate tests involving workloads with multiple compressed tables, run queries against the INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table. Because the statistics in the INNODB_CMP_PER_INDEX table are expensive to collect, you must enable the configuration option innodb_cmp_per_index_enabled before querying that table, and you might restrict such testing to a development server or a non-critical slave server.
Run some typical SQL statements against the compressed table you are testing.
Examine the ratio of successful compression operations to overall compression operations by querying the INFORMATION_SCHEMA.INNODB_CMP or INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table, and comparing COMPRESS_OPS to COMPRESS_OPS_OK.
If a high percentage of compression operations complete successfully, the table might be a good candidate for compression.
If you get a high proportion of compression failures, you can adjust innodb_compression_level, innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max options as described in Section 14.2.4.2.2, “Compression Enhancements for OLTP Workloads”, and try further tests.
Database Compression versus Application Compression
Decide whether to compress data in your application or in the table; do not use both types of compression for the same data. When you compress the data in the application and store the results in a compressed table, extra space savings are extremely unlikely, and the double compression just wastes CPU cycles.
Compressing in the Database
When enabled, MySQL table compression is automatic and applies to all columns and index values. The columns can still be tested with operators such as LIKE, and sort operations can still use indexes even when the index values are compressed. Because indexes are often a significant fraction of the total size of a database, compression could result in significant savings in storage, I/O or processor time. The compression and decompression operations happen on the database server, which likely is a powerful system that is sized to handle the expected load.
Compressing in the Application
If you compress data such as text in your application, before it is inserted into the database, You might save overhead for data that does not compress well by compressing some columns and not others. This approach uses CPU cycles for compression and uncompression on the client machine rather than the database server, which might be appropriate for a distributed application with many clients, or where the client machine has spare CPU cycles.
Hybrid Approach
Of course, it is possible to combine these approaches. For some applications, it may be appropriate to use some compressed tables and some uncompressed tables. It may be best to externally compress some data (and store it in uncompressed tables) and allow MySQL to compress (some of) the other tables in the application. As always, up-front design and real-life testing are valuable in reaching the right decision.
Workload Characteristics and Compression
In addition to choosing which tables to compress (and the page size), the workload is another key determinant of performance. If the application is dominated by reads, rather than updates, fewer pages need to be reorganized and recompressed after the index page runs out of room for the per-page “modification log” that MySQL maintains for compressed data. If the updates predominantly change non-indexed columns or those containing BLOBs or large strings that happen to be stored “off-page”, the overhead of compression may be acceptable. If the only changes to a table are INSERTs that use a monotonically increasing primary key, and there are few secondary indexes, there is little need to reorganize and recompress index pages. Since MySQL can “delete-mark” and delete rows on compressed pages “in place” by modifying uncompressed data, DELETE operations on a table are relatively efficient.
For some environments, the time it takes to load data can be as important as run-time retrieval. Especially in data warehouse environments, many tables may be read-only or read-mostly. In those cases, it might or might not be acceptable to pay the price of compression in terms of increased load time, unless the resulting savings in fewer disk reads or in storage cost is significant.
Fundamentally, compression works best when the CPU time is available for compressing and uncompressing data. Thus, if your workload is I/O bound, rather than CPU-bound, you might find that compression can improve overall performance. When you test your application performance with different compression configurations, test on a platform similar to the planned configuration of the production system.
Configuration Characteristics and Compression
Reading and writing database pages from and to disk is the slowest aspect of system performance. Compression attempts to reduce I/O by using CPU time to compress and uncompress data, and is most effective when I/O is a relatively scarce resource compared to processor cycles.
This is often especially the case when running in a multi-user environment with fast, multi-core CPUs. When a page of a compressed table is in memory, MySQL often uses additional memory, typically 16KB, in the buffer pool for an uncompressed copy of the page. The adaptive LRU algorithm attempts to balance the use of memory between compressed and uncompressed pages to take into account whether the workload is running in an I/O-bound or CPU-bound manner. Still, a configuration with more memory dedicated to the buffer pool tends to run better when using compressed tables than a configuration where memory is highly constrained.
Choosing the Compressed Page Size
The optimal setting of the compressed page size depends on the type and distribution of data that the table and its indexes contain. The compressed page size should always be bigger than the maximum record size, or operations may fail as noted in Section 5.4.6.5, “ Compression of B-Tree Pages ”.
Setting the compressed page size too large wastes some space, but the pages do not have to be compressed as often. If the compressed page size is set too small, inserts or updates may require time-consuming recompression, and the B-tree nodes may have to be split more frequently, leading to bigger data files and less efficient indexing.
Typically, you set the compressed page size to 8K or 4K bytes. Given that the maximum row size for an InnoDB table is around 8K, KEY_BLOCK_SIZE=8 is usually a safe choice.
5.4.6.4. Monitoring Compression at Runtime
Overall application performance, CPU and I/O utilization and the size of disk files are good indicators of how effective compression is for your application. This section builds on the performance tuning advice from Section 5.4.6.3, “Tuning Compression for InnoDB Tables”, and shows how to find problems that might not turn up during initial testing.
To dig deeper into performance considerations for compressed tables, you can monitor compression performance at runtime using the Information Schema tables described in Example 14.2, “Using the Compression Information Schema Tables”. These tables reflect the internal use of memory and the rates of compression used overall.
The INNODB_CMP table reports information about compression activity for each compressed page size (KEY_BLOCK_SIZE) in use. The information in these tables is system-wide: it summarizes the compression statistics across all compressed tables in your database. You can use this data to help decide whether or not to compress a table by examining these tables when no other compressed tables are being accessed. It involves relatively low overhead on the server, so you might query it periodically on a production server to check the overall efficiency of the compression feature.
The INNODB_CMP_PER_INDEX table reports information about compression activity for individual tables and indexes. This information is more targeted and more useful for evaluating compression efficiency and diagnosing performance issues one table or index at a time. (Because that each InnoDB table is represented as a clustered index, MySQL does not make a big distinction between tables and indexes in this context.) The INNODB_CMP_PER_INDEX table does involve substantial overhead, so it is more suitable for development servers, where you can compare the effects of different workloads, data, and compression settings in isolation. To guard against imposing this monitoring overhead by accident, you must enable the innodb_cmp_per_index_enabled configuration option before you can query the INNODB_CMP_PER_INDEX table.
The key statistics to consider are the number of, and amount of time spent performing, compression and uncompression operations. Since MySQL splits B-tree nodes when they are too full to contain the compressed data following a modification, compare the number of “successful” compression operations with the number of such operations overall. Based on the information in the INNODB_CMP and INNODB_CMP_PER_INDEX tables and overall application performance and hardware resource utilization, you might make changes in your hardware configuration, adjust the size of the buffer pool, choose a different page size, or select a different set of tables to compress.
If the amount of CPU time required for compressing and uncompressing is high, changing to faster or multi-core CPUs can help improve performance with the same data, application workload and set of compressed tables. Increasing the size of the buffer pool might also help performance, so that more uncompressed pages can stay in memory, reducing the need to uncompress pages that exist in memory only in compressed form.
A large number of compression operations overall (compared to the number of INSERT, UPDATE and DELETE operations in your application and the size of the database) could indicate that some of your compressed tables are being updated too heavily for effective compression. If so, choose a larger page size, or be more selective about which tables you compress.
If the number of “successful” compression operations (COMPRESS_OPS_OK) is a high percentage of the total number of compression operations (COMPRESS_OPS), then the system is likely performing well. If the ratio is low, then MySQL is reorganizing, recompressing, and splitting B-tree nodes more often than is desirable. In this case, avoid compressing some tables, or increase KEY_BLOCK_SIZE for some of the compressed tables. You might turn off compression for tables that cause the number of “compression failures” in your application to be more than 1% or 2% of the total. (Such a failure ratio might be acceptable during a temporary operation such as a data load).
5.4.6.5. How Compression Works for InnoDB Tables
This section describes some internal implementation details about MySQL compression for InnoDB tables. The information presented here may be helpful in tuning for performance, but is not necessary to know for basic use of compression.
Compression Algorithms
Some operating systems implement compression at the file system level. Files are typically divided into fixed-size blocks that are compressed into variable-size blocks, which easily leads into fragmentation. Every time something inside a block is modified, the whole block is recompressed before it is written to disk. These properties make this compression technique unsuitable for use in an update-intensive database system.
MySQL implements compression with the help of the well-known zlib library, which implements the LZ77 compression algorithm. This compression algorithm is mature, robust, and efficient in both CPU utilization and in reduction of data size. The algorithm is “lossless”, so that the original uncompressed data can always be reconstructed from the compressed form. LZ77 compression works by finding sequences of data that are repeated within the data to be compressed. The patterns of values in your data determine how well it compresses, but typical user data often compresses by 50% or more.
Unlike compression performed by an application, or compression features of some other database management systems, InnoDB compression applies both to user data and to indexes. In many cases, indexes can constitute 40-50% or more of the total database size, so this difference is significant. When compression is working well for a data set, the size of the InnoDB data files (the .idb files) is 25% to 50% of the uncompressed size or possibly smaller. Depending on the workload, this smaller database can in turn lead to a reduction in I/O, and an increase in throughput, at a modest cost in terms of increased CPU utilization. You can adjust the balance between compression level and CPU overhead by modifying the innodb_compression_level configuration option.
InnoDB Data Storage and Compression
All user data in InnoDB tables is stored in pages comprising a B-tree index (the clustered index). In some other database systems, this type of index is called an “index-organized table”. Each row in the index node contains the values of the (user-specified or system-generated) primary key and all the other columns of the table.
Secondary indexes in InnoDB tables are also B-trees, containing pairs of values: the index key and a pointer to a row in the clustered index. The pointer is in fact the value of the primary key of the table, which is used to access the clustered index if columns other than the index key and primary key are required. Secondary index records must always fit on a single B-tree page.
The compression of B-tree nodes (of both clustered and secondary indexes) is handled differently from compression of overflow pages used to store long VARCHAR, BLOB, or TEXT columns, as explained in the following sections.
Compression of B-Tree Pages
Because they are frequently updated, B-tree pages require special treatment. It is important to minimize the number of times B-tree nodes are split, as well as to minimize the need to uncompress and recompress their content.
One technique MySQL uses is to maintain some system information in the B-tree node in uncompressed form, thus facilitating certain in-place updates. For example, this allows rows to be delete-marked and deleted without any compression operation.
In addition, MySQL attempts to avoid unnecessary uncompression and recompression of index pages when they are changed. Within each B-tree page, the system keeps an uncompressed “modification log” to record changes made to the page. Updates and inserts of small records may be written to this modification log without requiring the entire page to be completely reconstructed.
When the space for the modification log runs out, InnoDB uncompresses the page, applies the changes and recompresses the page. If recompression fails (a situation known as a compression failure), the B-tree nodes are split and the process is repeated until the update or insert succeeds.
To avoid frequent compression failures in write-intensive workloads, such as for OLTP applications, MySQL sometimes reserves some empty space (padding) in the page, so that the modification log fills up sooner and the page is recompressed while there is still enough room to avoid splitting it. The amount of padding space left in each page varies as the system keeps track of the frequency of page splits. On a busy server doing frequent writes to compressed tables, you can adjust the innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max configuration options to fine-tune this mechanism.
Generally, MySQL requires that each B-tree page in an InnoDB table can accommodate at least two records. For compressed tables, this requirement has been relaxed. Leaf pages of B-tree nodes (whether of the primary key or secondary indexes) only need to accommodate one record, but that record must fit, in uncompressed form, in the per-page modification log. If innodb_strict_mode is ON, MySQL checks the maximum row size during CREATE TABLE or CREATE INDEX. If the row does not fit, the following error message is issued: ERROR HY000: Too big row.
If you create a table when innodb_strict_mode is OFF, and a subsequent INSERT or UPDATE statement attempts to create an index entry that does not fit in the size of the compressed page, the operation fails with ERROR 42000: Row size too large. (This error message does not name the index for which the record is too large, or mention the length of the index record or the maximum record size on that particular index page.) To solve this problem, rebuild the table with ALTER TABLE and select a larger compressed page size (KEY_BLOCK_SIZE), shorten any column prefix indexes, or disable compression entirely with ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPACT.
Compressing BLOB, VARCHAR, and TEXT Columns
In an InnoDB table, BLOB, VARCHAR, and TEXT columns that are not part of the primary key may be stored on separately allocated overflow pages. We refer to these columns as off-page columns. Their values are stored on singly-linked lists of overflow pages.
For tables created in ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, the values of BLOB, TEXT, or VARCHAR columns may be stored fully off-page, depending on their length and the length of the entire row. For columns that are stored off-page, the clustered index record only contains 20-byte pointers to the overflow pages, one per column. Whether any columns are stored off-page depends on the page size and the total size of the row. When the row is too long to fit entirely within the page of the clustered index, MySQL chooses the longest columns for off-page storage until the row fits on the clustered index page. As noted above, if a row does not fit by itself on a compressed page, an error occurs.
Tables created in older versions of MySQL use the Antelope file format, which supports only ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. In these formats, MySQL stores the first 768 bytes of BLOB, VARCHAR, and TEXT columns in the clustered index record along with the primary key. The 768-byte prefix is followed by a 20-byte pointer to the overflow pages that contain the rest of the column value.
When a table is in COMPRESSED format, all data written to overflow pages is compressed “as is”; that is, MySQL applies the zlib compression algorithm to the entire data item. Other than the data, compressed overflow pages contain an uncompressed header and trailer comprising a page checksum and a link to the next overflow page, among other things. Therefore, very significant storage savings can be obtained for longer BLOB, TEXT, or VARCHAR columns if the data is highly compressible, as is often the case with text data. Image data, such as JPEG, is typically already compressed and so does not benefit much from being stored in a compressed table; the double compression can waste CPU cycles for little or no space savings.
The overflow pages are of the same size as other pages. A row containing ten columns stored off-page occupies ten overflow pages, even if the total length of the columns is only 8K bytes. In an uncompressed table, ten uncompressed overflow pages occupy 160K bytes. In a compressed table with an 8K page size, they occupy only 80K bytes. Thus, it is often more efficient to use compressed table format for tables with long column values.
Using a 16K compressed page size can reduce storage and I/O costs for BLOB, VARCHAR, or TEXT columns, because such data often compress well, and might therefore require fewer overflow pages, even though the B-tree nodes themselves take as many pages as in the uncompressed form.
Compression and the InnoDB Buffer Pool
In a compressed InnoDB table, every compressed page (whether 1K, 2K, 4K or 8K) corresponds to an uncompressed page of 16K bytes (or a smaller size if innodb_page_size is set). To access the data in a page, MySQL reads the compressed page from disk if it is not already in the buffer pool, then uncompresses the page to its original form. This section describes how InnoDB manages the buffer pool with respect to pages of compressed tables.
To minimize I/O and to reduce the need to uncompress a page, at times the buffer pool contains both the compressed and uncompressed form of a database page. To make room for other required database pages, MySQL can evict from the buffer pool an uncompressed page, while leaving the compressed page in memory. Or, if a page has not been accessed in a while, the compressed form of the page might be written to disk, to free space for other data. Thus, at any given time, the buffer pool might contain both the compressed and uncompressed forms of the page, or only the compressed form of the page, or neither.
MySQL keeps track of which pages to keep in memory and which to evict using a least-recently-used (LRU) list, so that hot (frequently accessed) data tends to stay in memory. When compressed tables are accessed, MySQL uses an adaptive LRU algorithm to achieve an appropriate balance of compressed and uncompressed pages in memory. This adaptive algorithm is sensitive to whether the system is running in an I/O-bound or CPU-bound manner. The goal is to avoid spending too much processing time uncompressing pages when the CPU is busy, and to avoid doing excess I/O when the CPU has spare cycles that can be used for uncompressing compressed pages (that may already be in memory). When the system is I/O-bound, the algorithm prefers to evict the uncompressed copy of a page rather than both copies, to make more room for other disk pages to become memory resident. When the system is CPU-bound, MySQL prefers to evict both the compressed and uncompressed page, so that more memory can be used for “hot” pages and reducing the need to uncompress data in memory only in compressed form.
Compression and the InnoDB Redo Log Files
Before a compressed page is written to a data file, MySQL writes a copy of the page to the redo log (if it has been recompressed since the last time it was written to the database). This is done to ensure that redo logs are usable for crash recovery, even in the unlikely case that the zlib library is upgraded and that change introduces a compatibility problem with the compressed data. Therefore, some increase in the size of log files, or a need for more frequent checkpoints, can be expected when using compression. The amount of increase in the log file size or checkpoint frequency depends on the number of times compressed pages are modified in a way that requires reorganization and recompression.
Note that compressed tables use a different file format for the redo log and the per-table tablespaces than in MySQL 5.1 and earlier. The MySQL Enterprise Backup product supports this latest Barracuda file format for compressed InnoDB tables. The older InnoDB Hot Backup product can only back up tables using the file format Antelope, and thus does not support compressed InnoDB tables.
5.4.6.6. SQL Compression Syntax Warnings and Errors
Specifying ROW_FORMAT=COMPRESSED or KEY_BLOCK_SIZE in CREATE TABLE or ALTER TABLE statements produces the following warnings if the Barracuda file format is not enabled. You can view them with the SHOW WARNINGS statement.
Level | Code | Message |
---|---|---|
Warning | 1478 | InnoDB: KEY_BLOCK_SIZE requires innodb_file_per_table. |
Warning | 1478 | InnoDB: KEY_BLOCK_SIZE requires innodb_file_format=1 |
Warning | 1478 | InnoDB: ignoring KEY_BLOCK_SIZE=4. |
Warning | 1478 | InnoDB: ROW_FORMAT=COMPRESSED requires innodb_file_per_table. |
Warning | 1478 | InnoDB: assuming ROW_FORMAT=COMPACT. |
Notes:
By default, these messages are only warnings, not errors, and the table is created without compression, as if the options were not specified.
When innodb_strict_mode is enabled, MySQL generates an error, not a warning, for these cases. The table is not created if the current configuration does not permit using compressed tables.
The “non-strict” behavior lets you import a mysqldump file into a database that does not support compressed tables, even if the source database contained compressed tables. In that case, MySQL creates the table in ROW_FORMAT=COMPACT instead of preventing the operation.
To import the dump file into a new database, and have the tables re-created as they exist in the original database, ensure the server has the proper settings for the configuration parameters innodb_file_format and innodb_file_per_table.
The attribute KEY_BLOCK_SIZE is permitted only when ROW_FORMAT is specified as COMPRESSED or is omitted. Specifying a KEY_BLOCK_SIZE with any other ROW_FORMAT generates a warning that you can view with SHOW WARNINGS. However, the table is non-compressed; the specified KEY_BLOCK_SIZE is ignored).
Level | Code | Message |
---|---|---|
Warning | 1478 | InnoDB: ignoring KEY_BLOCK_SIZE=n unless ROW_FORMAT=COMPRESSED. |
If you are running with innodb_strict_mode enabled, the combination of a KEY_BLOCK_SIZE with any ROW_FORMAT other than COMPRESSED generates an error, not a warning, and the table is not created.
Table 5.6, “Meaning of CREATE TABLE and ALTER TABLE options” summarizes how the various options on CREATE TABLE and ALTER TABLE are handled.
Table 5.6. Meaning of CREATE TABLE and ALTER TABLE options
Option | Usage | Description |
---|---|---|
ROW_FORMAT=REDUNDANT | Storage format used prior to MySQL 5.0.3 | Less efficient than ROW_FORMAT=COMPACT; for backward compatibility |
ROW_FORMAT=COMPACT | Default storage format since MySQL 5.0.3 | Stores a prefix of 768 bytes of long column values in the clustered index page, with the remaining bytes stored in an overflow page |
ROW_FORMAT=DYNAMIC | Available only with innodb_file_format=Barracuda | Store values within the clustered index page if they fit; if not, stores only a 20-byte pointer to an overflow page (no prefix) |
ROW_FORMAT=COMPRESSED | Available only with innodb_file_format=Barracuda | Compresses the table and indexes using zlib to default compressed page size of 8K bytes; implies ROW_FORMAT=DYNAMIC |
KEY_BLOCK_SIZE=n | Available only with innodb_file_format=Barracuda | Specifies compressed page size of 1, 2, 4, 8 or 16K bytes; implies ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPRESSED |
Table 5.7, “CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF” summarizes error conditions that occur with certain combinations of configuration parameters and options on the CREATE TABLE or ALTER TABLE statements, and how the options appear in the output of SHOW TABLE STATUS.
When innodb_strict_mode is OFF, MySQL creates or alters the table, but ignores certain settings as shown below. You can see the warning messages in the MySQL error log. When innodb_strict_mode is ON, these specified combinations of options generate errors, and the table is not created or altered. To see the full description of the error condition, issue the SHOW ERRORS statement: example:
mysql> CREATE TABLE x (id INT PRIMARY KEY, c INT)
-> ENGINE=INNODB KEY_BLOCK_SIZE=33333;
ERROR 1005 (HY000): Can't create table 'test.x' (errno: 1478)
mysql> SHOW ERRORS;
+-------+------+---+
| Level | Code | Message |
+-------+------+---+
| Error | 1478 | InnoDB: invalid KEY_BLOCK_SIZE=33333. |
| Error | 1005 | Can't create table 'test.x' (errno: 1478) |
+-------+------+---+
2 rows in set (0.00 sec)
Table 5.7. CREATE/ALTER TABLE Warnings and Errors when InnoDB Strict Mode is OFF
Syntax | Warning or Error Condition | Resulting ROW_FORMAT, as shown in SHOW TABLE STATUS |
---|---|---|
ROW_FORMAT=REDUNDANT | None | REDUNDANT |
ROW_FORMAT=COMPACT | None | COMPACT |
ROW_FORMAT=COMPRESSED or ROW_FORMAT=DYNAMIC or KEY_BLOCK_SIZE is specified | Ignored unless both innodb_file_format=Barracuda and innodb_file_per_table are enabled | COMPACT |
Invalid KEY_BLOCK_SIZE is specified (not 1, 2, 4, 8 or 16) | KEY_BLOCK_SIZE is ignored | the requested one, or COMPACT by default |
ROW_FORMAT=COMPRESSED and valid KEY_BLOCK_SIZE are specified | None; KEY_BLOCK_SIZE specified is used, not the 8K default | COMPRESSED |
KEY_BLOCK_SIZE is specified with REDUNDANT, COMPACT or DYNAMIC row format | KEY_BLOCK_SIZE is ignored | REDUNDANT, COMPACT or DYNAMIC |
ROW_FORMAT is not one of REDUNDANT, COMPACT, DYNAMIC or COMPRESSED | Ignored if recognized by the MySQL parser. Otherwise, an error is issued. | COMPACT or N/A |
When innodb_strict_mode is ON, MySQL rejects invalid ROW_FORMAT or KEY_BLOCK_SIZE parameters. For compatibility with earlier versions of MySQL, strict mode is not enabled by default; instead, MySQL issues warnings (not errors) for ignored invalid parameters.
Note that it is not possible to see the chosen KEY_BLOCK_SIZE using SHOW TABLE STATUS. The statement SHOW CREATE TABLE displays the KEY_BLOCK_SIZE (even if it was ignored when creating the table). The real compressed page size of the table cannot be displayed by MySQL.
5.4.7. InnoDB File-Format Management
As InnoDB evolves, new on-disk data structures are sometimes required to support new features. Features such as compressed tables (see Section 5.4.6, “Working with InnoDB Compressed Tables”), and long variable-length columns stored off-page (see Section 5.4.8, “How InnoDB Stores Variable-Length Columns”) require data file formats that are not compatible with prior versions of InnoDB. These features both require use of the new Barracuda file format.
Note
All other new features are compatible with the original Antelope file format and do not require the Barracuda file format.
This section discusses how to specify the file format for new InnoDB tables, compatibility of different file formats between MySQL releases,
Named File Formats. InnoDB 1.1 has the idea of a named file format and a configuration parameter to enable the use of features that require use of that format. The new file format is the Barracuda format, and the original InnoDB file format is called Antelope. Compressed tables and the new row format that stores long columns “off-page” require the use of the Barracuda file format or newer. Future versions of InnoDB may introduce a series of file formats, identified with the names of animals, in ascending alphabetic order.
5.4.7.1. Enabling File Formats
The configuration parameter innodb_file_format controls whether such statements as CREATE TABLE and ALTER TABLE can be used to create tables that depend on support for the Barracuda file format.
Although Oracle recommends using the Barracuda format for new tables where practical, in MySQL 5.5 the default file format is still Antelope, for maximum compatibility with replication configurations containing different MySQL releases.
The file format is a dynamic, global parameter that can be specified in the MySQL option file (my.cnf or my.ini) or changed with the SET GLOBAL command.
5.4.7.2. Verifying File Format Compatibility
InnoDB 1.1 incorporates several checks to guard against the possible crashes and data corruptions that might occur if you run an older release of the MySQL server on InnoDB data files using a newer file format. These checks take place when the server is started, and when you first access a table. This section describes these checks, how you can control them, and error and warning conditions that might arise.
Backward Compatibility
Considerations of backward compatibility only apply when using a recent version of InnoDB (the InnoDB Plugin, or MySQL 5.5 and higher with InnoDB 1.1) alongside an older one (MySQL 5.1 or earlier, with the built-in InnoDB rather than the InnoDB Plugin). To minimize the chance of compatibility issues, you can standardize on the InnoDB Plugin for all your MySQL 5.1 and earlier database servers.
In general, a newer version of InnoDB may create a table or index that cannot safely be read or written with a prior version of InnoDB without risk of crashes, hangs, wrong results or corruptions. InnoDB 1.1 includes a mechanism to guard against these conditions, and to help preserve compatibility among database files and versions of InnoDB. This mechanism lets you take advantage of some new features of an InnoDB release (such as performance improvements and bug fixes), and still preserve the option of using your database with a prior version of InnoDB, by preventing accidental use of new features that create downward-incompatible disk files.
If a version of InnoDB supports a particular file format (whether or not that format is the default), you can query and update any table that requires that format or an earlier format. Only the creation of new tables using new features is limited based on the particular file format enabled. Conversely, if a tablespace contains a table or index that uses a file format that is not supported by the currently running software, it cannot be accessed at all, even for read access.
The only way to “downgrade” an InnoDB tablespace to an earlier file format is to copy the data to a new table, in a tablespace that uses the earlier format. This can be done with the ALTER TABLE statement, as described in Section 5.4.7.4, “Downgrading the File Format”.
The easiest way to determine the file format of an existing InnoDB tablespace is to examine the properties of the table it contains, using the SHOW TABLE STATUS command or querying the table INFORMATION_SCHEMA.TABLES. If the Row_format of the table is reported as 'Compressed' or 'Dynamic', the tablespace containing the table uses the Barracuda format. Otherwise, it uses the prior InnoDB file format, Antelope.
Internal Details
Every InnoDB per-table tablespace (represented by a *.ibd file) file is labeled with a file format identifier. The system tablespace (represented by the ibdata files) is tagged with the “highest” file format in use in a group of InnoDB database files, and this tag is checked when the files are opened.
Creating a compressed table, or a table with ROW_FORMAT=DYNAMIC, updates the file header for the corresponding .ibd file and the table type in the InnoDB data dictionary with the identifier for the Barracuda file format. From that point forward, the table cannot be used with a version of InnoDB that does not support this new file format. To protect against anomalous behavior, InnoDB version 5.0.21 and later performs a compatibility check when the table is opened. (In many cases, the ALTER TABLE statement recreates a table and thus changes its properties. The special case of adding or dropping indexes without rebuilding the table is described in Fast Index Creation in the InnoDB Storage Engine.)
Definition of ib-file set
To avoid confusion, for the purposes of this discussion we define the term “ib-file set” to mean the set of operating system files that InnoDB manages as a unit. The ib-file set includes the following files:
The system tablespace (one or more ibdata files) that contain internal system information (including internal catalogs and undo information) and may include user data and indexes.
Zero or more single-table tablespaces (also called “file per table” files, named *.ibd files).
InnoDB log files; usually two, ib_logfile0 and ib_logfile1. Used for crash recovery and in backups.
An “ib-file set” does not include the corresponding .frm files that contain metadata about InnoDB tables. The .frm files are created and managed by MySQL, and can sometimes get out of sync with the internal metadata in InnoDB.
Multiple tables, even from more than one database, can be stored in a single “ib-file set”. (In MySQL, a “database” is a logical collection of tables, what other systems refer to as a “schema” or “catalog”.)
5.4.7.2.1. Compatibility Check When InnoDB Is Started
To prevent possible crashes or data corruptions when InnoDB opens an ib-file set, it checks that it can fully support the file formats in use within the ib-file set. If the system is restarted following a crash, or a “fast shutdown” (i.e., innodb_fast_shutdown is greater than zero), there may be on-disk data structures (such as redo or undo entries, or doublewrite pages) that are in a “too-new” format for the current software. During the recovery process, serious damage can be done to your data files if these data structures are accessed. The startup check of the file format occurs before any recovery process begins, thereby preventing consistency issues with the new tables or startup problems for the MySQL server.
Beginning with version InnoDB 1.0.1, the system tablespace records an identifier or tag for the “highest” file format used by any table in any of the tablespaces that is part of the ib-file set. Checks against this file format tag are controlled by the configuration parameter innodb_file_format_check, which is ON by default.
If the file format tag in the system tablespace is newer or higher than the highest version supported by the particular currently executing software and if innodb_file_format_check is ON, the following error is issued when the server is started:
InnoDB: Error: the system tablespace is in a
file format that this version doesn't support
You can also set innodb_file_format to a file format name. Doing so prevents InnoDB from starting if the current software does not support the file format specified. It also sets the “high water mark” to the value you specify. The ability to set innodb_file_format_check will be useful (with future releases of InnoDB) if you manually “downgrade” all of the tables in an ib-file set (as described in Downgrading the InnoDB Storage Engine). You can then rely on the file format check at startup if you subsequently use an older version of InnoDB to access the ib-file set.
In some limited circumstances, you might want to start the server and use an ib-file set that is in a “too new” format (one that is not supported by the software you are using). If you set the configuration parameter innodb_file_format_check to OFF, InnoDB opens the database, but issues this warning message in the error log:
InnoDB: Warning: the system tablespace is in a
file format that this version doesn't support
Note
This is a very dangerous setting, as it permits the recovery process to run, possibly corrupting your database if the previous shutdown was a crash or “fast shutdown”. You should only set innodb_file_format_check to OFF if you are sure that the previous shutdown was done with innodb_fast_shutdown=0, so that essentially no recovery process occurs. In a future release, this parameter setting may be renamed from OFF to UNSAFE. (However, until there are newer releases of InnoDB that support additional file formats, even disabling the startup checking is in fact “safe”.)
The parameter innodb_file_format_check affects only what happens when a database is opened, not subsequently. Conversely, the parameter innodb_file_format (which enables a specific format) only determines whether or not a new table can be created in the enabled format and has no effect on whether or not a database can be opened.
The file format tag is a “high water mark”, and as such it is increased after the server is started, if a table in a “higher” format is created or an existing table is accessed for read or write (assuming its format is supported). If you access an existing table in a format higher than the format the running software supports, the system tablespace tag is not updated, but table-level compatibility checking applies (and an error is issued), as described in Section 5.4.7.2.2, “Compatibility Check When a Table Is Opened”. Any time the high water mark is updated, the value of innodb_file_format_check is updated as well, so the command SELECT @@innodb_file_format_check; displays the name of the newest file format known to be used by tables in the currently open ib-file set and supported by the currently executing software.
To best illustrate this behavior, consider the scenario described in Table 5.8, “InnoDB Data File Compatibility and Related InnoDB Parameters”. Imagine that some future version of InnoDB supports the Cheetah format and that an ib-file set has been used with that version.
Table 5.8. InnoDB Data File Compatibility and Related InnoDB Parameters
innodb file format check | innodb file format | Highest file format used in ib-file set | Highest file format supported by InnoDB | Result |
---|---|---|---|---|
OFF | Antelope or Barracuda | Barracuda | Barracuda | Database can be opened; tables can be created which require Antelope or Barracuda file format |
OFF | Antelope or Barracuda | Cheetah | Barracuda | Database can be opened with a warning, since the database contains files in a “too new” format; tables can be created in Antelope or Barracuda file format; tables in Cheetah format cannot be accessed |
OFF | Cheetah | Barracuda | Barracuda | Database cannot be opened; innodb_file_format cannot be set to Cheetah |
ON | Antelope or Barracuda | Barracuda | Barracuda | Database can be opened; tables can be created in Antelope or Barracuda file format |
ON | Antelope or Barracuda | Cheetah | Barracuda | Database cannot be opened, since the database contains files in a “too new” format (Cheetah) |
ON | Cheetah | Barracuda | Barracuda | Database cannot be opened; innodb_file_format cannot be set to Cheetah |
5.4.7.2.2. Compatibility Check When a Table Is Opened
When a table is first accessed, InnoDB (including some releases prior to InnoDB 1.0) checks that the file format of the tablespace in which the table is stored is fully supported. This check prevents crashes or corruptions that would otherwise occur when tables using a “too new” data structure are encountered.
All tables using any file format supported by a release can be read or written (assuming the user has sufficient privileges). The setting of the system configuration parameter innodb_file_format can prevent creating a new table that uses specific file formats, even if they are supported by a given release. Such a setting might be used to preserve backward compatibility, but it does not prevent accessing any table that uses any supported format.
As noted in Named File Formats, versions of MySQL older than 5.0.21 cannot reliably use database files created by newer versions if a new file format was used when a table was created. To prevent various error conditions or corruptions, InnoDB checks file format compatibility when it opens a file (for example, upon first access to a table). If the currently running version of InnoDB does not support the file format identified by the table type in the InnoDB data dictionary, MySQL reports the following error:
ERROR 1146 (42S02): Table 'test.t1' doesn't exist
InnoDB also writes a message to the error log:
InnoDB: table test/t1: unknown table type 33
The table type should be equal to the tablespace flags, which contains the file format version as discussed in Section 5.4.7.3, “Identifying the File Format in Use”.
Versions of InnoDB prior to MySQL 4.1 did not include table format identifiers in the database files, and versions prior to MySQL 5.0.21 did not include a table format compatibility check. Therefore, there is no way to ensure proper operations if a table in a “too new” format is used with versions of InnoDB prior to 5.0.21.
The file format management capability in InnoDB 1.0 and higher (tablespace tagging and run-time checks) allows InnoDB to verify as soon as possible that the running version of software can properly process the tables existing in the database.
If you permit InnoDB to open a database containing files in a format it does not support (by setting the parameter innodb_file_format_check to OFF), the table-level checking described in this section still applies.
Users are strongly urged not to use database files that contain Barracuda file format tables with releases of InnoDB older than the MySQL 5.1 with the InnoDB Plugin. It is possible to “downgrade” such tables to the Antelope format with the procedure described in Section 5.4.7.4, “Downgrading the File Format”.
5.4.7.3. Identifying the File Format in Use
After you enable a given innodb_file_format, this change applies only to newly created tables rather than existing ones. If you do create a new table, the tablespace containing the table is tagged with the “earliest” or “simplest” file format that is required for the table's features. For example, if you enable file format Barracuda, and create a new table that is not compressed and does not use ROW_FORMAT=DYNAMIC, the new tablespace that contains the table is tagged as using file format Antelope.
It is easy to identify the file format used by a given tablespace or table. The table uses the Barracuda format if the Row_format reported by SHOW CREATE TABLE or INFORMATION_SCHEMA.TABLES is one of 'Compressed' or 'Dynamic'. (The Row_format is a separate column; ignore the contents of the Create_options column, which may contain the string ROW_FORMAT.) If the table in a tablespace uses neither of those features, the file uses the format supported by prior releases of InnoDB, now called file format Antelope. Then, the Row_format is one of 'Redundant' or 'Compact'.
Internal Details
The file format identifier is written as part of the tablespace flags (a 32-bit number) in the *.ibd file in the 4 bytes starting at position 54 of the file, most significant byte first. (The first byte of the file is byte zero.) On some systems, you can display these bytes in hexadecimal with the command od -t x1 -j 54 -N 4 tablename.ibd. If all bytes are zero, the tablespace uses the Antelope file format (which is the format used by the standard InnoDB storage engine up to version 5.1). Otherwise, the least significant bit should be set in the tablespace flags, and the file format identifier is written in the bits 5 through 11. (Divide the tablespace flags by 32 and take the remainder after dividing the integer part of the result by 128.)
5.4.7.4. Downgrading the File Format
Each InnoDB tablespace file (with a name matching *.ibd) is tagged with the file format used to create its table and indexes. The way to downgrade the tablespace is to re-create the table and its indexes. The easiest way to recreate a table and its indexes is to use the command:
ALTER TABLE t ROW_FORMAT=COMPACT;
on each table that you want to downgrade. The COMPACT row format uses the file format Antelope. It was introduced in MySQL 5.0.3.
5.4.7.5. Future InnoDB File Formats
The file format used by the standard built-in InnoDB in MySQL 5.1 is the Antelope format. The file format introduced with InnoDB Plugin 1.0 is the Barracuda format. Although no new features have been announced that would require additional new file formats, the InnoDB file format mechanism allows for future enhancements.
For the sake of completeness, these are the file format names that might be used for future file formats: Antelope, Barracuda, Cheetah, Dragon, Elk, Fox, Gazelle, Hornet, Impala, Jaguar, Kangaroo, Leopard, Moose, Nautilus, Ocelot, Porpoise, Quail, Rabbit, Shark, Tiger, Urchin, Viper, Whale, Xenops, Yak and Zebra. These file formats correspond to the internal identifiers 0..25.
5.4.8. How InnoDB Stores Variable-Length Columns
This section discusses how certain InnoDB features, such as table compression and off-page storage of long columns, are controlled by the ROW_FORMAT clause of the CREATE TABLE statement. It discusses considerations for choosing the right row format and compatibility of row formats between MySQL releases.
5.4.8.1. Overview of InnoDB Row Storage
The storage for rows and associated columns affects performance for queries and DML operations. As more rows fit into a single disk page, queries and index lookups can work faster, less cache memory is required in the InnoDB buffer pool, and less I/O is required to write out updated values for the numeric and short string columns.
The data in each InnoDB table is divided into pages. The pages that make up each table are arranged in a tree data structure called a B-tree index. Table data and secondary indexes both use this type of structure. The B-tree index that represents an entire table is known as the clustered index, which is organized according to the primary key columns. The nodes of the index data structure contain the values of all the columns in that row (for the clustered index) or the index columns and the primary key columns (for secondary indexes).
Variable-length columns are an exception to this rule. Columns such as BLOB and VARCHAR that are too long to fit on a B-tree page are stored on separately allocated disk pages called overflow pages. We call such columns off-page columns. The values of these columns are stored in singly-linked lists of overflow pages, and each such column has its own list of one or more overflow pages. In some cases, all or a prefix of the long column value is stored in the B-tree, to avoid wasting storage and eliminating the need to read a separate page.
This section describes the clauses you can use with the CREATE TABLE and ALTER TABLE statements to control how these variable-length columns are represented: ROW_FORMAT and KEY_BLOCK_SIZE. To use these clauses, you might also need to change the settings for the innodb_file_per_table and innodb_file_format configuration options.
5.4.8.2. Specifying the Row Format for a Table
You specify the row format for a table with the ROW_FORMAT clause of the CREATE TABLE and ALTER TABLE statements.
5.4.8.3. DYNAMIC and COMPRESSED Row Formats
This section discusses the DYNAMIC and COMPRESSED row formats for InnoDB tables. You can only create these kinds of tables when the innodb_file_format configuration option is set to Barracuda. (The Barracuda file format also allows the COMPACT and REDUNDANT row formats.)
When a table is created with ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, long column values are stored fully off-page, and the clustered index record contains only a 20-byte pointer to the overflow page.
Whether any columns are stored off-page depends on the page size and the total size of the row. When the row is too long, InnoDB chooses the longest columns for off-page storage until the clustered index record fits on the B-tree page.
The DYNAMIC row format maintains the efficiency of storing the entire row in the index node if it fits (as do the COMPACT and REDUNDANT formats), but this new format avoids the problem of filling B-tree nodes with a large number of data bytes of long columns. The DYNAMIC format is based on the idea that if a portion of a long data value is stored off-page, it is usually most efficient to store all of the value off-page. With DYNAMIC format, shorter columns are likely to remain in the B-tree node, minimizing the number of overflow pages needed for any given row.
The COMPRESSED row format uses similar internal details for off-page storage as the DYNAMIC row format, with additional storage and performance considerations from the table and index data being compressed and using smaller page sizes. With the COMPRESSED row format, the option KEY_BLOCK_SIZE controls how much column data is stored in the clustered index, and how much is placed on overflow pages. For full details about the COMPRESSED row format, see Section 5.4.6, “Working with InnoDB Compressed Tables”.
5.4.8.4. COMPACT and REDUNDANT Row Formats
Early versions of InnoDB used an unnamed file format (now called Antelope) for database files. With that file format, tables are defined with ROW_FORMAT=COMPACT or ROW_FORMAT=REDUNDANT. InnoDB stores up to the first 768 bytes of variable-length columns (such as BLOB and VARCHAR) in the index record within the B-tree node, with the remainder stored on the overflow pages.
To preserve compatibility with those prior versions, tables created with the newest InnoDB default to the COMPACT row format. See Section 5.4.8.3, “DYNAMIC and COMPRESSED Row Formats” for information about the newer DYNAMIC and COMPRESSED row formats.
With the Antelope file format, if the value of a column is 768 bytes or less, no overflow page is needed, and some savings in I/O may result, since the value is in the B-tree node. This works well for relatively short BLOBs, but may cause B-tree nodes to fill with data rather than key values, reducing their efficiency. Tables with many BLOB columns could cause B-tree nodes to become too full of data, and contain too few rows, making the entire index less efficient than if the rows were shorter or if the column values were stored off-page.
5.5. Online DDL for InnoDB Tables
You can perform several kinds of online DDL operations on InnoDB tables: that is, allowing DML operations and queries on the table while the DDL is in progress, performing the operation “in-place” without rebuilding the entire table, or both. This enhancement has the following benefits:
It improves responsiveness and availability in busy production environments, where making a table unavailable for minutes or hours whenever you modify its indexes or column definitions is not practical.
It lets you adjust the balance between performance and concurrency during the DDL operation, by choosing whether to block access to the table entirely (LOCK=EXCLUSIVE clause), allow queries but not DML (LOCK=SHARED clause), or allow full query and DML access to the table (LOCK=NONE clause). When you omit the LOCK clause or specify LOCK=DEFAULT, MySQL allows as much concurrency as possible depending on the type of operation.
By doing the changes in-place where possible, rather than creating a new copy of the table, it avoids temporary increases in disk space usage and the I/O overhead of copying the table and reconstructing all the secondary indexes.
5.5.1. Overview of Online DDL
Historically, many DDL operations on InnoDB tables were expensive. Many ALTER TABLE operations worked by creating a new, empty table defined with the requested table options and indexes, then copying the existing rows to the new table one-by-one, updating the indexes as the rows were inserted. After all rows from the original table were copied, the old table was dropped and the copy was renamed with the name of the original table.
MySQL 5.5, and MySQL 5.1 with the InnoDB Plugin, optimized CREATE INDEX and DROP INDEX to avoid the table-copying behavior. That feature was known as Fast Index Creation. MySQL 5.6 enhances many other types of ALTER TABLE operations to avoid copying the table. Another enhancement allows SELECT queries and INSERT, UPDATE, and DELETE (DML) statements to proceed while the table is being altered. This combination of features is now known as online DDL.
This new mechanism also means that you can generally speed the overall process of creating and loading a table and associated indexes by creating the table with without any secondary indexes, then adding the secondary indexes after the data is loaded.
Although no syntax changes are required in the CREATE INDEX or DROP INDEX commands, some factors affect the performance, space usage, and semantics of this operation (see Section 5.5.9, “Limitations of Online DDL”).
The online DDL enhancements in MySQL 5.6 improve many DDL operations that formerly required a table copy, blocked DML operations on the table, or both. Table 5.9, “Summary of Online Status for DDL Operations” shows the variations of the ALTER TABLE statement and shows how the online DDL feature applies to each one.
The “In-Place?” column shows which operations allow the ALGORITHM=INPLACE clause; the preferred value is “Yes”.
The “Copies Table?” column shows which operations are able to avoid the expensive table-copying operation; the preferred value is “No”. This column is mostly the reverse of the “In-Place?” column, except that a few operations allow ALGORITHM=INPLACE but still involve some amount of table copying.
The “Allows Concurrent DML?” column shows which operations can be performed fully online; the preferred value is “Yes”. You can specify LOCK=NONE to assert that full concurrency is allowed during the DDL, but MySQL automatically allows this level of concurrency when possible. When concurrent DML is allowed, concurrent queries are also always allowed.
The “Allows Concurrent Queries?” column shows which DDL operations allow queries on the table while the operation is in progress; the preferred value is “Yes”. Concurrent query is allowed during all online DDL operations. It is shown with “Yes” listed for all cells, for reference purposes. You can specify LOCK=SHARED to assert that concurrent queries are allowed during the DDL, but MySQL automatically allows this level of concurrency when possible.
The “Notes” column explains any exceptions to the “yes/no” values of the other columns, such as when the answer depends on the setting of a configuration option or some other clause in the DDL statement. The values “Yes*” and “No*” indicate that an answer depends on these additional notes.
Table 5.9. Summary of Online Status for DDL Operations
Operation | In-Place? | Copies Table? | Allows Concurrent DML? | Allows Concurrent Query? | Notes |
---|---|---|---|---|---|
CREATE INDEX, ADD INDEX | Yes* | No* | Yes | Yes | Some restrictions for FULLTEXT index; see next row. Currently, the operation is not in-place (that is, it copies the table) if the same index being created was also dropped by an earlier clause in the same ALTER TABLE statement. |
ADD FULLTEXT INDEX | Yes | No* | No | Yes | Creating the first FULLTEXT index for a table involves a table copy, unless there is a user-supplied FTS_DOC_ID column. Subsequent FULLTEXT indexes on the same table can be created in-place. |
DROP INDEX | Yes | No | Yes | Yes | |
Set default value for a column | Yes | No | Yes | Yes | Modifies .frm file only, not the data file. |
Change auto-increment value for a column | Yes | No | Yes | Yes | Modifies a value stored in memory, not the data file. |
Add a foreign key constraint | Yes* | No* | Yes | Yes | To avoid copying the table, disable foreign_key_checks during constraint creation. |
Drop a foreign key constraint | Yes | No | Yes | Yes | The foreign_key_checks option can be enabled or disabled. |
Rename a column | Yes* | No* | Yes* | Yes | To allow concurrent DML, keep the same data type and only change the column name. |
Add a column | Yes | Yes | Yes* | Yes | Concurrent DML is not allowed when adding an auto-increment column. Although ALGORITHM=INPLACE is allowed, the data is reorganized substantially, so it is still an expensive operation. |
Drop a column | Yes | Yes | Yes | Yes | Although ALGORITHM=INPLACE is allowed, the data is reorganized substantially, so it is still an expensive operation. |
Reorder columns | Yes | Yes | Yes | Yes | Although ALGORITHM=INPLACE is allowed, the data is reorganized substantially, so it is still an expensive operation. |
Change ROW_FORMAT property | Yes | Yes | Yes | Yes | Although ALGORITHM=INPLACE is allowed, the data is reorganized substantially, so it is still an expensive operation. |
Change KEY_BLOCK_SIZE property | Yes | Yes | Yes | Yes | Although ALGORITHM=INPLACE is allowed, the data is reorganized substantially, so it is still an expensive operation. |
Make column NULL | Yes | Yes | Yes | Yes | Although ALGORITHM=INPLACE is allowed, the data is reorganized substantially, so it is still an expensive operation. |
Make column NOT NULL | Yes* | Yes | Yes | Yes | When SQL_MODE includes strict_all_tables or strict_all_tables, the operation fails if the column contains any nulls. Although ALGORITHM=INPLACE is allowed, the data is reorganized substantially, so it is still an expensive operation. |
Change data type of column | No | Yes | No | Yes | |
Add primary key | Yes* | Yes | Yes | Yes | Although ALGORITHM=INPLACE is allowed, the data is reorganized substantially, so it is still an expensive operation. ALGORITHM=INPLACE is not allowed under certain conditions if columns have to be converted to NOT NULL. See Example 5.9, “Creating and Dropping the Primary Key”. |
Drop primary key and add another | Yes | Yes | Yes | Yes | ALGORITHM=INPLACE is only allowed when you add a new primary key in the same ALTER TABLE; the data is reorganized substantially, so it is still an expensive operation. |
Drop primary key | No | Yes | No | Yes | Restrictions apply when you drop a primary key primary key without adding a new one in the same ALTER TABLE statement. |
Convert character set | No | Yes | No | Yes | Rebuilds the table if the new character encoding is different. |
Specify character set | No | Yes | No | Yes | Rebuilds the table if the new character encoding is different. |
Rebuild with FORCE option | No | Yes | No | Yes | Acts like the ALGORITHM=COPY clause or the setting old_alter_table=1. |
The following sections shows the basic syntax, and usage notes related to online DDL, for each of the major operations that can be performed with concurrent DML, in-place, or both:
Secondary Indexes
Create secondary indexes: CREATE INDEX name ON table (col_list) or ALTER TABLE table ADD INDEX name (col_list). (Creating a a FULLTEXT index still requires locking the table.)
Drop secondary indexes: DROP INDEX name ON table; or ALTER TABLE table DROP INDEX name
Creating and dropping secondary indexes on InnoDB tables skips the table-copying behavior, the same as in MySQL 5.5 and MySQL 5.1 with the InnoDB Plugin.
In MySQL 5.6 and higher, the table remains available for read and write operations while the index is being created or dropped. The CREATE INDEX or DROP INDEX statement only finishes after all transactions that are accessing the table are completed, so that the initial state of the index reflects the most recent contents of the table. Previously, modifying the table while an index was being created or dropped typically resulted in a deadlock that cancelled the INSERT, UPDATE, or DELETE statement on the table.
Column Properties
Set a default value for a column: ALTER TABLE tbl ALTER COLUMN col SET DEFAULT literal or ALTER TABLE tbl ALTER COLUMN col DROP DEFAULT
The default values for columns are stored in the .frm file for the table, not the InnoDB data dictionary.
Changing the auto-increment value for a column: ALTER TABLE table AUTO_INCREMENT=next_value;
Especially in a distributed system using replication or sharding, you sometimes reset the auto-increment counter for a table to a specific value. The next row inserted into the table uses the specified value for its auto-increment column. You might also use this technique in a data warehousing environment where you periodically empty all the tables and reload them, and you can restart the auto-increment sequence from 1.
Renaming a column: ALTER TABLE tbl CHANGE old_col_name new_col_name datatype
When you keep the same data type and [NOT] NULL attribute, only changing the column name, this operation can always be performed online.
As part of this enhancement, you can now rename a column that is part of a foreign key constraint, which was not allowed before. The foreign key definition is automatically updated to use the new column name. Renaming a column participating in a foreign key only works with the in-place mode of ALTER TABLE. If you use the ALGORITHM=COPY clause, or some other condition causes the command to use ALGORITHM=COPY behind the scenes, the ALTER TABLE statement will fail.
Foreign Keys
Adding or dropping a foreign key constraint:
ALTER TABLE tbl1 ADD CONSTRAINT fk_name FOREIGN KEY index (col1) REFERENCES tbl2(col2) referential_actions;
ALTER TABLE tbl DROP FOREIGN KEY fk_name;
Dropping a foreign key can be performed online with the foreign_key_checks option enabled or disabled. Creating a foreign key online requires foreign_key_checks to be disabled.
If you do not know the names of the foreign key constraints on a particular table, issue the following statement and find the constraint name in the CONSTRAINT clause for each foreign key:
show create table table\G
Or, query the information_schema.table_constraints table and use the constraint_name and constraint_type columns to identify the foreign key names.
As a consequence of this enhancement, you can now also drop a foreign key and its associated index in a single statement, which previously required separate statements in a strict order:
ALTER TABLE table DROP FOREIGN KEY constraint, DROP INDEX index;
If foreign keys are already present in the table being altered (that is, it is a child table containing any FOREIGN KEY ... REFERENCE clauses), additional restrictions apply to online DDL operations, even those not directly involving the foreign key columns:
Concurrent DML is disallowed during online DDL operations on such child tables. (This restriction is being evaluated as a bug and might be lifted.)
An ALTER TABLE on the child table could also wait for another transaction to commit, if a change to the parent table caused associated changes in the child table through an ON UPDATE or ON DELETE clause using the CASCADE or SET NULL parameters.
In the same way, if a table is the parent table in a foreign key relationship, even though it does not contain any FOREIGN KEY clauses, it could wait for the ALTER TABLE to complete if an INSERT, UPDATE, or DELETE statement caused an ON UPDATE or ON DELETE action in the child table.
Notes on ALGORITHM=COPY
Any ALTER TABLE operation run with the ALGORITHM=COPY clause prevents concurrent DML operations. Concurrent queries are still allowed. That is, a table-copying operation always includes at least the concurrency restrictions of LOCK=SHARED (allow queries but not DML). You can further restrict concurrency for such operations by specifying LOCK=EXCLUSIVE (prevent DML and queries).
Concurrent DML but Table Copy Still Required
Some other ALTER TABLE operations allow concurrent DML, and are faster than MySQL 5.5 and prior: the table-copying operation is optimized, even though a table copy is still required:
Adding, dropping, or reordering columns.
Adding or dropping a primary key.
Changing the ROW_FORMAT or KEY_BLOCK_SIZE properties for a table.
Changing the nullable status for a column.
Note
As your database schema evolves with new columns, data types, constraints, indexes, and so on, keep your CREATE TABLE statements up to date with the latest table definitions. Even with the performance improvements of online DDL, it is more efficient to create stable database structures at the beginning, rather than creating part of the schema and then issuing ALTER TABLE statements afterward.
The main exception to this guideline is for secondary indexes on tables with large numbers of rows. It is typically most efficient to create the table with all details specified except the secondary indexes, load the data, then create the secondary indexes. You can use the same technique with foreign keys (load the data first, then set up the foreign keys) if you know the initial data is clean and do not need consistency checks during the loading process.
Whatever sequence of CREATE TABLE, CREATE INDEX, ALTER TABLE, and similar statements went into putting a table together, you can capture the SQL needed to reconstruct the current form of the table by issuing the statement SHOW CREATE TABLE table\G (uppercase \G required for tidy formatting). This output shows clauses such as numeric precision, NOT NULL, and CHARACTER SET that are sometimes added behind the scenes, and you might otherwise leave out when cloning the table on a new system or setting up foreign key columns with identical type.
5.5.2. Performance and Concurrency Considerations for Online DDL
Online DDL improves several aspects of MySQL operation, such as performance, concurrency, availability, and scalability:
Because queries and DML operations on the table can proceed while the DDL is in progress, applications that access the table are more responsive. Reduced locking and waiting for other resources all throughout the MySQL server leads to greater scalability, even for operations not involving the table being altered.
For in-place operations, by avoiding the disk I/O and CPU cycles to rebuild the table, you minimize the overall load on the database and maintain good performance and high throughput during the DDL operation.
For in-place operations, because less data is read into the buffer pool than if all the data was copied, you avoid purging frequently accessed data from memory, which formerly could cause a temporary performance dip after a DDL operation.
Locking Options for Online DDL
While an InnoDB table is being changed by a DDL operation, the table may or may not be locked, depending on the internal workings of that operation and the LOCK clause of the ALTER TABLE statement. By default, MySQL uses as little locking as possible during a DDL operation; you specify the clause either to make the locking more restrictive than it normally would be (thus limiting concurrent DML, or DML and queries), or to ensure that some expected degree of locking is allowed for an operation. If the LOCK clause specifies a level of locking that is not available for that specific kind of DDL operation, such as LOCK=SHARED or LOCK=NONE while creating or dropping a primary key, the clause works like an assertion, causing the statement to fail with an error. The following list shows the different possibilities for the LOCK clause, from the most permissive to the most restrictive:
For DDL operations with LOCK=NONE, both queries and concurrent DML are allowed. This clause makes the ALTER TABLE fail if the kind of DDL operation cannot be performed with the requested type of locking, so specify LOCK=NONE if keeping the table fully available is vital and it is OK to cancel the DDL if that is not possible. For example, you might use this clause in DDLs for tables involving customer signups or purchases, to avoid making those tables unavailable by mistakenly issuing an expensive ALTER TABLE statement.
For DDL operations with LOCK=SHARED, any writes to the table (that is, DML operations) are blocked, but the data in the table can be read. This clause makes the ALTER TABLE fail if the kind of DDL operation cannot be performed with the requested type of locking, so specify LOCK=SHARED if keeping the table available for queries is vital and it is OK to cancel the DDL if that is not possible. For example, you might use this clause in DDLs for tables in a data warehouse, where it is OK to delay data load operations until the DDL is finished, but queries cannot be delayed for long periods.
For DDL operations with LOCK=DEFAULT, or with the LOCK clause omitted, MySQL uses the lowest level of locking that is available for that kind of operation, allowing concurrent queries, DML, or both wherever possible. This is the setting to use when making pre-planned, pre-tested changes that you know will not cause any availability problems based on the workload for that table.
For DDL operations with LOCK=EXCLUSIVE, both queries and DML operations are blocked. This clause makes the ALTER TABLE fail if the kind of DDL operation cannot be performed with the requested type of locking, so specify LOCK=EXCLUSIVE if the primary concern is finishing the DDL in the shortest time possible, and it is OK to make applications wait when they try to access the table. You might also use LOCK=EXCLUSIVE if the server is supposed to be idle, to avoid unexpected accesses to the table.
An online DDL statement for an InnoDB table always waits for currently executing transactions that are accessing the table to commit or roll back, because it requires exclusive access to the table for a brief period while the DDL statement is being prepared. Likewise, it requires exclusive access to the table for a brief time before finishing. Thus, an online DDL statement waits for any transactions that are started while the DDL is in progress, and query or modify the table, to commit or roll back before the DDL completes.
Because there is some processing work involved with recording the changes made by concurrent DML operations, then applying those changes at the end, an online DDL operation could take longer overall than the old-style mechanism that blocks table access from other sessions. The reduction in raw performance is balanced against better responsiveness for applications that use the table. When evaluating the ideal techniques for changing table structure, consider end-user perception of performance, based on factors such as load times for web pages.
A newly created InnoDB secondary index contains only the committed data in the table at the time the CREATE INDEX or ALTER TABLE statement finishes executing. It does not contain any uncommitted values, old versions of values, or values marked for deletion but not yet removed from the old index.
Performance of In-Place versus Table-Copying DDL Operations
The raw performance of an online DDL operation is largely determined by whether the operation is performed in-place, or requires copying and rebuilding the entire table. See Table 5.9, “Summary of Online Status for DDL Operations” to see what kinds of operations can be performed in-place, and any requirements for avoiding table-copy operations.
The performance speedup from in-place DDL applies to operations on secondary indexes, not to the primary key index. The rows of an InnoDB table are stored in a clustered index organized based on the primary key, forming what some database systems call an “index-organized table”. Because the table structure is so closely tied to the primary key, redefining the primary key still requires copying the data.
When an operation on the primary key uses ALGORITHM=INPLACE, even though the data is still copied, it is more efficient than using ALGORITHM=COPY because:
No undo logging or associated redo logging is required for ALGORITHM=INPLACE. These operations add overhead to DDL statements that use ALGORITHM=COPY.
The secondary index entries are pre-sorted, and so can be loaded in order.
The change buffer is not used, because there are no random-access inserts into the secondary indexes.
To judge the relative performance of online DDL operations, you can run such operations on a big InnoDB table using current and earlier versions of MySQL. You can also run all the performance tests under the latest MySQL version, simulating the previous DDL behavior for the “before” results, by setting the old_alter_table system variable. Issue the statement set old_alter_table=1 in the session, and measure DDL performance to record the “before” figures. Then set old_alter_table=0 to re-enable the newer, faster behavior, and run the DDL operations again to record the “after” figures.
For a basic idea of whether a DDL operation does its changes in-place or performs a table copy, look at the “rows affected” value displayed after the command finishes. For example, here are lines you might see after doing different types of DDL operations:
Changing the default value of a column (super-fast, does not affect the table data at all):
Query OK, 0 rows affected (0.07 sec)
Adding an index (takes time, but 0 rows affected shows that the table is not copied):
Query OK, 0 rows affected (21.42 sec)
Changing the data type of a column (takes substantial time and does require rebuilding all the rows of the table):
Query OK, 1671168 rows affected (1 min 35.54 sec)
For example, before running a DDL operation on a big table, you might check whether the operation will be fast or slow as follows:
Clone the table structure.
Populate the cloned table with a tiny amount of data.
Run the DDL operation on the cloned table.
Check whether the “rows affected” value is zero or not. A non-zero value means the operation will require rebuilding the entire table, which might require special planning. For example, you might do the DDL operation during a period of scheduled downtime, or on each replication slave server one at a time.
For a deeper understanding of the reduction in MySQL processing, examine the performance_schema and INFORMATION_SCHEMA tables related to InnoDB before and after DDL operations, to see the number of physical reads, writes, memory allocations, and so on.
5.5.3. SQL Syntax for Online DDL
Typically, you do not need to do anything special to enable online DDL when using the ALTER TABLE statement for InnoDB tables. See Table 5.9, “Summary of Online Status for DDL Operations” for the kinds of DDL operations that can be performed in-place, allowing concurrent DML, or both. Some variations require particular combinations of configuration settings or ALTER TABLE clauses.
You can control the various aspects of a particular online DDL operation by using the LOCK and ALGORITHM clauses of the ALTER TABLE statement. These clauses come at the end of the statement, separated from the table and column specifications by commas. The LOCK clause is useful for fine-tuning the degree of concurrent access to the table. The ALGORITHM clause is primarily intended for performance comparisons and as a fallback to the older table-copying behavior in case you encounter any issues with existing DDL code. For example:
To avoid accidentally making the table unavailable for reads, writes, or both, you could specify a clause on the ALTER TABLE statement such as LOCK=NONE (allow both reads and writes) or LOCK=SHARED (allow reads). The operation halts immediately if the requested level of concurrency is not available.
To compare performance, you could run one statement with ALGORITHM=INPLACE and another with ALGORITHM=COPY, as an alternative to setting the old_alter_table configuration option.
To avoid the chance of tying up the server by running an ALTER TABLE that copied the table, you could include ALGORITHM=INPLACE so the statement halts immediately if it cannot use the in-place mechanism. See Table 5.9, “Summary of Online Status for DDL Operations” for a list of the DDL operations that can or cannot be performed in-place.
See Section 5.5.2, “Performance and Concurrency Considerations for Online DDL” for more details about the LOCK clause. For full examples of using online DDL, see Section 5.5.5, “Examples of Online DDL”.
5.5.4. Combining or Separating DDL Statements
Before the introduction of online DDL, it was common practice to combine many DDL operations into a single ALTER TABLE statement. Because each ALTER TABLE statement involved copying and rebuilding the table, it was more efficient to make several changes to the same table at once, since those changes could all be done with a single rebuild operation for the table. The downside was that SQL code involving DDL operations was harder to maintain and to reuse in different scripts. If the specific changes were different each time, you might have to construct a new complex ALTER TABLE for each slightly different scenario.
For DDL operations that can be done in-place, as shown in Table 5.9, “Summary of Online Status for DDL Operations”, now you can separate them into individual ALTER TABLE statements for easier scripting and maintenance, without sacrificing efficiency. For example, you might take a complicated statement such as:
alter table t1 add index i1(c1), add unique index i2(c2), change c4_old_name c4_new_name integer unsigned;
and break it down into simpler parts that can be tested and performed independently, such as:
alter table t1 add index i1(c1);
alter table t1 add unique index i2(c2);
alter table t1 change c4_old_name c4_new_name integer unsigned not null;
You might still use multi-part ALTER TABLE statements for:
Operations that must be performed in a specific sequence, such as creating an index followed by a foreign key constraint that uses that index.
Operations all using the same specific LOCK clause, that you want to either succeed or fail as a group.
Operations that cannot be performed in-place, that is, that still copy and rebuild the table.
Operations for which you specify ALGORITHM=COPY or old_alter_table=1, to force the table-copying behavior if needed for precise backward-compatibility in specialized scenarios.
5.5.5. Examples of Online DDL
Here are code examples showing some operations whose performance, concurrency, and scalability are improved by the latest online DDL enhancements.
Example 5.1, “Schema Setup Code for Online DDL Experiments” sets up tables named BIG_TABLE and SMALL_TABLE used in the subsequent examples.
Example 5.2, “Speed and Efficiency of CREATE INDEX and DROP INDEX” illustrates the performance aspects of creating and dropping indexes.
Example 5.3, “Concurrent DML During CREATE INDEX and DROP INDEX” shows queries and DML statements running during a DROP INDEX operation.
Example 5.4, “Renaming a Column” demonstrates the speed improvement for renaming a column, and shows the care needed to keep the data type precisely the same when doing the rename operation.
Example 5.5, “Dropping Foreign Keys” demonstrates how foreign keys work with online DDL. Because two tables are involved in foreign key operations, there are extra locking considerations. Thus, tables with foreign keys sometimes have restrictions for online DDL operations.
Example 5.6, “Changing Auto-Increment Value” demonstrates how auto-increment columns work with online DDL. Tables with auto-increment columns sometimes have restrictions for online DDL operations.
Example 5.7, “Controlling Concurrency with the LOCK Clause” demonstrates the options to permit or restrict concurrent queries and DML operations while an online DDL operation is in progress. It shows the situations when the DDL statement might wait, or the concurrent transaction might wait, or the concurrent transaction might cancel a DML statement due to a deadlock error.
Example 5.8, “Schema Setup Code for Online DDL Experiments” demonstrates creating and dropping multiple indexes in a single statement, which can be more efficient than using a separate statement for each index operation.
Example 5.9, “Creating and Dropping the Primary Key” demonstrates how it is more efficient to define a primary key when creating the table, and relatively expensive to add one later.
Example 5.1. Schema Setup Code for Online DDL Experiments
Here is the code that sets up the initial tables used in these demonstrations:
/*
Setup code for the online DDL demonstration:
- Set up some config variables.
- Create 2 tables that are clones of one of the INFORMATION_SCHEMA tables
that always has some data. The "small" table has a couple of thousand rows.
For the "big" table, keep doubling the data until it reaches over a million rows.
- Set up a primary key for the sample tables, since we are demonstrating InnoDB aspects.
*/
set autocommit = 0;
set foreign_key_checks = 1;
set global innodb_file_per_table = 1;
set old_alter_table=0;
prompt mysql:
use test;
\! echo "Setting up 'small' table:"
drop table if exists small_table;
create table small_table as select * from information_schema.columns;
alter table small_table add id int unsigned not null primary key auto_increment;
select count(id) from small_table;
\! echo "Setting up 'big' table:"
drop table if exists big_table;
create table big_table as select * from information_schema.columns;
show create table big_table\G
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
insert into big_table select * from big_table;
commit;
alter table big_table add id int unsigned not null primary key auto_increment;
select count(id) from big_table;
Running this code gives this output, condensed for brevity and with the most important points bolded:
Setting up 'small' table:
Query OK, 0 rows affected (0.01 sec)
Query OK, 1678 rows affected (0.13 sec)
Records: 1678 Duplicates: 0 Warnings: 0
Query OK, 1678 rows affected (0.07 sec)
Records: 1678 Duplicates: 0 Warnings: 0
+-----------+
| count(id) |
+-----------+
| 1678 |
+-----------+
1 row in set (0.00 sec)
Setting up 'big' table:
Query OK, 0 rows affected (0.16 sec)
Query OK, 1678 rows affected (0.17 sec)
Records: 1678 Duplicates: 0 Warnings: 0
*************************** 1. row ***************************
Table: big_table
Create Table: CREATE TABLE `big_table` (
`TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
`COLUMN_DEFAULT` longtext CHARACTER SET utf8,
`IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
`DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
`DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
`COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
`EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
`PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT ''
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
Query OK, 1678 rows affected (0.09 sec)
Records: 1678 Duplicates: 0 Warnings: 0
Query OK, 3356 rows affected (0.07 sec)
Records: 3356 Duplicates: 0 Warnings: 0
Query OK, 6712 rows affected (0.17 sec)
Records: 6712 Duplicates: 0 Warnings: 0
Query OK, 13424 rows affected (0.44 sec)
Records: 13424 Duplicates: 0 Warnings: 0
Query OK, 26848 rows affected (0.63 sec)
Records: 26848 Duplicates: 0 Warnings: 0
Query OK, 53696 rows affected (1.72 sec)
Records: 53696 Duplicates: 0 Warnings: 0
Query OK, 107392 rows affected (3.02 sec)
Records: 107392 Duplicates: 0 Warnings: 0
Query OK, 214784 rows affected (6.28 sec)
Records: 214784 Duplicates: 0 Warnings: 0
Query OK, 429568 rows affected (13.25 sec)
Records: 429568 Duplicates: 0 Warnings: 0
Query OK, 859136 rows affected (28.16 sec)
Records: 859136 Duplicates: 0 Warnings: 0
Query OK, 0 rows affected (0.03 sec)
Query OK, 1718272 rows affected (1 min 9.22 sec)
Records: 1718272 Duplicates: 0 Warnings: 0
+-----------+
| count(id) |
+-----------+
| 1718272 |
+-----------+
1 row in set (1.75 sec)
Example 5.2. Speed and Efficiency of CREATE INDEX and DROP INDEX
Here is a sequence of statements demonstrating the relative speed of CREATE INDEX and DROP INDEX statements. For a small table, the elapsed time is less than a second whether we use the fast or slow technique, so we look at the “rows affected” output to verify which operations can avoid the table rebuild. For a large table, the difference in efficiency is obvious because skipping the table rebuild saves substantial time.
\! clear
\! echo "=== Create and drop index (small table, new/fast technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/small_table.ibd
create index i_dtyp_small on small_table (data_type), algorithm=inplace;
\! echo "Data size after index created: "
\! du -k data/test/small_table.ibd
drop index i_dtyp_small on small_table, algorithm=inplace;
-- Compare against the older slower DDL.
\! echo "=== Create and drop index (small table, old/slow technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/small_table.ibd
create index i_dtyp_small on small_table (data_type), algorithm=copy;
\! echo "Data size after index created: "
\! du -k data/test/small_table.ibd
drop index i_dtyp_small on small_table, algorithm=copy;
-- In the above example, we examined the "rows affected" number,
-- ideally looking for a zero figure. Let's try again with a larger
-- sample size, where we'll see that the actual time taken can
-- vary significantly.
\! echo "=== Create and drop index (big table, new/fast technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/big_table.ibd
create index i_dtyp_big on big_table (data_type), algorithm=inplace;
\! echo "Data size after index created: "
\! du -k data/test/big_table.ibd
drop index i_dtyp_big on big_table, algorithm=inplace;
\! echo "=== Create and drop index (big table, old/slow technique) ==="
\! echo
\! echo "Data size (kilobytes) before index created: "
\! du -k data/test/big_table.ibd
create index i_dtyp_big on big_table (data_type), algorithm=copy;
\! echo "Data size after index created: "
\! du -k data/test/big_table.ibd
drop index i_dtyp_big on big_table, algorithm=copy;
Running this code gives this output, condensed for brevity and with the most important points bolded:
Query OK, 0 rows affected (0.00 sec)
=== Create and drop index (small table, new/fast technique) ===
Data size (kilobytes) before index created:
384 data/test/small_table.ibd
Query OK, 0 rows affected (0.04 sec)
Records: 0 Duplicates: 0 Warnings: 0
Data size after index created:
432 data/test/small_table.ibd
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0
Query OK, 0 rows affected (0.00 sec)
=== Create and drop index (small table, old/slow technique) ===
Data size (kilobytes) before index created:
432 data/test/small_table.ibd
Query OK, 1678 rows affected (0.12 sec)
Records: 1678 Duplicates: 0 Warnings: 0
Data size after index created:
448 data/test/small_table.ibd
Query OK, 1678 rows affected (0.10 sec)
Records: 1678 Duplicates: 0 Warnings: 0
Query OK, 0 rows affected (0.00 sec)
=== Create and drop index (big table, new/fast technique) ===
Data size (kilobytes) before index created:
315392 data/test/big_table.ibd
Query OK, 0 rows affected (33.32 sec)
Records: 0 Duplicates: 0 Warnings: 0
Data size after index created:
335872 data/test/big_table.ibd
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0
Query OK, 0 rows affected (0.00 sec)
=== Create and drop index (big table, old/slow technique) ===
Data size (kilobytes) before index created:
335872 data/test/big_table.ibd
Query OK, 1718272 rows affected (1 min 5.01 sec)
Records: 1718272 Duplicates: 0 Warnings: 0
Data size after index created:
348160 data/test/big_table.ibd
Query OK, 1718272 rows affected (46.59 sec)
Records: 1718272 Duplicates: 0 Warnings: 0
Example 5.3. Concurrent DML During CREATE INDEX and DROP INDEX
Here are some snippets of code that I ran in separate mysql sessions connected to the same database, to illustrate DML statements (insert, update, or delete) running at the same time as CREATE INDEX and DROP INDEX.
/*
CREATE INDEX statement to run against a table while
insert/update/delete statements are modifying the
column being indexed.
*/
-- We'll run this script in one session, while simultaneously creating and dropping
-- an index on test/big_table.table_name in another session.
use test;
create index i_concurrent on big_table(table_name);
/*
DROP INDEX statement to run against a table while
insert/update/delete statements are modifying the
column being indexed.
*/
-- We'll run this script in one session, while simultaneously creating and dropping
-- an index on test/big_table.table_name in another session.
use test;
drop index i_concurrent on big_table;
/*
Some queries and insert/update/delete statements to run against a table
while an index is being created or dropped. Previously, these operations
would have stalled during the index create/drop period and possibly
timed out or deadlocked.
*/
-- We'll run this script in one session, while simultaneously creating and dropping
-- an index on test/big_table.table_name in another session.
-- In our test instance, that column has about 1.7M rows, with 136 different values.
-- Sample values: COLUMNS (20480), ENGINES (6144), EVENTS (24576), FILES (38912), TABLES (21504), VIEWS (10240).
set autocommit = 0;
use test;
select distinct character_set_name from big_table where table_name = 'FILES';
delete from big_table where table_name = 'FILES';
select distinct character_set_name from big_table where table_name = 'FILES';
-- I'll issue the final rollback interactively, not via script,
-- the better to control the timing.
-- rollback;
Running this code gives this output, condensed for brevity and with the most important points bolded:
mysql: source concurrent_ddl_create.sql
Database changed
Query OK, 0 rows affected (1 min 25.15 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql: source concurrent_ddl_drop.sql
Database changed
Query OK, 0 rows affected (24.98 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql: source concurrent_dml.sql
Query OK, 0 rows affected (0.00 sec)
Database changed
+--------------------+
| character_set_name |
+--------------------+
| NULL |
| utf8 |
+--------------------+
2 rows in set (0.32 sec)
Query OK, 38912 rows affected (1.84 sec)
Empty set (0.01 sec)
mysql: rollback;
Query OK, 0 rows affected (1.05 sec)
Example 5.4. Renaming a Column
Here is a demonstration of using ALTER TABLE to rename a column. We use the new, fast DDL mechanism to change the name, then the old, slow DDL mechanism (with old_alter_table=1) to restore the original column name.
Notes:
Because the syntax for renaming a column also involves re-specifying the data type, be very careful to specify exactly the same data type to avoid a costly table rebuild. In this case, we checked the output of show create table table\G and copied any clauses such as CHARACTER SET and NOT NULL from the original column definition.
Again, renaming a column for a small table is fast enough that we need to examine the “rows affected” number to verify that the new DDL mechanism is more efficient than the old one. With a big table, the difference in elapsed time makes the improvement obvious.
/*
Run through a sequence of 'rename column' statements.
Because this operation involves only metadata, not table data,
it is fast for big and small tables, with new or old DDL mechanisms.
*/
\! clear
\! echo "Rename column (fast technique, small table):"
alter table small_table change `IS_NULLABLE` `NULLABLE` varchar(3) character set utf8 not null, algorithm=inplace;
\! echo "Rename back to original name (slow technique):"
alter table small_table change `NULLABLE` `IS_NULLABLE` varchar(3) character set utf8 not null, algorithm=copy;
\! echo "Rename column (fast technique, big table):"
alter table big_table change `IS_NULLABLE` `NULLABLE` varchar(3) character set utf8 not null, algorithm=inplace;
\! echo "Rename back to original name (slow technique):"
alter table big_table change `NULLABLE` `IS_NULLABLE` varchar(3) character set utf8 not null, algorithm=copy;
Running this code gives this output, condensed for brevity and with the most important points bolded:
Rename column (fast technique, small table):
Query OK, 0 rows affected (0.05 sec)
Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0
Rename back to original name (slow technique):
Query OK, 0 rows affected (0.00 sec)
Query OK, 1678 rows affected (0.35 sec)
Records: 1678 Duplicates: 0 Warnings: 0
Rename column (fast technique, big table):
Query OK, 0 rows affected (0.00 sec)
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0
Rename back to original name (slow technique):
Query OK, 0 rows affected (0.00 sec)
Query OK, 1718272 rows affected (1 min 0.00 sec)
Records: 1718272 Duplicates: 0 Warnings: 0
Query OK, 0 rows affected (0.00 sec)
Example 5.5. Dropping Foreign Keys
Here is a demonstration of foreign keys, including improvement to the speed of dropping a foreign key constraint.
/*
Demonstrate aspects of foreign keys that are or aren't affected by the DDL improvements.
- Create a new table with only a few values to serve as the parent table.
- Set up the 'small' and 'big' tables as child tables using a foreign key.
- Verify that the ON DELETE CASCADE clause makes changes ripple from parent to child tables.
- Drop the foreign key constraints, and optionally associated indexes. (This is the operation that is sped up.)
*/
\! clear
-- Make sure foreign keys are being enforced, and allow
-- rollback after doing some DELETEs that affect both
-- parent and child tables.
set foreign_key_checks = 1;
set autocommit = 0;
-- Create a parent table, containing values that we know are already present
-- in the child tables.
drop table if exists schema_names;
create table schema_names (id int unsigned not null primary key auto_increment, schema_name varchar(64) character set utf8 not null, index i_schema (schema_name)) as select distinct table_schema schema_name from small_table;
show create table schema_names\G
show create table small_table\G
show create table big_table\G
-- Creating the foreign key constraint still involves a table rebuild when foreign_key_checks=1,
-- as illustrated by the "rows affected" figure.
alter table small_table add constraint small_fk foreign key i_table_schema (table_schema) references schema_names(schema_name) on delete cascade;
alter table big_table add constraint big_fk foreign key i_table_schema (table_schema) references schema_names(schema_name) on delete cascade;
show create table small_table\G
show create table big_table\G
select schema_name from schema_names order by schema_name;
select count(table_schema) howmany, table_schema from small_table group by table_schema;
select count(table_schema) howmany, table_schema from big_table group by table_schema;
-- big_table is the parent table.
-- schema_names is the parent table.
-- big_table is the child table.
-- (One row in the parent table can have many "children" in the child table.)
-- Changes to the parent table can ripple through to the child table.
-- For example, removing the value 'test' from schema_names.schema_name will
-- result in the removal of 20K or so rows from big_table.
delete from schema_names where schema_name = 'test';
select schema_name from schema_names order by schema_name;
select count(table_schema) howmany, table_schema from small_table group by table_schema;
select count(table_schema) howmany, table_schema from big_table group by table_schema;
-- Because we've turned off autocommit, we can still get back those deleted rows
-- if the DELETE was issued by mistake.
rollback;
select schema_name from schema_names order by schema_name;
select count(table_schema) howmany, table_schema from small_table group by table_schema;
select count(table_schema) howmany, table_schema from big_table group by table_schema;
-- All of the cross-checking between parent and child tables would be
-- deadly slow if there wasn't the requirement for the corresponding
-- columns to be indexed!
-- But we can get rid of the foreign key using a fast operation
-- that doesn't rebuild the table.
-- If we didn't specify a constraint name when setting up the foreign key, we would
-- have to find the auto-generated name such as 'big_table_ibfk_1' in the
-- output from 'show create table'.
-- For the small table, we'll drop the foreign key and the associated index.
-- Having an index on a small table is less critical.
\! echo "DROP FOREIGN KEY and INDEX from small_table:"
alter table small_table drop foreign key small_fk, drop index small_fk;
-- For the big table, we'll drop the foreign key and leave the associated index.
-- If we are still doing queries that reference the indexed column, the index is
-- very important to avoid a full table scan of the big table.
\! echo "DROP FOREIGN KEY from big_table:"
alter table big_table drop foreign key big_fk;
show create table small_table\G
show create table big_table\G
Running this code gives this output, condensed for brevity and with the most important points bolded:
Query OK, 0 rows affected (0.00 sec)
Query OK, 0 rows affected (0.00 sec)
Query OK, 0 rows affected (0.01 sec)
Query OK, 4 rows affected (0.03 sec)
Records: 4 Duplicates: 0 Warnings: 0
*************************** 1. row ***************************
Table: schema_names
Create Table: CREATE TABLE `schema_names` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`schema_name` varchar(64) CHARACTER SET utf8 NOT NULL,
PRIMARY KEY (`id`),
KEY `i_schema` (`schema_name`)
) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
*************************** 1. row ***************************
Table: small_table
Create Table: CREATE TABLE `small_table` (
`TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
`COLUMN_DEFAULT` longtext CHARACTER SET utf8,
`IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
`DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
`DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
`COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
`EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
`PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1679 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
*************************** 1. row ***************************
Table: big_table
Create Table: CREATE TABLE `big_table` (
`TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
`COLUMN_DEFAULT` longtext CHARACTER SET utf8,
`IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
`DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
`DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
`COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
`EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
`PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`),
KEY `big_fk` (`TABLE_SCHEMA`)
) ENGINE=InnoDB AUTO_INCREMENT=1718273 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
Query OK, 1678 rows affected (0.10 sec)
Records: 1678 Duplicates: 0 Warnings: 0
Query OK, 1718272 rows affected (1 min 14.54 sec)
Records: 1718272 Duplicates: 0 Warnings: 0
*************************** 1. row ***************************
Table: small_table
Create Table: CREATE TABLE `small_table` (
`TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
`COLUMN_DEFAULT` longtext CHARACTER SET utf8,
`IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
`DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
`DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
`COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
`EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
`PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`),
KEY `small_fk` (`TABLE_SCHEMA`),
CONSTRAINT `small_fk` FOREIGN KEY (`TABLE_SCHEMA`) REFERENCES `schema_names` (`schema_name`) ON DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=1679 DEFAULT CHARSET=latin1
1 row in set (0.12 sec)
*************************** 1. row ***************************
Table: big_table
Create Table: CREATE TABLE `big_table` (
`TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
`COLUMN_DEFAULT` longtext CHARACTER SET utf8,
`IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
`DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
`DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
`COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
`EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
`PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`),
KEY `big_fk` (`TABLE_SCHEMA`),
CONSTRAINT `big_fk` FOREIGN KEY (`TABLE_SCHEMA`) REFERENCES `schema_names` (`schema_name`) ON DELETE CASCADE
) ENGINE=InnoDB AUTO_INCREMENT=1718273 DEFAULT CHARSET=latin1
1 row in set (0.01 sec)
+--------------------+
| schema_name |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| test |
+--------------------+
4 rows in set (0.00 sec)
+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
| 563 | information_schema |
| 286 | mysql |
| 786 | performance_schema |
| 43 | test |
+---------+--------------------+
4 rows in set (0.01 sec)
+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
| 576512 | information_schema |
| 292864 | mysql |
| 804864 | performance_schema |
| 44032 | test |
+---------+--------------------+
4 rows in set (2.10 sec)
Query OK, 1 row affected (1.52 sec)
+--------------------+
| schema_name |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
+--------------------+
3 rows in set (0.00 sec)
+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
| 563 | information_schema |
| 286 | mysql |
| 786 | performance_schema |
+---------+--------------------+
3 rows in set (0.00 sec)
+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
| 576512 | information_schema |
| 292864 | mysql |
| 804864 | performance_schema |
+---------+--------------------+
3 rows in set (1.74 sec)
Query OK, 0 rows affected (0.60 sec)
+--------------------+
| schema_name |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| test |
+--------------------+
4 rows in set (0.00 sec)
+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
| 563 | information_schema |
| 286 | mysql |
| 786 | performance_schema |
| 43 | test |
+---------+--------------------+
4 rows in set (0.01 sec)
+---------+--------------------+
| howmany | table_schema |
+---------+--------------------+
| 576512 | information_schema |
| 292864 | mysql |
| 804864 | performance_schema |
| 44032 | test |
+---------+--------------------+
4 rows in set (1.59 sec)
DROP FOREIGN KEY and INDEX from small_table:
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0
DROP FOREIGN KEY from big_table:
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0
*************************** 1. row ***************************
Table: small_table
Create Table: CREATE TABLE `small_table` (
`TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
`COLUMN_DEFAULT` longtext CHARACTER SET utf8,
`IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
`DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
`DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
`COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
`EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
`PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1679 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
*************************** 1. row ***************************
Table: big_table
Create Table: CREATE TABLE `big_table` (
`TABLE_CATALOG` varchar(512) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_SCHEMA` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`TABLE_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_NAME` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`ORDINAL_POSITION` bigint(21) unsigned NOT NULL DEFAULT '0',
`COLUMN_DEFAULT` longtext CHARACTER SET utf8,
`IS_NULLABLE` varchar(3) CHARACTER SET utf8 NOT NULL,
`DATA_TYPE` varchar(64) CHARACTER SET utf8 NOT NULL DEFAULT '',
`CHARACTER_MAXIMUM_LENGTH` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_OCTET_LENGTH` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_PRECISION` bigint(21) unsigned DEFAULT NULL,
`NUMERIC_SCALE` bigint(21) unsigned DEFAULT NULL,
`DATETIME_PRECISION` bigint(21) unsigned DEFAULT NULL,
`CHARACTER_SET_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLLATION_NAME` varchar(32) CHARACTER SET utf8 DEFAULT NULL,
`COLUMN_TYPE` longtext CHARACTER SET utf8 NOT NULL,
`COLUMN_KEY` varchar(3) CHARACTER SET utf8 NOT NULL DEFAULT '',
`EXTRA` varchar(30) CHARACTER SET utf8 NOT NULL DEFAULT '',
`PRIVILEGES` varchar(80) CHARACTER SET utf8 NOT NULL DEFAULT '',
`COLUMN_COMMENT` varchar(1024) CHARACTER SET utf8 NOT NULL DEFAULT '',
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`),
KEY `big_fk` (`TABLE_SCHEMA`)
) ENGINE=InnoDB AUTO_INCREMENT=1718273 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
Example 5.6. Changing Auto-Increment Value
Here is an illustration of increasing the auto-increment lower limit for a table column, demonstrating how this operation now avoids a table rebuild, plus some other fun facts about InnoDB auto-increment columns.
/*
If this script is run after foreign_key.sql, the schema_names table is
already set up. But to allow this script to run multiple times without
running into duplicate ID errors, we set up the schema_names table
all over again.
*/
\! clear
\! echo "=== Adjusting the Auto-Increment Limit for a Table ==="
\! echo
drop table if exists schema_names;
create table schema_names (id int unsigned not null primary key auto_increment,
schema_name varchar(64) character set utf8 not null, index i_schema (schema_name))
as select distinct table_schema schema_name from small_table;
\! echo "Initial state of schema_names table. AUTO_INCREMENT is included in SHOW CREATE TABLE output."
\! echo "Note how MySQL reserved a block of IDs, but only needed 4 of them in this transaction, so the next inserted values would get IDs 8 and 9."
show create table schema_names\G
select * from schema_names order by id;
\! echo "Inserting even a tiny amount of data can produce gaps in the ID sequence."
insert into schema_names (schema_name) values ('eight'), ('nine');
\! echo "Bumping auto-increment lower limit to 20 (fast mechanism):"
alter table schema_names auto_increment=20, algorithm=inplace;
\! echo "Inserting 2 rows that should get IDs 20 and 21:"
insert into schema_names (schema_name) values ('foo'), ('bar');
commit;
\! echo "Bumping auto-increment lower limit to 30 (slow mechanism):"
alter table schema_names auto_increment=30, algorithm=copy;
\! echo "Inserting 2 rows that should get IDs 30 and 31:"
insert into schema_names (schema_name) values ('bletch'),('baz');
commit;
select * from schema_names order by id;
\! echo "Final state of schema_names table. AUTO_INCREMENT value shows the next inserted row would get ID=32."
show create table schema_names\G
Running this code gives this output, condensed for brevity and with the most important points bolded:
=== Adjusting the Auto-Increment Limit for a Table ===
Query OK, 0 rows affected (0.01 sec)
Query OK, 4 rows affected (0.02 sec)
Records: 4 Duplicates: 0 Warnings: 0
Initial state of schema_names table. AUTO_INCREMENT is included in SHOW CREATE TABLE output.
Note how MySQL reserved a block of IDs, but only needed 4 of them in this transaction, so the next inserted values would get IDs 8 and 9.
*************************** 1. row ***************************
Table: schema_names
Create Table: CREATE TABLE `schema_names` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`schema_name` varchar(64) CHARACTER SET utf8 NOT NULL,
PRIMARY KEY (`id`),
KEY `i_schema` (`schema_name`)
) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
+----+--------------------+
| id | schema_name |
+----+--------------------+
| 1 | information_schema |
| 2 | mysql |
| 3 | performance_schema |
| 4 | test |
+----+--------------------+
4 rows in set (0.00 sec)
Inserting even a tiny amount of data can produce gaps in the ID sequence.
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
Query OK, 0 rows affected (0.00 sec)
Bumping auto-increment lower limit to 20 (fast mechanism):
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0
Inserting 2 rows that should get IDs 20 and 21:
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
Query OK, 0 rows affected (0.00 sec)
Query OK, 0 rows affected (0.00 sec)
Bumping auto-increment lower limit to 30 (slow mechanism):
Query OK, 8 rows affected (0.02 sec)
Records: 8 Duplicates: 0 Warnings: 0
Inserting 2 rows that should get IDs 30 and 31:
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
Query OK, 0 rows affected (0.01 sec)
+----+--------------------+
| id | schema_name |
+----+--------------------+
| 1 | information_schema |
| 2 | mysql |
| 3 | performance_schema |
| 4 | test |
| 8 | eight |
| 9 | nine |
| 20 | foo |
| 21 | bar |
| 30 | bletch |
| 31 | baz |
+----+--------------------+
10 rows in set (0.00 sec)
Query OK, 0 rows affected (0.00 sec)
Final state of schema_names table. AUTO_INCREMENT value shows the next inserted row would get ID=32.
*************************** 1. row ***************************
Table: schema_names
Create Table: CREATE TABLE `schema_names` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`schema_name` varchar(64) CHARACTER SET utf8 NOT NULL,
PRIMARY KEY (`id`),
KEY `i_schema` (`schema_name`)
) ENGINE=InnoDB AUTO_INCREMENT=32 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
Example 5.7. Controlling Concurrency with the LOCK Clause
This example shows how to use the LOCK clause of the ALTER TABLE statement to allow or deny concurrent access to the table while an online DDL operation is in progress. The clause has settings that allow queries and DML statements (LOCK=NONE), just queries (LOCK=SHARED), or no concurrent access at all (LOCK=EXCLUSIVE).
In one session, we run a succession of ALTER TABLE statements to create and drop an index, using different values for the LOCK clause to see what happens with waiting or deadlocking in either session. We are using the same BIG_TABLE table as in previous examples, starting with approximately 1.7 million rows. For illustration purposes, we will index and query the IS_NULLABLE column. (Although in real life it would be silly to make an index for a tiny column with only 2 distinct values.)
mysql: desc big_table;
+--------------------------+---------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------------------+---------------------+------+-----+---------+----------------+
| TABLE_CATALOG | varchar(512) | NO | | | |
| TABLE_SCHEMA | varchar(64) | NO | | | |
| TABLE_NAME | varchar(64) | NO | | | |
| COLUMN_NAME | varchar(64) | NO | | | |
| ORDINAL_POSITION | bigint(21) unsigned | NO | | 0 | |
| COLUMN_DEFAULT | longtext | YES | | NULL | |
| IS_NULLABLE | varchar(3) | NO | | | |
...
+--------------------------+---------------------+------+-----+---------+----------------+
21 rows in set (0.14 sec)
mysql: alter table big_table add index i1(is_nullable);
Query OK, 0 rows affected (20.71 sec)
mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.02 sec)
mysql: alter table big_table add index i1(is_nullable), lock=exclusive;
Query OK, 0 rows affected (19.44 sec)
mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.03 sec)
mysql: alter table big_table add index i1(is_nullable), lock=shared;
Query OK, 0 rows affected (16.71 sec)
mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.05 sec)
mysql: alter table big_table add index i1(is_nullable), lock=none;
Query OK, 0 rows affected (12.26 sec)
mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (0.01 sec)
... repeat statements like the above while running queries ...
... and DML statements at the same time in another session ...
Nothing dramatic happens in the session running the DDL statements. Sometimes, an ALTER TABLE takes unusually long because it is waiting for another transaction to finish, when that transaction modified the table during the DDL or queried the table before the DDL:
mysql: alter table big_table add index i1(is_nullable), lock=none;
Query OK, 0 rows affected (59.27 sec)
mysql: -- The previous ALTER took so long because it was waiting for all the concurrent
mysql: -- transactions to commit or roll back.
mysql: alter table big_table drop index i1;
Query OK, 0 rows affected (41.05 sec)
mysql: -- Even doing a SELECT on the table in the other session first causes
mysql: -- the ALTER TABLE above to stall until the transaction
mysql: -- surrounding the SELECT is committed or rolled back.
Here is the log from another session running concurrently, where we issue queries and DML statements against the table before, during, and after the DDL operations shown in the previous listings. This first listing shows queries only. We expect the queries to be allowed during DDL operations using LOCK=NONE or LOCK=SHARED, and for the query to wait until the DDL is finished if the ALTER TABLE statement includes LOCK=EXCLUSIVE.
mysql: show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.01 sec)
mysql: -- A trial query before any ADD INDEX in the other session:
mysql: -- Note: because autocommit is enabled, each
mysql: -- transaction finishes immediately after the query.
mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+
2 rows in set (4.49 sec)
mysql: -- Index is being created with LOCK=EXCLUSIVE on the ALTER statement.
mysql: -- The query waits until the DDL is finished before proceeding.
mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+
2 rows in set (17.26 sec)
mysql: -- Index is being created with LOCK=SHARED on the ALTER statement.
mysql: -- The query returns its results while the DDL is in progress.
mysql: -- The same thing happens with LOCK=NONE on the ALTER statement.
mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+
2 rows in set (3.11 sec)
mysql: -- Once the index is created, and with no DDL in progress,
mysql: -- queries referencing the indexed column are very fast:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.20 sec)
mysql: select distinct is_nullable from big_table;
+-------------+
| is_nullable |
+-------------+
| NO |
| YES |
+-------------+
2 rows in set (0.00 sec)
Now in this concurrent session, we run some transactions including DML statements, or a combination of DML statements and queries. We use DELETE statements to illustrate predictable, verifiable changes to the table. Because the transactions in this part can span multiple statements, we run these tests with autocommit turned off.
mysql: set global autocommit = off;
Query OK, 0 rows affected (0.00 sec)
mysql: -- Count the rows that will be involved in our DELETE statements:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.95 sec)
mysql: -- After this point, any DDL statements back in the other session
mysql: -- stall until we commit or roll back.
mysql: delete from big_table where is_nullable = 'YES' limit 11648;
Query OK, 11648 rows affected (0.14 sec)
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (1.04 sec)
mysql: rollback;
Query OK, 0 rows affected (0.09 sec)
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.93 sec)
mysql: -- OK, now we're going to try that during index creation with LOCK=NONE.
mysql: delete from big_table where is_nullable = 'YES' limit 11648;
Query OK, 11648 rows affected (0.21 sec)
mysql: -- We expect that now there will be 400000 'YES' rows left:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (1.25 sec)
mysql: -- In the other session, the ALTER TABLE is waiting before finishing,
mysql: -- because _this_ transaction hasn't committed or rolled back yet.
mysql: rollback;
Query OK, 0 rows affected (0.11 sec)
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 411648 |
+----------+
1 row in set (0.19 sec)
mysql: -- The ROLLBACK left the table in the same state we originally found it.
mysql: -- Now let's make a permanent change while the index is being created,
mysql: -- again with ALTER TABLE ... , LOCK=NONE.
mysql: -- First, commit so the DROP INDEX in the other shell can finish;
mysql: -- the previous SELECT started a transaction that accessed the table.
mysql: commit;
Query OK, 0 rows affected (0.00 sec)
mysql: -- Now we add the index back in the other shell, then issue DML in this one
mysql: -- while the DDL is running.
mysql: delete from big_table where is_nullable = 'YES' limit 11648;
Query OK, 11648 rows affected (0.23 sec)
mysql: commit;
Query OK, 0 rows affected (0.01 sec)
mysql: -- In the other shell, the ADD INDEX has finished.
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (0.19 sec)
mysql: -- At the point the new index is finished being created, it contains entries
mysql: -- only for the 400000 'YES' rows left when all concurrent transactions are finished.
mysql:
mysql: -- Now we will run a similar test, while ALTER TABLE ... , LOCK=SHARED is running.
mysql: -- We expect a query to complete during the ALTER TABLE, but for the DELETE
mysql: -- to run into some kind of issue.
mysql: commit;
Query OK, 0 rows affected (0.00 sec)
mysql: -- As expected, the query returns results while the LOCK=SHARED DDL is running:
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (2.07 sec)
mysql: -- The DDL in the other session is not going to finish until this transaction
mysql: -- is committed or rolled back. If we tried a DELETE now and it waited because
mysql: -- of LOCK=SHARED on the DDL, both transactions would wait forever (deadlock).
mysql: -- MySQL detects this condition and cancels the attempted DML statement.
mysql: delete from big_table where is_nullable = 'YES' limit 100000;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
mysql: -- The transaction here is still going, so in the other shell, the ADD INDEX operation
mysql: -- is waiting for this transaction to commit or roll back.
mysql: rollback;
Query OK, 0 rows affected (0.00 sec)
mysql: -- Now let's try issuing a query and some DML, on one line, while running
mysql: -- ALTER TABLE ... , LOCK=EXCLUSIVE in the other shell.
mysql: -- Notice how even the query is held up until the DDL is finished.
mysql: -- By the time the DELETE is issued, there is no conflicting access
mysql: -- to the table and we avoid the deadlock error.
mysql: select count(*) from big_table where is_nullable = 'YES'; delete from big_table where is_nullable = 'YES' limit 100000;
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (15.98 sec)
Query OK, 100000 rows affected (2.81 sec)
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 300000 |
+----------+
1 row in set (0.17 sec)
mysql: rollback;
Query OK, 0 rows affected (1.36 sec)
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 400000 |
+----------+
1 row in set (0.19 sec)
mysql: commit;
Query OK, 0 rows affected (0.00 sec)
mysql: -- Next, we try ALTER TABLE ... , LOCK=EXCLUSIVE in the other session
mysql: -- and only issue DML, not any query, in the concurrent transaction here.
mysql: delete from big_table where is_nullable = 'YES' limit 100000;
Query OK, 100000 rows affected (16.37 sec)
mysql: -- That was OK because the ALTER TABLE did not have to wait for the transaction
mysql: -- here to complete. The DELETE in this session waited until the index was ready.
mysql: select count(*) from big_table where is_nullable = 'YES';
+----------+
| count(*) |
+----------+
| 300000 |
+----------+
1 row in set (0.16 sec)
mysql: commit;
Query OK, 0 rows affected (0.00 sec)
In the preceding example listings, we learned that:
The LOCK clause for ALTER TABLE is set off from the rest of the statement by a comma.
Online DDL operations might wait before starting, until any prior transactions that access the table are committed or rolled back.
Online DDL operations might wait before completing, until any concurrent transactions that access the table are committed or rolled back.
While an online DDL operation is running, concurrent queries are relatively straightforward, as long as the ALTER TABLE statement uses LOCK=NONE or LOCK=SHARED.
Pay attention to whether autocommit is turned on or off. If it is turned off, be careful to end transactions in other sessions (even just queries) before performing DDL operations on the table.
With LOCK=SHARED, concurrent transactions that mix queries and DML could encounter deadlock errors and have to be restarted after the DDL is finished.
With LOCK=NONE, concurrent transactions can freely mix queries and DML. The DDL operation waits until the concurrent transactions are committed or rolled back.
With LOCK=NONE, concurrent transactions can freely mix queries and DML, but those transactions wait until the DDL operation is finished before they can access the table.
Example 5.8. Schema Setup Code for Online DDL Experiments
You can create multiple indexes on a table with one ALTER TABLE statement. This is relatively efficient, because the clustered index of the table needs to be scanned only once (although the data is sorted separately for each new index). For example:
CREATE TABLE T1(A INT PRIMARY KEY, B INT, C CHAR(1)) ENGINE=InnoDB;
INSERT INTO T1 VALUES (1,2,'a'), (2,3,'b'), (3,2,'c'), (4,3,'d'), (5,2,'e');
COMMIT;
ALTER TABLE T1 ADD INDEX (B), ADD UNIQUE INDEX (C);
The above statements create table T1 with the primary key on column A, insert several rows, then build two new indexes on columns B and C. If there were many rows inserted into T1 before the ALTER TABLE statement, this approach is much more efficient than creating all the secondary indexes before loading the data.
Because dropping InnoDB secondary indexes also does not require any copying of table data, it is equally efficient to drop multiple indexes with a single ALTER TABLE statement or multiple DROP INDEX statements:
ALTER TABLE T1 DROP INDEX B, DROP INDEX C;
or:
DROP INDEX B ON T1;
DROP INDEX C ON T1;
Example 5.9. Creating and Dropping the Primary Key
Restructuring the clustered index for an InnoDB table always requires copying the table data. Thus, it is best to define the primary key when you create a table, rather than issuing ALTER TABLE ... ADD PRIMARY KEY later, to avoid rebuilding the table.
Defining a PRIMARY KEY later causes the data to be copied, as in the following example:
CREATE TABLE T2 (A INT, B INT);
INSERT INTO T2 VALUES (NULL, 1);
ALTER TABLE T2 ADD PRIMARY KEY (B);
When you create a UNIQUE or PRIMARY KEY index, MySQL must do some extra work. For UNIQUE indexes, MySQL checks that the table contains no duplicate values for the key. For a PRIMARY KEY index, MySQL also checks that none of the PRIMARY KEY columns contains a NULL.
When you add a primary key using the ALGORITHM=COPY clause, MySQL actually converts NULL values in the associated columns to default values: 0 for numbers, the empty string for character-based columns and BLOBs, and January 1, 1975 for dates. This is a non-standard behavior that Oracle recommends you not rely on. Adding a primary key using ALGORITHM=INPLACE is only allowed when the SQL_MODE setting includes the strict_trans_tables or strict_all_tables flags; when the SQL_MODEsetting is strict, ADD PRIMARY KEY ... , ALGORITHM=INPLACE is allowed, but the statement can still fail if the requested primary key columns contain any NULL values. The ALGORITHM=INPLACE behavior is more standard-compliant.
The following example shows the different possibilities for the ADD PRIMARY KEY clause. With the ALGORITHM=COPY clause, the operation succeeds despite the presence of NULL values in the primary key columns; the data is silently changed, which could cause problems. With the ALGORITHM=INPLACE clause, the operation could fail for different reasons, because this setting considers data integrity a high priority: the statement gives an error if the SQL_MODE setting is not “strict” enough, or if the primary key columns contain any NULL values. Once we address both of those requirements, the ALTER TABLE operation succeeds.
CREATE TABLE add_pk_via_copy (c1 INT, c2 VARCHAR(10), c3 DATETIME);
INSERT INTO add_pk_via_copy VALUES (1,'a','...'),(NULL,NULL,NULL);
ALTER TABLE add_pk_via_copy ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=COPY;
SELECT * FROM add_pk_via_copy;
CREATE TABLE add_pk_via_inplace (c1 INT, c2 VARCHAR(10), c3 DATETIME);
INSERT INTO add_pk_via_inplace VALUES (1,'a','...'),(NULL,NULL,NULL);
SET sql_mode = 'strict_trans_tables';
ALTER TABLE add_pk_via_inplace ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=COPY;
SET sql_mode = '';
ALTER TABLE add_pk_via_inplace ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=COPY;
DELETE FROM add_pk_via_inplace WHERE c1 IS NULL OR c2 IS NULL OR c3 IS NULL;
ALTER TABLE add_pk_via_inplace ADD PRIMARY KEY (c1,c2,c3), ALGORITHM=COPY;
SELECT * FROM add_pk_via_inplace;
If you create a table without a primary key, InnoDB chooses one for you, which can be the first UNIQUE key defined on NOT NULL columns, or a system-generated key. To avoid any uncertainty and the potential space requirement for an extra hidden column, specify the PRIMARY KEY clause as part of the CREATE TABLE statement.
5.5.6. Implementation Details of Online DDL
Each ALTER TABLE operation for an InnoDB table is governed by several aspects:
Whether there is any change to the physical representation of the table, or whether it purely a change to metadata that can be done without touching the table itself.
Whether the volume of data in the table stays the same, increases, or decreases.
Whether a change in table data involves the clustered index, secondary indexes, or both.
Whether there are any foreign key relationships between the table being altered and some other table. The mechanics differ depending on whether the foreign_key_checks configuration option is enabled or disabled.
Whether the table is partitioned. Partitioning clauses of ALTER TABLE are turned into low-level operations involving one or more tables, and those operations follow the regular rules for online DDL.
Whether the table data must be copied, whether the table can be reorganized “in-place”, or a combination of both.
Whether the table contains any auto-increment columns.
What degree of locking is required, either by the nature of the underlying database operations, or a LOCK clause that you specify in the ALTER TABLE statement.
This section explains how these factors affect the different kinds of ALTER TABLE operations on InnoDB tables.
Error Conditions for Online DDL
Here are the primary reasons why an online DDL operation could fail:
If a LOCK clause specifies a low degree of locking (SHARED or NONE) that is not compatible with the particular type of DDL operation.
If a timeout occurs while waiting to get an exclusive lock on the table, which is needed briefly during the initial and final phases of the DDL operation.
If the tmpdir file system runs out of disk space, while MySQL writes temporary sort files on disk during index creation.
If the ALTER TABLE takes so long, and concurrent DML modifies the table so much, that the size of the temporary online long exceeds the value of the innodb_online_alter_log_max_size configuration option. This condition causes a DB_ONLINE_LOG_TOO_BIG error.
If concurrent DML makes changes to the table that are allowed with the original table definition, but not with the new one. The operation only fails at the very end, when MySQL tries to apply all the changes from concurrent DML statements. For example, you might insert duplicate values into a column while a unique index is being created, or you might insert NULL values into a column while creating a primary key index on that column. The changes made by the concurrent DML take precedence, and the ALTER TABLE operation is effectively rolled back.
Although the configuration option innodb_file_per_table has a dramatic effect on the representation for an InnoDB table, all online DDL operations work equally well whether that option is enabled or disabled, and whether the table is physically located in its own .ibd file or inside the system tablespace.
InnoDB has two types of indexes: the clustered index representing all the data in the table, and optional secondary indexes to speed up queries. Since the clustered index contains the data values in its B-tree nodes, adding or dropping a clustered index does involve copying the data, and creating a new copy of the table. A secondary index, however, contains only the index key and the value of the primary key. This type of index can be created or dropped without copying the data in the clustered index. Because each secondary index contains copies of the primary key values (used to access the clustered index when needed), when you change the definition of the primary key, all secondary indexes are recreated as well.
Dropping a secondary index is simple. Only the internal InnoDB system tables and the MySQL data dictionary tables are updated to reflect the fact that the index no longer exists. InnoDB returns the storage used for the index to the tablespace that contained it, so that new indexes or additional table rows can use the space.
To add a secondary index to an existing table, InnoDB scans the table, and sorts the rows using memory buffers and temporary files in order by the values of the secondary index key columns. The B-tree is then built in key-value order, which is more efficient than inserting rows into an index in random order. Because the B-tree nodes are split when they fill, building the index in this way results in a higher fill-factor for the index, making it more efficient for subsequent access.
Primary Key and Secondary Key Indexes
Historically, the MySQL server and InnoDB have each kept their own metadata about table and index structures. The MySQL server stores this information in .frm files that are not protected by a transactional mechanism, while InnoDB has its own data dictionary as part of the system tablespace. If a DDL operation was interrupted by a crash or other unexpected event partway through, the metadata could be left inconsistent between these two locations, causing problems such as startup errors or inability to access the table that was being altered. Now that InnoDB is the default storage engine, addressing such issues is a high priority. These enhancements to DDL operations reduce the window of opportunity for such issues to occur.
5.5.7. How Crash Recovery Works with Online DDL
Although no data is lost if the server crashes while an ALTER TABLE statement is executing, the crash recovery process is different for clustered indexes and secondary indexes.
If the server crashes while creating an InnoDB secondary index, upon recovery, MySQL drops any partially created indexes. You must re-run the ALTER TABLE or CREATE INDEX statement.
When a crash occurs during the creation of an InnoDB clustered index, recovery is more complicated, because the data in the table must be copied to an entirely new clustered index. Remember that all InnoDB tables are stored as clustered indexes. In the following discussion, we use the word table and clustered index interchangeably.
MySQL creates the new clustered index by copying the existing data from the original InnoDB table to a temporary table that has the desired index structure. Once the data is completely copied to this temporary table, the original table is renamed with a different temporary table name. The temporary table comprising the new clustered index is renamed with the name of the original table, and the original table is dropped from the database.
If a system crash occurs while creating a new clustered index, no data is lost, but you must complete the recovery process using the temporary tables that exist during the process. Since it is rare to re-create a clustered index or re-define primary keys on large tables, or to encounter a system crash during this operation, this manual does not provide information on recovering from this scenario.
5.5.8. DDL for Partitioned Tables
The mechanism used for DDL operations on partitioned tables is somewhat different from the online DDL discussed throughout this section. The partitioning clauses of the ALTER TABLE statement are only allowed in conjunction with ALGORITHM=DEFAULT and LOCK=DEFAULT. Although these operations do not go through the same internal online DDL API as for non-partitioned tables, MySQL still attempts to minimize data copying and locking where possible:
ADD PARTITION and DROP PARTITION for tables partitioned by RANGE or LIST do not copy any existing data.
TRUNCATE PARTITION does not copy any existing data, for all types of partitioned tables.
Concurrent queries are allowed during ADD PARTITION and COALESCE PARTITION for tables partitioned by HASH or LIST. MySQL copies the data while holding a shared lock.
For REORGANIZE PARTITION, REBUILD PARTITION, or ADD PARTITION or COALESCE PARTITION for a table partitioned by LINEAR HASH or LIST, concurrent queries are allowed. Data from the affected partitions is copied while holding a shared lock.
5.5.9. Limitations of Online DDL
Take the following considerations into account when creating or dropping InnoDB indexes:
During an online DDL operation that copies the table, files are written to the temporary directory ($TMPDIR on Unix, %TEMP% on Windows, or the directory specified by the --tmpdir configuration variable). Each temporary file is large enough to hold one column in the new table or index, and each one is removed as soon as it is merged into the final table or index.
The table is copied, rather than using Fast Index Creation when you create an index on a TEMPORARY TABLE. This has been reported as MySQL Bug #39833.
InnoDB handles error cases when users attempt to drop indexes needed for foreign keys. See section Section 14.2.5.9, “Better Error Handling when Dropping Indexes” for details.
The ALTER TABLE clause LOCK=NONE is not allowed if there are ON...CASCADE or ON...SET NULL constraints on the table.
During each online DDL ALTER TABLE statement, regardless of the LOCK clause, there are brief periods at the beginning and end requiring an exclusive lock on the table (the same kind of lock specified by the LOCK=EXCLUSIVE clause). Thus, an online DDL operation might wait before starting if there is a long-running transaction performing inserts, updates, deletes, or SELECT ... FOR UPDATE on that table; and an online DDL operation might wait before finishing if a similar long-running transaction was started while the ALTER TABLE was in progress.
5.6. Running Multiple MySQL Instances on One Machine
In some cases, you might want to run multiple instances of MySQL on a single machine. You might want to test a new MySQL release while leaving an existing production setup undisturbed. Or you might want to give different users access to different mysqld servers that they manage themselves. (For example, you might be an Internet Service Provider that wants to provide independent MySQL installations for different customers.)
It is possible to use a different MySQL server binary per instance, or use the same binary for multiple instances, or any combination of the two approaches. For example, you might run a server from MySQL 5.5 and one from MySQL 5.6, to see how different versions handle a given workload. Or you might run multiple instances of the current production version, each managing a different set of databases.
Whether or not you use distinct server binaries, each instance that you run must be configured with unique values for several operating parameters. This eliminates the potential for conflict between instances. Parameters can be set on the command line, in option files, or by setting environment variables. See Section 4.2.3, “Specifying Program Options”. To see the values used by a given instance, connect to it and execute a SHOW VARIABLES statement.
The primary resource managed by a MySQL instance is the data directory. Each instance should use a different data directory, the location of which is specified using the --datadir=path option. For methods of configuring each instance with its own data directory, and warnings about the dangers of failing to do so, see Section 5.6.1, “Setting Up Multiple Data Directories”.
In addition to using different data directories, several other options must have different values for each server instance:
--port controls the port number for TCP/IP connections. Alternatively, if the host has multiple network addresses, you can use --bind-address to cause each server to listen to a different address.
--socket controls the Unix socket file path on Unix or the named pipe name on Windows. On Windows, it is necessary to specify distinct pipe names only for those servers configured to permit named-pipe connections.
--shared-memory-base-name=name
This option is used only on Windows. It designates the shared-memory name used by a Windows server to permit clients to connect using shared memory. It is necessary to specify distinct shared-memory names only for those servers configured to permit shared-memory connections.
This option indicates the path name of the file in which the server writes its process ID.
If you use the following log file options, their values must differ for each server:
For further discussion of log file options, see Section 5.2, “MySQL Server Logs”.
To achieve better performance, you can specify the following option differently for each server, to spread the load between several physical disks:
Having different temporary directories also makes it easier to determine which MySQL server created any given temporary file.
If you have multiple MySQL installations in different locations, you can specify the base directory for each installation with the --basedir=path option. This causes each instance to automatically use a different data directory, log files, and PID file because the default for each of those parameters is relative to the base directory. In that case, the only other options you need to specify are the --socket and --port options. Suppose that you install different versions of MySQL using tar file binary distributions. These install in different locations, so you can start the server for each installation using the command bin/mysqld_safe under its corresponding base directory. mysqld_safe determines the proper --basedir option to pass to mysqld, and you need specify only the --socket and --port options to mysqld_safe.
As discussed in the following sections, it is possible to start additional servers by specifying appropriate command options or by setting environment variables. However, if you need to run multiple servers on a more permanent basis, it is more convenient to use option files to specify for each server those option values that must be unique to it. The --defaults-file option is useful for this purpose.
5.6.1. Setting Up Multiple Data Directories
Each MySQL Instance on a machine should have its own data directory. The location is specified using the --datadir=path option.
There are different methods of setting up a data directory for a new instance:
Create a new data directory.
Copy an existing data directory.
The following discussion provides more detail about each method.
Warning
Normally, you should never have two servers that update data in the same databases. This may lead to unpleasant surprises if your operating system does not support fault-free system locking. If (despite this warning) you run multiple servers using the same data directory and they have logging enabled, you must use the appropriate options to specify log file names that are unique to each server. Otherwise, the servers try to log to the same files.
Even when the preceding precautions are observed, this kind of setup works only with MyISAM and MERGE tables, and not with any of the other storage engines. Also, this warning against sharing a data directory among servers always applies in an NFS environment. Permitting multiple MySQL servers to access a common data directory over NFS is a very bad idea. The primary problem is that NFS is the speed bottleneck. It is not meant for such use. Another risk with NFS is that you must devise a way to ensure that two or more servers do not interfere with each other. Usually NFS file locking is handled by the lockd daemon, but at the moment there is no platform that performs locking 100% reliably in every situation.
Create a New Data Directory
With this method, the data directory will be in the same state as when you first install MySQL. It will have the default set of MySQL accounts and no user data.
On Unix, initialize the data directory by running mysql_install_db. See Section 2.10.1, “Unix Postinstallation Procedures”.
On Windows, the data directory is included in the MySQL distribution:
MySQL Zip archive distributions for Windows contain an unmodified data directory. You can unpack such a distribution into a temporary location, then copy it data directory to where you are setting up the new instance.
Windows MSI package installers create and set up the data directory that the installed server will use, but also create a pristine “template” data directory named data under the installation directory. After an installation has been performed using an MSI package, the template data directory can be copied to set up additional MySQL instances.
Copy an Existing Data Directory
With this method, any MySQL accounts or user data present in the data directory are carried over to the new data directory.
Stop the existing MySQL instance using the data directory. This must be a clean shutdown so that the instance flushes any pending changes to disk.
Copy the data directory to the location where the new data directory should be.
Copy the my.cnf or my.ini option file used by the existing instance. This serves as a basis for the new instance.
Modify the new option file so that any pathnames referring to the original data directory refer to the new data directory. Also, modify any other options that must be unique per instance, such as the TCP/IP port number and the log files. For a list of parameters that must be unique per instance, see Section 5.6, “Running Multiple MySQL Instances on One Machine”.
Start the new instance, telling it to use the new option file.
5.6.2. Running Multiple MySQL Instances on Windows
You can run multiple servers on Windows by starting them manually from the command line, each with appropriate operating parameters, or by installing several servers as Windows services and running them that way. General instructions for running MySQL from the command line or as a service are given in Section 2.3, “Installing MySQL on Microsoft Windows”. The following sections describe how to start each server with different values for those options that must be unique per server, such as the data directory. These options are listed in Section 5.6, “Running Multiple MySQL Instances on One Machine”.
5.6.2.1. Starting Multiple MySQL Instances at the Windows Command Line
The procedure for starting a single MySQL server manually from the command line is described in Section 2.3.4.5, “Starting MySQL from the Windows Command Line”. To start multiple servers this way, you can specify the appropriate options on the command line or in an option file. It is more convenient to place the options in an option file, but it is necessary to make sure that each server gets its own set of options. To do this, create an option file for each server and tell the server the file name with a --defaults-file option when you run it.
Suppose that you want to run mysqld on port 3307 with a data directory of C:\mydata1, and mysqld-debug on port 3308 with a data directory of C:\mydata2. Use this procedure:
Make sure that each data directory exists, including its own copy of the mysql database that contains the grant tables.
Create two option files. For example, create one file named C:\my-opts1.cnf that looks like this:
[mysqld]
datadir = C:/mydata1
port = 3307
Create a second file named C:\my-opts2.cnf that looks like this:
[mysqld]
datadir = C:/mydata2
port = 3308
Use the --defaults-file option to start each server with its own option file:
C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql\bin\mysqld-debug --defaults-file=C:\my-opts2.cnf
Each server starts in the foreground (no new prompt appears until the server exits later), so you will need to issue those two commands in separate console windows.
To shut down the servers, connect to each using the appropriate port number:
C:\> C:\mysql\bin\mysqladmin --port=3307 shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 shutdown
Servers configured as just described permit clients to connect over TCP/IP. If your version of Windows supports named pipes and you also want to permit named-pipe connections, use the mysqld or mysqld-debug server and specify options that enable the named pipe and specify its name. Each server that supports named-pipe connections must use a unique pipe name. For example, the C:\my-opts1.cnf file might be written like this:
[mysqld]
datadir = C:/mydata1
port = 3307
enable-named-pipe
socket = mypipe1
Modify C:\my-opts2.cnf similarly for use by the second server. Then start the servers as described previously.
A similar procedure applies for servers that you want to permit shared-memory connections. Enable such connections with the --shared-memory option and specify a unique shared-memory name for each server with the --shared-memory-base-name option.
5.6.2.2. Starting Multiple MySQL Instances as Windows Services
On Windows, a MySQL server can run as a Windows service. The procedures for installing, controlling, and removing a single MySQL service are described in Section 2.3.4.8, “Starting MySQL as a Windows Service”.
To set up multiple MySQL services, you must make sure that each instance uses a different service name in addition to the other parameters that must be unique per instance.
For the following instructions, suppose that you want to run the mysqld server from two different versions of MySQL that are installed at C:\mysql-5.5.9 and C:\mysql-5.6.12, respectively. (This might be the case if you are running 5.5.9 as your production server, but also want to conduct tests using 5.6.12.)
To install MySQL as a Windows service, use the --install or --install-manual option. For information about these options, see Section 2.3.4.8, “Starting MySQL as a Windows Service”.
Based on the preceding information, you have several ways to set up multiple services. The following instructions describe some examples. Before trying any of them, shut down and remove any existing MySQL services.
Approach 1: Specify the options for all services in one of the standard option files. To do this, use a different service name for each server. Suppose that you want to run the 5.5.9 mysqld using the service name of mysqld1 and the 5.6.12 mysqld using the service name mysqld2. In this case, you can use the [mysqld1] group for 5.5.9 and the [mysqld2] group for 5.6.12. For example, you can set up C:\my.cnf like this:
options for mysqld1 service
[mysqld1]
basedir = C:/mysql-5.5.9
port = 3307
enable-named-pipe
socket = mypipe1
options for mysqld2 service
[mysqld2]
basedir = C:/mysql-5.6.12
port = 3308
enable-named-pipe
socket = mypipe2
Install the services as follows, using the full server path names to ensure that Windows registers the correct executable program for each service:
C:\> C:\mysql-5.5.9\bin\mysqld --install mysqld1
C:\> C:\mysql-5.6.12\bin\mysqld --install mysqld2
To start the services, use the services manager, or use NET START with the appropriate service names:
C:\> NET START mysqld1
C:\> NET START mysqld2
To stop the services, use the services manager, or use NET STOP with the appropriate service names:
C:\> NET STOP mysqld1
C:\> NET STOP mysqld2
Approach 2: Specify options for each server in separate files and use --defaults-file when you install the services to tell each server what file to use. In this case, each file should list options using a [mysqld] group.
With this approach, to specify options for the 5.5.9 mysqld, create a file C:\my-opts1.cnf that looks like this:
[mysqld]
basedir = C:/mysql-5.5.9
port = 3307
enable-named-pipe
socket = mypipe1
For the 5.6.12 mysqld, create a file C:\my-opts2.cnf that looks like this:
[mysqld]
basedir = C:/mysql-5.6.12
port = 3308
enable-named-pipe
socket = mypipe2
Install the services as follows (enter each command on a single line):
C:\> C:\mysql-5.5.9\bin\mysqld --install mysqld1
--defaults-file=C:\my-opts1.cnf
C:\> C:\mysql-5.6.12\bin\mysqld --install mysqld2
--defaults-file=C:\my-opts2.cnf
When you install a MySQL server as a service and use a --defaults-file option, the service name must precede the option.
After installing the services, start and stop them the same way as in the preceding example.
To remove multiple services, use mysqld --remove for each one, specifying a service name following the --remove option. If the service name is the default (MySQL), you can omit it.
5.6.3. Running Multiple MySQL Instances on Unix
One way is to run multiple MySQL instances on Unix is to compile different servers with different default TCP/IP ports and Unix socket files so that each one listens on different network interfaces. Compiling in different base directories for each installation also results automatically in a separate, compiled-in data directory, log file, and PID file location for each server.
Assume that an existing 5.5 server is configured for the default TCP/IP port number (3306) and Unix socket file (/tmp/mysql.sock). To configure a new 5.6.12 server to have different operating parameters, use a CMake command something like this:
shell> cmake . -DMYSQL_TCP_PORT=port_number \
-DMYSQL_UNIX_ADDR=file_name \
-DCMAKE_INSTALL_PREFIX=/usr/local/mysql-5.6.12
Here, port_number and file_name must be different from the default TCP/IP port number and Unix socket file path name, and the CMAKE_INSTALL_PREFIX value should specify an installation directory different from the one under which the existing MySQL installation is located.
If you have a MySQL server listening on a given port number, you can use the following command to find out what operating parameters it is using for several important configurable variables, including the base directory and Unix socket file name:
shell> mysqladmin --host=host_name --port=port_number variables
With the information displayed by that command, you can tell what option values not to use when configuring an additional server.
If you specify localhost as the host name, mysqladmin defaults to using a Unix socket file connection rather than TCP/IP. To explicitly specify the connection protocol, use the --protocol={TCP|SOCKET|PIPE|MEMORY} option.
You need not compile a new MySQL server just to start with a different Unix socket file and TCP/IP port number. It is also possible to use the same server binary and start each invocation of it with different parameter values at runtime. One way to do so is by using command-line options:
shell> mysqld_safe --socket=file_name --port=port_number
To start a second server, provide different --socket and --port option values, and pass a --datadir=path option to mysqld_safe so that the server uses a different data directory.
Alternatively, put the options for each server in a different option file, then start each server using a --defaults-file option that specifies the path to the appropriate option file. For example, if the option files for two server instances are named /usr/local/mysql/my.cnf and /usr/local/mysql/my.cnf2, start the servers like this: command:
shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf
shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf2
Another way to achieve a similar effect is to use environment variables to set the Unix socket file name and TCP/IP port number:
shell> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
shell> MYSQL_TCP_PORT=3307
shell> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
shell> mysql_install_db --user=mysql
shell> mysqld_safe --datadir=/path/to/datadir &
This is a quick way of starting a second server to use for testing. The nice thing about this method is that the environment variable settings apply to any client programs that you invoke from the same shell. Thus, connections for those clients are automatically directed to the second server.
Section 2.12, “Environment Variables”, includes a list of other environment variables you can use to affect MySQL programs.
On Unix, the mysqld_multi script provides another way to start multiple servers. See Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”.
5.6.4. Using Client Programs in a Multiple-Server Environment
To connect with a client program to a MySQL server that is listening to different network interfaces from those compiled into your client, you can use one of the following methods:
Start the client with --host=host_name --port=port_number to connect using TCP/IP to a remote server, with --host=127.0.0.1 --port=port_number to connect using TCP/IP to a local server, or with --host=localhost --socket=file_name to connect to a local server using a Unix socket file or a Windows named pipe.
Start the client with --protocol=TCP to connect using TCP/IP, --protocol=SOCKET to connect using a Unix socket file, --protocol=PIPE to connect using a named pipe, or --protocol=MEMORY to connect using shared memory. For TCP/IP connections, you may also need to specify --host and --port options. For the other types of connections, you may need to specify a --socket option to specify a Unix socket file or Windows named-pipe name, or a --shared-memory-base-name option to specify the shared-memory name. Shared-memory connections are supported only on Windows.
On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point to the Unix socket file and TCP/IP port number before you start your clients. If you normally use a specific socket file or port number, you can place commands to set these environment variables in your .login file so that they apply each time you log in. See Section 2.12, “Environment Variables”.
Specify the default Unix socket file and TCP/IP port number in the [client] group of an option file. For example, you can use C:\my.cnf on Windows, or the .my.cnf file in your home directory on Unix. See Section 4.2.3.3, “Using Option Files”.
In a C program, you can specify the socket file or port number arguments in the mysql_real_connect() call. You can also have the program read option files by calling mysql_options(). See Section 21.8.6, “C API Function Descriptions”.
If you are using the Perl DBD::mysql module, you can read options from MySQL option files. For example:
$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
. "mysql_read_default_file=/usr/local/mysql/data/my.cnf";
$dbh = DBI->connect($dsn, $user, $password);
See Section 21.10, “MySQL Perl API”.
Other programming interfaces may provide similar capabilities for reading option files.
5.7. Tracing mysqld Using DTrace
The DTrace probes in the MySQL server are designed to provide information about the execution of queries within MySQL and the different areas of the system being utilized during that process. The organization and triggering of the probes means that the execution of an entire query can be monitored with one level of probes (query-start and query-done) but by monitoring other probes you can get successively more detailed information about the execution of the query in terms of the locks used, sort methods and even row-by-row and storage-engine level execution information.
The DTrace probes are organized so that you can follow the entire query process, from the point of connection from a client, through the query execution, row-level operations, and back out again. You can think of the probes as being fired within a specific sequence during a typical client connect/execute/disconnect sequence, as shown in the following figure.
Figure 5.1. The MySQL Architecture Using Pluggable Storage Engines
Global information is provided in the arguments to the DTrace probes at various levels. Global information, that is, the connection ID and user/host and where relevant the query string, is provided at key levels (connection-start, command-start, query-start, and query-exec-start). As you go deeper into the probes, it is assumed either you are only interested in the individual executions (row-level probes provide information on the database and table name only), or that you will combine the row-level probes with the notional parent probes to provide the information about a specific query. Examples of this will be given as the format and arguments of each probe are provided.
For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.
MySQL 5.6 includes support for DTrace probes on Solaris 10 Update 5 (Solaris 5/08) on SPARC, x86 and x86_64 platforms. Probes are also supported on Mac OS X 10.4 and higher. Enabling the probes should be automatic on these platforms. To explicitly enable or disable the probes during building, use the -DENABLE_DTRACE=1 or -DENABLE_DTRACE=0 option to CMake.
5.7.1. mysqld DTrace Probe Reference
MySQL supports the following static probes, organized into groups of functionality.
Table 5.10. MySQL DTrace Probes
Group | Probes | Introduced |
---|---|---|
Connection | connection-start, connection-done | 5.4.0 |
Command | command-start, command-done | 5.4.0 |
Query | query-start, query-done | 5.4.0 |
Query Parsing | query-parse-start, query-parse-done | 5.4.0 |
Query Cache | query-cache-hit, query-cache-miss | 5.4.0 |
Query Execution | query-exec-start, query-exec-done | 5.4.0 |
Row Level | insert-row-start, insert-row-done | 5.4.0 |
update-row-start, update-row-done | 5.4.0 | |
delete-row-start, delete-row-done | 5.4.0 | |
Row Reads | read-row-start, read-row-done | 5.4.0 |
Index Reads | index-read-row-start, index-read-row-done | 5.4.0 |
Lock | handler-rdlock-start, handler-rdlock-done | 5.4.0 |
handler-wrlock-start, handler-wrlock-done | 5.4.0 | |
handler-unlock-start, handler-unlock-done | 5.4.0 | |
Filesort | filesort-start, filesort-done | 5.4.0 |
Statement | select-start, select-done | 5.4.0 |
insert-start, insert-done | 5.4.0 | |
insert-select-start, insert-select-done | 5.4.0 | |
update-start, update-done | 5.4.0 | |
multi-update-start, multi-update-done | 5.4.0 | |
delete-start, delete-done | 5.4.0 | |
multi-delete-start, multi-delete-done | 5.4.0 | |
Network | net-read-start, net-read-done, net-write-start, net-write-done | 5.4.0 |
Keycache | keycache-read-start, keycache-read-block, keycache-read-done, keycache-read-hit, keycache-read-miss, keycache-write-start, keycache-write-block, keycache-write-done | 5.4.0 |
Note
When extracting the argument data from the probes, each argument is available as argN, starting with arg0. To identify each argument within the definitions they are provided with a descriptive name, but you must access the information using the corresponding argN parameter.
5.7.1.1. Connection Probes
The connection-start and connection-done probes enclose a connection from a client, regardless of whether the connection is through a socket or network connection.
connection-start(connectionid, user, host)
connection-done(status, connectionid)
connection-start: Triggered after a connection and successful login/authentication have been completed by a client. The arguments contain the connection information:
connectionid: An unsigned long containing the connection ID. This is the same as the process ID shown as the Id value in the output from SHOW PROCESSLIST.
user: The username used when authenticating. The value will be blank for the anonymous user.
host: The host of the client connection. For a connection made using UNIX sockets, the value will be blank.
connection-done: Triggered just as the connection to the client has been closed. The arguments are:
status: The status of the connection when it was closed. A logout operation will have a value of 0; any other termination of the connection has a nonzero value.
connectionid: The connection ID of the connection that was closed.
The following D script will quantify and summarize the average duration of individual connections, and provide a count, dumping the information every 60 seconds:
#!/usr/sbin/dtrace -s
mysql*:::connection-start
{
self->start = timestamp;
}
mysql*:::connection-done
/self->start/
{
@ = quantize(((timestamp - self->start)/1000000));
self->start = 0;
}
tick-60s
{
printa(@);
}
When executed on a server with a large number of clients you might see output similar to this:
1 57413 :tick-60s
value ------------- Distribution ------------- count
-1 | 0
0 |@@ 30011
1 | 59
2 | 5
4 | 20
8 | 29
16 | 18
32 | 27
64 | 30
128 | 11
256 | 10
512 | 1
1024 | 6
2048 | 8
4096 | 9
8192 | 8
16384 | 2
32768 | 1
65536 | 1
131072 | 0
262144 | 1
524288 | 0
5.7.1.2. Command Probes
The command probes are executed before and after a client command is executed, including any SQL statement that might be executed during that period. Commands include operations such as the initialization of the DB, use of the COM_CHANGE_USER operation (supported by the MySQL protocol), and manipulation of prepared statements. Many of these commands are used only by the MySQL client API from various connectors such as PHP and Java.
command-start(connectionid, command, user, host)
command-done(status)
command-start: Triggered when a command is submitted to the server.
connectionid: The connection ID of the client executing the command.
command: An integer representing the command that was executed. Possible values are shown in the following table.
Value | Name | Description |
---|---|---|
00 | COM_SLEEP | Internal thread state |
01 | COM_QUIT | Close connection |
02 | COM_INIT_DB | Select database (USE ...) |
03 | COM_QUERY | Execute a query |
04 | COM_FIELD_LIST | Get a list of fields |
05 | COM_CREATE_DB | Create a database (deprecated) |
06 | COM_DROP_DB | Drop a database (deprecated) |
07 | COM_REFRESH | Refresh connection |
08 | COM_SHUTDOWN | Shutdown server |
09 | COM_STATISTICS | Get statistics |
10 | COM_PROCESS_INFO | Get processes (SHOW PROCESSLIST) |
11 | COM_CONNECT | Initialize connection |
12 | COM_PROCESS_KILL | Kill process |
13 | COM_DEBUG | Get debug information |
14 | COM_PING | Ping |
15 | COM_TIME | Internal thread state |
16 | COM_DELAYED_INSERT | Internal thread state |
17 | COM_CHANGE_USER | Change user |
18 | COM_BINLOG_DUMP | Used by a replication slave or mysqlbinlog to initiate a binary log read |
19 | COM_TABLE_DUMP | Used by a replication slave to get the master table information |
20 | COM_CONNECT_OUT | Used by a replication slave to log a connection to the server |
21 | COM_REGISTER_SLAVE | Used by a replication slave during registration |
22 | COM_STMT_PREPARE | Prepare a statement |
23 | COM_STMT_EXECUTE | Execute a statement |
24 | COM_STMT_SEND_LONG_DATA | Used by a client when requesting extended data |
25 | COM_STMT_CLOSE | Close a prepared statement |
26 | COM_STMT_RESET | Reset a prepared statement |
27 | COM_SET_OPTION | Set a server option |
28 | COM_STMT_FETCH | Fetch a prepared statement |
user: The user executing the command.
host: The client host.
command-done: Triggered when the command execution completes. The status argument contains 0 if the command executed successfully, or 1 if the statement was terminated before normal completion.
The command-start and command-done probes are best used when combined with the statement probes to get an idea of overall execution time.
5.7.1.3. Query Probes
The query-start and query-done probes are triggered when a specific query is received by the server and when the query has been completed and the information has been successfully sent to the client.
query-start(query, connectionid, database, user, host)
query-done(status)
query-start: Triggered after the query string has been received from the client. The arguments are:
query: The full text of the submitted query.
connectionid: The connection ID of the client that submitted the query. The connection ID equals the connection ID returned when the client first connects and the Id value in the output from SHOW PROCESSLIST.
database: The database name on which the query is being executed.
user: The username used to connect to the server.
host: The hostname of the client.
query-done: Triggered once the query has been executed and the information has been returned to the client. The probe includes a single argument, status, which returns 0 when the query is successfully executed and 1 if there was an error.
You can get a simple report of the execution time for each query using the following D script:
#!/usr/sbin/dtrace -s
#pragma D option quiet
dtrace:::BEGIN
{
printf("%-20s %-20s %-40s %-9s\n", "Who", "Database", "Query", "Time(ms)");
}
mysql*:::query-start
{
self->query = copyinstr(arg0);
self->connid = arg1;
self->db = copyinstr(arg2);
self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
self->querystart = timestamp;
}
mysql*:::query-done
{
printf("%-20s %-20s %-40s %-9d\n",self->who,self->db,self->query,
(timestamp - self->querystart) / 1000000);
}
When executing the above script you should get a basic idea of the execution time of your queries:
shell> ./query.d
Who Database Query Time(ms)
root@localhost test select * from t1 order by i limit 10 0
root@localhost test set global query_cache_size=0 0
root@localhost test select * from t1 order by i limit 10 776
root@localhost test select * from t1 order by i limit 10 773
root@localhost test select * from t1 order by i desc limit 10 795
5.7.1.4. Query Parsing Probes
The query parsing probes are triggered before the original SQL statement is parsed and when the parsing of the statement and determination of the execution model required to process the statement has been completed:
query-parse-start(query)
query-parse-done(status)
query-parse-start: Triggered just before the statement is parsed by the MySQL query parser. The single argument, query, is a string containing the full text of the original query.
query-parse-done: Triggered when the parsing of the original statement has been completed. The status is an integer describing the status of the operation. A 0 indicates that the query was successfully parsed. A 1 indicates that the parsing of the query failed.
For example, you could monitor the execution time for parsing a given query using the following D script:
#!/usr/sbin/dtrace -s
#pragma D option quiet
mysql*:::query-parse-start
{
self->parsestart = timestamp;
self->parsequery = copyinstr(arg0);
}
mysql*:::query-parse-done
/arg0 == 0/
{
printf("Parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));
}
mysql*:::query-parse-done
/arg0 != 0/
{
printf("Error parsing %s: %d microseconds\n", self->parsequery,((timestamp - self->parsestart)/1000));
}
In the above script a predicate is used on query-parse-done so that different output is generated based on the status value of the probe.
When running the script and monitoring the execution:
shell> ./query-parsing.d
Error parsing select from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 36 ms
Parsing select * from t1 join (t2) on (t1.i = t2.i) order by t1.s,t1.i limit 10: 176 ms
5.7.1.5. Query Cache Probes
The query cache probes are fired when executing any query. The query-cache-hit query is triggered when a query exists in the query cache and can be used to return the query cache information. The arguments contain the original query text and the number of rows returned from the query cache for the query. If the query is not within the query cache, or the query cache is not enabled, then the query-cache-miss probe is triggered instead.
query-cache-hit(query, rows)
query-cache-miss(query)
query-cache-hit: Triggered when the query has been found within the query cache. The first argument, query, contains the original text of the query. The second argument, rows, is an integer containing the number of rows in the cached query.
query-cache-miss: Triggered when the query is not found within the query cache. The first argument, query, contains the original text of the query.
The query cache probes are best combined with a probe on the main query so that you can determine the differences in times between using or not using the query cache for specified queries. For example, in the following D script, the query and query cache information are combined into the information output during monitoring:
#!/usr/sbin/dtrace -s
#pragma D option quiet
dtrace:::BEGIN
{
printf("%-20s %-20s %-40s %2s %-9s\n", "Who", "Database", "Query", "QC", "Time(ms)");
}
mysql*:::query-start
{
self->query = copyinstr(arg0);
self->connid = arg1;
self->db = copyinstr(arg2);
self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
self->querystart = timestamp;
self->qc = 0;
}
mysql*:::query-cache-hit
{
self->qc = 1;
}
mysql*:::query-cache-miss
{
self->qc = 0;
}
mysql*:::query-done
{
printf("%-20s %-20s %-40s %-2s %-9d\n",self->who,self->db,self->query,(self->qc ? "Y" : "N"),
(timestamp - self->querystart) / 1000000);
}
When executing the script you can see the effects of the query cache. Initially the query cache is disabled. If you set the query cache size and then execute the query multiple times you should see that the query cache is being used to return the query data:
shell> ./query-cache.d
root@localhost test select * from t1 order by i limit 10 N 1072
root@localhost set global query_cache_size=262144 N 0
root@localhost test select * from t1 order by i limit 10 N 781
root@localhost test select * from t1 order by i limit 10 Y 0
5.7.1.6. Query Execution Probes
The query execution probe is triggered when the actual execution of the query starts, after the parsing and checking the query cache but before any privilege checks or optimization. By comparing the difference between the start and done probes you can monitor the time actually spent servicing the query (instead of just handling the parsing and other elements of the query).
query-exec-start(query, connectionid, database, user, host, exec_type)
query-exec-done(status)
Note
The information provided in the arguments for query-start and query-exec-start are almost identical and designed so that you can choose to monitor either the entire query process (using query-start) or only the execution (using query-exec-start) while exposing the core information about the user, client, and query being executed.
query-exec-start: Triggered when the execution of a individual query is started. The arguments are:
query: The full text of the submitted query.
connectionid: The connection ID of the client that submitted the query. The connection ID equals the connection ID returned when the client first connects and the Id value in the output from SHOW PROCESSLIST.
database: The database name on which the query is being executed.
user: The username used to connect to the server.
host: The hostname of the client.
exec_type: The type of execution. Execution types are determined based on the contents of the query and where it was submitted. The values for each type are shown in the following table.
Value | Description |
---|---|
0 | Executed query from sql_parse, top-level query. |
1 | Executed prepared statement |
2 | Executed cursor statement |
3 | Executed query in stored procedure |
query-exec-done: Triggered when the execution of the query has completed. The probe includes a single argument, status, which returns 0 when the query is successfully executed and 1 if there was an error.
5.7.1.7. Row-Level Probes
The *row-{start,done} probes are triggered each time a row operation is pushed down to a storage engine. For example, if you execute an INSERT statement with 100 rows of data, then the insert-row-start and insert-row-done probes will be triggered 100 times each, for each row insert.
insert-row-start(database, table)
insert-row-done(status)
update-row-start(database, table)
update-row-done(status)
delete-row-start(database, table)
delete-row-done(status)
insert-row-start: Triggered before a row is inserted into a table.
insert-row-done: Triggered after a row is inserted into a table.
update-row-start: Triggered before a row is updated in a table.
update-row-done: Triggered before a row is updated in a table.
delete-row-start: Triggered before a row is deleted from a table.
delete-row-done: Triggered before a row is deleted from a table.
The arguments supported by the probes are consistent for the corresponding start and done probes in each case:
database: The database name.
table: The table name.
status: The status; 0 for success or 1 for failure.
Because the row-level probes are triggered for each individual row access, these probes can be triggered many thousands of times each second, which may have a detrimental effect on both the monitoring script and MySQL. The DTrace environment should limit the triggering on these probes to prevent the performance being adversely affected. Either use the probes sparingly, or use counter or aggregation functions to report on these probes and then provide a summary when the script terminates or as part of a query-done or query-exec-done probes.
The following example script summarizes the duration of each row operation within a larger query:
#!/usr/sbin/dtrace -s
#pragma D option quiet
dtrace:::BEGIN
{
printf("%-2s %-10s %-10s %9s %9s %-s \n",
"St", "Who", "DB", "ConnID", "Dur ms", "Query");
}
mysql*:::query-start
{
self->query = copyinstr(arg0);
self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
self->db = copyinstr(arg2);
self->connid = arg1;
self->querystart = timestamp;
self->rowdur = 0;
}
mysql*:::query-done
{
this->elapsed = (timestamp - self->querystart) /1000000;
printf("%2d %-10s %-10s %9d %9d %s\n",
arg0, self->who, self->db,
self->connid, this->elapsed, self->query);
}
mysql*:::query-done
/ self->rowdur /
{
printf("%34s %9d %s\n", "", (self->rowdur/1000000), "-> Row ops");
}
mysql*:::insert-row-start
{
self->rowstart = timestamp;
}
mysql*:::delete-row-start
{
self->rowstart = timestamp;
}
mysql*:::update-row-start
{
self->rowstart = timestamp;
}
mysql*:::insert-row-done
{
self->rowdur += (timestamp-self->rowstart);
}
mysql*:::delete-row-done
{
self->rowdur += (timestamp-self->rowstart);
}
mysql*:::update-row-done
{
self->rowdur += (timestamp-self->rowstart);
}
Running the above script with a query that inserts data into a table, you can monitor the exact time spent performing the raw row insertion:
St Who DB ConnID Dur ms Query
0 @localhost test 13 20767 insert into t1(select * from t2)
4827 -> Row ops
5.7.1.8. Read Row Probes
The read row probes are triggered at a storage engine level each time a row read operation occurs. These probes are specified within each storage engine (as opposed to the *row-start probes which are in the storage engine interface). These probes can therefore be used to monitor individual storage engine row-level operations and performance. Because these probes are triggered around the storage engine row read interface, they may be hit a significant number of times during a basic query.
read-row-start(database, table, scan_flag)
read-row-done(status)
read-row-start: Triggered when a row is read by the storage engine from the specified database and table. The scan_flag is set to 1 (true) when the read is part of a table scan (that is, a sequential read), or 0 (false) when the read is of a specific record.
read-row-done: Triggered when a row read operation within a storage engine completes. The status returns 0 on success, or a positive value on failure.
5.7.1.9. Index Probes
The index probes are triggered each time a a row is read using one of the indexes for the specified table. The probe is triggered within the corresponding storage engine for the table.
index-read-row-start(database, table)
index-read-row-done(status)
index-read-row-start: Triggered when a row is read by the storage engine from the specified database and table.
index-read-row-done: Triggered when an indexed row read operation within a storage engine completes. The status returns 0 on success, or a positive value on failure.
5.7.1.10. Lock Probes
The lock probes are called whenever an external lock is requested by MySQL for a table using the corresponding lock mechanism on the table as defined by the table's engine type. There are three different types of lock, the read lock, write lock, and unlock operations. Using the probes you can determine the duration of the external locking routine (that is, the time taken by the storage engine to implement the lock, including any time waiting for another lock to become free) and the total duration of the lock/unlock process.
handler-rdlock-start(database, table)
handler-rdlock-done(status)
handler-wrlock-start(database, table)
handler-wrlock-done(status)
handler-unlock-start(database, table)
handler-unlock-done(status)
handler-rdlock-start: Triggered when a read lock is requested on the specified database and table.
handler-wrlock-start: Triggered when a write lock is requested on the specified database and table.
handler-unlock-start: Triggered when an unlock request is made on the specified database and table.
handler-rdlock-done: Triggered when a read lock request completes. The status is 0 if the lock operation succeeded, or >0 on failure.
handler-wrlock-done: Triggered when a write lock request completes. The status is 0 if the lock operation succeeded, or >0 on failure.
handler-unlock-done: Triggered when an unlock request completes. The status is 0 if the unlock operation succeeded, or >0 on failure.
You can use arrays to monitor the locking and unlocking of individual tables and then calculate the duration of the entire table lock using the following script:
#!/usr/sbin/dtrace -s
#pragma D option quiet
mysql*:::handler-rdlock-start
{
self->rdlockstart = timestamp;
this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
self->lockmap[this->lockref] = self->rdlockstart;
printf("Start: Lock->Read %s.%s\n",copyinstr(arg0),copyinstr(arg1));
}
mysql*:::handler-wrlock-start
{
self->wrlockstart = timestamp;
this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
self->lockmap[this->lockref] = self->rdlockstart;
printf("Start: Lock->Write %s.%s\n",copyinstr(arg0),copyinstr(arg1));
}
mysql*:::handler-unlock-start
{
self->unlockstart = timestamp;
this->lockref = strjoin(copyinstr(arg0),strjoin("@",copyinstr(arg1)));
printf("Start: Lock->Unlock %s.%s (%d ms lock duration)\n",
copyinstr(arg0),copyinstr(arg1),
(timestamp - self->lockmap[this->lockref])/1000000);
}
mysql*:::handler-rdlock-done
{
printf("End: Lock->Read %d ms\n",
(timestamp - self->rdlockstart)/1000000);
}
mysql*:::handler-wrlock-done
{
printf("End: Lock->Write %d ms\n",
(timestamp - self->wrlockstart)/1000000);
}
mysql*:::handler-unlock-done
{
printf("End: Lock->Unlock %d ms\n",
(timestamp - self->unlockstart)/1000000);
}
When executed, you should get information both about the duration of the locking process itself, and of the locks on a specific table:
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (25743 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
Start: Lock->Unlock test.t2 (1 ms lock duration)
End: Lock->Unlock 0 ms
Start: Lock->Read test.t2
End: Lock->Read 0 ms
5.7.1.11. Filesort Probes
The filesort probes are triggered whenever a filesort operation is applied to a table. For more information on filesort and the conditions under which it occurs, see Section 8.13.13, “ORDER BY Optimization”.
filesort-start(database, table)
filesort-done(status, rows)
filesort-start: Triggered when the filesort operation starts on a table. The two arguments to the probe, database and table, will identify the table being sorted.
filesort-done: Triggered when the filesort operation completes. Two arguments are supplied, the status (0 for success, 1 for failure), and the number of rows sorted during the filesort process.
An example of this is in the following script, which tracks the duration of the filesort process in addition to the duration of the main query:
#!/usr/sbin/dtrace -s
#pragma D option quiet
dtrace:::BEGIN
{
printf("%-2s %-10s %-10s %9s %18s %-s \n",
"St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}
mysql*:::query-start
{
self->query = copyinstr(arg0);
self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
self->db = copyinstr(arg2);
self->connid = arg1;
self->querystart = timestamp;
self->filesort = 0;
self->fsdb = "";
self->fstable = "";
}
mysql*:::filesort-start
{
self->filesort = timestamp;
self->fsdb = copyinstr(arg0);
self->fstable = copyinstr(arg1);
}
mysql*:::filesort-done
{
this->elapsed = (timestamp - self->filesort) /1000;
printf("%2d %-10s %-10s %9d %18d Filesort on %s\n",
arg0, self->who, self->fsdb,
self->connid, this->elapsed, self->fstable);
}
mysql*:::query-done
{
this->elapsed = (timestamp - self->querystart) /1000;
printf("%2d %-10s %-10s %9d %18d %s\n",
arg0, self->who, self->db,
self->connid, this->elapsed, self->query);
}
Executing a query on a large table with an ORDER BY clause that triggers a filesort, and then creating an index on the table and then repeating the same query, you can see the difference in execution speed:
St Who DB ConnID Dur microsec Query
0 @localhost test 14 11335469 Filesort on t1
0 @localhost test 14 11335787 select * from t1 order by i limit 100
0 @localhost test 14 466734378 create index t1a on t1 (i)
0 @localhost test 14 26472 select * from t1 order by i limit 100
5.7.1.12. Statement Probes
The individual statement probes are provided to give specific information about different statement types. For the start probes the string of the query is provided as a the only argument. Depending on the statement type, the information provided by the corresponding done probe will differ. For all done probes the status of the operation (0 for success, >0 for failure) is provided. For SELECT, INSERT, INSERT ... (SELECT FROM ...), DELETE, and DELETE FROM t1,t2 operations the number of rows affected is returned.
For UPDATE and UPDATE t1,t2 ... statements the number of rows matched and the number of rows actually changed is provided. This is because the number of rows actually matched by the corresponding WHERE clause, and the number of rows changed can differ. MySQL does not update the value of a row if the value already matches the new setting.
select-start(query)
select-done(status,rows)
insert-start(query)
insert-done(status,rows)
insert-select-start(query)
insert-select-done(status,rows)
update-start(query)
update-done(status,rowsmatched,rowschanged)
multi-update-start(query)
multi-update-done(status,rowsmatched,rowschanged)
delete-start(query)
delete-done(status,rows)
multi-delete-start(query)
multi-delete-done(status,rows)
select-start: Triggered before a SELECT statement.
select-done: Triggered at the end of a SELECT statement.
insert-start: Triggered before a INSERT statement.
insert-done: Triggered at the end of an INSERT statement.
insert-select-start: Triggered before an INSERT ... SELECT statement.
insert-select-done: Triggered at the end of an INSERT ... SELECT statement.
update-start: Triggered before an UPDATE statement.
update-done: Triggered at the end of an UPDATE statement.
multi-update-start: Triggered before an UPDATE statement involving multiple tables.
multi-update-done: Triggered at the end of an UPDATE statement involving multiple tables.
delete-start: Triggered before a DELETE statement.
delete-done: Triggered at the end of a DELETE statement.
multi-delete-start: Triggered before a DELETE statement involving multiple tables.
multi-delete-done: Triggered at the end of a DELETE statement involving multiple tables.
The arguments for the statement probes are:
query: The query string.
status: The status of the query. 0 for success, and >0 for failure.
rows: The number of rows affected by the statement. This returns the number rows found for SELECT, the number of rows deleted for DELETE, and the number of rows successfully inserted for INSERT.
rowsmatched: The number of rows matched by the WHERE clause of an UPDATE operation.
rowschanged: The number of rows actually changed during an UPDATE operation.
You use these probes to monitor the execution of these statement types without having to monitor the user or client executing the statements. A simple example of this is to track the execution times:
#!/usr/sbin/dtrace -s
#pragma D option quiet
dtrace:::BEGIN
{
printf("%-60s %-8s %-8s %-8s\n", "Query", "RowsU", "RowsM", "Dur (ms)");
}
mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
self->query = copyinstr(arg0);
self->querystart = timestamp;
}
mysql*:::insert-done, mysql*:::select-done,
mysql*:::delete-done, mysql*:::multi-delete-done, mysql*:::insert-select-done
/ self->querystart /
{
this->elapsed = ((timestamp - self->querystart)/1000000);
printf("%-60s %-8d %-8d %d\n",
self->query,
0,
arg1,
this->elapsed);
self->querystart = 0;
}
mysql*:::update-done, mysql*:::multi-update-done
/ self->querystart /
{
this->elapsed = ((timestamp - self->querystart)/1000000);
printf("%-60s %-8d %-8d %d\n",
self->query,
arg1,
arg2,
this->elapsed);
self->querystart = 0;
}
When executed you can see the basic execution times and rows matches:
Query RowsU RowsM Dur (ms)
select * from t2 0 275 0
insert into t2 (select * from t2) 0 275 9
update t2 set i=5 where i > 75 110 110 8
update t2 set i=5 where i < 25 254 134 12
delete from t2 where i < 5 0 0 0
Another alternative is to use the aggregation functions in DTrace to aggregate the execution time of individual statements together:
#!/usr/sbin/dtrace -s
#pragma D option quiet
mysql*:::update-start, mysql*:::insert-start,
mysql*:::delete-start, mysql*:::multi-delete-start,
mysql*:::multi-delete-done, mysql*:::select-start,
mysql*:::insert-select-start, mysql*:::multi-update-start
{
self->querystart = timestamp;
}
mysql*:::select-done
{
@statements["select"] = sum(((timestamp - self->querystart)/1000000));
}
mysql*:::insert-done, mysql*:::insert-select-done
{
@statements["insert"] = sum(((timestamp - self->querystart)/1000000));
}
mysql*:::update-done, mysql*:::multi-update-done
{
@statements["update"] = sum(((timestamp - self->querystart)/1000000));
}
mysql*:::delete-done, mysql*:::multi-delete-done
{
@statements["delete"] = sum(((timestamp - self->querystart)/1000000));
}
tick-30s
{
printa(@statements);
}
The script just shown aggregates the times spent doing each operation, which could be used to help benchmark a standard suite of tests.
delete 0
update 0
insert 23
select 2484
delete 0
update 0
insert 39
select 10744
delete 0
update 26
insert 56
select 10944
delete 0
update 26
insert 2287
select 15985
5.7.1.13. Network Probes
The network probes monitor the transfer of information from the MySQL server and clients of all types over the network. The probes are defined as follows:
net-read-start()
net-read-done(status, bytes)
net-write-start(bytes)
net-write-done(status)
net-read-start: Triggered when a network read operation is started.
net-read-done: Triggered when the network read operation completes. The status is an integer representing the return status for the operation, 0 for success and 1 for failure. The bytes argument is an integer specifying the number of bytes read during the process.
net-start-bytes: Triggered when data is written to a network socket. The single argument, bytes, specifies the number of bytes written to the network socket.
net-write-done: Triggered when the network write operation has completed. The single argument, status, is an integer representing the return status for the operation, 0 for success and 1 for failure.
You can use the network probes to monitor the time spent reading from and writing to network clients during execution. The following D script provides an example of this. Both the cumulative time for the read or write is calculated, and the number of bytes. Note that the dynamic variable size has been increased (using the dynvarsize option) to cope with the rapid firing of the individual probes for the network reads/writes.
#!/usr/sbin/dtrace -s
#pragma D option quiet
#pragma D option dynvarsize=4m
dtrace:::BEGIN
{
printf("%-2s %-30s %-10s %9s %18s %-s \n",
"St", "Who", "DB", "ConnID", "Dur microsec", "Query");
}
mysql*:::query-start
{
self->query = copyinstr(arg0);
self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
self->db = copyinstr(arg2);
self->connid = arg1;
self->querystart = timestamp;
self->netwrite = 0;
self->netwritecum = 0;
self->netwritebase = 0;
self->netread = 0;
self->netreadcum = 0;
self->netreadbase = 0;
}
mysql*:::net-write-start
{
self->netwrite += arg0;
self->netwritebase = timestamp;
}
mysql*:::net-write-done
{
self->netwritecum += (timestamp - self->netwritebase);
self->netwritebase = 0;
}
mysql*:::net-read-start
{
self->netreadbase = timestamp;
}
mysql*:::net-read-done
{
self->netread += arg1;
self->netreadcum += (timestamp - self->netreadbase);
self->netreadbase = 0;
}
mysql*:::query-done
{
this->elapsed = (timestamp - self->querystart) /1000000;
printf("%2d %-30s %-10s %9d %18d %s\n",
arg0, self->who, self->db,
self->connid, this->elapsed, self->query);
printf("Net read: %d bytes (%d ms) write: %d bytes (%d ms)\n",
self->netread, (self->netreadcum/1000000),
self->netwrite, (self->netwritecum/1000000));
}
When executing the above script on a machine with a remote client, you can see that approximately a third of the time spent executing the query is related to writing the query results back to the client.
St Who DB ConnID Dur microsec Query
0 root@::ffff:192.168.0.108 test 31 3495 select * from t1 limit 1000000
Net read: 0 bytes (0 ms) write: 10000075 bytes (1220 ms)
5.7.1.14. Keycache Probes
The keycache probes are triggered when using the index key cache used with the MyISAM storage engine. Probes exist to monitor when data is read into the keycache, cached key data is written from the cache into a cached file, or when accessing the keycache.
Keycache usage indicates when data is read or written from the index files into the cache, and can be used to monitor how efficient the memory allocated to the keycache is being used. A high number of keycache reads across a range of queries may indicate that the keycache is too small for size of data being accessed.
keycache-read-start(filepath, bytes, mem_used, mem_free)
keycache-read-block(bytes)
keycache-read-hit()
keycache-read-miss()
keycache-read-done(mem_used, mem_free)
keycache-write-start(filepath, bytes, mem_used, mem_free)
keycache-write-block(bytes)
keycache-write-done(mem_used, mem_free)
When reading data from the index files into the keycache, the process first initializes the read operation (indicated by keycache-read-start), then loads blocks of data (keycache-read-block), and then the read block is either matches the data being identified (keycache-read-hit) or more data needs to be read (keycache-read-miss). Once the read operation has completed, reading stops with the keycache-read-done.
Data will be read from the index file into the keycache only when the specified key is not already within the keycache.
keycache-read-start: Triggered when the keycache read operation is started. Data is read from the specified filepath, reading the specified number of bytes. The mem_used and mem_avail indicate memory currently used by the keycache and the amount of memory available within the keycache.
keycache-read-block: Triggered when the keycache reads a block of data, of the specified number of bytes, from the index file into the keycache.
keycache-read-hit: Triggered when the block of data read from the index file matches the key data requested.
keycache-read-miss: Triggered when the block of data read from the index file does not match the key data needed.
keycache-read-done: Triggered when the keycache read operation has completed. The mem_used and mem_avail indicate memory currently used by the keycache and the amount of memory available within the keycache.
Keycache writes occur when the index information is updated during an INSERT, UPDATE, or DELETE operation, and the cached key information is flushed back to the index file.
keycache-write-start: Triggered when the keycache write operation is started. Data is written to the specified filepath, reading the specified number of bytes. The mem_used and mem_avail indicate memory currently used by the keycache and the amount of memory available within the keycache.
keycache-write-block: Triggered when the keycache writes a block of data, of the specified number of bytes, to the index file from the keycache.
keycache-write-done: Triggered when the keycache write operation has completed. The mem_used and mem_avail indicate memory currently used by the keycache and the amount of memory available within the keycache.
Chapter 6. Security
Table of Contents
6.1.1. Security Guidelines
6.1.2. Keeping Passwords Secure
6.1.3. Making MySQL Secure Against Attackers
6.1.4. Security-Related mysqld Options and Variables
6.1.5. How to Run MySQL as a Normal User
6.1.6. Security Issues with LOAD DATA LOCAL
6.1.7. Client Programming Security Guidelines
6.2. The MySQL Access Privilege System
6.2.1. Privileges Provided by MySQL
6.2.2. Privilege System Grant Tables
6.2.3. Specifying Account Names
6.2.4. Access Control, Stage 1: Connection Verification
6.2.5. Access Control, Stage 2: Request Verification
6.2.6. When Privilege Changes Take Effect
6.2.7. Causes of Access-Denied Errors
6.3. MySQL User Account Management
6.3.1. User Names and Passwords
6.3.2. Adding User Accounts
6.3.3. Removing User Accounts
6.3.4. Setting Account Resource Limits
6.3.5. Assigning Account Passwords
6.3.6. Password Expiration and Sandbox Mode
6.3.7. Pluggable Authentication
6.3.8. Proxy Users
6.3.9. Using SSL for Secure Connections
6.3.10. Connecting to MySQL Remotely from Windows with SSH
6.3.11. MySQL Enterprise Audit Log Plugin
6.3.12. SQL-Based MySQL Account Activity Auditing
When thinking about security within a MySQL installation, you should consider a wide range of possible topics and how they affect the security of your MySQL server and related applications:
General factors that affect security. These include choosing good passwords, not granting unnecessary privileges to users, ensuring application security by preventing SQL injections and data corruption, and others. See Section 6.1, “General Security Issues”.
Security of the installation itself. The data files, log files, and the all the application files of your installation should be protected to ensure that they are not readable or writable by unauthorized parties. For more information, see Section 2.10, “Postinstallation Setup and Testing”.
Access control and security within the database system itself, including the users and databases granted with access to the databases, views and stored programs in use within the database. For more information, see Section 6.2, “The MySQL Access Privilege System”, and Section 6.3, “MySQL User Account Management”.
Network security of MySQL and your system. The security is related to the grants for individual users, but you may also wish to restrict MySQL so that it is available only locally on the MySQL server host, or to a limited set of other hosts.
Ensure that you have adequate and appropriate backups of your database files, configuration and log files. Also be sure that you have a recovery solution in place and test that you are able to successfully recover the information from your backups. See Chapter 7, Backup and Recovery.
6.1. General Security Issues
This section describes general security issues to be aware of and what you can do to make your MySQL installation more secure against attack or misuse. For information specifically about the access control system that MySQL uses for setting up user accounts and checking database access, see Section 6.2, “The MySQL Access Privilege System”.
For answers to some questions that are often asked about MySQL Server security issues, see Section B.9, “MySQL 5.6 FAQ: Security”.
6.1.1. Security Guidelines
Anyone using MySQL on a computer connected to the Internet should read this section to avoid the most common security mistakes.
In discussing security, it is necessary to consider fully protecting the entire server host (not just the MySQL server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of service. We do not cover all aspects of availability and fault tolerance here.
MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other operations that users can attempt to perform. There is also support for SSL-encrypted connections between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL at all; the same general ideas apply to almost all applications.
When running MySQL, follow these guidelines:
Do not ever give anyone (except MySQL root accounts) access to the user table in the mysql database! This is critical.
Learn how the MySQL access privilege system works (see Section 6.2, “The MySQL Access Privilege System”). Use the GRANT and REVOKE statements to control access to MySQL. Do not grant more privileges than necessary. Never grant privileges to all hosts.
Checklist:
Try mysql -u root. If you are able to connect successfully to the server without being asked for a password, anyone can connect to your MySQL server as the MySQL root user with full privileges! Review the MySQL installation instructions, paying particular attention to the information about setting a root password. See Section 2.10.2, “Securing the Initial MySQL Accounts”.
Use the SHOW GRANTS statement to check which accounts have access to what. Then use the REVOKE statement to remove those privileges that are not necessary.
Do not store cleartext passwords in your database. If your computer becomes compromised, the intruder can take the full list of passwords and use them. Instead, use SHA2(), SHA1(), MD5(), or some other one-way hashing function and store the hash value.
Do not choose passwords from dictionaries. Special programs exist to break passwords. Even passwords like “xfish98” are very bad. Much better is “duag98” which contains the same word “fish” but typed one key to the left on a standard QWERTY keyboard. Another method is to use a password that is taken from the first characters of each word in a sentence (for example, “Four score and seven years ago” results in a password of “Fsasya”). The password is easy to remember and type, but difficult to guess for someone who does not know the sentence. In this case, you can additionally substitute digits for the number words to obtain the phrase “4 score and 7 years ago”, yielding the password “4sa7ya” which is even more difficult to guess.
Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put MySQL behind the firewall or in a demilitarized zone (DMZ).
Checklist:
Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306 by default. This port should not be accessible from untrusted hosts. As a simple way to check whether your MySQL port is open, try the following command from some remote machine, where server_host is the host name or IP address of the host on which your MySQL server runs:
shell> telnet server_host 3306
If telnet hangs or the connection is refused, the port is blocked, which is how you want it to be. If you get a connection and some garbage characters, the port is open, and should be closed on your firewall or router, unless you really have a good reason to keep it open.
Applications that access MySQL should not trust any data entered by users, and should be written using proper defensive programming techniques. See Section 6.1.7, “Client Programming Security Guidelines”.
Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone who has the time and ability to intercept it and use it for their own purposes. Instead, use an encrypted protocol such as SSL or SSH. MySQL supports internal SSL connections. Another technique is to use SSH port-forwarding to create an encrypted (and compressed) tunnel for the communication.
Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL data streams are unencrypted by issuing a command like the following:
shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings
This works under Linux and should work with small modifications under other systems.
Warning
If you do not see cleartext data, this does not always mean that the information actually is encrypted. If you need high security, consult with a security expert.
6.1.2. Keeping Passwords Secure
Passwords occur in several contexts within MySQL. The following sections provide guidelines that enable end users and administrators to keep these passwords secure and avoid exposing them. There is also a discussion of how MySQL uses password hashing internally and of a plugin that you can use to enforce stricter passwords.
6.1.2.1. End-User Guidelines for Password Security
MySQL users should use the following guidelines to keep passwords secure.
When you run a client program to connect to the MySQL server, it is inadvisable to specify your password in a way that exposes it to discovery by other users. The methods you can use to specify your password when you run client programs are listed here, along with an assessment of the risks of each method. In short, the safest methods are to have the client program prompt for the password or to specify the password in a properly protected option file.
Use the mysql_config_editor utility, which enables you to store authentication credentials in an encrypted login file named .mylogin.cnf. The file can be read later by MySQL client programs to obtain authentication credentials for connecting to MySQL Server. See Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.
Use a -pyour_pass or --password=your_pass option on the command line. For example:
shell> mysql -u francis -pfrank db_name
This is convenient but insecure. On some systems, your password becomes visible to system status programs such as ps that may be invoked by other users to display command lines. MySQL clients typically overwrite the command-line password argument with zeros during their initialization sequence. However, there is still a brief interval during which the value is visible. Also, on some systems this overwriting strategy is ineffective and the password remains visible to ps. (SystemV Unix systems and perhaps others are subject to this problem.)
If your operating environment is set up to display your current command in the title bar of your terminal window, the password remains visible as long as the command is running, even if the command has scrolled out of view in the window content area.
Use the -p or --password option on the command line with no password value specified. In this case, the client program solicits the password interactively:
shell> mysql -u francis -p db_name
Enter password: ********
The “*” characters indicate where you enter your password. The password is not displayed as you enter it.
It is more secure to enter your password this way than to specify it on the command line because it is not visible to other users. However, this method of entering a password is suitable only for programs that you run interactively. If you want to invoke a client from a script that runs noninteractively, there is no opportunity to enter the password from the keyboard. On some systems, you may even find that the first line of your script is read and interpreted (incorrectly) as your password.
Store your password in an option file. For example, on Unix, you can list your password in the [client] section of the .my.cnf file in your home directory:
[client]
password=your_pass
To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this, set the file access mode to 400 or 600. For example:
shell> chmod 600 .my.cnf
To name from the command line a specific option file containing the password, use the --defaults-file=file_name option, where file_name is the full path name to the file. For example:
shell> mysql --defaults-file=/home/francis/mysql-opts
Section 4.2.3.3, “Using Option Files”, discusses option files in more detail.
Store your password in the MYSQL_PWD environment variable. See Section 2.12, “Environment Variables”.
This method of specifying your MySQL password must be considered extremely insecure and should not be used. Some versions of ps include an option to display the environment of running processes. On some systems, if you set MYSQL_PWD, your password is exposed to any other user who runs ps. Even on systems without such a version of ps, it is unwise to assume that there are no other methods by which users can examine process environments.
On Unix, the mysql client writes a record of executed statements to a history file (see Section 4.5.1.3, “mysql Logging”). By default, this file is named .mysql_history and is created in your home directory. Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, and SET PASSWORD, so if you use these statements, they are logged in the history file. To keep this file safe, use a restrictive access mode, the same way as described earlier for the .my.cnf file.
If your command interpreter is configured to maintain a history, any file in which the commands are saved will contain MySQL passwords entered on the command line. For example, bash uses ~/.bash_history. Any such file should have a restrictive access mode.
6.1.2.2. Administrator Guidelines for Password Security
Database administrators should use the following guidelines to keep passwords secure.
MySQL stores passwords for user accounts in the mysql.user table. Access to this table should never be granted to any nonadministrative accounts.
Account passwords can be expired so that users must reset them. See Section 6.3.6, “Password Expiration and Sandbox Mode”.
The validate_password plugin can be used to enforce a policy on acceptable password. See Section 6.1.2.6, “The Password Validation Plugin”.
A user who has access to modify the plugin directory (the value of the plugin_dir system variable) or the my.cnf file that specifies the location of the plugin directory can replace plugins and modify the capabilities provided by plugins, including authentication plugins.
Files such as log files to which passwords might be written should be protected. See Section 6.1.2.3, “Passwords and Logging”.
6.1.2.3. Passwords and Logging
Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, and SET PASSWORD, or statements that invoke the PASSWORD() function. If these statements are logged by the MySQL server as written, such passwords become available to anyone with access to the logs.
Beginning with MySQL 5.6.3, statement logging is modified so that passwords do not appear in plain text for the following statements:
CREATE USER ... IDENTIFIED BY ...
GRANT ... IDENTIFIED BY ...
SET PASSWORD ...
SLAVE START ... PASSWORD = ... (as of 5.6.4)
CREATE SERVER ... OPTIONS(... PASSWORD ...) (as of 5.6.9)
ALTER SERVER ... OPTIONS(... PASSWORD ...) (as of 5.6.9)
Passwords in those statements are rewritten not to appear literally in statement text, for the general query log, slow query log, and binary log. Rewriting does not apply to other statements.
For the general query log, password rewriting can be suppressed by starting the server with the --log-raw option. This option may be useful for diagnostic purposes, to see the exact text of statements as received by the server, but for security reasons is not recommended for production use.
Passwords can be written as plain text in SQL statements in the audit log plugin log file (see Section 6.3.11, “MySQL Enterprise Audit Log Plugin”).
To guard log files against unwarranted exposure, they should be located in a directory that restricts access to only the server and the database administrator. If you log to tables in the mysql database, access to those tables should never be granted to any nonadministrative accounts.
Replication slaves store the password for the replication master in the master.info file. Restrict this file to be accessible only to the database administrator. As of MySQL 5.6.4, an alternative to storing the password in a file is to use the START SLAVE statement to specify credentials for connecting to the master.
Database backups that include tables or log files containing passwords should be protected using a restricted access mode.
6.1.2.4. Password Hashing in MySQL
MySQL lists user accounts in the user table of the mysql database. Each MySQL account can be assigned a password, although the user table does not store the cleartext version of the password, but a hash value computed from it.
MySQL uses passwords in two phases of client/server communication:
When a client attempts to connect to the server, there is an initial authentication step in which the client must present a password that has a hash value matching the hash value stored in the user table for the account the client wants to use.
After the client connects, it can (if it has sufficient privileges) set or change the password hash for accounts listed in the user table. The client can do this by using the PASSWORD() function to generate a password hash, or by using a password-generating statement (CREATE USER, GRANT, or SET PASSWORD).
In other words, the server checks hash values during authentication when a client first attempts to connect. The server generates hash values if a connected client invokes the PASSWORD() function or uses a password-generating statement to set or change a password.
Password hashing methods in MySQL have the history described following. These changes are illustrated by changes in the result from the PASSWORD() function that computes password hash values and in the structure of the user table where passwords are stored.
The Original (Pre-4.1) Hashing Method
The original hashing method produced a 16-byte string. Such hashes look like this:
mysql> SELECT PASSWORD('mypass');
+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+
To store account passwords, the Password column of the user table was at this point 16 bytes long.
The 4.1 Hashing Method
MySQL 4.1 introduced password hashing that provides better security and reduces the risk of passwords being intercepted. There were several aspects to this change:
Different PASSWORD() function result format
Widening of the Password column
Control over the default hashing method
Control over the permitted hashing methods for clients attempting to connect to the server
The changes in MySQL 4.1 took place in two stages:
MySQL 4.1.0 used a preliminary version of the 4.1 hashing method. Because this method was so short lived, the following discussion says no more about it.
In MySQL 4.1.1, the hashing method was modified to produce a longer 41-byte hash value:
mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+
The longer password hash format has better cryptographic properties, and client authentication based on long hashes is more secure than that based on the older short hashes.
To accommodate longer password hashes, the Password column in the user table was changed at this point to be 41 bytes, its current length.
A widened Password column can store password hashes in both the pre-4.1 and 4.1 formats. The format of any given hash value can be determined two ways:
The length: 4.1 and pre-4.1 hashes are 41 and 16 bytes, respectively.
Password hashes in the 4.1 format always begin with a “*” character, whereas passwords in the pre-4.1 format never do.
To permit explicit generation of pre-4.1 password hashes, two additional changes were made:
The OLD_PASSWORD() function was added, which returns hash values in the 16-byte format.
For compatibility purposes, the old_passwords system variable was added, to enable DBAs and applications control over the hashing method. The default old_passwords value of 0 causes hashing to use the 4.1 method (41-byte hash values), but setting old_passwords=1 causes hashing to use the pre-4.1 method. In this case, PASSWORD() produces 16-byte values and is equivalent to OLD_PASSWORD()
To permit DBAs control over how clients are permitted to connect, the secure_auth system variable was added. Starting the server with this variable disabled or enabled permits or prohibits clients to connect using the older pre-4.1 password hashing method. Before MySQL 5.6.5, secure_auth is disabled by default. As of 5.6.5, secure_auth is enabled by default to promote a more secure default configuration. (DBAs can disable it at their discretion, but this is not recommended.)
In addition, the mysql client supports a --secure-auth option that is analogous to secure_auth, but from the client side. It can be used to prevent connections to less secure accounts that use pre-4.1 password hashing. This option is disabled by default before MySQL 5.6.7, enabled thereafter.
Compatibility Issues Related to Hashing Methods
The widening of the Password column in MySQL 4.1 from 16 bytes to 41 bytes affects installation or upgrade operations as follows:
If you perform a new installation of MySQL, the Password column is made 41 bytes long automatically.
Upgrades from MySQL 4.1 or later to current versions of MySQL should not give rise to any issues in regard to the Password column because both versions use the same column length and password hashing method.
For upgrades from a pre-4.1 release to 4.1 or later, you must upgrade the system tables after upgrading. (See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.)
The 4.1 hashing method is understood only by MySQL 4.1 (and newer) servers and clients, which can result in some compatibility problems. A 4.1 or newer client can connect to a pre-4.1 server, because the client understands both the pre-4.1 and 4.1 password hashing methods. However, a pre-4.1 client that attempts to connect to a 4.1 or newer server may run into difficulties. For example, a 4.0 mysql client may fail with the following error message:
shell> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client
This phenomenon also occurs for attempts to use the older PHP mysql extension after upgrading to MySQL 4.1 or newer. (See Section 21.9.12, “Common Problems with MySQL and PHP”.)
The following discussion describes the differences between the pre-4.1 and 4.1 hashing methods, and what you should do if you upgrade your server but need to maintain backward compatibility with pre-4.1 clients. (However, permitting connections by old clients is not recommended and should be avoided if possible.) Additional information can be found in Section C.5.2.4, “Client does not support authentication protocol”. This information is of particular importance to PHP programmers migrating MySQL databases from versions older than 4.1 to 4.1 or higher.
The differences between short and long password hashes are relevant both for how the server uses passwords during authentication and for how it generates password hashes for connected clients that perform password-changing operations.
The way in which the server uses password hashes during authentication is affected by the width of the Password column:
If the column is short, only short-hash authentication is used.
If the column is long, it can hold either short or long hashes, and the server can use either format:
Pre-4.1 clients can connect, but because they know only about the pre-4.1 hashing method, they can authenticate only using accounts that have short hashes.
4.1 and later clients can authenticate using accounts that have short or long hashes.
Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later clients than for older clients. In terms of security, the gradient from least to most secure is:
Pre-4.1 client authenticating with short password hash
4.1 or later client authenticating with short password hash
4.1 or later client authenticating with long password hash
The way in which the server generates password hashes for connected clients is affected by the width of the Password column and by the old_passwords system variable. A 4.1 or later server generates long hashes only if certain conditions are met: The Password column must be wide enough to hold long values and old_passwords must not be set to 1.
Those conditions apply as follows:
The Password column must be wide enough to hold long hashes (41 bytes). If the column has not been updated and still has the pre-4.1 width of 16 bytes, the server notices that long hashes cannot fit into it and generates only short hashes when a client performs password-changing operations using the PASSWORD() function or a password-generating statement. This is the behavior that occurs if you have upgraded from a version of MySQL older than 4.1 to 4.1 or later but have not yet run the mysql_upgrade program to widen the Password column.
If the Password column is wide, it can store either short or long password hashes. In this case, the PASSWORD() function and password-generating statements generate long hashes unless the server was started with the old_passwords system variable set to 1 to force the server to generate short password hashes instead.
The purpose of the old_passwords system variable is to permit backward compatibility with pre-4.1 clients under circumstances where the server would otherwise generate long password hashes. The option does not affect authentication (4.1 and later clients can still use accounts that have long password hashes), but it does prevent creation of a long password hash in the user table as the result of a password-changing operation. Were that permitted to occur, the account could no longer be used by pre-4.1 clients. With old_passwords disabled, the following undesirable scenario is possible:
An old pre-4.1 client connects to an account that has a short password hash.
The client changes its own password. With old_passwords disabled, this results in the account having a long password hash.
The next time the old client attempts to connect to the account, it cannot, because the account has a long password hash that requires the 4.1 hashing method during authentication. (Once an account has a long password hash in the user table, only 4.1 and later clients can authenticate for it because pre-4.1 clients do not understand long hashes.)
This scenario illustrates that, if you must support older pre-4.1 clients, it is problematic to run a 4.1 or newer server without old_passwords set to 1. By running the server with old_passwords=1, password-changing operations do not generate long password hashes and thus do not cause accounts to become inaccessible to older clients. (Those clients cannot inadvertently lock themselves out by changing their password and ending up with a long password hash.)
The downside of old_passwords=1 is that any passwords created or changed use short hashes, even for 4.1 or later clients. Thus, you lose the additional security provided by long password hashes. To create an account that has a long hash (for example, for use by 4.1 clients) or to change an existing account to use a long password hash, an administrator can set the session value of old_passwords set to 0 while leaving the global value set to 1:
mysql> SET @@session.old_passwords = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @@session.old_passwords, @@global.old_passwords;
+-------------------------+------------------------+
| @@session.old_passwords | @@global.old_passwords |
+-------------------------+------------------------+
| 0 | 1 |
+-------------------------+------------------------+
1 row in set (0.00 sec)
mysql> CREATE USER 'newuser'@'localhost' IDENTIFIED BY 'newpass';
Query OK, 0 rows affected (0.03 sec)
mysql> SET PASSWORD FOR 'existinguser'@'localhost' = PASSWORD('existingpass');
Query OK, 0 rows affected (0.00 sec)
The following scenarios are possible in MySQL 4.1 or later. The factors are whether the Password column is short or long, and, if long, whether the server is started with old_passwords enabled or disabled.
Scenario 1: Short Password column in user table:
Only short hashes can be stored in the Password column.
The server uses only short hashes during client authentication.
For connected clients, password hash-generating operations involving the PASSWORD() function or password-generating statements use short hashes exclusively. Any change to an account's password results in that account having a short password hash.
The value of old_passwords is irrelevant because with a short Password column, the server generates only short password hashes anyway.
This scenario occurs when a pre-4.1 MySQL installation has been upgraded to 4.1 or later but mysql_upgrade has not been run to upgrade the system tables in the mysql database. (This is not a recommended configuration because it does not permit use of more secure 4.1 password hashing.)
Scenario 2: Long Password column; server started with old_passwords=1:
Short or long hashes can be stored in the Password column.
4.1 and later clients can authenticate for accounts that have short or long hashes.
Pre-4.1 clients can authenticate only for accounts that have short hashes.
For connected clients, password hash-generating operations involving the PASSWORD() function or password-generating statements use short hashes exclusively. Any change to an account's password results in that account having a short password hash.
In this scenario, newly created accounts have short password hashes because old_passwords=1 prevents generation of long hashes. Also, if you create an account with a long hash before setting old_passwords to 1, changing the account's password while old_passwords=1 results in the account being given a short password, causing it to lose the security benefits of a longer hash.
To create a new account that has a long password hash, or to change the password of any existing account to use a long hash, first set the session value of old_passwords set to 0 while leaving the global value set to 1, as described previously.
In this scenario, the server has an up to date Password column, but is running with the default password hashing method set to generate pre-4.1 hash values. This is not a recommended configuration but may be useful during a transitional period in which pre-4.1 clients and passwords are upgraded to 4.1 or later. When that has been done, it is preferable to run the server with old_passwords=0 and secure_auth=1.
Scenario 3: Long Password column; server started with old_passwords=0:
Short or long hashes can be stored in the Password column.
4.1 and later clients can authenticate using accounts that have short or long hashes.
Pre-4.1 clients can authenticate only using accounts that have short hashes.
For connected clients, password hash-generating operations involving the PASSWORD() function or password-generating statements use short hashes exclusively. A change to an account's password results in that account having a long password hash.
As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short password hash to become inaccessible to pre-4.1 clients. A change to such an account's password made using the PASSWORD() function or a password-generating statement results in the account being given a long password hash. From that point on, no pre-4.1 client can connect to the server using that account. The client must upgrade to 4.1 or later.
If this is a problem, you can change a password in a special way. For example, normally you use SET PASSWORD as follows to change an account password:
SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');
To change the password but create a short hash, use the OLD_PASSWORD() function instead:
SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');
OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.
The disadvantages for each of the preceding scenarios may be summarized as follows:
In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.
In scenario 2, old_passwords=1 prevents accounts with short hashes from becoming inaccessible, but password-changing operations cause accounts with long hashes to revert to short hashes unless you take care to change the session value of old_passwords to 0 first.
In scenario 3, accounts with short hashes become inaccessible to pre-4.1 clients if you change their passwords without explicitly using OLD_PASSWORD().
The best way to avoid compatibility problems related to short password hashes is to not use them:
Upgrade all client programs to MySQL 4.1 or later.
Run the server with old_passwords=0.
Reset the password for any account with a short password hash to use a long password hash.
For additional security, run the server with secure_auth=1.
6.1.2.5. Implications of Password Hashing Changes in MySQL 4.1 for Application Programs
An upgrade to MySQL version 4.1 or later can cause compatibility issues for applications that use PASSWORD() to generate passwords for their own purposes. Applications really should not do this, because PASSWORD() should be used only to manage passwords for MySQL accounts. But some applications use PASSWORD() for their own purposes anyway.
If you upgrade to 4.1 or later from a pre-4.1 version of MySQL and run the server under conditions where it generates long password hashes, an application using PASSWORD() for its own passwords breaks. The recommended course of action in such cases is to modify the application to use another function, such as SHA2(), SHA1(), or MD5(), to produce hashed values. If that is not possible, you can use the OLD_PASSWORD() function, which is provided for generate short hashes in the old format. However, you should note that OLD_PASSWORD() may one day no longer be supported.
If the server is running with old_passwords=1, it generates short hashes and OLD_PASSWORD() is is equivalent to PASSWORD().
PHP programmers migrating their MySQL databases from version 4.0 or lower to version 4.1 or higher should see Section 21.9, “MySQL PHP API”.
6.1.2.6. The Password Validation Plugin
The validate_password plugin (available as of MySQL 5.6.6) can be used to test passwords and improve security. This plugin implements two capabilities:
In statements that assign a password supplied as a cleartext value, the value is checked against the current password policy and rejected if it is weak (the statement returns an ER_NOT_VALID_PASSWORD error). This affects the CREATE USER, GRANT, and SET PASSWORD statements. Passwords given as arguments to the PASSWORD() and OLD_PASSWORD() functions are checked as well.
The strength of potential passwords can be assessed using the VALIDATE_PASSWORD_STRENGTH() SQL function, which takes a password argument and returns an integer from 0 (weak) to 100 (strong).
For example, the cleartext password in the following statement is checked. Under the default password policy, which requires passwords to be at least 8 characters long, the password is weak and the statement produces an error:
mysql> SET PASSWORD = PASSWORD('abc');
ERROR 1819 (HY000): Your password does not satisfy the current policy
requirements
Passwords specified as already hashed values are not checked because the original password value is not available:
mysql> SET PASSWORD = '*0D3CED9BEC10A777AEC23CCC353A8C08A633045E';
Query OK, 0 rows affected (0.01 sec)
The parameters that control password checking are available as the values of the system variables having names of the form validate_password_xxx. These variables can be modified to configure password checking; see Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”.
The three levels of password checking are LOW, MEDIUM, and STRONG. The default is MEDIUM; to change this, modify the value of validate_password_policy. The policies implement increasingly strict password tests. The following descriptions refer to default parameter values; these can be modified by changing the appropriate system variables.
LOW policy tests password length only. Passwords must be at least 8 characters long.
MEDIUM policy adds the conditions that passwords must contain at least 1 numeric character, 1 lowercase and uppercase character, and 1 special (nonalphanumeric) character.
STRONG policy adds the condition that password substrings of length 4 or longer must not match words in the dictionary file, if one has been specified.
If the validate_password plugin is not installed, the validate_password_xxx system variables are not available, passwords in statements are not checked, and VALIDATE_PASSWORD_STRENGTH() always returns 0. For example, accounts can be assigned passwords shorter than 8 characters.
6.1.2.6.1. Password Validation Plugin Installation
The password-validation plugin is named validate_password. To be usable by the server, the plugin library object file must be located in the MySQL plugin directory (the directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at server startup to tell the server the location of the plugin directory.
To load the plugin at server startup, use the --plugin-load option to name the object file that contains the plugin. With this plugin-loading method, the option must be given each time the server starts. For example, put these lines in your my.cnf file:
[mysqld]
plugin-load=validate_password.so
If object files have a suffix different from .so on your system, substitute the correct suffix (for example, .dll on Windows).
Alternatively, to register the plugin at runtime, use this statement (changing the extension as necessary):
mysql> INSTALL PLUGIN validate_password SONAME 'validate_password.so';
INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins table to cause the plugin to be loaded for each subsequent normal server startup.
If the plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load, you can use the --validate-password option at server startup to control plugin activation. For example, to load the plugin and prevent it from being removed at runtime, use these options:
[mysqld]
plugin-load=validate_password.so
validate-password=FORCE_PLUS_PERMANENT
If it is desired to prevent the server from running without the password-validation plugin, use --validate-password with a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not initialize successfully.
For general information about installing plugins, see Section 5.1.8, “Server Plugins”. To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.
6.1.2.6.2. Password Validation Plugin Options and Variables
To control the activation of the validate_password plugin, use this option:
Version Introduced | 5.6.6 | ||
Command-Line Format | --validate-password[=value] | ||
Option-File Format | validate-password[=value] | ||
Permitted Values | |||
Type | enumeration | ||
Default | ON | ||
Valid Values | ON OFF FORCE FORCE_PLUS_PERMANENT |
This option controls how the server loads the validate_password plugin at startup. The value should be one of those available for plugin-loading options, as described in Section 5.1.8.1, “Installing and Uninstalling Plugins”. For example, --validate-password=FORCE_PLUS_PERMANENT tells the server to load the plugin and prevent it from being removed while the server is running.
This option is available only if the validate_password plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load. See Section 6.1.2.6.1, “Password Validation Plugin Installation”.
If the validate_password plugin is installed, it exposes several system variables that indicate the parameters that control password checking:
mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
| validate_password_dictionary_file | |
| validate_password_length | 8 |
| validate_password_mixed_case_count | 1 |
| validate_password_number_count | 1 |
| validate_password_policy | MEDIUM |
| validate_password_special_char_count | 1 |
+--------------------------------------+--------+
To change how passwords are checked, you can set any of these variables at server startup, and most of them at runtime. The following list describes the meaning of each variable.
validate_password_dictionary_file
Version Introduced | 5.6.6 | ||
Variable Name | validate_password_dictionary_file | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The path name of the dictionary file used by the validate_password plugin for checking passwords. This variable is unavailable unless that plugin is installed.
By default, this variable has an empty value and dictionary checks are not performed. To enable dictionary checks, you must set this variable to a nonempty value. If the file is named as a relative path, it is interpreted relative to the server data directory. Its contents should be lowercase, one word per line. Contents are treated as having a character set of utf8. The maximum permitted file size is 1MB.
For the dictionary file to be used during password checking, the password policy must be set to 2 (STRONG); see the description of the validate_password_policy system variable. Assuming that is true, each substring of the password of length 4 up to 100 is compared to the words in the dictionary file. Any match causes the password to be rejected. Comparisons are not case sensitive.
For VALIDATE_PASSWORD_STRENGTH() the password is checked against all policies, including STRONG, so the strength assessment includes the dictionary check regardless of the validate_password_policy value.
Changes to the dictionary file while the server is running require a restart for the server to recognize the changes.
Version Introduced | 5.6.6 | ||
Variable Name | validate_password_length | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 8 | ||
Min Value | 0 |
The minimum number of characters that passwords checked by the validate_password plugin must have. This variable is unavailable unless that plugin is installed.
The validate_password_length minimum value is a function of several other related system variables. As of MySQL 5.6.10, the server will not set the value less than the value of this expression:
validate_password_number_count
+ validate_password_special_char_count
+ (2 * validate_password_mixed_case_count)
If the validate_password plugin adjusts the value of validate_password_length due to the preceding constraint, it writes a message to the error log.
validate_password_mixed_case_count
Version Introduced | 5.6.6 | ||
Variable Name | validate_password_mixed_case_count | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 | ||
Min Value | 0 |
The minimum number of lowercase and uppercase characters that passwords checked by the validate_password plugin must have if the password policy is MEDIUM or stronger. This variable is unavailable unless that plugin is installed.
validate_password_number_count
Version Introduced | 5.6.6 | ||
Variable Name | validate_password_number_count | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 | ||
Min Value | 0 |
The minimum number of numeric (digit) characters that passwords checked by the validate_password plugin must have if the password policy is MEDIUM or stronger. This variable is unavailable unless that plugin is installed.
Version Introduced | 5.6.6 | ||
Variable Name | validate_password_policy | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | 1 | ||
Valid Values | 0 1 2 |
The password policy enforced by the validate_password plugin. This variable is unavailable unless that plugin is installed.
The validate_password_policy value can be specified using numeric values 0, 1, 2, or the corresponding symbolic values LOW, MEDIUM, STRONG. The following table describes the tests performed for each policy. For the length test, the required length is the value of the validate_password_length system variable. Similarly, the required values for the other tests are given by other validate_password_xxx variables.
Policy | Tests Performed |
---|---|
0 or LOW | Length |
1 or MEDIUM | Length; numeric, lowercase/uppercase, and special characters |
2 or STRONG | Length; numeric, lowercase/uppercase, and special characters; dictionary file |
Note
Before MySQL 5.6.10, validate_password_policy was named validate_password_policy_number.
validate_password_special_char_count
Version Introduced | 5.6.6 | ||
Variable Name | validate_password_special_char_count | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 | ||
Min Value | 0 |
The minimum number of nonalphanumeric characters that passwords checked by the validate_password plugin must have if the password policy is MEDIUM or stronger. This variable is unavailable unless that plugin is installed.
6.1.3. Making MySQL Secure Against Attackers
When you connect to a MySQL server, you should use a password. The password is not transmitted in clear text over the connection. Password handling during the client connection sequence was upgraded in MySQL 4.1.1 to be very secure. If you are still using pre-4.1.1-style passwords, the encryption algorithm is not as strong as the newer algorithm. With some effort, a clever attacker who can sniff the traffic between the client and the server can crack the password. (See Section 6.1.2.4, “Password Hashing in MySQL”, for a discussion of the different password handling methods.)
All other information is transferred as text, and can be read by anyone who is able to watch the connection. If the connection between the client and the server goes through an untrusted network, and you are concerned about this, you can use the compressed protocol to make traffic much more difficult to decipher. You can also use MySQL's internal SSL support to make the connection even more secure. See Section 6.3.9, “Using SSL for Secure Connections”. Alternatively, use SSH to get an encrypted TCP/IP connection between a MySQL server and a MySQL client. You can find an Open Source SSH client at http://www.openssh.org/, and a commercial SSH client at http://www.ssh.com/.
To make a MySQL system secure, you should strongly consider the following suggestions:
Require all MySQL accounts to have a password. A client program does not necessarily know the identity of the person running it. It is common for client/server applications that the user can specify any user name to the client program. For example, anyone can use the mysql program to connect as any other person simply by invoking it as mysql -u other_user db_name if other_user has no password. If all accounts have a password, connecting using another user's account becomes much more difficult.
For a discussion of methods for setting passwords, see Section 6.3.5, “Assigning Account Passwords”.
Make sure that the only Unix user account with read or write privileges in the database directories is the account that is used for running mysqld.
Never run the MySQL server as the Unix root user. This is extremely dangerous, because any user with the FILE privilege is able to cause the server to create files as root (for example, ~root/.bashrc). To prevent this, mysqld refuses to run as root unless that is specified explicitly using the --user=root option.
mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a separate Unix account named mysql to make everything even more secure. Use this account only for administering MySQL. To start mysqld as a different Unix user, add a user option that specifies the user name in the [mysqld] group of the my.cnf option file where you specify server options. For example:
[mysqld]
user=mysql
This causes the server to start as the designated user whether you start it manually or by using mysqld_safe or mysql.server. For more details, see Section 6.1.5, “How to Run MySQL as a Normal User”.
Running mysqld as a Unix user other than root does not mean that you need to change the root user name in the user table. User names for MySQL accounts have nothing to do with user names for Unix accounts.
Do not grant the FILE privilege to nonadministrative users. Any user that has this privilege can write a file anywhere in the file system with the privileges of the mysqld daemon. This includes the server's data directory containing the files that implement the privilege tables. To make FILE-privilege operations a bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite existing files and are writable by everyone.
The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix user that the server runs as. With this privilege, you can read any file into a database table. This could be abused, for example, by using LOAD DATA to load /etc/passwd into a table, which then can be displayed with SELECT.
To limit the location in which files can be read and written, set the secure_file_priv system to a specific directory. See Section 5.1.4, “Server System Variables”.
Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of mysqladmin processlist and SHOW PROCESSLIST shows the text of any statements currently being executed, so any user who is permitted to see the server process list might be able to see statements issued by other users such as UPDATE user SET password=PASSWORD('not_secure').
mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL root user can log in and check server activity even if all normal connections are in use.
The SUPER privilege can be used to terminate client connections, change server operation by changing the value of system variables, and control replication servers.
Do not permit the use of symlinks to tables. (This capability can be disabled with the --skip-symbolic-links option.) This is especially important if you run mysqld as root, because anyone that has write access to the server's data directory then could delete any file in the system! See Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”.
Stored programs and views should be written using the security guidelines discussed in Section 18.6, “Access Control for Stored Programs and Views”.
If you do not trust your DNS, you should use IP addresses rather than host names in the grant tables. In any case, you should be very careful about creating grant table entries using host name values that contain wildcards.
If you want to restrict the number of connections permitted to a single account, you can do so by setting the max_user_connections variable in mysqld. The GRANT statement also supports resource control options for limiting the extent of server use permitted to an account. See Section 13.7.1.4, “GRANT Syntax”.
If the plugin directory is writable by the server, it may be possible for a user to write executable code to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making plugin_dir read only to the server or by setting --secure-file-priv to a directory where SELECT writes can be made safely.
6.1.4. Security-Related mysqld Options and Variables
The following table shows mysqld options and system variables that affect security. For descriptions of each of these, see Section 5.1.3, “Server Command Options”, and Section 5.1.4, “Server System Variables”.
Table 6.1. Security Option/Variable Summary
Name | Cmd-Line | Option file | System Var | Status Var | Var Scope | Dynamic |
---|---|---|---|---|---|---|
allow-suspicious-udfs | Yes | Yes | ||||
automatic_sp_privileges | Yes | Global | Yes | |||
chroot | Yes | Yes | ||||
des-key-file | Yes | Yes | ||||
local_infile | Yes | Global | Yes | |||
old_passwords | Yes | Both | Yes | |||
safe-user-create | Yes | Yes | ||||
secure-auth | Yes | Yes | Global | Yes | ||
- Variable: secure_auth | Yes | Global | Yes | |||
secure-file-priv | Yes | Yes | Global | No | ||
- Variable: secure_file_priv | Yes | Global | No | |||
skip-grant-tables | Yes | Yes | ||||
skip-name-resolve | Yes | Yes | Global | No | ||
- Variable: skip_name_resolve | Yes | Global | No | |||
skip-networking | Yes | Yes | Global | No | ||
- Variable: skip_networking | Yes | Global | No | |||
skip-show-database | Yes | Yes | Global | No | ||
- Variable: skip_show_database | Yes | Global | No |
6.1.5. How to Run MySQL as a Normal User
On Windows, you can run the server as a Windows service using a normal user account.
On Unix, the MySQL server mysqld can be started and run by any user. However, you should avoid running the server as the Unix root user for security reasons. To change mysqld to run as a normal unprivileged Unix user user_name, you must do the following:
Stop the server if it is running (use mysqladmin shutdown).
Change the database directories and files so that user_name has privileges to read and write files in them (you might need to do this as the Unix root user):
shell> chown -R user_name /path/to/mysql/datadir
If you do not do this, the server will not be able to access databases or tables when it runs as user_name.
If directories or files within the MySQL data directory are symbolic links, chown -R might not follow symbolic links for you. If it does not, you will also need to follow those links and change the directories and files they point to.
Start the server as user user_name. Another alternative is to start mysqld as the Unix root user and use the --user=user_name option. mysqld starts up, then switches to run as the Unix user user_name before accepting any connections.
To start the server as the given user automatically at system startup time, specify the user name by adding a user option to the [mysqld] group of the /etc/my.cnf option file or the my.cnf option file in the server's data directory. For example:
[mysqld]
user=user_name
If your Unix machine itself is not secured, you should assign passwords to the MySQL root accounts in the grant tables. Otherwise, any user with a login account on that machine can run the mysql client with a --user=root option and perform any operation. (It is a good idea to assign passwords to MySQL accounts in any case, but especially so when other login accounts exist on the server host.) See Section 2.10, “Postinstallation Setup and Testing”.
6.1.6. Security Issues with LOAD DATA LOCAL
The LOAD DATA statement can load a file that is located on the server host, or it can load a file that is located on the client host when the LOCAL keyword is specified.
There are two potential security issues with supporting the LOCAL version of LOAD DATA statements:
The transfer of the file from the client host to the server host is initiated by the MySQL server. In theory, a patched server could be built that would tell the client program to transfer a file of the server's choosing rather than the file named by the client in the LOAD DATA statement. Such a server could access any file on the client host to which the client user has read access.
In a Web environment where the clients are connecting from a Web server, a user could use LOAD DATA LOCAL to read any files that the Web server process has read access to (assuming that a user could run any command against the SQL server). In this environment, the client with respect to the MySQL server actually is the Web server, not the remote program being run by the user who connects to the Web server.
To deal with these problems, we changed how LOAD DATA LOCAL is handled as of MySQL 3.23.49 and MySQL 4.0.2 (4.0.13 on Windows):
By default, all MySQL clients and libraries in binary distributions are compiled with the -DENABLED_LOCAL_INFILE=1 option, to be compatible with MySQL 3.23.48 and before.
If you build MySQL from source but do not invoke CMake with the -DENABLED_LOCAL_INFILE=1 option, LOAD DATA LOCAL cannot be used by any client unless it is written explicitly to invoke mysql_options(... MYSQL_OPT_LOCAL_INFILE, 0). See Section 21.8.6.49, “mysql_options()”.
You can disable all LOAD DATA LOCAL statements from the server side by starting mysqld with the --local-infile=0 option.
For the mysql command-line client, enable LOAD DATA LOCAL by specifying the --local-infile[=1] option, or disable it with the --local-infile=0 option. For mysqlimport, local data file loading is off by default; enable it with the --local or -L option. In any case, successful use of a local load operation requires that the server permits it.
If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group from option files, you can add the local-infile=1 option to that group. However, to keep this from causing problems for programs that do not understand local-infile, specify it using the loose- prefix:
[client]
loose-local-infile=1
If LOAD DATA LOCAL is disabled, either in the server or the client, a client that attempts to issue such a statement receives the following error message:
ERROR 1148: The used command is not allowed with this MySQL version
6.1.7. Client Programming Security Guidelines
Applications that access MySQL should not trust any data entered by users, who can try to trick your code by entering special or escaped character sequences in Web forms, URLs, or whatever application you have built. Be sure that your application remains secure if a user enters something like “; DROP DATABASE mysql;”. This is an extreme example, but large security leaks and data loss might occur as a result of hackers using similar techniques, if you do not prepare for them.
A common mistake is to protect only string data values. Remember to check numeric data as well. If an application generates a query such as SELECT * FROM table WHERE ID=234 when a user enters the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the query SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the server retrieves every row in the table. This exposes every row and causes excessive server load. The simplest way to protect from this type of attack is to use single quotation marks around the numeric constants: SELECT * FROM table WHERE ID='234'. If the user enters extra information, it all becomes part of the string. In a numeric context, MySQL automatically converts this string to a number and strips any trailing nonnumeric characters from it.
Sometimes people think that if a database contains only publicly available data, it need not be protected. This is incorrect. Even if it is permissible to display any row in the database, you should still protect against denial of service attacks (for example, those that are based on the technique in the preceding paragraph that causes the server to waste resources). Otherwise, your server becomes unresponsive to legitimate users.
Checklist:
Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See Section 5.1.7, “Server SQL Modes”.
Try to enter single and double quotation marks (“'” and “"”) in all of your Web forms. If you get any kind of MySQL error, investigate the problem right away.
Try to modify dynamic URLs by adding %22 (“"”), %23 (“#”), and %27 (“'”) to them.
Try to modify data types in dynamic URLs from numeric to character types using the characters shown in the previous examples. Your application should be safe against these and similar attacks.
Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your application should remove them before passing them to MySQL or else generate an error. Passing unchecked values to MySQL is very dangerous!
Check the size of data before passing it to MySQL.
Have your application connect to the database using a user name different from the one you use for administrative purposes. Do not give your applications any access privileges they do not need.
Many application programming interfaces provide a means of escaping special characters in data values. Properly used, this prevents application users from entering values that cause the application to generate statements that have a different effect than you intend:
MySQL C API: Use the mysql_real_escape_string() API call.
MySQL++: Use the escape and quote modifiers for query streams.
PHP: Use either the mysqli or pdo_mysql extensions, and not the older ext/mysql extension. The preferred API's support the improved MySQL authentication protocol and passwords, as well as prepared statements with placeholders. See also Section 21.9.1.3, “Choosing an API”.
If the older ext/mysql extension must be used, then for escaping use the mysql_real_escape_string() function and not mysql_escape_string() or addslashes() because only mysql_real_escape_string() is character set-aware; the other functions can be “bypassed” when using (invalid) multi-byte character sets.
Perl DBI: Use placeholders or the quote() method.
Ruby DBI: Use placeholders or the quote() method.
Java JDBC: Use a PreparedStatement object and placeholders.
Other programming interfaces might have similar capabilities.
6.2. The MySQL Access Privilege System
The primary function of the MySQL privilege system is to authenticate a user who connects from a given host and to associate that user with privileges on a database such as SELECT, INSERT, UPDATE, and DELETE. Additional functionality includes the ability to have anonymous users and to grant privileges for MySQL-specific functions such as LOAD DATA INFILE and administrative operations.
There are some things that you cannot do with the MySQL privilege system:
You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly match a user and then refuse the connection.
You cannot specify that a user has privileges to create or drop tables in a database but not to create or drop the database itself.
A password applies globally to an account. You cannot associate a password with a specific object such as a database, table, or routine.
The user interface to the MySQL privilege system consists of SQL statements such as CREATE USER, GRANT, and REVOKE. See Section 13.7.1, “Account Management Statements”.
Internally, the server stores privilege information in the grant tables of the mysql database (that is, in the database named mysql). The MySQL server reads the contents of these tables into memory when it starts and bases access-control decisions on the in-memory copies of the grant tables.
The MySQL privilege system ensures that all users may perform only the operations permitted to them. As a user, when you connect to a MySQL server, your identity is determined by the host from which you connect and the user name you specify. When you issue requests after connecting, the system grants privileges according to your identity and what you want to do.
MySQL considers both your host name and user name in identifying you because there is no reason to assume that a given user name belongs to the same person on all hosts. For example, the user joe who connects from office.example.com need not be the same person as the user joe who connects from home.example.com. MySQL handles this by enabling you to distinguish users on different hosts that happen to have the same name: You can grant one set of privileges for connections by joe from office.example.com, and a different set of privileges for connections by joe from home.example.com. To see what privileges a given account has, use the SHOW GRANTS statement. For example:
SHOW GRANTS FOR 'joe'@'office.example.com';
SHOW GRANTS FOR 'joe'@'home.example.com';
MySQL access control involves two stages when you run a client program that connects to the server:
Stage 1: The server accepts or rejects the connection based on your identity and whether you can verify your identity by supplying the correct password.
Stage 2: Assuming that you can connect, the server checks each statement you issue to determine whether you have sufficient privileges to perform it. For example, if you try to select rows from a table in a database or drop a table from the database, the server verifies that you have the SELECT privilege for the table or the DROP privilege for the database.
For a more detailed description of what happens during each stage, see Section 6.2.4, “Access Control, Stage 1: Connection Verification”, and Section 6.2.5, “Access Control, Stage 2: Request Verification”.
If your privileges are changed (either by yourself or someone else) while you are connected, those changes do not necessarily take effect immediately for the next statement that you issue. For details about the conditions under which the server reloads the grant tables, see Section 6.2.6, “When Privilege Changes Take Effect”.
For general security-related advice, see Section 6.1, “General Security Issues”. For help in diagnosing privilege-related problems, see Section 6.2.7, “Causes of Access-Denied Errors”.
6.2.1. Privileges Provided by MySQL
MySQL provides privileges that apply in different contexts and at different levels of operation:
Administrative privileges enable users to manage operation of the MySQL server. These privileges are global because they are not specific to a particular database.
Database privileges apply to a database and to all objects within it. These privileges can be granted for specific databases, or globally so that they apply to all databases.
Privileges for database objects such as tables, indexes, views, and stored routines can be granted for specific objects within a database, for all objects of a given type within a database (for example, all tables in a database), or globally for all objects of a given type in all databases).
Information about account privileges is stored in the user, db, tables_priv, columns_priv, and procs_priv tables in the mysql database (see Section 6.2.2, “Privilege System Grant Tables”). The MySQL server reads the contents of these tables into memory when it starts and reloads them under the circumstances indicated in Section 6.2.6, “When Privilege Changes Take Effect”. Access-control decisions are based on the in-memory copies of the grant tables.
Some releases of MySQL introduce changes to the structure of the grant tables to add new access privileges or features. Whenever you update to a new version of MySQL, you should update your grant tables to make sure that they have the current structure so that you can take advantage of any new capabilities. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
The following table shows the privilege names used at the SQL level in the GRANT and REVOKE statements, along with the column name associated with each privilege in the grant tables and the context in which the privilege applies.
Table 6.2. Permissible Privileges for GRANT and REVOKE
Privilege | Column | Context |
---|---|---|
CREATE | Create_priv | databases, tables, or indexes |
DROP | Drop_priv | databases, tables, or views |
GRANT OPTION | Grant_priv | databases, tables, or stored routines |
LOCK TABLES | Lock_tables_priv | databases |
REFERENCES | References_priv | databases or tables |
EVENT | Event_priv | databases |
ALTER | Alter_priv | tables |
DELETE | Delete_priv | tables |
INDEX | Index_priv | tables |
INSERT | Insert_priv | tables or columns |
SELECT | Select_priv | tables or columns |
UPDATE | Update_priv | tables or columns |
CREATE TEMPORARY TABLES | Create_tmp_table_priv | tables |
TRIGGER | Trigger_priv | tables |
CREATE VIEW | Create_view_priv | views |
SHOW VIEW | Show_view_priv | views |
ALTER ROUTINE | Alter_routine_priv | stored routines |
CREATE ROUTINE | Create_routine_priv | stored routines |
EXECUTE | Execute_priv | stored routines |
FILE | File_priv | file access on server host |
CREATE TABLESPACE | Create_tablespace_priv | server administration |
CREATE USER | Create_user_priv | server administration |
PROCESS | Process_priv | server administration |
PROXY | see proxies_priv table | server administration |
RELOAD | Reload_priv | server administration |
REPLICATION CLIENT | Repl_client_priv | server administration |
REPLICATION SLAVE | Repl_slave_priv | server administration |
SHOW DATABASES | Show_db_priv | server administration |
SHUTDOWN | Shutdown_priv | server administration |
SUPER | Super_priv | server administration |
ALL [PRIVILEGES] | server administration | |
USAGE | server administration |
The following list provides a general description of each privilege available in MySQL. Particular SQL statements might have more specific privilege requirements than indicated here. If so, the description for the statement in question provides the details.
The ALL or ALL PRIVILEGES privilege specifier is shorthand. It stands for “all privileges available at a given privilege level” (except GRANT OPTION). For example, granting ALL at the global or table level grants all global privileges or all table-level privileges.
The ALTER privilege enables use of ALTER TABLE to change the structure of tables. ALTER TABLE also requires the CREATE and INSERT privileges. Renaming a table requires ALTER and DROP on the old table, ALTER, CREATE, and INSERT on the new table.
The ALTER ROUTINE privilege is needed to alter or drop stored routines (procedures and functions).
The CREATE privilege enables creation of new databases and tables.
The CREATE ROUTINE privilege is needed to create stored routines (procedures and functions).
The CREATE TABLESPACE privilege is needed to create, alter, or drop tablespaces and log file groups.
The CREATE TEMPORARY TABLES privilege enables the creation of temporary tables using the CREATE TEMPORARY TABLE statement.
As of MySQL 5.6.3, after a session has created a temporary table, the server performs no further privilege checks on the table. The creating session can perform any operation on the table, such as DROP TABLE, INSERT, UPDATE, or SELECT.
One implication of this behavior is that a session can manipulate its temporary tables even if the current user has no privilege to create them. Suppose that the current user does not have the CREATE TEMPORARY TABLES privilege but is able to execute a DEFINER-context stored procedure that executes with the privileges of a user who does have CREATE TEMPORARY TABLES and that creates a temporary table. While the procedure executes, the session uses the privileges of the defining user. After the procedure returns, the effective privileges revert to those of the current user, which can still see the temporary table and perform any operation on it.
Before MySQL 5.6.3, other operations on a temporary table, such as INSERT, UPDATE, or SELECT, require additional privileges for those operations for the database containing the temporary table, or for the nontemporary table of the same name.
To keep privileges for temporary and nontemporary tables separate, a common workaround for this situation is to create a database dedicated to the use of temporary tables. Then for that database, a user can be granted the CREATE TEMPORARY TABLES privilege, along with any other privileges required for temporary table operations done by that user.
The CREATE USER privilege enables use of CREATE USER, DROP USER, RENAME USER, and REVOKE ALL PRIVILEGES.
The CREATE VIEW privilege enables use of CREATE VIEW.
The DELETE privilege enables rows to be deleted from tables in a database.
The DROP privilege enables you to drop (remove) existing databases, tables, and views. The DROP privilege is required in order to use the statement ALTER TABLE ... DROP PARTITION on a partitioned table. The DROP privilege is also required for TRUNCATE TABLE. If you grant the DROP privilege for the mysql database to a user, that user can drop the database in which the MySQL access privileges are stored.
The EVENT privilege is required to create, alter, drop, or see events for the Event Scheduler.
The EXECUTE privilege is required to execute stored routines (procedures and functions).
The FILE privilege gives you permission to read and write files on the server host using the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function. A user who has the FILE privilege can read any file on the server host that is either world-readable or readable by the MySQL server. (This implies the user can read any file in any database directory, because the server can access any of those files.) The FILE privilege also enables the user to create new files in any directory where the MySQL server has write access. This includes the server's data directory containing the files that implement the privilege tables. As a security measure, the server will not overwrite existing files.
To limit the location in which files can be read and written, set the secure_file_priv system to a specific directory. See Section 5.1.4, “Server System Variables”.
The GRANT OPTION privilege enables you to give to other users or remove from other users those privileges that you yourself possess.
The INDEX privilege enables you to create or drop (remove) indexes. INDEX applies to existing tables. If you have the CREATE privilege for a table, you can include index definitions in the CREATE TABLE statement.
The INSERT privilege enables rows to be inserted into tables in a database. INSERT is also required for the ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.
The LOCK TABLES privilege enables the use of explicit LOCK TABLES statements to lock tables for which you have the SELECT privilege. This includes the use of write locks, which prevents other sessions from reading the locked table.
The PROCESS privilege pertains to display of information about the threads executing within the server (that is, information about the statements being executed by sessions). The privilege enables use of SHOW PROCESSLIST or mysqladmin processlist to see threads belonging to other accounts; you can always see your own threads.
The PROXY privilege enables a user to impersonate or become known as another user. See Section 6.3.8, “Proxy Users”.
The REFERENCES privilege currently is unused.
The RELOAD privilege enables use of the FLUSH statement. It also enables mysqladmin commands that are equivalent to FLUSH operations: flush-hosts, flush-logs, flush-privileges, flush-status, flush-tables, flush-threads, refresh, and reload.
The reload command tells the server to reload the grant tables into memory. flush-privileges is a synonym for reload. The refresh command closes and reopens the log files and flushes all tables. The other flush-xxx commands perform functions similar to refresh, but are more specific and may be preferable in some instances. For example, if you want to flush just the log files, flush-logs is a better choice than refresh.
The REPLICATION CLIENT privilege enables the use of SHOW MASTER STATUS and SHOW SLAVE STATUS. In MySQL 5.6.6 and later, it also enables the use of the SHOW BINARY LOGS statement.
The REPLICATION SLAVE privilege should be granted to accounts that are used by slave servers to connect to the current server as their master. Without this privilege, the slave cannot request updates that have been made to databases on the master server.
The SELECT privilege enables you to select rows from tables in a database. SELECT statements require the SELECT privilege only if they actually retrieve rows from a table. Some SELECT statements do not access tables and can be executed without permission for any database. For example, you can use SELECT as a simple calculator to evaluate expressions that make no reference to tables:
SELECT 1+1;
SELECT PI()*2;
The SELECT privilege is also needed for other statements that read column values. For example, SELECT is needed for columns referenced on the right hand side of col_name=expr assignment in UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.
The SHOW DATABASES privilege enables the account to see database names by issuing the SHOW DATABASE statement. Accounts that do not have this privilege see only databases for which they have some privileges, and cannot use the statement at all if the server was started with the --skip-show-database option. Note that any global privilege is a privilege for the database.
The SHOW VIEW privilege enables use of SHOW CREATE VIEW.
The SHUTDOWN privilege enables use of the mysqladmin shutdown command. There is no corresponding SQL statement.
The SUPER privilege enables an account to use CHANGE MASTER TO, KILL or mysqladmin kill to kill threads belonging to other accounts (you can always kill your own threads), PURGE BINARY LOGS, configuration changes using SET GLOBAL to modify global system variables, the mysqladmin debug command, enabling or disabling logging, performing updates even if the read_only system variable is enabled, starting and stopping replication on slave servers, specification of any account in the DEFINER attribute of stored programs and views, and enables you to connect (once) even if the connection limit controlled by the max_connections system variable is reached.
To create or alter stored functions if binary logging is enabled, you may also need the SUPER privilege, as described in Section 18.7, “Binary Logging of Stored Programs”.
The TRIGGER privilege enables trigger operations. You must have this privilege for a table to create, drop, or execute triggers for that table.
The UPDATE privilege enables rows to be updated in tables in a database.
The USAGE privilege specifier stands for “no privileges.” It is used at the global level with GRANT to modify account attributes such as resource limits or SSL characteristics without affecting existing account privileges.
It is a good idea to grant to an account only those privileges that it needs. You should exercise particular caution in granting the FILE and administrative privileges:
The FILE privilege can be abused to read into a database table any files that the MySQL server can read on the server host. This includes all world-readable files and files in the server's data directory. The table can then be accessed using SELECT to transfer its contents to the client host.
The GRANT OPTION privilege enables users to give their privileges to other users. Two users that have different privileges and with the GRANT OPTION privilege are able to combine privileges.
The ALTER privilege may be used to subvert the privilege system by renaming tables.
The SHUTDOWN privilege can be abused to deny service to other users entirely by terminating the server.
The PROCESS privilege can be used to view the plain text of currently executing statements, including statements that set or change passwords.
The SUPER privilege can be used to terminate other sessions or change how the server operates.
Privileges granted for the mysql database itself can be used to change passwords and other access privilege information. Passwords are stored encrypted, so a malicious user cannot simply read them to know the plain text password. However, a user with write access to the user table Password column can change an account's password, and then connect to the MySQL server using that account.
6.2.2. Privilege System Grant Tables
Normally, you manipulate the contents of the grant tables in the mysql database indirectly by using statements such as GRANT and REVOKE to set up accounts and control the privileges available to each one. See Section 13.7.1, “Account Management Statements”. The discussion here describes the underlying structure of the grant tables and how the server uses their contents when interacting with clients.
These mysql database tables contain grant information:
user: Contains user accounts, global privileges, and other non-privilege columns.
db: Contains database-level privileges.
host: Obsolete. New MySQL installations no longer create this table as of MySQL 5.6.7.
tables_priv: Contains table-level privileges.
columns_priv: Contains column-level privileges.
procs_priv: Contains stored procedure and function privileges.
proxies_priv: Contains proxy-user privileges.
Other tables in the mysql database do not hold grant information and are discussed elsewhere:
event: Contains information about Event Scheduler events: See Section 18.4, “Using the Event Scheduler”.
func: Contains information about user-defined functions: See Section 22.3, “Adding New Functions to MySQL”.
help_xxx: These tables are used for server-side help: See Section 5.1.10, “Server-Side Help”.
plugin: Contains information about server plugins: See Section 5.1.8.1, “Installing and Uninstalling Plugins”, and Section 22.2, “The MySQL Plugin API”.
proc: Contains information about stored procedures and functions: See Section 18.2, “Using Stored Routines (Procedures and Functions)”.
servers: Used by the FEDERATED storage engine: See Section 14.9.2.2, “Creating a FEDERATED Table Using CREATE SERVER”.
time_zone_xxx: These tables contain time zone information: See Section 10.6, “MySQL Server Time Zone Support”.
Tables with _log in their name are used for logging: See Section 5.2, “MySQL Server Logs”.
Each grant table contains scope columns and privilege columns:
Scope columns determine the scope of each row (entry) in the tables; that is, the context in which the row applies. For example, a user table row with Host and User values of 'thomas.loc.gov' and 'bob' would be used for authenticating connections made to the server from the host thomas.loc.gov by a client that specifies a user name of bob. Similarly, a db table row with Host, User, and Db column values of 'thomas.loc.gov', 'bob' and 'reports' would be used when bob connects from the host thomas.loc.gov to access the reports database. The tables_priv and columns_priv tables contain scope columns indicating tables or table/column combinations to which each row applies. The procs_priv scope columns indicate the stored routine to which each row applies.
Privilege columns indicate which privileges are granted by a table row; that is, what operations can be performed. The server combines the information in the various grant tables to form a complete description of a user's privileges. Section 6.2.5, “Access Control, Stage 2: Request Verification”, describes the rules that are used to do this.
The server uses the grant tables in the following manner:
The user table scope columns determine whether to reject or permit incoming connections. For permitted connections, any privileges granted in the user table indicate the user's global privileges. Any privilege granted in this table applies to all databases on the server.
Note
Because any global privilege is considered a privilege for all databases, any global privilege enables a user to see all database names with SHOW DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA.
The db table scope columns determine which users can access which databases from which hosts. The privilege columns determine which operations are permitted. A privilege granted at the database level applies to the database and to all objects in the database, such as tables and stored programs.
The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained: They apply at the table and column levels rather than at the database level. A privilege granted at the table level applies to the table and to all its columns. A privilege granted at the column level applies only to a specific column.
The procs_priv table applies to stored routines. A privilege granted at the routine level applies only to a single routine.
The proxies_priv table indicates which users can act as proxies for other users and whether proxy users can grant the PROXY privilege to other users.
The server uses the user and db tables in the mysql database at both the first and second stages of access control (see Section 6.2, “The MySQL Access Privilege System”). The columns in the user and db tables are shown here.
Table 6.3. user and db Table Columns
Table Name | user | db |
---|---|---|
Scope columns | Host | Host |
User | Db | |
Password | User | |
Privilege columns | Select_priv | Select_priv |
Insert_priv | Insert_priv | |
Update_priv | Update_priv | |
Delete_priv | Delete_priv | |
Index_priv | Index_priv | |
Alter_priv | Alter_priv | |
Create_priv | Create_priv | |
Drop_priv | Drop_priv | |
Grant_priv | Grant_priv | |
Create_view_priv | Create_view_priv | |
Show_view_priv | Show_view_priv | |
Create_routine_priv | Create_routine_priv | |
Alter_routine_priv | Alter_routine_priv | |
Execute_priv | Execute_priv | |
Trigger_priv | Trigger_priv | |
Event_priv | Event_priv | |
Create_tmp_table_priv | Create_tmp_table_priv | |
Lock_tables_priv | Lock_tables_priv | |
References_priv | References_priv | |
Reload_priv | ||
Shutdown_priv | ||
Process_priv | ||
File_priv | ||
Show_db_priv | ||
Super_priv | ||
Repl_slave_priv | ||
Repl_client_priv | ||
Create_user_priv | ||
Create_tablespace_priv | ||
Security columns | ssl_type | |
ssl_cipher | ||
x509_issuer | ||
x509_subject | ||
plugin | ||
authentication_string | ||
password_expired | ||
Resource control columns | max_questions | |
max_updates | ||
max_connections | ||
max_user_connections |
The mysql.user table plugin and authentication_string columns store authentication plugin information.
If the plugin column for an account row is empty, the server uses native authentication for connection attempts for the account: Clients must match the password in the Password column of the account row.
If an account row names a plugin in the plugin column, the server uses it to authenticate connection attempts for the account. Whether the plugin uses the value in the Password column is up to the plugin.
The password_expired column was added in MySQL 5.6.6 to permit DBAs to expire account passwords and require users to reset their password. The default password_expired value is 'N', but can be set to 'Y' with the ALTER USER statement. After an account's password has been expired, all operations performed by the account in subsequent connections to the server result in an error until the user issues a SET PASSWORD statement to establish a new account password. See Section 13.7.1.1, “ALTER USER Syntax”.
It is possible after password expiration to “reset” a password by using SET PASSWORD to set it to its current value. As a matter of good policy, it is preferable to choose a different password.
Caution
In MySQL 5.6.6, ALTER USER also sets the Password column to the empty string, so do not use this statement until 5.6.7.
During the second stage of access control, the server performs request verification to make sure that each client has sufficient privileges for each request that it issues. In addition to the user and db grant tables, the server may also consult the tables_priv and columns_priv tables for requests that involve tables. The latter tables provide finer privilege control at the table and column levels. They have the columns shown in the following table.
Table 6.4. tables_priv and columns_priv Table Columns
Table Name | tables_priv | columns_priv |
---|---|---|
Scope columns | Host | Host |
Db | Db | |
User | User | |
Table_name | Table_name | |
Column_name | ||
Privilege columns | Table_priv | Column_priv |
Column_priv | ||
Other columns | Timestamp | Timestamp |
Grantor |
The Timestamp and Grantor columns are set to the current timestamp and the CURRENT_USER value, respectively. However, they are unused and are discussed no further here.
For verification of requests that involve stored routines, the server may consult the procs_priv table, which has the columns shown in the following table.
Table 6.5. procs_priv Table Columns
Table Name | procs_priv |
---|---|
Scope columns | Host |
Db | |
User | |
Routine_name | |
Routine_type | |
Privilege columns | Proc_priv |
Other columns | Timestamp |
Grantor |
The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to indicate the type of routine the row refers to. This column enables privileges to be granted separately for a function and a procedure with the same name.
The Timestamp and Grantor columns currently are unused and are discussed no further here.
The proxies_priv table records information about proxy users. It has these columns:
Host, User: These columns indicate the user account that has the PROXY privilege for the proxied account.
Proxied_host, Proxied_user: These columns indicate the account of the proxied user.
Grantor: Currently unused.
Timestamp: Currently unused.
With_grant: This column indicates whether the proxy account can grant the PROXY privilege to other accounts.
Scope columns in the grant tables contain strings. They are declared as shown here; the default value for each is the empty string.
Table 6.6. Grant Table Scope Column Types
Column Name | Type |
---|---|
Host, Proxied_host | CHAR(60) |
User, Proxied_user | CHAR(16) |
Password | CHAR(41) |
Db | CHAR(64) |
Table_name | CHAR(64) |
Column_name | CHAR(64) |
Routine_name | CHAR(64) |
For access-checking purposes, comparisons of User, Proxied_user, Password, Db, and Table_name values are case sensitive. Comparisons of Host, Proxied_host, Column_name, and Routine_name values are not case sensitive.
In the user and db tables, each privilege is listed in a separate column that is declared as ENUM('N','Y') DEFAULT 'N'. In other words, each privilege can be disabled or enabled, with the default being disabled.
In the tables_priv, columns_priv, and procs_priv tables, the privilege columns are declared as SET columns. Values in these columns can contain any combination of the privileges controlled by the table. Only those privileges listed in the column value are enabled.
Table 6.7. Set-Type Privilege Column Values
Table Name | Column Name | Possible Set Elements |
---|---|---|
tables_priv | Table_priv | 'Select', 'Insert', 'Update', 'Delete', 'Create', 'Drop', 'Grant', 'References', 'Index', 'Alter', 'Create View', 'Show view', 'Trigger' |
tables_priv | Column_priv | 'Select', 'Insert', 'Update', 'References' |
columns_priv | Column_priv | 'Select', 'Insert', 'Update', 'References' |
procs_priv | Proc_priv | 'Execute', 'Alter Routine', 'Grant' |
Administrative privileges (such as RELOAD or SHUTDOWN) are specified only in the user table. Administrative operations are operations on the server itself and are not database-specific, so there is no reason to list these privileges in the other grant tables. Consequently, to determine whether you can perform an administrative operation, the server need consult only the user table.
The FILE privilege also is specified only in the user table. It is not an administrative privilege as such, but your ability to read or write files on the server host is independent of the database you are accessing.
The mysqld server reads the contents of the grant tables into memory when it starts. You can tell it to reload the tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin flush-privileges or mysqladmin reload command. Changes to the grant tables take effect as indicated in Section 6.2.6, “When Privilege Changes Take Effect”.
When you modify an account's privileges, it is a good idea to verify that the changes set up privileges the way you want. To check the privileges for a given account, use the SHOW GRANTS statement (see Section 13.7.5.22, “SHOW GRANTS Syntax”). For example, to determine the privileges that are granted to an account with user name and host name values of bob and pc84.example.com, use this statement:
SHOW GRANTS FOR 'bob'@'pc84.example.com';
6.2.3. Specifying Account Names
MySQL account names consist of a user name and a host name. This enables creation of accounts for users with the same name who can connect from different hosts. This section describes how to write account names, including special values and wildcard rules.
In SQL statements such as CREATE USER, GRANT, and SET PASSWORD, write account names using the following rules:
Syntax for account names is 'user_name'@'host_name'.
An account name consisting only of a user name is equivalent to 'user_name'@'%'. For example, 'me' is equivalent to 'me'@'%'.
The user name and host name need not be quoted if they are legal as unquoted identifiers. Quotes are necessary to specify a user_name string containing special characters (such as “-”), or a host_name string containing special characters or wildcard characters (such as “%”); for example, 'test-user'@'%.com'.
Quote user names and host names as identifiers or as strings, using either backticks (“`”), single quotation marks (“'”), or double quotation marks (“"”).
The user name and host name parts, if quoted, must be quoted separately. That is, write 'me'@'localhost', not 'me@localhost'; the latter is interpreted as 'me@localhost'@'%'.
A reference to the CURRENT_USER or CURRENT_USER() function is equivalent to specifying the current client's user name and host name literally.
MySQL stores account names in grant tables in the mysql database using separate columns for the user name and host name parts:
The user table contains one row for each account. The User and Host columns store the user name and host name. This table also indicates which global privileges the account has.
Other grant tables indicate privileges an account has for databases and objects within databases. These tables have User and Host columns to store the account name. Each row in these tables associates with the account in the user table that has the same User and Host values.
For additional detail about grant table structure, see Section 6.2.2, “Privilege System Grant Tables”.
User names and host names have certain special values or wildcard conventions, as described following.
A user name is either a nonblank value that literally matches the user name for incoming connection attempts, or a blank value (empty string) that matches any user name. An account with a blank user name is an anonymous user. To specify an anonymous user in SQL statements, use a quoted empty user name part, such as ''@'localhost'.
The host name part of an account name can take many forms, and wildcards are permitted:
A host value can be a host name or an IP address (IPv4 or IPv6). The name 'localhost' indicates the local host. The IP address '127.0.0.1' indicates the IPv4 loopback interface. The IP address '::1' indicates the IPv6 loopback interface.
You can use the wildcard characters “%” and “_” in host name or IP address values. These have the same meaning as for pattern-matching operations performed with the LIKE operator. For example, a host value of '%' matches any host name, whereas a value of '%.mysql.com' matches any host in the mysql.com domain. '192.168.1.%' matches any host in the 192.168.1 class C network.
Because you can use IP wildcard values in host values (for example, '192.168.1.%' to match every host on a subnet), someone could try to exploit this capability by naming a host 192.168.1.somewhere.com. To foil such attempts, MySQL disallows matching on host names that start with digits and a dot. Thus, if you have a host named something like 1.2.example.com, its name never matches the host part of account names. An IP wildcard value can match only IP addresses, not host names.
For a host value specified as an IPv4 address, you can specify a netmask indicating how many address bits to use for the network number. Netmask notation cannot be used for IPv6 addresses.
The syntax is host_ip/netmask. For example:
CREATE USER 'david'@'192.58.197.0/255.255.255.0';
This enables david to connect from any client host having an IP address client_ip for which the following condition is true:
client_ip & netmask = host_ip
That is, for the CREATE USER statement just shown:
client_ip & 255.255.255.0 = 192.58.197.0
IP addresses that satisfy this condition and can connect to the MySQL server are those in the range from 192.58.197.0 to 192.58.197.255.
The netmask can only be used to tell the server to use 8, 16, 24, or 32 bits of the address. Examples:
192.0.0.0/255.0.0.0: Any host on the 192 class A network
192.168.0.0/255.255.0.0: Any host on the 192.168 class B network
192.168.1.0/255.255.255.0: Any host on the 192.168.1 class C network
192.168.1.1: Only the host with this specific IP address
The following netmask will not work because it masks 28 bits, and 28 is not a multiple of 8:
192.168.0.1/255.255.255.240
The server performs matching of host values in account names against the client host using the value returned by the system DNS resolver for the client host name or IP address. Except in the case that the account host value is specified using netmask notation, this comparison is performed as a string match, even for an account host value given as an IP address. This means that you should specify account host values in the same format used by DNS. Here are examples of problems to watch out for:
Suppose that a host on the local network has a fully qualified name of host1.example.com. If DNS returns name lookups for this host as host1.example.com, use that name in account host values. But if DNS returns just host1, use host1 instead.
If DNS returns the IP address for a given host as 192.168.1.2, that will match an account host value of 192.168.1.2 but not 192.168.01.2. Similarly, it will match an account host pattern like 192.168.1.% but not 192.168.01.%.
To avoid problems like this, it is advisable to check the format in which your DNS returns host names and addresses, and use values in the same format in MySQL account names.
6.2.4. Access Control, Stage 1: Connection Verification
When you attempt to connect to a MySQL server, the server accepts or rejects the connection based on your identity and whether you can verify your identity by supplying the correct password. If not, the server denies access to you completely. Otherwise, the server accepts the connection, and then enters Stage 2 and waits for requests.
Your identity is based on two pieces of information:
The client host from which you connect
Your MySQL user name
Identity checking is performed using the three user table scope columns (Host, User, and Password). The server accepts the connection only if the Host and User columns in some user table row match the client host name and user name and the client supplies the password specified in that row. The rules for permissible Host and User values are given in Section 6.2.3, “Specifying Account Names”.
If the User column value is nonblank, the user name in an incoming connection must match exactly. If the User value is blank, it matches any user name. If the user table row that matches an incoming connection has a blank user name, the user is considered to be an anonymous user with no name, not a user with the name that the client actually specified. This means that a blank user name is used for all further access checking for the duration of the connection (that is, during Stage 2).
The Password column can be blank. This is not a wildcard and does not mean that any password matches. It means that the user must connect without specifying a password. If the server authenticates a client using a plugin, the authentication method that the plugin implements may or may not use the password in the Password column. In this case, it is possible that an external password is also used to authenticate to the MySQL server.
Nonblank Password values in the user table represent encrypted passwords. MySQL does not store passwords in plaintext form for anyone to see. Rather, the password supplied by a user who is attempting to connect is encrypted (using the PASSWORD() function). The encrypted password then is used during the connection process when checking whether the password is correct. This is done without the encrypted password ever traveling over the connection. See Section 6.3.1, “User Names and Passwords”.
From MySQL's point of view, the encrypted password is the real password, so you should never give anyone access to it. In particular, do not give nonadministrative users read access to tables in the mysql database.
The following table shows how various combinations of Host and User values in the user table apply to incoming connections.
Host Value | User Value | Permissible Connections |
---|---|---|
'thomas.loc.gov' | 'fred' | fred, connecting from thomas.loc.gov |
'thomas.loc.gov' | '' | Any user, connecting from thomas.loc.gov |
'%' | 'fred' | fred, connecting from any host |
'%' | '' | Any user, connecting from any host |
'%.loc.gov' | 'fred' | fred, connecting from any host in the loc.gov domain |
'x.y.%' | 'fred' | fred, connecting from x.y.net, x.y.com, x.y.edu, and so on; this is probably not useful |
'144.155.166.177' | 'fred' | fred, connecting from the host with IP address 144.155.166.177 |
'144.155.166.%' | 'fred' | fred, connecting from any host in the 144.155.166 class C subnet |
'144.155.166.0/255.255.255.0' | 'fred' | Same as previous example |
It is possible for the client host name and user name of an incoming connection to match more than one row in the user table. The preceding set of examples demonstrates this: Several of the entries shown match a connection from thomas.loc.gov by fred.
When multiple matches are possible, the server must determine which of them to use. It resolves this issue as follows:
Whenever the server reads the user table into memory, it sorts the rows.
When a client attempts to connect, the server looks through the rows in sorted order.
The server uses the first row that matches the client host name and user name.
The server uses sorting rules that order rows with the most-specific Host values first. Literal host names and IP addresses are the most specific. (The specificity of a literal IP address is not affected by whether it has a netmask, so 192.168.1.13 and 192.168.1.0/255.255.255.0 are considered equally specific.) The pattern '%' means “any host” and is least specific. The empty string '' also means “any host” but sorts after '%'. Rows with the same Host value are ordered with the most-specific User values first (a blank User value means “any user” and is least specific).
To see how this works, suppose that the user table looks like this:
+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-
When the server reads the table into memory, it sorts the rows using the rules just described. The result after sorting looks like this:
+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-
When a client attempts to connect, the server looks through the sorted rows and uses the first match found. For a connection from localhost by jeffrey, two of the rows from the table match: the one with Host and User values of 'localhost' and '', and the one with values of '%' and 'jeffrey'. The 'localhost' row appears first in sorted order, so that is the one the server uses.
Here is another example. Suppose that the user table looks like this:
+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| thomas.loc.gov | | ...
+----------------+----------+-
The sorted table looks like this:
+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| thomas.loc.gov | | ...
| % | jeffrey | ...
+----------------+----------+-
A connection by jeffrey from thomas.loc.gov is matched by the first row, whereas a connection by jeffrey from any host is matched by the second.
Note
It is a common misconception to think that, for a given user name, all rows that explicitly name that user are used first when the server attempts to find a match for the connection. This is not true. The preceding example illustrates this, where a connection from thomas.loc.gov by jeffrey is first matched not by the row containing 'jeffrey' as the User column value, but by the row with no user name. As a result, jeffrey is authenticated as an anonymous user, even though he specified a user name when connecting.
If you are able to connect to the server, but your privileges are not what you expect, you probably are being authenticated as some other account. To find out what account the server used to authenticate you, use the CURRENT_USER() function. (See Section 12.14, “Information Functions”.) It returns a value in user_name@host_name format that indicates the User and Host values from the matching user table row. Suppose that jeffrey connects and issues the following query:
mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+
The result shown here indicates that the matching user table row had a blank User column value. In other words, the server is treating jeffrey as an anonymous user.
Another way to diagnose authentication problems is to print out the user table and sort it by hand to see where the first match is being made.
6.2.5. Access Control, Stage 2: Request Verification
After you establish a connection, the server enters Stage 2 of access control. For each request that you issue through that connection, the server determines what operation you want to perform, then checks whether you have sufficient privileges to do so. This is where the privilege columns in the grant tables come into play. These privileges can come from any of the user, db, tables_priv, columns_priv, or procs_priv tables. (You may find it helpful to refer to Section 6.2.2, “Privilege System Grant Tables”, which lists the columns present in each of the grant tables.)
The user table grants privileges that are assigned to you on a global basis and that apply no matter what the default database is. For example, if the user table grants you the DELETE privilege, you can delete rows from any table in any database on the server host! It is wise to grant privileges in the user table only to people who need them, such as database administrators. For other users, you should leave all privileges in the user table set to 'N' and grant privileges at more specific levels only. You can grant privileges for particular databases, tables, columns, or routines.
The db table grants database-specific privileges. Values in the scope columns of this table can take the following forms:
A blank User value matches the anonymous user. A nonblank value matches literally; there are no wildcards in user names.
The wildcard characters “%” and “_” can be used in the Host and Db columns. These have the same meaning as for pattern-matching operations performed with the LIKE operator. If you want to use either character literally when granting privileges, you must escape it with a backslash. For example, to include the underscore character (“_”) as part of a database name, specify it as “_” in the GRANT statement.
A '%' or blank Host value means “any host.”
A '%' or blank Db value means “any database.”
The server reads the db table into memory and sorts it at the same time that it reads the user table. The server sorts the db table based on the Host, Db, and User scope columns. As with the user table, sorting puts the most-specific values first and least-specific values last, and when the server looks for matching entries, it uses the first match that it finds.
The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific, and routine-specific privileges. Values in the scope columns of these tables can take the following forms:
The wildcard characters “%” and “_” can be used in the Host column. These have the same meaning as for pattern-matching operations performed with the LIKE operator.
A '%' or blank Host value means “any host.”
The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be blank.
The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host, Db, and User columns. This is similar to db table sorting, but simpler because only the Host column can contain wildcards.
The server uses the sorted tables to verify each request that it receives. For requests that require administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user table row because that is the only table that specifies administrative privileges. The server grants access if the row permits the requested operation and denies access otherwise. For example, if you want to execute mysqladmin shutdown but your user table row does not grant the SHUTDOWN privilege to you, the server denies access without even checking the db table. (It contains no Shutdown_priv column, so there is no need to do so.)
For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global privileges by looking in the user table row. If the row permits the requested operation, access is granted. If the global privileges in the user table are insufficient, the server determines the user's database-specific privileges by checking the db table:
The server looks in the db table for a match on the Host, Db, and User columns. The Host and User columns are matched to the connecting user's host name and MySQL user name. The Db column is matched to the database that the user wants to access. If there is no row for the Host and User, access is denied.
After determining the database-specific privileges granted by the db table entries, the server adds them to the global privileges granted by the user table. If the result permits the requested operation, access is granted. Otherwise, the server successively checks the user's table and column privileges in the tables_priv and columns_priv tables, adds those to the user's privileges, and permits or denies access based on the result. For stored-routine operations, the server uses the procs_priv table rather than tables_priv and columns_priv.
Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be summarized like this:
global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges
It may not be apparent why, if the global user row privileges are initially found to be insufficient for the requested operation, the server adds those privileges to the database, table, and column privileges later. The reason is that a request might require more than one type of privilege. For example, if you execute an INSERT INTO ... SELECT statement, you need both the INSERT and the SELECT privileges. Your privileges might be such that the user table row grants one privilege and the db table row grants the other. In this case, you have the necessary privileges to perform the request, but the server cannot tell that from either table by itself; the privileges granted by the entries in both tables must be combined.
6.2.6. When Privilege Changes Take Effect
When mysqld starts, it reads all grant table contents into memory. The in-memory tables become effective for access control at that point.
If you modify the grant tables indirectly using account-management statements such as GRANT, REVOKE, SET PASSWORD, or RENAME USER, the server notices these changes and loads the grant tables into memory again immediately.
If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE, your changes have no effect on privilege checking until you either restart the server or tell it to reload the tables. If you change the grant tables directly but forget to reload them, your changes have no effect until you restart the server. This may leave you wondering why your changes seem to make no difference!
To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by issuing a FLUSH PRIVILEGES statement or by executing a mysqladmin flush-privileges or mysqladmin reload command.
A grant table reload affects privileges for each existing client connection as follows:
Table and column privilege changes take effect with the client's next request.
Database privilege changes take effect the next time the client executes a USE db_name statement.
Note
Client applications may cache the database name; thus, this effect may not be visible to them without actually changing to a different database or flushing the privileges.
Global privileges and passwords are unaffected for a connected client. These changes take effect only for subsequent connections.
If the server is started with the --skip-grant-tables option, it does not read the grant tables or implement any access control. Anyone can connect and do anything, which is insecure. To cause a server thus started to read the tables and enable access checking, flush the privileges.
6.2.7. Causes of Access-Denied Errors
If you encounter problems when you try to connect to the MySQL server, the following items describe some courses of action you can take to correct the problem.
Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an attempt to connect to the server fails with a message such as one of those following, one cause might be that the server is not running:
shell> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
shell> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)
It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe, or Unix socket file different from the one on which the server is listening. To correct this when you invoke a client program, specify a --port option to indicate the proper port number, or a --socket option to indicate the proper named pipe or Unix socket file. To find out where the socket file is, you can use this command:
shell> netstat -ln | grep mysql
Make sure that the server has not been configured to ignore network connections or (if you are attempting to connect remotely) that it has not been configured to listen only locally on its network interfaces. If the server was started with --skip-networking, it will not accept TCP/IP connections at all. If the server was started with --bind-address=127.0.0.1, it will listen for TCP/IP connections only locally on the loopback interface and will not accept remote connections.
Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured on the basis of the application being executed, or the port number used by MySQL for communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or the Windows XP personal firewall may need to be configured not to block the MySQL port.
The grant tables must be properly set up so that the server can use them for access control. For some distribution types (such as binary distributions on Windows, or RPM distributions on Linux), the installation process initializes the mysql database containing the grant tables. For distributions that do not do this, you must initialize the grant tables manually by running the mysql_install_db script. For details, see Section 2.10.1, “Unix Postinstallation Procedures”.
To determine whether you need to initialize the grant tables, look for a mysql directory under the data directory. (The data directory normally is named data or var and is located under your MySQL installation directory.) Make sure that you have a file named user.MYD in the mysql database directory. If not, execute the mysql_install_db script. After running this script and starting the server, test the initial privileges by executing this command:
shell> mysql -u root test
The server should let you connect without error.
After a fresh installation, you should connect to the server and set up your users and their access permissions:
shell> mysql -u root mysql
The server should let you connect because the MySQL root user has no password initially. That is also a security risk, so setting the password for the root accounts is something you should do while you're setting up your other MySQL accounts. For instructions on setting the initial passwords, see Section 2.10.2, “Securing the Initial MySQL Accounts”.
If you have updated an existing MySQL installation to a newer version, did you run the mysql_upgrade script? If not, do so. The structure of the grant tables changes occasionally when new capabilities are added, so after an upgrade you should always make sure that your tables have the current structure. For instructions, see Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
If a client program receives the following error message when it tries to connect, it means that the server expects passwords in a newer format than the client is capable of generating:
shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client
For information on how to deal with this, see Section 6.1.2.4, “Password Hashing in MySQL”, and Section C.5.2.4, “Client does not support authentication protocol”.
Remember that client programs use connection parameters specified in option files or environment variables. If a client program seems to be sending incorrect default connection parameters when you have not specified them on the command line, check any applicable option files and your environment. For example, if you get Access denied when you run a client without any options, make sure that you have not specified an old password in any of your option files!
You can suppress the use of option files by a client program by invoking it with the --no-defaults option. For example:
shell> mysqladmin --no-defaults -u root version
The option files that clients use are listed in Section 4.2.3.3, “Using Option Files”. Environment variables are listed in Section 2.12, “Environment Variables”.
If you get the following error, it means that you are using an incorrect root password:
shell> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)
If the preceding error occurs even when you have not specified a password, it means that you have an incorrect password listed in some option file. Try the --no-defaults option as described in the previous item.
For information on changing passwords, see Section 6.3.5, “Assigning Account Passwords”.
If you have lost or forgotten the root password, see Section C.5.4.1, “How to Reset the Root Password”.
If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt the password using the PASSWORD() function. If you do not use PASSWORD() for these statements, the password will not work. For example, the following statement assigns a password, but fails to encrypt it, so the user is not able to connect afterward:
SET PASSWORD FOR 'abe'@'host_name' = 'eagle';
Instead, set the password like this:
SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');
The PASSWORD() function is unnecessary when you specify a password using the CREATE USER or GRANT statements or the mysqladmin password command. Each of those automatically uses PASSWORD() to encrypt the password. See Section 6.3.5, “Assigning Account Passwords”, and Section 13.7.1.2, “CREATE USER Syntax”.
localhost is a synonym for your local host name, and is also the default host to which clients try to connect if you specify no host explicitly.
To avoid this problem on such systems, you can use a --host=127.0.0.1 option to name the server host explicitly. This will make a TCP/IP connection to the local mysqld server. You can also use TCP/IP by specifying a --host option that uses the actual host name of the local host. In this case, the host name must be specified in a user table row on the server host, even though you are running the client program on the same host as the server.
The Access denied error message tells you who you are trying to log in as, the client host from which you are trying to connect, and whether you were using a password. Normally, you should have one row in the user table that exactly matches the host name and user name that were given in the error message. For example, if you get an error message that contains using password: NO, it means that you tried to log in without a password.
If you get an Access denied error when trying to connect to the database with mysql -u user_name, you may have a problem with the user table. Check this by executing mysql -u root mysql and issuing this SQL statement:
SELECT * FROM user;
The result should include a row with the Host and User columns matching your client's host name and your MySQL user name.
If the following error occurs when you try to connect from a host other than the one on which the MySQL server is running, it means that there is no row in the user table with a Host value that matches the client host:
Host ... is not allowed to connect to this MySQL server
You can fix this by setting up an account for the combination of client host name and user name that you are using when trying to connect.
If you do not know the IP address or host name of the machine from which you are connecting, you should put a row with '%' as the Host column value in the user table. After trying to connect from the client machine, use a SELECT USER() query to see how you really did connect. Then change the '%' in the user table row to the actual host name that shows up in the log. Otherwise, your system is left insecure because it permits connections from any host for the given user name.
On Linux, another reason that this error might occur is that you are using a binary MySQL version that is compiled with a different version of the glibc library than the one you are using. In this case, you should either upgrade your operating system or glibc, or download a source distribution of MySQL version and compile it yourself. A source RPM is normally trivial to compile and install, so this is not a big problem.
If you specify a host name when trying to connect, but get an error message where the host name is not shown or is an IP address, it means that the MySQL server got an error when trying to resolve the IP address of the client host to a name:
shell> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)
If you try to connect as root and get the following error, it means that you do not have a row in the user table with a User column value of 'root' and that mysqld cannot resolve the host name for your client:
Access denied for user ''@'unknown'
These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the internal DNS host cache. See Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”.
Some permanent solutions are:
Determine what is wrong with your DNS server and fix it.
Specify IP addresses rather than host names in the MySQL grant tables.
Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on Windows.
Start mysqld with the --skip-name-resolve option.
Start mysqld with the --skip-host-cache option.
On Unix, if you are running the server and the client on the same machine, connect to localhost. Unix connections to localhost use a Unix socket file rather than TCP/IP.
On Windows, if you are running the server and the client on the same machine and the server supports named pipe connections, connect to the host name . (period). Connections to . use a named pipe rather than TCP/IP.
If mysql -u root test works but mysql -h your_hostname -u root test results in Access denied (where your_hostname is the actual host name of the local host), you may not have the correct name for your host in the user table. A common problem here is that the Host value in the user table row specifies an unqualified host name, but your system's name resolution routines return a fully qualified domain name (or vice versa). For example, if you have an entry with host 'pluto' in the user table, but your DNS tells MySQL that your host name is 'pluto.example.com', the entry does not work. Try adding an entry to the user table that contains the IP address of your host as the Host column value. (Alternatively, you could add an entry to the user table with a Host value that contains a wildcard; for example, 'pluto.%'. However, use of Host values ending with “%” is insecure and is not recommended!)
If mysql -u user_name test works but mysql -u user_name other_db does not, you have not granted access to the given user for the database named other_db.
If mysql -u user_name works when executed on the server host, but mysql -h host_name -u user_name does not work when executed on a remote client host, you have not enabled access to the server for the given user name from the remote host.
If you cannot figure out why you get Access denied, remove from the user table all entries that have Host values containing wildcards (entries that contain '%' or '_' characters). A very common error is to insert a new entry with Host='%' and User='some_user', thinking that this enables you to specify localhost to connect from the same machine. The reason that this does not work is that the default privileges include an entry with Host='localhost' and User=''. Because that entry has a Host value 'localhost' that is more specific than '%', it is used in preference to the new entry when connecting from localhost! The correct procedure is to insert a second entry with Host='localhost' and User='some_user', or to delete the entry with Host='localhost' and User=''. After deleting the entry, remember to issue a FLUSH PRIVILEGES statement to reload the grant tables. See also Section 6.2.4, “Access Control, Stage 1: Connection Verification”.
If you are able to connect to the MySQL server, but get an Access denied message whenever you issue a SELECT ... INTO OUTFILE or LOAD DATA INFILE statement, your entry in the user table does not have the FILE privilege enabled.
If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE statements) and your changes seem to be ignored, remember that you must execute a FLUSH PRIVILEGES statement or a mysqladmin flush-privileges command to cause the server to reload the privilege tables. Otherwise, your changes have no effect until the next time the server is restarted. Remember that after you change the root password with an UPDATE statement, you will not need to specify the new password until after you flush the privileges, because the server will not know you've changed the password yet!
If your privileges seem to have changed in the middle of a session, it may be that a MySQL administrator has changed them. Reloading the grant tables affects new client connections, but it also affects existing connections as indicated in Section 6.2.6, “When Privilege Changes Take Effect”.
If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the server with mysql -u user_name db_name or mysql -u user_name -pyour_pass db_name. If you are able to connect using the mysql client, the problem lies with your program, not with the access privileges. (There is no space between -p and the password; you can also use the --password=your_pass syntax to specify the password. If you use the -p or --password option with no password value, MySQL prompts you for the password.)
For testing purposes, start the mysqld server with the --skip-grant-tables option. Then you can change the MySQL grant tables and use the mysqlaccess script to check whether your modifications have the desired effect. When you are satisfied with your changes, execute mysqladmin flush-privileges to tell the mysqld server to reload the privileges. This enables you to begin using the new grant table contents without stopping and restarting the server.
If everything else fails, start the mysqld server with a debugging option (for example, --debug=d,general,query). This prints host and user information about attempted connections, as well as information about each command issued. See MySQL Internals: Porting to Other Systems.
If you have any other problems with the MySQL grant tables and feel you must post the problem to the mailing list, always provide a dump of the MySQL grant tables. You can dump the tables with the mysqldump mysql command. To file a bug report, see the instructions at Section 1.7, “How to Report Bugs or Problems”. In some cases, you may need to restart mysqld with --skip-grant-tables to run mysqldump.
6.3. MySQL User Account Management
This section describes how to set up accounts for clients of your MySQL server. It discusses the following topics:
The meaning of account names and passwords as used in MySQL and how that compares to names and passwords used by your operating system
How to set up new accounts and remove existing accounts
How to change passwords
Guidelines for using passwords securely
How to use secure connections with SSL
See also Section 13.7.1, “Account Management Statements”, which describes the syntax and use for all user-management SQL statements.
6.3.1. User Names and Passwords
MySQL stores accounts in the user table of the mysql database. An account is defined in terms of a user name and the client host or hosts from which the user can connect to the server. The account may also have a password. For information about account representation in the user table, see Section 6.2.2, “Privilege System Grant Tables”. MySQL 5.6 supports authentication plugins, so it is possible that an account authenticates using some external authentication method. See Section 6.3.7, “Pluggable Authentication”.
There are several distinctions between the way user names and passwords are used by MySQL and the way they are used by your operating system:
User names, as used by MySQL for authentication purposes, have nothing to do with user names (login names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in using the current Unix user name as the MySQL user name, but that is for convenience only. The default can be overridden easily, because client programs permit any user name to be specified with a -u or --user option. Because this means that anyone can attempt to connect to the server using any user name, you cannot make a database secure in any way unless all MySQL accounts have passwords. Anyone who specifies a user name for an account that has no password is able to connect successfully to the server.
MySQL user names can be up to 16 characters long. Operating system user names, because they are completely unrelated to MySQL user names, may be of a different maximum length. For example, Unix user names typically are limited to eight characters.
Warning
The limit on MySQL user name length is hard-coded in the MySQL servers and clients, and trying to circumvent it by modifying the definitions of the tables in the mysql database does not work.
You should never alter any of the tables in the mysql database in any manner whatsoever except by means of the procedure that is described in Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”. Attempting to redefine MySQL's system tables in any other fashion results in undefined (and unsupported!) behavior.
The server uses MySQL passwords stored in the user table to authenticate client connections using MySQL native authentication (against passwords stored in the mysql.user table). These passwords have nothing to do with passwords for logging in to your operating system. There is no necessary connection between the “external” password you use to log in to a Windows or Unix machine and the password you use to access the MySQL server on that machine.
If the server authenticates a client using a plugin, the authentication method that the plugin implements may or may not use the password in the user table. In this case, it is possible that an external password is also used to authenticate to the MySQL server.
MySQL encrypts passwords stored in the user table using its own algorithm. This encryption is the same as that implemented by the PASSWORD() SQL function but differs from that used during the Unix login process. Unix password encryption is the same as that implemented by the ENCRYPT() SQL function. See the descriptions of the PASSWORD() and ENCRYPT() functions in Section 12.13, “Encryption and Compression Functions”.
From version 4.1 on, MySQL employs a stronger authentication method that has better password protection during the connection process than in earlier versions. It is secure even if TCP/IP packets are sniffed or the mysql database is captured. (In earlier versions, even though passwords are stored in encrypted form in the user table, knowledge of the encrypted password value could be used to connect to the MySQL server.) Section 6.1.2.4, “Password Hashing in MySQL”, discusses password encryption further.
It is possible to connect to the server regardless of character set settings if the user name and password contain only ASCII characters. To connect when the user name or password contain non-ASCII characters, the client should call the mysql_options() C API function with the MYSQL_SET_CHARSET_NAME option and appropriate character set name as arguments. This causes authentication to take place using the specified character set. Otherwise, authentication will fail unless the server default character set is the same as the encoding in the authentication defaults.
Standard MySQL client programs support a --default-character-set option that causes mysql_options() to be called as just described. In addition, character set autodetection is supported as described in Section 10.1.4, “Connection Character Sets and Collations”. For programs that use a connector that is not based on the C API, the connector may provide an equivalent to mysql_options() that can be used instead. Check the connector documentation.
The preceding notes do not apply for ucs2, utf16, and utf32, which are not permitted as client character sets.
When you install MySQL, the grant tables are populated with an initial set of accounts. The names and access privileges for these accounts are described in Section 2.10.2, “Securing the Initial MySQL Accounts”, which also discusses how to assign passwords to them. Thereafter, you normally set up, modify, and remove MySQL accounts using statements such as CREATE USER, GRANT, and REVOKE. See Section 13.7.1, “Account Management Statements”.
When you connect to a MySQL server with a command-line client, specify the user name and password as necessary for the account that you want to use:
shell> mysql --user=monty --password=password db_name
If you prefer short options, the command looks like this:
shell> mysql -u monty -ppassword db_name
There must be no space between the -p option and the following password value.
If you omit the password value following the --password or -p option on the command line, the client prompts for one.
Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”. You can use an option file to avoid giving the password on the command line.
For additional information about specifying user names, passwords, and other connection parameters, see Section 4.2.2, “Connecting to the MySQL Server”.
6.3.2. Adding User Accounts
You can create MySQL accounts in two ways:
By using statements intended for creating accounts, such as CREATE USER or GRANT. These statements cause the server to make appropriate modifications to the grant tables.
By manipulating the MySQL grant tables directly with statements such as INSERT, UPDATE, or DELETE.
The preferred method is to use account-creation statements because they are more concise and less error-prone than manipulating the grant tables directly. CREATE USER and GRANT are described in Section 13.7.1, “Account Management Statements”.
Another option for creating accounts is to use the GUI tool MySQL Workbench. Or one of several available third-party programs that offer capabilities for MySQL account administration. phpMyAdmin is one such program.
The following examples show how to use the mysql client program to set up new accounts. These examples assume that privileges have been set up according to the defaults described in Section 2.10.2, “Securing the Initial MySQL Accounts”. This means that to make changes, you must connect to the MySQL server as the MySQL root user, and the root account must have the INSERT privilege for the mysql database and the RELOAD administrative privilege.
As noted in the examples where appropriate, some of the statements will fail if the server's SQL mode has been set to enable certain restrictions. In particular, strict mode (STRICT_TRANS_TABLES, STRICT_ALL_TABLES) and NO_AUTO_CREATE_USER will prevent the server from accepting some of the statements. Workarounds are indicated for these cases. For more information about SQL modes and their effect on grant table manipulation, see Section 5.1.7, “Server SQL Modes”, and Section 13.7.1.4, “GRANT Syntax”.
First, use the mysql program to connect to the server as the MySQL root user:
shell> mysql --user=root mysql
If you have assigned a password to the root account, you will also need to supply a --password or -p option, both for this mysql command and for those later in this section.
After connecting to the server as root, you can add new accounts. The following statements use GRANT to set up four new accounts:
mysql> CREATE USER 'monty'@'localhost' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'localhost'
-> WITH GRANT OPTION;
mysql> CREATE USER 'monty'@'%' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'%'
-> WITH GRANT OPTION;
mysql> CREATE USER 'admin'@'localhost';
mysql> GRANT RELOAD,PROCESS ON *.* TO 'admin'@'localhost';
mysql> CREATE USER 'dummy'@'localhost';
The accounts created by these statements have the following properties:
Two of the accounts have a user name of monty and a password of some_pass. Both accounts are superuser accounts with full privileges to do anything. The 'monty'@'localhost' account can be used only when connecting from the local host. The 'monty'@'%' account uses the '%' wildcard for the host part, so it can be used to connect from any host.
It is necessary to have both accounts for monty to be able to connect from anywhere as monty. Without the localhost account, the anonymous-user account for localhost that is created by mysql_install_db would take precedence when monty connects from the local host. As a result, monty would be treated as an anonymous user. The reason for this is that the anonymous-user account has a more specific Host column value than the 'monty'@'%' account and thus comes earlier in the user table sort order. (user table sorting is discussed in Section 6.2.4, “Access Control, Stage 1: Connection Verification”.)
The 'admin'@'localhost' account has no password. This account can be used only by admin to connect from the local host. It is granted the RELOAD and PROCESS administrative privileges. These privileges enable the admin user to execute the mysqladmin reload, mysqladmin refresh, and mysqladmin flush-xxx commands, as well as mysqladmin processlist . No privileges are granted for accessing any databases. You could add such privileges later by issuing other GRANT statements.
The 'dummy'@'localhost' account has no password. This account can be used only to connect from the local host. No privileges are granted. It is assumed that you will grant specific privileges to the account later.
The statements that create accounts with no password will fail if the NO_AUTO_CREATE_USER SQL mode is enabled. To deal with this, use an IDENTIFIED BY clause that specifies a nonempty password.
To check the privileges for an account, use SHOW GRANTS:
mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT RELOAD, PROCESS ON *.* TO 'admin'@'localhost' |
+---+
As an alternative to CREATE USER and GRANT, you can create the same accounts directly by issuing INSERT statements and then telling the server to reload the grant tables using FLUSH PRIVILEGES:
shell> mysql --user=root mysql
mysql> INSERT INTO user
-> VALUES('localhost','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');
mysql> INSERT INTO user
-> VALUES('%','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
-> '','','','',0,0,0,0);
mysql> INSERT INTO user SET Host='localhost',User='admin',
-> Reload_priv='Y', Process_priv='Y';
mysql> INSERT INTO user (Host,User,Password)
-> VALUES('localhost','dummy','');
mysql> FLUSH PRIVILEGES;
When you create accounts with INSERT, it is necessary to use FLUSH PRIVILEGES to tell the server to reload the grant tables. Otherwise, the changes go unnoticed until you restart the server. With CREATE USER, FLUSH PRIVILEGES is unnecessary.
The reason for using the PASSWORD() function with INSERT is to encrypt the password. The CREATE USER statement encrypts the password for you, so PASSWORD() is unnecessary.
The 'Y' values enable privileges for the accounts. Depending on your MySQL version, you may have to use a different number of 'Y' values in the first two INSERT statements. The INSERT statement for the admin account employs the more readable extended INSERT syntax using SET.
In the INSERT statement for the dummy account, only the Host, User, and Password columns in the user table row are assigned values. None of the privilege columns are set explicitly, so MySQL assigns them all the default value of 'N'. This is equivalent to what CREATE USER does.
If strict SQL mode is enabled, all columns that have no default value must have a value specified. In this case, INSERT statements must explicitly specify values for the ssl_cipher, x509_issuer, and x509_subject columns.
To set up a superuser account, it is necessary only to insert a user table row with all privilege columns set to 'Y'. The user table privileges are global, so no entries in any of the other grant tables are needed.
The next examples create three accounts and give them access to specific databases. Each of them has a user name of custom and password of obscure.
To create the accounts with CREATE USER and GRANT, use the following statements:
shell> mysql --user=root mysql
mysql> CREATE USER 'custom'@'localhost' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON bankaccount.*
-> TO 'custom'@'localhost';
mysql> CREATE USER 'custom'@'host47.example.com' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON expenses.*
-> TO 'custom'@'host47.example.com';
mysql> CREATE USER 'custom'@'server.domain' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON customer.*
-> TO 'custom'@'server.domain';
The three accounts can be used as follows:
The first account can access the bankaccount database, but only from the local host.
The second account can access the expenses database, but only from the host host47.example.com.
The third account can access the customer database, but only from the host server.domain.
To set up the custom accounts without GRANT, use INSERT statements as follows to modify the grant tables directly:
shell> mysql --user=root mysql
mysql> INSERT INTO user (Host,User,Password)
-> VALUES('localhost','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)
-> VALUES('host47.example.com','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)
-> VALUES('server.domain','custom',PASSWORD('obscure'));
mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('localhost','bankaccount','custom',
-> 'Y','Y','Y','Y','Y','Y');
mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('host47.example.com','expenses','custom',
-> 'Y','Y','Y','Y','Y','Y');
mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('server.domain','customer','custom',
-> 'Y','Y','Y','Y','Y','Y');
mysql> FLUSH PRIVILEGES;
The first three INSERT statements add user table entries that permit the user custom to connect from the various hosts with the given password, but grant no global privileges (all privileges are set to the default value of 'N'). The next three INSERT statements add db table entries that grant privileges to custom for the bankaccount, expenses, and customer databases, but only when accessed from the proper hosts. As usual when you modify the grant tables directly, you must tell the server to reload them with FLUSH PRIVILEGES so that the privilege changes take effect.
To create a user who has access from all machines in a given domain (for example, mydomain.com), you can use the “%” wildcard character in the host part of the account name:
mysql> CREATE USER 'myname'@'%.mydomain.com' IDENTIFIED BY 'mypass';
To do the same thing by modifying the grant tables directly, do this:
mysql> INSERT INTO user (Host,User,Password,...)
-> VALUES('%.mydomain.com','myname',PASSWORD('mypass'),...);
mysql> FLUSH PRIVILEGES;
6.3.3. Removing User Accounts
To remove an account, use the DROP USER statement, which is described in Section 13.7.1.3, “DROP USER Syntax”.
6.3.4. Setting Account Resource Limits
One means of limiting use of MySQL server resources is to set the global max_user_connections system variable to a nonzero value. This limits the number of simultaneous connections that can be made by any given account, but places no limits on what a client can do once connected. In addition, setting max_user_connections does not enable management of individual accounts. Both types of control are of interest to many MySQL administrators, particularly those working for Internet Service Providers.
In MySQL 5.6, you can limit use of the following server resources for individual accounts:
The number of queries that an account can issue per hour
The number of updates that an account can issue per hour
The number of times an account can connect to the server per hour
The number of simultaneous connections to the server by an account
Any statement that a client can issue counts against the query limit (unless its results are served from the query cache). Only statements that modify databases or tables count against the update limit.
An “account” in this context corresponds to a row in the mysql.user table. That is, a connection is assessed against the User and Host values in the user table row that applies to the connection. For example, an account 'usera'@'%.example.com' corresponds to a row in the user table that has User and Host values of usera and %.example.com, to permit usera to connect from any host in the example.com domain. In this case, the server applies resource limits in this row collectively to all connections by usera from any host in the example.com domain because all such connections use the same account.
Before MySQL 5.0.3, an “account” was assessed against the actual host from which a user connects. This older method accounting may be selected by starting the server with the --old-style-user-limits option. In this case, if usera connects simultaneously from host1.example.com and host2.example.com, the server applies the account resource limits separately to each connection. If usera connects again from host1.example.com, the server applies the limits for that connection together with the existing connection from that host.
To set resource limits for an account, use the GRANT statement (see Section 13.7.1.4, “GRANT Syntax”). Provide a WITH clause that names each resource to be limited. The default value for each limit is zero (no limit). For example, to create a new account that can access the customer database, but only in a limited fashion, issue these statements:
mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank';
mysql> GRANT ALL ON customer.* TO 'francis'@'localhost'
-> WITH MAX_QUERIES_PER_HOUR 20
-> MAX_UPDATES_PER_HOUR 10
-> MAX_CONNECTIONS_PER_HOUR 5
-> MAX_USER_CONNECTIONS 2;
The limit types need not all be named in the WITH clause, but those named can be present in any order. The value for each per-hour limit should be an integer representing a count per hour. For MAX_USER_CONNECTIONS, the limit is an integer representing the maximum number of simultaneous connections by the account. If this limit is set to zero, the global max_user_connections system variable value determines the number of simultaneous connections. If max_user_connections is also zero, there is no limit for the account.
To modify existing limits for an account, use a GRANT USAGE statement at the global level (ON *.*). The following statement changes the query limit for francis to 100:
mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_QUERIES_PER_HOUR 100;
The statement modifies only the limit value specified and leaves the account otherwise unchanged.
To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour francis can connect, use this statement:
mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_CONNECTIONS_PER_HOUR 0;
As mentioned previously, the simultaneous-connection limit for an account is determined from the MAX_USER_CONNECTIONS limit and the max_user_connections system variable. Suppose that the global max_user_connections value is 10 and three accounts have resource limits specified with GRANT:
GRANT ... TO 'user1'@'localhost' WITH MAX_USER_CONNECTIONS 0;
GRANT ... TO 'user2'@'localhost' WITH MAX_USER_CONNECTIONS 5;
GRANT ... TO 'user3'@'localhost' WITH MAX_USER_CONNECTIONS 20;
user1 has a connection limit of 10 (the global max_user_connections value) because it has a zero MAX_USER_CONNECTIONS limit). user2 and user3 have connection limits of 5 and 20, respectively, because they have nonzero MAX_USER_CONNECTIONS limits.
The server stores resource limits for an account in the user table row corresponding to the account. The max_questions, max_updates, and max_connections columns store the per-hour limits, and the max_user_connections column stores the MAX_USER_CONNECTIONS limit. (See Section 6.2.2, “Privilege System Grant Tables”.)
Resource-use counting takes place when any account has a nonzero limit placed on its use of any of the resources.
As the server runs, it counts the number of times each account uses resources. If an account reaches its limit on number of connections within the last hour, further connections for the account are rejected until that hour is up. Similarly, if the account reaches its limit on the number of queries or updates, further queries or updates are rejected until the hour is up. In all such cases, an appropriate error message is issued.
Resource counting is done per account, not per client. For example, if your account has a query limit of 50, you cannot increase your limit to 100 by making two simultaneous client connections to the server. Queries issued on both connections are counted together.
The current per-hour resource-use counts can be reset globally for all accounts, or individually for a given account:
To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement. The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRIVILEGES statement or a mysqladmin reload command).
The counts for an individual account can be set to zero by re-granting it any of its limits. To do this, use GRANT USAGE as described earlier and specify a limit value equal to the value that the account currently has.
Counter resets do not affect the MAX_USER_CONNECTIONS limit.
All counts begin at zero when the server starts; counts are not carried over through a restart.
For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the maximum number of connections permitted to it: A disconnect followed quickly by a connect can result in an error (ER_TOO_MANY_USER_CONNECTIONS or ER_USER_LIMIT_REACHED) if the server has not fully processed the disconnect by the time the connect occurs. When the server finishes disconnect processing, another connection will once more be permitted.
6.3.5. Assigning Account Passwords
Required credentials for clients that connect to the MySQL server can include a password. This section describes how to assign passwords for MySQL accounts. In MySQL 5.6, it is also possible for clients to authenticate using plugins. For information, see Section 6.3.7, “Pluggable Authentication”.
To assign a password when you create a new account with CREATE USER, include an IDENTIFIED BY clause:
mysql> CREATE USER 'jeffrey'@'localhost'
-> IDENTIFIED BY 'mypass';
To assign or change a password for an existing account, one way is to issue a SET PASSWORD statement:
mysql> SET PASSWORD FOR
-> 'jeffrey'@'localhost' = PASSWORD('mypass');
MySQL stores passwords in the user table in the mysql database. Only users such as root that have update access to the mysql database can change the password for other users. If you are not connected as an anonymous user, you can change your own password by omitting the FOR clause:
mysql> SET PASSWORD = PASSWORD('mypass');
The old_passwords system variable value determines the hashing method used by PASSWORD(). If you specify the password using that function and SET PASSWORD rejects the password as not being in the correct format, it may be necessary to set old_passwords to change the hashing method. For descriptions of the permitted values, see Section 5.1.4, “Server System Variables”.
In MySQL 5.6, enabling the read_only system variable prevents the use of the SET PASSWORD statement by any user not having the SUPER privilege.
You can also use a GRANT USAGE statement at the global level (ON *.*) to assign a password to an account without affecting the account's current privileges:
mysql> GRANT USAGE ON *.* TO 'jeffrey'@'localhost'
-> IDENTIFIED BY 'mypass';
To assign a password from the command line, use the mysqladmin command:
shell> mysqladmin -u user_name -h host_name password "newpwd"
The account for which this command sets the password is the one with a user table row that matches user_name in the User column and the client host from which you connect in the Host column.
During authentication when a client connects to the server, MySQL treats the password in the user table as an encrypted hash value (the value that PASSWORD() would return for the password). When assigning a password to an account, it is important to store an encrypted value, not the plaintext password. Use the following guidelines:
When you assign a password using CREATE USER, GRANT with an IDENTIFIED BY clause, or the mysqladmin password command, they encrypt the password for you. Specify the literal plaintext password:
mysql> CREATE USER 'jeffrey'@'localhost'
-> IDENTIFIED BY 'mypass';
For CREATE USER or GRANT, you can avoid sending the plaintext password if you know the hash value that PASSWORD() would return for the password. Specify the hash value preceded by the keyword PASSWORD:
mysql> CREATE USER 'jeffrey'@'localhost'
-> IDENTIFIED BY PASSWORD '*90E462C37378CED12064BB3388827D2BA3A9B689';
When you assign an account a nonempty password using SET PASSWORD, you must use the PASSWORD() function to encrypt the password, otherwise the password is stored as plaintext. Suppose that you assign a password like this:
mysql> SET PASSWORD FOR
-> 'jeffrey'@'localhost' = 'mypass';
The result is that the literal value 'mypass' is stored as the password in the user table, not the encrypted value. When jeffrey attempts to connect to the server using this password, the value is encrypted and compared to the value stored in the user table. However, the stored value is the literal string 'mypass', so the comparison fails and the server rejects the connection with an Access denied error.
Note
PASSWORD() encryption differs from Unix password encryption. See Section 6.3.1, “User Names and Passwords”.
It is preferable to assign passwords using SET PASSWORD, GRANT, or mysqladmin, but it is also possible to modify the user table directly. In this case, you must also use FLUSH PRIVILEGES to cause the server to reread the grant tables. Otherwise, the change remains unnoticed by the server until you restart it.
To establish a password for a new account, provide a value for the Password column:
mysql> INSERT INTO mysql.user (Host,User,Password)
-> VALUES('localhost','jeffrey',PASSWORD('mypass'));
mysql> FLUSH PRIVILEGES;
To change the password for an existing account, use UPDATE to set the Password column value:
mysql> UPDATE mysql.user SET Password = PASSWORD('bagel')
-> WHERE Host = 'localhost' AND User = 'francis';
mysql> FLUSH PRIVILEGES;
6.3.6. Password Expiration and Sandbox Mode
MySQL 5.6 introduces password-expiration capability, to enable database administrators to expire account passwords and require users to reset their password. The immediately following discussion describes how password expiration works currently. Later, the development of this capability is detailed as it occurred over several versions, as background to help you understand what features are available when. However, to ensure that you can take advantage of all features and fixes, you should use the most recent available version of MySQL 5.6 if possible.
How Password Expiration Works
To expire an account password, use the ALTER USER statement. For example:
ALTER USER 'myuser'@'localhost' PASSWORD EXPIRE;
This statement modifies the row of the mysql.user table associated with the named account, setting the password_expired column to 'Y'. This does not affect any current connections the account has open. For each subsequent connection that uses the account, the server either disconnects the client or handles the client in “sandbox mode,” in which the server permits the client only those operations necessary to reset the expired password. (The action taken by the server depends on both client and server settings.)
If the server disconnects the client, it returns an ER_MUST_CHANGE_PASSWORD_LOGIN error:
shell> mysql -u myuser -p
Password: ******
ERROR 1862 (HY000): Your password has expired. To log in you must
change it using a client that supports expired passwords.
If the server puts the client in sandbox mode, these operations are permitted within the client session:
The client can reset the account password with SET PASSWORD. This modifies the row of the mysql.user table associated with the current account, setting the password_expired column to 'N'. After the password has been reset, the server restores normal access for the session, as well as for subsequent connections that use the account.
It is possible to “reset” a password by setting it to its current value. As a matter of good policy, it is preferable to choose a different password.
The client can use SET statements. This might be necessary prior to resetting the password; for example, if the account password uses a hashing format that requires the old_passwords system variable to be set to a value different from its default.
For any operation not permitted within the session, the server returns an ER_MUST_CHANGE_PASSWORD error:
mysql> USE test;
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement
As mentioned previously, whether the server disconnects an expired-password client or puts it in sandbox mode depends on a combination of client and server settings. The following discussion describes the relevant settings and how they interact.
On the client side, a given client indicates whether it can handle sandbox mode for expired passwords. For clients that use the C client library, there are two ways to do this:
Pass the MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_options() prior to connecting:
arg = 1;
result = mysql_options(mysql,
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS, &arg);
Pass the CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_real_connect() at connection time:
mysql = mysql_real_connect(mysql,
host, user, password, "test",
port, unix_socket,
CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS);
Other MySQL Connectors have their own conventions for indicating readiness to handle sandbox mode. See the relevant Connector documentation.
On the server side, if a client indicates that it can handle expired passwords, the server puts it in sandbox mode.
If a client does not indicate that it can handle expired passwords (or uses an older version of the client library that cannot so indicate), the server action depends on the value of the disconnect_on_expired_passwords system variable:
If disconnect_on_expired_passwords is enabled (the default), the server disconnects the client with an ER_MUST_CHANGE_PASSWORD_LOGIN error.
If disconnect_on_expired_passwords is disabled, the server puts the client in sandbox mode.
The preceding client and server settings apply only for accounts with expired passwords. If a client connects using a nonexpired password, the server handles the client normally.
Development of Password-Expiration Capability
The following timeline describes the versions in which various password-expiration features were added.
MySQL 5.6.6: Initial implementation of password expiration
The password_expired column is introduced in the mysql.user table to enable DBAs to expire account passwords. The column default value is 'N' (not expired).
The ALTER USER statement is introduced as the SQL interface for setting the password_expired column to 'Y'.
Connections that use an account with an expired password enter “sandbox mode” that permits only SET PASSWORD statements. For other statements, the server returns an ER_MUST_CHANGE_PASSWORD error. The intent is to force the client to reset the password before the server permits any other operations. SET PASSWORD resets the account password and sets password_expired to 'N'.
A bug in the initial implementation is that ALTER USER sets the Password column in the mysql.user table to the empty string. The implication is that users should wait until MySQL 5.6.7 to use this statement.
MySQL 5.6.7:
ALTER USER is fixed to not set the Password column to the empty string.
MySQL 5.6.8:
ALTER USER can be used as a prepared statement.
mysqladmin password is made capable of setting passwords for accounts with expired native or old-native passwords.
Sandbox mode is changed to permit clients to execute SET statements in addition to SET PASSWORD Prohibiting SET prevented clients that needed to set old_passwords from resetting their password. It also broke some Connectors, which use SET extensively at connect time to initialize the session environment.
MySQL 5.6.9:
Sandbox mode is changed to permit SET PASSWORD only if the account named in the statement matches the account the client authenticated as.
MySQL 5.6.10:
Sandbox mode is changed to permit better control over how the server handles client connections for accounts with expired passwords, and to permit clients to signal whether they are capable of handling expired passwords:
The disconnect_on_expired_passwords system variable is added, which controls how the server treats expired-password accounts.
Two flags are added to the C API client library: MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS for mysql_options() and CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS for mysql_real_connect(). Each flag enables a client program to indicate whether it can handle sandbox mode for accounts with expired passwords.
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS is enabled for mysqltest unconditionally, for mysql in interactive mode, and for mysqladmin if the first command is password.
The ER_MUST_CHANGE_PASSWORD_LOGIN error is added. The server returns this error when it disconnects a client.
Concurrent with these changes to sandbox mode in MySQL Server and the C API client library, work begins to modify Connectors for conformance to the changes.
6.3.7. Pluggable Authentication
When a client connects to the MySQL server, the server uses the user name provided by the client and the client host to select the appropriate account row from the mysql.user table. It then uses this row to authenticate the client.
In MySQL 5.6, the server authenticates clients using plugins, as follows:
The server determines from the account row which authentication plugin applies for the client:
If the account row specifies no plugin name, the server uses native authentication; that is, authentication against the password stored in the Password column of the account row. This is the same authentication method provided by MySQL servers older than 5.5.7, before pluggable authentication was implemented, but now is implemented using two plugins that are built in and cannot be disabled.
If the account row specifies a plugin, the server invokes it to authenticate the user. If the server cannot find the plugin, an error occurs.
The plugin returns a status to the server indicating whether the user is permitted to connect.
Pluggable authentication enables two important capabilities:
External authentication: Pluggable authentication makes it possible for clients to connect to the MySQL server with credentials that are appropriate for authentication methods other than native authentication based on passwords stored in the mysql.user table. For example, plugins can be created to use external authentication methods such as PAM, Windows login IDs, LDAP, or Kerberos.
Proxy users: If a user is permitted to connect, an authentication plugin can return to the server a user name different from the name of the connecting user, to indicate that the connecting user is a proxy for another user. While the connection lasts, the proxy user is treated, for purposes of access control, as having the privileges of a different user. In effect, one user impersonates another. For more information, see Section 6.3.8, “Proxy Users”.
Several authentication plugins are available in MySQL. The following sections provide details about specific plugins.
Plugins that perform native authentication that matches the password against the Password column of the account row. See Section 6.3.7.1, “The Native Authentication Plugins”. Native authentication is the default for accounts that have no plugin named explicitly in their account row.
A plugin that performs authentication using SHA-256 password hashing. This plugin matches the password against the authentication_string column of the account row. This is stronger encryption than that available with native authentication. See Section 6.3.7.2, “The SHA-256 Authentication Plugin”.
A plugin that performs external authentication against PAM (Pluggable Authentication Modules), enabling MySQL Server to use PAM to authenticate MySQL users. This plugin supports proxy users as well. See Section 6.3.7.3, “The PAM Authentication Plugin”.
A plugin that performs external authentication on Windows, enabling MySQL Server to use native Windows services to authenticate client connections. Users who have logged in to Windows can connect from MySQL client programs to the server based on the information in their environment without specifying an additional password. This plugin supports proxy users as well. See Section 6.3.7.4, “The Windows Native Authentication Plugin”.
A client-side plugin that sends the password to the server without hashing or encryption. This plugin can be used by server-side plugins that require access to the password exactly as provided by the client user. See Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”.
A plugin that authenticates clients that connect from the local host through the Unix socket file. See Section 6.3.7.6, “The Socket Peer-Credential Authentication Plugin”.
A test plugin that authenticates using MySQL native authentication. This plugin is intended for testing and development purposes, and as an example of how to write an authentication plugin. See Section 6.3.7.7, “The Test Authentication Plugin”.
Note
For information about current restrictions on the use of pluggable authentication, including which connectors support which plugins, see Section E.9, “Restrictions on Pluggable Authentication”.
Third-party connector developers should read that section to determine the extent to which a connector can take advantage of pluggable authentication capabilities and what steps to take to become more compliant.
If you are interested in writing your own authentication plugins, see Section 22.2.4.9, “Writing Authentication Plugins”.
In general, pluggable authentication uses corresponding plugins on the server and client sides, so you use a given authentication method like this:
On the server host, install the appropriate library containing the server plugin, if necessary, so that the server can use it to authenticate client connections. Similarly, on each client host, install the appropriate library containing the client plugin for use by client programs.
Create MySQL accounts that specify use of the plugin for authentication.
When a client connects, the server plugin tells the client program which client plugin to use for authentication.
The remainder of this section provides general instructions for installing and using authentication plugins. The instructions use an an example authentication plugin included in MySQL distributions (see Section 6.3.7.7, “The Test Authentication Plugin”). The procedure is similar for other authentication plugins; substitute the appropriate plugin and file names.
The example authentication plugin has these characteristics:
The server-side plugin name is test_plugin_server.
The client-side plugin name is auth_test_plugin.
Both plugins are located in the shared library object file named auth_test_plugin.so in the plugin directory (the directory named by the plugin_dir system variable). The file name suffix might differ on your system.
Install and use the example authentication plugin as follows:
Make sure that the plugin library is installed on the server and client hosts.
Install the server-side test plugin at server startup or at runtime:
To install the plugin at startup, use the --plugin-load option. With this plugin-loading method, the option must be given each time you start the server. For example, use these lines in a my.cnf option file:
[mysqld]
plugin-load=test_plugin_server=auth_test_plugin.so
To install the plugin at runtime, use the INSTALL PLUGIN statement:
mysql> INSTALL PLUGIN test_plugin_server SONAME 'auth_test_plugin.so';
This installs the plugin permanently and need be done only once.
PAM authentication, when not done through proxy users or groups, requires the MySQL account to have the same user name as the Unix account. Because MySQL user names are limited to 16 characters (see Section 6.2.2, “Privilege System Grant Tables”), this limits PAM nonproxy authentication to Unix accounts with names of at most 16 characters.
Verify that the plugin is installed. For example, use SHOW PLUGINS:
mysql> SHOW PLUGINS\G
...
*************************** 21. row ***************************
Name: test_plugin_server
Status: ACTIVE
Type: AUTHENTICATION
Library: auth_test_plugin.so
License: GPL
For other ways to check the plugin, see Section 5.1.8.2, “Obtaining Server Plugin Information”.
To specify that a MySQL user must be authenticated using the plugin, name it in the IDENTIFIED WITH clause of the CREATE USER statement that creates the user:
CREATE USER 'testuser'@'localhost' IDENTIFIED WITH test_plugin_server;
Connect to the server using a client program. The test plugin authenticates the same way as native MySQL authentication, so provide the usual --user and --password options that you normally use to connect to the server. For example:
shell> mysql --user=your_name --password=your_pass
For connections by testuser, the server sees that the account must be authenticated using the server-side plugin named test_plugin_server and communicates to the client program which client-side plugin it must use—in this case, auth_test_plugin.
In the case that the account uses the authentication method that is the default for both the server and the client program, the server need not communicate to the client which plugin to use, and a round trip in client/server negotiation can be avoided. Currently this is true for accounts that use native MySQL authentication (mysql_native_password).
The --default-auth=plugin_name option can be specified on the mysql command line to make explicit which client-side plugin the program can expect to use, although the server will override this if the user account requires a different plugin.
If mysql does not find the plugin, specify a --plugin-dir=dir_name option to indicate where the plugin is located.
Note
If you start the server with the --skip-grant-tables option, authentication plugins are not used even if loaded because the server performs no client authentication and permits any client to connect. Because this is insecure, you might want to use --skip-grant-tables in conjunction with --skip-networking to prevent remote clients from connecting.
6.3.7.1. The Native Authentication Plugins
MySQL includes two plugins that implement the same kind of native authentication that older servers provide; that is, authentication against passwords stored in the Password column of the mysql.user table:
The mysql_native_password authentication plugin implements the same default authentication against the mysql.user table as used prior to the implementation of pluggable authentication.
The mysql_old_password plugin implements authentication as used before MySQL 4.1.1 that is based on shorter password hash values. For information about this authentication method, see Section 6.1.2.4, “Password Hashing in MySQL”.
The native authentication plugins are backward compatible. Clients older than MySQL 5.5.7 do not support authentication plugins but use native authentication, so they can connect to servers from 5.5.7 and up.
The following tables show the plugin names. Both are considered to implement native authentication even though only one has “native” in the name.
Table 6.8. MySQL Native Password Authentication Plugin
Server-side plugin name | mysql_native_password |
Client-side plugin name | mysql_native_password |
Library object file name | None (plugins are built in) |
Table 6.9. MySQL Native Old-Password Authentication Plugin
Server-side plugin name | mysql_old_password |
Client-side plugin name | mysql_old_password |
Library object file name | None (plugins are built in) |
Each plugin exists in both client and server form. MySQL client programs use mysql_native_password by default. The --default-auth option can be used to specify either plugin explicitly:
shell> mysql --default-auth=mysql_native_password ...
shell> mysql --default-auth=mysql_old_password ...
The server-side plugins are built into the server, need not be loaded explicitly, and cannot be disabled by unloading them. The client-side plugins are built into the libmysqlclient client library as of MySQL 5.5.7 and available to any program linked against libmysqlclient from that version or newer.
For general information about pluggable authentication in MySQL, see Section 6.3.7, “Pluggable Authentication”.
6.3.7.2. The SHA-256 Authentication Plugin
As of MySQL 5.6.6, MySQL provides an authentication plugin that implements SHA-256 hashing for user account passwords. The following table shows the plugin names on the server and client sides.
Table 6.10. MySQL SHA-256 Authentication Plugin
Server-side plugin name | sha256_password |
Client-side plugin name | sha256_password |
Library object file name | None (plugins are built in) |
The server-side sha256_password plugin is built into the server, need not be loaded explicitly, and cannot be disabled by unloading it. Similarly, clients need not specify the location of the client-side plugin.
Note
Use of the sha256_password plugin requires that MySQL be built with SSL capabilities. See Section 6.3.9, “Using SSL for Secure Connections”.
To set up an account that uses SHA-256 password hashing, use the following procedure.
Create the account and specify that it authenticates using the sha256_password plugin:
CREATE USER 'sha256user'@'localhost' IDENTIFIED WITH sha256_password;
Set the old_passwords system variable to 2 to select SHA-256 hashing of password strings by the PASSWORD() function;
SET old_passwords = 2;
Set the account password:
SET PASSWORD FOR 'sha256user'@'localhost' = PASSWORD('sha256P@ss');
Alternatively, start the server with the default authentication plugin set to sha256_password. For example, put these lines in the server option file:
[mysqld]
default-authentication-plugin=sha256_password
That causes the sha256_password plugin to be used by default for new accounts and sets old_passwords to 2. As a result, it is possible to set the password at account-creation time with the CREATE USER statement:
mysql> CREATE USER 'sha256user2'@'localhost' IDENTIFIED BY 'sha256P@ss2';
Query OK, 0 rows affected (0.06 sec)
In this case, the server assigns the sha256_password plugin to the account and encrypts the password using SHA-256. (Another consequence is that to create an account that uses a different authentication plugin, you must specify that plugin in the CREATE USER statement, then set old_passwords appropriately for the plugin before using SET PASSWORD to set the account password.)
If old_passwords has a value other than 2, an error occurs for attempts to set the password for an account that requires a SHA-256 password:
mysql> SET old_passwords = 0;
mysql> SET PASSWORD FOR 'sha256user'@'localhost' = PASSWORD('sha256P@ss');
ERROR 1827 (HY000): The password hash doesn't have the expected format.
Check if the correct password algorithm is being used with the
PASSWORD() function.
For more information about old_passwords and PASSWORD(), see Section 5.1.4, “Server System Variables”, and Section 12.13, “Encryption and Compression Functions”.
Accounts in the mysql.user table that use SHA-256 passwords can be identified as rows with 'sha256_password' in the plugin column and a SHA-256 password hash in the authentication_string column.
MySQL can be built with either yaSSL or OpenSSL and the sha256_password plugin works with distributions built using either package. The default is to use yaSSL. If MySQL is built using OpenSSL instead, RSA encryption is available and sha256_password implements the additional capabilities in the following list. (To enable these capabilities, you must also follow the RSA configuration procedure given later in this section.)
It is possible for the client to transmit passwords to the server using RSA encryption during the client connection process, as described later.
The server exposes two additional system variables, sha256_password_private_key_path and sha256_password_public_key_path. It is intended that the database administrator will set these to the names of the RSA private and public key files at server startup.
The server exposes a status variable, Rsa_public_key, that displays the RSA public key value.
The mysql and mysqltest client programs support a --server-public-key-path option for specifying an RSA public key file explicitly. (This option was added in MySQL 5.6.6 under the name --server-public-key and renamed in 5.6.7 to --server-public-key-path.)
For clients that use the sha256_password plugin, passwords are never exposed as cleartext when connecting to the server. How password transmission occurs depends on whether an SSL connection is used and whether RSA encryption is available:
If an SSL connection is used, the password is sent as cleartext but cannot be snooped because the connection is encrypted using SSL.
If an SSL connection is not used but RSA encryption is available, the password is sent within an unencrypted connection, but the password is RSA-encrypted to prevent snooping. When the server receives the password, it decrypts it. A scramble is used in the encryption to prevent repeat attacks.
If an SSL connection is not used and RSA encryption is not available, the sha256_password plugin causes the connection attempt to fail because the password cannot be sent without being exposed as cleartext.
As mentioned previously, RSA password encryption is available only if MySQL was built using OpenSSL. The implication for MySQL distributions built using yaSSL is that SHA-256 passwords can be used only when clients access the server using an SSL connection. For information about connecting to the server using SSL, see Section 6.3.9, “Using SSL for Secure Connections”.
Assuming that MySQL has been built with OpenSSL, the following procedure describes how to enable RSA encryption of passwords during the client connection process:
Create the RSA private and public key files. Run these commands while logged into the system account used to run the MySQL server so the files will be owned by that account:
openssl genrsa -out mykey.pem 1024
openssl rsa -in mykey.pem -pubout > mykey.pub
Set the access modes for the key files. The private key should be readable only by the server:
chmod 400 mykey.pem
The public key can be freely distributed to client users:
chmod 444 mykey.pub
In the server option file, configure the appropriate system variables with the names of the key files. If you place the files in the server data directory, you need not specify their full path names:
[mysqld]
sha256_password_private_key_path=mykey.pem
sha256_password_public_key_path=mykey.pub
If the files are not in the data directory, or to make their locations explicit in the option values, use full path names:
[mysqld]
sha256_password_private_key_path=/usr/local/mysql/mykey.pem
sha256_password_public_key_path=/usr/local/mysql/mykey.pub
Restart the server, then connect to it and check the Rsa_public_key status variable value. The value will differ from that shown here, but should be nonempty:
mysql> SHOW STATUS LIKE 'Rsa_public_key'\G
*************************** 1. row ***************************
Variable_name: Rsa_public_key
Value: -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDO9nRUDd+KvSZgY7cNBZMNpwX6
MvE1PbJFXO7u18nJ9lwc99Du/E7lw6CVXw7VKrXPeHbVQUzGyUNkf45Nz/ckaaJa
aLgJOBCIDmNVnyU54OT/1lcs2xiyfaDMe8fCJ64ZwTnKbY2gkt1IMjUAB5Ogd5kJ
g8aV7EtKwyhHb0c30QIDAQAB
-----END PUBLIC KEY-----
If the value is empty, the server found some problem with the key files. Check the error log for diagnostic information.
After the server has been configured with the RSA key files, clients can connect to it using accounts that authenticate with the sha256_password plugin. As mentioned previously, such accounts can use either an SSL connection (in which case RSA is not used) or a plain connection that encrypts the password using RSA. Assume for the following discussion that SSL is not used. Connecting to the server involves no special preparation on the client side. For example:
shell> mysql -u sha256user -p
Enter password: sha256P@ss
For connection attempts by sha256user, the server determines that sha256_password is the appropriate authentication plugin and invokes it. The plugin finds that the connection does not use SSL and thus requires the password to be transmitted using RSA encryption. It sends the RSA public key to the client, which uses it to encrypt the password and returns the result to the server. The plugin uses the RSA key on the server side to decrypt the password and accepts or rejects the connection based on whether the password is correct.
The server sends the public key to the client as needed, but if a copy of the RSA public key is available on the client host, the client can use it to save a round trip in the client/server protocol:
shell> mysql -u sha256user -p --server-public-key-path=file_name
The public key value in the file named by the --server-public-key-path option should be the same as the key value in the server-side file named by the sha256_password_public_key_path system variable. If the key file contains a valid public key value but the value is incorrect, an access-denied error occurs. If the key file does not contain a valid public key, the client program cannot use it. In this case, the server sends the public key to the client as if no --server-public-key-path option had been specified.
Client users can get the RSA public key two ways:
The database administrator can provide a copy of the public key file.
A client user who can connect to the server some other way can use a SHOW STATUS LIKE 'Rsa_public_key' statement and save the returned key value in a file.
6.3.7.3. The PAM Authentication Plugin
Note
The PAM authentication plugin is a commercial extension. To learn more about commercial products (MySQL Enterprise Edition), see http://www.mysql.com/products/.
As of MySQL 5.6.10, commercial distributions of MySQL include an authentication plugin that enables MySQL Server to use PAM (Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a standard interface to access various kinds of authentication methods, such as Unix passwords or an LDAP directory.
The PAM plugin uses the information passed to it by MySQL Server (such as user name, host name, password, and authentication string), plus whatever method is available for PAM lookup. The plugin checks the user credentials against PAM and returns 'Authentication succeeded, Username is user_name' or 'Authentication failed'.
The PAM authentication plugin provides these capabilities:
External authentication: The plugin enables MySQL Server to accept connections from users defined outside the MySQL grant tables.
Proxy user support: The plugin can return to MySQL a user name different from the login user, based on the groups the external user is in and the authentication string provided. This means that the plugin can return the MySQL user that defines the privileges the external PAM-authenticated user should have. For example, a PAM user named joe can connect and have the privileges of the MySQL user named developer.
The following table shows the plugin and library file names. The file name suffix might be different on your system. The file location must be the directory named by the plugin_dir system variable. For installation information, see Section 6.3.7.3.1, “Installing the PAM Authentication Plugin”.
Table 6.11. MySQL PAM Authentication Plugin
Server-side plugin name | authentication_pam |
Client-side plugin name | mysql_clear_password |
Library object file name | authentication_pam.so |
The library file includes only the server-side plugin. The client-side plugin is built into the libmysqlclient client library. See Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”.
The server-side PAM authentication plugin is included only in commercial distributions. It is not included in MySQL community distributions. The client-side clear-text plugin that communicates with the server-side plugin is built into the MySQL client library and is included in all distributions, including community distributions. This permits clients from any 5.6.10 or newer distribution to connect to a server that has the server-side plugin loaded.
The PAM authentication plugin has been tested on Linux and Mac OS X. It requires MySQL Server 5.6.10 or newer.
For general information about pluggable authentication in MySQL, see Section 6.3.7, “Pluggable Authentication”. For proxy user information, see Section 6.3.8, “Proxy Users”.
6.3.7.3.1. Installing the PAM Authentication Plugin
The PAM authentication plugin must be located in the MySQL plugin directory (the directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at server startup to tell the server the location of the plugin directory.
To enable the plugin, start the server with the --plugin-load option. For example, put the following lines in your my.cnf file. If object files have a suffix different from .so on your system, substitute the correct suffix.
[mysqld]
plugin-load=authentication_pam.so
Use the plugin name authentication_pam in the IDENTIFIED WITH clause of CREATE USER or GRANT statements for MySQL accounts that should be authenticated with this plugin.
To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.
6.3.7.3.2. Using the PAM Authentication Plugin
This section describes how to use the PAM authentication plugin to connect from MySQL client programs to the server. It is assumed that the server-side plugin is enabled and that client programs are recent enough to include the client-side plugin.
Note
The client-side plugin with which the PAM plugin communicates simply sends the password to the server in clear text so it can be passed to PAM. This may be a security problem in some configurations, but is necessary to use the server-side PAM library. To avoid problems if there is any possibility that the password would be intercepted, clients should connect to MySQL Server using SSL. See Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”.
To refer to the PAM authentication plugin in the IDENTIFIED WITH clause of a CREATE USER or GRANT statement, use the name authentication_pam. For example:
CREATE USER user
IDENTIFIED WITH authentication_pam
AS 'authentication_string';
The authentication string specifies the following types of information:
PAM supports the notion of “service name,” which is a name that the system administrator can use to configure the authentication method for a particular application. There can be several such “applications” associated with a single database server instance, so the choice of service name is left to the SQL application developer. When you define an account that should authenticate using PAM, specify the service name in the authentication string.
PAM provides a way for a PAM module to return to the server a MySQL user name other than the login name supplied at login time. Use the authentication string to control the mapping between login name and MySQL user name. If you want to take advantage of proxy user capabilities, the authentication string must include this kind of mapping.
For example, if the service name is mysql and users in the root and users PAM groups should be mapped to the developer and data_entry users, respectively, use a statement like this:
CREATE USER user
IDENTIFIED WITH authentication_pam
AS 'mysql, root=developer, users=data_entry';
Authentication string syntax for the PAM authentication plugin follows these rules:
The string consists of a PAM service name, optionally followed by a group mapping list consisting of one or more keyword/value pairs each specifying a group name and a SQL user name:
pam_service_name[,group_name=sql_user_name]...
Each group_name=sql_user_name pair must be preceded by a comma.
Leading and trailing spaces not inside double quotation marks are ignored.
Unquoted pam_service_name, group_name, and sql_user_name values can contain anything except equal sign, comma, or space.
If a pam_service_name, group_name, or sql_user_name value is quoted with double quotation marks, everything between the quotation marks is part of the value. This is necessary, for example, if the value contains space characters. All characters are legal except double quotation mark and backslash ('\'). To include either character, escape it with a backslash.
The plugin parses the authentication string on each login check. To minimize overhead, keep the string as short as possible.
If the plugin successfully authenticates a login name, it looks for a group mapping list in the authentication string and uses it to return a different user name to the MySQL server based on the groups the external user is a member of:
If the authentication string contains no group mapping list, the plugin returns the login name.
If the authentication string does contain a group mapping list, the plugin examines each group_name=sql_user_name pair in the list from left to right and tries to find a match for the group_name value in a non-MySQL directory of the groups assigned to the authenticated user and returns sql_user_name for the first match it finds. If the plugin finds no match for any group, it returns the login name. If the plugin is not capable of looking up a group in a directory, it ignores the group mapping list and returns the login name.
The following sections describe how to set up several authentication scenarios that use the PAM authentication plugin:
No proxy users. This uses PAM only to check login names and passwords. Every external user permitted to connect to MySQL Server should have a matching MySQL account that is defined to use external PAM authentication. Authentication can be performed by various PAM-supported methods. The discussion shows how to use traditional Unix passwords and LDAP.
PAM authentication, when not done through proxy users or groups, requires the MySQL account to have the same user name as the Unix account. Because MySQL user names are limited to 16 characters (see Section 6.2.2, “Privilege System Grant Tables”), this limits PAM nonproxy authentication to Unix accounts with names of at most 16 characters.
Proxy login only and group mapping. For this scenario, create a few MySQL accounts that define different sets of privileges. (Ideally, nobody should log in through these directly.) Then define a default user authenticating through PAM that uses some mapping scheme (usually by the external groups the users are in) to map all the external logins to the few MySQL accounts holding the privilege sets. Any user that logs in is mapped to one of the MySQL accounts and uses its privileges. The discussion shows how to set this up using Unix passwords, but other PAM methods such as LDAP could be used instead.
Variations on these scenarios are possible. For example, you can permit some users to log in directly but require others to connect through proxy users.
The examples make the following assumptions. You might need to make some adjustments if your system is set up differently.
The PAM configuration directory is /etc/pam.d.
The PAM service name is mysql, which means that you must set up a PAM file named mysql in the PAM configuration directory (creating the file if it does not exist). If you use a different service name, the file name will be different and you must use a different name in the AS clause of CREATE USER and GRANT statements.
The examples use a login name of antonio and password of verysecret. Change these to correspond to the users you want to authenticate.
The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG environment value is set. If so, the plugin enables logging of diagnostic messages to the standard output. These messages may be helpful for debugging PAM-related problems that occur when the plugin performs authentication. For more information, see Section 6.3.7.3.3, “PAM Authentication Plugin Debugging”.
6.3.7.3.2.1. Unix Password Authentication without Proxy Users
This authentication scenario uses PAM only to check Unix user login names and passwords. Every external user permitted to connect to MySQL Server should have a matching MySQL account that is defined to use external PAM authentication.
Verify that Unix authentication in PAM permits you to log in as antonio with password verysecret.
Set up PAM to authenticate the mysql service. Put the following in /etc/pam.d/mysql:
#%PAM-1.0
auth include password-auth
account include password-auth
Create a MySQL account with the same user name as the Unix login name and define it to authenticate using the PAM plugin:
CREATE USER 'antonio'@'localhost'
IDENTIFIED WITH authentication_pam AS 'mysql';
GRANT ALL PRIVILEGES ON mydb.* TO 'antonio'@'localhost';
Try to connect to the MySQL server using the mysql command-line client. For example:
mysql --user=antonio --password=verysecret mydb
The server should permit the connection and the following query should return output as shown:
mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+-------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+-------------------+--------------+
| antonio@localhost | antonio@localhost | NULL |
+-------------------+-------------------+--------------+
This shows that antonio uses the privileges granted to the antonio MySQL account, and that no proxying has occurred.
6.3.7.3.2.2. LDAP Authentication without Proxy Users
This authentication scenario uses PAM only to check LDAP user login names and passwords. Every external user permitted to connect to MySQL Server should have a matching MySQL account that is defined to use external PAM authentication.
Verify that LDAP authentication in PAM permits you to log in as antonio with password verysecret.
Set up PAM to authenticate the mysql service through LDAP. Put the following in /etc/pam.d/mysql:
#%PAM-1.0
auth required pam_ldap.so
account required pam_ldap.so
If PAM object files have a suffix different from .so on your system, substitute the correct suffix.
MySQL account creation and connecting to the server is the same as previously described in Section 6.3.7.3.2.1, “Unix Password Authentication without Proxy Users”.
6.3.7.3.2.3. Unix Password Authentication with Proxy Users and Group Mapping
This authentication scheme uses proxying and group mapping to map users who connect to the MySQL server through PAM onto a few MySQL accounts that define different sets of privileges. Users do not connect directly through the accounts that define the privileges. Instead, they connect through a default proxy user authenticating through PAM that uses a mapping scheme to map all the external logins to the few MySQL accounts holding the privileges. Any user who connects is mapped to one of the MySQL accounts and uses its privileges.
The procedure shown here uses Unix password authentication. To use LDAP instead, see the early steps of Section 6.3.7.3.2.2, “LDAP Authentication without Proxy Users”.
Verify that Unix authentication in PAM permits you to log in as antonio with password verysecret and that antonio is a member of the root or users group.
Set up PAM to authenticate the mysql service. Put the following in /etc/pam.d/mysql:
#%PAM-1.0
auth include password-auth
account include password-auth
Create the default proxy user that maps the external PAM users to the proxied accounts. It maps external users from the root PAM group to the developer MySQL account and the external users from the users PAM group to the data_entry MySQL account:
CREATE USER ''@''
IDENTIFIED WITH authentication_pam
AS 'mysql, root=developer, users=data_entry';
The mapping list following the service name is required when you set up proxy users. Otherwise, the plugin cannot tell how to map the name of PAM groups to the proper proxied user name.
Create the proxied accounts that will be used to access the databases:
CREATE USER 'developer'@'localhost' IDENTIFIED BY 'very secret password';
GRANT ALL PRIVILEGES ON mydevdb.* TO 'developer'@'localhost';
CREATE USER 'data_entry'@'localhost' IDENTIFIED BY 'very secret password';
GRANT ALL PRIVILEGES ON mydb.* TO 'data_entry'@'localhost';
If you do not let anyone know the passwords for these accounts, other users cannot use them to connect directly to the MySQL server. Instead, it is expected that users will authenticate using PAM and that they will use the developer or data_entry account by proxy based on their PAM group.
Grant the PROXY privilege to the proxy account for the proxied accounts:
GRANT PROXY ON 'developer'@'localhost' TO ''@'';
GRANT PROXY ON 'data_entry'@'localhost' TO ''@'';
Try to connect to the MySQL server using the mysql command-line client. For example:
mysql --user=antonio --password=verysecret mydb
The server authenticates the connection using the ''@'' account. The privileges antonio will have depends on what PAM groups he is a member of. If antonio is a member of the root PAM group, the PAM plugin maps root to the developer MySQL user name and returns that name to the server. The server verifies that ''@'' has the PROXY privilege for developer and permits the connection. the following query should return output as shown:
mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+---------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+---------------------+--------------+
| antonio@localhost | developer@localhost | ''@'' |
+-------------------+---------------------+--------------+
This shows that antonio uses the privileges granted to the developer MySQL account, and that proxying occurred through the default proxy user account.
If antonio is not a member of the root PAM group but is a member of the users group, a similar process occurs, but the plugin maps user group membership to the data_entry MySQL user name and returns that name to the server. In this case, antonio uses the privileges of the data_entry MySQL account:
mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+----------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+----------------------+--------------+
| antonio@localhost | data_entry@localhost | ''@'' |
+-------------------+----------------------+--------------+
6.3.7.3.3. PAM Authentication Plugin Debugging
The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG environment value is set (the value does not matter). If so, the plugin enables logging of diagnostic messages to the standard output. These messages may be helpful for debugging PAM-related problems that occur when the plugin performs authentication.
Some messages include reference to PAM plugin source files and line numbers, which enables plugin actions to be tied more closely to the location in the code where they occur.
The following transcript demonstrates the kind of information produced by enabling logging. It resulted from a successful proxy authentication attempt.
entering auth_pam_server
entering auth_pam_next_token
auth_pam_next_token:reading at [cups,admin=writer,everyone=reader], sep=[,]
auth_pam_next_token:state=PRESPACE, ptr=[cups,admin=writer,everyone=reader],
out=[]
auth_pam_next_token:state=IDENT, ptr=[cups,admin=writer,everyone=reader],
out=[]
auth_pam_next_token:state=AFTERSPACE, ptr=[,admin=writer,everyone=reader],
out=[cups]
auth_pam_next_token:state=DELIMITER, ptr=[,admin=writer,everyone=reader],
out=[cups]
auth_pam_next_token:state=DONE, ptr=[,admin=writer,everyone=reader],
out=[cups]
leaving auth_pam_next_token on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/parser.c:191
auth_pam_server:password 12345qq received
auth_pam_server:pam_start rc=0
auth_pam_server:pam_set_item(PAM_RUSER,gkodinov) rc=0
auth_pam_server:pam_set_item(PAM_RHOST,localhost) rc=0
entering auth_pam_server_conv
auth_pam_server_conv:PAM_PROMPT_ECHO_OFF [Password:] received
leaving auth_pam_server_conv on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/authentication_pam.c:257
auth_pam_server:pam_authenticate rc=0
auth_pam_server:pam_acct_mgmt rc=0
auth_pam_server:pam_setcred(PAM_ESTABLISH_CRED) rc=0
auth_pam_server:pam_get_item rc=0
auth_pam_server:pam_setcred(PAM_DELETE_CRED) rc=0
entering auth_pam_map_groups
entering auth_pam_walk_namevalue_list
auth_pam_walk_namevalue_list:reading at: [admin=writer,everyone=reader]
entering auth_pam_next_token
auth_pam_next_token:reading at [admin=writer,everyone=reader], sep=[=]
auth_pam_next_token:state=PRESPACE, ptr=[admin=writer,everyone=reader], out=[]
auth_pam_next_token:state=IDENT, ptr=[admin=writer,everyone=reader], out=[]
auth_pam_next_token:state=AFTERSPACE, ptr=[=writer,everyone=reader],
out=[admin]
auth_pam_next_token:state=DELIMITER, ptr=[=writer,everyone=reader],
out=[admin]
auth_pam_next_token:state=DONE, ptr=[=writer,everyone=reader], out=[admin]
leaving auth_pam_next_token on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/parser.c:191
auth_pam_walk_namevalue_list:name=[admin]
entering auth_pam_next_token
auth_pam_next_token:reading at [writer,everyone=reader], sep=[,]
auth_pam_next_token:state=PRESPACE, ptr=[writer,everyone=reader], out=[]
auth_pam_next_token:state=IDENT, ptr=[writer,everyone=reader], out=[]
auth_pam_next_token:state=AFTERSPACE, ptr=[,everyone=reader], out=[writer]
auth_pam_next_token:state=DELIMITER, ptr=[,everyone=reader], out=[writer]
auth_pam_next_token:state=DONE, ptr=[,everyone=reader], out=[writer]
leaving auth_pam_next_token on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/parser.c:191
walk, &error_namevalue_list:value=[writer]
entering auth_pam_map_group_to_user
auth_pam_map_group_to_user:pam_user=gkodinov, name=admin, value=writer
examining member root
examining member gkodinov
substitution was made to mysql user writer
leaving auth_pam_map_group_to_user on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/authentication_pam.c:118
auth_pam_walk_namevalue_list:found mapping
leaving auth_pam_walk_namevalue_list on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/parser.c:270
auth_pam_walk_namevalue_list returned 0
leaving auth_pam_map_groups on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/authentication_pam.c:171
auth_pam_server:authenticated_as=writer
auth_pam_server: rc=0
leaving auth_pam_server on
/Users/gkodinov/mysql/work/x-5.5.16-release-basket/release/plugin/pam-authentication-plugin/src/authentication_pam.c:429
6.3.7.4. The Windows Native Authentication Plugin
Note
The Windows authentication plugin is a commercial extension. To learn more about commercial products (MySQL Enterprise Edition), see http://www.mysql.com/products/.
As of MySQL 5.6.10, commercial distributions of MySQL for Windows include an authentication plugin that performs external authentication on Windows, enabling MySQL Server to use native Windows services to authenticate client connections. Users who have logged in to Windows can connect from MySQL client programs to the server based on the information in their environment without specifying an additional password.
The client and server exchange data packets in the authentication handshake. As a result of this exchange, the server creates a security context object that represents the identity of the client in the Windows OS. This identity includes the name of the client account. The Windows authentication plugin uses the identity of the client to check whether it is a given account or a member of a group. By default, negotiation uses Kerberos to authenticate, then NTLM if Kerberos is unavailable.
The Windows authentication plugin provides these capabilities:
External authentication: The plugin enables MySQL Server to accept connections from users defined outside the MySQL grant tables.
Proxy user support: The plugin can return to MySQL a user name different from the client user. This means that the plugin can return the MySQL user that defines the privileges the external Windows-authenticated user should have. For example, a Windows user named joe can connect and have the privileges of the MySQL user named developer.
The following table shows the plugin and library file names. The file location must be the directory named by the plugin_dir system variable. For installation information, see Section 6.3.7.4.1, “Installing the Windows Authentication Plugin”.
Table 6.12. MySQL Windows Authentication Plugin
Server-side plugin name | authentication_windows |
Client-side plugin name | authentication_windows_client |
Library object file name | authentication_windows.dll |
The library file includes only the server-side plugin. The client-side plugin is built into the libmysqlclient client library.
The server-side Windows authentication plugin is included only in commercial distributions. It is not included in MySQL community distributions. The client-side plugin is included in all distributions, including community distributions. This permits clients from any distribution to connect to a server that has the server-side plugin loaded.
The Windows authentication plugin should work on Windows 2000 Professional and up. It requires MySQL Server 5.6.10 or newer.
For general information about pluggable authentication in MySQL, see Section 6.3.7, “Pluggable Authentication”. For proxy user information, see Section 6.3.8, “Proxy Users”.
6.3.7.4.1. Installing the Windows Authentication Plugin
The Windows authentication plugin must be installed in the MySQL plugin directory (the directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at server startup to tell the server the location of the plugin directory.
To enable the plugin, start the server with the --plugin-load option. For example, put these lines in your my.ini file:
[mysqld]
plugin-load=authentication_windows.dll
Use the plugin name authentication_windows in the IDENTIFIED WITH clause of CREATE USER or GRANT statements for MySQL accounts that should be authenticated with this plugin.
To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.
6.3.7.4.2. Using the Windows Authentication Plugin
The Windows authentication plugin supports the use of MySQL accounts such that users who have logged in to Windows can connect to the MySQL server without having to specify an additional password. It is assumed that the server-side plugin is enabled and that client programs are recent enough to include the client-side plugin built into libmysqlclient. Once the DBA has enabled the server-side plugin and set up accounts to use it, clients can connect using those accounts with no other setup required on their part.
To refer to the Windows authentication plugin in the IDENTIFIED WITH clause of a CREATE USER or GRANT statement, use the name authentication_windows. Suppose that the Windows users Rafal and Tasha should be permitted to connect to MySQL, as well as any users in the Administrators or Power Users group. To set this up, create a MySQL account named sql_admin that uses the Windows plugin for authentication:
CREATE USER sql_admin
IDENTIFIED WITH authentication_windows
AS 'Rafal, Tasha, Administrators, "Power Users"';
The plugin name is authentication_windows. The string following the AS keyword is the authentication string. It specifies that the Windows users named Rafal or Tasha are permitted to authenticate to the server as the MySQL user sql_admin, as are any Windows users in the Administrators or Power Users group. The latter group name contains a space, so it must be quoted with double quote characters.
After you create the sql_admin account, a user who has logged in to Windows can attempt to connect to the server using that account:
C:\> mysql --user=sql_admin
No password is required here. The authentication_windows plugin uses the Windows security API to check which Windows user is connecting. If that user is named Rafal or Tasha, or is in the Administrators or Power Users group, the server grants access and the client is authenticated as sql_admin and has whatever privileges are granted to the sql_admin account. Otherwise, the server denies access.
Authentication string syntax for the Windows authentication plugin follows these rules:
The string consists of one or more user mappings separated by commas.
Each user mapping associates a Windows user or group name with a MySQL user name:
win_user_or_group_name=sql_user_name
win_user_or_group_name
For the latter syntax, with no sql_user_name value given, the implicit value is the MySQL user created by the CREATE USER statement. Thus, these statements are equivalent:
CREATE USER sql_admin
IDENTIFIED WITH authentication_windows
AS 'Rafal, Tasha, Administrators, "Power Users"';
CREATE USER sql_admin
IDENTIFIED WITH authentication_windows
AS 'Rafal=sql_admin, Tasha=sql_admin, Administrators=sql_admin,
"Power Users"=sql_admin';
Each backslash ('\') in a value must be doubled because backslash is the escape character in MySQL strings.
Leading and trailing spaces not inside double quotation marks are ignored.
Unquoted win_user_or_group_name and sql_user_name values can contain anything except equal sign, comma, or space.
If a win_user_or_group_name and or sql_user_name value is quoted with double quotation marks, everything between the quotation marks is part of the value. This is necessary, for example, if the name contains space characters. All characters within double quotes are legal except double quotation mark and backslash. To include either character, escape it with a backslash.
win_user_or_group_name values use conventional syntax for Windows principals, either local or in a domain. Examples (note the doubling of backslashes):
domain\\user
.\\user
domain\\group
.\\group
BUILTIN\\WellKnownGroup
When invoked by the server to authenticate a client, the plugin scans the authentication string left to right for a user or group match to the Windows user. If there is a match, the plugin returns the corresponding sql_user_name to the MySQL server. If there is no match, authentication fails.
A user name match takes preference over a group name match. Suppose that the Windows user named win_user is a member of win_group and the authentication string looks like this:
'win_group = sql_user1, win_user = sql_user2'
When win_user connects to the MySQL server, there is a match both to win_group and to win_user. The plugin authenticates the user as sql_user2 because the more-specific user match takes precedence over the group match, even though the group is listed first in the authentication string.
Windows authentication always works for connections from the same computer on which the server is running. For cross-computer connections, both computers must be registered with Windows Active Directory. If they are in the same Windows domain, it is unnecessary to specify a domain name. It is also possible to permit connections from a different domain, as in this example:
CREATE USER sql_accounting
IDENTIFIED WITH authentication_windows
AS 'SomeDomain\\Accounting';
Here SomeDomain is the name of the other domain. The backslash character is doubled because it is the MySQL escape character within strings.
MySQL supports the concept of proxy users whereby a client can connect and authenticate to the MySQL server using one account but while connected has the privileges of another account (see Section 6.3.8, “Proxy Users”). Suppose that you want Windows users to connect using a single user name but be mapped based on their Windows user and group names onto specific MySQL accounts as follows:
The local_user and MyDomain\domain_user local and domain Windows users should map to the local_wlad MySQL account.
Users in the MyDomain\Developers domain group should map to the local_dev MySQL account.
Local machine administrators should map to the local_admin MySQL account.
To set this up, create a proxy account for Windows users to connect to, and configure this account so that users and groups map to the appropriate MySQL accounts (local_wlad, local_dev, local_admin). In addition, grant the MySQL accounts the privileges appropriate to the operations they need to perform. The following instructions use win_proxy as the proxy account, and local_wlad, local_dev, and local_admin as the proxied accounts.
Create the proxy MySQL account:
CREATE USER win_proxy
IDENTIFIED WITH authentication_windows
AS 'local_user = local_wlad,
MyDomain\\domain_user = local_wlad,
MyDomain\\Developers = local_dev,
BUILTIN\\Administrators = local_admin';
For proxying to work, the proxied accounts must exist, so create them:
CREATE USER local_wlad IDENTIFIED BY 'wlad_pass';
CREATE USER local_dev IDENTIFIED BY 'dev_pass';
CREATE USER local_admin IDENTIFIED BY 'admin_pass';
If you do not let anyone know the passwords for these accounts, other users cannot use them to connect directly to the MySQL server.
You should also issue GRANT statements (not shown) that grant each proxied account the privileges it needs.
The proxy account must have the PROXY privilege for each of the proxied accounts:
GRANT PROXY ON local_wlad TO win_proxy;
GRANT PROXY ON local_dev TO win_proxy;
GRANT PROXY ON local_admin TO win_proxy;
Now the Windows users local_user and MyDomain\domain_user can connect to the MySQL server as win_proxy and when authenticated have the privileges of the account given in the authentication string—in this case, local_wlad. A user in the MyDomain\Developers group who connects as win_proxy has the privileges of the local_dev account. A user in the BUILTIN\Administrators group has the privileges of the local_admin account.
To configure authentication so that all Windows users who do not have their own MySQL account go through a proxy account, substitute the default proxy user (''@'') for win_proxy in the preceding instructions. For information about the default proxy user, see Section 6.3.8, “Proxy Users”.
To use the Windows authentication plugin with Connector/Net connection strings in Connection/Net 6.4.4 and higher, see Section 21.2.5.5, “Using the Windows Native Authentication Plugin”.
Additional control over the Windows authentication plugin is provided by the authentication_windows_use_principal_name and authentication_windows_log_level system variables. See Section 5.1.4, “Server System Variables”.
6.3.7.5. The Cleartext Client-Side Authentication Plugin
As of MySQL 5.6.2, a client-side authentication plugin is available that sends the password to the server without hashing or encryption. This plugin is built into the MySQL client library.
The following table shows the plugin name.
Table 6.13. MySQL Cleartext Authentication Plugin
Server-side plugin name | None, see discussion |
Client-side plugin name | mysql_clear_password |
Library object file name | None (plugin is built in) |
With native MySQL authentication, the client performs one-way hashing on the password before sending it to the server. This enables the client to avoid sending the password in clear text. See Section 6.1.2.4, “Password Hashing in MySQL”. However, because the hash algorithm is one way, the original password cannot be recovered on the server side.
One-way hashing cannot be done for authentication schemes that require the server to receive the password as entered on the client side. In such cases, the mysql_clear_password client-side plugin can be used to send the password to the server in clear text. There is no corresponding server-side plugin. Rather, the client-side plugin can be used by any server-side plugin that needs a clear text password.
For general information about pluggable authentication in MySQL, see Section 6.3.7, “Pluggable Authentication”.
Note
Sending passwords in clear text may be a security problem in some configurations. To avoid problems if there is any possibility that the password would be intercepted, clients should connect to MySQL Server using a method that protects the password. Possibilities include SSL (see Section 6.3.9, “Using SSL for Secure Connections”), IPsec, or a private network.
As of MySQL 5.6.7, to make inadvertent use of this plugin less likely, it is required that clients explicitly enable it. This can be done several ways:
Set the LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable to a value that begins with 1, Y, or y. This enables the plugin for all client connections.
The mysql, mysqladmin, and mysqlslap client programs support an --enable-cleartext-plugin option that enables the plugin on a per-invocation basis.
The mysql_options() C API function supports a MYSQL_ENABLE_CLEARTEXT_PLUGIN option that enables the plugin on a per-connection basis. Also, any program that uses libmysqlclient and reads option files can enable the plugin by including an enable-cleartext-plugin option in an option group read by the client library.
6.3.7.6. The Socket Peer-Credential Authentication Plugin
As of MySQL 5.6.2, a server-side authentication plugin is available that authenticates clients that connect from the local host through the Unix socket file.
The source code for this plugin can be examined as a relatively simple example demonstrating how to write a loadable authentication plugin.
The following table shows the plugin and library file names. The file name suffix might differ on your system. The file location is the directory named by the plugin_dir system variable. For installation information, see Section 6.3.7, “Pluggable Authentication”.
Table 6.14. MySQL Socket Peer-Credential Authentication Plugin
Server-side plugin name | auth_socket |
Client-side plugin name | None, see discussion |
Library object file name | auth_socket.so |
The auth_socket authentication plugin authenticates clients that connect from the local host through the Unix socket file. The plugin uses the SO_PEERCRED socket option to obtain information about the user running the client program. The plugin checks whether the user name matches the MySQL user name specified by the client program to the server, and permits the connection only if the names match. The plugin can be built only on systems that support the SO_PEERCRED option, such as Linux.
Suppose that a MySQL account is created for a user named valerie who is to be authenticated by the auth_socket plugin for connections from the local host through the socket file:
CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;
If a user on the local host with a login name of stefanie invokes mysql with the option --user=valerie to connect through the socket file, the server uses auth_socket to authenticate the client. The plugin determines that the --user option value (valerie) differs from the client user's name (stephanie) and refuses the connection. If a user named valerie tries the same thing, the plugin finds that the user name and the MySQL user name are both valerie and permits the connection. However, the plugin refuses the connection even for valerie if the connection is made using a different protocol, such as TCP/IP.
For general information about pluggable authentication in MySQL, see Section 6.3.7, “Pluggable Authentication”.
6.3.7.7. The Test Authentication Plugin
MySQL includes a test plugin that authenticates using MySQL native authentication, but is a loadable plugin (not built in) and must be installed prior to use. It can authenticate against either normal or older (shorter) password hash values.
This plugin is intended for testing and development purposes, and not for use in production environments. The test plugin source code is separate from the server source, unlike the built-in native plugin, so it can be examined as a relatively simple example demonstrating how to write a loadable authentication plugin.
The following table shows the plugin and library file names. The file name suffix might differ on your system. The file location is the directory named by the plugin_dir system variable. For installation information, see Section 6.3.7, “Pluggable Authentication”.
Table 6.15. MySQL Test Authentication Plugin
Server-side plugin name | test_plugin_server |
Client-side plugin name | auth_test_plugin |
Library object file name | auth_test_plugin.so |
Because the test plugin authenticates the same way as native MySQL authentication, provide the usual --user and --password options that you normally use for accounts that use native authentication when you connect to the server. For example:
shell> mysql --user=your_name --password=your_pass
For general information about pluggable authentication in MySQL, see Section 6.3.7, “Pluggable Authentication”.
6.3.8. Proxy Users
When authentication to the MySQL server occurs by means of an authentication plugin, the plugin may request that the connecting (external) user be treated as a different user for privilege-checking purposes. This enables the external user to be a proxy for the second user; that is, to have the privileges of the second user. In other words, the external user is a “proxy user” (a user who can impersonate or become known as another user) and the second user is a “proxied user” (a user whose identity can be taken on by a proxy user).
This section describes how the proxy user capability works. For general information about authentication plugins, see Section 6.3.7, “Pluggable Authentication”. If you are interested in writing your own authentication plugins that support proxy users, see Section 22.2.4.9.4, “Implementing Proxy User Support in Authentication Plugins”.
For proxying to occur, these conditions must be satisfied:
When a connecting client should be treated as a proxy user, the plugin must return a different name, to indicate the proxied user name.
A proxy user account must be set up to be authenticated by the plugin. Use the CREATE USER or GRANT statement to associate an account with a plugin.
A proxy user account must have the PROXY privilege for the proxied account. Use the GRANT statement for this.
Consider the following definitions:
CREATE USER 'empl_external'@'localhost'
IDENTIFIED WITH auth_plugin AS 'auth_string';
CREATE USER 'employee'@'localhost'
IDENTIFIED BY 'employee_pass';
GRANT PROXY
ON 'employee'@'localhost'
TO 'empl_external'@'localhost';
When a client connects as empl_external from the local host, MySQL uses auth_plugin to perform authentication. If auth_plugin returns the employee user name to the server (based on the content of 'auth_string' and perhaps by consulting some external authentication system), that serves as a request to the server to treat this client, for purposes of privilege checking, as the employee local user.
In this case, empl_external is the proxy user and employee is the proxied user.
The server verifies that proxy authentication for employee is possible for the empl_external user by checking whether empl_external has the PROXY privilege for employee. (If this privilege had not been granted, an error would occur.)
When proxying occurs, the USER() and CURRENT_USER() functions can be used to see the difference between the connecting user and the account whose privileges apply during the current session. For the example just described, those functions return these values:
mysql> SELECT USER(), CURRENT_USER();
+-------------------------+--------------------+
| USER() | CURRENT_USER() |
+-------------------------+--------------------+
| empl_external@localhost | employee@localhost |
+-------------------------+--------------------+
The IDENTIFIED WITH clause that names the authentication plugin may be followed by an AS clause specifying a string that the server passes to the plugin when the user connects. It is up to each plugin whether the AS clause is required. If it is required, the format of the authentication string depends on how the plugin intends to use it. Consult the documentation for a given plugin for information about the authentication string values it accepts.
Granting the Proxy Privilege
A special PROXY privilege is needed to enable an external user to connect as and have the privileges of another user. To grant this privilege, use the GRANT statement. For example:
GRANT PROXY ON 'proxied_user' TO 'proxy_user';
proxy_user must represent a valid externally authenticated MySQL user at connection time or connection attempts fail. proxied_user must represent a valid locally authenticated user at connection time or connection attempts fail.
The corresponding REVOKE syntax is:
REVOKE PROXY ON 'proxied_user' FROM 'proxy_user';
MySQL GRANT and REVOKE syntax extensions work as usual. For example:
GRANT PROXY ON 'a' TO 'b', 'c', 'd';
GRANT PROXY ON 'a' TO 'd' IDENTIFIED BY ...;
GRANT PROXY ON 'a' TO 'd' WITH GRANT OPTION;
GRANT PROXY ON 'a' TO ''@'';
REVOKE PROXY ON 'a' FROM 'b', 'c', 'd';
In the preceding example, ''@'' is the default proxy user and means “any user.” The default proxy user is discussed later in this section.
The PROXY privilege can be granted in these cases:
By proxied_user for itself: The value of USER() must exactly match CURRENT_USER() and proxied_user, for both the user name and host name parts of the account name.
By a user that has GRANT PROXY ... WITH GRANT OPTION for proxied_user.
The root account created by default during MySQL installation has the PROXY ... WITH GRANT OPTION privilege for ''@'', that is, for all users. This enables root to set up proxy users, as well as to delegate to other accounts the authority to set up proxy users. For example, root can do this:
CREATE USER 'admin'@'localhost' IDENTIFIED BY 'test';
GRANT PROXY ON ''@'' TO 'admin'@'localhost' WITH GRANT OPTION;
Now the admin user can manage all the specific GRANT PROXY mappings. For example, admin can do this:
GRANT PROXY ON sally TO joe;
Default Proxy Users
To specify that some or all users should connect using a given external plugin, create a “blank” MySQL user, set it up to use that plugin for authentication, and let the plugin return the real authenticated user name (if different from the blank user). For example, suppose that there exists a hypothetical plugin named ldap_auth that implements LDAP authentication:
CREATE USER ''@'' IDENTIFIED WITH ldap_auth AS 'O=Oracle, OU=MySQL';
CREATE USER 'developer'@'localhost' IDENTIFIED BY 'developer_pass';
CREATE USER 'manager'@'localhost' IDENTIFIED BY 'manager_pass';
GRANT PROXY ON 'manager'@'localhost' TO ''@'';
GRANT PROXY ON 'developer'@'localhost' TO ''@'';
Now assume that a client tries to connect as follows:
mysql --user=myuser --password='myuser_pass' ...
The server will not find myuser defined as a MySQL user. But because there is a blank user account (''@''), that matches the client user name and host name, the server authenticates the client against that account: The server invokes ldap_auth, passing it myuser and myuser_pass as the user name and password.
If the ldap_auth plugin finds in the LDAP directory that myuser_pass is not the correct password for myuser, authentication fails and the server rejects the connection.
If the password is correct and ldap_auth finds that myuser is a developer, it returns the user name developer to the MySQL server, rather than myuser. The server verifies that ''@'' can authenticate as developer (because it has the PROXY privilege to do so) and accepts the connection. The session proceeds with myuser having the privileges of developer. (These privileges should be set up by the DBA using GRANT statements, not shown.) The USER() and CURRENT_USER() functions return these values:
mysql> SELECT USER(), CURRENT_USER();
+------------------+---------------------+
| USER() | CURRENT_USER() |
+------------------+---------------------+
| myuser@localhost | developer@localhost |
+------------------+---------------------+
If the plugin instead finds in the LDAP directory that myuser is a manager, it returns manager as the user name and the session proceeds with myuser having the privileges of manager.
mysql> SELECT USER(), CURRENT_USER();
+------------------+-------------------+
| USER() | CURRENT_USER() |
+------------------+-------------------+
| myuser@localhost | manager@localhost |
+------------------+-------------------+
For simplicity, external authentication cannot be multilevel: Neither the credentials for developer nor those for manager are taken into account in the preceding example. However, they are still used if a client tries to authenticate directly against the developer or manager account, which is why those accounts should be assigned passwords.
The default proxy account uses '' in the host part, which matches any host. If you set up a default proxy user, take care to also check for accounts with '%' in the host part, because that also matches any host, but has precedence over '' by the rules that the server uses to sort account rows internally (see Section 6.2.4, “Access Control, Stage 1: Connection Verification”).
Suppose that a MySQL installation includes these two accounts:
CREATE USER ''@'' IDENTIFIED WITH some_plugin;
CREATE USER ''@'%' IDENTIFIED BY 'some_password';
The intent of the first account is to serve as the default proxy user, to be used to authenticate connections for users who do not otherwise match a more-specific account. The second account might have been created, for example, to enable users without their own account as the anonymous user.
However, in this configuration, the first account will never be used because the matching rules sort ''@'%' ahead of ''@''. For accounts that do not match any more-specific account, the server will attempt to authenticate them against ''@'%' rather than ''@''.
If you intend to create a default proxy user, check for other existing “match any user” accounts that will take precedence over the default proxy user and thus prevent that user from working as intended. It may be necessary to remove any such accounts.
Proxy User System Variables
Two system variables help trace the proxy login process:
proxy_user: This value is NULL if proxying is not used. Otherwise, it indicates the proxy user account. For example, if a client authenticates through the default proxy account, this variable will be set as follows:
mysql> SELECT @@proxy_user;
+--------------+
| @@proxy_user |
+--------------+
| ''@'' |
+--------------+
external_user: Sometimes the authentication plugin may use an external user to authenticate to the MySQL server. For example, when using Windows native authentication, a plugin that authenticates using the windows API does not need the login ID passed to it. However, it still uses an Windows user ID to authenticate. The plugin may return this external user ID (or the first 512 UTF-8 bytes of it) to the server using the external_user read-only session variable. If the plugin does not set this variable, its value is NULL.
6.3.9. Using SSL for Secure Connections
MySQL supports secure (encrypted) connections between MySQL clients and the server using the Secure Sockets Layer (SSL) protocol. This section discusses how to use SSL connections. For information on how to require users to use SSL connections, see the discussion of the REQUIRE clause of the GRANT statement in Section 13.7.1.4, “GRANT Syntax”.
The standard configuration of MySQL is intended to be as fast as possible, so encrypted connections are not used by default. For applications that require the security provided by encrypted connections, the extra computation to encrypt the data is worthwhile.
MySQL enables encryption on a per-connection basis. You can choose an unencrypted connection or a secure encrypted SSL connection according the requirements of individual applications.
Secure connections are based on the OpenSSL API and are available through the MySQL C API. Replication uses the C API, so secure connections can be used between master and slave servers. See Section 16.3.7, “Setting Up Replication Using SSL”.
Another way to connect securely is from within an SSH connection to the MySQL server host. For an example, see Section 6.3.10, “Connecting to MySQL Remotely from Windows with SSH”.
6.3.9.1. Basic SSL Concepts
To understand how MySQL uses SSL, it is necessary to explain some basic SSL and X509 concepts. People who are familiar with these concepts can skip this part of the discussion.
By default, MySQL uses unencrypted connections between the client and the server. This means that someone with access to the network could watch all your traffic and look at the data being sent or received. They could even change the data while it is in transit between client and server. To improve security a little, you can compress client/server traffic by using the --compress option when invoking client programs. However, this does not foil a determined attacker.
When you need to move information over a network in a secure fashion, an unencrypted connection is unacceptable. Encryption is the way to make any kind of data unreadable. Encryption algorithms must include security elements to resist many kinds of known attacks such as changing the order of encrypted messages or replaying data twice.
SSL is a protocol that uses different encryption algorithms to ensure that data received over a public network can be trusted. It has mechanisms to detect any data change, loss, or replay. SSL also incorporates algorithms that provide identity verification using the X509 standard.
X509 makes it possible to identify someone on the Internet. It is most commonly used in e-commerce applications. In basic terms, there should be some entity called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs them. Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key and a secret key). A certificate owner can show the certificate to another party as proof of identity. A certificate consists of its owner's public key. Any data encrypted with this public key can be decrypted only using the corresponding secret key, which is held by the owner of the certificate.
For more information about SSL, X509, encryption, or public-key cryptography, perform an Internet search for the keywords in which you are interested.
6.3.9.2. Configuring MySQL for SSL
To use SSL connections between the MySQL server and client programs, your system must support either OpenSSL or yaSSL, and your version of MySQL must be built with SSL support. To make it easier to use secure connections, MySQL is bundled with yaSSL, which uses the same licensing model as MySQL. (OpenSSL uses an Apache-style license.) yaSSL support is available on all MySQL platforms supported by Oracle Corporation.
To get secure connections to work with MySQL and SSL, you must do the following:
If you are not using a binary (precompiled) version of MySQL that has been built with SSL support, and you are going to use OpenSSL rather than the bundled yaSSL library, install OpenSSL if it has not already been installed. We have tested MySQL with OpenSSL 1.0.0. To obtain OpenSSL, visit http://www.openssl.org.
Building MySQL using OpenSSL requires a shared OpenSSL library, otherwise linker errors occur. Alternatively, build MySQL using yaSSL.
If you are not using a binary (precompiled) version of MySQL that has been built with SSL support, configure a MySQL source distribution to use SSL. When you configure MySQL, invoke CMake like this:
shell> cmake . -DWITH_SSL=bundled
That command configures the distribution to use the bundled yaSSL library. To use the system SSL library instead, specify the option like this instead:
shell> cmake . -DWITH_SSL=system
See Section 2.9.4, “MySQL Source-Configuration Options”.
Then compile and install the distribution.
On Unix platforms, yaSSL retrieves true random numbers from either either /dev/urandom or /dev/random. Bug#13164 lists workarounds for some very old platforms which do not support these devices.
To check whether a mysqld server supports SSL, examine the value of the have_ssl system variable:
mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+
If the value is YES, the server supports SSL connections. If the value is DISABLED, the server is capable of supporting SSL connections but was not started with the appropriate --ssl-xxx options to enable them to be used; see Section 6.3.9.3, “Using SSL Connections”.
6.3.9.3. Using SSL Connections
To enable SSL connections, your MySQL distribution must be built with SSL support, as described in Section 6.3.9.2, “Configuring MySQL for SSL”. In addition, the proper SSL-related options must be used to specify the appropriate certificate and key files. For a complete list of SSL options, see Section 6.3.9.4, “SSL Command Options”.
To start the MySQL server so that it permits clients to connect using SSL, use the options that identify the certificate and key files the server uses when establishing a secure connection:
--ssl-ca identifies the Certificate Authority (CA) certificate.
--ssl-cert identifies the server public key certificate. This can be sent to the client and authenticated against the CA certificate that it has.
--ssl-key identifies the server private key.
For example, start the server like this:
shell> mysqld --ssl-ca=ca-cert.pem \
--ssl-cert=server-cert.pem \
--ssl-key=server-key.pem
Each option names a file in PEM format. For instructions on generating the required SSL certificate and key files, see Section 6.3.9.5, “Setting Up SSL Certificates and Keys for MySQL”. If you have a MySQL source distribution, you can also test your setup using the demonstration certificate and key files in the mysql-test/std_data directory of the distribution.
Similar options are used on the client side, although in this case, --ssl-cert and --ssl-key identify the client public and private key. Note that the Certificate Authority certificate, if specified, must be the same as used by the server.
To establish a secure connection to a MySQL server with SSL support, the options that a client must specify depend on the SSL requirements of the MySQL account used by the client. (See the discussion of the REQUIRE clause in Section 13.7.1.4, “GRANT Syntax”.)
Suppose that you want to connect using an account that has no special SSL requirements or was created using a GRANT statement that includes the REQUIRE SSL option. As a recommended set of SSL options, start the server with at least --ssl-cert and --ssl-key, and invoke the client with --ssl-ca. A client can connect securely like this:
shell> mysql --ssl-ca=ca-cert.pem
To require that a client certificate also be specified, create the account using the REQUIRE X509 option. Then the client must also specify the proper client key and certificate files or the server will reject the connection:
shell> mysql --ssl-ca=ca-cert.pem \
--ssl-cert=client-cert.pem \
--ssl-key=client-key.pem
A client can determine whether the current connection with the server uses SSL by checking the value of the Ssl_cipher status variable. The value of Ssl_cipher is nonempty if SSL is used, and empty otherwise. For example:
mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+
For the mysql client, an alternative is to use the STATUS or \s command and check the SSL line:
mysql> \s
...
SSL: Not in use
...
Or:
mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES256-SHA
...
The C API enables application programs to use SSL:
To establish a secure connection, program, use the mysql_ssl_set() C API function to set the appropriate certificate options before calling mysql_real_connect(). See Section 21.8.6.68, “mysql_ssl_set()”.
To determine whether SSL is in use after the connection is established, use mysql_get_ssl_cipher(). A non-NULL return value indicates a secure connection and names the SSL cipher used for encryption. A NULL return value indicates that SSL is not being used. See Section 21.8.6.33, “mysql_get_ssl_cipher()”.
Replication uses the C API, so secure connections can be used between master and slave servers. See Section 16.3.7, “Setting Up Replication Using SSL”.
6.3.9.4. SSL Command Options
This section describes options that are used to specify whether to use SSL and the names of SSL certificate and key files. These options can be given on the command line or in an option file. They are not available unless MySQL has been built with SSL support. See Section 6.3.9.2, “Configuring MySQL for SSL”.
Table 6.16. SSL Option/Variable Summary
Name | Cmd-Line | Option file | System Var | Status Var | Var Scope | Dynamic |
---|---|---|---|---|---|---|
have_openssl | Yes | Global | No | |||
have_ssl | Yes | Global | No | |||
skip-ssl | Yes | Yes | ||||
ssl | Yes | Yes | ||||
ssl-ca | Yes | Yes | Global | No | ||
- Variable: ssl_ca | Yes | Global | No | |||
ssl-capath | Yes | Yes | Global | No | ||
- Variable: ssl_capath | Yes | Global | No | |||
ssl-cert | Yes | Yes | Global | No | ||
- Variable: ssl_cert | Yes | Global | No | |||
ssl-cipher | Yes | Yes | Global | No | ||
- Variable: ssl_cipher | Yes | Global | No | |||
ssl-crl | Yes | Yes | Global | No | ||
- Variable: ssl_crl | Yes | Global | No | |||
ssl-crlpath | Yes | Yes | Global | No | ||
- Variable: ssl_crlpath | Yes | Global | No | |||
ssl-key | Yes | Yes | Global | No | ||
- Variable: ssl_key | Yes | Global | No | |||
ssl-verify-server-cert | Yes | Yes |
For the server, this option specifies that the server permits SSL connections. For a client program, it permits the client to connect to the server using SSL, but this option is not sufficient in itself to cause an SSL connection to be used. As a recommended set of options to enable SSL connections, use at least --ssl-cert and --ssl-key on the server side and --ssl-ca on the client side.
--ssl is implied by other --ssl-xxx options as indicated in the descriptions for those options. For this reason, --ssl is not usually specified explicitly. It is more often used explicitly in its opposite form to override other SSL options and indicate that SSL should not be used. To do this, specify the option as --skip-ssl or --ssl=0. For example, you might have SSL options specified in the [client] group of your option file to use SSL connections by default when you invoke MySQL client programs. To use an unencrypted connection instead, invoke the client program with --skip-ssl on the command line to override the options in the option file.
Use of --ssl does not require an SSL connection to be used, it only permits it. For example, if you specify this option for a client program but the server has not been configured to permit SSL connections, an unencrypted connection is used.
The secure way to require use of an SSL connection is to create a MySQL account that includes at least a REQUIRE SSL clause in the GRANT statement. In this case, connections for that account will be rejected unless MySQL supports SSL connections and the server and client have been started with the proper SSL options.
The REQUIRE clause permits other SSL-related restrictions as well. These can be used for stricter requirements than REQUIRE SSL. The description of REQUIRE in Section 13.7.1.4, “GRANT Syntax”, provides additional detail about which SSL command options may or must be specified by clients that connect using accounts that are created using the various REQUIRE options.
The path to a file in PEM format that contains a list of trusted SSL certificate authorities. This option implies --ssl.
If you use SSL when establishing a client connection, you can tell the client not to authenticate the server certificate by specifying neither --ssl-ca nor --ssl-capath. The server still verifies the client according to any applicable requirements established using GRANT statements for the client, and it still uses any --ssl-ca/--ssl-capath values that were passed to server at startup.
The path to a directory that contains trusted SSL certificate authority certificates in PEM format. This option implies --ssl.
If you use SSL when establishing a client connection, you can tell the client not to authenticate the server certificate by specifying neither --ssl-ca nor --ssl-capath. The server still verifies the client according to any applicable requirements established using GRANT statements for the client, and it still uses any --ssl-ca/--ssl-capath values that were passed to server at startup.
MySQL distributions built with OpenSSL support the --ssl-capath option. Distributions built with yaSSL do not because yaSSL does not look in any directory and does not follow a chained certificate tree. yaSSL requires that all components of the CA certificate tree be contained within a single CA certificate tree and that each certificate in the file has a unique SubjectName value. To work around this yaSSL limitation, concatenate the individual certificate files comprising the certificate tree into a new file. Then specify the new file as the value of the --ssl-capath option.
The name of the SSL certificate file in PEM format to use for establishing a secure connection. This option implies --ssl.
A list of permissible ciphers to use for SSL encryption. If no cipher in the list is supported, SSL connections will not work. This option implies --ssl.
For greatest portability, cipher_list should be a list of one or more cipher names, separated by colons. This format is understood both by OpenSSL and yaSSL. Examples:
--ssl-cipher=AES128-SHA
--ssl-cipher=DHE-RSA-AES256-SHA:AES128-SHA
OpenSSL supports a more flexible syntax for specifying ciphers, as described in the OpenSSL documentation at http://www.openssl.org/docs/apps/ciphers.html. However, yaSSL does not, so attempts to use that extended syntax fails for a MySQL distribution built with yaSSL.
The path to a file containing certificate revocation lists in PEM format. This option implies --ssl. If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA path contains certificate revocation lists.
MySQL distributions built with OpenSSL support the --ssl-crl option. Distributions built with yaSSL do not because yaSSL revocation lists do not work with yaSSL.
This option was added in MySQL 5.6.3.
The path to a directory that contains files containing certificate revocation lists in PEM format. This option implies --ssl. If neither --ssl-crl nor --ssl-crlpath is given, no CRL checks are performed, even if the CA path contains certificate revocation lists.
MySQL distributions built with OpenSSL support the --ssl-crlpath option. Distributions built with yaSSL do not because yaSSL revocation lists do not work with yaSSL.
This option was added in MySQL 5.6.3.
The name of the SSL key file in PEM format to use for establishing a secure connection.
If the MySQL distribution was built using OpenSSL or (as of MySQL 5.6.3) yaSSL and the key file is protected by a passphrase, the program will prompt the user for the passphrase. The password must be given interactively; it cannot be stored in a file. If the passphrase is incorrect, the program continues as if it could not read the key. Before MySQL 5.6.3, if the MySQL distribution was built using yaSSL and the key file is protected by a passphrase, an error occurs.
This option is available for client programs only, not the server. It causes the client to check the server's Common Name value in the certificate that the server sends to the client. The client verifies that name against the host name the client uses for connecting to the server, and the connection fails if there is a mismatch. This feature can be used to prevent man-in-the-middle attacks. Verification is disabled by default.
6.3.9.5. Setting Up SSL Certificates and Keys for MySQL
This section demonstrates how to set up SSL certificate and key files for use by MySQL servers and clients. The first example shows a simplified procedure such as you might use from the command line. The second shows a script that contains more detail. The first two examples are intended for use on Unix and both use the openssl command that is part of OpenSSL. The third example describes how to set up SSL files on Windows.
Example 1: Creating SSL Files from the Command Line on Unix
The following example shows a set of commands to create MySQL server and client certificate and key files. You will need to respond to several prompts by the openssl commands. To generate test files, you can press Enter to all prompts. To generate files for production use, you should provide nonempty responses.
Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts
Create CA certificate
shell> openssl genrsa 2048 > ca-key.pem
shell> openssl req -new -x509 -nodes -days 3600 \
-key ca-key.pem -out ca-cert.pem
Create server certificate, remove passphrase, and sign it
server-cert.pem = public key, server-key.pem = private key
shell> openssl req -newkey rsa:2048 -days 3600 \
-nodes -keyout server-key.pem -out server-req.pem
shell> openssl rsa -in server-key.pem -out server-key.pem
shell> openssl x509 -req -in server-req.pem -days 3600 \
-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem
Create client certificate, remove passphrase, and sign it
client-cert.pem = public key, client-key.pem = private key
shell> openssl req -newkey rsa:2048 -days 3600 \
-nodes -keyout client-key.pem -out client-req.pem
shell> openssl rsa -in client-key.pem -out client-key.pem
shell> openssl x509 -req -in client-req.pem -days 3600 \
-CA ca-cert.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem
After generating the certificates, verify them:
shell> openssl verify -CAfile ca-cert.pem server-cert.pem client-cert.pem
server-cert.pem: OK
client-cert.pem: OK
Now you have a set of files that can be used as follows:
ca-cert.pem: Use this as the argument to --ssl-ca on the server and client sides. (The CA certificate, if used, must be the same on both sides.)
server-cert.pem, server-key.pem: Use these as the arguments to --ssl-cert and --ssl-key on the server side.
client-cert.pem, client-key.pem: Use these as the arguments to --ssl-cert and --ssl-key on the client side.
To use the files to test SSL connections, see Section 6.3.9.3, “Using SSL Connections”.
Example 2: Creating SSL Files Using a Script on Unix
Here is an example script that shows how to set up SSL certificate and key files for MySQL. After executing the script, use the files to test SSL connections as described in Section 6.3.9.3, “Using SSL Connections”.
DIR=`pwd`/openssl
PRIV=$DIR/private
mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf
Create necessary files: $database, $serial and $new_certs_dir
directory (optional)
touch $DIR/index.txt
echo "01" > $DIR/serial
#
Generation of Certificate Authority(CA)
#
openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/ca-cert.pem \
-days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/monty/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:
#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \
$DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++
writing new private key to '/home/monty/openssl/server-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
#
Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem
#
Sign server cert
#
openssl ca -cert $DIR/ca-cert.pem -policy policy_anything \
-out $DIR/server-cert.pem -config $DIR/openssl.cnf \
-infiles $DIR/server-req.pem
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \
$DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to '/home/monty/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
#
Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem
#
Sign client cert
#
openssl ca -cert $DIR/ca-cert.pem -policy policy_anything \
-out $DIR/client-cert.pem -config $DIR/openssl.cnf \
-infiles $DIR/client-req.pem
Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'
Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
#
Create a my.cnf file that you can use to test the certificates
#
cat <<EOF > $DIR/my.cnf
[client]
ssl-ca=$DIR/ca-cert.pem
ssl-cert=$DIR/client-cert.pem
ssl-key=$DIR/client-key.pem
[mysqld]
ssl-ca=$DIR/ca-cert.pem
ssl-cert=$DIR/server-cert.pem
ssl-key=$DIR/server-key.pem
EOF
Example 3: Creating SSL Files on Windows
Download OpenSSL for Windows if it is not installed on your system. An overview of available packages can be seen here:
http://www.slproweb.com/products/Win32OpenSSL.html
Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture (32-bit or 64-bit). The default installation location will be C:\OpenSSL-Win32 or C:\OpenSSL-Win64, depending on which package you downloaded. The following instructions assume a default location of C:\OpenSSL-Win32. Modify this as necessary if you are using the 64-bit package.
If a message occurs during setup indicating '...critical component is missing: Microsoft Visual C++ 2008 Redistributables', cancel the setup and download one of the following packages as well, again depending on your architecture (32-bit or 64-bit):
Visual C++ 2008 Redistributables (x86), available at:
http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
Visual C++ 2008 Redistributables (x64), available at:
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6
After installing the additional package, restart the OpenSSL setup procedure.
During installation, leave the default C:\OpenSSL-Win32 as the install path, and also leave the default option 'Copy OpenSSL DLL files to the Windows system directory' selected.
When the installation has finished, add C:\OpenSSL-Win32\bin to the Windows System Path variable of your server:
On the Windows desktop, right-click the My Computer icon, and select Properties.
Select the Advanced tab from the System Properties menu that appears, and click the Environment Variables button.
Under System Variables, select Path, then click the Edit button. The Edit System Variable dialogue should appear.
Add ';C:\OpenSSL-Win32\bin' to the end (notice the semicolon).
Press OK 3 times.
Check that OpenSSL was correctly integrated into the Path variable by opening a new command console (Start>Run>cmd.exe) and verifying that OpenSSL is available:
Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.
C:\Windows\system32>cd \
C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.
C:\>
Depending on your version of Windows, the preceding path-setting instructions might differ slightly.
After OpenSSL has been installed, use instructions similar to those from from Example 1 (shown earlier in this section), with the following changes:
Change the following Unix commands:
Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts
On Windows, use these commands instead:
Create clean environment
shell> md c:\newcerts
shell> cd c:\newcerts
When a '\' character is shown at the end of a command line, this '\' character must be removed and the command lines entered all on a single line.
After generating the certificate and key files, to use them to test SSL connections, see Section 6.3.9.3, “Using SSL Connections”.
6.3.10. Connecting to MySQL Remotely from Windows with SSH
This section describes how to get a secure connection to a remote MySQL server with SSH. The information was provided by David Carlson <dcarlson@mplcomm.com>.
Install an SSH client on your Windows machine. As a user, the best nonfree one I have found is from SecureCRT from http://www.vandyke.com/. Another option is f-secure from http://www.f-secure.com/. You can also find some free ones on Google at http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/.
Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set userid=your_userid to log in to your server. This userid value might not be the same as the user name of your MySQL account.
Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host: yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set port: 3306, host: localhost, remote port: 3306).
Save everything, otherwise you will have to redo it the next time.
Log in to your server with the SSH session you just created.
On your Windows machine, start some ODBC application (such as Access).
Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally do, except type in localhost for the MySQL host server, not yourmysqlservername.
At this point, you should have an ODBC connection to MySQL, encrypted using SSH.
6.3.11. MySQL Enterprise Audit Log Plugin
Note
MySQL Enterprise Audit is a commercial extension. To learn more about commercial products (MySQL Enterprise Edition), see http://www.mysql.com/products/.
As of MySQL 5.6.10, MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin named audit_log. MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based monitoring and logging of connection and query activity executed on specific MySQL servers. Designed to meet the Oracle audit specification, MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance solution for applications that are governed by both internal and external regulatory guidelines.
When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record of server activity. The log contents include when clients connect and disconnect, and what actions they perform while connected, such as which databases and tables they access.
After you install the plugin (see Section 6.3.11.1, “Installing the Audit Log Plugin”), it writes an audit log file. By default, the file is named audit.log in the server data directory. To change the name of the file, set the audit_log_file system variable at server startup.
The audit log file is written in XML format, with auditable events encoded as <AUDIT_RECORD> elements. For details on file format and contents, see Section 6.3.11.2, “The Audit Log File”.
To control what information audit_log writes to its log file, set the audit_log_policy system variable. By default, this variable is set to ALL (write all auditable events), but also permits values of LOGINS or QUERIES to log only login or query events, or NONE to disable logging.
For more information about controlling how logging occurs, see Section 6.3.11.3, “Audit Log Plugin Logging Control”. For descriptions of the parameters used to configure the audit log plugin, see Section 6.3.11.4, “Audit Log Plugin Options and Variables”.
The Performance Schema (see Chapter 20, MySQL Performance Schema) has instrumentation for the audit log plugin. To identify the relevant instruments, use this query:
SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE '%/alog/%';
6.3.11.1. Installing the Audit Log Plugin
The audit log plugin is named audit_log. To be usable by the server, the plugin library object file must be located in the MySQL plugin directory (the directory named by the plugin_dir system variable). If necessary, set the value of plugin_dir at server startup to tell the server the location of the plugin directory.
To load the plugin at server startup, use the --plugin-load option to name the object file that contains the plugin. With this plugin-loading method, the option must be given each time the server starts. For example, put the following lines in your my.cnf file:
[mysqld]
plugin-load=audit_log.so
If object files have a suffix different from .so on your system, substitute the correct suffix (for example, .dll on Windows).
Alternatively, to register the plugin at runtime, use this statement (changing the suffix as necessary):
mysql> INSTALL PLUGIN audit_log SONAME 'audit_log.so';
INSTALL PLUGIN loads the plugin, and also registers it in the mysql.plugins table to cause the plugin to be loaded for each subsequent normal server startup.
If the plugin is loaded with --plugin-load or has been previously registered with INSTALL PLUGIN, you can use the --audit-log option at server startup to control plugin activation. For example, to load the plugin and prevent it from being removed at runtime, use these options:
[mysqld]
plugin-load=audit_log.so
audit-log=FORCE_PLUS_PERMANENT
If it is desired to prevent the server from running without the audit plugin, use --audit-log with a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not initialize successfully.
For general information about installing plugins, see Section 5.1.8, “Server Plugins”. To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.
For security reasons, the audit log file produced by audit_log should be written to a directory accessible only to the MySQL server and users with a legitimate reason to view the log. The default file is audit.log in the data directory. This can be changed by setting the audit_log_file system variable at server startup.
For additional information about the parameters used to configure operation of the audit_log plugin, see Section 6.3.11.4, “Audit Log Plugin Options and Variables”.
6.3.11.2. The Audit Log File
The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The contents are not encrypted. The root element is <AUDIT>. The closing </AUDIT> tag of the root element is written when the plugin terminates, so the tag is not present in the file while the audit log plugin is active.
The root element contains <AUDIT_RECORD> elements. Each <AUDIT_RECORD> element has an empty body; all audit record fields are represented by element attributes.
Here is a sample log file, reformatted for readability:
<?xml version="1.0" encoding="UTF-8"?>
<AUDIT>
<AUDIT_RECORD
TIMESTAMP="2012-08-02T14:52:12"
NAME="Audit"
SERVER_ID="1"
VERSION="1"
STARTUP_OPTIONS="--port=3306"
OS_VERSION="i686-Linux"
MYSQL_VERSION="5.6.10-debug-log"/>
<AUDIT_RECORD
TIMESTAMP="2012-08-02T14:52:41"
NAME="Connect"
CONNECTION_ID="1"
STATUS="0"
USER="root"
PRIV_USER="root"
OS_LOGIN=""
PROXY_USER=""
HOST="localhost"
IP="127.0.0.1"
DB=""/>
<AUDIT_RECORD
TIMESTAMP="2012-08-02T14:53:45"
NAME="Query"
CONNECTION_ID="1"
STATUS="0"
SQLTEXT="INSERT INTO t1 () VALUES()"/>
<AUDIT_RECORD
TIMESTAMP="2012-08-02T14:53:51"
NAME="Quit"
CONNECTION_ID="1"
STATUS="0"/>
<AUDIT_RECORD
TIMESTAMP="2012-08-06T14:21:03"
NAME="NoAudit"
SERVER_ID="1"/>
</AUDIT>
Attributes of <AUDIT_RECORD> elements have these characteristics:
Some attributes appear in every element, but most are optional and do not necessarily appear in every element.
Order of attributes within an element is not guaranteed.
Attribute values are not fixed length. Long values may be truncated as indicated in the attribute descriptions given later.
The <, >, ", and & characters are encoded as <, >, ", and &, respectively. Null bytes (U+00) are encoded as the ? character.
Characters not valid as XML characters are encoded using numeric character references. Valid XML characters are:
#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]
Every <AUDIT_RECORD> element contains a set of mandatory attributes. Other optional attributes may appear depending on the audit record type.
The following attributes are mandatory in every <AUDIT_RECORD> element:
NAME
A string representing the type of instruction that generated the audit event, such as a command that the server received from a client.
Example: NAME="Query"
Some common NAME values:
"Audit" When auditing starts, which may be server startup time
"Connect" When a client connects, also known as logging in
"Query" An SQL statement (executed directly)
"Prepare" Preparation of an SQL statement; usually followed by Execute
"Execute" Execution of an SQL statement; usually follows Prepare
"Shutdown" Server shutdown
"Quit" When a client disconnects
"NoAudit" Auditing has been turned off
The possible values are "Audit", "Binlog Dump", "Change user", "Close stmt", "Connect Out", "Connect", "Create DB", "Daemon", "Debug", "Delayed insert", "Drop DB", "Execute", "Fetch", "Field List", "Init DB", "Kill", "Long Data", "NoAudit", "Ping", "Prepare", "Processlist", "Query", "Quit", "Refresh", "Register Slave", "Reset stmt", "Set option", "Shutdown", "Sleep", "Statistics", "Table Dump", "Time".
With the exception of "Audit" and "NoAudit", these values correspond to the COM_xxx command values listed in the mysql_com.h header file. For example, "Create DB" and "Shutdown" correspond to COM_CREATE_DB and COM_SHUTDOWN, respectively.
TIMESTAMP
The date and time that the audit event was generated. For example, the event corresponding to execution of an SQL statement received from a client has a TIMESTAMP value occurring after the statement finishes, not when it is received. The value is UTC, in the format yyyy-mm-ddThh:mm:ss (with T, no decimals).
Example: TIMESTAMP="2012-08-09T12:55:16"
The following attributes are optional in <AUDIT_RECORD> elements. Many of them occur only for elements with specific values of the NAME attribute.
CONNECTION_ID
An unsigned integer representing the client connection identifier. This is the same as the CONNECTION_ID() function value within the session.
Example: CONNECTION_ID="1"
DB
A string representing the default database name. This attribute appears only if the NAME value is "Connect" or "Change user".
HOST
A string representing the client host name. This attribute appears only if the NAME value is "Connect" or "Change user".
Example: HOST="localhost"
IP
A string representing the client IP address. This attribute appears only if the NAME value is "Connect" or "Change user".
Example: IP="127.0.0.1"
MYSQL_VERSION
A string representing the MySQL server version. This is the same as the value of the VERSION() function or version system variable. This attribute appears only if the NAME value is "Audit".
Example: MYSQL_VERSION="5.6.10-debug-log"
OS_LOGIN
A string representing the external user (empty if none). The value may differ from USER, for example, if the server authenticates the client using an external authentication method. This attribute appears only if the NAME value is "Connect" or "Change user".
OS_VERSION
A string representing the operating system on which the server was built or is running. This attribute appears only if the NAME value is "Audit".
Example: OS_VERSION="x86_64-Linux"
PRIV_USER
A string representing the user that the server authenticated the client as. This is the user name that the server uses for privilege checking, and may be different from the USER value. This attribute appears only if the NAME value is "Connect" or "Change user".
PROXY_USER
A string representing the proxy user. The value is empty if user proxying is not in effect. This attribute appears only if the NAME value is "Connect" or "Change user".
SERVER_ID
An unsigned integer representing the server ID. This is the same as the value of the server_id system variable. This attribute appears only if the NAME value is "Audit" or "NoAudit".
Example: SERVER_ID="1"
SQLTEXT
A string representing the text of an SQL statement. The value can be empty. Long values may be truncated. This attribute appears only if the NAME value is "Query" or "Execute".
The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so the value may be the result of conversion. For example, the original statement might have been received from the client as an SJIS string.
Example: SQLTEXT="DELETE FROM t1"
STARTUP_OPTIONS
A string representing the options that were given on the command line or in option files when the MySQL server was started. This attribute appears only if the NAME value is "Audit".
Example: STARTUP_OPTIONS="--port=3306 --log-output=FILE"
STATUS
An unsigned integer representing the command status. The value is zero for success, nonzero if an error occurred. This is the same as the value of the mysql_errno() C API function.
The audit log does not contain the SQLSTATE value or error message. To see the associations between error codes, SQLSTATE values, and messages, see Section C.3, “Server Error Codes and Messages”.
Warnings are not logged.
Example: STATUS="1051"
USER
A string representing the user name sent by the client. This may be different from the PRIV_USER value. This attribute appears only if the NAME value is "Connect" or "Change user".
VERSION
An unsigned integer representing the version of the audit log file format. This attribute appears only if the NAME value is "Audit".
Example: VERSION="1"
6.3.11.3. Audit Log Plugin Logging Control
This section describes how the audit_log plugin performs logging and the system variables that control how logging occurs. It assumes familiarity with the log file format described in Section 6.3.11.2, “The Audit Log File”.
When the audit log plugin opens its log file, it checks whether the XML declaration and opening <AUDIT> root element tag need to be written and writes them if so. When the audit log plugin terminates, it writes a closing </AUDIT> tag to the file.
If the log file exists at open time, the plugin checks whether the file ends with an </AUDIT> tag and truncates it if so before writing any <AUDIT_RECORD> elements. If the log file exists but does not end with </AUDIT> or the </AUDIT> tag cannot be truncated, the plugin considers the file malformed and fails to initialize. This can occur if the server crashes or is killed with the audit log plugin running. No logging occurs until the problem is rectified. Check the error log for diagnostic information:
[ERROR] Plugin 'audit_log' init function returned error.
To deal with this problem, you must either remove or rename the malformed log file and restart the server.
The MySQL server calls the audit log plugin to write an <AUDIT_RECORD> element whenever an auditable event occurs, such as when it completes execution of an SQL statement received from a client. Typically the first <AUDIT_RECORD> element written after server startup has the server description and startup options. Elements following that one represent events such as client connect and disconnect events, executed SQL statements, and so forth. Only top-level statements are logged, not statements within stored programs such as triggers or stored procedures. Contents of files referenced by statements such as LOAD DATA INFILE are not logged.
To permit control over how logging occurs, the audit_log plugin provides several system variables, described following. For more information, see Section 6.3.11.4, “Audit Log Plugin Options and Variables”.
audit_log_file: The name of the log file. By default, the name is audit.log in the server data directory. For security reasons, the audit log file should be written to a directory accessible only to the MySQL server and users with a legitimate reason to view the log.
audit_log_policy: What kinds of information the plugin writes. By default, this variable is set to ALL (write all auditable events), but also permits values of LOGINS or QUERIES to log only login or query events, or NONE to disable logging.
audit_log_strategy: The method used for log writes. By default, the strategy value is ASYNCHRONOUS and the plugin logs asynchronously to a buffer, waiting if the buffer is full. It's possible to tell the plugin not to wait (PERFORMANCE) or to log synchronously, either using file system caching (SEMISYNCHRONOUS) or forcing output with a sync() call after each write request (SYNCHRONOUS).
Asynchronous logging strategy has these characteristics:
Minimal impact on server performance and scalability.
Blocking of threads that generate audit events for the shortest possible time; that is, time to allocate the buffer plus time to copy the event to the buffer.
Output goes to the buffer. Writes from the buffer to the log file are handled by a separate thread.
A disadvantage of PERFORMANCE strategy is that it drops events when the buffer is full. For a heavily loaded server, it is more likely that the audit log will be missing events.
With asynchronous logging, the integrity of the log file may be compromised if a problem occurs during a write to the file or if the plugin does not shut down cleanly (for example, in the event that the server host crashes). To reduce this risk, set audit_log_strategy use synchronous logging. Regardless of strategy, logging occurs on a best-effort basis, with no guarantee of consistency.
audit_log_buffer_size: The size of the buffer for asynchronous logging. The plugin uses a single buffer, which it allocates when it initializes and removes when it terminates. The plugin allocates this buffer only if logging is asynchronous.
audit_log_rotate_on_size, audit_log_flush: These variables permit audit log file rotation and flushing. The audit log file has the potential to grow very large and consume a lot of disk space. To manage the space used, either enable automatic log rotation, or manually rename the audit file and flush the log to open a new file. The renamed file can be removed or backed up as desired.
By default, audit_log_rotate_on_size=0 and there is no log rotation. In this case, the audit log plugin closes and reopens the log file when the audit_log_flush value changes from disabled to enabled. Log file renaming must be done externally to the server. Suppose that you want to maintain the three most recent log files, which cycle through the names audit.log.1 through audit.log.3. On Unix, perform rotation manually like this:
From the command line, rename the current log files:
shell> mv audit.log.2 audit.log.3
shell> mv audit.log.1 audit.log.2
shell> mv audit.log audit.log.1
At this point, the plugin is still writing to the current log file, which has been renamed to audit.log.1.
Connect to the server and flush the log file so the plugin closes it and reopens a new audit.log file:
mysql> SET GLOBAL audit_log_flush = ON;
If audit_log_rotate_on_size is greater than 0, setting audit_log_flush has no effect. In this case, the audit log plugin closes and reopens its log file whenever a write to the file causes its size to exceed the audit_log_rotate_on_size value. The plugin renames the original file to have a timestamp extension. For example, audit.log might be renamed to audit.log.13440033615657730. The last 7 digits are a fractional second part. The first 10 digits are a Unix timestamp value that can be interpreted using the FROM_UNIXTIME() function:
mysql> SELECT FROM_UNIXTIME(1344003361);
+---------------------------+
| FROM_UNIXTIME(1344003361) |
+---------------------------+
| 2012-08-03 09:16:01 |
+---------------------------+
6.3.11.4. Audit Log Plugin Options and Variables
This section describes the command options and system variables that control operation of the audit log plugin. If values specified at startup time are incorrect, the plugin may fail to initialize properly and the server does not load it. In this case, the server may also produce error messages for other audit log settings because it will not recognize them.
To control the activation of the audit_log plugin, use this option:
Version Introduced | 5.6.10 | ||
Command-Line Format | --audit-log[=value] | ||
Option-File Format | audit-log[=value] | ||
Permitted Values | |||
Type | enumeration | ||
Default | ON | ||
Valid Values | ON OFF FORCE FORCE_PLUS_PERMANENT |
This option controls how the server loads the audit_log plugin at startup. It is available only if the audit log plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load. See Section 6.3.11.1, “Installing the Audit Log Plugin”.
The option value should be one of those available for plugin-loading options, as described in Section 5.1.8.1, “Installing and Uninstalling Plugins”. For example, --audit-log=FORCE_PLUS_PERMANENT tells the server to load the plugin and prevent it from being removed while the server is running.
This option was added in MySQL 5.6.10.
If the audit_log plugin is installed, it exposes several system variables that permit control over logging:
mysql> SHOW VARIABLES LIKE 'audit_log%';
+--------------------------+--------------+
| Variable_name | Value |
+--------------------------+--------------+
| audit_log_buffer_size | 1048576 |
| audit_log_file | audit.log |
| audit_log_flush | OFF |
| audit_log_policy | ALL |
| audit_log_rotate_on_size | 0 |
| audit_log_strategy | ASYNCHRONOUS |
+--------------------------+--------------+
You can set any of these variables at server startup, and some of them at runtime.
Version Introduced | 5.6.10 | ||
Variable Name | audit_log_buffer_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 1048576 | ||
Range | 4096 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1048576 | ||
Range | 4096 .. 18446744073709547520 |
When the audit log plugin writes events to the log asynchronously, it uses a buffer to store event contents prior to writing them. This variable controls the size of that buffer, in bytes. The server adjusts the value to a multiple of 4096. The plugin uses a single buffer, which it allocates when it initializes and removes when it terminates. The plugin allocates this buffer only if logging is asynchronous.
This variable was added in MySQL 5.6.10. It is available only if the audit_log plugin is enabled.
Version Introduced | 5.6.10 | ||
Variable Name | audit_log_file | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string | ||
Default | audit.log |
The name of the file to which the audit log plugin writes events. The default value is audit.log. If the file name is a relative path, the server interprets it relative to the data directory. For security reasons, the audit log file should be written to a directory accessible only to the MySQL server and users with a legitimate reason to view the log.
This variable was added in MySQL 5.6.10. It is available only if the audit_log plugin is enabled.
Version Introduced | 5.6.10 | ||
Variable Name | audit_log_flush | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
When this variable is set to enabled (1 or ON), the audit log plugin closes and reopens its log file to flush it. (The value remains OFF so that you need not disable it explicitly before enabling it again to perform another flush.) Enabling this variable has no effect unless audit_log_rotate_on_size is 0.
This variable was added in MySQL 5.6.10. It is available only if the audit_log plugin is enabled.
Version Introduced | 5.6.10 | ||
Variable Name | audit_log_policy | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | ALL | ||
Valid Values | ALL NONE LOGINS QUERIES |
The policy controlling the information written by the audit log plugin to its log file. The following table shows the permitted values.
Value | Description |
---|---|
ALL | Log all events |
NONE | Log nothing (disable the audit stream) |
LOGINS | Log only login events |
QUERIES | Log only query events |
This variable was added in MySQL 5.6.10. It is available only if the audit_log plugin is enabled.
Version Introduced | 5.6.10 | ||
Variable Name | audit_log_rotate_on_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 |
If the audit_log_rotate_on_size value is greater than 0, the audit log plugin closes and reopens its log file if a write to the file causes its size to exceed this value. The original file is renamed to have a timestamp extension.
If the audit_log_rotate_on_size value is 0, the plugin does not close and reopen its log based on size. Instead, use audit_log_flush to close and reopen the log on demand. In this case, rename the file externally to the server before flushing it.
For more information about audit log file rotation and timestamp interpretation, see Section 6.3.11.3, “Audit Log Plugin Logging Control”.
If you set this variable to a value that is not a multiple of 4096, it is truncated to the nearest multiple.
This variable was added in MySQL 5.6.10. It is available only if the audit_log plugin is enabled.
Version Introduced | 5.6.10 | ||
Variable Name | audit_log_strategy | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | enumeration | ||
Default | ASYNCHRONOUS | ||
Valid Values | ASYNCHRONOUS PERFORMANCE SEMISYNCHRONOUS SYNCHRONOUS |
The logging method used by the audit log plugin. The following table describes the permitted values.
Table 6.17. Audit Log Strategies
Value | Meaning |
---|---|
ASYNCHRONOUS | Log asynchronously, wait for space in output buffer |
PERFORMANCE | Log asynchronously, drop request if insufficient space in output buffer |
SEMISYNCHRONOUS | Log synchronously, permit caching by operating system |
SYNCHRONOUS | Log synchronously, call sync() after each request |
This variable was added in MySQL 5.6.10. It is available only if the audit_log plugin is enabled.
6.3.11.5. Audit Log Plugin Restrictions
The audit log plugin is subject to these restrictions:
Only top-level statements are logged, not statements within stored programs such as triggers or stored procedures.
Contents of files referenced by statements such as LOAD DATA INFILE are not logged.
6.3.12. SQL-Based MySQL Account Activity Auditing
Applications can use the following guidelines to perform SQL-based auditing that ties database activity to MySQL accounts.
MySQL accounts correspond to rows in the mysql.user table. When a client connects successfully, the server authenticates the client to a particular row in this table. The User and Host column values in this row uniquely identify the account and correspond to the 'user_name'@'host_name' format in which account names are written in SQL statements.
The account used to authenticate a client determines which privileges the client has. Normally, the CURRENT_USER() function can be invoked to determine which account this is for the client user. Its value is constructed from the User and Host columns of the user table row for the account.
However, there are circumstances under which the CURRENT_USER() value corresponds not to the client user but to a different account. This occurs in contexts when privilege checking is not based the client's account:
Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic
Views defined with the SQL SECURITY DEFINER characteristic
Triggers and events
In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER() refers to that account, not to the account for the client who invoked the stored routine or view or who caused the trigger to activate. To determine the invoking user, you can call the USER() function, which returns a value indicating the actual user name provided by the client and the host from which the client connected. However, this value does not necessarily correspond directly to an account in the user table, because the USER() value never contains wildcards, whereas account values (as returned by CURRENT_USER()) may contain user name and host name wildcards.
For example, a blank user name matches any user, so an account of ''@'localhost' enables clients to connect as an anonymous user from the local host with any user name. If this case, if a client connects as user1 from the local host, USER() and CURRENT_USER() return different values:
mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER() | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost |
+-----------------+----------------+
The host name part of an account can contain wildcards, too. If the host name contains a '%' or '_' pattern character or uses netmask notation, the account can be used for clients connecting from multiple hosts and the CURRENT_USER() value will not indicate which one. For example, the account 'user2'@'%.example.com' can be used by user2 to connect from any host in the example.com domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return different values:
mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+
| USER() | CURRENT_USER() |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+
If an application must invoke USER() for user auditing (for example, if it does auditing from within triggers) but must also be able to associate the USER() value with an account in the user table, it is necessary to avoid accounts that contain wildcards in the User or Host column. Specifically, do not permit User to be empty (which creates an anonymous-user account), and do not permit pattern characters or netmask notation in Host values. All accounts must have a nonempty User value and literal Host value.
With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com' accounts should be changed not to use wildcards:
RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';
If user2 must be able to connect from several hosts in the example.com domain, there should be a separate account for each host.
To extract the user name or host name part from a CURRENT_USER() or USER() value, use the SUBSTRING() function:
mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1 |
+---------------------------------------+
mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+--+
| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+--+
| localhost |
+--+
Chapter 7. Backup and Recovery
Table of Contents
7.1. Backup and Recovery Types
7.3. Example Backup and Recovery Strategy
7.3.1. Establishing a Backup Policy
7.3.2. Using Backups for Recovery
7.3.3. Backup Strategy Summary
7.4. Using mysqldump for Backups
7.4.1. Dumping Data in SQL Format with mysqldump
7.4.2. Reloading SQL-Format Backups
7.4.3. Dumping Data in Delimited-Text Format with mysqldump
7.4.4. Reloading Delimited-Text Format Backups
7.4.5. mysqldump Tips
7.5. Point-in-Time (Incremental) Recovery Using the Binary Log
7.5.1. Point-in-Time Recovery Using Event Times
7.5.2. Point-in-Time Recovery Using Event Positions
7.6. MyISAM Table Maintenance and Crash Recovery
7.6.1. Using myisamchk for Crash Recovery
7.6.2. How to Check MyISAM Tables for Errors
7.6.3. How to Repair MyISAM Tables
7.6.4. MyISAM Table Optimization
7.6.5. Setting Up a MyISAM Table Maintenance Schedule
It is important to back up your databases so that you can recover your data and be up and running again in case problems occur, such as system crashes, hardware failures, or users deleting data by mistake. Backups are also essential as a safeguard before upgrading a MySQL installation, and they can be used to transfer a MySQL installation to another system or to set up replication slave servers.
MySQL offers a variety of backup strategies from which you can choose the methods that best suit the requirements for your installation. This chapter discusses several backup and recovery topics with which you should be familiar:
Types of backups: Logical versus physical, full versus incremental, and so forth.
Methods for creating backups.
Recovery methods, including point-in-time recovery.
Backup scheduling, compression, and encryption.
Table maintenance, to enable recovery of corrupt tables.
Additional Resources
Resources related to backup or to maintaining data availability include the following:
Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product for backups. For an overview of the MySQL Enterprise Backup product, see Section 23.2, “MySQL Enterprise Backup”.
A forum dedicated to backup issues is available at http://forums.mysql.com/list.php?93.
Details for mysqldump, mysqlhotcopy, and other MySQL backup programs can be found in Chapter 4, MySQL Programs.
The syntax of the SQL statements described here is given in Chapter 13, SQL Statement Syntax.
For additional information about InnoDB backup procedures, see Section 14.2.2.4, “Backing Up and Recovering an InnoDB Database”.
Replication enables you to maintain identical data on multiple servers. This has several benefits, such as enabling client query load to be distributed over servers, availability of data even if a given server is taken offline or fails, and the ability to make backups with no impact on the master by using a slave server. See Chapter 16, Replication.
MySQL Cluster provides a high-availability, high-redundancy version of MySQL adapted for the distributed computing environment. See MySQL Cluster NDB 6.1 - 7.1, which provides information about MySQL Cluster NDB 7.0 and 7.1 (based on MySQL 5.1 but containing the latest improvements and fixes for the NDBCLUSTER storage engine).
Note
The NDBCLUSTER storage engine is currently not supported in MySQL 5.6.
Distributed Replicated Block Device (DRBD) is another high-availability solution. It works by replicating a block device from a primary server to a secondary server at the block level. See Chapter 15, High Availability and Scalability
7.1. Backup and Recovery Types
This section describes the characteristics of different types of backups.
Physical (Raw) Versus Logical Backups
Physical backups consist of raw copies of the directories and files that store database contents. This type of backup is suitable for large, important databases that need to be recovered quickly when problems occur.
Logical backups save information represented as logical database structure (CREATE DATABASE, CREATE TABLE statements) and content (INSERT statements or delimited-text files). This type of backup is suitable for smaller amounts of data where you might edit the data values or table structure, or recreate the data on a different machine architecture.
Physical backup methods have these characteristics:
The backup consists of exact copies of database directories and files. Typically this is a copy of all or part of the MySQL data directory.
Physical backup methods are faster than logical because they involve only file copying without conversion.
Output is more compact than for logical backup.
Because backup speed and compactness are important for busy, important databases, the MySQL Enterprise Backup product performs physical backups. For an overview of the MySQL Enterprise Backup product, see Section 23.2, “MySQL Enterprise Backup”.
Backup and restore granularity ranges from the level of the entire data directory down to the level of individual files. This may or may not provide for table-level granularity, depending on storage engine. For example, InnoDB tables can each be in a separate file, or share file storage with other InnoDB tables; each MyISAM table corresponds uniquely to a set of files.
In addition to databases, the backup can include any related files such as log or configuration files.
Data from MEMORY tables is tricky to back up this way because their contents are not stored on disk. (The MySQL Enterprise Backup product has a feature where you can retrieve data from MEMORY tables during a backup.)
Backups are portable only to other machines that have identical or similar hardware characteristics.
Backups can be performed while the MySQL server is not running. If the server is running, it is necessary to perform appropriate locking so that the server does not change database contents during the backup. MySQL Enterprise Backup does this locking automatically for tables that require it.
Physical backup tools include the mysqlbackup of MySQL Enterprise Backup for InnoDB or any other tables, file system-level commands (such as cp, scp, tar, rsync), or mysqlhotcopy for MyISAM tables.
For restore:
MySQL Enterprise Backup restores InnoDB and other tables that it backed up.
ndb_restore restores NDB tables.
Files copied at the file system level or with mysqlhotcopy can be copied back to their original locations with file system commands.
Logical backup methods have these characteristics:
The backup is done by querying the MySQL server to obtain database structure and content information.
Backup is slower than physical methods because the server must access database information and convert it to logical format. If the output is written on the client side, the server must also send it to the backup program.
Output is larger than for physical backup, particularly when saved in text format.
Backup and restore granularity is available at the server level (all databases), database level (all tables in a particular database), or table level. This is true regardless of storage engine.
The backup does not include log or configuration files, or other database-related files that are not part of databases.
Backups stored in logical format are machine independent and highly portable.
Logical backups are performed with the MySQL server running. The server is not taken offline.
Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE statement. These work for any storage engine, even MEMORY.
To restore logical backups, SQL-format dump files can be processed using the mysql client. To load delimited-text files, use the LOAD DATA INFILE statement or the mysqlimport client.
Online Versus Offline Backups
Online backups take place while the MySQL server is running so that the database information can be obtained from the server. Offline backups take place while the server is stopped. This distinction can also be described as “hot” versus “cold” backups; a “warm” backup is one where the server remains running but locked against modifying data while you access database files externally.
Online backup methods have these characteristics:
The backup is less intrusive to other clients, which can connect to the MySQL server during the backup and may be able to access data depending on what operations they need to perform.
Care must be taken to impose appropriate locking so that data modifications do not take place that would compromise backup integrity. The MySQL Enterprise Backup product does such locking automatically.
Offline backup methods have these characteristics:
Clients can be affected adversely because the server is unavailable during backup. For that reason, such backups are often taken from a replication slave server that can be taken offline without harming availability.
The backup procedure is simpler because there is no possibility of interference from client activity.
A similar distinction between online and offline applies for recovery operations, and similar characteristics apply. However, it is more likely that clients will be affected for online recovery than for online backup because recovery requires stronger locking. During backup, clients might be able to read data while it is being backed up. Recovery modifies data and does not just read it, so clients must be prevented from accessing data while it is being restored.
Local Versus Remote Backups
A local backup is performed on the same host where the MySQL server runs, whereas a remote backup is done from a different host. For some types of backups, the backup can be initiated from a remote host even if the output is written locally on the server. host.
mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT statements), local or remote dumps can be done and generate output on the client. For delimited-text output (with the --tab option), data files are created on the server host.
mysqlhotcopy performs only local backups: It connects to the server to lock it against data modifications and then copies local table files.
SELECT ... INTO OUTFILE can be initiated from a local or remote client host, but the output file is created on the server host.
Physical backup methods typically are initiated locally on the MySQL server host so that the server can be taken offline, although the destination for copied files might be remote.
Snapshot Backups
Some file system implementations enable “snapshots” to be taken. These provide logical copies of the file system at a given point in time, without requiring a physical copy of the entire file system. (For example, the implementation may use copy-on-write techniques so that only parts of the file system modified after the snapshot time need be copied.) MySQL itself does not provide the capability for taking file system snapshots. It is available through third-party solutions such as Veritas, LVM, or ZFS.
Full Versus Incremental Backups
A full backup includes all data managed by a MySQL server at a given point in time. An incremental backup consists of the changes made to the data during a given time span (from one point in time to another). MySQL has different ways to perform full backups, such as those described earlier in this section. Incremental backups are made possible by enabling the server's binary log, which the server uses to record data changes.
Full Versus Point-in-Time (Incremental) Recovery
A full recovery restores all data from a full backup. This restores the server instance to the state that it had when the backup was made. If that state is not sufficiently current, a full recovery can be followed by recovery of incremental backups made since the full backup, to bring the server to a more up-to-date state.
Incremental recovery is recovery of changes made during a given time span. This is also called point-in-time recovery because it makes a server's state current up to a given time. Point-in-time recovery is based on the binary log and typically follows a full recovery from the backup files that restores the server to its state when the backup was made. Then the data changes written in the binary log files are applied as incremental recovery to redo data modifications and bring the server up to the desired point in time.
Table Maintenance
Data integrity can be compromised if tables become corrupt. For InnoDB tables, this is not a typical issue. For programs to check MyISAM tables and repair them if problems are found, see Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.
Backup Scheduling, Compression, and Encryption
Backup scheduling is valuable for automating backup procedures. Compression of backup output reduces space requirements, and encryption of the output provides better security against unauthorized access of backed-up data. MySQL itself does not provide these capabilities. The MySQL Enterprise Backup product can compress InnoDB backups, and compression or encryption of backup output can be achieved using file system utilities. Other third-party solutions may be available.
7.2. Database Backup Methods
This section summarizes some general methods for making backups.
Making a Hot Backup with MySQL Enterprise Backup
Customers of MySQL Enterprise Edition can use the MySQL Enterprise Backup product to do physical backups of entire instances or selected databases, tables, or both. This product includes features for incremental and compressed backups. Backing up the physical database files makes restore much faster than logical techniques such as the mysqldump command. InnoDB tables are copied using a hot backup mechanism. (Ideally, the InnoDB tables should represent a substantial majority of the data.) Tables from other storage engines are copied using a warm backup mechanism. For an overview of the MySQL Enterprise Backup product, see Section 23.2, “MySQL Enterprise Backup”.
Making Backups with mysqldump or mysqlhotcopy
The mysqldump program and the mysqlhotcopy script can make backups. mysqldump is more general because it can back up all kinds of tables. mysqlhotcopy works only with some storage engines. (See Section 7.4, “Using mysqldump for Backups”, and Section 4.6.10, “mysqlhotcopy — A Database Backup Program”.)
For InnoDB tables, it is possible to perform an online backup that takes no locks on tables using the --single-transaction option to mysqldump. See Section 7.3.1, “Establishing a Backup Policy”.
Making Backups by Copying Table Files
For storage engines that represent each table using its own files, tables can be backed up by copying those files. For example, MyISAM tables are stored as files, so it is easy to do a backup by copying files (*.frm, *.MYD, and *.MYI files). To get a consistent backup, stop the server or lock and flush the relevant tables:
FLUSH TABLES tbl_list WITH READ LOCK;
You need only a read lock; this enables other clients to continue to query the tables while you are making a copy of the files in the database directory. The flush is needed to ensure that the all active index pages are written to disk before you start the backup. See Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”, and Section 13.7.6.3, “FLUSH Syntax”.
You can also create a binary backup simply by copying all table files, as long as the server isn't updating anything. The mysqlhotcopy script uses this method. (But note that table file copying methods do not work if your database contains InnoDB tables. mysqlhotcopy does not work for InnoDB tables because InnoDB does not necessarily store table contents in database directories. Also, even if the server is not actively updating data, InnoDB may still have modified data cached in memory and not flushed to disk.)
Making Delimited-Text File Backups
To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name' FROM tbl_name. The file is created on the MySQL server host, not the client host. For this statement, the output file cannot already exist because permitting files to be overwritten constitutes a security risk. See Section 13.2.9, “SELECT Syntax”. This method works for any kind of data file, but saves only table data, not the table structure.
Another way to create text data files (along with files containing CREATE TABLE statements for the backed up tables) is to use mysqldump with the --tab option. See Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”.
To reload a delimited-text data file, use LOAD DATA INFILE or mysqlimport.
Making Incremental Backups by Enabling the Binary Log
MySQL supports incremental backups: You must start the server with the --log-bin option to enable binary logging; see Section 5.2.4, “The Binary Log”. The binary log files provide you with the information you need to replicate changes to the database that are made subsequent to the point at which you performed a backup. At the moment you want to make an incremental backup (containing all changes that happened since the last full or incremental backup), you should rotate the binary log by using FLUSH LOGS. This done, you need to copy to the backup location all binary logs which range from the one of the moment of the last full or incremental backup to the last but one. These binary logs are the incremental backup; at restore time, you apply them as explained in Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”. The next time you do a full backup, you should also rotate the binary log using FLUSH LOGS, mysqldump --flush-logs, or mysqlhotcopy --flushlog. See Section 4.5.4, “mysqldump — A Database Backup Program”, and Section 4.6.10, “mysqlhotcopy — A Database Backup Program”.
Making Backups Using Replication Slaves
If you have performance problems with your master server while making backups, one strategy that can help is to set up replication and perform backups on the slave rather than on the master. See Section 16.3.1, “Using Replication for Backups”.
If you are backing up a slave replication server, you should back up its master.info and relay-log.info files when you back up the slave's databases, regardless of the backup method you choose. These information files are always needed to resume replication after you restore the slave's data. If your slave is replicating LOAD DATA INFILE statements, you should also back up any SQL_LOAD-* files that exist in the directory that the slave uses for this purpose. The slave needs these files to resume replication of any interrupted LOAD DATA INFILE operations. The location of this directory is the value of the --slave-load-tmpdir option. If the server was not started with that option, the directory location is the value of the tmpdir system variable.
Recovering Corrupt Tables
If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR TABLE or myisamchk -r first. That should work in 99.9% of all cases. If myisamchk fails, see Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.
Making Backups Using a File System Snapshot
If you are using a Veritas file system, you can make a backup like this:
From a client program, execute FLUSH TABLES WITH READ LOCK.
From another shell, execute mount vxfs snapshot.
From the first client, execute UNLOCK TABLES.
Copy files from the snapshot.
Unmount the snapshot.
Similar snapshot capabilities may be available in other file systems, such as LVM or ZFS.
7.3. Example Backup and Recovery Strategy
This section discusses a procedure for performing backups that enables you to recover data after several types of crashes:
Operating system crash
Power failure
File system crash
Hardware problem (hard drive, motherboard, and so forth)
The example commands do not include options such as --user and --password for the mysqldump and mysql client programs. You should include such options as necessary to enable client programs to connect to the MySQL server.
Assume that data is stored in the InnoDB storage engine, which has support for transactions and automatic crash recovery. Assume also that the MySQL server is under load at the time of the crash. If it were not, no recovery would ever be needed.
For cases of operating system crashes or power failures, we can assume that MySQL's disk data is available after a restart. The InnoDB data files might not contain consistent data due to the crash, but InnoDB reads its logs and finds in them the list of pending committed and noncommitted transactions that have not been flushed to the data files. InnoDB automatically rolls back those transactions that were not committed, and flushes to its data files those that were committed. Information about this recovery process is conveyed to the user through the MySQL error log. The following is an example log excerpt:
InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections
For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data is not available after a restart. This means that MySQL fails to start successfully because some blocks of disk data are no longer readable. In this case, it is necessary to reformat the disk, install a new one, or otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from backups, which means that backups must already have been made. To make sure that is the case, design and implement a backup policy.
7.3.1. Establishing a Backup Policy
To be useful, backups must be scheduled regularly. A full backup (a snapshot of the data at a point in time) can be done in MySQL with several tools. For example, MySQL Enterprise Backup can perform a physical backup of an entire instance, with optimizations to minimize overhead and avoid disruption when backing up InnoDB data files; mysqldump provides online logical backup. This discussion uses mysqldump.
Assume that we make a full backup of all our InnoDB tables in all databases using the following command on Sunday at 1 p.m., when load is low:
shell> mysqldump --single-transaction --all-databases > backup_sunday_1_PM.sql
The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be used to reload the dumped tables at a later time.
This backup operation acquires a global read lock on all tables at the beginning of the dump (using FLUSH TABLES WITH READ LOCK). As soon as this lock has been acquired, the binary log coordinates are read and the lock is released. If long updating statements are running when the FLUSH statement is issued, the backup operation may stall until those statements finish. After that, the dump becomes lock-free and does not disturb reads and writes on the tables.
It was assumed earlier that the tables to back up are InnoDB tables, so --single-transaction uses a consistent read and guarantees that data seen by mysqldump does not change. (Changes made by other clients to InnoDB tables are not seen by the mysqldump process.) If the backup operation includes nontransactional tables, consistency requires that they do not change during the backup. For example, for the MyISAM tables in the mysql database, there must be no administrative changes to MySQL accounts during the backup.
Full backups are necessary, but it is not always convenient to create them. They produce large backup files and take time to generate. They are not optimal in the sense that each successive full backup includes all data, even that part that has not changed since the previous full backup. It is more efficient to make an initial full backup, and then to make incremental backups. The incremental backups are smaller and take less time to produce. The tradeoff is that, at recovery time, you cannot restore your data just by reloading the full backup. You must also process the incremental backups to recover the incremental changes.
To make incremental backups, we need to save the incremental changes. In MySQL, these changes are represented in the binary log, so the MySQL server should always be started with the --log-bin option to enable that log. With binary logging enabled, the server writes each data change into a file while it updates data. Looking at the data directory of a MySQL server that was started with the --log-bin option and that has been running for some days, we find these MySQL binary log files:
-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index
Each time it restarts, the MySQL server creates a new binary log file using the next number in the sequence. While the server is running, you can also tell it to close the current binary log file and begin a new one manually by issuing a FLUSH LOGS SQL statement or with a mysqladmin flush-logs command. mysqldump also has an option to flush the logs. The .index file in the data directory contains the list of all MySQL binary logs in the directory.
The MySQL binary logs are important for recovery because they form the set of incremental backups. If you make sure to flush the logs when you make your full backup, the binary log files created afterward contain all the data changes made since the backup. Let's modify the previous mysqldump command a bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the dump file contains the name of the new current binary log:
shell> mysqldump --single-transaction --flush-logs --master-data=2 \
--all-databases > backup_sunday_1_PM.sql
After executing this command, the data directory contains a new binary log file, gbichot2-bin.000007, because the --flush-logs option causes the server to flush its logs. The --master-data option causes mysqldump to write binary log information to its output, so the resulting .sql dump file includes these lines:
-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;
Because the mysqldump command made a full backup, those lines mean two things:
The dump file contains all changes made before any changes written to the gbichot2-bin.000007 binary log file or newer.
All data changes logged after the backup are not present in the dump file, but are present in the gbichot2-bin.000007 binary log file or newer.
On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new binary log file. For example, executing a mysqladmin flush-logs command creates gbichot2-bin.000008. All changes between the Sunday 1 p.m. full backup and Monday 1 p.m. will be in the gbichot2-bin.000007 file. This incremental backup is important, so it is a good idea to copy it to a safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday at 1 p.m., execute another mysqladmin flush-logs command. All changes between Monday 1 p.m. and Tuesday 1 p.m. will be in the gbichot2-bin.000008 file (which also should be copied somewhere safe).
The MySQL binary logs take up disk space. To free up space, purge them from time to time. One way to do this is by deleting the binary logs that are no longer needed, such as when we make a full backup:
shell> mysqldump --single-transaction --flush-logs --master-data=2 \
--all-databases --delete-master-logs > backup_sunday_1_PM.sql
Note
Deleting the MySQL binary logs with mysqldump --delete-master-logs can be dangerous if your server is a replication master server, because slave servers might not yet fully have processed the contents of the binary log. The description for the PURGE BINARY LOGS statement explains what should be verified before deleting the MySQL binary logs. See Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.
7.3.2. Using Backups for Recovery
Now, suppose that we have a catastrophic crash on Wednesday at 8 a.m. that requires recovery from backups. To recover, first we restore the last full backup we have (the one from Sunday 1 p.m.). The full backup file is just a set of SQL statements, so restoring it is very easy:
shell> mysql < backup_sunday_1_PM.sql
At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since then, we must use the incremental backups; that is, the gbichot2-bin.000007 and gbichot2-bin.000008 binary log files. Fetch the files if necessary from where they were backed up, and then process their contents like this:
shell> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql
We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes from that date to the date of the crash. To not lose them, we would have needed to have the MySQL server store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the place where it stores its data files, so that these logs were not on the destroyed disk. (That is, we can start the server with a --log-bin option that specifies a location on a different physical device from the one on which the data directory resides. That way, the logs are safe even if the device containing the directory is lost.) If we had done this, we would have the gbichot2-bin.000009 file (and any subsequent files) at hand, and we could apply them using mysqlbinlog and mysql to restore the most recent data changes with no loss up to the moment of the crash:
shell> mysqlbinlog gbichot2-bin.000009 ... | mysql
For more information about using mysqlbinlog to process binary log files, see Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”.
7.3.3. Backup Strategy Summary
In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data. But to make sure that you can sleep well, observe the following guidelines:
Always run the MySQL server with the --log-bin option, or even --log-bin=log_name, where the log file name is located on some safe media different from the drive on which the data directory is located. If you have such safe media, this technique can also be good for disk load balancing (which results in a performance improvement).
Make periodic full backups, using the mysqldump command shown earlier in Section 7.3.1, “Establishing a Backup Policy”, that makes an online, nonblocking backup.
Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-logs.
7.4. Using mysqldump for Backups
This section describes how to use mysqldump to produce dump files, and how to reload dump files. A dump file can be used in several ways:
As a backup to enable data recovery in case of data loss.
As a source of data for setting up replication slaves.
As a source of data for experimentation:
To make a copy of a database that you can use without changing the original data.
To test potential upgrade incompatibilities.
mysqldump produces two types of output, depending on whether the --tab option is given:
Without --tab, mysqldump writes SQL statements to the standard output. This output consists of CREATE statements to create dumped objects (databases, tables, stored routines, and so forth), and INSERT statements to load data into tables. The output can be saved in a file and reloaded later using mysql to recreate the dumped objects. Options are available to modify the format of the SQL statements, and to control which objects are dumped.
With --tab, mysqldump produces two output files for each dumped table. The server writes one file as tab-delimited text, one line per table row. This file is named tbl_name.txt in the output directory. The server also sends a CREATE TABLE statement for the table to mysqldump, which writes it as a file named tbl_name.sql in the output directory.
7.4.1. Dumping Data in SQL Format with mysqldump
This section describes how to use mysqldump to create SQL-format dump files. For information about reloading such dump files, see Section 7.4.2, “Reloading SQL-Format Backups”.
By default, mysqldump writes information as SQL statements to the standard output. You can save the output in a file:
shell> mysqldump [arguments] > file_name
To dump all databases, invoke mysqldump with the --all-databases option:
shell> mysqldump --all-databases > dump.sql
To dump only specific databases, name them on the command line and use the --databases option:
shell> mysqldump --databases db1 db2 db3 > dump.sql
The --databases option causes all names on the command line to be treated as database names. Without this option, mysqldump treats the first name as a database name and those following as table names.
With --all-databases or --databases, mysqldump writes CREATE DATABASE and USE statements prior to the dump output for each database. This ensures that when the dump file is reloaded, it creates each database if it does not exist and makes it the default database so database contents are loaded into the same database from which they came. If you want to cause the dump file to force a drop of each database before recreating it, use the --add-drop-database option as well. In this case, mysqldump writes a DROP DATABASE statement preceding each CREATE DATABASE statement.
To dump a single database, name it on the command line:
shell> mysqldump --databases test > dump.sql
In the single-database case, it is permissible to omit the --databases option:
shell> mysqldump test > dump.sql
The difference between the two preceding commands is that without --databases, the dump output contains no CREATE DATABASE or USE statements. This has several implications:
When you reload the dump file, you must specify a default database name so that the server knows which database to reload.
For reloading, you can specify a database name different from the original name, which enables you to reload the data into a different database.
If the database to be reloaded does not exist, you must create it first.
Because the output will contain no CREATE DATABASE statement, the --add-drop-database option has no effect. If you use it, it produces no DROP DATABASE statement.
To dump only specific tables from a database, name them on the command line following the database name:
shell> mysqldump test t1 t3 t7 > dump.sql
7.4.2. Reloading SQL-Format Backups
To reload a dump file written by mysqldump that consists of SQL statements, use it as input to the mysql client. If the dump file was created by mysqldump with the --all-databases or --databases option, it contains CREATE DATABASE and USE statements and it is not necessary to specify a default database into which to load the data:
shell> mysql < dump.sql
Alternatively, from within mysql, use a source command:
mysql> source dump.sql
If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the database first (if necessary):
shell> mysqladmin create db1
Then specify the database name when you load the dump file:
shell> mysql db1 < dump.sql
Alternatively, from within mysql, create the database, select it as the default database, and load the dump file:
mysql> CREATE DATABASE IF NOT EXISTS db1;
mysql> USE db1;
mysql> source dump.sql
7.4.3. Dumping Data in Delimited-Text Format with mysqldump
This section describes how to use mysqldump to create delimited-text dump files. For information about reloading such dump files, see Section 7.4.4, “Reloading Delimited-Text Format Backups”.
If you invoke mysqldump with the --tab=dir_name option, it uses dir_name as the output directory and dumps tables individually in that directory using two files for each table. The table name is the basename for these files. For a table named t1, the files are named t1.sql and t1.txt. The .sql file contains a CREATE TABLE statement for the table. The .txt file contains the table data, one line per table row.
The following command dumps the contents of the db1 database to files in the /tmp database:
shell> mysqldump --tab=/tmp db1
The .txt files containing table data are written by the server, so they are owned by the system account used for running the server. The server uses SELECT ... INTO OUTFILE to write the files, so you must have the FILE privilege to perform this operation, and an error occurs if a given .txt file already exists.
The server sends the CREATE definitions for dumped tables to mysqldump, which writes them to .sql files. These files therefore are owned by the user who executes mysqldump.
It is best that --tab be used only for dumping a local server. If you use it with a remote server, the --tab directory must exist on both the local and remote hosts, and the .txt files will be written by the server in the remote directory (on the server host), whereas the .sql files will be written by mysqldump in the local directory (on the client host).
For mysqldump --tab, the server by default writes table data to .txt files one line per row with tabs between column values, no quotation marks around column values, and newline as the line terminator. (These are the same defaults as for SELECT ... INTO OUTFILE.)
To enable data files to be written using a different format, mysqldump supports these options:
The string for separating column values (default: tab).
The character within which to enclose column values (default: no character).
--fields-optionally-enclosed-by=char
The character within which to enclose non-numeric column values (default: no character).
The character for escaping special characters (default: no escaping).
The line-termination string (default: newline).
Depending on the value you specify for any of these options, it might be necessary on the command line to quote or escape the value appropriately for your command interpreter. Alternatively, specify the value using hex notation. Suppose that you want mysqldump to quote column values within double quotation marks. To do so, specify double quote as the value for the --fields-enclosed-by option. But this character is often special to command interpreters and must be treated specially. For example, on Unix, you can quote the double quote like this:
--fields-enclosed-by='"'
On any platform, you can specify the value in hex:
--fields-enclosed-by=0x22
It is common to use several of the data-formatting options together. For example, to dump tables in comma-separated values format with lines terminated by carriage-return/newline pairs (\r\n), use this command (enter it on a single line):
shell> mysqldump --tab=/tmp --fields-terminated-by=,
--fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1
Should you use any of the data-formatting options to dump table data, you will need to specify the same format when you reload data files later, to ensure proper interpretation of the file contents.
7.4.4. Reloading Delimited-Text Format Backups
For backups produced with mysqldump --tab, each table is represented in the output directory by an .sql file containing the CREATE TABLE statement for the table, and a .txt file containing the table data. To reload a table, first change location into the output directory. Then process the .sql file with mysql to create an empty table and process the .txt file to load the data into the table:
shell> mysql db1 < t1.sql
shell> mysqlimport db1 t1.txt
An alternative to using mysqlimport to load the data file is to use the LOAD DATA INFILE statement from within the mysql client:
mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1;
If you used any data-formatting options with mysqldump when you initially dumped the table, you must use the same options with mysqlimport or LOAD DATA INFILE to ensure proper interpretation of the data file contents:
shell> mysqlimport --fields-terminated-by=,
--fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1 t1.txt
Or:
mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1
-> FIELDS TERMINATED BY ',' FIELDS ENCLOSED BY '"'
-> LINES TERMINATED BY '\r\n';
7.4.5. mysqldump Tips
This section surveys techniques that enable you to use mysqldump to solve specific problems:
How to make a copy a database
How to copy a database from one server to another
How to dump stored programs (stored procedures and functions, triggers, and events)
How to dump definitions and data separately
7.4.5.1. Making a Copy of a Database
shell> mysqldump db1 > dump.sql
shell> mysqladmin create db2
shell> mysql db2 < dump.sql
Do not use --databases on the mysqldump command line because that causes USE db1 to be included in the dump file, which overrides the effect of naming db2 on the mysql command line.
7.4.5.2. Copy a Database from one Server to Another
On Server 1:
shell> mysqldump --databases db1 > dump.sql
Copy the dump file from Server 1 to Server 2.
On Server 2:
shell> mysql < dump.sql
Use of --databases with the mysqldump command line causes the dump file to include CREATE DATABASE and USE statements that create the database if it does exist and make it the default database for the reloaded data.
Alternatively, you can omit --databases from the mysqldump command. Then you will need to create the database on Server 2 (if necessary) and specify it as the default database when you reload the dump file.
On Server 1:
shell> mysqldump db1 > dump.sql
On Server 2:
shell> mysqladmin create db1
shell> mysql db1 < dump.sql
You can specify a different database name in this case, so omitting --databases from the mysqldump command enables you to dump data from one database and load it into another.
7.4.5.3. Dumping Stored Programs
Several options control how mysqldump handles stored programs (stored procedures and functions, triggers, and events):
--events: Dump Event Scheduler events
--routines: Dump stored procedures and functions
--triggers: Dump triggers for tables
The --triggers option is enabled by default so that when tables are dumped, they are accompanied by any triggers they have. The other options are disabled by default and must be specified explicitly to dump the corresponding objects. To disable any of these options explicitly, use its skip form: --skip-events, --skip-routines, or --skip-triggers.
7.4.5.4. Dumping Table Definitions and Content Separately
The --no-data option tells mysqldump not to dump table data, resulting in the dump file containing only statements to create the tables. Conversely, the --no-create-info option tells mysqldump to suppress CREATE statements from the output, so that the dump file contains only table data.
For example, to dump table definitions and data separately for the test database, use these commands:
shell> mysqldump --no-data test > dump-defs.sql
shell> mysqldump --no-create-info test > dump-data.sql
For a definition-only dump, add the --routines and --events options to also include stored routine and event definitions:
shell> mysqldump --no-data --routines --events test > dump-defs.sql
7.4.5.5. Using mysqldump to Test for Upgrade Incompatibilities
When contemplating a MySQL upgrade, it is prudent to install the newer version separately from your current production version. Then you can dump the database and database object definitions from the production server and load them into the new server to verify that they are handled properly. (This is also useful for testing downgrades.)
On the production server:
shell> mysqldump --all-databases --no-data --routines --events > dump-defs.sql
On the upgraded server:
shell> mysql < dump-defs.sql
Because the dump file does not contain table data, it can be processed quickly. This enables you to spot potential incompatibilities without waiting for lengthy data-loading operations. Look for warnings or errors while the dump file is being processed.
After you have verified that the definitions are handled properly, dump the data and try to load it into the upgraded server.
On the production server:
shell> mysqldump --all-databases --no-create-info > dump-data.sql
On the upgraded server:
shell> mysql < dump-data.sql
Now check the table contents and run some test queries.
7.5. Point-in-Time (Incremental) Recovery Using the Binary Log
Point-in-time recovery refers to recovery of data changes made since a given point in time. Typically, this type of recovery is performed after restoring a full backup that brings the server to its state as of the time the backup was made. (The full backup can be made in several ways, such as those listed in Section 7.2, “Database Backup Methods”.) Point-in-time recovery then brings the server up to date incrementally from the time of the full backup to a more recent time.
Point-in-time recovery is based on these principles:
The source of information for point-in-time recovery is the set of incremental backups represented by the binary log files generated subsequent to the full backup operation. Therefore, the server must be started with the --log-bin option to enable binary logging (see Section 5.2.4, “The Binary Log”).
To restore data from the binary log, you must know the name and location of the current binary log files. By default, the server creates binary log files in the data directory, but a path name can be specified with the --log-bin option to place the files in a different location. Section 5.2.4, “The Binary Log”.
To see a listing of all binary log files, use this statement:
mysql> SHOW BINARY LOGS;
To determine the name of the current binary log file, issue the following statement:
mysql> SHOW MASTER STATUS;
The mysqlbinlog utility converts the events in the binary log files from binary format to text so that they can be executed or viewed. mysqlbinlog has options for selecting sections of the binary log based on event times or position of events within the log. See Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”.
Executing events from the binary log causes the data modifications they represent to be redone. This enables recovery of data changes for a given span of time. To execute events from the binary log, process mysqlbinlog output using the mysql client:
shell> mysqlbinlog binlog_files | mysql -u root -p
Viewing log contents can be useful when you need to determine event times or positions to select partial log contents prior to executing events. To view events from the log, send mysqlbinlog output into a paging program:
shell> mysqlbinlog binlog_files | more
Alternatively, save the output in a file and view the file in a text editor:
shell> mysqlbinlog binlog_files > tmpfile
shell> ... edit tmpfile ...
Saving the output in a file is useful as a preliminary to executing the log contents with certain events removed, such as an accidental DROP DATABASE. You can delete from the file any statements not to be executed before executing its contents. After editing the file, execute the contents as follows:
shell> mysql -u root -p < tmpfile
If you have more than one binary log to execute on the MySQL server, the safe method is to process them all using a single connection to the server. Here is an example that demonstrates what may be unsafe:
shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!
Processing binary logs this way using different connections to the server causes problems if the first log file contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that uses the temporary table. When the first mysql process terminates, the server drops the temporary table. When the second mysql process attempts to use the table, the server reports “unknown table.”
To avoid problems like this, use a single connection to execute the contents of all binary logs that you want to process. Here is one way to do so:
shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p
Another approach is to write all the logs to a single file and then process the file:
shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"
7.5.1. Point-in-Time Recovery Using Event Times
To indicate the start and end times for recovery, specify the --start-datetime and --stop-datetime options for mysqlbinlog, in DATETIME format. As an example, suppose that exactly at 10:00 a.m. on April 20, 2005 an SQL statement was executed that deleted a large table. To restore the table and data, you could restore the previous night's backup, and then execute the following command:
shell> mysqlbinlog --stop-datetime="2005-04-20 9:59:59" \
/var/log/mysql/bin.123456 | mysql -u root -p
This command recovers all of the data up until the date and time given by the --stop-datetime option. If you did not detect the erroneous SQL statement that was entered until hours later, you will probably also want to recover the activity that occurred afterward. Based on this, you could run mysqlbinlog again with a start date and time, like so:
shell> mysqlbinlog --start-datetime="2005-04-20 10:01:00" \
/var/log/mysql/bin.123456 | mysql -u root -p
In this command, the SQL statements logged from 10:01 a.m. on will be re-executed. The combination of restoring of the previous night's dump file and the two mysqlbinlog commands restores everything up until one second before 10:00 a.m. and everything from 10:01 a.m. on.
To use this method of point-in-time recovery, you should examine the log to be sure of the exact times to specify for the commands. To display the log file contents without executing them, use this command:
shell> mysqlbinlog /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql
Then open the /tmp/mysql_restore.sql file with a text editor to examine it.
Excluding specific changes by specifying times for mysqlbinlog does not work well if multiple statements executed at the same time as the one to be excluded.
7.5.2. Point-in-Time Recovery Using Event Positions
Instead of specifying dates and times, the --start-position and --stop-position options for mysqlbinlog can be used for specifying log positions. They work the same as the start and stop date options, except that you specify log position numbers rather than dates. Using positions may enable you to be more precise about which part of the log to recover, especially if many transactions occurred around the same time as a damaging SQL statement. To determine the position numbers, run mysqlbinlog for a range of times near the time when the unwanted transaction was executed, but redirect the results to a text file for examination. This can be done like so:
shell> mysqlbinlog --start-datetime="2005-04-20 9:55:00" \
--stop-datetime="2005-04-20 10:05:00" \
/var/log/mysql/bin.123456 > /tmp/mysql_restore.sql
This command creates a small text file in the /tmp directory that contains the SQL statements around the time that the deleterious SQL statement was executed. Open this file with a text editor and look for the statement that you do not want to repeat. Determine the positions in the binary log for stopping and resuming the recovery and make note of them. Positions are labeled as log_pos followed by a number. After restoring the previous backup file, use the position numbers to process the binary log file. For example, you would use commands something like these:
shell> mysqlbinlog --stop-position=368312 /var/log/mysql/bin.123456 \
| mysql -u root -p
shell> mysqlbinlog --start-position=368315 /var/log/mysql/bin.123456 \
| mysql -u root -p
The first command recovers all the transactions up until the stop position given. The second command recovers all transactions from the starting position given until the end of the binary log. Because the output of mysqlbinlog includes SET TIMESTAMP statements before each SQL statement recorded, the recovered data and related MySQL logs will reflect the original times at which the transactions were executed.
7.6. MyISAM Table Maintenance and Crash Recovery
This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have .MYD and .MYI files for storing data and indexes). For general myisamchk background, see Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Other table-repair information can be found at Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.
You can use myisamchk to check, repair, or optimize database tables. The following sections describe how to perform these operations and how to set up a table maintenance schedule. For information about using myisamchk to get information about your tables, see Section 4.6.3.5, “Obtaining Table Information with myisamchk”.
Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup before doing a repair or any maintenance operation that could make a lot of changes to a table.
myisamchk operations that affect indexes can cause MyISAM FULLTEXT indexes to be rebuilt with full-text parameters that are incompatible with the values used by the MySQL server. To avoid this problem, follow the guidelines in Section 4.6.3.1, “myisamchk General Options”.
MyISAM table maintenance can also be done using the SQL statements that perform operations similar to what myisamchk can do:
To check MyISAM tables, use CHECK TABLE.
To repair MyISAM tables, use REPAIR TABLE.
To optimize MyISAM tables, use OPTIMIZE TABLE.
To analyze MyISAM tables, use ANALYZE TABLE.
For additional information about these statements, see Section 13.7.2, “Table Maintenance Statements”.
These statements can be used directly or by means of the mysqlcheck client program. One advantage of these statements over myisamchk is that the server does all the work. With myisamchk, you must make sure that the server does not use the tables at the same time so that there is no unwanted interaction between myisamchk and the server.
7.6.1. Using myisamchk for Crash Recovery
This section describes how to check for and deal with data corruption in MySQL databases. If your tables become corrupted frequently, you should try to find the reason why. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.
For an explanation of how MyISAM tables can become corrupted, see Section 14.3.4, “MyISAM Table Problems”.
If you run mysqld with external locking disabled (which is the default), you cannot reliably use myisamchk to check a table when mysqld is using the same table. If you can be certain that no one will access the tables through mysqld while you run myisamchk, you only have to execute mysqladmin flush-tables before you start checking the tables. If you cannot guarantee this, you must stop mysqld while you check the tables. If you run myisamchk to check tables that mysqld is updating at the same time, you may get a warning that a table is corrupt even when it is not.
If the server is run with external locking enabled, you can use myisamchk to check tables at any time. In this case, if the server tries to update a table that myisamchk is using, the server will wait for myisamchk to finish before it continues.
If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server is not using the table (this also applies if external locking is disabled). If you do not stop mysqld, you should at least do a mysqladmin flush-tables before you run myisamchk. Your tables may become corrupted if the server and myisamchk access the tables simultaneously.
When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a database corresponds to the three files in the database directory shown in the following table.
File | Purpose |
---|---|
tbl_name.frm | Definition (format) file |
tbl_name.MYD | Data file |
tbl_name.MYI | Index file |
Each of these three file types is subject to corruption in various ways, but problems occur most often in data files and index files.
myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by removing the old .MYD file and renaming the new file to the original file name. If you use --quick, myisamchk does not create a temporary .MYD file, but instead assumes that the .MYD file is correct and generates only a new index file without touching the .MYD file. This is safe, because myisamchk automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify the --quick option twice to myisamchk. In this case, myisamchk does not abort on some errors (such as duplicate-key errors) but instead tries to resolve them by modifying the .MYD file. Normally the use of two --quick options is useful only if you have too little free disk space to perform a normal repair. In this case, you should at least make a backup of the table before running myisamchk.
7.6.2. How to Check MyISAM Tables for Errors
To check a MyISAM table, use the following commands:
This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which is very unusual). If you want to check a table, you should normally run myisamchk without options or with the -s (silent) option.
This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all rows. It calculates a checksum for all key values in the rows and verifies that the checksum matches the checksum for the keys in the index tree.
This does a complete and thorough check of all data (-e means “extended check”). It does a check-read of every key for each row to verify that they indeed point to the correct row. This may take a long time for a large table that has many indexes. Normally, myisamchk stops after the first error it finds. If you want to obtain more information, you can add the -v (verbose) option. This causes myisamchk to keep going, up through a maximum of 20 errors.
This is like the previous command, but the -i option tells myisamchk to print additional statistical information.
In most cases, a simple myisamchk command with no arguments other than the table name is sufficient to check a table.
7.6.3. How to Repair MyISAM Tables
The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI and .MYD).
You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables. See Section 13.7.2.2, “CHECK TABLE Syntax”, and Section 13.7.2.5, “REPAIR TABLE Syntax”.
Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as these:
tbl_name.frm is locked against change
Can't find file tbl_name.MYI (Errcode: nnn)
Unexpected end of file
Record file is crashed
Got error nnn from table handler
To get more information about the error, run perror nnn, where nnn is the error number. The following example shows how to use perror to find the meanings for the most common error numbers that indicate a problem with a table:
shell> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired
Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not errors that can be fixed by a simple repair. In this case, you must use ALTER TABLE to increase the MAX_ROWS and AVG_ROW_LENGTH table option values:
ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;
If you do not know the current table option values, use SHOW CREATE TABLE.
For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems that occur.
The repair process involves up to four stages, described here. Before you begin, you should change location to the database directory and check the permissions of the table files. On Unix, make sure that they are readable by the user that mysqld runs as (and to you, because you need to access the files you are checking). If it turns out you need to modify files, they must also be writable by you.
This section is for the cases where a table check fails (such as those described in Section 7.6.2, “How to Check MyISAM Tables for Errors”), or you want to use the extended features that myisamchk provides.
The myisamchk options used for table maintenance with are described in Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. myisamchk also has variables that you can set to control memory allocation that may improve performance. See Section 4.6.3.6, “myisamchk Memory Usage”.
If you are going to repair a table from the command line, you must first stop the mysqld server. Note that when you do mysqladmin shutdown on a remote server, the mysqld server is still available for a while after mysqladmin returns, until all statement-processing has stopped and all index changes have been flushed to disk.
Stage 1: Checking your tables
Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option to suppress unnecessary information.
If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to mark the table as “checked.”
You have to repair only those tables for which myisamchk announces an error. For such tables, proceed to Stage 2.
If you get unexpected errors when checking (such as out of memory errors), or if myisamchk crashes, go to Stage 3.
Stage 2: Easy safe repair
First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to repair the index file without touching the data file. If the data file contains everything that it should and the delete links point at the correct locations within the data file, this should work, and the table is fixed. Start repairing the next table. Otherwise, use the following procedure:
Make a backup of the data file before continuing.
Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and deleted rows from the data file and reconstructs the index file.
If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode uses an old recovery method that handles a few cases that regular recovery mode does not (but is slower).
Note
If you want a repair operation to go much faster, you should set the values of the sort_buffer_size and key_buffer_size variables each to about 25% of your available memory when running myisamchk.
If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk crashes, go to Stage 3.
Stage 3: Difficult repair
You should reach this stage only if the first 16KB block in the index file is destroyed or contains incorrect information, or if the index file is missing. In this case, it is necessary to create a new index file. Do so as follows:
Move the data file to a safe place.
Use the table description file to create new (empty) data and index files:
shell> mysql db_name
mysql> SET autocommit=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit
Copy the old data file back onto the newly created data file. (Do not just move the old file back onto the new file. You want to retain a copy in case something goes wrong.)
Important
If you are using replication, you should stop it prior to performing the above procedure, since it involves file system operations, and these are not logged by MySQL.
Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)
You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs the whole procedure automatically. There is also no possibility of unwanted interaction between a utility and the server, because the server does all the work when you use REPAIR TABLE. See Section 13.7.2.5, “REPAIR TABLE Syntax”.
Stage 4: Very difficult repair
You should reach this stage only if the .frm description file has also crashed. That should never happen, because the description file is not changed after the table is created:
Restore the description file from a backup and go back to Stage 3. You can also restore the index file and go back to Stage 2. In the latter case, you should start with myisamchk -r.
If you do not have a backup but know exactly how the table was created, create a copy of the table in another database. Remove the new data file, and then move the .frm description and .MYI index files from the other database to your crashed database. This gives you new description and index files, but leaves the .MYD data file alone. Go back to Stage 2 and attempt to reconstruct the index file.
7.6.4. MyISAM Table Optimization
To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows, run myisamchk in recovery mode:
shell> myisamchk -r tbl_name
You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE TABLE does a table repair and a key analysis, and also sorts the index tree so that key lookups are faster. There is also no possibility of unwanted interaction between a utility and the server, because the server does all the work when you use OPTIMIZE TABLE. See Section 13.7.2.4, “OPTIMIZE TABLE Syntax”.
myisamchk has a number of other options that you can use to improve the performance of a table:
--analyze or -a: Perform key distribution analysis. This improves join performance by enabling the join optimizer to better choose the order in which to join the tables and which indexes it should use.
--sort-index or -S: Sort the index blocks. This optimizes seeks and makes table scans that use indexes faster.
--sort-records=index_num or -R index_num: Sort data rows according to a given index. This makes your data much more localized and may speed up range-based SELECT and ORDER BY operations that use this index.
For a full description of all available options, see Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.
7.6.5. Setting Up a MyISAM Table Maintenance Schedule
It is a good idea to perform table checks on a regular basis rather than waiting for problems to occur. One way to check and repair MyISAM tables is with the CHECK TABLE and REPAIR TABLE statements. See Section 13.7.2, “Table Maintenance Statements”.
Another way to check tables is to use myisamchk. For maintenance purposes, you can use myisamchk -s. The -s option (short for --silent) causes myisamchk to run in silent mode, printing messages only when errors occur.
It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine has done a restart in the middle of an update, you usually need to check each table that could have been affected before it is used further. (These are “expected crashed tables.”) To cause the server to check MyISAM tables automatically, start it with the --myisam-recover-options option. See Section 5.1.3, “Server Command Options”.
You should also check your tables regularly during normal system operation. For example, you can run a cron job to check important tables once a week, using a line like this in a crontab file:
35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI
This prints out information about crashed tables so that you can examine and repair them as necessary.
To start with, execute myisamchk -s each night on all tables that have been updated during the last 24 hours. As you see that problems occur infrequently, you can back off the checking frequency to once a week or so.
Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables with dynamic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with many deleted rows you may want to defragment/reclaim space from the tables from time to time. You can do this by using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop the mysqld server for a while, change location into the data directory and use this command while the server is stopped:
shell> myisamchk -r -s --sort-index --myisam_sort_buffer_size=16M */*.MYI
Chapter 8. Optimization
Table of Contents
8.2. Optimizing SQL Statements
8.2.1. Optimizing SELECT Statements
8.2.2. Optimizing DML Statements
8.2.3. Optimizing Database Privileges
8.2.4. Optimizing INFORMATION_SCHEMA Queries
8.2.5. Other Optimization Tips
8.3.1. How MySQL Uses Indexes
8.3.2. Using Primary Keys
8.3.3. Using Foreign Keys
8.3.4. Column Indexes
8.3.5. Multiple-Column Indexes
8.3.6. Verifying Index Usage
8.3.7. InnoDB and MyISAM Index Statistics Collection
8.3.8. Comparison of B-Tree and Hash Indexes
8.4. Optimizing Database Structure
8.4.1. Optimizing Data Size
8.4.2. Optimizing MySQL Data Types
8.4.3. Optimizing for Many Tables
8.5. Optimizing for InnoDB Tables
8.5.1. Optimizing Storage Layout for InnoDB Tables
8.5.2. Optimizing InnoDB Transaction Management
8.5.3. Optimizing InnoDB Logging
8.5.4. Bulk Data Loading for InnoDB Tables
8.5.5. Optimizing InnoDB Queries
8.5.6. Optimizing InnoDB DDL Operations
8.5.7. Optimizing InnoDB Disk I/O
8.5.8. Optimizing InnoDB Configuration Variables
8.5.9. Optimizing InnoDB for Systems with Many Tables
8.6. Optimizing for MyISAM Tables
8.6.1. Optimizing MyISAM Queries
8.6.2. Bulk Data Loading for MyISAM Tables
8.6.3. Speed of REPAIR TABLE Statements
8.7. Optimizing for MEMORY Tables
8.8. Understanding the Query Execution Plan
8.8.1. Optimizing Queries with EXPLAIN
8.8.2. EXPLAIN Output Format
8.8.3. EXPLAIN EXTENDED Output Format
8.8.4. Estimating Query Performance
8.8.5. Controlling the Query Optimizer
8.9.1. The InnoDB Buffer Pool
8.9.2. The MyISAM Key Cache
8.9.3. The MySQL Query Cache
8.9.4. Caching of Prepared Statements and Stored Programs
8.10. Optimizing Locking Operations
8.10.1. Internal Locking Methods
8.10.2. Table Locking Issues
8.10.3. Concurrent Inserts
8.10.4. Metadata Locking
8.10.5. External Locking
8.11. Optimizing the MySQL Server
8.11.1. System Factors and Startup Parameter Tuning
8.11.2. Tuning Server Parameters
8.11.3. Optimizing Disk I/O
8.11.4. Optimizing Memory Use
8.11.5. Optimizing Network Use
8.11.6. The Thread Pool Plugin
8.12. Measuring Performance (Benchmarking)
8.12.1. Measuring the Speed of Expressions and Functions
8.12.2. The MySQL Benchmark Suite
8.12.3. Using Your Own Benchmarks
8.12.4. Measuring Performance with performance_schema
8.12.5. Examining Thread Information
8.13. Internal Details of MySQL Optimizations
8.13.1. Range Optimization
8.13.2. Index Merge Optimization
8.13.3. Engine Condition Pushdown Optimization
8.13.4. Index Condition Pushdown Optimization
8.13.5. Use of Index Extensions
8.13.6. IS NULL Optimization
8.13.7. LEFT JOIN and RIGHT JOIN Optimization
8.13.8. Nested-Loop Join Algorithms
8.13.9. Nested Join Optimization
8.13.10. Outer Join Simplification
8.13.11. Multi-Range Read Optimization
8.13.12. Block Nested-Loop and Batched Key Access Joins
8.13.13. ORDER BY Optimization
8.13.14. GROUP BY Optimization
8.13.15. DISTINCT Optimization
8.13.16. Subquery Optimization
This chapter explains how to optimize MySQL performance and provides examples. Optimization involves configuring, tuning, and measuring performance, at several levels. Depending on your job role (developer, DBA, or a combination of both), you might optimize at the level of individual SQL statements, entire applications, a single database server, or multiple networked database servers. Sometimes you can be proactive and plan in advance for performance, while other times you might troubleshoot a configuration or code issue after a problem occurs. Optimizing CPU and memory usage can also improve scalability, allowing the database to handle more load without slowing down.
8.1. Optimization Overview
Database performance depends on several factors at the database level, such as tables, queries, and configuration settings. These software constructs result in CPU and I/O operations at the hardware level, which you must minimize and make as efficient as possible. As you work on database performance, you start by learning the high-level rules and guidelines for the software side, and measuring performance using wall-clock time. As you become an expert, you learn more about what happens internally, and start measuring things such as CPU cycles and I/O operations.
Typical users aim to get the best database performance out of their existing software and hardware configurations. Advanced users look for opportunities to improve the MySQL software itself, or develop their own storage engines and hardware appliances to expand the MySQL ecosystem.
Optimizing at the Database Level
The most important factor in making a database application fast is its basic design:
Are the tables structured properly? In particular, do the columns have the right data types, and does each table have the appropriate columns for the type of work? For example, applications that perform frequent updates often have many tables with few columns, while applications that analyze large amounts of data often have few tables with many columns.
Are the right indexes in place to make queries efficient?
Are you using the appropriate storage engine for each table, and taking advantage of the strengths and features of each storage engine you use? In particular, the choice of a transactional storage engine such as InnoDB or a nontransactional one such as MyISAM can be very important for performance and scalability.
Note
In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables. In practice, the advanced InnoDB performance features mean that InnoDB tables often outperform the simpler MyISAM tables, especially for a busy database.
Does each table use an appropriate row format? This choice also depends on the storage engine used for the table. In particular, compressed tables use less disk space and so require less disk I/O to read and write the data. Compression is available for all kinds of workloads with InnoDB tables, and for read-only MyISAM tables.
Does the application use an appropriate locking strategy? For example, by allowing shared access when possible so that database operations can run concurrently, and requesting exclusive access when appropriate so that critical operations get top priority. Again, the choice of storage engine is significant. The InnoDB storage engine handles most locking issues without involvement from you, allowing for better concurrency in the database and reducing the amount of experimentation and tuning for your code.
Are all memory areas used for caching sized correctly? That is, large enough to hold frequently accessed data, but not so large that they overload physical memory and cause paging. The main memory areas to configure are the InnoDB buffer pool, the MyISAM key cache, and the MySQL query cache.
Optimizing at the Hardware Level
Any database application eventually hits hardware limits as the database becomes more and more busy. A DBA must evaluate whether it is possible to tune the application or reconfigure the server to avoid these bottlenecks, or whether more hardware resources are required. System bottlenecks typically arise from these sources:
Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time for this is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time improves slowly with new disks and is very hard to optimize for a single table. The way to optimize seek time is to distribute the data onto more than one disk.
Disk reading and writing. When the disk is at the correct position, we need to read or write the data. With modern disks, one disk delivers at least 10–20MB/s throughput. This is easier to optimize than seeks because you can read in parallel from multiple disks.
CPU cycles. When the data is in main memory, we must process it to get our result. Having small tables compared to the amount of memory is the most common limiting factor. But with small tables, speed is usually not the problem.
Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main memory bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems, but one to be aware of.
Balancing Portability and Performance
To use performance-oriented SQL extensions in a portable MySQL program, you can wrap MySQL-specific keywords in a statement within /*! */ comment delimiters. Other SQL servers ignore the commented keywords. For information about writing comments, see Section 9.6, “Comment Syntax”.
8.2. Optimizing SQL Statements
The core logic of a database application is performed through SQL statements, whether issued directly through an interpreter or submitted behind the scenes through an API. The tuning guidelines in this section help to speed up all kinds of MySQL applications. The guidelines cover SQL operations that read and write data, the behind-the-scenes overhead for SQL operations in general, and operations used in specific scenarios such as database monitoring.
8.2.1. Optimizing SELECT Statements
Queries, in the form of SELECT statements, perform all the lookup operations in the database. Tuning these statements is a top priority, whether to achieve sub-second response times for dynamic web pages, or to chop hours off the time to generate huge overnight reports.
8.2.1.1. Speed of SELECT Statements
The main considerations for optimizing queries are:
To make a slow SELECT ... WHERE query faster, the first thing to check is whether you can add an index. Set up indexes on columns used in the WHERE clause, to speed up evaluation, filtering, and the final retrieval of results. To avoid wasted disk space, construct a small set of indexes that speed up many related queries used in your application.
Indexes are especially important for queries that reference different tables, using features such as joins and foreign keys. You can use the EXPLAIN statement to determine which indexes are used for a SELECT. See Section 8.3.1, “How MySQL Uses Indexes” and Section 8.8.1, “Optimizing Queries with EXPLAIN”.
Isolate and tune any part of the query, such as a function call, that takes excessive time. Depending on how the query is structured, a function could be called once for every row in the result set, or even once for every row in the table, greatly magnifying any inefficiency.
Minimize the number of full table scans in your queries, particularly for big tables.
Keep table statistics up to date by using the ANALYZE TABLE statement periodically, so the optimizer has the information needed to construct an efficient execution plan.
Learn the tuning techniques, indexing techniques, and configuration parameters that are specific to the storage engine for each table. Both InnoDB and MyISAM have sets of guidelines for enabling and sustaining high performance in queries. For details, see Section 8.5.5, “Optimizing InnoDB Queries” and Section 8.6.1, “Optimizing MyISAM Queries”.
In particular, in MySQL 5.6.4 and higher, you can optimize single-query transactions for InnoDB tables, using the technique in Section 14.2.4.2.3, “Optimizations for Read-Only Transactions”.
Avoid transforming the query in ways that make it hard to understand, especially if the optimizer does some of the same transformations automatically.
If a performance issue is not easily solved by one of the basic guidelines, investigate the internal details of the specific query by reading the EXPLAIN plan and adjusting your indexes, WHERE clauses, join clauses, and so on. (When you reach a certain level of expertise, reading the EXPLAIN plan might be your first step for every query.)
Adjust the size and properties of the memory areas that MySQL uses for caching. With efficient use of the InnoDB buffer pool, MyISAM key cache, and the MySQL query cache, repeated queries run faster because the results are retrieved from memory the second and subsequent times.
Even for a query that runs fast using the cache memory areas, you might still optimize further so that they require less cache memory, making your application more scalable. Scalability means that your application can handle more simultaneous users, larger requests, and so on without experiencing a big drop in performance.
Deal with locking issues, where the speed of your query might be affected by other sessions accessing the tables at the same time.
8.2.1.2. How MySQL Optimizes WHERE Clauses
This section discusses optimizations that can be made for processing WHERE clauses. The examples use SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UPDATE statements.
Note
Because work on the MySQL optimizer is ongoing, not all of the optimizations that MySQL performs are documented here.
You might be tempted to rewrite your queries to make arithmetic operations faster, while sacrificing readability. Because MySQL does similar optimizations automatically, you can often avoid this work, and leave the query in a more understandable and maintainable form. Some of the optimizations performed by MySQL follow:
Removal of unnecessary parentheses:
((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)
Constant folding:
(a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5
Constant condition removal (needed because of constant folding):
(B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6)
-> B=5 OR B=6
Constant expressions used by indexes are evaluated only once.
COUNT(*) on a single table without a WHERE is retrieved directly from the table information for MyISAM and MEMORY tables. This is also done for any NOT NULL expression when used with only one table.
Early detection of invalid constant expressions. MySQL quickly detects that some SELECT statements are impossible and returns no rows.
HAVING is merged with WHERE if you do not use GROUP BY or aggregate functions (COUNT(), MIN(), and so on).
For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the table and also to skip rows as soon as possible.
All constant tables are read first before any other tables in the query. A constant table is any of the following:
An empty table or a table with one row.
A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where all index parts are compared to constant expressions and are defined as NOT NULL.
All of the following tables are used as constant tables:
SELECT * FROM t WHERE primary_key=1;
SELECT * FROM t1,t2
WHERE t1.primary_key=1 AND t2.primary_key=t1.id;
The best join combination for joining the tables is found by trying all possibilities. If all columns in ORDER BY and GROUP BY clauses come from the same table, that table is preferred first when joining.
If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY contains columns from tables other than the first table in the join queue, a temporary table is created.
If you use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table.
Each table index is queried, and the best index is used unless the optimizer believes that it is more efficient to use a table scan. At one time, a scan was used based on whether the best index spanned more than 30% of the table, but a fixed percentage no longer determines the choice between using an index or a scan. The optimizer now is more complex and bases its estimate on additional factors such as table size, number of rows, and I/O block size.
In some cases, MySQL can read rows from the index without even consulting the data file. If all columns used from the index are numeric, only the index tree is used to resolve the query.
Before each row is output, those that do not match the HAVING clause are skipped.
Some examples of queries that are very fast:
SELECT COUNT(*) FROM tbl_name;
SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;
SELECT MAX(key_part2) FROM tbl_name
WHERE key_part1=constant;
SELECT ... FROM tbl_name
ORDER BY key_part1,key_part2,... LIMIT 10;
SELECT ... FROM tbl_name
ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;
MySQL resolves the following queries using only the index tree, assuming that the indexed columns are numeric:
SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;
SELECT COUNT(*) FROM tbl_name
WHERE key_part1=val1 AND key_part2=val2;
SELECT key_part2 FROM tbl_name GROUP BY key_part1;
The following queries use indexing to retrieve the rows in sorted order without a separate sorting pass:
SELECT ... FROM tbl_name
ORDER BY key_part1,key_part2,... ;
SELECT ... FROM tbl_name
ORDER BY key_part1 DESC, key_part2 DESC, ... ;
8.2.1.3. Optimizing LIMIT Queries
If you need only a specified number of rows from a result set, use a LIMIT clause in the query, rather than fetching the whole result set and throwing away the extra data.
MySQL sometimes optimizes a query that has a LIMIT row_count clause and no HAVING clause:
If you select only a few rows with LIMIT, MySQL uses indexes in some cases when normally it would prefer to do a full table scan.
If you use LIMIT row_count with ORDER BY, MySQL ends the sorting as soon as it has found the first row_count rows of the sorted result, rather than sorting the entire result. If ordering is done by using an index, this is very fast. If a filesort must be done, all rows that match the query without the LIMIT clause are selected, and most or all of them are sorted, before the first row_count are found. After the initial rows have been found, MySQL does not sort any remainder of the result set.
When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count unique rows.
In some cases, a GROUP BY can be resolved by reading the key in order (or doing a sort on the key) and then calculating summaries until the key value changes. In this case, LIMIT row_count does not calculate any unnecessary GROUP BY values.
As soon as MySQL has sent the required number of rows to the client, it aborts the query unless you are using SQL_CALC_FOUND_ROWS.
LIMIT 0 quickly returns an empty set. This can be useful for checking the validity of a query. When using one of the MySQL APIs, it can also be employed for obtaining the types of the result columns. (This trick does not work in the MySQL Monitor (the mysql program), which merely displays Empty set in such cases; instead, use SHOW COLUMNS or DESCRIBE for this purpose.)
When the server uses temporary tables to resolve the query, it uses the LIMIT row_count clause to calculate how much space is required.
As of MySQL 5.6.2, the optimizer more efficiently handles queries (and subqueries) of the following form:
SELECT ... FROM single_table ... ORDER BY non_index_column [DESC] LIMIT [M,]N;
That type of query is common in web applications that display only a few rows from a larger result set. For example:
SELECT col1, ... FROM t1 ... ORDER BY name LIMIT 10;
SELECT col1, ... FROM t1 ... ORDER BY RAND() LIMIT 15;
The sort buffer has a size of sort_buffer_size. If the sort elements for N rows are small enough to fit in the sort buffer (M+N rows if M was specified), the server can avoid using a merge file and perform the sort entirely in memory by treating the sort buffer as a priority queue:
Scan the table, inserting the select list columns from each selected row in sorted order in the queue. If the queue is full, bump out the last row in the sort order.
Return the first N rows from the queue. (If M was specified, skip the first M rows and return the next N rows.)
Previously, the server performed this operation by using a merge file for the sort:
Scan the table, repeating these steps through the end of the table:
Select rows until the sort buffer is filled.
Write the first N rows in the buffer (M+N rows if M was specified) to a merge file.
Sort the merge file and return the first N rows. (If M was specified, skip the first M rows and return the next N rows.)
The cost of the table scan is the same for the queue and merge-file methods, so the optimizer chooses between methods based on other costs:
The queue method involves more CPU for inserting rows into the queue in order
The merge-file method has I/O costs to write and read the file and CPU cost to sort it
The optimizer considers the balance between these factors for particular values of N and the row size.
8.2.1.4. How to Avoid Full Table Scans
The output from EXPLAIN shows ALL in the type column when MySQL uses a full table scan to resolve a query. This usually happens under the following conditions:
The table is so small that it is faster to perform a table scan than to bother with a key lookup. This is common for tables with fewer than 10 rows and a short row length.
There are no usable restrictions in the ON or WHERE clause for indexed columns.
You are comparing indexed columns with constant values and MySQL has calculated (based on the index tree) that the constants cover too large a part of the table and that a table scan would be faster. See Section 8.2.1.2, “How MySQL Optimizes WHERE Clauses”.
You are using a key with low cardinality (many rows match the key value) through another column. In this case, MySQL assumes that by using the key it probably will do many key lookups and that a table scan would be faster.
For small tables, a table scan often is appropriate and the performance impact is negligible. For large tables, try the following techniques to avoid having the optimizer incorrectly choose a table scan:
Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.
Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive compared to using the given index:
SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;
Start mysqld with the --max-seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the optimizer to assume that no key scan causes more than 1,000 key seeks. See Section 5.1.4, “Server System Variables”.
8.2.2. Optimizing DML Statements
This section explains how to speed up the data manipulation language (DML) statements, INSERT, UPDATE, and DELETE. Traditional OLTP applications and modern web applications typically do many small DML operations, where concurrency is vital. Data analysis and reporting applications typically run DML operations that affect many rows at once, where the main considerations is the I/O to write large amounts of data and keep indexes up-to-date. For inserting and updating large volumes of data (known in the industry as ETL, for “extract-transform-load”), sometimes you use other SQL statements or external commands, that mimic the effects of INSERT, UPDATE, and DELETE statements.
8.2.2.1. Speed of INSERT Statements
To optimize insert speed, combine many small operations into a single large operation. Ideally, you make a single connection, send the data for many new rows at once, and delay all index updates and consistency checking until the very end.
The time required for inserting a row is determined by the following factors, where the numbers indicate approximate proportions:
Connecting: (3)
Sending query to server: (2)
Parsing query: (2)
Inserting row: (1 × size of row)
Inserting indexes: (1 × number of indexes)
Closing: (1)
This does not take into consideration the initial overhead to open tables, which is done once for each concurrently running query.
The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.
You can use the following methods to speed up inserts:
If you are inserting many rows from the same client at the same time, use INSERT statements with multiple VALUES lists to insert several rows at a time. This is considerably faster (many times faster in some cases) than using separate single-row INSERT statements. If you are adding data to a nonempty table, you can tune the bulk_insert_buffer_size variable to make data insertion even faster. See Section 5.1.4, “Server System Variables”.
When loading a table from a text file, use LOAD DATA INFILE. This is usually 20 times faster than using INSERT statements. See Section 13.2.6, “LOAD DATA INFILE Syntax”.
Take advantage of the fact that columns have default values. Insert values explicitly only when the value to be inserted differs from the default. This reduces the parsing that MySQL must do and improves the insert speed.
See Section 8.5.4, “Bulk Data Loading for InnoDB Tables” for tips specific to InnoDB tables.
See Section 8.6.2, “Bulk Data Loading for MyISAM Tables” for tips specific to MyISAM tables.
8.2.2.2. Speed of UPDATE Statements
An update statement is optimized like a SELECT query with the additional overhead of a write. The speed of the write depends on the amount of data being updated and the number of indexes that are updated. Indexes that are not changed do not get updated.
Another way to get fast updates is to delay updates and then do many updates in a row later. Performing multiple updates together is much quicker than doing one at a time if you lock the table.
For a MyISAM table that uses dynamic row format, updating a row to a longer total length may split the row. If you do this often, it is very important to use OPTIMIZE TABLE occasionally. See Section 13.7.2.4, “OPTIMIZE TABLE Syntax”.
8.2.2.3. Speed of DELETE Statements
The time required to delete individual rows in a MyISAM table is exactly proportional to the number of indexes. To delete rows more quickly, you can increase the size of the key cache by increasing the key_buffer_size system variable. See Section 8.11.2, “Tuning Server Parameters”.
To delete all rows from a MyISAM table, TRUNCATE TABLE tbl_name is faster than than DELETE FROM tbl_name. Truncate operations are not transaction-safe; an error occurs when attempting one in the course of an active transaction or active table lock. See Section 13.1.27, “TRUNCATE TABLE Syntax”.
8.2.3. Optimizing Database Privileges
The more complex your privilege setup, the more overhead applies to all SQL statements. Simplifying the privileges established by GRANT statements enables MySQL to reduce permission-checking overhead when clients execute statements. For example, if you do not grant any table-level or column-level privileges, the server need not ever check the contents of the tables_priv and columns_priv tables. Similarly, if you place no resource limits on any accounts, the server does not have to perform resource counting. If you have a very high statement-processing load, consider using a simplified grant structure to reduce permission-checking overhead.
8.2.4. Optimizing INFORMATION_SCHEMA Queries
Applications that monitor the database can make frequent use of the INFORMATION_SCHEMA tables. Certain types of queries for INFORMATION_SCHEMA tables can be optimized to execute more quickly. The goal is to minimize file operations (for example, scanning a directory or opening a table file) to collect the information that makes up these dynamic tables. These optimizations do have an effect on how collations are used for searches in INFORMATION_SCHEMA tables. For more information, see Section 10.1.7.9, “Collation and INFORMATION_SCHEMA Searches”.
1) Try to use constant lookup values for database and table names in the WHERE clause
You can take advantage of this principle as follows:
To look up databases or tables, use expressions that evaluate to a constant, such as literal values, functions that return a constant, or scalar subqueries.
Avoid queries that use a nonconstant database name lookup value (or no lookup value) because they require a scan of the data directory to find matching database directory names.
Within a database, avoid queries that use a nonconstant table name lookup value (or no lookup value) because they require a scan of the database directory to find matching table files.
This principle applies to the INFORMATION_SCHEMA tables shown in the following table, which shows the columns for which a constant lookup value enables the server to avoid a directory scan. For example, if you are selecting from TABLES, using a constant lookup value for TABLE_SCHEMA in the WHERE clause enables a data directory scan to be avoided.
Table | Column to specify to avoid data directory scan | Column to specify to avoid database directory scan |
---|---|---|
COLUMNS | TABLE_SCHEMA | TABLE_NAME |
KEY_COLUMN_USAGE | TABLE_SCHEMA | TABLE_NAME |
PARTITIONS | TABLE_SCHEMA | TABLE_NAME |
REFERENTIAL_CONSTRAINTS | CONSTRAINT_SCHEMA | TABLE_NAME |
STATISTICS | TABLE_SCHEMA | TABLE_NAME |
TABLES | TABLE_SCHEMA | TABLE_NAME |
TABLE_CONSTRAINTS | TABLE_SCHEMA | TABLE_NAME |
TRIGGERS | EVENT_OBJECT_SCHEMA | EVENT_OBJECT_TABLE |
VIEWS | TABLE_SCHEMA | TABLE_NAME |
The benefit of a query that is limited to a specific constant database name is that checks need be made only for the named database directory. Example:
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';
Use of the literal database name test enables the server to check only the test database directory, regardless of how many databases there might be. By contrast, the following query is less efficient because it requires a scan of the data directory to determine which database names match the pattern 'test%':
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA LIKE 'test%';
For a query that is limited to a specific constant table name, checks need be made only for the named table within the corresponding database directory. Example:
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 't1';
Use of the literal table name t1 enables the server to check only the files for the t1 table, regardless of how many tables there might be in the test database. By contrast, the following query requires a scan of the test database directory to determine which table names match the pattern 't%':
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME LIKE 't%';
The following query requires a scan of the database directory to determine matching database names for the pattern 'test%', and for each matching database, it requires a scan of the database directory to determine matching table names for the pattern 't%':
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test%' AND TABLE_NAME LIKE 't%';
2) Write queries that minimize the number of table files that must be opened
For queries that refer to certain INFORMATION_SCHEMA table columns, several optimizations are available that minimize the number of table files that must be opened. Example:
SELECT TABLE_NAME, ENGINE FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'test';
In this case, after the server has scanned the database directory to determine the names of the tables in the database, those names become available with no further file system lookups. Thus, TABLE_NAME requires no files to be opened. The ENGINE (storage engine) value can be determined by opening the table's .frm file, without touching other table files such as the .MYD or .MYI file.
Some values, such as INDEX_LENGTH for MyISAM tables, require opening the .MYD or .MYI file as well.
The file-opening optimization types are denoted thus:
SKIP_OPEN_TABLE: Table files do not need to be opened. The information has already become available within the query by scanning the database directory.
OPEN_FRM_ONLY: Only the table's .frm file need be opened.
OPEN_TRIGGER_ONLY: Only the table's .TRG file need be opened.
OPEN_FULL_TABLE: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be opened.
The following list indicates how the preceding optimization types apply to INFORMATION_SCHEMA table columns. For tables and columns not named, none of the optimizations apply.
COLUMNS: OPEN_FRM_ONLY applies to all columns
KEY_COLUMN_USAGE: OPEN_FULL_TABLE applies to all columns
PARTITIONS: OPEN_FULL_TABLE applies to all columns
REFERENTIAL_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns
Column | Optimization type |
---|---|
TABLE_CATALOG | OPEN_FRM_ONLY |
TABLE_SCHEMA | OPEN_FRM_ONLY |
TABLE_NAME | OPEN_FRM_ONLY |
NON_UNIQUE | OPEN_FRM_ONLY |
INDEX_SCHEMA | OPEN_FRM_ONLY |
INDEX_NAME | OPEN_FRM_ONLY |
SEQ_IN_INDEX | OPEN_FRM_ONLY |
COLUMN_NAME | OPEN_FRM_ONLY |
COLLATION | OPEN_FRM_ONLY |
CARDINALITY | OPEN_FULL_TABLE |
SUB_PART | OPEN_FRM_ONLY |
PACKED | OPEN_FRM_ONLY |
NULLABLE | OPEN_FRM_ONLY |
INDEX_TYPE | OPEN_FULL_TABLE |
COMMENT | OPEN_FRM_ONLY |
Column | Optimization type |
---|---|
TABLE_CATALOG | SKIP_OPEN_TABLE |
TABLE_SCHEMA | SKIP_OPEN_TABLE |
TABLE_NAME | SKIP_OPEN_TABLE |
TABLE_TYPE | OPEN_FRM_ONLY |
ENGINE | OPEN_FRM_ONLY |
VERSION | OPEN_FRM_ONLY |
ROW_FORMAT | OPEN_FULL_TABLE |
TABLE_ROWS | OPEN_FULL_TABLE |
AVG_ROW_LENGTH | OPEN_FULL_TABLE |
DATA_LENGTH | OPEN_FULL_TABLE |
MAX_DATA_LENGTH | OPEN_FULL_TABLE |
INDEX_LENGTH | OPEN_FULL_TABLE |
DATA_FREE | OPEN_FULL_TABLE |
AUTO_INCREMENT | OPEN_FULL_TABLE |
CREATE_TIME | OPEN_FULL_TABLE |
UPDATE_TIME | OPEN_FULL_TABLE |
CHECK_TIME | OPEN_FULL_TABLE |
TABLE_COLLATION | OPEN_FRM_ONLY |
CHECKSUM | OPEN_FULL_TABLE |
CREATE_OPTIONS | OPEN_FRM_ONLY |
TABLE_COMMENT | OPEN_FRM_ONLY |
TABLE_CONSTRAINTS: OPEN_FULL_TABLE applies to all columns
TRIGGERS: OPEN_TRIGGER_ONLY applies to all columns
Column | Optimization type |
---|---|
TABLE_CATALOG | OPEN_FRM_ONLY |
TABLE_SCHEMA | OPEN_FRM_ONLY |
TABLE_NAME | OPEN_FRM_ONLY |
VIEW_DEFINITION | OPEN_FRM_ONLY |
CHECK_OPTION | OPEN_FRM_ONLY |
IS_UPDATABLE | OPEN_FULL_TABLE |
DEFINER | OPEN_FRM_ONLY |
SECURITY_TYPE | OPEN_FRM_ONLY |
CHARACTER_SET_CLIENT | OPEN_FRM_ONLY |
COLLATION_CONNECTION | OPEN_FRM_ONLY |
3) Use EXPLAIN to determine whether the server can use INFORMATION_SCHEMA optimizations for a query
This applies particularly for INFORMATION_SCHEMA queries that search for information from more than one database, which might take a long time and impact performance. The Extra value in EXPLAIN output indicates which, if any, of the optimizations described earlier the server can use to evaluate INFORMATION_SCHEMA queries. The following examples demonstrate the kinds of information you can expect to see in the Extra value.
mysql> EXPLAIN SELECT TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS WHERE
-> TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v1'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: VIEWS
type: ALL
possible_keys: NULL
key: TABLE_SCHEMA,TABLE_NAME
key_len: NULL
ref: NULL
rows: NULL
Extra: Using where; Open_frm_only; Scanned 0 databases
Use of constant database and table lookup values enables the server to avoid directory scans. For references to VIEWS.TABLE_NAME, only the .frm file need be opened.
mysql> EXPLAIN SELECT TABLE_NAME, ROW_FORMAT FROM INFORMATION_SCHEMA.TABLES\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: TABLES
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Open_full_table; Scanned all databases
No lookup values are provided (there is no WHERE clause), so the server must scan the data directory and each database directory. For each table thus identified, the table name and row format are selected. TABLE_NAME requires no further table files to be opened (the SKIP_OPEN_TABLE optimization applies). ROW_FORMAT requires all table files to be opened (OPEN_FULL_TABLE applies). EXPLAIN reports OPEN_FULL_TABLE because it is more expensive than SKIP_OPEN_TABLE.
mysql> EXPLAIN SELECT TABLE_NAME, TABLE_TYPE FROM INFORMATION_SCHEMA.TABLES
-> WHERE TABLE_SCHEMA = 'test'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: TABLES
type: ALL
possible_keys: NULL
key: TABLE_SCHEMA
key_len: NULL
ref: NULL
rows: NULL
Extra: Using where; Open_frm_only; Scanned 1 database
No table name lookup value is provided, so the server must scan the test database directory. For the TABLE_NAME and TABLE_TYPE columns, the SKIP_OPEN_TABLE and OPEN_FRM_ONLY optimizations apply, respectively. EXPLAIN reports OPEN_FRM_ONLY because it is more expensive.
mysql> EXPLAIN SELECT B.TABLE_NAME
-> FROM INFORMATION_SCHEMA.TABLES AS A, INFORMATION_SCHEMA.COLUMNS AS B
-> WHERE A.TABLE_SCHEMA = 'test'
-> AND A.TABLE_NAME = 't1'
-> AND B.TABLE_NAME = A.TABLE_NAME\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: A
type: ALL
possible_keys: NULL
key: TABLE_SCHEMA,TABLE_NAME
key_len: NULL
ref: NULL
rows: NULL
Extra: Using where; Skip_open_table; Scanned 0 databases
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: B
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Using where; Open_frm_only; Scanned all databases;
Using join buffer
For the first EXPLAIN output row: Constant database and table lookup values enable the server to avoid directory scans for TABLES values. References to TABLES.TABLE_NAME require no further table files.
For the second EXPLAIN output row: All COLUMNS table values are OPEN_FRM_ONLY lookups, so COLUMNS.TABLE_NAME requires the .frm file to be opened.
mysql> EXPLAIN SELECT * FROM INFORMATION_SCHEMA.COLLATIONS\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: COLLATIONS
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra:
In this case, no optimizations apply because COLLATIONS is not one of the INFORMATION_SCHEMA tables for which optimizations are available.
8.2.5. Other Optimization Tips
This section lists a number of miscellaneous tips for improving query processing speed:
Use persistent connections to the database to avoid connection overhead. If you cannot use persistent connections and you are initiating many new connections to the database, you may want to change the value of the thread_cache_size variable. See Section 8.11.2, “Tuning Server Parameters”.
Always check whether all your queries really use the indexes that you have created in the tables. In MySQL, you can do this with the EXPLAIN statement. See Section 8.8.1, “Optimizing Queries with EXPLAIN”.
Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid problems with table locking that occur due to contention between readers and writers.
MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can INSERT new rows into it at the same time that other threads are reading from the table. If it is important to be able to do this, consider using the table in ways that avoid deleting rows. Another possibility is to run OPTIMIZE TABLE to defragment the table after you have deleted a lot of rows from it. This behavior is altered by setting the concurrent_insert variable. You can force new rows to be appended (and therefore permit concurrent inserts), even in tables that have deleted rows. See Section 8.10.3, “Concurrent Inserts”.
To fix any compression issues that may have occurred with ARCHIVE tables, you can use OPTIMIZE TABLE. See Section 14.6, “The ARCHIVE Storage Engine”.
Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1, expr2, ... order. By using this option after extensive changes to the table, you may be able to get higher performance.
In some cases, it may make sense to introduce a column that is “hashed” based on information from other columns. If this column is short, reasonably unique, and indexed, it may be much faster than a “wide” index on many columns. In MySQL, it is very easy to use this extra column:
SELECT * FROM tbl_name
WHERE hash_col=MD5(CONCAT(col1,col2))
AND col1='constant' AND col2='constant';
For MyISAM tables that change frequently, try to avoid all variable-length columns (VARCHAR, BLOB, and TEXT). The table uses dynamic row format if it includes even a single variable-length column. See Chapter 14, Storage Engines.
It is normally not useful to split a table into different tables just because the rows become large. In accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row. After finding the data, most modern disks can read the entire row fast enough for most applications. The only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table using dynamic row format that you can change to a fixed row size, or if you very often need to scan the table but do not need most of the columns. See Chapter 14, Storage Engines.
If you often need to calculate results such as counts based on information from a lot of rows, it may be preferable to introduce a new table and update the counter in real time. An update of the following form is very fast:
UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;
This is very important when you use MySQL storage engines such as MyISAM that has only table-level locking (multiple readers with single writers). This also gives better performance with most database systems, because the row locking manager in this case has less to do.
If you need to collect statistics from large log tables, use summary tables instead of scanning the entire log table. Maintaining the summaries should be much faster than trying to calculate statistics “live.” Regenerating new summary tables from the logs when things change (depending on business decisions) is faster than changing the running application.
If possible, classify reports as “live” or as “statistical,” where data needed for statistical reports is created only from summary tables that are generated periodically from the live data.
Take advantage of the fact that columns have default values. Insert values explicitly only when the value to be inserted differs from the default. This reduces the parsing that MySQL must do and improves the insert speed.
In some cases, it is convenient to pack and store data into a BLOB column. In this case, you must provide code in your application to pack and unpack information, but this may save a lot of accesses at some stage. This is practical when you have data that does not conform well to a rows-and-columns table structure.
Normally, try to keep all data nonredundant (observing what is referred to in database theory as third normal form). However, there may be situations in which it can be advantageous to duplicate information or create summary tables to gain more speed.
Stored routines or UDFs (user-defined functions) may be a good way to gain performance for some tasks. See Section 18.2, “Using Stored Routines (Procedures and Functions)”, and Section 22.3, “Adding New Functions to MySQL”, for more information.
You can increase performance by caching queries or answers in your application and then executing many inserts or updates together. If your database system supports table locks (as does MySQL), this should help to ensure that the index cache is only flushed once after all updates. You can also take advantage of MySQL's query cache to achieve similar results; see Section 8.9.3, “The MySQL Query Cache”.
Use multiple-row INSERT statements to store many rows with one SQL statement. (This is a relatively portable technique.)
Use LOAD DATA INFILE to load large amounts of data. This is faster than using INSERT statements.
Use AUTO_INCREMENT columns so that each row in a table can be identified by a single unique value.
Use OPTIMIZE TABLE once in a while to avoid fragmentation with dynamic-format MyISAM tables. See Section 14.3.3, “MyISAM Table Storage Formats”.
Use MEMORY tables when possible to get more speed. See Section 14.4, “The MEMORY Storage Engine”. MEMORY tables are useful for noncritical data that is accessed often, such as information about the last displayed banner for users who don't have cookies enabled in their Web browser. User sessions are another alternative available in many Web application environments for handling volatile state data.
With Web servers, images and other binary assets should normally be stored as files. That is, store only a reference to the file rather than the file itself in the database. Most Web servers are better at caching files than database contents, so using files is generally faster.
Columns with identical information in different tables should be declared to have identical data types so that joins based on the corresponding columns will be faster.
Try to keep column names simple. For example, in a table named customer, use a column name of name instead of customer_name. To make your names portable to other SQL servers, consider keeping them shorter than 18 characters.
If you need really high speed, look at the low-level interfaces for data storage that the different SQL servers support. For example, by accessing the MySQL MyISAM storage engine directly, you could get a speed increase of two to five times compared to using the SQL interface. To be able to do this, the data must be on the same server as the application, and usually it should only be accessed by one process (because external file locking is really slow). One could eliminate these problems by introducing low-level MyISAM commands in the MySQL server (this could be one easy way to get more performance if needed). By carefully designing the database interface, it should be quite easy to support this type of optimization.
If you are using numeric data, it is faster in many cases to access information from a database (using a live connection) than to access a text file. Information in the database is likely to be stored in a more compact format than in the text file, so accessing it involves fewer disk accesses. You also save code in your application because you need not parse your text files to find line and column boundaries.
Replication can provide a performance benefit for some operations. You can distribute client retrievals among replication servers to split up the load. To avoid slowing down the master while making backups, you can make backups using a slave server. See Chapter 16, Replication.
Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster because they are not flushed to disk until the table is closed. The downside is that if something kills the server while such a table is open, you must ensure that the table is okay by running the server with the --myisam-recover-options option, or by running myisamchk before restarting the server. (However, even in this case, you should not lose anything by using DELAY_KEY_WRITE, because the key information can always be generated from the data rows.)
Use INSERT LOW_PRIORITY for supported nontransactional tables when you want to give SELECT statements higher priority than your inserts.
Use SELECT HIGH_PRIORITY for supported nontransactional tables to get retrievals that jump the queue. That is, the SELECT is executed even if there is another client waiting to do a write.
LOW_PRIORITY and HIGH_PRIORITY have an effect only for nontransactional storage engines that use only table-level locking.
8.3. Optimization and Indexes
The best way to improve the performance of SELECT operations is to create indexes on one or more of the columns that are tested in the query. The index entries act like pointers to the table rows, allowing the query to quickly determine which rows match a condition in the WHERE clause, and retrieve the other column values for those rows. All MySQL data types can be indexed.
Although it can be tempting to create an indexes for every possible column used in a query, unnecessary indexes waste space and waste time for MySQL to determine which indexes to use. You must find the right balance to achieve fast queries using the optimal set of indexes.
8.3.1. How MySQL Uses Indexes
Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin with the first row and then read through the entire table to find the relevant rows. The larger the table, the more this costs. If the table has an index for the columns in question, MySQL can quickly determine the position to seek to in the middle of the data file without having to look at all the data. If a table has 1,000 rows, this is at least 100 times faster than reading sequentially.
Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees. Exceptions are that indexes on spatial data types use R-trees, and that MEMORY tables also support hash indexes.
In general, indexes are used as described in the following discussion. Characteristics specific to hash indexes (as used in MEMORY tables) are described at the end of this section.
MySQL uses indexes for these operations:
To find the rows matching a WHERE clause quickly.
To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally uses the index that finds the smallest number of rows (the most selective index).
To retrieve rows from other tables when performing joins. MySQL can use indexes on columns more efficiently if they are declared as the same type and size. In this context, VARCHAR and CHAR are considered the same if they are declared as the same size. For example, VARCHAR(10) and CHAR(10) are the same size, but VARCHAR(10) and CHAR(15) are not.
Comparison of dissimilar columns may prevent use of indexes if values cannot be compared directly without conversion. Suppose that a numeric column is compared to a string column. For a given value such as 1 in the numeric column, it might compare equal to any number of values in the string column such as '1', ' 1', '00001', or '01.e1'. This rules out use of any indexes for the string column.
To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a preprocessor that checks whether you are using WHERE key_part_N = constant on all key parts that occur before key_col in the index. In this case, MySQL does a single key lookup for each MIN() or MAX() expression and replaces it with a constant. If all expressions are replaced with constants, the query returns at once. For example:
SELECT MIN(key_part2),MAX(key_part2)
FROM tbl_name WHERE key_part1=10;
To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable key (for example, ORDER BY key_part1, key_part2). If all key parts are followed by DESC, the key is read in reverse order. See Section 8.13.13, “ORDER BY Optimization”, and Section 8.13.14, “GROUP BY Optimization”.
In some cases, a query can be optimized to retrieve values without consulting the data rows. (An index that provides all the necessary results for a query is called a covering index.) If a query uses only columns from a table that are numeric and that form a leftmost prefix for some key, the selected values can be retrieved from the index tree for greater speed:
SELECT key_part3 FROM tbl_name
WHERE key_part1=1
Indexes are less important for queries on small tables, or big tables where report queries process most or all of the rows. When a query needs to access most of the rows, reading sequentially is faster than working through an index. Sequential reads minimize disk seeks, even if not all the rows are needed for the query. See Section 8.2.1.4, “How to Avoid Full Table Scans” for details.
8.3.2. Using Primary Keys
The primary key for a table represents the column or set of columns that you use in your most vital queries. It has an associated index, for fast query performance. Query performance benefits from the NOT NULL optimization, because it cannot include any NULL values. With the InnoDB storage engine, the table data is physically organized to do ultra-fast lookups and sorts based on the primary key column or columns.
If your table is big and important, but does not have an obvious column or set of columns to use as a primary key, you might create a separate column with auto-increment values to use as the primary key. These unique IDs can serve as pointers to corresponding rows in other tables when you join tables using foreign keys.
8.3.3. Using Foreign Keys
If a table has many columns, and you query many different combinations of columns, it might be efficient to split the less-frequently used data into separate tables with a few columns each, and relate them back to the main table by duplicating the numeric ID column from the main table. That way, each small table can have a primary key for fast lookups of its data, and you can query just the set of columns that you need using a join operation. Depending on how the data is distributed, the queries might perform less I/O and take up less cache memory because the relevant columns are packed together on disk. (To maximize performance, queries try to read as few data blocks as possible from disk; tables with only a few columns can fit more rows in each data block.)
8.3.4. Column Indexes
The most common type of index involves a single column, storing copies of the values from that column in a data structure, allowing fast lookups for the rows with the corresponding column values. The B-tree data structure lets the index quickly find a specific value, a set of values, or a range of values, corresponding to operators such as =, >, ≤, BETWEEN, IN, and so on, in a WHERE clause.
The maximum number of indexes per table and the maximum index length is defined per storage engine. See Chapter 14, Storage Engines. All storage engines support at least 16 indexes per table and a total index length of at least 256 bytes. Most storage engines have higher limits.
Prefix Indexes
With col_name(N) syntax in an index specification, you can create an index that uses only the first N characters of a string column. Indexing only a prefix of column values in this way can make the index file much smaller. When you index a BLOB or TEXT column, you must specify a prefix length for the index. For example:
CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));
Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables). Note that prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE statements is interpreted as number of characters. Be sure to take this into account when specifying a prefix length for a column that uses a multi-byte character set.
FULLTEXT Indexes
You can also create FULLTEXT indexes. These are used for full-text searches. Only the InnoDB and MyISAM storage engines support FULLTEXT indexes and only for CHAR, VARCHAR, and TEXT columns. Indexing always takes place over the entire column and column prefix indexing is not supported. For details, see Section 12.9, “Full-Text Search Functions”.
Optimizations are applied to certain kinds of FULLTEXT queries against single InnoDB tables. Queries with these characteristics are particularly efficient:
FULLTEXT queries that only return the document ID, or the document ID and the search rank.
FULLTEXT queries that sort the matching rows in descending order of score and apply a LIMIT clause to take the top N matching rows. For this optimization to apply, there must be no WHERE clauses and only a single ORDER BY clause in descending order.
FULLTEXT queries that retrieve only the COUNT(*) value of rows matching a search term, with no additional WHERE clauses. Code the WHERE clause as WHERE MATCH(text) AGAINST ('other_text'), without any > 0 comparison operator.
Spatial Indexes
You can also create indexes on spatial data types. Currently, only MyISAM supports R-tree indexes on spatial types. Other storage engines use B-trees for indexing spatial types (except for ARCHIVE, which does not support spatial type indexing).
Indexes in the MEMORY Storage Engine
The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.
8.3.5. Multiple-Column Indexes
MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist of up to 16 columns. For certain data types, you can index a prefix of the column (see Section 8.3.4, “Column Indexes”).
MySQL can use multiple-column indexes for queries that test all the columns in the index, or queries that test just the first column, the first two columns, the first three columns, and so on. If you specify the columns in the right order in the index definition, a single composite index can speed up several kinds of queries on the same table.
A multiple-column index can be considered a sorted array, the rows of which contain values that are created by concatenating the values of the indexed columns.
Note
As an alternative to a composite index, you can introduce a column that is “hashed” based on information from other columns. If this column is short, reasonably unique, and indexed, it might be faster than a “wide” index on many columns. In MySQL, it is very easy to use this extra column:
SELECT * FROM tbl_name
WHERE hash_col=MD5(CONCAT(val1,val2))
AND col1=val1 AND col2=val2;
Suppose that a table has the following specification:
CREATE TABLE test (
id INT NOT NULL,
last_name CHAR(30) NOT NULL,
first_name CHAR(30) NOT NULL,
PRIMARY KEY (id),
INDEX name (last_name,first_name)
);
The name index is an index over the last_name and first_name columns. The index can be used for lookups in queries that specify values in a known range for combinations of last_name and first_name values. It can also be used for queries that specify just a last_name value because that column is a leftmost prefix of the index (see Section 8.3.5, “Multiple-Column Indexes”). Therefore, the name index is used for lookups in the following queries:
SELECT * FROM test WHERE last_name='Widenius';
SELECT * FROM test
WHERE last_name='Widenius' AND first_name='Michael';
SELECT * FROM test
WHERE last_name='Widenius'
AND (first_name='Michael' OR first_name='Monty');
SELECT * FROM test
WHERE last_name='Widenius'
AND first_name >='M' AND first_name < 'N';
However, the name index is not used for lookups in the following queries:
SELECT * FROM test WHERE first_name='Michael';
SELECT * FROM test
WHERE last_name='Widenius' OR first_name='Michael';
Suppose that you issue the following SELECT statement:
mysql> SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;
If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly. If separate single-column indexes exist on col1 and col2, the optimizer attempts to use the Index Merge optimization (see Section 8.13.2, “Index Merge Optimization”), or attempts to find the most restrictive index by deciding which index excludes more rows and using that index to fetch the rows.
If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer to find rows. For example, if you have a three-column index on (col1, col2, col3), you have indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).
MySQL cannot use the index to perform lookups if the columns do not form a leftmost prefix of the index. Suppose that you have the SELECT statements shown here:
SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;
SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;
If an index exists on (col1, col2, col3), only the first two queries use the index. The third and fourth queries do involve indexed columns, but (col2) and (col2, col3) are not leftmost prefixes of (col1, col2, col3).
8.3.6. Verifying Index Usage
Always check whether all your queries really use the indexes that you have created in the tables. Use the EXPLAIN statement, as described in Section 8.8.1, “Optimizing Queries with EXPLAIN”.
8.3.7. InnoDB and MyISAM Index Statistics Collection
Storage engines collect statistics about tables for use by the optimizer. Table statistics are based on value groups, where a value group is a set of rows with the same key prefix value. For optimizer purposes, an important statistic is the average value group size.
MySQL uses the average value group size in the following ways:
To estimate how may rows must be read for each ref access
To estimate how many row a partial join will produce; that is, the number of rows that an operation of this form will produce:
(...) JOIN tbl_name ON tbl_name.key = expr
As the average value group size for an index increases, the index is less useful for those two purposes because the average number of rows per lookup increases: For the index to be good for optimization purposes, it is best that each index value target a small number of rows in the table. When a given index value yields a large number of rows, the index is less useful and MySQL is less likely to use it.
The average value group size is related to table cardinality, which is the number of value groups. The SHOW INDEX statement displays a cardinality value based on N/S, where N is the number of rows in the table and S is the average value group size. That ratio yields an approximate number of value groups in the table.
For a join based on the <=> comparison operator, NULL is not treated differently from any other value: NULL <=> NULL, just as N <=> N for any other N.
However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2 is not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons of the form tbl_name.key = expr: MySQL will not access the table if the current value of expr is NULL, because the comparison cannot be true.
For = comparisons, it does not matter how many NULL values are in the table. For optimization purposes, the relevant value is the average size of the non-NULL value groups. However, MySQL does not currently enable that average size to be collected or used.
For InnoDB and MyISAM tables, you have some control over collection of table statistics by means of the innodb_stats_method and myisam_stats_method system variables, respectively. These variables have three possible values, which differ as follows:
When the variable is set to nulls_equal, all NULL values are treated as identical (that is, they all form a single value group).
If the NULL value group size is much higher than the average non-NULL value group size, this method skews the average value group size upward. This makes index appear to the optimizer to be less useful than it really is for joins that look for non-NULL values. Consequently, the nulls_equal method may cause the optimizer not to use the index for ref accesses when it should.
When the variable is set to nulls_unequal, NULL values are not considered the same. Instead, each NULL value forms a separate value group of size 1.
If you have many NULL values, this method skews the average value group size downward. If the average non-NULL value group size is large, counting NULL values each as a group of size 1 causes the optimizer to overestimate the value of the index for joins that look for non-NULL values. Consequently, the nulls_unequal method may cause the optimizer to use this index for ref lookups when other methods may be better.
When the variable is set to nulls_ignored, NULL values are ignored.
If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons and one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.
The innodb_stats_method system variable has a global value; the myisam_stats_method system variable has both global and session values. Setting the global value affects statistics collection for tables from the corresponding storage engine. Setting the session value affects statistics collection only for the current client connection. This means that you can force a table's statistics to be regenerated with a given method without affecting other clients by setting the session value of myisam_stats_method.
To regenerate table statistics, you can use any of the following methods:
Change the table to cause its statistics to go out of date (for example, insert a row and then delete it), and then set myisam_stats_method and issue an ANALYZE TABLE statement
Some caveats regarding the use of innodb_stats_method and myisam_stats_method:
You can force table statistics to be collected explicitly, as just described. However, MySQL may also collect statistics automatically. For example, if during the course of executing statements for a table, some of those statements modify the table, MySQL may collect statistics. (This may occur for bulk inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statistics are collected using whatever value innodb_stats_method or myisam_stats_method has at the time. Thus, if you collect statistics using one method, but the system variable is set to the other method when a table's statistics are collected automatically later, the other method will be used.
There is no way to tell which method was used to generate statistics for a given table.
These variables apply only to InnoDB and MyISAM tables. Other storage engines have only one method for collecting table statistics. Usually it is closer to the nulls_equal method.
8.3.8. Comparison of B-Tree and Hash Indexes
Understanding the B-tree and hash data structures can help predict how different queries perform on different storage engines that use these data structures in their indexes, particularly for the MEMORY storage engine that lets you choose B-tree or hash indexes.
B-Tree Index Characteristics
A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is a constant string that does not start with a wildcard character. For example, the following SELECT statements use indexes:
SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';
In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In the second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.
The following SELECT statements do not use indexes:
SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;
In the first statement, the LIKE value begins with a wildcard character. In the second statement, the LIKE value is not a constant.
If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the Turbo Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform the search more quickly.
A search using col_name IS NULL employs indexes if col_name is indexed.
Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In other words, to be able to use an index, a prefix of the index must be used in every AND group.
The following WHERE clauses use indexes:
... WHERE index_part1=1 AND index_part2=2 AND other_column=3
/* index = 1 OR index = 2 */
... WHERE index=1 OR A=10 AND index=2
/* optimized like "index_part1='hello'" */
... WHERE index_part1='hello' AND index_part3=5
/* Can use index on index1 but not on index2 or index3 */
... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;
These WHERE clauses do not use indexes:
/* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2
/* Index is not used in both parts of the WHERE clause */
... WHERE index=1 OR A=10
/* No index spans all rows */
... WHERE index_part1=1 OR index_part2=10
Sometimes MySQL does not use an index, even if one is available. One circumstance under which this occurs is when the optimizer estimates that using the index would require MySQL to access a very large percentage of the rows in the table. (In this case, a table scan is likely to be much faster because it requires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the rows, MySQL uses an index anyway, because it can much more quickly find the few rows to return in the result.
Hash Index Characteristics
Hash indexes have somewhat different characteristics from those just discussed:
They are used only for equality comparisons that use the = or <=> operators (but are very fast). They are not used for comparison operators such as < that find a range of values. Systems that rely on this type of single-value lookup are known as “key-value stores”; to use MySQL for such applications, use hash indexes wherever possible.
The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot be used to search for the next entry in order.)
MySQL cannot determine approximately how many rows there are between two values (this is used by the range optimizer to decide which index to use). This may affect some queries if you change a MyISAM table to a hash-indexed MEMORY table.
Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key can be used to find rows.)
8.4. Optimizing Database Structure
In your role as a database designer, look for the most efficient way to organize your schemas, tables, and columns. As when tuning application code, you minimize I/O, keep related items together, and plan ahead so that performance stays high as the data volume increases. Starting with an efficient database design makes it easier for team members to write high-performing application code, and makes the database likely to endure as applications evolve and are rewritten.
8.4.1. Optimizing Data Size
Design your tables to minimize their space on the disk. This can result in huge improvements by reducing the amount of data written to and read from disk. Smaller tables normally require less main memory while their contents are being actively processed during query execution. Any space reduction for table data also results in smaller indexes that can be processed faster.
MySQL supports many different storage engines (table types) and row formats. For each table, you can decide which storage and indexing method to use. Choosing the proper table format for your application can give you a big performance gain. See Chapter 14, Storage Engines.
You can get better performance for a table and minimize storage space by using the techniques listed here:
Table Columns
Use the most efficient (smallest) data types possible. MySQL has many specialized types that save disk space and memory. For example, use the smaller integer types if possible to get smaller tables. MEDIUMINT is often a better choice than INT because a MEDIUMINT column uses 25% less space.
Declare columns to be NOT NULL if possible. It makes SQL operations faster, by enabling better use of indexes and eliminating overhead for testing whether each value is NULL. You also save some storage space, one bit per column. If you really need NULL values in your tables, use them. Just avoid the default setting that allows NULL values in every column.
Row Format
InnoDB tables use a compact storage format. In versions of MySQL earlier than 5.0.3, InnoDB rows contain some redundant information, such as the number of columns and the length of each column, even for fixed-size columns. By default, tables are created in the compact format (ROW_FORMAT=COMPACT). If you wish to downgrade to older versions of MySQL, you can request the old format with ROW_FORMAT=REDUNDANT.
The presence of the compact row format decreases row storage space by about 20% at the cost of increasing CPU use for some operations. If your workload is a typical one that is limited by cache hit rates and disk speed it is likely to be faster. If it is a rare case that is limited by CPU speed, it might be slower.
The compact InnoDB format also changes how CHAR columns containing UTF-8 data are stored. With ROW_FORMAT=REDUNDANT, a UTF-8 CHAR(N) occupies 3 × N bytes, given that the maximum length of a UTF-8 encoded character is three bytes. Many languages can be written primarily using single-byte UTF-8 characters, so a fixed storage length often wastes space. With ROW_FORMAT=COMPACT format, InnoDB allocates a variable amount of storage in the range from N to 3 × N bytes for these columns by stripping trailing spaces if necessary. The minimum storage length is kept as N bytes to facilitate in-place updates in typical cases.
To minimize space even further by storing table data in compressed form, specify ROW_FORMAT=COMPRESSED when creating InnoDB tables, or run the myisampack command on an existing MyISAM table. (InnoDB tables compressed tables are readable and writable, while MyISAM compressed tables are read-only.)
For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB columns), a fixed-size row format is used. This is faster but may waste some space. See Section 14.3.3, “MyISAM Table Storage Formats”. You can hint that you want to have fixed length rows even if you have VARCHAR columns with the CREATE TABLE option ROW_FORMAT=FIXED.
Indexes
The primary index of a table should be as short as possible. This makes identification of each row easy and efficient. For InnoDB tables, the primary key columns are duplicated in each secondary index entry, so a short primary key saves considerable space if you have many secondary indexes.
Create only the indexes that you need to improve query performance. Indexes are good for retrieval, but slow down insert and update operations. If you access a table mostly by searching on a combination of columns, create a single composite index on them rather than a separate index for each column. The first part of the index should be the column most used. If you always use many columns when selecting from the table, the first column in the index should be the one with the most duplicates, to obtain better compression of the index.
If it is very likely that a long string column has a unique prefix on the first number of characters, it is better to index only this prefix, using MySQL's support for creating an index on the leftmost part of the column (see Section 13.1.11, “CREATE INDEX Syntax”). Shorter indexes are faster, not only because they require less disk space, but because they also give you more hits in the index cache, and thus fewer disk seeks. See Section 8.11.2, “Tuning Server Parameters”.
Joins
In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is especially true if it is a dynamic-format table and it is possible to use a smaller static format table that can be used to find the relevant rows when scanning the table.
Declare columns with identical information in different tables with identical data types, to speed up joins based on the corresponding columns.
Keep column names simple, so that you can use the same name across different tables and simplify join queries. For example, in a table named customer, use a column name of name instead of customer_name. To make your names portable to other SQL servers, consider keeping them shorter than 18 characters.
Normalization
Normally, try to keep all data nonredundant (observing what is referred to in database theory as third normal form). Instead of repeating lengthy values such as names and addresses, assign them unique IDs, repeat these IDs as needed across multiple smaller tables, and join the tables in queries by referencing the IDs in the join clause.
If speed is more important than disk space and the maintenance costs of keeping multiple copies of data, for example in a business intelligence scenario where you analyze all the data from large tables, you can relax the normalization rules, duplicating information or creating summary tables to gain more speed.
8.4.2. Optimizing MySQL Data Types
8.4.2.1. Optimizing for Numeric Data
For unique IDs or other values that can be represented as either strings or numbers, prefer numeric columns to string columns. Since large numeric values can be stored in fewer bytes than the corresponding strings, it is faster and takes less memory to transfer and compare them.
If you are using numeric data, it is faster in many cases to access information from a database (using a live connection) than to access a text file. Information in the database is likely to be stored in a more compact format than in the text file, so accessing it involves fewer disk accesses. You also save code in your application because you can avoid parsing the text file to find line and column boundaries.
8.4.2.2. Optimizing for Character and String Types
For character and string columns, follow these guidelines:
Use binary collation order for fast comparison and sort operations, when you do not need language-specific collation features. You can use the BINARY operator to use binary collation within a particular query.
When comparing values from different columns, declare those columns with the same character set and collation wherever possible, to avoid string conversions while running the query.
For column values less than 8KB in size, use binary VARCHAR instead of BLOB. The GROUP BY and ORDER BY clauses can generate temporary tables, and these temporary tables can use the MEMORY storage engine if the original table does not contain any BLOB columns.
If a table contains string columns such as name and address, but many queries do not retrieve those columns, consider splitting the string columns into a separate table and using join queries with a foreign key when necessary. When MySQL retrieves any value from a row, it reads a data block containing all the columns of that row (and possibly other adjacent rows). Keeping each row small, with only the most frequently used columns, allows more rows to fit in each data block. Such compact tables reduce disk I/O and memory usage for common queries.
When you use a randomly generated value as a primary key in an InnoDB table, prefix it with an ascending value such as the current date and time if possible. When consecutive primary values are physically stored near each other, InnoDB can insert and retrieve them faster.
See Section 8.4.2.1, “Optimizing for Numeric Data” for reasons why a numeric column is usually preferable to an equivalent string column.
8.4.2.3. Optimizing for BLOB Types
When storing a large blob containing textual data, consider compressing it first. Do not use this technique when the entire table is compressed by InnoDB or MyISAM.
For a table with several columns, to reduce memory requirements for queries that do not use the BLOB column, consider splitting the BLOB column into a separate table and referencing it with a join query when needed.
Since the performance requirements to retrieve and display a BLOB value might be very different from other data types, you could put the BLOB-specific table on a different storage device or even a separate database instance. For example, to retrieve a BLOB might require a large sequential disk read that is better suited to a traditional hard drive than to an SSD device.
See Section 8.4.2.2, “Optimizing for Character and String Types” for reasons why a binary VARCHAR column is sometimes preferable to an equivalent BLOB column.
Rather than testing for equality against a very long text string, you can store a hash of the column value in a separate column, index that column, and test the hashed value in queries. (Use the MD5() or CRC32() function to produce the hash value.) Since hash functions can produce duplicate results for different inputs, you still include a clause AND blob_column = long_string_value in the query to guard against false matches; the performance benefit comes from the smaller, easily scanned index for the hashed values.
8.4.2.4. Using PROCEDURE ANALYSE
ANALYSE([max_elements[,max_memory]])
ANALYSE() examines the result from a query and returns an analysis of the results that suggests optimal data types for each column that may help reduce table sizes. To obtain this analysis, append PROCEDURE ANALYSE to the end of a SELECT statement:
SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max_elements,[max_memory]])
For example:
SELECT col1, col2 FROM table1 PROCEDURE ANALYSE(10, 2000);
The results show some statistics for the values returned by the query, and propose an optimal data type for the columns. This can be helpful for checking your existing tables, or after importing new data. You may need to try different settings for the arguments so that PROCEDURE ANALYSE() does not suggest the ENUM data type when it is not appropriate.
The arguments are optional and are used as follows:
max_elements (default 256) is the maximum number of distinct values that ANALYSE() notices per column. This is used by ANALYSE() to check whether the optimal data type should be of type ENUM; if there are more than max_elements distinct values, then ENUM is not a suggested type.
max_memory (default 8192) is the maximum amount of memory that ANALYSE() should allocate per column while trying to find all distinct values.
8.4.3. Optimizing for Many Tables
Some techniques for keeping individual queries fast involve splitting data across many tables. When the number of tables runs into the thousands or even millions, the overhead of dealing with all these tables becomes a new performance consideration.
8.4.3.1. How MySQL Opens and Closes Tables
When you execute a mysqladmin status command, you should see something like this:
Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12
The Open tables value of 12 can be somewhat puzzling if you have only six tables.
MySQL is multi-threaded, so there may be many clients issuing queries for a given table simultaneously. To minimize the problem with multiple client sessions having different states on the same table, the table is opened independently by each concurrent session. This uses additional memory but normally increases performance. With MyISAM tables, one extra file descriptor is required for the data file for each client that has the table open. (By contrast, the index file descriptor is shared between all sessions.)
The table_open_cache and max_connections system variables affect the maximum number of files the server keeps open. If you increase one or both of these values, you may run up against a limit imposed by your operating system on the per-process number of open file descriptors. Many operating systems permit you to increase the open-files limit, although the method varies widely from system to system. Consult your operating system documentation to determine whether it is possible to increase the limit and how to do so.
table_open_cache is related to max_connections. For example, for 200 concurrent running connections, specify a table cache size of at least 200 * N, where N is the maximum number of tables per join in any of the queries which you execute. You must also reserve some extra file descriptors for temporary tables and files.
Make sure that your operating system can handle the number of open file descriptors implied by the table_open_cache setting. If table_open_cache is set too high, MySQL may run out of file descriptors and refuse connections, fail to perform queries, and be very unreliable. You also have to take into account that the MyISAM storage engine needs two file descriptors for each unique open table. You can increase the number of file descriptors available to MySQL using the --open-files-limit startup option to mysqld. See Section C.5.2.18, “'File' Not Found and Similar Errors”.
The cache of open tables is kept at a level of table_open_cache entries. The default value is 400; this can be changed with the --table_open_cache option to mysqld. Note that MySQL may temporarily open more tables than this to execute queries.
MySQL closes an unused table and removes it from the table cache under the following circumstances:
When the cache is full and a thread tries to open a table that is not in the cache.
When the cache contains more than table_open_cache entries and a table in the cache is no longer being used by any threads.
When a table flushing operation occurs. This happens when someone issues a FLUSH TABLES statement or executes a mysqladmin flush-tables or mysqladmin refresh command.
When the table cache fills up, the server uses the following procedure to locate a cache entry to use:
Tables that are not currently in use are released, beginning with the table least recently used.
If a new table needs to be opened, but the cache is full and no tables can be released, the cache is temporarily extended as necessary. When the cache is in a temporarily extended state and a table goes from a used to unused state, the table is closed and released from the cache.
A MyISAM table is opened for each concurrent access. This means the table needs to be opened twice if two threads access the same table or if a thread accesses the table twice in the same query (for example, by joining the table to itself). Each concurrent open requires an entry in the table cache. The first open of any MyISAM table takes two file descriptors: one for the data file and one for the index file. Each additional use of the table takes only one file descriptor for the data file. The index file descriptor is shared among all threads.
If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object is allocated for the thread. This table object is not shared by other threads and is not closed until the thread calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the table is put back in the table cache (if the cache is not full). See Section 13.2.4, “HANDLER Syntax”.
You can determine whether your table cache is too small by checking the mysqld status variable Opened_tables, which indicates the number of table-opening operations since the server started:
mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741 |
+---------------+-------+
If the value is very large or increases rapidly, even when you have not issued many FLUSH TABLES statements, increase the table cache size. See Section 5.1.4, “Server System Variables”, and Section 5.1.6, “Server Status Variables”.
8.4.3.2. Disadvantages of Creating Many Tables in the Same Database
If you have many MyISAM tables in the same database directory, open, close, and create operations are slow. If you execute SELECT statements on many different tables, there is a little overhead when the table cache is full, because for every table that has to be opened, another must be closed. You can reduce this overhead by increasing the number of entries permitted in the table cache.
8.4.3.3. How MySQL Uses Internal Temporary Tables
In some cases, the server creates internal temporary tables while processing queries. Such a table can be held in memory and processed by the MEMORY storage engine, or stored on disk and processed by the MyISAM storage engine. The server may create a temporary table initially as an in-memory table, then convert it to an on-disk table if it becomes too large. Users have no direct control over when the server creates an internal temporary table or which storage engine the server uses to manage it.
Temporary tables can be created under conditions such as these:
If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY contains columns from tables other than the first table in the join queue, a temporary table is created.
DISTINCT combined with ORDER BY may require a temporary table.
If you use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table, unless the query also contains elements (described later) that require on-disk storage.
Derived tables (subqueries in the FROM clause).
Tables created for subquery or semi-join materialization.
To determine whether a query requires a temporary table, use EXPLAIN and check the Extra column to see whether it says Using temporary. See Section 8.8.1, “Optimizing Queries with EXPLAIN”. EXPLAIN will not necessarily say Using temporary for derived or materialized temporary tables.
Some conditions prevent the use of an in-memory temporary table, in which case the server uses an on-disk table instead:
Presence of any column in a GROUP BY or DISTINCT clause larger than 512 bytes
Presence of any column larger than 512 bytes in the SELECT list, if UNION or UNION ALL is used
If an internal temporary table is created initially as an in-memory table but becomes too large, MySQL automatically converts it to an on-disk table. The maximum size for in-memory temporary tables is the minimum of the tmp_table_size and max_heap_table_size values. This differs from MEMORY tables explicitly created with CREATE TABLE: For such tables, the max_heap_table_size system variable determines how large the table is permitted to grow and there is no conversion to on-disk format.
When the server creates an internal temporary table (either in memory or on disk), it increments the Created_tmp_tables status variable. If the server creates the table on disk (either initially or by converting an in-memory table) it increments the Created_tmp_disk_tables status variable.
8.5. Optimizing for InnoDB Tables
InnoDB is the storage engine that MySQL customers typically use in production databases where reliability and concurrency are important. Because InnoDB is the default storage engine in MySQL 5.5 and higher, you can expect to see InnoDB tables more often than before. This section explains how to optimize database operations for InnoDB tables.
8.5.1. Optimizing Storage Layout for InnoDB Tables
Once your data reaches a stable size, or a growing table has increased by tens or some hundreds of megabytes, consider using the OPTIMIZE TABLE statement to reorganize the table and compact any wasted space. The reorganized tables require less disk I/O to perform full table scans. This is a straightforward technique that can improve performance when other techniques such as improving index usage or tuning application code are not practical.
OPTIMIZE TABLE copies the data part of the table and rebuilds the indexes. The benefits come from improved packing of data within indexes, and reduced fragmentation within the tablespaces and on disk. The benefits vary depending on the data in each table. You may find that there are significant gains for some and not for others, or that the gains decrease over time until you next optimize the table. This operation can be slow if the table is large or if the indexes being rebuilt don't fit into the buffer pool. The first run after adding a lot of data to a table is often much slower than later runs.
In InnoDB, having a long PRIMARY KEY (either a single column with a lengthy value, or several columns that form a long composite value) wastes a lot of disk space. The primary key value for a row is duplicated in all the secondary index records that point to the same row. (See Section 14.2.3.12, “InnoDB Table and Index Structures”.) Create an AUTO_INCREMENT column as the primary key if your primary key is long, or index a prefix of a long VARCHAR column instead of the entire column.
Use the VARCHAR data type instead of CHAR to store variable-length strings or for columns with many NULL values. A CHAR(N) column always takes N characters to store data, even if the string is shorter or its value is NULL. Smaller tables fit better in the buffer pool and reduce disk I/O.
When using COMPACT row format (the default InnoDB format in MySQL 5.6) and variable-length character sets, such as utf8 or sjis, CHAR(N) columns occupy a variable amount of space, but still at least N bytes.
For tables that are big, or contain lots of repetitive text or numeric data, consider using COMPRESSED row format. Less disk I/O is required to bring data into the buffer pool, or to perform full table scans. Before making a permanent decision, measure the amount of compression you can achieve by using COMPRESSED versus COMPACT row format.
8.5.2. Optimizing InnoDB Transaction Management
To optimize InnoDB transaction processing, find the ideal balance between the performance overhead of transactional features and the workload of your server. For example, an application might encounter performance issues if it commits thousands of times per second, and different performance issues if it commits only every 2-3 hours.
The default MySQL setting AUTOCOMMIT=1 can impose performance limitations on a busy database server. Where practical, wrap several related DML operations into a single transaction, by issuing SET AUTOCOMMIT=0 or a START TRANSACTION statement, followed by a COMMIT statement after making all the changes.
InnoDB must flush the log to disk at each transaction commit if that transaction made modifications to the database. When each change is followed by a commit (as with the default autocommit setting), the I/O throughput of the storage device puts a cap on the number of potential operations per second.
Alternatively, for transactions that consist only of a single SELECT statement, turning on AUTOCOMMIT helps InnoDB to recognize read-only transactions and optimizate them. See Section 14.2.4.2.3, “Optimizations for Read-Only Transactions” for requirements.
Avoid performing rollbacks after inserting, updating, or deleting huge numbers of rows. If a big transaction is slowing down server performance, rolling it back can make the problem worse, potentially taking several times as long to perform as the original DML operations. Killing the database process does not help, because the rollback starts again on server startup.
To minimize the chance of this issue occurring: increase the size of the buffer pool so that all the DML changes can be cached rather than immediately written to disk; set innodb_change_buffering=all so that update and delete operations are buffered in addition to inserts; and consider issuing COMMIT statements periodically during the big DML operation, possibly breaking a single delete or update into multiple statements that operate on smaller numbers of rows.
To get rid of a runaway rollback once it occurs, increase the buffer pool so that the rollback becomes CPU-bound and runs fast, or kill the server and restart with innodb_force_recovery=3, as explained in Section 14.2.3.13, “The InnoDB Recovery Process”.
This issue is expected to be less prominent in MySQL 5.5 and up, or in MySQL 5.1 with the InnoDB Plugin, because the default setting innodb_change_buffering=all allows update and delete operations to be cached in memory, making them faster to perform in the first place, and also faster to roll back if needed. Make sure to use this parameter setting on servers that process long-running transactions with many inserts, updates, or deletes.
If you can afford the loss of some of the latest committed transactions if a crash occurs, you can set the innodb_flush_log_at_trx_commit parameter to 0. InnoDB tries to flush the log once per second anyway, although the flush is not guaranteed. Also, set the value of innodb_support_xa to 0, which will reduce the number of disk flushes due to synchronizing on disk data and the binary log.
When rows are modified or deleted, the rows and associated undo logs are not physically removed immediately, or even immediately after the transaction commits. The old data is preserved until transactions that started earlier or concurrently are finished, so that those transactions can access the previous state of modified or deleted rows. Thus, a long-running transaction can prevent InnoDB from purging data that was changed by a different transaction.
When rows are modified or deleted within a long-running transaction, other transactions using the READ COMMITTED and REPEATABLE READ isolation levels have to do more work to reconstruct the older data if they read those same rows.
When a long-running transaction modifies a table, queries against that table from other transactions do not make use of the covering index technique. Queries that normally could retrieve all the result columns from a secondary index, instead look up the appropriate values from the table data.
8.5.3. Optimizing InnoDB Logging
Make your log files big, even as big as the buffer pool. When InnoDB has written the log files full, it must write the modified contents of the buffer pool to disk in a checkpoint. Small log files cause many unnecessary disk writes. Although historically big log files caused lengthy recovery times, recovery is now much faster and you can confidently use large log files.
Make the log buffer quite large as well (on the order of 8MB).
8.5.4. Bulk Data Loading for InnoDB Tables
These performance tips supplement the general guidelines for fast inserts in Section 8.2.2.1, “Speed of INSERT Statements”.
When importing data into InnoDB, turn off autocommit mode, because it performs a log flush to disk for every insert. To disable autocommit during your import operation, surround it with SET autocommit and COMMIT statements:
SET autocommit=0;... SQL import statements ...
COMMIT;
The mysqldump option --opt creates dump files that are fast to import into an InnoDB table, even without wrapping them with the SET autocommit and COMMIT statements.
If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily turning off the uniqueness checks during the import session:
SET unique_checks=0;... SQL import statements ...
SET unique_checks=1;
For big tables, this saves a lot of disk I/O because InnoDB can use its insert buffer to write secondary index records in a batch. Be certain that the data contains no duplicate keys.
If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning off the foreign key checks for the duration of the import session:
SET foreign_key_checks=0;... SQL import statements ...
SET foreign_key_checks=1;
For big tables, this can save a lot of disk I/O.
Use the multiple-row INSERT syntax to reduce communication overhead between the client and the server if you need to insert many rows:
INSERT INTO yourtable VALUES (1,2), (5,5), ...;
This tip is valid for inserts into any table, not just InnoDB tables.
When doing bulk inserts into tables with auto-increment columns, set innodb_autoinc_lock_mode to 2 instead of the default value 1. See Section 5.4.4.2, “Configurable InnoDB Auto-Increment Locking” for details.
For optimal performance when loading data into an InnoDB FULLTEXT index, follow this set of steps:
Define a column FTS_DOC_ID at table creation time, of type BIGINT UNSIGNED NOT NULL, with a unique index named FTS_DOC_ID_INDEX.
Load the data into the table.
Create the FULLTEXT index after the data is loaded.
8.5.5. Optimizing InnoDB Queries
To tune queries for InnoDB tables, create an appropriate set of indexes on each table. See Section 8.3.1, “How MySQL Uses Indexes” for details. Follow these guidelines for InnoDB indexes:
Because each InnoDB table has a primary key (whether you request one or not), specify a set of primary key columns for each table, columns that are used in the most important and time-critical queries.
Do not specify too many or too long columns in the primary key, because these column values are duplicated in each secondary index. When an index contains unnecessary data, the I/O to read this data and memory to cache it reduce the performance and scalability of the server.
Do not create a separate secondary index for each column, because each query can only make use of one index. Indexes on rarely tested columns or columns with only a few different values might not be helpful for any queries. If you have many queries for the same table, testing different combinations of columns, try to create a small number of concatenated indexes rather than a large number of single-column indexes. If an index contains all the columns needed for the result set (known as a covering index), the query might be able to avoid reading the table data at all.
If an indexed column cannot contain any NULL values, declare it as NOT NULL when you create the table. The optimizer can better determine which index is most effective to use for a query, when it knows whether each column contains NULL values or not.
In MySQL 5.6.4 and higher, you can optimize single-query transactions for InnoDB tables, using the technique in Section 14.2.4.2.3, “Optimizations for Read-Only Transactions”.
If you often have recurring queries for tables that are not updated frequently, enable the query cache:
[mysqld]
query_cache_type = 1
query_cache_size = 10M
8.5.6. Optimizing InnoDB DDL Operations
For DDL operations on tables and indexes (CREATE, ALTER, and DROP statements), the most significant aspect for InnoDB tables is that creating and dropping secondary indexes is much faster in MySQL 5.5 and higher, than in MySQL 5.1 and before. See Fast Index Creation in the InnoDB Storage Engine for details.
“Fast index creation” makes it faster in some cases to drop an index before loading data into a table, then re-create the index after loading the data.
Use TRUNCATE TABLE to empty a table, not DELETE FROM tbl_name. Foreign key constraints can make a TRUNCATE statement work like a regular DELETE statement, in which case a sequence of commands like DROP TABLE and CREATE TABLE might be fastest.
Because the primary key is integral to the storage layout of each InnoDB table, and changing the definition of the primary key involves reorganizing the whole table, always set up the primary key as part of the CREATE TABLE statement, and plan ahead so that you do not need to ALTER or DROP the primary key afterward.
8.5.7. Optimizing InnoDB Disk I/O
If you follow the best practices for database design and the tuning techniques for SQL operations, but your database is still slowed by heavy disk I/O activity, explore these low-level techniques related to disk I/O. If the Unix top tool or the Windows Task Manager shows that the CPU usage percentage with your workload is less than 70%, your workload is probably disk-bound.
When table data is cached in the InnoDB buffer pool, it can be processed over and over by queries without requiring any disk I/O. Specify the size of the buffer pool with the innodb_buffer_pool_size option. This memory area is important enough that busy databases often specify a size approximately 80% of the amount of physical memory. For more information, see Section 8.9.1, “The InnoDB Buffer Pool”.
In some versions of GNU/Linux and Unix, flushing files to disk with the Unix fsync() call (which InnoDB uses by default) and similar methods is surprisingly slow. If database write performance is an issue, conduct benchmarks with the innodb_flush_method parameter set to O_DSYNC.
When using the InnoDB storage engine on Solaris 10 for x86_64 architecture (AMD Opteron), use direct I/O for InnoDB-related files, to avoid degradation of InnoDB performance. To use direct I/O for an entire UFS file system used for storing InnoDB-related files, mount it with the forcedirectio option; see mount_ufs(1M). (The default on Solaris 10/x86_64 is not to use this option.) To apply direct I/O only to InnoDB file operations rather than the whole file system, set innodb_flush_method = O_DIRECT. With this setting, InnoDB calls directio() instead of fcntl() for I/O to data files (not for I/O to log files).
When using the InnoDB storage engine with a large innodb_buffer_pool_size value on any release of Solaris 2.6 and up and any platform (sparc/x86/x64/amd64), conduct benchmarks with InnoDB data files and log files on raw devices or on a separate direct I/O UFS file system, using the forcedirectio mount option as described earlier. (It is necessary to use the mount option rather than setting innodb_flush_method if you want direct I/O for the log files.) Users of the Veritas file system VxFS should use the convosync=direct mount option.
Do not place other MySQL data files, such as those for MyISAM tables, on a direct I/O file system. Executables or libraries must not be placed on a direct I/O file system.
If you have additional storage devices available to set up a RAID configuration or symbolic links to different disks, Section 8.11.3, “Optimizing Disk I/O” for additional low-level I/O tips.
If throughput drops periodically because of InnoDB checkpoint operations, consider increasing the value of the innodb_io_capacity configuration option. Higher values cause more frequent flushing, avoiding the backlog of work that can cause dips in throughput.
If the system is not falling behind with InnoDB flushing operations, consider lowering the value of the innodb_io_capacity configuration option. Typically, you keep this option value as low as practical, but not so low that it causes periodic drops in throughput as mentioned in the preceding bullet. In a typical scenario where you could lower the option value, you might see a combination like this in the output from SHOW ENGINE INNODB STATUS:
History list length low, below a few thousand.
Insert buffer merges close to rows inserted.
Modified pages in buffer pool consistently well below innodb_max_dirty_pages_pct of the buffer pool. (Measure at a time when the server is not doing bulk inserts; it is normal during bulk inserts for the modified pages percentage to rise significantly.)
Log sequence number - Last checkpoint is at less than 7/8 or ideally less than 6/8 of the total size of the InnoDB log files.
Other InnoDB configuration options to consider when tuning I/O-bound workloads include innodb_adaptive_flushing, innodb_change_buffer_max_size, innodb_change_buffering, innodb_flush_neighbors, innodb_log_buffer_size, innodb_log_file_size, innodb_lru_scan_depth, innodb_max_dirty_pages_pct, innodb_max_purge_lag, innodb_open_files, innodb_page_size, innodb_random_read_ahead, innodb_read_ahead_threshold, innodb_read_io_threads, innodb_rollback_segments, innodb_write_io_threads, and sync_binlog.
8.5.8. Optimizing InnoDB Configuration Variables
Different settings work best for servers with light, predictable loads, versus servers that are running near full capacity all the time, or that experience spikes of high activity.
Because the InnoDB storage engine performs many of its optimizations automatically, many performance-tuning tasks involve monitoring to ensure that the database is performing well, and changing configuration options when performance drops. See Section 14.2.4.2.26, “Integration with the MySQL Performance Schema” for information about detailed InnoDB performance monitoring.
For information about the most important and most recent InnoDB performance features, see Section 14.2.4.2, “InnoDB Performance and Scalability Enhancements”. Even if you have used InnoDB tables in prior versions, these features might be new to you, because they are from the “InnoDB Plugin”. The Plugin co-existed alongside the built-in InnoDB in MySQL 5.1, and becomes the default storage engine in MySQL 5.5 and higher.
The main configuration steps you can perform include:
Enabling InnoDB to use high-performance memory allocators on systems that include them. See Section 14.2.4.2.12, “Using Operating System Memory Allocators”.
Controlling the types of DML operations for which InnoDB buffers the changed data, to avoid frequent small disk writes. See Section 14.2.4.2.13, “Controlling InnoDB Change Buffering”. Because the default is to buffer all types of DML operations, only change this setting if you need to reduce the amount of buffering.
Turning the adaptive hash indexing feature on and off. See Section 14.2.4.2.14, “Controlling Adaptive Hash Indexing”. You might change this setting during periods of unusual activity, then restore it to its original setting.
Setting a limit on the number of concurrent threads that InnoDB processes, if context switching is a bottleneck. See Section 14.2.4.2.15, “Changes Regarding Thread Concurrency”.
Controlling the amount of prefetching that InnoDB does with its read-ahead operations. When the system has unused I/O capacity, more read-ahead can improve the performance of queries. Too much read-ahead can cause periodic drops in performance on a heavily loaded system. See Section 14.2.4.2.16, “Changes in the Read-Ahead Algorithm”.
Increasing the number of background threads for read or write operations, if you have a high-end I/O subsystem that is not fully utilized by the default values. See Section 14.2.4.2.17, “Multiple Background InnoDB I/O Threads”.
Controlling how much I/O InnoDB performs in the background. See Section 14.2.4.2.20, “Controlling the InnoDB Master Thread I/O Rate”. The amount of background I/O is higher than in MySQL 5.1, so you might scale back this setting if you observe periodic drops in performance.
Controlling the algorithm that determines when InnoDB performs certain types of background writes. See Section 14.2.4.2.21, “Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool”. The algorithm works for some types of workloads but not others, so might turn off this setting if you observe periodic drops in performance.
Taking advantage of multicore processors and their cache memory configuration, to minimize delays in context switching. See Section 14.2.4.2.23, “Control of Spin Lock Polling”.
Preventing one-time operations such as table scans from interfering with the frequently accessed data stored in the InnoDB buffer cache. See Section 14.2.4.2.24, “Making the Buffer Pool Scan Resistant”.
Adjusting your log files to a size that makes sense for reliability and crash recovery. See Section 14.2.4.2.25, “Improvements to Crash Recovery Performance”. Historically, people have kept their InnoDB log files small to avoid long startup times after a crash. Internal improvements in InnoDB make startup much faster, so the log file size is not such a performance factor anymore. If your log files are artificially small, increasing the size can help performance by reducing the I/O that occurs as redo log records are recycled.
Configuring the size and number of instances for the InnoDB buffer pool, especially important for systems with multi-gigabyte buffer pools. See Section 14.2.4.2.27, “Improvements to Performance from Multiple Buffer Pools”.
Increasing the maximum number of concurrent transactions, which dramatically improves scalability for the busiest databases. See Section 14.2.4.2.28, “Better Scalability with Multiple Rollback Segments”. Although this feature does not require any action during day-to-day operation, you must perform a slow shutdown during or after upgrading the database to MySQL 5.5 to enable the higher limit.
Moving purge operations (a type of garbage collection) into a background thread. See Section 14.2.4.2.29, “Better Scalability with Improved Purge Scheduling”. To effectively measure the results of this setting, tune the other I/O-related and thread-related configuration settings first.
Reducing the amount of switching that InnoDB does between concurrent threads, so that SQL operations on a busy server do not queue up and form a “traffic jam”. Set a value for the innodb_thread_concurrency option, up to approximately 32 for a high-powered modern system. Increase the value for the innodb_concurrency_tickets option, typically to 5000 or so, This combination of options sets a cap on the number of threads that InnoDB processes at any one time, and allows each thread to do substantial work before being swapped out, so that the number of waiting threads stays low and operations can complete without excessive context switching.
8.5.9. Optimizing InnoDB for Systems with Many Tables
InnoDB computes index cardinality values for a table the first time that table is accessed after startup, instead of storing such values in the table. This step can take significant time on systems that partition the data into many tables. Since this overhead only applies to the initial table open operation, to “warm up” a table for later use, access it immediately after startup by issuing a statement such as SELECT 1 FROM tbl_name LIMIT 1.
8.6. Optimizing for MyISAM Tables
The MyISAM storage engine performs best with read-mostly data or with low-concurrency operations, because table locks limit the ability to perform simultaneous updates. In MySQL 5.6, InnoDB is the default storage engine rather than MyISAM.
8.6.1. Optimizing MyISAM Queries
Some general tips for speeding up queries on MyISAM tables:
To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze on a table after it has been loaded with data. This updates a value for each index part that indicates the average number of rows that have the same value. (For unique indexes, this is always 1.) MySQL uses this to decide which index to choose when you join two tables based on a nonconstant expression. You can check the result from the table analysis by using SHOW INDEX FROM tbl_name and examining the Cardinality value. myisamchk --description --verbose shows index distribution information.
To sort an index and data according to an index, use myisamchk --sort-index --sort-records=1 (assuming that you want to sort on index 1). This is a good way to make queries faster if you have a unique index from which you want to read all rows in order according to the index. The first time you sort a large table this way, it may take a long time.
Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid problems with table locking that occur due to contention between readers and writers.
MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can INSERT new rows into it at the same time that other threads are reading from the table. If it is important to be able to do this, consider using the table in ways that avoid deleting rows. Another possibility is to run OPTIMIZE TABLE to defragment the table after you have deleted a lot of rows from it. This behavior is altered by setting the concurrent_insert variable. You can force new rows to be appended (and therefore permit concurrent inserts), even in tables that have deleted rows. See Section 8.10.3, “Concurrent Inserts”.
For MyISAM tables that change frequently, try to avoid all variable-length columns (VARCHAR, BLOB, and TEXT). The table uses dynamic row format if it includes even a single variable-length column. See Chapter 14, Storage Engines.
It is normally not useful to split a table into different tables just because the rows become large. In accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row. After finding the data, most modern disks can read the entire row fast enough for most applications. The only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table using dynamic row format that you can change to a fixed row size, or if you very often need to scan the table but do not need most of the columns. See Chapter 14, Storage Engines.
Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1, expr2, ... order. By using this option after extensive changes to the table, you may be able to get higher performance.
If you often need to calculate results such as counts based on information from a lot of rows, it may be preferable to introduce a new table and update the counter in real time. An update of the following form is very fast:
UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;
This is very important when you use MySQL storage engines such as MyISAM that has only table-level locking (multiple readers with single writers). This also gives better performance with most database systems, because the row locking manager in this case has less to do.
Use INSERT DELAYED for MyISAM (or other supported nontransactional tables) when you do not need to know when your data is written. This reduces the overall insertion impact because many rows can be written with a single disk write.
Note
As of MySQL 5.6.6, INSERT DELAYED is deprecated, and will be removed in a future release. Use INSERT (without DELAYED) instead.
Use OPTIMIZE TABLE periodically to avoid fragmentation with dynamic-format MyISAM tables. See Section 14.3.3, “MyISAM Table Storage Formats”.
Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster because they are not flushed to disk until the table is closed. The downside is that if something kills the server while such a table is open, you must ensure that the table is okay by running the server with the --myisam-recover-options option, or by running myisamchk before restarting the server. (However, even in this case, you should not lose anything by using DELAY_KEY_WRITE, because the key information can always be generated from the data rows.)
Strings are automatically prefix- and end-space compressed in MyISAM indexes. See Section 13.1.11, “CREATE INDEX Syntax”.
You can increase performance by caching queries or answers in your application and then executing many inserts or updates together. Locking the table during this operation ensures that the index cache is only flushed once after all updates. You can also take advantage of MySQL's query cache to achieve similar results; see Section 8.9.3, “The MySQL Query Cache”.
8.6.2. Bulk Data Loading for MyISAM Tables
These performance tips supplement the general guidelines for fast inserts in Section 8.2.2.1, “Speed of INSERT Statements”.
To improve performance when multiple clients insert a lot of rows, use the INSERT DELAYED statement. See Section 13.2.5.2, “INSERT DELAYED Syntax”. This technique works for MyISAM and some other storage engines, but not InnoDB.
Note
As of MySQL 5.6.6, INSERT DELAYED is deprecated, and will be removed in a future release. Use INSERT (without DELAYED) instead.
For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT statements are running, if there are no deleted rows in middle of the data file. See Section 8.10.3, “Concurrent Inserts”.
With some extra work, it is possible to make LOAD DATA INFILE run even faster for a MyISAM table when the table has many indexes. Use the following procedure:
Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.
Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name to remove all use of indexes for the table.
Insert data into the table with LOAD DATA INFILE. This does not update any indexes and therefore is very fast.
If you intend only to read from the table in the future, use myisampack to compress it. See Section 14.3.3.3, “Compressed Table Characteristics”.
Re-create the indexes with myisamchk -rq /path/to/db/tbl_name. This creates the index tree in memory before writing it to disk, which is much faster that updating the index during LOAD DATA INFILE because it avoids lots of disk seeks. The resulting index tree is also perfectly balanced.
Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.
LOAD DATA INFILE performs the preceding optimization automatically if the MyISAM table into which you insert data is empty. The main difference between automatic optimization and using the procedure explicitly is that you can let myisamchk allocate much more temporary memory for the index creation than you might want the server to allocate for index re-creation when it executes the LOAD DATA INFILE statement.
You can also disable or enable the nonunique indexes for a MyISAM table by using the following statements rather than myisamchk. If you use these statements, you can skip the FLUSH TABLE operations:
ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;
To speed up INSERT operations that are performed with multiple statements for nontransactional tables, lock your tables:
LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
...
UNLOCK TABLES;
This benefits performance because the index buffer is flushed to disk only once, after all INSERT statements have completed. Normally, there would be as many index buffer flushes as there are INSERT statements. Explicit locking statements are not needed if you can insert all rows with a single INSERT.
Locking also lowers the total time for multiple-connection tests, although the maximum wait time for individual connections might go up because they wait for locks. Suppose that five clients attempt to perform inserts simultaneously as follows:
Connection 1 does 1000 inserts
Connections 2, 3, and 4 do 1 insert
Connection 5 does 1000 inserts
If you do not use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking, connections 2, 3, and 4 probably do not finish before 1 or 5, but the total time should be about 40% faster.
INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better overall performance by adding locks around everything that does more than about five successive inserts or updates. If you do very many successive inserts, you could do a LOCK TABLES followed by an UNLOCK TABLES once in a while (each 1,000 rows or so) to permit other threads to access table. This would still result in a nice performance gain.
INSERT is still much slower for loading data than LOAD DATA INFILE, even when using the strategies just outlined.
To increase performance for MyISAM tables, for both LOAD DATA INFILE and INSERT, enlarge the key cache by increasing the key_buffer_size system variable. See Section 8.11.2, “Tuning Server Parameters”.
8.6.3. Speed of REPAIR TABLE Statements
REPAIR TABLE for MyISAM tables is similar to using myisamchk for repair operations, and some of the same performance optimizations apply:
myisamchk has variables that control memory allocation. You may be able to its improve performance by setting these variables, as described in Section 4.6.3.6, “myisamchk Memory Usage”.
For REPAIR TABLE, the same principle applies, but because the repair is done by the server, you set server system variables instead of myisamchk variables. Also, in addition to setting memory-allocation variables, increasing the myisam_max_sort_file_size system variable increases the likelihood that the repair will use the faster filesort method and avoid the slower repair by key cache method. Set the variable to the maximum file size for your system, after checking to be sure that there is enough free space to hold a copy of the table files. The free space must be available in the file system containing the original table files.
Suppose that a myisamchk table-repair operation is done using the following options to set its memory-allocation variables:
--key_buffer_size=128M --myisam_sort_buffer_size=256M
--read_buffer_size=64M --write_buffer_size=64M
Some of those myisamchk variables correspond to server system variables:
myisamchk Variable | System Variable |
---|---|
key_buffer_size | key_buffer_size |
myisam_sort_buffer_size | myisam_sort_buffer_size |
read_buffer_size | read_buffer_size |
write_buffer_size | none |
Each of the server system variables can be set at runtime, and some of them (myisam_sort_buffer_size, read_buffer_size) have a session value in addition to a global value. Setting a session value limits the effect of the change to your current session and does not affect other users. Changing a global-only variable (key_buffer_size, myisam_max_sort_file_size) affects other users as well. For key_buffer_size, you must take into account that the buffer is shared with those users. For example, if you set the myisamchk key_buffer_size variable to 128MB, you could set the corresponding key_buffer_size system variable larger than that (if it is not already set larger), to permit key buffer use by activity in other sessions. However, changing the global key buffer size invalidates the buffer, causing increased disk I/O and slowdown for other sessions. An alternative that avoids this problem is to use a separate key cache, assign to it the indexes from the table to be repaired, and deallocate it when the repair is complete. See Section 8.9.2.2, “Multiple Key Caches”.
Based on the preceding remarks, a REPAIR TABLE operation can be done as follows to use settings similar to the myisamchk command. Here a separate 128MB key buffer is allocated and the file system is assumed to permit a file size of at least 100GB.
SET SESSION myisam_sort_buffer_size = 256*1024*1024;
SET SESSION read_buffer_size = 64*1024*1024;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
SET GLOBAL repair_cache.key_buffer_size = 128*1024*1024;
CACHE INDEX tbl_name IN repair_cache;
LOAD INDEX INTO CACHE tbl_name;
REPAIR TABLE tbl_name ;
SET GLOBAL repair_cache.key_buffer_size = 0;
If you intend to change a global variable but want to do so only for the duration of a REPAIR TABLE operation to minimally affect other users, save its value in a user variable and restore it afterward. For example:
SET @old_myisam_sort_buffer_size = @@global.myisam_max_sort_file_size;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
REPAIR TABLE tbl_name ;
SET GLOBAL myisam_max_sort_file_size = @old_myisam_max_sort_file_size;
The system variables that affect REPAIR TABLE can be set globally at server startup if you want the values to be in effect by default. For example, add these lines to the server my.cnf file:
[mysqld]
myisam_sort_buffer_size=256M
key_buffer_size=1G
myisam_max_sort_file_size=100G
These settings do not include read_buffer_size. Setting read_buffer_size globally to a large value does so for all sessions and can cause performance to suffer due to excessive memory allocation for a server with many simultaneous sessions.
8.7. Optimizing for MEMORY Tables
Consider using MEMORY tables for noncritical data that is accessed often, and is read-only or rarely updated. Benchmark your application against equivalent InnoDB or MyISAM tables under a realistic workload, to confirm that any additional performance is worth the risk of losing data, or the overhead of copying data from a disk-based table at application start.
For best performance with MEMORY tables, examine the kinds of queries against each table, and specify the type to use for each associated index, either a B-tree index or a hash index. On the CREATE INDEX statement, use the clause USING BTREE or USING HASH. B-tree indexes are fast for queries that do greater-than or less-than comparisons through operators such as > or BETWEEN. Hash indexes are only fast for queries that look up single values through the = operator, or a restricted set of values through the IN operator. For why USING BTREE is often a better choice than the default USING HASH, see Section 8.2.1.4, “How to Avoid Full Table Scans”. For implementation details of the different types of MEMORY indexes, see Section 8.3.8, “Comparison of B-Tree and Hash Indexes”.
8.8. Understanding the Query Execution Plan
Depending on the details of your tables, columns, indexes, and the conditions in your WHERE clause, the MySQL optimizer considers many techniques to efficiently perform the lookups involved in an SQL query. A query on a huge table can be performed without reading all the rows; a join involving several tables can be performed without comparing every combination of rows. The set of operations that the optimizer chooses to perform the most efficient query is called the “query execution plan”, also known as the EXPLAIN plan. Your goals are to recognize the aspects of the EXPLAIN plan that indicate a query is optimized well, and to learn the SQL syntax and indexing techniques to improve the plan if you see some inefficient operations.
8.8.1. Optimizing Queries with EXPLAIN
The EXPLAIN statement can be used either as a way to obtain information about how MySQL executes a statement, or as a synonym for DESCRIBE:
When you precede a statement with the keyword EXPLAIN, MySQL displays information from the optimizer about the query execution plan. That is, MySQL explains how it would process the statement, including information about how tables are joined and in which order. See Section 8.8.2, “EXPLAIN Output Format”.
EXPLAIN EXTENDED can be used to obtain additional information; see Section 8.8.3, “EXPLAIN EXTENDED Output Format”.
As of MySQL 5.6.3, EXPLAIN provides information about SELECT, DELETE, INSERT, REPLACE, and UPDATE statements. Before MySQL 5.6.3, EXPLAIN provides information only about SELECT statements.
The following sections describe how to use EXPLAIN and EXPLAIN EXTENDED to obtain query execution plan information.
EXPLAIN PARTITIONS is useful only when examining queries involving partitioned tables. For details, see Section 17.3.5, “Obtaining Information About Partitions”.
EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name or SHOW COLUMNS FROM tbl_name. For information about DESCRIBE and SHOW COLUMNS, see Section 13.8.1, “DESCRIBE Syntax”, and Section 13.7.5.6, “SHOW COLUMNS Syntax”.
With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the optimizer joins the tables in an optimal order. To give a hint to the optimizer to use a join order corresponding to the order in which the tables are named in a SELECT statement, begin the statement with SELECT STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.9, “SELECT Syntax”.)
The optimizer trace may sometimes provide information complementary to that of EXPLAIN. However, the optimizer trace format and content are subject to change between versions". For details, see MySQL Internals: Tracing the Optimizer.
If you have a problem with indexes not being used when you believe that they should be, run ANALYZE TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer makes. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.
8.8.2. EXPLAIN Output Format
The EXPLAIN statement provides information about the execution plan for a SELECT statement.
EXPLAIN returns a row of information for each table used in the SELECT statement. It lists the tables in the output in the order that MySQL would read them while processing the statement. MySQL resolves all joins using a nested-loop join method. This means that MySQL reads a row from the first table, and then finds a matching row in the second table, the third table, and so on. When all tables are processed, MySQL outputs the selected columns and backtracks through the table list until a table is found for which there are more matching rows. The next row is read from this table and the process continues with the next table.
When the EXTENDED keyword is used, EXPLAIN produces extra information that can be viewed by issuing a SHOW WARNINGS statement following the EXPLAIN statement. EXPLAIN EXTENDED also displays the filtered column. See Section 8.8.3, “EXPLAIN EXTENDED Output Format”.
Note
You cannot use the EXTENDED and PARTITIONS keywords together in the same EXPLAIN statement.
EXPLAIN Output Columns
This section describes the output columns produced by EXPLAIN. Later sections provide additional information about the type and Extra columns.
Each output row from EXPLAIN provides information about one table. Each row contains the values summarized in Table 8.1, “EXPLAIN Output Columns”, and described in more detail following the table.
Table 8.1. EXPLAIN Output Columns
Column | Meaning |
---|---|
id | The SELECT identifier |
select_type | The SELECT type |
table | The table for the output row |
partitions | The matching partitions |
type | The join type |
possible_keys | The possible indexes to choose |
key | The index actually chosen |
key_len | The length of the chosen key |
ref | The columns compared to the index |
rows | Estimate of rows to be examined |
filtered | Percentage of rows filtered by table condition |
Extra | Additional information |
id
The SELECT identifier. This is the sequential number of the SELECT within the query. The value can be NULL if the row refers to the union result of other rows. In this case, the table column shows a value like <unionM,N> to indicate that the row refers to the union of the rows with id values of M and N.
select_type
The type of SELECT, which can be any of those shown in the following table.
select_type Value | Meaning |
---|---|
SIMPLE | Simple SELECT (not using UNION or subqueries) |
PRIMARY | Outermost SELECT |
UNION | Second or later SELECT statement in a UNION |
DEPENDENT UNION | Second or later SELECT statement in a UNION, dependent on outer query |
UNION RESULT | Result of a UNION. |
SUBQUERY | First SELECT in subquery |
DEPENDENT SUBQUERY | First SELECT in subquery, dependent on outer query |
DERIVED | Derived table SELECT (subquery in FROM clause) |
MATERIALIZED | Materialized subquery |
UNCACHEABLE SUBQUERY | A subquery for which the result cannot be cached and must be re-evaluated for each row of the outer query |
UNCACHEABLE UNION | The second or later select in a UNION that belongs to an uncacheable subquery (see UNCACHEABLE SUBQUERY) |
DEPENDENT typically signifies the use of a correlated subquery. See Section 13.2.10.7, “Correlated Subqueries”.
DEPENDENT SUBQUERY evaluation differs from UNCACHEABLE SUBQUERY evaluation. For DEPENDENT SUBQUERY, the subquery is re-evaluated only once for each set of different values of the variables from its outer context. For UNCACHEABLE SUBQUERY, the subquery is re-evaluated for each row of the outer context.
Cacheability of subqueries differs from caching of query results in the query cache (which is described in Section 8.9.3.1, “How the Query Cache Operates”). Subquery caching occurs during query execution, whereas the query cache is used to store results only after query execution finishes.
table
The name of the table to which the row of output refers. This can also be one of the following values:
<unionM,N>: The row refers to the union of the rows with id values of M and N.
<derivedN>: The row refers to the derived table result for the row with an id value of N. A derived table may result, for example, from a subquery in the FROM clause.
<subqueryN>: The row refers to the result of a materialized subquery for the row with an id value of N. See Section 8.13.16.2, “Optimizing Subqueries with Subquery Materialization”.
partitions
The partitions from which records would be matched by the query. This column is displayed only if the PARTITIONS keyword is used. The value is NULL for nonpartitioned tables. See Section 17.3.5, “Obtaining Information About Partitions”.
type
The join type. For descriptions of the different types, see EXPLAIN Join Types.
possible_keys
The possible_keys column indicates which indexes MySQL can choose from use to find the rows in this table. Note that this column is totally independent of the order of the tables as displayed in the output from EXPLAIN. That means that some of the keys in possible_keys might not be usable in practice with the generated table order.
If this column is NULL, there are no relevant indexes. In this case, you may be able to improve the performance of your query by examining the WHERE clause to check whether it refers to some column or columns that would be suitable for indexing. If so, create an appropriate index and check the query with EXPLAIN again. See Section 13.1.6, “ALTER TABLE Syntax”.
To see what indexes a table has, use SHOW INDEX FROM tbl_name.
key
The key column indicates the key (index) that MySQL actually decided to use. If MySQL decides to use one of the possible_keys indexes to look up rows, that index is listed as the key value.
It is possible that key will name an index that is not present in the possible_keys value. This can happen if none of the possible_keys indexes are suitable for looking up rows, but all the columns selected by the query are columns of some other index. That is, the named index covers the selected columns, so although it is not used to determine which rows to retrieve, an index scan is more efficient than a data row scan.
For InnoDB, a secondary index might cover the selected columns even if the query also selects the primary key because InnoDB stores the primary key value with each secondary index. If key is NULL, MySQL found no index to use for executing the query more efficiently.
To force MySQL to use or ignore an index listed in the possible_keys column, use FORCE INDEX, USE INDEX, or IGNORE INDEX in your query. See Section 13.2.9.3, “Index Hint Syntax”.
For MyISAM tables, running ANALYZE TABLE helps the optimizer choose better indexes. For MyISAM tables, myisamchk --analyze does the same. See Section 13.7.2.1, “ANALYZE TABLE Syntax”, and Section 7.6, “MyISAM Table Maintenance and Crash Recovery”.
key_len
The key_len column indicates the length of the key that MySQL decided to use. The length is NULL if the key column says NULL. Note that the value of key_len enables you to determine how many parts of a multiple-part key MySQL actually uses.
ref
The ref column shows which columns or constants are compared to the index named in the key column to select rows from the table.
rows
The rows column indicates the number of rows MySQL believes it must examine to execute the query.
For InnoDB tables, this number is an estimate, and may not always be exact.
filtered
The filtered column indicates an estimated percentage of table rows that will be filtered by the table condition. That is, rows shows the estimated number of rows examined and rows × filtered / 100 shows the number of rows that will be joined with previous tables. This column is displayed if you use EXPLAIN EXTENDED.
Extra
This column contains additional information about how MySQL resolves the query. For descriptions of the different values, see EXPLAIN Extra Information.
EXPLAIN Join Types
The type column of EXPLAIN output describes how tables are joined. The following list describes the join types, ordered from the best type to the worst:
The table has only one row (= system table). This is a special case of the const join type.
The table has at most one matching row, which is read at the start of the query. Because there is only one row, values from the column in this row can be regarded as constants by the rest of the optimizer. const tables are very fast because they are read only once.
const is used when you compare all parts of a PRIMARY KEY or UNIQUE index to constant values. In the following queries, tbl_name can be used as a const table:
SELECT * FROM tbl_name WHERE primary_key=1;
SELECT * FROM tbl_name
WHERE primary_key_part1=1 AND primary_key_part2=2;
One row is read from this table for each combination of rows from the previous tables. Other than the system and const types, this is the best possible join type. It is used when all parts of an index are used by the join and the index is a PRIMARY KEY or UNIQUE NOT NULL index.
eq_ref can be used for indexed columns that are compared using the = operator. The comparison value can be a constant or an expression that uses columns from tables that are read before this table. In the following examples, MySQL can use an eq_ref join to process ref_table:
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;
All rows with matching index values are read from this table for each combination of rows from the previous tables. ref is used if the join uses only a leftmost prefix of the key or if the key is not a PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a single row based on the key value). If the key that is used matches only a few rows, this is a good join type.
ref can be used for indexed columns that are compared using the = or <=> operator. In the following examples, MySQL can use a ref join to process ref_table:
SELECT * FROM ref_table WHERE key_column=expr;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;
The join is performed using a FULLTEXT index.
This join type is like ref, but with the addition that MySQL does an extra search for rows that contain NULL values. This join type optimization is used most often in resolving subqueries. In the following examples, MySQL can use a ref_or_null join to process ref_table:
SELECT * FROM ref_table
WHERE key_column=expr OR key_column IS NULL;
This join type indicates that the Index Merge optimization is used. In this case, the key column in the output row contains a list of indexes used, and key_len contains a list of the longest key parts for the indexes used. For more information, see Section 8.13.2, “Index Merge Optimization”.
This type replaces ref for some IN subqueries of the following form:
value IN (SELECT primary_key FROM single_table WHERE some_expr)
unique_subquery is just an index lookup function that replaces the subquery completely for better efficiency.
This join type is similar to unique_subquery. It replaces IN subqueries, but it works for nonunique indexes in subqueries of the following form:
value IN (SELECT key_column FROM single_table WHERE some_expr)
Only rows that are in a given range are retrieved, using an index to select the rows. The key column in the output row indicates which index is used. The key_len contains the longest key part that was used. The ref column is NULL for this type.
range can be used when a key column is compared to a constant using any of the =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, or IN() operators:
SELECT * FROM tbl_name
WHERE key_column = 10;
SELECT * FROM tbl_name
WHERE key_column BETWEEN 10 and 20;
SELECT * FROM tbl_name
WHERE key_column IN (10,20,30);
SELECT * FROM tbl_name
WHERE key_part1 = 10 AND key_part2 IN (10,20,30);
The index join type is the same as ALL, except that the index tree is scanned. This occurs two ways:
If the index is a covering index for the queries and can be used to satisfy all data required from the table, only the index tree is scanned. In this case, the Extra column says Using index. An index-only scan usually is faster than ALL because the size of the index usually is smaller than the table data.
A full table scan is performed using reads from the index to look up data rows in index order. Uses index does not appear in the Extra column.
MySQL can use this join type when the query uses only columns that are part of a single index.
ALL
A full table scan is done for each combination of rows from the previous tables. This is normally not good if the table is the first table not marked const, and usually very bad in all other cases. Normally, you can avoid ALL by adding indexes that enable row retrieval from the table based on constant values or column values from earlier tables.
EXPLAIN Extra Information
The Extra column of EXPLAIN output contains additional information about how MySQL resolves the query. The following list explains the values that can appear in this column. If you want to make your queries as fast as possible, look out for Extra values of Using filesort and Using temporary.
const row not found
For a query such as SELECT ... FROM tbl_name, the table was empty.
Deleting all rows
For DELETE, some storage engines (such as MyISAM) support a handler method that removes all table rows in a simple and fast way. This Extra value is displayed if the engine uses this optimization.
Distinct
MySQL is looking for distinct values, so it stops searching for more rows for the current row combination after it has found the first matching row.
FirstMatch(tbl_name)
The semi-join FirstMatch join shortcutting strategy is used for tbl_name.
Full scan on NULL key
This occurs for subquery optimization as a fallback strategy when the optimizer cannot use an index-lookup access method.
Impossible HAVING
The HAVING clause is always false and cannot select any rows.
Impossible WHERE
The WHERE clause is always false and cannot select any rows.
Impossible WHERE noticed after reading const tables
MySQL has read all const (and system) tables and notice that the WHERE clause is always false.
LooseScan(m..n)
The semi-join LooseScan strategy is used. m and n are key part numbers.
Materialize, Scan
Before MySQL 5.6.7, this indicates use of a single materialized temporary table. If Scan is present, no temporary table index is used for table reads. Otherwise, an index lookup is used. See also the Start materialize entry.
As of MySQL 5.6.7, materialization is indicated by rows with a select_type value of MATERIALIZED and rows with a table value of <subqueryN>.
No matching min/max row
No row satisfies the condition for a query such as SELECT MIN(...) FROM ... WHERE condition.
no matching row in const table
For a query with a join, there was an empty table or a table with no rows satisfying a unique index condition.
No matching rows after partition pruning
For DELETE or UPDATE, the optimizer found nothing to delete or update after partition pruning. It is similar in meaning to Impossible WHERE for SELECT statements.
No tables used
The query has no FROM clause, or has a FROM DUAL clause.
For INSERT or REPLACE statements, EXPLAIN displays this value when there is no SELECT part. For example, it appears for EXPLAIN INSERT INTO t VALUES(10) because that is equivalent to EXPLAIN INSERT INTO t SELECT 10 FROM DUAL.
Not exists
MySQL was able to do a LEFT JOIN optimization on the query and does not examine more rows in this table for the previous row combination after it finds one row that matches the LEFT JOIN criteria. Here is an example of the type of query that can be optimized this way:
SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
WHERE t2.id IS NULL;
Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up the rows in t2 using the values of t1.id. If MySQL finds a matching row in t2, it knows that t2.id can never be NULL, and does not scan through the rest of the rows in t2 that have the same id value. In other words, for each row in t1, MySQL needs to do only a single lookup in t2, regardless of how many rows actually match in t2.
Range checked for each record (index map: N)
MySQL found no good index to use, but found that some of indexes might be used after column values from preceding tables are known. For each row combination in the preceding tables, MySQL checks whether it is possible to use a range or index_merge access method to retrieve rows. This is not very fast, but is faster than performing a join with no index at all. The applicability criteria are as described in Section 8.13.1, “Range Optimization”, and Section 8.13.2, “Index Merge Optimization”, with the exception that all column values for the preceding table are known and considered to be constants.
Indexes are numbered beginning with 1, in the same order as shown by SHOW INDEX for the table. The index map value N is a bitmask value that indicates which indexes are candidates. For example, a value of 0x19 (binary 11001) means that indexes 1, 4, and 5 will be considered.
Scanned N databases
This indicates how many directory scans the server performs when processing a query for INFORMATION_SCHEMA tables, as described in Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”. The value of N can be 0, 1, or all.
Select tables optimized away
The query contained only aggregate functions (MIN(), MAX()) that were all resolved using an index, or COUNT(*) for MyISAM, and no GROUP BY clause. The optimizer determined that only one row should be returned.
Skip_open_table, Open_frm_only, Open_trigger_only, Open_full_table
These values indicate file-opening optimizations that apply to queries for INFORMATION_SCHEMA tables, as described in Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”.
Skip_open_table: Table files do not need to be opened. The information has already become available within the query by scanning the database directory.
Open_frm_only: Only the table's .frm file need be opened.
Open_trigger_only: Only the table's .TRG file need be opened.
Open_full_table: The unoptimized information lookup. The .frm, .MYD, and .MYI files must be opened.
Start materialize, End materialize, Scan
Before MySQL 5.6.7, this indicates use of multiple materialized temporary tables. If Scan is present, no temporary table index is used for table reads. Otherwise, an index lookup is used. See also the Materialize entry.
As of MySQL 5.6.7, materialization is indicated by rows with a select_type value of MATERIALIZED and rows with a table value of <subqueryN>.
Start temporary, End temporary
This indicates temporary table use for the semi-join Duplicate Weedout strategy.
unique row not found
For a query such as SELECT ... FROM tbl_name, no rows satisfy the condition for a UNIQUE index or PRIMARY KEY on the table.
Using filesort
MySQL must do an extra pass to find out how to retrieve the rows in sorted order. The sort is done by going through all rows according to the join type and storing the sort key and pointer to the row for all rows that match the WHERE clause. The keys then are sorted and the rows are retrieved in sorted order. See Section 8.13.13, “ORDER BY Optimization”.
Using index
The column information is retrieved from the table using only information in the index tree without having to do an additional seek to read the actual row. This strategy can be used when the query uses only columns that are part of a single index.
If the Extra column also says Using where, it means the index is being used to perform lookups of key values. Without Using where, the optimizer may be reading the index to avoid reading data rows but not using it for lookups. For example, if the index is a covering index for the query, the optimizer may scan it without using it for lookups.
For InnoDB tables that have a user-defined clustered index, that index can be used even when Using index is absent from the Extra column. This is the case if type is index and key is PRIMARY.
Using index condition
Tables are read by accessing index tuples and testing them first to determine whether to read full table rows. In this way, index information is used to defer (“push down”) reading full table rows unless it is necessary. See Section 8.13.4, “Index Condition Pushdown Optimization”.
Using index for group-by
Similar to the Using index table access method, Using index for group-by indicates that MySQL found an index that can be used to retrieve all columns of a GROUP BY or DISTINCT query without any extra disk access to the actual table. Additionally, the index is used in the most efficient way so that for each group, only a few index entries are read. For details, see Section 8.13.14, “GROUP BY Optimization”.
Using join buffer (Block Nested Loop), Using join buffer (Batched Key Access)
Tables from earlier joins are read in portions into the join buffer, and then their rows are used from the buffer to perform the join with the current table. (Block Nested Loop) indicates use of the Block Nested-Loop algorithm and (Batched Key Access) indicates use of the Batched Key Access algorithm. That is, the keys from the table on the preceding line of the EXPLAIN output will be buffered, and the matching rows will be fetched in batches from the table represented by the line in which Using join buffer appears.
Using MRR
Tables are read using the Multi-Range Read optimization strategy. See Section 8.13.11, “Multi-Range Read Optimization”.
Using sort_union(...), Using union(...), Using intersect(...)
These indicate how index scans are merged for the index_merge join type. See Section 8.13.2, “Index Merge Optimization”.
Using temporary
To resolve the query, MySQL needs to create a temporary table to hold the result. This typically happens if the query contains GROUP BY and ORDER BY clauses that list columns differently.
Using where
A WHERE clause is used to restrict which rows to match against the next table or send to the client. Unless you specifically intend to fetch or examine all rows from the table, you may have something wrong in your query if the Extra value is not Using where and the table join type is ALL or index.
Using where with pushed condition
This item applies to NDB tables only. It means that MySQL Cluster is using the Condition Pushdown optimization to improve the efficiency of a direct comparison between a nonindexed column and a constant. In such cases, the condition is “pushed down” to the cluster's data nodes and is evaluated on all data nodes simultaneously. This eliminates the need to send nonmatching rows over the network, and can speed up such queries by a factor of 5 to 10 times over cases where Condition Pushdown could be but is not used. For more information, see Section 8.13.3, “Engine Condition Pushdown Optimization”.
EXPLAIN Output Interpretation
You can get a good indication of how good a join is by taking the product of the values in the rows column of the EXPLAIN output. This should tell you roughly how many rows MySQL must examine to execute the query. If you restrict queries with the max_join_size system variable, this row product also is used to determine which multiple-table SELECT statements to execute and which to abort. See Section 8.11.2, “Tuning Server Parameters”.
The following example shows how a multiple-table join can be optimized progressively based on the information provided by EXPLAIN.
Suppose that you have the SELECT statement shown here and that you plan to examine it using EXPLAIN:
EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
tt.ProjectReference, tt.EstimatedShipDate,
tt.ActualShipDate, tt.ClientID,
tt.ServiceCodes, tt.RepetitiveID,
tt.CurrentProcess, tt.CurrentDPPerson,
tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
et_1.COUNTRY, do.CUSTNAME
FROM tt, et, et AS et_1, do
WHERE tt.SubmitTime IS NULL
AND tt.ActualPC = et.EMPLOYID
AND tt.AssignedPC = et_1.EMPLOYID
AND tt.ClientID = do.CUSTNMBR;
For this example, make the following assumptions:
The columns being compared have been declared as follows.
Table | Column | Data Type |
---|---|---|
tt | ActualPC | CHAR(10) |
tt | AssignedPC | CHAR(10) |
tt | ClientID | CHAR(10) |
et | EMPLOYID | CHAR(15) |
do | CUSTNMBR | CHAR(15) |
The tables have the following indexes.
Table | Index |
---|---|
tt | ActualPC |
tt | AssignedPC |
tt | ClientID |
et | EMPLOYID (primary key) |
do | CUSTNMBR (primary key) |
The tt.ActualPC values are not evenly distributed.
Initially, before any optimizations have been performed, the EXPLAIN statement produces the following information:
table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC, NULL NULL NULL 3872
ClientID,
ActualPC
Range checked for each record (index map: 0x23)
Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian product of all the tables; that is, every combination of rows. This takes quite a long time, because the product of the number of rows in each table must be examined. For the case at hand, this product is 74 × 2135 × 74 × 3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how long it would take.
One problem here is that MySQL can use indexes on columns more efficiently if they are declared as the same type and size. In this context, VARCHAR and CHAR are considered the same if they are declared as the same size. tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is CHAR(15), so there is a length mismatch.
To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10 characters to 15 characters:
mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);
Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN statement again produces this result:
table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC, NULL NULL NULL 3872 Using
ClientID, where
ActualPC
do ALL PRIMARY NULL NULL NULL 2135
Range checked for each record (index map: 0x1)
et_1 ALL PRIMARY NULL NULL NULL 74
Range checked for each record (index map: 0x1)
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This version executes in a couple of seconds.
A second alteration can be made to eliminate the column length mismatches for the tt.AssignedPC = et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:
mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
-> MODIFY ClientID VARCHAR(15);
After that modification, EXPLAIN produces the output shown here:
table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using
ClientID, where
ActualPC
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1
At this point, the query is optimized almost as well as possible. The remaining problem is that, by default, MySQL assumes that values in the tt.ActualPC column are evenly distributed, and that is not the case for the tt table. Fortunately, it is easy to tell MySQL to analyze the key distribution:
mysql> ANALYZE TABLE tt;
With the additional index information, the join is perfect and EXPLAIN produces this result:
table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using
ClientID, where
ActualPC
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1
Note that the rows column in the output from EXPLAIN is an educated guess from the MySQL join optimizer. Check whether the numbers are even close to the truth by comparing the rows product with the actual number of rows that the query returns. If the numbers are quite different, you might get better performance by using STRAIGHT_JOIN in your SELECT statement and trying to list the tables in a different order in the FROM clause.
It is possible in some cases to execute statements that modify data when EXPLAIN SELECT is used with a subquery; for more information, see Section 13.2.10.8, “Subqueries in the FROM Clause”.
8.8.3. EXPLAIN EXTENDED Output Format
When EXPLAIN is used with the EXTENDED keyword, the output includes a filtered column not otherwise displayed. This column indicates the estimated percentage of table rows that will be filtered by the table condition. In addition, the statement produces extra information that can be viewed by issuing a SHOW WARNINGS statement following the EXPLAIN statement. The Message value in SHOW WARNINGS output displays how the optimizer qualifies table and column names in the SELECT statement, what the SELECT looks like after the application of rewriting and optimization rules, and possibly other notes about the optimization process. Here is an example:
mysql> EXPLAIN EXTENDED
-> SELECT t1.a, t1.a IN (SELECT t2.a FROM t2) FROM t1\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t1
type: index
possible_keys: NULL
key: PRIMARY
key_len: 4
ref: NULL
rows: 4
filtered: 100.00
Extra: Using index
*************************** 2. row ***************************
id: 2
select_type: SUBQUERY
table: t2
type: index
possible_keys: a
key: a
key_len: 5
ref: NULL
rows: 3
filtered: 100.00
Extra: Using index
2 rows in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Note
Code: 1003
Message: /* select#1 */ select `test`.`t1`.`a` AS `a`,
<in_optimizer>(`test`.`t1`.`a`,`test`.`t1`.`a` in
(<materialize> (/* select#2 */ select `test`.`t2`.`a`
from `test`.`t2` where 1 having 1),
<primary_index_lookup>(`test`.`t1`.`a` in
<temporary table> on <auto_key>
where ((`test`.`t1`.`a` = `materialized-subquery`.`a`))))) AS `t1.a
IN (SELECT t2.a FROM t2)` from `test`.`t1`
1 row in set (0.00 sec)
As of MySQL 5.6.3, EXPLAIN EXTENDED can be used with SELECT, DELETE, INSERT, REPLACE, and UPDATE statements. However, the following SHOW WARNINGS statement displays a nonempty result only for SELECT statements. Before MySQL 5.6.3, EXPLAIN EXTENDED can be used only with SELECT statements.
Because the statement displayed by SHOW WARNINGS may contain special markers to provide information about query rewriting or optimizer actions, the statement is not necessarily valid SQL and is not intended to be executed. The output may also include rows with Message values that provide additional non-SQL explanatory notes about actions taken by the optimizer.
The following list describes special markers that can appear in EXTENDED output displayed by SHOW WARNINGS:
<auto_key>
An automatically generated key for a temporary table.
<cache>(expr)
The expression (such as a scalar subquery) is executed once and the resulting value is saved in memory for later use. For results consisting of multiple values, a temporary table may be created and you will see <temporary table> instead.
<exists>(query fragment)
The subquery predicate is converted to an EXISTS predicate and the subquery is transformed so that it can be used together with the EXISTS predicate.
<in_optimizer>(query fragment)
This is an internal optimizer object with no user significance.
<index_lookup>(query fragment)
The query fragment is processed using an index lookup to find qualifying rows.
<if>(condition, expr1, expr2)
If the condition is true, evaluate to expr1, otherwise expr2.
<is_not_null_test>(expr)
A test to verify that the expression does not evaluate to NULL.
<materialize>(query fragment)
Subquery materialization is used.
`materialized-subquery`.col_name, `materialized subselect`.col_name
A reference to the column col_name in an internal temporary table materialized to hold the result from evaluating a subquery.
<primary_index_lookup>(query fragment)
The query fragment is processed using a primary key lookup to find qualifying rows.
<ref_null_helper>(expr)
This is an internal optimizer object with no user significance.
/* select#N */ select_stmt
The SELECT is associated with the row in non-EXTENDED EXPLAIN output that has an id value of N.
outer_tables semi join (inner_tables)
A semi-join operation. inner_tables shows the tables that were not pulled out. See Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”.
<temporary table>
This represents an internal temporary table created to cache an intermediate result.
8.8.4. Estimating Query Performance
In most cases, you can estimate query performance by counting disk seeks. For small tables, you can usually find a row in one disk seek (because the index is probably cached). For bigger tables, you can estimate that, using B-tree indexes, you need this many seeks to find a row: log(row_count) / log(index_block_length / 3 * 2 / (index_length + data_pointer_length)) + 1.
In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a 500,000-row table with a key value length of three bytes (the size of MEDIUMINT), the formula indicates log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.
This index would require storage of about 500,000 * 7 * 3/2 = 5.2MB (assuming a typical index buffer fill ratio of 2/3), so you probably have much of the index in memory and so need only one or two calls to read data to find the row.
For writes, however, you need four seek requests to find where to place a new index value and normally two seeks to update the index and write the row.
Note that the preceding discussion does not mean that your application performance slowly degenerates by log N. As long as everything is cached by the OS or the MySQL server, things become only marginally slower as the table gets bigger. After the data gets too big to be cached, things start to go much slower until your applications are bound only by disk seeks (which increase by log N). To avoid this, increase the key cache size as the data grows. For MyISAM tables, the key cache size is controlled by the key_buffer_size system variable. See Section 8.11.2, “Tuning Server Parameters”.
8.8.5. Controlling the Query Optimizer
MySQL provides optimizer control through system variables that affect how query plans are evaluated and which switchable optimizations are enabled.
8.8.5.1. Controlling Query Plan Evaluation
The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the difference in performance between “good” and “bad” plans can be orders of magnitude (that is, seconds versus hours or even days), most query optimizers, including that of MySQL, perform a more or less exhaustive search for an optimal plan among all possible query evaluation plans. For join queries, the number of possible plans investigated by the MySQL optimizer grows exponentially with the number of tables referenced in a query. For small numbers of tables (typically less than 7 to 10) this is not a problem. However, when larger queries are submitted, the time spent in query optimization may easily become the major bottleneck in the server's performance.
A more flexible method for query optimization enables the user to control how exhaustive the optimizer is in its search for an optimal query evaluation plan. The general idea is that the fewer plans that are investigated by the optimizer, the less time it spends in compiling a query. On the other hand, because the optimizer skips some plans, it may miss finding an optimal plan.
The behavior of the optimizer with respect to the number of plans it evaluates can be controlled using two system variables:
The optimizer_prune_level variable tells the optimizer to skip certain plans based on estimates of the number of rows accessed for each table. Our experience shows that this kind of “educated guess” rarely misses optimal plans, and may dramatically reduce query compilation times. That is why this option is on (optimizer_prune_level=1) by default. However, if you believe that the optimizer missed a better query plan, this option can be switched off (optimizer_prune_level=0) with the risk that query compilation may take much longer. Note that, even with the use of this heuristic, the optimizer still explores a roughly exponential number of plans.
The optimizer_search_depth variable tells how far into the “future” of each incomplete plan the optimizer should look to evaluate whether it should be expanded further. Smaller values of optimizer_search_depth may result in orders of magnitude smaller query compilation times. For example, queries with 12, 13, or more tables may easily require hours and even days to compile if optimizer_search_depth is close to the number of tables in the query. At the same time, if compiled with optimizer_search_depth equal to 3 or 4, the optimizer may compile in less than a minute for the same query. If you are unsure of what a reasonable value is for optimizer_search_depth, this variable can be set to 0 to tell the optimizer to determine the value automatically.
8.8.5.2. Controlling Switchable Optimizations
The optimizer_switch system variable enables control over optimizer behavior. Its value is a set of flags, each of which has a value of on or off to indicate whether the corresponding optimizer behavior is enabled or disabled. This variable has global and session values and can be changed at runtime. The global default can be set at server startup.
To see the current set of optimizer flags, select the variable value:
mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
index_merge_sort_union=on,
index_merge_intersection=on,
engine_condition_pushdown=on,
index_condition_pushdown=on,
mrr=on,mrr_cost_based=on,
block_nested_loop=on,batched_key_access=off,
materialization=on,semijoin=on,loosescan=on,
firstmatch=on,
subquery_materialization_cost_based=on,
use_index_extensions=on
To change the value of optimizer_switch, assign a value consisting of a comma-separated list of one or more commands:
SET [GLOBAL|SESSION] optimizer_switch='command[,command]...';
Each command value should have one of the forms shown in the following table.
Command Syntax | Meaning |
---|---|
default | Reset every optimization to its default value |
opt_name=default | Set the named optimization to its default value |
opt_name=off | Disable the named optimization |
opt_name=on | Enable the named optimization |
The order of the commands in the value does not matter, although the default command is executed first if present. Setting an opt_name flag to default sets it to whichever of on or off is its default value. Specifying any given opt_name more than once in the value is not permitted and causes an error. Any errors in the value cause the assignment to fail with an error, leaving the value of optimizer_switch unchanged.
The following table lists the permissible opt_name flag names, grouped by optimization strategy.
Optimization | Flag Name | Meaning |
---|---|---|
Batched Key Access | batched_key_access | Controls use of BKA join algorithm |
Block Nested-Loop | block_nested_loop | Controls use of BNL join algorithm |
Engine Condition Pushdown | engine_condition_pushdown | Controls engine condition pushdown |
Index Condition Pushdown | index_condition_pushdown | Controls index condition pushdown |
Index Extensions | use_index_extensions | Controls use of index extensions |
Index Merge | index_merge | Controls all Index Merge optimizations |
index_merge_intersection | Controls the Index Merge Intersection Access optimization | |
index_merge_sort_union | Controls the Index Merge Sort-Union Access optimization | |
index_merge_union | Controls the Index Merge Union Access optimization | |
Multi-Range Read | mrr | Controls the Multi-Range Read strategy |
mrr_cost_based | Controls use of cost-based MRR if mrr=on | |
Semi-join | semijoin | Controls all semi-join strategies |
firstmatch | Controls the semi-join FirstMatch strategy | |
loosescan | Controls the semi-join LooseScan strategy (not to be confused with LooseScan for GROUP BY) | |
Subquery materialization | materialization | Controls materialization (including semi-join materialization) |
subquery_materialization_cost_based | Used cost-based materialization choice |
The block_nested_loop and batched_key_access flags were added in MySQL 5.6.3. For batched_key_access to have any effect when set to on, the mrr flag must also be on. Currently, the cost estimation for MRR is too pessimistic. Hence, it is also necessary for mrr_cost_based to be off for BKA to be used.
semijoin, firstmatch, loosescan, and materialization flags were added in MySQL 5.6.5 to enable control over semi-join and subquery materialization strategies. The semijoin flag controls whether semi-joins are used. If it is set to on, the firstmatch and loosescan flags enable finer control over the permitted semi-join strategies. The materialization flag controls whether subquery materialization is used. If semijoin and materialization are both on, semi-joins also use materialization where applicable. These flags are on by default.
The subquery_materialization_cost_based was added in MySQL 5.6.7 to enable control over the choice between subquery materialization and IN -> EXISTS subquery transformation. If the flag is on (the default), the optimizer performs a cost-based choice between subquery materialization and IN -> EXISTS subquery transformation if either method could be used. If the flag is off, the optimizer chooses subquery materialization over IN -> EXISTS subquery transformation, which was the previous behavior before MySQL 5.6.7.
For more information about individual optimization strategies, see the following sections:
When you assign a value to optimizer_switch, flags that are not mentioned keep their current values. This makes it possible to enable or disable specific optimizer behaviors in a single statement without affecting other behaviors. The statement does not depend on what other optimizer flags exist and what their values are. Suppose that all Index Merge optimizations are enabled:
mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=on,
index_merge_sort_union=on,
index_merge_intersection=on,
engine_condition_pushdown=on,
index_condition_pushdown=on,
mrr=on,mrr_cost_based=on,
block_nested_loop=on,batched_key_access=off,
materialization=on,semijoin=on,loosescan=on,
firstmatch=on,
subquery_materialization_cost_based=on,
use_index_extensions=on
If the server is using the Index Merge Union or Index Merge Sort-Union access methods for certain queries and you want to check whether the optimizer will perform better without them, set the variable value like this:
mysql> SET optimizer_switch='index_merge_union=off,index_merge_sort_union=off';
mysql> SELECT @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch: index_merge=on,index_merge_union=off,
index_merge_sort_union=off,
index_merge_intersection=on,
engine_condition_pushdown=on,
index_condition_pushdown=on,
mrr=on,mrr_cost_based=on,
block_nested_loop=on,batched_key_access=off,
materialization=on,semijoin=on,loosescan=on,
firstmatch=on,
subquery_materialization_cost_based=on,
use_index_extensions=on
8.9. Buffering and Caching
MySQL uses several strategies that cache information in memory buffers to increase performance.
8.9.1. The InnoDB Buffer Pool
InnoDB maintains a storage area called the buffer pool for caching data and indexes in memory. Knowing how the InnoDB buffer pool works, and taking advantage of it to keep frequently accessed data in memory, is an important aspect of MySQL tuning.
Guidelines
Ideally, you set the size of the buffer pool to as large a value as practical, leaving enough memory for other processes on the server to run without excessive paging. The larger the buffer pool, the more InnoDB acts like an in-memory database, reading data from disk once and then accessing the data from memory during subsequent reads. The buffer pool even caches data changed by insert and update operations, so that disk writes can be grouped together for better performance.
Depending on the typical workload on your system, you might adjust the proportions of the parts within the buffer pool. You can tune the way the buffer pool chooses which blocks to cache once it fills up, to keep frequently accessed data in memory despite sudden spikes of activity for operations such as backups or reporting.
With 64-bit systems with large memory sizes, you can split the buffer pool into multiple parts, to minimize contention for the memory structures among concurrent operations. For details, see Section 14.2.4.2.27, “Improvements to Performance from Multiple Buffer Pools”.
Internal Details
InnoDB manages the pool as a list, using a variation of the least recently used (LRU) algorithm. When room is needed to add a new block to the pool, InnoDB evicts the least recently used block and adds the new block to the middle of the list. This “midpoint insertion strategy” treats the list as two sublists:
At the head, a sublist of “new” (or “young”) blocks that were accessed recently.
At the tail, a sublist of “old” blocks that were accessed less recently.
This algorithm keeps blocks that are heavily used by queries in the new sublist. The old sublist contains less-used blocks; these blocks are candidates for eviction.
The LRU algorithm operates as follows by default:
3/8 of the buffer pool is devoted to the old sublist.
The midpoint of the list is the boundary where the tail of the new sublist meets the head of the old sublist.
When InnoDB reads a block into the buffer pool, it initially inserts it at the midpoint (the head of the old sublist). A block can be read in because it is required for a user-specified operation such as an SQL query, or as part of a read-ahead operation performed automatically by InnoDB.
Accessing to a block in the old sublist makes it “young”, moving it to the head of the buffer pool (the head of the new sublist). If the block was read in because it was required, the first access occurs immediately and the block is made young. If the block was read in due to read-ahead, the first access does not occur immediately (and might not occur at all before the block is evicted).
As the database operates, blocks in the buffer pool that are not accessed “age” by moving toward the tail of the list. Blocks in both the new and old sublists age as other blocks are made new. Blocks in the old sublist also age as blocks are inserted at the midpoint. Eventually, a block that remains unused for long enough reaches the tail of the old sublist and is evicted.
By default, blocks read by queries immediately move into the new sublist, meaning they will stay in the buffer pool for a long time. A table scan (such as performed for a mysqldump operation, or a SELECT statement with no WHERE clause) can bring a large amount of data into the buffer pool and evict an equivalent amount of older data, even if the new data is never used again. Similarly, blocks that are loaded by the read-ahead background thread and then accessed only once move to the head of the new list. These situations can push frequently used blocks to the old sublist, where they become subject to eviction.
Configuration Options
Several InnoDB system variables control the size of the buffer pool and let you tune the LRU algorithm:
Specifies the size of the buffer pool. If your buffer pool is small and you have sufficient memory, making the pool larger can improve performance by reducing the amount of disk I/O needed as queries access InnoDB tables.
Divides the buffer pool into a user-specified number of separate regions, each with its own LRU list and related data structures, to reduce contention during concurrent memory read and write operations. This option takes effect only when you set the innodb_buffer_pool_size to a size of 1 gigabyte or more. The total size you specify is divided among all the buffer pools. For best efficiency, specify a combination of innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool instance is at least 1 gigabyte.
Specifies the approximate percentage of the buffer pool that InnoDB uses for the old block sublist. The range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool).
Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before it can be moved to the new sublist. The default value is 0: A block inserted into the old sublist moves immediately to the new sublist the first time it is accessed, no matter how soon after insertion the access occurs. If the value is greater than 0, blocks remain in the old sublist until an access occurs at least that many ms after the first access. For example, a value of 1000 causes blocks to stay in the old sublist for 1 second after the first access before they become eligible to move to the new sublist.
Setting innodb_old_blocks_time greater than 0 prevents one-time table scans from flooding the new sublist with blocks used only for the scan. Rows in a block read in for a scan are accessed many times in rapid succession, but the block is unused after that. If innodb_old_blocks_time is set to a value greater than time to process the block, the block remains in the “old” sublist and ages to the tail of the list to be evicted quickly. This way, blocks used only for a one-time scan do not act to the detriment of heavily used blocks in the new sublist.
innodb_old_blocks_time can be set at runtime, so you can change it temporarily while performing operations such as table scans and dumps:
SET GLOBAL innodb_old_blocks_time = 1000;... perform queries that scan tables ...
SET GLOBAL innodb_old_blocks_time = 0;
This strategy does not apply if your intent is to “warm up” the buffer pool by filling it with a table's content. For example, benchmark tests often perform a table or index scan at server startup, because that data would normally be in the buffer pool after a period of normal use. In this case, leave innodb_old_blocks_time set to 0, at least until the warmup phase is complete.
Monitoring the Buffer Pool
The output from the InnoDB Standard Monitor contains several fields in the BUFFER POOL AND MEMORY section that pertain to operation of the buffer pool LRU algorithm:
Old database pages: The number of pages in the old sublist of the buffer pool.
Pages made young, not young: The number of old pages that were moved to the head of the buffer pool (the new sublist), and the number of pages that have remained in the old sublist without being made new.
youngs/s non-youngs/s: The number of accesses to old pages that have resulted in making them young or not. This metric differs from that of the previous item in two ways. First, it relates only to old pages. Second, it is based on number of accesses to pages and not the number of pages. (There can be multiple accesses to a given page, all of which are counted.)
young-making rate: Hits that cause blocks to move to the head of the buffer pool.
not: Hits that do not cause blocks to move to the head of the buffer pool (due to the delay not being met).
The young-making rate and not rate will not normally add up to the overall buffer pool hit rate. Hits for blocks in the old sublist cause them to move to the new sublist, but hits to blocks in the new sublist cause them to move to the head of the list only if they are a certain distance from the head.
The preceding information from the Monitor can help you make LRU tuning decisions:
If you see very low youngs/s values when you do not have large scans going on, that indicates that you might need to either reduce the delay time, or increase the percentage of the buffer pool used for the old sublist. Increasing the percentage makes the old sublist larger, so blocks in that sublist take longer to move to the tail and be evicted. This increases the likelihood that they will be accessed again and be made young.
If you do not see a lot of non-youngs/s when you are doing large table scans (and lots of youngs/s), to tune your delay value to be larger.
For more information about InnoDB Monitors, see Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”.
8.9.2. The MyISAM Key Cache
To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database management systems. It employs a cache mechanism to keep the most frequently accessed table blocks in memory:
For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure contains a number of block buffers where the most-used index blocks are placed.
For data blocks, MySQL uses no special cache. Instead it relies on the native operating system file system cache.
This section first describes the basic operation of the MyISAM key cache. Then it discusses features that improve key cache performance and that enable you to better control cache operation:
Multiple sessions can access the cache concurrently.
You can set up multiple key caches and assign table indexes to specific caches.
To control the size of the key cache, use the key_buffer_size system variable. If this variable is set equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is too small to allocate the minimal number of block buffers (8).
When the key cache is not operational, index files are accessed using only the native file system buffering provided by the operating system. (In other words, table index blocks are accessed using the same strategy as that employed for table data blocks.)
An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index block is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a B-tree data structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are nonleaf nodes.)
All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or less than the size of a table index block. Usually one these two values is a multiple of the other.
When data from any table index block must be accessed, the server first checks whether it is available in some block buffer of the key cache. If it is, the server accesses data in the key cache rather than on disk. That is, it reads from the cache or writes into it rather than reading from or writing to disk. Otherwise, the server chooses a cache block buffer containing a different table index block (or blocks) and replaces the data there by a copy of required table index block. As soon as the new index block is in the cache, the index data can be accessed.
If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In this case, prior to being replaced, its contents are flushed to the table index from which it came.
Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for replacement, it selects the least recently used index block. To make this choice easier, the key cache module maintains all used blocks in a special list (LRU chain) ordered by time of use. When a block is accessed, it is the most recently used and is placed at the end of the list. When blocks need to be replaced, blocks at the beginning of the list are the least recently used and become the first candidates for eviction.
The InnoDB storage engine also uses an LRU algorithm, to manage its buffer pool. See Section 8.9.1, “The InnoDB Buffer Pool”.
8.9.2.1. Shared Key Cache Access
Threads can access key cache buffers simultaneously, subject to the following conditions:
A buffer that is not being updated can be accessed by multiple sessions.
A buffer that is being updated causes sessions that need to use it to wait until the update is complete.
Multiple sessions can initiate requests that result in cache block replacements, as long as they do not interfere with each other (that is, as long as they need different index blocks, and thus cause different cache blocks to be replaced).
Shared access to the key cache enables the server to improve throughput significantly.
8.9.2.2. Multiple Key Caches
Shared access to the key cache improves performance but does not eliminate contention among sessions entirely. They still compete for control structures that manage access to the key cache buffers. To reduce key cache access contention further, MySQL also provides multiple key caches. This feature enables you to assign different table indexes to different key caches.
Where there are multiple key caches, the server must know which cache to use when processing queries for a given MyISAM table. By default, all MyISAM table indexes are cached in the default key cache. To assign table indexes to a specific key cache, use the CACHE INDEX statement (see Section 13.7.6.2, “CACHE INDEX Syntax”). For example, the following statement assigns indexes from the tables t1, t2, and t3 to the key cache named hot_cache:
mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
| test.t1 | assign_to_keycache | status | OK |
| test.t2 | assign_to_keycache | status | OK |
| test.t3 | assign_to_keycache | status | OK |
+---------+--------------------+----------+----------+
The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET GLOBAL parameter setting statement or by using server startup options. For example:
mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;
To destroy a key cache, set its size to zero:
mysql> SET GLOBAL keycache1.key_buffer_size=0;
Note that you cannot destroy the default key cache. Any attempt to do this will be ignored:
mysql> SET GLOBAL key_buffer_size = 0;
mysql> SHOW VARIABLES LIKE 'key_buffer_size';
+-----------------+---------+
| Variable_name | Value |
+-----------------+---------+
| key_buffer_size | 8384512 |
+-----------------+---------+
Key cache variables are structured system variables that have a name and components. For keycache1.key_buffer_size, keycache1 is the cache variable name and key_buffer_size is the cache component. See Section 5.1.5.1, “Structured System Variables”, for a description of the syntax used for referring to structured key cache system variables.
By default, table indexes are assigned to the main (default) key cache created at the server startup. When a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.
For a busy server, you can use a strategy that involves three key caches:
A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that are heavily used for searches but that are not updated.
A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for medium-sized, intensively modified tables, such as temporary tables.
A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache, to be used by default for all other tables.
One reason the use of three key caches is beneficial is that access to one key cache structure does not block access to the others. Statements that access tables assigned to one cache do not compete with statements that access tables assigned to another cache. Performance gains occur for other reasons as well:
The hot cache is used only for retrieval queries, so its contents are never modified. Consequently, whenever an index block needs to be pulled in from disk, the contents of the cache block chosen for replacement need not be flushed first.
For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a high probability that the index blocks corresponding to nonleaf nodes of the index B-tree remain in the cache.
An update operation most frequently executed for temporary tables is performed much faster when the updated node is in the cache and need not be read in from disk first. If the size of the indexes of the temporary tables are comparable with the size of cold key cache, the probability is very high that the updated node is in the cache.
The CACHE INDEX statement sets up an association between a table and a key cache, but the association is lost each time the server restarts. If you want the association to take effect each time the server starts, one way to accomplish this is to use an option file: Include variable settings that configure your key caches, and an init-file option that names a file containing CACHE INDEX statements to be executed. For example:
key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql
The statements in mysqld_init.sql are executed each time the server starts. The file should contain one SQL statement per line. The following example assigns several tables each to hot_cache and cold_cache:
CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache
8.9.2.3. Midpoint Insertion Strategy
By default, the key cache management system uses a simple LRU strategy for choosing key cache blocks to be evicted, but it also supports a more sophisticated method called the midpoint insertion strategy.
When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot sublist and a warm sublist. The division point between two parts is not fixed, but the key cache management system takes care that the warm part is not “too short,” always containing at least key_cache_division_limit percent of the key cache blocks. key_cache_division_limit is a component of structured key cache variables, so its value is a parameter that can be set per cache.
When an index block is read from a table into the key cache, it is placed at the end of the warm sublist. After a certain number of hits (accesses of the block), it is promoted to the hot sublist. At present, the number of hits required to promote a block (3) is the same for all index blocks.
A block promoted into the hot sublist is placed at the end of the list. The block then circulates within this sublist. If the block stays at the beginning of the sublist for a long enough time, it is demoted to the warm sublist. This time is determined by the value of the key_cache_age_threshold component of the key cache.
The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of the hot sublist not accessed within the last N * key_cache_age_threshold / 100 hits is to be moved to the beginning of the warm sublist. It then becomes the first candidate for eviction, because blocks for replacement always are taken from the beginning of the warm sublist.
The midpoint insertion strategy enables you to keep more-valued blocks always in the cache. If you prefer to use the plain LRU strategy, leave the key_cache_division_limit value set to its default of 100.
The midpoint insertion strategy helps to improve performance when execution of a query that requires an index scan effectively pushes out of the cache all the index blocks corresponding to valuable high-level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are preserved in the hot sublist during an index scan operation as well.
8.9.2.4. Index Preloading
If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks corresponding to its nonleaf nodes, it makes sense to preload the key cache with index blocks before starting to use it. Preloading enables you to put the table index blocks into a key cache buffer in the most efficient way: by reading the index blocks from disk sequentially.
Without preloading, the blocks are still placed into the key cache as needed by queries. Although the blocks will stay in the cache, because there are enough buffers for all of them, they are fetched from disk in random order, and not sequentially.
To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:
mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+
The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded. Thus, the statement shown preloads all index blocks from t1, but only blocks for the nonleaf nodes from t2.
If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places index blocks into that cache. Otherwise, the index is loaded into the default key cache.
8.9.2.5. Key Cache Block Size
It is possible to specify the size of the block buffers for an individual key cache using the key_cache_block_size variable. This permits tuning of the performance of I/O operations for index files.
The best performance for I/O operations is achieved when the size of read buffers is equal to the size of the native operating system I/O buffers. But setting the size of key nodes equal to the size of the I/O buffer does not always ensure the best overall performance. When reading the big leaf nodes, the server pulls in a lot of unnecessary data, effectively preventing reading other leaf nodes.
To control the size of blocks in the .MYI index file of MyISAM tables, use the --myisam-block-size option at server startup.
8.9.2.6. Restructuring a Key Cache
A key cache can be restructured at any time by updating its parameter values. For example:
mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;
If you assign to either the key_buffer_size or key_cache_block_size key cache component a value that differs from the component's current value, the server destroys the cache's old structure and creates a new one based on the new values. If the cache contains any dirty blocks, the server saves them to disk before destroying and re-creating the cache. Restructuring does not occur if you change other key cache parameters.
When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After that, the cache contents become unavailable. However, restructuring does not block queries that need to use indexes assigned to the cache. Instead, the server directly accesses the table indexes using native file system caching. File system caching is not as efficient as using a key cache, so although queries execute, a slowdown can be anticipated. After the cache has been restructured, it becomes available again for caching indexes assigned to it, and the use of file system caching for the indexes ceases.
8.9.3. The MySQL Query Cache
The query cache stores the text of a SELECT statement together with the corresponding result that was sent to the client. If an identical statement is received later, the server retrieves the results from the query cache rather than parsing and executing the statement again. The query cache is shared among sessions, so a result set generated by one client can be sent in response to the same query issued by another client.
The query cache can be useful in an environment where you have tables that do not change very often and for which the server receives many identical queries. This is a typical situation for many Web servers that generate many dynamic pages based on database content.
The query cache does not return stale data. When tables are modified, any relevant entries in the query cache are flushed.
Note
The query cache does not work in an environment where you have multiple mysqld servers updating the same MyISAM tables.
The query cache is used for prepared statements under the conditions described in Section 8.9.3.1, “How the Query Cache Operates”.
Note
As of MySQL 5.6.5, the query cache is not supported for partitioned tables, and is automatically disabled for queries involving partitioned tables. The query cache cannot be enabled for such queries. (Bug #53775)
Some performance data for the query cache follows. These results were generated by running the MySQL benchmark suite on a Linux Alpha 2×500MHz system with 2GB RAM and a 64MB query cache.
If all the queries you are performing are simple (such as selecting a row from a table with one row), but still differ so that the queries cannot be cached, the overhead for having the query cache active is 13%. This could be regarded as the worst case scenario. In real life, queries tend to be much more complicated, so the overhead normally is significantly lower.
Searches for a single row in a single-row table are 238% faster with the query cache than without it. This can be regarded as close to the minimum speedup to be expected for a query that is cached.
To disable the query cache at server startup, set the query_cache_size system variable to 0. By disabling the query cache code, there is no noticeable overhead.
The query cache offers the potential for substantial performance improvement, but do not assume that it will do so under all circumstances. With some query cache configurations or server workloads, you might actually see a performance decrease:
Be cautious about sizing the query cache excessively large, which increases the overhead required to maintain the cache, possibly beyond the benefit of enabling it. Sizes in tens of megabytes are usually beneficial. Sizes in the hundreds of megabytes might not be.
Server workload has a significant effect on query cache efficiency. A query mix consisting almost entirely of a fixed set of SELECT statements is much more likely to benefit from enabling the cache than a mix in which frequent INSERT statements cause continual invalidation of results in the cache. In some cases, a workaround is to use the SQL_NO_CACHE option to prevent results from even entering the cache for SELECT statements that use frequently modified tables. (See Section 8.9.3.2, “Query Cache SELECT Options”.)
To verify that enabling the query cache is beneficial, test the operation of your MySQL server with the cache enabled and disabled. Then retest periodically because query cache efficiency may change as server workload changes.
8.9.3.1. How the Query Cache Operates
This section describes how the query cache works when it is operational. Section 8.9.3.3, “Query Cache Configuration”, describes how to control whether it is operational.
Incoming queries are compared to those in the query cache before parsing, so the following two queries are regarded as different by the query cache:
SELECT * FROM tbl_name
Select * from tbl_name
Queries must be exactly the same (byte for byte) to be seen as identical. In addition, query strings that are identical may be treated as different for other reasons. Queries that use different databases, different protocol versions, or different default character sets are considered different queries and are cached separately.
The cache is not used for queries of the following types:
Queries that are a subquery of an outer query
Queries executed within the body of a stored function, trigger, or event
Before a query result is fetched from the query cache, MySQL checks whether the user has SELECT privilege for all databases and tables involved. If this is not the case, the cached result is not used.
If a query result is returned from query cache, the server increments the Qcache_hits status variable, not Com_select. See Section 8.9.3.4, “Query Cache Status and Maintenance”.
If a table changes, all cached queries that use the table become invalid and are removed from the cache. This includes queries that use MERGE tables that map to the changed table. A table can be changed by many types of statements, such as INSERT, UPDATE, DELETE, TRUNCATE TABLE, ALTER TABLE, DROP TABLE, or DROP DATABASE.
The query cache also works within transactions when using InnoDB tables.
In MySQL 5.6, the result from a SELECT query on a view is cached.
The query cache works for SELECT SQL_CALC_FOUND_ROWS ... queries and stores a value that is returned by a following SELECT FOUND_ROWS() query. FOUND_ROWS() returns the correct value even if the preceding query was fetched from the cache because the number of found rows is also stored in the cache. The SELECT FOUND_ROWS() query itself cannot be cached.
Prepared statements that are issued using the binary protocol using mysql_stmt_prepare() and mysql_stmt_execute() (see Section 21.8.7, “C API Prepared Statements”), are subject to limitations on caching. Comparison with statements in the query cache is based on the text of the statement after expansion of ? parameter markers. The statement is compared only with other cached statements that were executed using the binary protocol. That is, for query cache purposes, prepared statements issued using the binary protocol are distinct from prepared statements issued using the text protocol (see Section 13.5, “SQL Syntax for Prepared Statements”).
A query cannot be cached if it contains any of the functions shown in the following table.
A query also is not cached under these conditions:
It refers to user-defined functions (UDFs) or stored functions.
It refers to user variables or local stored program variables.
It refers to tables in the mysql, INFORMATION_SCHEMA, or performance_schema database.
(MySQL 5.6.5 and later:) It refers to any partitioned tables.
It is of any of the following forms:
SELECT ... LOCK IN SHARE MODE
SELECT ... FOR UPDATE
SELECT ... INTO OUTFILE ...
SELECT ... INTO DUMPFILE ...
SELECT * FROM ... WHERE autoincrement_col IS NULL
The last form is not cached because it is used as the ODBC workaround for obtaining the last insert ID value. See the Connector/ODBC section of Chapter 21, Connectors and APIs.
Statements within transactions that use SERIALIZABLE isolation level also cannot be cached because they use LOCK IN SHARE MODE locking.
It uses TEMPORARY tables.
It does not use any tables.
It generates warnings.
The user has a column-level privilege for any of the involved tables.
8.9.3.2. Query Cache SELECT Options
Two query cache-related options may be specified in SELECT statements:
SQL_CACHE
The query result is cached if it is cacheable and the value of the query_cache_type system variable is ON or DEMAND.
SQL_NO_CACHE
The server does not use the query cache. It neither checks the query cache to see whether the result is already cached, nor does it cache the query result. (Due to a limitation in the parser, a space character must precede and follow the SQL_NO_CACHE keyword; a nonspace such as a newline causes the server to check the query cache to see whether the result is already cached.)
Examples:
SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;
8.9.3.3. Query Cache Configuration
The have_query_cache server system variable indicates whether the query cache is available:
mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+
When using a standard MySQL binary, this value is always YES, even if query caching is disabled.
Several other system variables control query cache operation. These can be set in an option file or on the command line when starting mysqld. The query cache system variables all have names that begin with query_cache_. They are described briefly in Section 5.1.4, “Server System Variables”, with additional configuration information given here.
To set the size of the query cache, set the query_cache_size system variable. Setting it to 0 disables the query cache, as does setting query_cache_type=0. By default, the query cache is disabled. This is achieved using a default size of 1M, with a default for query_cache_type of 0. (Before MySQL 5.6.8, the default size is 0, with a default query_cache_type of 1.)
To reduce overhead significantly, also start the server with query_cache_type=0 if you will not be using the query cache.
Note
When using the Windows Configuration Wizard to install or configure MySQL, the default value for query_cache_size will be configured automatically for you based on the different configuration types available. When using the Windows Configuration Wizard, the query cache may be enabled (that is, set to a nonzero value) due to the selected configuration. The query cache is also controlled by the setting of the query_cache_type variable. Check the values of these variables as set in your my.ini file after configuration has taken place.
When you set query_cache_size to a nonzero value, keep in mind that the query cache needs a minimum size of about 40KB to allocate its structures. (The exact size depends on system architecture.) If you set the value too small, you'll get a warning, as in this example:
mysql> SET GLOBAL query_cache_size = 40000;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1282
Message: Query cache failed to set size 39936;
new query cache size is 0
mysql> SET GLOBAL query_cache_size = 41984;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| query_cache_size | 41984 |
+------------------+-------+
For the query cache to actually be able to hold any query results, its size must be set larger:
mysql> SET GLOBAL query_cache_size = 1000000;
Query OK, 0 rows affected (0.04 sec)
mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+--------+
| Variable_name | Value |
+------------------+--------+
| query_cache_size | 999424 |
+------------------+--------+
1 row in set (0.00 sec)
The query_cache_size value is aligned to the nearest 1024 byte block. The value reported may therefore be different from the value that you assign.
If the query cache size is greater than 0, the query_cache_type variable influences how it works. This variable can be set to the following values:
A value of 0 or OFF prevents caching or retrieval of cached results.
A value of 1 or ON enables caching except of those statements that begin with SELECT SQL_NO_CACHE.
A value of 2 or DEMAND causes caching of only those statements that begin with SELECT SQL_CACHE.
If query_cache_size is 0, you should also set query_cache_type variable to 0. In this case, the server does not acquire the query cache mutex at all, which means that the query cache cannot be enabled at runtime and there is reduced overhead in query execution.
Setting the GLOBAL query_cache_type value determines query cache behavior for all clients that connect after the change is made. Individual clients can control cache behavior for their own connection by setting the SESSION query_cache_type value. For example, a client can disable use of the query cache for its own queries like this:
mysql> SET SESSION query_cache_type = OFF;
If you set query_cache_type at server startup (rather than at runtime with a SET statement), only the numeric values are permitted.
To control the maximum size of individual query results that can be cached, set the query_cache_limit system variable. The default value is 1MB.
Be careful not to set the size of the cache too large. Due to the need for threads to lock the cache during updates, you may see lock contention issues with a very large cache.
Note
You can set the maximum size that can be specified for the query cache at runtime with the SET statement by using the --maximum-query_cache_size=32M option on the command line or in the configuration file.
When a query is to be cached, its result (the data sent to the client) is stored in the query cache during result retrieval. Therefore the data usually is not handled in one big chunk. The query cache allocates blocks for storing this data on demand, so when one block is filled, a new block is allocated. Because memory allocation operation is costly (timewise), the query cache allocates blocks with a minimum size given by the query_cache_min_res_unit system variable. When a query is executed, the last result block is trimmed to the actual data size so that unused memory is freed. Depending on the types of queries your server executes, you might find it helpful to tune the value of query_cache_min_res_unit:
The default value of query_cache_min_res_unit is 4KB. This should be adequate for most cases.
If you have a lot of queries with small results, the default block size may lead to memory fragmentation, as indicated by a large number of free blocks. Fragmentation can force the query cache to prune (delete) queries from the cache due to lack of memory. In this case, decrease the value of query_cache_min_res_unit. The number of free blocks and queries removed due to pruning are given by the values of the Qcache_free_blocks and Qcache_lowmem_prunes status variables.
If most of your queries have large results (check the Qcache_total_blocks and Qcache_queries_in_cache status variables), you can increase performance by increasing query_cache_min_res_unit. However, be careful to not make it too large (see the previous item).
8.9.3.4. Query Cache Status and Maintenance
To check whether the query cache is present in your MySQL server, use the following statement:
mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+
You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE statement. The statement does not remove any queries from the cache.
The RESET QUERY CACHE statement removes all query results from the query cache. The FLUSH TABLES statement also does this.
To monitor query cache performance, use SHOW STATUS to view the cache status variables:
mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+--------+
| Variable_name | Value |
+-------------------------+--------+
| Qcache_free_blocks | 36 |
| Qcache_free_memory | 138488 |
| Qcache_hits | 79570 |
| Qcache_inserts | 27087 |
| Qcache_lowmem_prunes | 3114 |
| Qcache_not_cached | 22989 |
| Qcache_queries_in_cache | 415 |
| Qcache_total_blocks | 912 |
+-------------------------+--------+
Descriptions of each of these variables are given in Section 5.1.6, “Server Status Variables”. Some uses for them are described here.
The total number of SELECT queries is given by this formula:
Com_select
+ Qcache_hits
+ queries with errors found by parser
The Com_select value is given by this formula:
Qcache_inserts
+ Qcache_not_cached
+ queries with errors found during the column-privileges check
The query cache uses variable-length blocks, so Qcache_total_blocks and Qcache_free_blocks may indicate query cache memory fragmentation. After FLUSH QUERY CACHE, only a single free block remains.
Every cached query requires a minimum of two blocks (one for the query text and one or more for the query results). Also, every table that is used by a query requires one block. However, if two or more queries use the same table, only one table block needs to be allocated.
The information provided by the Qcache_lowmem_prunes status variable can help you tune the query cache size. It counts the number of queries that have been removed from the cache to free up memory for caching new queries. The query cache uses a least recently used (LRU) strategy to decide which queries to remove from the cache. Tuning information is given in Section 8.9.3.3, “Query Cache Configuration”.
8.9.4. Caching of Prepared Statements and Stored Programs
For certain statements that a client might execute multiple times during a session, the server converts the statement to an internal structure and caches that structure to be used during execution. Caching enables the server to perform more efficiently because it avoids the overhead of reconverting the statement should it be needed again during the session. Conversion and caching occurs for these statements:
Prepared statements, both those processed at the SQL level (using the PREPARE statement) and those processed using the binary client/server protocol (using the mysql_stmt_prepare() C API function). The max_prepared_stmt_count system variable controls the total number of statements the server caches. (The sum of the number of prepared statements across all sessions.)
Stored programs (stored procedures and functions, triggers, and events). In this case, the server converts and caches the entire program body. The stored_program_cache system variable indicates the approximate number of stored programs the the server caches per session.
The server maintains caches for prepared statements and stored programs on a per-session basis. Statements cached for one session are not accessible to other sessions. When a session ends, the server discards any statements cached for it.
When the server uses a cached internal statement structure, it must take care that the structure does not go out of date. Metadata changes can occur for an object used by the statement, causing a mismatch between the current object definition and the definition as represented in the internal statement structure. Metadata changes occur for DDL statements such as those that create, drop, alter, rename, or truncate tables, or that analyze, optimize, or repair tables. Table content changes (for example, with INSERT or UPDATE) do not change metadata, nor do SELECT statements.
Here is an illustration of the problem. Suppose that a client prepares this statement:
PREPARE s1 FROM 'SELECT * FROM t1';
The SELECT * expands in the internal structure to the list of columns in the table. If the set of columns in the table is modified with ALTER TABLE, the prepared statement goes out of date. If the server does not detect this change the next time the client executes s1, the prepared statement will return incorrect results.
To avoid problems caused by metadata changes to tables or views referred to by the prepared statement, the server detects these changes and automatically reprepares the statement when it is next executed. That is, the server reparses the statement and rebuilds the internal structure. Reparsing also occurs after referenced tables or views are flushed from the table definition cache, either implicitly to make room for new entries in the cache, or explicitly due to FLUSH TABLES.
Similarly, if changes occur to objects used by a stored program, the server reparses affected statements within the program. (Before MySQL 5.6.6, the server does not detect metadata changes affecting stored programs, so such changes can cause incorrect results or errors.)
The server also detects metadata changes for objects in expressions. These might be used in statements specific to stored programs, such as DECLARE CURSOR or flow-control statements such as IF, CASE, and RETURN.
To avoid reparsing entire stored programs, the server reparses affected statements or expressions within a program only as needed. Examples:
Suppose that metadata for a table or view is changed. Reparsing occurs for a SELECT * within the program that accesses the table or view, but not for a SELECT * that does not access the table or view.
When a statement is affected, the server reparses it only partially if possible. Consider this CASE statement:
CASE case_expr
WHEN when_expr1 ...
WHEN when_expr2 ...
WHEN when_expr3 ...
...
END CASE
If a metadata change affects only WHEN when_expr3, that expression is reparsed. case_expr and the other WHEN expressions are not reparsed.
Reparsing uses the default database and SQL mode that were in effect for the original conversion to internal form.
The server attempts reparsing up to three times. An error occurs if all attempts fail.
Reparsing is automatic, but to the extent that it occurs, diminishes prepared statement and stored program performance.
For prepared statements, the Com_stmt_reprepare status variable tracks the number of repreparations.
8.10. Optimizing Locking Operations
MySQL manages contention for table contents using locking:
Internal locking is performed within the MySQL server itself to manage contention for table contents by multiple threads. This type of locking is internal because it is performed entirely by the server and involves no other programs. See Section 8.10.1, “Internal Locking Methods”.
External locking occurs when the server and other programs lock MyISAM table files to coordinate among themselves which program can access the tables at which time. See Section 8.10.5, “External Locking”.
8.10.1. Internal Locking Methods
This section discusses internal locking; that is, locking performed within the MySQL server itself to manage contention for table contents by multiple sessions. This type of locking is internal because it is performed entirely by the server and involves no other programs. For locking performed on MySQL files by other programs, see Section 8.10.5, “External Locking”.
Row-Level Locking
MySQL uses row-level locking for InnoDB tables to support simultaneous write access by multiple sessions, making them suitable for multi-user, highly concurrent, and OLTP applications.
To avoid deadlocks when performing multiple concurrent write operations on a single InnoDB table, acquire necessary locks at the start of the transaction by issuing a SELECT ... FOR UPDATE statement for each group of rows expected to be modified, even if the DML statements come later in the transaction. If transactions modify or lock more than one table, issue the applicable statements in the same order within each transaction. Deadlocks affect performance rather than representing a serious error, because InnoDB automatically detects deadlock conditions and rolls back one of the affected transactions.
Advantages of row-level locking:
Fewer lock conflicts when different sessions access different rows.
Fewer changes for rollbacks.
Possible to lock a single row for a long time.
Table-Level Locking
MySQL uses table-level locking for MyISAM, MEMORY, and MERGE tables, allowing only one session to update those tables at a time, making them more suitable for read-only, read-mostly, or single-user applications.
These storage engines avoid deadlocks by always requesting all needed locks at once at the beginning of a query and always locking the tables in the same order. The tradeoff is that this strategy reduces concurrency; other sessions that want to modify the table must wait until the current DML statement finishes.
MySQL grants table write locks as follows:
If there are no locks on the table, put a write lock on it.
Otherwise, put the lock request in the write lock queue.
MySQL grants table read locks as follows:
If there are no write locks on the table, put a read lock on it.
Otherwise, put the lock request in the read lock queue.
Table updates are given higher priority than table retrievals. Therefore, when a lock is released, the lock is made available to the requests in the write lock queue and then to the requests in the read lock queue. This ensures that updates to a table are not “starved” even if there is heavy SELECT activity for the table. However, if you have many updates for a table, SELECT statements wait until there are no more updates.
For information on altering the priority of reads and writes, see Section 8.10.2, “Table Locking Issues”.
You can analyze the table lock contention on your system by checking the Table_locks_immediate and Table_locks_waited status variables, which indicate the number of times that requests for table locks could be granted immediately and the number that had to wait, respectively:
mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+
The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers for a given table: If a MyISAM table has no free blocks in the middle of the data file, rows are always inserted at the end of the data file. In this case, you can freely mix concurrent INSERT and SELECT statements for a MyISAM table without locks. That is, you can insert rows into a MyISAM table at the same time other clients are reading from it. Holes can result from rows having been deleted from or updated in the middle of the table. If there are holes, concurrent inserts are disabled but are enabled again automatically when all holes have been filled with new data.. This behavior is altered by the concurrent_insert system variable. See Section 8.10.3, “Concurrent Inserts”.
If you acquire a table lock explicitly with LOCK TABLES, you can request a READ LOCAL lock rather than a READ lock to enable other sessions to perform concurrent inserts while you have the table locked.
To perform many INSERT and SELECT operations on a table real_table when concurrent inserts are not possible, you can insert rows into a temporary table temp_table and update the real table with the rows from the temporary table periodically. This can be done with the following code:
mysql> LOCK TABLES real_table WRITE, temp_table WRITE;
mysql> INSERT INTO real_table SELECT * FROM temp_table;
mysql> DELETE FROM temp_table;
mysql> UNLOCK TABLES;
Advantages of table-level locking:
Requires relatively little memory.
Fast when used on a large part of the table because only a single lock is involved.
Fast if you often do GROUP BY operations on a large part of the data or if you must scan the entire table frequently.
Generally, table locks are suited to the following cases:
Most statements for the table are reads.
Statements for the table are a mix of reads and writes, where writes are updates or deletes for a single row that can be fetched with one key read:
UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;
SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE statements.
Many scans or GROUP BY operations on the entire table without any writers.
8.10.2. Table Locking Issues
InnoDB tables use row-level locking so that multiple sessions and applications can read from and write to the same table simultaneously, without making each other wait or producing inconsistent results. For this storage engine, avoid using the LOCK TABLES statement, because it does not offer any extra protection, but instead reduces concurrency. The automatic row-level locking makes these tables suitable for your busiest databases with your most important data, while also simplifying application logic since you do not need to lock and unlock tables. Consequently, the InnoDB storage engine is the default in MySQL 5.6.
MySQL uses table locking (instead of page, row, or column locking) for all storage engines except InnoDB. The locking operations themselves do not have much overhead. But because only one session can write to a table at any one time, for best performance with these other storage engines, use them primarily for tables that are queried often and rarely inserted into or updated.
Performance Considerations Favoring InnoDB
When choosing whether to create a table using InnoDB or a different storage engine, keep in mind the following disadvantages of table locking:
Table locking enables many sessions to read from a table at the same time, but if a session wants to write to a table, it must first get exclusive access, meaning it might have to wait for other sessions to finish with the table first. During the update, all other sessions that want to access this particular table must wait until the update is done.
Table locking causes problems when a session is waiting because the disk is full and free space needs to become available before the session can proceed. In this case, all sessions that want to access the problem table are also put in a waiting state until more disk space is made available.
A SELECT statement that takes a long time to run prevents other sessions from updating the table in the meantime, making the other sessions appear slow or unresponsive. While a session is waiting to get exclusive access to the table for updates, other sessions that issue SELECT statements will queue up behind it, reducing concurrency even for read-only sessions.
Workarounds for Locking Performance Issues
The following items describe some ways to avoid or reduce contention caused by table locking:
Consider switching the table to the InnoDB storage engine, either using CREATE TABLE ... ENGINE=INNODB during setup, or using ALTER TABLE ... ENGINE=INNODB for an existing table. See Section 14.2, “The InnoDB Storage Engine” for more details about this storage engine.
Optimize SELECT statements to run faster so that they lock tables for a shorter time. You might have to create some summary tables to do this.
Start mysqld with --low-priority-updates. For storage engines that use only table-level locking (such as MyISAM, MEMORY, and MERGE), this gives all statements that update (modify) a table lower priority than SELECT statements. In this case, the second SELECT statement in the preceding scenario would execute before the UPDATE statement, and would not wait for the first SELECT to finish.
To specify that all updates issued in a specific connection should be done with low priority, set the low_priority_updates server system variable equal to 1.
To give a specific INSERT, UPDATE, or DELETE statement lower priority, use the LOW_PRIORITY attribute.
To give a specific SELECT statement higher priority, use the HIGH_PRIORITY attribute. See Section 13.2.9, “SELECT Syntax”.
Start mysqld with a low value for the max_write_lock_count system variable to force MySQL to temporarily elevate the priority of all SELECT statements that are waiting for a table after a specific number of inserts to the table occur. This permits READ locks after a certain number of WRITE locks.
If you have problems with INSERT combined with SELECT, consider switching to MyISAM tables, which support concurrent SELECT and INSERT statements. (See Section 8.10.3, “Concurrent Inserts”.)
If you mix inserts and deletes on the same nontransactional table, INSERT DELAYED may help. See Section 13.2.5.2, “INSERT DELAYED Syntax”.
Note
As of MySQL 5.6.6, INSERT DELAYED is deprecated, and will be removed in a future release. Use INSERT (without DELAYED) instead.
If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DELETE may help. See Section 13.2.2, “DELETE Syntax”.
Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table locks shorter. See Section 13.2.9, “SELECT Syntax”.
Splitting table contents into separate tables may help, by allowing queries to run against columns in one table, while updates are confined to columns in a different table.
You could change the locking code in mysys/thr_lock.c to use a single queue. In this case, write locks and read locks would have the same priority, which might help some applications.
8.10.3. Concurrent Inserts
The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers for a given table: If a MyISAM table has no holes in the data file (deleted rows in the middle), an INSERT statement can be executed to add rows to the end of the table at the same time that SELECT statements are reading rows from the table. If there are multiple INSERT statements, they are queued and performed in sequence, concurrently with the SELECT statements. The results of a concurrent INSERT may not be visible immediately.
The concurrent_insert system variable can be set to modify the concurrent-insert processing. By default, the variable is set to AUTO (or 1) and concurrent inserts are handled as just described. If concurrent_insert is set to NEVER (or 0), concurrent inserts are disabled. If the variable is set to ALWAYS (or 2), concurrent inserts at the end of the table are permitted even for tables that have deleted rows. See also the description of the concurrent_insert system variable.
Under circumstances where concurrent inserts can be used, there is seldom any need to use the DELAYED modifier for INSERT statements. See Section 13.2.5.2, “INSERT DELAYED Syntax”.
If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ... SELECT or INSERT ... SELECT statements. This is done to ensure that you can re-create an exact copy of your tables by applying the log during a backup operation. See Section 5.2.4, “The Binary Log”. In addition, for those statements a read lock is placed on the selected-from table such that inserts into that table are blocked. The effect is that concurrent inserts for that table must wait as well.
With LOAD DATA INFILE, if you specify CONCURRENT with a MyISAM table that satisfies the condition for concurrent inserts (that is, it contains no free blocks in the middle), other sessions can retrieve data from the table while LOAD DATA is executing. Use of the CONCURRENT option affects the performance of LOAD DATA a bit, even if no other session is using the table at the same time.
If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the server was started with that option. It also causes concurrent inserts not to be used.
For LOCK TABLE, the difference between READ LOCAL and READ is that READ LOCAL permits nonconflicting INSERT statements (concurrent inserts) to execute while the lock is held. However, this cannot be used if you are going to manipulate the database using processes external to the server while you hold the lock.
8.10.4. Metadata Locking
MySQL uses metadata locking to manage access to objects (tables, triggers, and so forth). Metadata locking is used to ensure data consistency but does involve some overhead, which increases as query volume increases. Metadata contention increases the more that multiple queries attempt to access the same objects.
Metadata locking is not a replacement for the table definition case, and its mutxes and locks differ from the LOCK_open mutex. The following discussion provides some information about how metadata locking works.
To ensure transaction serializability, the server must not permit one session to perform a data definition language (DDL) statement on a table that is used in an uncompleted transaction in another session. The server achieves this by acquiring metadata locks on tables used within a transaction and deferring release of those locks until the transaction ends. A metadata lock on a table prevents changes to the table's structure. This locking approach has the implication that a table that is being used by a transaction within one session cannot be used in DDL statements by other sessions until the transaction ends.
This principle applies not only to transactional tables, but also to nontransactional tables. Suppose that a session begins a transaction that uses transactional table t and nontransactional table nt as follows:
START TRANSACTION;
SELECT * FROM t;
SELECT * FROM nt;
Metadata locks are held on both t and nt until the transaction ends. If another session attempts a DDL operation on either table, it blocks until metadata lock release at transaction end. For example, a second session blocks if it attempts any of these operations:
DROP TABLE t;
ALTER TABLE t ...;
DROP TABLE nt;
ALTER TABLE nt ...;
If the server acquires metadata locks for a statement that is syntactically valid but fails during execution, it does not release the locks early. Lock release is still deferred to the end of the transaction because the failed statement is written to the binary log and the locks protect log consistency.
In autocommit mode, each statement is in effect a complete transaction, so metadata locks acquired for the statement are held only to the end of the statement.
Metadata locks acquired during a PREPARE statement are released once the statement has been prepared, even if preparation occurs within a multiple-statement transaction.
Before MySQL 5.5, when a transaction acquired the equivalent of a metadata lock for a table used within a statement, it released the lock at the end of the statement. This approach had the disadvantage that if a DDL statement occurred for a table that was being used by another session in an active transaction, statements could be written to the binary log in the wrong order.
8.10.5. External Locking
External locking is the use of file system locking to manage contention for MyISAM database tables by multiple processes. External locking is used in situations where a single process such as the MySQL server cannot be assumed to be the only process that requires access to tables. Here are some examples:
If you run multiple servers that use the same database directory (not recommended), each server must have external locking enabled.
If you use myisamchk to perform table maintenance operations on MyISAM tables, you must either ensure that the server is not running, or that the server has external locking enabled so that it locks table files as necessary to coordinate with myisamchk for access to the tables. The same is true for use of myisampack to pack MyISAM tables.
If the server is run with external locking enabled, you can use myisamchk at any time for read operations such a checking tables. In this case, if the server tries to update a table that myisamchk is using, the server will wait for myisamchk to finish before it continues.
If you use myisamchk for write operations such as repairing or optimizing tables, or if you use myisampack to pack tables, you must always ensure that the mysqld server is not using the table. If you don't stop mysqld, at least do a mysqladmin flush-tables before you run myisamchk. Your tables may become corrupted if the server and myisamchk access the tables simultaneously.
With external locking in effect, each process that requires access to a table acquires a file system lock for the table files before proceeding to access the table. If all necessary locks cannot be acquired, the process is blocked from accessing the table until the locks can be obtained (after the process that currently holds the locks releases them).
External locking affects server performance because the server must sometimes wait for other processes before it can access tables.
External locking is unnecessary if you run a single server to access a given data directory (which is the usual case) and if no other programs such as myisamchk need to modify tables while the server is running. If you only read tables with other programs, external locking is not required, although myisamchk might report warnings if the server changes tables while myisamchk is reading them.
With external locking disabled, to use myisamchk, you must either stop the server while myisamchk executes or else lock and flush the tables before running myisamchk. (See Section 8.11.1, “System Factors and Startup Parameter Tuning”.) To avoid this requirement, use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.
For mysqld, external locking is controlled by the value of the skip_external_locking system variable. When this variable is enabled, external locking is disabled, and vice versa. From MySQL 4.0 on, external locking is disabled by default.
Use of external locking can be controlled at server startup by using the --external-locking or --skip-external-locking option.
If you do use external locking option to enable updates to MyISAM tables from many MySQL processes, you must ensure that the following conditions are satisfied:
Do not use the query cache for queries that use tables that are updated by another process.
Do not start the server with the --delay-key-write=ALL option or use the DELAY_KEY_WRITE=1 table option for any shared tables. Otherwise, index corruption can occur.
The easiest way to satisfy these conditions is to always use --external-locking together with --delay-key-write=OFF and --query-cache-size=0. (This is not done by default because in many setups it is useful to have a mixture of the preceding options.)
8.11. Optimizing the MySQL Server
This section discusses optimization techniques for the database server, primarily dealing with system configuration rather than tuning SQL statements. The information in this section is appropriate for DBAs who want to ensure performance and scalability across the servers they manage; for developers constructing installation scripts that include setting up the database; and people running MySQL themselves for development, testing, and so on who want to maximize their own productivity.
8.11.1. System Factors and Startup Parameter Tuning
We start with system-level factors, because some of these decisions must be made very early to achieve large performance gains. In other cases, a quick look at this section may suffice. However, it is always nice to have a sense of how much can be gained by changing factors that apply at this level.
The operating system to use is very important. To get the best use of multiple-CPU machines, you should use Solaris (because its threads implementation works well) or Linux (because the 2.4 and later kernels have good SMP support). Note that older Linux kernels have a 2GB filesize limit by default. If you have such a kernel and a need for files larger than 2GB, get the Large File Support (LFS) patch for the ext2 file system. Other file systems such as ReiserFS and XFS do not have this 2GB limitation.
Before using MySQL in production, we advise you to test it on your intended platform.
Other tips:
If you have enough RAM, you could remove all swap devices. Some operating systems use a swap device in some contexts even if you have free memory.
Avoid external locking for MyISAM tables. Since MySQL 4.0, the default has been for external locking to be disabled on all systems. The --external-locking and --skip-external-locking options explicitly enable and disable external locking.
Note that disabling external locking does not affect MySQL's functionality as long as you run only one server. Just remember to take down the server (or lock and flush the relevant tables) before you run myisamchk. On some systems it is mandatory to disable external locking because it does not work, anyway.
The only case in which you cannot disable external locking is when you run multiple MySQL servers (not clients) on the same data, or if you run myisamchk to check (not repair) a table without telling the server to flush and lock the tables first. Note that using multiple MySQL servers to access the same data concurrently is generally not recommended, except when using MySQL Cluster.
Note
MySQL Cluster is currently not supported in MySQL 5.6. Users wishing to upgrade a MySQL Cluster from MySQL 5.0 or 5.1 should instead migrate to MySQL Cluster NDB 7.0 or 7.1; these are based on MySQL 5.1 but contain the latest improvements and fixes for NDB.
The LOCK TABLES and UNLOCK TABLES statements use internal locking, so you can use them even if external locking is disabled.
8.11.2. Tuning Server Parameters
You can determine the default buffer sizes used by the mysqld server using this command:
shell> mysqld --verbose --help
This command produces a list of all mysqld options and configurable system variables. The output includes the default variable values and looks something like this:
abort-slave-event-count 0
allow-suspicious-udfs FALSE
archive ON
auto-increment-increment 1
auto-increment-offset 1
autocommit TRUE
automatic-sp-privileges TRUE
back-log 80
basedir /home/jon/bin/mysql-5.6/
big-tables FALSE
bind-address *
binlog-cache-size 32768
binlog-checksum CRC32
binlog-direct-non-transactional-updates FALSE
binlog-format STATEMENT
binlog-max-flush-queue-time 0
binlog-order-commits TRUE
binlog-row-event-max-size 8192
binlog-row-image FULL
binlog-rows-query-log-events FALSE
binlog-stmt-cache-size 32768
blackhole ON
bulk-insert-buffer-size 8388608
character-set-client-handshake TRUE
character-set-filesystem binary
character-set-server latin1
character-sets-dir /home/jon/bin/mysql-5.6/share/charsets/
chroot (No default value)
collation-server latin1_swedish_ci
completion-type NO_CHAIN
concurrent-insert AUTO
connect-timeout 10
console FALSE
datadir (No default value)
date-format %Y-%m-%d
datetime-format %Y-%m-%d %H:%i:%s
default-storage-engine InnoDB
default-time-zone (No default value)
default-tmp-storage-engine InnoDB
default-week-format 0
delay-key-write ON
delayed-insert-limit 100
delayed-insert-timeout 300
delayed-queue-size 1000
des-key-file (No default value)
disconnect-on-expired-password TRUE
disconnect-slave-event-count 0
div-precision-increment 4
end-markers-in-json FALSE
enforce-gtid-consistency FALSE
eq-range-index-dive-limit 10
event-scheduler OFF
expire-logs-days 0
explicit-defaults-for-timestamp FALSE
external-locking FALSE
flush FALSE
flush-time 0
ft-boolean-syntax + -><()~*:""&|
ft-max-word-len 84
ft-min-word-len 4
ft-query-expansion-limit 20
ft-stopword-file (No default value)
gdb FALSE
general-log FALSE
general-log-file /home/jon/bin/mysql-5.6/data/havskatt.log
group-concat-max-len 1024
gtid-mode OFF
help TRUE
host-cache-size 279
ignore-builtin-innodb FALSE
init-connect
init-file (No default value)
init-slave
innodb ON
innodb-adaptive-flushing TRUE
innodb-adaptive-flushing-lwm 10
innodb-adaptive-hash-index TRUE
innodb-adaptive-max-sleep-delay 150000
innodb-additional-mem-pool-size 8388608
innodb-api-bk-commit-interval 5
innodb-api-disable-rowlock FALSE
innodb-api-enable-binlog FALSE
innodb-api-enable-mdl FALSE
innodb-api-trx-level 0
innodb-autoextend-increment 64
innodb-autoinc-lock-mode 1
innodb-buffer-page ON
innodb-buffer-page-lru ON
innodb-buffer-pool-dump-at-shutdown FALSE
innodb-buffer-pool-dump-now FALSE
innodb-buffer-pool-filename ib_buffer_pool
innodb-buffer-pool-instances 0
innodb-buffer-pool-load-abort FALSE
innodb-buffer-pool-load-at-startup FALSE
innodb-buffer-pool-load-now FALSE
innodb-buffer-pool-size 134217728
innodb-buffer-pool-stats ON
innodb-change-buffer-max-size 25
innodb-change-buffering all
innodb-checksum-algorithm innodb
innodb-checksums TRUE
innodb-cmp ON
innodb-cmp-per-index ON
innodb-cmp-per-index-enabled FALSE
innodb-cmp-per-index-reset ON
innodb-cmp-reset ON
innodb-cmpmem ON
innodb-cmpmem-reset ON
innodb-commit-concurrency 0
innodb-compression-failure-threshold-pct 5
innodb-compression-level 6
innodb-compression-pad-pct-max 50
innodb-concurrency-tickets 5000
innodb-data-file-path (No default value)
innodb-data-home-dir (No default value)
innodb-disable-sort-file-cache FALSE
innodb-doublewrite TRUE
innodb-fast-shutdown 1
innodb-file-format Antelope
innodb-file-format-check TRUE
innodb-file-format-max Antelope
innodb-file-io-threads 4
innodb-file-per-table TRUE
innodb-flush-log-at-timeout 1
innodb-flush-log-at-trx-commit 1
innodb-flush-method (No default value)
innodb-flush-neighbors 1
innodb-flushing-avg-loops 30
innodb-force-load-corrupted FALSE
innodb-force-recovery 0
innodb-ft-aux-table (No default value)
innodb-ft-being-deleted ON
innodb-ft-cache-size 8000000
innodb-ft-config ON
innodb-ft-default-stopword ON
innodb-ft-deleted ON
innodb-ft-enable-diag-print FALSE
innodb-ft-enable-stopword TRUE
innodb-ft-index-cache ON
innodb-ft-index-table ON
innodb-ft-inserted ON
innodb-ft-max-token-size 84
innodb-ft-min-token-size 3
innodb-ft-num-word-optimize 2000
innodb-ft-server-stopword-table (No default value)
innodb-ft-sort-pll-degree 2
innodb-ft-user-stopword-table (No default value)
innodb-io-capacity 200
innodb-io-capacity-max 18446744073709551615
innodb-large-prefix FALSE
innodb-lock-wait-timeout 50
innodb-lock-waits ON
innodb-locks ON
innodb-locks-unsafe-for-binlog FALSE
innodb-log-buffer-size 8388608
innodb-log-compressed-pages TRUE
innodb-log-file-size 50331648
innodb-log-files-in-group 2
innodb-log-group-home-dir (No default value)
innodb-lru-scan-depth 1024
innodb-max-dirty-pages-pct 75
innodb-max-dirty-pages-pct-lwm 0
innodb-max-purge-lag 0
innodb-max-purge-lag-delay 0
innodb-metrics ON
innodb-mirrored-log-groups 1
innodb-monitor-disable (No default value)
innodb-monitor-enable (No default value)
innodb-monitor-reset (No default value)
innodb-monitor-reset-all (No default value)
innodb-old-blocks-pct 37
innodb-old-blocks-time 1000
innodb-online-alter-log-max-size 134217728
innodb-open-files 0
innodb-optimize-fulltext-only FALSE
innodb-page-size 16384
innodb-print-all-deadlocks FALSE
innodb-purge-batch-size 300
innodb-purge-threads 1
innodb-random-read-ahead FALSE
innodb-read-ahead-threshold 56
innodb-read-io-threads 4
innodb-read-only FALSE
innodb-replication-delay 0
innodb-rollback-on-timeout FALSE
innodb-rollback-segments 128
innodb-sort-buffer-size 1048576
innodb-spin-wait-delay 6
innodb-stats-auto-recalc TRUE
innodb-stats-method nulls_equal
innodb-stats-on-metadata FALSE
innodb-stats-persistent TRUE
innodb-stats-persistent-sample-pages 20
innodb-stats-sample-pages 8
innodb-stats-transient-sample-pages 8
innodb-status-file FALSE
innodb-strict-mode FALSE
innodb-support-xa TRUE
innodb-sync-array-size 1
innodb-sync-spin-loops 30
innodb-sys-columns ON
innodb-sys-datafiles ON
innodb-sys-fields ON
innodb-sys-foreign ON
innodb-sys-foreign-cols ON
innodb-sys-indexes ON
innodb-sys-tables ON
innodb-sys-tablespaces ON
innodb-sys-tablestats ON
innodb-table-locks TRUE
innodb-thread-concurrency 0
innodb-thread-sleep-delay 10000
innodb-trx ON
innodb-undo-directory .
innodb-undo-logs 128
innodb-undo-tablespaces 0
innodb-use-native-aio TRUE
innodb-use-sys-malloc TRUE
innodb-write-io-threads 4
interactive-timeout 28800
join-buffer-size 262144
keep-files-on-create FALSE
key-buffer-size 8388608
key-cache-age-threshold 300
key-cache-block-size 1024
key-cache-division-limit 100
language /home/jon/bin/mysql-5.6/share/
large-pages FALSE
lc-messages en_US
lc-messages-dir /home/jon/bin/mysql-5.6/share/
lc-time-names en_US
local-infile TRUE
lock-wait-timeout 31536000
log-bin (No default value)
log-bin-index (No default value)
log-bin-trust-function-creators FALSE
log-bin-use-v1-row-events FALSE
log-error
log-isam myisam.log
log-output FILE
log-queries-not-using-indexes FALSE
log-raw FALSE
log-short-format FALSE
log-slave-updates FALSE
log-slow-admin-statements FALSE
log-slow-slave-statements FALSE
log-tc tc.log
log-tc-size 24576
log-throttle-queries-not-using-indexes 0
log-warnings 1
long-query-time 10
low-priority-updates FALSE
lower-case-table-names 0
master-info-file master.info
master-info-repository FILE
master-retry-count 86400
master-verify-checksum FALSE
max-allowed-packet 4194304
max-binlog-cache-size 18446744073709547520
max-binlog-dump-events 0
max-binlog-size 1073741824
max-binlog-stmt-cache-size 18446744073709547520
max-connect-errors 100
max-connections 151
max-delayed-threads 20
max-error-count 64
max-heap-table-size 16777216
max-join-size 18446744073709551615
max-length-for-sort-data 1024
max-prepared-stmt-count 16382
max-relay-log-size 0
max-seeks-for-key 18446744073709551615
max-sort-length 1024
max-sp-recursion-depth 0
max-tmp-tables 32
max-user-connections 0
max-write-lock-count 18446744073709551615
memlock FALSE
metadata-locks-cache-size 1024
metadata-locks-hash-instances 8
min-examined-row-limit 0
multi-range-count 256
myisam-block-size 1024
myisam-data-pointer-size 6
myisam-max-sort-file-size 9223372036853727232
myisam-mmap-size 18446744073709551615
myisam-recover-options OFF
myisam-repair-threads 1
myisam-sort-buffer-size 8388608
myisam-stats-method nulls_unequal
myisam-use-mmap FALSE
net-buffer-length 16384
net-read-timeout 30
net-retry-count 10
net-write-timeout 60
new FALSE
old FALSE
old-alter-table FALSE
old-passwords 0
old-style-user-limits FALSE
open-files-limit 1024
optimizer-prune-level 1
optimizer-search-depth 62
optimizer-switch index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on,engine_condition_pushdown=on,index_condition_pushdown=on,mrr=on,mrr_cost_based=on,block_nested_loop=on,batched_key_access=off,materialization=on,semijoin=on,loosescan=on,firstmatch=on,subquery_materialization_cost_based=on,use_index_extensions=on
optimizer-trace
optimizer-trace-features greedy_search=on,range_optimizer=on,dynamic_range=on,repeated_subselect=on
optimizer-trace-limit 1
optimizer-trace-max-mem-size 16384
optimizer-trace-offset -1
partition ON
performance-schema TRUE
performance-schema-accounts-size -1
performance-schema-consumer-events-stages-current FALSE
performance-schema-consumer-events-stages-history FALSE
performance-schema-consumer-events-stages-history-long FALSE
performance-schema-consumer-events-statements-current TRUE
performance-schema-consumer-events-statements-history FALSE
performance-schema-consumer-events-statements-history-long FALSE
performance-schema-consumer-events-waits-current FALSE
performance-schema-consumer-events-waits-history FALSE
performance-schema-consumer-events-waits-history-long FALSE
performance-schema-consumer-global-instrumentation TRUE
performance-schema-consumer-statements-digest TRUE
performance-schema-consumer-thread-instrumentation TRUE
performance-schema-digests-size -1
performance-schema-events-stages-history-long-size -1
performance-schema-events-stages-history-size -1
performance-schema-events-statements-history-long-size -1
performance-schema-events-statements-history-size -1
performance-schema-events-waits-history-long-size -1
performance-schema-events-waits-history-size -1
performance-schema-hosts-size -1
performance-schema-instrument
performance-schema-max-cond-classes 80
performance-schema-max-cond-instances -1
performance-schema-max-file-classes 50
performance-schema-max-file-handles 32768
performance-schema-max-file-instances -1
performance-schema-max-mutex-classes 200
performance-schema-max-mutex-instances -1
performance-schema-max-rwlock-classes 30
performance-schema-max-rwlock-instances -1
performance-schema-max-socket-classes 10
performance-schema-max-socket-instances -1
performance-schema-max-stage-classes 150
performance-schema-max-statement-classes 167
performance-schema-max-table-handles -1
performance-schema-max-table-instances -1
performance-schema-max-thread-classes 50
performance-schema-max-thread-instances -1
performance-schema-session-connect-attrs-size -1
performance-schema-setup-actors-size 100
performance-schema-setup-objects-size 100
performance-schema-users-size -1
pid-file /home/jon/bin/mysql-5.6/data/havskatt.pid
plugin-dir /home/jon/bin/mysql-5.6/lib/plugin/
port 3306
port-open-timeout 0
preload-buffer-size 32768
profiling-history-size 15
query-alloc-block-size 8192
query-cache-limit 1048576
query-cache-min-res-unit 4096
query-cache-size 1048576
query-cache-type OFF
query-cache-wlock-invalidate FALSE
query-prealloc-size 8192
range-alloc-block-size 4096
read-buffer-size 131072
read-only FALSE
read-rnd-buffer-size 262144
relay-log (No default value)
relay-log-index (No default value)
relay-log-info-file relay-log.info
relay-log-info-repository FILE
relay-log-purge TRUE
relay-log-recovery FALSE
relay-log-space-limit 0
replicate-same-server-id FALSE
report-host (No default value)
report-password (No default value)
report-port 0
report-user (No default value)
safe-user-create FALSE
secure-auth TRUE
secure-file-priv (No default value)
server-id 0
server-id-bits 32
sha256-password-private-key-path private_key.pem
sha256-password-public-key-path public_key.pem
show-slave-auth-info FALSE
skip-grant-tables FALSE
skip-name-resolve FALSE
skip-networking FALSE
skip-show-database FALSE
skip-slave-start FALSE
slave-allow-batching FALSE
slave-checkpoint-group 512
slave-checkpoint-period 300
slave-compressed-protocol FALSE
slave-exec-mode STRICT
slave-load-tmpdir /tmp
slave-max-allowed-packet 1073741824
slave-net-timeout 3600
slave-parallel-workers 0
slave-pending-jobs-size-max 16777216
slave-rows-search-algorithms TABLE_SCAN,INDEX_SCAN
slave-skip-errors (No default value)
slave-sql-verify-checksum TRUE
slave-transaction-retries 10
slave-type-conversions
slow-launch-time 2
slow-query-log FALSE
slow-query-log-file /home/jon/bin/mysql-5.6/data/havskatt-slow.log
socket /tmp/mysql.sock
sort-buffer-size 262144
sporadic-binlog-dump-fail FALSE
sql-mode NO_ENGINE_SUBSTITUTION
ssl FALSE
ssl-ca (No default value)
ssl-capath (No default value)
ssl-cert (No default value)
ssl-cipher (No default value)
ssl-crl (No default value)
ssl-crlpath (No default value)
ssl-key (No default value)
stored-program-cache 256
super-large-pages FALSE
symbolic-links TRUE
sync-binlog 0
sync-frm TRUE
sync-master-info 10000
sync-relay-log 10000
sync-relay-log-info 10000
sysdate-is-now FALSE
table-definition-cache 615
table-open-cache 431
table-open-cache-instances 1
tc-heuristic-recover COMMIT
temp-pool TRUE
thread-cache-size 9
thread-concurrency 10
thread-handling one-thread-per-connection
thread-stack 262144
time-format %H:%i:%s
timed-mutexes FALSE
tmp-table-size 16777216
tmpdir /tmp
transaction-alloc-block-size 8192
transaction-isolation REPEATABLE-READ
transaction-prealloc-size 4096
transaction-read-only FALSE
updatable-views-with-limit YES
verbose TRUE
wait-timeout
For a mysqld server that is currently running, you can see the current values of its system variables by connecting to it and issuing this statement:
mysql> SHOW VARIABLES;
You can also see some statistical and status indicators for a running server by issuing this statement:
mysql> SHOW STATUS;
System variable and status information also can be obtained using mysqladmin:
shell> mysqladmin variables
shell> mysqladmin extended-status
For a full description of all system and status variables, see Section 5.1.4, “Server System Variables”, and Section 5.1.6, “Server Status Variables”.
MySQL uses algorithms that are very scalable, so you can usually run with very little memory. However, normally you get better performance by giving MySQL more memory.
When tuning a MySQL server, the two most important variables to configure are key_buffer_size and table_open_cache. You should first feel confident that you have these set appropriately before trying to change any other variables.
The following examples indicate some typical variable values for different runtime configurations.
If you have at least 256MB of memory and many tables and want maximum performance with a moderate number of clients, use something like this:
shell> mysqld_safe --key_buffer_size=64M --table_open_cache=256 \
--sort_buffer_size=4M --read_buffer_size=1M &
If you have only 128MB of memory and only a few tables, but you still do a lot of sorting, you can use something like this:
shell> mysqld_safe --key_buffer_size=16M --sort_buffer_size=1M
If there are very many simultaneous connections, swapping problems may occur unless mysqld has been configured to use very little memory for each connection. mysqld performs better if you have enough memory for all connections.
With little memory and lots of connections, use something like this:
shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=100K \
--read_buffer_size=100K &
Or even this:
shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=16K \
--table_open_cache=32 --read_buffer_size=8K \
--net_buffer_length=1K &
If you are performing GROUP BY or ORDER BY operations on tables that are much larger than your available memory, increase the value of read_rnd_buffer_size to speed up the reading of rows following sorting operations.
You can make use of the example option files included with your MySQL distribution; see Section 5.1.2, “Server Configuration Defaults”.
If you specify an option on the command line for mysqld or mysqld_safe, it remains in effect only for that invocation of the server. To use the option every time the server runs, put it in an option file.
To see the effects of a parameter change, do something like this:
shell> mysqld --key_buffer_size=32M --verbose --help
The variable values are listed near the end of the output. Make sure that the --verbose and --help options are last. Otherwise, the effect of any options listed after them on the command line are not reflected in the output.
For information on tuning the InnoDB storage engine, see Section 14.2.4.1, “InnoDB Performance Tuning Tips”.
8.11.3. Optimizing Disk I/O
Disk seeks are a huge performance bottleneck. This problem becomes more apparent when the amount of data starts to grow so large that effective caching becomes impossible. For large databases where you access data more or less randomly, you can be sure that you need at least one disk seek to read and a couple of disk seeks to write things. To minimize this problem, use disks with low seek times.
Increase the number of available disk spindles (and thereby reduce the seek overhead) by either symlinking files to different disks or striping the disks:
Using symbolic links
This means that, for MyISAM tables, you symlink the index file and data files from their usual location in the data directory to another disk (that may also be striped). This makes both the seek and read times better, assuming that the disk is not used for other purposes as well. See Section 8.11.3.1, “Using Symbolic Links”.
Striping
Striping means that you have many disks and put the first block on the first disk, the second block on the second disk, and the N-th block on the (N MOD number_of_disks) disk, and so on. This means if your normal data size is less than the stripe size (or perfectly aligned), you get much better performance. Striping is very dependent on the operating system and the stripe size, so benchmark your application with different stripe sizes. See Section 8.12.3, “Using Your Own Benchmarks”.
The speed difference for striping is very dependent on the parameters. Depending on how you set the striping parameters and number of disks, you may get differences measured in orders of magnitude. You have to choose to optimize for random or sequential access.
For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need 2 × N drives to hold N drives of data. This is probably the best option if you have the money for it. However, you may also have to invest in some volume-management software to handle it efficiently.
A good option is to vary the RAID level according to how critical a type of data is. For example, store semi-important data that can be regenerated on a RAID 0 disk, but store really important data such as host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a problem if you have many writes, due to the time required to update the parity bits.
On Linux, you can get much better performance by using hdparm to configure your disk's interface. (Up to 100% under load is not uncommon.) The following hdparm options should be quite good for MySQL, and probably for many other applications:
hdparm -m 16 -d 1
Note that performance and reliability when using this command depend on your hardware, so we strongly suggest that you test your system thoroughly after using hdparm. Please consult the hdparm manual page for more information. If hdparm is not used wisely, file system corruption may result, so back up everything before experimenting!
You can also set the parameters for the file system that the database uses:
If you do not need to know when files were last accessed (which is not really useful on a database server), you can mount your file systems with the -o noatime option. That skips updates to the last access time in inodes on the file system, which avoids some disk seeks.
On many operating systems, you can set a file system to be updated asynchronously by mounting it with the -o async option. If your computer is reasonably stable, this should give you better performance without sacrificing too much reliability. (This flag is on by default on Linux.)
8.11.3.1. Using Symbolic Links
You can move databases or tables from the database directory to other locations and replace them with symbolic links to the new locations. You might want to do this, for example, to move a database to a file system with more free space or increase the speed of your system by spreading your tables to different disks.
For InnoDB tables, use the DATA DIRECTORY clause on the CREATE TABLE statement instead of symbolic links, as explained in Section 5.4.1.2, “Specifying the Location of a Tablespace”. This new feature is a supported, cross-platform technique.
The recommended way to do this is to symlink entire database directories to a different disk. Symlink MyISAM tables only as a last resort.
To determine the location of your data directory, use this statement:
SHOW VARIABLES LIKE 'datadir';
8.11.3.1.1. Using Symbolic Links for Databases on Unix
On Unix, the way to symlink a database is first to create a directory on some disk where you have free space and then to create a soft link to it from the MySQL data directory.
shell> mkdir /dr1/databases/test
shell> ln -s /dr1/databases/test /path/to/datadir
MySQL does not support linking one directory to multiple databases. Replacing a database directory with a symbolic link works as long as you do not make a symbolic link between databases. Suppose that you have a database db1 under the MySQL data directory, and then make a symlink db2 that points to db1:
shell> cd /path/to/datadir
shell> ln -s db1 db2
The result is that, or any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one client updates db1.tbl_a and another client updates db2.tbl_a, problems are likely to occur.
8.11.3.1.2. Using Symbolic Links for MyISAM Tables on Unix
Symlinks are fully supported only for MyISAM tables. For files used by tables for other storage engines, you may get strange problems if you try to use symbolic links. For InnoDB tables, use the alternative technique explained in Section 5.4.1.2, “Specifying the Location of a Tablespace” instead.
Do not symlink tables on systems that do not have a fully operational realpath() call. (Linux and Solaris support realpath()). To determine whether your system supports symbolic links, check the value of the have_symlink system variable using this statement:
SHOW VARIABLES LIKE 'have_symlink';
The handling of symbolic links for MyISAM tables works as follows:
In the data directory, you always have the table format (.frm) file, the data (.MYD) file, and the index (.MYI) file. The data file and index file can be moved elsewhere and replaced in the data directory by symlinks. The format file cannot.
You can symlink the data file and the index file independently to different directories.
To instruct a running MySQL server to perform the symlinking, use the DATA DIRECTORY and INDEX DIRECTORY options to CREATE TABLE. See Section 13.1.14, “CREATE TABLE Syntax”. Alternatively, if mysqld is not running, symlinking can be accomplished manually using ln -s from the command line.
Note
The path used with either or both of the DATA DIRECTORY and INDEX DIRECTORY options may not include the MySQL data directory. (Bug #32167)
myisamchk does not replace a symlink with the data file or index file. It works directly on the file to which the symlink points. Any temporary files are created in the directory where the data file or index file is located. The same is true for the ALTER TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.
Note
When you drop a table that is using symlinks, both the symlink and the file to which the symlink points are dropped. This is an extremely good reason not to run mysqld as the system root or permit system users to have write access to MySQL database directories.
If you rename a table with ALTER TABLE ... RENAME or RENAME TABLE and you do not move the table to another database, the symlinks in the database directory are renamed to the new names and the data file and index file are renamed accordingly.
If you use ALTER TABLE ... RENAME or RENAME TABLE to move a table to another database, the table is moved to the other database directory. If the table name changed, the symlinks in the new database directory are renamed to the new names and the data file and index file are renamed accordingly.
If you are not using symlinks, start mysqld with the --skip-symbolic-links option to ensure that no one can use mysqld to drop or rename a file outside of the data directory.
These table symlink operations are not supported:
ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.
As indicated previously, only the data and index files can be symbolic links. The .frm file must never be a symbolic link. Attempting to do this (for example, to make one table name a synonym for another) produces incorrect results. Suppose that you have a database db1 under the MySQL data directory, a table tbl1 in this database, and in the db1 directory you make a symlink tbl2 that points to tbl1:
shell> cd /path/to/datadir/db1
shell> ln -s tbl1.frm tbl2.frm
shell> ln -s tbl1.MYD tbl2.MYD
shell> ln -s tbl1.MYI tbl2.MYI
Problems result if one thread reads db1.tbl1 and another thread updates db1.tbl2:
The query cache is “fooled” (it has no way of knowing that tbl1 has not been updated, so it returns outdated results).
ALTER statements on tbl2 fail.
8.11.3.1.3. Using Symbolic Links for Databases on Windows
On Windows, symbolic links can be used for database directories. This enables you to put a database directory at a different location (for example, on a different disk) by setting up a symbolic link to it. Use of database symlinks on Windows is similar to their use on Unix, although the procedure for setting up the link differs.
Suppose that you want to place the database directory for a database named mydb at D:\data\mydb. To do this, create a symbolic link in the MySQL data directory that points to D:\data\mydb. However, before creating the symbolic link, make sure that the D:\data\mydb directory exists by creating it if necessary. If you already have a database directory named mydb in the data directory, move it to D:\data. Otherwise, the symbolic link will be ineffective. To avoid problems, make sure that the server is not running when you move the database directory.
The procedure for creating the database symbolic link depends on your version of Windows.
Windows Vista, Windows Server 2008, or newer have native symbolic link support, so you can create a symlink using the mklink command. This command requires administrative privileges.
Change location into the data directory:
C:\> cd \path\to\datadir
In the data directory, create a symlink named mydb that points to the location of the database directory:
C:\> mklink /d mydb D:\data\mydb
After this, all tables created in the database mydb are created in D:\data\mydb.
Alternatively, on any version of Windows supported by MySQL, you can create a symbolic link to a MySQL database by creating a .sym file in the data directory that contains the path to the destination directory. The file should be named db_name.sym, where db_name is the database name.
Support for database symbolic links on Windows using .sym files is enabled by default. If you do not need .sym file symbolic links, you can disable support for them by starting mysqld with the --skip-symbolic-links option. To determine whether your system supports .sym file symbolic links, check the value of the have_symlink system variable using this statement:
SHOW VARIABLES LIKE 'have_symlink';
To create a .sym file symlink, use this procedure:
Change location into the data directory:
C:\> cd \path\to\datadir
In the data directory, create a text file named mydb.sym that contains this path name: D:\data\mydb\
Note
The path name to the new database and tables should be absolute. If you specify a relative path, the location will be relative to the mydb.sym file.
After this, all tables created in the database mydb are created in D:\data\mydb.
Note
Because support for .sym files is redundant with native symlink support available using mklink, use of .sym files is deprecated as of MySQL 5.6.9 and support for them will be removed in a future MySQL release.
The following limitations apply to the use of .sym files for database symbolic linking on Windows. These limitations do not apply for symlinks created using mklink.
The symbolic link is not used if a directory with the same name as the database exists in the MySQL data directory.
The --innodb_file_per_table option cannot be used.
If you run mysqld as a service, you cannot use a mapped drive to a remote server as the destination of the symbolic link. As a workaround, you can use the full path (\\servername\path\).
8.11.4. Optimizing Memory Use
8.11.4.1. How MySQL Uses Memory
The following list indicates some of the ways that the mysqld server uses memory. Where applicable, the name of the system variable relevant to the memory use is given:
All threads share the MyISAM key buffer; its size is determined by the key_buffer_size variable. Other buffers used by the server are allocated as needed. See Section 8.11.2, “Tuning Server Parameters”.
Each thread that is used to manage client connections uses some thread-specific space. The following list indicates these and which variables control their size:
A stack (variable thread_stack)
A connection buffer (variable net_buffer_length)
A result buffer (variable net_buffer_length)
The connection buffer and result buffer each begin with a size equal to net_buffer_length bytes, but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer shrinks to net_buffer_length bytes after each SQL statement. While a statement is running, a copy of the current statement string is also allocated.
All threads share the same base memory.
When a thread is no longer needed, the memory allocated to it is released and returned to the system unless the thread goes back into the thread cache. In that case, the memory remains allocated.
The myisam_use_mmap system variable can be set to 1 to enable memory-mapping for all MyISAM tables.
Each request that performs a sequential scan of a table allocates a read buffer (variable read_buffer_size).
When reading rows in an arbitrary sequence (for example, following a sort), a random-read buffer (variable read_rnd_buffer_size) may be allocated to avoid disk seeks.
All joins are executed in a single pass, and most joins can be done without even using a temporary table. Most temporary tables are memory-based hash tables. Temporary tables with a large row length (calculated as the sum of all column lengths) or that contain BLOB columns are stored on disk.
If an internal in-memory temporary table becomes too large, MySQL handles this automatically by changing the table from in-memory to on-disk format, to be handled by the MyISAM storage engine. You can increase the permissible temporary table size as described in Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”.
Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on the result set size. See Section C.5.4.4, “Where MySQL Stores Temporary Files”.
Almost all parsing and calculating is done in thread-local and reusable memory pools. No memory overhead is needed for small items, so the normal slow memory allocation and freeing is avoided. Memory is allocated only for unexpectedly large strings.
For each MyISAM table that is opened, the index file is opened once; the data file is opened once for each concurrently running thread. For each concurrent thread, a table structure, column structures for each column, and a buffer of size 3 * N are allocated (where N is the maximum row length, not counting BLOB columns). A BLOB column requires five to eight bytes plus the length of the BLOB data. The MyISAM storage engine maintains one extra row buffer for internal use.
For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB values. If you scan a table, a buffer as large as the largest BLOB value is allocated.
Handler structures for all in-use tables are saved in a cache and managed as a FIFO. The initial cache size is taken from the value of the table_open_cache system variable. If a table has been used by two running threads at the same time, the cache contains two entries for the table. See Section 8.4.3.1, “How MySQL Opens and Closes Tables”.
A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that are not in use at once and marks all in-use tables to be closed when the currently executing thread finishes. This effectively frees most in-use memory. FLUSH TABLES does not return until all tables have been closed.
The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER, and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE, DROP USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes many instances of the statements that cause caching, there will be an increase in memory use. This cached memory can be freed with FLUSH PRIVILEGES.
ps and other system status programs may report that mysqld uses a lot of memory. This may be caused by thread stacks on different memory addresses. For example, the Solaris version of ps counts the unused memory between stacks as used memory. To verify this, check available swap with swap -s. We test mysqld with several memory-leakage detectors (both commercial and Open Source), so there should be no memory leaks.
8.11.4.2. Enabling Large Page Support
Some hardware/operating system architectures support memory pages greater than the default (usually 4KB). The actual implementation of this support depends on the underlying hardware and operating system. Applications that perform a lot of memory accesses may obtain performance improvements by using large pages due to reduced Translation Lookaside Buffer (TLB) misses.
In MySQL, large pages can be used by InnoDB, to allocate memory for its buffer pool and additional memory pool.
Standard use of large pages in MySQL attempts to use the largest size supported, up to 4MB. Under Solaris, a “super large pages” feature enables uses of pages up to 256MB. This feature is available for recent SPARC platforms. It can be enabled or disabled by using the --super-large-pages or --skip-super-large-pages option.
MySQL also supports the Linux implementation of large page support (which is called HugeTLB in Linux).
Before large pages can be used on Linux, the kernel must be enabled to support them and it is necessary to configure the HugeTLB memory pool. For reference, the HugeTBL API is documented in the Documentation/vm/hugetlbpage.txt file of your Linux sources.
The kernel for some recent systems such as Red Hat Enterprise Linux appear to have the large pages feature enabled by default. To check whether this is true for your kernel, use the following command and look for output lines containing “huge”:
shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB
The nonempty command output indicates that large page support is present, but the zero values indicate that no pages are configured for use.
If your kernel needs to be reconfigured to support large pages, consult the hugetlbpage.txt file for instructions.
Assuming that your Linux kernel has large page support enabled, configure it for use by MySQL using the following commands. Normally, you put these in an rc file or equivalent startup file that is executed during the system boot sequence, so that the commands execute each time the system starts. The commands should execute early in the boot sequence, before the MySQL server starts. Be sure to change the allocation numbers and the group number as appropriate for your system.
Set the number of pages to be used.
Each page is normally 2MB, so a value of 20 = 40MB.
This command actually allocates memory, so this much
memory must be available.
echo 20 > /proc/sys/vm/nr_hugepages
Set the group number that is permitted to access this
memory (102 in this case). The mysql user must be a
member of this group.
echo 102 > /proc/sys/vm/hugetlb_shm_group
Increase the amount of shmem permitted per segment
(12G in this case).
echo 1560281088 > /proc/sys/kernel/shmmax
Increase total amount of shared memory. The value
is the number of pages. At 4KB/page, 4194304 = 16GB.
echo 4194304 > /proc/sys/kernel/shmall
For MySQL usage, you normally want the value of shmmax to be close to the value of shmall.
To verify the large page configuration, check /proc/meminfo again as described previously. Now you should see some nonzero values:
shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB
The final step to make use of the hugetlb_shm_group is to give the mysql user an “unlimited” value for the memlock limit. This can by done either by editing /etc/security/limits.conf or by adding the following command to your mysqld_safe script:
ulimit -l unlimited
Adding the ulimit command to mysqld_safe causes the root user to set the memlock limit to unlimited before switching to the mysql user. (This assumes that mysqld_safe is started by root.)
Large page support in MySQL is disabled by default. To enable it, start the server with the --large-pages option. For example, you can use the following lines in your server's my.cnf file:
[mysqld]
large-pages
With this option, InnoDB uses large pages automatically for its buffer pool and additional memory pool. If InnoDB cannot do this, it falls back to use of traditional memory and writes a warning to the error log: Warning: Using conventional memory pool
To verify that large pages are being used, check /proc/meminfo again:
shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 2
HugePages_Surp: 0
Hugepagesize: 4096 kB
8.11.5. Optimizing Network Use
8.11.5.1. How MySQL Uses Threads for Client Connections
Connection manager threads handle client connection requests on the network interfaces that the server listens to. On all platforms, one manager thread handles TCP/IP connection requests. On Unix, this manager thread also handles Unix socket file connection requests. On Windows, a manager thread handles shared-memory connection requests, and another handles named-pipe connection requests. The server does not create threads to handle interfaces that it does not listen to. For example, a Windows server that does not have support for named-pipe connections enabled does not create a thread to handle them.
Connection manager threads associate each client connection with a thread dedicated to it that handles authentication and request processing for that connection. Manager threads create a new thread when necessary but try to avoid doing so by consulting the thread cache first to see whether it contains a thread that can be used for the connection. When a connection ends, its thread is returned to the thread cache if the cache is not full.
In this connection thread model, there are as many threads as there are clients currently connected, which has some disadvantages when server workload must scale to handle large numbers of connections. For example, thread creation and disposal becomes expensive. Also, each thread requires server and kernel resources, such as stack space. To accommodate a large number of simultaneous connections, the stack size per thread must be kept small, leading to a situation where it is either too small or the server consumes large amounts of memory. Exhaustion of other resources can occur as well, and scheduling overhead can become significant.
As of MySQL 5.6.10, commercial distributions of MySQL 5.6 include a thread pool plugin that provides an alternative thread-handling model designed to reduce overhead and improve performance. It implements a thread pool that increases server performance by efficiently managing statement execution threads for large numbers of client connections. See Section 8.11.6, “The Thread Pool Plugin”.
To control and monitor how the server manages threads that handle client connections, several system and status variables are relevant. (See Section 5.1.4, “Server System Variables”, and Section 5.1.6, “Server Status Variables”.)
The thread cache has a size determined by the thread_cache_size system variable. The default value is 0 (no caching), which causes a thread to be set up for each new connection and disposed of when the connection terminates. Set thread_cache_size to N to enable N inactive connection threads to be cached. thread_cache_size can be set at server startup or changed while the server runs. A connection thread becomes inactive when the client connection with which it was associated terminates.
To monitor the number of threads in the cache and how many threads have been created because a thread could not be taken from the cache, monitor the Threads_cached and Threads_created status variables.
You can set max_connections at server startup or at runtime to control the maximum number of clients that can connect simultaneously.
When the thread stack is too small, this limits the complexity of the SQL statements which the server can handle, the recursion depth of stored procedures, and other memory-consuming actions. To set a stack size of N bytes for each thread, start the server with --thread_stack=N.
8.11.5.2. DNS Lookup Optimization and the Host Cache
The MySQL server maintains a host cache in memory that contains information about clients: IP address, host name, and error information. The server uses this cache for nonlocal TCP connections. It does not use the cache for TCP connections established using a loopback interface address (127.0.0.1 or ::1), or for connections established using a Unix socket file, named pipe, or shared memory.
For each new client connection, the server uses the client IP address to check whether the client host name is in the host cache. If not, the server attempts to resolve the host name. First, it resolves the IP address to a host name and resolves that host name back to an IP address. Then it compares the result to the original IP address to ensure that they are the same. The server stores information about the result of this operation in the host cache. If the cache is full, the least recently used entry is discarded.
The host_cache Performance Schema table exposes the contents of the host cache so that it can be examined using SELECT statements. This may help you diagnose the causes of connection problems. See Section 20.9.9.1, “The host_cache Table”.
The server handles entries in the host cache like this:
When the first TCP client connection reaches the server from a given IP address, a new entry is created to record the client IP, host name, and client lookup validation flag. Initially, the host name is set to NULL and the flag is false. This entry is also used for subsequent client connections from the same originating IP.
If the validation flag for the client IP entry is false, the server attempts an IP-to-host name DNS resolution. If that is successful, the host name is updated with the resolved host name and the validation flag is set to true. If resolution is unsuccessful, the action taken depends on whether the error is permanent or transient. For permanent failures, the host name remains NULL and the validation flag is set to true. For transient failures, the host name and validation flag remain unchanged. (Another DNS resolution attempt occurs the next time a client connects from this IP.)
If an error occurs while processing an incoming client connection from a given IP address, the server updates the corresponding error counters in the entry for that IP. For a description of the errors recorded, see Section 20.9.9.1, “The host_cache Table”.
The server performs host name resolution using the thread-safe gethostbyaddr_r() and gethostbyname_r() calls if the operating system supports them. Otherwise, the thread performing the lookup locks a mutex and calls gethostbyaddr() and gethostbyname() instead. In this case, no other thread can resolve host names that are not in the host cache until the thread holding the mutex lock releases it.
The server uses the host cache for several purposes:
By caching the results of IP-to-host name lookups, the server avoids doing a DNS lookup for each client connection. Instead, for a given host, it needs to perform a lookup only for the first connection from that host.
The cache contains information about errors that occur during the connection process. Some errors are considered “blocking.” If too many of these occur successively from a given host without a successful connection, the server blocks further connections from that host. The max_connect_errors system variable determines the number of permitted errors before blocking occurs. See Section C.5.2.6, “Host 'host_name' is blocked”.
To unblock blocked hosts, flush the host cache by issuing a FLUSH HOSTS statement or executing a mysqladmin flush-hosts command.
It is possible for a blocked host to become unblocked even without FLUSH HOSTS if activity from other hosts has occurred since the last connection attempt from the blocked host. This can occur because the server discards the least recently used cache entry to make room for a new entry if the cache is full when a connection arrives from a client IP not in the cache. If the discarded entry is for a blocked host, that host becomes unblocked.
The host cache is enabled by default. To disable it, set the host_cache_size system variable to 0, either at server startup or at runtime.
To disable DNS host name lookups, start the server with the --skip-name-resolve option. In this case, the server uses only IP addresses and not host names to match connecting hosts to rows in the MySQL grant tables. Only accounts specified in those tables using IP addresses can be used.
If you have a very slow DNS and many hosts, you might be able to improve performance either by disabling DNS lookups with --skip-name-resolve or by increasing the value of host_cache_size to make the host cache larger.
To disallow TCP/IP connections entirely, start the server with the --skip-networking option.
Some connection errors are not associated with TCP connections, occur very early in the connection process (even before an IP address is known), or are not specific to any particular IP address (such as out-of-memory conditions). For information about these errors, check the Connection_errors_xxx status variables (see Section 5.1.6, “Server Status Variables”).
8.11.6. The Thread Pool Plugin
Note
MySQL Thread Pool is a commercial extension. To learn more about commercial products (MySQL Enterprise Edition), see http://www.mysql.com/products/.
As of MySQL 5.6.10, commercial distributions of MySQL 5.6 include MySQL Thread Pool, implemented using a server plugin. The default thread-handling model in MySQL Server executes statements using one thread per client connection. As more clients connect to the server and execute statements, overall performance degrades. The thread pool plugin provides an alternative thread-handling model designed to reduce overhead and improve performance. The plugin implements a thread pool that increases server performance by efficiently managing statement execution threads for large numbers of client connections.
The thread pool addresses several problems of the one thread per connection model:
Too many thread stacks make CPU caches almost useless in highly parallel execution workloads. The thread pool promotes thread stack reuse to minimize the CPU cache footprint.
With too many threads executing in parallel, context switching overhead is high. This also presents a challenging task to the operating system scheduler. The thread pool controls the number of active threads to keep the parallelism within the MySQL server at a level that it can handle and that is appropriate for the server host on which MySQL is executing.
Too many transactions executing in parallel increases resource contention. In InnoDB, this increases the time spent holding central mutexes. The thread pool controls when transactions start to ensure that not too many execute in parallel.
The thread pool plugin is a commercial feature. It is not included in MySQL community distributions.
On Windows, the thread pool plugin requires Windows Vista or newer. On Linux, the plugin requires kernel 2.6.9 or newer.
Additional Resources
Section B.14, “MySQL 5.6 FAQ: MySQL Enterprise Scalability Thread Pool”
8.11.6.1. Thread Pool Components and Installation
The thread pool feature comprises these components:
A plugin library object file contains a plugin for the thread pool code and plugins for several INFORMATION_SCHEMA tables.
For a detailed description of how the thread pool works, see Section 8.11.6.2, “Thread Pool Operation”.
The INFORMATION_SCHEMA tables are named TP_THREAD_STATE, TP_THREAD_GROUP_STATE, and TP_THREAD_GROUP_STATS. These tables provide information about thread pool operation. For more information, see Section 19.31, “Thread Pool INFORMATION_SCHEMA Tables”.
Several system variables are related to the thread pool. The thread_handling system variable has a value of loaded-dynamically when the server successfully loads the thread pool plugin.
The other related variables are implemented by the thread pool plugin; they are not available unless it is enabled:
thread_pool_algorithm: The concurrency algorithm to use for scheduling.
thread_pool_high_priority_connection: How to schedule statement execution for a session.
thread_pool_prio_kickup_timer: How long before the thread pool moves a statement awaiting execution from the low-priority queue to the high-priority queue.
thread_pool_max_unused_threads: How many sleeping threads to permit.
thread_pool_size: The number of thread groups in the thread pool. This is the most important parameter controlling thread pool performance.
thread_pool_stall_limit: The time before an executing statement is considered to be stalled.
If any variable implemented by the plugin is set to an illegal value at startup, plugin initialization fails and the plugin does not load.
For information about setting thread pool parameters, see Section 8.11.6.3, “Thread Pool Tuning”.
The Performance Schema exposes information about the thread pool and may be used to investigate operational performance. For more information, see Chapter 20, MySQL Performance Schema.
To be usable by the server, the thread pool library object file must be located in the MySQL plugin directory (the directory named by the plugin_dir system variable). To enable thread pool capability, load the plugins to be used by starting the server with the --plugin-load option. For example, if you name just the plugin object file, the server loads all plugins that it contains (that is, the thread pool plugin and all the INFORMATION_SCHEMA tables). To do this, put these lines in your my.cnf file:
[mysqld]
plugin-load=thread_pool.so
If object files have a suffix different from .so on your system, substitute the correct suffix (for example, .dll on Windows).
If necessary, set the value of the plugin_dir system variable to tell the server the location of the plugin directory.
If desired, you can load individual plugins from the library file. To load the thread pool plugin but not the INFORMATION_SCHEMA tables, use an option like this:
[mysqld]
plugin-load=thread_pool=thread_pool.so
To load the thread pool plugin and only the TP_THREAD_STATE INFORMATION_SCHEMA table, use an option like this:
[mysqld]
plugin-load=thread_pool=thread_pool.so;TP_THREAD_STATE=thread_pool.so
To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS statement. See Section 5.1.8.2, “Obtaining Server Plugin Information”.
If the server loads the thread plugin successfully, it sets the thread_handling system variable to dynamically-loaded. If the plugin fails to load, the server writes a message to the error log.
8.11.6.2. Thread Pool Operation
The thread pool consists of a number of thread groups, each of which manages a set of client connections. As connections are established, the thread pool assigns them to thread groups in round-robin fashion.
The number of thread groups is configurable using the thread_pool_size system variable. The default number of groups is 16. For guidelines on setting this variable, see Section 8.11.6.3, “Thread Pool Tuning”.
The maximum number of threads per group is 4096 (or 4095 on some systems where one thread is used internally).
The thread pool separates connections and threads, so there is no fixed relationship between connections and the threads that execute statements received from those connections. This differs from the default thread-handling model that associates one thread with one connection such that the thread executes all statements from the connection.
The thread pool tries to ensure a maximum of one thread executing in each group at any time, but sometimes permits more threads to execute temporarily for best performance. The algorithm works in the following manner:
Each thread group has a listener thread that listens for incoming statements from the connections assigned to the group. When a statement arrives, the thread group either begins executing it immediately or queues it for later execution:
Immediate execution occurs if the statement is the only one received and no statements are queued or currently executing.
Queuing occurs if the statement cannot begin executing immediately.
If immediate execution occurs, execution is performed by the listener thread. (This means that temporarily no thread in the group is listening.) If the statement finishes quickly, the executing thread returns to listening for statements. Otherwise, the thread pool considers the statement stalled and starts another thread as a listener thread (creating it if necessary). To ensure that no thread group becomes blocked by stalled statements, the thread pool has a background thread that regularly monitors thread group states.
By using the listening thread to execute a statement that can begin immediately, there is no need to create an additional thread if the statement finishes quickly. This ensures the most efficient execution possible in the case of a low number of concurrent threads.
When the thread pool plugin starts, it creates one thread per group (the listener thread), plus the background thread. Additional threads are created as necessary to execute statements.
The value of the thread_pool_stall_limit system variable determines the meaning of “finishes quickly” in the previous item. The default time before threads are considered stalled is 60ms but can be set to a maximum of 6s. This parameter is configurable to enable you to strike a balance appropriate for the server work load. Short wait values permit threads to start more quickly. Short values are also better for avoiding deadlock situations. Long wait values are useful for workloads that include long-running statements, to avoid starting too many new statements while the current ones execute.
The thread pool focuses on limiting the number of concurrent short-running statements. Before an executing statement reaches the stall time, it prevents other statements from beginning to execute. If the statement executes past the stall time, it is permitted to continue but no longer prevents other statements from starting. In this way, the thread pool tries to ensure that in each thread group there is never more than one short-running statement, although there might be multiple long-running statements. It is undesirable to let long-running statements prevent other statements from executing because there is no limit on the amount of waiting that might be necessary. For example, on a replication master, a thread that is sending binary log events to a slave effectively runs forever.
A statement becomes blocked if it encounters a disk I/O operation or a user level lock (row lock or table lock). The block would cause the thread group to become unused, so there are callbacks to the thread pool to ensure that the thread pool can immediately start a new thread in this group to execute another statement. When a blocked thread returns, the thread pool permits it to restart immediately.
There are two queues, a high-priority queue and a low-priority queue. The first statement in a transaction goes to the low-priority queue. Any following statements for the transaction go to the high-priority queue if the transaction is ongoing (statements for it have begun executing), or to the low-priority queue otherwise. Queue assignment can be affected by enabling the thread_pool_high_priority_connection system variable, which causes all queued statements for a session to go into the high-priority queue.
Statements for a nontransactional storage engine, or a transactional engine if autocommit is enabled, are treated as low-priority statements because in this case each statement is a transaction. Thus, given a mix of statements for InnoDB and MyISAM tables, the thread pool prioritizes those for InnoDB over those for MyISAM unless autocommit is enabled. With autocommit enabled, all statements will be low priority.
When the thread group selects a queued statement for execution, it first looks in the high-priority queue, then in the low-priority queue. If a statement is found, it is removed from its queue and begins to execute.
If a statement stays in the low-priority queue too long, the thread pool moves to the high-priority queue. The value of the thread_pool_prio_kickup_timer system variable controls the time before movement. For each thread group, a maximum of one statement per 10ms or 100 per second will be moved from the low-priority queue to the high-priority queue.
The thread pool reuses the most active threads to obtain a much better use of CPU caches. This is a small adjustment that has a great impact on performance.
While a thread executes a statement from a user connection, Performance Schema instrumentation accounts thread activity to the user connection. Otherwise, Performance Schema accounts activity to the thread pool.
Here are examples of conditions under which a thread group might have multiple threads started to execute statements:
One thread begins executing a statement, but runs long enough to be considered stalled. The thread group permits another thread to begin executing another statement even through the first thread is still executing.
One thread begins executing a statement, then becomes blocked and reports this back to the thread pool. The thread group permits another thread to begin executing another statement.
One thread begins executing a statement, becomes blocked, but does not report back that it is blocked because the block does not occur in code that has been instrumented with thread pool callbacks. In this case, the thread appears to the thread group to be still running. If the block lasts long enough for the statement to be considered stalled, the group permits another thread to begin executing another statement.
The thread pool is designed to be scalable across an increasing number of connections. It is also designed to avoid deadlocks that can arise from limiting the number of actively executing statements. It is important that threads that do not report back to the thread pool do not prevent other statements from executing and thus cause the thread pool to become deadlocked. Examples of such statements follow:
Long-running statements. These would lead to all resources used by only a few statements and they could prevent all others from accessing the server.
Binary log dump threads that read the binary log and send it to slaves. This is a kind of long-running “statement” that runs for a very long time, and that should not prevent other statements from executing.
Statements blocked on a row lock, table lock, sleep, or any other blocking activity that has not been reported back to the thread pool by MySQL Server or a storage engine.
In each case, to prevent deadlock, the statement is moved to the stalled category when it does not complete quickly, so that the thread group can permit another statement to begin executing. With this design, when a thread executes or becomes blocked for an extended time, the thread pool moves the thread to the stalled category and for the rest of the statement's execution, it does not prevent other statements from executing.
The maximum number of threads that can occur is the sum of max_connections and thread_pool_size. This can happen in a situation where all connections are in execution mode and an extra thread is created per group to listen for more statements. This is not necessarily a state that happens often, but it is theoretically possible.
8.11.6.3. Thread Pool Tuning
This section provides guidelines on setting thread pool system variables for best performance, measured using a metric such as transactions per second.
thread_pool_size is the most important parameter controlling thread pool performance. It can be set only at server startup. Our experience in testing the thread pool indicates the following:
If the primary storage engine is InnoDB, the optimal thread_pool_size setting is likely to be between 16 and 36, with the most common optimal values tending to be from 24 to 36. We have not seen any situation where the setting has been optimal beyond 36. There may be special cases where a value smaller than 16 is optimal.
For workloads such as DBT2 and Sysbench, the optimum for InnoDB seems to be usually around 36. For very write-intensive workloads, the optimal setting can sometimes be lower.
If the primary storage engine is MyISAM, the thread_pool_size setting should be fairly low. We tend to get optimal performance for values from 4 to 8. Higher values tend to have a slightly negative but not dramatic impact on performance.
Another system variable, thread_pool_stall_limit, is important for handling of blocked and long-running statements. If all calls that block the MySQL Server are reported to the thread pool, it would always know when execution threads are blocked. However, this may not always be true. For example, blocks could occur in code that has not been instrumented with thread pool callbacks. For such cases, the thread pool must be able to identify threads that appear to be blocked. This is done by means of a timeout, the length of which can be tuned using the thread_pool_stall_limit system variable. This parameter ensures that the server does not become completely blocked. The value of thread_pool_stall_limit has an upper limit of 6 seconds to prevent the risk of a deadlocked server.
thread_pool_stall_limit also enables the thread pool to handle long-running statements. If a long-running statement was permitted to block a thread group, all other connections assigned to the group would be blocked and unable to start execution until the long-running statement completed. In the worst case, this could take hours or even days.
The value of thread_pool_stall_limit should be chosen such that statements that execute longer than its value are considered stalled. Stalled statements generate a lot of extra overhead since they involve extra context switches and in some cases even extra thread creations. On the other hand, setting the thread_pool_stall_limit parameter too high means that long-running statements will block a number of short-running statements for longer than necessary. Short wait values permit threads to start more quickly. Short values are also better for avoiding deadlock situations. Long wait values are useful for workloads that include long-running statements, to avoid starting too many new statements while the current ones execute.
Suppose a server executes a workload where 99.9% of the statements complete within 100ms even when the server is loaded, and the remaining statements take between 100ms and 2 hours fairly evenly spread. In this case, it would make sense to set thread_pool_stall_limit to 10 (meaning 100ms). The default value of 60ms is okay for servers that primarily execute very simple statements.
The thread_pool_stall_limit parameter can be changed at runtime to enable you to strike a balance appropriate for the server work load. Assuming that the TP_THREAD_GROUP_STATS table is enabled, you can use the following query to determine the fraction of executed statements that stalled:
SELECT SUM(STALLED_QUERIES_EXECUTED) / SUM(QUERIES_EXECUTED)
FROM information_schema.TP_THREAD_GROUP_STATS;
This number should be as low as possible. To decrease the likelihood of statements stalling, increase the value of thread_pool_stall_limit.
When a statement arrives, what is the maximum time it can be delayed before it actually starts executing? Suppose that the following conditions apply:
There are 200 statements queued in the low-priority queue.
There are 10 statements queued in the high-priority queue.
thread_pool_prio_kickup_timer is set to 10000 (10 seconds).
thread_pool_stall_limit is set to 100 (1 second).
In the worst case, the 10 high-priority statements represent 10 transactions that continue executing for a long time. Thus, in the worst case, no statements will be moved to the high-priority queue because it will always already contain statements awaiting execution. After 10 seconds, the new statement is eligible to be moved to the high-priority queue. However, before it can be moved, all the statements before it must be moved as well. This could take another 2 seconds because a maximum of 100 statements per second are moved to the high-priority queue. Now when the statement reaches the high-priority queue, there could potentially be many long-running statements ahead of it. In the worst case, every one of those will become stalled and it will take 1 second for each statement before the next statement is retrieved from the high-priority queue. Thus, in this scenario, it will take 222 seconds before the new statement starts executing.
This example shows a worst case for an application. How to handle it depends on the application. If the application has high requirements for the response time, it should most likely throttle users at a higher level itself. Otherwise, it can use the thread pool configuration parameters to set some kind of a maximum waiting time.
8.12. Measuring Performance (Benchmarking)
To measure performance, consider the following factors:
Whether you are measuring the speed of a single operation on a quiet system, or how a set of operations (a “workload”) works over a period of time. With simple tests, you usually test how changing one aspect (a configuration setting, the set of indexes on a table, the SQL clauses in a query) affects performance. Benchmarks are typically long-running and elaborate performance tests, where the results could dictate high-level choices such as hardware and storage configuration, or how soon to upgrade to a new MySQL version.
For benchmarking, sometimes you must simulate a heavy database workload to get an accurate picture.
Performance can vary depending on so many different factors that a difference of a few percentage points might not be a decisive victory. The results might shift the opposite way when you test in a different environment.
Certain MySQL features help or do not help performance depending on the workload. For completeness, always test performance with those features turned on and turned off. The two most important features to try with each workload are the MySQL query cache, and the adaptive hash index for InnoDB tables.
This section progresses from simple and direct measurement techniques that a single developer can do, to more complicated ones that require additional expertise to perform and interpret the results.
8.12.1. Measuring the Speed of Expressions and Functions
To measure the speed of a specific MySQL expression or function, invoke the BENCHMARK() function using the mysql client program. Its syntax is BENCHMARK(loop_count,expression). The return value is always zero, but mysql prints a line displaying approximately how long the statement took to execute. For example:
mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
| 0 |
+------------------------+
1 row in set (0.32 sec)
This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute 1,000,000 simple addition expressions in 0.32 seconds on that system.
The built-in MySQL functions are typically highly optimized, but there may be some exceptions. BENCHMARK() is an excellent tool for finding out if some function is a problem for your queries.
8.12.2. The MySQL Benchmark Suite
This benchmark suite is meant to tell any user what operations a given SQL implementation performs well or poorly. You can get a good idea for how the benchmarks work by looking at the code and results in the sql-bench directory in any MySQL source distribution.
Note that this benchmark is single-threaded, so it measures the minimum time for the operations performed. We plan to add multi-threaded tests to the benchmark suite in the future.
To use the benchmark suite, the following requirements must be satisfied:
The benchmark suite is provided with MySQL source distributions. You can either download a released distribution from http://dev.mysql.com/downloads/, or use the current development source tree. (See Section 2.9.3, “Installing MySQL from a Development Source Tree”.)
The benchmark scripts are written in Perl and use the Perl DBI module to access database servers, so DBI must be installed. You also need the server-specific DBD drivers for each of the servers you want to test. For example, to test MySQL, PostgreSQL, and DB2, you must have the DBD::mysql, DBD::Pg, and DBD::DB2 modules installed. See Section 2.13, “Perl Installation Notes”.
After you obtain a MySQL source distribution, you can find the benchmark suite located in its sql-bench directory. To run the benchmark tests, build MySQL, and then change location into the sql-bench directory and execute the run-all-tests script:
shell> cd sql-bench
shell> perl run-all-tests --server=server_name
server_name should be the name of one of the supported servers. To get a list of all options and supported servers, invoke this command:
shell> perl run-all-tests --help
The crash-me script also is located in the sql-bench directory. crash-me tries to determine what features a database system supports and what its capabilities and limitations are by actually running queries. For example, it determines:
What data types are supported
How many indexes are supported
What functions are supported
How big a query can be
How big a VARCHAR column can be
For more information about benchmark results, visit http://www.mysql.com/why-mysql/benchmarks/.
8.12.3. Using Your Own Benchmarks
Benchmark your application and database to find out where the bottlenecks are. After fixing one bottleneck (or by replacing it with a “dummy” module), you can proceed to identify the next bottleneck. Even if the overall performance for your application currently is acceptable, you should at least make a plan for each bottleneck and decide how to solve it if someday you really need the extra performance.
For examples of portable benchmark programs, look at those in the MySQL benchmark suite. See Section 8.12.2, “The MySQL Benchmark Suite”. You can take any program from this suite and modify it for your own needs. By doing this, you can try different solutions to your problem and test which really is fastest for you.
Another free benchmark suite is the Open Source Database Benchmark, available at http://osdb.sourceforge.net/.
It is very common for a problem to occur only when the system is very heavily loaded. We have had many customers who contact us when they have a (tested) system in production and have encountered load problems. In most cases, performance problems turn out to be due to issues of basic database design (for example, table scans are not good under high load) or problems with the operating system or libraries. Most of the time, these problems would be much easier to fix if the systems were not already in production.
To avoid problems like this, benchmark your whole application under the worst possible load:
The mysqlslap program can be helpful for simulating a high load produced by multiple clients issuing queries simultaneously. See Section 4.5.7, “mysqlslap — Load Emulation Client”.
You can also try benchmarking packages such as SysBench and DBT2, available at http://sourceforge.net/projects/sysbench/, and http://osdldbt.sourceforge.net/#dbt2.
These programs or packages can bring a system to its knees, so be sure to use them only on your development systems.
8.12.4. Measuring Performance with performance_schema
You can query the tables in the performance_schema database to see real-time information about the performance characteristics of your server and the applications it is running. See Chapter 20, MySQL Performance Schema for details.
8.12.5. Examining Thread Information
When you are attempting to ascertain what your MySQL server is doing, it can be helpful to examine the process list, which is the set of threads currently executing within the server. Process list information is available from these sources:
The SHOW [FULL] PROCESSLIST statement: Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
The SHOW PROFILE statement: Section 13.7.5.32, “SHOW PROFILES Syntax”
The INFORMATION_SCHEMA PROCESSLIST table: Section 19.16, “The INFORMATION_SCHEMA PROCESSLIST Table”
The mysqladmin processlist command: Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
The performance_schema.threads table: Section 20.9.9, “Performance Schema Miscellaneous Tables”
Access to threads does not require a mutex and has minimal impact on server performance. INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance consequences because they require a mutex. threads also shows information about background threads, which INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST do not. This means that threads can be used to monitor activity the other thread information sources cannot.
You can always view information about your own threads. To view information about threads being executed for other accounts, you must have the PROCESS privilege.
Each process list entry contains several pieces of information:
Id is the connection identifier for the client associated with the thread.
User and Host indicate the account associated with the thread.
db is the default database for the thread, or NULL if none is selected.
Command and State indicate what the thread is doing.
Most states correspond to very quick operations. If a thread stays in a given state for many seconds, there might be a problem that needs to be investigated.
Time indicates how long the thread has been in its current state. The thread's notion of the current time may be altered in some cases: The thread can change the time with SET TIMESTAMP = value. For a thread running on a slave that is processing events from the master, the thread time is set to the time found in the events and thus reflects current time on the master and not the slave.
Info contains the text of the statement being executed by the thread, or NULL if it is not executing one. By default, this value contains only the first 100 characters of the statement. To see the complete statements, use SHOW FULL PROCESSLIST.
The following sections list the possible Command values, and State values grouped by category. The meaning for some of these values is self-evident. For others, additional description is provided.
8.12.5.1. Thread Command Values
A thread can have any of the following Command values:
Binlog Dump
This is a thread on a master server for sending binary log contents to a slave server.
Change user
The thread is executing a change-user operation.
Close stmt
The thread is closing a prepared statement.
Connect
A replication slave is connected to its master.
Connect Out
A replication slave is connecting to its master.
Create DB
The thread is executing a create-database operation.
Daemon
This thread is internal to the server, not a thread that services a client connection.
Debug
The thread is generating debugging information.
Delayed insert
The thread is a delayed-insert handler.
Drop DB
The thread is executing a drop-database operation.
Error
Execute
The thread is executing a prepared statement.
Fetch
The thread is fetching the results from executing a prepared statement.
Field List
The thread is retrieving information for table columns.
Init DB
The thread is selecting a default database.
Kill
The thread is killing another thread.
Long Data
The thread is retrieving long data in the result of executing a prepared statement.
Ping
The thread is handling a server-ping request.
Prepare
The thread is preparing a prepared statement.
Processlist
The thread is producing information about server threads.
Query
The thread is executing a statement.
Quit
The thread is terminating.
Refresh
The thread is flushing table, logs, or caches, or resetting status variable or replication server information.
Register Slave
The thread is registering a slave server.
Reset stmt
The thread is resetting a prepared statement.
Set option
The thread is setting or resetting a client statement-execution option.
Shutdown
The thread is shutting down the server.
Sleep
The thread is waiting for the client to send a new statement to it.
Statistics
The thread is producing server-status information.
Table Dump
The thread is sending table contents to a slave server.
Time
Unused.
8.12.5.2. General Thread States
The following list describes thread State values that are associated with general query processing and not more specialized activities such as replication. Many of these are useful only for finding bugs in the server.
After create
This occurs when the thread creates a table (including internal temporary tables), at the end of the function that creates the table. This state is used even if the table could not be created due to some error.
altering table
The server is in the process of executing an in-place ALTER TABLE.
Analyzing
The thread is calculating a MyISAM table key distributions (for example, for ANALYZE TABLE).
checking permissions
The thread is checking whether the server has the required privileges to execute the statement.
Checking table
The thread is performing a table check operation.
cleaning up
The thread has processed one command and is preparing to free memory and reset certain state variables.
closing tables
The thread is flushing the changed table data to disk and closing the used tables. This should be a fast operation. If not, verify that you do not have a full disk and that the disk is not in very heavy use.
committing alter table to storage engine
The server has finished an in-place ALTER TABLE and is committing the result.
converting HEAP to MyISAM
The thread is converting an internal temporary table from a MEMORY table to an on-disk MyISAM table.
copy to tmp table
The thread is processing an ALTER TABLE statement. This state occurs after the table with the new structure has been created but before rows are copied into it.
Copying to group table
If a statement has different ORDER BY and GROUP BY criteria, the rows are sorted by group and copied to a temporary table.
Copying to tmp table
The server is copying to a temporary table in memory.
Copying to tmp table on disk
The server is copying to a temporary table on disk. The temporary result set has become too large (see Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”). Consequently, the thread is changing the temporary table from in-memory to disk-based format to save memory.
Creating index
The thread is processing ALTER TABLE ... ENABLE KEYS for a MyISAM table.
Creating sort index
The thread is processing a SELECT that is resolved using an internal temporary table.
creating table
The thread is creating a table. This includes creation of temporary tables.
Creating tmp table
The thread is creating a temporary table in memory or on disk. If the table is created in memory but later is converted to an on-disk table, the state during that operation will be Copying to tmp table on disk.
deleting from main table
The server is executing the first part of a multiple-table delete. It is deleting only from the first table, and saving columns and offsets to be used for deleting from the other (reference) tables.
deleting from reference tables
The server is executing the second part of a multiple-table delete and deleting the matched rows from the other tables.
discard_or_import_tablespace
The thread is processing an ALTER TABLE ... DISCARD TABLESPACE or ALTER TABLE ... IMPORT TABLESPACE statement.
end
This occurs at the end but before the cleanup of ALTER TABLE, CREATE VIEW, DELETE, INSERT, SELECT, or UPDATE statements.
executing
The thread has begun executing a statement.
Execution of init_command
The thread is executing statements in the value of the init_command system variable.
freeing items
The thread has executed a command. Some freeing of items done during this state involves the query cache. This state is usually followed by cleaning up.
Flushing tables
The thread is executing FLUSH TABLES and is waiting for all threads to close their tables.
FULLTEXT initialization
The server is preparing to perform a natural-language full-text search.
init
This occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE statements. Actions taken by the server in this state include flushing the binary log, the InnoDB log, and some query cache cleanup operations.
For the end state, the following operations could be happening:
Removing query cache entries after data in a table is changed
Writing an event to the binary log
Freeing memory buffers, including for blobs
Killed
Someone has sent a KILL statement to the thread and it should abort next time it checks the kill flag. The flag is checked in each major loop in MySQL, but in some cases it might still take a short time for the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as the other thread releases its lock.
logging slow query
The thread is writing a statement to the slow-query log.
NULL
This state is used for the SHOW PROCESSLIST state.
login
The initial state for a connection thread until the client has been authenticated successfully.
manage keys
The server is enabling or disabling a table index.
Opening tables, Opening table
The thread is trying to open a table. This is should be very fast procedure, unless something prevents opening. For example, an ALTER TABLE or a LOCK TABLE statement can prevent opening a table until the statement is finished. It is also worth checking that your table_open_cache value is large enough.
optimizing
The server is performing initial optimizations for a query.
preparing
This state occurs during query optimization.
preparing for alter table
The server is preparing to execute an in-place ALTER TABLE.
Purging old relay logs
The thread is removing unneeded relay log files.
query end
This state occurs after processing a query but before the freeing items state.
Reading from net
The server is reading a packet from the network.
Removing duplicates
The query was using SELECT DISTINCT in such a way that MySQL could not optimize away the distinct operation at an early stage. Because of this, MySQL requires an extra stage to remove all duplicated rows before sending the result to the client.
removing tmp table
The thread is removing an internal temporary table after processing a SELECT statement. This state is not used if no temporary table was created.
rename
The thread is renaming a table.
rename result table
The thread is processing an ALTER TABLE statement, has created the new table, and is renaming it to replace the original table.
Reopen tables
The thread got a lock for the table, but noticed after getting the lock that the underlying table structure changed. It has freed the lock, closed the table, and is trying to reopen it.
Repair by sorting
The repair code is using a sort to create indexes.
Repair done
The thread has completed a multi-threaded repair for a MyISAM table.
Repair with keycache
The repair code is using creating keys one by one through the key cache. This is much slower than Repair by sorting.
Rolling back
The thread is rolling back a transaction.
Saving state
For MyISAM table operations such as repair or analysis, the thread is saving the new table state to the .MYI file header. State includes information such as number of rows, the AUTO_INCREMENT counter, and key distributions.
Searching rows for update
The thread is doing a first phase to find all matching rows before updating them. This has to be done if the UPDATE is changing the index that is used to find the involved rows.
Sending data
The thread is reading and processing rows for a SELECT statement, and sending data to the client. Because operations occurring during this this state tend to perform large amounts of disk access (reads), it is often the longest-running state over the lifetime of a given query.
setup
The thread is beginning an ALTER TABLE operation.
Sorting for group
The thread is doing a sort to satisfy a GROUP BY.
Sorting for order
The thread is doing a sort to satisfy a ORDER BY.
Sorting index
The thread is sorting index pages for more efficient access during a MyISAM table optimization operation.
Sorting result
For a SELECT statement, this is similar to Creating sort index, but for nontemporary tables.
statistics
The server is calculating statistics to develop a query execution plan. If a thread is in this state for a long time, the server is probably disk-bound performing other work.
System lock
The thread is going to request or is waiting for an internal or external system lock for the table. If this state is being caused by requests for external locks and you are not using multiple mysqld servers that are accessing the same MyISAM tables, you can disable external system locks with the --skip-external-locking option. However, external locking is disabled by default, so it is likely that this option will have no effect. For SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).
update
The thread is getting ready to start updating the table.
Updating
The thread is searching for rows to update and is updating them.
updating main table
The server is executing the first part of a multiple-table update. It is updating only the first table, and saving columns and offsets to be used for updating the other (reference) tables.
updating reference tables
The server is executing the second part of a multiple-table update and updating the matched rows from the other tables.
User lock
The thread is going to request or is waiting for an advisory lock requested with a GET_LOCK() call. For SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).
User sleep
The thread has invoked a SLEEP() call.
Waiting for commit lock
FLUSH TABLES WITH READ LOCK) is waiting for a commit lock.
Waiting for global read lock
FLUSH TABLES WITH READ LOCK) is waiting for a global read lock.
Waiting for tables, Waiting for table flush
The thread got a notification that the underlying structure for a table has changed and it needs to reopen the table to get the new structure. However, to reopen the table, it must wait until all other threads have closed the table in question.
This notification takes place if another thread has used FLUSH TABLES or one of the following statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE, REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.
Waiting for lock_type lock
The server is waiting to acquire a lock, where lock_type indicates the type of lock:
Waiting for event metadata lock
Waiting for global read lock
Waiting for schema metadata lock
Waiting for stored function metadata lock
Waiting for stored procedure metadata lock
Waiting for table level lock
Waiting for table metadata lock
Waiting for trigger metadata lock
Waiting on cond
A generic state in which the thread is waiting for a condition to become true. No specific state information is available.
Writing to net
The server is writing a packet to the network.
8.12.5.3. Delayed-Insert Thread States
These thread states are associated with processing for DELAYED inserts (see Section 13.2.5.2, “INSERT DELAYED Syntax”). Some states are associated with connection threads that process INSERT DELAYED statements from clients. Other states are associated with delayed-insert handler threads that insert the rows. There is a delayed-insert handler thread for each table for which INSERT DELAYED statements are issued.
States associated with a connection thread that processes an INSERT DELAYED statement from the client:
allocating local table
The thread is preparing to feed rows to the delayed-insert handler thread.
Creating delayed handler
The thread is creating a handler for DELAYED inserts.
got handler lock
This occurs before the allocating local table state and after the waiting for handler lock state, when the connection thread gets access to the delayed-insert handler thread.
got old table
This occurs after the waiting for handler open state. The delayed-insert handler thread has signaled that it has ended its initialization phase, which includes opening the table for delayed inserts.
storing row into queue
The thread is adding a new row to the list of rows that the delayed-insert handler thread must insert.
waiting for delay_list
This occurs during the initialization phase when the thread is trying to find the delayed-insert handler thread for the table, and before attempting to gain access to the list of delayed-insert threads.
waiting for handler insert
An INSERT DELAYED handler has processed all pending inserts and is waiting for new ones.
waiting for handler lock
This occurs before the allocating local table state when the connection thread waits for access to the delayed-insert handler thread.
waiting for handler open
This occurs after the Creating delayed handler state and before the got old table state. The delayed-insert handler thread has just been started, and the connection thread is waiting for it to initialize.
States associated with a delayed-insert handler thread that inserts the rows:
insert
The state that occurs just before inserting rows into the table.
reschedule
After inserting a number of rows, the delayed-insert thread sleeps to let other threads do work.
upgrading lock
A delayed-insert handler is trying to get a lock for the table to insert rows.
Waiting for INSERT
A delayed-insert handler is waiting for a connection thread to add rows to the queue (see storing row into queue).
8.12.5.4. Query Cache Thread States
These thread states are associated with the query cache (see Section 8.9.3, “The MySQL Query Cache”).
checking privileges on cached query
The server is checking whether the user has privileges to access a cached query result.
checking query cache for query
The server is checking whether the current query is present in the query cache.
invalidating query cache entries
Query cache entries are being marked invalid because the underlying tables have changed.
sending cached result to client
The server is taking the result of a query from the query cache and sending it to the client.
storing result in query cache
The server is storing the result of a query in the query cache.
Waiting for query cache lock
This state occurs while a session is waiting to take the query cache lock. This can happen for any statement that needs to perform some query cache operation, such as an INSERT or DELETE that invalidates the query cache, a SELECT that looks for a cached entry, RESET QUERY CACHE, and so forth.
8.12.5.5. Replication Master Thread States
The following list shows the most common states you may see in the State column for the master's Binlog Dump thread. If you see no Binlog Dump threads on a master server, this means that replication is not running—that is, that no slaves are currently connected.
Sending binlog event to slave
Binary logs consist of events, where an event is usually an update plus some other information. The thread has read an event from the binary log and is now sending it to the slave.
Finished reading one binlog; switching to next binlog
The thread has finished reading a binary log file and is opening the next one to send to the slave.
Master has sent all binlog to slave; waiting for binlog to be updated
The thread has read all outstanding updates from the binary logs and sent them to the slave. The thread is now idle, waiting for new events to appear in the binary log resulting from new updates occurring on the master.
Waiting to finalize termination
A very brief state that occurs as the thread is stopping.
8.12.5.6. Replication Slave I/O Thread States
The following list shows the most common states you see in the State column for a slave server I/O thread. This state also appears in the Slave_IO_State column displayed by SHOW SLAVE STATUS, so you can get a good view of what is happening by using that statement.
Waiting for master update
The initial state before Connecting to master.
Connecting to master
The thread is attempting to connect to the master.
Checking master version
A state that occurs very briefly, after the connection to the master is established.
Registering slave on master
A state that occurs very briefly after the connection to the master is established.
Requesting binlog dump
A state that occurs very briefly, after the connection to the master is established. The thread sends to the master a request for the contents of its binary logs, starting from the requested binary log file name and position.
Waiting to reconnect after a failed binlog dump request
If the binary log dump request failed (due to disconnection), the thread goes into this state while it sleeps, then tries to reconnect periodically. The interval between retries can be specified using the CHANGE MASTER TO statement.
Reconnecting after a failed binlog dump request
The thread is trying to reconnect to the master.
Waiting for master to send event
The thread has connected to the master and is waiting for binary log events to arrive. This can last for a long time if the master is idle. If the wait lasts for slave_net_timeout seconds, a timeout occurs. At that point, the thread considers the connection to be broken and makes an attempt to reconnect.
Queueing master event to the relay log
The thread has read an event and is copying it to the relay log so that the SQL thread can process it.
Waiting to reconnect after a failed master event read
An error occurred while reading (due to disconnection). The thread is sleeping for the number of seconds set by the CHANGE MASTER TO statement (default 60) before attempting to reconnect.
Reconnecting after a failed master event read
The thread is trying to reconnect to the master. When connection is established again, the state becomes Waiting for master to send event.
Waiting for the slave SQL thread to free enough relay log space
You are using a nonzero relay_log_space_limit value, and the relay logs have grown large enough that their combined size exceeds this value. The I/O thread is waiting until the SQL thread frees enough space by processing relay log contents so that it can delete some relay log files.
Waiting for slave mutex on exit
A state that occurs briefly as the thread is stopping.
8.12.5.7. Replication Slave SQL Thread States
The following list shows the most common states you may see in the State column for a slave server SQL thread:
Waiting for the next event in relay log
The initial state before Reading event from the relay log.
Reading event from the relay log
The thread has read an event from the relay log so that the event can be processed.
Making temp file
The thread is executing a LOAD DATA INFILE statement and is creating a temporary file containing the data from which the slave will read rows.
Slave has read all relay log; waiting for the slave I/O thread to update it
The thread has processed all events in the relay log files, and is now waiting for the I/O thread to write new events to the relay log.
Waiting for slave mutex on exit
A very brief state that occurs as the thread is stopping.
Waiting until MASTER_DELAY seconds after master executed event
The SQL thread has read an event but is waiting for the slave delay to lapse. This delay is set with the MASTER_DELAY option of CHANGE MASTER TO.
The State column for the I/O thread may also show the text of a statement. This indicates that the thread has read an event from the relay log, extracted the statement from it, and is executing it.
8.12.5.8. Replication Slave Connection Thread States
These thread states occur on a replication slave but are associated with connection threads, not with the I/O or SQL threads.
Changing master
The thread is processing a CHANGE MASTER TO statement.
Killing slave
The thread is processing a STOP SLAVE statement.
Opening master dump table
This state occurs after Creating table from master dump.
Reading master dump table data
This state occurs after Opening master dump table.
Rebuilding the index on master dump table
This state occurs after Reading master dump table data.
8.12.5.9. Event Scheduler Thread States
These states occur for the Event Scheduler thread, threads that are created to execute scheduled events, or threads that terminate the scheduler.
Clearing
The scheduler thread or a thread that was executing an event is terminating and is about to end.
Initialized
The scheduler thread or a thread that will execute an event has been initialized.
Waiting for next activation
The scheduler has a nonempty event queue but the next activation is in the future.
Waiting for scheduler to stop
The thread issued SET GLOBAL event_scheduler=OFF and is waiting for the scheduler to stop.
Waiting on empty queue
The scheduler's event queue is empty and it is sleeping.
8.13. Internal Details of MySQL Optimizations
This background information helps you to understand some of the terms you see in the EXPLAIN plan output. If you are rewriting queries to make them more efficient, or writing your own application logic for lookups, joining, or sorting, use this information to determine which optimizations you write yourself and which you can rely on MySQL to perform.
8.13.1. Range Optimization
The range access method uses a single index to retrieve a subset of table rows that are contained within one or several index value intervals. It can be used for a single-part or multiple-part index. The following sections give a detailed description of how intervals are extracted from the WHERE clause.
8.13.1.1. The Range Access Method for Single-Part Indexes
For a single-part index, index value intervals can be conveniently represented by corresponding conditions in the WHERE clause, so we speak of range conditions rather than “intervals.”
The definition of a range condition for a single-part index is as follows:
For both BTREE and HASH indexes, comparison of a key part with a constant value is a range condition when using the =, <=>, IN(), IS NULL, or IS NOT NULL operators.
Additionally, for BTREE indexes, comparison of a key part with a constant value is a range condition when using the >, <, >=, <=, BETWEEN, !=, or <> operators, or LIKE comparisons if the argument to LIKE is a constant string that does not start with a wildcard character.
For all types of indexes, multiple range conditions combined with OR or AND form a range condition.
“Constant value” in the preceding descriptions means one of the following:
A constant from the query string
The result of an uncorrelated subquery
Any expression composed entirely from subexpressions of the preceding types
Here are some examples of queries with range conditions in the WHERE clause:
SELECT * FROM t1
WHERE key_col > 1
AND key_col < 10;
SELECT * FROM t1
WHERE key_col = 1
OR key_col IN (15,18,20);
SELECT * FROM t1
WHERE key_col LIKE 'ab%'
OR key_col BETWEEN 'bar' AND 'foo';
Note that some nonconstant values may be converted to constants during the constant propagation phase.
MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes. During the extraction process, conditions that cannot be used for constructing the range condition are dropped, conditions that produce overlapping ranges are combined, and conditions that produce empty ranges are removed.
Consider the following statement, where key1 is an indexed column and nonkey is not indexed:
SELECT * FROM t1 WHERE
(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z');
The extraction process for key key1 is as follows:
Start with original WHERE clause:
(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')
Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range scan. The correct way to remove them is to replace them with TRUE, so that we do not miss any matching rows when doing the range scan. Having replaced them with TRUE, we get:
(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')
Collapse conditions that are always true or false:
(key1 LIKE 'abcde%' OR TRUE) is always true
(key1 < 'uux' AND key1 > 'z') is always false
Replacing these conditions with constants, we get:
(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)
Removing unnecessary TRUE and FALSE constants, we obtain:
(key1 < 'abc') OR (key1 < 'bar')
Combining overlapping intervals into one yields the final condition to be used for the range scan:
(key1 < 'bar')
In general (and as demonstrated by the preceding example), the condition used for a range scan is less restrictive than the WHERE clause. MySQL performs an additional check to filter out rows that satisfy the range condition but not the full WHERE clause.
The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth, and its output does not depend on the order in which conditions appear in WHERE clause.
Currently, MySQL does not support merging multiple ranges for the range access method for spatial indexes. To work around this limitation, you can use a UNION with identical SELECT statements, except that you put each spatial predicate in a different SELECT.
8.13.1.2. The Range Access Method for Multiple-Part Indexes
Range conditions on a multiple-part index are an extension of range conditions for a single-part index. A range condition on a multiple-part index restricts index rows to lie within one or several key tuple intervals. Key tuple intervals are defined over a set of key tuples, using ordering from the index.
For example, consider a multiple-part index defined as key1(key_part1, key_part2, key_part3), and the following set of key tuples listed in key order:
key_part1 key_part2 key_part3
NULL 1 'abc'
NULL 1 'xyz'
NULL 2 'foo'
1 1 'abc'
1 1 'xyz'
1 2 'abc'
2 1 'aaa'
The condition key_part1 = 1 defines this interval:
(1,-inf,-inf) <= (key_part1,key_part2,key_part3) < (1,+inf,+inf)
The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the range access method.
By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be used by the range access method.
The following descriptions indicate how range conditions work for multiple-part indexes in greater detail.
For HASH indexes, each interval containing identical values can be used. This means that the interval can be produced only for conditions in the following form:
key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;
Here, const1, const2, … are constants, cmp is one of the =, <=>, or IS NULL comparison operators, and the conditions cover all index parts. (That is, there are N conditions, one for each part of an N-part index.) For example, the following is a range condition for a three-part HASH index:
key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'
For the definition of what is considered to be a constant, see Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”.
For a BTREE index, an interval might be usable for conditions combined with AND, where each condition compares a key part with a constant value using =, <=>, IS NULL, >, <, >=, <=, !=, <>, BETWEEN, or LIKE 'pattern' (where 'pattern' does not start with a wildcard). An interval can be used as long as it is possible to determine a single key tuple containing all rows that match the condition (or two intervals if <> or != is used).
The optimizer attempts to use additional key parts to determine the interval as long as the comparison operator is =, <=>, or IS NULL. If the operator is >, <, >=, <=, !=, <>, BETWEEN, or LIKE, the optimizer uses it but considers no more key parts. For the following expression, the optimizer uses = from the first comparison. It also uses >= from the second comparison but considers no further key parts and does not use the third comparison for interval construction:
key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10
The single interval is:
('foo',10,-inf) < (key_part1,key_part2,key_part3) < ('foo',+inf,+inf)
It is possible that the created interval contains more rows than the initial condition. For example, the preceding interval includes the value ('foo', 11, 0), which does not satisfy the original condition.
If conditions that cover sets of rows contained within intervals are combined with OR, they form a condition that covers a set of rows contained within the union of their intervals. If the conditions are combined with AND, they form a condition that covers a set of rows contained within the intersection of their intervals. For example, for this condition on a two-part index:
(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)
The intervals are:
(1,-inf) < (key_part1,key_part2) < (1,2)
(5,-inf) < (key_part1,key_part2)
In this example, the interval on the first line uses one key part for the left bound and two key parts for the right bound. The interval on the second line uses only one key part. The key_len column in the EXPLAIN output indicates the maximum length of the key prefix used.
In some cases, key_len may indicate that a key part was used, but that might be not what you would expect. Suppose that key_part1 and key_part2 can be NULL. Then the key_len column displays two key part lengths for the following condition:
key_part1 >= 1 AND key_part2 < 2
But, in fact, the condition is converted to this:
key_part1 >= 1 AND key_part2 IS NOT NULL
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”, describes how optimizations are performed to combine or eliminate intervals for range conditions on a single-part index. Analogous steps are performed for range conditions on multiple-part indexes.
8.13.1.3. Equality Range Optimization of Many-Valued Comparisons
Consider these expressions, where col_name is an indexed column:
col_name IN(val1, ..., valN)
col_name = val1 OR ... OR col_name = valN
Each expression is true if col_name is equal to any of several values. These comparisons are equality range comparisons (where the “range” is a single value). The optimizer estimates the cost of reading qualifying rows for equality range comparisons as follows:
If there is a unique index on col_name, the row estimate for each range is 1 because at most one row can have the given value.
Otherwise, the optimizer can estimate the row count for each range using dives into the index or index statistics.
With index dives, the optimizer makes a dive at each end of a range and uses the number of rows in the range as the estimate. For example, the expression col_name IN (10, 20, 30) has three equality ranges and the optimizer makes two dives per range to generate a row estimate. Each pair of dives yields an estimate of the number of rows that have the given value.
Index dives provide accurate row estimates, but as the number of comparison values in the expression increases, the optimizer takes longer to generate a row estimate. Use of index statistics is less accurate than index dives but permits faster row estimation for large value lists.
The eq_range_index_dive_limit system variable enables you to configure the number of values at which the optimizer switches from one row estimation strategy to the other. To disable use of statistics and always use index dives, set eq_range_index_dive_limit to 0. To permit use of index dives for comparisons of up to N equality ranges, set eq_range_index_dive_limit to N + 1.
eq_range_index_dive_limit is available as of MySQL 5.6.5. Before 5.6.5, the optimizer uses index dives, which is equivalent to eq_range_index_dive_limit=0.
To update table index statistics for best estimates, use ANALYZE TABLE.
8.13.2. Index Merge Optimization
The Index Merge method is used to retrieve rows with several range scans and to merge their results into one. The merge can produce unions, intersections, or unions-of-intersections of its underlying scans. This access method merges index scans from a single table; it does not merge scans across multiple tables.
In EXPLAIN output, the Index Merge method appears as index_merge in the type column. In this case, the key column contains a list of indexes used, and key_len contains a list of the longest key parts for those indexes.
Examples:
SELECT * FROM tbl_name WHERE key1 = 10 OR key2 = 20;
SELECT * FROM tbl_name
WHERE (key1 = 10 OR key2 = 20) AND non_key=30;
SELECT * FROM t1, t2
WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')
AND t2.key1=t1.some_col;
SELECT * FROM t1, t2
WHERE t1.key1=1
AND (t2.key1=t1.some_col OR t2.key2=t1.some_col2);
The Index Merge method has several access algorithms (seen in the Extra field of EXPLAIN output):
Using intersect(...)
Using union(...)
Using sort_union(...)
The following sections describe these methods in greater detail.
Note
The Index Merge optimization algorithm has the following known deficiencies:
If your query has a complex WHERE clause with deep AND/OR nesting and MySQL doesn't choose the optimal plan, try distributing terms using the following identity laws:
(x AND y) OR z = (x OR z) AND (y OR z)
(x OR y) AND z = (x AND z) OR (y AND z)
Index Merge is not applicable to full-text indexes. We plan to extend it to cover these in a future MySQL release.
Before MySQL 5.6.6, if a range scan is possible on some key, the optimizer will not consider using Index Merge Union or Index Merge Sort-Union algorithms. For example, consider this query:
SELECT * FROM t1 WHERE (goodkey1 < 10 OR goodkey2 < 20) AND badkey < 30;
For this query, two plans are possible:
An Index Merge scan using the (goodkey1 < 10 OR goodkey2 < 20) condition.
A range scan using the badkey < 30 condition.
However, the optimizer considers only the second plan.
The choice between different possible variants of the Index Merge access method and other access methods is based on cost estimates of various available options.
8.13.2.1. The Index Merge Intersection Access Algorithm
This access algorithm can be employed when a WHERE clause was converted to several range conditions on different keys combined with AND, and each condition is one of the following:
In this form, where the index has exactly N parts (that is, all index parts are covered):
key_part1=const1 AND key_part2=const2 ... AND key_partN=constN
Any range condition over a primary key of an InnoDB table.
Examples:
SELECT * FROM innodb_table WHERE primary_key < 10 AND key_col1=20;
SELECT * FROM tbl_name
WHERE (key1_part1=1 AND key1_part2=2) AND key2=2;
The Index Merge intersection algorithm performs simultaneous scans on all used indexes and produces the intersection of row sequences that it receives from the merged index scans.
If all columns used in the query are covered by the used indexes, full table rows are not retrieved (EXPLAIN output contains Using index in Extra field in this case). Here is an example of such a query:
SELECT COUNT(*) FROM t1 WHERE key1=1 AND key2=1;
If the used indexes don't cover all columns used in the query, full rows are retrieved only when the range conditions for all used keys are satisfied.
If one of the merged conditions is a condition over a primary key of an InnoDB table, it is not used for row retrieval, but is used to filter out rows retrieved using other conditions.
8.13.2.2. The Index Merge Union Access Algorithm
The applicability criteria for this algorithm are similar to those for the Index Merge method intersection algorithm. The algorithm can be employed when the table's WHERE clause was converted to several range conditions on different keys combined with OR, and each condition is one of the following:
In this form, where the index has exactly N parts (that is, all index parts are covered):
key_part1=const1 AND key_part2=const2 ... AND key_partN=constN
Any range condition over a primary key of an InnoDB table.
A condition for which the Index Merge method intersection algorithm is applicable.
Examples:
SELECT * FROM t1 WHERE key1=1 OR key2=2 OR key3=3;
SELECT * FROM innodb_table WHERE (key1=1 AND key2=2) OR
(key3='foo' AND key4='bar') AND key5=5;
8.13.2.3. The Index Merge Sort-Union Access Algorithm
This access algorithm is employed when the WHERE clause was converted to several range conditions combined by OR, but for which the Index Merge method union algorithm is not applicable.
Examples:
SELECT * FROM tbl_name WHERE key_col1 < 10 OR key_col2 < 20;
SELECT * FROM tbl_name
WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col=30;
The difference between the sort-union algorithm and the union algorithm is that the sort-union algorithm must first fetch row IDs for all rows and sort them before returning any rows.
8.13.3. Engine Condition Pushdown Optimization
This optimization improves the efficiency of direct comparisons between a nonindexed column and a constant. In such cases, the condition is “pushed down” to the storage engine for evaluation. This optimization can be used only by the NDB storage engine.
Note
The NDB storage engine is currently not available in MySQL 5.6. If you are interested in using MySQL Cluster, see MySQL Cluster NDB 7.2, which provides information about MySQL Cluster NDB 7.2, which is based on MySQL 5.5 but contains the latest improvements and fixes for NDB.
For MySQL Cluster, this optimization can eliminate the need to send nonmatching rows over the network between the cluster's data nodes and the MySQL Server that issued the query, and can speed up queries where it is used by a factor of 5 to 10 times over cases where condition pushdown could be but is not used.
Suppose that a MySQL Cluster table is defined as follows:
CREATE TABLE t1 (
a INT,
b INT,
KEY(a)
) ENGINE=NDB;
Condition pushdown can be used with queries such as the one shown here, which includes a comparison between a nonindexed column and a constant:
SELECT a, b FROM t1 WHERE b = 10;
The use of condition pushdown can be seen in the output of EXPLAIN:
mysql> EXPLAIN SELECT a,b FROM t1 WHERE b = 10\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t1
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 10
Extra: Using where with pushed condition
However, condition pushdown cannot be used with either of these two queries:
SELECT a,b FROM t1 WHERE a = 10;
SELECT a,b FROM t1 WHERE b + 1 = 10;
Condition pushdown is not applicable to the first query because an index exists on column a. (An index access method would be more efficient and so would be chosen in preference to condition pushdown.) Condition pushdown cannot be employed for the second query because the comparison involving the nonindexed column b is indirect. (However, condition pushdown could be applied if you were to reduce b + 1 = 10 to b = 9 in the WHERE clause.)
Condition pushdown may also be employed when an indexed column is compared with a constant using a > or < operator:
mysql> EXPLAIN SELECT a, b FROM t1 WHERE a < 2\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t1
type: range
possible_keys: a
key: a
key_len: 5
ref: NULL
rows: 2
Extra: Using where with pushed condition
Other supported comparisons for condition pushdown include the following:
column [NOT] LIKE pattern
pattern must be a string literal containing the pattern to be matched; for syntax, see Section 12.5.1, “String Comparison Functions”.
column IS [NOT] NULL
column IN (value_list)
Each item in the value_list must be a constant, literal value.
column BETWEEN constant1 AND constant2
constant1 and constant2 must each be a constant, literal value.
In all of the cases in the preceding list, it is possible for the condition to be converted into the form of one or more direct comparisons between a column and a constant.
Engine condition pushdown is enabled by default. To disable it at server startup, set the optimizer_switch system variable. For example, in a my.cnf file, use these lines:
[mysqld]
optimizer_switch=engine_condition_pushdown=off
At runtime, enable condition pushdown like this:
SET optimizer_switch='engine_condition_pushdown=off';
Limitations. Engine condition pushdown is subject to the following limitations:
Condition pushdown is supported only by the NDB storage engine.
Columns may be compared with constants only; however, this includes expressions which evaluate to constant values.
Columns used in comparisons cannot be of any of the BLOB or TEXT types.
A string value to be compared with a column must use the same collation as the column.
Joins are not directly supported; conditions involving multiple tables are pushed separately where possible. Use EXPLAIN EXTENDED to determine which conditions are actually pushed down.
8.13.4. Index Condition Pushdown Optimization
Index Condition Pushdown (ICP) is an optimization for the case where MySQL retrieves rows from a table using an index. Without ICP, the storage engine traverses the index to locate rows in the base table and returns them to the MySQL server which evaluates the WHERE condition for the rows. With ICP enabled, and if parts of the WHERE condition can be evaluated by using only fields from the index, the MySQL server pushes this part of the WHERE condition down to the storage engine. The storage engine then evaluates the pushed index condition by using the index entry and only if this is satisfied is the row read from the table. ICP can reduce the number of times the storage engine must access the base table and the number of times the MySQL server must access the storage engine.
Index Condition Pushdown optimization is used for the range, ref, eq_ref, and ref_or_null access methods when there is a need to access full table rows. This strategy can be used for InnoDB and MyISAM tables.
To see how this optimization works, consider first how an index scan proceeds when Index Condition Pushdown is not used:
Get the next row, first by reading the index tuple, and then by using the index tuple to locate and read the full table row.
Test the part of the WHERE condition that applies to this table. Accept or reject the row based on the test result.
When Index Condition Pushdown is used, the scan proceeds like this instead:
Get the next row's index tuple (but not the full table row).
Test the part of the WHERE condition that applies to this table and can be checked using only index columns. If the condition is not satisfied, proceed to the index tuple for the next row.
If the condition is satisfied, use the index tuple to locate and read the full table row.
Test the remaining part of the WHERE condition that applies to this table. Accept or reject the row based on the test result.
When Index Condition Pushdown is used, the Extra column in EXPLAIN output shows Using index condition. It will not show Index only because that does not apply when full table rows must be read.
Suppose that we have a table containing information about people and their addresses and that the table has an index defined as INDEX (zipcode, lastname, firstname). If we know a person's zipcode value but are not sure about the last name, we can search like this:
SELECT * FROM people
WHERE zipcode='95054'
AND lastname LIKE '%etrunia%'
AND address LIKE '%Main Street%';
MySQL can use the index to scan through people with zipcode='95054'. The second part (lastname LIKE '%etrunia%') cannot be used to limit the number of rows that must be scanned, so without Index Condition Pushdown, this query must retrieve full table rows for all the people who have zipcode='95054'.
With Index Condition Pushdown, MySQL will check the lastname LIKE '%etrunia%' part before reading the full table row. This avoids reading full rows corresponding to all index tuples that do not match the lastname condition.
Index Condition Pushdown is enabled by default; it can be controlled with the optimizer_switch system variable by setting the index_condition_pushdown flag. See Section 8.8.5.2, “Controlling Switchable Optimizations”.
8.13.5. Use of Index Extensions
InnoDB automatically extends each secondary index by appending the primary key columns to it. Consider this table definition:
CREATE TABLE t1 (
i1 INT NOT NULL DEFAULT 0,
i2 INT NOT NULL DEFAULT 0,
d DATE DEFAULT NULL,
PRIMARY KEY (i1, i2),
INDEX k_d (d)
) ENGINE = InnoDB;
This table defines the primary key on columns (i1, i2). It also defines a secondary index k_d on column (d), but internally InnoDB extends this index and treats it as columns (d, i1, i2).
Before MySQL 5.6.9, the optimizer does not take into account the primary key columns of the extended secondary index when determining how and whether to use that index. As of 5.6.9, the optimizer takes the primary key columns into account, which can result in more efficient query execution plans and better performance.
The optimizer can use extended secondary indexes for ref, range, and index_merge index access, for loose index scans, for join and sorting optimization, and for MIN()/MAX() optimization.
The following example shows how execution plans are affected by whether the optimizer uses extended secondary indexes. Suppose that t1 is populated with these rows:
INSERT INTO t1 VALUES
(1, 1, '1998-01-01'), (1, 2, '1999-01-01'),
(1, 3, '2000-01-01'), (1, 4, '2001-01-01'),
(1, 5, '2002-01-01'), (2, 1, '1998-01-01'),
(2, 2, '1999-01-01'), (2, 3, '2000-01-01'),
(2, 4, '2001-01-01'), (2, 5, '2002-01-01'),
(3, 1, '1998-01-01'), (3, 2, '1999-01-01'),
(3, 3, '2000-01-01'), (3, 4, '2001-01-01'),
(3, 5, '2002-01-01'), (4, 1, '1998-01-01'),
(4, 2, '1999-01-01'), (4, 3, '2000-01-01'),
(4, 4, '2001-01-01'), (4, 5, '2002-01-01'),
(5, 1, '1998-01-01'), (5, 2, '1999-01-01'),
(5, 3, '2000-01-01'), (5, 4, '2001-01-01'),
(5, 5, '2002-01-01');
Now consider this query:
EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'
The optimizer cannot use the primary key in this case because that comprises columns (i1, i2) and the query does not refer to i2. Instead, the optimizer can use the secondary index k_d on (d), and the execution plan depends on whether the extended index is used.
When the optimizer does not consider index extensions, it treats the index k_d as only (d). EXPLAIN for the query produces this result:
mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t1
type: ref
possible_keys: PRIMARY,k_d
key: k_d
key_len: 4
ref: const
rows: 5
Extra: Using where; Using index
When the optimizer takes index extensions into account, it treats k_d as (d, i1, i2). In this case, it can use the leftmost index prefix (d, i1) to produce a better execution plan:
mysql> EXPLAIN SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01'\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t1
type: ref
possible_keys: PRIMARY,k_d
key: k_d
key_len: 8
ref: const,const
rows: 1
Extra: Using index
In both cases, key indicates that the optimizer will use secondary index k_d but the EXPLAIN output shows these improvements from using the extended index:
key_len goes from 4 bytes to 8 bytes, indicating that key lookups use columns d and i1, not just d.
The ref value changes from const to const,const because the key lookup uses two key parts, not one.
The rows count decreases from 5 to 1, indicating that InnoDB should need to examine fewer rows to produce the result.
The Extra value changes from Using where; Using index to Using index. This means that rows can be read using only the index, without consulting columns in the data row.
Differences in optimizer behavior for use of extended indexes can also be seen with SHOW STATUS:
FLUSH TABLE t1;
FLUSH STATUS;
SELECT COUNT(*) FROM t1 WHERE i1 = 3 AND d = '2000-01-01';
SHOW STATUS LIKE 'handler_read%'
The preceding statements include FLUSH TABLE and FLUSH STATUS to flush the table cache and clear the status counters.
Without index extensions, SHOW STATUS produces this result:
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 0 |
| Handler_read_key | 1 |
| Handler_read_last | 0 |
| Handler_read_next | 5 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 0 |
+-----------------------+-------+
With index extensions, SHOW STATUS produces this result. The Handler_read_next value decreases from 5 to 1, indicating more efficient use of the index:
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 0 |
| Handler_read_key | 1 |
| Handler_read_last | 0 |
| Handler_read_next | 1 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 0 |
+-----------------------+-------+
The use_index_extensions flag of the optimizer_switch system variable permits control over whether the optimizer takes the primary key columns into account when determining how to use an InnoDB table's secondary indexes. By default, use_index_extensions is enabled. To check whether disabling use of index extensions will improve performance, use this statement:
SET optimizer_switch = 'use_index_extensions=off';
Use of index extensions by the optimizer is subject to the usual limits on the number of key parts in an index (16) and the maximum key length (3072 bytes).
8.13.6. IS NULL Optimization
MySQL can perform the same optimization on col_name IS NULL that it can use for col_name = constant_value. For example, MySQL can use indexes and ranges to search for NULL with IS NULL.
Examples:
SELECT * FROM tbl_name WHERE key_col IS NULL;
SELECT * FROM tbl_name WHERE key_col <=> NULL;
SELECT * FROM tbl_name
WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;
If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT NULL, that expression is optimized away. This optimization does not occur in cases when the column might produce NULL anyway; for example, if it comes from a table on the right side of a LEFT JOIN.
MySQL can also optimize the combination col_name = expr OR col_name IS NULL, a form that is common in resolved subqueries. EXPLAIN shows ref_or_null when this optimization is used.
This optimization can handle one IS NULL for any key part.
Some examples of queries that are optimized, assuming that there is an index on columns a and b of table t2:
SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;
SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;
SELECT * FROM t1, t2
WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;
SELECT * FROM t1, t2
WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);
SELECT * FROM t1, t2
WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)
OR (t1.a=t2.a AND t2.a IS NULL AND ...);
ref_or_null works by first doing a read on the reference key, and then a separate search for rows with a NULL key value.
Note that the optimization can handle only one IS NULL level. In the following query, MySQL uses key lookups only on the expression (t1.a=t2.a AND t2.a IS NULL) and is not able to use the key part on b:
SELECT * FROM t1, t2
WHERE (t1.a=t2.a AND t2.a IS NULL)
OR (t1.b=t2.b AND t2.b IS NULL);
8.13.7. LEFT JOIN and RIGHT JOIN Optimization
MySQL implements an A LEFT JOIN B join_condition as follows:
Table B is set to depend on table A and all tables on which A depends.
Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.
The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other words, any condition in the WHERE clause is not used.)
All standard join optimizations are performed, with the exception that a table is always read after all tables on which it depends. If there is a circular dependence, MySQL issues an error.
All standard WHERE optimizations are performed.
If there is a row in A that matches the WHERE clause, but there is no row in B that matches the ON condition, an extra B row is generated with all columns set to NULL.
If you use LEFT JOIN to find rows that do not exist in some table and you have the following test: col_name IS NULL in the WHERE part, where col_name is a column that is declared as NOT NULL, MySQL stops searching for more rows (for a particular key combination) after it has found one row that matches the LEFT JOIN condition.
The implementation of RIGHT JOIN is analogous to that of LEFT JOIN with the roles of the tables reversed.
The join optimizer calculates the order in which tables should be joined. The table read order forced by LEFT JOIN or STRAIGHT_JOIN helps the join optimizer do its work much more quickly, because there are fewer table permutations to check. Note that this means that if you do a query of the following type, MySQL does a full scan on b because the LEFT JOIN forces it to be read before d:
SELECT *
FROM a JOIN b LEFT JOIN c ON (c.key=a.key)
LEFT JOIN d ON (d.key=a.key)
WHERE b.key=d.key;
The fix in this case is reverse the order in which a and b are listed in the FROM clause:
SELECT *
FROM b JOIN a LEFT JOIN c ON (c.key=a.key)
LEFT JOIN d ON (d.key=a.key)
WHERE b.key=d.key;
For a LEFT JOIN, if the WHERE condition is always false for the generated NULL row, the LEFT JOIN is changed to a normal join. For example, the WHERE clause would be false in the following query if t2.column1 were NULL:
SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;
Therefore, it is safe to convert the query to a normal join:
SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;
This can be made faster because MySQL can use table t2 before table t1 if doing so would result in a better query plan. To provide a hint about the table join order, use STRAIGHT_JOIN. (See Section 13.2.9, “SELECT Syntax”.)
8.13.8. Nested-Loop Join Algorithms
MySQL executes joins between tables using a nested-loop algorithm or variations on it.
Nested-Loop Join Algorithm
A simple nested-loop join (NLJ) algorithm reads rows from the first table in a loop one at a time, passing each row to a nested loop that processes the next table in the join. This process is repeated as many times as there remain tables to be joined.
Assume that a join between three tables t1, t2, and t3 is to be executed using the following join types:
Table Join Type
t1 range
t2 ref
t3 ALL
If a simple NLJ algorithm is used, the join is processed like this:
for each row in t1 matching range {
for each row in t2 matching reference key {
for each row in t3 {
if row satisfies join conditions,
send to client
}
}
}
Because the NLJ algorithm passes rows one at a time from outer loops to inner loops, it typically reads tables processed in the inner loops many times.
Block Nested-Loop Join Algorithm
A Block Nested-Loop (BNL) join algorithm uses buffering of rows read in outer loops to reduce the number of times that tables in inner loops must be read. For example, if 10 rows are read into a buffer and the buffer is passed to the next inner loop, each row read in the inner loop can be compared against all 10 rows in the buffer. The reduces the number of times the inner table must be read by an order of magnitude.
MySQL uses join buffering under these conditions:
The join_buffer_size system variable determines the size of each join buffer.
Join buffering can be used when the join is of type ALL or index (in other words, when no possible keys can be used, and a full scan is done, of either the data or index rows, respectively), or range. In MySQL 5.6, use of buffering is extended to be applicable to outer joins, as described in Section 8.13.12, “Block Nested-Loop and Batched Key Access Joins”.
One buffer is allocated for each join that can be buffered, so a given query might be processed using multiple join buffers.
A join buffer is never allocated for the first nonconst table, even if it would be of type ALL or index.
A join buffer is allocated prior to executing the join and freed after the query is done.
Only columns of interest to the join are stored in the join buffer, not whole rows.
For the example join described previously for the NLJ algorithm (without buffering), the join is done as follow using join buffering:
for each row in t1 matching range {
for each row in t2 matching reference key {
store used columns from t1, t2 in join buffer
if buffer is full {
for each row in t3 {
for each t1, t2 combination in join buffer {
if row satisfies join conditions,
send to client
}
}
empty buffer
}
}
}
if buffer is not empty {
for each row in t3 {
for each t1, t2 combination in join buffer {
if row satisfies join conditions,
send to client
}
}
}
If S is the size of each stored t1, t2 combination is the join buffer and C is the number of combinations in the buffer, the number of times table t3 is scanned is:
(S * C)/join_buffer_size + 1
The number of t3 scans decreases as the value of join_buffer_size increases, up to the point when join_buffer_size is large enough to hold all previous row combinations. At that point, there is no speed to be gained by making it larger.
8.13.9. Nested Join Optimization
The syntax for expressing joins permits nested joins. The following discussion refers to the join syntax described in Section 13.2.9.2, “JOIN Syntax”.
The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts only table_reference, not a list of them inside a pair of parentheses. This is a conservative extension if we consider each comma in a list of table_reference items as equivalent to an inner join. For example:
SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)
is equivalent to:
SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)
In MySQL, CROSS JOIN is a syntactic equivalent to INNER JOIN (they can replace each other). In standard SQL, they are not equivalent. INNER JOIN is used with an ON clause; CROSS JOIN is used otherwise.
In general, parentheses can be ignored in join expressions containing only inner join operations. After removing parentheses and grouping operations to the left, the join expression:
t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
ON t1.a=t2.a
transforms into the expression:
(t1 LEFT JOIN t2 ON t1.a=t2.a) LEFT JOIN t3
ON t2.b=t3.b OR t2.b IS NULL
Yet, the two expressions are not equivalent. To see this, suppose that the tables t1, t2, and t3 have the following state:
Table t1 contains rows (1), (2)
Table t2 contains row (1,101)
Table t3 contains row (101)
In this case, the first expression returns a result set including the rows (1,1,101,101), (2,NULL,NULL,NULL), whereas the second expression returns the rows (1,1,101,101), (2,NULL,NULL,101):
mysql> SELECT *
-> FROM t1
-> LEFT JOIN
-> (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
-> ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+
mysql> SELECT *
-> FROM (t1 LEFT JOIN t2 ON t1.a=t2.a)
-> LEFT JOIN t3
-> ON t2.b=t3.b OR t2.b IS NULL;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+
In the following example, an outer join operation is used together with an inner join operation:
t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
That expression cannot be transformed into the following expression:
t1 LEFT JOIN t2 ON t1.a=t2.a, t3.
For the given table states, the two expressions return different sets of rows:
mysql> SELECT *
-> FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+
mysql> SELECT *
-> FROM t1 LEFT JOIN t2 ON t1.a=t2.a, t3;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+
Therefore, if we omit parentheses in a join expression with outer join operators, we might change the result set for the original expression.
More exactly, we cannot ignore parentheses in the right operand of the left outer join operation and in the left operand of a right join operation. In other words, we cannot ignore parentheses for the inner table expressions of outer join operations. Parentheses for the other operand (operand for the outer table) can be ignored.
The following expression:
(t1,t2) LEFT JOIN t3 ON P(t2.b,t3.b)
is equivalent to this expression:
t1, t2 LEFT JOIN t3 ON P(t2.b,t3.b)
for any tables t1,t2,t3 and any condition P over attributes t2.b and t3.b.
Whenever the order of execution of the join operations in a join expression (join_table) is not from left to right, we talk about nested joins. Consider the following queries:
SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b) ON t1.a=t2.a
WHERE t1.a > 1
SELECT * FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
WHERE (t2.b=t3.b OR t2.b IS NULL) AND t1.a > 1
Those queries are considered to contain these nested joins:
t2 LEFT JOIN t3 ON t2.b=t3.b
t2, t3
The nested join is formed in the first query with a left join operation, whereas in the second query it is formed with an inner join operation.
In the first query, the parentheses can be omitted: The grammatical structure of the join expression will dictate the same order of execution for join operations. For the second query, the parentheses cannot be omitted, although the join expression here can be interpreted unambiguously without them. (In our extended syntax the parentheses in (t2, t3) of the second query are required, although theoretically the query could be parsed without them: We still would have unambiguous syntactical structure for the query because LEFT JOIN and ON would play the role of the left and right delimiters for the expression (t2,t3).)
The preceding examples demonstrate these points:
For join expressions involving only inner joins (and not outer joins), parentheses can be removed. You can remove parentheses and evaluate left to right (or, in fact, you can evaluate the tables in any order).
The same is not true, in general, for outer joins or for outer joins mixed with inner joins. Removal of parentheses may change the result.
Queries with nested outer joins are executed in the same pipeline manner as queries with inner joins. More exactly, a variation of the nested-loop join algorithm is exploited. Recall by what algorithmic schema the nested-loop join executes a query. Suppose that we have a join query over 3 tables T1,T2,T3 of the form:
SELECT * FROM T1 INNER JOIN T2 ON P1(T1,T2)
INNER JOIN T3 ON P2(T2,T3)
WHERE P(T1,T2,T3).
Here, P1(T1,T2) and P2(T3,T3) are some join conditions (on expressions), whereas P(t1,t2,t3) is a condition over columns of tables T1,T2,T3.
The nested-loop join algorithm would execute this query in the following manner:
FOR each row t1 in T1 {
FOR each row t2 in T2 such that P1(t1,t2) {
FOR each row t3 in T3 such that P2(t2,t3) {
IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;
}
}
}
}
The notation t1||t2||t3 means “a row constructed by concatenating the columns of rows t1, t2, and t3.” In some of the following examples, NULL where a row name appears means that NULL is used for each column of that row. For example, t1||t2||NULL means “a row constructed by concatenating the columns of rows t1 and t2, and NULL for each column of t3.”
Now let's consider a query with nested outer joins:
SELECT * FROM T1 LEFT JOIN
(T2 LEFT JOIN T3 ON P2(T2,T3))
ON P1(T1,T2)
WHERE P(T1,T2,T3).
For this query, we modify the nested-loop pattern to get:
FOR each row t1 in T1 {
BOOL f1:=FALSE;
FOR each row t2 in T2 such that P1(t1,t2) {
BOOL f2:=FALSE;
FOR each row t3 in T3 such that P2(t2,t3) {
IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;
}
f2=TRUE;
f1=TRUE;
}
IF (!f2) {
IF P(t1,t2,NULL) {
t:=t1||t2||NULL; OUTPUT t;
}
f1=TRUE;
}
}
IF (!f1) {
IF P(t1,NULL,NULL) {
t:=t1||NULL||NULL; OUTPUT t;
}
}
}
In general, for any nested loop for the first inner table in an outer join operation, a flag is introduced that is turned off before the loop and is checked after the loop. The flag is turned on when for the current row from the outer table a match from the table representing the inner operand is found. If at the end of the loop cycle the flag is still off, no match has been found for the current row of the outer table. In this case, the row is complemented by NULL values for the columns of the inner tables. The result row is passed to the final check for the output or into the next nested loop, but only if the row satisfies the join condition of all embedded outer joins.
In our example, the outer join table expressed by the following expression is embedded:
(T2 LEFT JOIN T3 ON P2(T2,T3))
Note that for the query with inner joins, the optimizer could choose a different order of nested loops, such as this one:
FOR each row t3 in T3 {
FOR each row t2 in T2 such that P2(t2,t3) {
FOR each row t1 in T1 such that P1(t1,t2) {
IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;
}
}
}
}
For the queries with outer joins, the optimizer can choose only such an order where loops for outer tables precede loops for inner tables. Thus, for our query with outer joins, only one nesting order is possible. For the following query, the optimizer will evaluate two different nestings:
SELECT * T1 LEFT JOIN (T2,T3) ON P1(T1,T2) AND P2(T1,T3)
WHERE P(T1,T2,T3)
The nestings are these:
FOR each row t1 in T1 {
BOOL f1:=FALSE;
FOR each row t2 in T2 such that P1(t1,t2) {
FOR each row t3 in T3 such that P2(t1,t3) {
IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;
}
f1:=TRUE
}
}
IF (!f1) {
IF P(t1,NULL,NULL) {
t:=t1||NULL||NULL; OUTPUT t;
}
}
}
and:
FOR each row t1 in T1 {
BOOL f1:=FALSE;
FOR each row t3 in T3 such that P2(t1,t3) {
FOR each row t2 in T2 such that P1(t1,t2) {
IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;
}
f1:=TRUE
}
}
IF (!f1) {
IF P(t1,NULL,NULL) {
t:=t1||NULL||NULL; OUTPUT t;
}
}
}
In both nestings, T1 must be processed in the outer loop because it is used in an outer join. T2 and T3 are used in an inner join, so that join must be processed in the inner loop. However, because the join is an inner join, T2 and T3 can be processed in either order.
When discussing the nested-loop algorithm for inner joins, we omitted some details whose impact on the performance of query execution may be huge. We did not mention so-called “pushed-down” conditions. Suppose that our WHERE condition P(T1,T2,T3) can be represented by a conjunctive formula:
P(T1,T2,T2) = C1(T1) AND C2(T2) AND C3(T3).
In this case, MySQL actually uses the following nested-loop schema for the execution of the query with inner joins:
FOR each row t1 in T1 such that C1(t1) {
FOR each row t2 in T2 such that P1(t1,t2) AND C2(t2) {
FOR each row t3 in T3 such that P2(t2,t3) AND C3(t3) {
IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;
}
}
}
}
You see that each of the conjuncts C1(T1), C2(T2), C3(T3) are pushed out of the most inner loop to the most outer loop where it can be evaluated. If C1(T1) is a very restrictive condition, this condition pushdown may greatly reduce the number of rows from table T1 passed to the inner loops. As a result, the execution time for the query may improve immensely.
For a query with outer joins, the WHERE condition is to be checked only after it has been found that the current row from the outer table has a match in the inner tables. Thus, the optimization of pushing conditions out of the inner nested loops cannot be applied directly to queries with outer joins. Here we have to introduce conditional pushed-down predicates guarded by the flags that are turned on when a match has been encountered.
For our example with outer joins with:
P(T1,T2,T3)=C1(T1) AND C(T2) AND C3(T3)
the nested-loop schema using guarded pushed-down conditions looks like this:
FOR each row t1 in T1 such that C1(t1) {
BOOL f1:=FALSE;
FOR each row t2 in T2
such that P1(t1,t2) AND (f1?C2(t2):TRUE) {
BOOL f2:=FALSE;
FOR each row t3 in T3
such that P2(t2,t3) AND (f1&&f2?C3(t3):TRUE) {
IF (f1&&f2?TRUE:(C2(t2) AND C3(t3))) {
t:=t1||t2||t3; OUTPUT t;
}
f2=TRUE;
f1=TRUE;
}
IF (!f2) {
IF (f1?TRUE:C2(t2) && P(t1,t2,NULL)) {
t:=t1||t2||NULL; OUTPUT t;
}
f1=TRUE;
}
}
IF (!f1 && P(t1,NULL,NULL)) {
t:=t1||NULL||NULL; OUTPUT t;
}
}
In general, pushed-down predicates can be extracted from join conditions such as P1(T1,T2) and P(T2,T3). In this case, a pushed-down predicate is guarded also by a flag that prevents checking the predicate for the NULL-complemented row generated by the corresponding outer join operation.
Note that access by key from one inner table to another in the same nested join is prohibited if it is induced by a predicate from the WHERE condition. (We could use conditional key access in this case, but this technique is not employed yet in MySQL 5.6.)
8.13.10. Outer Join Simplification
Table expressions in the FROM clause of a query are simplified in many cases.
At the parser stage, queries with right outer joins operations are converted to equivalent queries containing only left join operations. In the general case, the conversion is performed according to the following rule:
(T1, ...) RIGHT JOIN (T2,...) ON P(T1,...,T2,...) =
(T2, ...) LEFT JOIN (T1,...) ON P(T1,...,T2,...)
All inner join expressions of the form T1 INNER JOIN T2 ON P(T1,T2) are replaced by the list T1,T2, P(T1,T2) being joined as a conjunct to the WHERE condition (or to the join condition of the embedding join, if there is any).
When the optimizer evaluates plans for join queries with outer join operation, it takes into consideration only the plans where, for each such operation, the outer tables are accessed before the inner tables. The optimizer options are limited because only such plans enables us to execute queries with outer joins operations by the nested loop schema.
Suppose that we have a query of the form:
SELECT * T1 LEFT JOIN T2 ON P1(T1,T2)
WHERE P(T1,T2) AND R(T2)
with R(T2) narrowing greatly the number of matching rows from table T2. If we executed the query as it is, the optimizer would have no other choice besides to access table T1 before table T2 that may lead to a very inefficient execution plan.
Fortunately, MySQL converts such a query into a query without an outer join operation if the WHERE condition is null-rejected. A condition is called null-rejected for an outer join operation if it evaluates to FALSE or to UNKNOWN for any NULL-complemented row built for the operation.
Thus, for this outer join:
T1 LEFT JOIN T2 ON T1.A=T2.A
Conditions such as these are null-rejected:
T2.B IS NOT NULL,
T2.B > 3,
T2.C <= T1.C,
T2.B < 2 OR T2.C > 1
Conditions such as these are not null-rejected:
T2.B IS NULL,
T1.B < 3 OR T2.B IS NOT NULL,
T1.B < 3 OR T2.B > 3
The general rules for checking whether a condition is null-rejected for an outer join operation are simple. A condition is null-rejected in the following cases:
If it is of the form A IS NOT NULL, where A is an attribute of any of the inner tables
If it is a predicate containing a reference to an inner table that evaluates to UNKNOWN when one of its arguments is NULL
If it is a conjunction containing a null-rejected condition as a conjunct
If it is a disjunction of null-rejected conditions
A condition can be null-rejected for one outer join operation in a query and not null-rejected for another. In the query:
SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
LEFT JOIN T3 ON T3.B=T1.B
WHERE T3.C > 0
the WHERE condition is null-rejected for the second outer join operation but is not null-rejected for the first one.
If the WHERE condition is null-rejected for an outer join operation in a query, the outer join operation is replaced by an inner join operation.
For example, the preceding query is replaced with the query:
SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
INNER JOIN T3 ON T3.B=T1.B
WHERE T3.C > 0
For the original query, the optimizer would evaluate plans compatible with only one access order T1,T2,T3. For the replacing query, it additionally considers the access sequence T3,T1,T2.
A conversion of one outer join operation may trigger a conversion of another. Thus, the query:
SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
LEFT JOIN T3 ON T3.B=T2.B
WHERE T3.C > 0
will be first converted to the query:
SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
INNER JOIN T3 ON T3.B=T2.B
WHERE T3.C > 0
which is equivalent to the query:
SELECT * FROM (T1 LEFT JOIN T2 ON T2.A=T1.A), T3
WHERE T3.C > 0 AND T3.B=T2.B
Now the remaining outer join operation can be replaced by an inner join, too, because the condition T3.B=T2.B is null-rejected and we get a query without outer joins at all:
SELECT * FROM (T1 INNER JOIN T2 ON T2.A=T1.A), T3
WHERE T3.C > 0 AND T3.B=T2.B
Sometimes we succeed in replacing an embedded outer join operation, but cannot convert the embedding outer join. The following query:
SELECT * FROM T1 LEFT JOIN
(T2 LEFT JOIN T3 ON T3.B=T2.B)
ON T2.A=T1.A
WHERE T3.C > 0
is converted to:
SELECT * FROM T1 LEFT JOIN
(T2 INNER JOIN T3 ON T3.B=T2.B)
ON T2.A=T1.A
WHERE T3.C > 0,
That can be rewritten only to the form still containing the embedding outer join operation:
SELECT * FROM T1 LEFT JOIN
(T2,T3)
ON (T2.A=T1.A AND T3.B=T2.B)
WHERE T3.C > 0.
When trying to convert an embedded outer join operation in a query, we must take into account the join condition for the embedding outer join together with the WHERE condition. In the query:
SELECT * FROM T1 LEFT JOIN
(T2 LEFT JOIN T3 ON T3.B=T2.B)
ON T2.A=T1.A AND T3.C=T1.C
WHERE T3.D > 0 OR T1.D > 0
the WHERE condition is not null-rejected for the embedded outer join, but the join condition of the embedding outer join T2.A=T1.A AND T3.C=T1.C is null-rejected. So the query can be converted to:
SELECT * FROM T1 LEFT JOIN
(T2, T3)
ON T2.A=T1.A AND T3.C=T1.C AND T3.B=T2.B
WHERE T3.D > 0 OR T1.D > 0
8.13.11. Multi-Range Read Optimization
Reading rows using a range scan on a secondary index can result in many random disk accesses to the base table when the table is large and not stored in the storage engine's cache. With the Disk-Sweep Multi-Range Read (MRR) optimization, MySQL tries to reduce the number of random disk access for range scans by first scanning the index only and collecting the keys for the relevant rows. Then the keys are sorted and finally the rows are retrieved from the base table using the order of the primary key. The motivation for Disk-sweep MRR is to reduce the number of random disk accesses and instead achieve a more sequential scan of the base table data.
The Multi-Range Read optimization provides these benefits:
MRR enables data rows to be accessed sequentially rather than in random order, based on index tuples. The server obtains a set of index tuples that satisfy the query conditions, sorts them according to data row ID order, and uses the sorted tuples to retrieve data rows in order. This makes data access more efficient and less expensive.
MRR enables batch processing of requests for key access for operations that require access to data rows through index tuples, such as range index scans and equi-joins that use an index for the join attribute. MRR iterates over a sequence of index ranges to obtain qualifying index tuples. As these results accumulate, they are used to access the corresponding data rows. It is not necessary to acquire all index tuples before starting to read data rows.
The following scenarios illustrate when MRR optimization can be advantageous:
Scenario A: MRR can be used for InnoDB and MyISAM tables for index range scans and equi-join operations.
A portion of the index tuples are accumulated in a buffer.
The tuples in the buffer are sorted by their data row ID.
Data rows are accessed according to the sorted index tuple sequence.
Scenario B: MRR can be used for NDB tables for multiple-range index scans or when performing an equi-join by an attribute.
A portion of ranges, possibly single-key ranges, is accumulated in a buffer on the central node where the query is submitted.
The ranges are sent to the execution nodes that access data rows.
The accessed rows are packed into packages and sent back to the central node.
The received packages with data rows are placed in a buffer.
Data rows are read from the buffer.
When MRR is used, the Extra column in EXPLAIN output shows Using MRR.
InnoDB and MyISAM do not use MRR if full table rows need not be accessed to produce the query result. This is the case if results can be produced entirely on the basis on information in the index tuples (through a covering index); MRR provides no benefit.
Example query for which MRR can be used, assuming that there is an index on (key_part1, key_part2):
SELECT * FROM t
WHERE key_part1 >= 1000 AND key_part1 < 2000
AND key_part2 = 10000;
The index consists of tuples of (key_part1, key_part2) values, ordered first by key_part1 and then by key_part2.
Without MRR, an index scan covers all index tuples for the key_part1 range from 1000 up to 2000, regardless of the key_part2 value in these tuples. The scan does extra work to the extent that tuples in the range contain key_part2 values other than 10000.
With MRR, the scan is broken up into multiple ranges, each for a single value of key_part1 (1000, 1001, ... , 1999). Each of these scans need look only for tuples with key_part2 = 10000. If the index contains many tuples for which key_part2 is not 10000, MRR results in many fewer index tuples being read.
To express this using interval notation, the non-MRR scan must examine the index range [{1000, 10000}, {2000, MIN_INT}), which may include many tuples other than those for which key_part2 = 10000. The MRR scan examines multiple single-point intervals [{1000, 10000}], ..., [{1999, 10000}], which includes only tuples with key_part2 = 10000.
Two optimizer_switch system variable flags provide an interface to the use of MRR optimization. The mrr flag controls whether MRR is enabled. If mrr is enabled (on), the mrr_cost_based flag controls whether the optimizer attempts to make a cost-based choice between using and not using MRR (on) or uses MRR whenever possible (off). By default, mrr is on and mrr_cost_based is off (use MRR whenever possible). See Section 8.8.5.2, “Controlling Switchable Optimizations”.
For MRR, a storage engine uses the value of the read_rnd_buffer_size system variable as a guideline for how much memory it can allocate for its buffer. The engine uses up to read_rnd_buffer_size bytes and determines the number of ranges to process in a single pass.
8.13.12. Block Nested-Loop and Batched Key Access Joins
In MySQL 5.6, a Batched Key Access (BKA) Join algorithm is available that uses both index access to the joined table and a join buffer. The BKA algorithm supports inner join, outer join, and semi-join operations, including nested outer joins. Benefits of BKA include improved join performance due to more efficient table scanning. Also, the Block Nested-Loop (BNL) Join algorithm previously used only for inner joins is extended and can be employed for outer join and semi-join operations, including nested outer joins.
The following sections discuss the join buffer management that underlies the extension of the original BNL algorithm, the extended BNL algorithm, and the BKA algorithm. For information about semi-join strategies, see Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”
8.13.12.1. Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms
In MySQL 5.6, MySQL Server can employ join buffers to execute not only inner joins without index access to the inner table, but also outer joins and semi-joins that appear after subquery flattening. Moreover, a join buffer can be effectively used when there is an index access to the inner table.
The join buffer management code slightly more efficiently utilizes join buffer space when storing the values of the interesting row columns: No additional bytes are allocated in buffers for a row column if its value is NULL, and the minimum number of bytes is allocated for any value of the VARCHAR type.
The code supports two types of buffers, regular and incremental. Suppose that join buffer B1 is employed to join tables t1 and t2 and the result of this operation is joined with table t3 using join buffer B2:
A regular join buffer contains columns from each join operand. If B2 is a regular join buffer, each row r put into B2 is composed of the columns of a row r1 from B1 and the interesting columns of a matching row r2 from table t2.
An incremental join buffer contains only columns from rows of the table produced by the second join operand. That is, it is incremental to a row from the first operand buffer. If B2 is an incremental join buffer, it contains the interesting columns of the row r2 together with a link to the row r1 from B1.
Incremental join buffers are always incremental relative to a join buffer from an earlier join operation, so the buffer from the first join operation is always a regular buffer. In the example just given, the buffer B1 used to join tables t1 and t2 must be a regular buffer.
Each row of the incremental buffer used for a join operation contains only the interesting columns of a row from the table to be joined. These columns are augmented with a reference to the interesting columns of the matched row from the table produced by the first join operand. Several rows in the incremental buffer can refer to the same row r whose columns are stored in the previous join buffers insofar as all these rows match row r.
Incremental buffers enable less frequent copying of columns from buffers used for previous join operations. This provides a savings in buffer space because in the general case a row produced by the first join operand can be matched by several rows produced by the second join operand. It is unnecessary to make several copies of a row from the first operand. Incremental buffers also provide a savings in processing time due to the reduction in copying time.
As of MySQL 5.6.3, the block_nested_loop and batched_key_access flags of the optimizer_switch system variable control how the optimizer uses the Block Nested-Loop and Batched Key Access join algorithms. By default, block_nested_loop is on and batched_key_access is off. See Section 8.8.5.2, “Controlling Switchable Optimizations”.
Before MySQL 5.6.3, the optimizer_join_cache_level system variable controls join buffer management. For the possible values of this variable and their meanings, see the description in Section 5.1.4, “Server System Variables”.
For information about semi-join strategies, see Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”
8.13.12.2. Block Nested-Loop Algorithm for Outer Joins and Semi-Joins
In MySQL 5.6, the original implementation of the BNL algorithm is extended to support outer join and semi-join operations.
When these operations are executed with a join buffer, each row put into the buffer is supplied with a match flag.
If an outer join operation is executed using a join buffer, each row of the table produced by the second operand is checked for a match against each row in the join buffer. When a match is found, a new extended row is formed (the original row plus columns from the second operand) and sent for further extensions by the remaining join operations. In addition, the match flag of the matched row in the buffer is enabled. After all rows of the table to be joined have been examined, the join buffer is scanned. Each row from the buffer that does not have its match flag enabled is extended by NULL complements (NULL values for each column in the second operand) and sent for further extensions by the remaining join operations.
As of MySQL 5.6.3, the block_nested_loop flag of the optimizer_switch system variable controls how the optimizer uses the Block Nested-Loop algorithm. By default, block_nested_loop is on. See Section 8.8.5.2, “Controlling Switchable Optimizations”.
Before MySQL 5.6.3, the optimizer_join_cache_level system variable controls join buffer management. For the possible values of this variable and their meanings, see the description in Section 5.1.4, “Server System Variables”.
In EXPLAIN output, use of BNL for a table is signified when the Extra value contains Using join buffer (Block Nested Loop) and the type value is ALL, index, or range.
For information about semi-join strategies, see Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”
8.13.12.3. Batched Key Access Joins
MySQL 5.6.3 implements a method of joining tables called the Batched Key Access (BKA) join algorithm. BKA can be applied when there is an index access to the table produced by the second join operand. Like the BNL join algorithm, the BKA join algorithm employs a join buffer to accumulate the interesting columns of the rows produced by the first operand of the join operation. Then the BKA algorithm builds keys to access the table to be joined for all rows in the buffer and submits these keys in a batch to the database engine for index lookups. The keys are submitted to the engine through the Multi-Range Read (MRR) interface (see Section 8.13.11, “Multi-Range Read Optimization”). After submission of the keys, the MRR engine functions perform lookups in the index in an optimal way, fetching the rows of the joined table found by these keys, and starts feeding the BKA join algorithm with matching rows. Each matching row is coupled with a reference to a row in the join buffer.
For BKA to be used, the batched_key_access flag of the optimizer_switch system variable must be set to on. BKA uses MRR, so the mrr flag must also be on. Currently, the cost estimation for MRR is too pessimistic. Hence, it is also necessary for mrr_cost_based to be off for BKA to be used. The following setting enables BKA:
mysql> SET optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';
There are two scenarios by which MRR functions execute:
The first scenario is used for conventional disk-based storage engines such as InnoDB and MyISAM. For these engines, usually the keys for all rows from the join buffer are submitted to the MRR interface at once. Engine-specific MRR functions perform index lookups for the submitted keys, get row IDs (or primary keys) from them, and then fetch rows for all these selected row IDs one by one by request from BKA algorithm. Every row is returned with an association reference that enables access to the matched row in the join buffer. The rows are fetched by the MRR functions in an optimal way: They are fetched in the row ID (primary key) order. This improves performance because reads are in disk order rather than random order.
The second scenario is used for remote storage engines such as NDB. A package of keys for a portion of rows from the join buffer, together with their associations, is sent by a MySQL Server (SQL node) to MySQL Cluster data nodes. In return, the SQL node receives a package (or several packages) of matching rows coupled with corresponding associations. The BKA join algorithm takes these rows and builds new joined rows. Then a new set of keys is sent to the data nodes and the rows from the returned packages are used to build new joined rows. The process continues until the last keys from the join buffer are sent to the data nodes, and the SQL node has received and joined all rows matching these keys. This improves performance because fewer key-bearing packages sent by the SQL node to the data nodes means fewer round trips between it and the data nodes to perform the join operation.
With the first scenario, a portion of the join buffer is reserved to store row IDs (primary keys) selected by index lookups and passed as a parameter to the MRR functions.
There is no special buffer to store keys built for rows from the join buffer. Instead, a function that builds the key for the next row in the buffer is passed as a parameter to the MRR functions.
In EXPLAIN output, use of BKA for a table is signified when the Extra value contains Using join buffer (Batched Key Access) and the type value is ref or eq_ref.
8.13.13. ORDER BY Optimization
In some cases, MySQL can use an index to satisfy an ORDER BY clause without doing any extra sorting.
The index can also be used even if the ORDER BY does not match the index exactly, as long as all of the unused portions of the index and all the extra ORDER BY columns are constants in the WHERE clause. The following queries use the index to resolve the ORDER BY part:
SELECT * FROM t1
ORDER BY key_part1,key_part2,... ;
SELECT * FROM t1
WHERE key_part1 = constant
ORDER BY key_part2;
SELECT * FROM t1
ORDER BY key_part1 DESC, key_part2 DESC;
SELECT * FROM t1
WHERE key_part1 = 1
ORDER BY key_part1 DESC, key_part2 DESC;
SELECT * FROM t1
WHERE key_part1 > constant
ORDER BY key_part1 ASC;
SELECT * FROM t1
WHERE key_part1 < constant
ORDER BY key_part1 DESC;
SELECT * FROM t1
WHERE key_part1 = constant1 AND key_part2 > constant2
ORDER BY key_part2;
In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it still uses indexes to find the rows that match the WHERE clause. These cases include the following:
You use ORDER BY on different keys:
SELECT * FROM t1 ORDER BY key1, key2;
You use ORDER BY on nonconsecutive parts of a key:
SELECT * FROM t1 WHERE key2=constant ORDER BY key_part2;
You mix ASC and DESC:
SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC;
The key used to fetch the rows is not the same as the one used in the ORDER BY:
SELECT * FROM t1 WHERE key2=constant ORDER BY key1;
You use ORDER BY with an expression that includes terms other than the key column name:
SELECT * FROM t1 ORDER BY ABS(key);
SELECT * FROM t1 ORDER BY -key;
You are joining many tables, and the columns in the ORDER BY are not all from the first nonconstant table that is used to retrieve rows. (This is the first table in the EXPLAIN output that does not have a const join type.)
You have different ORDER BY and GROUP BY expressions.
You index only a prefix of a column named in the ORDER BY clause. In this case, the index cannot be used to fully resolve the sort order. For example, if you have a CHAR(20) column, but index only the first 10 bytes, the index cannot distinguish values past the 10th byte and a filesort will be needed.
The type of table index used does not store rows in order. For example, this is true for a HASH index in a MEMORY table.
Availability of an index for sorting may be affected by the use of column aliases. Suppose that the column t1.a is indexed. In this statement, the name of the column in the select list is a. It refers to t1.a, so for the reference to a in the ORDER BY, the index can be used:
SELECT a FROM t1 ORDER BY a;
In this statement, the name of the column in the select list is also a, but it is the alias name. It refers to ABS(a), so for the reference to a in the ORDER BY, the index cannot be used:
SELECT ABS(a) AS a FROM t1 ORDER BY a;
In the following statement, the ORDER BY refers to a name that is not the name of a column in the select list. But there is a column in t1 named a, so the ORDER BY uses that, and the index can be used. (The resulting sort order may be completely different from the order for ABS(a), of course.)
SELECT ABS(a) AS b FROM t1 ORDER BY a;
By default, MySQL sorts all GROUP BY col1, col2, ... queries as if you specified ORDER BY col1, col2, ... in the query as well. If you include an ORDER BY clause explicitly that contains the same column list, MySQL optimizes it away without any speed penalty, although the sorting still occurs. If a query includes GROUP BY but you want to avoid the overhead of sorting the result, you can suppress sorting by specifying ORDER BY NULL. For example:
INSERT INTO foo
SELECT a, COUNT(*) FROM bar GROUP BY a ORDER BY NULL;
Relying on implicit GROUP BY sorting in MySQL 5.6 is deprecated. To achieve a specific sort order of grouped results, it is preferable to use an explicit ORDER BY clause. GROUP BY sorting is a MySQL extension that may change in a future release; for example, to make it possible for the optimizer to order groupings in whatever manner it deems most efficient and to avoid the sorting overhead.
With EXPLAIN SELECT ... ORDER BY, you can check whether MySQL can use indexes to resolve the query. It cannot if you see Using filesort in the Extra column. See Section 8.8.1, “Optimizing Queries with EXPLAIN”. Filesort uses a fixed-length row-storage format similar to that used by the MEMORY storage engine. Variable-length types such as VARCHAR are stored using a fixed length.
MySQL has two filesort algorithms for sorting and retrieving results. The original method uses only the ORDER BY columns. The modified method uses not just the ORDER BY columns, but all the columns used in the query.
The optimizer selects which filesort algorithm to use. It normally uses the modified algorithm except when BLOB or TEXT columns are involved, in which case it uses the original algorithm.
The original filesort algorithm works as follows:
Read all rows according to key or by table scanning. Rows that do not match the WHERE clause are skipped.
For each row, store a pair of values in a buffer (the sort key and the row pointer). The size of the buffer is the value of the sort_buffer_size system variable.
When the buffer gets full, run a qsort (quicksort) on it and store the result in a temporary file. Save a pointer to the sorted block. (If all pairs fit into the sort buffer, no temporary file is created.)
Repeat the preceding steps until all rows have been read.
Do a multi-merge of up to MERGEBUFF (7) regions to one block in another temporary file. Repeat until all blocks from the first file are in the second file.
Repeat the following until there are fewer than MERGEBUFF2 (15) blocks left.
On the last multi-merge, only the pointer to the row (the last part of the sort key) is written to a result file.
Read the rows in sorted order by using the row pointers in the result file. To optimize this, we read in a big block of row pointers, sort them, and use them to read the rows in sorted order into a row buffer. The size of the buffer is the value of the read_rnd_buffer_size system variable. The code for this step is in the sql/records.cc source file.
One problem with this approach is that it reads rows twice: One time when evaluating the WHERE clause, and again after sorting the pair values. And even if the rows were accessed successively the first time (for example, if a table scan is done), the second time they are accessed randomly. (The sort keys are ordered, but the row positions are not.)
The modified filesort algorithm incorporates an optimization such that it records not only the sort key value and row position, but also the columns required for the query. This avoids reading the rows twice. The modified filesort algorithm works like this:
Read the rows that match the WHERE clause.
For each row, record a tuple of values consisting of the sort key value and row position, and also the columns required for the query.
Sort the tuples by sort key value
Retrieve the rows in sorted order, but read the required columns directly from the sorted tuples rather than by accessing the table a second time.
Using the modified filesort algorithm, the tuples are longer than the pairs used in the original method, and fewer of them fit in the sort buffer (the size of which is given by sort_buffer_size). As a result, it is possible for the extra I/O to make the modified approach slower, not faster. To avoid a slowdown, the optimization is used only if the total size of the extra columns in the sort tuple does not exceed the value of the max_length_for_sort_data system variable. (A symptom of setting the value of this variable too high is a combination of high disk activity and low CPU activity.)
For slow queries for which filesort is not used, try lowering max_length_for_sort_data to a value that is appropriate to trigger a filesort.
If you want to increase ORDER BY speed, check whether you can get MySQL to use indexes rather than an extra sorting phase. If this is not possible, you can try the following strategies:
Increase the size of the sort_buffer_size variable.
Increase the size of the read_rnd_buffer_size variable.
Use less RAM per row by declaring columns only as large as they need to be to hold the values stored in them. For example, CHAR(16) is better than CHAR(200) if values never exceed 16 characters.
Change tmpdir to point to a dedicated file system with large amounts of free space. Also, this option accepts several paths that are used in round-robin fashion, so you can use this feature to spread the load across several directories. Paths should be separated by colon characters (“:”) on Unix and semicolon characters (“;”) on Windows. The paths should be for directories in file systems that are located on different physical disks, not different partitions on the same disk.
If an index is not used for ORDER BY but a LIMIT clause is also present, the optimizer may be able to avoid using a merge file and sort the rows in memory. For details, see Section 8.2.1.3, “Optimizing LIMIT Queries”.
8.13.14. GROUP BY Optimization
The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new temporary table where all rows from each group are consecutive, and then use this temporary table to discover groups and apply aggregate functions (if any). In some cases, MySQL is able to do much better than that and to avoid creation of temporary tables by using index access.
The most important preconditions for using indexes for GROUP BY are that all GROUP BY columns reference attributes from the same index, and that the index stores its keys in order (for example, this is a BTREE index and not a HASH index). Whether use of temporary tables can be replaced by index access also depends on which parts of an index are used in a query, the conditions specified for these parts, and the selected aggregate functions.
There are two ways to execute a GROUP BY query through index access, as detailed in the following sections. In the first method, the grouping operation is applied together with all range predicates (if any). The second method first performs a range scan, and then groups the resulting tuples.
In MySQL, GROUP BY is used for sorting, so the server may also apply ORDER BY optimizations to grouping. See Section 8.13.13, “ORDER BY Optimization”.
8.13.14.1. Loose Index Scan
The most efficient way to process GROUP BY is when an index is used to directly retrieve the grouping columns. With this access method, MySQL uses the property of some index types that the keys are ordered (for example, BTREE). This property enables use of lookup groups in an index without having to consider all keys in the index that satisfy all WHERE conditions. This access method considers only a fraction of the keys in an index, so it is called a loose index scan. When there is no WHERE clause, a loose index scan reads as many keys as the number of groups, which may be a much smaller number than that of all keys. If the WHERE clause contains range predicates (see the discussion of the range join type in Section 8.8.1, “Optimizing Queries with EXPLAIN”), a loose index scan looks up the first key of each group that satisfies the range conditions, and again reads the least possible number of keys. This is possible under the following conditions:
The query is over a single table.
The GROUP BY names only columns that form a leftmost prefix of the index and no other columns. (If, instead of GROUP BY, the query has a DISTINCT clause, all distinct attributes refer to columns that form a leftmost prefix of the index.) For example, if a table t1 has an index on (c1,c2,c3), loose index scan is applicable if the query has GROUP BY c1, c2,. It is not applicable if the query has GROUP BY c2, c3 (the columns are not a leftmost prefix) or GROUP BY c1, c2, c4 (c4 is not in the index).
The only aggregate functions used in the select list (if any) are MIN() and MAX(), and all of them refer to the same column. The column must be in the index and must follow the columns in the GROUP BY.
Any other parts of the index than those from the GROUP BY referenced in the query must be constants (that is, they must be referenced in equalities with constants), except for the argument of MIN() or MAX() functions.
For columns in the index, full column values must be indexed, not just a prefix. For example, with c1 VARCHAR(20), INDEX (c1(10)), the index cannot be used for loose index scan.
If loose index scan is applicable to a query, the EXPLAIN output shows Using index for group-by in the Extra column.
Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The loose index scan access method can be used for the following queries:
SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;
The following queries cannot be executed with this quick select method, for the reasons given:
There are aggregate functions other than MIN() or MAX():
SELECT c1, SUM(c2) FROM t1 GROUP BY c1;
The columns in the GROUP BY clause do not form a leftmost prefix of the index:
SELECT c1, c2 FROM t1 GROUP BY c2, c3;
The query refers to a part of a key that comes after the GROUP BY part, and for which there is no equality with a constant:
SELECT c1, c3 FROM t1 GROUP BY c1, c2;
Were the query to include WHERE c3 = const, loose index scan could be used.
The loose index scan access method can be applied to other forms of aggregate function references in the select list, in addition to the MIN() and MAX() references already supported:
AVG(DISTINCT), SUM(DISTINCT), and COUNT(DISTINCT) are supported. AVG(DISTINCT) and SUM(DISTINCT) take a single argument. COUNT(DISTINCT) can have more than one column argument.
There must be no GROUP BY or DISTINCT clause in the query.
The loose scan limitations described earlier still apply.
Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The loose index scan access method can be used for the following queries:
SELECT COUNT(DISTINCT c1), SUM(DISTINCT c1) FROM t1;
SELECT COUNT(DISTINCT c1, c2), COUNT(DISTINCT c2, c1) FROM t1;
Loose index scan is not applicable for the following queries:
SELECT DISTINCT COUNT(DISTINCT c1) FROM t1;
SELECT COUNT(DISTINCT c1) FROM t1 GROUP BY c1;
8.13.14.2. Tight Index Scan
A tight index scan may be either a full index scan or a range index scan, depending on the query conditions.
When the conditions for a loose index scan are not met, it still may be possible to avoid creation of temporary tables for GROUP BY queries. If there are range conditions in the WHERE clause, this method reads only the keys that satisfy these conditions. Otherwise, it performs an index scan. Because this method reads all keys in each range defined by the WHERE clause, or scans the whole index if there are no range conditions, we term it a tight index scan. With a tight index scan, the grouping operation is performed only after all keys that satisfy the range conditions have been found.
For this method to work, it is sufficient that there is a constant equality condition for all columns in a query referring to parts of the key coming before or in between parts of the GROUP BY key. The constants from the equality conditions fill in any “gaps” in the search keys so that it is possible to form complete prefixes of the index. These index prefixes then can be used for index lookups. If we require sorting of the GROUP BY result, and it is possible to form search keys that are prefixes of the index, MySQL also avoids extra sorting operations because searching with prefixes in an ordered index already retrieves all the keys in order.
Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The following queries do not work with the loose index scan access method described earlier, but still work with the tight index scan access method.
There is a gap in the GROUP BY, but it is covered by the condition c2 = 'a':
SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;
The GROUP BY does not begin with the first part of the key, but there is a condition that provides a constant for that part:
SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;
8.13.15. DISTINCT Optimization
DISTINCT combined with ORDER BY needs a temporary table in many cases.
Because DISTINCT may use GROUP BY, learn how MySQL works with columns in ORDER BY or HAVING clauses that are not part of the selected columns. See Section 12.17.3, “MySQL Extensions to GROUP BY”.
In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example, the following two queries are equivalent:
SELECT DISTINCT c1, c2, c3 FROM t1
WHERE c1 > const;
SELECT c1, c2, c3 FROM t1
WHERE c1 > const GROUP BY c1, c2, c3;
Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to queries with a DISTINCT clause. Thus, for more details on the optimization possibilities for DISTINCT queries, see Section 8.13.14, “GROUP BY Optimization”.
When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count unique rows.
If you do not use columns from all tables named in a query, MySQL stops scanning any unused tables as soon as it finds the first match. In the following case, assuming that t1 is used before t2 (which you can check with EXPLAIN), MySQL stops reading from t2 (for any particular row in t1) when it finds the first row in t2:
SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;
8.13.16. Subquery Optimization
The MySQL query optimizer has different strategies available to evaluate subqueries. For IN (or =ANY) subqueries, the optimizer has these choices:
Semi-join
Materialization
EXISTS strategy
For NOT IN (or <>ANY) subqueries, the optimizer has these choices:
Materialization
EXISTS strategy
The following sections provide more information about these optimization strategies.
8.13.16.1. Optimizing Subqueries with Semi-Join Transformations
As of MySQL 5.6.5, the optimizer uses semi-join strategies to improve subquery execution, as described in this section.
For an inner join between two tables, the join returns a row from one table as many times as there are matches in the other table. But for some questions, the only information that matters is whether there is a match, not the number of matches. Suppose that there are tables named class and roster that list classes in a course curriculum and class rosters (students enrolled in each class), respectively. To list the classes that actually have students enrolled, you could use this join:
SELECT class.class_num, class.class_name
FROM class INNER JOIN roster
WHERE class.class_num = roster.class_num;
However, the result lists each class once for each enrolled student. For the question being asked, this is unnecessary duplication of information.
Assuming that class_num is a primary key in the class table, duplicate suppression could be achieved by using SELECT DISTINCT, but it is inefficient to generate all matching rows first only to eliminate duplicates later.
The same duplicate-free result can be obtained by using a subquery:
SELECT class_num, class_name
FROM class
WHERE class_num IN (SELECT class_num FROM roster);
Here, the optimizer can recognize that the IN clause requires the subquery to return only one instance of each class number from the roster table. In this case, the query can be executed as a semi-join—that is, an operation that returns only one instance of each row in class that is matched by rows in roster.
Before MySQL 5.6.6, the outer query specification was limited to simple table scans or inner joins using comma syntax, and view references were not possible. As of 5.6.6, outer join and inner join syntax is permitted in the outer query specification, and the restriction that table references must be base tables has been lifted.
In MySQL, a subquery must satisfy these criteria to be handled as a semi-join:
It must be an IN (or =ANY) subquery that appears at the top level of the WHERE or ON clause, possibly as a term in an AND expression. For example:
SELECT ...
FROM ot1, ...
WHERE (oe1, ...) IN (SELECT ie1, ... FROM it1, ... WHERE ...);
Here, ot_i and it_i represent tables in the outer and inner parts of the query, and oe_i and ie_i represent expressions that refer to columns in the outer and inner tables.
It must not contain a GROUP BY or HAVING clause or aggregate functions.
It must not have ORDER BY with LIMIT.
The number of outer and inner tables together must be less than the maximum number of tables permitted in a join.
The subquery may be correlated or uncorrelated. DISTINCT is permitted, as is LIMIT unless ORDER BY is also used.
If a subquery meets the preceding criteria, MySQL converts it to a semi-join and makes a cost-based choice from these strategies:
Convert the subquery to a join, or use table pullout and run the query as an inner join between subquery tables and outer tables. Table pullout pulls a table out from the subquery to the outer query.
Duplicate Weedout: Run the semi-join as if it was a join and remove duplicate records using a temporary table.
FirstMatch: When scanning the inner tables for row combinations and there are multiple instances of a given value group, choose one rather than returning them all. This "shortcuts" scanning and eliminates production of unnecessary rows.
LooseScan: Scan a subquery table using an index that enables a single value to be chosen from each subquery's value group.
Materialize the subquery into a temporary table with an index and use the temporary table to perform a join. The index is used to remove duplicates. The index might also be used later for lookups when joining the temporary table with the outer tables; if not, the table is scanned.
Each of these strategies except Duplicate Weedout can be enabled or disabled using the optimizer_switch system variable. The semijoin flag controls whether semi-joins are used. If it is set to on, the firstmatch, loosescan, and materialization flags enable finer control over the permitted semi-join strategies. These flags are on by default. See Section 8.8.5.2, “Controlling Switchable Optimizations”.
The use of semi-join strategies is indicated in EXPLAIN output as follows:
Semi-joined tables show up in the outer select. EXPLAIN EXTENDED plus SHOW WARNINGS shows the rewritten query, which displays the semi-join structure. From this you can get an idea about which tables were pulled out of the semi-join. If a subquery was converted to a semi-join, you will see that the subquery predicate is gone and its tables and WHERE clause were merged into the outer query join list and WHERE clause.
Temporary table use for Duplicate Weedout is indicated by Start temporary and End temporary in the Extra column. Tables that were not pulled out and are in the range of EXPLAIN output rows covered by Start temporary and End temporary will have their rowid in the temporary table.
FirstMatch(tbl_name) in the Extra column indicates join shortcutting.
LooseScan(m..n) in the Extra column indicates use of the LooseScan strategy. m and n are key part numbers.
As of MySQL 5.6.7, temporary table use for materialization is indicated by rows with a select_type value of MATERIALIZED and rows with a table value of <subqueryN>.
Before MySQL 5.6.7, temporary table use for materialization is indicated in the Extra column by Materialize if a single table is used, or by Start materialize and End materialize if multiple tables are used. If Scan is present, no temporary table index is used for table reads. Otherwise, an index lookup is used.
8.13.16.2. Optimizing Subqueries with Subquery Materialization
As of MySQL 5.6.5, the optimizer uses subquery materialization as a strategy that enables more efficient subquery processing.
If materialization is not used, the optimizer sometimes rewrites a noncorrelated subquery as a correlated subquery. For example, the following IN subquery is noncorrelated (where_condition involves only columns from t2 and not t1):
SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);
The optimizer might rewrite this as an EXISTS correlated subquery:
SELECT * FROM t1
WHERE EXISTS (SELECT t2.b FROM t2 WHERE where_condition AND t1.a=t2.b);
Subquery materialization using a temporary table avoids such rewrites and makes it possible to execute the subquery only once rather than once per row of the outer query. Materialization speeds up query execution by generating a subquery result as a temporary table, normally in memory. The first time MySQL needs the subquery result, it materializes that result into a temporary table. Any subsequent time the result is needed, MySQL refers again to the temporary table. The table is indexed with a hash index to make lookups fast and inexpensive. The index is unique, which makes the table smaller because it has no duplicates.
Subquery materialization attempts to use an in-memory temporary table when possible, falling back to on-disk storage if the table becomes too large. See Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”.
For subquery materialization to be used in MySQL, the materialization flag of the optimizer_switch system variable must be on. Materialization then applies to subquery predicates that appear anywhere (in the select list, WHERE, ON, GROUP BY, HAVING, or ORDER BY), for predicates that fall into any of these use cases:
The predicate has this form, when no outer expression oe_i or inner expression ie_i is nullable. N can be 1 or larger.
(oe_1, oe_2, ..., oe_N) [NOT] IN (SELECT ie_1, i_2, ..., ie_N ...)
The predicate has this form, when there is a single outer expression oe and inner expression ie. The expressions can be nullable.
oe [NOT] IN (SELECT ie ...)
The predicate is IN or NOT IN and a result of UNKNOWN (NULL) has the same meaning as a result of FALSE.
The following examples illustrate how the requirement for equivalence of UNKNOWN and FALSE predicate evaluation affects whether subquery materialization can be used. Assume that where_condition involves columns only from t2 and not t1 so that the subquery is noncorrelated.
This query is subject to materialization:
SELECT * FROM t1
WHERE t1.a IN (SELECT t2.b FROM t2 WHERE where_condition);
Here, it does not matter whether the IN predicate returns UNKNOWN or FALSE. Either way, the row from t1 is not included in the query result.
An example where subquery materialization will not be used is the following query, where t2.b is a nullable column.
SELECT * FROM t1
WHERE (t1.a,t1.b) NOT IN (SELECT t2.a,t2.b FROM t2
WHERE where_condition);
Use of EXPLAIN with a query can give some indication of whether the optimizer uses subquery materialization. Compared to query execution that does not use materialization, select_type may change from DEPENDENT SUBQUERY to SUBQUERY. This indicates that, for a subquery that would be executed once per outer row, materialization enables the subquery to be executed just once. In addition, for EXPLAIN EXTENDED, the text displayed by a following SHOW WARNINGS will include materialize materialize and materialized-subquery (materialized subselect before MySQL 5.6.6).
8.13.16.3. Optimizing Subqueries in the FROM Clause (Derived Tables)
As of MySQL 5.6.3, the optimizer more efficiently handles subqueries in the FROM clause (that is, derived tables):
Materialization of subqueries in the FROM clause is postponed until their contents are needed during query execution, which improves performance:
Previously, subqueries in the FROM clause were materialized for EXPLAIN SELECT statements. This resulted in partial SELECT execution, even though the purpose of EXPLAIN is to obtain query plan information, not to execute the query. This materialization no longer occurs, so EXPLAIN is faster for such queries.
For non-EXPLAIN queries, delay of materialization may result in not having to do it at all. Consider a query that joins the result of a subquery in the FROM clause to another table: If the optimizer processes that other table first and finds that it returns no rows, the join need not be carried out further and the optimizer can completely skip materializing the subquery.
During query execution, the optimizer may add an index to a derived table to speed up row retrieval from it.
Consider the following EXPLAIN statement, for which a subquery appears in the FROM clause of a SELECT query:
EXPLAIN SELECT * FROM (SELECT * FROM t1);
The optimizer avoids materializing the subquery by delaying it until the result is needed during SELECT execution. In this case, the query is not executed, so the result is never needed.
Even for queries that are executed, delay of subquery materialization may permit the optimizer to avoid materialization entirely. Consider the following query, which joins the result of a subquery in the FROM clause to another table:
SELECT * FROM t1
JOIN (SELECT t2.f1 FROM t2) AS derived_t2 ON t1.f2=derived_t2.f1
WHERE t1.f1 > 0;
If the optimization processes t1 first and the WHERE clause produces an empty result, the join must necessarily be empty and the subquery need not be materialized.
In the worst case (derived tables are materialized), query execution will take the same time as before MySQL 5.6.3 because no additional work is done. In the best case (derived tables are not materialized), query execution will be quicker by the time needed to perform materialization.
For cases when materialization is required for a subquery in the FROM clause, the optimizer may speed up access to the result by adding an index to the materialized table. If such an index would permit ref access to the table, it can greatly reduce amount of data that must be read during query execution. Consider the following query:
SELECT * FROM t1
JOIN (SELECT * FROM t2) AS derived_t2 ON t1.f1=derived_t2.f1;
The optimizer constructs an index over column f1 from derived_t2 if doing so would permit the use of ref access for the lowest cost execution plan. After adding the index, the optimizer can treat the materialized derived table the same as a usual table with an index, and it benefits similarly from the generated index. The overhead of index creation is negligible compared to the cost of query execution without the index. If ref access would result in higher cost than some other access method, no index is created and the optimizer loses nothing.
8.13.16.4. Optimizing Subqueries with EXISTS Strategy
Certain optimizations are applicable to comparisons that use the IN operator to test subquery results (or that use =ANY, which is equivalent). This section discusses these optimizations, particularly with regard to the challenges that NULL values present. The last part of the discussion includes suggestions on what you can do to help the optimizer.
Consider the following subquery comparison:
outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)
MySQL evaluates queries “from outside to inside.” That is, it first obtains the value of the outer expression outer_expr, and then runs the subquery and captures the rows that it produces.
A very useful optimization is to “inform” the subquery that the only rows of interest are those where the inner expression inner_expr is equal to outer_expr. This is done by pushing down an appropriate equality into the subquery's WHERE clause. That is, the comparison is converted to this:
EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)
After the conversion, MySQL can use the pushed-down equality to limit the number of rows that it must examine when evaluating the subquery.
More generally, a comparison of N values to a subquery that returns N-value rows is subject to the same conversion. If oe_i and ie_i represent corresponding outer and inner expression values, this subquery comparison:
(oe_1, ..., oe_N) IN
(SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)
Becomes:
EXISTS (SELECT 1 FROM ... WHERE subquery_where
AND oe_1 = ie_1
AND ...
AND oe_N = ie_N)
The following discussion assumes a single pair of outer and inner expression values for simplicity.
The conversion just described has its limitations. It is valid only if we ignore possible NULL values. That is, the “pushdown” strategy works as long as both of these two conditions are true:
outer_expr and inner_expr cannot be NULL.
You do not need to distinguish NULL from FALSE subquery results. (If the subquery is a part of an OR or AND expression in the WHERE clause, MySQL assumes that you do not care.)
When either or both of those conditions do not hold, optimization is more complex.
Suppose that outer_expr is known to be a non-NULL value but the subquery does not produce a row such that outer_expr = inner_expr. Then outer_expr IN (SELECT ...) evaluates as follows:
NULL, if the SELECT produces any row where inner_expr is NULL
FALSE, if the SELECT produces only non-NULL values or produces nothing
In this situation, the approach of looking for rows with outer_expr = inner_expr is no longer valid. It is necessary to look for such rows, but if none are found, also look for rows where inner_expr is NULL. Roughly speaking, the subquery can be converted to:
EXISTS (SELECT 1 FROM ... WHERE subquery_where AND
(outer_expr=inner_expr OR inner_expr IS NULL))
The need to evaluate the extra IS NULL condition is why MySQL has the ref_or_null access method:
mysql> EXPLAIN
-> SELECT outer_expr IN (SELECT t2.maybe_null_key
-> FROM t2, t3 WHERE ...)
-> FROM t1;
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t1
...
*************************** 2. row ***************************
id: 2
select_type: DEPENDENT SUBQUERY
table: t2
type: ref_or_null
possible_keys: maybe_null_key
key: maybe_null_key
key_len: 5
ref: func
rows: 2
Extra: Using where; Using index
...
The unique_subquery and index_subquery subquery-specific access methods also have “or NULL” variants. However, they are not visible in EXPLAIN output, so you must use EXPLAIN EXTENDED followed by SHOW WARNINGS (note the checking NULL in the warning message):
mysql> EXPLAIN EXTENDED
-> SELECT outer_expr IN (SELECT maybe_null_key FROM t2) FROM t1\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t1
...
*************************** 2. row ***************************
id: 2
select_type: DEPENDENT SUBQUERY
table: t2
type: index_subquery
possible_keys: maybe_null_key
key: maybe_null_key
key_len: 5
ref: func
rows: 2
Extra: Using index
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Note
Code: 1003
Message: select (`test`.`t1`.`outer_expr`,
(((`test`.`t1`.`outer_expr`) in t2 on
maybe_null_key checking NULL))) AS `outer_expr IN (SELECT
maybe_null_key FROM t2)` from `test`.`t1`
The additional OR ... IS NULL condition makes query execution slightly more complicated (and some optimizations within the subquery become inapplicable), but generally this is tolerable.
The situation is much worse when outer_expr can be NULL. According to the SQL interpretation of NULL as “unknown value,” NULL IN (SELECT inner_expr ...) should evaluate to:
For proper evaluation, it is necessary to be able to check whether the SELECT has produced any rows at all, so outer_expr = inner_expr cannot be pushed down into the subquery. This is a problem, because many real world subqueries become very slow unless the equality can be pushed down.
Essentially, there must be different ways to execute the subquery depending on the value of outer_expr.
The optimizer chooses SQL compliance over speed, so it accounts for the possibility that outer_expr might be NULL.
If outer_expr is NULL, to evaluate the following expression, it is necessary to run the SELECT to determine whether it produces any rows:
NULL IN (SELECT inner_expr FROM ... WHERE subquery_where)
It is necessary to run the original SELECT here, without any pushed-down equalities of the kind mentioned earlier.
On the other hand, when outer_expr is not NULL, it is absolutely essential that this comparison:
outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)
be converted to this expression that uses a pushed-down condition:
EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)
Without this conversion, subqueries will be slow. To solve the dilemma of whether to push down or not push down conditions into the subquery, the conditions are wrapped in “trigger” functions. Thus, an expression of the following form:
outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)
is converted into:
EXISTS (SELECT 1 FROM ... WHERE subquery_where
AND trigcond(outer_expr=inner_expr))
More generally, if the subquery comparison is based on several pairs of outer and inner expressions, the conversion takes this comparison:
(oe_1, ..., oe_N) IN (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)
and converts it to this expression:
EXISTS (SELECT 1 FROM ... WHERE subquery_where
AND trigcond(oe_1=ie_1)
AND ...
AND trigcond(oe_N=ie_N)
)
Each trigcond(X) is a special function that evaluates to the following values:
X when the “linked” outer expression oe_i is not NULL
TRUE when the “linked” outer expression oe_i is NULL
Note that trigger functions are not triggers of the kind that you create with CREATE TRIGGER.
Equalities that are wrapped into trigcond() functions are not first class predicates for the query optimizer. Most optimizations cannot deal with predicates that may be turned on and off at query execution time, so they assume any trigcond(X) to be an unknown function and ignore it. At the moment, triggered equalities can be used by those optimizations:
Reference optimizations: trigcond(X=Y [OR Y IS NULL]) can be used to construct ref, eq_ref, or ref_or_null table accesses.
Index lookup-based subquery execution engines: trigcond(X=Y) can be used to construct unique_subquery or index_subquery accesses.
Table-condition generator: If the subquery is a join of several tables, the triggered condition will be checked as soon as possible.
When the optimizer uses a triggered condition to create some kind of index lookup-based access (as for the first two items of the preceding list), it must have a fallback strategy for the case when the condition is turned off. This fallback strategy is always the same: Do a full table scan. In EXPLAIN output, the fallback shows up as Full scan on NULL key in the Extra column:
mysql> EXPLAIN SELECT t1.col1,
-> t1.col1 IN (SELECT t2.key1 FROM t2 WHERE t2.col2=t1.col2) FROM t1\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t1
...
*************************** 2. row ***************************
id: 2
select_type: DEPENDENT SUBQUERY
table: t2
type: index_subquery
possible_keys: key1
key: key1
key_len: 5
ref: func
rows: 2
Extra: Using where; Full scan on NULL key
If you run EXPLAIN EXTENDED followed by SHOW WARNINGS, you can see the triggered condition:
*************************** 1. row ***************************
Level: Note
Code: 1003
Message: select `test`.`t1`.`col1` AS `col1`,
<in_optimizer>(`test`.`t1`.`col1`,
<exists>(<index_lookup>(<cache>(`test`.`t1`.`col1`) in t2
on key1 checking NULL
where (`test`.`t2`.`col2` = `test`.`t1`.`col2`) having
trigcond(<is_not_null_test>(`test`.`t2`.`key1`))))) AS
`t1.col1 IN (select t2.key1 from t2 where t2.col2=t1.col2)`
from `test`.`t1`
The use of triggered conditions has some performance implications. A NULL IN (SELECT ...) expression now may cause a full table scan (which is slow) when it previously did not. This is the price paid for correct results (the goal of the trigger-condition strategy was to improve compliance and not speed).
For multiple-table subqueries, execution of NULL IN (SELECT ...) will be particularly slow because the join optimizer does not optimize for the case where the outer expression is NULL. It assumes that subquery evaluations with NULL on the left side are very rare, even if there are statistics that indicate otherwise. On the other hand, if the outer expression might be NULL but never actually is, there is no performance penalty.
To help the query optimizer better execute your queries, use these tips:
Declare a column as NOT NULL if it really is. (This also helps other aspects of the optimizer by simplifying condition testing for the column.)
If you do not need to distinguish a NULL from FALSE subquery result, you can easily avoid the slow execution path. Replace a comparison that looks like this:
outer_expr IN (SELECT inner_expr FROM ...)
with this expression:
(outer_expr IS NOT NULL) AND (outer_expr IN (SELECT inner_expr FROM ...))
Then NULL IN (SELECT ...) will never be evaluated because MySQL stops evaluating AND parts as soon as the expression result is clear.
The subquery_materialization_cost_based enables control over the choice between subquery materialization and IN -> EXISTS subquery transformation. See Section 8.8.5.2, “Controlling Switchable Optimizations”.
Chapter 9. Language Structure
Table of Contents
9.1.1. String Literals
9.1.2. Number Literals
9.1.3. Date and Time Literals
9.1.4. Hexadecimal Literals
9.1.5. Boolean Literals
9.1.6. Bit-Field Literals
9.1.7. NULL Values
9.2.1. Identifier Qualifiers
9.2.2. Identifier Case Sensitivity
9.2.3. Mapping of Identifiers to File Names
9.2.4. Function Name Parsing and Resolution
This chapter discusses the rules for writing the following elements of SQL statements when using MySQL:
Literal values such as strings and numbers
Identifiers such as database, table, and column names
Reserved words
User-defined and system variables
Comments
9.1. Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers, hexadecimal values, boolean values, and NULL. The section also covers the various nuances and “gotchas” that you may run into when dealing with these basic types in MySQL.
9.1.1. String Literals
A string is a sequence of bytes or characters, enclosed within either single quote (“'”) or double quote (“"”) characters. Examples:
'a string'
"another string"
Quoted strings placed next to each other are concatenated to a single string. The following lines are equivalent:
'a string'
'a' ' ' 'string'
If the ANSI_QUOTES SQL mode is enabled, string literals can be quoted only within single quotation marks because a string quoted within double quotation marks is interpreted as an identifier.
A binary string is a string of bytes that has no character set or collation. A nonbinary string is a string of characters that has a character set and collation. For both types of strings, comparisons are based on the numeric values of the string unit. For binary strings, the unit is the byte. For nonbinary strings the unit is the character and some character sets support multi-byte characters. Character value ordering is a function of the string collation.
String literals may have an optional character set introducer and COLLATE clause:
[_charset_name]'string' [COLLATE collation_name]
Examples:
SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;
You can use N'literal' (or n'literal') to create a string in the national character set. These statements are equivalent:
SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';
For more information about these forms of string syntax, see Section 10.1.3.5, “Character String Literal Character Set and Collation”, and Section 10.1.3.6, “National Character Set”.
Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES SQL mode is enabled. Each of these sequences begins with a backslash (“\”), known as the escape character. MySQL recognizes the escape sequences shown in Table 9.1, “Special Character Escape Sequences”. For all other escape sequences, backslash is ignored. That is, the escaped character is interpreted as if it was not escaped. For example, “\x” is just “x”. These sequences are case sensitive. For example, “\b” is interpreted as a backspace, but “\B” is interpreted as “B”. Escape processing is done according to the character set indicated by the character_set_connection system variable. This is true even for strings that are preceded by an introducer that indicates a different character set, as discussed in Section 10.1.3.5, “Character String Literal Character Set and Collation”.
Table 9.1. Special Character Escape Sequences
Escape Sequence | Character Represented by Sequence |
---|---|
\0 | An ASCII NUL (0x00) character. |
\' | A single quote (“'”) character. |
\" | A double quote (“"”) character. |
\b | A backspace character. |
\n | A newline (linefeed) character. |
\r | A carriage return character. |
\t | A tab character. |
\Z | ASCII 26 (Control+Z). See note following the table. |
\\ | A backslash (“\”) character. |
\% | A “%” character. See note following the table. |
_ | A “_” character. See note following the table. |
The ASCII 26 character can be encoded as “\Z” to enable you to work around the problem that ASCII 26 stands for END-OF-FILE on Windows. ASCII 26 within a file causes problems if you try to use mysql db_name < file_name.
The “\%” and “_” sequences are used to search for literal instances of “%” and “_” in pattern-matching contexts where they would otherwise be interpreted as wildcard characters. See the description of the LIKE operator in Section 12.5.1, “String Comparison Functions”. If you use “\%” or “_” outside of pattern-matching contexts, they evaluate to the strings “\%” and “_”, not to “%” and “_”.
There are several ways to include quote characters within a string:
A “'” inside a string quoted with “'” may be written as “''”.
A “"” inside a string quoted with “"” may be written as “""”.
Precede the quote character by an escape character (“\”).
A “'” inside a string quoted with “"” needs no special treatment and need not be doubled or escaped. In the same way, “"” inside a string quoted with “'” needs no special treatment.
The following SELECT statements demonstrate how quoting and escaping work:
mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+
mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+
mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+
mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+
If you want to insert binary data into a string column (such as a BLOB column), you should represent certain characters by escape sequences. Backslash (“\”) and the quote character used to quote the string must be escaped. In certain client environments, it may also be necessary to escape NUL or Control+Z. The mysql client truncates quoted strings containing NUL characters if they are not escaped, and Control+Z may be taken for END-OF-FILE on Windows if not escaped. For the escape sequences that represent each of these characters, see Table 9.1, “Special Character Escape Sequences”.
When writing application programs, any string that might contain any of these special characters must be properly escaped before the string is used as a data value in an SQL statement that is sent to the MySQL server. You can do this in two ways:
Process the string with a function that escapes the special characters. In a C program, you can use the mysql_real_escape_string() C API function to escape characters. See Section 21.8.6.54, “mysql_real_escape_string()”. Within SQL statements that construct other SQL statements, you can use the QUOTE() function. The Perl DBI interface provides a quote method to convert special characters to the proper escape sequences. See Section 21.10, “MySQL Perl API”. Other language interfaces may provide a similar capability.
As an alternative to explicitly escaping special characters, many MySQL APIs provide a placeholder capability that enables you to insert special markers into a statement string, and then bind data values to them when you issue the statement. In this case, the API takes care of escaping special characters in the values for you.
9.1.2. Number Literals
Integers are represented as a sequence of digits. Floats use “.” as a decimal separator. Either type of number may be preceded by “-” or “+” to indicate a negative or positive value, respectively
Examples of valid integers:
1221
0
-32
Examples of valid floating-point numbers:
294.42
-32032.6809e+10
148.00
An integer may be used in a floating-point context; it is interpreted as the equivalent floating-point number.
9.1.3. Date and Time Literals
Date and time values can be represented in several formats, such as quoted strings or as numbers, depending on the exact type of the value and other factors. For example, in contexts where MySQL expects a date, it interprets any of '2015-07-21', '20150721', and 20150721 as a date.
This section describes the acceptable formats for date and time literals. For more information about the temporal data types, such as the range of permitted values, consult these sections:
Standard SQL and ODBC Date and Time Literals. Standard SQL permits temporal literals to be specified using a type keyword and a string. The space between the keyword and string is optional.
DATE 'str'
TIME 'str'
TIMESTAMP 'str'
MySQL recognizes those constructions and also the corresponding ODBC syntax:
{ d 'str' }
{ t 'str' }
{ ts 'str' }
Before MySQL 5.6.4, MySQL ignores the type keyword and each of the preceding constructions produces the string value 'str', with a type of VARCHAR.
As of 5.6.4, MySQL uses the type keyword and these constructions produce DATE, TIME, and DATETIME values, respectively, including a trailing fractional seconds part if specified. The TIMESTAMP syntax produces a DATETIME value in MySQL because DATETIME has a range that more closely corresponds to the standard SQL TIMESTAMP type, which has a year range from 0001 to 9999. (The MySQL TIMESTAMP year range is 1970 to 2038.)
String and Numeric Literals in Date and Time Context. MySQL recognizes DATE values in these formats:
As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A “relaxed” syntax is permitted: Any punctuation character may be used as the delimiter between date parts. For example, '2012-12-31', '2012/12/31', '2012^12^31', and '2012@12@31' are equivalent.
As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the string makes sense as a date. For example, '20070523' and '070523' are interpreted as '2007-05-23', but '071332' is illegal (it has nonsensical month and day parts) and becomes '0000-00-00'.
As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as a date. For example, 19830905 and 830905 are interpreted as '1983-09-05'.
MySQL recognizes DATETIME and TIMESTAMP values in these formats:
As a string in either 'YYYY-MM-DD HH:MM:SS' or 'YY-MM-DD HH:MM:SS' format. A “relaxed” syntax is permitted here, too: Any punctuation character may be used as the delimiter between date parts or time parts. For example, '2012-12-31 11:30:45', '2012^12^31 11+30+45', '2012/12/31 11*30*45', and '2012@12@31 11^30^45' are equivalent.
As a string with no delimiters in either 'YYYYMMDDHHMMSS' or 'YYMMDDHHMMSS' format, provided that the string makes sense as a date. For example, '20070523091528' and '070523091528' are interpreted as '2007-05-23 09:15:28', but '071122129015' is illegal (it has a nonsensical minute part) and becomes '0000-00-00 00:00:00'.
As a number in either YYYYMMDDHHMMSS or YYMMDDHHMMSS format, provided that the number makes sense as a date. For example, 19830905132800 and 830905132800 are interpreted as '1983-09-05 13:28:00'.
A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds (6 digits) precision. For information about fractional seconds support in MySQL, see Section 11.3.6, “Fractional Seconds in Time Values”.
Dates containing two-digit year values are ambiguous because the century is unknown. MySQL interprets two-digit year values using these rules:
Year values in the range 70-99 are converted to 1970-1999.
Year values in the range 00-69 are converted to 2000-2069.
See also Section 11.3.8, “Two-Digit Years in Dates”.
For values specified as strings that include date part delimiters, it is unnecessary to specify two digits for month or day values that are less than 10. '2015-6-9' is the same as '2015-06-09'. Similarly, for values specified as strings that include time part delimiters, it is unnecessary to specify two digits for hour, minute, or second values that are less than 10. '2015-10-30 1:2:3' is the same as '2015-10-30 01:02:03'.
Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long, it is assumed to be in YYYYMMDD or YYYYMMDDHHMMSS format and that the year is given by the first 4 digits. If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or YYMMDDHHMMSS format and that the year is given by the first 2 digits. Numbers that are not one of these lengths are interpreted as though padded with leading zeros to the closest length.
Values specified as nondelimited strings are interpreted according their length. For a string 8 or 14 characters long, the year is assumed to be given by the first 4 characters. Otherwise, the year is assumed to be given by the first 2 characters. The string is interpreted from left to right to find year, month, day, hour, minute, and second values, for as many parts as are present in the string. This means you should not use strings that have fewer than 6 characters. For example, if you specify '9903', thinking that represents March, 1999, MySQL converts it to the “zero” date value. This occurs because the year and month values are 99 and 03, but the day part is completely missing. However, you can explicitly specify a value of zero to represent missing month or day parts. For example, to insert the value '1999-03-00', use '990300'.
MySQL recognizes TIME values in these formats:
As a string in 'D HH:MM:SS' format. You can also use one of the following “relaxed” syntaxes: 'HH:MM:SS', 'HH:MM', 'D HH:MM', 'D HH', or 'SS'. Here D represents days and can have a value from 0 to 34.
As a string with no delimiters in 'HHMMSS' format, provided that it makes sense as a time. For example, '101112' is understood as '10:11:12', but '109712' is illegal (it has a nonsensical minute part) and becomes '00:00:00'.
As a number in HHMMSS format, provided that it makes sense as a time. For example, 101112 is understood as '10:11:12'. The following alternative formats are also understood: SS, MMSS, or HHMMSS.
A trailing fractional seconds part is recognized in the 'D HH:MM:SS.fraction', 'HH:MM:SS.fraction', 'HHMMSS.fraction', and HHMMSS.fraction time formats, where fraction is the fractional part in up to microseconds (6 digits) precision. For information about fractional seconds support in MySQL, see Section 11.3.6, “Fractional Seconds in Time Values”.
For TIME values specified as strings that include a time part delimiter, it is unnecessary to specify two digits for hours, minutes, or seconds values that are less than 10. '8:3:2' is the same as '08:03:02'.
9.1.4. Hexadecimal Literals
MySQL supports hexadecimal values, written using X'val', x'val', or 0xval format, where val contains hexadecimal digits (0..9, A..F). Lettercase of the digits does not matter. For values written using X'val' or x'val' format, val must contain an even number of digits. For values written using 0xval syntax, values that contain an odd number of digits are treated as having an extra leading 0. For example, 0x0a and 0xaaa are interpreted as 0x0a and 0x0aaa.
In numeric contexts, hexadecimal values act like integers (64-bit precision). In string contexts, they act like binary strings, where each pair of hex digits is converted to a character:
mysql> SELECT X'4D7953514C';
-> 'MySQL'
mysql> SELECT 0x0a+0;
-> 10
mysql> SELECT 0x5061756c;
-> 'Paul'
The default type of a hexadecimal value is a string. If you want to ensure that the value is treated as a number, you can use CAST(... AS UNSIGNED):
mysql> SELECT 0x41, CAST(0x41 AS UNSIGNED);
-> 'A', 65
The X'hexstring' syntax is based on standard SQL. The 0x syntax is based on ODBC. Hexadecimal strings are often used by ODBC to supply values for BLOB columns.
You can convert a string or a number to a string in hexadecimal format with the HEX() function:
mysql> SELECT HEX('cat');
-> '636174'
mysql> SELECT 0x636174;
-> 'cat'
9.1.5. Boolean Literals
The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written in any lettercase.
mysql> SELECT TRUE, true, FALSE, false;
-> 1, 1, 0, 0
9.1.6. Bit-Field Literals
Bit-field values can be written using b'value' or 0bvalue notation. value is a binary value written using zeros and ones.
Bit-field notation is convenient for specifying values to be assigned to BIT columns:
mysql> CREATE TABLE t (b BIT(8));
mysql> INSERT INTO t SET b = b'11111111';
mysql> INSERT INTO t SET b = b'1010';
mysql> INSERT INTO t SET b = b'0101';
Bit values are returned as binary values. To display them in printable form, add 0 or use a conversion function such as BIN(). High-order 0 bits are not displayed in the converted value.
mysql> SELECT b+0, BIN(b+0), OCT(b+0), HEX(b+0) FROM t;
+------+----------+----------+----------+
| b+0 | BIN(b+0) | OCT(b+0) | HEX(b+0) |
+------+----------+----------+----------+
| 255 | 11111111 | 377 | FF |
| 10 | 1010 | 12 | A |
| 5 | 101 | 5 | 5 |
+------+----------+----------+----------+
Bit values assigned to user variables are treated as binary strings. To assign a bit value as a number to a user variable, use CAST() or +0:
mysql> SET @v1 = 0b1000001;
mysql> SET @v2 = CAST(0b1000001 AS UNSIGNED), @v3 = 0b1000001+0;
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+
9.1.7. NULL Values
The NULL value means “no data.” NULL can be written in any lettercase. A synonym is \N (case sensitive).
For text file import or export operations performed with LOAD DATA INFILE or SELECT ... INTO OUTFILE, NULL is represented by the \N sequence. See Section 13.2.6, “LOAD DATA INFILE Syntax”.
Be aware that the NULL value is different from values such as 0 for numeric types or the empty string for string types. For more information, see Section C.5.5.3, “Problems with NULL Values”.
9.2. Schema Object Names
Certain objects within MySQL, including database, table, index, column, alias, view, stored procedure, partition, tablespace, and other object names are known as identifiers. This section describes the permissible syntax for identifiers in MySQL. Section 9.2.2, “Identifier Case Sensitivity”, describes which types of identifiers are case sensitive and under what conditions.
An identifier may be quoted or unquoted. If an identifier contains special characters or is a reserved word, you must quote it whenever you refer to it. (Exception: A reserved word that follows a period in a qualified name must be an identifier, so it need not be quoted.) Reserved words are listed at Section 9.3, “Reserved Words”.
Identifiers are converted to Unicode internally. They may contain these characters:
Permitted characters in unquoted identifiers:
ASCII: [0-9,a-z,A-Z$_] (basic Latin letters, digits 0-9, dollar, underscore)
Extended: U+0080 .. U+FFFF
Permitted characters in quoted identifiers include the full Unicode Basic Multilingual Plane (BMP), except U+0000:
ASCII: U+0001 .. U+007F
Extended: U+0080 .. U+FFFF
ASCII NUL (U+0000) and supplementary characters (U+10000 and higher) are not permitted in quoted or unquoted identifiers.
Identifiers may begin with a digit but unless quoted may not consist solely of digits.
Database, table, and column names cannot end with space characters.
The identifier quote character is the backtick (“`”):
mysql> SELECT * FROM `select` WHERE `select`.id > 100;
If the ANSI_QUOTES SQL mode is enabled, it is also permissible to quote identifiers within double quotation marks:
mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax...
mysql> SET sql_mode='ANSI_QUOTES';
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)
The ANSI_QUOTES mode causes the server to interpret double-quoted strings as identifiers. Consequently, when this mode is enabled, string literals must be enclosed within single quotation marks. They cannot be enclosed within double quotation marks. The server SQL mode is controlled as described in Section 5.1.7, “Server SQL Modes”.
Identifier quote characters can be included within an identifier if you quote the identifier. If the character to be included within the identifier is the same as that used to quote the identifier itself, then you need to double the character. The following statement creates a table named a`b that contains a column named c"d:
mysql> CREATE TABLE `a``b` (`c"d` INT);
In the select list of a query, a quoted column alias can be specified using identifier or string quoting characters:
mysql> SELECT 1 AS `one`, 2 AS 'two';
+-----+-----+
| one | two |
+-----+-----+
| 1 | 2 |
+-----+-----+
Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference is treated as a string literal.
It is recommended that you do not use names that begin with Me or MeN, where M and N are integers. For example, avoid using 1e as an identifier, because an expression such as 1e+3 is ambiguous. Depending on context, it might be interpreted as the expression 1e + 3 or as the number 1e+3.
Be careful when using MD5() to produce table names because it can produce names in illegal or ambiguous formats such as those just described.
A user variable cannot be used directly in an SQL statement as an identifier or as part of an identifier. See Section 9.4, “User-Defined Variables”, for more information and examples of workarounds.
Special characters in database and table names are encoded in the corresponding file system names as described in Section 9.2.3, “Mapping of Identifiers to File Names”. If you have databases or tables from an older version of MySQL that contain special characters and for which the underlying directory names or file names have not been updated to use the new encoding, the server displays their names with a prefix of #mysql50#. For information about referring to such names or converting them to the newer encoding, see that section.
The following table describes the maximum length for each type of identifier.
Identifier | Maximum Length (characters) |
---|---|
Database | 64 |
Table | 64 |
Column | 64 |
Index | 64 |
Constraint | 64 |
Stored Procedure or Function | 64 |
Trigger | 64 |
View | 64 |
Event | 64 |
Tablespace | 64 |
Server | 64 |
Log File Group | 64 |
Alias | 256 (see exception following table) |
Compound Statement Label | 16 |
Aliases for column names in CREATE VIEW statements are checked against the maximum column length of 64 characters (not the maximum alias length of 256 characters).
Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions that are stored in .frm files and to identifiers stored in the grant tables in the mysql database. The sizes of the identifier string columns in the grant tables are measured in characters. You can use multi-byte characters without reducing the number of characters permitted for values stored in these columns, something not true prior to MySQL 4.1. As indicated earlier, the permissible Unicode characters are those in the Basic Multilingual Plane (BMP). Supplementary characters are not permitted.
9.2.1. Identifier Qualifiers
MySQL permits names that consist of a single identifier or multiple identifiers. The components of a multiple-part name must be separated by period (“.”) characters. The initial parts of a multiple-part name act as qualifiers that affect the context within which the final identifier is interpreted.
In MySQL, you can refer to a table column using any of the following forms.
Column Reference | Meaning |
---|---|
col_name | The column col_name from whichever table used in the statement contains a column of that name. |
tbl_name.col_name | The column col_name from table tbl_name of the default database. |
db_name.tbl_name.col_name | The column col_name from table tbl_name of the database db_name. |
The qualifier character is a separate token and need not be contiguous with the associated identifiers. For example, tbl_name.col_name and tbl_name . col_name are equivalent.
If any components of a multiple-part name require quoting, quote them individually rather than quoting the name as a whole. For example, write `my-table`.`my-column`, not `my-table.my-column`.
A reserved word that follows a period in a qualified name must be an identifier, so in that context it need not be quoted.
You need not specify a tbl_name or db_name.tbl_name prefix for a column reference in a statement unless the reference would be ambiguous. Suppose that tables t1 and t2 each contain a column c, and you retrieve c in a SELECT statement that uses both t1 and t2. In this case, c is ambiguous because it is not unique among the tables used in the statement. You must qualify it with a table name as t1.c or t2.c to indicate which table you mean. Similarly, to retrieve from a table t in database db1 and from a table t in database db2 in the same statement, you must refer to columns in those tables as db1.t.col_name and db2.t.col_name.
The syntax .tbl_name means the table tbl_name in the default database. This syntax is accepted for ODBC compatibility because some ODBC programs prefix table names with a “.” character.
9.2.2. Identifier Case Sensitivity
In MySQL, databases correspond to directories within the data directory. Each table within a database corresponds to at least one file within the database directory (and possibly more, depending on the storage engine). Triggers also correspond to files. Consequently, the case sensitivity of the underlying operating system plays a part in the case sensitivity of database, table, and trigger names. This means such names are not case sensitive in Windows, but are case sensitive in most varieties of Unix. One notable exception is Mac OS X, which is Unix-based but uses a default file system type (HFS+) that is not case sensitive. However, Mac OS X also supports UFS volumes, which are case sensitive just as on any Unix. See Section 1.8.4, “MySQL Extensions to Standard SQL”. The lower_case_table_names system variable also affects how the server handles identifier case sensitivity, as described later in this section.
Note
Although database, table, and trigger names are not case sensitive on some platforms, you should not refer to one of these using different cases within the same statement. The following statement would not work because it refers to a table both as my_table and as MY_TABLE:
mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;
Column, index, stored routine, and event names are not case sensitive on any platform, nor are column aliases.
However, names of logfile groups are case sensitive. This differs from standard SQL.
By default, table aliases are case sensitive on Unix, but not so on Windows or Mac OS X. The following statement would not work on Unix, because it refers to the alias both as a and as A:
mysql> SELECT col_name FROM tbl_name AS a
-> WHERE a.col_name = 1 OR A.col_name = 2;
However, this same statement is permitted on Windows. To avoid problems caused by such differences, it is best to adopt a consistent convention, such as always creating and referring to databases and tables using lowercase names. This convention is recommended for maximum portability and ease of use.
How table and database names are stored on disk and used in MySQL is affected by the lower_case_table_names system variable, which you can set when starting mysqld. lower_case_table_names can take the values shown in the following table. This variable does not affect case sensitivity of trigger identifiers. On Unix, the default value of lower_case_table_names is 0. On Windows the default value is 1. On Mac OS X, the default value is 2.
Value | Meaning |
---|---|
0 | Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATABASE statement. Name comparisons are case sensitive. You should not set this variable to 0 if you are running MySQL on a system that has case-insensitive file names (such as Windows or Mac OS X). If you force this variable to 0 with --lower-case-table-names=0 on a case-insensitive file system and access MyISAM tablenames using different lettercases, index corruption may result. |
1 | Table names are stored in lowercase on disk and name comparisons are not case sensitive. MySQL converts all table names to lowercase on storage and lookup. This behavior also applies to database names and table aliases. |
2 | Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATABASE statement, but MySQL converts them to lowercase on lookup. Name comparisons are not case sensitive. This works only on file systems that are not case sensitive! InnoDB table names are stored in lowercase, as for lower_case_table_names=1. |
If you are using MySQL on only one platform, you do not normally have to change the lower_case_table_names variable from its default value. However, you may encounter difficulties if you want to transfer tables between platforms that differ in file system case sensitivity. For example, on Unix, you can have two different tables named my_table and MY_TABLE, but on Windows these two names are considered identical. To avoid data transfer problems arising from lettercase of database or table names, you have two options:
Use lower_case_table_names=1 on all systems. The main disadvantage with this is that when you use SHOW TABLES or SHOW DATABASES, you do not see the names in their original lettercase.
Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Windows. This preserves the lettercase of database and table names. The disadvantage of this is that you must ensure that your statements always refer to your database and table names with the correct lettercase on Windows. If you transfer your statements to Unix, where lettercase is significant, they do not work if the lettercase is incorrect.
Exception: If you are using InnoDB tables and you are trying to avoid these data transfer problems, you should set lower_case_table_names to 1 on all platforms to force names to be converted to lowercase.
If you plan to set the lower_case_table_names system variable to 1 on Unix, you must first convert your old database and table names to lowercase before stopping mysqld and restarting it with the new variable setting. To do this for an individual table, use RENAME TABLE:
RENAME TABLE T1 TO t1;
To convert one or more entire databases, dump them before setting lower_case_table_names, then drop the databases, and reload them after setting lower_case_table_names:
Use mysqldump to dump each database:
mysqldump --databases db1 > db1.sql
mysqldump --databases db2 > db2.sql
...
Do this for each database that must be recreated.
Use DROP DATABASE to drop each database.
Stop the server, set lower_case_table_names, and restart the server.
Reload the dump file for each database. Because lower_case_table_names is set, each database and table name will be converted to lowercase as it is recreated:
mysql < db1.sql
mysql < db2.sql
...
Object names may be considered duplicates if their uppercase forms are equal according to a binary collation. That is true for names of cursors, conditions, procedures, functions, savepoints, stored routine parameters, stored program local variables, and plugins. It is not true for names of columns, constraints, databases, partitions, statements prepared with PREPARE, tables, triggers, users, and user-defined variables.
File system case sensitivity can affect searches in string columns of INFORMATION_SCHEMA tables. For more information, see Section 10.1.7.9, “Collation and INFORMATION_SCHEMA Searches”.
9.2.3. Mapping of Identifiers to File Names
There is a correspondence between database and table identifiers and names in the file system. For the basic structure, MySQL represents each database as a directory in the data directory, and each table by one or more files in the appropriate database directory. For the table format files (.FRM), the data is always stored in this structure and location.
For the data and index files, the exact representation on disk is storage engine specific. These files may be stored in the same location as the FRM files, or the information may be stored in a separate file. InnoDB data is stored in the InnoDB data files. If you are using tablespaces with InnoDB, then the specific tablespace files you create are used instead.
Any character is legal in database or table identifiers except ASCII NUL (0x00). MySQL encodes any characters that are problematic in the corresponding file system objects when it creates database directories or table files:
Basic Latin letters (a..zA..Z), digits (0..9) and underscore (_) are encoded as is. Consequently, their case sensitivity directly depends on file system features.
All other national letters from alphabets that have uppercase/lowercase mapping are encoded as shown in the following table. Values in the Code Range column are UCS-2 values.
Code Range | Pattern | Number | Used | Unused | Blocks |
---|---|---|---|---|---|
00C0..017F | [@][0..4][g..z] | 5*20= 100 | 97 | 3 | Latin-1 Supplement + Latin Extended-A |
0370..03FF | [@][5..9][g..z] | 5*20= 100 | 88 | 12 | Greek and Coptic |
0400..052F | [@][g..z][0..6] | 20*7= 140 | 137 | 3 | Cyrillic + Cyrillic Supplement |
0530..058F | [@][g..z][7..8] | 20*2= 40 | 38 | 2 | Armenian |
2160..217F | [@][g..z][9] | 20*1= 20 | 16 | 4 | Number Forms |
0180..02AF | [@][g..z][a..k] | 20*11=220 | 203 | 17 | Latin Extended-B + IPA Extensions |
1E00..1EFF | [@][g..z][l..r] | 20*7= 140 | 136 | 4 | Latin Extended Additional |
1F00..1FFF | [@][g..z][s..z] | 20*8= 160 | 144 | 16 | Greek Extended |
.... | [@][a..f][g..z] | 6*20= 120 | 0 | 120 | RESERVED |
24B6..24E9 | [@][@][a..z] | 26 | 26 | 0 | Enclosed Alphanumerics |
FF21..FF5A | [@][a..z][@] | 26 | 26 | 0 | Halfwidth and Fullwidth forms |
One of the bytes in the sequence encodes lettercase. For example: LATIN CAPITAL LETTER A WITH GRAVE is encoded as @0G, whereas LATIN SMALL LETTER A WITH GRAVE is encoded as @0g. Here the third byte (G or g) indicates lettercase. (On a case-insensitive file system, both letters will be treated as the same.)
For some blocks, such as Cyrillic, the second byte determines lettercase. For other blocks, such as Latin1 Supplement, the third byte determines lettercase. If two bytes in the sequence are letters (as in Greek Extended), the leftmost letter character stands for lettercase. All other letter bytes must be in lowercase.
All nonletter characters except underscore (_), as well as letters from alphabets that do not have uppercase/lowercase mapping (such as Hebrew) are encoded using hexadecimal representation using lowercase letters for hex digits a..f:
0x003F -> @003f
0xFFFF -> @ffff
The hexadecimal values correspond to character values in the ucs2 double-byte character set.
On Windows, some names such as nul, prn, and aux are encoded by appending @@@ to the name when the server creates the corresponding file or directory. This occurs on all platforms for portability of the corresponding database object between platforms.
If you have databases or tables from a version of MySQL older than 5.1.6 that contain special characters and for which the underlying directory names or file names have not been updated to use the new encoding, the server displays their names with a prefix of #mysql50# in the output from INFORMATION_SCHEMA tables or SHOW statements. For example, if you have a table named a@b and its name encoding has not been updated, SHOW TABLES displays it like this:
mysql> SHOW TABLES;
+----------------+
| Tables_in_test |
+----------------+
| #mysql50#a@b |
+----------------+
To refer to such a name for which the encoding has not been updated, you must supply the #mysql50# prefix:
mysql> SHOW COLUMNS FROM `a@b`;
ERROR 1146 (42S02): Table 'test.a@b' doesn't exist
mysql> SHOW COLUMNS FROM `#mysql50#a@b`;
+-------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+
| i | int(11) | YES | | NULL | |
+-------+---------+------+-----+---------+-------+
To update old names to eliminate the need to use the special prefix to refer to them, re-encode them with mysqlcheck. The following command updates all names to the new encoding:
shell> mysqlcheck --check-upgrade --fix-db-names --fix-table-names --all-databases
To check only specific databases or tables, omit --all-databases and provide the appropriate database or table arguments. For information about mysqlcheck invocation syntax, see Section 4.5.3, “mysqlcheck — A Table Maintenance Program”.
Note
The #mysql50# prefix is intended only to be used internally by the server. You should not create databases or tables with names that use this prefix.
Also, mysqlcheck cannot fix names that contain literal instances of the @ character that is used for encoding special characters. If you have databases or tables that contain this character, use mysqldump to dump them before upgrading to MySQL 5.1.6 or later, and then reload the dump file after upgrading.
9.2.4. Function Name Parsing and Resolution
MySQL 5.6 supports built-in (native) functions, user-defined functions (UDFs), and stored functions. This section describes how the server recognizes whether the name of a built-in function is used as a function call or as an identifier, and how the server determines which function to use in cases when functions of different types exist with a given name.
Built-In Function Name Parsing
The parser uses default rules for parsing names of built-in functions. These rules can be changed by enabling the IGNORE_SPACE SQL mode.
When the parser encounters a word that is the name of a built-in function, it must determine whether the name signifies a function call or is instead a nonexpression reference to an identifier such as a table or column name. For example, in the following statements, the first reference to count is a function call, whereas the second reference is a table name:
SELECT COUNT(*) FROM mytable;
CREATE TABLE count (i INT);
The parser should recognize the name of a built-in function as indicating a function call only when parsing what is expected to be an expression. That is, in nonexpression context, function names are permitted as identifiers.
However, some built-in functions have special parsing or implementation considerations, so the parser uses the following rules by default to distinguish whether their names are being used as function calls or as identifiers in nonexpression context:
To use the name as a function call in an expression, there must be no whitespace between the name and the following “(” parenthesis character.
Conversely, to use the function name as an identifier, it must not be followed immediately by a parenthesis.
The requirement that function calls be written with no whitespace between the name and the parenthesis applies only to the built-in functions that have special considerations. COUNT is one such name. The exact list of function names for which following whitespace determines their interpretation are those listed in the sql_functions[] array of the sql/lex.h source file. Before MySQL 5.1, these are rather numerous (about 200), so you may find it easiest to treat the no-whitespace requirement as applying to all function calls. In MySQL 5.1 and later, parser improvements reduce to about 30 the number of affected function names.
For functions not listed in the sql_functions[]) array, whitespace does not matter. They are interpreted as function calls only when used in expression context and may be used freely as identifiers otherwise. ASCII is one such name. However, for these nonaffected function names, interpretation may vary in expression context: func_name () is interpreted as a built-in function if there is one with the given name; if not, func_name () is interpreted as a user-defined function or stored function if one exists with that name.
The IGNORE_SPACE SQL mode can be used to modify how the parser treats function names that are whitespace-sensitive:
With IGNORE_SPACE disabled, the parser interprets the name as a function call when there is no whitespace between the name and the following parenthesis. This occurs even when the function name is used in nonexpression context:
mysql> CREATE TABLE count(i INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'count(i INT)'
To eliminate the error and cause the name to be treated as an identifier, either use whitespace following the name or write it as a quoted identifier (or both):
CREATE TABLE count (i INT);
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);
With IGNORE_SPACE enabled, the parser loosens the requirement that there be no whitespace between the function name and the following parenthesis. This provides more flexibility in writing function calls. For example, either of the following function calls are legal:
SELECT COUNT(*) FROM mytable;
SELECT COUNT (*) FROM mytable;
However, enabling IGNORE_SPACE also has the side effect that the parser treats the affected function names as reserved words (see Section 9.3, “Reserved Words”). This means that a space following the name no longer signifies its use as an identifier. The name can be used in function calls with or without following whitespace, but causes a syntax error in nonexpression context unless it is quoted. For example, with IGNORE_SPACE enabled, both of the following statements fail with a syntax error because the parser interprets count as a reserved word:
CREATE TABLE count(i INT);
CREATE TABLE count (i INT);
To use the function name in nonexpression context, write it as a quoted identifier:
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);
To enable the IGNORE_SPACE SQL mode, use this statement:
SET sql_mode = 'IGNORE_SPACE';
IGNORE_SPACE is also enabled by certain other composite modes such as ANSI that include it in their value:
SET sql_mode = 'ANSI';
Check Section 5.1.7, “Server SQL Modes”, to see which composite modes enable IGNORE_SPACE.
To minimize the dependency of SQL code on the IGNORE_SPACE setting, use these guidelines:
Avoid creating UDFs or stored functions that have the same name as a built-in function.
Avoid using function names in nonexpression context. For example, these statements use count (one of the affected function names affected by IGNORE_SPACE), so they fail with or without whitespace following the name if IGNORE_SPACE is enabled:
CREATE TABLE count(i INT);
CREATE TABLE count (i INT);
If you must use a function name in nonexpression context, write it as a quoted identifier:
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);
The number of function names affected by IGNORE_SPACE was reduced significantly in MySQL 5.1.13, from about 200 to about 30. As of MySQL 5.1.13, only the following functions are still affected by the IGNORE_SPACE setting.
ADDDATE | BIT_AND | BIT_OR | BIT_XOR |
CAST | COUNT | CURDATE | CURTIME |
DATE_ADD | DATE_SUB | EXTRACT | GROUP_CONCAT |
MAX | MID | MIN | NOW |
POSITION | SESSION_USER | STD | STDDEV |
STDDEV_POP | STDDEV_SAMP | SUBDATE | SUBSTR |
SUBSTRING | SUM | SYSDATE | SYSTEM_USER |
TRIM | VARIANCE | VAR_POP | VAR_SAMP |
For earlier versions of MySQL, check the contents of the sql_functions[] array in the sql/lex.h source file to see which functions are affected by IGNORE_SPACE.
Incompatibility warning: The change in MySQL 5.1.13 that reduces the number of function names affected by IGNORE_SPACE improves the consistency of parser operation. However, it also introduces the possibility of incompatibility for old SQL code that relies on the following conditions:
IGNORE_SPACE is disabled.
The presence or absence of whitespace following a function name is used to distinguish between a built-in function and stored function that have the same name, such as PI() versus PI ().
For functions that are no longer affected by IGNORE_SPACE as of MySQL 5.1.13, that strategy no longer works. Either of the following approaches can be used if you have code that is subject to the preceding incompatibility:
If a stored function has a name that conflicts with a built-in function, refer to the stored function with a schema name qualifier, regardless of whether whitespace is present. For example, write schema_name.PI() or schema_name.PI ().
Alternatively, rename the stored function to use a nonconflicting name and change invocations of the function to use the new name.
Function Name Resolution
The following rules describe how the server resolves references to function names for function creation and invocation:
Built-in functions and user-defined functions
An error occurs if you try to create a UDF with the same name as a built-in function.
Built-in functions and stored functions
It is possible to create a stored function with the same name as a built-in function, but to invoke the stored function it is necessary to qualify it with a schema name. For example, if you create a stored function named PI in the test schema, you invoke it as test.PI() because the server resolves PI() as a reference to the built-in function. The server creates a warning if the stored function name collides with a built-in function name. The warning can be displayed with SHOW WARNINGS.
User-defined functions and stored functions
User-defined functions and stored functions share the same namespace, so you cannot create a UDF and a stored function with the same name.
The preceding function name resolution rules have implications for upgrading to versions of MySQL that implement new built-in functions:
If you have already created a user-defined function with a given name and upgrade MySQL to a version that implements a new built-in function with the same name, the UDF becomes inaccessible. To correct this, use DROP FUNCTION to drop the UDF, and then use CREATE FUNCTION to re-create the UDF with a different nonconflicting name.
If a new version of MySQL implements a built-in function with the same name as an existing stored function, you have two choices: Rename the stored function to use a nonconflicting name, or change calls to the function so that they use a schema qualifier (that is, use schema_name.func_name() syntax).
9.3. Reserved Words
Certain words such as SELECT, DELETE, or BIGINT are reserved and require special treatment for use as identifiers such as table and column names. This may also be true for the names of built-in functions.
Reserved words are permitted as identifiers if you quote them as described in Section 9.2, “Schema Object Names”:
mysql> CREATE TABLE interval (begin INT, end INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'interval (begin INT, end INT)'
mysql> CREATE TABLE `interval` (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)
Exception: A word that follows a period in a qualified name must be an identifier, so it need not be quoted even if it is reserved:
mysql> CREATE TABLE mydb.interval (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)
Names of built-in functions are permitted as identifiers but may require care to be used as such. For example, COUNT is acceptable as a column name. However, by default, no whitespace is permitted in function invocations between the function name and the following “(” character. This requirement enables the parser to distinguish whether the name is used in a function call or in nonfunction context. For further detail on recognition of function names, see Section 9.2.4, “Function Name Parsing and Resolution”.
The words in the following table are explicitly reserved in MySQL 5.6. In addition, _FILENAME is reserved. At some point, you might upgrade to a higher version, so it is a good idea to have a look at future reserved words, too. You can find these in the manuals that cover higher versions of MySQL. Most of the words in the table are forbidden by standard SQL as column or table names (for example, GROUP). A few are reserved because MySQL needs them and uses a yacc parser. A reserved word can be used as an identifier if you quote it.
For a more detailed list of reserved words, including differences between versions, see Reserved Words in MySQL 5.6.
Table 9.2. Reserved Words in MySQL 5.6.11
ACCESSIBLE | ADD | ALL |
ALTER | ANALYZE | AND |
AS | ASC | ASENSITIVE |
BEFORE | BETWEEN | BIGINT |
BINARY | BLOB | BOTH |
BY | CALL | CASCADE |
CASE | CHANGE | CHAR |
CHARACTER | CHECK | COLLATE |
COLUMN | CONDITION | CONSTRAINT |
CONTINUE | CONVERT | CREATE |
CROSS | CURRENT_DATE | CURRENT_TIME |
CURRENT_TIMESTAMP | CURRENT_USER | CURSOR |
DATABASE | DATABASES | DAY_HOUR |
DAY_MICROSECOND | DAY_MINUTE | DAY_SECOND |
DEC | DECIMAL | DECLARE |
DEFAULT | DELAYED | DELETE |
DESC | DESCRIBE | DETERMINISTIC |
DISTINCT | DISTINCTROW | DIV |
DOUBLE | DROP | DUAL |
EACH | ELSE | ELSEIF |
ENCLOSED | ESCAPED | EXISTS |
EXIT | EXPLAIN | FALSE |
FETCH | FLOAT | FLOAT4 |
FLOAT8 | FOR | FORCE |
FOREIGN | FROM | FULLTEXT |
GET | GRANT | GROUP |
HAVING | HIGH_PRIORITY | HOUR_MICROSECOND |
HOUR_MINUTE | HOUR_SECOND | IF |
IGNORE | IN | INDEX |
INFILE | INNER | INOUT |
INSENSITIVE | INSERT | INT |
INT1 | INT2 | INT3 |
INT4 | INT8 | INTEGER |
INTERVAL | INTO | IO_AFTER_GTIDS |
IO_BEFORE_GTIDS | IS | ITERATE |
JOIN | KEY | KEYS |
KILL | LEADING | LEAVE |
LEFT | LIKE | LIMIT |
LINEAR | LINES | LOAD |
LOCALTIME | LOCALTIMESTAMP | LOCK |
LONG | LONGBLOB | LONGTEXT |
LOOP | LOW_PRIORITY | MASTER_BIND |
MASTER_SSL_VERIFY_SERVER_CERT | MATCH | MAXVALUE |
MEDIUMBLOB | MEDIUMINT | MEDIUMTEXT |
MIDDLEINT | MINUTE_MICROSECOND | MINUTE_SECOND |
MOD | MODIFIES | NATURAL |
NOT | NO_WRITE_TO_BINLOG | NULL |
NUMERIC | ON | OPTIMIZE |
OPTION | OPTIONALLY | OR |
ORDER | OUT | OUTER |
OUTFILE | PARTITION | PRECISION |
PRIMARY | PROCEDURE | PURGE |
RANGE | READ | READS |
READ_WRITE | REAL | REFERENCES |
REGEXP | RELEASE | RENAME |
REPEAT | REPLACE | REQUIRE |
RESIGNAL | RESTRICT | RETURN |
REVOKE | RIGHT | RLIKE |
SCHEMA | SCHEMAS | SECOND_MICROSECOND |
SELECT | SENSITIVE | SEPARATOR |
SET | SHOW | SIGNAL |
SMALLINT | SPATIAL | SPECIFIC |
SQL | SQLEXCEPTION | SQLSTATE |
SQLWARNING | SQL_BIG_RESULT | SQL_CALC_FOUND_ROWS |
SQL_SMALL_RESULT | SSL | STARTING |
STRAIGHT_JOIN | TABLE | TERMINATED |
THEN | TINYBLOB | TINYINT |
TINYTEXT | TO | TRAILING |
TRIGGER | TRUE | UNDO |
UNION | UNIQUE | UNLOCK |
UNSIGNED | UPDATE | USAGE |
USE | USING | UTC_DATE |
UTC_TIME | UTC_TIMESTAMP | VALUES |
VARBINARY | VARCHAR | VARCHARACTER |
VARYING | WHEN | WHERE |
WHILE | WITH | WRITE |
XOR | YEAR_MONTH | ZEROFILL |
Table 9.3. New Reserved Words in MySQL 5.6
GET | IO_AFTER_GTIDS | IO_BEFORE_GTIDS |
MASTER_BIND | ONE_SHOT | PARTITION |
SQL_AFTER_GTIDS | SQL_BEFORE_GTIDS |
MySQL permits some keywords to be used as unquoted identifiers because many people previously used them. Examples are those in the following list:
9.4. User-Defined Variables
You can store a value in a user-defined variable in one statement and then refer to it later in another statement. This enables you to pass values from one statement to another. User-defined variables are session-specific. That is, a user variable defined by one client cannot be seen or used by other clients. All variables for a given client session are automatically freed when that client exits.
User variables are written as @var_name, where the variable name var_name consists of alphanumeric characters, “.”, “_”, and “$”. A user variable name can contain other characters if you quote it as a string or identifier (for example, @'my-var', @"my-var", or @`my-var`).
User variable names are not case sensitive in MySQL 5.0 and up.
One way to set a user-defined variable is by issuing a SET statement:
SET @var_name = expr [, @var_name = expr] ...
For SET, either = or := can be used as the assignment operator.
You can also assign a value to a user variable in statements other than SET. In this case, the assignment operator must be := and not = because the latter is treated as the comparison operator = in non-SET statements:
mysql> SET @t1=1, @t2=2, @t3:=4;
mysql> SELECT @t1, @t2, @t3, @t4 := @t1+@t2+@t3;
+------+------+------+--------------------+
| @t1 | @t2 | @t3 | @t4 := @t1+@t2+@t3 |
+------+------+------+--------------------+
| 1 | 2 | 4 | 7 |
+------+------+------+--------------------+
User variables can be assigned a value from a limited set of data types: integer, decimal, floating-point, binary or nonbinary string, or NULL value. Assignment of decimal and real values does not preserve the precision or scale of the value. A value of a type other than one of the permissible types is converted to a permissible type. For example, a value having a temporal or spatial data type is converted to a binary string.
If a user variable is assigned a nonbinary (character) string value, it has the same character set and collation as the string. The coercibility of user variables is implicit. (This is the same coercibility as for table column values.)
Bit values assigned to user variables are treated as binary strings. To assign a bit value as a number to a user variable, use CAST() or +0:
mysql> SET @v1 = b'1000001';
mysql> SET @v2 = CAST(b'1000001' AS UNSIGNED), @v3 = b'1000001'+0;
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+
If the value of a user variable is selected in a result set, it is returned to the client as a string.
If you refer to a variable that has not been initialized, it has a value of NULL and a type of string.
User variables may be used in most contexts where expressions are permitted. This does not currently include contexts that explicitly require a literal value, such as in the LIMIT clause of a SELECT statement, or the IGNORE N LINES clause of a LOAD DATA statement.
As a general rule, you should never assign a value to a user variable and read the value within the same statement. You might get the results you expect, but this is not guaranteed. The order of evaluation for expressions involving user variables is undefined and may change based on the elements contained within a given statement; in addition, this order is not guaranteed to be the same between releases of the MySQL Server. In SELECT @a, @a:=@a+1, ..., you might think that MySQL will evaluate @a first and then do an assignment second. However, changing the statement (for example, by adding a GROUP BY, HAVING, or ORDER BY clause) may cause MySQL to select an execution plan with a different order of evaluation.
Another issue with assigning a value to a variable and reading the value within the same statement is that the default result type of a variable is based on its type at the start of the statement. The following example illustrates this:
mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;
For this SELECT statement, MySQL reports to the client that column one is a string and converts all accesses of @a to strings, even though @a is set to a number for the second row. After the SELECT statement executes, @a is regarded as a number for the next statement.
To avoid problems with this behavior, either do not assign a value to and read the value of the same variable within a single statement, or else set the variable to 0, 0.0, or '' to define its type before you use it.
In a SELECT statement, each select expression is evaluated only when sent to the client. This means that in a HAVING, GROUP BY, or ORDER BY clause, referring to a variable that is assigned a value in the select expression list does not work as expected:
mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;
The reference to b in the HAVING clause refers to an alias for an expression in the select list that uses @aa. This does not work as expected: @aa contains the value of id from the previous selected row, not from the current row.
User variables are intended to provide data values. They cannot be used directly in an SQL statement as an identifier or as part of an identifier, such as in contexts where a table or database name is expected, or as a reserved word such as SELECT. This is true even if the variable is quoted, as shown in the following example:
mysql> SELECT c1 FROM t;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)
mysql> SET @col = "c1";
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| c1 |
+------+
1 row in set (0.00 sec)
mysql> SELECT `@col` FROM t;
ERROR 1054 (42S22): Unknown column '@col' in 'field list'
mysql> SET @col = "`c1`";
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| `c1` |
+------+
1 row in set (0.00 sec)
An exception to this principle that user variables cannot be used to provide identifiers is that if you are constructing a string for use as a prepared statement to be executed later. In this case, user variables can be used to provide any part of the statement. The following example illustrates how this can be done:
mysql> SET @c = "c1";
Query OK, 0 rows affected (0.00 sec)
mysql> SET @s = CONCAT("SELECT ", @c, " FROM t");
Query OK, 0 rows affected (0.00 sec)
mysql> PREPARE stmt FROM @s;
Query OK, 0 rows affected (0.04 sec)
Statement prepared
mysql> EXECUTE stmt;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)
mysql> DEALLOCATE PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)
See Section 13.5, “SQL Syntax for Prepared Statements”, for more information.
A similar technique can be used in application programs to construct SQL statements using program variables, as shown here using PHP 5:
<?php
$mysqli = new mysqli("localhost", "user", "pass", "test");
if(mysqli_connect_errno())
die("Connection failed: %s\n", mysqli_connect_error());
$col = "c1";
$query = "SELECT $col FROM t";
$result = $mysqli->query($query);
while($row = $result->fetch_assoc())
{
echo "<p>" . $row["$col"] . "</p>\n";
}
$result->close();
$mysqli->close();
?>
Assembling an SQL statement in this fashion is sometimes known as “Dynamic SQL”.
9.5. Expression Syntax
The following rules define expression syntax in MySQL. The grammar shown here is based on that given in the sql/sql_yacc.yy file of MySQL source distributions. See the notes after the grammar for additional information about some of the terms. Operator precedence is given in Section 12.3.1, “Operator Precedence”.
expr:
expr OR expr
| expr || expr
| expr XOR expr
| expr AND expr
| expr && expr
| NOT expr
| ! expr
| boolean_primary IS [NOT] {TRUE | FALSE | UNKNOWN}
| boolean_primary
boolean_primary:
boolean_primary IS [NOT] NULL
| boolean_primary <=> predicate
| boolean_primary comparison_operator predicate
| boolean_primary comparison_operator {ALL | ANY} (subquery)
| predicate
comparison_operator: = | >= | > | <= | < | <> | !=
predicate:
bit_expr [NOT] IN (subquery)
| bit_expr [NOT] IN (expr [, expr] ...)
| bit_expr [NOT] BETWEEN bit_expr AND predicate
| bit_expr SOUNDS LIKE bit_expr
| bit_expr [NOT] LIKE simple_expr [ESCAPE simple_expr]
| bit_expr [NOT] REGEXP bit_expr
| bit_expr
bit_expr:
bit_expr | bit_expr
| bit_expr & bit_expr
| bit_expr << bit_expr
| bit_expr >> bit_expr
| bit_expr + bit_expr
| bit_expr - bit_expr
| bit_expr * bit_expr
| bit_expr / bit_expr
| bit_expr DIV bit_expr
| bit_expr MOD bit_expr
| bit_expr % bit_expr
| bit_expr ^ bit_expr
| bit_expr + interval_expr
| bit_expr - interval_expr
| simple_expr
simple_expr:
literal
| identifier
| function_call
| simple_expr COLLATE collation_name
| param_marker
| variable
| simple_expr || simple_expr
| + simple_expr
| - simple_expr
| ~ simple_expr
| ! simple_expr
| BINARY simple_expr
| (expr [, expr] ...)
| ROW (expr, expr [, expr] ...)
| (subquery)
| EXISTS (subquery)
| {identifier expr}
| match_expr
| case_expr
| interval_expr
Notes:
For literal value syntax, see Section 9.1, “Literal Values”.
For identifier syntax, see Section 9.2, “Schema Object Names”.
Variables can be user variables, system variables, or stored program local variables or parameters:
User variables: Section 9.4, “User-Defined Variables”
System variables: Section 5.1.5, “Using System Variables”
Local variables: Section 13.6.4.1, “Local Variable DECLARE Syntax”
Parameters: Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
param_marker is '?' as used in prepared statements for placeholders. See Section 13.5.1, “PREPARE Syntax”.
(subquery) indicates a subquery that returns a single value; that is, a scalar subquery. See Section 13.2.10.1, “The Subquery as Scalar Operand”.
{identifier expr} is ODBC escape syntax and is accepted for ODBC compatibility. The value is expr. The curly braces in the syntax should be written literally; they are not metasyntax as used elsewhere in syntax descriptions.
match_expr indicates a MATCH expression. See Section 12.9, “Full-Text Search Functions”.
case_expr indicates a CASE expression. See Section 12.4, “Control Flow Functions”.
interval_expr represents a time interval. The syntax is INTERVAL expr unit, where unit is a specifier such as HOUR, DAY, or WEEK. For the full list of unit specifiers, see the description of the DATE_ADD() function in Section 12.7, “Date and Time Functions”.
The meaning of some operators depends on the SQL mode:
By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation, with a precedence between ^ and the unary operators.
By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT have the same precedence.
See Section 5.1.7, “Server SQL Modes”.
9.6. Comment Syntax
MySQL Server supports three comment styles:
From a “#” character to the end of the line.
From a “-- ” sequence to the end of the line. In MySQL, the “-- ” (double-dash) comment style requires the second dash to be followed by at least one whitespace or control character (such as a space, tab, newline, and so on). This syntax differs slightly from standard SQL comment syntax, as discussed in Section 1.8.5.5, “'--' as the Start of a Comment”.
From a /* sequence to the following */ sequence, as in the C programming language. This syntax enables a comment to extend over multiple lines because the beginning and closing sequences need not be on the same line.
The following example demonstrates all three comment styles:
mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment
*/
1;
Nested comments are not supported. (Under some conditions, nested comments might be permitted, but usually are not, and users should avoid them.)
MySQL Server supports some variants of C-style comments. These enable you to write code that includes MySQL extensions, but is still portable, by using comments of the following form:
/*! MySQL-specific code */
In this case, MySQL Server parses and executes the code within the comment as it would any other SQL statement, but other SQL servers will ignore the extensions. For example, MySQL Server recognizes the STRAIGHT_JOIN keyword in the following statement, but other servers will not:
SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...
If you add a version number after the “!” character, the syntax within the comment is executed only if the MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword in the following comment is executed only by servers from MySQL 3.23.02 or higher:
CREATE /*!32302 TEMPORARY */ TABLE t (a INT);
The comment syntax just described applies to how the mysqld server parses SQL statements. The mysql client program also performs some parsing of statements before sending them to the server. (It does this to determine statement boundaries within a multiple-statement input line.)
Comments in this format, /*!12345 ... */, are not stored on the server. If this format is used to comment stored routines, the comments will not be retained on the server.
The use of short-form mysql commands such as \C within multi-line /* ... */ comments is not supported.
Chapter 10. Globalization
Table of Contents
10.1.1. Character Sets and Collations in General
10.1.2. Character Sets and Collations in MySQL
10.1.3. Specifying Character Sets and Collations
10.1.4. Connection Character Sets and Collations
10.1.5. Configuring the Character Set and Collation for Applications
10.1.6. Character Set for Error Messages
10.1.7. Collation Issues
10.1.8. String Repertoire
10.1.9. Operations Affected by Character Set Support
10.1.10. Unicode Support
10.1.11. Upgrading from Previous to Current Unicode Support
10.1.12. UTF-8 for Metadata
10.1.13. Column Character Set Conversion
10.1.14. Character Sets and Collations That MySQL Supports
10.2. Setting the Error Message Language
10.3.1. Character Definition Arrays
10.3.2. String Collating Support for Complex Character Sets
10.3.3. Multi-Byte Character Support for Complex Character Sets
10.4. Adding a Collation to a Character Set
10.4.1. Collation Implementation Types
10.4.2. Choosing a Collation ID
10.4.3. Adding a Simple Collation to an 8-Bit Character Set
10.4.4. Adding a UCA Collation to a Unicode Character Set
10.5. Character Set Configuration
10.6. MySQL Server Time Zone Support
10.6.1. Staying Current with Time Zone Changes
10.6.2. Time Zone Leap Second Support
10.7. MySQL Server Locale Support
This chapter covers issues of globalization, which includes internationalization (MySQL's capabilities for adapting to local use) and localization (selecting particular local conventions):
MySQL support for character sets in SQL statements.
How to configure the server to support different character sets.
Selecting the language for error messages.
How to set the server's time zone and enable per-connection time zone support.
Selecting the locale for day and month names.
10.1. Character Set Support
MySQL includes character set support that enables you to store data using a variety of character sets and perform comparisons according to a variety of collations. You can specify character sets at the server, database, table, and column level. MySQL supports the use of character sets for the MyISAM, MEMORY, and InnoDB storage engines.
This chapter discusses the following topics:
What are character sets and collations?
The multiple-level default system for character set assignment.
Syntax for specifying character sets and collations.
Affected functions and operations.
Unicode support.
The character sets and collations that are available, with notes.
Character set issues affect not only data storage, but also communication between client programs and the MySQL server. If you want the client program to communicate with the server using a character set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode character set, issue this statement after connecting to the server:
SET NAMES 'utf8';
For more information about configuring character sets for application use and character set-related issues in client/server communication, see Section 10.1.5, “Configuring the Character Set and Collation for Applications”, and Section 10.1.4, “Connection Character Sets and Collations”.
10.1.1. Character Sets and Collations in General
A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters in a character set. Let's make the distinction clear with an example of an imaginary character set.
Suppose that we have an alphabet with four letters: “A”, “B”, “a”, “b”. We give each letter a number: “A” = 0, “B” = 1, “a” = 2, “b” = 3. The letter “A” is a symbol, the number 0 is the encoding for “A”, and the combination of all four letters and their encodings is a character set.
Suppose that we want to compare two string values, “A” and “B”. The simplest way to do this is to look at the encodings: 0 for “A” and 1 for “B”. Because 0 is less than 1, we say “A” is less than “B”. What we've just done is apply a collation to our character set. The collation is a set of rules (only one rule in this case): “compare the encodings.” We call this simplest of all possible collations a binary collation.
But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would have at least two rules: (1) treat the lowercase letters “a” and “b” as equivalent to “A” and “B”; (2) then compare the encodings. We call this a case-insensitive collation. It is a little more complex than a binary collation.
In real life, most character sets have many characters: not just “A” and “B” but whole alphabets, sometimes multiple alphabets or eastern writing systems with thousands of characters, along with many special symbols and punctuation marks. Also in real life, most collations have many rules, not just for whether to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a mark attached to a character as in German “Ö”), and for multiple-character mappings (such as the rule that “Ö” = “OE” in one of the two German collations).
MySQL can do these things for you:
Store strings using a variety of character sets.
Compare strings using a variety of collations.
Mix strings with different character sets or collations in the same server, the same database, or even the same table.
Enable specification of character set and collation at any level.
In these respects, MySQL is far ahead of most other database management systems. However, to use these features effectively, you need to know what character sets and collations are available, how to change the defaults, and how they affect the behavior of string operators and functions.
10.1.2. Character Sets and Collations in MySQL
The MySQL server can support multiple character sets. To list the available character sets, use the SHOW CHARACTER SET statement. A partial listing follows. For more complete information, see Section 10.1.14, “Character Sets and Collations That MySQL Supports”.
mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
| dec8 | DEC West European | dec8_swedish_ci | 1 |
| cp850 | DOS West European | cp850_general_ci | 1 |
| hp8 | HP West European | hp8_english_ci | 1 |
| koi8r | KOI8-R Relcom Russian | koi8r_general_ci | 1 |
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
| swe7 | 7bit Swedish | swe7_swedish_ci | 1 |
| ascii | US ASCII | ascii_general_ci | 1 |
| ujis | EUC-JP Japanese | ujis_japanese_ci | 3 |
| sjis | Shift-JIS Japanese | sjis_japanese_ci | 2 |
| hebrew | ISO 8859-8 Hebrew | hebrew_general_ci | 1 |
| tis620 | TIS620 Thai | tis620_thai_ci | 1 |
| euckr | EUC-KR Korean | euckr_korean_ci | 2 |
| koi8u | KOI8-U Ukrainian | koi8u_general_ci | 1 |
| gb2312 | GB2312 Simplified Chinese | gb2312_chinese_ci | 2 |
| greek | ISO 8859-7 Greek | greek_general_ci | 1 |
| cp1250 | Windows Central European | cp1250_general_ci | 1 |
| gbk | GBK Simplified Chinese | gbk_chinese_ci | 2 |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |
...
Any given character set always has at least one collation. It may have several collations. To list the collations for a character set, use the SHOW COLLATION statement. For example, to see the collations for the latin1 (cp1252 West European) character set, use this statement to find those collation names that begin with latin1:
mysql> SHOW COLLATION LIKE 'latin1%';
+---------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1 | 5 | | | 0 |
| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 1 |
| latin1_danish_ci | latin1 | 15 | | | 0 |
| latin1_german2_ci | latin1 | 31 | | Yes | 2 |
| latin1_bin | latin1 | 47 | | Yes | 1 |
| latin1_general_ci | latin1 | 48 | | | 0 |
| latin1_general_cs | latin1 | 49 | | | 0 |
| latin1_spanish_ci | latin1 | 94 | | | 0 |
+---------------------+---------+----+---------+----------+---------+
The latin1 collations have the following meanings.
Collation | Meaning |
---|---|
latin1_german1_ci | German DIN-1 |
latin1_swedish_ci | Swedish/Finnish |
latin1_danish_ci | Danish/Norwegian |
latin1_german2_ci | German DIN-2 |
latin1_bin | Binary according to latin1 encoding |
latin1_general_ci | Multilingual (Western European) |
latin1_general_cs | Multilingual (ISO Western European), case sensitive |
latin1_spanish_ci | Modern Spanish |
Collations have these general characteristics:
Two different character sets cannot have the same collation.
Each character set has one collation that is the default collation. For example, the default collation for latin1 is latin1_swedish_ci. The output for SHOW CHARACTER SET indicates which collation is the default for each displayed character set.
There is a convention for collation names: They start with the name of the character set with which they are associated, they usually include a language name, and they end with _ci (case insensitive), _cs (case sensitive), or _bin (binary).
In cases where a character set has multiple collations, it might not be clear which collation is most suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform some comparisons with representative data values to make sure that a given collation sorts values the way you expect.
Collation-Charts.Org is a useful site for information that shows how one collation compares to another.
10.1.3. Specifying Character Sets and Collations
There are default settings for character sets and collations at four levels: server, database, table, and column. The description in the following sections may appear complex, but it has been found in practice that multiple-level defaulting leads to natural and obvious results.
CHARACTER SET is used in clauses that specify a character set. CHARSET can be used as a synonym for CHARACTER SET.
Character set issues affect not only data storage, but also communication between client programs and the MySQL server. If you want the client program to communicate with the server using a character set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode character set, issue this statement after connecting to the server:
SET NAMES 'utf8';
For more information about character set-related issues in client/server communication, see Section 10.1.4, “Connection Character Sets and Collations”.
10.1.3.1. Server Character Set and Collation
MySQL Server has a server character set and a server collation. These can be set at server startup on the command line or in an option file and changed at runtime.
Initially, the server character set and collation depend on the options that you use when you start mysqld. You can use --character-set-server for the character set. Along with it, you can add --collation-server for the collation. If you don't specify a character set, that is the same as saying --character-set-server=latin1. If you specify only a character set (for example, latin1) but not a collation, that is the same as saying --character-set-server=latin1 --collation-server=latin1_swedish_ci because latin1_swedish_ci is the default collation for latin1. Therefore, the following three commands all have the same effect:
shell> mysqld
shell> mysqld --character-set-server=latin1
shell> mysqld --character-set-server=latin1 \
--collation-server=latin1_swedish_ci
One way to change the settings is by recompiling. To change the default server character set and collation when building from sources, use the DEFAULT_CHARSET and DEFAULT_COLLATION options for CMake. For example:
shell> cmake . -DDEFAULT_CHARSET=latin1
Or:
shell> cmake . -DDEFAULT_CHARSET=latin1 \
-DDEFAULT_COLLATION=latin1_german1_ci
Both mysqld and CMake verify that the character set/collation combination is valid. If not, each program displays an error message and terminates.
The server character set and collation are used as default values if the database character set and collation are not specified in CREATE DATABASE statements. They have no other purpose.
The current server character set and collation can be determined from the values of the character_set_server and collation_server system variables. These variables can be changed at runtime.
10.1.3.2. Database Character Set and Collation
Every database has a database character set and a database collation. The CREATE DATABASE and ALTER DATABASE statements have optional clauses for specifying the database character set and collation:
CREATE DATABASE db_name
[[DEFAULT] CHARACTER SET charset_name]
[[DEFAULT] COLLATE collation_name]
ALTER DATABASE db_name
[[DEFAULT] CHARACTER SET charset_name]
[[DEFAULT] COLLATE collation_name]
The keyword SCHEMA can be used instead of DATABASE.
All database options are stored in a text file named db.opt that can be found in the database directory.
The CHARACTER SET and COLLATE clauses make it possible to create databases with different character sets and collations on the same MySQL server.
Example:
CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;
MySQL chooses the database character set and database collation in the following manner:
If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.
If CHARACTER SET X is specified without COLLATE, character set X and its default collation are used. To see the default collation for each character set, use the SHOW COLLATION statement.
If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and collation Y are used.
Otherwise, the server character set and server collation are used.
The database character set and collation are used as default values for table definitions if the table character set and collation are not specified in CREATE TABLE statements. The database character set also is used by LOAD DATA INFILE. The character set and collation have no other purposes.
The character set and collation for the default database can be determined from the values of the character_set_database and collation_database system variables. The server sets these variables whenever the default database changes. If there is no default database, the variables have the same value as the corresponding server-level system variables, character_set_server and collation_server.
10.1.3.3. Table Character Set and Collation
Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE statements have optional clauses for specifying the table character set and collation:
CREATE TABLE tbl_name (column_list)
[[DEFAULT] CHARACTER SET charset_name]
[COLLATE collation_name]]
ALTER TABLE tbl_name
[[DEFAULT] CHARACTER SET charset_name]
[COLLATE collation_name]
Example:
CREATE TABLE t1 (...)
CHARACTER SET latin1 COLLATE latin1_danish_ci;
MySQL chooses the table character set and collation in the following manner:
If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.
If CHARACTER SET X is specified without COLLATE, character set X and its default collation are used. To see the default collation for each character set, use the SHOW COLLATION statement.
If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and collation Y are used.
Otherwise, the database character set and collation are used.
The table character set and collation are used as default values for column definitions if the column character set and collation are not specified in individual column definitions. The table character set and collation are MySQL extensions; there are no such things in standard SQL.
10.1.3.4. Column Character Set and Collation
Every “character” column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column character set and a column collation. Column definition syntax for CREATE TABLE and ALTER TABLE has optional clauses for specifying the column character set and collation:
col_name {CHAR | VARCHAR | TEXT} (col_length)
[CHARACTER SET charset_name]
[COLLATE collation_name]
These clauses can also be used for ENUM and SET columns:
col_name {ENUM | SET} (val_list)
[CHARACTER SET charset_name]
[COLLATE collation_name]
Examples:
CREATE TABLE t1
(
col1 VARCHAR(5)
CHARACTER SET latin1
COLLATE latin1_german1_ci
);
ALTER TABLE t1 MODIFY
col1 VARCHAR(5)
CHARACTER SET latin1
COLLATE latin1_swedish_ci;
MySQL chooses the column character set and collation in the following manner:
If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.
CREATE TABLE t1
(
col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci
) CHARACTER SET latin1 COLLATE latin1_bin;
The character set and collation are specified for the column, so they are used. The column has character set utf8 and collation utf8_unicode_ci.
If CHARACTER SET X is specified without COLLATE, character set X and its default collation are used.
CREATE TABLE t1
(
col1 CHAR(10) CHARACTER SET utf8
) CHARACTER SET latin1 COLLATE latin1_bin;
The character set is specified for the column, but the collation is not. The column has character set utf8 and the default collation for utf8, which is utf8_general_ci. To see the default collation for each character set, use the SHOW COLLATION statement.
If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and collation Y are used.
CREATE TABLE t1
(
col1 CHAR(10) COLLATE utf8_polish_ci
) CHARACTER SET latin1 COLLATE latin1_bin;
The collation is specified for the column, but the character set is not. The column has collation utf8_polish_ci and the character set is the one associated with the collation, which is utf8.
Otherwise, the table character set and collation are used.
CREATE TABLE t1
(
col1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_bin;
Neither the character set nor collation are specified for the column, so the table defaults are used. The column has character set latin1 and collation latin1_bin.
The CHARACTER SET and COLLATE clauses are standard SQL.
If you use ALTER TABLE to convert a column from one character set to another, MySQL attempts to map the data values, but if the character sets are incompatible, there may be data loss.
10.1.3.5. Character String Literal Character Set and Collation
Every character string literal has a character set and a collation.
A character string literal may have an optional character set introducer and COLLATE clause:
[_charset_name]'string' [COLLATE collation_name]
Examples:
SELECT 'string';
SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;
For the simple statement SELECT 'string', the string has the character set and collation defined by the character_set_connection and collation_connection system variables.
The _charset_name expression is formally called an introducer. It tells the parser, “the string that is about to follow uses character set X.” Because this has confused people in the past, we emphasize that an introducer does not change the string to the introducer character set like CONVERT() would do. It does not change the string's value, although padding may occur. The introducer is just a signal. An introducer is also legal before standard hex literal and numeric hex literal notation (x'literal' and 0xnnnn), or before bit-field literal notation (b'literal' and 0bnnnn).
Examples:
SELECT _latin1 x'AABBCC';
SELECT _latin1 0xAABBCC;
SELECT _latin1 b'1100011';
SELECT _latin1 0b1100011;
MySQL determines a literal's character set and collation in the following manner:
If both _X and COLLATE Y are specified, character set X and collation Y are used.
If _X is specified but COLLATE is not specified, character set X and its default collation are used. To see the default collation for each character set, use the SHOW COLLATION statement.
Otherwise, the character set and collation given by the character_set_connection and collation_connection system variables are used.
Examples:
A string with latin1 character set and latin1_german1_ci collation:
SELECT _latin1'Müller' COLLATE latin1_german1_ci;
A string with latin1 character set and its default collation (that is, latin1_swedish_ci):
SELECT _latin1'Müller';
A string with the connection default character set and collation:
SELECT 'Müller';
Character set introducers and the COLLATE clause are implemented according to standard SQL specifications.
An introducer indicates the character set for the following string, but does not change now how the parser performs escape processing within the string. Escapes are always interpreted by the parser according to the character set given by character_set_connection.
The following examples show that escape processing occurs using character_set_connection even in the presence of an introducer. The examples use SET NAMES (which changes character_set_connection, as discussed in Section 10.1.4, “Connection Character Sets and Collations”), and display the resulting strings using the HEX() function so that the exact string contents can be seen.
Example 1:
mysql> SET NAMES latin1;
Query OK, 0 rows affected (0.01 sec)
mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n') | HEX(_sjis'à\n') |
+------------+-----------------+
| E00A | E00A |
+------------+-----------------+
1 row in set (0.00 sec)
Here, “à” (hex value E0) is followed by “\n”, the escape sequence for newline. The escape sequence is interpreted using the character_set_connection value of latin1 to produce a literal newline (hex value 0A). This happens even for the second string. That is, the introducer of _sjis does not affect the parser's escape processing.
Example 2:
mysql> SET NAMES sjis;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n') | HEX(_latin1'à\n') |
+------------+-------------------+
| E05C6E | E05C6E |
+------------+-------------------+
1 row in set (0.04 sec)
Here, character_set_connection is sjis, a character set in which the sequence of “à” followed by “\” (hex values 05 and 5C) is a valid multi-byte character. Hence, the first two bytes of the string are interpreted as a single sjis character, and the “\” is not interpreted as an escape character. The following “n” (hex value 6E) is not interpreted as part of an escape sequence. This is true even for the second string; the introducer of _latin1 does not affect escape processing.
10.1.3.6. National Character Set
Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should use some predefined character set. MySQL 5.6 uses utf8 as this predefined character set. For example, these data type declarations are equivalent:
CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)
As are these:
VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)
You can use N'literal' (or n'literal') to create a string in the national character set. These statements are equivalent:
SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';
For information on upgrading character sets to MySQL 5.6 from versions prior to 4.1, see the MySQL 3.23, 4.0, 4.1 Reference Manual.
10.1.3.7. Examples of Character Set and Collation Assignment
The following examples show how MySQL determines default character set and collation values.
Example 1: Table and Column Definition
CREATE TABLE t1
(
c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;
Here we have a column with a latin1 character set and a latin1_german1_ci collation. The definition is explicit, so that is straightforward. Notice that there is no problem with storing a latin1 column in a latin2 table.
Example 2: Table and Column Definition
CREATE TABLE t1
(
c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;
This time we have a column with a latin1 character set and a default collation. Although it might seem natural, the default collation is not taken from the table level. Instead, because the default collation for latin1 is always latin1_swedish_ci, column c1 has a collation of latin1_swedish_ci (not latin1_danish_ci).
Example 3: Table and Column Definition
CREATE TABLE t1
(
c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;
We have a column with a default character set and a default collation. In this circumstance, MySQL checks the table level to determine the column character set and collation. Consequently, the character set for column c1 is latin1 and its collation is latin1_danish_ci.
Example 4: Database, Table, and Column Definition
CREATE DATABASE d1
DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_ci;
USE d1;
CREATE TABLE t1
(
c1 CHAR(10)
);
We create a column without specifying its character set and collation. We're also not specifying a character set and a collation at the table level. In this circumstance, MySQL checks the database level to determine the table settings, which thereafter become the column settings.) Consequently, the character set for column c1 is latin2 and its collation is latin2_czech_ci.
10.1.3.8. Compatibility with Other DBMSs
For MaxDB compatibility these two statements are the same:
CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);
10.1.4. Connection Character Sets and Collations
Several character set and collation system variables relate to a client's interaction with the server. Some of these have been mentioned in earlier sections:
The server character set and collation are the values of the character_set_server and collation_server system variables.
The character set and collation of the default database are the values of the character_set_database and collation_database system variables.
Additional character set and collation system variables are involved in handling traffic for the connection between a client and the server. Every client has connection-related character set and collation system variables.
A “connection” is what you make when you connect to the server. The client sends SQL statements, such as queries, over the connection to the server. The server sends responses, such as result sets or error messages, over the connection back to the client. This leads to several questions about character set and collation handling for client connections, each of which can be answered in terms of system variables:
What character set is the statement in when it leaves the client?
The server takes the character_set_client system variable to be the character set in which statements are sent by the client.
What character set should the server translate a statement to after receiving it?
For this, the server uses the character_set_connection and collation_connection system variables. It converts statements sent by the client from character_set_client to character_set_connection (except for string literals that have an introducer such as _latin1 or _utf8). collation_connection is important for comparisons of literal strings. For comparisons of strings with column values, collation_connection does not matter because columns have their own collation, which has a higher collation precedence.
What character set should the server translate to before shipping result sets or error messages back to the client?
The character_set_results system variable indicates the character set in which the server returns query results to the client. This includes result data such as column values, and result metadata such as column names and error messages.
Clients can fine-tune the settings for these variables, or depend on the defaults (in which case, you can skip the rest of this section). If you do not use the defaults, you must change the character settings for each connection to the server.
Two statements affect the connection-related character set variables as a group:
SET NAMES 'charset_name' [COLLATE 'collation_name']
SET NAMES indicates what character set the client will use to send SQL statements to the server. Thus, SET NAMES 'cp1251' tells the server, “future incoming messages from this client are in character set cp1251.” It also specifies the character set that the server should use for sending results back to the client. (For example, it indicates what character set to use for column values if you use a SELECT statement.)
A SET NAMES 'charset_name' statement is equivalent to these three statements:
SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET character_set_connection = charset_name;
Setting character_set_connection to charset_name also implicitly sets collation_connection to the default collation for charset_name. It is unnecessary to set that collation explicitly. To specify a particular collation, use the optional COLLATE clause:
SET NAMES 'charset_name' COLLATE 'collation_name'
SET CHARACTER SET charset_name
SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and collation_connection to character_set_database and collation_database. A SET CHARACTER SET charset_name statement is equivalent to these three statements:
SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET collation_connection = @@collation_database;
Setting collation_connection also implicitly sets character_set_connection to the character set associated with the collation (equivalent to executing SET character_set_connection = @@character_set_database). It is unnecessary to set character_set_connection explicitly.
Note
ucs2, utf16, utf16le, and utf32 cannot be used as a client character set, which means that they do not work for SET NAMES or SET CHARACTER SET.
The MySQL client programs mysql, mysqladmin, mysqlcheck, mysqlimport, and mysqlshow determine the default character set to use as follows:
In the absence of other information, the programs use the compiled-in default character set, usually latin1.
The programs can autodetect which character set to use based on the operating system setting, such as the value of the LANG or LC_ALL locale environment variable on Unix systems or the code page setting on Windows systems. For systems on which the locale is available from the OS, the client uses it to set the default character set rather than using the compiled-in default. For example, setting LANG to ru_RU.KOI8-R causes the koi8r character set to be used. Thus, users can configure the locale in their environment for use by MySQL clients.
The OS character set is mapped to the closest MySQL character set if there is no exact match. If the client does not support the matching character set, it uses the compiled-in default. For example, ucs2 is not supported as a connection character set.
C applications can use character set autodetection based on the OS setting by invoking mysql_options() as follows before connecting to the server:
mysql_options(mysql,
MYSQL_SET_CHARSET_NAME,
MYSQL_AUTODETECT_CHARSET_NAME);
The programs support a --default-character-set option, which enables users to specify the character set explicitly to override whatever default the client otherwise determines.
When a client connects to the server, it sends the name of the character set that it wants to use. The server uses the name to set the character_set_client, character_set_results, and character_set_connection system variables. In effect, the server performs a SET NAMES operation using the character set name.
With the mysql client, to use a character set different from the default, you could explicitly execute SET NAMES every time you start up. To accomplish the same result more easily, add the --default-character-set option setting to your mysql command line or in your option file. For example, the following option file setting changes the three connection-related character set variables set to koi8r each time you invoke mysql:
[mysql]
default-character-set=koi8r
If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is preferable to use the charset command rather than SET NAMES. For example:
mysql> charset utf8
Charset changed
The charset command issues a SET NAMES statement, and also changes the default character set that mysql uses when it reconnects after the connection has dropped.
Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server sends back all the values for column1 using the character set that the client specified when it connected. On the other hand, if you say SET NAMES 'latin1' or SET CHARACTER SET latin1 before issuing the SELECT statement, the server converts the latin2 values to latin1 just before sending results back. Conversion may be lossy if there are characters that are not in both character sets.
If you want the server to perform no conversion of result sets or error messages, set character_set_results to NULL or binary:
SET character_set_results = NULL;
To see the values of the character set and collation system variables that apply to your connection, use these statements:
SHOW VARIABLES LIKE 'character_set%';
SHOW VARIABLES LIKE 'collation%';
You must also consider the environment within which your MySQL applications execute. See Section 10.1.5, “Configuring the Character Set and Collation for Applications”.
For more information about character sets and error messages, see Section 10.1.6, “Character Set for Error Messages”.
10.1.5. Configuring the Character Set and Collation for Applications
For applications that store data using the default MySQL character set and collation (latin1, latin1_swedish_ci), no special configuration should be needed. If applications require data storage using a different character set or collation, you can configure character set information several ways:
Specify character settings per database. For example, applications that use one database might require utf8, whereas applications that use another database might require sjis.
Specify character settings at server startup. This causes the server to use the given settings for all applications that do not make other arrangements.
Specify character settings at configuration time, if you build MySQL from source. This causes the server to use the given settings for all applications, without having to specify them at server startup.
When different applications require different character settings, the per-database technique provides a good deal of flexibility. If most or all applications use the same character set, specifying character settings at server startup or configuration time may be most convenient.
For the per-database or server-startup techniques, the settings control the character set for data storage. Applications must also tell the server which character set to use for client/server communications, as described in the following instructions.
The examples shown here assume use of the utf8 character set and utf8_general_ci collation.
Specify character settings per database. To create a database such that its tables will use a given default character set and collation for data storage, use a CREATE DATABASE statement like this:
CREATE DATABASE mydb
DEFAULT CHARACTER SET utf8
DEFAULT COLLATE utf8_general_ci;
Tables created in the database will use utf8 and utf8_general_ci by default for any character columns.
Applications that use the database should also configure their connection to the server each time they connect. This can be done by executing a SET NAMES 'utf8' statement after connecting. The statement can be used regardless of connection method: The mysql client, PHP scripts, and so forth.
In some cases, it may be possible to configure the connection to use the desired character set some other way. For example, for connections made using mysql, you can specify the --default-character-set=utf8 command-line option to achieve the same effect as SET NAMES 'utf8'.
For more information about configuring client connections, see Section 10.1.4, “Connection Character Sets and Collations”.
If you change the default character set or collation for a database, stored routines that use the database defaults must be dropped and recreated so that they use the new defaults. (In a stored routine, variables with character data types use the database defaults if the character set or collation are not specified explicitly. See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.)
Specify character settings at server startup. To select a character set and collation at server startup, use the --character-set-server and --collation-server options. For example, to specify the options in an option file, include these lines:
[mysqld]
character-set-server=utf8
collation-server=utf8_general_ci
These settings apply server-wide and apply as the defaults for databases created by any application, and for tables created in those databases.
It is still necessary for applications to configure their connection using SET NAMES or equivalent after they connect, as described previously. You might be tempted to start the server with the --init_connect="SET NAMES 'utf8'" option to cause SET NAMES to be executed automatically for each client that connects. However, this will yield inconsistent results because the init_connect value is not executed for users who have the SUPER privilege.
Specify character settings at MySQL configuration time. To select a character set and collation when you configure and build MySQL from source, use the DEFAULT_CHARSET and DEFAULT_COLLATION options for CMake:
shell> cmake . -DDEFAULT_CHARSET=utf8 \
-DDEFAULT_COLLATION=utf8_general_ci
The resulting server uses utf8 and utf8_general_ci as the default for databases and tables and for client connections. It is unnecessary to use --character-set-server and --collation-server to specify those defaults at server startup. It is also unnecessary for applications to configure their connection using SET NAMES or equivalent after they connect to the server.
Regardless of how you configure the MySQL character set for application use, you must also consider the environment within which those applications execute. If you will send statements using UTF-8 text taken from a file that you create in an editor, you should edit the file with the locale of your environment set to UTF-8 so that the file encoding is correct and so that the operating system handles it correctly. If you use the mysql client from within a terminal window, the window must be configured to use UTF-8 or characters may not display properly. For a script that executes in a Web environment, the script must handle character encoding properly for its interaction with the MySQL server, and it must generate pages that correctly indicate the encoding so that browsers know how to display the content of the pages. For example, you can include this <meta> tag within your <head> element:
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
10.1.6. Character Set for Error Messages
This section describes how the server uses character sets for constructing error messages and returning them to clients. For information about the language of error messages (rather than the character set), see Section 10.2, “Setting the Error Message Language”.
In MySQL 5.6, the server constructs error messages using UTF-8 and returns them to clients in the character set specified by the character_set_results system variable.
The server constructs error messages as follows:
The message template uses UTF-8.
Parameters in the message template are replaced with values that apply to a specific error occurrence:
Identifiers such as table or column names use UTF-8 internally so they are copied as is.
Character (nonbinary) string values are converted from their character set to UTF-8.
Binary string values are copied as is for bytes in the range 0x20 to 0x7E, and using \x hex encoding for bytes outside that range. For example, if a duplicate-key error occurs for an attempt to insert 0x41CF9F into a VARBINARY unique column, the resulting error message uses UTF-8 with some bytes hex encoded:
Duplicate entry 'A\xC3\x9F' for key 1
To return a message to the client after it has been constructed, the server converts it from UTF-8 to the character set specified by the character_set_results system variable. If character_set_results has a value of NULL or binary, no conversion occurs. No conversion occurs if the variable value is utf8, either, because that matches the original error message character set.
For characters that cannot be represented in character_set_results, some encoding may occur during the conversion. The encoding uses Unicode code point values:
Characters in the Basic Multilingual Plane (BMP) range (0x0000 to 0xFFFF) are written using \nnnn notation.
Characters outside the BMP range (0x01000 to 0x10FFFF) are written using \+nnnnnn notation.
Clients can set character_set_results to control the character set in which they receive error messages. The variable can be set directly, or indirectly by means such as SET NAMES. For more information about character_set_results, see Section 10.1.4, “Connection Character Sets and Collations”.
The encoding that occurs during the conversion to character_set_results before returning error messages to clients can result in different message content compared to earlier versions (before MySQL 5.5). For example, if an error occurs for an attempt to drop a table named ペ (KATAKANA LETTER PE) and character_set_results is a character set such as latin1 that does not contain that character, the resulting message sent to the client has an encoded table name:
ERROR 1051 (42S02): Unknown table '\30DA'
Before MySQL 5.5, the name is not encoded:
ERROR 1051 (42S02): Unknown table 'ペ'
10.1.7. Collation Issues
The following sections discuss various aspects of character set collations.
10.1.7.1. Collation Names
MySQL collation names follow these rules:
A name ending in _ci indicates a case-insensitive collation.
A name ending in _cs indicates a case-sensitive collation.
A name ending in _bin indicates a binary collation. Character comparisons are based on character binary code values.
Unicode collation names may include a version number to indicate the version of the Unicode Collation Algorithm (UCA) on which the collation is based. UCA-based collations without a version number in the name use the version-4.0.0 UCA weight keys: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. A collation name such as utf8_unicode_520_ci is based on UCA 5.2.0 weight keys: http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt.
10.1.7.2. Using COLLATE in SQL Statements
With the COLLATE clause, you can override whatever the default collation is for a comparison. COLLATE may be used in various parts of SQL statements. Here are some examples:
With ORDER BY:
SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;
With AS:
SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;
With GROUP BY:
SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;
With aggregate functions:
SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;
With DISTINCT:
SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;
With WHERE:
SELECT *
FROM t1
WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;
SELECT *
FROM t1
WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;
With HAVING:
SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;
10.1.7.3. COLLATE Clause Precedence
The COLLATE clause has high precedence (higher than ||), so the following two expressions are equivalent:
x || y COLLATE z
x || (y COLLATE z)
10.1.7.4. Collations Must Be for the Right Character Set
Each character set has one or more collations, but each collation is associated with one and only one character set. Therefore, the following statement causes an error message because the latin2_bin collation is not legal with the latin1 character set:
mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'
10.1.7.5. Collation of Expressions
In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison operation. For example, in the following cases, it should be clear that the collation is the collation of column charset_name:
SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;
However, with multiple operands, there can be ambiguity. For example:
SELECT x FROM T WHERE x = 'Y';
Should the comparison use the collation of the column x, or of the string literal 'Y'? Both x and 'Y' have collations, so which collation takes precedence?
Standard SQL resolves such questions using what used to be called “coercibility” rules. MySQL assigns coercibility values as follows:
An explicit COLLATE clause has a coercibility of 0. (Not coercible at all.)
The concatenation of two strings with different collations has a coercibility of 1.
The collation of a column or a stored routine parameter or local variable has a coercibility of 2.
A “system constant” (the string returned by functions such as USER() or VERSION()) has a coercibility of 3.
The collation of a literal has a coercibility of 4.
NULL or an expression that is derived from NULL has a coercibility of 5.
MySQL uses coercibility values with the following rules to resolve ambiguities:
Use the collation with the lowest coercibility value.
If both sides have the same coercibility, then:
If both sides are Unicode, or both sides are not Unicode, it is an error.
If one of the sides has a Unicode character set, and another side has a non-Unicode character set, the side with Unicode character set wins, and automatic character set conversion is applied to the non-Unicode side. For example, the following statement does not return an error:
SELECT CONCAT(utf8_column, latin1_column) FROM t1;
It returns a result that has a character set of utf8 and the same collation as utf8_column. Values of latin1_column are automatically converted to utf8 before concatenating.
For an operation with operands from the same character set but that mix a _bin collation and a _ci or _cs collation, the _bin collation is used. This is similar to how operations that mix nonbinary and binary strings evaluate the operands as binary strings, except that it is for collations rather than data types.
Although automatic conversion is not in the SQL standard, the SQL standard document does say that every character set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that “what applies to a superset can apply to a subset,” we believe that a collation for Unicode can apply for comparisons with non-Unicode strings.
Examples:
Comparison | Collation Used |
---|---|
column1 = 'A' | Use collation of column1 |
column1 = 'A' COLLATE x | Use collation of 'A' COLLATE x |
column1 COLLATE x = 'A' COLLATE y | Error |
The COERCIBILITY() function can be used to determine the coercibility of a string expression:
mysql> SELECT COERCIBILITY('A' COLLATE latin1_swedish_ci);
-> 0
mysql> SELECT COERCIBILITY(VERSION());
-> 3
mysql> SELECT COERCIBILITY('A');
-> 4
See Section 12.14, “Information Functions”.
For implicit conversion of a numeric or temporal value to a string, such as occurs for the argument 1 in the expression CONCAT(1, 'abc'), the result is a character (nonbinary) string that has a character set and collation determined by the character_set_connection and collation_connection system variables. See Section 12.2, “Type Conversion in Expression Evaluation”.
10.1.7.6. The _bin and binary Collations
This section describes how _bin collations for nonbinary strings differ from the binary “collation” for binary strings.
Nonbinary strings (as stored in the CHAR, VARCHAR, and TEXT data types) have a character set and collation. A given character set can have several collations, each of which defines a particular sorting and comparison order for the characters in the set. One of these is the binary collation for the character set, indicated by a _bin suffix in the collation name. For example, latin1 and utf8 have binary collations named latin1_bin and utf8_bin.
Binary strings (as stored in the BINARY, VARBINARY, and BLOB data types) have no character set or collation in the sense that nonbinary strings do. (Applied to a binary string, the CHARSET() and COLLATION() functions both return a value of binary.) Binary strings are sequences of bytes and the numeric values of those bytes determine sort order.
The _bin collations differ from the binary collation in several respects.
The unit for sorting and comparison. Binary strings are sequences of bytes. Sorting and comparison is always based on numeric byte values. Nonbinary strings are sequences of characters, which might be multi-byte. Collations for nonbinary strings define an ordering of the character values for sorting and comparison. For the _bin collation, this ordering is based solely on binary code values of the characters (which is similar to ordering for binary strings except that a _bin collation must take into account that a character might contain multiple bytes). For other collations, character ordering might take additional factors such as lettercase into account.
Character set conversion. A nonbinary string has a character set and is converted to another character set in many cases, even when the string has a _bin collation:
When assigning column values from another column that has a different character set:
UPDATE t1 SET utf8_bin_column=latin1_column;
INSERT INTO t1 (latin1_column) SELECT utf8_bin_column FROM t2;
When assigning column values for INSERT or UPDATE using a string literal:
SET NAMES latin1;
INSERT INTO t1 (utf8_bin_column) VALUES ('string-in-latin1');
When sending results from the server to a client:
SET NAMES latin1;
SELECT utf8_bin_column FROM t2;
For binary string columns, no conversion occurs. For the preceding cases, the string value is copied byte-wise.
Lettercase conversion. Collations provide information about lettercase of characters, so characters in a nonbinary string can be converted from one lettercase to another, even for _bin collations that ignore lettercase for ordering:
mysql> SET NAMES latin1 COLLATE latin1_bin;
Query OK, 0 rows affected (0.02 sec)
mysql> SELECT LOWER('aA'), UPPER('zZ');
+-------------+-------------+
| LOWER('aA') | UPPER('zZ') |
+-------------+-------------+
| aa | ZZ |
+-------------+-------------+
1 row in set (0.13 sec)
The concept of lettercase does not apply to bytes in a binary string. To perform lettercase conversion, the string must be converted to a nonbinary string:
mysql> SET NAMES binary;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT LOWER('aA'), LOWER(CONVERT('aA' USING latin1));
+-------------+-----------------------------------+
| LOWER('aA') | LOWER(CONVERT('aA' USING latin1)) |
+-------------+-----------------------------------+
| aA | aa |
+-------------+-----------------------------------+
1 row in set (0.00 sec)
Trailing space handling in comparisons. Nonbinary strings have PADSPACE behavior for all collations, including _bin collations. Trailing spaces are insignificant in comparisons:
mysql> SET NAMES utf8 COLLATE utf8_bin;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 1 |
+------------+
1 row in set (0.00 sec)
For binary strings, all characters are significant in comparisons, including trailing spaces:
mysql> SET NAMES binary;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 0 |
+------------+
1 row in set (0.00 sec)
Trailing space handling for inserts and retrievals. CHAR(N) columns store nonbinary strings. Values shorter than N characters are extended with spaces on insertion. For retrieval, trailing spaces are removed.
BINARY(N) columns store binary strings. Values shorter than N bytes are extended with 0x00 bytes on insertion. For retrieval, nothing is removed; a value of the declared length is always returned.
mysql> CREATE TABLE t1 (
-> a CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin,
-> b BINARY(10)
->);
Query OK, 0 rows affected (0.09 sec)
mysql> INSERT INTO t1 VALUES ('a','a');
Query OK, 1 row affected (0.01 sec)
mysql> SELECT HEX(a), HEX(b) FROM t1;
+--------+----------------------+
| HEX(a) | HEX(b) |
+--------+----------------------+
| 61 | 61000000000000000000 |
+--------+----------------------+
1 row in set (0.04 sec)
10.1.7.7. The BINARY Operator
The BINARY operator casts the string following it to a binary string. This is an easy way to force a comparison to be done byte by byte rather than character by character. BINARY also causes trailing spaces to be significant.
mysql> SELECT 'a' = 'A';
-> 1
mysql> SELECT BINARY 'a' = 'A';
-> 0
mysql> SELECT 'a' = 'a ';
-> 1
mysql> SELECT BINARY 'a' = 'a ';
-> 0
BINARY str is shorthand for CAST(str AS BINARY).
The BINARY attribute in character column definitions has a different effect. A character column defined with the BINARY attribute is assigned the binary collation of the column character set. Every character set has a binary collation. For example, the binary collation for the latin1 character set is latin1_bin, so if the table default character set is latin1, these two column definitions are equivalent:
CHAR(10) BINARY
CHAR(10) CHARACTER SET latin1 COLLATE latin1_bin
The effect of BINARY as a column attribute differs from its effect prior to MySQL 4.1. Formerly, BINARY resulted in a column that was treated as a binary string. A binary string is a string of bytes that has no character set or collation, which differs from a nonbinary character string that has a binary collation. For both types of strings, comparisons are based on the numeric values of the string unit, but for nonbinary strings the unit is the character and some character sets support multi-byte characters. Section 11.4.2, “The BINARY and VARBINARY Types”.
The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column causes the column to be treated as a binary data type. For example, the following pairs of definitions are equivalent:
CHAR(10) CHARACTER SET binary
BINARY(10)
VARCHAR(10) CHARACTER SET binary
VARBINARY(10)
TEXT CHARACTER SET binary
BLOB
10.1.7.8. Examples of the Effect of Collation
Example 1: Sorting German Umlauts
Suppose that column X in table T has these latin1 column values:
Muffler
Müller
MX Systems
MySQL
Suppose also that the column values are retrieved using the following statement:
SELECT X FROM T ORDER BY X COLLATE collation_name;
The following table shows the resulting order of the values if we use ORDER BY with different collations.
latin1_swedish_ci | latin1_german1_ci | latin1_german2_ci |
---|---|---|
Muffler | Muffler | Müller |
MX Systems | Müller | Muffler |
Müller | MX Systems | MX Systems |
MySQL | MySQL | MySQL |
The character that causes the different sort orders in this example is the U with two dots over it (ü), which the Germans call “U-umlaut.”
The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says that U-umlaut sorts with Y.
The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-umlaut sorts with U.
The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-umlaut sorts with UE.
Example 2: Searching for German Umlauts
Suppose that you have three tables that differ only by the character set and collation used:
mysql> SET NAMES utf8;
mysql> CREATE TABLE german1 (
-> c CHAR(10)
->) CHARACTER SET latin1 COLLATE latin1_german1_ci;
mysql> CREATE TABLE german2 (
-> c CHAR(10)
->) CHARACTER SET latin1 COLLATE latin1_german2_ci;
mysql> CREATE TABLE germanutf8 (
-> c CHAR(10)
->) CHARACTER SET utf8 COLLATE utf8_unicode_ci;
Each table contains two records:
mysql> INSERT INTO german1 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO german2 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('Bär');
Two of the above collations have an A = Ä equality, and one has no such equality (latin1_german2_ci). For that reason, you'll get these results in comparisons:
mysql> SELECT * FROM german1 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+
mysql> SELECT * FROM german2 WHERE c = 'Bär';
+------+
| c |
+------+
| Bär |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+
This is not a bug but rather a consequence of the sorting properties of latin1_german1_ci and utf8_unicode_ci (the sorting shown is done according to the German DIN 5007 standard).
10.1.7.9. Collation and INFORMATION_SCHEMA Searches
String columns in INFORMATION_SCHEMA tables have a collation of utf8_general_ci, which is case insensitive. However, searches in INFORMATION_SCHEMA string columns are also affected by file system case sensitivity. For values that correspond to objects that are represented in the file system, such as names of databases and tables, searches may be case sensitive if the file system is case sensitive. This section describes how to work around this issue if necessary; see also Bug #34921.
Suppose that a query searches the SCHEMATA.SCHEMA_NAME column for the test database. On Linux, file systems are case sensitive, so comparisons of SCHEMATA.SCHEMA_NAME with 'test' match, but comparisons with 'TEST' do not:
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
-> WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.01 sec)
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
-> WHERE SCHEMA_NAME = 'TEST';
Empty set (0.00 sec)
On Windows or Mac OS X where file systems are not case sensitive, comparisons match both 'test' and 'TEST':
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
-> WHERE SCHEMA_NAME = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.00 sec)
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
-> WHERE SCHEMA_NAME = 'TEST';
+-------------+
| SCHEMA_NAME |
+-------------+
| TEST |
+-------------+
1 row in set (0.00 sec)
The value of the lower_case_table_names system variable makes no difference in this context.
This behavior occurs because the utf8_general_ci collation is not used for INFORMATION_SCHEMA queries when searching the file system for database objects. It is a result of optimizations implemented for INFORMATION_SCHEMA searches in MySQL. For information about these optimizations, see Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”.
Searches in INFORMATION_SCHEMA string columns for values that refer to INFORMATION_SCHEMA itself do use the utf8_general_ci collation because INFORMATION_SCHEMA is a “virtual” database and is not represented in the file system. For example, comparisons with SCHEMATA.SCHEMA_NAME match 'information_schema' or 'INFORMATION_SCHEMA' regardless of platform:
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
-> WHERE SCHEMA_NAME = 'information_schema';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+
1 row in set (0.00 sec)
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
-> WHERE SCHEMA_NAME = 'INFORMATION_SCHEMA';
+--------------------+
| SCHEMA_NAME |
+--------------------+
| information_schema |
+--------------------+
1 row in set (0.00 sec)
If the result of a string operation on an INFORMATION_SCHEMA column differs from expectations, a workaround is to use an explicit COLLATE clause to force a suitable collation (Section 10.1.7.2, “Using COLLATE in SQL Statements”). For example, to perform a case-insensitive search, use COLLATE with the INFORMATION_SCHEMA column name:
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
-> WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'test';
+-------------+
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.00 sec)
mysql> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA
-> WHERE SCHEMA_NAME COLLATE utf8_general_ci = 'TEST';
| SCHEMA_NAME |
+-------------+
| test |
+-------------+
1 row in set (0.00 sec)
You can also use the UPPER() or LOWER() function:
WHERE UPPER(SCHEMA_NAME) = 'TEST'
WHERE LOWER(SCHEMA_NAME) = 'test'
Although a case-insensitive comparison can be performed even on platforms with case-sensitive file systems, as just shown, it is not necessarily always the right thing to do. On such platforms, it is possible to have multiple objects with names that differ only in lettercase. For example, tables named city, CITY, and City can all exist simultaneously. Consider whether a search should match all such names or just one and write queries accordingly:
WHERE TABLE_NAME COLLATE utf8_bin = 'City'
WHERE TABLE_NAME COLLATE utf8_general_ci = 'city'
WHERE UPPER(TABLE_NAME) = 'CITY'
WHERE LOWER(TABLE_NAME) = 'city'
The first of those comparisons (with utf8_bin) is case sensitive; the others are not.
10.1.8. String Repertoire
The repertoire of a character set is the collection of characters in the set.
String expressions have a repertoire attribute, which can have two values:
ASCII: The expression can contain only characters in the Unicode range U+0000 to U+007F.
UNICODE: The expression can contain characters in the Unicode range U+0000 to U+FFFF.
The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted safely without loss of information to the character set of any string with UNICODE repertoire or to a character set that is a superset of ASCII. (All MySQL character sets are supersets of ASCII with the exception of swe7, which reuses some punctuation characters for Swedish accented characters.) The use of repertoire enables character set conversion in expressions for many cases where MySQL would otherwise return an “illegal mix of collations” error.
The following discussion provides examples of expressions and their repertoires, and describes how the use of repertoire changes string expression evaluation:
The repertoire for string constants depends on string content:
SET NAMES utf8; SELECT 'abc';
SELECT _utf8'def';
SELECT N'MySQL';
Although the character set is utf8 in each of the preceding cases, the strings do not actually contain any characters outside the ASCII range, so their repertoire is ASCII rather than UNICODE.
Columns having the ascii character set have ASCII repertoire because of their character set. In the following table, c1 has ASCII repertoire:
CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);
The following example illustrates how repertoire enables a result to be determined in a case where an error occurs without repertoire:
CREATE TABLE t1 (
c1 CHAR(1) CHARACTER SET latin1,
c2 CHAR(1) CHARACTER SET ascii
);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;
Without repertoire, this error occurs:
ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'
Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is returned:
+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab |
+---------------+
Functions with one string argument inherit the repertoire of their argument. The result of UPPER(_utf8'abc') has ASCII repertoire because its argument has ASCII repertoire.
For functions that return a string but do not have string arguments and use character_set_connection as the result character set, the result repertoire is ASCII if character_set_connection is ascii, and UNICODE otherwise:
FORMAT(numeric_column, 4);
Use of repertoire changes how MySQL evaluates the following example:
SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;
Without repertoire, this error occurs:
ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'
With repertoire, a result is returned:
+-------------------------+
| CONCAT(FORMAT(a, 4), b) |
+-------------------------+
| 1.0000b |
+-------------------------+
Functions with two or more string arguments use the “widest” argument repertoire for the result repertoire (UNICODE is wider than ASCII). Consider the following CONCAT() calls:
CONCAT(_ucs2 0x0041, _ucs2 0x0042)
CONCAT(_ucs2 0x0041, _ucs2 0x00C2)
For the first call, the repertoire is ASCII because both arguments are within the range of the ascii character set. For the second call, the repertoire is UNICODE because the second argument is outside the ascii character set range.
The repertoire for function return values is determined based only on the repertoire of the arguments that affect the result's character set and collation.
IF(column1 < column2, 'smaller', 'greater')
The result repertoire is ASCII because the two string arguments (the second argument and the third argument) both have ASCII repertoire. The first argument does not matter for the result repertoire, even if the expression uses string values.
10.1.9. Operations Affected by Character Set Support
This section describes operations that take character set information into account.
10.1.9.1. Result Strings
MySQL has many operators and functions that return a string. This section answers the question: What is the character set and collation of such a string?
For simple functions that take string input and return a string result as output, the output's character set and collation are the same as those of the principal input value. For example, UPPER(X) returns a string whose character string and collation are the same as that of X. The same applies for INSTR(), LCASE(), LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(), RIGHT(), RPAD(), RTRIM(), SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UPPER().
Note: The REPLACE() function, unlike all other functions, always ignores the collation of the string input and performs a case-sensitive comparison.
If a string input or function result is a binary string, the string has no character set or collation. This can be checked by using the CHARSET() and COLLATION() functions, both of which return binary to indicate that their argument is a binary string:
mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+
| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |
+---------------------+-----------------------+
| binary | binary |
+---------------------+-----------------------+
For operations that combine multiple string inputs and return a single string output, the “aggregation rules” of standard SQL apply for determining the collation of the result:
If an explicit COLLATE X occurs, use X.
If explicit COLLATE X and COLLATE Y occur, raise an error.
Otherwise, if all collations are X, use X.
Otherwise, the result has no collation.
For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resulting collation is X. The same applies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and LEAST().
For operations that convert to character data, the character set and collation of the strings that result from the operations are defined by the character_set_connection and collation_connection system variables. This applies only to CAST(), CONV(), FORMAT(), HEX(), and SPACE().
If you are uncertain about the character set or collation of the result returned by a string function, you can use the CHARSET() or COLLATION() function to find out:
mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+----------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+----------------+-----------------+-------------------+
| test@localhost | utf8 | utf8_general_ci |
+----------------+-----------------+-------------------+
10.1.9.2. CONVERT() and CAST()
CONVERT() provides a way to convert data between different character sets. The syntax is:
CONVERT(expr USING transcoding_name)
In MySQL, transcoding names are the same as the corresponding character set names.
Examples:
SELECT CONVERT(_latin1'Müller' USING utf8);
INSERT INTO utf8table (utf8column)
SELECT CONVERT(latin1field USING utf8) FROM latin1table;
CONVERT(... USING ...) is implemented according to the standard SQL specification.
You may also use CAST() to convert a string to a different character set. The syntax is:
CAST(character_string AS character_data_type CHARACTER SET charset_name)
Example:
SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8);
If you use CAST() without specifying CHARACTER SET, the resulting character set and collation are defined by the character_set_connection and collation_connection system variables. If you use CAST() with CHARACTER SET X, the resulting character set and collation are X and the default collation of X.
You may not use a COLLATE clause inside a CONVERT() or CAST() call, but you may use it outside. For example, CAST(... COLLATE ...) is illegal, but CAST(...) COLLATE ... is legal:
SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;
10.1.9.3. SHOW Statements and INFORMATION_SCHEMA
Several SHOW statements provide additional character set information. These include SHOW CHARACTER SET, SHOW COLLATION, SHOW CREATE DATABASE, SHOW CREATE TABLE and SHOW COLUMNS. These statements are described here briefly. For more information, see Section 13.7.5, “SHOW Syntax”.
INFORMATION_SCHEMA has several tables that contain information similar to that displayed by the SHOW statements. For example, the CHARACTER_SETS and COLLATIONS tables contain the information displayed by SHOW CHARACTER SET and SHOW COLLATION. See Chapter 19, INFORMATION_SCHEMA Tables.
The SHOW CHARACTER SET statement shows all available character sets. It takes an optional LIKE clause that indicates which character set names to match. For example:
mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |
| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1 |
+---------+-----------------------------+-------------------+--------+
The output from SHOW COLLATION includes all available character sets. It takes an optional LIKE clause that indicates which collation names to match. For example:
mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1 | 5 | | | 0 |
| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 0 |
| latin1_danish_ci | latin1 | 15 | | | 0 |
| latin1_german2_ci | latin1 | 31 | | Yes | 2 |
| latin1_bin | latin1 | 47 | | Yes | 0 |
| latin1_general_ci | latin1 | 48 | | | 0 |
| latin1_general_cs | latin1 | 49 | | | 0 |
| latin1_spanish_ci | latin1 | 94 | | | 0 |
+-------------------+---------+----+---------+----------+---------+
SHOW CREATE DATABASE displays the CREATE DATABASE statement that creates a given database:
mysql> SHOW CREATE DATABASE test;
+----------+---+
| Database | Create Database |
+----------+---+
| test | CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */ |
+----------+---+
If no COLLATE clause is shown, the default collation for the character set applies.
SHOW CREATE TABLE is similar, but displays the CREATE TABLE statement to create a given table. The column definitions indicate any character set specifications, and the table options include character set information.
The SHOW COLUMNS statement displays the collations of a table's columns when invoked as SHOW FULL COLUMNS. Columns with CHAR, VARCHAR, or TEXT data types have collations. Numeric and other noncharacter types have no collation (indicated by NULL as the Collation value). For example:
mysql> SHOW FULL COLUMNS FROM person\G
*************************** 1. row ***************************
Field: id
Type: smallint(5) unsigned
Collation: NULL
Null: NO
Key: PRI
Default: NULL
Extra: auto_increment
Privileges: select,insert,update,references
Comment:
*************************** 2. row ***************************
Field: name
Type: char(60)
Collation: latin1_swedish_ci
Null: NO
Key:
Default:
Extra:
Privileges: select,insert,update,references
Comment:
The character set is not part of the display but is implied by the collation name.
10.1.10. Unicode Support
The initial implementation of Unicode support (in MySQL 4.1) included two character sets for storing Unicode data:
ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.
utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.
These two character sets support the characters from the Basic Multilingual Plane (BMP) of Unicode Version 3.0. BMP characters have these characteristics:
Their code values are between 0 and 65535 (or U+0000 .. U+FFFF).
They can be encoded with a fixed 16-bit word, as in ucs2.
They can be encoded with 8, 16, or 24 bits, as in utf8.
They are sufficient for almost all characters in major languages.
Characters not supported by the aforementioned character sets include supplementary characters that lie outside the BMP. Characters outside the BMP compare as REPLACEMENT CHARACTER and convert to '?' when converted to a Unicode character set.
In MySQL 5.6, Unicode support includes supplementary characters, which requires new character sets that have a broader range and therefore take more space. The following table shows a brief feature comparison of previous and current Unicode support.
Before MySQL 5.5 | MySQL 5.5 and up |
---|---|
All Unicode 3.0 characters | All Unicode 5.0 and 6.0 characters |
No supplementary characters | With supplementary characters |
ucs2 character set, BMP only | No change |
utf8 character set for up to three bytes, BMP only | No change |
New utf8mb4 character set for up to four bytes, BMP or supplemental | |
New utf16 character set, BMP or supplemental | |
New utf16le character set, BMP or supplemental (5.6.1 and up) | |
New utf32 character set, BMP or supplemental |
These changes are upward compatible. If you want to use the new character sets, there are potential incompatibility issues for your applications; see Section 10.1.11, “Upgrading from Previous to Current Unicode Support”. That section also describes how to convert tables from utf8 to the (4-byte) utf8mb4 character set, and what constraints may apply in doing so.
MySQL 5.6 supports these Unicode character sets:
ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.
utf16, the UTF-16 encoding for the Unicode character set; like ucs2 but with an extension for supplementary characters.
utf16le, the UTF-16LE encoding for the Unicode character set; like utf16 but little-endian rather than big-endian.
utf32, the UTF-32 encoding for the Unicode character set using 32 bits per character.
utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.
utf8mb4, a UTF-8 encoding of the Unicode character set using one to four bytes per character.
ucs2 and utf8 support BMP characters. utf8mb4, utf16, utf16le, and utf32 support BMP and supplementary characters.
A similar set of collations is available for most Unicode character sets. For example, each has a Danish collation, the names of which are ucs2_danish_ci, utf16_danish_ci, utf32_danish_ci, utf8_danish_ci, and utf8mb4_danish_ci. The exception is utf16le, which has only two collations. All Unicode collations are listed at Section 10.1.14.1, “Unicode Character Sets”, which also describes collation properties for supplementary characters.
Note that although many of the supplementary characters come from East Asian languages, what MySQL 5.6 adds is support for more Japanese and Chinese characters in Unicode character sets, not support for new Japanese and Chinese character sets.
The MySQL implementation of UCS-2, UTF-16, and UTF-32 stores characters in big-endian byte order and does not use a byte order mark (BOM) at the beginning of values. Other database systems might use little-endian byte order or a BOM. In such cases, conversion of values will need to be performed when transferring data between those systems and MySQL. The implementation of UTF-16LE is little-endian.
MySQL uses no BOM for UTF-8 values.
Client applications that need to communicate with the server using Unicode should set the client character set accordingly; for example, by issuing a SET NAMES 'utf8' statement. ucs2, utf16, utf16le, and utf32 cannot be used as a client character set, which means that they do not work for SET NAMES or SET CHARACTER SET. (See Section 10.1.4, “Connection Character Sets and Collations”.)
The following sections provide additional detail on the Unicode character sets in MySQL.
10.1.10.1. The ucs2 Character Set (UCS-2 Unicode Encoding)
In UCS-2, every character is represented by a 2-byte Unicode code with the most significant byte first. For example: LATIN CAPITAL LETTER A has the code 0x0041 and it is stored as a 2-byte sequence: 0x00 0x41. CYRILLIC SMALL LETTER YERU (Unicode 0x044B) is stored as a 2-byte sequence: 0x04 0x4B. For Unicode characters and their codes, please refer to the Unicode Home Page.
In MySQL, the ucs2 character set is a fixed-length 16-bit encoding for Unicode BMP characters.
10.1.10.2. The utf16 Character Set (UTF-16 Unicode Encoding)
The utf16 character set is the ucs2 character set with an extension that enables encoding of supplementary characters:
For a BMP character, utf16 and ucs2 have identical storage characteristics: same code values, same encoding, same length.
For a supplementary character, utf16 has a special sequence for representing the character using 32 bits. This is called the “surrogate” mechanism: For a number greater than 0xffff, take 10 bits and add them to 0xd800 and put them in the first 16-bit word, take 10 more bits and add them to 0xdc00 and put them in the next 16-bit word. Consequently, all supplementary characters require 32 bits, where the first 16 bits are a number between 0xd800 and 0xdbff, and the last 16 bits are a number between 0xdc00 and 0xdfff. Examples are in Section 15.5 Surrogates Area of the Unicode 4.0 document.
Because utf16 supports surrogates and ucs2 does not, there is a validity check that applies only in utf16: You cannot insert a top surrogate without a bottom surrogate, or vice versa. For example:
INSERT INTO t (ucs2_column) VALUES (0xd800); /* legal */
INSERT INTO t (utf16_column)VALUES (0xd800); /* illegal */
There is no validity check for characters that are technically valid but are not true Unicode (that is, characters that Unicode considers to be “unassigned code points” or “private use” characters or even “illegals” like 0xffff). For example, since U+F8FF is the Apple Logo, this is legal:
INSERT INTO t (utf16_column)VALUES (0xf8ff); /* legal */
Such characters cannot be expected to mean the same thing to everyone.
Because MySQL must allow for the worst case (that one character requires four bytes) the maximum length of a utf16 column or index is only half of the maximum length for a ucs2 column or index. For example, in MySQL 5.6, the maximum length of a MEMORY table index key is 3072 bytes, so these statements create tables with the longest permitted indexes for ucs2 and utf16 columns:
CREATE TABLE tf (s1 VARCHAR(1536) CHARACTER SET ucs2) ENGINE=MEMORY;
CREATE INDEX i ON tf (s1);
CREATE TABLE tg (s1 VARCHAR(768) CHARACTER SET utf16) ENGINE=MEMORY;
CREATE INDEX i ON tg (s1);
10.1.10.3. The utf16le Character Set (UTF-16LE Unicode Encoding)
This is the same as utf16 but is little-endian rather than big-endian.
10.1.10.4. The utf32 Character Set (UTF-32 Unicode Encoding)
The utf32 character set is fixed length (like ucs2 and unlike utf16). utf32 uses 32 bits for every character, unlike ucs2 (which uses 16 bits for every character), and unlike utf16 (which uses 16 bits for some characters and 32 bits for others).
utf32 takes twice as much space as ucs2 and more space than utf16, but utf32 has the same advantage as ucs2 that it is predictable for storage: The required number of bytes for utf32 equals the number of characters times 4. Also, unlike utf16, there are no tricks for encoding in utf32, so the stored value equals the code value.
To demonstrate how the latter advantage is useful, here is an example that shows how to determine a utf8mb4 value given the utf32 code value:
/* Assume code value = 100cc LINEAR B WHEELED CHARIOT */
CREATE TABLE tmp (utf32_col CHAR(1) CHARACTER SET utf32,
utf8mb4_col CHAR(1) CHARACTER SET utf8mb4);
INSERT INTO tmp VALUES (0x000100cc,NULL);
UPDATE tmp SET utf8mb4_col = utf32_col;
SELECT HEX(utf32_col),HEX(utf8mb4_col) FROM tmp;
MySQL is very forgiving about additions of unassigned Unicode characters or private-use-area characters. There is in fact only one validity check for utf32: No code value may be greater than 0x10ffff. For example, this is illegal:
INSERT INTO t (utf32_column) VALUES (0x110000); /* illegal */
10.1.10.5. The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)
UTF-8 (Unicode Transformation Format with 8-bit units) is an alternative way to store Unicode data. It is implemented according to RFC 3629, which describes encoding sequences that take from one to four bytes. (An older standard for UTF-8 encoding, RFC 2279, describes UTF-8 sequences that take from one to six bytes. RFC 3629 renders RFC 2279 obsolete; for this reason, sequences with five and six bytes are no longer used.)
The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of different lengths:
Basic Latin letters, digits, and punctuation signs use one byte.
Most European and Middle East script letters fit into a 2-byte sequence: extended Latin letters (with tilde, macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac, and others.
Korean, Chinese, and Japanese ideographs use 3-byte or 4-byte sequences.
The utf8 character set is the same in MySQL 5.6 as before 5.6 and has exactly the same characteristics:
No support for supplementary characters (BMP characters only).
A maximum of three bytes per multi-byte character.
Exactly the same set of characters is available in utf8 as in ucs2. That is, they have the same repertoire.
10.1.10.6. The utf8mb3 “Character Set” (Alias for utf8)
In a future version of MySQL, it is possible that utf8 will become the 4-byte utf8, and that users who want to indicate 3-byte utf8 will have to say utf8mb3. To avoid some future problems which might occur with replication when master and slave servers have different MySQL versions, it is possible for users to specify utf8mb3 in CHARACTER SET clauses, and utf8mb3_collation_substring in COLLATE clauses, where collation_substring is bin, czech_ci, danish_ci, esperanto_ci, estonian_ci, and so forth. For example:
CREATE TABLE t (s1 CHAR(1) CHARACTER SET utf8mb3;
SELECT * FROM t WHERE s1 COLLATE utf8mb3_general_ci = 'x';
DECLARE x VARCHAR(5) CHARACTER SET utf8mb3 COLLATE utf8mb3_danish_ci;
SELECT CAST('a' AS CHAR CHARACTER SET utf8) COLLATE utf8_czech_ci;
MySQL immediately converts instances of utf8mb3 in an alias to utf8, so in statements such as SHOW CREATE TABLE or SELECT CHARACTER_SET_NAME FROM INFORMATION_SCHEMA.COLUMNS or SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLUMNS, users will see the true name, utf8 or utf8_collation_substring.
The utf8mb3 alias is valid only in CHARACTER SET clauses, and in certain other places. For example, these are legal:
mysqld --character-set-server=utf8mb3
SET NAMES 'utf8mb3'; /* and other SET statements that have similar effect */
SELECT _utf8mb3 'a';
There is no utf8mb3 alias to the corresponding utf8 collation for collation names that include a version number (for example, utf8_unicode_520_ci) to indicate the Unicode Collation Algorithm version on which the collation is based.
10.1.10.7. The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)
The character set named utf8 uses a maximum of three bytes per character and contains only BMP characters. The utf8mb4 character set uses a maximum of four bytes per character supports supplemental characters:
For a BMP character, utf8 and utf8mb4 have identical storage characteristics: same code values, same encoding, same length.
For a supplementary character, utf8 cannot store the character at all, while utf8mb4 requires four bytes to store it. Since utf8 cannot store the character at all, you do not have any supplementary characters in utf8 columns and you need not worry about converting characters or losing data when upgrading utf8 data from older versions of MySQL.
utf8mb4 is a superset of utf8, so for an operation such as the following concatenation, the result has character set utf8mb4 and the collation of utf8mb4_col:
SELECT CONCAT(utf8_col, utf8mb4_col);
Similarly, the following comparison in the WHERE clause works according to the collation of utf8mb_col:
SELECT * FROM utf8_tbl, utf8mb4_tbl
WHERE utf8_tbl.utf8_col = utf8mb4_tbl.utf8mb4_col;
Tip
To save space with UTF-8, use VARCHAR instead of CHAR. Otherwise, MySQL must reserve three (or four) bytes for each character in a CHAR CHARACTER SET utf8 (or utf8mb4) column because that is the maximum possible length. For example, MySQL must reserve 40 bytes for a CHAR(10) CHARACTER SET utf8mb4 column.
10.1.11. Upgrading from Previous to Current Unicode Support
This section describes issues pertaining to Unicode support that you may face when upgrading to MySQL 5.6 from an older MySQL release. It also provides guidelines for downgrading from MySQL 5.6 to an older release.
In most respects, upgrading to MySQL 5.6 should present few problems with regard to Unicode usage, although there are some potential areas of incompatibility. These are the primary areas of concern:
For the variable-length character data types (VARCHAR and the TEXT types), the maximum length in characters is less for utf8mb4 columns than for utf8 columns.
For all character data types (CHAR, VARCHAR, and the TEXT types), the maximum number of characters that can be indexed is less for utf8mb4 columns than for utf8 columns.
Consequently, if you want to upgrade tables from utf8 to utf8mb4 to take advantage of supplementary-character support, it may be necessary to change some column or index definitions.
Tables can be converted from utf8 to utf8mb4 by using ALTER TABLE. Suppose that a table was originally defined as follows:
CREATE TABLE t1 (
col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL,
col2 CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL
) CHARACTER SET utf8;
The following statement converts t1 to use utf8mb4:
ALTER TABLE t1
DEFAULT CHARACTER SET utf8mb4,
MODIFY col1 CHAR(10)
CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci NOT NULL,
MODIFY col2 CHAR(10)
CHARACTER SET utf8mb4 COLLATE utf8mb4_bin NOT NULL;
In terms of table content, conversion from utf8 to utf8mb4 presents no problems:
For a BMP character, utf8 and utf8mb4 have identical storage characteristics: same code values, same encoding, same length.
For a supplementary character, utf8 cannot store the character at all, while utf8mb4 requires four bytes to store it. Since utf8 cannot store the character at all, you do not have any supplementary characters in utf8 columns and you need not worry about converting characters or losing data when upgrading utf8 data from older versions of MySQL.
In terms of table structure, the catch when converting from utf8 to utf8mb4 is that the maximum length of a column or index key is unchanged in terms of bytes. Therefore, it is smaller in terms of characters because the maximum length of a character is four bytes instead of three. For the CHAR, VARCHAR, and TEXT data types, watch for these things when converting your MySQL tables:
Check all definitions of utf8 columns and make sure they will not exceed the maximum length for the storage engine.
Check all indexes on utf8 columns and make sure they will not exceed the maximum length for the storage engine. Sometimes the maximum can change due to storage engine enhancements.
If the preceding conditions apply, you must either reduce the defined length of columns or indexes, or continue to use utf8 rather than utf8mb4.
Here are some examples where structural changes may be needed:
A TINYTEXT column can hold up to 255 bytes, so it can hold up to 85 3-byte or 63 4-byte characters. Suppose that you have a TINYTEXT column that uses utf8 but must be able to contain more than 63 characters. You cannot convert it to utf8mb4 unless you also change the data type to a longer type such as TEXT.
Similarly, a very long VARCHAR column may need to be changed to one of the longer TEXT types if you want to convert it from utf8 to utf8mb4.
InnoDB has a maximum index length of 767 bytes, so for utf8 or utf8mb4 columns, you can index a maximum of 255 or 191 characters, respectively. If you currently have utf8 columns with indexes longer than 191 characters, you will need to index a smaller number of characters. In an InnoDB table, these column and index definitions are legal:
col1 VARCHAR(500) CHARACTER SET utf8, INDEX (col1(255))
To use utf8mb4 instead, the index must be smaller:
col1 VARCHAR(500) CHARACTER SET utf8mb4, INDEX (col1(191))
The preceding types of changes are most likely to be required only if you have very long columns or indexes. Otherwise, you should be able to convert your tables from utf8 to utf8mb4 without problems. You can do this by using ALTER TABLE as described earlier in this section after upgrading in place to 5.6.
The following items summarize other potential areas of incompatibility:
Performance of 4-byte UTF-8 (utf8mb4) is slower than for 3-byte UTF-8 (utf8). If you do not want to incur this penalty, continue to use utf8.
SET NAMES 'utf8mb4' causes use of the 4-byte character set for connection character sets. As long as no 4-byte characters are sent from the server, there should be no problems. Otherwise, applications that expect to receive a maximum of three bytes per character may have problems. Conversely, applications that expect to send 4-byte characters must ensure that the server understands them.
Applications cannot send utf16, utf16le, or utf32 character data to an older server that does not understand them.
For replication, if the character sets that support supplementary characters are going to be used on the master, all slaves must understand them as well. If you attempt to replicate from a MySQL 5.6 master to an older slave, utf8 data will be seen as utf8 by the slave and should replicate correctly. But you cannot send utf8mb4, utf16, utf16le, or utf32 data.
Also, keep in mind the general principle that if a table has different definitions on the master and slave, this can lead to unexpected results. For example, the differences in limitations on index key length makes it risky to use utf8 on the master and utf8mb4 on the slave.
If you have upgraded to MySQL 5.6, and then decide to downgrade back to an older release, these considerations apply:
ucs2 and utf8 data should present no problems.
Any definitions that refer to the utf8mb4, utf16, utf16le, or utf32 character sets will not be recognized by the older server.
For object definitions that refer to the utf8mb4 character set, you can dump them with mysqldump in MySQL 5.6, edit the dump file to change instances of utf8mb4 to utf8, and reload the file in the older server, as long as there are no 4-byte characters in the data. The older server will see utf8 in the dump file object definitions and create new objects that use the (3-byte) utf8 character set.
10.1.12. UTF-8 for Metadata
Metadata is “the data about the data.” Anything that describes the database—as opposed to being the contents of the database—is metadata. Thus column names, database names, user names, version names, and most of the string results from SHOW are metadata. This is also true of the contents of tables in INFORMATION_SCHEMA because those tables by definition contain information about database objects.
Representation of metadata must satisfy these requirements:
All metadata must be in the same character set. Otherwise, neither the SHOW statements nor SELECT statements for tables in INFORMATION_SCHEMA would work properly because different rows in the same column of the results of these operations would be in different character sets.
Metadata must include all characters in all languages. Otherwise, users would not be able to name columns and tables using their own languages.
To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This does not cause any disruption if you never use accented or non-Latin characters. But if you do, you should be aware that metadata is in UTF-8.
The metadata requirements mean that the return values of the USER(), CURRENT_USER(), SESSION_USER(), SYSTEM_USER(), DATABASE(), and VERSION() functions have the UTF-8 character set by default.
The server sets the character_set_system system variable to the name of the metadata character set:
mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| character_set_system | utf8 |
+----------------------+-------+
Storage of metadata using Unicode does not mean that the server returns headers of columns and the results of DESCRIBE functions in the character_set_system character set by default. When you use SELECT column1 FROM t, the name column1 itself is returned from the server to the client in the character set determined by the value of the character_set_results system variable, which has a default value of latin1. If you want the server to pass metadata results back in a different character set, use the SET NAMES statement to force the server to perform character set conversion. SET NAMES sets the character_set_results and other related system variables. (See Section 10.1.4, “Connection Character Sets and Collations”.) Alternatively, a client program can perform the conversion after receiving the result from the server. It is more efficient for the client to perform the conversion, but this option is not always available for all clients.
If character_set_results is set to NULL, no conversion is performed and the server returns metadata using its original character set (the set indicated by character_set_system).
Error messages returned from the server to the client are converted to the client character set automatically, as with metadata.
If you are using (for example) the USER() function for comparison or assignment within a single statement, don't worry. MySQL performs some automatic conversion for you.
SELECT * FROM t1 WHERE USER() = latin1_column;
This works because the contents of latin1_column are automatically converted to UTF-8 before the comparison.
INSERT INTO t1 (latin1_column) SELECT USER();
This works because the contents of USER() are automatically converted to latin1 before the assignment.
Although automatic conversion is not in the SQL standard, the SQL standard document does say that every character set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that “what applies to a superset can apply to a subset,” we believe that a collation for Unicode can apply for comparisons with non-Unicode strings. For more information about coercion of strings, see Section 10.1.7.5, “Collation of Expressions”.
10.1.13. Column Character Set Conversion
To convert a binary or nonbinary string column to use a particular character set, use ALTER TABLE. For successful conversion to occur, one of the following conditions must apply:
If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains must be encoded using a single character set (the character set you're converting the column to). If you use a binary column to store information in multiple character sets, MySQL has no way to know which values use which character set and cannot convert the data properly.
If the column has a nonbinary data type (CHAR, VARCHAR, TEXT), its contents should be encoded in the column character set, not some other character set. If the contents are encoded in a different character set, you can convert the column to use a binary data type first, and then to a nonbinary column with the desired character set.
Suppose that a table t has a binary column named col1 defined as VARBINARY(50). Assuming that the information in the column is encoded using a single character set, you can convert it to a nonbinary column that has that character set. For example, if col1 contains binary data representing characters in the greek character set, you can convert it as follows:
ALTER TABLE t MODIFY col1 VARCHAR(50) CHARACTER SET greek;
If your original column has a type of BINARY(50), you could convert it to CHAR(50), but the resulting values will be padded with 0x00 bytes at the end, which may be undesirable. To remove these bytes, use the TRIM() function:
UPDATE t SET col1 = TRIM(TRAILING 0x00 FROM col1);
Suppose that table t has a nonbinary column named col1 defined as CHAR(50) CHARACTER SET latin1 but you want to convert it to use utf8 so that you can store values from many languages. The following statement accomplishes this:
ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8;
Conversion may be lossy if the column contains characters that are not in both character sets.
A special case occurs if you have old tables from before MySQL 4.1 where a nonbinary column contains values that actually are encoded in a character set different from the server's default character set. For example, an application might have stored sjis values in a column, even though MySQL's default character set was latin1. It is possible to convert the column to use the proper character set but an additional step is required. Suppose that the server's default character set was latin1 and col1 is defined as CHAR(50) but its contents are sjis values. The first step is to convert the column to a binary data type, which removes the existing character set information without performing any character conversion:
ALTER TABLE t MODIFY col1 BLOB;
The next step is to convert the column to a nonbinary data type with the proper character set:
ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;
This procedure requires that the table not have been modified already with statements such as INSERT or UPDATE after an upgrade to MySQL 4.1 or later. In that case, MySQL would store new values in the column using latin1, and the column will contain a mix of sjis and latin1 values and cannot be converted properly.
If you specified attributes when creating a column initially, you should also specify them when altering the table with ALTER TABLE. For example, if you specified NOT NULL and an explicit DEFAULT value, you should also provide them in the ALTER TABLE statement. Otherwise, the resulting column definition will not include those attributes.
10.1.14. Character Sets and Collations That MySQL Supports
MySQL supports 70+ collations for 30+ character sets. This section indicates which character sets MySQL supports. There is one subsection for each group of related character sets. For each character set, the permissible collations are listed.
You can always list the available character sets and their default collations with the SHOW CHARACTER SET statement:
mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+
| Charset | Description | Default collation |
+----------+-----------------------------+---------------------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci |
| dec8 | DEC West European | dec8_swedish_ci |
| cp850 | DOS West European | cp850_general_ci |
| hp8 | HP West European | hp8_english_ci |
| koi8r | KOI8-R Relcom Russian | koi8r_general_ci |
| latin1 | cp1252 West European | latin1_swedish_ci |
| latin2 | ISO 8859-2 Central European | latin2_general_ci |
| swe7 | 7bit Swedish | swe7_swedish_ci |
| ascii | US ASCII | ascii_general_ci |
| ujis | EUC-JP Japanese | ujis_japanese_ci |
| sjis | Shift-JIS Japanese | sjis_japanese_ci |
| hebrew | ISO 8859-8 Hebrew | hebrew_general_ci |
| tis620 | TIS620 Thai | tis620_thai_ci |
| euckr | EUC-KR Korean | euckr_korean_ci |
| koi8u | KOI8-U Ukrainian | koi8u_general_ci |
| gb2312 | GB2312 Simplified Chinese | gb2312_chinese_ci |
| greek | ISO 8859-7 Greek | greek_general_ci |
| cp1250 | Windows Central European | cp1250_general_ci |
| gbk | GBK Simplified Chinese | gbk_chinese_ci |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci |
| armscii8 | ARMSCII-8 Armenian | armscii8_general_ci |
| utf8 | UTF-8 Unicode | utf8_general_ci |
| ucs2 | UCS-2 Unicode | ucs2_general_ci |
| cp866 | DOS Russian | cp866_general_ci |
| keybcs2 | DOS Kamenicky Czech-Slovak | keybcs2_general_ci |
| macce | Mac Central European | macce_general_ci |
| macroman | Mac West European | macroman_general_ci |
| cp852 | DOS Central European | cp852_general_ci |
| latin7 | ISO 8859-13 Baltic | latin7_general_ci |
| utf8mb4 | UTF-8 Unicode | utf8mb4_general_ci |
| cp1251 | Windows Cyrillic | cp1251_general_ci |
| utf16 | UTF-16 Unicode | utf16_general_ci |
| utf16le | UTF-16LE Unicode | utf16le_general_ci |
| cp1256 | Windows Arabic | cp1256_general_ci |
| cp1257 | Windows Baltic | cp1257_general_ci |
| utf32 | UTF-32 Unicode | utf32_general_ci |
| binary | Binary pseudo charset | binary |
| geostd8 | GEOSTD8 Georgian | geostd8_general_ci |
| cp932 | SJIS for Windows Japanese | cp932_japanese_ci |
| eucjpms | UJIS for Windows Japanese | eucjpms_japanese_ci |
+----------+-----------------------------+---------------------+
In cases where a character set has multiple collations, it might not be clear which collation is most suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform some comparisons with representative data values to make sure that a given collation sorts values the way you expect.
Collation-Charts.Org is a useful site for information that shows how one collation compares to another.
10.1.14.1. Unicode Character Sets
MySQL 5.6 supports these Unicode character sets:
ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.
utf16, the UTF-16 encoding for the Unicode character set; like ucs2 but with an extension for supplementary characters.
utf16le, the UTF-16LE encoding for the Unicode character set; like utf16 but little-endian rather than big-endian.
utf32, the UTF-32 encoding for the Unicode character set using 32 bits per character.
utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.
utf8mb4, a UTF-8 encoding of the Unicode character set using one to four bytes per character.
ucs2 and utf8 support Basic Multilingual Plane (BMP) characters. utf8mb4, utf16, utf16le, and utf32 support BMP and supplementary characters. utf16le was added in MySQL 5.6.1.
You can store text in about 650 languages using these character sets. This section lists the collations available for each Unicode character set and describes their differentiating properties. For general information about the character sets, see Section 10.1.10, “Unicode Support”.
A similar set of collations is available for most Unicode character sets. These are shown in the following list, where xxx represents the character set name. For example, xxx_danish_ci represents the Danish collations, the specific names of which are ucs2_danish_ci, utf16_danish_ci, utf32_danish_ci, utf8_danish_ci, and utf8mb4_danish_ci.
Collation support for utf16le is more limited. The only collations available are utf16le_general_ci and utf16le_bin. These are similar to utf16_general_ci and utf16_bin.
Unicode collation names may also include a version number (for example, xxx_unicode_520_ci) to indicate the Unicode Collation Algorithm version on which the collation is based, as described later in this section. For such collations, there is no utf8mb3 alias to the corresponding utf8 collation. See Section 10.1.10.6, “The utf8mb3 “Character Set” (Alias for utf8)”.
xxx_bin
xxx_croatian_ci
xxx_czech_ci
xxx_danish_ci
xxx_esperanto_ci
xxx_estonian_ci
xxx_general_ci (default)
xxx_german2_ci
xxx_general_mysql500_ci
xxx_hungarian_ci
xxx_icelandic_ci
xxx_latvian_ci
xxx_lithuanian_ci
xxx_persian_ci
xxx_polish_ci
xxx_roman_ci
xxx_romanian_ci
xxx_sinhala_ci
xxx_slovak_ci
xxx_slovenian_ci
xxx_spanish_ci
xxx_spanish2_ci
xxx_swedish_ci
xxx_turkish_ci
xxx_unicode_ci
xxx_vietnamese_ci
MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm (UCA) described at http://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA weight keys: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. Currently, the xxx_unicode_ci collations have only partial support for the Unicode Collation Algorithm. Some characters are not supported yet. Also, combining marks are not fully supported. This affects primarily Vietnamese, Yoruba, and some smaller languages such as Navajo.
MySQL implements language-specific Unicode collations only if the ordering with xxx_unicode_ci does not work well for a language. Language-specific collations are UCA-based. They are derived from xxx_unicode_ci with additional language tailoring rules.
Collations based on UCA versions later than 4.0.0 include the version in the collation name. Thus, xxx_unicode_520_ci collations are based on UCA 5.2.0 weight keys: http://www.unicode.org/Public/UCA/5.2.0/allkeys.txt.
LOWER() and UPPER() perform case folding according to the collation of their argument. A character that has uppercase and lowercase versions only in a Unicode version more recent than 4.0.0 will be converted by these functions only if the argument has a collation that uses a recent enough UCA version.
For any Unicode character set, operations performed using the xxx_general_ci collation are faster than those for the xxx_unicode_ci collation. For example, comparisons for the utf8_general_ci collation are faster, but slightly less correct, than comparisons for utf8_unicode_ci. The reason for this is that utf8_unicode_ci supports mappings such as expansions; that is, when one character compares as equal to combinations of other characters. For example, in German and some other languages “ß” is equal to “ss”. utf8_unicode_ci also supports contractions and ignorable characters. utf8_general_ci is a legacy collation that does not support expansions, contractions, or ignorable characters. It can make only one-to-one comparisons between characters.
To further illustrate, the following equalities hold in both utf8_general_ci and utf8_unicode_ci (for the effect this has in comparisons or when doing searches, see Section 10.1.7.8, “Examples of the Effect of Collation”):
Ä = A
Ö = O
Ü = U
A difference between the collations is that this is true for utf8_general_ci:
ß = s
Whereas this is true for utf8_unicode_ci, which supports the German DIN-1 ordering (also known as dictionary order):
ß = ss
MySQL implements language-specific collations for the utf8 character set only if the ordering with utf8_unicode_ci does not work well for a language. For example, utf8_unicode_ci works fine for German dictionary order and French, so there is no need to create special utf8 collations.
utf8_general_ci also is satisfactory for both German and French, except that “ß” is equal to “s”, and not to “ss”. If this is acceptable for your application, you should use utf8_general_ci because it is faster. If this is not acceptable (for example, if you require German dictionary order), use utf8_unicode_ci because it is more accurate.
If you require German DIN-2 (phone book) ordering, use the utf8_german2_ci collation, which compares the following sets of characters equal:
Ä = Æ = AE
Ö = Œ = OE
Ü = UE
ß = ss
utf8_german2_ci is similar to latin1_german2_ci, but the latter does not compare “Æ” equal to “AE” or “Œ” equal to “OE”. There is no utf8_german_ci corresponding to latin1_german_ci for German dictionary order because utf8_general_ci suffices.
xxx_swedish_ci includes Swedish rules. For example, in Swedish, the following relationship holds, which is not something expected by a German or French speaker:
Ü = Y < Ö
The xxx_spanish_ci and xxx_spanish2_ci collations correspond to modern Spanish and traditional Spanish, respectively. In both collations, “ñ” (n-tilde) is a separate letter between “n” and “o”. In addition, for traditional Spanish, “ch” is a separate letter between “c” and “d”, and “ll” is a separate letter between “l” and “m”
In the xxx_roman_ci collations, I and J compare as equal, and U and V compare as equal.
The xxx_croatian_ci collations are tailored for these Croatian letters: Č, Ć, Dž, Đ, Lj, Nj, Š, Ž.
For all Unicode collations except the “binary” (xxx_bin) collations, MySQL performs a table lookup to find a character's collating weight. This weight can be displayed using the WEIGHT_STRING() function. (See Section 12.5, “String Functions”.) If a character is not in the table (for example, because it is a “new” character), collating weight determination becomes more complex:
For BMP characters in general collations (xxx_general_ci), weight = code point.
For BMP characters in UCA collations (for example, xxx_unicode_ci and language-specific collations), the following algorithm applies:
if (code >= 0x3400 && code <= 0x4DB5)
base= 0xFB80; /* CJK Ideograph Extension */
else if (code >= 0x4E00 && code <= 0x9FA5)
base= 0xFB40; /* CJK Ideograph */
else
base= 0xFBC0; /* All other characters */
aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;
The result is a sequence of two collating elements, aaaa followed by bbbb. For example:
mysql> SELECT HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci));
+--+
| HEX(WEIGHT_STRING(_ucs2 0x04CF COLLATE ucs2_unicode_ci)) |
+--+
| FBC084CF |
+--+
Thus, U+04cf CYRILLIC SMALL LETTER PALOCHKA is, with all UCA 4.0.0 collations, greater than U+04c0 CYRILLIC LETTER PALOCHKA. With UCA 5.2.0 collations, all palochkas sort together.
For supplementary characters in general collations, the weight is the weight for 0xfffd REPLACEMENT CHARACTER. For supplementary characters in UCA 4.0.0 collations, their collating weight is 0xfffd. That is, to MySQL, all supplementary characters are equal to each other, and greater than almost all BMP characters.
An example with Deseret characters and COUNT(DISTINCT):
CREATE TABLE t (s1 VARCHAR(5) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0xfffd); /* REPLACEMENT CHARACTER */
INSERT INTO t VALUES (0x010412); /* DESERET CAPITAL LETTER BEE */
INSERT INTO t VALUES (0x010413); /* DESERET CAPITAL LETTER TEE */
SELECT COUNT(DISTINCT s1) FROM t;
The result is 2 because in the MySQL xxx_unicode_ci collations, the replacement character has a weight of 0x0dc6, whereas Deseret Bee and Deseret Tee both have a weight of 0xfffd. (Were the utf32_general_ci collation used instead, the result would be 1 because all three characters have a weight of 0xfffd in that collation.)
An example with cuneiform characters and WEIGHT_STRING():
/*
The four characters in the INSERT string are
00000041 # LATIN CAPITAL LETTER A
0001218F # CUNEIFORM SIGN KAB
000121A7 # CUNEIFORM SIGN KISH
00000042 # LATIN CAPITAL LETTER B
*/
CREATE TABLE t (s1 CHAR(4) CHARACTER SET utf32 COLLATE utf32_unicode_ci);
INSERT INTO t VALUES (0x000000410001218f000121a700000042);
SELECT HEX(WEIGHT_STRING(s1)) FROM t;
The result is:
0E33 FFFD FFFD 0E4A
0E33 and 0E4A are primary weights as in UCA 4.0.0. FFFD is the weight for KAB and also for KISH.
The rule that all supplementary characters are equal to each other is nonoptimal but is not expected to cause trouble. These characters are very rare, so it will be very rare that a multi-character string consists entirely of supplementary characters. In Japan, since the supplementary characters are obscure Kanji ideographs, the typical user does not care what order they are in, anyway. If you really want rows sorted by MySQL's rule and secondarily by code point value, it is easy:
ORDER BY s1 COLLATE utf32_unicode_ci, s1 COLLATE utf32_bin
For supplementary characters based on UCA versions later than 4.0.0 (for example, xxx_unicode_520_ci), supplementary characters do not necessarily all have the same collation weight. Some have explicit weights from the UCA allkeys.txt file. Others have weights calculated from this algorithm:
aaaa= base + (code >> 15);
bbbb= (code & 0x7FFF) | 0x8000;
The utf16_bin Collation
There is a difference between “ordering by the character's code value” and “ordering by the character's binary representation,” a difference that appears only with utf16_bin, because of surrogates.
Suppose that utf16_bin (the binary collation for utf16) was a binary comparison “byte by byte” rather than “character by character.” If that were so, the order of characters in utf16_bin would differ from the order in utf8_bin. For example, the following chart shows two rare characters. The first character is in the range E000-FFFF, so it is greater than a surrogate but less than a supplementary. The second character is a supplementary.
Code point Character utf8 utf16
---------- --------- ---- -----
0FF9D HALFWIDTH KATAKANA LETTER N EF BE 9D FF 9D
10384 UGARITIC LETTER DELTA F0 90 8E 84 D8 00 DF 84
The two characters in the chart are in order by code point value because 0xff9d < 0x10384. And they are in order by utf8 value because 0xef < 0xf0. But they are not in order by utf16 value, if we use byte-by-byte comparison, because 0xff > 0xd8.
So MySQL's utf16_bin collation is not “byte by byte.” It is “by code point.” When MySQL sees a supplementary-character encoding in utf16, it converts to the character's code-point value, and then compares. Therefore, utf8_bin and utf16_bin are the same ordering. This is consistent with the SQL:2008 standard requirement for a UCS_BASIC collation: “UCS_BASIC is a collation in which the ordering is determined entirely by the Unicode scalar values of the characters in the strings being sorted. It is applicable to the UCS character repertoire. Since every character repertoire is a subset of the UCS repertoire, the UCS_BASIC collation is potentially applicable to every character set. NOTE 11: The Unicode scalar value of a character is its code point treated as an unsigned integer.”
If the character set is ucs2, comparison is byte-by-byte, but ucs2 strings should not contain surrogates, anyway.
The xxx_general_mysql500_ci collations were added in MySQL 5.6.5. They preserve the pre-5.1.24 ordering of the original xxx_general_ci collations and permit upgrades for tables created before MySQL 5.1.24. For more information, see Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, and Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”.
For additional information about Unicode collations in MySQL, see Collation-Charts.Org (utf8).
10.1.14.2. West European Character Sets
Western European character sets cover most West European languages, such as French, Spanish, Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish, Faroese, Icelandic, Irish, Scottish, and English.
ascii (US ASCII) collations:
ascii_bin
ascii_general_ci (default)
cp850 (DOS West European) collations:
cp850_bin
cp850_general_ci (default)
dec8 (DEC Western European) collations:
dec8_bin
dec8_swedish_ci (default)
hp8 (HP Western European) collations:
hp8_bin
hp8_english_ci (default)
latin1 (cp1252 West European) collations:
latin1_bin
latin1_danish_ci
latin1_general_ci
latin1_general_cs
latin1_german1_ci
latin1_german2_ci
latin1_spanish_ci
latin1_swedish_ci (default)
latin1 is the default character set. MySQL's latin1 is the same as the Windows cp1252 character set. This means it is the same as the official ISO 8859-1 or IANA (Internet Assigned Numbers Authority) latin1, except that IANA latin1 treats the code points between 0x80 and 0x9f as “undefined,” whereas cp1252, and therefore MySQL's latin1, assign characters for those positions. For example, 0x80 is the Euro sign. For the “undefined” entries in cp1252, MySQL translates 0x81 to Unicode 0x0081, 0x8d to 0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and 0x9d to 0x009d.
The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL customers. Although it is frequently said that it is based on the Swedish/Finnish collation rules, there are Swedes and Finns who disagree with this statement.
The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and DIN-2 standards, where DIN stands for Deutsches Institut für Normung (the German equivalent of ANSI). DIN-1 is called the “dictionary collation” and DIN-2 is called the “phone book collation.” For an example of the effect this has in comparisons or when doing searches, see Section 10.1.7.8, “Examples of the Effect of Collation”.
latin1_german1_ci (dictionary) rules:
Ä = A
Ö = O
Ü = U
ß = s
latin1_german2_ci (phone-book) rules:
Ä = AE
Ö = OE
Ü = UE
ß = ss
In the latin1_spanish_ci collation, “ñ” (n-tilde) is a separate letter between “n” and “o”.
macroman (Mac West European) collations:
macroman_bin
macroman_general_ci (default)
swe7 (7bit Swedish) collations:
swe7_bin
swe7_swedish_ci (default)
For additional information about Western European collations in MySQL, see Collation-Charts.Org (ascii, cp850, dec8, hp8, latin1, macroman, swe7).
10.1.14.3. Central European Character Sets
MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary, Romania, Slovenia, Croatia, Poland, and Serbia (Latin).
cp1250 (Windows Central European) collations:
cp1250_bin
cp1250_croatian_ci
cp1250_czech_cs
cp1250_general_ci (default)
cp1250_polish_ci
cp852 (DOS Central European) collations:
cp852_bin
cp852_general_ci (default)
keybcs2 (DOS Kamenicky Czech-Slovak) collations:
keybcs2_bin
keybcs2_general_ci (default)
latin2 (ISO 8859-2 Central European) collations:
latin2_bin
latin2_croatian_ci
latin2_czech_cs
latin2_general_ci (default)
latin2_hungarian_ci
macce (Mac Central European) collations:
macce_bin
macce_general_ci (default)
For additional information about Central European collations in MySQL, see Collation-Charts.Org (cp1250, cp852, keybcs2, latin2, macce).
10.1.14.4. South European and Middle East Character Sets
South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic, Georgian, Greek, Hebrew, and Turkish.
armscii8 (ARMSCII-8 Armenian) collations:
armscii8_bin
armscii8_general_ci (default)
cp1256 (Windows Arabic) collations:
cp1256_bin
cp1256_general_ci (default)
geostd8 (GEOSTD8 Georgian) collations:
geostd8_bin
geostd8_general_ci (default)
greek (ISO 8859-7 Greek) collations:
greek_bin
greek_general_ci (default)
hebrew (ISO 8859-8 Hebrew) collations:
hebrew_bin
hebrew_general_ci (default)
latin5 (ISO 8859-9 Turkish) collations:
latin5_bin
latin5_turkish_ci (default)
For additional information about South European and Middle Eastern collations in MySQL, see Collation-Charts.Org (armscii8, cp1256, geostd8, greek, hebrew, latin5).
10.1.14.5. Baltic Character Sets
The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.
cp1257 (Windows Baltic) collations:
cp1257_bin
cp1257_general_ci (default)
cp1257_lithuanian_ci
latin7 (ISO 8859-13 Baltic) collations:
latin7_bin
latin7_estonian_cs
latin7_general_ci (default)
latin7_general_cs
For additional information about Baltic collations in MySQL, see Collation-Charts.Org (cp1257, latin7).
10.1.14.6. Cyrillic Character Sets
The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian, and Serbian (Cyrillic) languages.
cp1251 (Windows Cyrillic) collations:
cp1251_bin
cp1251_bulgarian_ci
cp1251_general_ci (default)
cp1251_general_cs
cp1251_ukrainian_ci
cp866 (DOS Russian) collations:
cp866_bin
cp866_general_ci (default)
koi8r (KOI8-R Relcom Russian) collations:
koi8r_bin
koi8r_general_ci (default)
koi8u (KOI8-U Ukrainian) collations:
koi8u_bin
koi8u_general_ci (default)
For additional information about Cyrillic collations in MySQL, see Collation-Charts.Org (cp1251, cp866, koi8r, koi8u).).
10.1.14.7. Asian Character Sets
The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can be complicated. For example, the Chinese sets must allow for thousands of different characters. See Section 10.1.14.7.1, “The cp932 Character Set”, for additional information about the cp932 and sjis character sets.
For answers to some common questions and problems relating support for Asian character sets in MySQL, see Section B.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”.
big5 (Big5 Traditional Chinese) collations:
big5_bin
big5_chinese_ci (default)
cp932 (SJIS for Windows Japanese) collations:
cp932_bin
cp932_japanese_ci (default)
eucjpms (UJIS for Windows Japanese) collations:
eucjpms_bin
eucjpms_japanese_ci (default)
euckr (EUC-KR Korean) collations:
euckr_bin
euckr_korean_ci (default)
gb2312 (GB2312 Simplified Chinese) collations:
gb2312_bin
gb2312_chinese_ci (default)
gbk (GBK Simplified Chinese) collations:
gbk_bin
gbk_chinese_ci (default)
sjis (Shift-JIS Japanese) collations:
sjis_bin
sjis_japanese_ci (default)
tis620 (TIS620 Thai) collations:
tis620_bin
tis620_thai_ci (default)
ujis (EUC-JP Japanese) collations:
ujis_bin
ujis_japanese_ci (default)
The big5_chinese_ci collation sorts on number of strokes.
For additional information about Asian collations in MySQL, see Collation-Charts.Org (big5, cp932, eucjpms, euckr, gb2312, gbk, sjis, tis620, ujis).
10.1.14.7.1. The cp932 Character Set
Why is cp932 needed?
In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA, which supports JIS X0201 and JIS X0208 characters. (See http://www.iana.org/assignments/character-sets.)
However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often includes the extensions to Shift_JIS that are defined by various vendors.
For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of Shift_JIS and its exact name is Microsoft Windows Codepage : 932 or cp932. In addition to the characters supported by Shift_JIS, cp932 supports extension characters such as NEC special characters, NEC selected—IBM extended characters, and IBM selected characters.
Many Japanese users have experienced problems using these extension characters. These problems stem from the following factors:
MySQL automatically converts character sets.
Character sets are converted using Unicode (ucs2).
The sjis character set does not support the conversion of these extension characters.
There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters are converted to Unicode differently depending on the conversion rule. MySQL supports only one of these rules (described later).
The MySQL cp932 character set is designed to solve these problems.
Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and cp932 into two different character sets because they provide different conversion rules.
How does cp932 differ from sjis?
The cp932 character set differs from sjis in the following ways:
cp932 supports NEC special characters, NEC selected—IBM extended characters, and IBM selected characters.
Some cp932 characters have two different code points, both of which convert to the same Unicode code point. When converting from Unicode back to cp932, one of the code points must be selected. For this “round trip conversion,” the rule recommended by Microsoft is used. (See http://support.microsoft.com/kb/170559/EN-US/.)
The conversion rule works like this:
If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X 0208.
If the character is in both NEC special characters and IBM selected characters, use the code point of NEC special characters.
If the character is in both IBM selected characters and NEC selected—IBM extended characters, use the code point of IBM extended characters.
The table shown at http://www.microsoft.com/globaldev/reference/dbcs/932.htm provides information about the Unicode values of cp932 characters. For cp932 table entries with characters under which a four-digit number appears, the number represents the corresponding Unicode (ucs2) encoding. For table entries with an underlined two-digit value appears, there is a range of cp932 character values that begin with those two digits. Clicking such a table entry takes you to a page that displays the Unicode value for each of the cp932 characters that begin with those digits.
The following links are of special interest. They correspond to the encodings for the following sets of characters:
NEC special characters:
http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm
NEC selected—IBM extended characters:
http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm
IBM selected characters:
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm
cp932 supports conversion of user-defined characters in combination with eucjpms, and solves the problems with sjis/ujis conversion. For details, please refer to http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html.
For some characters, conversion to and from ucs2 is different for sjis and cp932. The following tables illustrate these differences.
Conversion to ucs2:
sjis/cp932 Value | sjis -> ucs2 Conversion | cp932 -> ucs2 Conversion |
---|---|---|
5C | 005C | 005C |
7E | 007E | 007E |
815C | 2015 | 2015 |
815F | 005C | FF3C |
8160 | 301C | FF5E |
8161 | 2016 | 2225 |
817C | 2212 | FF0D |
8191 | 00A2 | FFE0 |
8192 | 00A3 | FFE1 |
81CA | 00AC | FFE2 |
Conversion from ucs2:
ucs2 value | ucs2 -> sjis Conversion | ucs2 -> cp932 Conversion |
---|---|---|
005C | 815F | 5C |
007E | 7E | 7E |
00A2 | 8191 | 3F |
00A3 | 8192 | 3F |
00AC | 81CA | 3F |
2015 | 815C | 815C |
2016 | 8161 | 3F |
2212 | 817C | 3F |
2225 | 3F | 8161 |
301C | 8160 | 3F |
FF0D | 3F | 817C |
FF3C | 3F | 815F |
FF5E | 3F | 8160 |
FFE0 | 3F | 8191 |
FFE1 | 3F | 8192 |
FFE2 | 3F | 81CA |
Users of any Japanese character sets should be aware that using --character-set-client-handshake (or --skip-character-set-client-handshake) has an important effect. See Section 5.1.3, “Server Command Options”.
10.2. Setting the Error Message Language
By default, mysqld produces error messages in English, but they can also be displayed in any of several other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak, Spanish, or Swedish.
You can select which language the server uses for error messages using the instructions in this section.
In MySQL 5.6, the server searches for the error message file in two locations:
It tries to find the file in a directory constructed from two system variable values, lc_messages_dir and lc_messages, with the latter converted to a language name. Suppose that you start the server using this command:
shell> mysqld --lc_messages_dir=/usr/share/mysql --lc_messages=fr_FR
In this case, mysqld maps the locale fr_FR to the language french and looks for the error file in the /usr/share/mysql/french directory.
If the message file cannot be found in the directory constructed as just described, the server ignores the lc_messages value and uses only the lc_messages_dir value as the location in which to look.
The lc_messages_dir system variable has only a global value and is read only. lc_messages has global and session values and can be modified at runtime, so the error message language can be changed while the server is running, and individual clients each can have a different error message language by changing their session lc_messages value to a different locale name. For example, if the server is using the fr_FR locale for error messages, a client can execute this statement to receive error messages in English:
mysql> SET lc_messages = 'en_US';
By default, the language files are located in the share/mysql/LANGUAGE directory under the MySQL base directory.
For information about changing the character set for error messages (rather than the language), see Section 10.1.6, “Character Set for Error Messages”.
You can change the content of the error messages produced by the server using the instructions in the MySQL Internals manual, available at MySQL Internals: Error Messages. If you do change the content of error messages, remember to repeat your changes after each upgrade to a newer version of MySQL.
10.3. Adding a Character Set
This section discusses the procedure for adding a character set to MySQL. The proper procedure depends on whether the character set is simple or complex:
If the character set does not need special string collating routines for sorting and does not need multi-byte character support, it is simple.
If the character set needs either of those features, it is complex.
For example, greek and swe7 are simple character sets, whereas big5 and czech are complex character sets.
To use the following instructions, you must have a MySQL source distribution. In the instructions, MYSET represents the name of the character set that you want to add.
Add a <charset> element for MYSET to the sql/share/charsets/Index.xml file. Use the existing contents in the file as a guide to adding new contents. A partial listing for the latin1 <charset> element follows:
<charset name="latin1">
<family>Western</family>
<description>cp1252 West European</description>
...
<collation name="latin1_swedish_ci" id="8" order="Finnish, Swedish">
<flag>primary</flag>
<flag>compiled</flag>
</collation>
<collation name="latin1_danish_ci" id="15" order="Danish"/>
...
<collation name="latin1_bin" id="47" order="Binary">
<flag>binary</flag>
<flag>compiled</flag>
</collation>
...
</charset>
The <charset> element must list all the collations for the character set. These must include at least a binary collation and a default (primary) collation. The default collation is often named using a suffix of general_ci (general, case insensitive). It is possible for the binary collation to be the default collation, but usually they are different. The default collation should have a primary flag. The binary collation should have a binary flag.
You must assign a unique ID number to each collation. The range of IDs from 1024 to 2047 is reserved for user-defined collations. To find the maximum of the currently used collation IDs, use this query:
SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;
This step depends on whether you are adding a simple or complex character set. A simple character set requires only a configuration file, whereas a complex character set requires C source file that defines collation functions, multi-byte functions, or both.
For a simple character set, create a configuration file, MYSET.xml, that describes the character set properties. Create this file in the sql/share/charsets directory. You can use a copy of latin1.xml as the basis for this file. The syntax for the file is very simple:
Comments are written as ordinary XML comments (<!-- text -->).
Words within <map> array elements are separated by arbitrary amounts of whitespace.
Each word within <map> array elements must be a number in hexadecimal format.
The <map> array element for the <ctype> element has 257 words. The other <map> array elements after that have 256 words. See Section 10.3.1, “Character Definition Arrays”.
For each collation listed in the <charset> element for the character set in Index.xml, MYSET.xml must contain a <collation> element that defines the character ordering.
For a complex character set, create a C source file that describes the character set properties and defines the support routines necessary to properly perform operations on the character set:
Create the file ctype-MYSET.c in the strings directory. Look at one of the existing ctype-*.c files (such as ctype-big5.c) to see what needs to be defined. The arrays in your file must have names like ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays for a simple character set. See Section 10.3.1, “Character Definition Arrays”.
For each <collation> element listed in the <charset> element for the character set in Index.xml, the ctype-MYSET.c file must provide an implementation of the collation.
If the character set requires string collating functions, see Section 10.3.2, “String Collating Support for Complex Character Sets”.
If the character set requires multi-byte character support, see Section 10.3.3, “Multi-Byte Character Support for Complex Character Sets”.
Modify the configuration information. Use the existing configuration information as a guide to adding information for MYSYS. The example here assumes that the character set has default and binary collations, but more lines are needed if MYSET has additional collations.
Edit mysys/charset-def.c, and “register” the collations for the new character set.
Add these lines to the “declaration” section:
#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif
Add these lines to the “registration” section:
#ifdef HAVE_CHARSET_MYSET
add_compiled_collation(&my_charset_MYSET_general_ci);
add_compiled_collation(&my_charset_MYSET_bin);
#endif
If the character set uses ctype-MYSET.c, edit strings/CMakeLists.txt and add ctype-MYSET.c to the definition of the STRINGS_SOURCES variable.
Edit cmake/character_sets.cmake:
Add MYSET to the value of with CHARSETS_AVAILABLE in alphabetic order.
Add MYSET to the value of CHARSETS_COMPLEX in alphabetic order. This is needed even for simple character sets, or CMake will not recognize -DDEFAULT_CHARSET=MYSET.
Reconfigure, recompile, and test.
10.3.1. Character Definition Arrays
Each simple character set has a configuration file located in the sql/share/charsets directory. For a character set named MYSYS, the file is named MYSET.xml. It uses <map> array elements to list character set properties. <map> elements appear within these elements:
<ctype> defines attributes for each character.
<lower> and <upper> list the lowercase and uppercase characters.
<unicode> maps 8-bit character values to Unicode values.
<collation> elements indicate character ordering for comparisons and sorts, one element per collation. Binary collations need no <map> element because the character codes themselves provide the ordering.
For a complex character set as implemented in a ctype-MYSET.c file in the strings directory, there are corresponding arrays: ctype_MYSET[], to_lower_MYSET[], and so forth. Not every complex character set has all of the arrays. See also the existing ctype-*.c files for examples. See the CHARSET_INFO.txt file in the strings directory for additional information.
Most of the arrays are indexed by character value and have 256 elements. The <ctype> array is indexed by character value + 1 and has 257 elements. This is a legacy convention for handling EOF.
<ctype> array elements are bit values. Each element describes the attributes of a single character in the character set. Each attribute is associated with a bitmask, as defined in include/m_ctype.h:
#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */
#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */
#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */
The <ctype> value for a given character should be the union of the applicable bitmask values that describe the character. For example, 'A' is an uppercase character (_MY_U) as well as a hexadecimal digit (_MY_X), so its ctype value should be defined like this:
ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201
The bitmask values in m_ctype.h are octal values, but the elements of the <ctype> array in MYSET.xml should be written as hexadecimal values.
The <lower> and <upper> arrays hold the lowercase and uppercase characters corresponding to each member of the character set. For example:
lower['A'] should contain 'a'
upper['a'] should contain 'A'
Each <collation> array indicates how characters should be ordered for comparison and sorting purposes. MySQL sorts characters based on the values of this information. In some cases, this is the same as the <upper> array, which means that sorting is case-insensitive. For more complicated sorting rules (for complex character sets), see the discussion of string collating in Section 10.3.2, “String Collating Support for Complex Character Sets”.
10.3.2. String Collating Support for Complex Character Sets
For a simple character set named MYSET, sorting rules are specified in the MYSET.xml configuration file using <map> array elements within <collation> elements. If the sorting rules for your language are too complex to be handled with simple arrays, you must define string collating functions in the ctype-MYSET.c source file in the strings directory.
The existing character sets provide the best documentation and examples to show how these functions are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the big5, czech, gbk, sjis, and tis160 character sets. Take a look at the MY_COLLATION_HANDLER structures to see how they are used. See also the CHARSET_INFO.txt file in the strings directory for additional information.
10.3.3. Multi-Byte Character Support for Complex Character Sets
If you want to add support for a new character set named MYSET that includes multi-byte characters, you must use multi-byte character functions in the ctype-MYSET.c source file in the strings directory.
The existing character sets provide the best documentation and examples to show how these functions are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the euc_kr, gb2312, gbk, sjis, and ujis character sets. Take a look at the MY_CHARSET_HANDLER structures to see how they are used. See also the CHARSET_INFO.txt file in the strings directory for additional information.
10.4. Adding a Collation to a Character Set
A collation is a set of rules that defines how to compare and sort character strings. Each collation in MySQL belongs to a single character set. Every character set has at least one collation, and most have two or more collations.
A collation orders characters based on weights. Each character in a character set maps to a weight. Characters with equal weights compare as equal, and characters with unequal weights compare according to the relative magnitude of their weights.
The WEIGHT_STRING() function can be used to see the weights for the characters in a string. The value that it returns to indicate weights is a binary string, so it is convenient to use HEX(WEIGHT_STRING(str)) to display the weights in printable form. The following example shows that weights do not differ for lettercase for the letters in 'AaBb' it if is a nonbinary case-insensitive string, but do differ if it is a binary string:
mysql> SELECT HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci));
+--+
| HEX(WEIGHT_STRING('AaBb' COLLATE latin1_swedish_ci)) |
+--+
| 41414242 |
+--+
mysql> SELECT HEX(WEIGHT_STRING(BINARY 'AaBb'));
+-----------------------------------+
| HEX(WEIGHT_STRING(BINARY 'AaBb')) |
+-----------------------------------+
| 41614262 |
+-----------------------------------+
MySQL supports several collation implementations, as discussed in Section 10.4.1, “Collation Implementation Types”. Some of these can be added to MySQL without recompiling:
Simple collations for 8-bit character sets.
UCA-based collations for Unicode character sets.
Binary (xxx_bin) collations.
The following sections describe how to add collations of the first two types to existing character sets. All existing character sets already have a binary collation, so there is no need here to describe how to add one.
Summary of the procedure for adding a new collation:
Choose a collation ID.
Add configuration information that names the collation and describes the character-ordering rules.
Restart the server.
Verify that the collation is present.
The instructions here cover only collations that can be added without recompiling MySQL. To add a collation that does require recompiling (as implemented by means of functions in a C source file), use the instructions in Section 10.3, “Adding a Character Set”. However, instead of adding all the information required for a complete character set, just modify the appropriate files for an existing character set. That is, based on what is already present for the character set's current collations, add data structures, functions, and configuration information for the new collation.
Note
If you modify an existing collation, that may affect the ordering of rows for indexes on columns that use the collation. In this case, rebuild any such indexes to avoid problems such as incorrect query results. For further information, see Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”.
Additional Resources
The Unicode Collation Algorithm (UCA) specification: http://www.unicode.org/reports/tr10/
The Locale Data Markup Language (LDML) specification: http://www.unicode.org/reports/tr35/
MySQL Blog article “Instructions for adding a new Unicode collation”: http://blogs.mysql.com/peterg/2008/05/19/instructions-for-adding-a-new-unicode-collation/
10.4.1. Collation Implementation Types
MySQL implements several types of collations:
Simple collations for 8-bit character sets
This kind of collation is implemented using an array of 256 weights that defines a one-to-one mapping from character codes to weights. latin1_swedish_ci is an example. It is a case-insensitive collation, so the uppercase and lowercase versions of a character have the same weights and they compare as equal.
mysql> SET NAMES 'latin1' COLLATE 'latin1_swedish_ci';
Query OK, 0 rows affected (0.01 sec)
mysql> SELECT HEX(WEIGHT_STRING('a')), HEX(WEIGHT_STRING('A'));
+-------------------------+-------------------------+
| HEX(WEIGHT_STRING('a')) | HEX(WEIGHT_STRING('A')) |
+-------------------------+-------------------------+
| 41 | 41 |
+-------------------------+-------------------------+
1 row in set (0.01 sec)
mysql> SELECT 'a' = 'A';
+-----------+
| 'a' = 'A' |
+-----------+
| 1 |
+-----------+
1 row in set (0.12 sec)
For implementation instructions, see Section 10.4.3, “Adding a Simple Collation to an 8-Bit Character Set”.
Complex collations for 8-bit character sets
This kind of collation is implemented using functions in a C source file that define how to order characters, as described in Section 10.3, “Adding a Character Set”.
Collations for non-Unicode multi-byte character sets
For this type of collation, 8-bit (single-byte) and multi-byte characters are handled differently. For 8-bit characters, character codes map to weights in case-insensitive fashion. (For example, the single-byte characters 'a' and 'A' both have a weight of 0x41.) For multi-byte characters, there are two types of relationship between character codes and weights:
Weights equal character codes. sjis_japanese_ci is an example of this kind of collation. The multi-byte character 'ぢ' has a character code of 0x82C0, and the weight is also 0x82C0.
mysql> CREATE TABLE t1
-> (c1 VARCHAR(2) CHARACTER SET sjis COLLATE sjis_japanese_ci);
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x82C0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
| a | 61 | 41 |
| A | 41 | 41 |
| ぢ | 82C0 | 82C0 |
+------+---------+------------------------+
3 rows in set (0.00 sec)
Character codes map one-to-one to weights, but a code is not necessarily equal to the weight. gbk_chinese_ci is an example of this kind of collation. The multi-byte character '膰' has a character code of 0x81B0 but a weight of 0xC286.
mysql> CREATE TABLE t1
-> (c1 VARCHAR(2) CHARACTER SET gbk COLLATE gbk_chinese_ci);
Query OK, 0 rows affected (0.33 sec)
mysql> INSERT INTO t1 VALUES ('a'),('A'),(0x81B0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
| a | 61 | 41 |
| A | 41 | 41 |
| 膰 | 81B0 | C286 |
+------+---------+------------------------+
3 rows in set (0.00 sec)
For implementation instructions, see Section 10.3, “Adding a Character Set”.
Collations for Unicode multi-byte character sets
Some of these collations are based on the Unicode Collation Algorithm (UCA), others are not.
Non-UCA collations have a one-to-one mapping from character code to weight. In MySQL, such collations are case insensitive and accent insensitive. utf8_general_ci is an example: 'a', 'A', 'À', and 'á' each have different character codes but all have a weight of 0x0041 and compare as equal.
mysql> SET NAMES 'utf8' COLLATE 'utf8_general_ci';
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE TABLE t1
-> (c1 CHAR(1) CHARACTER SET UTF8 COLLATE utf8_general_ci);
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO t1 VALUES ('a'),('A'),('À'),('á');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0
mysql> SELECT c1, HEX(c1), HEX(WEIGHT_STRING(c1)) FROM t1;
+------+---------+------------------------+
| c1 | HEX(c1) | HEX(WEIGHT_STRING(c1)) |
+------+---------+------------------------+
| a | 61 | 0041 |
| A | 41 | 0041 |
| À | C380 | 0041 |
| á | C3A1 | 0041 |
+------+---------+------------------------+
4 rows in set (0.00 sec)
UCA-based collations in MySQL have these properties:
If a character has weights, each weight uses 2 bytes (16 bits).
A character may have zero weights (or an empty weight). In this case, the character is ignorable. Example: "U+0000 NULL" does not have a weight and is ignorable.
A character may have one weight. Example: 'a' has a weight of 0x0E33.
mysql> SET NAMES 'utf8' COLLATE 'utf8_unicode_ci';
Query OK, 0 rows affected (0.05 sec)
mysql> SELECT HEX('a'), HEX(WEIGHT_STRING('a'));
+----------+-------------------------+
| HEX('a') | HEX(WEIGHT_STRING('a')) |
+----------+-------------------------+
| 61 | 0E33 |
+----------+-------------------------+
1 row in set (0.02 sec)
A character may have many weights. This is an expansion. Example: The German letter 'ß' (SZ ligature, or SHARP S) has a weight of 0x0FEA0FEA.
mysql> SET NAMES 'utf8' COLLATE 'utf8_unicode_ci';
Query OK, 0 rows affected (0.11 sec)
mysql> SELECT HEX('ß'), HEX(WEIGHT_STRING('ß'));
+-----------+--------------------------+
| HEX('ß') | HEX(WEIGHT_STRING('ß')) |
+-----------+--------------------------+
| C39F | 0FEA0FEA |
+-----------+--------------------------+
1 row in set (0.00 sec)
Many characters may have one weight. This is a contraction. Example: 'ch' is a single letter in Czech and has a weight of 0x0EE2.
mysql> SET NAMES 'utf8' COLLATE 'utf8_czech_ci';
Query OK, 0 rows affected (0.09 sec)
mysql> SELECT HEX('ch'), HEX(WEIGHT_STRING('ch'));
+-----------+--------------------------+
| HEX('ch') | HEX(WEIGHT_STRING('ch')) |
+-----------+--------------------------+
| 6368 | 0EE2 |
+-----------+--------------------------+
1 row in set (0.00 sec)
A many-characters-to-many-weights mapping is also possible (this is contraction with expansion), but is not supported by MySQL.
For implementation instructions, for a non-UCA collation, see Section 10.3, “Adding a Character Set”. For a UCA collation, see Section 10.4.4, “Adding a UCA Collation to a Unicode Character Set”.
Miscellaneous collations
There are also a few collations that do not fall into any of the previous categories.
10.4.2. Choosing a Collation ID
Each collation must have a unique ID. To add a collation, you must choose an ID value that is not currently used. The range of IDs from 1024 to 2047 is reserved for user-defined collations. The collation ID that you choose will appear in these contexts:
The ID column of the INFORMATION_SCHEMA.COLLATIONS table.
The Id column of SHOW COLLATION output.
The charsetnr member of the MYSQL_FIELD C API data structure.
The number member of the MY_CHARSET_INFO data structure returned by the mysql_get_character_set_info() C API function.
To determine the largest currently used ID, issue the following statement:
mysql> SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;
+---------+
| MAX(ID) |
+---------+
| 210 |
+---------+
To display a list of all currently used IDs, issue this statement:
mysql> SELECT ID FROM INFORMATION_SCHEMA.COLLATIONS ORDER BY ID;
+-----+
| ID |
+-----+
| 1 |
| 2 |
| ... |
| 52 |
| 53 |
| 57 |
| 58 |
| ... |
| 98 |
| 99 |
| 128 |
| 129 |
| ... |
| 210 |
+-----+
Warning
Before MySQL 5.5, which provides for a range of user-defined collation IDs, you must choose an ID in the range from 1 to 254. In this case, if you upgrade MySQL, you may find that the collation ID you choose has been assigned to a collation included in the new MySQL distribution. In this case, you will need to choose a new value for your own collation.
In addition, before upgrading, you should save the configuration files that you change. If you upgrade in place, the process will replace the your modified files.
10.4.3. Adding a Simple Collation to an 8-Bit Character Set
This section describes how to add a simple collation for an 8-bit character set by writing the <collation> elements associated with a <charset> character set description in the MySQL Index.xml file. The procedure described here does not require recompiling MySQL. The example adds a collation named latin1_test_ci to the latin1 character set.
Choose a collation ID, as shown in Section 10.4.2, “Choosing a Collation ID”. The following steps use an ID of 1024.
Modify the Index.xml and latin1.xml configuration files. These files will be located in the directory named by the character_sets_dir system variable. You can check the variable value as follows, although the path name might be different on your system:
mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+
Choose a name for the collation and list it in the Index.xml file. Find the <charset> element for the character set to which the collation is being added, and add a <collation> element that indicates the collation name and ID, to associate the name with the ID. For example:
<charset name="latin1">
...
<collation name="latin1_test_ci" id="1024"/>
...
</charset>
In the latin1.xml configuration file, add a <collation> element that names the collation and that contains a <map> element that defines a character code-to-weight mapping table for character codes 0 to 255. Each value within the <map> element must be a number in hexadecimal format.
<collation name="latin1_test_ci">
<map>
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5C D7 5C 55 55 55 59 59 DE DF
41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5C F7 5C 55 55 55 59 59 DE FF
</map>
</collation>
Restart the server and use this statement to verify that the collation is present:
mysql> SHOW COLLATION LIKE 'latin1_test_ci';
+----------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------+---------+------+---------+----------+---------+
| latin1_test_ci | latin1 | 1024 | | | 1 |
+----------------+---------+------+---------+----------+---------+
10.4.4. Adding a UCA Collation to a Unicode Character Set
This section describes how to add a UCA collation for a Unicode character set by writing the <collation> element within a <charset> character set description in the MySQL Index.xml file. The procedure described here does not require recompiling MySQL. It uses a subset of the Locale Data Markup Language (LDML) specification, which is available at http://www.unicode.org/reports/tr35/. With this method, you need not define the entire collation. Instead, you begin with an existing “base” collation and describe the new collation in terms of how it differs from the base collation. The following table lists the base collations of the Unicode character sets for which UCA collations can be defined. It is not possible to create user-defined UCA collations for utf16le; there is no utf16le_unicode_ci collation that would serve as the basis for such collations.
Table 10.1. MySQL Character Sets Available for User-Defined UCA Collations
Character Set | Base Collation |
---|---|
utf8 | utf8_unicode_ci |
ucs2 | ucs2_unicode_ci |
utf16 | utf16_unicode_ci |
utf32 | utf32_unicode_ci |
The following sections show how to add a collation that is defined using LDML syntax, and provide a summary of LDML rules supported in MySQL.
10.4.4.1. Defining a UCA Collation using LDML Syntax
To add a UCA collation for a Unicode character set without recompiling MySQL, use the following procedure. If you are unfamiliar with the LDML rules used to describe the collation's sort characteristics, see Section 10.4.4.2, “LDML Syntax Supported in MySQL”.
The example adds a collation named utf8_phone_ci to the utf8 character set. The collation is designed for a scenario involving a Web application for which users post their names and phone numbers. Phone numbers can be given in very different formats:
+7-12345-67
+7-12-345-67
+7 12 345 67
+7 (12) 345 67
+71234567
The problem raised by dealing with these kinds of values is that the varying permissible formats make searching for a specific phone number very difficult. The solution is to define a new collation that reorders punctuation characters, making them ignorable.
Choose a collation ID, as shown in Section 10.4.2, “Choosing a Collation ID”. The following steps use an ID of 1029.
To modify the Index.xml configuration file. This file will be located in the directory named by the character_sets_dir system variable. You can check the variable value as follows, although the path name might be different on your system:
mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+
Choose a name for the collation and list it in the Index.xml file. In addition, you'll need to provide the collation ordering rules. Find the <charset> element for the character set to which the collation is being added, and add a <collation> element that indicates the collation name and ID, to associate the name with the ID. Within the <collation> element, provide a <rules> element containing the ordering rules:
<charset name="utf8">
...
<collation name="utf8_phone_ci" id="1029">
<rules>
<reset>\u0000</reset>
<i>\u0020</i> <!-- space -->
<i>\u0028</i> <!-- left parenthesis -->
<i>\u0029</i> <!-- right parenthesis -->
<i>\u002B</i> <!-- plus -->
<i>\u002D</i> <!-- hyphen -->
</rules>
</collation>
...
</charset>
If you want a similar collation for other Unicode character sets, add other <collation> elements. For example, to define ucs2_phone_ci, add a <collation> element to the <charset name="ucs2"> element. Remember that each collation must have its own unique ID.
Restart the server and use this statement to verify that the collation is present:
mysql> SHOW COLLATION LIKE 'utf8_phone_ci';
+---------------+---------+------+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------+---------+------+---------+----------+---------+
| utf8_phone_ci | utf8 | 1029 | | | 8 |
+---------------+---------+------+---------+----------+---------+
Now test the collation to make sure that it has the desired properties.
Create a table containing some sample phone numbers using the new collation:
mysql> CREATE TABLE phonebook (
-> name VARCHAR(64),
-> phone VARCHAR(64) CHARACTER SET utf8 COLLATE utf8_phone_ci
->);
Query OK, 0 rows affected (0.09 sec)
mysql> INSERT INTO phonebook VALUES ('Svoj','+7 912 800 80 02');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Hf','+7 (912) 800 80 04');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Bar','+7-912-800-80-01');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Ramil','(7912) 800 80 03');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Sanja','+380 (912) 8008005');
Query OK, 1 row affected (0.00 sec)
Run some queries to see whether the ignored punctuation characters are in fact ignored for sorting and comparisons:
mysql> SELECT * FROM phonebook ORDER BY phone;
+-------+--------------------+
| name | phone |
+-------+--------------------+
| Sanja | +380 (912) 8008005 |
| Bar | +7-912-800-80-01 |
| Svoj | +7 912 800 80 02 |
| Ramil | (7912) 800 80 03 |
| Hf | +7 (912) 800 80 04 |
+-------+--------------------+
5 rows in set (0.00 sec)
mysql> SELECT * FROM phonebook WHERE phone='+7(912)800-80-01';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)
mysql> SELECT * FROM phonebook WHERE phone='79128008001';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)
mysql> SELECT * FROM phonebook WHERE phone='7 9 1 2 8 0 0 8 0 0 1';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)
10.4.4.2. LDML Syntax Supported in MySQL
This section describes the LDML syntax that MySQL recognizes. This is a subset of the syntax described in the LDML specification available at http://www.unicode.org/reports/tr35/, which should be consulted for further information. MySQL recognizes a large enough subset of the syntax that, in many cases, it is possible to download a collation definition from the Unicode Common Locale Data Repository and paste the relevant part (that is, the part between the <rules> and </rules> tags) into the MySQL Index.xml file. The rules described here are all supported except that character sorting occurs only at the primary level. Rules that specify differences at secondary or higher sort levels are recognized (and thus can be included in collation definitions) but are treated as equality at the primary level.
The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file. See Section 10.4.4.3, “Diagnostics During Index.xml Parsing”.
Character Representation
Characters named in LDML rules can be written literally or in \unnnn format, where nnnn is the hexadecimal Unicode code point value. For example, A and á can be written literally or as \u0041 and \u00E1. Within hexadecimal values, the digits A through F are not case sensitive; \u00E1 and \u00e1 are equivalent. For UCA 4.0.0 collations, hexadecimal notation can be used only for characters in the Basic Multilingual Plane, not for characters outside the BMP range of 0000 to FFFF. For UCA 5.2.0 collations, hexadecimal notation can be used for any character.
The Index.xml file itself should be written using UTF-8 encoding.
Syntax Rules
LDML has reset rules and shift rules to specify character ordering. Orderings are given as a set of rules that begin with a reset rule that establishes an anchor point, followed by shift rules that indicate how characters sort relative to the anchor point.
A <reset> rule does not specify any ordering in and of itself. Instead, it “resets” the ordering for subsequent shift rules to cause them to be taken in relation to a given character. Either of the following rules resets subsequent shift rules to be taken in relation to the letter 'A':
<reset>A</reset>
<reset>\u0041</reset>
The <p>, <s>, and <t> shift rules define primary, secondary, and tertiary differences of a character from another character:
Use primary differences to distinguish separate letters.
Use secondary differences to distinguish accent variations.
Use tertiary differences to distinguish lettercase variations.
Either of these rules specifies a primary shift rule for the 'G' character:
<p>G</p>
<p>\u0047</p>
The <i> shift rule indicates that one character sorts identically to another. The following rules cause 'b' to sort the same as 'a':
<reset>a</reset>
<i>b</i>
Abbreviated shift syntax specifies multiple shift rules using a single pair of tags. The following table shows the correspondence between abbreviated syntax rules and the equivalent nonabbreviated rules.
Table 10.2. Abbreviated Shift Syntax
Abbreviated Syntax | Nonabbreviated Syntax |
---|---|
<pc>xyz</pc> | <p>x</p><p>y</p><p>z</p> |
<sc>xyz</sc> | <s>x</s><s>y</s><s>z</s> |
<tc>xyz</tc> | <t>x</t><t>y</t><t>z</t> |
<ic>xyz</ic> | <i>x</i><i>y</i><i>z</i> |
An expansion is a reset rule that establishes an anchor point for a multiple-character sequence. MySQL supports expansions 2 to 6 characters long. The following rules put 'z' greater at the primary level than the sequence of three characters 'abc':
<reset>abc</reset>
<p>z</p>
A contraction is a shift rule that sorts a multiple-character sequence. MySQL supports contractions 2 to 6 characters long. The following rules put the sequence of three characters 'xyz' greater at the primary level than 'a':
<reset>a</reset>
<p>xyz</p>
Long expansions and long contractions can be used together. These rules put the sequence of three characters 'xyz' greater at the primary level than the sequence of three characters 'abc':
<reset>abc</reset>
<p>xyz</p>
Normal expansion syntax uses <x> plus <extend> elements to specify an expansion. The following rules put the character 'k' greater at the secondary level than the sequence 'ch'. That is, 'k' behaves as if it expands to a character after 'c' followed by 'h':
<reset>c</reset>
<x><s>k</s><extend>h</extend></x>
This syntax permits long sequences. These rules sort the sequence 'ccs' greater at the tertiary level than the sequence 'cscs':
<reset>cs</reset>
<x><t>ccs</t><extend>cs</extend></x>
The LDML specification describes normal expansion syntax as “tricky.” See that specification for details.
Previous context syntax uses <x> plus <context> elements to specify that the context before a character affects how it sorts. The following rules put '-' greater at the secondary level than 'a', but only when '-' occurs after 'b':
<reset>a</reset>
<x><context>b</context><s>-</s></x>
Previous context syntax can include the <extend> element. These rules put 'def' greater at the primary level than 'aghi', but only when 'def' comes after 'abc':
<reset>a</reset>
<x><context>abc</context><p>def</p><extend>ghi</extend></x>
Reset rules permit a before attribute. Normally, shift rules after a reset rule indicate characters that sort after the reset character. Shift rules after a reset rule that has the before attribute indicate characters that sort before the reset character. The following rules put the character 'b' immediately before 'a' at the primary level:
<reset before="primary">a</reset>
<p>b</p>
Permissible before attribute values specify the sort level by name or the equivalent numeric value:
<reset before="primary">
<reset before="1">
<reset before="secondary">
<reset before="2">
<reset before="tertiary">
<reset before="3">
A reset rule can name a logical reset position rather than a literal character:
<first_tertiary_ignorable/>
<last_tertiary_ignorable/>
<first_secondary_ignorable/>
<last_secondary_ignorable/>
<first_primary_ignorable/>
<last_primary_ignorable/>
<first_variable/>
<last_variable/>
<first_non_ignorable/>
<last_non_ignorable/>
<first_trailing/>
<last_trailing/>
These rules put 'z' greater at the primary level than nonignorable characters that have a Default Unicode Collation Element Table (DUCET) entry and that are not CJK:
<reset><last_non_ignorable/></reset>
<p>z</p>
Logical positions have the code points shown in the following table.
Table 10.3. Logical Reset Position Code Points
Logical Position | Unicode 4.0.0 Code Point | Unicode 5.2.0 Code Point |
---|---|---|
<first_non_ignorable/> | U+02D0 | U+02D0 |
<last_non_ignorable/> | U+A48C | U+1342E |
<first_primary_ignorable/> | U+0332 | U+0332 |
<last_primary_ignorable/> | U+20EA | U+101FD |
<first_secondary_ignorable/> | U+0000 | U+0000 |
<last_secondary_ignorable/> | U+FE73 | U+FE73 |
<first_tertiary_ignorable/> | U+0000 | U+0000 |
<last_tertiary_ignorable/> | U+FE73 | U+FE73 |
<first_trailing/> | U+0000 | U+0000 |
<last_trailing/> | U+0000 | U+0000 |
<first_variable/> | U+0009 | U+0009 |
<last_variable/> | U+2183 | U+1D371 |
The <collation> element permits a shift-after-method attribute that affects character weight calculation for shift rules. The attribute has these permitted values:
simple: Calculate character weights as for reset rules that do not have a before attribute. This is the default if the attribute is not given.
expand: Use expansions for shifts after reset rules.
Suppose that '0' and '1' have weights of 0E29 and 0E2A and we want to put all basic Latin letters between '0' and '1':
<reset>0</reset>
<pc>abcdefghijklmnopqrstuvwxyz</pc>
For simple shift mode, weights are calculated as follows:
'a' has weight 0E29+1
'b' has weight 0E29+2
'c' has weight 0E29+3
...
However, there are not enough vacant positions to put 26 characters between '0' and '1'. The result is that digits and letters are intermixed.
To solve this, use shift-after-method="expand". Then weights are calculated like this:
'a' has weight [0E29][233D+1]
'b' has weight [0E29][233D+2]
'c' has weight [0E29][233D+3]
...
233D is the UCA 4.0.0 weight for character 0xA48C, which is the last nonignorable character (a sort of the greatest character in the collation, excluding CJK). UCA 5.2.0 is similar but uses 3ACA, for character 0x1342E.
MySQL-Specific LDML Extensions
In MySQL 5.6, an extension to LDML rules permits the <collation> element to include an optional version attribute in <collation> tags to indicate the UCA version on which the collation is based. If the version attribute is omitted, its default value is 4.0.0. For example, this specification indicates a collation that is based on UCA 5.2.0:
<collation id="nnn" name="utf8_xxx_ci" version="5.2.0">
...
</collation>
10.4.4.3. Diagnostics During Index.xml Parsing
The MySQL server generates diagnostics when it finds problems while parsing the Index.xml file:
Unknown tags are written to the error log. For example, the following message results if a collation definition contains a <aaa> tag:
[Warning] Buffered warning: Unknown LDML tag:
'charsets/charset/collation/rules/aaa'
If collation initialization is not possible, the server reports an “Unknown collation” error, and also generates warnings explaining the problems, such as in the previous example. In other cases, when a collation description is generally correct but contains some unknown tags, the collation is initialized and is available for use. The unknown parts are ignored, but a warning is generated in the error log.
Problems with collations generate warnings that clients can display with SHOW WARNINGS. Suppose that a reset rule contains an expansion longer than the maximum supported length of 6 characters:
<reset>abcdefghi</reset>
<i>x</i>
An attempt to use the collation produces warnings:
mysql> SELECT _utf8'test' COLLATE utf8_test_ci;
ERROR 1273 (HY000): Unknown collation: 'utf8_test_ci'
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Error | 1273 | Unknown collation: 'utf8_test_ci' |
| Warning | 1273 | Expansion is too long at 'abcdefghi=x' |
+---------+------+--+
10.5. Character Set Configuration
You can change the default server character set and collation with the --character-set-server and --collation-server options when you start the server. The collation must be a legal collation for the default character set. (Use the SHOW COLLATION statement to determine which collations are available for each character set.) See Section 5.1.3, “Server Command Options”.
If you try to use a character set that is not compiled into your binary, you might run into the following problems:
Your program uses an incorrect path to determine where the character sets are stored (which is typically the share/mysql/charsets or share/charsets directory under the MySQL installation directory). This can be fixed by using the --character-sets-dir option when you run the program in question. For example, to specify a directory to be used by MySQL client programs, list it in the [client] group of your option file. The examples given here show what the setting might look like for Unix or Windows, respectively:
[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets
[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 5.6/share/charsets"
The character set is a complex character set that cannot be loaded dynamically. In this case, you must recompile the program with support for the character set.
For Unicode character sets, you can define collations without recompiling by using LDML notation. See Section 10.4.4, “Adding a UCA Collation to a Unicode Character Set”.
The character set is a dynamic character set, but you do not have a configuration file for it. In this case, you should install the configuration file for the character set from a new MySQL distribution.
If your character set index file does not contain the name for the character set, your program displays an error message. The file is named Index.xml and the message is:
Character set 'charset_name' is not a compiled character set and is not
specified in the '/usr/share/mysql/charsets/Index.xml' file
To solve this problem, you should either get a new index file or manually add the name of any missing character sets to the current file.
You can force client programs to use specific character set as follows:
[client]
default-character-set=charset_name
This is normally unnecessary. However, when character_set_system differs from character_set_server or character_set_client, and you input characters manually (as database object identifiers, column values, or both), these may be displayed incorrectly in output from the client or the output itself may be formatted incorrectly. In such cases, starting the mysql client with --default-character-set=system_character_set—that is, setting the client character set to match the system character set—should fix the problem.
For MyISAM tables, you can check the character set name and number for a table with myisamchk -dvv tbl_name.
10.6. MySQL Server Time Zone Support
The MySQL server maintains several time zone settings:
The system time zone. When the server starts, it attempts to determine the time zone of the host machine and uses it to set the system_time_zone system variable. The value does not change thereafter.
You can set the system time zone for MySQL Server at startup with the --timezone=timezone_name option to mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld. The permissible values for --timezone or TZ are system dependent. Consult your operating system documentation to see what values are acceptable.
The server's current time zone. The global time_zone system variable indicates the time zone the server currently is operating in. The initial value for time_zone is 'SYSTEM', which indicates that the server time zone is the same as the system time zone.
The initial global server time zone value can be specified explicitly at startup with the --default-time-zone=timezone option on the command line, or you can use the following line in an option file:
default-time-zone='timezone'
If you have the SUPER privilege, you can set the global server time zone value at runtime with this statement:
mysql> SET GLOBAL time_zone = timezone;
Per-connection time zones. Each client that connects has its own time zone setting, given by the session time_zone variable. Initially, the session variable takes its value from the global time_zone variable, but the client can change its own time zone with this statement:
mysql> SET time_zone = timezone;
The current session time zone setting affects display and storage of time values that are zone-sensitive. This includes the values displayed by functions such as NOW() or CURTIME(), and values stored in and retrieved from TIMESTAMP columns. Values for TIMESTAMP columns are converted from the current time zone to UTC for storage, and from UTC to the current time zone for retrieval.
The current time zone setting does not affect values displayed by functions such as UTC_TIMESTAMP() or values in DATE, TIME, or DATETIME columns. Nor are values in those data types stored in UTC; the time zone applies for them only when converting from TIMESTAMP values. If you want locale-specific arithmetic for DATE, TIME, or DATETIME values, convert them to UTC, perform the arithmetic, and then convert back.
The current values of the global and client-specific time zones can be retrieved like this:
mysql> SELECT @@global.time_zone, @@session.time_zone;
timezone values can be given in several formats, none of which are case sensitive:
The value 'SYSTEM' indicates that the time zone should be the same as the system time zone.
The value can be given as a string indicating an offset from UTC, such as '+10:00' or '-6:00'.
The value can be given as a named time zone, such as 'Europe/Helsinki', 'US/Eastern', or 'MET'. Named time zones can be used only if the time zone information tables in the mysql database have been created and populated.
The MySQL installation procedure creates the time zone tables in the mysql database, but does not load them. You must do so manually using the following instructions. (If you are upgrading to MySQL 4.1.3 or later from an earlier version, you can create the tables by upgrading your mysql database. Use the instructions in Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”. After creating the tables, you can load them.)
Note
Loading the time zone information is not necessarily a one-time operation because the information changes occasionally. For example, the rules for Daylight Saving Time in the United States, Mexico, and parts of Canada changed in 2007. When such changes occur, applications that use the old rules become out of date and you may find it necessary to reload the time zone tables to keep the information used by your MySQL server current. See the notes at the end of this section.
If your system has its own zoneinfo database (the set of files describing time zones), you should use the mysql_tzinfo_to_sql program for filling the time zone tables. Examples of such systems are Linux, FreeBSD, Solaris, and Mac OS X. One likely location for these files is the /usr/share/zoneinfo directory. If your system does not have a zoneinfo database, you can use the downloadable package described later in this section.
The mysql_tzinfo_to_sql program is used to load the time zone tables. On the command line, pass the zoneinfo directory path name to mysql_tzinfo_to_sql and send the output into the mysql program. For example:
shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql
mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them. mysql processes those statements to load the time zone tables.
mysql_tzinfo_to_sql also can be used to load a single time zone file or to generate leap second information:
To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke mysql_tzinfo_to_sql like this:
shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql
With this approach, you must execute a separate command to load the time zone file for each named zone that the server needs to know about.
If your time zone needs to account for leap seconds, initialize the leap second information like this, where tz_file is the name of your time zone file:
shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql
After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to use any previously cached time zone data.
If your system is one that has no zoneinfo database (for example, Windows or HP-UX), you can use the package of pre-built time zone tables that is available for download at the MySQL Developer Zone:
http://dev.mysql.com/downloads/timezones.html
This time zone package contains .frm, .MYD, and .MYI files for the MyISAM time zone tables. These tables should be part of the mysql database, so you should place the files in the mysql subdirectory of your MySQL server's data directory. The server should be stopped while you do this and restarted afterward.
Warning
Do not use the downloadable package if your system has a zoneinfo database. Use the mysql_tzinfo_to_sql utility instead. Otherwise, you may cause a difference in datetime handling between MySQL and other applications on your system.
For information about time zone settings in replication setup, please see Section 16.4.1, “Replication Features and Issues”.
10.6.1. Staying Current with Time Zone Changes
As mentioned earlier, when the time zone rules change, applications that use the old rules become out of date. To stay current, it is necessary to make sure that your system uses current time zone information is used. For MySQL, there are two factors to consider in staying current:
The operating system time affects the value that the MySQL server uses for times if its time zone is set to SYSTEM. Make sure that your operating system is using the latest time zone information. For most operating systems, the latest update or service pack prepares your system for the time changes. Check the Web site for your operating system vendor for an update that addresses the time changes.
If you replace the system's /etc/localtime timezone file with a version that uses rules differing from those in effect at mysqld startup, you should restart mysqld so that it uses the updated rules. Otherwise, mysqld might not notice when the system changes its time.
If you use named time zones with MySQL, make sure that the time zone tables in the mysql database are up to date. If your system has its own zoneinfo database, you should reload the MySQL time zone tables whenever the zoneinfo database is updated, using the instructions given earlier in this section. For systems that do not have their own zoneinfo database, check the MySQL Developer Zone for updates. When a new update is available, download it and use it to replace your current time zone tables. mysqld caches time zone information that it looks up, so after replacing the time zone tables, you should restart mysqld to make sure that it does not continue to serve outdated time zone data.
If you are uncertain whether named time zones are available, for use either as the server's time zone setting or by clients that set their own time zone, check whether your time zone tables are empty. The following query determines whether the table that contains time zone names has any rows:
mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+
A count of zero indicates that the table is empty. In this case, no one can be using named time zones, and you don't need to update the tables. A count greater than zero indicates that the table is not empty and that its contents are available to be used for named time zone support. In this case, you should be sure to reload your time zone tables so that anyone who uses named time zones will get correct query results.
To check whether your MySQL installation is updated properly for a change in Daylight Saving Time rules, use a test like the one following. The example uses values that are appropriate for the 2007 DST 1-hour change that occurs in the United States on March 11 at 2 a.m.
The test uses these two queries:
SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
The two time values indicate the times at which the DST change occurs, and the use of named time zones requires that the time zone tables be used. The desired result is that both queries return the same result (the input time, converted to the equivalent value in the 'US/Central' time zone).
Before updating the time zone tables, you would see an incorrect result like this:
mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+
mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 02:00:00 |
+--+
After updating the tables, you should see the correct result:
mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+
mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+
10.6.2. Time Zone Leap Second Support
Leap second values are returned with a time part that ends with :59:59. This means that a function such as NOW() can return the same value for two or three consecutive seconds during the leap second. It remains true that literal temporal values having a time part that ends with :59:60 or :59:61 are considered invalid.
If it is necessary to search for TIMESTAMP values one second before the leap second, anomalous results may be obtained if you use a comparison with 'YYYY-MM-DD hh:mm:ss' values. The following example demonstrates this. It changes the local time zone to UTC so there is no difference between internal values (which are in UTC) and displayed values (which have time zone correction applied).
mysql> CREATE TABLE t1 (
-> a INT,
-> ts TIMESTAMP DEFAULT NOW(),
-> PRIMARY KEY (ts)
->);
Query OK, 0 rows affected (0.01 sec)
mysql> -- change to UTC
mysql> SET time_zone = '+00:00';
Query OK, 0 rows affected (0.00 sec)
mysql> -- Simulate NOW() = '2008-12-31 23:59:59'
mysql> SET timestamp = 1230767999;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO t1 (a) VALUES (1);
Query OK, 1 row affected (0.00 sec)
mysql> -- Simulate NOW() = '2008-12-31 23:59:60'
mysql> SET timestamp = 1230768000;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO t1 (a) VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> -- values differ internally but display the same
mysql> SELECT a, ts, UNIX_TIMESTAMP(ts) FROM t1;
+------+---------------------+--------------------+
| a | ts | UNIX_TIMESTAMP(ts) |
+------+---------------------+--------------------+
| 1 | 2008-12-31 23:59:59 | 1230767999 |
| 2 | 2008-12-31 23:59:59 | 1230768000 |
+------+---------------------+--------------------+
2 rows in set (0.00 sec)
mysql> -- only the non-leap value matches
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:59';
+------+---------------------+
| a | ts |
+------+---------------------+
| 1 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)
mysql> -- the leap value with seconds=60 is invalid
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:60';
Empty set, 2 warnings (0.00 sec)
To work around this, you can use a comparison based on the UTC value actually stored in column, which has the leap second correction applied:
mysql> -- selecting using UNIX_TIMESTAMP value return leap value
mysql> SELECT * FROM t1 WHERE UNIX_TIMESTAMP(ts) = 1230768000;
+------+---------------------+
| a | ts |
+------+---------------------+
| 2 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)
10.7. MySQL Server Locale Support
The locale indicated by the lc_time_names system variable controls the language used to display day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME(), and MONTHNAME() functions.
lc_time_names does not affect the STR_TO_DATE() or GET_FORMAT() function.
The lc_time_names value does not affect the result from FORMAT(), but this function takes an optional third parameter that enables a locale to be specified to be used for the result number's decimal point, thousands separator, and grouping between separators. Permissible locale values are the same as the legal values for the lc_time_names system variable.
Locale names have language and region subtags listed by IANA (http://www.iana.org/assignments/language-subtag-registry) such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of your system's locale setting, but you can set the value at server startup or set the GLOBAL value if you have the SUPER privilege. Any client can examine the value of lc_time_names or set its SESSION value to affect the locale for its own connection.
mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.09 sec)
mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)
mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| Friday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)
mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| Friday Fri January Jan |
+---+
1 row in set (0.00 sec)
mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX |
+-----------------+
1 row in set (0.00 sec)
mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| viernes | enero |
+-----------------------+-------------------------+
1 row in set (0.00 sec)
mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| viernes vie enero ene |
+---+
1 row in set (0.00 sec)
The day or month name for each of the affected functions is converted from utf8 to the character set indicated by the character_set_connection system variable.
lc_time_names may be set to any of the following locale values. The set of locales supported by MySQL may differ from those supported by your operating system.
ar_AE: Arabic - United Arab Emirates | ar_BH: Arabic - Bahrain |
ar_DZ: Arabic - Algeria | ar_EG: Arabic - Egypt |
ar_IN: Arabic - India | ar_IQ: Arabic - Iraq |
ar_JO: Arabic - Jordan | ar_KW: Arabic - Kuwait |
ar_LB: Arabic - Lebanon | ar_LY: Arabic - Libya |
ar_MA: Arabic - Morocco | ar_OM: Arabic - Oman |
ar_QA: Arabic - Qatar | ar_SA: Arabic - Saudi Arabia |
ar_SD: Arabic - Sudan | ar_SY: Arabic - Syria |
ar_TN: Arabic - Tunisia | ar_YE: Arabic - Yemen |
be_BY: Belarusian - Belarus | bg_BG: Bulgarian - Bulgaria |
ca_ES: Catalan - Spain | cs_CZ: Czech - Czech Republic |
da_DK: Danish - Denmark | de_AT: German - Austria |
de_BE: German - Belgium | de_CH: German - Switzerland |
de_DE: German - Germany | de_LU: German - Luxembourg |
el_GR: Greek - Greece | en_AU: English - Australia |
en_CA: English - Canada | en_GB: English - United Kingdom |
en_IN: English - India | en_NZ: English - New Zealand |
en_PH: English - Philippines | en_US: English - United States |
en_ZA: English - South Africa | en_ZW: English - Zimbabwe |
es_AR: Spanish - Argentina | es_BO: Spanish - Bolivia |
es_CL: Spanish - Chile | es_CO: Spanish - Columbia |
es_CR: Spanish - Costa Rica | es_DO: Spanish - Dominican Republic |
es_EC: Spanish - Ecuador | es_ES: Spanish - Spain |
es_GT: Spanish - Guatemala | es_HN: Spanish - Honduras |
es_MX: Spanish - Mexico | es_NI: Spanish - Nicaragua |
es_PA: Spanish - Panama | es_PE: Spanish - Peru |
es_PR: Spanish - Puerto Rico | es_PY: Spanish - Paraguay |
es_SV: Spanish - El Salvador | es_US: Spanish - United States |
es_UY: Spanish - Uruguay | es_VE: Spanish - Venezuela |
et_EE: Estonian - Estonia | eu_ES: Basque - Basque |
fi_FI: Finnish - Finland | fo_FO: Faroese - Faroe Islands |
fr_BE: French - Belgium | fr_CA: French - Canada |
fr_CH: French - Switzerland | fr_FR: French - France |
fr_LU: French - Luxembourg | gl_ES: Galician - Spain |
gu_IN: Gujarati - India | he_IL: Hebrew - Israel |
hi_IN: Hindi - India | hr_HR: Croatian - Croatia |
hu_HU: Hungarian - Hungary | id_ID: Indonesian - Indonesia |
is_IS: Icelandic - Iceland | it_CH: Italian - Switzerland |
it_IT: Italian - Italy | ja_JP: Japanese - Japan |
ko_KR: Korean - Republic of Korea | lt_LT: Lithuanian - Lithuania |
lv_LV: Latvian - Latvia | mk_MK: Macedonian - FYROM |
mn_MN: Mongolia - Mongolian | ms_MY: Malay - Malaysia |
nb_NO: Norwegian(Bokmål) - Norway | nl_BE: Dutch - Belgium |
nl_NL: Dutch - The Netherlands | no_NO: Norwegian - Norway |
pl_PL: Polish - Poland | pt_BR: Portugese - Brazil |
pt_PT: Portugese - Portugal | rm_CH: Romansh - Switzerland |
ro_RO: Romanian - Romania | ru_RU: Russian - Russia |
ru_UA: Russian - Ukraine | sk_SK: Slovak - Slovakia |
sl_SI: Slovenian - Slovenia | sq_AL: Albanian - Albania |
sr_RS: Serbian - Yugoslavia | sv_FI: Swedish - Finland |
sv_SE: Swedish - Sweden | ta_IN: Tamil - India |
te_IN: Telugu - India | th_TH: Thai - Thailand |
tr_TR: Turkish - Turkey | uk_UA: Ukrainian - Ukraine |
ur_PK: Urdu - Pakistan | vi_VN: Vietnamese - Viet Nam |
zh_CN: Chinese - China | zh_HK: Chinese - Hong Kong |
zh_TW: Chinese - Taiwan Province of China |
Chapter 11. Data Types
Table of Contents
11.1.1. Numeric Type Overview
11.1.2. Date and Time Type Overview
11.1.3. String Type Overview
11.2.1. Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
11.2.2. Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC
11.2.3. Floating-Point Types (Approximate Value) - FLOAT, DOUBLE
11.2.4. Bit-Value Type - BIT
11.2.5. Numeric Type Attributes
11.2.6. Out-of-Range and Overflow Handling
11.3.1. The DATE, DATETIME, and TIMESTAMP Types
11.3.2. The TIME Type
11.3.3. The YEAR Type
11.3.4. YEAR(2) Limitations and Migrating to YEAR(4)
11.3.5. Automatic Initialization and Updating for TIMESTAMP and DATETIME
11.3.6. Fractional Seconds in Time Values
11.3.7. Conversion Between Date and Time Types
11.3.8. Two-Digit Years in Dates
11.4.1. The CHAR and VARCHAR Types
11.4.2. The BINARY and VARBINARY Types
11.4.3. The BLOB and TEXT Types
11.4.4. The ENUM Type
11.4.5. The SET Type
11.5. Data Type Default Values
11.6. Data Type Storage Requirements
11.7. Choosing the Right Type for a Column
11.8. Using Data Types from Other Database Engines
MySQL supports a number of SQL data types in several categories: numeric types, date and time types, and string (character and byte) types. This chapter provides an overview of these data types, a more detailed description of the properties of the types in each category, and a summary of the data type storage requirements. The initial overview is intentionally brief. The more detailed descriptions later in the chapter should be consulted for additional information about particular data types, such as the permissible formats in which you can specify values.
MySQL also supports extensions for handling spatial data. For information about these data types, see Section 12.18, “Spatial Extensions”.
Data type descriptions use these conventions:
M indicates the maximum display width for integer types. For floating-point and fixed-point types, M is the total number of digits that can be stored (the precision). For string types, M is the maximum length. The maximum permissible value of M depends on the data type.
D applies to floating-point and fixed-point types and indicates the number of digits following the decimal point (the scale). The maximum possible value is 30, but should be no greater than M–2.
fsp applies to the TIME, DATETIME, and TIMESTAMP types and represents fractional seconds precision; that is, the number of digits following the decimal point for fractional parts of seconds. The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility with previous MySQL versions.)
Square brackets (“[” and “]”) indicate optional parts of type definitions.
11.1. Data Type Overview
11.1.1. Numeric Type Overview
A summary of the numeric data types follows. For additional information about properties and storage requirements of the numeric types, see Section 11.2, “Numeric Types”, and Section 11.6, “Data Type Storage Requirements”.
M indicates the maximum display width for integer types. The maximum display width is 255. Display width is unrelated to the range of values a type can contain, as described in Section 11.2, “Numeric Types”. For floating-point and fixed-point types, M is the total number of digits that can be stored.
If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to the column.
Numeric data types that permit the UNSIGNED attribute also permit SIGNED. However, these data types are signed by default, so the SIGNED attribute has no effect.
SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.
SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL AUTO_INCREMENT UNIQUE.
Warning
When you use subtraction between integer values where one is of type UNSIGNED, the result is unsigned unless the NO_UNSIGNED_SUBTRACTION SQL mode is enabled. See Section 12.10, “Cast Functions and Operators”.
A bit-field type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.
TINYINT[(M)] [UNSIGNED] [ZEROFILL]
A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.
These types are synonyms for TINYINT(1). A value of zero is considered false. Nonzero values are considered true:
mysql> SELECT IF(0, 'true', 'false');
+------------------------+
| IF(0, 'true', 'false') |
+------------------------+
| false |
+------------------------+
mysql> SELECT IF(1, 'true', 'false');
+------------------------+
| IF(1, 'true', 'false') |
+------------------------+
| true |
+------------------------+
mysql> SELECT IF(2, 'true', 'false');
+------------------------+
| IF(2, 'true', 'false') |
+------------------------+
| true |
+------------------------+
However, the values TRUE and FALSE are merely aliases for 1 and 0, respectively, as shown here:
mysql> SELECT IF(0 = FALSE, 'true', 'false');
+--------------------------------+
| IF(0 = FALSE, 'true', 'false') |
+--------------------------------+
| true |
+--------------------------------+
mysql> SELECT IF(1 = TRUE, 'true', 'false');
+-------------------------------+
| IF(1 = TRUE, 'true', 'false') |
+-------------------------------+
| true |
+-------------------------------+
mysql> SELECT IF(2 = TRUE, 'true', 'false');
+-------------------------------+
| IF(2 = TRUE, 'true', 'false') |
+-------------------------------+
| false |
+-------------------------------+
mysql> SELECT IF(2 = FALSE, 'true', 'false');
+--------------------------------+
| IF(2 = FALSE, 'true', 'false') |
+--------------------------------+
| false |
+--------------------------------+
The last two statements display the results shown because 2 is equal to neither 1 nor 0.
SMALLINT[(M)] [UNSIGNED] [ZEROFILL]
A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.
MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]
A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to 16777215.
INT[(M)] [UNSIGNED] [ZEROFILL]
A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is 0 to 4294967295.
INTEGER[(M)] [UNSIGNED] [ZEROFILL]
This type is a synonym for INT.
BIGINT[(M)] [UNSIGNED] [ZEROFILL]
A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The unsigned range is 0 to 18446744073709551615.
SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.
Some things you should be aware of with respect to BIGINT columns:
All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned big integers larger than 9223372036854775807 (63 bits) except with bit functions! If you do that, some of the last digits in the result may be wrong because of rounding errors when converting a BIGINT value to a DOUBLE.
MySQL can handle BIGINT in the following cases:
When using integers to store large unsigned values in a BIGINT column.
In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT column.
When using operators (+, -, *, and so on) where both operands are integers.
You can always store an exact integer value in a BIGINT column by storing it using a string. In this case, MySQL performs a string-to-number conversion that involves no intermediate double-precision representation.
The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This means that if you multiply two big integers (or results from functions that return integers), you may get unexpected results when the result is larger than 9223372036854775807.
DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]
A packed “exact” fixed-point number. M is the total number of digits (the precision) and D is the number of digits after the decimal point (the scale). The decimal point and (for negative numbers) the “-” sign are not counted in M. If D is 0, values have no decimal point or fractional part. The maximum number of digits (M) for DECIMAL is 65. The maximum number of supported decimals (D) is 30. If D is omitted, the default is 0. If M is omitted, the default is 10.
UNSIGNED, if specified, disallows negative values.
All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.
DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED] [ZEROFILL], FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]
These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with other database systems.
FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]
A small (single-precision) floating-point number. Permissible values are -3.402823466E+38 to -1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. These are the theoretical limits, based on the IEEE standard. The actual range might be slightly smaller depending on your hardware or operating system.
M is the total number of digits and D is the number of digits following the decimal point. If M and D are omitted, values are stored to the limits permitted by the hardware. A single-precision floating-point number is accurate to approximately 7 decimal places.
UNSIGNED, if specified, disallows negative values.
Using FLOAT might give you some unexpected problems because all calculations in MySQL are done with double precision. See Section C.5.5.7, “Solving Problems with No Matching Rows”.
DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]
A normal-size (double-precision) floating-point number. Permissible values are -1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and 2.2250738585072014E-308 to 1.7976931348623157E+308. These are the theoretical limits, based on the IEEE standard. The actual range might be slightly smaller depending on your hardware or operating system.
M is the total number of digits and D is the number of digits following the decimal point. If M and D are omitted, values are stored to the limits permitted by the hardware. A double-precision floating-point number is accurate to approximately 15 decimal places.
UNSIGNED, if specified, disallows negative values.
DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED] [ZEROFILL]
These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled, REAL is a synonym for FLOAT rather than DOUBLE.
FLOAT(p) [UNSIGNED] [ZEROFILL]
A floating-point number. p represents the precision in bits, but MySQL uses this value only to determine whether to use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the data type becomes FLOAT with no M or D values. If p is from 25 to 53, the data type becomes DOUBLE with no M or D values. The range of the resulting column is the same as for the single-precision FLOAT or double-precision DOUBLE data types described earlier in this section.
FLOAT(p) syntax is provided for ODBC compatibility.
11.1.2. Date and Time Type Overview
A summary of the temporal data types follows. For additional information about properties and storage requirements of the temporal types, see Section 11.3, “Date and Time Types”, and Section 11.6, “Data Type Storage Requirements”. For descriptions of functions that operate on temporal values, see Section 12.7, “Date and Time Functions”.
For the DATE and DATETIME range descriptions, “supported” means that although earlier values might work, there is no guarantee.
MySQL 5.6.4 and up permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to microseconds (6 digits) precision. To define a column that includes a fractional seconds part, use the syntax type_name(fsp), where type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the fractional seconds precision. For example:
CREATE TABLE t1 (t TIME(3), dt DATETIME(6));
The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility with previous MySQL versions.)
MySQL 5.6.5 introduces expanded automatic initialization and updating of temporal types. Any TIMESTAMP column in a table can have these properties, rather than at most one column per table. In addition, these properties are now available for DATETIME columns.
The YEAR(2) data type has certain issues that you should consider before choosing to use it. As of MySQL 5.6.6, YEAR(2) is deprecated. YEAR(2) columns in existing tables are treated as before, but YEAR(2) in new or altered tables are converted to YEAR(4). For more information, see Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”.
A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE values in 'YYYY-MM-DD' format, but permits assignment of values to DATE columns using either strings or numbers.
A date and time combination. The supported range is '1000-01-01 00:00:00.000000' to '9999-12-31 23:59:59.999999'. MySQL displays DATETIME values in 'YYYY-MM-DD HH:MM:SS[.fraction]' format, but permits assignment of values to DATETIME columns using either strings or numbers.
As of MySQL 5.6.4, an optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision. A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.
As of MySQL 5.6.5, automatic initialization and updating to the current date and time for DATETIME columns can be specified using DEFAULT and ON UPDATE column definition clauses, as described in Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”.
A timestamp. The range is '1970-01-01 00:00:01.000000' UTC to '2038-01-19 03:14:07.999999' UTC. TIMESTAMP values are stored as the number of seconds since the epoch ('1970-01-01 00:00:00' UTC). A TIMESTAMP cannot represent the value '1970-01-01 00:00:00' because that is equivalent to 0 seconds from the epoch and the value 0 is reserved for representing '0000-00-00 00:00:00', the “zero” TIMESTAMP value.
As of MySQL 5.6.4, an optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision. A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.
The way the server handles TIMESTAMP definitions depends on the value of the explicit_defaults_for_timestamp system variable (see Section 5.1.4, “Server System Variables”). By default, explicit_defaults_for_timestamp is disabled and the server handles TIMESTAMP as follows:
Unless specified otherwise, the first TIMESTAMP column in a table is defined to be automatically set to the date and time of the most recent modification if not explicitly assigned a value. This makes TIMESTAMP useful for recording the timestamp of an INSERT or UPDATE operation. You can also set any TIMESTAMP column to the current date and time by assigning it a NULL value, unless it has been defined with the NULL attribute to permit NULL values.
Automatic initialization and updating to the current date and time can be specified using DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP column definition clauses. By default, the first TIMESTAMP column has these properties, as previously noted. As of MySQL 5.6.5, any TIMESTAMP column in a table can be defined to have these properties. Before 5.6.5, at most one TIMESTAMP column per table can have them, but it is possible to suppress them for the first column and instead assign them to a different TIMESTAMP column. See Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”.
If explicit_defaults_for_timestamp is enabled, there is no automatic assignment of the DEFAULT CURRENT_TIMESTAMP or ON UPDATE CURRENT_TIMESTAMP attributes to any TIMESTAMP column. They must be included explicitly in the column definition. Also, any TIMESTAMP not explicitly declared as NOT NULL permits NULL values.
explicit_defaults_for_timestamp is available as of MySQL 5.6.6. Before 5.6.6, the server handles TIMESTAMP as discussed for explicit_defaults_for_timestamp disabled. Those behaviors, while they remain the default, are nonstandard and are deprecated as of 5.6.6. For discussion regarding upgrading to an installation with explicit_defaults_for_timestamp enabled, see Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”.
A time. The range is '-838:59:59.000000' to '838:59:59.000000'. MySQL displays TIME values in 'HH:MM:SS[.fraction]' format, but permits assignment of values to TIME columns using either strings or numbers.
As of MySQL 5.6.4, an optional fsp value in the range from 0 to 6 may be given to specify fractional seconds precision. A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0.
A year in two-digit or four-digit format. The default is four-digit format. YEAR(2) or YEAR(4) differ in display format, but have the same range of values. In four-digit format, values display as 1901 to 2155, and 0000. In two-digit format, values display as 70 to 69, representing years from 1970 to 2069. MySQL displays YEAR values in YYYY or YYformat, but permits assignment of values to YEAR columns using either strings or numbers.
Note
The YEAR(2) data type has certain issues that you should consider before choosing to use it. As of MySQL 5.6.6, YEAR(2) is deprecated. YEAR(2) columns in existing tables are treated as before, but YEAR(2) in new or altered tables are converted to YEAR(4). For more information, see Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”.
For additional information about YEAR display format and interpretation of input values, see Section 11.3.3, “The YEAR Type”.
The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values to numbers, losing everything after the first nonnumeric character.) To work around this problem, convert to numeric units, perform the aggregate operation, and convert back to a temporal value. Examples:
SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;
Note
The MySQL server can be run with the MAXDB SQL mode enabled. In this case, TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that a table is created, TIMESTAMP columns are created as DATETIME columns. As a result, such columns use DATETIME display format, have the same range of values, and there is no automatic initialization or updating to the current date and time. See Section 5.1.7, “Server SQL Modes”.
11.1.3. String Type Overview
A summary of the string data types follows. For additional information about properties and storage requirements of the string types, see Section 11.4, “String Types”, and Section 11.6, “Data Type Storage Requirements”.
In some cases, MySQL may change a string column to a type different from that given in a CREATE TABLE or ALTER TABLE statement. See Section 13.1.14.3, “Silent Column Specification Changes”.
MySQL interprets length specifications in character column definitions in character units. This applies to CHAR, VARCHAR, and the TEXT types.
Column definitions for many string data types can include attributes that specify the character set or collation of the column. These attributes apply to the CHAR, VARCHAR, the TEXT types, ENUM, and SET data types:
The CHARACTER SET attribute specifies the character set, and the COLLATE attribute specifies a collation for the character set. For example:
CREATE TABLE t
(
c1 VARCHAR(20) CHARACTER SET utf8,
c2 TEXT CHARACTER SET latin1 COLLATE latin1_general_cs
);
This table definition creates a column named c1 that has a character set of utf8 with the default collation for that character set, and a column named c2 that has a character set of latin1 and a case-sensitive collation.
The rules for assigning the character set and collation when either or both of the CHARACTER SET and COLLATE attributes are missing are described in Section 10.1.3.4, “Column Character Set and Collation”.
CHARSET is a synonym for CHARACTER SET.
Specifying the CHARACTER SET binary attribute for a character data type causes the column to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they are created as declared. Suppose that you specify a table using this definition:
CREATE TABLE t
(
c1 VARCHAR(10) CHARACTER SET binary,
c2 TEXT CHARACTER SET binary,
c3 ENUM('a','b','c') CHARACTER SET binary
);
The resulting table has this definition:
CREATE TABLE t
(
c1 VARBINARY(10),
c2 BLOB,
c3 ENUM('a','b','c') CHARACTER SET binary
);
The ASCII attribute is shorthand for CHARACTER SET latin1.
The UNICODE attribute is shorthand for CHARACTER SET ucs2.
The BINARY attribute is shorthand for specifying the binary collation of the column character set. In this case, sorting and comparison are based on numeric character values.
Character column sorting and comparison are based on the character set assigned to the column. For the CHAR, VARCHAR, TEXT, ENUM, and SET data types, you can declare a column with a binary collation or the BINARY attribute to cause sorting and comparison to use the underlying character code values rather than a lexical ordering.
Section 10.1, “Character Set Support”, provides additional information about use of character sets in MySQL.
[NATIONAL] CHAR[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]
A fixed-length string that is always right-padded with spaces to the specified length when stored. M represents the column length in characters. The range of M is 0 to 255. If M is omitted, the length is 1.
Note
Trailing spaces are removed when CHAR values are retrieved unless the PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.
CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is the standard SQL way to define that a CHAR column should use some predefined character set. MySQL 4.1 and up uses utf8 as this predefined character set. Section 10.1.3.6, “National Character Set”.
The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.
MySQL permits you to create a column of type CHAR(0). This is useful primarily when you have to be compliant with old applications that depend on the existence of a column but that do not actually use its value. CHAR(0) is also quite nice when you need a column that can take only two values: A column that is defined as CHAR(0) NULL occupies only one bit and can take only the values NULL and '' (the empty string).
[NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE collation_name]
A variable-length string. M represents the maximum column length in characters. The range of M is 0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535 bytes, which is shared among all columns) and the character set used. For example, utf8 characters can require up to three bytes per character, so a VARCHAR column that uses the utf8 character set can be declared to be a maximum of 21,844 characters. See Section E.10.4, “Limits on Table Column Count and Row Size”.
MySQL stores VARCHAR values as a 1-byte or 2-byte length prefix plus data. The length prefix indicates the number of bytes in the value. A VARCHAR column uses one length byte if values require no more than 255 bytes, two length bytes if values may require more than 255 bytes.
Note
MySQL 5.6 follows the standard SQL specification, and does not remove trailing spaces from VARCHAR values.
VARCHAR is shorthand for CHARACTER VARYING. NATIONAL VARCHAR is the standard SQL way to define that a VARCHAR column should use some predefined character set. MySQL 4.1 and up uses utf8 as this predefined character set. Section 10.1.3.6, “National Character Set”. NVARCHAR is shorthand for NATIONAL VARCHAR.
The BINARY type is similar to the CHAR type, but stores binary byte strings rather than nonbinary character strings. M represents the column length in bytes.
The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than nonbinary character strings. M represents the maximum column length in bytes.
A BLOB column with a maximum length of 255 (28 – 1) bytes. Each TINYBLOB value is stored using a 1-byte length prefix that indicates the number of bytes in the value.
TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]
A TEXT column with a maximum length of 255 (28 – 1) characters. The effective maximum length is less if the value contains multi-byte characters. Each TINYTEXT value is stored using a 1-byte length prefix that indicates the number of bytes in the value.
A BLOB column with a maximum length of 65,535 (216 – 1) bytes. Each BLOB value is stored using a 2-byte length prefix that indicates the number of bytes in the value.
An optional length M can be given for this type. If this is done, MySQL creates the column as the smallest BLOB type large enough to hold values M bytes long.
TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]
A TEXT column with a maximum length of 65,535 (216 – 1) characters. The effective maximum length is less if the value contains multi-byte characters. Each TEXT value is stored using a 2-byte length prefix that indicates the number of bytes in the value.
An optional length M can be given for this type. If this is done, MySQL creates the column as the smallest TEXT type large enough to hold values M characters long.
A BLOB column with a maximum length of 16,777,215 (224 – 1) bytes. Each MEDIUMBLOB value is stored using a 3-byte length prefix that indicates the number of bytes in the value.
MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]
A TEXT column with a maximum length of 16,777,215 (224 – 1) characters. The effective maximum length is less if the value contains multi-byte characters. Each MEDIUMTEXT value is stored using a 3-byte length prefix that indicates the number of bytes in the value.
A BLOB column with a maximum length of 4,294,967,295 or 4GB (232 – 1) bytes. The effective maximum length of LONGBLOB columns depends on the configured maximum packet size in the client/server protocol and available memory. Each LONGBLOB value is stored using a 4-byte length prefix that indicates the number of bytes in the value.
LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]
A TEXT column with a maximum length of 4,294,967,295 or 4GB (232 – 1) characters. The effective maximum length is less if the value contains multi-byte characters. The effective maximum length of LONGTEXT columns also depends on the configured maximum packet size in the client/server protocol and available memory. Each LONGTEXT value is stored using a 4-byte length prefix that indicates the number of bytes in the value.
ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE collation_name]
An enumeration. A string object that can have only one value, chosen from the list of values 'value1', 'value2', ..., NULL or the special '' error value. ENUM values are represented internally as integers.
An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than 3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET columns considered as a group. For more information on these limits, see Section E.10.5, “Limits Imposed by .frm File Structure”.
SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE collation_name]
A set. A string object that can have zero or more values, each of which must be chosen from the list of values 'value1', 'value2', ... SET values are represented internally as integers.
A SET column can have a maximum of 64 distinct members. A table can have no more than 255 unique element list definitions among its ENUM and SET columns considered as a group. For more information on this limit, see Section E.10.5, “Limits Imposed by .frm File Structure”.
11.2. Numeric Types
MySQL supports all standard SQL numeric data types. These types include the exact numeric data types (INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric data types (FLOAT, REAL, and DOUBLE PRECISION). The keyword INT is a synonym for INTEGER, and the keywords DEC and FIXED are synonyms for DECIMAL. MySQL treats DOUBLE as a synonym for DOUBLE PRECISION (a nonstandard extension). MySQL also treats REAL as a synonym for DOUBLE PRECISION (a nonstandard variation), unless the REAL_AS_FLOAT SQL mode is enabled.
The BIT data type stores bit-field values and is supported for MyISAM, MEMORY, InnoDB, and NDB tables.
For information about how MySQL handles assignment of out-of-range values to columns and overflow during expression evaluation, see Section 11.2.6, “Out-of-Range and Overflow Handling”.
For information about numeric type storage requirements, see Section 11.6, “Data Type Storage Requirements”.
The data type used for the result of a calculation on numeric operands depends on the types of the operands and the operations performed on them. For more information, see Section 12.6.1, “Arithmetic Operators”.
11.2.1. Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
MySQL supports the SQL standard integer types INTEGER (or INT) and SMALLINT. As an extension to the standard, MySQL also supports the integer types TINYINT, MEDIUMINT, and BIGINT. The following table shows the required storage and range for each integer type.
Type | Storage | Minimum Value | Maximum Value |
---|---|---|---|
(Bytes) | (Signed/Unsigned) | Signed/Unsigned) | |
TINYINT | 1 | -128 | 127 |
0 | 255 | ||
SMALLINT | 2 | -32768 | 32767 |
0 | 65535 | ||
MEDIUMINT | 3 | -8388608 | 8388607 |
0 | 16777215 | ||
INT | 4 | -2147483648 | 2147483647 |
0 | 4294967295 | ||
BIGINT | 8 | -9223372036854775808 | 9223372036854775807 |
0 | 18446744073709551615 |
11.2.2. Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC
The DECIMAL and NUMERIC types store exact numeric data values. These types are used when it is important to preserve exact precision, for example with monetary data. In MySQL, NUMERIC is implemented as DECIMAL, so the following remarks about DECIMAL apply equally to NUMERIC.
MySQL 5.6 stores DECIMAL values in binary format. See Section 12.19, “Precision Math”.
In a DECIMAL column declaration, the precision and scale can be (and usually is) specified; for example:
salary DECIMAL(5,2)
In this example, 5 is the precision and 2 is the scale. The precision represents the number of significant digits that are stored for values, and the scale represents the number of digits that can be stored following the decimal point.
Standard SQL requires that DECIMAL(5,2) be able to store any value with five digits and two decimals, so values that can be stored in the salary column range from -999.99 to 999.99.
In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax DECIMAL is equivalent to DECIMAL(M,0), where the implementation is permitted to decide the value of M. MySQL supports both of these variant forms of DECIMAL syntax. The default value of M is 10.
If the scale is 0, DECIMAL values contain no decimal point or fractional part.
The maximum number of digits for DECIMAL is 65, but the actual range for a given DECIMAL column can be constrained by the precision or scale for a given column. When such a column is assigned a value with more digits following the decimal point than are permitted by the specified scale, the value is converted to that scale. (The precise behavior is operating system-specific, but generally the effect is truncation to the permissible number of digits.)
11.2.3. Floating-Point Types (Approximate Value) - FLOAT, DOUBLE
The FLOAT and DOUBLE types represent approximate numeric data values. MySQL uses four bytes for single-precision values and eight bytes for double-precision values.
For FLOAT, the SQL standard permits an optional specification of the precision (but not the range of the exponent) in bits following the keyword FLOAT in parentheses. MySQL also supports this optional precision specification, but the precision value is used only to determine storage size. A precision from 0 to 23 results in a 4-byte single-precision FLOAT column. A precision from 24 to 53 results in an 8-byte double-precision DOUBLE column.
MySQL permits a nonstandard syntax: FLOAT(M,D) or REAL(M,D) or DOUBLE PRECISION(M,D). Here, “(M,D)” means than values can be stored with up to M digits in total, of which D digits may be after the decimal point. For example, a column defined as FLOAT(7,4) will look like -999.9999 when displayed. MySQL performs rounding when storing values, so if you insert 999.00009 into a FLOAT(7,4) column, the approximate result is 999.0001.
Because floating-point values are approximate and not stored as exact values, attempts to treat them as exact in comparisons may lead to problems. They are also subject to platform or implementation dependencies. For more information, see Section C.5.5.8, “Problems with Floating-Point Values”
For maximum portability, code requiring storage of approximate numeric data values should use FLOAT or DOUBLE PRECISION with no specification of precision or number of digits.
11.2.4. Bit-Value Type - BIT
The BIT data type is used to store bit-field values. A type of BIT(M) enables storage of M-bit values. M can range from 1 to 64.
To specify bit values, b'value' notation can be used. value is a binary value written using zeros and ones. For example, b'111' and b'10000000' represent 7 and 128, respectively. See Section 9.1.6, “Bit-Field Literals”.
If you assign a value to a BIT(M) column that is less than M bits long, the value is padded on the left with zeros. For example, assigning a value of b'101' to a BIT(6) column is, in effect, the same as assigning b'000101'.
11.2.5. Numeric Type Attributes
MySQL supports an extension for optionally specifying the display width of integer data types in parentheses following the base keyword for the type. For example, INT(4) specifies an INT with a display width of four digits. This optional display width may be used by applications to display integer values having a width less than the width specified for the column by left-padding them with spaces. (That is, this width is present in the metadata returned with result sets. Whether it is used or not is up to the application.)
The display width does not constrain the range of values that can be stored in the column. Nor does it prevent values wider than the column display width from being displayed correctly. For example, a column specified as SMALLINT(3) has the usual SMALLINT range of -32768 to 32767, and values outside the range permitted by three digits are displayed in full using more than three digits.
When used in conjunction with the optional (nonstandard) attribute ZEROFILL, the default padding of spaces is replaced with zeros. For example, for a column declared as INT(4) ZEROFILL, a value of 5 is retrieved as 0005.
Note
The ZEROFILL attribute is ignored when a column is involved in expressions or UNION queries.
If you store values larger than the display width in an integer column that has the ZEROFILL attribute, you may experience problems when MySQL generates temporary tables for some complicated joins. In these cases, MySQL assumes that the data values fit within the column display width.
All integer types can have an optional (nonstandard) attribute UNSIGNED. Unsigned type can be used to permit only nonnegative numbers in a column or when you need a larger upper numeric range for the column. For example, if an INT column is UNSIGNED, the size of the column's range is the same but its endpoints shift from -2147483648 and 2147483647 up to 0 and 4294967295.
Floating-point and fixed-point types also can be UNSIGNED. As with integer types, this attribute prevents negative values from being stored in the column. Unlike the integer types, the upper range of column values remains the same.
If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to the column.
Integer or floating-point data types can have the additional attribute AUTO_INCREMENT. When you insert a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column is set to the next sequence value. Typically this is value+1, where value is the largest value for the column currently in the table. AUTO_INCREMENT sequences begin with 1.
11.2.6. Out-of-Range and Overflow Handling
When MySQL stores a value in a numeric column that is outside the permissible range of the column data type, the result depends on the SQL mode in effect at the time:
If strict SQL mode is enabled, MySQL rejects the out-of-range value with an error, and the insert fails, in accordance with the SQL standard.
If no restrictive modes are enabled, MySQL clips the value to the appropriate endpoint of the range and stores the resulting value instead.
When an out-of-range value is assigned to an integer column, MySQL stores the value representing the corresponding endpoint of the column data type range. If you store 256 into a TINYINT or TINYINT UNSIGNED column, MySQL stores 127 or 255, respectively.
When a floating-point or fixed-point column is assigned a value that exceeds the range implied by the specified (or default) precision and scale, MySQL stores the value representing the corresponding endpoint of that range.
Column-assignment conversions that occur due to clipping when MySQL is not operating in strict mode are reported as warnings for ALTER TABLE, LOAD DATA INFILE, UPDATE, and multiple-row INSERT statements. In strict mode, these statements fail, and some or all the values will not be inserted or changed, depending on whether the table is a transactional table and other factors. For details, see Section 5.1.7, “Server SQL Modes”.
In MySQL 5.6, overflow during numeric expression evaluation results in an error. For example, the largest signed BIGINT value is 9223372036854775807, so the following expression produces an error:
mysql> SELECT 9223372036854775807 + 1;
ERROR 1690 (22003): BIGINT value is out of range in '(9223372036854775807 + 1)'
To enable the operation to succeed in this case, convert the value to unsigned;
mysql> SELECT CAST(9223372036854775807 AS UNSIGNED) + 1;
+---+
| CAST(9223372036854775807 AS UNSIGNED) + 1 |
+---+
| 9223372036854775808 |
+---+
Whether overflow occurs depends on the range of the operands, so another way to handle the preceding expression is to use exact-value arithmetic because DECIMAL values have a larger range than integers:
mysql> SELECT 9223372036854775807.0 + 1;
+---------------------------+
| 9223372036854775807.0 + 1 |
+---------------------------+
| 9223372036854775808.0 |
+---------------------------+
Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by default. Prior to MySQL 5.5.5, if the result would otherwise have been negative, it becomes the maximum integer value:
mysql> SET sql_mode = '';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| 18446744073709551615 |
+-------------------------+
As of MySQL 5.5.5, if the result would otherwise have been negative, an error results:
mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
ERROR 1690 (22003): BIGINT UNSIGNED value is out of range in '(cast(0 as unsigned) - 1)'
If the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative:
mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+
If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped to the maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is enabled. If strict SQL mode is enabled, an error occurs and the column remains unchanged.
11.3. Date and Time Types
The date and time types for representing temporal values are DATE, TIME, DATETIME, TIMESTAMP, and YEAR. Each temporal type has a range of valid values, as well as a “zero” value that may be used when you specify an invalid value that MySQL cannot represent. The TIMESTAMP type has special automatic updating behavior, described later. For temporal type storage requirements, see Section 11.6, “Data Type Storage Requirements”.
Keep in mind these general considerations when working with date and time types:
MySQL retrieves values for a given date or time type in a standard output format, but it attempts to interpret a variety of formats for input values that you supply (for example, when you specify a value to be assigned to or compared to a date or time type). For a description of the permitted formats for date and time types, see Section 9.1.3, “Date and Time Literals”. It is expected that you supply valid values. Unpredictable results may occur if you use values in other formats.
Although MySQL tries to interpret values in several formats, date parts must always be given in year-month-day order (for example, '98-09-04'), rather than in the month-day-year or day-month-year orders commonly used elsewhere (for example, '09-04-98', '04-09-98').
Dates containing two-digit year values are ambiguous because the century is unknown. MySQL interprets two-digit year values using these rules:
Year values in the range 70-99 are converted to 1970-1999.
Year values in the range 00-69 are converted to 2000-2069.
Conversion of values from one temporal type to another occurs according to the rules in Section 11.3.7, “Conversion Between Date and Time Types”.
MySQL automatically converts a date or time value to a number if the value is used in a numeric context and vice versa.
By default, when MySQL encounters a value for a date or time type that is out of range or otherwise invalid for the type, it converts the value to the “zero” value for that type. The exception is that out-of-range TIME values are clipped to the appropriate endpoint of the TIME range.
By setting the SQL mode to the appropriate value, you can specify more exactly what kind of dates you want MySQL to support. (See Section 5.1.7, “Server SQL Modes”.) You can get MySQL to accept certain dates, such as '2009-11-31', by enabling the ALLOW_INVALID_DATES SQL mode. This is useful when you want to store a “possibly wrong” value which the user has specified (for example, in a web form) in the database for future processing. Under this mode, MySQL verifies only that the month is in the range from 1 to 12 and that the day is in the range from 1 to 31.
MySQL permits you to store dates where the day or month and day are zero in a DATE or DATETIME column. This is extremely useful for applications that need to store birthdates for which you may not know the exact date. In this case, you simply store the date as '2009-00-00' or '2009-01-00'. If you store dates such as these, you should not expect to get correct results for functions such as DATE_SUB() or DATE_ADD() that require complete dates. To disallow zero month or day parts in dates, enable the NO_ZERO_IN_DATE SQL mode.
MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some cases more convenient than using NULL values, and uses less data and index space. To disallow '0000-00-00', enable the NO_ZERO_DATE SQL mode.
“Zero” date or time values used through Connector/ODBC are converted automatically to NULL because ODBC cannot handle such values.
The following table shows the format of the “zero” value for each type. The “zero” values are special, but you can store or refer to them explicitly using the values shown in the table. You can also do this using the values '0' or 0, which are easier to write. For temporal types that include a date part (DATE, DATETIME, and TIMESTAMP), use of these values produces warnings if the NO_ZERO_DATE SQL mode is enabled.
Data Type | “Zero” Value |
---|---|
DATE | '0000-00-00' |
TIME | '00:00:00' |
DATETIME | '0000-00-00 00:00:00' |
TIMESTAMP | '0000-00-00 00:00:00' |
YEAR | 0000 |
11.3.1. The DATE, DATETIME, and TIMESTAMP Types
The DATE, DATETIME, and TIMESTAMP types are related. This section describes their characteristics, how they are similar, and how they differ. MySQL recognizes DATE, DATETIME, and TIMESTAMP values in several formats, described in Section 9.1.3, “Date and Time Literals”. For the DATE and DATETIME range descriptions, “supported” means that although earlier values might work, there is no guarantee.
The DATE type is used for values with a date part but no time part. MySQL retrieves and displays DATE values in 'YYYY-MM-DD' format. The supported range is '1000-01-01' to '9999-12-31'.
The DATETIME type is used for values that contain both date and time parts. MySQL retrieves and displays DATETIME values in 'YYYY-MM-DD HH:MM:SS' format. The supported range is '1000-01-01 00:00:00' to '9999-12-31 23:59:59'.
The TIMESTAMP data type is used for values that contain both date and time parts. TIMESTAMP has a range of '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.
A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds (6 digits) precision. In particular, as of MySQL 5.6.4, any fractional part in a value inserted into a DATETIME or TIMESTAMP column is stored rather than discarded. With the fractional part included, the format for these values is 'YYYY-MM-DD HH:MM:SS[.fraction]', the range for DATETIME values is '1000-01-01 00:00:00.000000' to '9999-12-31 23:59:59.999999', and the range for TIMESTAMP values is '1970-01-01 00:00:01.000000' to '2038-01-19 03:14:07.999999'. For information about fractional seconds support in MySQL, see Section 11.3.6, “Fractional Seconds in Time Values”.
The TIMESTAMP and (as of MySQL 5.6.5) DATETIME data types offer automatic initialization and updating to the current date and time. For more information, see Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”.
MySQL converts TIMESTAMP values from the current time zone to UTC for storage, and back from UTC to the current time zone for retrieval. (This does not occur for other types such as DATETIME.) By default, the current time zone for each connection is the server's time. The time zone can be set on a per-connection basis. As long as the time zone setting remains constant, you get back the same value you store. If you store a TIMESTAMP value, and then change the time zone and retrieve the value, the retrieved value is different from the value you stored. This occurs because the same time zone was not used for conversion in both directions. The current time zone is available as the value of the time_zone system variable. For more information, see Section 10.6, “MySQL Server Time Zone Support”.
Invalid DATE, DATETIME, or TIMESTAMP values are converted to the “zero” value of the appropriate type ('0000-00-00' or '0000-00-00 00:00:00').
Be aware of certain properties of date value interpretation in MySQL:
MySQL permits a “relaxed” format for values specified as strings, in which any punctuation character may be used as the delimiter between date parts or time parts. In some cases, this syntax can be deceiving. For example, a value such as '10:11:12' might look like a time value because of the “:” delimiter, but is interpreted as the year '2010-11-12' if used in a date context. The value '10:45:15' is converted to '0000-00-00' because '45' is not a valid month.
The server requires that month and day values be valid, and not merely in the range 1 to 12 and 1 to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate an error. To permit such dates, enable ALLOW_INVALID_DATES. See Section 5.1.7, “Server SQL Modes”, for more information.
MySQL does not accept TIMESTAMP values that include a zero in the day or month column or values that are not a valid date. The sole exception to this rule is the special “zero” value '0000-00-00 00:00:00'.
Dates containing two-digit year values are ambiguous because the century is unknown. MySQL interprets two-digit year values using these rules:
Year values in the range 00-69 are converted to 2000-2069.
Year values in the range 70-99 are converted to 1970-1999.
Note
The MySQL server can be run with the MAXDB SQL mode enabled. In this case, TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that a table is created, TIMESTAMP columns are created as DATETIME columns. As a result, such columns use DATETIME display format, have the same range of values, and there is no automatic initialization or updating to the current date and time. See Section 5.1.7, “Server SQL Modes”.
11.3.2. The TIME Type
MySQL retrieves and displays TIME values in 'HH:MM:SS' format (or 'HHH:MM:SS' format for large hours values). TIME values may range from '-838:59:59' to '838:59:59'. The hours part may be so large because the TIME type can be used not only to represent a time of day (which must be less than 24 hours), but also elapsed time or a time interval between two events (which may be much greater than 24 hours, or even negative).
MySQL recognizes TIME values in several formats, some of which can include a trailing fractional seconds part in up to microseconds (6 digits) precision. See Section 9.1.3, “Date and Time Literals”. For information about fractional seconds support in MySQL, see Section 11.3.6, “Fractional Seconds in Time Values”. In particular, as of MySQL 5.6.4, any fractional part in a value inserted into a TIME column is stored rather than discarded. With the fractional part included, the range for TIME values is '-838:59:59.000000' to '838:59:59.000000'.
Be careful about assigning abbreviated values to a TIME column. MySQL interprets abbreviated TIME values with colons as time of the day. That is, '11:12' means '11:12:00', not '00:11:12'. MySQL interprets abbreviated values without colons using the assumption that the two rightmost digits represent seconds (that is, as elapsed time rather than as time of day). For example, you might think of '1112' and 1112 as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them as '00:11:12' (11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'.
By default, values that lie outside the TIME range but are otherwise valid are clipped to the closest endpoint of the range. For example, '-850:00:00' and '850:00:00' are converted to '-838:59:59' and '838:59:59'. Invalid TIME values are converted to '00:00:00'. Note that because '00:00:00' is itself a valid TIME value, there is no way to tell, from a value of '00:00:00' stored in a table, whether the original value was specified as '00:00:00' or whether it was invalid.
For more restrictive treatment of invalid TIME values, enable strict SQL mode to cause errors to occur. See Section 5.1.7, “Server SQL Modes”.
11.3.3. The YEAR Type
The YEAR type is a 1-byte type used to represent year values. It can be declared as YEAR(4) or YEAR(2) to specify a display width of four or two characters. The default is four characters if no width is given.
Note
The YEAR(2) data type has certain issues that you should consider before choosing to use it. Also, as of MySQL 5.6.6, YEAR(2) is deprecated. YEAR(2) columns in existing tables are treated as before, but YEAR(2) in new or altered tables are converted to YEAR(4). For more information, see Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”.
YEAR(4) and YEAR(2) differ in display format, but have the same range of values. For 4-digit format, MySQL displays YEAR values in YYYY format, with a range of 1901 to 2155, or 0000. For 2-digit format, MySQL displays only the last two (least significant) digits; for example, 70 (1970 or 2070) or 69 (2069).
You can specify input YEAR values in a variety of formats:
As a 4-digit string in the range '1901' to '2155'.
As a 4-digit number in the range 1901 to 2155.
As a 1- or 2-digit string in the range '0' to '99'. Values in the ranges '0' to '69' and '70' to '99' are converted to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.
As a 1- or 2-digit number in the range 1 to 99. Values in the ranges 1 to 69 and 70 to 99 are converted to YEAR values in the ranges 2001 to 2069 and 1970 to 1999.
Inserting a numeric 0 has a different effect for YEAR(2) and YEAR(4). For YEAR(2), the result has a display value of 00 and an internal value of 2000. For YEAR(4), the result has a display value of 0000 and an internal value of 0000. To specify zero for YEAR(4) and have it be interpreted as 2000, specify it as a string '0' or '00'.
As the result of a function that returns a value that is acceptable in a YEAR context, such as NOW().
Invalid YEAR values are converted to 0000.
See also Section 11.3.8, “Two-Digit Years in Dates”.
11.3.4. YEAR(2) Limitations and Migrating to YEAR(4)
Although the internal range of values for YEAR(4) and YEAR(2) is the same (1901 to 2155, and 0000), the display width for YEAR(2) makes that type inherently ambiguous because displayed values indicate only the last two digits of the internal values. The result can be a loss of information under certain circumstances. For this reason, consider avoiding YEAR(2) throughout your applications and using YEAR(4) wherever you need a YEAR data type. This section describes problems that can occur when using YEAR(2) and provides information about migrating existing YEAR(2) columns to YEAR(4). Note that migration will become necessary at some point because support for YEAR data types with display values other than 4, most notably YEAR(2), is reduced as of MySQL 5.6.6 and will be removed entirely in a future release.
YEAR(2) Limitations
Issues with the YEAR(2) data type include ambiguity of displayed values, and possible loss of information when values are dumped and reloaded or converted to strings.
Displayed YEAR(2) values can be ambiguous. It is possible for up to three YEAR(2) values that have different internal values to have the same displayed value, as the following example demonstrates:
mysql> CREATE TABLE t (y2 YEAR(2), y4 YEAR(4));
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO t (y2) VALUES(1912),(2012),(2112);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> UPDATE t SET y4 = y2;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0
mysql> SELECT * FROM t;
+------+------+
| y2 | y4 |
+------+------+
| 12 | 1912 |
| 12 | 2012 |
| 12 | 2112 |
+------+------+
3 rows in set (0.00 sec)
If you use mysqldump to dump the table created in the preceding item, the dump file represents all y2 values using the same 2-digit representation (12). If you reload the table from the dump file, all resulting rows have internal value 2012 and display value 12, thus losing the distinctions among them.
Conversion of a YEAR(2) or YEAR(4) data value to string form uses the display width of the YEAR type. Suppose that YEAR(2) and YEAR(4) columns both contain the value 1970. Assigning each column to a string results in a value of '70' or '1970', respectively. That is, loss of information occurs for conversion from YEAR(2) to string.
Values outside the range from 1970 to 2069 are stored incorrectly when inserted into a YEAR(2) column in a CSV table. For example, inserting 2111 results in a display value of 11 but an internal value of 2011.
To avoid these problems, use YEAR(4) rather than YEAR(2). Suggestions regarding migration strategies appear later in this section.
Reduced YEAR(2) Support in MySQL 5.6
As of MySQL 5.6.6, support for YEAR(2) is diminished:
YEAR(2) in column definitions for new tables is converted (with a warning) to YEAR(4):
mysql> CREATE TABLE t1 (y YEAR(2));
Query OK, 0 rows affected, 1 warning (0.03 sec)
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1818
Message: YEAR(2) column type is deprecated. Creating YEAR(4) column instead.
1 row in set (0.00 sec)
mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
Table: t1
Create Table: CREATE TABLE `t1` (
`y` year(4) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
YEAR(2) in existing tables remains as YEAR(2) and is processed in queries as in older versions of MySQL. However, several programs or statements convert YEAR(2) to YEAR(4) automatically:
ALTER TABLE statements that result in a table rebuild.
REPAIR TABLE (which CHECK TABLE recommends you use if it finds that a table contains YEAR(2) columns).
mysql_upgrade (which uses REPAIR TABLE).
Dumping with mysqldump and reloading the dump file. Unlike the conversions performed by the preceding three items, a dump and reload has the potential to change values.
A MySQL upgrade usually involves at least one of the last two items. However, with respect to YEAR(2), you should avoid dumping and reloading; as noted, that can change values.
Migrating from YEAR(2) to YEAR(4)
Should you decide to convert YEAR(2) columns to YEAR(4), you can do so manually at any time without upgrading. Alternatively, you can upgrade to a version of MySQL with reduced support for YEAR(2) (MySQL 5.6.6 or later), then have MySQL convert YEAR(2) columns automatically. In the latter case, avoid upgrading by dumping and reloading your data because that can change data values. In addition, if you use replication, there are upgrade considerations you must take into account.
To convert YEAR(2) columns to YEAR(4) manually, use ALTER TABLE. Suppose that a table t1 has this definition:
CREATE TABLE t1 (ycol YEAR(2) NOT NULL DEFAULT '70');
Modify the column using ALTER TABLE as follows. Remember to include any column attributes such as NOT NULL or DEFAULT:
ALTER TABLE t1 MODIFY ycol YEAR(4) NOT NULL DEFAULT '1970';
The ALTER TABLE statement converts the table without changing YEAR(2) values. If the server is a replication master, the ALTER TABLE statement replicates to slaves and makes the corresponding table change on each one.
Another migration method is to perform a binary upgrade: Install MySQL 5.6.6 or later without dumping and reloading your data. Then run mysql_upgrade, which uses REPAIR TABLE to convert YEAR(2) columns to YEAR(4) without changing data values. If the server is a replication master, the REPAIR TABLE statements replicate to slaves and make the corresponding table changes on each one, unless you invoke mysql_upgrade with the --skip-write-binlog option.
Upgrades to replication servers usually involve upgrading slaves to a newer version of MySQL, then upgrading the master. For example, if a master and slave both run MySQL 5.5, a typical upgrade sequence involves upgrading the slave to 5.6, then upgrading the master to 5.6. With regard to the different treatment of YEAR(2) as of MySQL 5.6.6, that upgrade sequence results in a problem: Suppose that the slave has been upgraded but not yet the master. Then creating a table containing a YEAR(2) column on the master results in a table containing a YEAR(4) column on the slave. Consequently, these operations will have a different result on the master and slave, if you use statement-based replication:
Inserting numeric 0. The resulting value has an internal value of 2000 on the master but 0000 on the slave.
Converting YEAR(2) to string. This operation uses the display value of YEAR(2) on the master but YEAR(4) on the slave.
To avoid such problems, use one of these strategies:
Use row-based replication instead of statement-based replication.
Modify all YEAR(2) columns on the master to YEAR(4) before upgrading. (Use ALTER TABLE, as described previously.) Then you can upgrade normally (slave first, then master) without introducing any YEAR(2) to YEAR(4) differences between the master and slave).
One migration method should be avoided: Do not dump your data with mysqldump and reload the dump file after upgrading. This has the potential to change YEAR(2) values, as described previously.
A migration from YEAR(2) to YEAR(4) should also involve examining application code for the possibility of changed behavior under conditions such as these:
Code that expects selecting a YEAR column to produce exactly two digits.
Code that does not account for different handling for inserts of numeric 0: Inserting 0 into YEAR(2) or YEAR(4) results in an internal value of 2000 or 0000, respectively.
11.3.5. Automatic Initialization and Updating for TIMESTAMP and DATETIME
Note
The following discussion applies under the assumption that the explicit_defaults_for_timestamp system variable is disabled. If this variable is enabled, the DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP clauses that specify automatic initialization and updating are available, but are not assigned to any TIMESTAMP column unless explicitly included in the column definition.
As of MySQL 5.6.5, TIMESTAMP and DATETIME columns can be automatically initializated and updated to the current date and time (that is, the current timestamp). Before 5.6.5, this is true only for TIMESTAMP, and for at most one TIMESTAMP column per table. The following notes first describe automatic initialization and updating for MySQL 5.6.5 and up, then the differences for versions preceding 5.6.5.
For any TIMESTAMP or DATETIME column in a table, you can assign the current timestamp as the default value, the auto-update value, or both:
An auto-initialized column is set to the current timestamp for inserted rows that specify no value for the column.
An auto-updated column is automatically updated to the current timestamp when the value of any other column in the row is changed from its current value. An auto-updated column remains unchanged if all other columns are set to their current values. To prevent an auto-updated column from updating when other columns change, explicitly set it to its current value. To update an auto-updated column even when other columns do not change, explicitly set it to the value it should have (for example, set it to CURRENT_TIMESTAMP).
In addition, you can initialize or update any TIMESTAMP column to the current date and time by assigning it a NULL value, unless it has been defined with the NULL attribute to permit NULL values.
To specify automatic properties, use the DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP clauses in column definitions. The order of the clauses does not matter. If both are present in a column definition, either can occur first. Any of the synonyms for CURRENT_TIMESTAMP have the same meaning as CURRENT_TIMESTAMP. These are CURRENT_TIMESTAMP(), NOW(), LOCALTIME, LOCALTIME(), LOCALTIMESTAMP, and LOCALTIMESTAMP().
Use of DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP is specific to TIMESTAMP and DATETIME. The DEFAULT clause also can be used to specify a constant (nonautomatic) default value; for example, DEFAULT 0 or DEFAULT '2000-01-01 00:00:00'.
Note
The following examples that use DEFAULT 0 do not work if the NO_ZERO_DATE SQL mode is enabled because that mode causes “zero” date values (specified, for example, as 0 '0000-00-00 00:00:00') to be rejected. Be aware that the TRADITIONAL SQL mode includes NO_ZERO_DATE.
TIMESTAMP or DATETIME column definitions can specify the current timestamp for both the default and auto-update values, for one but not the other, or for neither. Different columns can have different combinations of automatic properties. The following rules describe the possibilities:
With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP, the column has the current timestamp for its default value and is automatically updated to the current timestamp.
CREATE TABLE t1 (
ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
dt DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);
With a DEFAULT clause but no ON UPDATE CURRENT_TIMESTAMP clause, the column has the given default value and is not automatically updated to the current timestamp.
The default depends on whether the DEFAULT clause specifies CURRENT_TIMESTAMP or a constant value. With CURRENT_TIMESTAMP, the default is the current timestamp.
CREATE TABLE t1 (
ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
dt DATETIME DEFAULT CURRENT_TIMESTAMP
);
With a constant, the default is the given value. In this case, the column has no automatic properties at all.
CREATE TABLE t1 (
ts TIMESTAMP DEFAULT 0,
dt DATETIME DEFAULT 0
);
With an ON UPDATE CURRENT_TIMESTAMP clause and a constant DEFAULT clause, the column is automatically updated to the current timestamp and has the given constant default value.
CREATE TABLE t1 (
ts TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP,
dt DATETIME DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP
);
With an ON UPDATE CURRENT_TIMESTAMP clause but no DEFAULT clause, the column is automatically updated to the current timestamp but does not have the current timestamp for its default value.
The default in this case is type dependent. TIMESTAMP has a default of 0 unless defined with the NULL attribute, in which case the default is NULL.
CREATE TABLE t1 (
ts1 TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, -- default 0
ts2 TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP -- default NULL
);
DATETIME has a default of NULL unless defined with the NOT NULL attribute, in which case the default is 0.
CREATE TABLE t1 (
dt1 DATETIME ON UPDATE CURRENT_TIMESTAMP, -- default NULL
dt2 DATETIME NOT NULL ON UPDATE CURRENT_TIMESTAMP -- default 0
);
TIMESTAMP and DATETIME columns have no automatic properties unless they are specified explicitly, with this exception: By default, the first TIMESTAMP column has both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP if neither is specified explicitly. To suppress automatic properties for the first TIMESTAMP column, do either of the following:
Define the column with a DEFAULT clause that specifies a constant default value.
Specify the NULL attribute. This also causes the column to permit NULL values, which means that you cannot assign the current timestamp by setting the column to NULL. Assigning NULL sets the column to NULL.
Consider these table definitions:
CREATE TABLE t1 (
ts1 TIMESTAMP DEFAULT 0,
ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t2 (
ts1 TIMESTAMP NULL,
ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t3 (
ts1 TIMESTAMP NULL DEFAULT 0,
ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
ON UPDATE CURRENT_TIMESTAMP);
The tables have these properties:
In each table definition, the first TIMESTAMP column has no automatic initialization or updating.
The tables differ in how the ts1 column handles NULL values. For t1, ts1 is NOT NULL and assigning it a value of NULL sets it to the current timestamp. For t2 and t3, ts1 permits NULL and assigning it a value of NULL sets it to NULL.
t2 and t3 differ in the default value for ts1. For t2, ts1 is defined to permit NULL, so the default is also NULL in the absence of an explicit DEFAULT clause. For t3, ts1 permits NULL but has an explicit default of 0.
If a TIMESTAMP or DATETIME column definition includes an explicit fractional seconds precision value anywhere, the same value must be used throughout the column definition. This is permitted:
CREATE TABLE t1 (
ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP(6) ON UPDATE CURRENT_TIMESTAMP(6)
);
This is not permitted:
CREATE TABLE t1 (
ts TIMESTAMP(6) DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP(3)
);
Automatic Timestamp Properties Before MySQL 5.6.5
Before MySQL 5.6.5, support for automatic initialization and updating is more limited:
DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP cannot be used with DATETIME columns.
DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP can be used with at most one TIMESTAMP column per table. It is not possible to have the current timestamp be the default value for one column and the auto-update value for another column.
You can choose whether to use these properties and which TIMESTAMP column should have them. It need not be the first one in a table that is automatically initialized or updated to the current timestamp. To specify automatic initialization or updating for a different TIMESTAMP column, you must suppress the automatic properties for the first one, as previously described. Then, for the other TIMESTAMP column, the rules for the DEFAULT and ON UPDATE clauses are the same as for the first TIMESTAMP column, except that if you omit both clauses, no automatic initialization or updating occurs.
TIMESTAMP Initialization and the NULL Attribute
By default, TIMESTAMP columns are NOT NULL, cannot contain NULL values, and assigning NULL assigns the current timestamp. To permit a TIMESTAMP column to contain NULL, explicitly declare it with the NULL attribute. In this case, the default value also becomes NULL unless overridden with a DEFAULT clause that specifies a different default value. DEFAULT NULL can be used to explicitly specify NULL as the default value. (For a TIMESTAMP column not declared with the NULL attribute, DEFAULT NULL is invalid.) If a TIMESTAMP column permits NULL values, assigning NULL sets it to NULL, not to the current timestamp.
The following table contains several TIMESTAMP columns that permit NULL values:
CREATE TABLE t
(
ts1 TIMESTAMP NULL DEFAULT NULL,
ts2 TIMESTAMP NULL DEFAULT 0,
ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP
);
A TIMESTAMP column that permits NULL values does not take on the current timestamp at insert time except under one of the following conditions:
Its default value is defined as CURRENT_TIMESTAMP and no value is specified for the column
CURRENT_TIMESTAMP or any of its synonyms such as NOW() is explicitly inserted into the column
In other words, a TIMESTAMP column defined to permit NULL values auto-initializes only if its definition includes DEFAULT CURRENT_TIMESTAMP:
CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);
If the TIMESTAMP column permits NULL values but its definition does not include DEFAULT CURRENT_TIMESTAMP, you must explicitly insert a value corresponding to the current date and time. Suppose that tables t1 and t2 have these definitions:
CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT NULL);
To set the TIMESTAMP column in either table to the current timestamp at insert time, explicitly assign it that value. For example:
INSERT INTO t1 VALUES (NOW());
INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);
11.3.6. Fractional Seconds in Time Values
Before MySQL 5.6.4, the instances are limited in which a fractional seconds part is permitted in temporal values. A trailing fractional part is permissible in contexts such as literal values, and in the arguments to or return values from some temporal functions. Example:
mysql> SELECT MICROSECOND('2010-12-10 14:12:09.019473');
+---+
| MICROSECOND('2010-12-10 14:12:09.019473') |
+---+
| 19473 |
+---+
However, when MySQL stores a value into a column of any temporal data type, it discards any fractional part and does not store it.
MySQL 5.6.4 and up expands fractional seconds support for TIME, DATETIME, and TIMESTAMP values, with up to microseconds (6 digits) precision:
To define a column that includes a fractional seconds part, use the syntax type_name(fsp), where type_name is TIME, DATETIME, or TIMESTAMP, and fsp is the fractional seconds precision. For example:
CREATE TABLE t1 (t TIME(3), dt DATETIME(6));
The fsp value, if given, must be in the range 0 to 6. A value of 0 signifies that there is no fractional part. If omitted, the default precision is 0. (This differs from the standard SQL default of 6, for compatibility with previous MySQL versions.)
Functions that take temporal arguments accept values with fractional seconds. Return values from temporal functions include fractional seconds as appropriate. For example, NOW() with no argument returns the current date and time with no fractional part, but takes an optional argument from 0 to 6 to specify that the return value includes a fractional seconds part of that many digits.
Syntax for temporal literals produces temporal values: DATE 'str', TIME 'str', and TIMESTAMP 'str', and the ODBC-syntax equivalents. The resulting value includes a trailing fractional seconds part if specified. Previously, the temporal type keyword was ignored and these constructs produced the string value. See Standard SQL and ODBC Date and Time Literals
In some cases, previously accepted syntax may produce different results. The following items indicate where existing code may need to be changed to avoid problems:
Some expressions produce results that differ from previous results. Examples: The timestamp system variable returns a value that includes a microseconds fractional part rather than an integer. Functions that return a result that includes the current time (such as CURTIME(), SYSDATE(), or UTC_TIMESTAMP()) interpret an argument as an fsp value and the return value includes a fractional seconds part of that many digits. Previously, these functions permitted an argument but ignored it.
TIME values are converted to DATETIME by adding the time to the current date. (This means that the date part of the result differs from the current date if the time value is outside the range from '00:00:00' to '23:59:59'.) Previously, conversion of TIME values to DATETIME was unreliable. See Section 11.3.7, “Conversion Between Date and Time Types”.
TIMESTAMP(N) was permitted in old MySQL versions, but N was a display width rather than fractional seconds precision. Support for this behavior was removed in MySQL 5.5.3, so applications that are reasonably up to date should not be subject to this issue. Otherwise, code must be rewritten.
11.3.7. Conversion Between Date and Time Types
To some extent, you can convert a value from one temporal type to another. However, there may be some alteration of the value or loss of information. In all cases, conversion between temporal types is subject to the range of valid values for the resulting type. For example, although DATE, DATETIME, and TIMESTAMP values all can be specified using the same set of formats, the types do not all have the same range of values. TIMESTAMP values cannot be earlier than 1970 UTC or later than '2038-01-19 03:14:07' UTC. This means that a date such as '1968-01-01', while valid as a DATE or DATETIME value, is not valid as a TIMESTAMP value and is converted to 0.
Conversion of DATE values:
Conversion to a DATETIME or TIMESTAMP value adds a time part of '00:00:00' because the DATE value contains no time information.
Conversion to a TIME value is not useful; the result is '00:00:00'.
Conversion of DATETIME and TIMESTAMP values:
Conversion to a DATE value discards the time part because the DATE type contains no time information.
Conversion to a TIME value discards the date part because the TIME type contains no date information.
Conversion of TIME values to other temporal types is version specific:
As of MySQL 5.6.4, the value of CURRENT_DATE() is used for the date part. The TIME is interpreted as elapsed time (not time of day) and added to the date. This means that the date part of the result differs from the current date if the time value is outside the range from '00:00:00' to '23:59:59'.
Suppose that the current date is '2012-01-01'. TIME values of '12:00:00', '24:00:00', and '-12:00:00', when converted to DATETIME or TIMESTAMP values, result in '2012-01-01 12:00:00', '2012-01-02 00:00:00', and '2011-12-31 12:00:00', respectively.
Conversion of TIME to DATE is similar but discards the time part from the result: '2012-01-01', '2012-01-02', and '2011-12-31', respectively.
Before 5.6.4, MySQL converts a time value to a date or date-and-time value by parsing the string value of the time as a date or date-and-time. This is unlikely to be useful. For example, '23:12:31' interpreted as a date becomes '2032-12-31'. Time values not valid as dates become '0000-00-00' or NULL.
Explicit conversion can be used to override implicit conversion. For example, in comparison of DATE and DATETIME values, the DATE value is coerced to the DATETIME type by adding a time part of '00:00:00'. To perform the comparison by ignoring the time part of the DATETIME value instead, use the CAST() function in the following way:
date_col = CAST(datetime_col AS DATE)
Conversion of TIME and DATETIME values to numeric form (for example, by adding +0) occurs as follows:
As of MySQL 5.6.4, TIME(N) or DATETIME(N) is converted to integer when N is 0 (or omitted) and to a DECIMAL value with N decimal digits when N is greater than 0:
mysql> SELECT CURTIME(), CURTIME()+0, CURTIME(3)+0;
+-----------+-------------+--------------+
| CURTIME() | CURTIME()+0 | CURTIME(3)+0 |
+-----------+-------------+--------------+
| 09:28:00 | 92800 | 92800.887 |
+-----------+-------------+--------------+
mysql> SELECT NOW(), NOW()+0, NOW(3)+0;
+---------------------+----------------+--------------------+
| NOW() | NOW()+0 | NOW(3)+0 |
+---------------------+----------------+--------------------+
| 2012-08-15 09:28:00 | 20120815092800 | 20120815092800.889 |
+---------------------+----------------+--------------------+
Before MySQL 5.6.4, the conversion results in a double-precision value with a microseconds part of .000000:
mysql> SELECT CURTIME(), CURTIME()+0;
+-----------+--------------+
| CURTIME() | CURTIME()+0 |
+-----------+--------------+
| 09:28:00 | 92800.000000 |
+-----------+--------------+
mysql> SELECT NOW(), NOW()+0;
+---------------------+-----------------------+
| NOW() | NOW()+0 |
+---------------------+-----------------------+
| 2012-08-15 09:28:00 | 20120815092800.000000 |
+---------------------+-----------------------+
11.3.8. Two-Digit Years in Dates
Date values with two-digit years are ambiguous because the century is unknown. Such values must be interpreted into four-digit form because MySQL stores years internally using four digits.
For DATETIME, DATE, and TIMESTAMP types, MySQL interprets dates specified with ambiguous year values using these rules:
Year values in the range 00-69 are converted to 2000-2069.
Year values in the range 70-99 are converted to 1970-1999.
For YEAR, the rules are the same, with this exception: A numeric 00 inserted into YEAR(4) results in 0000 rather than 2000. To specify zero for YEAR(4) and have it be interpreted as 2000, specify it as a string '0' or '00'.
Remember that these rules are only heuristics that provide reasonable guesses as to what your data values mean. If the rules used by MySQL do not produce the values you require, you must provide unambiguous input containing four-digit year values.
ORDER BY properly sorts YEAR values that have two-digit years.
Some functions like MIN() and MAX() convert a YEAR to a number. This means that a value with a two-digit year does not work properly with these functions. The fix in this case is to convert the YEAR to four-digit year format.
11.4. String Types
The string types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET. This section describes how these types work and how to use them in your queries. For string type storage requirements, see Section 11.6, “Data Type Storage Requirements”.
11.4.1. The CHAR and VARCHAR Types
The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved. They also differ in maximum length and in whether trailing spaces are retained.
The CHAR and VARCHAR types are declared with a length that indicates the maximum number of characters you want to store. For example, CHAR(30) can hold up to 30 characters.
The length of a CHAR column is fixed to the length that you declare when you create the table. The length can be any value from 0 to 255. When CHAR values are stored, they are right-padded with spaces to the specified length. When CHAR values are retrieved, trailing spaces are removed unless the PAD_CHAR_TO_FULL_LENGTH SQL mode is enabled.
Values in VARCHAR columns are variable-length strings. The length can be specified as a value from 0 to 65,535. The effective maximum length of a VARCHAR is subject to the maximum row size (65,535 bytes, which is shared among all columns) and the character set used. See Section E.10.4, “Limits on Table Column Count and Row Size”.
In contrast to CHAR, VARCHAR values are stored as a 1-byte or 2-byte length prefix plus data. The length prefix indicates the number of bytes in the value. A column uses one length byte if values require no more than 255 bytes, two length bytes if values may require more than 255 bytes.
If strict SQL mode is not enabled and you assign a value to a CHAR or VARCHAR column that exceeds the column's maximum length, the value is truncated to fit and a warning is generated. For truncation of nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion of the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.
For VARCHAR columns, trailing spaces in excess of the column length are truncated prior to insertion and a warning is generated, regardless of the SQL mode in use. For CHAR columns, truncation of excess trailing spaces from inserted values is performed silently regardless of the SQL mode.
VARCHAR values are not padded when they are stored. Trailing spaces are retained when values are stored and retrieved, in conformance with standard SQL.
The following table illustrates the differences between CHAR and VARCHAR by showing the result of storing various string values into CHAR(4) and VARCHAR(4) columns (assuming that the column uses a single-byte character set such as latin1).
Value | CHAR(4) | Storage Required | VARCHAR(4) | Storage Required |
---|---|---|---|---|
'' | ' ' | 4 bytes | '' | 1 byte |
'ab' | 'ab ' | 4 bytes | 'ab' | 3 bytes |
'abcd' | 'abcd' | 4 bytes | 'abcd' | 5 bytes |
'abcdefgh' | 'abcd' | 4 bytes | 'abcd' | 5 bytes |
The values shown as stored in the last row of the table apply only when not using strict mode; if MySQL is running in strict mode, values that exceed the column length are not stored, and an error results.
If a given value is stored into the CHAR(4) and VARCHAR(4) columns, the values retrieved from the columns are not always the same because trailing spaces are removed from CHAR columns upon retrieval. The following example illustrates this difference:
mysql> CREATE TABLE vc (v VARCHAR(4), c CHAR(4));
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO vc VALUES ('ab ', 'ab ');
Query OK, 1 row affected (0.00 sec)
mysql> SELECT CONCAT('(', v, ')'), CONCAT('(', c, ')') FROM vc;
+---------------------+---------------------+
| CONCAT('(', v, ')') | CONCAT('(', c, ')') |
+---------------------+---------------------+
| (ab) | (ab) |
+---------------------+---------------------+
1 row in set (0.06 sec)
Values in CHAR and VARCHAR columns are sorted and compared according to the character set collation assigned to the column.
All MySQL collations are of type PADSPACE. This means that all CHAR, VARCHAR, and TEXT values in MySQL are compared without regard to any trailing spaces. “Comparison” in this context does not include the LIKE pattern-matching operator, for which trailing spaces are significant. For example:
mysql> CREATE TABLE names (myname CHAR(10));
Query OK, 0 rows affected (0.03 sec)
mysql> INSERT INTO names VALUES ('Monty');
Query OK, 1 row affected (0.00 sec)
mysql> SELECT myname = 'Monty', myname = 'Monty ' FROM names;
+------------------+--------------------+
| myname = 'Monty' | myname = 'Monty ' |
+------------------+--------------------+
| 1 | 1 |
+------------------+--------------------+
1 row in set (0.00 sec)
mysql> SELECT myname LIKE 'Monty', myname LIKE 'Monty ' FROM names;
+---------------------+-----------------------+
| myname LIKE 'Monty' | myname LIKE 'Monty ' |
+---------------------+-----------------------+
| 1 | 0 |
+---------------------+-----------------------+
1 row in set (0.00 sec)
This is true for all MySQL versions, and is not affected by the server SQL mode.
Note
For more information about MySQL character sets and collations, see Section 10.1, “Character Set Support”.
For those cases where trailing pad characters are stripped or comparisons ignore them, if a column has an index that requires unique values, inserting into the column values that differ only in number of trailing pad characters will result in a duplicate-key error. For example, if a table contains 'a', an attempt to store 'a ' causes a duplicate-key error.
11.4.2. The BINARY and VARBINARY Types
The BINARY and VARBINARY types are similar to CHAR and VARCHAR, except that they contain binary strings rather than nonbinary strings. That is, they contain byte strings rather than character strings. This means that they have no character set, and sorting and comparison are based on the numeric values of the bytes in the values.
The permissible maximum length is the same for BINARY and VARBINARY as it is for CHAR and VARCHAR, except that the length for BINARY and VARBINARY is a length in bytes rather than in characters.
The BINARY and VARBINARY data types are distinct from the CHAR BINARY and VARCHAR BINARY data types. For the latter types, the BINARY attribute does not cause the column to be treated as a binary string column. Instead, it causes the binary collation for the column character set to be used, and the column itself contains nonbinary character strings rather than binary byte strings. For example, CHAR(5) BINARY is treated as CHAR(5) CHARACTER SET latin1 COLLATE latin1_bin, assuming that the default character set is latin1. This differs from BINARY(5), which stores 5-bytes binary strings that have no character set or collation. For information about differences between nonbinary string binary collations and binary strings, see Section 10.1.7.6, “The _bin and binary Collations”.
If strict SQL mode is not enabled and you assign a value to a BINARY or VARBINARY column that exceeds the column's maximum length, the value is truncated to fit and a warning is generated. For cases of truncation, you can cause an error to occur (rather than a warning) and suppress insertion of the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.
When BINARY values are stored, they are right-padded with the pad value to the specified length. The pad value is 0x00 (the zero byte). Values are right-padded with 0x00 on insert, and no trailing bytes are removed on select. All bytes are significant in comparisons, including ORDER BY and DISTINCT operations. 0x00 bytes and spaces are different in comparisons, with 0x00 < space.
Example: For a BINARY(3) column, 'a ' becomes 'a \0' when inserted. 'a\0' becomes 'a\0\0' when inserted. Both inserted values remain unchanged when selected.
For VARBINARY, there is no padding on insert and no bytes are stripped on select. All bytes are significant in comparisons, including ORDER BY and DISTINCT operations. 0x00 bytes and spaces are different in comparisons, with 0x00 < space.
For those cases where trailing pad bytes are stripped or comparisons ignore them, if a column has an index that requires unique values, inserting into the column values that differ only in number of trailing pad bytes will result in a duplicate-key error. For example, if a table contains 'a', an attempt to store 'a\0' causes a duplicate-key error.
You should consider the preceding padding and stripping characteristics carefully if you plan to use the BINARY data type for storing binary data and you require that the value retrieved be exactly the same as the value stored. The following example illustrates how 0x00-padding of BINARY values affects column value comparisons:
mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)
mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 | 0 | 1 |
+--------+---------+-------------+
1 row in set (0.09 sec)
If the value retrieved must be the same as the value specified for storage with no padding, it might be preferable to use VARBINARY or one of the BLOB data types instead.
11.4.3. The BLOB and TEXT Types
A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. These differ only in the maximum length of the values they can hold. The four TEXT types are TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. These correspond to the four BLOB types and have the same maximum lengths and storage requirements. See Section 11.6, “Data Type Storage Requirements”.
BLOB values are treated as binary strings (byte strings). They have no character set, and sorting and comparison are based on the numeric values of the bytes in column values. TEXT values are treated as nonbinary strings (character strings). They have a character set, and values are sorted and compared based on the collation of the character set.
If strict SQL mode is not enabled and you assign a value to a BLOB or TEXT column that exceeds the column's maximum length, the value is truncated to fit and a warning is generated. For truncation of nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion of the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.
Truncation of excess trailing spaces from values to be inserted into TEXT columns always generates a warning, regardless of the SQL mode.
For TEXT and BLOB columns, there is no padding on insert and no bytes are stripped on select.
If a TEXT column is indexed, index entry comparisons are space-padded at the end. This means that, if the index requires unique values, duplicate-key errors will occur for values that differ only in the number of trailing spaces. For example, if a table contains 'a', an attempt to store 'a ' causes a duplicate-key error. This is not true for BLOB columns.
In most respects, you can regard a BLOB column as a VARBINARY column that can be as large as you like. Similarly, you can regard a TEXT column as a VARCHAR column. BLOB and TEXT differ from VARBINARY and VARCHAR in the following ways:
For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR and VARCHAR, a prefix length is optional. See Section 8.3.4, “Column Indexes”.
BLOB and TEXT columns cannot have DEFAULT values.
If you use the BINARY attribute with a TEXT data type, the column is assigned the binary collation of the column character set.
LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a compatibility feature.
MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as LONGVARCHAR.
Because BLOB and TEXT values can be extremely long, you might encounter some constraints in using them:
Only the first max_sort_length bytes of the column are used when sorting. The default value of max_sort_length is 1024. You can make more bytes significant in sorting or grouping by increasing the value of max_sort_length at server startup or runtime. Any client can change the value of its session max_sort_length variable:
mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM t
-> ORDER BY comment;
Instances of BLOB or TEXT columns in the result of a query that is processed using a temporary table causes the server to use a table on disk rather than in memory because the MEMORY storage engine does not support those data types (see Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”). Use of disk incurs a performance penalty, so include BLOB or TEXT columns in the query result only if they are really needed. For example, avoid using SELECT *, which selects all columns.
The maximum size of a BLOB or TEXT object is determined by its type, but the largest value you actually can transmit between the client and server is determined by the amount of available memory and the size of the communications buffers. You can change the message buffer size by changing the value of the max_allowed_packet variable, but you must do so for both the server and your client program. For example, both mysql and mysqldump enable you to change the client-side max_allowed_packet value. See Section 8.11.2, “Tuning Server Parameters”, Section 4.5.1, “mysql — The MySQL Command-Line Tool”, and Section 4.5.4, “mysqldump — A Database Backup Program”. You may also want to compare the packet sizes and the size of the data objects you are storing with the storage requirements, see Section 11.6, “Data Type Storage Requirements”
Each BLOB or TEXT value is represented internally by a separately allocated object. This is in contrast to all other data types, for which storage is allocated once per column when the table is opened.
In some cases, it may be desirable to store binary data such as media files in BLOB or TEXT columns. You may find MySQL's string handling functions useful for working with such data. See Section 12.5, “String Functions”. For security and other reasons, it is usually preferable to do so using application code rather than giving application users the FILE privilege. You can discuss specifics for various languages and platforms in the MySQL Forums (http://forums.mysql.com/).
11.4.4. The ENUM Type
An ENUM is a string object with a value chosen from a list of permitted values that are enumerated explicitly in the column specification at table creation time. It has these advantages:
Compact data storage in situations where a column has a limited set of possible values. The strings you specify as input values are automatically encoded as numbers. See Section 11.6, “Data Type Storage Requirements” for the storage requirements for ENUM types.
Readable queries and output. The numbers are translated back to the corresponding strings in query results.
and these potential issues to consider:
If you make enumeration values that look like numbers, it is easy to mix up the literal values with their internal index numbers, as explained in Section 11.4.4, “ Limitations ”.
Using ENUM columns in ORDER BY clauses requires extra care, as explained in Section 11.4.4, “ Sorting ”.
Creating and Using ENUM Columns
An enumeration value must be a quoted string literal. For example, you can create a table with an ENUM column like this:
CREATE TABLE shirts (
name VARCHAR(40),
size ENUM('x-small', 'small', 'medium', 'large', 'x-large')
);
INSERT INTO shirts (name, size) VALUES ('dress shirt','large'), ('t-shirt','medium'),
('polo shirt','small');
SELECT name, size FROM shirts WHERE size = 'medium';
+---------+--------+
| name | size |
+---------+--------+
| t-shirt | medium |
+---------+--------+
UPDATE shirts SET size = 'small' WHERE size = 'large';
COMMIT;
Inserting 1 million rows into this table with a value of 'medium' would require 1 million bytes of storage, as opposed to 6 million bytes if you stored the actual string 'medium' in a VARCHAR column.
Index Values for Enumeration Literals
Each enumeration value has an index:
The elements listed in the column specification are assigned index numbers, beginning with 1.
The index value of the empty string error value is 0. This means that you can use the following SELECT statement to find rows into which invalid ENUM values were assigned:
mysql> SELECT * FROM tbl_name WHERE enum_col=0;
The index of the NULL value is NULL.
The term “index” here refers to a position within the list of enumeration values. It has nothing to do with table indexes.
For example, a column specified as ENUM('Mercury', 'Venus', 'Earth') can have any of the values shown here. The index of each value is also shown.
Value | Index |
---|---|
NULL | NULL |
'' | 0 |
'Mercury' | 1 |
'Venus' | 2 |
'Earth' | 3 |
An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than 3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET columns considered as a group. For more information on these limits, see Section E.10.5, “Limits Imposed by .frm File Structure”.
If you retrieve an ENUM value in a numeric context, the column value's index is returned. For example, you can retrieve numeric values from an ENUM column like this:
mysql> SELECT enum_col+0 FROM tbl_name;
Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if necessary. For ENUM values, the index number is used in the calculation.
Handling of Enumeration Literals
Trailing spaces are automatically deleted from ENUM member values in the table definition when a table is created.
When retrieved, values stored into an ENUM column are displayed using the lettercase that was used in the column definition. Note that ENUM columns can be assigned a character set and collation. For binary or case-sensitive collations, lettercase is taken into account when assigning values to the column.
If you store a number into an ENUM column, the number is treated as the index into the possible values, and the value stored is the enumeration member with that index. (However, this does not work with LOAD DATA, which treats all input as strings.) If the numeric value is quoted, it is still interpreted as an index if there is no matching string in the list of enumeration values. For these reasons, it is not advisable to define an ENUM column with enumeration values that look like numbers, because this can easily become confusing. For example, the following column has enumeration members with string values of '0', '1', and '2', but numeric index values of 1, 2, and 3:
numbers ENUM('0','1','2')
If you store 2, it is interpreted as an index value, and becomes '1' (the value with index 2). If you store '2', it matches an enumeration value, so it is stored as '2'. If you store '3', it does not match any enumeration value, so it is treated as an index and becomes '2' (the value with index 3).
mysql> INSERT INTO t (numbers) VALUES(2),('2'),('3');
mysql> SELECT * FROM t;
+---------+
| numbers |
+---------+
| 1 |
| 2 |
| 2 |
+---------+
To determine all possible values for an ENUM column, use SHOW COLUMNS FROM tbl_name LIKE 'enum_col' and parse the ENUM definition in the Type column of the output.
In the C API, ENUM values are returned as strings. For information about using result set metadata to distinguish them from other strings, see Section 21.8.4, “C API Data Structures”.
Empty or NULL Enumeration Values
An enumeration value can also be the empty string ('') or NULL under certain circumstances:
If you insert an invalid value into an ENUM (that is, a string not present in the list of permitted values), the empty string is inserted instead as a special error value. This string can be distinguished from a “normal” empty string by the fact that this string has the numeric value 0. See Section 11.4.4, “ Index Values for Enumeration Literals ” for details about the numeric indexes for the enumeration values.
If strict SQL mode is enabled, attempts to insert invalid ENUM values result in an error.
If an ENUM column is declared to permit NULL, the NULL value is a valid value for the column, and the default value is NULL. If an ENUM column is declared NOT NULL, its default value is the first element of the list of permitted values.
Sorting
ENUM values are sorted based on their index numbers, which depend on the order in which the enumeration members were listed in the column specification. For example, 'b' sorts before 'a' for ENUM('b', 'a'). The empty string sorts before nonempty strings, and NULL values sort before all other enumeration values.
To prevent unexpected results when using the ORDER BY clause on an ENUM column, use one of these techniques:
Specify the ENUM list in alphabetic order.
Make sure that the column is sorted lexically rather than by index number by coding ORDER BY CAST(col AS CHAR) or ORDER BY CONCAT(col).
Limitations
An enumeration value cannot be an expression, even one that evaluates to a string value.
For example, this CREATE TABLE statement does not work because the CONCAT function cannot be used to construct an enumeration value:
CREATE TABLE sizes (
size ENUM('small', CONCAT('med','ium'), 'large')
);
You also cannot employ a user variable as an enumeration value. This pair of statements do not work:
SET @mysize = 'medium';
CREATE TABLE sizes (
size ENUM('small', @mysize, 'large')
);
We strongly recommend that you do not use numbers as enumeration values, because it does not save on storage over the appropriate TINYINT or SMALLINT type, and it is easy to mix up the strings and the underlying number values (which might not be the same) if you quote the ENUM values incorrectly. If you do use a number as an enumeration value, always enclose it in quotation marks. If the quotation marks are omitted, the number is regarded as an index. See Section 11.4.4, “ Handling of Enumeration Literals ” to see how even a quoted number could be mistakenly used as a numeric index value.
Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.
11.4.5. The SET Type
A SET is a string object that can have zero or more values, each of which must be chosen from a list of permitted values specified when the table is created. SET column values that consist of multiple set members are specified with members separated by commas (“,”). A consequence of this is that SET member values should not themselves contain commas.
For example, a column specified as SET('one', 'two') NOT NULL can have any of these values:
''
'one'
'two'
'one,two'
A SET column can have a maximum of 64 distinct members. A table can have no more than 255 unique element list definitions among its ENUM and SET columns considered as a group. For more information on this limit, see Section E.10.5, “Limits Imposed by .frm File Structure”.
Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.
Trailing spaces are automatically deleted from SET member values in the table definition when a table is created.
When retrieved, values stored in a SET column are displayed using the lettercase that was used in the column definition. Note that SET columns can be assigned a character set and collation. For binary or case-sensitive collations, lettercase is taken into account when assigning values to the column.
MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to the first set member. If you retrieve a SET value in a numeric context, the value retrieved has bits set corresponding to the set members that make up the column value. For example, you can retrieve numeric values from a SET column like this:
mysql> SELECT set_col+0 FROM tbl_name;
If a number is stored into a SET column, the bits that are set in the binary representation of the number determine the set members in the column value. For a column specified as SET('a','b','c','d'), the members have the following decimal and binary values.
SET Member | Decimal Value | Binary Value |
---|---|---|
'a' | 1 | 0001 |
'b' | 2 | 0010 |
'c' | 4 | 0100 |
'd' | 8 | 1000 |
If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value members 'a' and 'd' are selected and the resulting value is 'a,d'.
For a value containing more than one SET element, it does not matter what order the elements are listed in when you insert the value. It also does not matter how many times a given element is listed in the value. When the value is retrieved later, each element in the value appears once, with elements listed according to the order in which they were specified at table creation time. For example, suppose that a column is specified as SET('a','b','c','d'):
mysql> CREATE TABLE myset (col SET('a', 'b', 'c', 'd'));
If you insert the values 'a,d', 'd,a', 'a,d,d', 'a,d,a', and 'd,a,d':
mysql> INSERT INTO myset (col) VALUES
-> ('a,d'), ('d,a'), ('a,d,a'), ('a,d,d'), ('d,a,d');
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0
Then all these values appear as 'a,d' when retrieved:
mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
5 rows in set (0.04 sec)
If you set a SET column to an unsupported value, the value is ignored and a warning is issued:
mysql> INSERT INTO myset (col) VALUES ('a,d,d,s');
Query OK, 1 row affected, 1 warning (0.03 sec)
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'col' at row 1 |
+---------+------+--+
1 row in set (0.04 sec)
mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
6 rows in set (0.01 sec)
If strict SQL mode is enabled, attempts to insert invalid SET values result in an error.
SET values are sorted numerically. NULL values sort before non-NULL SET values.
Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if necessary. For SET values, the cast operation causes the numeric value to be used.
Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:
mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';
The first statement finds rows where set_col contains the value set member. The second is similar, but not the same: It finds rows where set_col contains value anywhere, even as a substring of another set member.
The following statements also are permitted:
mysql> SELECT * FROM tbl_name WHERE set_col & 1;
mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';
The first of these statements looks for values containing the first set member. The second looks for an exact match. Be careful with comparisons of the second type. Comparing set values to 'val1,val2' returns different results than comparing values to 'val2,val1'. You should specify the values in the same order they are listed in the column definition.
To determine all possible values for a SET column, use SHOW COLUMNS FROM tbl_name LIKE set_col and parse the SET definition in the Type column of the output.
In the C API, SET values are returned as strings. For information about using result set metadata to distinguish them from other strings, see Section 21.8.4, “C API Data Structures”.
11.5. Data Type Default Values
The DEFAULT value clause in a data type specification indicates a default value for a column. With one exception, the default value must be a constant; it cannot be a function or an expression. This means, for example, that you cannot set the default for a date column to be the value of a function such as NOW() or CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as the default for TIMESTAMP and DATETIME columns. See Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”.
BLOB and TEXT columns cannot be assigned a default value.
If a column definition includes no explicit DEFAULT value, MySQL determines the default value as follows:
If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.
If the column cannot take NULL as the value, MySQL defines the column with no explicit DEFAULT clause. Exception: If the column is defined as part of a PRIMARY KEY but not explicitly as NOT NULL, MySQL creates it as a NOT NULL column (because PRIMARY KEY columns must be NOT NULL), but also assigns it a DEFAULT clause using the implicit default value. To prevent this, include an explicit NOT NULL in the definition of any PRIMARY KEY column.
For data entry into a NOT NULL column that has no explicit DEFAULT clause, if an INSERT or REPLACE statement includes no value for the column, or an UPDATE statement sets the column to NULL, MySQL handles the column according to the SQL mode in effect at the time:
If strict SQL mode is enabled, an error occurs for transactional tables and the statement is rolled back. For nontransactional tables, an error occurs, but if this happens for the second or subsequent row of a multiple-row statement, the preceding rows will have been inserted.
If strict mode is not enabled, MySQL sets the column to the implicit default value for the column data type.
Suppose that a table t is defined as follows:
CREATE TABLE t (i INT NOT NULL);
In this case, i has no explicit default, so in strict mode each of the following statements produce an error and no row is inserted. When not using strict mode, only the third statement produces an error; the implicit default is inserted for the first two statements, but the third fails because DEFAULT(i) cannot produce a value:
INSERT INTO t VALUES();
INSERT INTO t VALUES(DEFAULT);
INSERT INTO t VALUES(DEFAULT(i));
See Section 5.1.7, “Server SQL Modes”.
For a given table, you can use the SHOW CREATE TABLE statement to see which columns have an explicit DEFAULT clause.
Implicit defaults are defined as follows:
For numeric types, the default is 0, with the exception that for integer or floating-point types declared with the AUTO_INCREMENT attribute, the default is the next value in the sequence.
For date and time types other than TIMESTAMP, the default is the appropriate “zero” value for the type. This is also true for TIMESTAMP if the explicit_defaults_for_timestamp system variable is enabled (see Section 5.1.4, “Server System Variables”). Otherwise, for the first TIMESTAMP column in a table, the default value is the current date and time. See Section 11.3, “Date and Time Types”.
For string types other than ENUM, the default value is the empty string. For ENUM, the default is the first enumeration value.
SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL AUTO_INCREMENT UNIQUE.
11.6. Data Type Storage Requirements
The storage requirements for table data on disk depend on several factors. Different storage engines represent data types and store raw data differently. Table data might be compressed, either for a column or an entire row, complicating the calculation of storage requirements for a table or column.
Despite differences in storage layout on disk, the internal MySQL APIs that communicate and exchange information about table rows use a consistent data structure that applies across all storage engines.
This section includes guidelines and information for the storage requirements for each data type supported by MySQL, including the internal format and size for storage engines that use a fixed-size representation for data types. Information is listed by category or storage engine.
The internal representation of a table has a maximum row size of 65,535 bytes, even if the storage engine is capable of supporting larger rows. This figure excludes BLOB or TEXT columns, which contribute only 9 to 12 bytes toward this size. For BLOB and TEXT data, the information is stored internally in a different area of memory than the row buffer. Different storage engines handle the allocation and storage of this data in different ways, according to the method they use for handling the corresponding types. For more information, see Chapter 14, Storage Engines, and Section E.10.4, “Limits on Table Column Count and Row Size”.
InnoDB Tables
See Section 14.2.3.12.7, “Physical Row Structure” for information about storage requirements for InnoDB tables.
NDBCLUSTER Tables
Important
NDB tables use 4-byte alignment; all NDB data storage is done in multiples of 4 bytes. Thus, a column value that would typically take 15 bytes requires 16 bytes in an NDB table. For example, in NDB tables, the TINYINT, SMALLINT, MEDIUMINT, and INTEGER (INT) column types each require 4 bytes storage per record due to the alignment factor.
Each BIT(M) column takes M bits of storage space. Although an individual BIT column is not 4-byte aligned, NDB reserves 4 bytes (32 bits) per row for the first 1-32 bits needed for BIT columns, then another 4 bytes for bits 33-64, and so on.
While a NULL itself does not require any storage space, NDB reserves 4 bytes per row if the table definition contains any columns defined as NULL, up to 32 NULL columns. (If a MySQL Cluster table is defined with more than 32 NULL columns up to 64 NULL columns, then 8 bytes per row are reserved.)
Every table using the NDB storage engine requires a primary key; if you do not define a primary key, a “hidden” primary key is created by NDB. This hidden primary key consumes 31-35 bytes per table record.
You can use the ndb_size.pl Perl script to estimate NDB storage requirements. It connects to a current MySQL (not MySQL Cluster) database and creates a report on how much space that database would require if it used the NDB storage engine. See ndb_size.pl — NDBCLUSTER Size Requirement Estimator for more information.
Storage Requirements for Numeric Types
Data Type | Storage Required |
---|---|
TINYINT | 1 byte |
SMALLINT | 2 bytes |
MEDIUMINT | 3 bytes |
INT, INTEGER | 4 bytes |
BIGINT | 8 bytes |
FLOAT(p) | 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53 |
FLOAT | 4 bytes |
DOUBLE [PRECISION], REAL | 8 bytes |
DECIMAL(M,D), NUMERIC(M,D) | Varies; see following discussion |
BIT(M) | approximately (M+7)/8 bytes |
Values for DECIMAL (and NUMERIC) columns are represented using a binary format that packs nine decimal (base 10) digits into four bytes. Storage for the integer and fractional parts of each value are determined separately. Each multiple of nine digits requires four bytes, and the “leftover” digits require some fraction of four bytes. The storage required for excess digits is given by the following table.
Leftover Digits | Number of Bytes |
---|---|
0 | 0 |
1 | 1 |
2 | 1 |
3 | 2 |
4 | 2 |
5 | 3 |
6 | 3 |
7 | 4 |
8 | 4 |
Storage Requirements for Date and Time Types
For TIME, DATETIME, and TIMESTAMP columns, the storage required for tables created before MySQL 5.6.4 differs from tables created from 5.6.4 on. This is due to a change in 5.6.4 that permits these types to have a fractional part, which requires from 0 to 3 bytes.
Data Type | Storage Required Before MySQL 5.6.4 | Storage Required as of MySQL 5.6.4 |
---|---|---|
YEAR | 1 byte | 1 byte |
DATE | 3 bytes | 3 bytes |
TIME | 3 bytes | 3 bytes + fractional seconds storage |
DATETIME | 8 bytes | 5 bytes + fractional seconds storage |
TIMESTAMP | 4 bytes | 4 bytes + fractional seconds storage |
As of MySQL 5.6.4, storage for YEAR and DATE remains unchanged. However, TIME, DATETIME, and TIMESTAMP are represented differently. DATETIME is packed more efficiently, requiring 5 rather than 8 bytes for the nonfractional part, and all three parts have a fractional part that requires from 0 to 3 bytes, depending on the fractional seconds precision of stored values.
Fractional Seconds Precision | Storage Required |
---|---|
0 | 0 bytes |
1, 2 | 1 byte |
3, 4 | 2 bytes |
5, 6 | 3 bytes |
For example, TIME(0), TIME(2), TIME(4), and TIME(6) use 3, 4, 5, and 6 bytes, respectively. TIME and TIME(0) are equivalent and require the same storage.
For details about internal representation of temporal values, see MySQL Internals: Important Algorithms and Structures.
Storage Requirements for String Types
In the following table, M represents the declared column length in characters for nonbinary string types and bytes for binary string types. L represents the actual length in bytes of a given string value.
Data Type | Storage Required |
---|---|
CHAR(M) | M × w bytes, 0 <= M <= 255, where w is the number of bytes required for the maximum-length character in the character set |
BINARY(M) | M bytes, 0 <= M <= 255 |
VARCHAR(M), VARBINARY(M) | L + 1 bytes if column values require 0 – 255 bytes, L + 2 bytes if values may require more than 255 bytes |
TINYBLOB, TINYTEXT | L + 1 bytes, where L < 28 |
BLOB, TEXT | L + 2 bytes, where L < 216 |
MEDIUMBLOB, MEDIUMTEXT | L + 3 bytes, where L < 224 |
LONGBLOB, LONGTEXT | L + 4 bytes, where L < 232 |
ENUM('value1','value2',...) | 1 or 2 bytes, depending on the number of enumeration values (65,535 values maximum) |
SET('value1','value2',...) | 1, 2, 3, 4, or 8 bytes, depending on the number of set members (64 members maximum) |
Variable-length string types are stored using a length prefix plus data. The length prefix requires from one to four bytes depending on the data type, and the value of the prefix is L (the byte length of the string). For example, storage for a MEDIUMTEXT value requires L bytes to store the value plus three bytes to store the length of the value.
To calculate the number of bytes used to store a particular CHAR, VARCHAR, or TEXT column value, you must take into account the character set used for that column and whether the value contains multi-byte characters. In particular, when using the utf8 (or utf8mb4) Unicode character set, you must keep in mind that not all characters use the same number of bytes and can require up to three (four) bytes per character. For a breakdown of the storage used for different categories of utf8 or utf8mb4 characters, see Section 10.1.10, “Unicode Support”.
VARCHAR, VARBINARY, and the BLOB and TEXT types are variable-length types. For each, the storage requirements depend on these factors:
The actual length of the column value
The column's maximum possible length
The character set used for the column, because some character sets contain multi-byte characters
For example, a VARCHAR(255) column can hold a string with a maximum length of 255 characters. Assuming that the column uses the latin1 character set (one byte per character), the actual storage required is the length of the string (L), plus one byte to record the length of the string. For the string 'abcd', L is 4 and the storage requirement is five bytes. If the same column is instead declared to use the ucs2 double-byte character set, the storage requirement is 10 bytes: The length of 'abcd' is eight bytes and the column requires two bytes to store lengths because the maximum length is greater than 255 (up to 510 bytes).
The effective maximum number of bytes that can be stored in a VARCHAR or VARBINARY column is subject to the maximum row size of 65,535 bytes, which is shared among all columns. For a VARCHAR column that stores multi-byte characters, the effective maximum number of characters is less. For example, utf8 characters can require up to three bytes per character, so a VARCHAR column that uses the utf8 character set can be declared to be a maximum of 21,844 characters. See Section E.10.4, “Limits on Table Column Count and Row Size”.
The size of an ENUM object is determined by the number of different enumeration values. One byte is used for enumerations with up to 255 possible values. Two bytes are used for enumerations having between 256 and 65,535 possible values. See Section 11.4.4, “The ENUM Type”.
The size of a SET object is determined by the number of different set members. If the set size is N, the object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maximum of 64 members. See Section 11.4.5, “The SET Type”.
11.7. Choosing the Right Type for a Column
For optimum storage, you should try to use the most precise type in all cases. For example, if an integer column is used for values in the range from 1 to 99999, MEDIUMINT UNSIGNED is the best type. Of the types that represent all the required values, this type uses the least amount of storage.
All basic calculations (+, -, *, and /) with DECIMAL columns are done with precision of 65 decimal (base 10) digits. See Section 11.1.1, “Numeric Type Overview”.
If accuracy is not too important or if speed is the highest priority, the DOUBLE type may be good enough. For high precision, you can always convert to a fixed-point type stored in a BIGINT. This enables you to do all calculations with 64-bit integers and then convert results back to floating-point values as necessary.
PROCEDURE ANALYSE can be used to obtain suggestions for optimal column data types. For more information, see Section 8.4.2.4, “Using PROCEDURE ANALYSE”.
11.8. Using Data Types from Other Database Engines
To facilitate the use of code written for SQL implementations from other vendors, MySQL maps data types as shown in the following table. These mappings make it easier to import table definitions from other database systems into MySQL.
Other Vendor Type | MySQL Type |
---|---|
BOOL | TINYINT |
BOOLEAN | TINYINT |
CHARACTER VARYING(M) | VARCHAR(M) |
FIXED | DECIMAL |
FLOAT4 | FLOAT |
FLOAT8 | DOUBLE |
INT1 | TINYINT |
INT2 | SMALLINT |
INT3 | MEDIUMINT |
INT4 | INT |
INT8 | BIGINT |
LONG VARBINARY | MEDIUMBLOB |
LONG VARCHAR | MEDIUMTEXT |
LONG | MEDIUMTEXT |
MIDDLEINT | MEDIUMINT |
NUMERIC | DECIMAL |
Data type mapping occurs at table creation time, after which the original type specifications are discarded. If you create a table with types used by other vendors and then issue a DESCRIBE tbl_name statement, MySQL reports the table structure using the equivalent MySQL types. For example:
mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);
Query OK, 0 rows affected (0.00 sec)
mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
| a | tinyint(1) | YES | | NULL | |
| b | double | YES | | NULL | |
| c | mediumtext | YES | | NULL | |
| d | decimal(10,0) | YES | | NULL | |
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)
Chapter 12. Functions and Operators
Table of Contents
12.1. Function and Operator Reference
12.2. Type Conversion in Expression Evaluation
12.3.1. Operator Precedence
12.3.2. Comparison Functions and Operators
12.3.3. Logical Operators
12.3.4. Assignment Operators
12.5.1. String Comparison Functions
12.5.2. Regular Expressions
12.6. Numeric Functions and Operators
12.6.1. Arithmetic Operators
12.6.2. Mathematical Functions
12.8. What Calendar Is Used By MySQL?
12.9. Full-Text Search Functions
12.9.1. Natural Language Full-Text Searches
12.9.2. Boolean Full-Text Searches
12.9.3. Full-Text Searches with Query Expansion
12.9.4. Full-Text Stopwords
12.9.5. Full-Text Restrictions
12.9.6. Fine-Tuning MySQL Full-Text Search
12.9.7. Adding a Collation for Full-Text Indexing
12.10. Cast Functions and Operators
12.13. Encryption and Compression Functions
12.16. Miscellaneous Functions
12.17. Functions and Modifiers for Use with GROUP BY Clauses
12.17.1. GROUP BY (Aggregate) Functions
12.17.2. GROUP BY Modifiers
12.17.3. MySQL Extensions to GROUP BY
12.18.1. Introduction to MySQL Spatial Support
12.18.2. The OpenGIS Geometry Model
12.18.3. Supported Spatial Data Formats
12.18.4. Creating a Spatially Enabled MySQL Database
12.18.5. Spatial Analysis Functions
12.18.6. Optimizing Spatial Analysis
12.18.7. MySQL Conformance and Compatibility
12.19.1. Types of Numeric Values
12.19.2. DECIMAL Data Type Changes
12.19.3. Expression Handling
12.19.4. Rounding Behavior
12.19.5. Precision Math Examples
Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE statement, or in SET statements. Expressions can be written using literal values, column values, NULL, built-in functions, stored functions, user-defined functions, and operators. This chapter describes the functions and operators that are permitted for writing expressions in MySQL. Instructions for writing stored functions and user-defined functions are given in Section 18.2, “Using Stored Routines (Procedures and Functions)”, and Section 22.3, “Adding New Functions to MySQL”. See Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server interprets references to different kinds of functions.
An expression that contains NULL always produces a NULL value unless otherwise indicated in the documentation for a particular function or operator.
Note
By default, there must be no whitespace between a function name and the parenthesis following it. This helps the MySQL parser distinguish between function calls and references to tables or columns that happen to have the same name as a function. However, spaces around function arguments are permitted.
You can tell the MySQL server to accept spaces after function names by starting it with the --sql-mode=IGNORE_SPACE option. (See Section 5.1.7, “Server SQL Modes”.) Individual client programs can request this behavior by using the CLIENT_IGNORE_SPACE option for mysql_real_connect(). In either case, all function names become reserved words.
For the sake of brevity, most examples in this chapter display the output from the mysql program in abbreviated form. Rather than showing examples in this format:
mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)
This format is used instead:
mysql> SELECT MOD(29,9);
-> 2
12.1. Function and Operator Reference
Table 12.1. Functions/Operators
Name | Description |
---|---|
ABS() | Return the absolute value |
ACOS() | Return the arc cosine |
ADDDATE() | Add time values (intervals) to a date value |
ADDTIME() | Add time |
AES_DECRYPT() | Decrypt using AES |
AES_ENCRYPT() | Encrypt using AES |
AND, && | Logical AND |
ASCII() | Return numeric value of left-most character |
ASIN() | Return the arc sine |
= | Assign a value (as part of a SET statement, or as part of the SET clause in an UPDATE statement) |
:= | Assign a value |
ATAN2(), ATAN() | Return the arc tangent of the two arguments |
ATAN() | Return the arc tangent |
AVG() | Return the average value of the argument |
BENCHMARK() | Repeatedly execute an expression |
BETWEEN ... AND ... | Check whether a value is within a range of values |
BIN() | Return a string containing binary representation of a number |
BINARY | Cast a string to a binary string |
BIT_AND() | Return bitwise and |
BIT_COUNT() | Return the number of bits that are set |
BIT_LENGTH() | Return length of argument in bits |
BIT_OR() | Return bitwise or |
BIT_XOR() | Return bitwise xor |
& | Bitwise AND |
~ | Invert bits |
| | Bitwise OR |
^ | Bitwise XOR |
CASE | Case operator |
CAST() | Cast a value as a certain type |
CEIL() | Return the smallest integer value not less than the argument |
CEILING() | Return the smallest integer value not less than the argument |
CHAR_LENGTH() | Return number of characters in argument |
CHAR() | Return the character for each integer passed |
CHARACTER_LENGTH() | A synonym for CHAR_LENGTH() |
CHARSET() | Return the character set of the argument |
COALESCE() | Return the first non-NULL argument |
COERCIBILITY() | Return the collation coercibility value of the string argument |
COLLATION() | Return the collation of the string argument |
COMPRESS() | Return result as a binary string |
CONCAT_WS() | Return concatenate with separator |
CONCAT() | Return concatenated string |
CONNECTION_ID() | Return the connection ID (thread ID) for the connection |
CONV() | Convert numbers between different number bases |
CONVERT_TZ() | Convert from one timezone to another |
CONVERT() | Cast a value as a certain type |
COS() | Return the cosine |
COT() | Return the cotangent |
COUNT(DISTINCT) | Return the count of a number of different values |
COUNT() | Return a count of the number of rows returned |
CRC32() | Compute a cyclic redundancy check value |
CURDATE() | Return the current date |
CURRENT_DATE(), CURRENT_DATE | Synonyms for CURDATE() |
CURRENT_TIME(), CURRENT_TIME | Synonyms for CURTIME() |
CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP | Synonyms for NOW() |
CURRENT_USER(), CURRENT_USER | The authenticated user name and host name |
CURTIME() | Return the current time |
DATABASE() | Return the default (current) database name |
DATE_ADD() | Add time values (intervals) to a date value |
DATE_FORMAT() | Format date as specified |
DATE_SUB() | Subtract a time value (interval) from a date |
DATE() | Extract the date part of a date or datetime expression |
DATEDIFF() | Subtract two dates |
DAY() | Synonym for DAYOFMONTH() |
DAYNAME() | Return the name of the weekday |
DAYOFMONTH() | Return the day of the month (0-31) |
DAYOFWEEK() | Return the weekday index of the argument |
DAYOFYEAR() | Return the day of the year (1-366) |
DECODE() | Decodes a string encrypted using ENCODE() |
DEFAULT() | Return the default value for a table column |
DEGREES() | Convert radians to degrees |
DES_DECRYPT() | Decrypt a string |
DES_ENCRYPT() | Encrypt a string |
DIV | Integer division |
/ | Division operator |
ELT() | Return string at index number |
ENCODE() | Encode a string |
ENCRYPT() | Encrypt a string |
<=> | NULL-safe equal to operator |
= | Equal operator |
EXP() | Raise to the power of |
EXPORT_SET() | Return a string such that for every bit set in the value bits, you get an on string and for every unset bit, you get an off string |
EXTRACT() | Extract part of a date |
ExtractValue() | Extracts a value from an XML string using XPath notation |
FIELD() | Return the index (position) of the first argument in the subsequent arguments |
FIND_IN_SET() | Return the index position of the first argument within the second argument |
FLOOR() | Return the largest integer value not greater than the argument |
FORMAT() | Return a number formatted to specified number of decimal places |
FOUND_ROWS() | For a SELECT with a LIMIT clause, the number of rows that would be returned were there no LIMIT clause |
FROM_BASE64() | Decode to a base-64 string and return result |
FROM_DAYS() | Convert a day number to a date |
FROM_UNIXTIME() | Format UNIX timestamp as a date |
GET_FORMAT() | Return a date format string |
GET_LOCK() | Get a named lock |
>= | Greater than or equal operator |
> | Greater than operator |
GREATEST() | Return the largest argument |
GROUP_CONCAT() | Return a concatenated string |
GTID_SUBSET() | Return true if all GTIDs in subset are also in set; otherwise false. |
GTID_SUBTRACT() | Return all GTIDs in set that are not in subset. |
HEX() | Return a hexadecimal representation of a decimal or string value |
HOUR() | Extract the hour |
IF() | If/else construct |
IFNULL() | Null if/else construct |
IN() | Check whether a value is within a set of values |
INET_ATON() | Return the numeric value of an IP address |
INET_NTOA() | Return the IP address from a numeric value |
INET6_ATON() | Return the numeric value of an IPv6 address |
INET6_NTOA() | Return the IPv6 address from a numeric value |
INSERT() | Insert a substring at the specified position up to the specified number of characters |
INSTR() | Return the index of the first occurrence of substring |
INTERVAL() | Return the index of the argument that is less than the first argument |
IS_FREE_LOCK() | Checks whether the named lock is free |
IS_IPV4_COMPAT() | Return true if argument is an IPv4-compatible address |
IS_IPV4_MAPPED() | Return true if argument is an IPv4-mapped address |
IS_IPV4() | Return true if argument is an IPv4 address |
IS_IPV6() | Return true if argument is an IPv6 address |
IS NOT NULL | NOT NULL value test |
IS NOT | Test a value against a boolean |
IS NULL | NULL value test |
IS_USED_LOCK() | Checks whether the named lock is in use. Return connection identifier if true. |
IS | Test a value against a boolean |
ISNULL() | Test whether the argument is NULL |
LAST_DAY | Return the last day of the month for the argument |
LAST_INSERT_ID() | Value of the AUTOINCREMENT column for the last INSERT |
LCASE() | Synonym for LOWER() |
LEAST() | Return the smallest argument |
<< | Left shift |
LEFT() | Return the leftmost number of characters as specified |
LENGTH() | Return the length of a string in bytes |
<= | Less than or equal operator |
< | Less than operator |
LIKE | Simple pattern matching |
LN() | Return the natural logarithm of the argument |
LOAD_FILE() | Load the named file |
LOCALTIME(), LOCALTIME | Synonym for NOW() |
LOCALTIMESTAMP, LOCALTIMESTAMP() | Synonym for NOW() |
LOCATE() | Return the position of the first occurrence of substring |
LOG10() | Return the base-10 logarithm of the argument |
LOG2() | Return the base-2 logarithm of the argument |
LOG() | Return the natural logarithm of the first argument |
LOWER() | Return the argument in lowercase |
LPAD() | Return the string argument, left-padded with the specified string |
LTRIM() | Remove leading spaces |
MAKE_SET() | Return a set of comma-separated strings that have the corresponding bit in bits set |
MAKEDATE() | Create a date from the year and day of year |
MAKETIME | MAKETIME() |
MASTER_POS_WAIT() | Block until the slave has read and applied all updates up to the specified position |
MATCH | Perform full-text search |
MAX() | Return the maximum value |
MD5() | Calculate MD5 checksum |
MICROSECOND() | Return the microseconds from argument |
MID() | Return a substring starting from the specified position |
MIN() | Return the minimum value |
- | Minus operator |
MINUTE() | Return the minute from the argument |
MOD() | Return the remainder |
% or MOD | Modulo operator |
MONTH() | Return the month from the date passed |
MONTHNAME() | Return the name of the month |
NAME_CONST() | Causes the column to have the given name |
NOT BETWEEN ... AND ... | Check whether a value is not within a range of values |
!=, <> | Not equal operator |
NOT IN() | Check whether a value is not within a set of values |
NOT LIKE | Negation of simple pattern matching |
NOT REGEXP | Negation of REGEXP |
NOT, ! | Negates value |
NOW() | Return the current date and time |
NULLIF() | Return NULL if expr1 = expr2 |
OCT() | Return a string containing octal representation of a number |
OCTET_LENGTH() | A synonym for LENGTH() |
OLD_PASSWORD() | Return the value of the pre-4.1 implementation of PASSWORD |
||, OR | Logical OR |
ORD() | Return character code for leftmost character of the argument |
PASSWORD() | Calculate and return a password string |
PERIOD_ADD() | Add a period to a year-month |
PERIOD_DIFF() | Return the number of months between periods |
PI() | Return the value of pi |
+ | Addition operator |
POSITION() | A synonym for LOCATE() |
POW() | Return the argument raised to the specified power |
POWER() | Return the argument raised to the specified power |
PROCEDURE ANALYSE() | Analyze the results of a query |
QUARTER() | Return the quarter from a date argument |
QUOTE() | Escape the argument for use in an SQL statement |
RADIANS() | Return argument converted to radians |
RAND() | Return a random floating-point value |
REGEXP | Pattern matching using regular expressions |
RELEASE_LOCK() | Releases the named lock |
REPEAT() | Repeat a string the specified number of times |
REPLACE() | Replace occurrences of a specified string |
REVERSE() | Reverse the characters in a string |
>> | Right shift |
RIGHT() | Return the specified rightmost number of characters |
RLIKE | Synonym for REGEXP |
ROUND() | Round the argument |
ROW_COUNT() | The number of rows updated |
RPAD() | Append string the specified number of times |
RTRIM() | Remove trailing spaces |
SCHEMA() | A synonym for DATABASE() |
SEC_TO_TIME() | Converts seconds to 'HH:MM:SS' format |
SECOND() | Return the second (0-59) |
SESSION_USER() | Synonym for USER() |
SHA1(), SHA() | Calculate an SHA-1 160-bit checksum |
SHA2() | Calculate an SHA-2 checksum |
SIGN() | Return the sign of the argument |
SIN() | Return the sine of the argument |
SLEEP() | Sleep for a number of seconds |
SOUNDEX() | Return a soundex string |
SOUNDS LIKE | Compare sounds |
SPACE() | Return a string of the specified number of spaces |
SQL_THREAD_WAIT_AFTER_GTIDS()(deprecated 5.6.9) | OBSOLETE: Replaced by WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() |
SQRT() | Return the square root of the argument |
STD() | Return the population standard deviation |
STDDEV_POP() | Return the population standard deviation |
STDDEV_SAMP() | Return the sample standard deviation |
STDDEV() | Return the population standard deviation |
STR_TO_DATE() | Convert a string to a date |
STRCMP() | Compare two strings |
SUBDATE() | A synonym for DATE_SUB() when invoked with three arguments |
SUBSTR() | Return the substring as specified |
SUBSTRING_INDEX() | Return a substring from a string before the specified number of occurrences of the delimiter |
SUBSTRING() | Return the substring as specified |
SUBTIME() | Subtract times |
SUM() | Return the sum |
SYSDATE() | Return the time at which the function executes |
SYSTEM_USER() | Synonym for USER() |
TAN() | Return the tangent of the argument |
TIME_FORMAT() | Format as time |
TIME_TO_SEC() | Return the argument converted to seconds |
TIME() | Extract the time portion of the expression passed |
TIMEDIFF() | Subtract time |
* | Multiplication operator |
TIMESTAMP() | With a single argument, this function returns the date or datetime expression; with two arguments, the sum of the arguments |
TIMESTAMPADD() | Add an interval to a datetime expression |
TIMESTAMPDIFF() | Subtract an interval from a datetime expression |
TO_BASE64() | Return the argument converted to a base-64 string |
TO_DAYS() | Return the date argument converted to days |
TO_SECONDS() | Return the date or datetime argument converted to seconds since Year 0 |
TRIM() | Remove leading and trailing spaces |
TRUNCATE() | Truncate to specified number of decimal places |
UCASE() | Synonym for UPPER() |
- | Change the sign of the argument |
UNCOMPRESS() | Uncompress a string compressed |
UNCOMPRESSED_LENGTH() | Return the length of a string before compression |
UNHEX() | Return a string containing hex representation of a number |
UNIX_TIMESTAMP() | Return a UNIX timestamp |
UpdateXML() | Return replaced XML fragment |
UPPER() | Convert to uppercase |
USER() | The user name and host name provided by the client |
UTC_DATE() | Return the current UTC date |
UTC_TIME() | Return the current UTC time |
UTC_TIMESTAMP() | Return the current UTC date and time |
UUID_SHORT() | Return an integer-valued universal identifier |
UUID() | Return a Universal Unique Identifier (UUID) |
VALIDATE_PASSWORD_STRENGTH() | Determine strength of password |
VALUES() | Defines the values to be used during an INSERT |
VAR_POP() | Return the population standard variance |
VAR_SAMP() | Return the sample variance |
VARIANCE() | Return the population standard variance |
VERSION() | Returns a string that indicates the MySQL server version |
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() | Wait until the slave SQL thread has executed all the given GTIDs. Returns: the number of events that were executed (or NULL, if GTID mode is not enabled). |
WEEK() | Return the week number |
WEEKDAY() | Return the weekday index |
WEEKOFYEAR() | Return the calendar week of the date (0-53) |
WEIGHT_STRING() | Return the weight string for a string |
XOR | Logical XOR |
YEAR() | Return the year |
YEARWEEK() | Return the year and week |
12.2. Type Conversion in Expression Evaluation
When an operator is used with operands of different types, type conversion occurs to make the operands compatible. Some conversions occur implicitly. For example, MySQL automatically converts numbers to strings as necessary, and vice versa.
mysql> SELECT 1+'1';
-> 2
mysql> SELECT CONCAT(2,' test');
-> '2 test'
It is also possible to convert a number to a string explicitly using the CAST() function. Conversion occurs implicitly with the CONCAT() function because it expects string arguments.
mysql> SELECT 38.8, CAST(38.8 AS CHAR);
-> 38.8, '38.8'
mysql> SELECT 38.8, CONCAT(38.8);
-> 38.8, '38.8'
See later in this section for information about the character set of implicit number-to-string conversions.
The following rules describe how conversion occurs for comparison operations:
If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-safe <=> equality comparison operator. For NULL <=> NULL, the result is true. No conversion is needed.
If both arguments in a comparison operation are strings, they are compared as strings.
If both arguments are integers, they are compared as integers.
Hexadecimal values are treated as binary strings if not compared to a number.
If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a constant, the constant is converted to a timestamp before the comparison is performed. This is done to be more ODBC-friendly. Note that this is not done for the arguments to IN()! To be safe, always use complete datetime, date, or time strings when doing comparisons. For example, to achieve best results when using BETWEEN with date or time values, use CAST() to explicitly convert the values to the desired data type.
A single-row subquery from a table or tables is not considered a constant. For example, if a subquery returns an integer to be compared to a DATETIME value, the comparison is done as two integers. The integer is not converted to a temporal value. To compare the operands as DATETIME values, use CAST() to explicitly convert the subquery value to DATETIME.
If one of the arguments is a decimal value, comparison depends on the other argument. The arguments are compared as decimal values if the other argument is a decimal or integer value, or as floating-point values if the other argument is a floating-point value.
In all other cases, the arguments are compared as floating-point (real) numbers.
For information about conversion of values from one temporal type to another, see Section 11.3.7, “Conversion Between Date and Time Types”.
The following examples illustrate conversion of strings to numbers for comparison operations:
mysql> SELECT 1 > '6x';
-> 0
mysql> SELECT 7 > '6x';
-> 1
mysql> SELECT 0 > 'x6';
-> 0
mysql> SELECT 0 = 'x6';
-> 1
For comparisons of a string column with a number, MySQL cannot use an index on the column to look up the value quickly. If str_col is an indexed string column, the index cannot be used when performing the lookup in the following statement:
SELECT * FROM tbl_name WHERE str_col=1;
The reason for this is that there are many different strings that may convert to the value 1, such as '1', ' 1', or '1a'.
Comparisons that use floating-point numbers (or values that are converted to floating-point numbers) are approximate because such numbers are inexact. This might lead to results that appear inconsistent:
mysql> SELECT '18015376320243458' = 18015376320243458;
-> 1
mysql> SELECT '18015376320243459' = 18015376320243459;
-> 0
Such results can occur because the values are converted to floating-point numbers, which have only 53 bits of precision and are subject to rounding:
mysql> SELECT '18015376320243459'+0.0;
-> 1.8015376320243e+16
Furthermore, the conversion from string to floating-point and from integer to floating-point do not necessarily occur the same way. The integer may be converted to floating-point by the CPU, whereas the string is converted digit by digit in an operation that involves floating-point multiplications.
The results shown will vary on different systems, and can be affected by factors such as computer architecture or the compiler version or optimization level. One way to avoid such problems is to use CAST() so that a value will not be converted implicitly to a float-point number:
mysql> SELECT CAST('18015376320243459' AS UNSIGNED) = 18015376320243459;
-> 1
For more information about floating-point comparisons, see Section C.5.5.8, “Problems with Floating-Point Values”.
In MySQL 5.6, the server includes dtoa, a conversion library that provides the basis for improved conversion between string or DECIMAL values and approximate-value (FLOAT/DOUBLE) numbers:
Consistent conversion results across platforms, which eliminates, for example, Unix versus Windows conversion differences.
Accurate representation of values in cases where results previously did not provide sufficient precision, such as for values close to IEEE limits.
Conversion of numbers to string format with the best possible precision. The precision of dtoa is always the same or better than that of the standard C library functions.
Because the conversions produced by this library differ in some cases from previous results, the potential exists for incompatibilities in applications that rely on previous results. For example, applications that depend on a specific exact result from previous conversions might need adjustment to accommodate additional precision.
The dtoa library provides conversions with the following properties. D represents a value with a DECIMAL or string representation, and F represents a floating-point number in native binary (IEEE) format.
F -> D conversion is done with the best possible precision, returning D as the shortest string that yields F when read back in and rounded to the nearest value in native binary format as specified by IEEE.
D -> F conversion is done such that F is the nearest native binary number to the input decimal string D.
These properties imply that F -> D -> F conversions are lossless unless F is -inf, +inf, or NaN. The latter values are not supported because the SQL standard defines them as invalid values for FLOAT or DOUBLE.
For D -> F -> D conversions, a sufficient condition for losslessness is that D uses 15 or fewer digits of precision, is not a denormal value, -inf, +inf, or NaN. In some cases, the conversion is lossless even if D has more than 15 digits of precision, but this is not always the case.
In MySQL 5.6, implicit conversion of a numeric or temporal value to string produces a value that has a character set and collation determined by the character_set_connection and collation_connection system variables. (These variables commonly are set with SET NAMES. For information about connection character sets, see Section 10.1.4, “Connection Character Sets and Collations”.)
This means that such a conversion results in a character (nonbinary) string (a CHAR, VARCHAR, or LONGTEXT value), except in the case that the connection character set is set to binary. In that case, the conversion result is a binary string (a BINARY, VARBINARY, or LONGBLOB value).
12.3. Operators
Table 12.2. Operators
Name | Description |
---|---|
AND, && | Logical AND |
= | Assign a value (as part of a SET statement, or as part of the SET clause in an UPDATE statement) |
:= | Assign a value |
BETWEEN ... AND ... | Check whether a value is within a range of values |
BINARY | Cast a string to a binary string |
& | Bitwise AND |
~ | Invert bits |
| | Bitwise OR |
^ | Bitwise XOR |
CASE | Case operator |
DIV | Integer division |
/ | Division operator |
<=> | NULL-safe equal to operator |
= | Equal operator |
>= | Greater than or equal operator |
> | Greater than operator |
IS NOT NULL | NOT NULL value test |
IS NOT | Test a value against a boolean |
IS NULL | NULL value test |
IS | Test a value against a boolean |
<< | Left shift |
<= | Less than or equal operator |
< | Less than operator |
LIKE | Simple pattern matching |
- | Minus operator |
% or MOD | Modulo operator |
NOT BETWEEN ... AND ... | Check whether a value is not within a range of values |
!=, <> | Not equal operator |
NOT LIKE | Negation of simple pattern matching |
NOT REGEXP | Negation of REGEXP |
NOT, ! | Negates value |
||, OR | Logical OR |
+ | Addition operator |
REGEXP | Pattern matching using regular expressions |
>> | Right shift |
RLIKE | Synonym for REGEXP |
SOUNDS LIKE | Compare sounds |
* | Multiplication operator |
- | Change the sign of the argument |
XOR | Logical XOR |
12.3.1. Operator Precedence
Operator precedences are shown in the following list, from highest precedence to the lowest. Operators that are shown together on a line have the same precedence.
INTERVAL
BINARY, COLLATE
!
- (unary minus), ~ (unary bit inversion)
^
*, /, DIV, %, MOD
-, +
<<, >>
&
|
= (comparison), <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN
BETWEEN, CASE, WHEN, THEN, ELSE
NOT
&&, AND
XOR
||, OR
= (assignment), :=
The precedence of = depends on whether it is used as a comparison operator (=) or as an assignment operator (=). When used as a comparison operator, it has the same precedence as <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, and IN. When used as an assignment operator, it has the same precedence as :=. Section 13.7.4, “SET Syntax”, and Section 9.4, “User-Defined Variables”, explain how MySQL determines which interpretation of = should apply.
The meaning of some operators depends on the SQL mode:
By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation, with a precedence between ^ and the unary operators.
By default, ! has a higher precedence than NOT. With HIGH_NOT_PRECEDENCE enabled, ! and NOT have the same precedence.
See Section 5.1.7, “Server SQL Modes”.
The precedence of operators determines the order of evaluation of terms in an expression. To override this order and group terms explicitly, use parentheses. For example:
mysql> SELECT 1+2*3;
-> 7
mysql> SELECT (1+2)*3;
-> 9
12.3.2. Comparison Functions and Operators
Table 12.3. Comparison Operators
Name | Description |
---|---|
BETWEEN ... AND ... | Check whether a value is within a range of values |
COALESCE() | Return the first non-NULL argument |
<=> | NULL-safe equal to operator |
= | Equal operator |
>= | Greater than or equal operator |
> | Greater than operator |
GREATEST() | Return the largest argument |
IN() | Check whether a value is within a set of values |
INTERVAL() | Return the index of the argument that is less than the first argument |
IS NOT NULL | NOT NULL value test |
IS NOT | Test a value against a boolean |
IS NULL | NULL value test |
IS | Test a value against a boolean |
ISNULL() | Test whether the argument is NULL |
LEAST() | Return the smallest argument |
<= | Less than or equal operator |
< | Less than operator |
LIKE | Simple pattern matching |
NOT BETWEEN ... AND ... | Check whether a value is not within a range of values |
!=, <> | Not equal operator |
NOT IN() | Check whether a value is not within a set of values |
NOT LIKE | Negation of simple pattern matching |
STRCMP() | Compare two strings |
Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work for both numbers and strings. Strings are automatically converted to numbers and numbers to strings as necessary.
The following relational comparison operators can be used to compare not only scalar operands, but row operands:
= > < >= <= <> !=
For examples of row comparisons, see Section 13.2.10.5, “Row Subqueries”.
Some of the functions in this section return values other than 1 (TRUE), 0 (FALSE), or NULL. For example, LEAST() and GREATEST(). However, the value they return is based on comparison operations performed according to the rules described in Section 12.2, “Type Conversion in Expression Evaluation”.
To convert a value to a specific type for comparison purposes, you can use the CAST() function. String values can be converted to a different character set using CONVERT(). See Section 12.10, “Cast Functions and Operators”.
By default, string comparisons are not case sensitive and use the current character set. The default is latin1 (cp1252 West European), which also works well for English.
Equal:
mysql> SELECT 1 = 0;
-> 0
mysql> SELECT '0' = 0;
-> 1
mysql> SELECT '0.0' = 0;
-> 1
mysql> SELECT '0.01' = 0;
-> 0
mysql> SELECT '.01' = 0.01;
-> 1
NULL-safe equal. This operator performs an equality comparison like the = operator, but returns 1 rather than NULL if both operands are NULL, and 0 rather than NULL if one operand is NULL.
mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
-> 1, 1, 0
mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
-> 1, NULL, NULL
Not equal:
mysql> SELECT '.01' <> '0.01';
-> 1
mysql> SELECT .01 <> '0.01';
-> 0
mysql> SELECT 'zapp' <> 'zappp';
-> 1
Less than or equal:
mysql> SELECT 0.1 <= 2;
-> 1
Less than:
mysql> SELECT 2 < 2;
-> 0
Greater than or equal:
mysql> SELECT 2 >= 2;
-> 1
Greater than:
mysql> SELECT 2 > 2;
-> 0
Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.
mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;
-> 1, 1, 1
Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.
mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
-> 1, 1, 0
Tests whether a value is NULL.
mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
-> 0, 0, 1
To work well with ODBC programs, MySQL supports the following extra features when using IS NULL:
If sql_auto_is_null variable is set to 1, then after a statement that successfully inserts an automatically generated AUTO_INCREMENT value, you can find that value by issuing a statement of the following form:
SELECT * FROM tbl_name WHERE auto_col IS NULL
If the statement returns a row, the value returned is the same as if you invoked the LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert, see Section 12.14, “Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the SELECT statement returns no row.
The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison can be disabled by setting sql_auto_is_null = 0. See Section 5.1.4, “Server System Variables”.
The default value of sql_auto_is_null is 0 in MySQL 5.6.
For DATE and DATETIME columns that are declared as NOT NULL, you can find the special date '0000-00-00' by using a statement like this:
SELECT * FROM tbl_name WHERE date_column IS NULL
This is needed to get some ODBC applications to work because ODBC does not support a '0000-00-00' date value.
See Section 21.1.7.1.1, “Obtaining Auto-Increment Values”, and the description for the FLAG_AUTO_IS_NULL option at Section 21.1.4.2, “Connector/ODBC Connection Parameters”.
Tests whether a value is not NULL.
mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
-> 1, 1, 0
If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1, otherwise it returns 0. This is equivalent to the expression (min <= expr AND expr <= max) if all the arguments are of the same type. Otherwise type conversion takes place according to the rules described in Section 12.2, “Type Conversion in Expression Evaluation”, but applied to all the three arguments.
mysql> SELECT 2 BETWEEN 1 AND 3, 2 BETWEEN 3 and 1;
-> 1, 0
mysql> SELECT 1 BETWEEN 2 AND 3;
-> 0
mysql> SELECT 'b' BETWEEN 'a' AND 'c';
-> 1
mysql> SELECT 2 BETWEEN 2 AND '3';
-> 1
mysql> SELECT 2 BETWEEN 2 AND 'x-3';
-> 0
For best results when using BETWEEN with date or time values, use CAST() to explicitly convert the values to the desired data type. Examples: If you compare a DATETIME to two DATE values, convert the DATE values to DATETIME values. If you use a string constant such as '2001-1-1' in a comparison to a DATE, cast the string to a DATE.
This is the same as NOT (expr BETWEEN min AND max).
Returns the first non-NULL value in the list, or NULL if there are no non-NULL values.
mysql> SELECT COALESCE(NULL,1);
-> 1
mysql> SELECT COALESCE(NULL,NULL,NULL);
-> NULL
With two or more arguments, returns the largest (maximum-valued) argument. The arguments are compared using the same rules as for LEAST().
mysql> SELECT GREATEST(2,0);
-> 2
mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
-> 767.0
mysql> SELECT GREATEST('B','A','C');
-> 'C'
GREATEST() returns NULL if any argument is NULL.
Returns 1 if expr is equal to any of the values in the IN list, else returns 0. If all values are constants, they are evaluated according to the type of expr and sorted. The search for the item then is done using a binary search. This means IN is very quick if the IN value list consists entirely of constants. Otherwise, type conversion takes place according to the rules described in Section 12.2, “Type Conversion in Expression Evaluation”, but applied to all the arguments.
mysql> SELECT 2 IN (0,3,5,7);
-> 0
mysql> SELECT 'wefwf' IN ('wee','wefwf','weg');
-> 1
You should never mix quoted and unquoted values in an IN list because the comparison rules for quoted values (such as strings) and unquoted values (such as numbers) differ. Mixing types may therefore lead to inconsistent results. For example, do not write an IN expression like this:
SELECT val1 FROM tbl1 WHERE val1 IN (1,2,'a');
Instead, write it like this:
SELECT val1 FROM tbl1 WHERE val1 IN ('1','2','a');
The number of values in the IN list is only limited by the max_allowed_packet value.
To comply with the SQL standard, IN returns NULL not only if the expression on the left hand side is NULL, but also if no match is found in the list and one of the expressions in the list is NULL.
IN() syntax can also be used to write certain types of subqueries. See Section 13.2.10.3, “Subqueries with ANY, IN, or SOME”.
This is the same as NOT (expr IN (value,...)).
If expr is NULL, ISNULL() returns 1, otherwise it returns 0.
mysql> SELECT ISNULL(1+1);
-> 0
mysql> SELECT ISNULL(1/0);
-> 1
ISNULL() can be used instead of = to test whether a value is NULL. (Comparing a value to NULL using = always yields false.)
The ISNULL() function shares some special behaviors with the IS NULL comparison operator. See the description of IS NULL.
Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are treated as integers. It is required that N1 < N2 < N3 < ... < Nn for this function to work correctly. This is because a binary search is used (very fast).
mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);
-> 3
mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
-> 2
mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
-> 0
With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are compared using the following rules:
If any argument is NULL, the result is NULL. No comparison is needed.
If the return value is used in an INTEGER context or all arguments are integer-valued, they are compared as integers.
If the return value is used in a REAL context or all arguments are real-valued, they are compared as reals.
If the arguments comprise a mix of numbers and strings, they are compared as numbers.
If any argument is a nonbinary (character) string, the arguments are compared as nonbinary strings.
In all other cases, the arguments are compared as binary strings.
mysql> SELECT LEAST(2,0);
-> 0
mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
-> 3.0
mysql> SELECT LEAST('B','A','C');
-> 'A'
Note that the preceding conversion rules can produce strange results in some borderline cases:
mysql> SELECT CAST(LEAST(3600, 9223372036854775808.0) as SIGNED);
-> -9223372036854775808
This happens because MySQL reads 9223372036854775808.0 in an integer context. The integer representation is not good enough to hold the value, so it wraps to a signed integer.
12.3.3. Logical Operators
Table 12.4. Logical Operators
Name | Description |
---|---|
AND, && | Logical AND |
NOT, ! | Negates value |
||, OR | Logical OR |
XOR | Logical XOR |
In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these are implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common to different SQL database servers, although some servers may return any nonzero value for TRUE.
MySQL evaluates any nonzero, non-NULL value to TRUE. For example, the following statements all assess to TRUE:
mysql> SELECT 10 IS TRUE;
-> 1
mysql> SELECT -10 IS TRUE;
-> 1
mysql> SELECT 'string' IS NOT NULL;
-> 1
Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is nonzero, and NOT NULL returns NULL.
mysql> SELECT NOT 10;
-> 0
mysql> SELECT NOT 0;
-> 1
mysql> SELECT NOT NULL;
-> NULL
mysql> SELECT ! (1+1);
-> 0
mysql> SELECT ! 1+1;
-> 1
The last example produces 1 because the expression evaluates the same way as (!1)+1.
Logical AND. Evaluates to 1 if all operands are nonzero and not NULL, to 0 if one or more operands are 0, otherwise NULL is returned.
mysql> SELECT 1 && 1;
-> 1
mysql> SELECT 1 && 0;
-> 0
mysql> SELECT 1 && NULL;
-> NULL
mysql> SELECT 0 && NULL;
-> 0
mysql> SELECT NULL && 0;
-> 0
Logical OR. When both operands are non-NULL, the result is 1 if any operand is nonzero, and 0 otherwise. With a NULL operand, the result is 1 if the other operand is nonzero, and NULL otherwise. If both operands are NULL, the result is NULL.
mysql> SELECT 1 || 1;
-> 1
mysql> SELECT 1 || 0;
-> 1
mysql> SELECT 0 || 0;
-> 0
mysql> SELECT 0 || NULL;
-> NULL
mysql> SELECT 1 || NULL;
-> 1
Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an odd number of operands is nonzero, otherwise 0 is returned.
mysql> SELECT 1 XOR 1;
-> 0
mysql> SELECT 1 XOR 0;
-> 1
mysql> SELECT 1 XOR NULL;
-> NULL
mysql> SELECT 1 XOR 1 XOR 1;
-> 1
a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).
12.3.4. Assignment Operators
Table 12.5. Assignment Operators
Name | Description |
---|---|
= | Assign a value (as part of a SET statement, or as part of the SET clause in an UPDATE statement) |
:= | Assign a value |
Assignment operator. Causes the user variable on the left hand side of the operator to take on the value to its right. The value on the right hand side may be a literal value, another variable storing a value, or any legal expression that yields a scalar value, including the result of a query (provided that this value is a scalar value). You can perform multiple assignments in the same SET statement. You can perform multiple assignments in the same statement-
Unlike =, the := operator is never interpreted as a comparison operator. This means you can use := in any valid SQL statement (not just in SET statements) to assign a value to a variable.
mysql> SELECT @var1, @var2;
-> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
-> 1, NULL
mysql> SELECT @var1, @var2;
-> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
-> 1, 1
mysql> SELECT @var1, @var2;
-> 1, 1
mysql> SELECT @var1:=COUNT(*) FROM t1;
-> 4
mysql> SELECT @var1;
-> 4
You can make value assignments using := in other statements besides SELECT, such as UPDATE, as shown here:
mysql> SELECT @var1;
-> 4
mysql> SELECT * FROM t1;
-> 1, 3, 5, 7
mysql> UPDATE t1 SET c1 = 2 WHERE c1 = @var1:= 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> SELECT @var1;
-> 1
mysql> SELECT * FROM t1;
-> 2, 3, 5, 7
While it is also possible both to set and to read the value of the same variable in a single SQL statement using the := operator, this is not recommended. Section 9.4, “User-Defined Variables”, explains why you should avoid doing this.
This operator is used to perform value assignments in two cases, described in the next two paragraphs.
Within a SET statement, = is treated as an assignment operator that causes the user variable on the left hand side of the operator to take on the value to its right. (In other words, when used in a SET statement, = is treated identically to :=.) The value on the right hand side may be a literal value, another variable storing a value, or any legal expression that yields a scalar value, including the result of a query (provided that this value is a scalar value). You can perform multiple assignments in the same SET statement.
In the SET clause of an UPDATE statement, = also acts as an assignment operator; in this case, however, it causes the column named on the left hand side of the operator to assume the value given to the right, provided any WHERE conditions that are part of the UPDATE are met. You can make multiple assignments in the same SET clause of an UPDATE statement.
In any other context, = is treated as a comparison operator.
mysql> SELECT @var1, @var2;
-> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
-> 1, NULL
mysql> SELECT @var1, @var2;
-> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
-> 1, 1
mysql> SELECT @var1, @var2;
-> 1, 1
For more information, see Section 13.7.4, “SET Syntax”, Section 13.2.11, “UPDATE Syntax”, and Section 13.2.10, “Subquery Syntax”.
12.4. Control Flow Functions
Table 12.6. Flow Control Operators
Name | Description |
---|---|
CASE | Case operator |
IF() | If/else construct |
IFNULL() | Null if/else construct |
NULLIF() | Return NULL if expr1 = expr2 |
CASE value WHEN [compare_value] THEN result [WHEN [compare_value] THEN result ...] [ELSE result] END
CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...] [ELSE result] END
The first version returns the result where value=compare_value. The second version returns the result for the first condition that is true. If there was no matching result value, the result after ELSE is returned, or NULL if there is no ELSE part.
mysql> SELECT CASE 1 WHEN 1 THEN 'one'
-> WHEN 2 THEN 'two' ELSE 'more' END;
-> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;
-> 'true'
mysql> SELECT CASE BINARY 'B'
-> WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;
-> NULL
The return type of a CASE expression is the compatible aggregated type of all return values, but also depends on the context in which it is used. If used in a string context, the result is returned as a string. If used in a numeric context, the result is returned as a decimal, real, or integer value.
Note
The syntax of the CASE expression shown here differs slightly from that of the SQL CASE statement described in Section 13.6.5.1, “CASE Syntax”, for use inside stored programs. The CASE statement cannot have an ELSE NULL clause, and it is terminated with END CASE instead of END.
If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2; otherwise it returns expr3. IF() returns a numeric or string value, depending on the context in which it is used.
mysql> SELECT IF(1>2,2,3);
-> 3
mysql> SELECT IF(1<2,'yes','no');
-> 'yes'
mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
-> 'no'
If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the type of the non-NULL expression.
The default return type of IF() (which may matter when it is stored into a temporary table) is calculated as follows.
Expression | Return Value |
---|---|
expr2 or expr3 returns a string | string |
expr2 or expr3 returns a floating-point value | floating-point |
expr2 or expr3 returns an integer | integer |
If expr2 and expr3 are both strings, the result is case sensitive if either string is case sensitive.
Note
There is also an IF statement, which differs from the IF() function described here. See Section 13.6.5.2, “IF Syntax”.
If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2. IFNULL() returns a numeric or string value, depending on the context in which it is used.
mysql> SELECT IFNULL(1,0);
-> 1
mysql> SELECT IFNULL(NULL,10);
-> 10
mysql> SELECT IFNULL(1/0,10);
-> 10
mysql> SELECT IFNULL(1/0,'yes');
-> 'yes'
The default result value of IFNULL(expr1,expr2) is the more “general” of the two expressions, in the order STRING, REAL, or INTEGER. Consider the case of a table based on expressions or where MySQL must internally store a value returned by IFNULL() in a temporary table:
mysql> CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;
mysql> DESCRIBE tmp;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| test | varbinary(4) | NO | | | |
+-------+--------------+------+-----+---------+-------+
In this example, the type of the test column is VARBINARY(4).
Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE WHEN expr1 = expr2 THEN NULL ELSE expr1 END.
mysql> SELECT NULLIF(1,1);
-> NULL
mysql> SELECT NULLIF(1,2);
-> 1
Note that MySQL evaluates expr1 twice if the arguments are not equal.
12.5. String Functions
Table 12.7. String Operators
Name | Description |
---|---|
ASCII() | Return numeric value of left-most character |
BIN() | Return a string containing binary representation of a number |
BIT_LENGTH() | Return length of argument in bits |
CHAR_LENGTH() | Return number of characters in argument |
CHAR() | Return the character for each integer passed |
CHARACTER_LENGTH() | A synonym for CHAR_LENGTH() |
CONCAT_WS() | Return concatenate with separator |
CONCAT() | Return concatenated string |
ELT() | Return string at index number |
EXPORT_SET() | Return a string such that for every bit set in the value bits, you get an on string and for every unset bit, you get an off string |
FIELD() | Return the index (position) of the first argument in the subsequent arguments |
FIND_IN_SET() | Return the index position of the first argument within the second argument |
FORMAT() | Return a number formatted to specified number of decimal places |
FROM_BASE64() | Decode to a base-64 string and return result |
HEX() | Return a hexadecimal representation of a decimal or string value |
INSERT() | Insert a substring at the specified position up to the specified number of characters |
INSTR() | Return the index of the first occurrence of substring |
LCASE() | Synonym for LOWER() |
LEFT() | Return the leftmost number of characters as specified |
LENGTH() | Return the length of a string in bytes |
LIKE | Simple pattern matching |
LOAD_FILE() | Load the named file |
LOCATE() | Return the position of the first occurrence of substring |
LOWER() | Return the argument in lowercase |
LPAD() | Return the string argument, left-padded with the specified string |
LTRIM() | Remove leading spaces |
MAKE_SET() | Return a set of comma-separated strings that have the corresponding bit in bits set |
MATCH | Perform full-text search |
MID() | Return a substring starting from the specified position |
NOT LIKE | Negation of simple pattern matching |
NOT REGEXP | Negation of REGEXP |
OCT() | Return a string containing octal representation of a number |
OCTET_LENGTH() | A synonym for LENGTH() |
ORD() | Return character code for leftmost character of the argument |
POSITION() | A synonym for LOCATE() |
QUOTE() | Escape the argument for use in an SQL statement |
REGEXP | Pattern matching using regular expressions |
REPEAT() | Repeat a string the specified number of times |
REPLACE() | Replace occurrences of a specified string |
REVERSE() | Reverse the characters in a string |
RIGHT() | Return the specified rightmost number of characters |
RLIKE | Synonym for REGEXP |
RPAD() | Append string the specified number of times |
RTRIM() | Remove trailing spaces |
SOUNDEX() | Return a soundex string |
SOUNDS LIKE | Compare sounds |
SPACE() | Return a string of the specified number of spaces |
STRCMP() | Compare two strings |
SUBSTR() | Return the substring as specified |
SUBSTRING_INDEX() | Return a substring from a string before the specified number of occurrences of the delimiter |
SUBSTRING() | Return the substring as specified |
TO_BASE64() | Return the argument converted to a base-64 string |
TRIM() | Remove leading and trailing spaces |
UCASE() | Synonym for UPPER() |
UNHEX() | Return a string containing hex representation of a number |
UPPER() | Convert to uppercase |
WEIGHT_STRING() | Return the weight string for a string |
String-valued functions return NULL if the length of the result would be greater than the value of the max_allowed_packet system variable. See Section 8.11.2, “Tuning Server Parameters”.
For functions that operate on string positions, the first position is numbered 1.
For functions that take length arguments, noninteger arguments are rounded to the nearest integer.
Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty string. Returns NULL if str is NULL. ASCII() works for 8-bit characters.
mysql> SELECT ASCII('2');
-> 50
mysql> SELECT ASCII(2);
-> 50
mysql> SELECT ASCII('dx');
-> 100
See also the ORD() function.
Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number. This is equivalent to CONV(N,10,2). Returns NULL if N is NULL.
mysql> SELECT BIN(12);
-> '1100'
Returns the length of the string str in bits.
mysql> SELECT BIT_LENGTH('text');
-> 32
CHAR(N,... [USING charset_name])
CHAR() interprets each argument N as an integer and returns a string consisting of the characters given by the code values of those integers. NULL values are skipped.
mysql> SELECT CHAR(77,121,83,81,'76');
-> 'MySQL'
mysql> SELECT CHAR(77,77.3,'77.3');
-> 'MMM'
CHAR() arguments larger than 255 are converted into multiple result bytes. For example, CHAR(256) is equivalent to CHAR(1,0), and CHAR(256*256) is equivalent to CHAR(1,0,0):
mysql> SELECT HEX(CHAR(1,0)), HEX(CHAR(256));
+----------------+----------------+
| HEX(CHAR(1,0)) | HEX(CHAR(256)) |
+----------------+----------------+
| 0100 | 0100 |
+----------------+----------------+
mysql> SELECT HEX(CHAR(1,0,0)), HEX(CHAR(256*256));
+------------------+--------------------+
| HEX(CHAR(1,0,0)) | HEX(CHAR(256*256)) |
+------------------+--------------------+
| 010000 | 010000 |
+------------------+--------------------+
By default, CHAR() returns a binary string. To produce a string in a given character set, use the optional USING clause:
mysql> SELECT CHARSET(CHAR(0x65)), CHARSET(CHAR(0x65 USING utf8));
+---------------------+--------------------------------+
| CHARSET(CHAR(0x65)) | CHARSET(CHAR(0x65 USING utf8)) |
+---------------------+--------------------------------+
| binary | utf8 |
+---------------------+--------------------------------+
If USING is given and the result string is illegal for the given character set, a warning is issued. Also, if strict SQL mode is enabled, the result from CHAR() becomes NULL.
Returns the length of the string str, measured in characters. A multi-byte character counts as a single character. This means that for a string containing five 2-byte characters, LENGTH() returns 10, whereas CHAR_LENGTH() returns 5.
CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().
Returns the string that results from concatenating the arguments. May have one or more arguments. If all arguments are nonbinary strings, the result is a nonbinary string. If the arguments include any binary strings, the result is a binary string. A numeric argument is converted to its equivalent nonbinary string form.
CONCAT() returns NULL if any argument is NULL.
mysql> SELECT CONCAT('My', 'S', 'QL');
-> 'MySQL'
mysql> SELECT CONCAT('My', NULL, 'QL');
-> NULL
mysql> SELECT CONCAT(14.3);
-> '14.3'
For quoted strings, concatenation can be performed by placing the strings next to each other:
mysql> SELECT 'My' 'S' 'QL';
-> 'MySQL'
CONCAT_WS(separator,str1,str2,...)
CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The first argument is the separator for the rest of the arguments. The separator is added between the strings to be concatenated. The separator can be a string, as can the rest of the arguments. If the separator is NULL, the result is NULL.
mysql> SELECT CONCAT_WS(',','First name','Second name','Last Name');
-> 'First name,Second name,Last Name'
mysql> SELECT CONCAT_WS(',','First name',NULL,'Last Name');
-> 'First name,Last Name'
CONCAT_WS() does not skip empty strings. However, it does skip any NULL values after the separator argument.
ELT() returns the Nth element of the list of strings: str1 if N = 1, str2 if N = 2, and so on. Returns NULL if N is less than 1 or greater than the number of arguments. ELT() is the complement of FIELD().
mysql> SELECT ELT(1, 'ej', 'Heja', 'hej', 'foo');
-> 'ej'
mysql> SELECT ELT(4, 'ej', 'Heja', 'hej', 'foo');
-> 'foo'
EXPORT_SET(bits,on,off[,separator[,number_of_bits]])
Returns a string such that for every bit set in the value bits, you get an on string and for every bit not set in the value, you get an off string. Bits in bits are examined from right to left (from low-order to high-order bits). Strings are added to the result from left to right, separated by the separator string (the default being the comma character “,”). The number of bits examined is given by number_of_bits, which has a default of 64 if not specified. number_of_bits is silently clipped to 64 if larger than 64. It is treated as an unsigned integer, so a value of –1 is effectively the same as 64.
mysql> SELECT EXPORT_SET(5,'Y','N',',',4);
-> 'Y,N,Y,N'
mysql> SELECT EXPORT_SET(6,'1','0',',',10);
-> '0,1,1,0,0,0,0,0,0,0'
Returns the index (position) of str in the str1, str2, str3, ... list. Returns 0 if str is not found.
If all arguments to FIELD() are strings, all arguments are compared as strings. If all arguments are numbers, they are compared as numbers. Otherwise, the arguments are compared as double.
If str is NULL, the return value is 0 because NULL fails equality comparison with any value. FIELD() is the complement of ELT().
mysql> SELECT FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo');
-> 2
mysql> SELECT FIELD('fo', 'Hej', 'ej', 'Heja', 'hej', 'foo');
-> 0
Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of N substrings. A string list is a string composed of substrings separated by “,” characters. If the first argument is a constant string and the second is a column of type SET, the FIND_IN_SET() function is optimized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is the empty string. Returns NULL if either argument is NULL. This function does not work properly if the first argument contains a comma (“,”) character.
mysql> SELECT FIND_IN_SET('b','a,b,c,d');
-> 2
Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the result as a string. If D is 0, the result has no decimal point or fractional part.
The optional third parameter enables a locale to be specified to be used for the result number's decimal point, thousands separator, and grouping between separators. Permissible locale values are the same as the legal values for the lc_time_names system variable (see Section 10.7, “MySQL Server Locale Support”). If no locale is specified, the default is 'en_US'.
mysql> SELECT FORMAT(12332.123456, 4);
-> '12,332.1235'
mysql> SELECT FORMAT(12332.1,4);
-> '12,332.1000'
mysql> SELECT FORMAT(12332.2,0);
-> '12,332'
mysql> SELECT FORMAT(12332.2,2,'de_DE');
-> '12.332,20'
Takes a string encoded with the base-64 encoded rules used by TO_BASE64() and returns the decoded result as a binary string. The result is NULL if the argument is NULL or not a valid base-64 string. See the description of TO_BASE64() for details about the encoding and decoding rules.
This function was added in MySQL 5.6.1.
mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));
-> 'JWJj', 'abc'
For a string argument str, HEX() returns a hexadecimal string representation of str where each character in str is converted to two hexadecimal digits. The inverse of this operation is performed by the UNHEX() function.
For a numeric argument N, HEX() returns a hexadecimal string representation of the value of N treated as a longlong (BIGINT) number. This is equivalent to CONV(N,10,16). The inverse of this operation is performed by CONV(HEX(N),16,10).
mysql> SELECT 0x616263, HEX('abc'), UNHEX(HEX('abc'));
-> 'abc', 616263, 'abc'
mysql> SELECT HEX(255), CONV(HEX(255),16,10);
-> 'FF', 255
Returns the string str, with the substring beginning at position pos and len characters long replaced by the string newstr. Returns the original string if pos is not within the length of the string. Replaces the rest of the string from position pos if len is not within the length of the rest of the string. Returns NULL if any argument is NULL.
mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
-> 'QuWhattic'
mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
-> 'Quadratic'
mysql> SELECT INSERT('Quadratic', 3, 100, 'What');
-> 'QuWhat'
This function is multi-byte safe.
Returns the position of the first occurrence of substring substr in string str. This is the same as the two-argument form of LOCATE(), except that the order of the arguments is reversed.
mysql> SELECT INSTR('foobarbar', 'bar');
-> 4
mysql> SELECT INSTR('xbar', 'foobar');
-> 0
This function is multi-byte safe, and is case sensitive only if at least one argument is a binary string.
Returns the leftmost len characters from the string str, or NULL if any argument is NULL.
mysql> SELECT LEFT('foobarbar', 5);
-> 'fooba'
This function is multi-byte safe.
Returns the length of the string str, measured in bytes. A multi-byte character counts as multiple bytes. This means that for a string containing five 2-byte characters, LENGTH() returns 10, whereas CHAR_LENGTH() returns 5.
mysql> SELECT LENGTH('text');
-> 4
Reads the file and returns the file contents as a string. To use this function, the file must be located on the server host, you must specify the full path name to the file, and you must have the FILE privilege. The file must be readable by all and its size less than max_allowed_packet bytes. If the secure_file_priv system variable is set to a nonempty directory name, the file to be loaded must be located in that directory.
If the file does not exist or cannot be read because one of the preceding conditions is not satisfied, the function returns NULL.
The character_set_filesystem system variable controls interpretation of file names that are given as literal strings.
mysql> UPDATE t
SET blob_col=LOAD_FILE('/tmp/picture')
WHERE id=1;
LOCATE(substr,str), LOCATE(substr,str,pos)
The first syntax returns the position of the first occurrence of substring substr in string str. The second syntax returns the position of the first occurrence of substring substr in string str, starting at position pos. Returns 0 if substr is not in str.
mysql> SELECT LOCATE('bar', 'foobarbar');
-> 4
mysql> SELECT LOCATE('xbar', 'foobar');
-> 0
mysql> SELECT LOCATE('bar', 'foobarbar', 5);
-> 7
This function is multi-byte safe, and is case-sensitive only if at least one argument is a binary string.
Returns the string str with all characters changed to lowercase according to the current character set mapping. The default is latin1 (cp1252 West European).
mysql> SELECT LOWER('QUADRATICALLY');
-> 'quadratically'
LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY, BLOB). To perform lettercase conversion, convert the string to a nonbinary string:
mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+
For Unicode character sets, LOWER() and UPPER() work accounting to Unicode Collation Algorithm (UCA) 5.2.0 for xxx_unicode_520_ci collations and for language-specific collations that are derived from them. For other Unicode collations, LOWER() and UPPER() work accounting to Unicode Collation Algorithm (UCA) 4.0.0. See Section 10.1.14.1, “Unicode Character Sets”.
This function is multi-byte safe.
Returns the string str, left-padded with the string padstr to a length of len characters. If str is longer than len, the return value is shortened to len characters.
mysql> SELECT LPAD('hi',4,'??');
-> '??hi'
mysql> SELECT LPAD('hi',1,'??');
-> 'h'
Returns the string str with leading space characters removed.
mysql> SELECT LTRIM(' barbar');
-> 'barbar'
This function is multi-byte safe.
Returns a set value (a string containing substrings separated by “,” characters) consisting of the strings that have the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so on. NULL values in str1, str2, ... are not appended to the result.
mysql> SELECT MAKE_SET(1,'a','b','c');
-> 'a'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
-> 'hello,world'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
-> 'hello'
mysql> SELECT MAKE_SET(0,'a','b','c');
-> ''
MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).
Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This is equivalent to CONV(N,10,8). Returns NULL if N is NULL.
mysql> SELECT OCT(12);
-> '14'
OCTET_LENGTH() is a synonym for LENGTH().
If the leftmost character of the string str is a multi-byte character, returns the code for that character, calculated from the numeric values of its constituent bytes using this formula:
(1st byte code)
+ (2nd byte code * 256)
+ (3rd byte code * 2562) ...
If the leftmost character is not a multi-byte character, ORD() returns the same value as the ASCII() function.
mysql> SELECT ORD('2');
-> 50
POSITION(substr IN str) is a synonym for LOCATE(substr,str).
Quotes a string to produce a result that can be used as a properly escaped data value in an SQL statement. The string is returned enclosed by single quotation marks and with each instance of backslash (“\”), single quote (“'”), ASCII NUL, and Control+Z preceded by a backslash. If the argument is NULL, the return value is the word “NULL” without enclosing single quotation marks.
mysql> SELECT QUOTE('Don\'t!');
-> 'Don\'t!'
mysql> SELECT QUOTE(NULL);
-> NULL
For comparison, see the quoting rules for literal strings and within the C API in Section 9.1.1, “String Literals”, and Section 21.8.6.54, “mysql_real_escape_string()”.
Returns a string consisting of the string str repeated count times. If count is less than 1, returns an empty string. Returns NULL if str or count are NULL.
mysql> SELECT REPEAT('MySQL', 3);
-> 'MySQLMySQLMySQL'
Returns the string str with all occurrences of the string from_str replaced by the string to_str. REPLACE() performs a case-sensitive match when searching for from_str.
mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
-> 'WwWwWw.mysql.com'
This function is multi-byte safe.
Returns the string str with the order of the characters reversed.
mysql> SELECT REVERSE('abc');
-> 'cba'
This function is multi-byte safe.
Returns the rightmost len characters from the string str, or NULL if any argument is NULL.
mysql> SELECT RIGHT('foobarbar', 4);
-> 'rbar'
This function is multi-byte safe.
Returns the string str, right-padded with the string padstr to a length of len characters. If str is longer than len, the return value is shortened to len characters.
mysql> SELECT RPAD('hi',5,'?');
-> 'hi???'
mysql> SELECT RPAD('hi',1,'?');
-> 'h'
This function is multi-byte safe.
Returns the string str with trailing space characters removed.
mysql> SELECT RTRIM('barbar ');
-> 'barbar'
This function is multi-byte safe.
Returns a soundex string from str. Two strings that sound almost the same should have identical soundex strings. A standard soundex string is four characters long, but the SOUNDEX() function returns an arbitrarily long string. You can use SUBSTRING() on the result to get a standard soundex string. All nonalphabetic characters in str are ignored. All international alphabetic characters outside the A-Z range are treated as vowels.
Important
When using SOUNDEX(), you should be aware of the following limitations:
This function, as currently implemented, is intended to work well with strings that are in the English language only. Strings in other languages may not produce reliable results.
This function is not guaranteed to provide consistent results with strings that use multi-byte character sets, including utf-8.
We hope to remove these limitations in a future release. See Bug #22638 for more information.
mysql> SELECT SOUNDEX('Hello');
-> 'H400'
mysql> SELECT SOUNDEX('Quadratically');
-> 'Q36324'
Note
This function implements the original Soundex algorithm, not the more popular enhanced version (also described by D. Knuth). The difference is that original version discards vowels first and duplicates second, whereas the enhanced version discards duplicates first and vowels second.
This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).
Returns a string consisting of N space characters.
mysql> SELECT SPACE(6);
-> ' '
SUBSTR(str,pos), SUBSTR(str FROM pos), SUBSTR(str,pos,len), SUBSTR(str FROM pos FOR len)
SUBSTR() is a synonym for SUBSTRING().
SUBSTRING(str,pos), SUBSTRING(str FROM pos), SUBSTRING(str,pos,len), SUBSTRING(str FROM pos FOR len)
The forms without a len argument return a substring from string str starting at position pos. The forms with a len argument return a substring len characters long from string str, starting at position pos. The forms that use FROM are standard SQL syntax. It is also possible to use a negative value for pos. In this case, the beginning of the substring is pos characters from the end of the string, rather than the beginning. A negative value may be used for pos in any of the forms of this function.
For all forms of SUBSTRING(), the position of the first character in the string from which the substring is to be extracted is reckoned as 1.
mysql> SELECT SUBSTRING('Quadratically',5);
-> 'ratically'
mysql> SELECT SUBSTRING('foobarbar' FROM 4);
-> 'barbar'
mysql> SELECT SUBSTRING('Quadratically',5,6);
-> 'ratica'
mysql> SELECT SUBSTRING('Sakila', -3);
-> 'ila'
mysql> SELECT SUBSTRING('Sakila', -5, 3);
-> 'aki'
mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
-> 'ki'
This function is multi-byte safe.
If len is less than 1, the result is the empty string.
SUBSTRING_INDEX(str,delim,count)
Returns the substring from string str before count occurrences of the delimiter delim. If count is positive, everything to the left of the final delimiter (counting from the left) is returned. If count is negative, everything to the right of the final delimiter (counting from the right) is returned. SUBSTRING_INDEX() performs a case-sensitive match when searching for delim.
mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
-> 'www.mysql'
mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
-> 'mysql.com'
This function is multi-byte safe.
Converts the string argument to base-64 encoded form and returns the result as a character string with the connection character set and collation. If the argument is not a string, it is converted to a string before conversion takes place. The result is NULL if the argument is NULL. Base-64 encoded strings can be decoded using the the FROM_BASE64() function.
This function was added in MySQL 5.6.1.
mysql> SELECT TO_BASE64('abc'), FROM_BASE64(TO_BASE64('abc'));
-> 'JWJj', 'abc'
Different base-64 encoding schemes exist. These are the encoding and decoding rules used by TO_BASE64() and FROM_BASE64():
The encoding for alphabet value 62 is '+'.
The encoding for alphabet value 63 is '/'.
Encoded output consists of groups of 4 printable characters. Each 3 bytes of the input data are encoded using 4 characters. If the last group is incomplete, it is padded with '=' characters to a length of 4.
A newline is added after each 76 characters of encoded output to divide long output into multiple lines.
Decoding recognizes and ignores newline, carriage return, tab, and space.
TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM] str)
Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH, LEADING, or TRAILING is given, BOTH is assumed. remstr is optional and, if not specified, spaces are removed.
mysql> SELECT TRIM(' bar ');
-> 'bar'
mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
-> 'barxxx'
mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
-> 'bar'
mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
-> 'barx'
This function is multi-byte safe.
For a string argument str, UNHEX(str) performs the inverse operation of HEX(str). That is, it interprets each pair of characters in the argument as a hexadecimal number and converts it to the character represented by the number. The return value is a binary string.
mysql> SELECT UNHEX('4D7953514C');
-> 'MySQL'
mysql> SELECT 0x4D7953514C;
-> 'MySQL'
mysql> SELECT UNHEX(HEX('string'));
-> 'string'
mysql> SELECT HEX(UNHEX('1267'));
-> '1267'
The characters in the argument string must be legal hexadecimal digits: '0' .. '9', 'A' .. 'F', 'a' .. 'f'. If the argument contains any nonhexadecimal digits, the result is NULL:
mysql> SELECT UNHEX('GG');
+-------------+
| UNHEX('GG') |
+-------------+
| NULL |
+-------------+
A NULL result can occur if the argument to UNHEX() is a BINARY column, because values are padded with 0x00 bytes when stored but those bytes are not stripped on retrieval. For example, '41' is stored into a CHAR(3) column as '41 ' and retrieved as '41' (with the trailing pad space stripped), so UNHEX() for the column value returns 'A'. By contrast '41' is stored into a BINARY(3) column as '41\0' and retrieved as '41\0' (with the trailing pad 0x00 byte not stripped). '\0' is not a legal hexadecimal digit, so UNHEX() for the column value returns NULL.
For a numeric argument N, the inverse of HEX(N) is not performed by UNHEX(). Use CONV(HEX(N),16,10) instead. See the description of HEX().
Returns the string str with all characters changed to uppercase according to the current character set mapping. The default is latin1 (cp1252 West European).
mysql> SELECT UPPER('Hej');
-> 'HEJ'
See the description of LOWER() for information that also applies to UPPER(). This included information about how to perform lettercase conversion of binary strings (BINARY, VARBINARY, BLOB) for which these functions are ineffective, and information about case folding for Unicode character sets.
This function is multi-byte safe.
WEIGHT_STRING(str [AS {CHAR|BINARY}(N)] [LEVEL levels] [flags])
levels: N [ASC|DESC|REVERSE] [, N [ASC|DESC|REVERSE]] ...
This function returns the weight string for the input string. The return value is a binary string that represents the sorting and comparison value of the string. It has these properties:
If WEIGHT_STRING(str1) = WEIGHT_STRING(str2), then str1 = str2 (str1 and str2 are considered equal)
If WEIGHT_STRING(str1) < WEIGHT_STRING(str2), then str1 < str2 (str1 sorts before str2)
WEIGHT_STRING() can be used for testing and debugging of collations, especially if you are adding a new collation. See Section 10.4, “Adding a Collation to a Character Set”.
The input string, str, is a string expression. If the input is a nonbinary (character) string such as a CHAR, VARCHAR, or TEXT value, the return value contains the collation weights for the string. If the input is a binary (byte) string such as a BINARY, VARBINARY, or BLOB value, the return value is the same as the input (the weight for each byte in a binary string is the byte value). If the input is NULL, WEIGHT_STRING() returns NULL.
Examples:
mysql> SET @s = _latin1 'AB' COLLATE latin1_swedish_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+
mysql> SET @s = _latin1 'ab' COLLATE latin1_swedish_ci;
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 4142 |
+------+---------+------------------------+
mysql> SET @s = CAST('AB' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| AB | 4142 | 4142 |
+------+---------+------------------------+
mysql> SET @s = CAST('ab' AS BINARY);
mysql> SELECT @s, HEX(@s), HEX(WEIGHT_STRING(@s));
+------+---------+------------------------+
| @s | HEX(@s) | HEX(WEIGHT_STRING(@s)) |
+------+---------+------------------------+
| ab | 6162 | 6162 |
+------+---------+------------------------+
The preceding examples use HEX() to display the WEIGHT_STRING() result. Because the result is a binary value, HEX() can be especially useful when the result contains nonprinting values, to display it in printable form:
mysql> SET @s = CONVERT(0xC39F USING utf8) COLLATE utf8_czech_ci;
mysql> SELECT HEX(WEIGHT_STRING(@s));
+------------------------+
| HEX(WEIGHT_STRING(@s)) |
+------------------------+
| 0FEA0FEA |
+------------------------+
For non-NULL return values, the data type of the value is VARBINARY if its length is within the maximum length for VARBINARY, otherwise the data type is BLOB.
The AS clause may be given to cast the input string to a nonbinary or binary string and to force it to a given length:
AS CHAR(N) casts the string to a nonbinary string and pads it on the right with spaces to a length of N characters. N must be at least 1. If N is less than the length of the input string, the string is truncated to N characters. No warning occurs for truncation.
AS BINARY(N) is similar but casts the string to a binary string, N is measured in bytes (not characters), and padding uses 0x00 bytes (not spaces).
mysql> SELECT HEX(WEIGHT_STRING('ab' AS CHAR(4)));
+-------------------------------------+
| HEX(WEIGHT_STRING('ab' AS CHAR(4))) |
+-------------------------------------+
| 41422020 |
+-------------------------------------+
mysql> SELECT HEX(WEIGHT_STRING('ab' AS BINARY(4)));
+---------------------------------------+
| HEX(WEIGHT_STRING('ab' AS BINARY(4))) |
+---------------------------------------+
| 61620000 |
+---------------------------------------+
The LEVEL clause may be given to specify that the return value should contain weights for specific collation levels.
The levels specifier following the LEVEL keyword may be given either as a list of one or more integers separated by commas, or as a range of two integers separated by a dash. Whitespace around the punctuation characters does not matter.
Examples:
LEVEL 1
LEVEL 2, 3, 5
LEVEL 1-3
Any level less than 1 is treated as 1. Any level greater than the maximum for the input string collation is treated as maximum for the collation. The maximum varies per collation, but is never greater than 6.
In a list of levels, levels must be given in increasing order. In a range of levels, if the second number is less than the first, it is treated as the first number (for example, 4-2 is the same as 4-4).
If the LEVEL clause is omitted, MySQL assumes LEVEL 1 - max, where max is the maximum level for the collation.
If LEVEL is specified using list syntax (not range syntax), any level number can be followed by these modifiers:
ASC: Return the weights without modification. This is the default.
DESC: Return bitwise-inverted weights (for example, 0x78f0 DESC = 0x870f).
REVERSE: Return the weights in reverse order (that is,the weights for the reversed string, with the first character last and the last first).
Examples:
mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1));
+--------------------------------------+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1)) |
+--------------------------------------+
| 007FFF |
+--------------------------------------+
mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC));
+---+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC)) |
+---+
| FF8000 |
+---+
mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 REVERSE));
+--+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 REVERSE)) |
+--+
| FF7F00 |
+--+
mysql> SELECT HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC REVERSE));
+---+
| HEX(WEIGHT_STRING(0x007fff LEVEL 1 DESC REVERSE)) |
+---+
| 0080FF |
+---+
The flags clause currently is unused.
12.5.1. String Comparison Functions
Table 12.8. String Comparison Operators
Name | Description |
---|---|
LIKE | Simple pattern matching |
NOT LIKE | Negation of simple pattern matching |
STRCMP() | Compare two strings |
If a string function is given a binary string as an argument, the resulting string is also a binary string. A number converted to a string is treated as a binary string. This affects only comparisons.
Normally, if any expression in a string comparison is case sensitive, the comparison is performed in case-sensitive fashion.
expr LIKE pat [ESCAPE 'escape_char']
Pattern matching using SQL simple regular expression comparison. Returns 1 (TRUE) or 0 (FALSE). If either expr or pat is NULL, the result is NULL.
The pattern need not be a literal string. For example, it can be specified as a string expression or table column.
Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results different from the = comparison operator:
mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+---+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+---+
| 0 |
+---+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
| 1 |
+--------------------------------------+
In particular, trailing spaces are significant, which is not true for CHAR or VARCHAR comparisons performed with the = operator:
mysql> SELECT 'a' = 'a ', 'a' LIKE 'a ';
+------------+---------------+
| 'a' = 'a ' | 'a' LIKE 'a ' |
+------------+---------------+
| 1 | 0 |
+------------+---------------+
1 row in set (0.00 sec)
With LIKE you can use the following two wildcard characters in the pattern.
Character | Description |
---|---|
% | Matches any number of characters, even zero characters |
_ | Matches exactly one character |
mysql> SELECT 'David!' LIKE 'David_';
-> 1
mysql> SELECT 'David!' LIKE '%D%v%';
-> 1
To test for literal instances of a wildcard character, precede it by the escape character. If you do not specify the ESCAPE character, “\” is assumed.
String | Description |
---|---|
\% | Matches one “%” character |
_ | Matches one “_” character |
mysql> SELECT 'David!' LIKE 'David_';
-> 0
mysql> SELECT 'David_' LIKE 'David_';
-> 1
To specify a different escape character, use the ESCAPE clause:
mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';
-> 1
The escape sequence should be empty or one character long. The expression must evaluate as a constant at execution time. If the NO_BACKSLASH_ESCAPES SQL mode is enabled, the sequence cannot be empty.
The following two statements illustrate that string comparisons are not case sensitive unless one of the operands is a binary string:
mysql> SELECT 'abc' LIKE 'ABC';
-> 1
mysql> SELECT 'abc' LIKE BINARY 'ABC';
-> 0
In MySQL, LIKE is permitted on numeric expressions. (This is an extension to the standard SQL LIKE.)
mysql> SELECT 10 LIKE '1%';
-> 1
Note
Because MySQL uses C escape syntax in strings (for example, “\n” to represent a newline character), you must double any “\” that you use in LIKE strings. For example, to search for “\n”, specify it as “\\n”. To search for “\”, specify it as “\\\\”; this is because the backslashes are stripped once by the parser and again when the pattern match is made, leaving a single backslash to be matched against.
Exception: At the end of the pattern string, backslash can be specified as “\\”. At the end of the string, backslash stands for itself because there is nothing following to escape. Suppose that a table contains the following values:
mysql> SELECT filename FROM t1;
+--------------+
| filename |
+--------------+
| C: |
| C:\ |
| C:\Programs |
| C:\Programs\ |
+--------------+
To test for values that end with backslash, you can match the values using either of the following patterns:
mysql> SELECT filename, filename LIKE '%\\' FROM t1;
+--------------+---------------------+
| filename | filename LIKE '%\\' |
+--------------+---------------------+
| C: | 0 |
| C:\ | 1 |
| C:\Programs | 0 |
| C:\Programs\ | 1 |
+--------------+---------------------+
mysql> SELECT filename, filename LIKE '%\\\\' FROM t1;
+--------------+-----------------------+
| filename | filename LIKE '%\\\\' |
+--------------+-----------------------+
| C: | 0 |
| C:\ | 1 |
| C:\Programs | 0 |
| C:\Programs\ | 1 |
+--------------+-----------------------+
expr NOT LIKE pat [ESCAPE 'escape_char']
This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).
Note
Aggregate queries involving NOT LIKE comparisons with columns containing NULL may yield unexpected results. For example, consider the following table and data:
CREATE TABLE foo (bar VARCHAR(10));
INSERT INTO foo VALUES (NULL), (NULL);
The query SELECT COUNT(*) FROM foo WHERE bar LIKE '%baz%'; returns 0. You might assume that SELECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%'; would return 2. However, this is not the case: The second query returns 0. This is because NULL NOT LIKE expr always returns NULL, regardless of the value of expr. The same is true for aggregate queries involving NULL and comparisons using NOT RLIKE or NOT REGEXP. In such cases, you must test explicitly for NOT NULL using OR (and not AND), as shown here:
SELECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%' OR bar IS NULL;
STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second according to the current sort order, and 1 otherwise.
mysql> SELECT STRCMP('text', 'text2');
-> -1
mysql> SELECT STRCMP('text2', 'text');
-> 1
mysql> SELECT STRCMP('text', 'text');
-> 0
STRCMP() performs the comparison using the collation of the arguments.
mysql> SET @s1 = _latin1 'x' COLLATE latin1_general_ci;
mysql> SET @s2 = _latin1 'X' COLLATE latin1_general_ci;
mysql> SET @s3 = _latin1 'x' COLLATE latin1_general_cs;
mysql> SET @s4 = _latin1 'X' COLLATE latin1_general_cs;
mysql> SELECT STRCMP(@s1, @s2), STRCMP(@s3, @s4);
+------------------+------------------+
| STRCMP(@s1, @s2) | STRCMP(@s3, @s4) |
+------------------+------------------+
| 0 | 1 |
+------------------+------------------+
If the collations are incompatible, one of the arguments must be converted to be compatible with the other. See Section 10.1.7.5, “Collation of Expressions”.
mysql> SELECT STRCMP(@s1, @s3);
ERROR 1267 (HY000) at line 10: Illegal mix of collations (latin1_general_ci,IMPLICIT) and (latin1_general_cs,IMPLICIT) for operation 'strcmp'
mysql> SELECT STRCMP(@s1, @s3 COLLATE latin1_general_ci);
+--+
| STRCMP(@s1, @s3 COLLATE latin1_general_ci) |
+--+
| 0 |
+--+
12.5.2. Regular Expressions
Table 12.9. String Regular Expression Operators
Name | Description |
---|---|
NOT REGEXP | Negation of REGEXP |
REGEXP | Pattern matching using regular expressions |
RLIKE | Synonym for REGEXP |
A regular expression is a powerful way of specifying a pattern for a complex search.
MySQL uses Henry Spencer's implementation of regular expressions, which is aimed at conformance with POSIX 1003.2. MySQL uses the extended version to support pattern-matching operations performed with the REGEXP operator in SQL statements.
This section summarizes, with examples, the special characters and constructs that can be used in MySQL for REGEXP operations. It does not contain all the details that can be found in Henry Spencer's regex(7) manual page. That manual page is included in MySQL source distributions, in the regex.7 file under the regex directory. See also Section 3.3.4.7, “Pattern Matching”.
expr NOT REGEXP pat, expr NOT RLIKE pat
This is the same as NOT (expr REGEXP pat).
expr REGEXP pat, expr RLIKE pat
Performs a pattern match of a string expression expr against a pattern pat. The pattern can be an extended regular expression. The syntax for regular expressions is discussed in Section 12.5.2, “Regular Expressions”. Returns 1 if expr matches pat; otherwise it returns 0. If either expr or pat is NULL, the result is NULL. RLIKE is a synonym for REGEXP, provided for mSQL compatibility.
The pattern need not be a literal string. For example, it can be specified as a string expression or table column.
Note
Because MySQL uses the C escape syntax in strings (for example, “\n” to represent the newline character), you must double any “\” that you use in your REGEXP strings.
REGEXP is not case sensitive, except when used with binary strings.
mysql> SELECT 'Monty!' REGEXP '.*';
-> 1
mysql> SELECT 'new*\n*line' REGEXP 'new*.*line';
-> 1
mysql> SELECT 'a' REGEXP 'A', 'a' REGEXP BINARY 'A';
-> 1 0
mysql> SELECT 'a' REGEXP '^[a-d]';
-> 1
REGEXP and RLIKE use the character set and collations of the arguments when deciding the type of a character and performing the comparison. If the arguments have different character sets or collations, coercibility rules apply as described in Section 10.1.7.5, “Collation of Expressions”.
Warning
The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multi-byte safe and may produce unexpected results with multi-byte character sets. In addition, these operators compare characters by their byte values and accented characters may not compare as equal even if a given collation treats them as equal.
A regular expression describes a set of strings. The simplest regular expression is one that has no special characters in it. For example, the regular expression hello matches hello and nothing else.
Nontrivial regular expressions use certain special constructs so that they can match more than one string. For example, the regular expression hello|word matches either the string hello or the string word.
As a more complex example, the regular expression B[an]*s matches any of the strings Bananas, Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any number of a or n characters in between.
A regular expression for the REGEXP operator may use any of the following special characters and constructs:
^
Match the beginning of a string.
mysql> SELECT 'fo\nfo' REGEXP '^fo$'; -> 0
mysql> SELECT 'fofo' REGEXP '^fo'; -> 1
$
Match the end of a string.
mysql> SELECT 'fo\no' REGEXP '^fo\no$'; -> 1
mysql> SELECT 'fo\no' REGEXP '^fo$'; -> 0
.
Match any character (including carriage return and newline).
mysql> SELECT 'fofo' REGEXP '^f.*$'; -> 1
mysql> SELECT 'fo\r\nfo' REGEXP '^f.*$'; -> 1
a*
Match any sequence of zero or more a characters.
mysql> SELECT 'Ban' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Baaan' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba*n'; -> 1
a+
Match any sequence of one or more a characters.
mysql> SELECT 'Ban' REGEXP '^Ba+n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba+n'; -> 0
a?
Match either zero or one a character.
mysql> SELECT 'Bn' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Ban' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Baan' REGEXP '^Ba?n'; -> 0
de|abc
Match either of the sequences de or abc.
mysql> SELECT 'pi' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'axe' REGEXP 'pi|apa'; -> 0
mysql> SELECT 'apa' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'apa' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pi' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pix' REGEXP '^(pi|apa)$'; -> 0
(abc)*
Match zero or more instances of the sequence abc.
mysql> SELECT 'pi' REGEXP '^(pi)*$'; -> 1
mysql> SELECT 'pip' REGEXP '^(pi)*$'; -> 0
mysql> SELECT 'pipi' REGEXP '^(pi)*$'; -> 1
{1}, {2,3}
{n} or {m,n} notation provides a more general way of writing regular expressions that match many occurrences of the previous atom (or “piece”) of the pattern. m and n are integers.
a*
Can be written as a{0,}.
a+
Can be written as a{1,}.
a?
Can be written as a{0,1}.
To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more instances of a. a{m,n} matches m through n instances of a, inclusive.
m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive. If both m and n are given, m must be less than or equal to n.
mysql> SELECT 'abcde' REGEXP 'a[bcd]{2}e'; -> 0
mysql> SELECT 'abcde' REGEXP 'a[bcd]{3}e'; -> 1
mysql> SELECT 'abcde' REGEXP 'a[bcd]{1,10}e'; -> 1
[a-dX], [^a-dX]
Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character between two other characters forms a range that matches all characters from the first character to the second. For example, [0-9] matches any decimal digit. To include a literal] character, it must immediately follow the opening bracket [. To include a literal - character, it must be written first or last. Any character that does not have a defined special meaning inside a [] pair matches only itself.
mysql> SELECT 'aXbc' REGEXP '[a-dXYZ]'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]$'; -> 0
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]+$'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[^a-dXYZ]+$'; -> 0
mysql> SELECT 'gheis' REGEXP '^[^a-dXYZ]+$'; -> 1
mysql> SELECT 'gheisa' REGEXP '^[^a-dXYZ]+$'; -> 0
[.characters.]
Within a bracket expression (written using [and]), matches the sequence of characters of that collating element. characters is either a single character or a character name like newline. The following table lists the permissible character names.
The following table shows the permissible character names and the characters that they match. For characters given as numeric values, the values are represented in octal.
Name | Character | Name | Character |
---|---|---|---|
NUL | 0 | SOH | 001 |
STX | 002 | ETX | 003 |
EOT | 004 | ENQ | 005 |
ACK | 006 | BEL | 007 |
alert | 007 | BS | 010 |
backspace | '\b' | HT | 011 |
tab | '\t' | LF | 012 |
newline | '\n' | VT | 013 |
vertical-tab | '\v' | FF | 014 |
form-feed | '\f' | CR | 015 |
carriage-return | '\r' | SO | 016 |
SI | 017 | DLE | 020 |
DC1 | 021 | DC2 | 022 |
DC3 | 023 | DC4 | 024 |
NAK | 025 | SYN | 026 |
ETB | 027 | CAN | 030 |
EM | 031 | SUB | 032 |
ESC | 033 | IS4 | 034 |
FS | 034 | IS3 | 035 |
GS | 035 | IS2 | 036 |
RS | 036 | IS1 | 037 |
US | 037 | space | ' ' |
exclamation-mark | '!' | quotation-mark | '"' |
number-sign | '#' | dollar-sign | '$' |
percent-sign | '%' | ampersand | '&' |
apostrophe | '\'' | left-parenthesis | '(' |
right-parenthesis | ')' | asterisk | '*' |
plus-sign | '+' | comma | ',' |
hyphen | '-' | hyphen-minus | '-' |
period | '.' | full-stop | '.' |
slash | '/' | solidus | '/' |
zero | '0' | one | '1' |
two | '2' | three | '3' |
four | '4' | five | '5' |
six | '6' | seven | '7' |
eight | '8' | nine | '9' |
colon | ':' | semicolon | ';' |
less-than-sign | '<' | equals-sign | '=' |
greater-than-sign | '>' | question-mark | '?' |
commercial-at | '@' | left-square-bracket | '[' |
backslash | '\\' | reverse-solidus | '\\' |
right-square-bracket | ']' | circumflex | '^' |
circumflex-accent | '^' | underscore | '_' |
low-line | '_' | grave-accent | '`' |
left-brace | '{' | left-curly-bracket | '{' |
vertical-line | '|' | right-brace | '}' |
right-curly-bracket | '}' | tilde | '~' |
DEL | 177 |
mysql> SELECT '~' REGEXP '[[.~.]]'; -> 1
mysql> SELECT '~' REGEXP '[[.tilde.]]'; -> 1
[=character_class=]
Within a bracket expression (written using [and]), [=character_class=] represents an equivalence class. It matches all characters with the same collation value, including itself. For example, if o and (+) are the members of an equivalence class, [[=o=]], [[=(+)=]], and [o(+)] are all synonymous. An equivalence class may not be used as an endpoint of a range.
[:character_class:]
Within a bracket expression (written using [and]), [:character_class:] represents a character class that matches all characters belonging to that class. The following table lists the standard class names. These names stand for the character classes defined in the ctype(3) manual page. A particular locale may provide other class names. A character class may not be used as an endpoint of a range.
Character Class Name | Meaning |
---|---|
alnum | Alphanumeric characters |
alpha | Alphabetic characters |
blank | Whitespace characters |
cntrl | Control characters |
digit | Digit characters |
graph | Graphic characters |
lower | Lowercase alphabetic characters |
Graphic or space characters | |
punct | Punctuation characters |
space | Space, tab, newline, and carriage return |
upper | Uppercase alphabetic characters |
xdigit | Hexadecimal digit characters |
mysql> SELECT 'justalnums' REGEXP '[[:alnum:]]+'; -> 1
mysql> SELECT '!!' REGEXP '[[:alnum:]]+'; -> 0
[[:<:]], [[:>:]]
These markers stand for word boundaries. They match the beginning and end of words, respectively. A word is a sequence of word characters that is not preceded by or followed by word characters. A word character is an alphanumeric character in the alnum class or an underscore (_).
mysql> SELECT 'a word a' REGEXP '[[:<:]]word[[:>:]]'; -> 1
mysql> SELECT 'a xword a' REGEXP '[[:<:]]word[[:>:]]'; -> 0
To use a literal instance of a special character in a regular expression, precede it by two backslash (\) characters. The MySQL parser interprets one of the backslashes, and the regular expression library interprets the other. For example, to match the string 1+2 that contains the special + character, only the last of the following regular expressions is the correct one:
mysql> SELECT '1+2' REGEXP '1+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\\+2'; -> 1
12.6. Numeric Functions and Operators
Table 12.10. Numeric Functions and Operators
Name | Description |
---|---|
ABS() | Return the absolute value |
ACOS() | Return the arc cosine |
ASIN() | Return the arc sine |
ATAN2(), ATAN() | Return the arc tangent of the two arguments |
ATAN() | Return the arc tangent |
CEIL() | Return the smallest integer value not less than the argument |
CEILING() | Return the smallest integer value not less than the argument |
CONV() | Convert numbers between different number bases |
COS() | Return the cosine |
COT() | Return the cotangent |
CRC32() | Compute a cyclic redundancy check value |
DEGREES() | Convert radians to degrees |
DIV | Integer division |
/ | Division operator |
EXP() | Raise to the power of |
FLOOR() | Return the largest integer value not greater than the argument |
LN() | Return the natural logarithm of the argument |
LOG10() | Return the base-10 logarithm of the argument |
LOG2() | Return the base-2 logarithm of the argument |
LOG() | Return the natural logarithm of the first argument |
- | Minus operator |
MOD() | Return the remainder |
% or MOD | Modulo operator |
PI() | Return the value of pi |
+ | Addition operator |
POW() | Return the argument raised to the specified power |
POWER() | Return the argument raised to the specified power |
RADIANS() | Return argument converted to radians |
RAND() | Return a random floating-point value |
ROUND() | Round the argument |
SIGN() | Return the sign of the argument |
SIN() | Return the sine of the argument |
SQRT() | Return the square root of the argument |
TAN() | Return the tangent of the argument |
* | Multiplication operator |
TRUNCATE() | Truncate to specified number of decimal places |
- | Change the sign of the argument |
12.6.1. Arithmetic Operators
Table 12.11. Arithmetic Operators
Name | Description |
---|---|
DIV | Integer division |
/ | Division operator |
- | Minus operator |
% or MOD | Modulo operator |
+ | Addition operator |
* | Multiplication operator |
- | Change the sign of the argument |
The usual arithmetic operators are available. The result is determined according to the following rules:
In the case of -, +, and *, the result is calculated with BIGINT (64-bit) precision if both operands are integers.
If both operands are integers and any of them are unsigned, the result is an unsigned integer. For subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is signed even if any operand is unsigned.
If any of the operands of a +, -, /, *, % is a real or string value, the precision of the result is the precision of the operand with the maximum precision.
In division performed with /, the scale of the result when using two exact-value operands is the scale of the first operand plus the value of the div_precision_increment system variable (which is 4 by default). For example, the result of the expression 5.05 / 0.014 has a scale of six decimal places (360.714286).
These rules are applied for each operation, such that nested calculations imply the precision of each component. Hence, (14620 / 9432456) / (24250 / 9432456), resolves first to (0.0014) / (0.0026), with the final result having 8 decimal places (0.60288653).
Because of these rules and the way they are applied, care should be taken to ensure that components and subcomponents of a calculation use the appropriate level of precision. See Section 12.10, “Cast Functions and Operators”.
For information about handling of overflow in numeric expression evaluation, see Section 11.2.6, “Out-of-Range and Overflow Handling”.
Arithmetic operators apply to numbers. For other types of values, alternative operations may be available. For example, to add date values, use DATE_ADD(); see Section 12.7, “Date and Time Functions”.
Addition:
mysql> SELECT 3+5;
-> 8
Subtraction:
mysql> SELECT 3-5;
-> -2
Unary minus. This operator changes the sign of the operand.
mysql> SELECT - 2;
-> -2
Note
If this operator is used with a BIGINT, the return value is also a BIGINT. This means that you should avoid using - on integers that may have the value of –263.
Multiplication:
mysql> SELECT 3*5;
-> 15
mysql> SELECT 18014398509481984*18014398509481984.0;
-> 324518553658426726783156020576256.0
mysql> SELECT 18014398509481984*18014398509481984;
-> out-of-range error
The last expression produces an error because the result of the integer multiplication exceeds the 64-bit range of BIGINT calculations. (See Section 11.2, “Numeric Types”.)
Division:
mysql> SELECT 3/5;
-> 0.60
Division by zero produces a NULL result:
mysql> SELECT 102/(1-1);
-> NULL
A division is calculated with BIGINT arithmetic only if performed in a context where its result is converted to an integer.
Integer division. Similar to FLOOR(), but is safe with BIGINT values.
In MySQL 5.6, if either operand has a noninteger type, the operands are converted to DECIMAL and divided using DECIMAL arithmetic before converting the result to BIGINT. If the result exceeds BIGINT range, an error occurs.
mysql> SELECT 5 DIV 2;
-> 2
Modulo operation. Returns the remainder of N divided by M. For more information, see the description for the MOD() function in Section 12.6.2, “Mathematical Functions”.
12.6.2. Mathematical Functions
Table 12.12. Mathematical Functions
Name | Description |
---|---|
ABS() | Return the absolute value |
ACOS() | Return the arc cosine |
ASIN() | Return the arc sine |
ATAN2(), ATAN() | Return the arc tangent of the two arguments |
ATAN() | Return the arc tangent |
CEIL() | Return the smallest integer value not less than the argument |
CEILING() | Return the smallest integer value not less than the argument |
CONV() | Convert numbers between different number bases |
COS() | Return the cosine |
COT() | Return the cotangent |
CRC32() | Compute a cyclic redundancy check value |
DEGREES() | Convert radians to degrees |
EXP() | Raise to the power of |
FLOOR() | Return the largest integer value not greater than the argument |
LN() | Return the natural logarithm of the argument |
LOG10() | Return the base-10 logarithm of the argument |
LOG2() | Return the base-2 logarithm of the argument |
LOG() | Return the natural logarithm of the first argument |
MOD() | Return the remainder |
PI() | Return the value of pi |
POW() | Return the argument raised to the specified power |
POWER() | Return the argument raised to the specified power |
RADIANS() | Return argument converted to radians |
RAND() | Return a random floating-point value |
ROUND() | Round the argument |
SIGN() | Return the sign of the argument |
SIN() | Return the sine of the argument |
SQRT() | Return the square root of the argument |
TAN() | Return the tangent of the argument |
TRUNCATE() | Truncate to specified number of decimal places |
All mathematical functions return NULL in the event of an error.
Returns the absolute value of X.
mysql> SELECT ABS(2);
-> 2
mysql> SELECT ABS(-32);
-> 32
This function is safe to use with BIGINT values.
Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the range -1 to 1.
mysql> SELECT ACOS(1);
-> 0
mysql> SELECT ACOS(1.0001);
-> NULL
mysql> SELECT ACOS(0);
-> 1.5707963267949
Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1 to 1.
mysql> SELECT ASIN(0.2);
-> 0.20135792079033
mysql> SELECT ASIN('foo');
+-------------+
| ASIN('foo') |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+---+
Returns the arc tangent of X, that is, the value whose tangent is X.
mysql> SELECT ATAN(2);
-> 1.1071487177941
mysql> SELECT ATAN(-2);
-> -1.1071487177941
Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y / X, except that the signs of both arguments are used to determine the quadrant of the result.
mysql> SELECT ATAN(-2,2);
-> -0.78539816339745
mysql> SELECT ATAN2(PI(),0);
-> 1.5707963267949
Returns the smallest integer value not less than X.
mysql> SELECT CEILING(1.23);
-> 2
mysql> SELECT CEILING(-1.23);
-> -1
For exact-value numeric arguments, the return value has an exact-value numeric type. For string or floating-point arguments, the return value has a floating-point type.
Converts numbers between different number bases. Returns a string representation of the number N, converted from base from_base to base to_base. Returns NULL if any argument is NULL. The argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum base is 2 and the maximum base is 36. If to_base is a negative number, N is regarded as a signed number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.
mysql> SELECT CONV('a',16,2);
-> '1010'
mysql> SELECT CONV('6E',18,8);
-> '172'
mysql> SELECT CONV(-17,10,-18);
-> '-H'
mysql> SELECT CONV(10+'10'+'10'+0xa,10,10);
-> '40'
Returns the cosine of X, where X is given in radians.
mysql> SELECT COS(PI());
-> -1
Returns the cotangent of X.
mysql> SELECT COT(12);
-> -1.5726734063977
mysql> SELECT COT(0);
-> NULL
Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is NULL if the argument is NULL. The argument is expected to be a string and (if possible) is treated as one if it is not.
mysql> SELECT CRC32('MySQL');
-> 3259397556
mysql> SELECT CRC32('mysql');
-> 2501908538
Returns the argument X, converted from radians to degrees.
mysql> SELECT DEGREES(PI());
-> 180
mysql> SELECT DEGREES(PI() / 2);
-> 90
Returns the value of e (the base of natural logarithms) raised to the power of X. The inverse of this function is LOG() (using a single argument only) or LN().
mysql> SELECT EXP(2);
-> 7.3890560989307
mysql> SELECT EXP(-2);
-> 0.13533528323661
mysql> SELECT EXP(0);
-> 1
Returns the largest integer value not greater than X.
mysql> SELECT FLOOR(1.23);
-> 1
mysql> SELECT FLOOR(-1.23);
-> -2
For exact-value numeric arguments, the return value has an exact-value numeric type. For string or floating-point arguments, the return value has a floating-point type.
Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the result as a string. For details, see Section 12.5, “String Functions”.
This function can be used to obtain a hexadecimal representation of a decimal number or a string; the manner in which it does so varies according to the argument's type. See this function's description in Section 12.5, “String Functions”, for details.
Returns the natural logarithm of X; that is, the base-e logarithm of X. If X is less than or equal to 0, then NULL is returned.
mysql> SELECT LN(2);
-> 0.69314718055995
mysql> SELECT LN(-2);
-> NULL
This function is synonymous with LOG(X). The inverse of this function is the EXP() function.
If called with one parameter, this function returns the natural logarithm of X. If X is less than or equal to 0, then NULL is returned.
The inverse of this function (when called with a single argument) is the EXP() function.
mysql> SELECT LOG(2);
-> 0.69314718055995
mysql> SELECT LOG(-2);
-> NULL
If called with two parameters, this function returns the logarithm of X to the base B. If X is less than or equal to 0, or if B is less than or equal to 1, then NULL is returned.
mysql> SELECT LOG(2,65536);
-> 16
mysql> SELECT LOG(10,100);
-> 2
mysql> SELECT LOG(1,100);
-> NULL
LOG(B,X) is equivalent to LOG(X) / LOG(B).
Returns the base-2 logarithm of X.
mysql> SELECT LOG2(65536);
-> 16
mysql> SELECT LOG2(-100);
-> NULL
LOG2() is useful for finding out how many bits a number requires for storage. This function is equivalent to the expression LOG(X) / LOG(2).
Returns the base-10 logarithm of X.
mysql> SELECT LOG10(2);
-> 0.30102999566398
mysql> SELECT LOG10(100);
-> 2
mysql> SELECT LOG10(-100);
-> NULL
Modulo operation. Returns the remainder of N divided by M.
mysql> SELECT MOD(234, 10);
-> 4
mysql> SELECT 253 % 7;
-> 1
mysql> SELECT MOD(29,9);
-> 2
mysql> SELECT 29 MOD 9;
-> 2
This function is safe to use with BIGINT values.
MOD() also works on values that have a fractional part and returns the exact remainder after division:
mysql> SELECT MOD(34.5,3);
-> 1.5
MOD(N,0) returns NULL.
Returns the value of π (pi). The default number of decimal places displayed is seven, but MySQL uses the full double-precision value internally.
mysql> SELECT PI();
-> 3.141593
mysql> SELECT PI()+0.000000000000000000;
-> 3.141592653589793116
Returns the value of X raised to the power of Y.
mysql> SELECT POW(2,2);
-> 4
mysql> SELECT POW(2,-2);
-> 0.25
This is a synonym for POW().
Returns the argument X, converted from degrees to radians. (Note that π radians equals 180 degrees.)
mysql> SELECT RADIANS(90);
-> 1.5707963267949
Returns a random floating-point value v in the range 0 <= v < 1.0. If a constant integer argument N is specified, it is used as the seed value, which produces a repeatable sequence of column values. In the following example, note that the sequences of values produced by RAND(3) is the same both places where it occurs.
mysql> CREATE TABLE t (i INT);
Query OK, 0 rows affected (0.42 sec)
mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
| 1 | 0.61914388706828 |
| 2 | 0.93845168309142 |
| 3 | 0.83482678498591 |
+------+------------------+
3 rows in set (0.00 sec)
mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
| 1 | 0.90576975597606 |
| 2 | 0.37307905813035 |
| 3 | 0.14808605345719 |
+------+------------------+
3 rows in set (0.00 sec)
mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
| 1 | 0.35877890638893 |
| 2 | 0.28941420772058 |
| 3 | 0.37073435016976 |
+------+------------------+
3 rows in set (0.00 sec)
mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
| 1 | 0.90576975597606 |
| 2 | 0.37307905813035 |
| 3 | 0.14808605345719 |
+------+------------------+
3 rows in set (0.01 sec)
With a constant initializer, the seed is initialized once when the statement is compiled, prior to execution. If a nonconstant initializer (such as a column name) is used as the argument, the seed is initialized with the value for each invocation of RAND(). (One implication of this is that for equal argument values, RAND() will return the same value each time.)
To obtain a random integer R in the range i <= R < j, use the expression FLOOR(i + RAND() * (j – i)). For example, to obtain a random integer in the range the range 7 <= R < 12, you could use the following statement:
SELECT FLOOR(7 + (RAND() * 5));
RAND() in a WHERE clause is re-evaluated every time the WHERE is executed.
You cannot use a column with RAND() values in an ORDER BY clause, because ORDER BY would evaluate the column multiple times. However, you can retrieve rows in random order like this:
mysql> SELECT * FROM tbl_name ORDER BY RAND();
ORDER BY RAND() combined with LIMIT is useful for selecting a random sample from a set of rows:
mysql> SELECT * FROM table1, table2 WHERE a=b AND c<d -> ORDER BY RAND() LIMIT 1000;
RAND() is not meant to be a perfect random generator. It is a fast way to generate random numbers on demand that is portable between platforms for the same MySQL version.
This function is unsafe for statement-based replication. A warning is logged if you use this function when binlog_format is set to STATEMENT. (Bug #49222)
Rounds the argument X to D decimal places. The rounding algorithm depends on the data type of X. D defaults to 0 if not specified. D can be negative to cause D digits left of the decimal point of the value X to become zero.
mysql> SELECT ROUND(-1.23);
-> -1
mysql> SELECT ROUND(-1.58);
-> -2
mysql> SELECT ROUND(1.58);
-> 2
mysql> SELECT ROUND(1.298, 1);
-> 1.3
mysql> SELECT ROUND(1.298, 0);
-> 1
mysql> SELECT ROUND(23.298, -1);
-> 20
The return type is the same type as that of the first argument (assuming that it is integer, double, or decimal). This means that for an integer argument, the result is an integer (no decimal places):
mysql> SELECT ROUND(150.000,2), ROUND(150,2);
+------------------+--------------+
| ROUND(150.000,2) | ROUND(150,2) |
+------------------+--------------+
| 150.00 | 150 |
+------------------+--------------+
ROUND() uses the following rules depending on the type of the first argument:
For exact-value numbers, ROUND() uses the “round half away from zero” or “round toward nearest” rule: A value with a fractional part of .5 or greater is rounded up to the next integer if positive or down to the next integer if negative. (In other words, it is rounded away from zero.) A value with a fractional part less than .5 is rounded down to the next integer if positive or up to the next integer if negative.
For approximate-value numbers, the result depends on the C library. On many systems, this means that ROUND() uses the "round to nearest even" rule: A value with any fractional part is rounded to the nearest even integer.
The following example shows how rounding differs for exact and approximate values:
mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+
For more information, see Section 12.19, “Precision Math”.
Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or positive.
mysql> SELECT SIGN(-32);
-> -1
mysql> SELECT SIGN(0);
-> 0
mysql> SELECT SIGN(234);
-> 1
Returns the sine of X, where X is given in radians.
mysql> SELECT SIN(PI());
-> 1.2246063538224e-16
mysql> SELECT ROUND(SIN(PI()));
-> 0
Returns the square root of a nonnegative number X.
mysql> SELECT SQRT(4);
-> 2
mysql> SELECT SQRT(20);
-> 4.4721359549996
mysql> SELECT SQRT(-16);
-> NULL
Returns the tangent of X, where X is given in radians.
mysql> SELECT TAN(PI());
-> -1.2246063538224e-16
mysql> SELECT TAN(PI()+1);
-> 1.5574077246549
Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or fractional part. D can be negative to cause D digits left of the decimal point of the value X to become zero.
mysql> SELECT TRUNCATE(1.223,1);
-> 1.2
mysql> SELECT TRUNCATE(1.999,1);
-> 1.9
mysql> SELECT TRUNCATE(1.999,0);
-> 1
mysql> SELECT TRUNCATE(-1.999,1);
-> -1.9
mysql> SELECT TRUNCATE(122,-2);
-> 100
mysql> SELECT TRUNCATE(10.28*100,0);
-> 1028
All numbers are rounded toward zero.
12.7. Date and Time Functions
This section describes the functions that can be used to manipulate temporal values. See Section 11.3, “Date and Time Types”, for a description of the range of values each date and time type has and the valid formats in which values may be specified.
Table 12.13. Date/Time Functions
Name | Description |
---|---|
ADDDATE() | Add time values (intervals) to a date value |
ADDTIME() | Add time |
CONVERT_TZ() | Convert from one timezone to another |
CURDATE() | Return the current date |
CURRENT_DATE(), CURRENT_DATE | Synonyms for CURDATE() |
CURRENT_TIME(), CURRENT_TIME | Synonyms for CURTIME() |
CURRENT_TIMESTAMP(), CURRENT_TIMESTAMP | Synonyms for NOW() |
CURTIME() | Return the current time |
DATE_ADD() | Add time values (intervals) to a date value |
DATE_FORMAT() | Format date as specified |
DATE_SUB() | Subtract a time value (interval) from a date |
DATE() | Extract the date part of a date or datetime expression |
DATEDIFF() | Subtract two dates |
DAY() | Synonym for DAYOFMONTH() |
DAYNAME() | Return the name of the weekday |
DAYOFMONTH() | Return the day of the month (0-31) |
DAYOFWEEK() | Return the weekday index of the argument |
DAYOFYEAR() | Return the day of the year (1-366) |
EXTRACT() | Extract part of a date |
FROM_DAYS() | Convert a day number to a date |
FROM_UNIXTIME() | Format UNIX timestamp as a date |
GET_FORMAT() | Return a date format string |
HOUR() | Extract the hour |
LAST_DAY | Return the last day of the month for the argument |
LOCALTIME(), LOCALTIME | Synonym for NOW() |
LOCALTIMESTAMP, LOCALTIMESTAMP() | Synonym for NOW() |
MAKEDATE() | Create a date from the year and day of year |
MAKETIME | MAKETIME() |
MICROSECOND() | Return the microseconds from argument |
MINUTE() | Return the minute from the argument |
MONTH() | Return the month from the date passed |
MONTHNAME() | Return the name of the month |
NOW() | Return the current date and time |
PERIOD_ADD() | Add a period to a year-month |
PERIOD_DIFF() | Return the number of months between periods |
QUARTER() | Return the quarter from a date argument |
SEC_TO_TIME() | Converts seconds to 'HH:MM:SS' format |
SECOND() | Return the second (0-59) |
STR_TO_DATE() | Convert a string to a date |
SUBDATE() | A synonym for DATE_SUB() when invoked with three arguments |
SUBTIME() | Subtract times |
SYSDATE() | Return the time at which the function executes |
TIME_FORMAT() | Format as time |
TIME_TO_SEC() | Return the argument converted to seconds |
TIME() | Extract the time portion of the expression passed |
TIMEDIFF() | Subtract time |
TIMESTAMP() | With a single argument, this function returns the date or datetime expression; with two arguments, the sum of the arguments |
TIMESTAMPADD() | Add an interval to a datetime expression |
TIMESTAMPDIFF() | Subtract an interval from a datetime expression |
TO_DAYS() | Return the date argument converted to days |
TO_SECONDS() | Return the date or datetime argument converted to seconds since Year 0 |
UNIX_TIMESTAMP() | Return a UNIX timestamp |
UTC_DATE() | Return the current UTC date |
UTC_TIME() | Return the current UTC time |
UTC_TIMESTAMP() | Return the current UTC date and time |
WEEK() | Return the week number |
WEEKDAY() | Return the weekday index |
WEEKOFYEAR() | Return the calendar week of the date (0-53) |
YEAR() | Return the year |
YEARWEEK() | Return the year and week |
Here is an example that uses date functions. The following query selects all rows with a date_col value from within the last 30 days:
mysql> SELECT something FROM tbl_name
-> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;
The query also selects rows with dates that lie in the future.
Functions that expect date values usually accept datetime values and ignore the time part. Functions that expect time values usually accept datetime values and ignore the date part.
Functions that return the current date or time each are evaluated only once per query at the start of query execution. This means that multiple references to a function such as NOW() within a single query always produce the same result. (For our purposes, a single query also includes a call to a stored program (stored routine, trigger, or event) and all subprograms called by that program.) This principle also applies to CURDATE(), CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to any of their synonyms.
The CURRENT_TIMESTAMP(), CURRENT_TIME(), CURRENT_DATE(), and FROM_UNIXTIME() functions return values in the connection's current time zone, which is available as the value of the time_zone system variable. In addition, UNIX_TIMESTAMP() assumes that its argument is a datetime value in the current time zone. See Section 10.6, “MySQL Server Time Zone Support”.
Some date functions can be used with “zero” dates or incomplete dates such as '2001-11-00', whereas others cannot. Functions that extract parts of dates typically work with incomplete dates and thus can return 0 when you might otherwise expect a nonzero value. For example:
mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
-> 0, 0
Other functions expect complete dates and return NULL for incomplete dates. These include functions that perform date arithmetic or that map parts of dates to names. For example:
mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
-> NULL
mysql> SELECT DAYNAME('2006-05-00');
-> NULL
As of MySQL 5.6.4, several functions are more strict when passed a DATE() function value as their argument and reject incomplete dates with a day part of zero. These functions are affected: CONVERT_TZ(), DATE_ADD(), DATE_SUB(), DAYOFYEAR(), LAST_DAY(), TIMESTAMPDIFF(), TO_DAYS(), TO_SECONDS(), WEEK(), WEEKDAY(), WEEKOFYEAR(), YEARWEEK(). This restriction was relaxed for LAST_DAY() in 5.6.5 to permit a day part of zero.
MySQL 5.6.4 and up supports fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to microsecond precision. Functions that take temporal arguments accept values with fractional seconds. Return values from temporal functions include fractional seconds as appropriate.
ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)
When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for DATE_ADD().
mysql> SELECT DATE_ADD('2008-01-02', INTERVAL 31 DAY);
-> '2008-02-02'
mysql> SELECT ADDDATE('2008-01-02', INTERVAL 31 DAY);
-> '2008-02-02'
When invoked with the days form of the second argument, MySQL treats it as an integer number of days to be added to expr.
mysql> SELECT ADDDATE('2008-01-02', 31);
-> '2008-02-02'
ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression, and expr2 is a time expression.
mysql> SELECT ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002');
-> '2008-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');
-> '03:00:01.999997'
CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time zone given by to_tz and returns the resulting value. Time zones are specified as described in Section 10.6, “MySQL Server Time Zone Support”. This function returns NULL if the arguments are invalid.
If the value falls out of the supported range of the TIMESTAMP type when converted from from_tz to UTC, no conversion occurs. The TIMESTAMP range is described in Section 11.1.2, “Date and Time Type Overview”.
mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
-> '2004-01-01 13:00:00'
mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
-> '2004-01-01 22:00:00'
Note
To use named time zones such as 'MET' or 'Europe/Moscow', the time zone tables must be properly set up. See Section 10.6, “MySQL Server Time Zone Support”, for instructions.
Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the function is used in a string or numeric context.
mysql> SELECT CURDATE();
-> '2008-06-13'
mysql> SELECT CURDATE() + 0;
-> 20080613
CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().
CURRENT_TIME, CURRENT_TIME([fsp])
CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().
CURRENT_TIMESTAMP, CURRENT_TIMESTAMP([fsp])
CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().
Returns the current time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the function is used in a string or numeric context. The value is expressed in the current time zone.
As of MySQL 5.6.4, if the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value includes a fractional seconds part of that many digits. Before 5.6.4, any argument is ignored.
mysql> SELECT CURTIME();
-> '23:50:26'
mysql> SELECT CURTIME() + 0;
-> 235026.000000
Extracts the date part of the date or datetime expression expr.
mysql> SELECT DATE('2003-12-31 01:02:03');
-> '2003-12-31'
DATEDIFF() returns expr1 – expr2 expressed as a value in days from one date to the other. expr1 and expr2 are date or date-and-time expressions. Only the date parts of the values are used in the calculation.
mysql> SELECT DATEDIFF('2007-12-31 23:59:59','2007-12-30');
-> 1
mysql> SELECT DATEDIFF('2010-11-30 23:59:59','2010-12-31');
-> -31
DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL expr unit)
These functions perform date arithmetic. The date argument specifies the starting date or datetime value. expr is an expression specifying the interval value to be added or subtracted from the starting date. expr is a string; it may start with a “-” for negative intervals. unit is a keyword indicating the units in which the expression should be interpreted.
The INTERVAL keyword and the unit specifier are not case sensitive.
The following table shows the expected form of the expr argument for each unit value.
unit Value | Expected expr Format |
---|---|
MICROSECOND | MICROSECONDS |
SECOND | SECONDS |
MINUTE | MINUTES |
HOUR | HOURS |
DAY | DAYS |
WEEK | WEEKS |
MONTH | MONTHS |
QUARTER | QUARTERS |
YEAR | YEARS |
SECOND_MICROSECOND | 'SECONDS.MICROSECONDS' |
MINUTE_MICROSECOND | 'MINUTES:SECONDS.MICROSECONDS' |
MINUTE_SECOND | 'MINUTES:SECONDS' |
HOUR_MICROSECOND | 'HOURS:MINUTES:SECONDS.MICROSECONDS' |
HOUR_SECOND | 'HOURS:MINUTES:SECONDS' |
HOUR_MINUTE | 'HOURS:MINUTES' |
DAY_MICROSECOND | 'DAYS HOURS:MINUTES:SECONDS.MICROSECONDS' |
DAY_SECOND | 'DAYS HOURS:MINUTES:SECONDS' |
DAY_MINUTE | 'DAYS HOURS:MINUTES' |
DAY_HOUR | 'DAYS HOURS' |
YEAR_MONTH | 'YEARS-MONTHS' |
The return value depends on the arguments:
DATETIME if the first argument is a DATETIME (or TIMESTAMP) value, or if the first argument is a DATE and the unit value uses HOURS, MINUTES, or SECONDS.
String otherwise.
To ensure that the result is DATETIME, you can use CAST() to convert the first argument to DATETIME.
MySQL permits any punctuation delimiter in the expr format. Those shown in the table are the suggested delimiters. If the date argument is a DATE value and your calculations involve only YEAR, MONTH, and DAY parts (that is, no time parts), the result is a DATE value. Otherwise, the result is a DATETIME value.
Date arithmetic also can be performed using INTERVAL together with the + or - operator:
date + INTERVAL expr unit
date - INTERVAL expr unit
INTERVAL expr unit is permitted on either side of the + operator if the expression on the other side is a date or datetime value. For the - operator, INTERVAL expr unit is permitted only on the right side, because it makes no sense to subtract a date or datetime value from an interval.
mysql> SELECT '2008-12-31 23:59:59' + INTERVAL 1 SECOND;
-> '2009-01-01 00:00:00'
mysql> SELECT INTERVAL 1 DAY + '2008-12-31';
-> '2009-01-01'
mysql> SELECT '2005-01-01' - INTERVAL 1 SECOND;
-> '2004-12-31 23:59:59'
mysql> SELECT DATE_ADD('2000-12-31 23:59:59',
-> INTERVAL 1 SECOND);
-> '2001-01-01 00:00:00'
mysql> SELECT DATE_ADD('2010-12-31 23:59:59',
-> INTERVAL 1 DAY);
-> '2011-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
-> INTERVAL '1:1' MINUTE_SECOND);
-> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2005-01-01 00:00:00',
-> INTERVAL '1 1:1:1' DAY_SECOND);
-> '2004-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
-> INTERVAL '-1 10' DAY_HOUR);
-> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
-> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
-> INTERVAL '1.999999' SECOND_MICROSECOND);
-> '1993-01-01 00:00:01.000001'
If you specify an interval value that is too short (does not include all the interval parts that would be expected from the unit keyword), MySQL assumes that you have left out the leftmost parts of the interval value. For example, if you specify a unit of DAY_SECOND, the value of expr is expected to have days, hours, minutes, and seconds parts. If you specify a value like '1:10', MySQL assumes that the days and hours parts are missing and the value represents minutes and seconds. In other words, '1:10' DAY_SECOND is interpreted in such a way that it is equivalent to '1:10' MINUTE_SECOND. This is analogous to the way that MySQL interprets TIME values as representing elapsed time rather than as a time of day.
Because expr is treated as a string, be careful if you specify a nonstring value with INTERVAL. For example, with an interval specifier of HOUR_MINUTE, 6/4 evaluates to 1.5000 and is treated as 1 hour, 5000 minutes:
mysql> SELECT 6/4;
-> 1.5000
mysql> SELECT DATE_ADD('2009-01-01', INTERVAL 6/4 HOUR_MINUTE);
-> '2009-01-04 12:20:00'
To ensure interpretation of the interval value as you expect, a CAST() operation may be used. To treat 6/4 as 1 hour, 5 minutes, cast it to a DECIMAL value with a single fractional digit:
mysql> SELECT CAST(6/4 AS DECIMAL(3,1));
-> 1.5
mysql> SELECT DATE_ADD('1970-01-01 12:00:00',
-> INTERVAL CAST(6/4 AS DECIMAL(3,1)) HOUR_MINUTE);
-> '1970-01-01 13:05:00'
If you add to or subtract from a date value something that contains a time part, the result is automatically converted to a datetime value:
mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 DAY);
-> '2013-01-02'
mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 HOUR);
-> '2013-01-01 01:00:00'
If you add MONTH, YEAR_MONTH, or YEAR and the resulting date has a day that is larger than the maximum day for the new month, the day is adjusted to the maximum days in the new month:
mysql> SELECT DATE_ADD('2009-01-30', INTERVAL 1 MONTH);
-> '2009-02-28'
Date arithmetic operations require complete dates and do not work with incomplete dates such as '2006-07-00' or badly malformed dates:
mysql> SELECT DATE_ADD('2006-07-00', INTERVAL 1 DAY);
-> NULL
mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
-> NULL
Formats the date value according to the format string.
The following specifiers may be used in the format string. The “%” character is required before format specifier characters.
Specifier | Description |
---|---|
%a | Abbreviated weekday name (Sun..Sat) |
%b | Abbreviated month name (Jan..Dec) |
%c | Month, numeric (0..12) |
%D | Day of the month with English suffix (0th, 1st, 2nd, 3rd, …) |
%d | Day of the month, numeric (00..31) |
%e | Day of the month, numeric (0..31) |
%f | Microseconds (000000..999999) |
%H | Hour (00..23) |
%h | Hour (01..12) |
%I | Hour (01..12) |
%i | Minutes, numeric (00..59) |
%j | Day of year (001..366) |
%k | Hour (0..23) |
%l | Hour (1..12) |
%M | Month name (January..December) |
%m | Month, numeric (00..12) |
%p | AM or PM |
%r | Time, 12-hour (hh:mm:ss followed by AM or PM) |
%S | Seconds (00..59) |
%s | Seconds (00..59) |
%T | Time, 24-hour (hh:mm:ss) |
%U | Week (00..53), where Sunday is the first day of the week |
%u | Week (00..53), where Monday is the first day of the week |
%V | Week (01..53), where Sunday is the first day of the week; used with %X |
%v | Week (01..53), where Monday is the first day of the week; used with %x |
%W | Weekday name (Sunday..Saturday) |
%w | Day of the week (0=Sunday..6=Saturday) |
%X | Year for the week where Sunday is the first day of the week, numeric, four digits; used with %V |
%x | Year for the week, where Monday is the first day of the week, numeric, four digits; used with %v |
%Y | Year, numeric, four digits |
%y | Year, numeric (two digits) |
%% | A literal “%” character |
%x | x, for any “x” not listed above |
Ranges for the month and day specifiers begin with zero due to the fact that MySQL permits the storing of incomplete dates such as '2014-00-00'.
The language used for day and month names and abbreviations is controlled by the value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).
DATE_FORMAT() returns a string with a character set and collation given by character_set_connection and collation_connection so that it can return month and weekday names containing non-ASCII characters.
mysql> SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');
-> 'Sunday October 2009'
mysql> SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');
-> '22:23:00'
mysql> SELECT DATE_FORMAT('1900-10-04 22:23:00',
-> '%D %y %a %d %m %b %j');
-> '4th 00 Thu 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
-> '%H %k %I %r %T %S %w');
-> '22 22 10 10:23:00 PM 22:23:00 00 6'
mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
-> '1998 52'
mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
-> '00'
DATE_SUB(date,INTERVAL expr unit)
See the description for DATE_ADD().
DAY() is a synonym for DAYOFMONTH().
Returns the name of the weekday for date. The language used for the name is controlled by the value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).
mysql> SELECT DAYNAME('2007-02-03');
-> 'Saturday'
Returns the day of the month for date, in the range 1 to 31, or 0 for dates such as '0000-00-00' or '2008-00-00' that have a zero day part.
mysql> SELECT DAYOFMONTH('2007-02-03');
-> 3
Returns the weekday index for date (1 = Sunday, 2 = Monday, …, 7 = Saturday). These index values correspond to the ODBC standard.
mysql> SELECT DAYOFWEEK('2007-02-03');
-> 7
Returns the day of the year for date, in the range 1 to 366.
mysql> SELECT DAYOFYEAR('2007-02-03');
-> 34
The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(), but extracts parts from the date rather than performing date arithmetic.
mysql> SELECT EXTRACT(YEAR FROM '2009-07-02');
-> 2009
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2009-07-02 01:02:03');
-> 200907
mysql> SELECT EXTRACT(DAY_MINUTE FROM '2009-07-02 01:02:03');
-> 20102
mysql> SELECT EXTRACT(MICROSECOND
-> FROM '2003-01-02 10:30:00.000123');
-> 123
Given a day number N, returns a DATE value.
mysql> SELECT FROM_DAYS(730669);
-> '2007-07-03'
Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the advent of the Gregorian calendar (1582). See Section 12.8, “What Calendar Is Used By MySQL?”.
FROM_UNIXTIME(unix_timestamp), FROM_UNIXTIME(unix_timestamp,format)
Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context. The value is expressed in the current time zone. unix_timestamp is an internal timestamp value such as is produced by the UNIX_TIMESTAMP() function.
If format is given, the result is formatted according to the format string, which is used the same way as listed in the entry for the DATE_FORMAT() function.
mysql> SELECT FROM_UNIXTIME(1196440219);
-> '2007-11-30 10:30:19'
mysql> SELECT FROM_UNIXTIME(1196440219) + 0;
-> 20071130103019.000000
mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),
-> '%Y %D %M %h:%i:%s %x');
-> '2007 30th November 10:30:59 2007'
Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP values and Unix timestamp values, the conversion is lossy because the mapping is not one-to-one in both directions. For details, see the description of the UNIX_TIMESTAMP() function.
GET_FORMAT({DATE|TIME|DATETIME}, {'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL'})
Returns a format string. This function is useful in combination with the DATE_FORMAT() and the STR_TO_DATE() functions.
The possible values for the first and second arguments result in several possible format strings (for the specifiers used, see the table in the DATE_FORMAT() function description). ISO format refers to ISO 9075, not ISO 8601.
Function Call | Result |
---|---|
GET_FORMAT(DATE,'USA') | '%m.%d.%Y' |
GET_FORMAT(DATE,'JIS') | '%Y-%m-%d' |
GET_FORMAT(DATE,'ISO') | '%Y-%m-%d' |
GET_FORMAT(DATE,'EUR') | '%d.%m.%Y' |
GET_FORMAT(DATE,'INTERNAL') | '%Y%m%d' |
GET_FORMAT(DATETIME,'USA') | '%Y-%m-%d %H.%i.%s' |
GET_FORMAT(DATETIME,'JIS') | '%Y-%m-%d %H:%i:%s' |
GET_FORMAT(DATETIME,'ISO') | '%Y-%m-%d %H:%i:%s' |
GET_FORMAT(DATETIME,'EUR') | '%Y-%m-%d %H.%i.%s' |
GET_FORMAT(DATETIME,'INTERNAL') | '%Y%m%d%H%i%s' |
GET_FORMAT(TIME,'USA') | '%h:%i:%s %p' |
GET_FORMAT(TIME,'JIS') | '%H:%i:%s' |
GET_FORMAT(TIME,'ISO') | '%H:%i:%s' |
GET_FORMAT(TIME,'EUR') | '%H.%i.%s' |
GET_FORMAT(TIME,'INTERNAL') | '%H%i%s' |
TIMESTAMP can also be used as the first argument to GET_FORMAT(), in which case the function returns the same values as for DATETIME.
mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
-> '03.10.2003'
mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
-> '2003-10-31'
Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However, the range of TIME values actually is much larger, so HOUR can return values greater than 23.
mysql> SELECT HOUR('10:05:03');
-> 10
mysql> SELECT HOUR('272:59:59');
-> 272
Takes a date or datetime value and returns the corresponding value for the last day of the month. Returns NULL if the argument is invalid.
mysql> SELECT LAST_DAY('2003-02-05');
-> '2003-02-28'
mysql> SELECT LAST_DAY('2004-02-05');
-> '2004-02-29'
mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
-> '2004-01-31'
mysql> SELECT LAST_DAY('2003-03-32');
-> NULL
LOCALTIME and LOCALTIME() are synonyms for NOW().
LOCALTIMESTAMP, LOCALTIMESTAMP([fsp])
LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().
Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result is NULL.
mysql> SELECT MAKEDATE(2011,31), MAKEDATE(2011,32);
-> '2011-01-31', '2011-02-01'
mysql> SELECT MAKEDATE(2011,365), MAKEDATE(2014,365);
-> '2011-12-31', '2014-12-31'
mysql> SELECT MAKEDATE(2011,0);
-> NULL
Returns a time value calculated from the hour, minute, and second arguments.
As of MySQL 5.6.4, the second argument can have a fractional part.
mysql> SELECT MAKETIME(12,15,30);
-> '12:15:30'
Returns the microseconds from the time or datetime expression expr as a number in the range from 0 to 999999.
mysql> SELECT MICROSECOND('12:00:00.123456');
-> 123456
mysql> SELECT MICROSECOND('2009-12-31 23:59:59.000010');
-> 10
Returns the minute for time, in the range 0 to 59.
mysql> SELECT MINUTE('2008-02-03 10:05:03');
-> 5
Returns the month for date, in the range 1 to 12 for January to December, or 0 for dates such as '0000-00-00' or '2008-00-00' that have a zero month part.
mysql> SELECT MONTH('2008-02-03');
-> 2
Returns the full name of the month for date. The language used for the name is controlled by the value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).
mysql> SELECT MONTHNAME('2008-02-03');
-> 'February'
Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context. The value is expressed in the current time zone.
As of MySQL 5.6.4, if the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value includes a fractional seconds part of that many digits. Before 5.6.4, any argument is ignored.
mysql> SELECT NOW();
-> '2007-12-15 23:50:26'
mysql> SELECT NOW() + 0;
-> 20071215235026.000000
NOW() returns a constant time that indicates the time at which the statement began to execute. (Within a stored function or trigger, NOW() returns the time at which the function or triggering statement began to execute.) This differs from the behavior for SYSDATE(), which returns the exact time at which it executes.
mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+
mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+
In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations of SYSDATE(). Setting the timestamp to a nonzero value causes each subsequent invocation of NOW() to return that value. Setting the timestamp to zero cancels this effect so that NOW() once again returns the current date and time.
See the description for SYSDATE() for additional information about the differences between the two functions.
Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM. Note that the period argument P is not a date value.
mysql> SELECT PERIOD_ADD(200801,2);
-> 200803
Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM or YYYYMM. Note that the period arguments P1 and P2 are not date values.
mysql> SELECT PERIOD_DIFF(200802,200703);
-> 11
Returns the quarter of the year for date, in the range 1 to 4.
mysql> SELECT QUARTER('2008-04-01');
-> 2
Returns the second for time, in the range 0 to 59.
mysql> SELECT SECOND('10:05:03');
-> 3
Returns the seconds argument, converted to hours, minutes, and seconds, as a TIME value. The range of the result is constrained to that of the TIME data type. A warning occurs if the argument corresponds to a value outside that range.
mysql> SELECT SEC_TO_TIME(2378);
-> '00:39:38'
mysql> SELECT SEC_TO_TIME(2378) + 0;
-> 3938
This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string format. STR_TO_DATE() returns a DATETIME value if the format string contains both date and time parts, or a DATE or TIME value if the string contains only date or time parts. If the date, time, or datetime value extracted from str is illegal, STR_TO_DATE() returns NULL and produces a warning.
The server scans str attempting to match format to it. The format string can contain literal characters and format specifiers beginning with %. Literal characters in format must match literally in str. Format specifiers in format must match a date or time part in str. For the specifiers that can be used in format, see the DATE_FORMAT() function description.
mysql> SELECT STR_TO_DATE('01,5,2013','%d,%m,%Y');
-> '2013-05-01'
mysql> SELECT STR_TO_DATE('May 1, 2013','%M %d,%Y');
-> '2013-05-01'
Scanning starts at the beginning of str and fails if format is found not to match. Extra characters at the end of str are ignored.
mysql> SELECT STR_TO_DATE('a09:30:17','a%h:%i:%s');
-> '09:30:17'
mysql> SELECT STR_TO_DATE('a09:30:17','%h:%i:%s');
-> NULL
mysql> SELECT STR_TO_DATE('09:30:17a','%h:%i:%s');
-> '09:30:17'
Unspecified date or time parts have a value of 0, so incompletely specified values in str produce a result with some or all parts set to 0:
mysql> SELECT STR_TO_DATE('abc','abc');
-> '0000-00-00'
mysql> SELECT STR_TO_DATE('9','%m');
-> '0000-09-00'
mysql> SELECT STR_TO_DATE('9','%s');
-> '00:00:09'
Range checking on the parts of date values is as described in Section 11.3.1, “The DATE, DATETIME, and TIMESTAMP Types”. This means, for example, that “zero” dates or dates with part values of 0 are permitted unless the SQL mode is set to disallow such values.
mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
-> '0000-00-00'
mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
-> '2004-04-31'
Note
You cannot use format "%X%V" to convert a year-week string to a date because the combination of a year and week does not uniquely identify a year and month if the week crosses a month boundary. To convert a year-week to a date, you should also specify the weekday:
mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
-> '2004-10-18'
SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)
When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym for DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for DATE_ADD().
mysql> SELECT DATE_SUB('2008-01-02', INTERVAL 31 DAY);
-> '2007-12-02'
mysql> SELECT SUBDATE('2008-01-02', INTERVAL 31 DAY);
-> '2007-12-02'
The second form enables the use of an integer value for days. In such cases, it is interpreted as the number of days to be subtracted from the date or datetime expression expr.
mysql> SELECT SUBDATE('2008-01-02 12:00:00', 31);
-> '2007-12-02 12:00:00'
SUBTIME() returns expr1 – expr2 expressed as a value in the same format as expr1. expr1 is a time or datetime expression, and expr2 is a time expression.
mysql> SELECT SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002');
-> '2007-12-30 22:58:58.999997'
mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
-> '-00:59:59.999999'
Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context.
SYSDATE() returns the time at which it executes. This differs from the behavior for NOW(), which returns a constant time that indicates the time at which the statement began to execute. (Within a stored function or trigger, NOW() returns the time at which the function or triggering statement began to execute.)
mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+
mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+
In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYSDATE(). This means that timestamp settings in the binary log have no effect on invocations of SYSDATE().
Because SYSDATE() can return different values even within the same statement, and is not affected by SET TIMESTAMP, it is nondeterministic and therefore unsafe for replication if statement-based binary logging is used. If that is a problem, you can use row-based logging.
Alternatively, you can use the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW(). This works if the option is used on both the master and the slave.
The nondeterministic nature of SYSDATE() also means that indexes cannot be used for evaluating expressions that refer to it.
Extracts the time part of the time or datetime expression expr and returns it as a string.
This function is unsafe for statement-based replication. In MySQL 5.6, a warning is logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)
mysql> SELECT TIME('2003-12-31 01:02:03');
-> '01:02:03'
mysql> SELECT TIME('2003-12-31 01:02:03.000123');
-> '01:02:03.000123'
TIMEDIFF() returns expr1 – expr2 expressed as a time value. expr1 and expr2 are time or date-and-time expressions, but both must be of the same type.
The result returned by TIMEDIFF() is limited to the range allowed for TIME values. Alternatively, you can use either of the functions TIMESTAMPDIFF() and UNIX_TIMESTAMP(), both of which return integers.
mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
-> '2000:01:01 00:00:00.000001');
-> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('2008-12-31 23:59:59.000001',
-> '2008-12-30 01:01:01.000002');
-> '46:58:57.999999'
TIMESTAMP(expr), TIMESTAMP(expr1,expr2)
With a single argument, this function returns the date or datetime expression expr as a datetime value. With two arguments, it adds the time expression expr2 to the date or datetime expression expr1 and returns the result as a datetime value.
mysql> SELECT TIMESTAMP('2003-12-31');
-> '2003-12-31 00:00:00'
mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
-> '2004-01-01 00:00:00'
TIMESTAMPADD(unit,interval,datetime_expr)
Adds the integer expression interval to the date or datetime expression datetime_expr. The unit for interval is given by the unit argument, which should be one of the following values: MICROSECOND (microseconds), SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.
The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_. For example, DAY and SQL_TSI_DAY both are legal.
mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
-> '2003-01-02 00:01:00'
mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
-> '2003-01-09'
TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)
Returns datetime_expr2 – datetime_expr1, where datetime_expr1 and datetime_expr2 are date or datetime expressions. One expression may be a date and the other a datetime; a date value is treated as a datetime having the time part '00:00:00' where necessary. The unit for the result (an integer) is given by the unit argument. The legal values for unit are the same as those listed in the description of the TIMESTAMPADD() function.
mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
-> 3
mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
-> -1
mysql> SELECT TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55');
-> 128885
Note
The order of the date or datetime arguments for this function is the opposite of that used with the TIMESTAMP() function when invoked with 2 arguments.
This is used like the DATE_FORMAT() function, but the format string may contain format specifiers only for hours, minutes, seconds, and microseconds. Other specifiers produce a NULL value or 0.
If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers produce a value larger than the usual range of 0..23. The other hour format specifiers produce the hour value modulo 12.
mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
-> '100 100 04 04 4'
Returns the time argument, converted to seconds.
mysql> SELECT TIME_TO_SEC('22:23:00');
-> 80580
mysql> SELECT TIME_TO_SEC('00:39:38');
-> 2378
Given a date date, returns a day number (the number of days since year 0).
mysql> SELECT TO_DAYS(950501);
-> 728779
mysql> SELECT TO_DAYS('2007-10-07');
-> 733321
TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calendar (1582), because it does not take into account the days that were lost when the calendar was changed. For dates before 1582 (and possibly a later year in other locales), results from this function are not reliable. See Section 12.8, “What Calendar Is Used By MySQL?”, for details.
Remember that MySQL converts two-digit year values in dates to four-digit form using the rules in Section 11.3, “Date and Time Types”. For example, '2008-10-07' and '08-10-07' are seen as identical dates:
mysql> SELECT TO_DAYS('2008-10-07'), TO_DAYS('08-10-07');
-> 733687, 733687
In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered invalid. This means that, for '0000-00-00' and '0000-01-01', TO_DAYS() returns the values shown here:
mysql> SELECT TO_DAYS('0000-00-00');
+-----------------------+
| to_days('0000-00-00') |
+-----------------------+
| NULL |
+-----------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)
mysql> SELECT TO_DAYS('0000-01-01');
+-----------------------+
| to_days('0000-01-01') |
+-----------------------+
| 1 |
+-----------------------+
1 row in set (0.00 sec)
This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.
Given a date or datetime expr, returns a the number of seconds since the year 0. If expr is not a valid date or datetime value, returns NULL.
mysql> SELECT TO_SECONDS(950501);
-> 62966505600
mysql> SELECT TO_SECONDS('2009-11-29');
-> 63426672000
mysql> SELECT TO_SECONDS('2009-11-29 13:43:32');
-> 63426721412
mysql> SELECT TO_SECONDS(NOW());
-> 63426721458
Like TO_DAYS(), TO_SECONDS() is not intended for use with values that precede the advent of the Gregorian calendar (1582), because it does not take into account the days that were lost when the calendar was changed. For dates before 1582 (and possibly a later year in other locales), results from this function are not reliable. See Section 12.8, “What Calendar Is Used By MySQL?”, for details.
Like TO_DAYS(), TO_SECONDS(), converts two-digit year values in dates to four-digit form using the rules in Section 11.3, “Date and Time Types”.
In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered invalid. This means that, for '0000-00-00' and '0000-01-01', TO_SECONDS() returns the values shown here:
mysql> SELECT TO_SECONDS('0000-00-00');
+--------------------------+
| TO_SECONDS('0000-00-00') |
+--------------------------+
| NULL |
+--------------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)
mysql> SELECT TO_SECONDS('0000-01-01');
+--------------------------+
| TO_SECONDS('0000-01-01') |
+--------------------------+
| 86400 |
+--------------------------+
1 row in set (0.00 sec)
This is true whether or not the ALLOW_INVALID_DATES SQL server mode is enabled.
UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)
If called with no argument, returns a Unix timestamp (seconds since '1970-01-01 00:00:00' UTC) as an unsigned integer. If UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as seconds since '1970-01-01 00:00:00' UTC. date may be a DATE string, a DATETIME string, a TIMESTAMP, or a number in the format YYMMDD or YYYYMMDD. The server interprets date as a value in the current time zone and converts it to an internal value in UTC. Clients can set their time zone as described in Section 10.6, “MySQL Server Time Zone Support”.
mysql> SELECT UNIX_TIMESTAMP();
-> 1196440210
mysql> SELECT UNIX_TIMESTAMP('2007-11-30 10:30:19');
-> 1196440219
When UNIX_TIMESTAMP() is used on a TIMESTAMP column, the function returns the internal timestamp value directly, with no implicit “string-to-Unix-timestamp” conversion. If you pass an out-of-range date to UNIX_TIMESTAMP(), it returns 0.
Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP values and Unix timestamp values, the conversion is lossy because the mapping is not one-to-one in both directions. For example, due to conventions for local time zone changes, it is possible for two UNIX_TIMESTAMP() to map two TIMESTAMP values to the same Unix timestamp value. FROM_UNIXTIME() will map that value back to only one of the original TIMESTAMP values. Here is an example, using TIMESTAMP values in the CET time zone:
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00 |
+---------------------------+
If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast the result to signed integers. See Section 12.10, “Cast Functions and Operators”.
Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the function is used in a string or numeric context.
mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
-> '2003-08-14', 20030814
Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the function is used in a string or numeric context.
As of MySQL 5.6.4, if the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value includes a fractional seconds part of that many digits. Before 5.6.4, any argument is ignored.
mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
-> '18:07:53', 180753.000000
UTC_TIMESTAMP, UTC_TIMESTAMP([fsp])
Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context.
As of MySQL 5.6.4, if the fsp argument is given to specify a fractional seconds precision from 0 to 6, the return value includes a fractional seconds part of that many digits. Before 5.6.4, any argument is ignored.
mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
-> '2003-08-14 18:08:04', 20030814180804.000000
This function returns the week number for date. The two-argument form of WEEK() enables you to specify whether the week starts on Sunday or Monday and whether the return value should be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value of the default_week_format system variable is used. See Section 5.1.4, “Server System Variables”.
The following table describes how the mode argument works.
Mode | First day of week | Range | Week 1 is the first week … |
---|---|---|---|
0 | Sunday | 0-53 | with a Sunday in this year |
1 | Monday | 0-53 | with more than 3 days this year |
2 | Sunday | 1-53 | with a Sunday in this year |
3 | Monday | 1-53 | with more than 3 days this year |
4 | Sunday | 0-53 | with more than 3 days this year |
5 | Monday | 0-53 | with a Monday in this year |
6 | Sunday | 1-53 | with more than 3 days this year |
7 | Monday | 1-53 | with a Monday in this year |
mysql> SELECT WEEK('2008-02-20');
-> 7
mysql> SELECT WEEK('2008-02-20',0);
-> 7
mysql> SELECT WEEK('2008-02-20',1);
-> 8
mysql> SELECT WEEK('2008-12-31',1);
-> 53
Note that if a date falls in the last week of the previous year, MySQL returns 0 if you do not use 2, 3, 6, or 7 as the optional mode argument:
mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
-> 2000, 0
One might argue that MySQL should return 52 for the WEEK() function, because the given date actually occurs in the 52nd week of 1999. We decided to return 0 instead because we want the function to return “the week number in the given year.” This makes use of the WEEK() function reliable when combined with other functions that extract a date part from a date.
If you would prefer the result to be evaluated with respect to the year that contains the first day of the week for the given date, use 0, 2, 5, or 7 as the optional mode argument.
mysql> SELECT WEEK('2000-01-01',2);
-> 52
Alternatively, use the YEARWEEK() function:
mysql> SELECT YEARWEEK('2000-01-01');
-> 199952
mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
-> '52'
Returns the weekday index for date (0 = Monday, 1 = Tuesday, … 6 = Sunday).
mysql> SELECT WEEKDAY('2008-02-03 22:23:00');
-> 6
mysql> SELECT WEEKDAY('2007-11-06');
-> 1
Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a compatibility function that is equivalent to WEEK(date,3).
mysql> SELECT WEEKOFYEAR('2008-02-20');
-> 8
Returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date.
mysql> SELECT YEAR('1987-01-01');
-> 1987
YEARWEEK(date), YEARWEEK(date,mode)
Returns year and week for a date. The mode argument works exactly like the mode argument to WEEK(). The year in the result may be different from the year in the date argument for the first and the last week of the year.
mysql> SELECT YEARWEEK('1987-01-01');
-> 198653
Note that the week number is different from what the WEEK() function would return (0) for optional arguments 0 or 1, as WEEK() then returns the week in the context of the given year.
12.8. What Calendar Is Used By MySQL?
MySQL uses what is known as a proleptic Gregorian calendar.
Every country that has switched from the Julian to the Gregorian calendar has had to discard at least ten days during the switch. To see how this works, consider the month of October 1582, when the first Julian-to-Gregorian switch occurred.
Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
There are no dates between October 4 and October 15. This discontinuity is called the cutover. Any dates before the cutover are Julian, and any dates following the cutover are Gregorian. Dates during a cutover are nonexistent.
A calendar applied to dates when it was not actually in use is called proleptic. Thus, if we assume there was never a cutover and Gregorian rules always rule, we have a proleptic Gregorian calendar. This is what is used by MySQL, as is required by standard SQL. For this reason, dates prior to the cutover stored as MySQL DATE or DATETIME values must be adjusted to compensate for the difference. It is important to realize that the cutover did not occur at the same time in all countries, and that the later it happened, the more days were lost. For example, in Great Britain, it took place in 1752, when Wednesday September 2 was followed by Thursday September 14. Russia remained on the Julian calendar until 1918, losing 13 days in the process, and what is popularly referred to as its “October Revolution” occurred in November according to the Gregorian calendar.
12.9. Full-Text Search Functions
MATCH (col1,col2,...) AGAINST (expr [search_modifier])
search_modifier:
{
IN NATURAL LANGUAGE MODE
| IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
| IN BOOLEAN MODE
| WITH QUERY EXPANSION
}
MySQL has support for full-text indexing and searching:
A full-text index in MySQL is an index of type FULLTEXT.
Full-text indexes can be used only with InnoDB or MyISAM tables, and can be created only for CHAR, VARCHAR, or TEXT columns.
A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is created, or added later using ALTER TABLE or CREATE INDEX.
For large data sets, it is much faster to load your data into a table that has no FULLTEXT index and then create the index after that, than to load data into a table that has an existing FULLTEXT index.
Full-text searching is performed using MATCH() ... AGAINST syntax. MATCH() takes a comma-separated list that names the columns to be searched. AGAINST takes a string to search for, and an optional modifier that indicates what type of search to perform. The search string must be a string value that is constant during query evaluation. This rules out, for example, a table column because that can differ for each row.
There are three types of full-text searches:
A natural language search interprets the search string as a phrase in natural human language (a phrase in free text). There are no special operators. The stopword list applies, controlled by innodb_ft_enable_stopword, innodb_ft_server_stopword_table, and innodb_ft_user_stopword_table for InnoDB search indexes, and ft_stopword_file for MyISAM ones.
Full-text searches are natural language searches if the IN NATURAL LANGUAGE MODE modifier is given or if no modifier is given. For more information, see Section 12.9.1, “Natural Language Full-Text Searches”.
A boolean search interprets the search string using the rules of a special query language. The string contains the words to search for. It can also contain operators that specify requirements such that a word must be present or absent in matching rows, or that it should be weighted higher or lower than usual. Certain common words (stopwords) are omitted from the search index and do not match if present in the search string. The IN BOOLEAN MODE modifier specifies a boolean search. For more information, see Section 12.9.2, “Boolean Full-Text Searches”.
A query expansion search is a modification of a natural language search. The search string is used to perform a natural language search. Then words from the most relevant rows returned by the search are added to the search string and the search is done again. The query returns the rows from the second search. The IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION or WITH QUERY EXPANSION modifier specifies a query expansion search. For more information, see Section 12.9.3, “Full-Text Searches with Query Expansion”.
For information about FULLTEXT query performance, see Section 8.3.4, “Column Indexes”.
For more technical details about processing for InnoDB FULLTEXT indexes, see Section 14.2.3.12.3, “FULLTEXT Indexes”.
Constraints on full-text searching are listed in Section 12.9.5, “Full-Text Restrictions”.
The myisam_ftdump utility dumps the contents of a MyISAM full-text index. This may be helpful for debugging full-text queries. See Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”.
12.9.1. Natural Language Full-Text Searches
By default or with the IN NATURAL LANGUAGE MODE modifier, the MATCH() function performs a natural language search for a string against a text collection. A collection is a set of one or more columns included in a FULLTEXT index. The search string is given as the argument to AGAINST(). For each row in the table, MATCH() returns a relevance value; that is, a similarity measure between the search string and the text in that row in the columns named in the MATCH() list.
mysql> CREATE TABLE articles (
id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
title VARCHAR(200),
body TEXT,
FULLTEXT (title,body)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO articles (title,body) VALUES
('MySQL Tutorial','DBMS stands for DataBase ...'),
('How To Use MySQL Well','After you went through a ...'),
('Optimizing MySQL','In this tutorial we will show ...'),
('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
('MySQL vs. YourSQL','In the following database comparison ...'),
('MySQL Security','When configured properly, MySQL ...');
Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM articles
WHERE MATCH (title,body)
AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)
By default, the search is performed in case-insensitive fashion. To perform a case-sensitive full-text search, use a binary collation for the indexed columns. For example, a column that uses the latin1 character set of can be assigned a collation of latin1_bin to make it case sensitive for full-text searches.
When MATCH() is used in a WHERE clause, as in the example shown earlier, the rows returned are automatically sorted with the highest relevance first. Relevance values are nonnegative floating-point numbers. Zero relevance means no similarity. Relevance is computed based on the number of words in the row, the number of unique words in that row, the total number of words in the collection, and the number of documents (rows) that contain a particular word.
To simply count matches, you could use a query like this:
mysql> SELECT COUNT(*) FROM articles
WHERE MATCH (title,body)
AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+
1 row in set (0.00 sec)
You might find it quicker to rewrite the query as follows:
mysql> SELECT
COUNT(IF(MATCH (title,body) AGAINST ('database' IN NATURAL LANGUAGE MODE), 1, NULL))
AS count
FROM articles;
+-------+
| count |
+-------+
| 2 |
+-------+
1 row in set (0.03 sec)
The first query does some extra work (sorting the results by relevance) but also can use an index lookup based on the WHERE clause. The index lookup might make the first query faster if the search matches few rows. The second query performs a full table scan, which might be faster than the index lookup if the search term was present in most rows.
For natural-language full-text searches, the columns named in the MATCH() function must be the same columns included in some FULLTEXT index in your table. For the preceding query, note that the columns named in the MATCH() function (title and body) are the same as those named in the definition of the article table's FULLTEXT index. To search the title or body separately, you would create separate FULLTEXT indexes for each column.
You can also perform a boolean search or a search with query expansion. These search types are described in Section 12.9.2, “Boolean Full-Text Searches”, and Section 12.9.3, “Full-Text Searches with Query Expansion”.
A full-text search that uses an index can name columns only from a single table in the MATCH() clause because an index cannot span multiple tables. A boolean search can be done in the absence of an index (albeit more slowly), in which case it is possible to name columns from multiple tables.
The preceding example is a basic illustration that shows how to use the MATCH() function where rows are returned in order of decreasing relevance. The next example shows how to retrieve the relevance values explicitly. Returned rows are not ordered because the SELECT statement includes neither WHERE nor ORDER BY clauses:
mysql> SELECT id, MATCH (title,body)
AGAINST ('Tutorial' IN NATURAL LANGUAGE MODE) AS score
FROM articles;
+----+---------------------+
| id | score |
+----+---------------------+
| 1 | 0.22764469683170319 |
| 2 | 0 |
| 3 | 0.22764469683170319 |
| 4 | 0 |
| 5 | 0 |
| 6 | 0 |
+----+---------------------+
6 rows in set (0.00 sec)
The following example is more complex. The query returns the relevance values and it also sorts the rows in order of decreasing relevance. To achieve this result, specify MATCH() twice: once in the SELECT list and once in the WHERE clause. This causes no additional overhead, because the MySQL optimizer notices that the two MATCH() calls are identical and invokes the full-text search code only once.
mysql> SELECT id, body, MATCH (title,body) AGAINST
('Security implications of running MySQL as root'
IN NATURAL LANGUAGE MODE) AS score
FROM articles WHERE MATCH (title,body) AGAINST
('Security implications of running MySQL as root'
IN NATURAL LANGUAGE MODE);
+----+-----------------------+--+
| id | title | body |
+----+-----------------------+--+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 3 | Optimizing MySQL | In this tutorial we will show ... |
| 6 | MySQL Security | When configured properly, MySQL ... |
| 2 | How To Use MySQL Well | After you went through a ... |
| 4 | 1001 MySQL Tricks | 1. Never run mysqld as root. 2. ... |
+----+-----------------------+--+
6 rows in set (0.00 sec)
The MySQL FULLTEXT implementation regards any sequence of true word characters (letters, digits, and underscores) as a word. That sequence may also contain apostrophes (“'”), but not more than one in a row. This means that aaa'bbb is regarded as one word, but aaa''bbb is regarded as two words. Apostrophes at the beginning or the end of a word are stripped by the FULLTEXT parser; 'aaa'bbb' would be parsed as aaa'bbb.
The FULLTEXT parser determines where words start and end by looking for certain delimiter characters; for example, “ ” (space), “,” (comma), and “.” (period). If words are not separated by delimiters (as in, for example, Chinese), the FULLTEXT parser cannot determine where a word begins or ends. To be able to add words or other indexed terms in such languages to a FULLTEXT index, you must preprocess them so that they are separated by some arbitrary delimiter such as “"”.
In MySQL 5.6, it is possible to write a plugin that replaces the built-in full-text parser. For details, see Section 22.2, “The MySQL Plugin API”. For example parser plugin source code, see the plugin/fulltext directory of a MySQL source distribution.
Some words are ignored in full-text searches:
Any word that is too short is ignored. The default minimum length of words that are found by full-text searches is three characters for InnoDB search indexes, or four characters for MyISAM. You can control the cutoff by setting a configuration option before creating the index: innodb_ft_min_token_size configuration option for InnoDB search indexes, or ft_min_word_len for MyISAM.
Words in the stopword list are ignored. A stopword is a word such as “the” or “some” that is so common that it is considered to have zero semantic value. There is a built-in stopword list, but it can be overridden by a user-defined list. The stopword lists and related configuration options are different for InnoDB search indexes and MyISAM ones. Stopword processing is controlled by the configuration options innodb_ft_enable_stopword, innodb_ft_server_stopword_table, and innodb_ft_user_stopword_table for InnoDB search indexes, and ft_stopword_file for MyISAM ones.
The default stopword lists are shown in Section 12.9.4, “Full-Text Stopwords”. The default minimum word length and stopword list can be changed as described in Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”.
Every correct word in the collection and in the query is weighted according to its significance in the collection or query. Thus, a word that is present in many documents has a lower weight, because it has lower semantic value in this particular collection. Conversely, if the word is rare, it receives a higher weight. The weights of the words are combined to compute the relevance of the row. This technique works best with large collections.
MyISAM Limitation
For very small tables, word distribution does not adequately reflect their semantic value, and this model may sometimes produce bizarre results for search indexes on MyISAM tables. For example, although the word “MySQL” is present in every row of the articles table shown earlier, a search for the word in a MyISAM search index produces no results:
mysql> SELECT * FROM articles
WHERE MATCH (title,body)
AGAINST ('MySQL' IN NATURAL LANGUAGE MODE);
Empty set (0.00 sec)
The search result is empty because the word “MySQL” is present in at least 50% of the rows, and so is effectively treated as a stopword. This filtering technique is more suitable for large data sets, where you might not want the result set to return every second row from a 1GB table, than for small data sets where it might cause poor results for popular terms.
The 50% threshold can surprise you when you first try full-text searching to see how it works, and makes InnoDB tables more suited to experimentation with full-text searches. If you create a MyISAM table and insert only one or two rows of text into it, every word in the text occurs in at least 50% of the rows. As a result, no search returns any results until the table contains more rows. Users who need to bypass the 50% limitation can build search indexes on InnoDB tables, or the boolean search mode explained in Section 12.9.2, “Boolean Full-Text Searches”.
12.9.2. Boolean Full-Text Searches
MySQL can perform boolean full-text searches using the IN BOOLEAN MODE modifier. With this modifier, certain characters have special meaning at the beginning or end of words in the search string. In the following query, the + and - operators indicate that a word must be present or absent, respectively, for a match to occur. Thus, the query retrieves all the rows that contain the word “MySQL” but that do not contain the word “YourSQL”:
mysql> SELECT * FROM articles WHERE MATCH (title,body)
AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);
+----+-----------------------+-------------------------------------+
| id | title | body |
+----+-----------------------+-------------------------------------+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 2 | How To Use MySQL Well | After you went through a ... |
| 3 | Optimizing MySQL | In this tutorial we will show ... |
| 4 | 1001 MySQL Tricks | 1. Never run mysqld as root. 2. ... |
| 6 | MySQL Security | When configured properly, MySQL ... |
+----+-----------------------+-------------------------------------+
Note
In implementing this feature, MySQL uses what is sometimes referred to as implied Boolean logic, in which
+ stands for AND
- stands for NOT
[no operator] implies OR
Boolean full-text searches have these characteristics:
They do not use the 50% threshold that applies to MyISAM search indexes.
They do not automatically sort rows in order of decreasing relevance.
Boolean queries against a MyISAM search index can work even without a FULLTEXT index, although a search executed in this fashion would be quite slow. InnoDB tables require a FULLTEXT index to perform boolean queries.
The minimum and maximum word length full-text parameters apply: innodb_ft_min_token_size and innodb_ft_max_token_size for InnoDB search indexes, and ft_min_word_len and ft_max_word_len for MyISAM ones.
The stopword list applies, controlled by innodb_ft_enable_stopword, innodb_ft_server_stopword_table, and innodb_ft_user_stopword_table for InnoDB search indexes, and ft_stopword_file for MyISAM ones.
The boolean full-text search capability supports the following operators:
+
A leading plus sign indicates that this word must be present in each row that is returned.
-
A leading minus sign indicates that this word must not be present in any of the rows that are returned.
Note: The - operator acts only to exclude rows that are otherwise matched by other search terms. Thus, a boolean-mode search that contains only terms preceded by - returns an empty result. It does not return “all rows except those containing any of the excluded terms.”
(no operator)
By default (when neither + nor - is specified), the word is optional, but the rows that contain it are rated higher. This mimics the behavior of MATCH() ... AGAINST() without the IN BOOLEAN MODE modifier.
@distance
This operator works on InnoDB tables only. It tests whether two or more words all start within a specified distance from each other, measured in words. Specify the search words within a double-quoted string immediately before the @distance operator, for example, MATCH(col1) AGAINST('"word1 word2 word3" @8' IN BOOLEAN MODE)
> <
These two operators are used to change a word's contribution to the relevance value that is assigned to a row. The > operator increases the contribution and the < operator decreases it. See the example following this list.
()
Parentheses group words into subexpressions. Parenthesized groups can be nested.
~
A leading tilde acts as a negation operator, causing the word's contribution to the row's relevance to be negative. This is useful for marking “noise” words. A row containing such a word is rated lower than others, but is not excluded altogether, as it would be with the - operator.
*
The asterisk serves as the truncation (or wildcard) operator. Unlike the other operators, it is appended to the word to be affected. Words match if they begin with the word preceding the * operator.
If a word is specified with the truncation operator, it is not stripped from a boolean query, even if it is too short or a stopword. Whether a word is too short is determined from the innodb_ft_min_token_size setting for InnoDB tables, or ft_min_word_len for MyISAM tables. The wildcarded word is considered as a prefix that must be present at the start of one or more words. If the minimum word length is 4, a search for '+word +the*' could return fewer rows than a search for '+word +the', because the second query ignores the too-short search term the.
"
A phrase that is enclosed within double quote (“"”) characters matches only rows that contain the phrase literally, as it was typed. The full-text engine splits the phrase into words and performs a search in the FULLTEXT index for the words. Nonword characters need not be matched exactly: Phrase searching requires only that matches contain exactly the same words as the phrase and in the same order. For example, "test phrase" matches "test, phrase".
If the phrase contains no words that are in the index, the result is empty. The words might not be in the index because of a combination of factors: if they do not exist in the text, are stopwords, or are shorter than the minimum length of indexed words.
The following examples demonstrate some search strings that use boolean full-text operators:
'apple banana'
Find rows that contain at least one of the two words.
'+apple +juice'
Find rows that contain both words.
'+apple macintosh'
Find rows that contain the word “apple”, but rank rows higher if they also contain “macintosh”.
'+apple -macintosh'
Find rows that contain the word “apple” but not “macintosh”.
'+apple ~macintosh'
Find rows that contain the word “apple”, but if the row also contains the word “macintosh”, rate it lower than if row does not. This is “softer” than a search for '+apple -macintosh', for which the presence of “macintosh” causes the row not to be returned at all.
'+apple +(>turnover <strudel)'
Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in any order), but rank “apple turnover” higher than “apple strudel”.
'apple*'
Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.
'"some words"'
Find rows that contain the exact phrase “some words” (for example, rows that contain “some words of wisdom” but not “some noise words”). Note that the “"” characters that enclose the phrase are operator characters that delimit the phrase. They are not the quotation marks that enclose the search string itself.
12.9.3. Full-Text Searches with Query Expansion
Full-text search supports query expansion (and in particular, its variant “blind query expansion”). This is generally useful when a search phrase is too short, which often means that the user is relying on implied knowledge that the full-text search engine lacks. For example, a user searching for “database” may really mean that “MySQL”, “Oracle”, “DB2”, and “RDBMS” all are phrases that should match “databases” and should be returned, too. This is implied knowledge.
Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH QUERY EXPANSION or IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION following the search phrase. It works by performing the search twice, where the search phrase for the second search is the original search phrase concatenated with the few most highly relevant documents from the first search. Thus, if one of these documents contains the word “databases” and the word “MySQL”, the second search finds the documents that contain the word “MySQL” even if they do not contain the word “database”. The following example shows this difference:
mysql> SELECT * FROM articles
WHERE MATCH (title,body)
AGAINST ('database' IN NATURAL LANGUAGE MODE);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+--+
2 rows in set (0.00 sec)
mysql> SELECT * FROM articles
WHERE MATCH (title,body)
AGAINST ('database' WITH QUERY EXPANSION);
+----+-----------------------+--+
| id | title | body |
+----+-----------------------+--+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
| 3 | Optimizing MySQL | In this tutorial we will show ... |
| 6 | MySQL Security | When configured properly, MySQL ... |
| 2 | How To Use MySQL Well | After you went through a ... |
| 4 | 1001 MySQL Tricks | 1. Never run mysqld as root. 2. ... |
+----+-----------------------+--+
6 rows in set (0.00 sec)
Another example could be searching for books by Georges Simenon about Maigret, when a user is not sure how to spell “Maigret”. A search for “Megre and the reluctant witnesses” finds only “Maigret and the Reluctant Witnesses” without query expansion. A search with query expansion finds all books with the word “Maigret” on the second pass.
Note
Because blind query expansion tends to increase noise significantly by returning nonrelevant documents, use it only when a search phrase is short.
12.9.4. Full-Text Stopwords
The stopword list is loaded and searched for full-text queries using the server character set and collation (the values of the character_set_server and collation_server system variables). False hits or misses might occur for stopword lookups if the stopword file or columns used for full-text indexing or searches have a character set or collation different from character_set_server or collation_server.
Case sensitivity of stopword lookups depends on the server collation. For example, lookups are case insensitive if the collation is latin1_swedish_ci, whereas lookups are case sensitive if the collation is latin1_general_cs or latin1_bin.
Stopwords for InnoDB Search Indexes
InnoDB has a relatively short list of default stopwords, because documents from technical, literary, and so on sources often use short words as keywords or in significant phrases. For example, you might search for “to be or not to be” and expect to get a sensible result, rather than having all those words ignored.
To see the list, query the table information_schema.innodb_ft_default_stopword. To define your own stopword list used for all InnoDB tables, define a table with the same structure as innodb_ft_default_stopword, fill it with the desired stopwords, and set the value of the innodb_ft_server_stopword_table option to a value of the form db_name/table_name before creating the search index. To create special stopword lists on a table-by-table basis, define other tables to hold these lists and specify the appropriate one in the innodb_ft_user_stopword_table option before creating the search index.
Stopwords for MyISAM Search Indexes
In MySQL 5.6, the stopword file is loaded and searched using latin1 if character_set_server is ucs2, utf16, utf16le, or utf32. If any table was created with FULLTEXT indexes while the server character set was ucs2, utf16, utf16le, or utf32, it should be repaired using this statement:
REPAIR TABLE tbl_name QUICK;
The following table shows the default list of stopwords for MyISAM search indexes. In a MySQL source distribution, you can find this list in the storage/myisam/ft_static.c file.
a's | able | about | above | according |
accordingly | across | actually | after | afterwards |
again | against | ain't | all | allow |
allows | almost | alone | along | already |
also | although | always | am | among |
amongst | an | and | another | any |
anybody | anyhow | anyone | anything | anyway |
anyways | anywhere | apart | appear | appreciate |
appropriate | are | aren't | around | as |
aside | ask | asking | associated | at |
available | away | awfully | be | became |
because | become | becomes | becoming | been |
before | beforehand | behind | being | believe |
below | beside | besides | best | better |
between | beyond | both | brief | but |
by | c'mon | c's | came | can |
can't | cannot | cant | cause | causes |
certain | certainly | changes | clearly | co |
com | come | comes | concerning | consequently |
consider | considering | contain | containing | contains |
corresponding | could | couldn't | course | currently |
definitely | described | despite | did | didn't |
different | do | does | doesn't | doing |
don't | done | down | downwards | during |
each | edu | eg | eight | either |
else | elsewhere | enough | entirely | especially |
et | etc | even | ever | every |
everybody | everyone | everything | everywhere | ex |
exactly | example | except | far | few |
fifth | first | five | followed | following |
follows | for | former | formerly | forth |
four | from | further | furthermore | get |
gets | getting | given | gives | go |
goes | going | gone | got | gotten |
greetings | had | hadn't | happens | hardly |
has | hasn't | have | haven't | having |
he | he's | hello | help | hence |
her | here | here's | hereafter | hereby |
herein | hereupon | hers | herself | hi |
him | himself | his | hither | hopefully |
how | howbeit | however | i'd | i'll |
i'm | i've | ie | if | ignored |
immediate | in | inasmuch | inc | indeed |
indicate | indicated | indicates | inner | insofar |
instead | into | inward | is | isn't |
it | it'd | it'll | it's | its |
itself | just | keep | keeps | kept |
know | known | knows | last | lately |
later | latter | latterly | least | less |
lest | let | let's | like | liked |
likely | little | look | looking | looks |
ltd | mainly | many | may | maybe |
me | mean | meanwhile | merely | might |
more | moreover | most | mostly | much |
must | my | myself | name | namely |
nd | near | nearly | necessary | need |
needs | neither | never | nevertheless | new |
next | nine | no | nobody | non |
none | noone | nor | normally | not |
nothing | novel | now | nowhere | obviously |
of | off | often | oh | ok |
okay | old | on | once | one |
ones | only | onto | or | other |
others | otherwise | ought | our | ours |
ourselves | out | outside | over | overall |
own | particular | particularly | per | perhaps |
placed | please | plus | possible | presumably |
probably | provides | que | quite | qv |
rather | rd | re | really | reasonably |
regarding | regardless | regards | relatively | respectively |
right | said | same | saw | say |
saying | says | second | secondly | see |
seeing | seem | seemed | seeming | seems |
seen | self | selves | sensible | sent |
serious | seriously | seven | several | shall |
she | should | shouldn't | since | six |
so | some | somebody | somehow | someone |
something | sometime | sometimes | somewhat | somewhere |
soon | sorry | specified | specify | specifying |
still | sub | such | sup | sure |
t's | take | taken | tell | tends |
th | than | thank | thanks | thanx |
that | that's | thats | the | their |
theirs | them | themselves | then | thence |
there | there's | thereafter | thereby | therefore |
therein | theres | thereupon | these | they |
they'd | they'll | they're | they've | think |
third | this | thorough | thoroughly | those |
though | three | through | throughout | thru |
thus | to | together | too | took |
toward | towards | tried | tries | truly |
try | trying | twice | two | un |
under | unfortunately | unless | unlikely | until |
unto | up | upon | us | use |
used | useful | uses | using | usually |
value | various | very | via | viz |
vs | want | wants | was | wasn't |
way | we | we'd | we'll | we're |
we've | welcome | well | went | were |
weren't | what | what's | whatever | when |
whence | whenever | where | where's | whereafter |
whereas | whereby | wherein | whereupon | wherever |
whether | which | while | whither | who |
who's | whoever | whole | whom | whose |
why | will | willing | wish | with |
within | without | won't | wonder | would |
wouldn't | yes | yet | you | you'd |
you'll | you're | you've | your | yours |
yourself | yourselves | zero |
12.9.5. Full-Text Restrictions
Full-text searches are supported for InnoDB and MyISAM tables only. FULLTEXT index support for InnoDB tables requires MySQL 5.6.4 or higher.
Full-text searches are not supported for partitioned tables. See Section 17.6, “Restrictions and Limitations on Partitioning”.
Full-text searches can be used with most multi-byte character sets. The exception is that for Unicode, the utf8 character set can be used, but not the ucs2 character set. Although FULLTEXT indexes on ucs2 columns cannot be used, you can perform IN BOOLEAN MODE searches on a ucs2 column that has no such index.
The remarks for utf8 also apply to utf8mb4, and the remarks for ucs2 also apply to utf16, utf16le, and utf32.
Ideographic languages such as Chinese and Japanese do not have word delimiters. Therefore, the FULLTEXT parser cannot determine where words begin and end in these and other such languages. The implications of this and some workarounds for the problem are described in Section 12.9, “Full-Text Search Functions”.
Although the use of multiple character sets within a single table is supported, all columns in a FULLTEXT index must use the same character set and collation.
The MATCH() column list must match exactly the column list in some FULLTEXT index definition for the table, unless this MATCH() is IN BOOLEAN MODE on a MyISAM table. For MyISAM tables only, boolean-mode searches can be done on nonindexed columns, although they are likely to be slow.
The argument to AGAINST() must be a string value that is constant during query evaluation. This rules out, for example, a table column because that can differ for each row.
Index hints are more limited for FULLTEXT searches than for non-FULLTEXT searches. See Section 13.2.9.3, “Index Hint Syntax”.
12.9.6. Fine-Tuning MySQL Full-Text Search
MySQL's full-text search capability has few user-tunable parameters. You can exert more control over full-text searching behavior if you have a MySQL source distribution because some changes require source code modifications. See Section 2.9, “Installing MySQL from Source”.
Note that full-text search is carefully tuned for effectiveness. Modifying the default behavior in most cases can actually decrease effectiveness. Do not alter the MySQL sources unless you know what you are doing.
Most full-text variables described in this section must be set at server startup time. A server restart is required to change them; they cannot be modified while the server is running.
Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions for doing so are given later in this section.
The minimum and maximum lengths of words to be indexed are defined by the innodb_ft_min_token_size and innodb_ft_max_token_size for InnoDB search indexes, and ft_min_word_len and ft_max_word_len for MyISAM ones. After changing any of these options, rebuild your FULLTEXT indexes for the change to take effect. For example, to make two-character words searchable, you could put the following lines in an option file:
[mysqld]
innodb_ft_min_token_size=2
ft_min_word_len=2
Then restart the server and rebuild your FULLTEXT indexes. For MyISAM tables, note particularly the remarks regarding myisamchk in the instructions following this list.
To override the default stopword list, set the ft_stopword_file system variable. (See Section 5.1.4, “Server System Variables”.) The variable value should be the path name of the file containing the stopword list, or the empty string to disable stopword filtering. The server looks for the file in the data directory unless an absolute path name is given to specify a different directory. After changing the value of this variable or the contents of the stopword file, restart the server and rebuild your FULLTEXT indexes.
The stopword list is free-form, separating stopwords with any nonalphanumeric character such as newline, space, or comma. Exceptions are the underscore character (“_”) and a single apostrophe (“'”) which are treated as part of a word. The character set of the stopword list is the server's default character set; see Section 10.1.3.1, “Server Character Set and Collation”.
The 50% threshold for natural language searches is determined by the particular weighting scheme chosen. To disable it, look for the following line in storage/myisam/ftdefs.h:
#define GWS_IN_USE GWS_PROB
Change that line to this:
#define GWS_IN_USE GWS_FREQ
Then recompile MySQL. There is no need to rebuild the indexes in this case.
Note
By making this change, you severely decrease MySQL's ability to provide adequate relevance values for the MATCH() function. If you really need to search for such common words, it would be better to search using IN BOOLEAN MODE instead, which does not observe the 50% threshold.
To change the operators used for boolean full-text searches on MyISAM tables, set the ft_boolean_syntax system variable. (InnoDB does not have an equivalent setting.) This variable can be changed while the server is running, but you must have the SUPER privilege to do so. No rebuilding of indexes is necessary in this case. See Section 5.1.4, “Server System Variables”, which describes the rules governing how to set this variable.
You can change the set of characters that are considered word characters in several ways, as described in the following list. After making the modification, rebuild the indexes for each table that contains any FULLTEXT indexes. Suppose that you want to treat the hyphen character ('-') as a word character. Use one of these methods:
Modify the MySQL source: In storage/myisam/ftdefs.h, see the true_word_char() and misc_word_char() macros. Add '-' to one of those macros and recompile MySQL.
Modify a character set file: This requires no recompilation. The true_word_char() macro uses a “character type” table to distinguish letters and numbers from other characters. . You can edit the contents of the <ctype><map> array in one of the character set XML files to specify that '-' is a “letter.” Then use the given character set for your FULLTEXT indexes. For information about the <ctype><map> array format, see Section 10.3.1, “Character Definition Arrays”.
Add a new collation for the character set used by the indexed columns, and alter the columns to use that collation. For general information about adding collations, see Section 10.4, “Adding a Collation to a Character Set”. For an example specific to full-text indexing, see Section 12.9.7, “Adding a Collation for Full-Text Indexing”.
If you modify full-text variables that affect indexing (innodb_ft_min_token_size, innodb_ft_max_token_size, innodb_ft_server_stopword_table, innodb_ft_user_stopword_table, innodb_ft_enable_stopword, ft_min_word_len, ft_max_word_len, or ft_stopword_file), or if you change the stopword file itself, you must rebuild your FULLTEXT indexes after making the changes and restarting the server. To rebuild the indexes in this case, it is sufficient to do a QUICK repair operation:
mysql> REPAIR TABLE tbl_name QUICK;
Alternatively, use ALTER TABLE with the DROP INDEX and ADD INDEX options to drop and re-create each FULLTEXT index. In some cases, this may be faster than a repair operation.
Each table that contains any FULLTEXT index must be repaired as just shown. Otherwise, queries for the table may yield incorrect results, and modifications to the table will cause the server to see the table as corrupt and in need of repair.
Note that if you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum word length, maximum word length, and stopword file unless you specify otherwise. This can result in queries failing.
The problem occurs because these parameters are known only by the server. They are not stored in MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length or stopword file values used by the server, specify the same ft_min_word_len, ft_max_word_len, and ft_stopword_file values for myisamchk that you use for mysqld. For example, if you have set the minimum word length to 3, you can repair a table with myisamchk like this:
shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI
To ensure that myisamchk and the server use the same values for full-text parameters, place each one in both the [mysqld] and [myisamchk] sections of an option file:
[mysqld]
ft_min_word_len=3
[myisamchk]
ft_min_word_len=3
An alternative to using myisamchk for index modification is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE TABLE, or ALTER TABLE statements. These statements are performed by the server, which knows the proper full-text parameter values to use.
12.9.7. Adding a Collation for Full-Text Indexing
This section describes how to add a new collation for full-text searches. The sample collation is like latin1_swedish_ci but treats the '-' character as a letter rather than as a punctuation character so that it can be indexed as a word character. General information about adding collations is given in Section 10.4, “Adding a Collation to a Character Set”; it is assumed that you have read it and are familiar with the files involved.
To add a collation for full-text indexing, use this procedure:
Add a collation to the Index.xml file. The collation ID must be unused, so choose a value different from 1000 if that ID is already taken on your system.
<charset name="latin1">
...
<collation name="latin1_fulltext_ci" id="1000"/>
</charset>
Declare the sort order for the collation in the latin1.xml file. In this case, the order can be copied from latin1_swedish_ci:
<collation name="latin1_fulltext_ci">
<map>
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D D7 D8 55 55 55 59 59 DE DF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D F7 D8 55 55 55 59 59 DE FF
</map>
</collation>
Modify the ctype array in latin1.xml. Change the value corresponding to 0x2D (which is the code for the '-' character) from 10 (punctuation) to 01 (small letter). In the following array, this is the element in the fourth row down, third value from the end.
<ctype>
<map>
00
20 20 20 20 20 20 20 20 20 28 28 28 28 28 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
48 10 10 10 10 10 10 10 10 10 10 10 10 01 10 10
84 84 84 84 84 84 84 84 84 84 10 10 10 10 10 10
10 81 81 81 81 81 81 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 10 10 10 10 10
10 82 82 82 82 82 82 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 02 02 02 02 10 10 10 10 20
10 00 10 02 10 10 10 10 10 10 01 10 01 00 01 00
00 10 10 10 10 10 10 10 10 10 02 10 02 00 02 01
48 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 02
02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 10 02 02 02 02 02 02 02 02
</map>
</ctype>
Restart the server.
To employ the new collation, include it in the definition of columns that are to use it:
mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected (0.13 sec)
mysql> CREATE TABLE t1 (
a TEXT CHARACTER SET latin1 COLLATE latin1_fulltext_ci,
FULLTEXT INDEX(a)
) ENGINE=InnoDB;
Query OK, 0 rows affected (0.47 sec)
Test the collation to verify that hyphen is considered as a word character:
mysql> INSERT INTO t1 VALUEs ('----'),('....'),('abcd');
Query OK, 3 rows affected (0.22 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM t1 WHERE MATCH a AGAINST ('----' IN BOOLEAN MODE);
+------+
| a |
+------+
| ---- |
+------+
1 row in set (0.00 sec)
12.10. Cast Functions and Operators
Table 12.14. Cast Functions
Name | Description |
---|---|
BINARY | Cast a string to a binary string |
CAST() | Cast a value as a certain type |
CONVERT() | Cast a value as a certain type |
The BINARY operator casts the string following it to a binary string. This is an easy way to force a column comparison to be done byte by byte rather than character by character. This causes the comparison to be case sensitive even if the column is not defined as BINARY or BLOB. BINARY also causes trailing spaces to be significant.
mysql> SELECT 'a' = 'A';
-> 1
mysql> SELECT BINARY 'a' = 'A';
-> 0
mysql> SELECT 'a' = 'a ';
-> 1
mysql> SELECT BINARY 'a' = 'a ';
-> 0
In a comparison, BINARY affects the entire operation; it can be given before either operand with the same result.
BINARY str is shorthand for CAST(str AS BINARY).
Note that in some contexts, if you cast an indexed column to BINARY, MySQL is not able to use the index efficiently.
The CAST() function takes an expression of any type and produces a result value of a specified type, similar to CONVERT(). See the description of CONVERT() for more information.
CONVERT(expr,type), CONVERT(expr USING transcoding_name)
The CONVERT() and CAST() functions take an expression of any type and produce a result value of a specified type.
The type for the result can be one of the following values:
BINARY produces a string with the BINARY data type. See Section 11.4.2, “The BINARY and VARBINARY Types” for a description of how this affects comparisons. If the optional length N is given, BINARY(N) causes the cast to use no more than N bytes of the argument. Values shorter than N bytes are padded with 0x00 bytes to a length of N.
CHAR(N) causes the cast to use no more than N characters of the argument.
CAST() and CONVERT(... USING ...) are standard SQL syntax. The non-USING form of CONVERT() is ODBC syntax.
CONVERT() with USING is used to convert data between different character sets. In MySQL, transcoding names are the same as the corresponding character set names. For example, this statement converts the string 'abc' in the default character set to the corresponding string in the utf8 character set:
SELECT CONVERT('abc' USING utf8);
Normally, you cannot compare a BLOB value or other binary string in case-insensitive fashion because binary strings have no character set, and thus no concept of lettercase. To perform a case-insensitive comparison, use the CONVERT() function to convert the value to a nonbinary string. Comparisons of the result use the string collation. For example, if the character set of the result has a case-insensitive collation, a LIKE operation is not case sensitive:
SELECT 'A' LIKE CONVERT(blob_col USING latin1) FROM tbl_name;
To use a different character set, substitute its name for latin1 in the preceding statement. To specify a particular collation for the converted string, use a COLLATE clause following the CONVERT() call, as described in Section 10.1.9.2, “CONVERT() and CAST()”. For example, to use latin1_german1_ci:
SELECT 'A' LIKE CONVERT(blob_col USING latin1) COLLATE latin1_german1_ci
FROM tbl_name;
CONVERT() can be used more generally for comparing strings that are represented in different character sets.
LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY, BLOB). To perform lettercase conversion, convert the string to a nonbinary string:
mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+
The cast functions are useful when you want to create a column with a specific type in a CREATE TABLE ... SELECT statement:
CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE);
The functions also can be useful for sorting ENUM columns in lexical order. Normally, sorting of ENUM columns occurs using the internal numeric values. Casting the values to CHAR results in a lexical sort:
SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);
CAST(str AS BINARY) is the same thing as BINARY str. CAST(expr AS CHAR) treats the expression as a string with the default character set.
CAST() also changes the result if you use it as part of a more complex expression such as CONCAT('Date: ',CAST(NOW() AS DATE)).
You should not use CAST() to extract data in different formats but instead use string functions like LEFT() or EXTRACT(). See Section 12.7, “Date and Time Functions”.
To cast a string to a numeric value in numeric context, you normally do not have to do anything other than to use the string value as though it were a number:
mysql> SELECT 1+'1';
-> 2
If you use a string in an arithmetic operation, it is converted to a floating-point number during expression evaluation.
If you use a number in string context, the number automatically is converted to a string:
mysql> SELECT CONCAT('hello you ',2);
-> 'hello you 2'
For information about implicit conversion of numbers to strings, see Section 12.2, “Type Conversion in Expression Evaluation”.
MySQL supports arithmetic with both signed and unsigned 64-bit values. If you are using numeric operators (such as + or -) and one of the operands is an unsigned integer, the result is unsigned by default (see Section 12.6.1, “Arithmetic Operators”). You can override this by using the SIGNED or UNSIGNED cast operator to cast a value to a signed or unsigned 64-bit integer, respectively.
mysql> SELECT CAST(1-2 AS UNSIGNED)
-> 18446744073709551615
mysql> SELECT CAST(CAST(1-2 AS UNSIGNED) AS SIGNED);
-> -1
If either operand is a floating-point value, the result is a floating-point value and is not affected by the preceding rule. (In this context, DECIMAL column values are regarded as floating-point values.)
mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
-> -1.0
The SQL mode affects the result of conversion operations. Examples:
If you convert a “zero” date string to a date, CONVERT() and CAST() return NULL and produce a warning when the NO_ZERO_DATE SQL mode is enabled.
For integer subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the subtraction result is signed even if any operand is unsigned.
For more information, see Section 5.1.7, “Server SQL Modes”.
12.11. XML Functions
Table 12.15. XML Functions
Name | Description |
---|---|
ExtractValue() | Extracts a value from an XML string using XPath notation |
UpdateXML() | Return replaced XML fragment |
This section discusses XML and related functionality in MySQL.
Note
It is possible to obtain XML-formatted output from MySQL in the mysql and mysqldump clients by invoking them with the --xml option. See Section 4.5.1, “mysql — The MySQL Command-Line Tool”, and Section 4.5.4, “mysqldump — A Database Backup Program”.
Two functions providing basic XPath 1.0 (XML Path Language, version 1.0) capabilities are available. Some basic information about XPath syntax and usage is provided later in this section; however, an in-depth discussion of these topics is beyond the scope of this Manual, and you should refer to the XML Path Language (XPath) 1.0 standard for definitive information. A useful resource for those new to XPath or who desire a refresher in the basics is the Zvon.org XPath Tutorial, which is available in several languages.
Note
These functions remain under development. We continue to improve these and other aspects of XML and XPath functionality in MySQL 5.6 and onwards. You may discuss these, ask questions about them, and obtain help from other users with them in the MySQL XML User Forum.
XPath expressions used with these functions support user variables and local stored program variables. User variables are weakly checked; variables local to stored programs are strongly checked (see also Bug #26518):
User variables (weak checking). Variables using the syntax $@variable_name (that is, user variables) are not checked. No warnings or errors are issued by the server if a variable has the wrong type or has previously not been assigned a value. This also means the user is fully responsible for any typographical errors, since no warnings will be given if (for example) $@myvairable is used where $@myvariable was intended.
Example:
mysql> SET @xml = '<a>XY';
Query OK, 0 rows affected (0.00 sec)
mysql> SET @i =1, @j = 2;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @i, ExtractValue(@xml, '//b[$@i]');
+------+--------------------------------+
| @i | ExtractValue(@xml, '//b[$@i]') |
+------+--------------------------------+
| 1 | X |
+------+--------------------------------+
1 row in set (0.00 sec)
mysql> SELECT @j, ExtractValue(@xml, '//b[$@j]');
+------+--------------------------------+
| @j | ExtractValue(@xml, '//b[$@j]') |
+------+--------------------------------+
| 2 | Y |
+------+--------------------------------+
1 row in set (0.00 sec)
mysql> SELECT @k, ExtractValue(@xml, '//b[$@k]');
+------+--------------------------------+
| @k | ExtractValue(@xml, '//b[$@k]') |
+------+--------------------------------+
| NULL | |
+------+--------------------------------+
1 row in set (0.00 sec)
Variables in stored programs (strong checking). Variables using the syntax $variable_name can be declared and used with these functions when they are called inside stored programs. Such variables are local to the stored program in which they are defined, and are strongly checked for type and value.
Example:
mysql> DELIMITER |
mysql> CREATE PROCEDURE myproc ()
-> BEGIN
-> DECLARE i INT DEFAULT 1;
-> DECLARE xml VARCHAR(25) DEFAULT '<a>X<a>Y<a>Z';
->
-> WHILE i < 4 DO
-> SELECT xml, i, ExtractValue(xml, '//a[$i]');
-> SET i = i+1;
-> END WHILE;
-> END |
Query OK, 0 rows affected (0.01 sec)
mysql> DELIMITER ;
mysql> CALL myproc;
+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 1 | X |
+--------------------------+---+------------------------------+
1 row in set (0.00 sec)
+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 2 | Y |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)
+--------------------------+---+------------------------------+
| xml | i | ExtractValue(xml, '//a[$i]') |
+--------------------------+---+------------------------------+
| <a>X<a>Y<a>Z | 3 | Z |
+--------------------------+---+------------------------------+
1 row in set (0.01 sec)
Parameters. Variables used in XPath expressions inside stored routines that are passed in as parameters are also subject to strong checking.
Expressions containing user variables or variables local to stored programs must otherwise (except for notation) conform to the rules for XPath expressions containing variables as given in the XPath 1.0 specification.
Note
Currently, a user variable used to store an XPath expression is treated as an empty string. Because of this, it is not possible to store an XPath expression as a user variable. (Bug #32911)
ExtractValue(xml_frag, xpath_expr)
ExtractValue() takes two string arguments, a fragment of XML markup xml_frag and an XPath expression xpath_expr (also known as a locator); it returns the text (CDATA) of the first text node which is a child of the elements or elements matched by the XPath expression. In MySQL 5.6.6 and earlier, the XPath expression could contain at most 127 characters. This limitation was lifted in MySQL 5.6.7. (Bug #13007062, Bug#62429)
Using this function is the equivalent of performing a match using the xpath_expr after appending /text(). In other words, ExtractValue('<a>Sakila', '/a/b') and ExtractValue('<a>Sakila', '/a/b/text()') produce the same result.
If multiple matches are found, the content of the first child text node of each matching element is returned (in the order matched) as a single, space-delimited string.
If no matching text node is found for the expression (including the implicit /text())—for whatever reason, as long as xpath_expr is valid, and xml_frag consists of elements which are properly nested and closed—an empty string is returned. No distinction is made between a match on an empty element and no match at all. This is by design.
If you need to determine whether no matching element was found in xml_frag or such an element was found but contained no child text nodes, you should test the result of an expression that uses the XPath count() function. For example, both of these statements return an empty string, as shown here:
mysql> SELECT ExtractValue('<a>', '/a/b');
+-------------------------------------+
| ExtractValue('<a>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)
mysql> SELECT ExtractValue('<a><c/>', '/a/b');
+-------------------------------------+
| ExtractValue('<a><c/>', '/a/b') |
+-------------------------------------+
| |
+-------------------------------------+
1 row in set (0.00 sec)
However, you can determine whether there was actually a matching element using the following:
mysql> SELECT ExtractValue('<a>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a>', 'count(/a/b)') |
+-------------------------------------+
| 1 |
+-------------------------------------+
1 row in set (0.00 sec)
mysql> SELECT ExtractValue('<a><c/>', 'count(/a/b)');
+-------------------------------------+
| ExtractValue('<a><c/>', 'count(/a/b)') |
+-------------------------------------+
| 0 |
+-------------------------------------+
1 row in set (0.01 sec)
Important
ExtractValue() returns only CDATA, and does not return any tags that might be contained within a matching tag, nor any of their content (see the result returned as val1 in the following example).
mysql> SELECT
-> ExtractValue('<a>cccddd', '/a') AS val1,
-> ExtractValue('<a>cccddd', '/a/b') AS val2,
-> ExtractValue('<a>cccddd', '//b') AS val3,
-> ExtractValue('<a>cccddd', '/b') AS val4,
-> ExtractValue('<a>cccdddeee', '//b') AS val5;
+------+------+------+------+---------+
| val1 | val2 | val3 | val4 | val5 |
+------+------+------+------+---------+
| ccc | ddd | ddd | | ddd eee |
+------+------+------+------+---------+
This function uses the current SQL collation for making comparisons with contains(), performing the same collation aggregation as other string functions (such as CONCAT()), in taking into account the collation coercibility of their arguments; see Section 10.1.7.5, “Collation of Expressions”, for an explanation of the rules governing this behavior.
(Previously, binary—that is, case-sensitive—comparison was always used.)
NULL is returned if xml_frag contains elements which are not properly nested or closed, and a warning is generated, as shown in this example:
mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1523 | Incorrect XML value: 'parse error at line 1 pos 11: END-OF-INPUT unexpected ('>' wanted)' |
+---------+------+---+
1 row in set (0.00 sec)
mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)
UpdateXML(xml_target, xpath_expr, new_xml)
This function replaces a single portion of a given fragment of XML markup xml_target with a new XML fragment new_xml, and then returns the changed XML. The portion of xml_target that is replaced matches an XPath expression xpath_expr supplied by the user. In MySQL 5.6.6 and earlier, the XPath expression could contain at most 127 characters. This limitation is lifted in MySQL 5.6.7. (Bug #13007062, Bug #62429)
If no expression matching xpath_expr is found, or if multiple matches are found, the function returns the original xml_target XML fragment. All three arguments should be strings.
mysql> SELECT
-> UpdateXML('<a>ccc<d></d>', '/a', '<e>fff</e>') AS val1,
-> UpdateXML('<a>ccc<d></d>', '/b', '<e>fff</e>') AS val2,
-> UpdateXML('<a>ccc<d></d>', '//b', '<e>fff</e>') AS val3,
-> UpdateXML('<a>ccc<d></d>', '/a/d', '<e>fff</e>') AS val4,
-> UpdateXML('<a><d></d>ccc<d></d>', '/a/d', '<e>fff</e>') AS val5
-> \G
*************************** 1. row ***************************
val1: <e>fff</e>
val2: <a>ccc<d></d>
val3: <a><e>fff</e><d></d>
val4: <a>ccc<e>fff</e>
val5: <a><d></d>ccc<d></d>
Note
A discussion in depth of XPath syntax and usage are beyond the scope of this Manual. Please see the XML Path Language (XPath) 1.0 specification for definitive information. A useful resource for those new to XPath or who are wishing a refresher in the basics is the Zvon.org XPath Tutorial, which is available in several languages.
Descriptions and examples of some basic XPath expressions follow:
/tag
Matches <tag/> if and only if <tag/> is the root element.
Example: /a has a match in <a> because it matches the outermost (root) tag. It does not match the inner a element in <a/> because in this instance it is the child of another element.
/tag1/tag2
Matches <tag2/> if and only if it is a child of <tag1/>, and <tag1/> is the root element.
Example: /a/b matches the b element in the XML fragment <a> because it is a child of the root element a. It does not have a match in <a/> because in this case, b is the root element (and hence the child of no other element). Nor does the XPath expression have a match in <a><c></c>; here, b is a descendant of a, but not actually a child of a.
This construct is extendable to three or more elements. For example, the XPath expression /a/b/c matches the c element in the fragment <a><c/>.
//tag
Matches any instance of <tag>.
Example: //a matches the a element in any of the following: <a><c/>; <c><a>; <c><a/></c>.
// can be combined with /. For example, //a/b matches the b element in either of the fragments <a> or <a><c/>
Note
//tag is the equivalent of /descendant-or-self::*/tag. A common error is to confuse this with /descendant-or-self::tag, although the latter expression can actually lead to very different results, as can be seen here:
mysql> SET @xml = '<a><c>w</c>x<d>y</d>z';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @xml;
+---+
| @xml |
+---+
| <a><c>w</c>x<d>y</d>z |
+---+
1 row in set (0.00 sec)
mysql> SELECT ExtractValue(@xml, '//b[1]');
+------------------------------+
| ExtractValue(@xml, '//b[1]') |
+------------------------------+
| x z |
+------------------------------+
1 row in set (0.00 sec)
mysql> SELECT ExtractValue(@xml, '//b[2]');
+------------------------------+
| ExtractValue(@xml, '//b[2]') |
+------------------------------+
| |
+------------------------------+
1 row in set (0.01 sec)
mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[1]') |
+---+
| x z |
+---+
1 row in set (0.06 sec)
mysql> SELECT ExtractValue(@xml, '/descendant-or-self::*/b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::*/b[2]') |
+---+
| |
+---+
1 row in set (0.00 sec)
mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[1]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[1]') |
+---+
| z |
+---+
1 row in set (0.00 sec)
mysql> SELECT ExtractValue(@xml, '/descendant-or-self::b[2]');
+---+
| ExtractValue(@xml, '/descendant-or-self::b[2]') |
+---+
| x |
+---+
1 row in set (0.00 sec)
The * operator acts as a “wildcard” that matches any element. For example, the expression /*/b matches the b element in either of the XML fragments <a> or <c></c>. However, the expression does not produce a match in the fragment <a/> because b must be a child of some other element. The wildcard may be used in any position: The expression /*/b/* will match any child of a b element that is itself not the root element.
You can match any of several locators using the | (UNION) operator. For example, the expression //b|//c matches all b and c elements in the XML target.
It is also possible to match an element based on the value of one or more of its attributes. This done using the syntax tag[@attribute="value"]. For example, the expression //b[@id="idB"] matches the second b element in the fragment <a><b id="idA"/><c/><b id="idB"/>. To match against any element having attribute="value", use the XPath expression //*[attribute="value"].
To filter multiple attribute values, simply use multiple attribute-comparison clauses in succession. For example, the expression //b[@c="x"][@d="y"] matches the element <b c="x" d="y"/> occurring anywhere in a given XML fragment.
To find elements for which the same attribute matches any of several values, you can use multiple locators joined by the | operator. For example, to match all b elements whose c attributes have either of the values 23 or 17, use the expression //b[@c="23"]|//b[@c="17"]. You can also use the logical or operator for this purpose: //b[@c="23" or @c="17"].
Note
The difference between or and | is that or joins conditions, while | joins result sets.
XPath Limitations. The XPath syntax supported by these functions is currently subject to the following limitations:
Nodeset-to-nodeset comparison (such as '/a/b[@c=@d]') is not supported.
All of the standard XPath comparison operators are supported. (Bug #22823)
Relative locator expressions are resolved in the context of the root node. For example, consider the following query and result:
mysql> SELECT ExtractValue(
-> '<a><b c="1">X<b c="2">Y',
-> 'a/b'
->) AS result;
+--------+
| result |
+--------+
| X Y |
+--------+
1 row in set (0.03 sec)
In this case, the locator a/b resolves to /a/b.
Relative locators are also supported within predicates. In the following example, d[../@c="1"] is resolved as /a/b[@c="1"]/d:
mysql> SELECT ExtractValue(
-> '<a>
-> <b c="1"><d>X</d>
-> <b c="2"><d>X</d>
-> ',
-> 'a/b/d[../@c="1"]')
-> AS result;
+--------+
| result |
+--------+
| X |
+--------+
1 row in set (0.00 sec)
Locators prefixed with expressions that evaluate as scalar values—including variable references, literals, numbers, and scalar function calls—are not permitted, and their use results in an error.
The :: operator is not supported in combination with node types such as the following:
axis::comment()
axis::text()
axis::processing-instructions()
axis::node()
However, name tests (such as axis::name and axis::*) are supported, as shown in these examples:
mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::b');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::b') |
+---+
| x |
+---+
1 row in set (0.02 sec)
mysql> SELECT ExtractValue('<a>x<c>y</c>','/a/child::*');
+---+
| ExtractValue('<a>x<c>y</c>','/a/child::*') |
+---+
| x y |
+---+
1 row in set (0.01 sec)
“Up-and-down” navigation is not supported in cases where the path would lead “above” the root element. That is, you cannot use expressions which match on descendants of ancestors of a given element, where one or more of the ancestors of the current element is also an ancestor of the root element (see Bug #16321).
The following XPath functions are not supported, or have known issues as indicated:
id()
lang()
local-name()
name()
namespace-uri()
normalize-space()
starts-with()
string()
substring-after()
substring-before()
translate()
The following axes are not supported:
following-sibling
following
preceding-sibling
preceding
XPath expressions passed as arguments to ExtractValue() and UpdateXML() may contain the colon character (“:”) in element selectors, which enables their use with markup employing XML namespaces notation. For example:
mysql> SET @xml = '<a>111<b:c>222<d>333</d><e:f>444</e:f></b:c>';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT ExtractValue(@xml, '//e:f');
+-----------------------------+
| ExtractValue(@xml, '//e:f') |
+-----------------------------+
| 444 |
+-----------------------------+
1 row in set (0.00 sec)
mysql> SELECT UpdateXML(@xml, '//b:c', '<g:h>555</g:h>');
+--+
| UpdateXML(@xml, '//b:c', '<g:h>555</g:h>') |
+--+
| <a>111<g:h>555</g:h> |
+--+
1 row in set (0.00 sec)
This is similar in some respects to what is permitted by Apache Xalan and some other parsers, and is much simpler than requiring namespace declarations or the use of the namespace-uri() and local-name() functions.
Error handling. For both ExtractValue() and UpdateXML(), the XPath locator used must be valid and the XML to be searched must consist of elements which are properly nested and closed. If the locator is invalid, an error is generated:
mysql> SELECT ExtractValue('<a>c', '/&a');
ERROR 1105 (HY000): XPATH syntax error: '&a'
If xml_frag does not consist of elements which are properly nested and closed, NULL is returned and a warning is generated, as shown in this example:
mysql> SELECT ExtractValue('<a>c<b', '//a');
+-----------------------------------+
| ExtractValue('<a>c<b', '//a') |
+-----------------------------------+
| NULL |
+-----------------------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1523 | Incorrect XML value: 'parse error at line 1 pos 11: END-OF-INPUT unexpected ('>' wanted)' |
+---------+------+---+
1 row in set (0.00 sec)
mysql> SELECT ExtractValue('<a>c', '//a');
+-------------------------------------+
| ExtractValue('<a>c', '//a') |
+-------------------------------------+
| c |
+-------------------------------------+
1 row in set (0.00 sec)
Important
The replacement XML used as the third argument to UpdateXML() is not checked to determine whether it consists solely of elements which are properly nested and closed.
XPath Injection. code injection occurs when malicious code is introduced into the system to gain unauthorized access to privileges and data. It is based on exploiting assumptions made by developers about the type and content of data input from users. XPath is no exception in this regard.
A common scenario in which this can happen is the case of application which handles authorization by matching the combination of a login name and password with those found in an XML file, using an XPath expression like this one:
//user[login/text()='neapolitan' and password/text()='1c3cr34m']/attribute::id
This is the XPath equivalent of an SQL statement like this one:
SELECT id FROM users WHERE login='neapolitan' AND password='1c3cr34m';
A PHP application employing XPath might handle the login process like this:
<?php
$file = "users.xml";
$login = $POST["login"];
$password = $POST["password"];
$xpath = "//user[login/text()=$login and password/text()=$password]/attribute::id";
if(file_exists($file))
{
$xml = simplexml_load_file($file);
if($result = $xml->xpath($xpath))
echo "You are now logged in as user $result[0].";
else
echo "Invalid login name or password.";
}
else
exit("Failed to open $file.");
?>
No checks are performed on the input. This means that a malevolent user can “short-circuit” the test by entering ' or 1=1 for both the login name and password, resulting in $xpath being evaluated as shown here:
//user[login/text()='' or 1=1 and password/text()='' or 1=1]/attribute::id
Since the expression inside the square brackets always evaluates as true, it is effectively the same as this one, which matches the id attribute of every user element in the XML document:
//user/attribute::id
One way in which this particular attack can be circumvented is simply by quoting the variable names to be interpolated in the definition of $xpath, forcing the values passed from a Web form to be converted to strings:
$xpath = "//user[login/text()='$login' and password/text()='$password']/attribute::id";
This is the same strategy that is often recommended for preventing SQL injection attacks. In general, the practices you should follow for preventing XPath injection attacks are the same as for preventing SQL injection:
Never accepted untested data from users in your application.
Check all user-submitted data for type; reject or convert data that is of the wrong type
Test numeric data for out of range values; truncate, round, or reject values that are out of range. Test strings for illegal characters and either strip them out or reject input containing them.
Do not output explicit error messages that might provide an unauthorized user with clues that could be used to compromise the system; log these to a file or database table instead.
Just as SQL injection attacks can be used to obtain information about database schemas, so can XPath injection be used to traverse XML files to uncover their structure, as discussed in Amit Klein's paper Blind XPath Injection (PDF file, 46KB).
It is also important to check the output being sent back to the client. Consider what can happen when we use the MySQL ExtractValue() function:
mysql> SELECT ExtractValue(
-> LOAD_FILE('users.xml'),
-> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
->) AS id;
+-------------------------------+
| id |
+-------------------------------+
| 00327 13579 02403 42354 28570 |
+-------------------------------+
1 row in set (0.01 sec)
Because ExtractValue() returns multiple matches as a single space-delimited string, this injection attack provides every valid ID contained within users.xml to the user as a single row of output. As an extra safeguard, you should also test output before returning it to the user. Here is a simple example:
mysql> SELECT @id = ExtractValue(
-> LOAD_FILE('users.xml'),
-> '//user[login/text()="" or 1=1 and password/text()="" or 1=1]/attribute::id'
->);
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT IF(
-> INSTR(@id, ' ') = 0,
-> @id,
-> 'Unable to retrieve user ID')
-> AS singleID;
+----------------------------+
| singleID |
+----------------------------+
| Unable to retrieve user ID |
+----------------------------+
1 row in set (0.00 sec)
In general, the guidelines for returning data to users securely are the same as for accepting user input. These can be summed up as:
Always test outgoing data for type and permissible values.
Never permit unauthorized users to view error messages that might provide information about the application that could be used to exploit it.
12.12. Bit Functions
Table 12.16. Bitwise Functions
Name | Description |
---|---|
BIT_COUNT() | Return the number of bits that are set |
& | Bitwise AND |
~ | Invert bits |
| | Bitwise OR |
^ | Bitwise XOR |
<< | Left shift |
>> | Right shift |
MySQL uses BIGINT (64-bit) arithmetic for bit operations, so these operators have a maximum range of 64 bits.
Bitwise OR:
mysql> SELECT 29 | 15;
-> 31
The result is an unsigned 64-bit integer.
Bitwise AND:
mysql> SELECT 29 & 15;
-> 13
The result is an unsigned 64-bit integer.
Bitwise XOR:
mysql> SELECT 1 ^ 1;
-> 0
mysql> SELECT 1 ^ 0;
-> 1
mysql> SELECT 11 ^ 3;
-> 8
The result is an unsigned 64-bit integer.
Shifts a longlong (BIGINT) number to the left.
mysql> SELECT 1 << 2;
-> 4
The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift count is greater or equal to the width of an unsigned 64-bit number, the result is zero.
Shifts a longlong (BIGINT) number to the right.
mysql> SELECT 4 >> 2;
-> 1
The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift count is greater or equal to the width of an unsigned 64-bit number, the result is zero.
Invert all bits.
mysql> SELECT 5 & ~1;
-> 4
The result is an unsigned 64-bit integer.
Returns the number of bits that are set in the argument N.
mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
-> 4, 3
12.13. Encryption and Compression Functions
Table 12.17. Encryption Functions
Name | Description |
---|---|
AES_DECRYPT() | Decrypt using AES |
AES_ENCRYPT() | Encrypt using AES |
COMPRESS() | Return result as a binary string |
DECODE() | Decodes a string encrypted using ENCODE() |
DES_DECRYPT() | Decrypt a string |
DES_ENCRYPT() | Encrypt a string |
ENCODE() | Encode a string |
ENCRYPT() | Encrypt a string |
MD5() | Calculate MD5 checksum |
OLD_PASSWORD() | Return the value of the pre-4.1 implementation of PASSWORD |
PASSWORD() | Calculate and return a password string |
SHA1(), SHA() | Calculate an SHA-1 160-bit checksum |
SHA2() | Calculate an SHA-2 checksum |
UNCOMPRESS() | Uncompress a string compressed |
UNCOMPRESSED_LENGTH() | Return the length of a string before compression |
VALIDATE_PASSWORD_STRENGTH() | Determine strength of password |
Many encryption and compression functions return strings for which the result might contain arbitrary byte values. If you want to store these results, use a column with a VARBINARY or BLOB binary string data type. This will avoid potential problems with trailing space removal or character set conversion that would change data values, such as may occur if you use a nonbinary string data type (CHAR, VARCHAR, TEXT).
Some encryption functions return strings of ASCII characters: MD5(), OLD_PASSWORD(), PASSWORD(), SHA(), SHA1(), SHA2(). In MySQL 5.6, their return value is a nonbinary string that has a character set and collation determined by the character_set_connection and collation_connection system variables.
For versions in which functions such as MD5() or SHA1() return a string of hex digits as a binary string, the return value cannot be converted to uppercase or compared in case-insensitive fashion as is. You must convert the value to a nonbinary string. See the discussion of binary string conversion in Section 12.10, “Cast Functions and Operators”.
If an application stores values from a function such as MD5() or SHA1() that returns a string of hex digits, more efficient storage and comparisons can be obtained by converting the hex representation to binary using UNHEX() and storing the result in a BINARY(N) column. Each pair of hex digits requires one byte in binary form, so the value of N depends on the length of the hex string. N is 16 for an MD5() value and 20 for a SHA1() value. For SHA2(), N ranges from 28 to 32 depending on the argument specifying the desired bit length of the result.
The size penalty for storing the hex string in a CHAR column is at least two times, up to eight times if the value is stored in a column that uses the utf8 character set (where each character uses 4 bytes). Storing the string also results in slower comparisons because of the larger values and the need to take character set collation rules into account.
Suppose that an application stores MD5() string values in a CHAR(32) column:
CREATE TABLE md5_tbl (md5_val CHAR(32), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(MD5('abcdef'), ...);
To convert hex strings to more compact form, modify the application to use UNHEX() and BINARY(16) instead as follows:
CREATE TABLE md5_tbl (md5_val BINARY(16), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(UNHEX(MD5('abcdef')), ...);
Applications should be prepared to handle the very rare case that a hashing function produces the same value for two different input values. One way to make collisions detectable is to make the hash column a primary key.
Note
Exploits for the MD5 and SHA-1 algorithms have become known. You may wish to consider using one of the other encryption functions described in this section instead, such as SHA2().
Caution
Passwords or other sensitive values supplied as arguments to encryption functions are sent in plaintext to the MySQL server unless an SSL connection is used. Also, such values will appear in any MySQL logs to which they are written. To avoid these types of exposure, applications can encrypt sensitive values on the client side before sending them to the server. The same considerations apply to encryption keys. To avoid exposing these, applications can use stored procedures to encrypt and decrypt values on the server side.
AES_DECRYPT(crypt_str,key_str)
This function decrypts data using the official AES (Advanced Encryption Standard) algorithm. For more information, see the description of AES_ENCRYPT().
AES_ENCRYPT() and AES_DECRYPT() enable encryption and decryption of data using the official AES (Advanced Encryption Standard) algorithm, previously known as “Rijndael.” Encoding with a 128-bit key length is used, but you can extend it up to 256 bits by modifying the source. We chose 128 bits because it is much faster and it is secure enough for most purposes.
AES_ENCRYPT() encrypts a string and returns a binary string. AES_DECRYPT() decrypts the encrypted string and returns the original string. The input arguments may be any length. If either argument is NULL, the result of this function is also NULL.
Because AES is a block-level algorithm, padding is used to encode uneven length strings and so the result string length may be calculated using this formula:
16 * (trunc(string_length / 16) + 1)
If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL. However, it is possible for AES_DECRYPT() to return a non-NULL value (possibly garbage) if the input data or the key is invalid.
You can use the AES functions to store data in an encrypted form by modifying your queries:
INSERT INTO t VALUES (1,AES_ENCRYPT('text','password'));
AES_ENCRYPT() and AES_DECRYPT() can be considered the most cryptographically secure encryption functions currently available in MySQL.
Compresses a string and returns the result as a binary string. This function requires MySQL to have been compiled with a compression library such as zlib. Otherwise, the return value is always NULL. The compressed string can be uncompressed with UNCOMPRESS().
mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
-> 21
mysql> SELECT LENGTH(COMPRESS(''));
-> 0
mysql> SELECT LENGTH(COMPRESS('a'));
-> 13
mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
-> 15
The compressed string contents are stored the following way:
Empty strings are stored as empty strings.
Nonempty strings are stored as a 4-byte length of the uncompressed string (low byte first), followed by the compressed string. If the string ends with space, an extra “.” character is added to avoid problems with endspace trimming should the result be stored in a CHAR or VARCHAR column. (However, use of nonbinary string data types such as CHAR or VARCHAR to store compressed strings is not recommended anyway because character set conversion may occur. Use a VARBINARY or BLOB binary string column instead.)
Decrypts the encrypted string crypt_str using pass_str as the password. crypt_str should be a string returned from ENCODE().
DES_DECRYPT(crypt_str[,key_str])
Decrypts a string encrypted with DES_ENCRYPT(). If an error occurs, this function returns NULL.
This function works only if MySQL has been configured with SSL support. See Section 6.3.9, “Using SSL for Secure Connections”.
If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted string to determine the DES key number that was used to encrypt the original string, and then reads the key from the DES key file to decrypt the message. For this to work, the user must have the SUPER privilege. The key file can be specified with the --des-key-file server option.
If you pass this function a key_str argument, that string is used as the key for decrypting the message.
If the crypt_str argument does not appear to be an encrypted string, MySQL returns the given crypt_str.
DES_ENCRYPT(str[,{key_num|key_str}])
Encrypts the string with the given key using the Triple-DES algorithm.
This function works only if MySQL has been configured with SSL support. See Section 6.3.9, “Using SSL for Secure Connections”.
The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if one was given. With no argument, the first key from the DES key file is used. With a key_num argument, the given key number (0 to 9) from the DES key file is used. With a key_str argument, the given key string is used to encrypt str.
The key file can be specified with the --des-key-file server option.
The return string is a binary string where the first character is CHAR(128 | key_num). If an error occurs, DES_ENCRYPT() returns NULL.
The 128 is added to make it easier to recognize an encrypted key. If you use a string key, key_num is 127.
The string length for the result is given by this formula:
new_len = orig_len + (8 - (orig_len % 8)) + 1
Each line in the DES key file has the following format:
key_num des_key_str
Each key_num value must be a number in the range from 0 to 9. Lines in the file may be in any order. des_key_str is the string that is used to encrypt the message. There should be at least one space between the number and the key. The first key is the default key that is used if you do not specify any key argument to DES_ENCRYPT().
You can tell MySQL to read new key values from the key file with the FLUSH DES_KEY_FILE statement. This requires the RELOAD privilege.
One benefit of having a set of default keys is that it gives applications a way to check for the existence of encrypted column values, without giving the end user the right to decrypt those values.
mysql> SELECT customer_address FROM customer_table
> WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');
Encrypt str using pass_str as the password. To decrypt the result, use DECODE().
The result is a binary string of the same length as str.
The strength of the encryption is based on how good the random generator is. It should suffice for short strings.
Encrypts str using the Unix crypt() system call and returns a binary string. The salt argument must be a string with at least two characters or the result will be NULL. If no salt argument is given, a random value is used.
mysql> SELECT ENCRYPT('hello');
-> 'VxuFAJXVARROc'
ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This behavior is determined by the implementation of the underlying crypt() system call.
The use of ENCRYPT() with the ucs2, utf16, utf16le, or utf32 multi-byte character sets is not recommended because the system call expects a string terminated by a zero byte.
If crypt() is not available on your system (as is the case with Windows), ENCRYPT() always returns NULL.
Calculates an MD5 128-bit checksum for the string. The value is returned as a string of 32 hex digits, or NULL if the argument was NULL. The return value can, for example, be used as a hash key. See the notes at the beginning of this section about storing hash values efficiently.
The return value is a nonbinary string in the connection character set.
mysql> SELECT MD5('testing');
-> 'ae2b1fca515949e5d54fb22b8ed95575'
This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”
See the note regarding the MD5 algorithm at the beginning this section.
OLD_PASSWORD() was added when the implementation of PASSWORD() was changed in MySQL 4.1 to improve security. OLD_PASSWORD() returns the value of the pre-4.1 implementation of PASSWORD() as a string, and is intended to permit you to reset passwords for any pre-4.1 clients that need to connect to your version 5.6 MySQL server without locking them out. See Section 6.1.2.4, “Password Hashing in MySQL”.
The return value is a nonbinary string in the connection character set.
Calculates and returns a hashed password string from the cleartext password str and returns a nonbinary string in the connection character set, or NULL if the argument is NULL. This function is the SQL interface to the algorithm used by the server to encrypt MySQL passwords for storage in the mysql.user grant table.
The password hashing method used by PASSWORD() depends on the value of the old_passwords system variable:
mysql> SET old_passwords = 0;
mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+
mysql> SET old_passwords = 1;
mysql> SELECT PASSWORD('mypass');
+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+
If old_passwords=1, PASSWORD('str') returns the same value as OLD_PASSWORD('str').
SHA-256 password hashing (old_passwords=2) uses a random salt value, which makes the result from PASSWORD() nondeterministic. Consequently, statements that use this function are not safe for statement-based replication and cannot be stored in the query cache.
For descriptions of the permitted values of old_passwords, see Section 5.1.4, “Server System Variables”.
Encryption performed by PASSWORD() is one-way (not reversible). It is not the same type of encryption as used for Unix passwords; for that, use ENCRYPT().
Note
The PASSWORD() function is used by the authentication system in MySQL Server; you should not use it in your own applications. For that purpose, consider MD5() or SHA2() instead. Also see RFC 2195, section 2 (Challenge-Response Authentication Mechanism (CRAM)), for more information about handling passwords and authentication securely in your applications.
Important
Statements that invoke PASSWORD() may be recorded in server logs or in a history file such as ~/.mysql_history, which means that cleartext passwords may be read by anyone having read access to that information. See Section 6.1.2, “Keeping Passwords Secure”.
Calculates an SHA-1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash Algorithm). The value is returned as a string of 40 hex digits, or NULL if the argument was NULL. One of the possible uses for this function is as a hash key. See the notes at the beginning of this section about storing hash values efficiently. You can also use SHA1() as a cryptographic function for storing passwords. SHA() is synonymous with SHA1().
The return value is a nonbinary string in the connection character set.
mysql> SELECT SHA1('abc');
-> 'a9993e364706816aba3e25717850c26c9cd0d89d'
SHA1() can be considered a cryptographically more secure equivalent of MD5(). However, see the note regarding the MD5 and SHA-1 algorithms at the beginning this section.
Calculates the SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The first argument is the cleartext string to be hashed. The second argument indicates the desired bit length of the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256). If either argument is NULL or the hash length is not one of the permitted values, the return value is NULL. Otherwise, the function result is a hash value containing the desired number of bits. See the notes at the beginning of this section about storing hash values efficiently.
The return value is a nonbinary string in the connection character set.
mysql> SELECT SHA2('abc', 224);
-> '23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7'
This function works only if MySQL has been configured with SSL support. See Section 6.3.9, “Using SSL for Secure Connections”.
SHA2() can be considered cryptographically more secure than MD5() or SHA1().
UNCOMPRESS(string_to_uncompress)
Uncompresses a string compressed by the COMPRESS() function. If the argument is not a compressed value, the result is NULL. This function requires MySQL to have been compiled with a compression library such as zlib. Otherwise, the return value is always NULL.
mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
-> 'any string'
mysql> SELECT UNCOMPRESS('any string');
-> NULL
UNCOMPRESSED_LENGTH(compressed_string)
Returns the length that the compressed string had before being compressed.
mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
-> 30
VALIDATE_PASSWORD_STRENGTH(str)
Given an argument representing a cleartext password, this function returns an integer to indicate how strong the password is. The return value ranges from 0 (weak) to 100 (strong).
The password is subjected to increasingly strict tests and the return value reflects which tests were satisfied, as shown in the following table.
Password Test | Return Value |
---|---|
Length < 4 | 0 |
Length ≥ 4 and < validate_password_length | 25 |
Satisfies policy 1 (LOW) | 50 |
Satisfies policy 2 (MEDIUM) | 75 |
Satisfies policy 3 (STRONG) | 100 |
Password assessment by VALIDATE_PASSWORD_STRENGTH() is done by the validate_password plugin. If that plugin is not installed, the function always returns 0. For information about installing the validate_password plugin, see Section 6.1.2.6, “The Password Validation Plugin”. To examine or configure the parameters that affect password testing, check or set the system variables implemented by validate_password plugin. See Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”.
This function was added in MySQL 5.6.6.
12.14. Information Functions
Table 12.18. Information Functions
Name | Description |
---|---|
BENCHMARK() | Repeatedly execute an expression |
CHARSET() | Return the character set of the argument |
COERCIBILITY() | Return the collation coercibility value of the string argument |
COLLATION() | Return the collation of the string argument |
CONNECTION_ID() | Return the connection ID (thread ID) for the connection |
CURRENT_USER(), CURRENT_USER | The authenticated user name and host name |
DATABASE() | Return the default (current) database name |
FOUND_ROWS() | For a SELECT with a LIMIT clause, the number of rows that would be returned were there no LIMIT clause |
LAST_INSERT_ID() | Value of the AUTOINCREMENT column for the last INSERT |
ROW_COUNT() | The number of rows updated |
SCHEMA() | A synonym for DATABASE() |
SESSION_USER() | Synonym for USER() |
SYSTEM_USER() | Synonym for USER() |
USER() | The user name and host name provided by the client |
VERSION() | Returns a string that indicates the MySQL server version |
The BENCHMARK() function executes the expression expr repeatedly count times. It may be used to time how quickly MySQL processes the expression. The result value is always 0. The intended use is from within the mysql client, which reports query execution times:
mysql> SELECT BENCHMARK(1000000,ENCODE('hello','goodbye'));
+--+
| BENCHMARK(1000000,ENCODE('hello','goodbye')) |
+--+
| 0 |
+--+
1 row in set (4.74 sec)
The time reported is elapsed time on the client end, not CPU time on the server end. It is advisable to execute BENCHMARK() several times, and to interpret the result with regard to how heavily loaded the server machine is.
BENCHMARK() is intended for measuring the runtime performance of scalar expressions, which has some significant implications for the way that you use it and interpret the results:
Only scalar expressions can be used. Although the expression can be a subquery, it must return a single column and at most a single row. For example, BENCHMARK(10, (SELECT * FROM t)) will fail if the table t has more than one column or more than one row.
Executing a SELECT expr statement N times differs from executing SELECT BENCHMARK(N, expr) in terms of the amount of overhead involved. The two have very different execution profiles and you should not expect them to take the same amount of time. The former involves the parser, optimizer, table locking, and runtime evaluation N times each. The latter involves only runtime evaluation N times, and all the other components just once. Memory structures already allocated are reused, and runtime optimizations such as local caching of results already evaluated for aggregate functions can alter the results. Use of BENCHMARK() thus measures performance of the runtime component by giving more weight to that component and removing the “noise” introduced by the network, parser, optimizer, and so forth.
Returns the character set of the string argument.
mysql> SELECT CHARSET('abc');
-> 'latin1'
mysql> SELECT CHARSET(CONVERT('abc' USING utf8));
-> 'utf8'
mysql> SELECT CHARSET(USER());
-> 'utf8'
Returns the collation coercibility value of the string argument.
mysql> SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);
-> 0
mysql> SELECT COERCIBILITY(USER());
-> 3
mysql> SELECT COERCIBILITY('abc');
-> 4
The return values have the meanings shown in the following table. Lower values have higher precedence.
Coercibility | Meaning | Example |
---|---|---|
0 | Explicit collation | Value with COLLATE clause |
1 | No collation | Concatenation of strings with different collations |
2 | Implicit collation | Column value, stored routine parameter or local variable |
3 | System constant | USER() return value |
4 | Coercible | Literal string |
5 | Ignorable | NULL or an expression derived from NULL |
Returns the collation of the string argument.
mysql> SELECT COLLATION('abc');
-> 'latin1_swedish_ci'
mysql> SELECT COLLATION(_utf8'abc');
-> 'utf8_general_ci'
Returns the connection ID (thread ID) for the connection. Every connection has an ID that is unique among the set of currently connected clients.
mysql> SELECT CONNECTION_ID();
-> 23786
Returns the user name and host name combination for the MySQL account that the server used to authenticate the current client. This account determines your access privileges. The return value is a string in the utf8 character set.
The value of CURRENT_USER() can differ from the value of USER().
mysql> SELECT USER();
-> 'davida@localhost'
mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();
-> '@localhost'
The example illustrates that although the client specified a user name of davida (as indicated by the value of the USER() function), the server authenticated the client using an anonymous user account (as seen by the empty user name part of the CURRENT_USER() value). One way this might occur is that there is no account listed in the grant tables for davida.
Within a stored program or view, CURRENT_USER() returns the account for the user who defined the object (as given by its DEFINER value) unless defined with the SQL SECURITY INVOKER characteristic. In the latter case, CURRENT_USER() returns the object's invoker.
Triggers and events have no option to define the SQL SECURITY characteristic, so for these objects, CURRENT_USER() returns the account for the user who defined the object. To return the invoker, use USER() or SESSION_USER().
The following statements support use of the CURRENT_USER() function to take the place of the name of (and, possibly, a host for) an affected user or a definer; in such cases, CURRENT_USER() is expanded where and as needed:
For information about the implications that this expansion of CURRENT_USER() has for replication in different releases of MySQL 5.6, see Section 16.4.1.6, “Replication of CURRENT_USER()”.
Returns the default (current) database name as a string in the utf8 character set. If there is no default database, DATABASE() returns NULL. Within a stored routine, the default database is the database that the routine is associated with, which is not necessarily the same as the database that is the default in the calling context.
mysql> SELECT DATABASE();
-> 'test'
If there is no default database, DATABASE() returns NULL.
A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns to the client. In some cases, it is desirable to know how many rows the statement would have returned without the LIMIT, but without running the statement again. To obtain this row count, include a SQL_CALC_FOUND_ROWS option in the SELECT statement, and then invoke FOUND_ROWS() afterward:
mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
-> WHERE id > 100 LIMIT 10;
mysql> SELECT FOUND_ROWS();
The second SELECT returns a number indicating how many rows the first SELECT would have returned had it been written without the LIMIT clause.
In the absence of the SQL_CALC_FOUND_ROWS option in the most recent successful SELECT statement, FOUND_ROWS() returns the number of rows in the result set returned by that statement. If the statement includes a LIMIT clause, FOUND_ROWS() returns the number of rows up to the limit. For example, FOUND_ROWS() returns 10 or 60, respectively, if the statement includes LIMIT 10 or LIMIT 50, 10.
The row count available through FOUND_ROWS() is transient and not intended to be available past the statement following the SELECT SQL_CALC_FOUND_ROWS statement. If you need to refer to the value later, save it:
mysql> SELECT SQL_CALC_FOUND_ROWS * FROM ... ;
mysql> SET @rows = FOUND_ROWS();
If you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how many rows are in the full result set. However, this is faster than running the query again without LIMIT, because the result set need not be sent to the client.
SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to restrict the number of rows that a query returns, but also determine the number of rows in the full result set without running the query again. An example is a Web script that presents a paged display containing links to the pages that show other sections of a search result. Using FOUND_ROWS() enables you to determine how many other pages are needed for the rest of the result.
The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION statements than for simple SELECT statements, because LIMIT may occur at multiple places in a UNION. It may be applied to individual SELECT statements in the UNION, or global to the UNION result as a whole.
The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that would be returned without a global LIMIT. The conditions for use of SQL_CALC_FOUND_ROWS with UNION are:
The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.
The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is used, duplicate removal occurs and the value of FOUND_ROWS() is only approximate.
If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the number of rows in the temporary table that is created to process the UNION.
Beyond the cases described here, the behavior of FOUND_ROWS() is undefined (for example, its value following a SELECT statement that fails with an error).
Important
FOUND_ROWS() is not replicated reliably using statement-based replication. This function is automatically replicated using row-based replication.
LAST_INSERT_ID(), LAST_INSERT_ID(expr)
LAST_INSERT_ID() (with no argument) returns a BIGINT (64-bit) value representing the first automatically generated value successfully inserted for an AUTO_INCREMENT column as a result of the most recently executed INSERT statement. The value of LAST_INSERT_ID() remains unchanged if no rows are successfully inserted.
For example, after inserting a row that generates an AUTO_INCREMENT value, you can get the value like this:
mysql> SELECT LAST_INSERT_ID();
-> 195
The currently executing statement does not affect the value of LAST_INSERT_ID(). Suppose that you generate an AUTO_INCREMENT value with one statement, and then refer to LAST_INSERT_ID() in a multiple-row INSERT statement that inserts rows into a table with its own AUTO_INCREMENT column. The value of LAST_INSERT_ID() will remain stable in the second statement; its value for the second and later rows is not affected by the earlier row insertions. (However, if you mix references to LAST_INSERT_ID() and LAST_INSERT_ID(expr), the effect is undefined.)
If the previous statement returned an error, the value of LAST_INSERT_ID() is undefined. For transactional tables, if the statement is rolled back due to an error, the value of LAST_INSERT_ID() is left undefined. For manual ROLLBACK, the value of LAST_INSERT_ID() is not restored to that before the transaction; it remains as it was at the point of the ROLLBACK.
Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID() changes the same way as for statements executed outside the body of these kinds of objects. The effect of a stored routine or trigger upon the value of LAST_INSERT_ID() that is seen by following statements depends on the kind of routine:
If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the changed value is seen by statements that follow the procedure call.
For stored functions and triggers that change the value, the value is restored when the function or trigger ends, so following statements will not see a changed value.
The ID that was generated is maintained in the server on a per-connection basis. This means that the value returned by the function to a given client is the first AUTO_INCREMENT value generated for most recent statement affecting an AUTO_INCREMENT column by that client. This value cannot be affected by other clients, even if they generate AUTO_INCREMENT values of their own. This behavior ensures that each client can retrieve its own ID without concern for the activity of other clients, and without the need for locks or transactions.
The value of LAST_INSERT_ID() is not changed if you set the AUTO_INCREMENT column of a row to a non-“magic” value (that is, a value that is not NULL and not 0).
Important
If you insert multiple rows using a single INSERT statement, LAST_INSERT_ID() returns the value generated for the first inserted row only. The reason for this is to make it possible to reproduce easily the same INSERT statement against some other server.
For example:
mysql> USE test;
Database changed
mysql> CREATE TABLE t (
-> id INT AUTO_INCREMENT NOT NULL PRIMARY KEY,
-> name VARCHAR(10) NOT NULL
->);
Query OK, 0 rows affected (0.09 sec)
mysql> INSERT INTO t VALUES (NULL, 'Bob');
Query OK, 1 row affected (0.01 sec)
mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
| 1 | Bob |
+----+------+
1 row in set (0.01 sec)
mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+
1 row in set (0.00 sec)
mysql> INSERT INTO t VALUES
-> (NULL, 'Mary'), (NULL, 'Jane'), (NULL, 'Lisa');
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
| 1 | Bob |
| 2 | Mary |
| 3 | Jane |
| 4 | Lisa |
+----+------+
4 rows in set (0.01 sec)
mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 2 |
+------------------+
1 row in set (0.00 sec)
Although the second INSERT statement inserted three new rows into t, the ID generated for the first of these rows was 2, and it is this value that is returned by LAST_INSERT_ID() for the following SELECT statement.
If you use INSERT IGNORE and the row is ignored, the AUTO_INCREMENT counter is not incremented and LAST_INSERT_ID() returns 0, which reflects that no row was inserted.
If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is returned by the function and is remembered as the next value to be returned by LAST_INSERT_ID(). This can be used to simulate sequences:
Create a table to hold the sequence counter and initialize it:
mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);
Use the table to generate sequence numbers like this:
mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();
The UPDATE statement increments the sequence counter and causes the next call to LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that value. The mysql_insert_id() C API function can also be used to get the value. See Section 21.8.6.37, “mysql_insert_id()”.
You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the function this way is that the ID value is maintained in the server as the last automatically generated value. It is multi-user safe because multiple clients can issue the UPDATE statement and get their own sequence value with the SELECT statement (or mysql_insert_id()), without affecting or being affected by other clients that generate their own sequence values.
Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so you cannot use the C API function to retrieve the value for LAST_INSERT_ID(expr) after executing other SQL statements like SELECT or SET.
In MySQL 5.6, ROW_COUNT() returns a value as follows:
DDL statements: 0. This applies to statements such as CREATE TABLE or DROP TABLE.
DML statements other than SELECT: The number of affected rows. This applies to statements such as UPDATE, INSERT, or DELETE (as before), but now also to statements such as ALTER TABLE and LOAD DATA INFILE.
SELECT: -1 if the statement returns a result set, or the number of rows “affected” if it does not. For example, for SELECT * FROM t1, ROW_COUNT() returns -1. For SELECT * FROM t1 INTO OUTFILE 'file_name', ROW_COUNT() returns the number of rows written to the file.
SIGNAL statements: 0.
For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld, the affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.
For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in this case, one row was inserted after the duplicate was deleted.
For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value is 1 if the row is inserted as a new row and 2 if an existing row is updated.
The ROW_COUNT() value is similar to the value from the mysql_affected_rows() C API function and the row count that the mysql client displays following statement execution.
mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 3 |
+-------------+
1 row in set (0.00 sec)
mysql> DELETE FROM t WHERE i IN(1,2);
Query OK, 2 rows affected (0.00 sec)
mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)
Important
ROW_COUNT() is not replicated reliably using statement-based replication. This function is automatically replicated using row-based replication.
This function is a synonym for DATABASE().
SESSION_USER() is a synonym for USER().
SYSTEM_USER() is a synonym for USER().
Returns the current MySQL user name and host name as a string in the utf8 character set.
mysql> SELECT USER();
-> 'davida@localhost'
The value indicates the user name you specified when connecting to the server, and the client host from which you connected. The value can be different from that of CURRENT_USER().
You can extract only the user name part like this:
mysql> SELECT SUBSTRING_INDEX(USER(),'@',1);
-> 'davida'
Returns a string that indicates the MySQL server version. The string uses the utf8 character set. The value might have a suffix in addition to the version number. See the description of the version system variable in Section 5.1.4, “Server System Variables”.
This function is unsafe for statement-based replication. In MySQL 5.6, a warning is logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)
mysql> SELECT VERSION();
-> '5.6.12-standard'
12.15. GTID Functions
The functions described in this section are used with GTID-based replication (available in MySQL 5.6.5 and later). For more information about GTIDs and how these functions are used, see Section 16.1.3, “Replication with Global Transaction Identifiers”.
Note
The union of two GTID sets is simply their string representations joined together with an interposed comma. In other words, you can define a very simple function for obtaining the union of two GTID sets like this:
CREATE FUNCTION GTID_UNION(g1 TEXT, g2 TEXT)
RETURNS TEXT DETERMINISTIC
RETURN CONCAT(g1,',',g2);
Table 12.19. GTID Functions
Name | Description |
---|---|
GTID_SUBSET() | Return true if all GTIDs in subset are also in set; otherwise false. |
GTID_SUBTRACT() | Return all GTIDs in set that are not in subset. |
SQL_THREAD_WAIT_AFTER_GTIDS()(deprecated 5.6.9) | OBSOLETE: Replaced by WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() |
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() | Wait until the slave SQL thread has executed all the given GTIDs. Returns: the number of events that were executed (or NULL, if GTID mode is not enabled). |
Given two sets of global transaction IDs subset and set, returns true if all GTIDs in subset are also in set. Returns false otherwise.
This function was added in MySQL 5.6.5.
Given two sets of global transaction IDs subset and set, returns only those GTIDs from set that are not in subset.
This function was added in MySQL 5.6.5.
SQL_THREAD_WAIT_AFTER_GTIDS(gtid_set[, timeout])
SQL_THREAD_WAIT_AFTER_GTIDS() was added in MySQL 5.6.5, and replaced by WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() in MySQL 5.6.9. (Bug #14775984)
For more information, see Section 16.1.3, “Replication with Global Transaction Identifiers”.
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(gtid_set[, timeout])
Wait until the slave SQL thread has executed all of the transactions whose global transaction identifiers are contained in gtid_set (see Section 16.1.3.1, “GTID Concepts”, for a definition of “GTID sets”), or until timeout seconds have elapsed, whichever occurs first. timeout is optional; the default timeout is 0 seconds, in which case the master simply waits until all of the transactions in the GTID set have been executed.
Prior to MySQL 5.6.9, WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() was named SQL_THREAD_WAIT_AFTER_GTIDS(). (Bug #14775984)
For more information, see Section 16.1.3, “Replication with Global Transaction Identifiers”.
mysql> SELECT WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS('3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5');
-> 5
The return value is the number of transactional events that were executed. Prior to MySQL 5.6.8, this function behaved unpredictably if no timeout was set and it was invoked while GTID-based replication was not active; in MySQL 5.6.8 and later, the function returns NULL whenever gtid_mode is OFF. (Bug #14640065)
12.16. Miscellaneous Functions
Table 12.20. Miscellaneous Functions
Name | Description |
---|---|
DEFAULT() | Return the default value for a table column |
GET_LOCK() | Get a named lock |
INET_ATON() | Return the numeric value of an IP address |
INET_NTOA() | Return the IP address from a numeric value |
INET6_ATON() | Return the numeric value of an IPv6 address |
INET6_NTOA() | Return the IPv6 address from a numeric value |
IS_FREE_LOCK() | Checks whether the named lock is free |
IS_IPV4_COMPAT() | Return true if argument is an IPv4-compatible address |
IS_IPV4_MAPPED() | Return true if argument is an IPv4-mapped address |
IS_IPV4() | Return true if argument is an IPv4 address |
IS_IPV6() | Return true if argument is an IPv6 address |
IS_USED_LOCK() | Checks whether the named lock is in use. Return connection identifier if true. |
MASTER_POS_WAIT() | Block until the slave has read and applied all updates up to the specified position |
NAME_CONST() | Causes the column to have the given name |
RAND() | Return a random floating-point value |
RELEASE_LOCK() | Releases the named lock |
SLEEP() | Sleep for a number of seconds |
UUID_SHORT() | Return an integer-valued universal identifier |
UUID() | Return a Universal Unique Identifier (UUID) |
VALUES() | Defines the values to be used during an INSERT |
Returns the default value for a table column. An error results if the column has no default value.
mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;
Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the result as a string. For details, see Section 12.5, “String Functions”.
Tries to obtain a lock with a name given by the string str, using a timeout of timeout seconds. Returns 1 if the lock was obtained successfully, 0 if the attempt timed out (for example, because another client has previously locked the name), or NULL if an error occurred (such as running out of memory or the thread was killed with mysqladmin kill). If you have a lock obtained with GET_LOCK(), it is released when you execute RELEASE_LOCK(), execute a new GET_LOCK(), or your connection terminates (either normally or abnormally). Locks obtained with GET_LOCK() do not interact with transactions. That is, committing a transaction does not release any such locks obtained during the transaction.
This function can be used to implement application locks or to simulate record locks. Names are locked on a server-wide basis. If a name has been locked by one client, GET_LOCK() blocks any request by another client for a lock with the same name. This enables clients that agree on a given lock name to use the name to perform cooperative advisory locking. But be aware that it also enables a client that is not among the set of cooperating clients to lock a name, either inadvertently or deliberately, and thus prevent any of the cooperating clients from locking that name. One way to reduce the likelihood of this is to use lock names that are database-specific or application-specific. For example, use lock names of the form db_name.str or app_name.str.
mysql> SELECT GET_LOCK('lock1',10);
-> 1
mysql> SELECT IS_FREE_LOCK('lock2');
-> 1
mysql> SELECT GET_LOCK('lock2',10);
-> 1
mysql> SELECT RELEASE_LOCK('lock2');
-> 1
mysql> SELECT RELEASE_LOCK('lock1');
-> NULL
The second RELEASE_LOCK() call returns NULL because the lock 'lock1' was automatically released by the second GET_LOCK() call.
If multiple clients are waiting for a lock, the order in which they will acquire it is undefined and depends on factors such as the thread library in use. In particular, applications should not assume that clients will acquire the lock in the same order that they issued the lock requests.
This function is unsafe for statement-based replication. In MySQL 5.6, a warning is logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)
Given the dotted-quad representation of an IPv4 network address as a string, returns an integer that represents the numeric value of the address in network byte order (big endian). INET_ATON() returns NULL if it does not understand its argument.
mysql> SELECT INET_ATON('10.0.5.9');
-> 167773449
For this example, the return value is calculated as 10×2563 + 0×2562 + 5×256 + 9.
INET_ATON() may or may not return a non-NULL result for short-form IP addresses (such as '127.1' as a representation of '127.0.0.1'). Because of this, INET_ATON()a should not be used for such addresses.
Note
To store values generated by INET_ATON(), use an INT UNSIGNED column rather than INT, which is signed. If you use a signed column, values corresponding to IP addresses for which the first octet is greater than 127 cannot be stored correctly. See Section 11.2.6, “Out-of-Range and Overflow Handling”.
Given a numeric IPv4 network address in network byte order, returns the dotted-quad string representation of the address as a nonbinary string in the connection character set. INET_NTOA() returns NULL if it does not understand its argument.
mysql> SELECT INET_NTOA(167773449);
-> '10.0.5.9'
Given an IPv6 or IPv4 network address as a string, returns a binary string that represents the numeric value of the address in network byte order (big endian). Because numeric-format IPv6 addresses require more bytes than the largest integer type, the representation returned by this function has the VARBINARY data type: VARBINARY(16) for IPv6 addresses and VARBINARY(4) for IPv4 addresses. If the argument is not a valid address, INET6_ATON() returns NULL.
The following examples use HEX() to display the INET6_ATON() result in printable form:
mysql> SELECT HEX(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
-> 'FDFE0000000000005A55CAFFFEFA9089'
mysql> SELECT HEX(INET6_ATON('10.0.5.9'));
-> '0A000509'
INET6_ATON() observes several constraints on valid arguments. These are given in the following list along with examples.
A trailing zone ID is not permitted, as in fe80::3%1 or fe80::3%eth0.
A trailing network mask is not permitted, as in 2001:45f:3:ba::/64 or 192.168.1.0/24.
For values representing IPv4 addresses, only classless addresses are supported. Classful addresses such as 192.168.1 are rejected. A trailing port number is not permitted, as in 192.168.1.2:8080. Hexadecimal numbers in address components are not permitted, as in 192.0xa0.1.2. Octal numbers are not supported: 192.168.010.1 is treated as 192.168.10.1, not 192.168.8.1. These IPv4 constraints also apply to IPv6 addresses that have IPv4 address parts, such as IPv4-compatible or IPv4-mapped addresses.
To convert an IPv4 address expr represented in numeric form as an INT value to an IPv6 address represented in numeric form as a VARBINARY value, use this expression:
INET6_ATON(INET_NTOA(expr))
For example:
mysql> SELECT HEX(INET6_ATON(INET_NTOA(167773449)));
-> '0A000509'
This function was added in MySQL 5.6.3.
Given an IPv6 or IPv4 network address represented in numeric form as a binary string, returns the string representation of the address as a nonbinary string in the connection character set. If the argument is not a valid address, INET6_NTOA() returns NULL.
INET6_NTOA() has these properties:
It does not use operating system functions to perform conversions, thus the output string is platform independent.
The return string has a maximum length of 39 (4 x 8 + 7). Given this statement:
CREATE TABLE t AS SELECT INET6_NTOA(expr) AS c1;
The resulting table would have this definition:
CREATE TABLE t (c1 VARCHAR(39) CHARACTER SET utf8 DEFAULT NULL);
The return string uses lowercase letters for IPv6 addresses.
mysql> SELECT INET6_NTOA(INET6_ATON('fdfe::5a55:caff:fefa:9089'));
-> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(INET6_ATON('10.0.5.9'));
-> '10.0.5.9'
mysql> SELECT INET6_NTOA(UNHEX('FDFE0000000000005A55CAFFFEFA9089'));
-> 'fdfe::5a55:caff:fefa:9089'
mysql> SELECT INET6_NTOA(UNHEX('0A000509'));
-> '10.0.5.9'
This function was added in MySQL 5.6.3.
Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free (no one is using the lock), 0 if the lock is in use, and NULL if an error occurs (such as an incorrect argument).
This function is unsafe for statement-based replication. In MySQL 5.6, a warning is logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)
Returns 1 if the argument is a valid IPv4 address specified as a string, 0 otherwise.
mysql> SELECT IS_IPV4('10.0.5.9'), IS_IPV4('10.0.5.256');
-> 1, 0
For a given argument, if IS_IPV4() returns 1, INET_ATON() (and INET6_ATON()) will return non-NULL. The converse statement is not true: In some cases, INET_ATON() returns non-NULL when IS_IPV4() returns 0.
As implied by the preceding remarks, IS_IPV4() is more strict than INET_ATON() about what constitutes a valid IPv4 address, so it may be useful for applications that need to perform strong checks against invalid values. Alternatively, use INET6_ATON() to convert IPv4 addresses to internal form and check for a NULL result (which indicates an invalid address). INET6_ATON() is equally strong as IS_IPV4() about checking IPv4 addresses.
This function was added in MySQL 5.6.3.
This function takes an IPv6 address represented in numeric form as a binary string, as returned by INET6_ATON(). It returns 1 if the argument is a valid IPv4-compatible IPv6 address, 0 otherwise. IPv4-compatible addresses have the form ::ipv4_address.
mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::10.0.5.9'));
-> 1
mysql> SELECT IS_IPV4_COMPAT(INET6_ATON('::ffff:10.0.5.9'));
-> 0
The IPv4 part of an IPv4-compatible address can also be represented using hexadecimal notation. For example, 192.168.0.1 has this raw hexadecimal value:
mysql> SELECT HEX(INET6_ATON('192.168.0.1'));
-> 'C0A80001'
Expressed in IPv4-compatible form, ::192.168.0.1 is equivalent to ::c0a8:0001 or (without leading zeros) ::c0a8:1
mysql> SELECT
-> IS_IPV4_COMPAT(INET6_ATON('::192.168.0.1')),
-> IS_IPV4_COMPAT(INET6_ATON('::c0a8:0001')),
-> IS_IPV4_COMPAT(INET6_ATON('::c0a8:1'));
-> 1, 1, 1
This function was added in MySQL 5.6.3.
This function takes an IPv6 address represented in numeric form as a binary string, as returned by INET6_ATON(). It returns 1 if the argument is a valid IPv4-mapped IPv6 address, 0 otherwise. IPv4-mapped addresses have the form ::ffff:ipv4_address.
mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::10.0.5.9'));
-> 0
mysql> SELECT IS_IPV4_MAPPED(INET6_ATON('::ffff:10.0.5.9'));
-> 1
As with IS_IPV4_COMPAT() the IPv4 part of an IPv4-mapped address can also be represented using hexadecimal notation:
mysql> SELECT
-> IS_IPV4_MAPPED(INET6_ATON('::ffff:192.168.0.1')),
-> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:0001')),
-> IS_IPV4_MAPPED(INET6_ATON('::ffff:c0a8:1'));
-> 1, 1, 1
This function was added in MySQL 5.6.3.
Returns 1 if the argument is a valid IPv6 address specified as a string, 0 otherwise. This function does not consider IPv4 addresses to be valid IPv6 addresses.
mysql> SELECT IS_IPV6('10.0.5.9'), IS_IPV6('::1');
-> 0, 1
For a given argument, if IS_IPV6() returns 1, INET6_ATON() will return non-NULL.
This function was added in MySQL 5.6.3.
Checks whether the lock named str is in use (that is, locked). If so, it returns the connection identifier of the client that holds the lock. Otherwise, it returns NULL.
This function is unsafe for statement-based replication. In MySQL 5.6, a warning is logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)
MASTER_POS_WAIT(log_name,log_pos[,timeout])
This function is useful for control of master/slave synchronization. It blocks until the slave has read and applied all updates up to the specified position in the master log. The return value is the number of log events the slave had to wait for to advance to the specified position. The function returns NULL if the slave SQL thread is not started, the slave's master information is not initialized, the arguments are incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the slave SQL thread stops while MASTER_POS_WAIT() is waiting, the function returns NULL. If the slave is past the specified position, the function returns immediately.
If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have elapsed. timeout must be greater than 0; a zero or negative timeout means no timeout.
This function is unsafe for statement-based replication. In MySQL 5.6, a warning is logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)
Returns the given value. When used to produce a result set column, NAME_CONST() causes the column to have the given name. The arguments should be constants.
mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+
This function is for internal use only. The server uses it when writing statements from stored programs that contain references to local program variables, as described in Section 18.7, “Binary Logging of Stored Programs”, You might see this function in the output from mysqlbinlog.
Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the lock was released, 0 if the lock was not established by this thread (in which case the lock is not released), and NULL if the named lock did not exist. The lock does not exist if it was never obtained by a call to GET_LOCK() or if it has previously been released.
The DO statement is convenient to use with RELEASE_LOCK(). See Section 13.2.3, “DO Syntax”.
This function is unsafe for statement-based replication. In MySQL 5.6, a warning is logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)
Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. If SLEEP() is interrupted, it returns 1. The duration may have a fractional part.
This function is unsafe for statement-based replication. In MySQL 5.6, a warning is logged if you use this function when binlog_format is set to STATEMENT. (Bug #47995)
Returns a Universal Unique Identifier (UUID) generated according to “DCE 1.1: Remote Procedure Call” (Appendix A) CAE (Common Applications Environment) Specifications published by The Open Group in October 1997 (Document Number C706, http://www.opengroup.org/public/pubs/catalog/c706.htm).
A UUID is designed as a number that is globally unique in space and time. Two calls to UUID() are expected to generate two different values, even if these calls are performed on two separate computers that are not connected to each other.
A UUID is a 128-bit number represented by a utf8 string of five hexadecimal numbers in aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee format:
The first three numbers are generated from a timestamp.
The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity (for example, due to daylight saving time).
The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number is substituted if the latter is not available (for example, because the host computer has no Ethernet card, or we do not know how to find the hardware address of an interface on your operating system). In this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should have very low probability.
Currently, the MAC address of an interface is taken into account only on FreeBSD and Linux. On other operating systems, MySQL uses a randomly generated 48-bit number.
mysql> SELECT UUID();
-> '6ccd780c-baba-1026-9564-0040f4311e29'
Warning
Although UUID() values are intended to be unique, they are not necessarily unguessable or unpredictable. If unpredictability is required, UUID values should be generated some other way.
Note
UUID() does not work with statement-based replication.
Returns a “short” universal identifier as a 64-bit unsigned integer (rather than a string-form 128-bit identifier as returned by the UUID() function).
The value of UUID_SHORT() is guaranteed to be unique if the following conditions hold:
The server_id of the current host is unique among your set of master and slave servers
server_id is between 0 and 255
You do not set back your system time for your server between mysqld restarts
You do not invoke UUID_SHORT() on average more than 16 million times per second between mysqld restarts
The UUID_SHORT() return value is constructed this way:
(server_id & 255) << 56
+ (server_startup_time_in_seconds << 24)
+ incremented_variable++;
mysql> SELECT UUID_SHORT();
-> 92395783831158784
Note that UUID_SHORT() does not work with statement-based replication.
In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the VALUES(col_name) function in the UPDATE clause to refer to column values from the INSERT portion of the statement. In other words, VALUES(col_name) in the UPDATE clause refers to the value of col_name that would be inserted, had no duplicate-key conflict occurred. This function is especially useful in multiple-row inserts. The VALUES() function is meaningful only in the ON DUPLICATE KEY UPDATE clause of INSERT statements and returns NULL otherwise. See Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.
mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
-> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);
12.17. Functions and Modifiers for Use with GROUP BY Clauses
12.17.1. GROUP BY (Aggregate) Functions
Table 12.21. Aggregate (GROUP BY) Functions
Name | Description |
---|---|
AVG() | Return the average value of the argument |
BIT_AND() | Return bitwise and |
BIT_OR() | Return bitwise or |
BIT_XOR() | Return bitwise xor |
COUNT(DISTINCT) | Return the count of a number of different values |
COUNT() | Return a count of the number of rows returned |
GROUP_CONCAT() | Return a concatenated string |
MAX() | Return the maximum value |
MIN() | Return the minimum value |
STD() | Return the population standard deviation |
STDDEV_POP() | Return the population standard deviation |
STDDEV_SAMP() | Return the sample standard deviation |
STDDEV() | Return the population standard deviation |
SUM() | Return the sum |
VAR_POP() | Return the population standard variance |
VAR_SAMP() | Return the sample variance |
VARIANCE() | Return the population standard variance |
This section describes group (aggregate) functions that operate on sets of values. Unless otherwise stated, group functions ignore NULL values.
If you use a group function in a statement containing no GROUP BY clause, it is equivalent to grouping on all rows. For more information, see Section 12.17.3, “MySQL Extensions to GROUP BY”.
For numeric arguments, the variance and standard deviation functions return a DOUBLE value. The SUM() and AVG() functions return a DECIMAL value for exact-value arguments (integer or DECIMAL), and a DOUBLE value for approximate-value arguments (FLOAT or DOUBLE).
The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values to numbers, losing everything after the first nonnumeric character.) To work around this problem, convert to numeric units, perform the aggregate operation, and convert back to a temporal value. Examples:
SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;
Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if necessary. For SET or ENUM values, the cast operation causes the underlying numeric value to be used.
Returns the average value of expr. The DISTINCT option can be used to return the average of the distinct values of expr.
AVG() returns NULL if there were no matching rows.
mysql> SELECT student_name, AVG(test_score)
-> FROM student
-> GROUP BY student_name;
Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.
This function returns 18446744073709551615 if there were no matching rows. (This is the value of an unsigned BIGINT value with all bits set to 1.)
Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.
This function returns 0 if there were no matching rows.
Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.
This function returns 0 if there were no matching rows.
Returns a count of the number of non-NULL values of expr in the rows retrieved by a SELECT statement. The result is a BIGINT value.
COUNT() returns 0 if there were no matching rows.
mysql> SELECT student.student_name,COUNT(*)
-> FROM student,course
-> WHERE student.student_id=course.student_id
-> GROUP BY student_name;
COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved, whether or not they contain NULL values.
COUNT(*) is optimized to return very quickly if the SELECT retrieves from one table, no other columns are retrieved, and there is no WHERE clause. For example:
mysql> SELECT COUNT(*) FROM student;
This optimization applies only to MyISAM tables only, because an exact row count is stored for this storage engine and can be accessed very quickly. For transactional storage engines such as InnoDB, storing an exact row count is more problematic because multiple transactions may be occurring, each of which may affect the count.
COUNT(DISTINCT expr,[expr...])
Returns a count of the number of rows with different non-NULL expr values.
COUNT(DISTINCT) returns 0 if there were no matching rows.
mysql> SELECT COUNT(DISTINCT results) FROM student;
In MySQL, you can obtain the number of distinct expression combinations that do not contain NULL by giving a list of expressions. In standard SQL, you would have to do a concatenation of all expressions inside COUNT(DISTINCT ...).
This function returns a string result with the concatenated non-NULL values from a group. It returns NULL if there are no non-NULL values. The full syntax is as follows:
GROUP_CONCAT([DISTINCT] expr [,expr ...]
[ORDER BY {unsigned_integer | col_name | expr}
[ASC | DESC] [,col_name ...]]
[SEPARATOR str_val])
mysql> SELECT student_name,
-> GROUP_CONCAT(test_score)
-> FROM student
-> GROUP BY student_name;
Or:
mysql> SELECT student_name,
-> GROUP_CONCAT(DISTINCT test_score
-> ORDER BY test_score DESC SEPARATOR ' ')
-> FROM student
-> GROUP BY student_name;
In MySQL, you can get the concatenated values of expression combinations. To eliminate duplicate values, use the DISTINCT clause. To sort values in the result, use the ORDER BY clause. To sort in reverse order, add the DESC (descending) keyword to the name of the column you are sorting by in the ORDER BY clause. The default is ascending order; this may be specified explicitly using the ASC keyword. The default separator between values in a group is comma (“,”). To specify a separator explicitly, use SEPARATOR followed by the string literal value that should be inserted between group values. To eliminate the separator altogether, specify SEPARATOR ''.
The result is truncated to the maximum length that is given by the group_concat_max_len system variable, which has a default value of 1024. The value can be set higher, although the effective maximum length of the return value is constrained by the value of max_allowed_packet. The syntax to change the value of group_concat_max_len at runtime is as follows, where val is an unsigned integer:
SET [GLOBAL | SESSION] group_concat_max_len = val;
The return value is a nonbinary or binary string, depending on whether the arguments are nonbinary or binary strings. The result type is TEXT or BLOB unless group_concat_max_len is less than or equal to 512, in which case the result type is VARCHAR or VARBINARY.
See also CONCAT() and CONCAT_WS(): Section 12.5, “String Functions”.
Returns the maximum value of expr. MAX() may take a string argument; in such cases, it returns the maximum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can be used to find the maximum of the distinct values of expr, however, this produces the same result as omitting DISTINCT.
MAX() returns NULL if there were no matching rows.
mysql> SELECT student_name, MIN(test_score), MAX(test_score)
-> FROM student
-> GROUP BY student_name;
For MAX(), MySQL currently compares ENUM and SET columns by their string value rather than by the string's relative position in the set. This differs from how ORDER BY compares them. This is expected to be rectified in a future MySQL release.
Returns the minimum value of expr. MIN() may take a string argument; in such cases, it returns the minimum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can be used to find the minimum of the distinct values of expr, however, this produces the same result as omitting DISTINCT.
MIN() returns NULL if there were no matching rows.
mysql> SELECT student_name, MIN(test_score), MAX(test_score)
-> FROM student
-> GROUP BY student_name;
For MIN(), MySQL currently compares ENUM and SET columns by their string value rather than by the string's relative position in the set. This differs from how ORDER BY compares them. This is expected to be rectified in a future MySQL release.
Returns the population standard deviation of expr. This is an extension to standard SQL. The standard SQL function STDDEV_POP() can be used instead.
This function returns NULL if there were no matching rows.
Returns the population standard deviation of expr. This function is provided for compatibility with Oracle. The standard SQL function STDDEV_POP() can be used instead.
This function returns NULL if there were no matching rows.
Returns the population standard deviation of expr (the square root of VAR_POP()). You can also use STD() or STDDEV(), which are equivalent but not standard SQL.
STDDEV_POP() returns NULL if there were no matching rows.
Returns the sample standard deviation of expr (the square root of VAR_SAMP().
STDDEV_SAMP() returns NULL if there were no matching rows.
Returns the sum of expr. If the return set has no rows, SUM() returns NULL. The DISTINCT keyword can be used to sum only the distinct values of expr.
SUM() returns NULL if there were no matching rows.
Returns the population standard variance of expr. It considers rows as the whole population, not as a sample, so it has the number of rows as the denominator. You can also use VARIANCE(), which is equivalent but is not standard SQL.
VAR_POP() returns NULL if there were no matching rows.
Returns the sample variance of expr. That is, the denominator is the number of rows minus one.
VAR_SAMP() returns NULL if there were no matching rows.
Returns the population standard variance of expr. This is an extension to standard SQL. The standard SQL function VAR_POP() can be used instead.
VARIANCE() returns NULL if there were no matching rows.
12.17.2. GROUP BY Modifiers
The GROUP BY clause permits a WITH ROLLUP modifier that causes extra rows to be added to the summary output. These rows represent higher-level (or super-aggregate) summary operations. ROLLUP thus enables you to answer questions at multiple levels of analysis with a single query. It can be used, for example, to provide support for OLAP (Online Analytical Processing) operations.
Suppose that a table named sales has year, country, product, and profit columns for recording sales profitability:
CREATE TABLE sales
(
year INT NOT NULL,
country VARCHAR(20) NOT NULL,
product VARCHAR(32) NOT NULL,
profit INT
);
The table's contents can be summarized per year with a simple GROUP BY like this:
mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+-------------+
This output shows the total profit for each year, but if you also want to determine the total profit summed over all years, you must add up the individual values yourself or run an additional query.
Or you can use ROLLUP, which provides both levels of analysis with a single query. Adding a WITH ROLLUP modifier to the GROUP BY clause causes the query to produce another row that shows the grand total over all year values:
mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
| NULL | 7535 |
+------+-------------+
The grand total super-aggregate line is identified by the value NULL in the year column.
ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each time there is a “break” (change in value) in any but the last grouping column, the query produces an extra super-aggregate summary row.
For example, without ROLLUP, a summary on the sales table based on year, country, and product might look like this:
mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
| 2000 | Finland | Computer | 1500 |
| 2000 | Finland | Phone | 100 |
| 2000 | India | Calculator | 150 |
| 2000 | India | Computer | 1200 |
| 2000 | USA | Calculator | 75 |
| 2000 | USA | Computer | 1500 |
| 2001 | Finland | Phone | 10 |
| 2001 | USA | Calculator | 50 |
| 2001 | USA | Computer | 2700 |
| 2001 | USA | TV | 250 |
+------+---------+------------+-------------+
The output indicates summary values only at the year/country/product level of analysis. When ROLLUP is added, the query produces several extra rows:
mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product WITH ROLLUP;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
| 2000 | Finland | Computer | 1500 |
| 2000 | Finland | Phone | 100 |
| 2000 | Finland | NULL | 1600 |
| 2000 | India | Calculator | 150 |
| 2000 | India | Computer | 1200 |
| 2000 | India | NULL | 1350 |
| 2000 | USA | Calculator | 75 |
| 2000 | USA | Computer | 1500 |
| 2000 | USA | NULL | 1575 |
| 2000 | NULL | NULL | 4525 |
| 2001 | Finland | Phone | 10 |
| 2001 | Finland | NULL | 10 |
| 2001 | USA | Calculator | 50 |
| 2001 | USA | Computer | 2700 |
| 2001 | USA | TV | 250 |
| 2001 | USA | NULL | 3000 |
| 2001 | NULL | NULL | 3010 |
| NULL | NULL | NULL | 7535 |
+------+---------+------------+-------------+
For this query, adding ROLLUP causes the output to include summary information at four levels of analysis, not just one. Here is how to interpret the ROLLUP output:
Following each set of product rows for a given year and country, an extra summary row is produced showing the total for all products. These rows have the product column set to NULL.
Following each set of rows for a given year, an extra summary row is produced showing the total for all countries and products. These rows have the country and products columns set to NULL.
Finally, following all other rows, an extra summary row is produced showing the grand total for all years, countries, and products. This row has the year, country, and products columns set to NULL.
Other Considerations When using ROLLUP
The following items list some behaviors specific to the MySQL implementation of ROLLUP:
When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other words, ROLLUP and ORDER BY are mutually exclusive. However, you still have some control over sort order. GROUP BY in MySQL sorts results, and you can use explicit ASC and DESC keywords with columns named in the GROUP BY list to specify sort order for individual columns. (The higher-level summary rows added by ROLLUP still appear after the rows from which they are calculated, regardless of the sort order.)
LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after ROLLUP, so the limit applies against the extra rows added by ROLLUP. For example:
mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product WITH ROLLUP
-> LIMIT 5;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
| 2000 | Finland | Computer | 1500 |
| 2000 | Finland | Phone | 100 |
| 2000 | Finland | NULL | 1600 |
| 2000 | India | Calculator | 150 |
| 2000 | India | Computer | 1200 |
+------+---------+------------+-------------+
Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because you have less context for understanding the super-aggregate rows.
The NULL indicators in each super-aggregate row are produced when the row is sent to the client. The server looks at the columns named in the GROUP BY clause following the leftmost one that has changed value. For any column in the result set with a name that is a lexical match to any of those names, its value is set to NULL. (If you specify grouping columns by column number, the server identifies which columns to set to NULL by number.)
Because the NULL values in the super-aggregate rows are placed into the result set at such a late stage in query processing, you cannot test them as NULL values within the query itself. For example, you cannot add HAVING product IS NULL to the query to eliminate from the output all but the super-aggregate rows.
On the other hand, the NULL values do appear as NULL on the client side and can be tested as such using any MySQL client programming interface.
12.17.3. MySQL Extensions to GROUP BY
In standard SQL, a query that includes a GROUP BY clause cannot refer to nonaggregated columns in the select list that are not named in the GROUP BY clause. For example, this query is illegal in standard SQL because the name column in the select list does not appear in the GROUP BY:
SELECT o.custid, c.name, MAX(o.payment)
FROM orders AS o, customers AS c
WHERE o.custid = c.custid
GROUP BY o.custid;
For the query to be legal, the name column must be omitted from the select list or named in the GROUP BY clause.
MySQL extends the use of GROUP BY so that the select list can refer to nonaggregated columns not named in the GROUP BY clause. This means that the preceding query is legal in MySQL. You can use this feature to get better performance by avoiding unnecessary column sorting and grouping. However, this is useful primarily when all values in each nonaggregated column not named in the GROUP BY are the same for each group. The server is free to choose any value from each group, so unless they are the same, the values chosen are indeterminate. Furthermore, the selection of values from each group cannot be influenced by adding an ORDER BY clause. Sorting of the result set occurs after values have been chosen, and ORDER BY does not affect which values within each group the server chooses.
A similar MySQL extension applies to the HAVING clause. In standard SQL, a query that includes a GROUP BY clause cannot refer to nonaggregated columns in the HAVING clause that are not named in the GROUP BY clause. A MySQL extension permits references to such columns to simplify calculations. This extension assumes that the nongrouped columns will have the same group-wise values. Otherwise, the result is indeterminate.
To disable the MySQL GROUP BY extension, enable the ONLY_FULL_GROUP_BY SQL mode. This enables standard SQL behavior: Columns not named in the GROUP BY clause cannot be used in the select list or HAVING clause unless enclosed in an aggregate function.
ONLY_FULL_GROUP_BY also affects use of aliases in the HAVING clauses. For example, the following query returns name values that occur only once in table orders:
SELECT name, COUNT(name) FROM orders
GROUP BY name
HAVING COUNT(name) = 1;
MySQL extends this behavior to permit the use of an alias in the HAVING clause for the aggregated column:
SELECT name, COUNT(name) AS c FROM orders
GROUP BY name
HAVING c = 1;
Enabling ONLY_FULL_GROUP_BY disables this MySQL extension and a non-grouping field 'c' is used in HAVING clause error occurs because the column c in the HAVING clause is not enclosed in an aggregate function (instead, it is an aggregate function).
The select list extension also applies to ORDER BY. That is, you can refer to nonaggregated columns in the ORDER BY clause that do not appear in the GROUP BY clause. (However, as mentioned previously, ORDER BY does not affect which values are chosen from nonaggregated columns; it only sorts them after they have been chosen.) This extension does not apply if the ONLY_FULL_GROUP_BY SQL mode is enabled.
In some cases, you can use MIN() and MAX() to obtain a specific column value even if it is not unique. If the sort column contains integers no larger than 6 digits, the following query gives the value of column from the row containing the smallest sort value:
SUBSTR(MIN(CONCAT(LPAD(sort,6,'0'),column)),7)
See Section 3.6.4, “The Rows Holding the Group-wise Maximum of a Certain Column”.
If you are trying to follow standard SQL, you cannot use expressions in GROUP BY clauses. As a workaround, use an alias for the expression:
SELECT id, FLOOR(value/100) AS val
FROM tbl_name
GROUP BY id, val;
MySQL permits expressions in GROUP BY clauses, so the alias is unnecessary:
SELECT id, FLOOR(value/100)
FROM tbl_name
GROUP BY id, FLOOR(value/100);
12.18. Spatial Extensions
MySQL supports spatial extensions to enable the generation, storage, and analysis of geographic features. These features are available for MyISAM, InnoDB, NDB, and ARCHIVE tables.
For spatial columns, MyISAM supports both SPATIAL and non-SPATIAL indexes. Other storage engines support non-SPATIAL indexes, as described in Section 13.1.11, “CREATE INDEX Syntax”.
This chapter covers the following topics:
The basis of these spatial extensions in the OpenGIS geometry model
Data formats for representing spatial data
How to use spatial data in MySQL
Use of indexing for spatial data
MySQL differences from the OpenGIS specification
Additional Resources
The Open Geospatial Consortium publishes the OpenGIS® Simple Features Specifications For SQL, a document that proposes several conceptual ways for extending an SQL RDBMS to support spatial data. This specification is available from the OGC Web site at http://www.opengis.org/docs/99-049.pdf.
If you have questions or concerns about the use of the spatial extensions to MySQL, you can discuss them in the GIS forum: http://forums.mysql.com/list.php?23.
12.18.1. Introduction to MySQL Spatial Support
MySQL implements spatial extensions following the specification of the Open Geospatial Consortium (OGC). This is an international consortium of more than 250 companies, agencies, and universities participating in the development of publicly available conceptual solutions that can be useful with all kinds of applications that manage spatial data. The OGC maintains a Web site at http://www.opengis.org/.
In 1997, the Open Geospatial Consortium published the OpenGIS® Simple Features Specifications For SQL, a document that proposes several conceptual ways for extending an SQL RDBMS to support spatial data. This specification is available from the OGC Web site at http://www.opengis.org/docs/99-049.pdf. It contains additional information relevant to this chapter.
MySQL implements a subset of the SQL with Geometry Types environment proposed by OGC. This term refers to an SQL environment that has been extended with a set of geometry types. A geometry-valued SQL column is implemented as a column that has a geometry type. The specification describe a set of SQL geometry types, as well as functions on those types to create and analyze geometry values.
A geographic feature is anything in the world that has a location. A feature can be:
An entity. For example, a mountain, a pond, a city.
A space. For example, town district, the tropics.
A definable location. For example, a crossroad, as a particular place where two streets intersect.
Some documents use the term geospatial feature to refer to geographic features.
Geometry is another word that denotes a geographic feature. Originally the word geometry meant measurement of the earth. Another meaning comes from cartography, referring to the geometric features that cartographers use to map the world.
This chapter uses all of these terms synonymously: geographic feature, geospatial feature, feature, or geometry. Here, the term most commonly used is geometry, defined as a point or an aggregate of points representing anything in the world that has a location.
12.18.2. The OpenGIS Geometry Model
The set of geometry types proposed by OGC's SQL with Geometry Types environment is based on the OpenGIS Geometry Model. In this model, each geometric object has the following general properties:
It is associated with a Spatial Reference System, which describes the coordinate space in which the object is defined.
It belongs to some geometry class.
12.18.2.1. The Geometry Class Hierarchy
The geometry classes define a hierarchy as follows:
Geometry (noninstantiable)
Point (instantiable)
Curve (noninstantiable)
LineString (instantiable)
Line
LinearRing
Surface (noninstantiable)
Polygon (instantiable)
GeometryCollection (instantiable)
MultiPoint (instantiable)
MultiCurve (noninstantiable)
MultiLineString (instantiable)
MultiSurface (noninstantiable)
MultiPolygon (instantiable)
It is not possible to create objects in noninstantiable classes. It is possible to create objects in instantiable classes. All classes have properties, and instantiable classes may also have assertions (rules that define valid class instances).
Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry are restricted to zero-, one-, and two-dimensional geometric objects that exist in two-dimensional coordinate space. All instantiable geometry classes are defined so that valid instances of a geometry class are topologically closed (that is, all defined geometries include their boundary).
The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:
Point represents zero-dimensional objects.
Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses Line and LinearRing.
Surface is designed for two-dimensional objects and has subclass Polygon.
GeometryCollection has specialized zero-, one-, and two-dimensional collection classes named MultiPoint, MultiLineString, and MultiPolygon for modeling geometries corresponding to collections of Points, LineStrings, and Polygons, respectively. MultiCurve and MultiSurface are introduced as abstract superclasses that generalize the collection interfaces to handle Curves and Surfaces.
Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as noninstantiable classes. They define a common set of methods for their subclasses and are included for extensibility.
Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and MultiPolygon are instantiable classes.
12.18.2.2. Class Geometry
Geometry is the root class of the hierarchy. It is a noninstantiable class but has a number of properties that are common to all geometry values created from any of the Geometry subclasses. These properties are described in the following list. Particular subclasses have their own specific properties, described later.
Geometry Properties
A geometry value has the following properties:
Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.
Its SRID, or Spatial Reference Identifier. This value identifies the geometry's associated Spatial Reference System that describes the coordinate space in which the geometry object is defined.
In MySQL, the SRID value is just an integer associated with the geometry value. All calculations are done assuming Euclidean (planar) geometry.
Its coordinates in its Spatial Reference System, represented as double-precision (8-byte) numbers. All nonempty geometries include at least one pair of (X,Y) coordinates. Empty geometries contain no coordinates.
Coordinates are related to the SRID. For example, in different coordinate systems, the distance between two objects may differ even when objects have the same coordinates, because the distance on the planar coordinate system and the distance on the geocentric system (coordinates on the Earth's surface) are different things.
Its interior, boundary, and exterior.
Every geometry occupies some position in space. The exterior of a geometry is all space not occupied by the geometry. The interior is the space occupied by the geometry. The boundary is the interface between the geometry's interior and exterior.
Its MBR (Minimum Bounding Rectangle), or Envelope. This is the bounding geometry, formed by the minimum and maximum (X,Y) coordinates:
((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))
Whether the value is simple or nonsimple. Geometry values of types (LineString, MultiPoint, MultiLineString) are either simple or nonsimple. Each type determines its own assertions for being simple or nonsimple.
Whether the value is closed or not closed. Geometry values of types (LineString, MultiString) are either closed or not closed. Each type determines its own assertions for being closed or not closed.
Whether the value is empty or nonempty A geometry is empty if it does not have any points. Exterior, interior, and boundary of an empty geometry are not defined (that is, they are represented by a NULL value). An empty geometry is defined to be always simple and has an area of 0.
Its dimension. A geometry can have a dimension of –1, 0, 1, or 2:
–1 for an empty geometry.
0 for a geometry with no length and no area.
1 for a geometry with nonzero length and zero area.
2 for a geometry with nonzero area.
Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon objects have a dimension of 2. The dimensions of MultiPoint, MultiLineString, and MultiPolygon objects are the same as the dimensions of the elements they consist of.
12.18.2.3. Class Point
A Point is a geometry that represents a single location in coordinate space.
Point Examples
Imagine a large-scale map of the world with many cities. A Point object could represent each city.
On a city map, a Point object could represent a bus stop.
Point Properties
X-coordinate value.
Y-coordinate value.
Point is defined as a zero-dimensional geometry.
The boundary of a Point is the empty set.
12.18.2.4. Class Curve
A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular subclasses of Curve define the type of interpolation between points. Curve is a noninstantiable class.
Curve Properties
A Curve has the coordinates of its points.
A Curve is defined as a one-dimensional geometry.
A Curve is simple if it does not pass through the same point twice.
A Curve is closed if its start point is equal to its endpoint.
The boundary of a closed Curve is empty.
The boundary of a nonclosed Curve consists of its two endpoints.
A Curve that is simple and closed is a LinearRing.
12.18.2.5. Class LineString
A LineString is a Curve with linear interpolation between points.
LineString Examples
On a world map, LineString objects could represent rivers.
In a city map, LineString objects could represent streets.
LineString Properties
A LineString has coordinates of segments, defined by each consecutive pair of points.
A LineString is a Line if it consists of exactly two points.
A LineString is a LinearRing if it is both closed and simple.
12.18.2.6. Class Surface
A Surface is a two-dimensional geometry. It is a noninstantiable class. Its only instantiable subclass is Polygon.
Surface Properties
A Surface is defined as a two-dimensional geometry.
The OpenGIS specification defines a simple Surface as a geometry that consists of a single “patch” that is associated with a single exterior boundary and zero or more interior boundaries.
The boundary of a simple Surface is the set of closed curves corresponding to its exterior and interior boundaries.
12.18.2.7. Class Polygon
A Polygon is a planar Surface representing a multisided geometry. It is defined by a single exterior boundary and zero or more interior boundaries, where each interior boundary defines a hole in the Polygon.
Polygon Examples
On a region map, Polygon objects could represent forests, districts, and so on.
Polygon Assertions
The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString objects that are both simple and closed) that make up its exterior and interior boundaries.
A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a Point, but only as a tangent.
A Polygon has no lines, spikes, or punctures.
A Polygon has an interior that is a connected point set.
A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each hole defines a connected component of the exterior.
The preceding assertions make a Polygon a simple geometry.
12.18.2.8. Class GeometryCollection
A GeometryCollection is a geometry that is a collection of one or more geometries of any class.
All the elements in a GeometryCollection must be in the same Spatial Reference System (that is, in the same coordinate system). There are no other constraints on the elements of a GeometryCollection, although the subclasses of GeometryCollection described in the following sections may restrict membership. Restrictions may be based on:
Element type (for example, a MultiPoint may contain only Point elements)
Dimension
Constraints on the degree of spatial overlap between elements
12.18.2.9. Class MultiPoint
A MultiPoint is a geometry collection composed of Point elements. The points are not connected or ordered in any way.
MultiPoint Examples
On a world map, a MultiPoint could represent a chain of small islands.
On a city map, a MultiPoint could represent the outlets for a ticket office.
MultiPoint Properties
A MultiPoint is a zero-dimensional geometry.
A MultiPoint is simple if no two of its Point values are equal (have identical coordinate values).
The boundary of a MultiPoint is the empty set.
12.18.2.10. Class MultiCurve
A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a noninstantiable class.
MultiCurve Properties
A MultiCurve is a one-dimensional geometry.
A MultiCurve is simple if and only if all of its elements are simple; the only intersections between any two elements occur at points that are on the boundaries of both elements.
A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as the “odd-even rule”): A point is in the boundary of a MultiCurve if it is in the boundaries of an odd number of MultiCurve elements.
A MultiCurve is closed if all of its elements are closed.
The boundary of a closed MultiCurve is always empty.
12.18.2.11. Class MultiLineString
A MultiLineString is a MultiCurve geometry collection composed of LineString elements.
MultiLineString Examples
On a region map, a MultiLineString could represent a river system or a highway system.
12.18.2.12. Class MultiSurface
A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a noninstantiable class. Its only instantiable subclass is MultiPolygon.
MultiSurface Assertions
Two MultiSurface surfaces have no interiors that intersect.
Two MultiSurface elements have boundaries that intersect at most at a finite number of points.
12.18.2.13. Class MultiPolygon
A MultiPolygon is a MultiSurface object composed of Polygon elements.
MultiPolygon Examples
On a region map, a MultiPolygon could represent a system of lakes.
MultiPolygon Assertions
A MultiPolygon has no two Polygon elements with interiors that intersect.
A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the previous assertion), or that touch at an infinite number of points.
A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regular, closed point set.
A MultiPolygon that has more than one Polygon has an interior that is not connected. The number of connected components of the interior of a MultiPolygon is equal to the number of Polygon values in the MultiPolygon.
MultiPolygon Properties
A MultiPolygon is a two-dimensional geometry.
A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to the boundaries of its Polygon elements.
Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Polygon element.
Every Curve in the boundary of an Polygon element is in the boundary of the MultiPolygon.
12.18.3. Supported Spatial Data Formats
This section describes the standard spatial data formats that are used to represent geometry objects in queries. They are:
Well-Known Text (WKT) format
Well-Known Binary (WKB) format
Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB format.
12.18.3.1. Well-Known Text (WKT) Format
The Well-Known Text (WKT) representation of Geometry is designed to exchange geometry data in ASCII form. For a Backus-Naur grammar that specifies the formal production rules for writing WKT values, see the OpenGIS specification document referenced in Section 12.18, “Spatial Extensions”.
Examples of WKT representations of geometry objects:
A Point:
POINT(15 20)
Note that point coordinates are specified with no separating comma. This differs from the syntax for the SQL POINT() function, which requires a comma between the coordinates. Take care to use the syntax appropriate to the context of a given spatial operation. For example, the following statements both extract the X-coordinate from a Point object. The first produces the object directly using the POINT() function. The second uses a WKT representation converted to a Point with GeomFromText().
mysql> SELECT X(POINT(15, 20));
+------------------+
| X(POINT(15, 20)) |
+------------------+
| 15 |
+------------------+
mysql> SELECT X(GeomFromText('POINT(15 20)'));
+---------------------------------+
| X(GeomFromText('POINT(15 20)')) |
+---------------------------------+
| 15 |
+---------------------------------+
A LineString with four points:
LINESTRING(0 0, 10 10, 20 25, 50 60)
Note that point coordinate pairs are separated by commas.
A Polygon with one exterior ring and one interior ring:
POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))
A MultiPoint with three Point values:
MULTIPOINT(0 0, 20 20, 60 60)
A MultiLineString with two LineString values:
MULTILINESTRING((10 10, 20 20), (15 15, 30 15))
A MultiPolygon with two Polygon values:
MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))
A GeometryCollection consisting of two Point values and one LineString:
GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))
12.18.3.2. Well-Known Binary (WKB) Format
The Well-Known Binary (WKB) representation for geometric values is defined by the OpenGIS specification. It is also defined in the ISO SQL/MM Part 3: Spatial standard.
WKB is used to exchange geometry data as binary streams represented by BLOB values containing geometric WKB information.
WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision numbers (IEEE 754 format). A byte is eight bits.
For example, a WKB value that corresponds to POINT(1 1) consists of this sequence of 21 bytes (each represented here by two hex digits):
0101000000000000000000F03F000000000000F03F
The sequence may be broken down into these components:
Byte order : 01
WKB type : 01000000
X : 000000000000F03F
Y : 000000000000F03F
Component representation is as follows:
The byte order may be either 1 or 0 to indicate little-endian or big-endian storage. The little-endian and big-endian byte orders are also known as Network Data Representation (NDR) and External Data Representation (XDR), respectively.
The WKB type is a code that indicates the geometry type. Values from 1 through 7 indicate Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and GeometryCollection.
A Point value has X and Y coordinates, each represented as a double-precision value.
WKB values for more complex geometry values are represented by more complex data structures, as detailed in the OpenGIS specification.
12.18.4. Creating a Spatially Enabled MySQL Database
This section describes the data types you can use for representing spatial data in MySQL, and the functions available for creating and retrieving spatial values.
12.18.4.1. MySQL Spatial Data Types
MySQL has data types that correspond to OpenGIS classes. Some of these types hold single geometry values:
GEOMETRY
POINT
LINESTRING
POLYGON
GEOMETRY can store geometry values of any type. The other single-value types (POINT, LINESTRING, and POLYGON) restrict their values to a particular geometry type.
The other data types hold collections of values:
MULTIPOINT
MULTILINESTRING
MULTIPOLYGON
GEOMETRYCOLLECTION
GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types (MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, and GEOMETRYCOLLECTION) restrict collection members to those having a particular geometry type.
12.18.4.2. Creating Spatial Values
This section describes how to create spatial values using Well-Known Text and Well-Known Binary functions that are defined in the OpenGIS standard, and using MySQL-specific functions.
12.18.4.2.1. Creating Geometry Values Using WKT Functions
MySQL provides a number of functions that take as arguments a Well-Known Text representation and, optionally, a spatial reference system identifier (SRID). They return the corresponding geometry.
GeomFromText() accepts a WKT of any geometry type as its first argument. An implementation also provides type-specific construction functions for construction of geometry values of each geometry type.
GeomCollFromText(wkt[,srid]), GeometryCollectionFromText(wkt[,srid])
Constructs a GEOMETRYCOLLECTION value using its WKT representation and SRID.
GeomFromText(wkt[,srid]), GeometryFromText(wkt[,srid])
Constructs a geometry value of any type using its WKT representation and SRID.
LineFromText(wkt[,srid]), LineStringFromText(wkt[,srid])
Constructs a LINESTRING value using its WKT representation and SRID.
MLineFromText(wkt[,srid]), MultiLineStringFromText(wkt[,srid])
Constructs a MULTILINESTRING value using its WKT representation and SRID.
MPointFromText(wkt[,srid]), MultiPointFromText(wkt[,srid])
Constructs a MULTIPOINT value using its WKT representation and SRID.
MPolyFromText(wkt[,srid]), MultiPolygonFromText(wkt[,srid])
Constructs a MULTIPOLYGON value using its WKT representation and SRID.
Constructs a POINT value using its WKT representation and SRID.
PolyFromText(wkt[,srid]), PolygonFromText(wkt[,srid])
Constructs a POLYGON value using its WKT representation and SRID.
The OpenGIS specification also defines the following optional functions, which MySQL does not implement. These functions construct Polygon or MultiPolygon values based on the WKT representation of a collection of rings or closed LineString values. These values may intersect.
Constructs a MultiPolygon value from a MultiLineString value in WKT format containing an arbitrary collection of closed LineString values.
Constructs a Polygon value from a MultiLineString value in WKT format containing an arbitrary collection of closed LineString values.
12.18.4.2.2. Creating Geometry Values Using WKB Functions
MySQL provides a number of functions that take as arguments a BLOB containing a Well-Known Binary representation and, optionally, a spatial reference system identifier (SRID). They return the corresponding geometry.
These functions also accept geometry objects for compatibility with the return value of the functions in Section 12.18.4.2.3, “Creating Geometry Values Using MySQL-Specific Functions”. Thus, those functions may be used to provide the first argument to the functions in this section.
GeomCollFromWKB(wkb[,srid]), GeometryCollectionFromWKB(wkb[,srid])
Constructs a GEOMETRYCOLLECTION value using its WKB representation and SRID.
GeomFromWKB(wkb[,srid]), GeometryFromWKB(wkb[,srid])
Constructs a geometry value of any type using its WKB representation and SRID.
LineFromWKB(wkb[,srid]), LineStringFromWKB(wkb[,srid])
Constructs a LINESTRING value using its WKB representation and SRID.
MLineFromWKB(wkb[,srid]), MultiLineStringFromWKB(wkb[,srid])
Constructs a MULTILINESTRING value using its WKB representation and SRID.
MPointFromWKB(wkb[,srid]), MultiPointFromWKB(wkb[,srid])
Constructs a MULTIPOINT value using its WKB representation and SRID.
MPolyFromWKB(wkb[,srid]), MultiPolygonFromWKB(wkb[,srid])
Constructs a MULTIPOLYGON value using its WKB representation and SRID.
Constructs a POINT value using its WKB representation and SRID.
PolyFromWKB(wkb[,srid]), PolygonFromWKB(wkb[,srid])
Constructs a POLYGON value using its WKB representation and SRID.
The OpenGIS specification also describes optional functions for constructing Polygon or MultiPolygon values based on the WKB representation of a collection of rings or closed LineString values. These values may intersect. MySQL does not implement these functions:
Constructs a MultiPolygon value from a MultiLineString value in WKB format containing an arbitrary collection of closed LineString values.
Constructs a Polygon value from a MultiLineString value in WKB format containing an arbitrary collection of closed LineString values.
12.18.4.2.3. Creating Geometry Values Using MySQL-Specific Functions
MySQL provides a set of useful nonstandard functions for creating geometry values. The functions described in this section are MySQL extensions to the OpenGIS specification.
These functions produce geometry objects from either WKB values or geometry objects as arguments. If any argument is not a proper WKB or geometry representation of the proper object type, the return value is NULL.
For example, you can insert the geometry return value from Point() directly into a Point column:
INSERT INTO t1 (pt_col) VALUES(Point(1,2));
Constructs a GeometryCollection.
Constructs a LineString value from a number of Point or WKB Point arguments. If the number of arguments is less than two, the return value is NULL.
Constructs a MultiLineString value using LineString or WKB LineString arguments.
Constructs a MultiPoint value using Point or WKB Point arguments.
Constructs a MultiPolygon value from a set of Polygon or WKB Polygon arguments.
Constructs a Point using its coordinates.
Constructs a Polygon value from a number of LineString or WKB LineString arguments. If any argument does not represent a LinearRing (that is, not a closed and simple LineString), the return value is NULL.
12.18.4.3. Creating Spatial Columns
MySQL provides a standard way of creating spatial columns for geometry types, for example, with CREATE TABLE or ALTER TABLE. Currently, spatial columns are supported for MyISAM, InnoDB, NDB, and ARCHIVE tables. See also the annotations about spatial indexes under Section 12.18.6.1, “Creating Spatial Indexes”.
Use the CREATE TABLE statement to create a table with a spatial column:
CREATE TABLE geom (g GEOMETRY);
Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:
ALTER TABLE geom ADD pt POINT;
ALTER TABLE geom DROP pt;
12.18.4.4. Populating Spatial Columns
After you have created spatial columns, you can populate them with spatial data.
Values should be stored in internal geometry format, but you can convert them to that format from either Well-Known Text (WKT) or Well-Known Binary (WKB) format. The following examples demonstrate how to insert geometry values into a table by converting WKT values into internal geometry format:
Perform the conversion directly in the INSERT statement:
INSERT INTO geom VALUES (GeomFromText('POINT(1 1)'));
SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (GeomFromText(@g));
Perform the conversion prior to the INSERT:
SET @g = GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);
The following examples insert more complex geometries into the table:
SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (GeomFromText(@g));
SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (GeomFromText(@g));
SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomFromText(@g));
The preceding examples all use GeomFromText() to create geometry values. You can also use type-specific functions:
SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (PointFromText(@g));
SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (LineStringFromText(@g));
SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (PolygonFromText(@g));
SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomCollFromText(@g));
Note that if a client application program wants to use WKB representations of geometry values, it is responsible for sending correctly formed WKB in queries to the server. However, there are several ways of satisfying this requirement. For example:
Inserting a POINT(1 1) value with hex literal syntax:
mysql> INSERT INTO geom VALUES
-> (GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));
An ODBC application can send a WKB representation, binding it to a placeholder using an argument of BLOB type:
INSERT INTO geom VALUES (GeomFromWKB(?))
Other programming interfaces may support a similar placeholder mechanism.
In a C program, you can escape a binary value using mysql_real_escape_string() and include the result in a query string that is sent to the server. See Section 21.8.6.54, “mysql_real_escape_string()”.
12.18.4.5. Fetching Spatial Data
Geometry values stored in a table can be fetched in internal format. You can also convert them into WKT or WKB format.
Fetching spatial data in internal format:
Fetching geometry values using internal format can be useful in table-to-table transfers:
CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;
Fetching spatial data in WKT format:
The AsText() function converts a geometry from internal format into a WKT string.
SELECT AsText(g) FROM geom;
Fetching spatial data in WKB format:
The AsBinary() function converts a geometry from internal format into a BLOB containing the WKB value.
SELECT AsBinary(g) FROM geom;
12.18.5. Spatial Analysis Functions
After populating spatial columns with values, you are ready to query and analyze them. MySQL provides a set of functions to perform various operations on spatial data. These functions can be grouped into four major categories according to the type of operation they perform:
Functions that convert geometries between various formats
Functions that provide access to qualitative or quantitative properties of a geometry
Functions that describe relations between two geometries
Functions that create new geometries from existing ones
Spatial analysis functions can be used in many contexts, such as:
Any interactive SQL program, such as mysql.
Application programs written in any language that supports a MySQL client API
12.18.5.1. Geometry Format Conversion Functions
MySQL supports the following functions for converting geometry values between internal format and either WKT or WKB format:
Converts a value in internal geometry format to its WKB representation and returns the binary result.
SELECT AsBinary(g) FROM geom;
Converts a value in internal geometry format to its WKT representation and returns the string result.
mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(GeomFromText(@g));
+--------------------------+
| AsText(GeomFromText(@g)) |
+--------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------+
Converts a string value from its WKT representation into internal geometry format and returns the result. A number of type-specific functions are also supported, such as PointFromText() and LineFromText(). See Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”.
Converts a binary value from its WKB representation into internal geometry format and returns the result. A number of type-specific functions are also supported, such as PointFromWKB() and LineFromWKB(). See Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”.
12.18.5.2. Geometry Property Functions
Each function that belongs to this group takes a geometry value as its argument and returns some quantitative or qualitative property of the geometry. Some functions restrict their argument type. Such functions return NULL if the argument is of an incorrect geometry type. For example, Area() returns NULL if the object type is neither Polygon nor MultiPolygon.
12.18.5.2.1. General Geometry Functions
The functions listed in this section do not restrict their argument and accept a geometry value of any type.
Returns the inherent dimension of the geometry value g. The result can be –1, 0, 1, or 2. The meaning of these values is given in Section 12.18.2.2, “Class Geometry”.
mysql> SELECT Dimension(GeomFromText('LineString(1 1,2 2)'));
+--+
| Dimension(GeomFromText('LineString(1 1,2 2)')) |
+--+
| 1 |
+--+
Returns the Minimum Bounding Rectangle (MBR) for the geometry value g. The result is returned as a Polygon value.
The polygon is defined by the corner points of the bounding box:
POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))
mysql> SELECT AsText(Envelope(GeomFromText('LineString(1 1,2 2)')));
+---+
| AsText(Envelope(GeomFromText('LineString(1 1,2 2)'))) |
+---+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+---+
Returns as a binary string the name of the geometry type of which the geometry instance g is a member. The name corresponds to one of the instantiable Geometry subclasses.
mysql> SELECT GeometryType(GeomFromText('POINT(1 1)'));
+--+
| GeometryType(GeomFromText('POINT(1 1)')) |
+--+
| POINT |
+--+
Returns 1 if the geometry value g has no anomalous geometric points, such as self-intersection or self-tangency. IsSimple() returns 0 if the argument is not simple, and NULL if it is NULL.
The description of each instantiable geometric class given earlier in the chapter includes the specific conditions that cause an instance of that class to be classified as not simple. (See Section 12.18.2.1, “The Geometry Class Hierarchy”.)
Prior to MySQL 5.6.1, this function always returns 0.
Returns an integer indicating the Spatial Reference System ID for the geometry value g.
In MySQL, the SRID value is just an integer associated with the geometry value. All calculations are done assuming Euclidean (planar) geometry.
mysql> SELECT SRID(GeomFromText('LineString(1 1,2 2)',101));
+---+
| SRID(GeomFromText('LineString(1 1,2 2)',101)) |
+---+
| 101 |
+---+
The OpenGIS specification also defines the following functions, which MySQL does not implement:
Returns a geometry that is the closure of the combinatorial boundary of the geometry value g.
This function is a placeholder that returns 0 for any valid geometry value, 1 for any invalid geometry value or NULL.
MySQL does not support GIS EMPTY values such as POINT EMPTY.
12.18.5.2.2. Point Functions
A Point consists of X and Y coordinates, which may be obtained using the following functions:
Returns the X-coordinate value for the Point object p as a double-precision number.
mysql> SELECT X(POINT(56.7, 53.34));
+-----------------------+
| X(POINT(56.7, 53.34)) |
+-----------------------+
| 56.7 |
+-----------------------+
Returns the Y-coordinate value for the Point object p as a double-precision number.
mysql> SELECT Y(POINT(56.7, 53.34));
+-----------------------+
| Y(POINT(56.7, 53.34)) |
+-----------------------+
| 53.34 |
+-----------------------+
12.18.5.2.3. LineString Functions
A LineString consists of Point values. You can extract particular points of a LineString, count the number of points that it contains, or obtain its length.
Returns the Point that is the endpoint of the LineString value ls.
mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(EndPoint(GeomFromText(@ls)));
+-------------------------------------+
| AsText(EndPoint(GeomFromText(@ls))) |
+-------------------------------------+
| POINT(3 3) |
+-------------------------------------+
Returns as a double-precision number the length of the LineString value ls in its associated spatial reference.
mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT GLength(GeomFromText(@ls));
+----------------------------+
| GLength(GeomFromText(@ls)) |
+----------------------------+
| 2.8284271247462 |
+----------------------------+
GLength() is a nonstandard name. It corresponds to the OpenGIS Length() function.
Returns the number of Point objects in the LineString value ls.
mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT NumPoints(GeomFromText(@ls));
+------------------------------+
| NumPoints(GeomFromText(@ls)) |
+------------------------------+
| 3 |
+------------------------------+
Returns the N-th Point in the Linestring value ls. Points are numbered beginning with 1.
mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(PointN(GeomFromText(@ls),2));
+-------------------------------------+
| AsText(PointN(GeomFromText(@ls),2)) |
+-------------------------------------+
| POINT(2 2) |
+-------------------------------------+
Returns the Point that is the start point of the LineString value ls.
mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(StartPoint(GeomFromText(@ls)));
+---------------------------------------+
| AsText(StartPoint(GeomFromText(@ls))) |
+---------------------------------------+
| POINT(1 1) |
+---------------------------------------+
The OpenGIS specification also defines the following function, which MySQL does not implement:
Returns 1 if the LineString value ls is closed (that is, its StartPoint() and EndPoint() values are the same) and is simple (does not pass through the same point more than once). Returns 0 if ls is not a ring, and –1 if it is NULL.
12.18.5.2.4. MultiLineString Functions
These functions return properties of MultiLineString values.
Returns as a double-precision number the length of the MultiLineString value mls. The length of mls is equal to the sum of the lengths of its elements.
mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT GLength(GeomFromText(@mls));
+-----------------------------+
| GLength(GeomFromText(@mls)) |
+-----------------------------+
| 4.2426406871193 |
+-----------------------------+
GLength() is a nonstandard name. It corresponds to the OpenGIS Length() function.
Returns 1 if the MultiLineString value mls is closed (that is, the StartPoint() and EndPoint() values are the same for each LineString in mls). Returns 0 if mls is not closed, and –1 if it is NULL.
mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT IsClosed(GeomFromText(@mls));
+------------------------------+
| IsClosed(GeomFromText(@mls)) |
+------------------------------+
| 0 |
+------------------------------+
12.18.5.2.5. Polygon Functions
These functions return properties of Polygon values.
Returns as a double-precision number the area of the Polygon value poly, as measured in its spatial reference system.
mysql> SET @poly = 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT Area(GeomFromText(@poly));
+---------------------------+
| Area(GeomFromText(@poly)) |
+---------------------------+
| 4 |
+---------------------------+
Returns the exterior ring of the Polygon value poly as a LineString.
mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT AsText(ExteriorRing(GeomFromText(@poly)));
+---+
| AsText(ExteriorRing(GeomFromText(@poly))) |
+---+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+---+
Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are numbered beginning with 1.
mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT AsText(InteriorRingN(GeomFromText(@poly),1));
+--+
| AsText(InteriorRingN(GeomFromText(@poly),1)) |
+--+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+--+
Returns the number of interior rings in the Polygon value poly.
mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT NumInteriorRings(GeomFromText(@poly));
+---------------------------------------+
| NumInteriorRings(GeomFromText(@poly)) |
+---------------------------------------+
| 1 |
+---------------------------------------+
12.18.5.2.6. MultiPolygon Functions
These functions return properties of MultiPolygon values.
Returns as a double-precision number the area of the MultiPolygon value mpoly, as measured in its spatial reference system.
mysql> SET @mpoly =
-> 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';
mysql> SELECT Area(GeomFromText(@mpoly));
+----------------------------+
| Area(GeomFromText(@mpoly)) |
+----------------------------+
| 8 |
+----------------------------+
Returns the mathematical centroid for the MultiPolygon value mpoly as a Point. The result is not guaranteed to be on the MultiPolygon.
mysql> SET @poly =
-> GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7,5 5))');
mysql> SELECT GeometryType(@poly),AsText(Centroid(@poly));
+---------------------+--+
| GeometryType(@poly) | AsText(Centroid(@poly)) |
+---------------------+--+
| POLYGON | POINT(4.958333333333333 4.958333333333333) |
+---------------------+--+
The OpenGIS specification also defines the following function, which MySQL does not implement:
PointOnSurface(mpoly)
Returns a Point value that is guaranteed to be on the MultiPolygon value mpoly.
12.18.5.2.7. GeometryCollection Functions
These functions return properties of GeometryCollection values.
Returns the N-th geometry in the GeometryCollection value gc. Geometries are numbered beginning with 1.
mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT AsText(GeometryN(GeomFromText(@gc),1));
+--+
| AsText(GeometryN(GeomFromText(@gc),1)) |
+--+
| POINT(1 1) |
+--+
Returns the number of geometries in the GeometryCollection value gc.
mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT NumGeometries(GeomFromText(@gc));
+----------------------------------+
| NumGeometries(GeomFromText(@gc)) |
+----------------------------------+
| 2 |
+----------------------------------+
12.18.5.3. Functions That Create New Geometries from Existing Ones
The following sections describe functions that take geometry values as arguments and return new geometry values.
12.18.5.3.1. Geometry Functions That Produce New Geometries
Section 12.18.5.2, “Geometry Property Functions”, discusses several functions that construct new geometries from existing ones. See that section for descriptions of these functions:
12.18.5.3.2. Spatial Operators
OpenGIS proposes a number of other functions that can produce geometries. They are designed to implement spatial operators.
Returns a geometry that represents all points whose distance from the geometry value g is less than or equal to a distance of d.
Buffer() supports negative distances for polygons, multipolygons, and geometry collections containing polygons or multipolygons. For point, multipoint, linestring, multilinestring, and geometry collections not containing any polygons or multipolygons, Buffer() with a negative distance returns NULL.
Prior to MySQL 5.6.1, this function is unimplemented.
The OpenGIS specification also defines the following functions, which MySQL does not implement:
Returns a geometry that represents the convex hull of the geometry value g.
Returns a geometry that represents the point set difference of the geometry value g1 with g2.
Returns a geometry that represents the point set intersection of the geometry values g1 with g2.
Returns a geometry that represents the point set symmetric difference of the geometry value g1 with g2.
Returns a geometry that represents the point set union of the geometry values g1 and g2.
12.18.5.4. Functions for Testing Spatial Relations Between Geometric Objects
The functions described in these sections take two geometries as input parameters and return a qualitative or quantitative relation between them.
12.18.5.4.1. Relations on Geometry Minimal Bounding Rectangles (MBRs)
MySQL provides several functions that test relations between minimal bounding rectangles of two geometries g1 and g2. The return values 1 and 0 indicate true and false, respectively.
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangle of g1 contains the Minimum Bounding Rectangle of g2. This tests the opposite relationship as MBRWithin().
mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRContains(@g2,@g1);
----------------------+----------------------+
| MBRContains(@g1,@g2) | MBRContains(@g2,@g1) |
+----------------------+----------------------+
| 1 | 0 |
+----------------------+----------------------+
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 are disjoint (do not intersect).
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 are the same.
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 intersect.
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 overlap. The term spatially overlaps is used if two geometries intersect and their intersection results in a geometry of the same dimension but not equal to either of the given geometries.
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and g2 touch. Two geometries spatially touch if the interiors of the geometries do not intersect, but the boundary of one of the geometries intersects either the boundary or the interior of the other.
Returns 1 or 0 to indicate whether the Minimum Bounding Rectangle of g1 is within the Minimum Bounding Rectangle of g2. This tests the opposite relationship as MBRContains().
mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+
12.18.5.4.2. Functions That Test Spatial Relationships Between Geometries
The OpenGIS specification defines the following functions. They test the relationship between two geometry values g1 and g2.
The return values 1 and 0 indicate true and false, respectively.
Note
MySQL originally implemented these functions such that they used object bounding rectangles and returned the same result as the corresponding MBR-based functions. As of MySQL 5.6.1, corresponding versions are available that use precise object shapes. These versions are named with an ST_ prefix. For example, Contains() uses object bounding rectangles, whereas ST_Contains() uses object shapes.
As of MySQL 5.6.1, there are also ST_ aliases for existing spatial functions that were already exact. For example, ST_IsEmpty() is an alias for IsEmpty()
Functions That Use Object Shapes
Returns 1 or 0 to indicate whether g1 completely contains g2. This tests the opposite relationship as ST_Within().
Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2 is a Point or a MultiPoint. Otherwise, returns 0.
The term spatially crosses denotes a spatial relation between two given geometries that has the following properties:
The two geometries intersect
Their intersection results in a geometry that has a dimension that is one less than the maximum dimension of the two given geometries
Their intersection is not equal to either of the two given geometries
Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.
Returns 1 or 0 to indicate whether g1 is spatially equal to g2.
Returns 1 or 0 to indicate whether g1 spatially intersects g2.
Returns 1 or 0 to indicate whether g1 spatially overlaps g2. The term spatially overlaps is used if two geometries intersect and their intersection results in a geometry of the same dimension but not equal to either of the given geometries.
Returns 1 or 0 to indicate whether g1 spatially touches g2. Two geometries spatially touch if the interiors of the geometries do not intersect, but the boundary of one of the geometries intersects either the boundary or the interior of the other.
Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as ST_Contains().
Functions That Use Bounding Rectangles
Returns 1 or 0 to indicate whether g1 completely contains g2. This tests the opposite relationship as Within().
Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2 is a Point or a MultiPoint. Otherwise, returns 0.
The term spatially crosses denotes a spatial relation between two given geometries that has the following properties:
The two geometries intersect
Their intersection results in a geometry that has a dimension that is one less than the maximum dimension of the two given geometries
Their intersection is not equal to either of the two given geometries
Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.
Returns 1 or 0 to indicate whether g1 is spatially equal to g2.
Returns 1 or 0 to indicate whether g1 spatially intersects g2.
Returns 1 or 0 to indicate whether g1 spatially overlaps g2. The term spatially overlaps is used if two geometries intersect and their intersection results in a geometry of the same dimension but not equal to either of the given geometries.
Returns 1 or 0 to indicate whether g1 spatially touches g2. Two geometries spatially touch if the interiors of the geometries do not intersect, but the boundary of one of the geometries intersects either the boundary or the interior of the other.
Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as Contains().
12.18.6. Optimizing Spatial Analysis
For MyISAM tables, Search operations in nonspatial databases can be optimized using SPATIAL indexes. This is true for spatial databases as well. With the help of a great variety of multi-dimensional indexing methods that have previously been designed, it is possible to optimize spatial searches. The most typical of these are:
Point queries that search for all objects that contain a given point
Region queries that search for all objects that overlap a given region
MySQL uses R-Trees with quadratic splitting for SPATIAL indexes on spatial columns. A SPATIAL index is built using the MBR of a geometry. For most geometries, the MBR is a minimum rectangle that surrounds the geometries. For a horizontal or a vertical linestring, the MBR is a rectangle degenerated into the linestring. For a point, the MBR is a rectangle degenerated into the point.
It is also possible to create normal indexes on spatial columns. In a non-SPATIAL index, you must declare a prefix for any spatial column except for POINT columns.
MyISAM supports both SPATIAL and non-SPATIAL indexes. Other storage engines support non-SPATIAL indexes, as described in Section 13.1.11, “CREATE INDEX Syntax”.
12.18.6.1. Creating Spatial Indexes
For MyISAM tables, MySQL can create spatial indexes using syntax similar to that for creating regular indexes, but extended with the SPATIAL keyword. Currently, columns in spatial indexes must be declared NOT NULL. The following examples demonstrate how to create spatial indexes:
With CREATE TABLE:
CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g)) ENGINE=MyISAM;
With ALTER TABLE:
ALTER TABLE geom ADD SPATIAL INDEX(g);
With CREATE INDEX:
CREATE SPATIAL INDEX sp_index ON geom (g);
For MyISAM tables, SPATIAL INDEX creates an R-tree index. For storage engines that support nonspatial indexing of spatial columns, the engine creates a B-tree index. A B-tree index on spatial values will be useful for exact-value lookups, but not for range scans.
For more information on indexing spatial columns, see Section 13.1.11, “CREATE INDEX Syntax”.
To drop spatial indexes, use ALTER TABLE or DROP INDEX:
With ALTER TABLE:
ALTER TABLE geom DROP INDEX g;
With DROP INDEX:
DROP INDEX sp_index ON geom;
Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for storing object ID values.
mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)
mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)
To add a spatial index on the column g, use this statement:
mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0
12.18.6.2. Using a Spatial Index
The optimizer investigates whether available spatial indexes can be involved in the search for queries that use a function such as MBRContains() or MBRWithin() in the WHERE clause. The following query finds all objects that are in the given rectangle:
mysql> SET @poly =
-> 'Polygon((30000 15000,
31000 15000,
31000 16000,
30000 16000,
30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom WHERE
-> MBRContains(GeomFromText(@poly),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
| 21 | LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ... |
| 22 | LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ... |
| 23 | LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ... |
| 24 | LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ... |
| 25 | LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ... |
| 26 | LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ... |
| 249 | LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ... |
| 1 | LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ... |
| 2 | LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ... |
| 3 | LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ... |
| 4 | LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ... |
| 5 | LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ... |
| 6 | LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ... |
| 7 | LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ... |
| 10 | LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ... |
| 11 | LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ... |
| 13 | LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ... |
| 154 | LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ... |
| 155 | LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ... |
| 157 | LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ... |
+-----+---+
20 rows in set (0.00 sec)
Use EXPLAIN to check the way this query is executed:
mysql> SET @poly =
-> 'Polygon((30000 15000,
31000 15000,
31000 16000,
30000 16000,
30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE
-> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: geom
type: range
possible_keys: g
key: g
key_len: 32
ref: NULL
rows: 50
Extra: Using where
1 row in set (0.00 sec)
Check what would happen without a spatial index:
mysql> SET @poly =
-> 'Polygon((30000 15000,
31000 15000,
31000 16000,
30000 16000,
30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE
-> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: geom
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 32376
Extra: Using where
1 row in set (0.00 sec)
Executing the SELECT statement without the spatial index yields the same result but causes the execution time to rise from 0.00 seconds to 0.46 seconds:
mysql> SET @poly =
-> 'Polygon((30000 15000,
31000 15000,
31000 16000,
30000 16000,
30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE
-> MBRContains(GeomFromText(@poly),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
| 1 | LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ... |
| 2 | LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ... |
| 3 | LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ... |
| 4 | LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ... |
| 5 | LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ... |
| 6 | LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ... |
| 7 | LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ... |
| 10 | LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ... |
| 11 | LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ... |
| 13 | LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ... |
| 21 | LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ... |
| 22 | LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ... |
| 23 | LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ... |
| 24 | LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ... |
| 25 | LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ... |
| 26 | LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ... |
| 154 | LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ... |
| 155 | LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ... |
| 157 | LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ... |
| 249 | LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ... |
+-----+---+
20 rows in set (0.46 sec)
12.18.7. MySQL Conformance and Compatibility
MySQL does not yet implement the following GIS features:
Additional Metadata Views
OpenGIS specifications propose several additional metadata views. For example, a system view named GEOMETRY_COLUMNS contains a description of geometry columns, one row for each geometry column in the database.
The OpenGIS function Length() on LineString and MultiLineString currently should be called in MySQL as GLength()
The problem is that there is an existing SQL function Length() that calculates the length of string values, and sometimes it is not possible to distinguish whether the function is called in a textual or spatial context. We need either to solve this somehow, or decide on another function name.
12.19. Precision Math
MySQL 5.6 provides support for precision math: numeric value handling that results in extremely accurate results and a high degree control over invalid values. Precision math is based on these two features:
SQL modes that control how strict the server is about accepting or rejecting invalid data.
The MySQL library for fixed-point arithmetic.
These features have several implications for numeric operations and provide a high degree of compliance with standard SQL:
Precise calculations: For exact-value numbers, calculations do not introduce floating-point errors. Instead, exact precision is used. For example, MySQL treats a number such as .0001 as an exact value rather than as an approximation, and summing it 10,000 times produces a result of exactly 1, not a value that is merely “close” to 1.
Well-defined rounding behavior: For exact-value numbers, the result of ROUND() depends on its argument, not on environmental factors such as how the underlying C library works.
Platform independence: Operations on exact numeric values are the same across different platforms such as Windows and Unix.
Control over handling of invalid values: Overflow and division by zero are detectable and can be treated as errors. For example, you can treat a value that is too large for a column as an error rather than having the value truncated to lie within the range of the column's data type. Similarly, you can treat division by zero as an error rather than as an operation that produces a result of NULL. The choice of which approach to take is determined by the setting of the server SQL mode.
The following discussion covers several aspects of how precision math works, including possible incompatibilities with older applications. At the end, some examples are given that demonstrate how MySQL 5.6 handles numeric operations precisely. For information about controlling the SQL mode, see Section 5.1.7, “Server SQL Modes”.
12.19.1. Types of Numeric Values
The scope of precision math for exact-value operations includes the exact-value data types (DECIMAL and integer types) and exact-value numeric literals. Approximate-value data types and numeric literals are handled as floating-point numbers.
Exact-value numeric literals have an integer part or fractional part, or both. They may be signed. Examples: 1, .2, 3.4, -5, -6.78, +9.10.
Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent. Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.
Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-point) number, whereas 2.34E0 is an approximate-value (floating-point) number.
The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types.
The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In MySQL, types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.
12.19.2. DECIMAL Data Type Changes
This section discusses the characteristics of the DECIMAL data type (and its synonyms) in MySQL 5.6, with particular regard to the following topics:
Maximum number of digits
Storage format
Storage requirements
The nonstandard MySQL extension to the upper range of DECIMAL columns
Possible incompatibilities with applications that are written for older versions of MySQL (prior to 5.0.3) are noted throughout this section.
The declaration syntax for a DECIMAL column is DECIMAL(M,D). The ranges of values for the arguments in MySQL 5.6 are as follows:
M is the maximum number of digits (the precision). It has a range of 1 to 65. (Older versions of MySQL permitted a range of 1 to 254.)
D is the number of digits to the right of the decimal point (the scale). It has a range of 0 to 30 and must be no larger than M.
The maximum value of 65 for M means that calculations on DECIMAL values are accurate up to 65 digits. This limit of 65 digits of precision also applies to exact-value numeric literals, so the maximum range of such literals differs from before. (In older versions of MySQL, decimal values could have up to 254 digits. However, calculations were done using floating-point and thus were approximate, not exact.)
Values for DECIMAL columns in MySQL 5.6 are stored using a binary format that packs nine decimal digits into 4 bytes. The storage requirements for the integer and fractional parts of each value are determined separately. Each multiple of nine digits requires 4 bytes, and any remaining digits left over require some fraction of 4 bytes. The storage required for remaining digits is given by the following table.
Leftover Digits | Number of Bytes |
---|---|
0 | 0 |
1–2 | 1 |
3–4 | 2 |
5–6 | 3 |
7–9 | 4 |
For example, a DECIMAL(18,9) column has nine digits on either side of the decimal point, so the integer part and the fractional part each require 4 bytes. A DECIMAL(20,6) column has fourteen integer digits and six fractional digits. The integer digits require four bytes for nine of the digits and 3 bytes for the remaining five digits. The six fractional digits require 3 bytes.
Unlike some older versions of MySQL, DECIMAL columns in MySQL 5.6 do not store a leading + character or - character or leading 0 digits. If you insert +0003.1 into a DECIMAL(5,1) column, it is stored as 3.1. For negative numbers, a literal - character is not stored. Applications that rely on the older behavior must be modified to account for this change.
DECIMAL columns in MySQL 5.6 do not permit values larger than the range implied by the column definition. For example, a DECIMAL(3,0) column supports a range of -999 to 999. A DECIMAL(M,D) column permits at most M - D digits to the left of the decimal point. This is not compatible with applications relying on older versions of MySQL that permitted storing an extra digit in lieu of a + sign.
The SQL standard requires that the precision of NUMERIC(M,D) be exactly M digits. For DECIMAL(M,D), the standard requires a precision of at least M digits but permits more. In MySQL, DECIMAL(M,D) and NUMERIC(M,D) are the same, and both have a precision of exactly M digits.
For more detailed information about porting applications that rely on the old treatment of the DECIMAL data type, see the MySQL 5.0 Reference Manual.
12.19.3. Expression Handling
With precision math, exact-value numbers are used as given whenever possible. For example, numbers in comparisons are used exactly as given without a change in value. In strict SQL mode, for INSERT into a column with an exact data type (DECIMAL or integer), a number is inserted with its exact value if it is within the column range. When retrieved, the value should be the same as what was inserted. (Without strict mode, truncation for INSERT is permissible.)
Handling of a numeric expression depends on what kind of values the expression contains:
If any approximate values are present, the expression is approximate and is evaluated using floating-point arithmetic.
If no approximate values are present, the expression contains only exact values. If any exact value contains a fractional part (a value following the decimal point), the expression is evaluated using DECIMAL exact arithmetic and has a precision of 65 digits. The term “exact” is subject to the limits of what can be represented in binary. For example, 1.0/3.0 can be approximated in decimal notation as .333..., but not written as an exact number, so (1.0/3.0)*3.0 does not evaluate to exactly 1.0.
Otherwise, the expression contains only integer values. The expression is exact and is evaluated using integer arithmetic and has a precision the same as BIGINT (64 bits).
If a numeric expression contains any strings, they are converted to double-precision floating-point values and the expression is approximate.
Inserts into numeric columns are affected by the SQL mode, which is controlled by the sql_mode system variable. (See Section 5.1.7, “Server SQL Modes”.) The following discussion mentions strict mode (selected by the STRICT_ALL_TABLES or STRICT_TRANS_TABLES mode values) and ERROR_FOR_DIVISION_BY_ZERO. To turn on all restrictions, you can simply use TRADITIONAL mode, which includes both strict mode values and ERROR_FOR_DIVISION_BY_ZERO:
mysql> SET sql_mode='TRADITIONAL';
If a number is inserted into an exact type column (DECIMAL or integer), it is inserted with its exact value if it is within the column range.
If the value has too many digits in the fractional part, rounding occurs and a warning is generated. Rounding is done as described in Section 12.19.4, “Rounding Behavior”.
If the value has too many digits in the integer part, it is too large and is handled as follows:
If strict mode is not enabled, the value is truncated to the nearest legal value and a warning is generated.
If strict mode is enabled, an overflow error occurs.
Underflow is not detected, so underflow handling is undefined.
By default, division by zero produces a result of NULL and no warning. With the ERROR_FOR_DIVISION_BY_ZERO SQL mode enabled, MySQL handles division by zero differently:
If strict mode is not enabled, a warning occurs.
If strict mode is enabled, inserts and updates involving division by zero are prohibited, and an error occurs.
In other words, inserts and updates involving expressions that perform division by zero can be treated as errors, but this requires ERROR_FOR_DIVISION_BY_ZERO in addition to strict mode.
Suppose that we have this statement:
INSERT INTO t SET i = 1/0;
This is what happens for combinations of strict and ERROR_FOR_DIVISION_BY_ZERO modes.
sql_mode Value | Result |
---|---|
'' (Default) | No warning, no error; i is set to NULL. |
strict | No warning, no error; i is set to NULL. |
ERROR_FOR_DIVISION_BY_ZERO | Warning, no error; i is set to NULL. |
strict,ERROR_FOR_DIVISION_BY_ZERO | Error condition; no row is inserted. |
For inserts of strings into numeric columns, conversion from string to number is handled as follows if the string has nonnumeric contents:
A string that does not begin with a number cannot be used as a number and produces an error in strict mode, or a warning otherwise. This includes the empty string.
A string that begins with a number can be converted, but the trailing nonnumeric portion is truncated. If the truncated portion contains anything other than spaces, this produces an error in strict mode, or a warning otherwise.
12.19.4. Rounding Behavior
This section discusses precision math rounding for the ROUND() function and for inserts into columns with exact-value types (DECIMAL and integer).
The ROUND() function rounds differently depending on whether its argument is exact or approximate:
For exact-value numbers, ROUND() uses the “round half up” rule: A value with a fractional part of .5 or greater is rounded up to the next integer if positive or down to the next integer if negative. (In other words, it is rounded away from zero.) A value with a fractional part less than .5 is rounded down to the next integer if positive or up to the next integer if negative.
For approximate-value numbers, the result depends on the C library. On many systems, this means that ROUND() uses the “round to nearest even” rule: A value with any fractional part is rounded to the nearest even integer.
The following example shows how rounding differs for exact and approximate values:
mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+
For inserts into a DECIMAL or integer column, the target is an exact data type, so rounding uses “round half away from zero,” regardless of whether the value to be inserted is exact or approximate:
mysql> CREATE TABLE t (d DECIMAL(10,0));
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO t VALUES(2.5),(2.5E0);
Query OK, 2 rows affected, 2 warnings (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 2
mysql> SELECT d FROM t;
+------+
| d |
+------+
| 3 |
| 3 |
+------+
12.19.5. Precision Math Examples
This section provides some examples that show precision math query results in MySQL 5.6. These examples demonstrate the principles described in Section 12.19.3, “Expression Handling”, and Section 12.19.4, “Rounding Behavior”.
Example 1. Numbers are used with their exact value as given when possible:
mysql> SELECT (.1 + .2) = .3;
+----------------+
| (.1 + .2) = .3 |
+----------------+
| 1 |
+----------------+
For floating-point values, results are inexact:
mysql> SELECT (.1E0 + .2E0) = .3E0;
+----------------------+
| (.1E0 + .2E0) = .3E0 |
+----------------------+
| 0 |
+----------------------+
Another way to see the difference in exact and approximate value handling is to add a small number to a sum many times. Consider the following stored procedure, which adds .0001 to a variable 1,000 times.
CREATE PROCEDURE p ()
BEGIN
DECLARE i INT DEFAULT 0;
DECLARE d DECIMAL(10,4) DEFAULT 0;
DECLARE f FLOAT DEFAULT 0;
WHILE i < 10000 DO
SET d = d + .0001;
SET f = f + .0001E0;
SET i = i + 1;
END WHILE;
SELECT d, f;
END;
The sum for both d and f logically should be 1, but that is true only for the decimal calculation. The floating-point calculation introduces small errors:
+--------+------------------+
| d | f |
+--------+------------------+
| 1.0000 | 0.99999999999991 |
+--------+------------------+
Example 2. Multiplication is performed with the scale required by standard SQL. That is, for two numbers X1 and X2 that have scale S1 and S2, the scale of the result is S1 + S2:
mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.0001 |
+-----------+
Example 3. Rounding behavior for exact-value numbers is well-defined:
Rounding behavior (for example, with the ROUND() function) is independent of the implementation of the underlying C library, which means that results are consistent from platform to platform.
Rounding for exact-value columns (DECIMAL and integer) and exact-valued numbers uses the “round half away from zero” rule. Values with a fractional part of .5 or greater are rounded away from zero to the nearest integer, as shown here:
mysql> SELECT ROUND(2.5), ROUND(-2.5);
+------------+-------------+
| ROUND(2.5) | ROUND(-2.5) |
+------------+-------------+
| 3 | -3 |
+------------+-------------+
Rounding for floating-point values uses the C library, which on many systems uses the “round to nearest even” rule. Values with any fractional part on such systems are rounded to the nearest even integer:
mysql> SELECT ROUND(2.5E0), ROUND(-2.5E0);
+--------------+---------------+
| ROUND(2.5E0) | ROUND(-2.5E0) |
+--------------+---------------+
| 2 | -2 |
+--------------+---------------+
Example 4. In strict mode, inserting a value that is out of range for a column causes an error, rather than truncation to a legal value.
When MySQL is not running in strict mode, truncation to a legal value occurs:
mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO t SET i = 128;
Query OK, 1 row affected, 1 warning (0.00 sec)
mysql> SELECT i FROM t;
+------+
| i |
+------+
| 127 |
+------+
1 row in set (0.00 sec)
However, an error occurs if strict mode is in effect:
mysql> SET sql_mode='STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO t SET i = 128;
ERROR 1264 (22003): Out of range value adjusted for column 'i' at row 1
mysql> SELECT i FROM t;
Empty set (0.00 sec)
Example 5: In strict mode and with ERROR_FOR_DIVISION_BY_ZERO set, division by zero causes an error, not a result of NULL.
In nonstrict mode, division by zero has a result of NULL:
mysql> SET sql_mode='';
Query OK, 0 rows affected (0.01 sec)
mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO t SET i = 1 / 0;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT i FROM t;
+------+
| i |
+------+
| NULL |
+------+
1 row in set (0.03 sec)
However, division by zero is an error if the proper SQL modes are in effect:
mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO t SET i = 1 / 0;
ERROR 1365 (22012): Division by 0
mysql> SELECT i FROM t;
Empty set (0.01 sec)
Example 6. Exact-value literals are evaluated as exact values.
Prior to MySQL 5.0.3, exact-value and approximate-value literals both are evaluated as double-precision floating-point values:
mysql> SELECT VERSION();
+------------+
| VERSION() |
+------------+
| 4.1.18-log |
+------------+
1 row in set (0.01 sec)
mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.07 sec)
Records: 1 Duplicates: 0 Warnings: 0
mysql> DESCRIBE t;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| a | double(3,1) | | | 0.0 | |
| b | double | | | 0 | |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.04 sec)
As of MySQL 5.0.3, the approximate-value literal is evaluated using floating point, but the exact-value literal is handled as DECIMAL:
mysql> SELECT VERSION();
+-----------------+
| VERSION() |
+-----------------+
| 5.1.6-alpha-log |
+-----------------+
1 row in set (0.11 sec)
mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0
mysql> DESCRIBE t;
+-------+-----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-----------------------+------+-----+---------+-------+
| a | decimal(2,1) unsigned | NO | | 0.0 | |
| b | double | NO | | 0 | |
+-------+-----------------------+------+-----+---------+-------+
2 rows in set (0.01 sec)
Example 7. If the argument to an aggregate function is an exact numeric type, the result is also an exact numeric type, with a scale at least that of the argument.
Consider these statements:
mysql> CREATE TABLE t (i INT, d DECIMAL, f FLOAT);
mysql> INSERT INTO t VALUES(1,1,1);
mysql> CREATE TABLE y SELECT AVG(i), AVG(d), AVG(f) FROM t;
Before MySQL 5.0.3, the result is a double no matter the argument type:
mysql> DESCRIBE y;
+--------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
| AVG(i) | double(17,4) | YES | | NULL | |
| AVG(d) | double(17,4) | YES | | NULL | |
| AVG(f) | double | YES | | NULL | |
+--------+--------------+------+-----+---------+-------+
As of MySQL 5.0.3, the result is a double only for the floating-point argument. For exact type arguments, the result is also an exact type:
mysql> DESCRIBE y;
+--------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------+------+-----+---------+-------+
| AVG(i) | decimal(14,4) | YES | | NULL | |
| AVG(d) | decimal(14,4) | YES | | NULL | |
| AVG(f) | double | YES | | NULL | |
+--------+---------------+------+-----+---------+-------+
The result is a double only for the floating-point argument. For exact type arguments, the result is also an exact type.
Chapter 13. SQL Statement Syntax
Table of Contents
13.1. Data Definition Statements
13.1.1. ALTER DATABASE Syntax
13.1.2. ALTER EVENT Syntax
13.1.3. ALTER FUNCTION Syntax
13.1.4. ALTER PROCEDURE Syntax
13.1.5. ALTER SERVER Syntax
13.1.6. ALTER TABLE Syntax
13.1.7. ALTER VIEW Syntax
13.1.8. CREATE DATABASE Syntax
13.1.9. CREATE EVENT Syntax
13.1.10. CREATE FUNCTION Syntax
13.1.11. CREATE INDEX Syntax
13.1.12. CREATE PROCEDURE and CREATE FUNCTION Syntax
13.1.13. CREATE SERVER Syntax
13.1.14. CREATE TABLE Syntax
13.1.15. CREATE TRIGGER Syntax
13.1.16. CREATE VIEW Syntax
13.1.17. DROP DATABASE Syntax
13.1.18. DROP EVENT Syntax
13.1.19. DROP FUNCTION Syntax
13.1.20. DROP INDEX Syntax
13.1.21. DROP PROCEDURE and DROP FUNCTION Syntax
13.1.22. DROP SERVER Syntax
13.1.23. DROP TABLE Syntax
13.1.24. DROP TRIGGER Syntax
13.1.25. DROP VIEW Syntax
13.1.26. RENAME TABLE Syntax
13.1.27. TRUNCATE TABLE Syntax
13.2. Data Manipulation Statements
13.2.1. CALL Syntax
13.2.2. DELETE Syntax
13.2.3. DO Syntax
13.2.4. HANDLER Syntax
13.2.5. INSERT Syntax
13.2.6. LOAD DATA INFILE Syntax
13.2.7. LOAD XML Syntax
13.2.8. REPLACE Syntax
13.2.9. SELECT Syntax
13.2.10. Subquery Syntax
13.2.11. UPDATE Syntax
13.3. MySQL Transactional and Locking Statements
13.3.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax
13.3.2. Statements That Cannot Be Rolled Back
13.3.3. Statements That Cause an Implicit Commit
13.3.4. SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax
13.3.5. LOCK TABLES and UNLOCK TABLES Syntax
13.3.6. SET TRANSACTION Syntax
13.3.7. XA Transactions
13.4.1. SQL Statements for Controlling Master Servers
13.4.2. SQL Statements for Controlling Slave Servers
13.5. SQL Syntax for Prepared Statements
13.5.1. PREPARE Syntax
13.5.2. EXECUTE Syntax
13.5.3. DEALLOCATE PREPARE Syntax
13.6. MySQL Compound-Statement Syntax
13.6.1. BEGIN ... END Compound-Statement Syntax
13.6.2. Statement Label Syntax
13.6.3. DECLARE Syntax
13.6.4. Variables in Stored Programs
13.6.5. Flow Control Statements
13.6.6. Cursors
13.6.7. Condition Handling
13.7. Database Administration Statements
13.7.1. Account Management Statements
13.7.2. Table Maintenance Statements
13.7.3. Plugin and User-Defined Function Statements
13.7.4. SET Syntax
13.7.5. SHOW Syntax
13.7.6. Other Administrative Statements
13.8. MySQL Utility Statements
13.8.1. DESCRIBE Syntax
13.8.2. EXPLAIN Syntax
13.8.3. HELP Syntax
13.8.4. USE Syntax
This chapter describes the syntax for the SQL statements supported by MySQL.
13.1. Data Definition Statements
13.1.1. ALTER DATABASE Syntax
ALTER {DATABASE | SCHEMA} [db_name]
alter_specification ...
ALTER {DATABASE | SCHEMA} db_name
UPGRADE DATA DIRECTORY NAME
alter_specification:
[DEFAULT] CHARACTER SET [=] charset_name
| [DEFAULT] COLLATE [=] collation_name
ALTER DATABASE enables you to change the overall characteristics of a database. These characteristics are stored in the db.opt file in the database directory. To use ALTER DATABASE, you need the ALTER privilege on the database. ALTER SCHEMA is a synonym for ALTER DATABASE.
The database name can be omitted from the first syntax, in which case the statement applies to the default database.
National Language Characteristics
The CHARACTER SET clause changes the default database character set. The COLLATE clause changes the default database collation. Section 10.1, “Character Set Support”, discusses character set and collation names.
You can see what character sets and collations are available using, respectively, the SHOW CHARACTER SET and SHOW COLLATION statements. See Section 13.7.5.4, “SHOW CHARACTER SET Syntax”, and Section 13.7.5.5, “SHOW COLLATION Syntax”, for more information.
If you change the default character set or collation for a database, stored routines that use the database defaults must be dropped and recreated so that they use the new defaults. (In a stored routine, variables with character data types use the database defaults if the character set or collation are not specified explicitly. See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.)
Upgrading from Versions Older than MySQL 5.1
The syntax that includes the UPGRADE DATA DIRECTORY NAME clause updates the name of the directory associated with the database to use the encoding implemented in MySQL 5.1 for mapping database names to database directory names (see Section 9.2.3, “Mapping of Identifiers to File Names”). This clause is for use under these conditions:
It is intended when upgrading MySQL to 5.1 or later from older versions.
It is intended to update a database directory name to the current encoding format if the name contains special characters that need encoding.
The statement is used by mysqlcheck (as invoked by mysql_upgrade).
For example, if a database in MySQL 5.0 has the name a-b-c, the name contains instances of the - (dash) character. In MySQL 5.0, the database directory is also named a-b-c, which is not necessarily safe for all file systems. In MySQL 5.1 and later, the same database name is encoded as a@002db@002dc to produce a file system-neutral directory name.
When a MySQL installation is upgraded to MySQL 5.1 or later from an older version,the server displays a name such as a-b-c (which is in the old format) as #mysql50#a-b-c, and you must refer to the name using the #mysql50# prefix. Use UPGRADE DATA DIRECTORY NAME in this case to explicitly tell the server to re-encode the database directory name to the current encoding format:
ALTER DATABASE `#mysql50#a-b-c` UPGRADE DATA DIRECTORY NAME;
After executing this statement, you can refer to the database as a-b-c without the special #mysql50# prefix.
13.1.2. ALTER EVENT Syntax
ALTER
[DEFINER = { user | CURRENT_USER }]
EVENT event_name
[ON SCHEDULE schedule]
[ON COMPLETION [NOT] PRESERVE]
[RENAME TO new_event_name]
[ENABLE | DISABLE | DISABLE ON SLAVE]
[COMMENT 'comment']
[DO event_body]
The ALTER EVENT statement changes one or more of the characteristics of an existing event without the need to drop and recreate it. The syntax for each of the DEFINER, ON SCHEDULE, ON COMPLETION, COMMENT, ENABLE / DISABLE, and DO clauses is exactly the same as when used with CREATE EVENT. (See Section 13.1.9, “CREATE EVENT Syntax”.)
Any user can alter an event defined on a database for which that user has the EVENT privilege. When a user executes a successful ALTER EVENT statement, that user becomes the definer for the affected event.
ALTER EVENT works only with an existing event:
mysql> ALTER EVENT no_such_event
> ON SCHEDULE
> EVERY '2:3' DAY_HOUR;
ERROR 1517 (HY000): Unknown event 'no_such_event'
In each of the following examples, assume that the event named myevent is defined as shown here:
CREATE EVENT myevent
ON SCHEDULE
EVERY 6 HOUR
COMMENT 'A sample comment.'
DO
UPDATE myschema.mytable SET mycol = mycol + 1;
The following statement changes the schedule for myevent from once every six hours starting immediately to once every twelve hours, starting four hours from the time the statement is run:
ALTER EVENT myevent
ON SCHEDULE
EVERY 12 HOUR
STARTS CURRENT_TIMESTAMP + INTERVAL 4 HOUR;
It is possible to change multiple characteristics of an event in a single statement. This example changes the SQL statement executed by myevent to one that deletes all records from mytable; it also changes the schedule for the event such that it executes once, one day after this ALTER EVENT statement is run.
ALTER EVENT myevent
ON SCHEDULE
AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
DO
TRUNCATE TABLE myschema.mytable;
Specify the options in an ALTER EVENT statement only for those characteristics that you want to change; omitted options keep their existing values. This includes any default values for CREATE EVENT such as ENABLE.
To disable myevent, use this ALTER EVENT statement:
ALTER EVENT myevent
DISABLE;
The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables to obtain any of the timestamp or interval values which it contains. You cannot use stored routines or user-defined functions in such expressions, and you cannot use any table references; however, you can use SELECT FROM DUAL. This is true for both ALTER EVENT and CREATE EVENT statements. References to stored routines, user-defined functions, and tables in such cases are specifically not permitted, and fail with an error (see Bug #22830).
Although an ALTER EVENT statement that contains another ALTER EVENT statement in its DO clause appears to succeed, when the server attempts to execute the resulting scheduled event, the execution fails with an error.
To rename an event, use the ALTER EVENT statement's RENAME TO clause. This statement renames the event myevent to yourevent:
ALTER EVENT myevent
RENAME TO yourevent;
You can also move an event to a different database using ALTER EVENT ... RENAME TO ... and db_name.event_name notation, as shown here:
ALTER EVENT olddb.myevent
RENAME TO newdb.myevent;
To execute the previous statement, the user executing it must have the EVENT privilege on both the olddb and newdb databases.
Note
There is no RENAME EVENT statement.
The value DISABLE ON SLAVE is used on a replication slave instead of ENABLED or DISABLED to indicate an event that was created on the master and replicated to the slave, but that is not executed on the slave. Normally, DISABLE ON SLAVE is set automatically as required; however, there are some circumstances under which you may want or need to change it manually. See Section 16.4.1.10, “Replication of Invoked Features”, for more information.
13.1.3. ALTER FUNCTION Syntax
ALTER FUNCTION func_name [characteristic ...]
characteristic:
COMMENT 'string'
| LANGUAGE SQL
| { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
| SQL SECURITY { DEFINER | INVOKER }
This statement can be used to change the characteristics of a stored function. More than one change may be specified in an ALTER FUNCTION statement. However, you cannot change the parameters or body of a stored function using this statement; to make such changes, you must drop and re-create the function using DROP FUNCTION and CREATE FUNCTION.
You must have the ALTER ROUTINE privilege for the function. (That privilege is granted automatically to the function creator.) If binary logging is enabled, the ALTER FUNCTION statement might also require the SUPER privilege, as described in Section 18.7, “Binary Logging of Stored Programs”.
13.1.4. ALTER PROCEDURE Syntax
ALTER PROCEDURE proc_name [characteristic ...]
characteristic:
COMMENT 'string'
| LANGUAGE SQL
| { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
| SQL SECURITY { DEFINER | INVOKER }
This statement can be used to change the characteristics of a stored procedure. More than one change may be specified in an ALTER PROCEDURE statement. However, you cannot change the parameters or body of a stored procedure using this statement; to make such changes, you must drop and re-create the procedure using DROP PROCEDURE and CREATE PROCEDURE.
You must have the ALTER ROUTINE privilege for the procedure. By default, that privilege is granted automatically to the procedure creator. This behavior can be changed by disabling the automatic_sp_privileges system variable. See Section 18.2.2, “Stored Routines and MySQL Privileges”.
13.1.5. ALTER SERVER Syntax
ALTER SERVER server_name
OPTIONS (option [, option] ...)
Alters the server information for server_name, adjusting any of the options permitted in the CREATE SERVER statement. The corresponding fields in the mysql.servers table are updated accordingly. This statement requires the SUPER privilege.
For example, to update the USER option:
ALTER SERVER s OPTIONS (USER 'sally');
ALTER SERVER does not cause an automatic commit.
In MySQL 5.6, ALTER SERVER is not written to the binary log, regardless of the logging format that is in use.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
13.1.6. ALTER TABLE Syntax
ALTER [IGNORE] TABLE tbl_name
[alter_specification [, alter_specification] ...]
[partition_options]
alter_specification:
table_options
| ADD [COLUMN] col_name column_definition
[FIRST | AFTER col_name]
| ADD [COLUMN] (col_name column_definition,...)
| ADD {INDEX|KEY} [index_name]
[index_type] (index_col_name,...) [index_option] ...
| ADD [CONSTRAINT [symbol]] PRIMARY KEY
[index_type] (index_col_name,...) [index_option] ...
| ADD [CONSTRAINT [symbol]]
UNIQUE [INDEX|KEY] [index_name]
[index_type] (index_col_name,...) [index_option] ...
| ADD FULLTEXT [INDEX|KEY] [index_name]
(index_col_name,...) [index_option] ...
| ADD SPATIAL [INDEX|KEY] [index_name]
(index_col_name,...) [index_option] ...
| ADD [CONSTRAINT [symbol]]
FOREIGN KEY [index_name] (index_col_name,...)
reference_definition
| ALGORITHM [=] {DEFAULT|INPLACE|COPY}
| ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}
| CHANGE [COLUMN] old_col_name new_col_name column_definition
[FIRST|AFTER col_name]
| LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}
| MODIFY [COLUMN] col_name column_definition
[FIRST | AFTER col_name]
| DROP [COLUMN] col_name
| DROP PRIMARY KEY
| DROP {INDEX|KEY} index_name
| DROP FOREIGN KEY fk_symbol
| DISABLE KEYS
| ENABLE KEYS
| RENAME [TO|AS] new_tbl_name
| ORDER BY col_name [, col_name] ...
| CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
| [DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=] collation_name]
| DISCARD TABLESPACE
| IMPORT TABLESPACE
| FORCE
| ADD PARTITION (partition_definition)
| DROP PARTITION partition_names
| TRUNCATE PARTITION {partition_names | ALL}
| COALESCE PARTITION number
| REORGANIZE PARTITION partition_names INTO (partition_definitions)
| EXCHANGE PARTITION partition_name WITH TABLE tbl_name
| ANALYZE PARTITION {partition_names | ALL}
| CHECK PARTITION {partition_names | ALL}
| OPTIMIZE PARTITION {partition_names | ALL}
| REBUILD PARTITION {partition_names | ALL}
| REPAIR PARTITION {partition_names | ALL}
| REMOVE PARTITIONING
index_col_name:
col_name [(length)] [ASC | DESC]
index_type:
USING {BTREE | HASH}
index_option:
KEY_BLOCK_SIZE [=] value
| index_type
| WITH PARSER parser_name
| COMMENT 'string'
table_options:
table_option [[,] table_option] ... (see CREATE TABLE options)
partition_options:
(see CREATE TABLE options)
ALTER TABLE changes the structure of a table. For example, you can add or delete columns, create or destroy indexes, change the type of existing columns, or rename columns or the table itself. You can also change characteristics such as the storage engine used for the table or the table comment.
Partitioning-related clauses for ALTER TABLE can be used with partitioned tables for repartitioning, for adding, dropping, merging, and splitting partitions, and for performing partitioning maintenance. It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITION clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITION clause must be specified last after any other specifications. The ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REORGANIZE PARTITION, ANALYZE PARTITION, CHECK PARTITION, and REPAIR PARTITION options cannot be combined with other alter specifications in a single ALTER TABLE, since the options just listed act on individual partitions. For more information, see Section 13.1.6.1, “ALTER TABLE Partition Operations”.
Following the table name, specify the alterations to be made. If none are given, ALTER TABLE does nothing.
The syntax for many of the permissible alterations is similar to clauses of the CREATE TABLE statement. See Section 13.1.14, “CREATE TABLE Syntax”, for more information.
Some operations may result in warnings if attempted on a table for which the storage engine does not support the operation. These warnings can be displayed with SHOW WARNINGS. See Section 13.7.5.41, “SHOW WARNINGS Syntax”.
For information on troubleshooting ALTER TABLE, see Section C.5.7.1, “Problems with ALTER TABLE”.
Storage, Performance, and Concurrency Considerations
In most cases, ALTER TABLE makes a temporary copy of the original table. MySQL waits for other operations that are modifying the table, then proceeds. It incorporates the alteration into the copy, deletes the original table, and renames the new one. While ALTER TABLE is executing, the original table is readable by other sessions (with the exception noted shortly). Updates and writes to the table that begin after the ALTER TABLE operation begins are stalled until the new table is ready, then are automatically redirected to the new table without any failed updates. The temporary table is created in the database directory of the new table. This can differ from the database directory of the original table for ALTER TABLE operations that rename the table to a different database.
The exception referred to earlier is that ALTER TABLE blocks reads (not just writes) at the point where it is ready to install a new version of the table .frm file, discard the old file, and clear outdated table structures from the table and table definition caches. At this point, it must acquire an exclusive lock. To do so, it waits for current readers to finish, and blocks new reads (and writes).
For MyISAM tables, you can speed up index re-creation (the slowest part of the alteration process) by setting the myisam_sort_buffer_size system variable to a high value.
For some operations, an in-place ALTER TABLE is possible that does not require a temporary table:
For ALTER TABLE tbl_name RENAME TO new_tbl_name without any other options, MySQL simply renames any files that correspond to the table tbl_name without making a copy. (You can also use the RENAME TABLE statement to rename tables. See Section 13.1.26, “RENAME TABLE Syntax”.) Any privileges granted specifically for the renamed table are not migrated to the new name. They must be changed manually.
Alterations that modify only table metadata and not table data can be made immediately by altering the table's .frm file and not touching table contents. The following changes are fast alterations that can be made this way:
Renaming a column, except for the InnoDB storage engine before MySQL 5.6.6.
Changing the default value of a column.
Changing the definition of an ENUM or SET column by adding new enumeration or set members to the end of the list of valid member values, as long as the storage size of the data type does not change. For example, adding a member to a SET column that has 8 members changes the required storage per value from 1 byte to 2 bytes; this will require a table copy. Adding members in the middle of the list causes renumbering of existing members, which requires a table copy.
ALTER TABLE with ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REBUILD PARTITION, or REORGANIZE PARTITION does not create any temporary tables (except when used with NDB tables); however, these operations can and do create temporary partition files.
ADD or DROP operations for RANGE or LIST partitions are immediate operations or nearly so. ADD or COALESCE operations for HASH or KEY partitions copy data between all partitions, unless LINEAR HASH or LINEAR KEY was used; this is effectively the same as creating a new table, although the ADD or COALESCE operation is performed partition by partition. REORGANIZE operations copy only changed partitions and do not touch unchanged ones.
Renaming an index, except for InnoDB.
Adding or dropping an index, for InnoDB.
You can force an ALTER TABLE operation that would otherwise not require a table copy to use the temporary table method (as supported in MySQL 5.0) by setting the old_alter_table system variable to ON, or specifying ALGORITHM=COPY as one of the alter_specification clauses. If there is a conflict between the old_alter_table setting and an ALGORITHM clause with a value other than DEFAULT, the ALGORITHM clause takes precedence. (ALGORITHM = DEFAULT is the same a specifying no ALGORITHM clause at all.)
Specifying ALGORITHM=INPLACE makes the operation use the in-place technique for clauses and storage engines that support it, and fail with an error otherwise, thus avoiding a lengthy table copy if you try altering a table that uses a different storage engine than you expect. See Section 5.5, “Online DDL for InnoDB Tables” for information about online DDL for InnoDB tables.
You can control the level of concurrent reading and writing of the table while it is being altered, using the LOCK clause. Specifying a non-default value for this clause lets you require a certain amount of concurrent access or exclusivity during the alter operation, and halts the operation if the requested degree of locking is not available. The parameters for the LOCK clause are:
LOCK = DEFAULT
LOCK = NONE
LOCK = SHARED
LOCK = EXCLUSIVE
As of MySQL 5.6.3, you can also use ALTER TABLE tbl_name FORCE to perform a “null” alter operation that rebuilds the table. Previously the FORCE option was recognized but ignored.
Usage Notes
To use ALTER TABLE, you need ALTER, CREATE, and INSERT privileges for the table. Renaming a table requires ALTER and DROP on the old table, ALTER, CREATE, and INSERT on the new table.
IGNORE is a MySQL extension to standard SQL. It controls how ALTER TABLE works if there are duplicates on unique keys in the new table or if warnings occur when strict mode is enabled. If IGNORE is not specified, the copy is aborted and rolled back if duplicate-key errors occur. If IGNORE is specified, only the first row is used of rows with duplicates on a unique key. The other conflicting rows are deleted. Incorrect values are truncated to the closest matching acceptable value.
Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is used to modify the table structure.
table_option signifies a table option of the kind that can be used in the CREATE TABLE statement, such as ENGINE, AUTO_INCREMENT, or AVG_ROW_LENGTH. (Section 13.1.14, “CREATE TABLE Syntax”, lists all table options.) However, ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.
For example, to convert a table to be an InnoDB table, use this statement:
ALTER TABLE t1 ENGINE = InnoDB;
See Section 5.4.3, “Converting Tables from MyISAM to InnoDB” for considerations when switching tables to the InnoDB storage engine.
When you specify an ENGINE clause, ALTER TABLE rebuilds the table. This is true even if the table already has the specified storage engine.
The outcome of attempting to change a table's storage engine is affected by whether the desired storage engine is available and the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as described in Section 5.1.7, “Server SQL Modes”.
To prevent inadvertent loss of data, ALTER TABLE cannot be used to change the storage engine of a table to MERGE or BLACKHOLE.
To change the value of the AUTO_INCREMENT counter to be used for new rows, do this:
ALTER TABLE t2 AUTO_INCREMENT = value;
You cannot reset the counter to a value less than or equal to any that have already been used. For MyISAM, if the value is less than or equal to the maximum value currently in the AUTO_INCREMENT column, the value is reset to the current maximum plus one. For InnoDB, if the value is less than the current maximum value in the column, no error occurs and the current sequence value is not changed.
You can issue multiple ADD, ALTER, DROP, and CHANGE clauses in a single ALTER TABLE statement, separated by commas. This is a MySQL extension to standard SQL, which permits only one of each clause per ALTER TABLE statement. For example, to drop multiple columns in a single statement, do this:
ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;
CHANGE col_name, DROP col_name, and DROP INDEX are MySQL extensions to standard SQL.
The word COLUMN is optional and can be omitted.
column_definition clauses use the same syntax for ADD and CHANGE as for CREATE TABLE. See Section 13.1.14, “CREATE TABLE Syntax”.
You can rename a column using a CHANGE old_col_name new_col_name column_definition clause. To do so, specify the old and new column names and the definition that the column currently has. For example, to rename an INTEGER column from a to b, you can do this:
ALTER TABLE t1 CHANGE a b INTEGER;
To change a column's type but not the name, CHANGE syntax still requires an old and new column name, even if they are the same. For example:
ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;
You can also use MODIFY to change a column's type without renaming it:
ALTER TABLE t1 MODIFY b BIGINT NOT NULL;
MODIFY is an extension to ALTER TABLE for Oracle compatibility.
When you use CHANGE or MODIFY, column_definition must include the data type and all attributes that should apply to the new column, other than index attributes such as PRIMARY KEY or UNIQUE. Attributes present in the original definition but not specified for the new definition are not carried forward. Suppose that a column col1 is defined as INT UNSIGNED DEFAULT 1 COMMENT 'my column' and you modify the column as follows:
ALTER TABLE t1 MODIFY col1 BIGINT;
The resulting column will be defined as BIGINT, but will not include the attributes UNSIGNED DEFAULT 1 COMMENT 'my column'. To retain them, the statement should be:
ALTER TABLE t1 MODIFY col1 BIGINT UNSIGNED DEFAULT 1 COMMENT 'my column';
When you change a data type using CHANGE or MODIFY, MySQL tries to convert existing column values to the new type as well as possible.
Warning
This conversion may result in alteration of data. For example, if you shorten a string column, values may be truncated. To prevent the operation from succeeding if conversions to the new data type would result in loss of data, enable strict SQL mode before using ALTER TABLE (see Section 5.1.7, “Server SQL Modes”).
To add a column at a specific position within a table row, use FIRST or AFTER col_name. The default is to add the column last. You can also use FIRST and AFTER in CHANGE or MODIFY operations to reorder columns within a table.
ALTER ... SET DEFAULT or ALTER ... DROP DEFAULT specify a new default value for a column or remove the old default value, respectively. If the old default is removed and the column can be NULL, the new default is NULL. If the column cannot be NULL, MySQL assigns a default value as described in Section 11.5, “Data Type Default Values”.
DROP INDEX removes an index. This is a MySQL extension to standard SQL. See Section 13.1.20, “DROP INDEX Syntax”. If you are unsure of the index name, use SHOW INDEX FROM tbl_name.
If columns are dropped from a table, the columns are also removed from any index of which they are a part. If all columns that make up an index are dropped, the index is dropped as well. If you use CHANGE or MODIFY to shorten a column for which an index exists on the column, and the resulting column length is less than the index length, MySQL shortens the index automatically.
If a table contains only one column, the column cannot be dropped. If what you intend is to remove the table, use DROP TABLE instead.
DROP PRIMARY KEY drops the primary key. If there is no primary key, an error occurs. For information about the performance characteristics of primary keys, especially for InnoDB tables, see Section 8.3.2, “Using Primary Keys”.
If you add a UNIQUE INDEX or PRIMARY KEY to a table, MySQL stores it before any nonunique index to permit detection of duplicate keys as early as possible.
Some storage engines permit you to specify an index type when creating an index. The syntax for the index_type specifier is USING type_name. For details about USING, see Section 13.1.11, “CREATE INDEX Syntax”. The preferred position is after the column list. Support for use of the option before the column list will be removed in a future MySQL release.
index_option values specify additional options for an index. USING is one such option. For details about permissible index_option values, see Section 13.1.11, “CREATE INDEX Syntax”.
After an ALTER TABLE statement, it may be necessary to run ANALYZE TABLE to update index cardinality information. See Section 13.7.5.23, “SHOW INDEX Syntax”.
ORDER BY enables you to create the new table with the rows in a specific order. Note that the table does not remain in this order after inserts and deletes. This option is useful primarily when you know that you are mostly to query the rows in a certain order most of the time. By using this option after major changes to the table, you might be able to get higher performance. In some cases, it might make sorting easier for MySQL if the table is in order by the column that you want to order it by later.
ORDER BY syntax permits one or more column names to be specified for sorting, each of which optionally can be followed by ASC or DESC to indicate ascending or descending sort order, respectively. The default is ascending order. Only column names are permitted as sort criteria; arbitrary expressions are not permitted. This clause should be given last after any other clauses.
ORDER BY does not make sense for InnoDB tables that contain a user-defined clustered index (PRIMARY KEY or NOT NULL UNIQUE index). InnoDB always orders table rows according to such an index if one is present.
Note
When used on a partitioned table, ALTER TABLE ... ORDER BY orders rows within each partition only.
If you use ALTER TABLE on a MyISAM table, all nonunique indexes are created in a separate batch (as for REPAIR TABLE). This should make ALTER TABLE much faster when you have many indexes.
This feature can be activated explicitly for a MyISAM table. ALTER TABLE ... DISABLE KEYS tells MySQL to stop updating nonunique indexes. ALTER TABLE ... ENABLE KEYS then should be used to re-create missing indexes. MySQL does this with a special algorithm that is much faster than inserting keys one by one, so disabling keys before performing bulk insert operations should give a considerable speedup. Using ALTER TABLE ... DISABLE KEYS requires the INDEX privilege in addition to the privileges mentioned earlier.
While the nonunique indexes are disabled, they are ignored for statements such as SELECT and EXPLAIN that otherwise would use them.
If ALTER TABLE for an InnoDB table results in changes to column values (for example, because a column is truncated), InnoDB's FOREIGN KEY constraint checks do not notice possible violations caused by changing the values.
The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB storage engine, which implements ADD [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (...) REFERENCES ... (...). See Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”. For other storage engines, the clauses are parsed but ignored. The CHECK clause is parsed but ignored by all storage engines. See Section 13.1.14, “CREATE TABLE Syntax”. The reason for accepting but ignoring syntax clauses is for compatibility, to make it easier to port code from other SQL servers, and to run applications that create tables with references. See Section 1.8.5, “MySQL Differences from Standard SQL”.
For ALTER TABLE, unlike CREATE TABLE, ADD FOREIGN KEY ignores index_name if given and uses an automatically generated foreign key name. As a workaround, include the CONSTRAINT clause to specify the foreign key name:
ADD CONSTRAINT name FOREIGN KEY (....) ...
Important
The inline REFERENCES specifications where the references are defined as part of the column specification are silently ignored by InnoDB. InnoDB only accepts REFERENCES clauses defined as part of a separate FOREIGN KEY specification.
Note
Partitioned InnoDB tables do not support foreign keys. See Section 17.6.2, “Partitioning Limitations Relating to Storage Engines”, for more information.
InnoDB supports the use of ALTER TABLE to drop foreign keys:
ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;
For more information, see Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”.
You cannot add a foreign key and drop a foreign key in separate clauses of a single ALTER TABLE statement. You must use separate statements.
For an InnoDB table that is created with its own tablespace in an .ibd file, that file can be discarded and imported. To discard the .ibd file, use this statement:
ALTER TABLE tbl_name DISCARD TABLESPACE;
This deletes the current .ibd file, so be sure that you have a backup first. Attempting to modify the table contents while the tablespace file is discarded results in an error. You can perform the DDL operations listed in Section 5.5, “Online DDL for InnoDB Tables” while the tablespace file is discarded.
To import the backup .ibd file back into the table, copy it into the database directory, and then issue this statement:
ALTER TABLE tbl_name IMPORT TABLESPACE;
The tablespace file need not necessarily have been created on the server into which it is imported later. In MySQL 5.6, importing a tablespace file from another server works if the both servers have GA (General Availablility) status and their versions are within the same series. Otherwise, the file must have been created on the server into which it is imported.
To change the table default character set and all character columns (CHAR, VARCHAR, TEXT) to a new character set, use a statement like this:
ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name;
For a column that has a data type of VARCHAR or one of the TEXT types, CONVERT TO CHARACTER SET will change the data type as necessary to ensure that the new column is long enough to store as many characters as the original column. For example, a TEXT column has two length bytes, which store the byte-length of values in the column, up to a maximum of 65,535. For a latin1 TEXT column, each character requires a single byte, so the column can store up to 65,535 characters. If the column is converted to utf8, each character might require up to three bytes, for a maximum possible length of 3 × 65,535 = 196,605 bytes. That length will not fit in a TEXT column's length bytes, so MySQL will convert the data type to MEDIUMTEXT, which is the smallest string type for which the length bytes can record a value of 196,605. Similarly, a VARCHAR column might be converted to MEDIUMTEXT.
To avoid data type changes of the type just described, do not use CONVERT TO CHARACTER SET. Instead, use MODIFY to change individual columns. For example:
ALTER TABLE t MODIFY latin1_text_col TEXT CHARACTER SET utf8;
ALTER TABLE t MODIFY latin1_varchar_col VARCHAR(M) CHARACTER SET utf8;
If you specify CONVERT TO CHARACTER SET binary, the CHAR, VARCHAR, and TEXT columns are converted to their corresponding binary string types (BINARY, VARBINARY, BLOB). This means that the columns no longer will have a character set and a subsequent CONVERT TO operation will not apply to them.
If charset_name is DEFAULT, the database character set is used.
Warning
The CONVERT TO operation converts column values between the character sets. This is not what you want if you have a column in one character set (like latin1) but the stored values actually use some other, incompatible character set (like utf8). In this case, you have to do the following for each such column:
ALTER TABLE t1 CHANGE c1 c1 BLOB;
ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;
The reason this works is that there is no conversion when you convert to or from BLOB columns.
To change only the default character set for a table, use this statement:
ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;
The word DEFAULT is optional. The default character set is the character set that is used if you do not specify the character set for columns that you add to a table later (for example, with ALTER TABLE ... ADD column).
With the mysql_info() C API function, you can find out how many rows were copied by ALTER TABLE, and (when IGNORE is used) how many rows were deleted due to duplication of unique key values. See Section 21.8.6.35, “mysql_info()”.
13.1.6.1. ALTER TABLE Partition Operations
Partitioning-related clauses for ALTER TABLE can be used with partitioned tables for repartitioning, for adding, dropping, merging, and splitting partitions, and for performing partitioning maintenance.
Simply using a partition_options clause with ALTER TABLE on a partitioned table repartitions the table according to the partitioning scheme defined by the partition_options. This clause always begins with PARTITION BY, and follows the same syntax and other rules as apply to the partition_options clause for CREATE TABLE (see Section 13.1.14, “CREATE TABLE Syntax”, for more detailed information), and can also be used to partition an existing table that is not already partitioned. For example, consider a (nonpartitioned) table defined as shown here:
CREATE TABLE t1 (
id INT,
year_col INT
);
This table can be partitioned by HASH, using the id column as the partitioning key, into 8 partitions by means of this statement:
ALTER TABLE t1
PARTITION BY HASH(id)
PARTITIONS 8;
MySQL 5.6.11 and later supports an ALGORITHM option with [SUB]PARTITION BY [LINEAR] KEY. ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL 5.1 when computing the placement of rows in partitions; ALGORITHM=2 means that the server employs the key-hashing functions implemented and used by default for new KEY partitioned tables in MySQL 5.5 and later. (Partitioned tables created with the key-hashing functions employed in MySQL 5.5 and later cannot be used by a MySQL 5.1 server.) Not specifying the option has the same effect as using ALGORITHM=2. This option is intended for use chiefly when upgrading or downgrading [LINEAR] KEY partitioned tables between MySQL 5.1 and later MySQL versions, or for creating tables partitioned by KEY or LINEAR KEY on a MySQL 5.5 or later server which can be used on a MySQL 5.1 server.
To upgrade a KEY partitioned table that was created in MySQL 5.1, first execute SHOW CREATE TABLE and note the the exact columns and number of partitions shown. Now execute an ALTER TABLE statement using exactly the same column list and number of partitions as in the CREATE TABLE statement, while adding ALGORITHM=2 immediately following the PARTITION BY keywords. (You should also include the LINEAR keyword if it was used for the original table definition.) An example from a session in the mysql client is shown here:
mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
Table: p
Create Table: CREATE TABLE `p` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`cd` datetime NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */
1 row in set (0.00 sec)
mysql> ALTER TABLE p PARTITION BY LINEAR KEY ALGORITHM=2 (id) PARTITIONS 32;
Query OK, 0 rows affected (5.34 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> SHOW CREATE TABLE p\G
*************************** 1. row ***************************
Table: p
Create Table: CREATE TABLE `p` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`cd` datetime NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY LINEAR KEY (id)
PARTITIONS 32 */
1 row in set (0.00 sec)
Downgrading a table created using the default key-hashing used in MySQL 5.5 and later to enable its use by a MySQL 5.1 server is similar, except in this case you should use ALGORITHM=1 to force the table's partitions to be rebuilt using the MySQL 5.1 key-hashing functions. It is recommended that you not do this except when necessary for compatibility with a MySQL 5.1 server, as the improved KEY hashing functions used by default in MySQL 5.5 and later provide fixes for a number of issues found in the older implementation.
Note
A table upgraded by means of ALTER TABLE ... PARTITION BY ALGORITHM=2 [LINEAR] KEY ... can no longer be used by a MySQL 5.1 server. (Such a table would need to be downgraded with ALTER TABLE ... PARTITION BY ALGORITHM=1 [LINEAR] KEY ... before it could be used again by a MySQL 5.1 server.)
The table that results from using an ALTER TABLE ... PARTITION BY statement must follow the same rules as one created using CREATE TABLE ... PARTITION BY. This includes the rules governing the relationship between any unique keys (including any primary key) that the table might have, and the column or columns used in the partitioning expression, as discussed in Section 17.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”. The CREATE TABLE ... PARTITION BY rules for specifying the number of partitions also apply to ALTER TABLE ... PARTITION BY.
The partition_definition clause for ALTER TABLE ADD PARTITION supports the same options as the clause of the same name for the CREATE TABLE statement. (See Section 13.1.14, “CREATE TABLE Syntax”, for the syntax and description.) Suppose that you have the partitioned table created as shown here:
CREATE TABLE t1 (
id INT,
year_col INT
)
PARTITION BY RANGE (year_col) (
PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (1999)
);
You can add a new partition p3 to this table for storing values less than 2002 as follows:
ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));
DROP PARTITION can be used to drop one or more RANGE or LIST partitions. This statement cannot be used with HASH or KEY partitions; instead, use COALESCE PARTITION (see below). Any data that was stored in the dropped partitions named in the partition_names list is discarded. For example, given the table t1 defined previously, you can drop the partitions named p0 and p1 as shown here:
ALTER TABLE t1 DROP PARTITION p0, p1;
ADD PARTITION and DROP PARTITION do not currently support IF [NOT] EXISTS.
Renames of partitioned table are supported. You can rename individual partitions indirectly using ALTER TABLE ... REORGANIZE PARTITION; however, this operation makes a copy of the partition's data..
In MySQL 5.6, it is possible to delete rows from selected partitions using the TRUNCATE PARTITION option. This option takes a comma-separated list of one or more partition names. For example, consider the table t1 as defined here:
CREATE TABLE t1 (
id INT,
year_col INT
)
PARTITION BY RANGE (year_col) (
PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (1999),
PARTITION p3 VALUES LESS THAN (2003),
PARTITION p4 VALUES LESS THAN (2007)
);
To delete all rows from partition p0, you can use the following statement:
ALTER TABLE t1 TRUNCATE PARTITION p0;
The statement just shown has the same effect as the following DELETE statement:
DELETE FROM t1 WHERE year_col < 1991;
When truncating multiple partitions, the partitions do not have to be contiguous: This can greatly simplify delete operations on partitioned tables that would otherwise require very complex WHERE conditions if done with DELETE statements. For example, this statement deletes all rows from partitions p1 and p3:
ALTER TABLE t1 TRUNCATE PARTITION p1, p3;
An equivalent DELETE statement is shown here:
DELETE FROM t1 WHERE
(year_col >= 1991 AND year_col < 1995)
OR
(year_col >= 2003 AND year_col < 2007);
You can also use the ALL keyword in place of the list of partition names; in this case, the statement acts on all partitions in the table.
TRUNCATE PARTITION merely deletes rows; it does not alter the definition of the table itself, or of any of its partitions.
Note
TRUNCATE PARTITION does not work with subpartitions.
You can verify that the rows were dropped by checking the INFORMATION_SCHEMA.PARTITIONS table, using a query such as this one:
SELECT PARTITION_NAME, TABLE_ROWS
FROM INFORMATION_SCHEMA.PARTITIONS
WHERE TABLE_NAME = 't1';
TRUNCATE PARTITION is supported only for partitioned tables that use the MyISAM, InnoDB, or MEMORY storage engine. It also works on BLACKHOLE tables (but has no effect). It is not supported for ARCHIVE tables.
COALESCE PARTITION can be used with a table that is partitioned by HASH or KEY to reduce the number of partitions by number. Suppose that you have created table t2 using the following definition:
CREATE TABLE t2 (
name VARCHAR (30),
started DATE
)
PARTITION BY HASH(YEAR(started))
PARTITIONS 6;
You can reduce the number of partitions used by t2 from 6 to 4 using the following statement:
ALTER TABLE t2 COALESCE PARTITION 2;
The data contained in the last number partitions will be merged into the remaining partitions. In this case, partitions 4 and 5 will be merged into the first 4 partitions (the partitions numbered 0, 1, 2, and 3).
To change some but not all the partitions used by a partitioned table, you can use REORGANIZE PARTITION. This statement can be used in several ways:
To merge a set of partitions into a single partition. This can be done by naming several partitions in the partition_names list and supplying a single definition for partition_definition.
To split an existing partition into several partitions. You can accomplish this by naming a single partition for partition_names and providing multiple partition_definitions.
To change the ranges for a subset of partitions defined using VALUES LESS THAN or the value lists for a subset of partitions defined using VALUES IN.
Note
For partitions that have not been explicitly named, MySQL automatically provides the default names p0, p1, p2, and so on. The same is true with regard to subpartitions.
For more detailed information about and examples of ALTER TABLE ... REORGANIZE PARTITION statements, see Section 17.3.1, “Management of RANGE and LIST Partitions”.
It is also possible in MySQL 5.6 to exchange a table partition or subpartition with a table using ALTER TABLE pt EXCHANGE PARTITION p WITH TABLE nt, where pt is the partitioned table and p is the partition or subpartition of pt to be exchanged with unpartitioned table nt, provided that the following statements are true:
Table nt is not itself partitioned.
Table nt is not a temporary table.
The structures of tables pt and nt are otherwise identical.
There are no rows in nt that lie outside the boundaries of the partition definition for p.
Table nt contains no foreign key references, and no other table has any foreign keys that refer to nt.
Executing ALTER TABLE ... EXCHANGE PARTITION does not invoke any triggers on either the partitioned table or the table to be exchanged.
Any AUTO_INCREMENT columns in the table to be exchanged with a partition are reset.
The IGNORE keyword has no effect when used with ALTER TABLE ... EXCHANGE PARTITION.
For more information about and examples of ALTER TABLE ... EXCHANGE PARTITION, see Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”.
Several additional options provide partition maintenance and repair functionality analogous to that implemented for nonpartitioned tables by statements such as CHECK TABLE and REPAIR TABLE (which are also supported for partitioned tables; see Section 13.7.2, “Table Maintenance Statements” for more information). These include ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, REBUILD PARTITION, and REPAIR PARTITION. Each of these options takes a partition_names clause consisting of one or more names of partitions, separated by commas. The partitions must already exist in the table to be altered. You can also use the ALL keyword in place of partition_names, in which case the statement acts on all partitions in the table. For more information and examples, see Section 17.3.4, “Maintenance of Partitions”.
Some MySQL storage engines, such as InnoDB, do not support per-partition optimization. For a partitioned table using such a storage engine, ALTER TABLE ... OPTIMIZE PARTITION rebuilds the entire table. This is a known issue. (Bug #42822) Beginning with MySQL 5.6.9, running this statement on such a table causes the entire table to rebuilt and analyzed, and an appropriate warning to be issued. (Bug #11751825)
To work around this problem, use the statements ALTER TABLE ... REBUILD PARTITION and ALTER TABLE ... ANALYZE PARTITION instead.
The ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, and REPAIR PARTITION options are not permitted for tables which are not partitioned.
REMOVE PARTITIONING enables you to remove a table's partitioning without otherwise affecting the table or its data. This option can be combined with other ALTER TABLE options such as those used to add, drop, or rename drop columns or indexes.
Using the ENGINE option with ALTER TABLE changes the storage engine used by the table without affecting the partitioning.
Prior to MySQL 5.6.6, when ALTER TABLE ... EXCHANGE PARTITION or ALTER TABLE ... TRUNCATE PARTITION was run against a partitioned table that used MyISAM (or another storage engine that makes use of table-level locking), the entire partitioned table was locked; in MySQL 5.6.6 and later, in such cases, only those partitions that are actually read from are locked. This did not (and does not) affect partitioned tables using a storage engine—such as InnoDB—that employs row-level locking. See Section 17.6.4, “Partitioning and Locking”.
It is possible for an ALTER TABLE statement to contain a PARTITION BY or REMOVE PARTITION clause in an addition to other alter specifications, but the PARTITION BY or REMOVE PARTITION clause must be specified last after any other specifications.
The ADD PARTITION, DROP PARTITION, COALESCE PARTITION, REORGANIZE PARTITION, ANALYZE PARTITION, CHECK PARTITION, and REPAIR PARTITION options cannot be combined with other alter specifications in a single ALTER TABLE, since the options just listed act on individual partitions. For more information, see Section 13.1.6.1, “ALTER TABLE Partition Operations”.
Only a single instance of any one of the following options can be used in a given ALTER TABLE statement: PARTITION BY, ADD PARTITION, DROP PARTITION, TRUNCATE PARTITION, EXCHANGE PARTITION, REORGANIZE PARTITION, or COALESCE PARTITION, ANALYZE PARTITION, CHECK PARTITION, OPTIMIZE PARTITION, REBUILD PARTITION, REMOVE PARTITIONING.
For example, the following two statements are invalid:
ALTER TABLE t1 ANALYZE PARTITION p1, ANALYZE PARTITION p2;
ALTER TABLE t1 ANALYZE PARTITION p1, CHECK PARTITION p2;
In the first case, you can analyze partitions p1 and p2 of table t1 concurrently using a single statement with a single ANALYZE PARTITION option that lists both of the partitions to be analyzed, like this:
ALTER TABLE t1 ANALYZE PARTITION p1, p2;
In the second case, it is not possible to perform ANALYZE and CHECK operations on different partitions of the same table concurrently. Instead, you must issue two separate statements, like this:
ALTER TABLE t1 ANALYZE PARTITION p1;
ALTER TABLE t1 CHECK PARTITION p2;
13.1.6.2. ALTER TABLE Examples
Begin with a table t1 that is created as shown here:
CREATE TABLE t1 (a INTEGER,b CHAR(10));
To rename the table from t1 to t2:
ALTER TABLE t1 RENAME t2;
To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to change column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:
ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);
To add a new TIMESTAMP column named d:
ALTER TABLE t2 ADD d TIMESTAMP;
To add an index on column d and a UNIQUE index on column a:
ALTER TABLE t2 ADD INDEX (d), ADD UNIQUE (a);
To remove column c:
ALTER TABLE t2 DROP COLUMN c;
To add a new AUTO_INCREMENT integer column named c:
ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
ADD PRIMARY KEY (c);
We indexed c (as a PRIMARY KEY) because AUTO_INCREMENT columns must be indexed, and we declare c as NOT NULL because primary key columns cannot be NULL.
When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers automatically. For MyISAM tables, you can set the first sequence number by executing SET INSERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table option. See Section 5.1.4, “Server System Variables”.
With MyISAM tables, if you do not change the AUTO_INCREMENT column, the sequence number is not affected. If you drop an AUTO_INCREMENT column and then add another AUTO_INCREMENT column, the numbers are resequenced beginning with 1.
When replication is used, adding an AUTO_INCREMENT column to a table might not produce the same ordering of the rows on the slave and the master. This occurs because the order in which the rows are numbered depends on the specific storage engine used for the table and the order in which the rows were inserted. If it is important to have the same order on the master and slave, the rows must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an AUTO_INCREMENT column to the table t1, the following statements produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:
CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY)
SELECT * FROM t1 ORDER BY col1, col2;
This assumes that the table t1 has columns col1 and col2.
This set of statements will also produce a new table t2 identical to t1, with the addition of an AUTO_INCREMENT column:
CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;
Important
To guarantee the same ordering on both master and slave, all columns of t1 must be referenced in the ORDER BY clause.
Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column, the final step is to drop the original table and then rename the copy:
DROP t1;
ALTER TABLE t2 RENAME t1;
13.1.7. ALTER VIEW Syntax
ALTER
[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = { user | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]
VIEW view_name [(column_list)]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]
This statement changes the definition of a view, which must exist. The syntax is similar to that for CREATE VIEW and the effect is the same as for CREATE OR REPLACE VIEW. See Section 13.1.16, “CREATE VIEW Syntax”. This statement requires the CREATE VIEW and DROP privileges for the view, and some privilege for each column referred to in the SELECT statement. ALTER VIEW is permitted only to the definer or users with the SUPER privilege.
13.1.8. CREATE DATABASE Syntax
CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name
[create_specification] ...
create_specification:
[DEFAULT] CHARACTER SET [=] charset_name
| [DEFAULT] COLLATE [=] collation_name
CREATE DATABASE creates a database with the given name. To use this statement, you need the CREATE privilege for the database. CREATE SCHEMA is a synonym for CREATE DATABASE.
An error occurs if the database exists and you did not specify IF NOT EXISTS.
In MySQL 5.6, CREATE DATABASE is not permitted within a session that has an active LOCK TABLES statement.
create_specification options specify database characteristics. Database characteristics are stored in the db.opt file in the database directory. The CHARACTER SET clause specifies the default database character set. The COLLATE clause specifies the default database collation. Section 10.1, “Character Set Support”, discusses character set and collation names.
A database in MySQL is implemented as a directory containing files that correspond to tables in the database. Because there are no tables in a database when it is initially created, the CREATE DATABASE statement creates only a directory under the MySQL data directory and the db.opt file. Rules for permissible database names are given in Section 9.2, “Schema Object Names”. If a database name contains special characters, the name for the database directory contains encoded versions of those characters as described in Section 9.2.3, “Mapping of Identifiers to File Names”.
If you manually create a directory under the data directory (for example, with mkdir), the server considers it a database directory and it shows up in the output of SHOW DATABASES.
You can also use the mysqladmin program to create databases. See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.
13.1.9. CREATE EVENT Syntax
CREATE
[DEFINER = { user | CURRENT_USER }]
EVENT
[IF NOT EXISTS]
event_name
ON SCHEDULE schedule
[ON COMPLETION [NOT] PRESERVE]
[ENABLE | DISABLE | DISABLE ON SLAVE]
[COMMENT 'comment']
DO event_body;
schedule:
AT timestamp [+ INTERVAL interval] ...
| EVERY interval
[STARTS timestamp [+ INTERVAL interval] ...]
[ENDS timestamp [+ INTERVAL interval] ...]
interval:
quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |
WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |
DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}
This statement creates and schedules a new event. The event will not run unless the Event Scheduler is enabled. For information about checking Event Scheduler status and enabling it if necessary, see Section 18.4.2, “Event Scheduler Configuration”.
CREATE EVENT requires the EVENT privilege for the schema in which the event is to be created. It might also require the SUPER privilege, depending on the DEFINER value, as described later in this section.
The minimum requirements for a valid CREATE EVENT statement are as follows:
The keywords CREATE EVENT plus an event name, which uniquely identifies the event in a database schema.
An ON SCHEDULE clause, which determines when and how often the event executes.
A DO clause, which contains the SQL statement to be executed by an event.
This is an example of a minimal CREATE EVENT statement:
CREATE EVENT myevent
ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
DO
UPDATE myschema.mytable SET mycol = mycol + 1;
The previous statement creates an event named myevent. This event executes once—one hour following its creation—by running an SQL statement that increments the value of the myschema.mytable table's mycol column by 1.
The event_name must be a valid MySQL identifier with a maximum length of 64 characters. Event names are not case sensitive, so you cannot have two events named myevent and MyEvent in the same schema. In general, the rules governing event names are the same as those for names of stored routines. See Section 9.2, “Schema Object Names”.
An event is associated with a schema. If no schema is indicated as part of event_name, the default (current) schema is assumed. To create an event in a specific schema, qualify the event name with a schema using schema_name.event_name syntax.
The DEFINER clause specifies the MySQL account to be used when checking access privileges at event execution time. If a user value is given, it should be a MySQL account specified as 'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER, or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE EVENT statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.
If you specify the DEFINER clause, these rules determine the valid DEFINER user values:
If you do not have the SUPER privilege, the only permitted user value is your own account, either specified literally or by using CURRENT_USER. You cannot set the definer to some other account.
If you have the SUPER privilege, you can specify any syntactically valid account name. If the account does not actually exist, a warning is generated.
Although it is possible to create an event with a nonexistent DEFINER account, an error occurs at event execution time if the account does not exist.
For more information about event security, see Section 18.6, “Access Control for Stored Programs and Views”.
Within an event, the CURRENT_USER() function returns the account used to check privileges at event execution time, which is the DEFINER user. For information about user auditing within events, see Section 6.3.12, “SQL-Based MySQL Account Activity Auditing”.
IF NOT EXISTS has the same meaning for CREATE EVENT as for CREATE TABLE: If an event named event_name already exists in the same schema, no action is taken, and no error results. (However, a warning is generated in such cases.)
The ON SCHEDULE clause determines when, how often, and for how long the event_body defined for the event repeats. This clause takes one of two forms:
AT timestamp is used for a one-time event. It specifies that the event executes one time only at the date and time given by timestamp, which must include both the date and time, or must be an expression that resolves to a datetime value. You may use a value of either the DATETIME or TIMESTAMP type for this purpose. If the date is in the past, a warning occurs, as shown here:
mysql> SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2006-02-10 23:59:01 |
+---------------------+
1 row in set (0.04 sec)
mysql> CREATE EVENT e_totals
-> ON SCHEDULE AT '2006-02-10 23:59:00'
-> DO INSERT INTO test.totals VALUES (NOW());
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Note
Code: 1588
Message: Event execution time is in the past and ON COMPLETION NOT
PRESERVE is set. The event was dropped immediately after
creation.
CREATE EVENT statements which are themselves invalid—for whatever reason—fail with an error.
You may use CURRENT_TIMESTAMP to specify the current date and time. In such a case, the event acts as soon as it is created.
To create an event which occurs at some point in the future relative to the current date and time—such as that expressed by the phrase “three weeks from now”—you can use the optional clause + INTERVAL interval. The interval portion consists of two parts, a quantity and a unit of time, and follows the same syntax rules that govern intervals used in the DATE_ADD() function (see Section 12.7, “Date and Time Functions”. The units keywords are also the same, except that you cannot use any units involving microseconds when defining an event. With some interval types, complex time units may be used. For example, “two minutes and ten seconds” can be expressed as + INTERVAL '2:10' MINUTE_SECOND.
You can also combine intervals. For example, AT CURRENT_TIMESTAMP + INTERVAL 3 WEEK + INTERVAL 2 DAY is equivalent to “three weeks and two days from now”. Each portion of such a clause must begin with + INTERVAL.
To repeat actions at a regular interval, use an EVERY clause. The EVERY keyword is followed by an interval as described in the previous discussion of the AT keyword. (+ INTERVAL is not used with EVERY.) For example, EVERY 6 WEEK means “every six weeks”.
Although + INTERVAL clauses are not permitted in an EVERY clause, you can use the same complex time units permitted in a + INTERVAL.
An EVERY clause may contain an optional STARTS clause. STARTS is followed by a timestamp value that indicates when the action should begin repeating, and may also use + INTERVAL interval to specify an amount of time “from now”. For example, EVERY 3 MONTH STARTS CURRENT_TIMESTAMP + INTERVAL 1 WEEK means “every three months, beginning one week from now”. Similarly, you can express “every two weeks, beginning six hours and fifteen minutes from now” as EVERY 2 WEEK STARTS CURRENT_TIMESTAMP + INTERVAL '6:15' HOUR_MINUTE. Not specifying STARTS is the same as using STARTS CURRENT_TIMESTAMP—that is, the action specified for the event begins repeating immediately upon creation of the event.
An EVERY clause may contain an optional ENDS clause. The ENDS keyword is followed by a timestamp value that tells MySQL when the event should stop repeating. You may also use + INTERVAL interval with ENDS; for instance, EVERY 12 HOUR STARTS CURRENT_TIMESTAMP + INTERVAL 30 MINUTE ENDS CURRENT_TIMESTAMP + INTERVAL 4 WEEK is equivalent to “every twelve hours, beginning thirty minutes from now, and ending four weeks from now”. Not using ENDS means that the event continues executing indefinitely.
ENDS supports the same syntax for complex time units as STARTS does.
You may use STARTS, ENDS, both, or neither in an EVERY clause.
If a repeating event does not terminate within its scheduling interval, the result may be multiple instances of the event executing simultaneously. If this is undesirable, you should institute a mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK() function, or row or table locking.
The ON SCHEDULE clause may use expressions involving built-in MySQL functions and user variables to obtain any of the timestamp or interval values which it contains. You may not use stored functions or user-defined functions in such expressions, nor may you use any table references; however, you may use SELECT FROM DUAL. This is true for both CREATE EVENT and ALTER EVENT statements. References to stored functions, user-defined functions, and tables in such cases are specifically not permitted, and fail with an error (see Bug #22830).
Times in the ON SCHEDULE clause are interpreted using the current session time_zone value. This becomes the event time zone; that is, the time zone that is used for event scheduling and is in effect within the event as it executes. These times are converted to UTC and stored along with the event time zone in the mysql.event table. This enables event execution to proceed as defined regardless of any subsequent changes to the server time zone or daylight saving time effects. For additional information about representation of event times, see Section 18.4.4, “Event Metadata”. See also Section 13.7.5.19, “SHOW EVENTS Syntax”, and Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”.
Normally, once an event has expired, it is immediately dropped. You can override this behavior by specifying ON COMPLETION PRESERVE. Using ON COMPLETION NOT PRESERVE merely makes the default nonpersistent behavior explicit.
You can create an event but prevent it from being active using the DISABLE keyword. Alternatively, you can use ENABLE to make explicit the default status, which is active. This is most useful in conjunction with ALTER EVENT (see Section 13.1.2, “ALTER EVENT Syntax”).
A third value may also appear in place of ENABLED or DISABLED; DISABLE ON SLAVE is set for the status of an event on a replication slave to indicate that the event was created on the master and replicated to the slave, but is not executed on the slave. See Section 16.4.1.10, “Replication of Invoked Features”.
You may supply a comment for an event using a COMMENT clause. comment may be any string of up to 64 characters that you wish to use for describing the event. The comment text, being a string literal, must be surrounded by quotation marks.
The DO clause specifies an action carried by the event, and consists of an SQL statement. Nearly any valid MySQL statement that can be used in a stored routine can also be used as the action statement for a scheduled event. (See Section E.1, “Restrictions on Stored Programs”.) For example, the following event e_hourly deletes all rows from the sessions table once per hour, where this table is part of the site_activity schema:
CREATE EVENT e_hourly
ON SCHEDULE
EVERY 1 HOUR
COMMENT 'Clears out sessions table each hour.'
DO
DELETE FROM site_activity.sessions;
MySQL stores the sql_mode system variable setting that is in effect at the time an event is created, and always executes the event with this setting in force, regardless of the current server SQL mode.
A CREATE EVENT statement that contains an ALTER EVENT statement in its DO clause appears to succeed; however, when the server attempts to execute the resulting scheduled event, the execution fails with an error.
Note
Statements such as SELECT or SHOW that merely return a result set have no effect when used in an event; the output from these is not sent to the MySQL Monitor, nor is it stored anywhere. However, you can use statements such as SELECT ... INTO and INSERT INTO ... SELECT that store a result. (See the next example in this section for an instance of the latter.)
The schema to which an event belongs is the default schema for table references in the DO clause. Any references to tables in other schemas must be qualified with the proper schema name.
As with stored routines, you can use compound-statement syntax in the DO clause by using the BEGIN and END keywords, as shown here:
delimiter |
CREATE EVENT e_daily
ON SCHEDULE
EVERY 1 DAY
COMMENT 'Saves total number of sessions then clears the table each day'
DO
BEGIN
INSERT INTO site_activity.totals (time, total)
SELECT CURRENT_TIMESTAMP, COUNT(*)
FROM site_activity.sessions;
DELETE FROM site_activity.sessions;
END |
delimiter ;
This example uses the delimiter command to change the statement delimiter. See Section 18.1, “Defining Stored Programs”.
More complex compound statements, such as those used in stored routines, are possible in an event. This example uses local variables, an error handler, and a flow control construct:
delimiter |
CREATE EVENT e
ON SCHEDULE
EVERY 5 SECOND
DO
BEGIN
DECLARE v INTEGER;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;
SET v = 0;
WHILE v < 5 DO
INSERT INTO t1 VALUES (0);
UPDATE t2 SET s1 = s1 + 1;
SET v = v + 1;
END WHILE;
END |
delimiter ;
There is no way to pass parameters directly to or from events; however, it is possible to invoke a stored routine with parameters within an event:
CREATE EVENT e_call_myproc
ON SCHEDULE
AT CURRENT_TIMESTAMP + INTERVAL 1 DAY
DO CALL myproc(5, 27);
If an event's definer has the SUPER privilege, the event can read and write global variables. As granting this privilege entails a potential for abuse, extreme care must be taken in doing so.
Generally, any statements that are valid in stored routines may be used for action statements executed by events. For more information about statements permissible within stored routines, see Section 18.2.1, “Stored Routine Syntax”. You can create an event as part of a stored routine, but an event cannot be created by another event.
13.1.10. CREATE FUNCTION Syntax
The CREATE FUNCTION statement is used to create stored functions and user-defined functions (UDFs):
For information about creating stored functions, see Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.
For information about creating user-defined functions, see Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”.
13.1.11. CREATE INDEX Syntax
CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
[index_type]
ON tbl_name (index_col_name,...)
[algorithm_option | lock_option] ...
index_col_name:
col_name [(length)] [ASC | DESC]
index_type:
USING {BTREE | HASH}
index_option:
KEY_BLOCK_SIZE [=] value
| index_type
| WITH PARSER parser_name
| COMMENT 'string'
algorithm_option:
ALGORITHM [=] {DEFAULT|INPLACE|COPY}
lock_option:
LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}
CREATE INDEX is mapped to an ALTER TABLE statement to create indexes. See Section 13.1.6, “ALTER TABLE Syntax”. CREATE INDEX cannot be used to create a PRIMARY KEY; use ALTER TABLE instead. For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.
Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE. See Section 13.1.14, “CREATE TABLE Syntax”. This guideline is especially important for InnoDB tables, where the primary key determines the physical layout of rows in the data file. CREATE INDEX enables you to add indexes to existing tables.
A column list of the form (col1,col2,...) creates a multiple-column index. Index key values are formed by concatenating the values of the given columns.
Indexes can be created that use only the leading part of column values, using col_name(length) syntax to specify an index prefix length:
Prefixes can be specified for CHAR, VARCHAR, BINARY, and VARBINARY columns.
BLOB and TEXT columns also can be indexed, but a prefix length must be given.
Prefix lengths are given in characters for nonbinary string types and in bytes for binary string types. That is, index entries consist of the first length characters of each column value for CHAR, VARCHAR, and TEXT columns, and the first length bytes of each column value for BINARY, VARBINARY, and BLOB columns.
For spatial columns, prefix values cannot be given, as described later in this section.
The statement shown here creates an index using the first 10 characters of the name column:
CREATE INDEX part_of_name ON customer (name(10));
If names in the column usually differ in the first 10 characters, this index should not be much slower than an index created from the entire name column. Also, using column prefixes for indexes can make the index file much smaller, which could save a lot of disk space and might also speed up INSERT operations.
Prefix support and lengths of prefixes (where supported) are storage engine dependent. For example, a prefix can be up to 1000 bytes long for MyISAM tables, and 767 bytes for InnoDB tables.
Note
Prefix limits are measured in bytes, whereas the prefix length in CREATE INDEX statements is interpreted as number of characters for nonbinary data types (CHAR, VARCHAR, TEXT). Take this into account when specifying a prefix length for a column that uses a multi-byte character set.
A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs if you try to add a new row with a key value that matches an existing row. For all engines, a UNIQUE index permits multiple NULL values for columns that can contain NULL. If you specify a prefix value for a column in a UNIQUE index, the column values must be unique within the prefix.
FULLTEXT indexes are supported only for InnoDB and MyISAM tables and can include only CHAR, VARCHAR, and TEXT columns. Indexing always happens over the entire column; column prefix indexing is not supported and any prefix length is ignored if specified. See Section 12.9, “Full-Text Search Functions”, for details of operation.
The MyISAM, InnoDB, NDB, and ARCHIVE storage engines support spatial columns such as (POINT and GEOMETRY. (Section 12.18, “Spatial Extensions”, describes the spatial data types.) However, support for spatial column indexing varies among engines. Spatial and nonspatial indexes are available according to the following rules.
Spatial indexes (created using SPATIAL INDEX) have these characteristics:
Available only for MyISAM tables. Specifying SPATIAL INDEX for other storage engines results in an error.
Indexed columns must be NOT NULL.
In MySQL 5.6, column prefix lengths are prohibited. The full width of each column is indexed.
Characteristics of nonspatial indexes (created with INDEX, UNIQUE, or PRIMARY KEY):
Permitted for any storage engine that supports spatial columns except ARCHIVE.
Columns can be NULL unless the index is a primary key.
For each spatial column in a non-SPATIAL index except POINT columns, a column prefix length must be specified. (This is the same requirement as for indexed BLOB columns.) The prefix length is given in bytes.
The index type for a non-SPATIAL index depends on the storage engine. Currently, B-tree is used.
In MySQL 5.6:
You can add an index on a column that can have NULL values only if you are using the InnoDB, MyISAM, or MEMORY storage engine.
You can add an index on a BLOB or TEXT column only if you are using the InnoDB or MyISAM storage engine.
When the innodb_stats_persistent setting is enabled, run the ANALYZE TABLE statement for an InnoDB table after creating an index on that table.
An index_col_name specification can end with ASC or DESC. These keywords are permitted for future extensions for specifying ascending or descending index value storage. Currently, they are parsed but ignored; index values are always stored in ascending order.
Following the index column list, index options can be given. An index_option value can be any of the following:
KEY_BLOCK_SIZE [=] value
For compressed InnoDB tables, optionally specifies the size in bytes to use for pages. The value is treated as a hint; a different size could be used if necessary. A value of 0 represents the default compressed page size. See Section 5.4.6, “Working with InnoDB Compressed Tables” for usage details.
Note
Oracle recommends enabling innodb_strict_mode when using the KEY_BLOCK_SIZE clause for InnoDB tables. See Section 14.2.5.7, “InnoDB Strict Mode” for details.
index_type
Some storage engines permit you to specify an index type when creating an index. The permissible index type values supported by different storage engines are shown in the following table. Where multiple index types are listed, the first one is the default when no index type specifier is given.
Storage Engine | Permissible Index Types |
---|---|
InnoDB | BTREE |
MyISAM | BTREE |
MEMORY/HEAP | HASH, BTREE |
NDB | HASH, BTREE (see note in text) |
Example:
CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index ON lookup (id) USING BTREE;
The index_type clause cannot be used together with SPATIAL INDEX.
If you specify an index type that is not valid for a given storage engine, but there is another index type available that the engine can use without affecting query results, the engine uses the available type. The parser recognizes RTREE as a type name, but currently this cannot be specified for any storage engine.
Use of this option before the ON tbl_name clause is deprecated; support for use of the option in this position will be removed in a future MySQL release. If an index_type option is given in both the earlier and later positions, the final option applies.
TYPE type_name is recognized as a synonym for USING type_name. However, USING is the preferred form.
WITH PARSER parser_name
This option can be used only with FULLTEXT indexes. It associates a parser plugin with the index if full-text indexing and searching operations need special handling. See Section 22.2, “The MySQL Plugin API”, for details on creating plugins.
COMMENT 'string'
Index definitions can include an optional comment of up to 1024 characters.
As of MySQL 5.6.6, the ALGORITHM and LOCK clauses may be given. These influence the table copying method and level of concurrency for reading and writing the table while its indexes are being modified. They have the same meaning as for the ALTER TABLE statement. For more information, see Section 13.1.6, “ALTER TABLE Syntax”
13.1.12. CREATE PROCEDURE and CREATE FUNCTION Syntax
CREATE
[DEFINER = { user | CURRENT_USER }]
PROCEDURE sp_name ([proc_parameter[,...]])
[characteristic ...] routine_body
CREATE
[DEFINER = { user | CURRENT_USER }]
FUNCTION sp_name ([func_parameter[,...]])
RETURNS type
[characteristic ...] routine_body
proc_parameter:
[IN | OUT | INOUT] param_name type
func_parameter:
param_name type
type:
Any valid MySQL data type
characteristic:
COMMENT 'string'
| LANGUAGE SQL
| [NOT] DETERMINISTIC
| { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
| SQL SECURITY { DEFINER | INVOKER }
routine_body:
Valid SQL routine statement
These statements create stored routines. By default, a routine is associated with the default database. To associate the routine explicitly with a given database, specify the name as db_name.sp_name when you create it.
The CREATE FUNCTION statement is also used in MySQL to support UDFs (user-defined functions). See Section 22.3, “Adding New Functions to MySQL”. A UDF can be regarded as an external stored function. Stored functions share their namespace with UDFs. See Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server interprets references to different kinds of functions.
To invoke a stored procedure, use the CALL statement (see Section 13.2.1, “CALL Syntax”). To invoke a stored function, refer to it in an expression. The function returns a value during expression evaluation.
CREATE PROCEDURE and CREATE FUNCTION require the CREATE ROUTINE privilege. They might also require the SUPER privilege, depending on the DEFINER value, as described later in this section. If binary logging is enabled, CREATE FUNCTION might require the SUPER privilege, as described in Section 18.7, “Binary Logging of Stored Programs”.
By default, MySQL automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine creator. This behavior can be changed by disabling the automatic_sp_privileges system variable. See Section 18.2.2, “Stored Routines and MySQL Privileges”.
The DEFINER and SQL SECURITY clauses specify the security context to be used when checking access privileges at routine execution time, as described later in this section.
If the routine name is the same as the name of a built-in SQL function, a syntax error occurs unless you use a space between the name and the following parenthesis when defining the routine or invoking it later. For this reason, avoid using the names of existing SQL functions for your own stored routines.
The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. It is always permissible to have spaces after a stored routine name, regardless of whether IGNORE_SPACE is enabled.
The parameter list enclosed within parentheses must always be present. If there are no parameters, an empty parameter list of () should be used. Parameter names are not case sensitive.
Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword OUT or INOUT before the parameter name.
Note
Specifying a parameter as IN, OUT, or INOUT is valid only for a PROCEDURE. For a FUNCTION, parameters are always regarded as IN parameters.
An IN parameter passes a value into a procedure. The procedure might modify the value, but the modification is not visible to the caller when the procedure returns. An OUT parameter passes a value from the procedure back to the caller. Its initial value is NULL within the procedure, and its value is visible to the caller when the procedure returns. An INOUT parameter is initialized by the caller, can be modified by the procedure, and any change made by the procedure is visible to the caller when the procedure returns.
For each OUT or INOUT parameter, pass a user-defined variable in the CALL statement that invokes the procedure so that you can obtain its value when the procedure returns. If you are calling the procedure from within another stored procedure or function, you can also pass a routine parameter or local routine variable as an IN or INOUT parameter.
Routine parameters cannot be referenced in statements prepared within the routine; see Section E.1, “Restrictions on Stored Programs”.
The following example shows a simple stored procedure that uses an OUT parameter:
mysql> delimiter //
mysql> CREATE PROCEDURE simpleproc (OUT param1 INT)
-> BEGIN
-> SELECT COUNT(*) INTO param1 FROM t;
-> END//
Query OK, 0 rows affected (0.00 sec)
mysql> delimiter ;
mysql> CALL simpleproc(@a);
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @a;
+------+
| @a |
+------+
| 3 |
+------+
1 row in set (0.00 sec)
The example uses the mysql client delimiter command to change the statement delimiter from ; to // while the procedure is being defined. This enables the ; delimiter used in the procedure body to be passed through to the server rather than being interpreted by mysql itself. See Section 18.1, “Defining Stored Programs”.
The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It indicates the return type of the function, and the function body must contain a RETURN value statement. If the RETURN statement returns a value of a different type, the value is coerced to the proper type. For example, if a function specifies an ENUM or SET value in the RETURNS clause, but the RETURN statement returns an integer, the value returned from the function is the string for the corresponding ENUM member of set of SET members.
The following example function takes a parameter, performs an operation using an SQL function, and returns the result. In this case, it is unnecessary to use delimiter because the function definition contains no internal ; statement delimiters:
mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
-> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)
Parameter types and function return types can be declared to use any valid data type. The COLLATE attribute can be used if preceded by the CHARACTER SET attribute.
The routine_body consists of a valid SQL routine statement. This can be a simple statement such as SELECT or INSERT, or a compound statement written using BEGIN and END. Compound statements can contain declarations, loops, and other control structure statements. The syntax for these statements is described in Section 13.6, “MySQL Compound-Statement Syntax”.
MySQL permits routines to contain DDL statements, such as CREATE and DROP. MySQL also permits stored procedures (but not stored functions) to contain SQL transaction statements such as COMMIT. Stored functions may not contain statements that perform explicit or implicit commit or rollback. Support for these statements is not required by the SQL standard, which states that each DBMS vendor may decide whether to permit them.
Statements that return a result set can be used within a stored procedure but not within a stored function. This prohibition includes SELECT statements that do not have an INTO var_list clause and other statements such as SHOW, EXPLAIN, and CHECK TABLE. For statements that can be determined at function definition time to return a result set, a Not allowed to return a result set from a function error occurs (ER_SP_NO_RETSET). For statements that can be determined only at runtime to return a result set, a PROCEDURE %s can't return a result set in the given context error occurs (ER_SP_BADSELECT).
USE statements within stored routines are not permitted. When a routine is invoked, an implicit USE db_name is performed (and undone when the routine terminates). The causes the routine to have the given default database while it executes. References to objects in databases other than the routine default database should be qualified with the appropriate database name.
For additional information about statements that are not permitted in stored routines, see Section E.1, “Restrictions on Stored Programs”.
For information about invoking stored procedures from within programs written in a language that has a MySQL interface, see Section 13.2.1, “CALL Syntax”.
MySQL stores the sql_mode system variable setting that is in effect at the time a routine is created, and always executes the routine with this setting in force, regardless of the server SQL mode in effect when the routine is invoked.
The switch from the SQL mode of the invoker to that of the routine occurs after evaluation of arguments and assignment of the resulting values to routine parameters. If you define a routine in strict SQL mode but invoke it in nonstrict mode, assignment of arguments to routine parameters does not take place in strict mode. If you require that expressions passed to a routine be assigned in strict SQL mode, you should invoke the routine with strict mode in effect.
The COMMENT characteristic is a MySQL extension, and may be used to describe the stored routine. This information is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements.
The LANGUAGE characteristic indicates the language in which the routine is written. The server ignores this characteristic; only SQL routines are supported.
A routine is considered “deterministic” if it always produces the same result for the same input parameters, and “not deterministic” otherwise. If neither DETERMINISTIC nor NOT DETERMINISTIC is given in the routine definition, the default is NOT DETERMINISTIC. To declare that a function is deterministic, you must specify DETERMINISTIC explicitly.
Assessment of the nature of a routine is based on the “honesty” of the creator: MySQL does not check that a routine declared DETERMINISTIC is free of statements that produce nondeterministic results. However, misdeclaring a routine might affect results or affect performance. Declaring a nondeterministic routine as DETERMINISTIC might lead to unexpected results by causing the optimizer to make incorrect execution plan choices. Declaring a deterministic routine as NONDETERMINISTIC might diminish performance by causing available optimizations not to be used.
If binary logging is enabled, the DETERMINISTIC characteristic affects which routine definitions MySQL accepts. See Section 18.7, “Binary Logging of Stored Programs”.
A routine that contains the NOW() function (or its synonyms) or RAND() is nondeterministic, but it might still be replication-safe. For NOW(), the binary log includes the timestamp and replicates correctly. RAND() also replicates correctly as long as it is called only a single time during the execution of a routine. (You can consider the routine execution timestamp and random number seed as implicit inputs that are identical on the master and slave.)
Several characteristics provide information about the nature of data use by the routine. In MySQL, these characteristics are advisory only. The server does not use them to constrain what kinds of statements a routine will be permitted to execute.
CONTAINS SQL indicates that the routine does not contain statements that read or write data. This is the default if none of these characteristics is given explicitly. Examples of such statements are SET @x = 1 or DO RELEASE_LOCK('abc'), which execute but neither read nor write data.
NO SQL indicates that the routine contains no SQL statements.
READS SQL DATA indicates that the routine contains statements that read data (for example, SELECT), but not statements that write data.
MODIFIES SQL DATA indicates that the routine contains statements that may write data (for example, INSERT or DELETE).
The SQL SECURITY characteristic can be DEFINER or INVOKER to specify the security context; that is, whether the routine executes using the privileges of the account named in the routine DEFINER clause or the user who invokes it. This account must have permission to access the database with which the routine is associated. The default value is DEFINER. The user who invokes the routine must have the EXECUTE privilege for it, as must the DEFINER account if the routine executes in definer security context.
The DEFINER clause specifies the MySQL account to be used when checking access privileges at routine execution time for routines that have the SQL SECURITY DEFINER characteristic.
If a user value is given for the DEFINER clause, it should be a MySQL account specified as 'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER, or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE PROCEDURE or CREATE FUNCTION or statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.
If you specify the DEFINER clause, these rules determine the valid DEFINER user values:
If you do not have the SUPER privilege, the only permitted user value is your own account, either specified literally or by using CURRENT_USER. You cannot set the definer to some other account.
If you have the SUPER privilege, you can specify any syntactically valid account name. If the account does not actually exist, a warning is generated.
Although it is possible to create a routine with a nonexistent DEFINER account, an error occurs at routine execution time if the SQL SECURITY value is DEFINER but the definer account does not exist.
For more information about stored routine security, see Section 18.6, “Access Control for Stored Programs and Views”.
Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic, CURRENT_USER returns the routine's DEFINER value. For information about user auditing within stored routines, see Section 6.3.12, “SQL-Based MySQL Account Activity Auditing”.
Consider the following procedure, which displays a count of the number of MySQL accounts listed in the mysql.user table:
CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
BEGIN
SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;
The procedure is assigned a DEFINER account of 'admin'@'localhost' no matter which user defines it. It executes with the privileges of that account no matter which user invokes it (because the default security characteristic is DEFINER). The procedure succeeds or fails depending on whether invoker has the EXECUTE privilege for it and 'admin'@'localhost' has the SELECT privilege for the mysql.user table.
Now suppose that the procedure is defined with the SQL SECURITY INVOKER characteristic:
CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
SQL SECURITY INVOKER
BEGIN
SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;
The procedure still has a DEFINER of 'admin'@'localhost', but in this case, it executes with the privileges of the invoking user. Thus, the procedure succeeds or fails depending on whether the invoker has the EXECUTE privilege for it and the SELECT privilege for the mysql.user table.
The server handles the data type of a routine parameter, local routine variable created with DECLARE, or function return value as follows:
Assignments are checked for data type mismatches and overflow. Conversion and overflow problems result in warnings, or errors in strict SQL mode.
Only scalar values can be assigned. For example, a statement such as SET x = (SELECT 1, 2) is invalid.
For character data types, if there is a CHARACTER SET attribute in the declaration, the specified character set and its default collation is used. If the COLLATE attribute is also present, that collation is used rather than the default collation. If there is no CHARACTER SET attribute, the database character set and collation in effect at routine creation time are used. (The database character set and collation are given by the value of the character_set_database and collation_database system variables.)
If you change the database default character set or collation, stored routines that use the database defaults must be dropped and recreated so that they use the new defaults.
13.1.13. CREATE SERVER Syntax
CREATE SERVER server_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)
option:
{ HOST character-literal
| DATABASE character-literal
| USER character-literal
| PASSWORD character-literal
| SOCKET character-literal
| OWNER character-literal
| PORT numeric-literal }
This statement creates the definition of a server for use with the FEDERATED storage engine. The CREATE SERVER statement creates a new row in the servers table in the mysql database. This statement requires the SUPER privilege.
The server_name should be a unique reference to the server. Server definitions are global within the scope of the server, it is not possible to qualify the server definition to a specific database. server_name has a maximum length of 64 characters (names longer than 64 characters are silently truncated), and is case insensitive. You may specify the name as a quoted string.
The wrapper_name should be mysql, and may be quoted with single quotation marks. Other values for wrapper_name are not currently supported.
For each option you must specify either a character literal or numeric literal. Character literals are UTF-8, support a maximum length of 64 characters and default to a blank (empty) string. String literals are silently truncated to 64 characters. Numeric literals must be a number between 0 and 9999, default value is 0.
Note
The OWNER option is currently not applied, and has no effect on the ownership or operation of the server connection that is created.
The CREATE SERVER statement creates an entry in the mysql.servers table that can later be used with the CREATE TABLE statement when creating a FEDERATED table. The options that you specify will be used to populate the columns in the mysql.servers table. The table columns are Server_name, Host, Db, Username, Password, Port and Socket.
For example:
CREATE SERVER s
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'Remote', HOST '192.168.1.106', DATABASE 'test');
Be sure to specify all options necessary to establish a connection to the server. The user name, host name, and database name are mandatory. Other options might be required as well, such as password.
The data stored in the table can be used when creating a connection to a FEDERATED table:
CREATE TABLE t (s1 INT) ENGINE=FEDERATED CONNECTION='s';
For more information, see Section 14.9, “The FEDERATED Storage Engine”.
CREATE SERVER causes an automatic commit.
In MySQL 5.6, CREATE SERVER is not written to the binary log, regardless of the logging format that is in use.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
13.1.14. CREATE TABLE Syntax
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
(create_definition,...)
[table_options]
[partition_options]
Or:
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
[(create_definition,...)]
[table_options]
[partition_options]
select_statement
Or:
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
{ LIKE old_tbl_name | (LIKE old_tbl_name) }
create_definition:
col_name column_definition
| [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)
[index_option] ...
| {INDEX|KEY} [index_name] [index_type] (index_col_name,...)
[index_option] ...
| [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY]
[index_name] [index_type] (index_col_name,...)
[index_option] ...
| {FULLTEXT|SPATIAL} [INDEX|KEY] [index_name] (index_col_name,...)
[index_option] ...
| [CONSTRAINT [symbol]] FOREIGN KEY
[index_name] (index_col_name,...) reference_definition
| CHECK (expr)
column_definition:
data_type [NOT NULL | NULL] [DEFAULT default_value]
[AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
[COMMENT 'string']
[COLUMN_FORMAT {FIXED|DYNAMIC|DEFAULT}]
[reference_definition]
data_type:
BIT[(length)]
| TINYINT[(length)] [UNSIGNED] [ZEROFILL]
| SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
| MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
| INT[(length)] [UNSIGNED] [ZEROFILL]
| INTEGER[(length)] [UNSIGNED] [ZEROFILL]
| BIGINT[(length)] [UNSIGNED] [ZEROFILL]
| REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
| FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DECIMAL[(length[,decimals])] [UNSIGNED] [ZEROFILL]
| NUMERIC[(length[,decimals])] [UNSIGNED] [ZEROFILL]
| DATE
| TIME
| TIMESTAMP
| DATETIME
| YEAR
| CHAR[(length)]
[CHARACTER SET charset_name] [COLLATE collation_name]
| VARCHAR(length)
[CHARACTER SET charset_name] [COLLATE collation_name]
| BINARY[(length)]
| VARBINARY(length)
| TINYBLOB
| BLOB
| MEDIUMBLOB
| LONGBLOB
| TINYTEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| TEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| MEDIUMTEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| LONGTEXT [BINARY]
[CHARACTER SET charset_name] [COLLATE collation_name]
| ENUM(value1,value2,value3,...)
[CHARACTER SET charset_name] [COLLATE collation_name]
| SET(value1,value2,value3,...)
[CHARACTER SET charset_name] [COLLATE collation_name]
| spatial_type
index_col_name:
col_name [(length)] [ASC | DESC]
index_type:
USING {BTREE | HASH}
index_option:
KEY_BLOCK_SIZE [=] value
| index_type
| WITH PARSER parser_name
| COMMENT 'string'
reference_definition:
REFERENCES tbl_name (index_col_name,...)
[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE reference_option]
[ON UPDATE reference_option]
reference_option:
RESTRICT | CASCADE | SET NULL | NO ACTION
table_options:
table_option [[,] table_option] ...
table_option:
ENGINE [=] engine_name
| AUTO_INCREMENT [=] value
| AVG_ROW_LENGTH [=] value
| [DEFAULT] CHARACTER SET [=] charset_name
| CHECKSUM [=] {0 | 1}
| [DEFAULT] COLLATE [=] collation_name
| COMMENT [=] 'string'
| CONNECTION [=] 'connect_string'
| DATA DIRECTORY [=] 'absolute path to directory'
| DELAY_KEY_WRITE [=] {0 | 1}
| INDEX DIRECTORY [=] 'absolute path to directory'
| INSERT_METHOD [=] { NO | FIRST | LAST }
| KEY_BLOCK_SIZE [=] value
| MAX_ROWS [=] value
| MIN_ROWS [=] value
| PACK_KEYS [=] {0 | 1 | DEFAULT}
| PASSWORD [=] 'string'
| ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
| STATS_AUTO_RECALC [=] {DEFAULT|0|1}
| STATS_PERSISTENT [=] {DEFAULT|0|1}
| UNION [=] (tbl_name[,tbl_name]...)
partition_options:
PARTITION BY
{ [LINEAR] HASH(expr)
| [LINEAR] KEY [ALGORITHM={1|2}] (column_list)
| RANGE{(expr) | COLUMNS(column_list)}
| LIST{(expr) | COLUMNS(column_list)} }
[PARTITIONS num]
[SUBPARTITION BY
{ [LINEAR] HASH(expr)
| [LINEAR] KEY [ALGORITHM={1|2}] (column_list) }
[SUBPARTITIONS num]
]
[(partition_definition [, partition_definition] ...)]
partition_definition:
PARTITION partition_name
[VALUES
{LESS THAN {(expr | value_list) | MAXVALUE}
|
IN (value_list)}]
[[STORAGE] ENGINE [=] engine_name]
[COMMENT [=] 'comment_text']
[DATA DIRECTORY [=] 'data_dir']
[INDEX DIRECTORY [=] 'index_dir']
[MAX_ROWS [=] max_number_of_rows]
[MIN_ROWS [=] min_number_of_rows]
[(subpartition_definition [, subpartition_definition] ...)]
subpartition_definition:
SUBPARTITION logical_name
[[STORAGE] ENGINE [=] engine_name]
[COMMENT [=] 'comment_text']
[DATA DIRECTORY [=] 'data_dir']
[INDEX DIRECTORY [=] 'index_dir']
[MAX_ROWS [=] max_number_of_rows]
[MIN_ROWS [=] min_number_of_rows]
select_statement:
[IGNORE | REPLACE] [AS] SELECT ... (Some valid select statement)
CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the table.
Rules for permissible table names are given in Section 9.2, “Schema Object Names”. By default, the table is created in the default database, using the InnoDB storage engine. An error occurs if the table exists, if there is no default database, or if the database does not exist.
The table name can be specified as db_name.tbl_name to create the table in a specific database. This works regardless of whether there is a default database, assuming that the database exists. If you use quoted identifiers, quote the database and table names separately. For example, write `mydb`.`mytbl`, not `mydb.mytbl`.
Temporary Tables
You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only to the current connection, and is dropped automatically when the connection is closed. This means that two different connections can use the same temporary table name without conflicting with each other or with an existing non-TEMPORARY table of the same name. (The existing table is hidden until the temporary table is dropped.) To create temporary tables, you must have the CREATE TEMPORARY TABLES privilege.
Note
CREATE TABLE does not automatically commit the current active transaction if you use the TEMPORARY keyword.
Existing Table with Same Name
The keywords IF NOT EXISTS prevent an error from occurring if the table exists. However, there is no verification that the existing table has a structure identical to that indicated by the CREATE TABLE statement.
Physical Representation
MySQL represents each table by an .frm table format (definition) file in the database directory. The storage engine for the table might create other files as well.
For InnoDB tables, the file storage is controlled by the innodb_file_per_table configuration option. When this option is turned off, all InnoDB tables and indexes are stored in the system tablespace, represented by one or more .ibd files. For each InnoDB table created when this option is turned on, the table data and all associated indexes are stored in a .ibd file located inside the database directory.
For MyISAM tables, the storage engine creates data and index files. Thus, for each MyISAM table tbl_name, there are three disk files.
File | Purpose |
---|---|
tbl_name.frm | Table format (definition) file |
tbl_name.MYD | Data file |
tbl_name.MYI | Index file |
Chapter 14, Storage Engines, describes what files each storage engine creates to represent tables. If a table name contains special characters, the names for the table files contain encoded versions of those characters as described in Section 9.2.3, “Mapping of Identifiers to File Names”.
Data Types and Attributes for Columns
data_type represents the data type in a column definition. spatial_type represents a spatial data type. The data type syntax shown is representative only. For a full description of the syntax available for specifying column data types, as well as information about the properties of each type, see Chapter 11, Data Types, and Section 12.18, “Spatial Extensions”.
Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer and floating-point types. DEFAULT does not apply to the BLOB or TEXT types.
If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been specified.
An integer or floating-point column can have the additional attribute AUTO_INCREMENT. When you insert a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column is set to the next sequence value. Typically this is value+1, where value is the largest value for the column currently in the table. AUTO_INCREMENT sequences begin with 1.
To retrieve an AUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. See Section 12.14, “Information Functions”, and Section 21.8.6.37, “mysql_insert_id()”.
If the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT columns as 0 without generating a new sequence value. See Section 5.1.7, “Server SQL Modes”.
Note
There can be only one AUTO_INCREMENT column per table, it must be indexed, and it cannot have a DEFAULT value. An AUTO_INCREMENT column works properly only if it contains only positive values. Inserting a negative number is regarded as inserting a very large positive number. This is done to avoid precision problems when numbers “wrap” over from positive to negative and also to ensure that you do not accidentally get an AUTO_INCREMENT column that contains 0.
For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key. See Section 3.6.9, “Using AUTO_INCREMENT”.
To make MySQL compatible with some ODBC applications, you can find the AUTO_INCREMENT value for the last inserted row with the following query:
SELECT * FROM tbl_name WHERE auto_col IS NULL
For information about InnoDB and AUTO_INCREMENT, see Section 5.4.4, “AUTO_INCREMENT Handling in InnoDB”. For information about AUTO_INCREMENT and MySQL Replication, see Section 16.4.1.1, “Replication and AUTO_INCREMENT”.
Character data types (CHAR, VARCHAR, TEXT) can include CHARACTER SET and COLLATE attributes to specify the character set and collation for the column. For details, see Section 10.1, “Character Set Support”. CHARSET is a synonym for CHARACTER SET. Example:
CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);
MySQL 5.6 interprets length specifications in character column definitions in characters. (Versions before MySQL 4.1 interpreted them in bytes.) Lengths for BINARY and VARBINARY are in bytes.
The DEFAULT clause specifies a default value for a column. With one exception, the default value must be a constant; it cannot be a function or an expression. This means, for example, that you cannot set the default for a date column to be the value of a function such as NOW() or CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as the default for a TIMESTAMP or (as of MySQL 5.6.5) DATETIME column. See Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”.
If a column definition includes no explicit DEFAULT value, MySQL determines the default value as described in Section 11.5, “Data Type Default Values”.
BLOB and TEXT columns cannot be assigned a default value.
If the NO_ZERO_DATE or NO_ZERO_IN_DATE SQL mode is enabled and a date-valued default is not correct according to that mode, CREATE TABLE produces a warning if strict SQL mode is not enabled and an error if strict mode is enabled. For example, with NO_ZERO_IN_DATE enabled, c1 DATE DEFAULT '2010-00-00' produces a warning. (Before MySQL 5.6.6, the statement produces an error even if strict mode is not enabled.)
A comment for a column can be specified with the COMMENT option, up to 1024 characters long. The comment is displayed by the SHOW CREATE TABLE and SHOW FULL COLUMNS statements.
KEY is normally a synonym for INDEX. The key attribute PRIMARY KEY can also be specified as just KEY when given in a column definition. This was implemented for compatibility with other database systems.
A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs if you try to add a new row with a key value that matches an existing row. For all engines, a UNIQUE index permits multiple NULL values for columns that can contain NULL.
A PRIMARY KEY is a unique index where all key columns must be defined as NOT NULL. If they are not explicitly declared as NOT NULL, MySQL declares them so implicitly (and silently). A table can have only one PRIMARY KEY. The name of a PRIMARY KEY is always PRIMARY, which thus cannot be used as the name for any other kind of index.
If you do not have a PRIMARY KEY and an application asks for the PRIMARY KEY in your tables, MySQL returns the first UNIQUE index that has no NULL columns as the PRIMARY KEY.
In InnoDB tables, keep the PRIMARY KEY short to minimize storage overhead for secondary indexes. Each secondary index entry contains a copy of the primary key columns for the corresponding row. (See Section 14.2.3.12, “InnoDB Table and Index Structures”.)
In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then the nonunique indexes. This helps the MySQL optimizer to prioritize which index to use and also more quickly to detect duplicated UNIQUE keys.
A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column index using the PRIMARY KEY key attribute in a column specification. Doing so only marks that single column as primary. You must use a separate PRIMARY KEY(index_col_name, ...) clause.
If a PRIMARY KEY or UNIQUE index consists of only one column that has an integer type, you can also refer to the column as _rowid in SELECT statements.
In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you do not assign a name, the index is assigned the same name as the first indexed column, with an optional suffix (_2, _3, ...) to make it unique. You can see index names for a table using SHOW INDEX FROM tbl_name. See Section 13.7.5.23, “SHOW INDEX Syntax”.
Some storage engines permit you to specify an index type when creating an index. The syntax for the index_type specifier is USING type_name.
Example:
CREATE TABLE lookup
(id INT, INDEX USING BTREE (id))
ENGINE = MEMORY;
The preferred position for USING is after the index column list. It can be given before the column list, but support for use of the option in that position is deprecated and will be removed in a future MySQL release.
index_option values specify additional options for an index. USING is one such option. For details about permissible index_option values, see Section 13.1.11, “CREATE INDEX Syntax”.
For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.
In MySQL 5.6, only the InnoDB, MyISAM, and MEMORY storage engines support indexes on columns that can have NULL values. In other cases, you must declare indexed columns as NOT NULL or an error results.
For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the leading part of column values, using col_name(length) syntax to specify an index prefix length. BLOB and TEXT columns also can be indexed, but a prefix length must be given. Prefix lengths are given in characters for nonbinary string types and in bytes for binary string types. That is, index entries consist of the first length characters of each column value for CHAR, VARCHAR, and TEXT columns, and the first length bytes of each column value for BINARY, VARBINARY, and BLOB columns. Indexing only a prefix of column values like this can make the index file much smaller. See Section 8.3.4, “Column Indexes”.
Only the InnoDB and MyISAM storage engines support indexing on BLOB and TEXT columns. For example:
CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));
Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables). Note that prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE statements is interpreted as number of characters for nonbinary data types (CHAR, VARCHAR, TEXT). Take this into account when specifying a prefix length for a column that uses a multi-byte character set.
An index_col_name specification can end with ASC or DESC. These keywords are permitted for future extensions for specifying ascending or descending index value storage. Currently, they are parsed but ignored; index values are always stored in ascending order.
When you use ORDER BY or GROUP BY on a column in a SELECT, the server sorts values using only the initial number of bytes indicated by the max_sort_length system variable.
You can create special FULLTEXT indexes, which are used for full-text searches. Only the InnoDB and MyISAM storage engines support FULLTEXT indexes. They can be created only from CHAR, VARCHAR, and TEXT columns. Indexing always happens over the entire column; column prefix indexing is not supported and any prefix length is ignored if specified. See Section 12.9, “Full-Text Search Functions”, for details of operation. A WITH PARSER clause can be specified as an index_option value to associate a parser plugin with the index if full-text indexing and searching operations need special handling. This clause is valid only for FULLTEXT indexes. See Section 22.2, “The MySQL Plugin API”, for details on creating plugins.
You can create SPATIAL indexes on spatial data types. Spatial types are supported only for MyISAM tables and indexed columns must be declared as NOT NULL. See Section 12.18, “Spatial Extensions”.
In MySQL 5.6, index definitions can include an optional comment of up to 1024 characters.
InnoDB tables support checking of foreign key constraints. The columns of the referenced table must always be explicitly named. Both ON DELETE and ON UPDATE actions on foreign keys. For more detailed information and examples, see Section 13.1.14.2, “Using FOREIGN KEY Constraints”. For information specific to foreign keys in InnoDB, see Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”.
For other storage engines, MySQL Server parses and ignores the FOREIGN KEY and REFERENCES syntax in CREATE TABLE statements. The CHECK clause is parsed but ignored by all storage engines. See Section 1.8.5.4, “Foreign Key Differences”.
Important
For users familiar with the ANSI/ISO SQL Standard, please note that no storage engine, including InnoDB, recognizes or enforces the MATCH clause used in referential integrity constraint definitions. Use of an explicit MATCH clause will not have the specified effect, and also causes ON DELETE and ON UPDATE clauses to be ignored. For these reasons, specifying MATCH should be avoided.
The MATCH clause in the SQL standard controls how NULL values in a composite (multiple-column) foreign key are handled when comparing to a primary key. InnoDB essentially implements the semantics defined by MATCH SIMPLE, which permit a foreign key to be all or partially NULL. In that case, the (child table) row containing such a foreign key is permitted to be inserted, and does not match any row in the referenced (parent) table. It is possible to implement other semantics using triggers.
Additionally, MySQL requires that the referenced columns be indexed for performance. However, InnoDB does not enforce any requirement that the referenced columns be declared UNIQUE or NOT NULL. The handling of foreign key references to nonunique keys or keys that contain NULL values is not well defined for operations such as UPDATE or DELETE CASCADE. You are advised to use foreign keys that reference only keys that are both UNIQUE (or PRIMARY) and NOT NULL.
MySQL does not recognize or support “inline REFERENCES specifications” (as defined in the SQL standard) where the references are defined as part of the column specification. MySQL accepts REFERENCES clauses only when specified as part of a separate FOREIGN KEY specification.
Note
Partitioned tables employing the InnoDB storage engine do not support foreign keys. See Section 17.6, “Restrictions and Limitations on Partitioning”, for more information.
There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given table and depends on the factors discussed in Section E.10.4, “Limits on Table Column Count and Row Size”.
Storage Engines
The ENGINE table option specifies the storage engine for the table, using one of the names shown in the following table. The engine name can be unquoted or quoted. The quoted name 'DEFAULT' is recognized but ignored.
Storage Engine | Description |
---|---|
InnoDB | Transaction-safe tables with row locking and foreign keys. The default storage engine for new tables. See Section 14.2, “The InnoDB Storage Engine”, and in particular Section 14.2.1.1, “InnoDB as the Default MySQL Storage Engine” if you have MySQL experience but are new to InnoDB. |
MyISAM | The binary portable storage engine that is primarily used for read-only or read-mostly workloads. See Section 14.3, “The MyISAM Storage Engine”. |
MEMORY | The data for this storage engine is stored only in memory. See Section 14.4, “The MEMORY Storage Engine”. |
CSV | Tables that store rows in comma-separated values format. See Section 14.5, “The CSV Storage Engine”. |
ARCHIVE | The archiving storage engine. See Section 14.6, “The ARCHIVE Storage Engine”. |
EXAMPLE | An example engine. See Section 14.10, “The EXAMPLE Storage Engine”. |
FEDERATED | Storage engine that accesses remote tables. See Section 14.9, “The FEDERATED Storage Engine”. |
HEAP | This is a synonym for MEMORY. |
MERGE | A collection of MyISAM tables used as one table. Also known as MRG_MyISAM. See Section 14.8, “The MERGE Storage Engine”. |
If a storage engine is specified that is not available, MySQL uses the default engine instead. Normally, this is MyISAM. For example, if a table definition includes the ENGINE=INNODB option but the MySQL server does not support INNODB tables, the table is created as a MyISAM table. This makes it possible to have a replication setup where you have transactional tables on the master but tables created on the slave are nontransactional (to get more speed). In MySQL 5.6, a warning occurs if the storage engine specification is not honored.
Engine substitution can be controlled by the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as described in Section 5.1.7, “Server SQL Modes”.
Note
The older TYPE option that was synonymous with ENGINE was removed in MySQL 5.5. When upgrading to MySQL 5.5 or later, you must convert existing applications that rely on TYPE to use ENGINE instead.
Optimizing Performance
The other table options are used to optimize the behavior of the table. In most cases, you do not have to specify any of them. These options apply to all storage engines unless otherwise indicated. Options that do not apply to a given storage engine may be accepted and remembered as part of the table definition. Such options then apply if you later use ALTER TABLE to convert the table to use a different storage engine.
AUTO_INCREMENT
The initial AUTO_INCREMENT value for the table. In MySQL 5.6, this works for MyISAM, MEMORY, InnoDB, and ARCHIVE tables. To set the first auto-increment value for engines that do not support the AUTO_INCREMENT table option, insert a “dummy” row with a value one less than the desired value after creating the table, and then delete the dummy row.
For engines that support the AUTO_INCREMENT table option in CREATE TABLE statements, you can also use ALTER TABLE tbl_name AUTO_INCREMENT = N to reset the AUTO_INCREMENT value. The value cannot be set lower than the maximum value currently in the column.
AVG_ROW_LENGTH
An approximation of the average row length for your table. You need to set this only for large tables with variable-size rows.
When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and AVG_ROW_LENGTH options to decide how big the resulting table is. If you don't specify either option, the maximum size for MyISAM data and index files is 256TB by default. (If your operating system does not support files that large, table sizes are constrained by the file size limit.) If you want to keep down the pointer sizes to make the index smaller and faster and you don't really need big files, you can decrease the default pointer size by setting the myisam_data_pointer_size system variable. (See Section 5.1.4, “Server System Variables”.) If you want all your tables to be able to grow above the default limit and are willing to have your tables slightly slower and larger than necessary, you can increase the default pointer size by setting this variable. Setting the value to 7 permits table sizes up to 65,536TB.
[DEFAULT] CHARACTER SET
Specify a default character set for the table. CHARSET is a synonym for CHARACTER SET. If the character set name is DEFAULT, the database character set is used.
CHECKSUM
Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that MySQL updates automatically as the table changes). This makes the table a little slower to update, but also makes it easier to find corrupted tables. The CHECKSUM TABLE statement reports the checksum. (MyISAM only.)
[DEFAULT] COLLATE
Specify a default collation for the table.
COMMENT
A comment for the table, up to 2048 characters long.
CONNECTION
The connection string for a FEDERATED table.
Note
Older versions of MySQL used a COMMENT option for the connection string.
DATA DIRECTORY, INDEX DIRECTORY
By using DATA DIRECTORY='directory', you can specify where the InnoDB storage engine puts the .ibd tablespace file for a new table. This clause only applies when the innodb_file_per_table configuration option is enabled. The directory must be the full path name to the directory, not a relative path. See Section 14.2.4.2.34, “Improved Tablespace Management” for details about the performance aspects of tablespace management.
When creating MyISAM tables, you can use the DATA DIRECTORY='directory' clause, the INDEX DIRECTORY='directory' clause, or both. They specify where to put a MyISAM table's data file and index file respectively.
Important
Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored for partitioned tables. (Bug #32091)
These options work only when you are not using the --skip-symbolic-links option. Your operating system must also have a working, thread-safe realpath() call. See Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”, for more complete information.
If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this behavior, start the server with the --keep_files_on_create option, in which case MyISAM will not overwrite existing files and returns an error instead.
If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing .MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified directory.
Important
You cannot use path names that contain the MySQL data directory with DATA DIRECTORY or INDEX DIRECTORY. This includes partitioned tables and individual table partitions. (See Bug #32167.)
DELAY_KEY_WRITE
Set this to 1 if you want to delay key updates for the table until the table is closed. See the description of the delay_key_write system variable in Section 5.1.4, “Server System Variables”. (MyISAM only.)
INSERT_METHOD
If you want to insert data into a MERGE table, you must specify with INSERT_METHOD the table into which the row should be inserted. INSERT_METHOD is an option useful for MERGE tables only. Use a value of FIRST or LAST to have inserts go to the first or last table, or a value of NO to prevent inserts. See Section 14.8, “The MERGE Storage Engine”.
KEY_BLOCK_SIZE
For compressed InnoDB tables, optionally specifies the size in bytes to use for pages. The value is treated as a hint; a different size could be used if necessary. A value of 0 represents that the default compressed page size. See Section 5.4.6, “Working with InnoDB Compressed Tables” for usage details.
Individual index definitions can specify a KEY_BLOCK_SIZE value of their own to override the table value.
Note
Oracle recommends enabling innodb_strict_mode when using the KEY_BLOCK_SIZE clause for InnoDB tables. See Section 14.2.5.7, “InnoDB Strict Mode” for details.
MAX_ROWS
The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint to the storage engine that the table must be able to store at least this many rows.
The maximum MAX_ROWS value is 4294967295; larger values are truncated to this limit.
MIN_ROWS
The minimum number of rows you plan to store in the table. The MEMORY storage engine uses this option as a hint about memory use.
PACK_KEYS
PACK_KEYS takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller indexes. This usually makes updates slower and reads faster. Setting the option to 0 disables all packing of keys. Setting it to DEFAULT tells the storage engine to pack only long CHAR, VARCHAR, BINARY, or VARBINARY columns.
If you do not use PACK_KEYS, the default is to pack strings, but not numbers. If you use PACK_KEYS=1, numbers are packed as well.
When packing binary number keys, MySQL uses prefix compression:
Every key needs one extra byte to indicate how many bytes of the previous key are the same for the next key.
The pointer to the row is stored in high-byte-first order directly after the key, to improve compression.
This means that if you have many equal keys on two consecutive rows, all following “same” keys usually only take two bytes (including the pointer to the row). Compare this to the ordinary case where the following keys takes storage_size_for_key + pointer_size (where the pointer size is usually 4). Conversely, you get a significant benefit from prefix compression only if you have many numbers that are the same. If all keys are totally different, you use one byte more per key, if the key is not a key that can have NULL values. (In this case, the packed key length is stored in the same byte that is used to mark if a key is NULL.)
PASSWORD
This option is unused. If you have a need to scramble your .frm files and make them unusable to any other MySQL server, please contact our sales department.
ROW_FORMAT
Defines the physical format in which the rows are stored. The choices differ depending on the storage engine used for the table.
For InnoDB tables:
Rows are stored in compact format (ROW_FORMAT=COMPACT) by default.
The noncompact format used in older versions of MySQL can still be requested by specifying ROW_FORMAT=REDUNDANT.
To enable compression for InnoDB tables, specify ROW_FORMAT=COMPRESSED and follow the procedures in Section 5.4.6, “Working with InnoDB Compressed Tables”.
For more efficient InnoDB storage of data types, especially BLOB types, specify ROW_FORMAT=DYNAMIC and follow the procedures in Section 5.4.8.3, “DYNAMIC and COMPRESSED Row Formats”. Both the COMPRESSED and DYNAMIC row formats require creating the table with the configuration settings innodb_file_per_table=1 and innodb_file_format=barracuda.
When you specify a non-default ROW_FORMAT clause, consider also enabling the innodb_strict_mode configuration option. See Section 14.2.5.7, “InnoDB Strict Mode” for details.
For MyISAM tables, the option value can be FIXED or DYNAMIC for static or variable-length row format. myisampack sets the type to COMPRESSED. See Section 14.3.3, “MyISAM Table Storage Formats”.
Note
When executing a CREATE TABLE statement, if you specify a row format that is not supported by the storage engine that is used for the table, the table is created using that storage engine's default row format. The information reported in this column in response to SHOW TABLE STATUS is the actual row format used. This may differ from the value in the Create_options column because the original CREATE TABLE definition is retained during creation.
STATS_AUTO_RECALC
Specifies whether to automatically recalculate persistent statistics for an InnoDB table. The value DEFAULT causes the persistent statistics setting for the table to be determined by the innodb_stats_auto_recalc configuration option. The value 1 causes statistics to be recalculated when 10% of the data in the table has changed. The value 0 prevents automatic recalculation for this table; with this setting, issue an ANALYZE TABLE statement to recalculate the statistics after making substantial changes to the table. For more information about the persistent statistics feature, see Section 14.2.4.2.10, “Persistent Optimizer Statistics for InnoDB Tables”.
STATS_PERSISTENT
Specifies whether to enable persistent statistics for an InnoDB table. The value DEFAULT causes the persistent statistics setting for the table to be determined by the innodb_stats_persistent configuration option. The value 1 enables persistent statistics for the table, while the value 0 turns off this feature. After enabling persistent statistics through a CREATE TABLE or ALTER TABLE statement, issue an ANALYZE TABLE statement to calculate the statistics, after loading representative data into the table. For more information about the persistent statistics feature, see Section 14.2.4.2.10, “Persistent Optimizer Statistics for InnoDB Tables”.
UNION is used when you want to access a collection of identical MyISAM tables as one. This works only with MERGE tables. See Section 14.8, “The MERGE Storage Engine”.
You must have SELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE table.
Note
Formerly, all tables used had to be in the same database as the MERGE table itself. This restriction no longer applies.
Partitioning
partition_options can be used to control partitioning of the table created with CREATE TABLE.
Important
Not all options shown in the syntax for partition_options at the beginning of this section are available for all partitioning types. Please see the listings for the following individual types for information specific to each type, and see Chapter 17, Partitioning, for more complete information about the workings of and uses for partitioning in MySQL, as well as additional examples of table creation and other statements relating to MySQL partitioning.
If used, a partition_options clause begins with PARTITION BY. This clause contains the function that is used to determine the partition; the function returns an integer value ranging from 1 to num, where num is the number of partitions. (The maximum number of user-defined partitions which a table may contain is 1024; the number of subpartitions—discussed later in this section—is included in this maximum.) The choices that are available for this function in MySQL 5.6 are shown in the following list:
HASH(expr): Hashes one or more columns to create a key for placing and locating rows. expr is an expression using one or more table columns. This can be any valid MySQL expression (including MySQL functions) that yields a single integer value. For example, these are both valid CREATE TABLE statements using PARTITION BY HASH:
CREATE TABLE t1 (col1 INT, col2 CHAR(5))
PARTITION BY HASH(col1);
CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATETIME)
PARTITION BY HASH (YEAR(col3));
You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY HASH.
PARTITION BY HASH uses the remainder of expr divided by the number of partitions (that is, the modulus). For examples and additional information, see Section 17.2.4, “HASH Partitioning”.
The LINEAR keyword entails a somewhat different algorithm. In this case, the number of the partition in which a row is stored is calculated as the result of one or more logical AND operations. For discussion and examples of linear hashing, see Section 17.2.4.1, “LINEAR HASH Partitioning”.
KEY(column_list): This is similar to HASH, except that MySQL supplies the hashing function so as to guarantee an even data distribution. The column_list argument is simply a list of 1 or more table columns (maximum: 16). This example shows a simple table partitioned by key, with 4 partitions:
CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY KEY(col3)
PARTITIONS 4;
For tables that are partitioned by key, you can employ linear partitioning by using the LINEAR keyword. This has the same effect as with tables that are partitioned by HASH. That is, the partition number is found using the & operator rather than the modulus (see Section 17.2.4.1, “LINEAR HASH Partitioning”, and Section 17.2.5, “KEY Partitioning”, for details). This example uses linear partitioning by key to distribute data between 5 partitions:
CREATE TABLE tk (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY LINEAR KEY(col3)
PARTITIONS 5;
The ALGORITHM={1|2} option is supported with [SUB]PARTITION BY [LINEAR] KEY beginning with MySQL 5.6.11. ALGORITHM=1 causes the server to use the same key-hashing functions as MySQL 5.1; ALGORITHM=2 means that the server employs the key-hashing functions implemented and used by default for new KEY partitioned tables in MySQL 5.5 and later. (Partitioned tables created with the key-hashing functions employed in MySQL 5.5 and later cannot be used by a MySQL 5.1 server.) Not specifying the option has the same effect as using ALGORITHM=2. This option is intended for use chiefly when upgrading or downgrading [LINEAR] KEY partitioned tables between MySQL 5.1 and later MySQL versions, or for creating tables partitioned by KEY or LINEAR KEY on a MySQL 5.5 or later server which can be used on a MySQL 5.1 server. For more information, see Section 13.1.6.1, “ALTER TABLE Partition Operations”.
mysqldump in MySQL 5.6.11 and later writes this option encased in versioned comments, like this:
CREATE TABLE t1 (a INT)
/*!50100 PARTITION BY KEY */ /*!50611 ALGORITHM = 1 */ /*!50100 ()
PARTITIONS 3 */
This causes MySQL 5.6.10 and earlier servers to ignore the option, which would otherwise cause a syntax error in those versions. If you plan to load a dump made on a MySQL 5.5.31 or later MySQL 5.5 server where you use tables that are partitioned or subpartitioned by KEY into a MySQL 5.6 server previous to version 5.6.11, be sure to consult Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”, before proceeding. (The information found there also applies if you are loading a dump containing KEY partitioned or subpartitioned tables made from a MySQL 5.6.11 or later server into a MySQL 5.5.30 or earlier server.)
Also in MySQL 5.6.11 and later, ALGORITHM=1 is shown when necessary in the output of SHOW CREATE TABLE using versioned comments in the same manner as mysqldump. ALGORITHM=2 is always omitted from SHOW CREATE TABLE output, even if this option was specified when creating the original table.
You may not use either VALUES LESS THAN or VALUES IN clauses with PARTITION BY KEY.
RANGE(expr): In this case, expr shows a range of values using a set of VALUES LESS THAN operators. When using range partitioning, you must define at least one partition using VALUES LESS THAN. You cannot use VALUES IN with range partitioning.
Note
For tables partitioned by RANGE, VALUES LESS THAN must be used with either an integer literal value or an expression that evaluates to a single integer value. In MySQL 5.6, you can overcome this limitation in a table that is defined using PARTITION BY RANGE COLUMNS, as described later in this section.
Suppose that you have a table that you wish to partition on a column containing year values, according to the following scheme.
Partition Number: | Years Range: |
---|---|
0 | 1990 and earlier |
1 | 1991 to 1994 |
2 | 1995 to 1998 |
3 | 1999 to 2002 |
4 | 2003 to 2005 |
5 | 2006 and later |
A table implementing such a partitioning scheme can be realized by the CREATE TABLE statement shown here:
CREATE TABLE t1 (
year_col INT,
some_data INT
)
PARTITION BY RANGE (year_col) (
PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (1999),
PARTITION p3 VALUES LESS THAN (2002),
PARTITION p4 VALUES LESS THAN (2006),
PARTITION p5 VALUES LESS THAN MAXVALUE
);
PARTITION ... VALUES LESS THAN ... statements work in a consecutive fashion. VALUES LESS THAN MAXVALUE works to specify “leftover” values that are greater than the maximum value otherwise specified.
Note that VALUES LESS THAN clauses work sequentially in a manner similar to that of the case portions of a switch ... case block (as found in many programming languages such as C, Java, and PHP). That is, the clauses must be arranged in such a way that the upper limit specified in each successive VALUES LESS THAN is greater than that of the previous one, with the one referencing MAXVALUE coming last of all in the list.
RANGE COLUMNS(column_list): This variant on RANGE facilitates partition pruning for queries using range conditions on multiple columns (that is, having conditions such as WHERE a = 1 AND b < 10 or WHERE a = 1 AND b = 10 AND c < 10). It enables you to specify value ranges in multiple columns by using a list of columns in the COLUMNS clause and a set of column values in each PARTITION ... VALUES LESS THAN (value_list) partition definition clause. (In the simplest case, this set consists of a single column.) The maximum number of columns that can be referenced in the column_list and value_list is 16.
The column_list used in the COLUMNS clause may contain only names of columns; each column in the list must be one of the following MySQL data types: the integer types; the string types; and time or date column types. Columns using BLOB, TEXT, SET, ENUM, BIT, or spatial data types are not permitted; columns that use floating-point number types are also not permitted. You also may not use functions or arithmetic expressions in the COLUMNS clause.
The VALUES LESS THAN clause used in a partition definition must specify a literal value for each column that appears in the COLUMNS() clause; that is, the list of values used for each VALUES LESS THAN clause must contain the same number of values as there are columns listed in the COLUMNS clause. An attempt to use more or fewer values in a VALUES LESS THAN clause than there are in the COLUMNS clause causes the statement to fail with the error Inconsistency in usage of column lists for partitioning.... You cannot use NULL for any value appearing in VALUES LESS THAN. It is possible to use MAXVALUE more than once for a given column other than the first, as shown in this example:
CREATE TABLE rc (
a INT NOT NULL,
b INT NOT NULL
)
PARTITION BY RANGE COLUMNS(a,b) (
PARTITION p0 VALUES LESS THAN (10,5),
PARTITION p1 VALUES LESS THAN (20,10),
PARTITION p2 VALUES LESS THAN (MAXVALUE,15),
PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);
Each value used in a VALUES LESS THAN value list must match the type of the corresponding column exactly; no conversion is made. For example, you cannot use the string '1' for a value that matches a column that uses an integer type (you must use the numeral 1 instead), nor can you use the numeral 1 for a value that matches a column that uses a string type (in such a case, you must use a quoted string: '1').
For more information, see Section 17.2.1, “RANGE Partitioning”, and Section 17.4, “Partition Pruning”.
LIST(expr): This is useful when assigning partitions based on a table column with a restricted set of possible values, such as a state or country code. In such a case, all rows pertaining to a certain state or country can be assigned to a single partition, or a partition can be reserved for a certain set of states or countries. It is similar to RANGE, except that only VALUES IN may be used to specify permissible values for each partition.
VALUES IN is used with a list of values to be matched. For instance, you could create a partitioning scheme such as the following:
CREATE TABLE client_firms (
id INT,
name VARCHAR(35)
)
PARTITION BY LIST (id) (
PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)
);
When using list partitioning, you must define at least one partition using VALUES IN. You cannot use VALUES LESS THAN with PARTITION BY LIST.
Note
For tables partitioned by LIST, the value list used with VALUES IN must consist of integer values only. In MySQL 5.6, you can overcome this limitation using partitioning by LIST COLUMNS, which is described later in this section.
LIST COLUMNS(column_list): This variant on LIST facilitates partition pruning for queries using comparison conditions on multiple columns (that is, having conditions such as WHERE a = 5 AND b = 5 or WHERE a = 1 AND b = 10 AND c = 5). It enables you to specify values in multiple columns by using a list of columns in the COLUMNS clause and a set of column values in each PARTITION ... VALUES IN (value_list) partition definition clause.
The rules governing regarding data types for the column list used in LIST COLUMNS(column_list) and the value list used in VALUES IN(value_list) are the same as those for the column list used in RANGE COLUMNS(column_list) and the value list used in VALUES LESS THAN(value_list), respectively, except that in the VALUES IN clause, MAXVALUE is not permitted, and you may use NULL.
There is one important difference between the list of values used for VALUES IN with PARTITION BY LIST COLUMNS as opposed to when it is used with PARTITION BY LIST. When used with PARTITION BY LIST COLUMNS, each element in the VALUES IN clause must be a set of column values; the number of values in each set must be the same as the number of columns used in the COLUMNS clause, and the data types of these values must match those of the columns (and occur in the same order). In the simplest case, the set consists of a single column. The maximum number of columns that can be used in the column_list and in the elements making up the value_list is 16.
The table defined by the following CREATE TABLE statement provides an example of a table using LIST COLUMNS partitioning:
CREATE TABLE lc (
a INT NULL,
b INT NULL
)
PARTITION BY LIST COLUMNS(a,b) (
PARTITION p0 VALUES IN((0,0), (NULL,NULL)),
PARTITION p1 VALUES IN((0,1), (0,2), (0,3), (1,1), (1,2)),
PARTITION p2 VALUES IN((1,0), (2,0), (2,1), (3,0), (3,1)),
PARTITION p3 VALUES IN((1,3), (2,2), (2,3), (3,2), (3,3))
);
The number of partitions may optionally be specified with a PARTITIONS num clause, where num is the number of partitions. If both this clause and any PARTITION clauses are used, num must be equal to the total number of any partitions that are declared using PARTITION clauses.
Note
Whether or not you use a PARTITIONS clause in creating a table that is partitioned by RANGE or LIST, you must still include at least one PARTITION VALUES clause in the table definition (see below).
A partition may optionally be divided into a number of subpartitions. This can be indicated by using the optional SUBPARTITION BY clause. Subpartitioning may be done by HASH or KEY. Either of these may be LINEAR. These work in the same way as previously described for the equivalent partitioning types. (It is not possible to subpartition by LIST or RANGE.)
The number of subpartitions can be indicated using the SUBPARTITIONS keyword followed by an integer value.
Rigorous checking of the value used in PARTITIONS or SUBPARTITIONS clauses is applied and this value must adhere to the following rules:
The value must be a positive, nonzero integer.
No leading zeros are permitted.
The value must be an integer literal, and cannot not be an expression. For example, PARTITIONS 0.2E+01 is not permitted, even though 0.2E+01 evaluates to 2. (Bug #15890)
Note
The expression (expr) used in a PARTITION BY clause cannot refer to any columns not in the table being created; such references are specifically not permitted and cause the statement to fail with an error. (Bug #29444)
Each partition may be individually defined using a partition_definition clause. The individual parts making up this clause are as follows:
PARTITION partition_name: This specifies a logical name for the partition.
A VALUES clause: For range partitioning, each partition must include a VALUES LESS THAN clause; for list partitioning, you must specify a VALUES IN clause for each partition. This is used to determine which rows are to be stored in this partition. See the discussions of partitioning types in Chapter 17, Partitioning, for syntax examples.
An optional COMMENT clause may be used to specify a string that describes the partition. Example:
COMMENT = 'Data for the years previous to 1999'
Beginning with MySQL 5.6.6, the maximum length for a partition comment is 1024 characters. (Previously, this limit was not explicitly defined.)
DATA DIRECTORY and INDEX DIRECTORY may be used to indicate the directory where, respectively, the data and indexes for this partition are to be stored. Both the data_dir and the index_dir must be absolute system path names. Example:
CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
PARTITION p1999 VALUES IN (1995, 1999, 2003)
DATA DIRECTORY = '/var/appdata/95/data'
INDEX DIRECTORY = '/var/appdata/95/idx',
PARTITION p2000 VALUES IN (1996, 2000, 2004)
DATA DIRECTORY = '/var/appdata/96/data'
INDEX DIRECTORY = '/var/appdata/96/idx',
PARTITION p2001 VALUES IN (1997, 2001, 2005)
DATA DIRECTORY = '/var/appdata/97/data'
INDEX DIRECTORY = '/var/appdata/97/idx',
PARTITION p2002 VALUES IN (1998, 2002, 2006)
DATA DIRECTORY = '/var/appdata/98/data'
INDEX DIRECTORY = '/var/appdata/98/idx'
);
DATA DIRECTORY and INDEX DIRECTORY behave in the same way as in the CREATE TABLE statement's table_option clause as used for MyISAM tables.
One data directory and one index directory may be specified per partition. If left unspecified, the data and indexes are stored by default in the table's database directory.
On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for individual partitions or subpartitions of MyISAM tables, and the INDEX DIRECTORY option is not supported for individual partitions or subpartitions of InnoDB tables. These options are ignored on Windows, except that a warning is generated. (Bug #30459)
Note
The DATA DIRECTORY and INDEX DIRECTORY options are ignored for creating partitioned tables if NO_DIR_IN_CREATE is in effect. (Bug #24633)
MAX_ROWS and MIN_ROWS may be used to specify, respectively, the maximum and minimum number of rows to be stored in the partition. The values for max_number_of_rows and min_number_of_rows must be positive integers. As with the table-level options with the same names, these act only as “suggestions” to the server and are not hard limits.
The partitioning handler accepts a [STORAGE] ENGINE option for both PARTITION and SUBPARTITION. Currently, the only way in which this can be used is to set all partitions or all subpartitions to the same storage engine, and an attempt to set different storage engines for partitions or subpartitions in the same table will give rise to the error ERROR 1469 (HY000): The mix of handlers in the partitions is not permitted in this version of MySQL. We expect to lift this restriction on partitioning in a future MySQL release.
The partition definition may optionally contain one or more subpartition_definition clauses. Each of these consists at a minimum of the SUBPARTITION name, where name is an identifier for the subpartition. Except for the replacement of the PARTITION keyword with SUBPARTITION, the syntax for a subpartition definition is identical to that for a partition definition.
Subpartitioning must be done by HASH or KEY, and can be done only on RANGE or LIST partitions. See Section 17.2.6, “Subpartitioning”.
Partitions can be modified, merged, added to tables, and dropped from tables. For basic information about the MySQL statements to accomplish these tasks, see Section 13.1.6, “ALTER TABLE Syntax”. For more detailed descriptions and examples, see Section 17.3, “Partition Management”.
Important
The original CREATE TABLE statement, including all specifications and table options are stored by MySQL when the table is created. The information is retained so that if you change storage engines, collations or other settings using an ALTER TABLE statement, the original table options specified are retained. This enables you to change between InnoDB and MyISAM table types even though the row formats supported by the two engines are different.
Because the text of the original statement is retained, but due to the way that certain values and options may be silently reconfigured (such as the ROW_FORMAT), the active table definition (accessible through DESCRIBE or with SHOW TABLE STATUS) and the table creation string (accessible through SHOW CREATE TABLE) will report different values.
Cloning or Copying a Table
You can create one table from another by adding a SELECT statement at the end of the CREATE TABLE statement:
CREATE TABLE new_tbl SELECT * FROM orig_tbl;
For more information, see Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”.
Use LIKE to create an empty table based on the definition of another table, including any column attributes and indexes defined in the original table:
CREATE TABLE new_tbl LIKE orig_tbl;
The copy is created using the same version of the table storage format as the original table. The SELECT privilege is required on the original table.
LIKE works only for base tables, not for views.
Important
Beginning with MySQL 5.6.1, you cannot execute CREATE TABLE or CREATE TABLE ... LIKE while a LOCK TABLES statement is in effect.
Also as of MySQL 5.6.1, CREATE TABLE ... LIKE makes the same checks as CREATE TABLE and does not just copy the .frm file. This means that if the current SQL mode is different from the mode in effect when the original table was created, the table definition might be considered invalid for the new mode and the statement will fail.
CREATE TABLE ... LIKE does not preserve any DATA DIRECTORY or INDEX DIRECTORY table options that were specified for the original table, or any foreign key definitions.
If the original table is a TEMPORARY table, CREATE TABLE ... LIKE does not preserve TEMPORARY. To create a TEMPORARY destination table, use CREATE TEMPORARY TABLE ... LIKE.
13.1.14.1. CREATE TABLE ... SELECT Syntax
You can create one table from another by adding a SELECT statement at the end of the CREATE TABLE statement:
CREATE TABLE new_tbl SELECT * FROM orig_tbl;
MySQL creates new columns for all elements in the SELECT. For example:
mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
-> PRIMARY KEY (a), KEY(b))
-> ENGINE=MyISAM SELECT b,c FROM test2;
This creates a MyISAM table with three columns, a, b, and c. The ENGINE option is part of the CREATE TABLE statement, and should not be used following the SELECT; this would result in a syntax error. The same is true for other CREATE TABLE options such as CHARSET.
Notice that the columns from the SELECT statement are appended to the right side of the table, not overlapped onto it. Take the following example:
mysql> SELECT * FROM foo;
+---+
| n |
+---+
| 1 |
+---+
mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)
For each row in table foo, a row is inserted in bar with the values from foo and default values for the new columns.
In a table resulting from CREATE TABLE ... SELECT, columns named only in the CREATE TABLE part come first. Columns named in both parts or only in the SELECT part come after that. The data type of SELECT columns can be overridden by also specifying the column in the CREATE TABLE part.
If any errors occur while copying the data to the table, it is automatically dropped and not created.
You can precede the SELECT by IGNORE or REPLACE to indicate how to handle rows that duplicate unique key values. With IGNORE, new rows that duplicate an existing row on a unique key value are discarded. With REPLACE, new rows replace rows that have the same unique key value. If neither IGNORE nor REPLACE is specified, duplicate unique key values result in an error.
Because the ordering of the rows in the underlying SELECT statements cannot always be determined, CREATE TABLE ... IGNORE SELECT and CREATE TABLE ... REPLACE SELECT statements in MySQL 5.6.4 and later are flagged as unsafe for statement-based replication. With this change, such statements produce a warning in the log when using statement-based mode and are logged using the row-based format when using MIXED mode. See also Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.
CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done intentionally to make the statement as flexible as possible. If you want to have indexes in the created table, you should specify these before the SELECT statement:
mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;
Some conversion of data types might occur. For example, the AUTO_INCREMENT attribute is not preserved, and VARCHAR columns can become CHAR columns. Retrained attributes are NULL (or NOT NULL) and, for those columns that have them, CHARACTER SET, COLLATION, COMMENT, and the DEFAULT clause.
When creating a table with CREATE TABLE ... SELECT, make sure to alias any function calls or expressions in the query. If you do not, the CREATE statement might fail or result in undesirable column names.
CREATE TABLE artists_and_works
SELECT artist.name, COUNT(work.artist_id) AS number_of_works
FROM artist LEFT JOIN work ON artist.id = work.artist_id
GROUP BY artist.id;
You can also explicitly specify the data type for a generated column:
CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;
For CREATE TABLE ... SELECT, if IF NOT EXISTS is given and the destination table already exists, the result is version dependent. Before MySQL 5.5.6, MySQL handles the statement as follows:
The table definition given in the CREATE TABLE part is ignored. No error occurs, even if the definition does not match that of the existing table. MySQL attempts to insert the rows from the SELECT part anyway.
If there is a mismatch between the number of columns in the table and the number of columns produced by the SELECT part, the selected values are assigned to the rightmost columns. For example, if the table contains n columns and the SELECT produces m columns, where m < n, the selected values are assigned to the m rightmost columns in the table. Each of the initial n – m columns is assigned its default value, either that specified explicitly in the column definition or the implicit column data type default if the definition contains no default. If the SELECT part produces too many columns (m > n), an error occurs.
If strict SQL mode is enabled and any of these initial columns do not have an explicit default value, the statement fails with an error.
The following example illustrates IF NOT EXISTS handling:
mysql> CREATE TABLE t1 (i1 INT DEFAULT 0, i2 INT, i3 INT, i4 INT);
Query OK, 0 rows affected (0.05 sec)
mysql> CREATE TABLE IF NOT EXISTS t1 (c1 CHAR(10)) SELECT 1, 2;
Query OK, 1 row affected, 1 warning (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM t1;
+------+------+------+------+
| i1 | i2 | i3 | i4 |
+------+------+------+------+
| 0 | NULL | 1 | 2 |
+------+------+------+------+
1 row in set (0.00 sec)
As of MySQL 5.5.6, handling of CREATE TABLE IF NOT EXISTS ... SELECT statements was changed for the case that the destination table already exists. This change also involves a change in MySQL 5.1 beginning with 5.1.51.
Previously, for CREATE TABLE IF NOT EXISTS ... SELECT, MySQL produced a warning that the table exists, but inserted the rows and wrote the statement to the binary log anyway. By contrast, CREATE TABLE ... SELECT (without IF NOT EXISTS) failed with an error, but MySQL inserted no rows and did not write the statement to the binary log.
MySQL now handles both statements the same way when the destination table exists, in that neither statement inserts rows or is written to the binary log. The difference between them is that MySQL produces a warning when IF NOT EXISTS is present and an error when it is not.
This change means that, for the preceding example, the CREATE TABLE IF NOT EXISTS ... SELECT statement inserts nothing into the destination table as of MySQL 5.5.6.
This change in handling of IF NOT EXISTS results in an incompatibility for statement-based replication from a MySQL 5.1 master with the original behavior and a MySQL 5.5 slave with the new behavior. Suppose that CREATE TABLE IF NOT EXISTS ... SELECT is executed on the master and the destination table exists. The result is that rows are inserted on the master but not on the slave. (Row-based replication does not have this problem.)
To address this issue, statement-based binary logging for CREATE TABLE IF NOT EXISTS ... SELECT is changed in MySQL 5.1 as of 5.1.51:
If the destination table does not exist, there is no change: The statement is logged as is.
If the destination table does exist, the statement is logged as the equivalent pair of CREATE TABLE IF NOT EXISTS and INSERT ... SELECT statements. (If the SELECT in the original statement is preceded by IGNORE or REPLACE, the INSERT becomes INSERT IGNORE or REPLACE, respectively.)
This change provides forward compatibility for statement-based replication from MySQL 5.1 to 5.5 because when the destination table exists, the rows will be inserted on both the master and slave. To take advantage of this compatibility measure, the 5.1 server must be at least 5.1.51 and the 5.5 server must be at least 5.5.6.
To upgrade an existing 5.1-to-5.5 replication scenario, upgrade the master first to 5.1.51 or higher. Note that this differs from the usual replication upgrade advice of upgrading the slave first.
A workaround for applications that wish to achieve the original effect (rows inserted regardless of whether the destination table exists) is to use CREATE TABLE IF NOT EXISTS and INSERT ... SELECT statements rather than CREATE TABLE IF NOT EXISTS ... SELECT statements.
Along with the change just described, the following related change was made: Previously, if an existing view was named as the destination table for CREATE TABLE IF NOT EXISTS ... SELECT, rows were inserted into the underlying base table and the statement was written to the binary log. As of MySQL 5.1.51 and 5.5.6, nothing is inserted or logged.
To ensure that the binary log can be used to re-create the original tables, MySQL does not permit concurrent inserts during CREATE TABLE ... SELECT.
Important
You cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE TABLE new_table SELECT ... FROM old_table If you attempt to do so, the statement fails. This represents a change in behavior from MySQL 5.5 and earlier, which permitted CREATE TABLE ... SELECT statements to make changes in tables other than the table being created.
This change can also have implications for statement-based replication from an older master to a MySQL 5.6 or newer slave. See Section 16.4.1.4, “Replication of CREATE TABLE ... SELECT Statements”, for more information.
13.1.14.2. Using FOREIGN KEY Constraints
MySQL supports foreign keys, which let you cross-reference related data across tables, and foreign key constraints, which help keep this spread-out data consistent. The essential syntax for a foreign key constraint definition in a CREATE TABLE or ALTER TABLE statement looks like this:
[CONSTRAINT [symbol]] FOREIGN KEY
[index_name] (index_col_name, ...)
REFERENCES tbl_name (index_col_name,...)
[ON DELETE reference_option]
[ON UPDATE reference_option]
reference_option:
RESTRICT | CASCADE | SET NULL | NO ACTION
index_name represents a foreign key ID. If given, this is ignored if an index for the foreign key is defined explicitly. Otherwise, if MySQL creates an index for the foreign key, it uses index_name for the index name.
Foreign keys definitions are subject to the following conditions:
Foreign key relationships involve a parent table that holds the central data values, and a child table with identical values pointing back to its parent. The FOREIGN KEY clause is specified in the child table. The parent and child tables must use the same storage engine. They must not be TEMPORARY tables.
Corresponding columns in the foreign key and the referenced key must have similar data types. The size and sign of integer types must be the same. The length of string types need not be the same. For nonbinary (character) string columns, the character set and collation must be the same.
MySQL requires indexes on foreign keys and referenced keys so that foreign key checks can be fast and not require a table scan. In the referencing table, there must be an index where the foreign key columns are listed as the first columns in the same order. Such an index is created on the referencing table automatically if it does not exist. This index might be silently dropped later, if you create another index that can be used to enforce the foreign key constraint. index_name, if given, is used as described previously.
InnoDB permits a foreign key to reference any index column or group of columns. However, in the referenced table, there must be an index where the referenced columns are listed as the first columns in the same order.
Index prefixes on foreign key columns are not supported. One consequence of this is that BLOB and TEXT columns cannot be included in a foreign key because indexes on those columns must always include a prefix length.
If the CONSTRAINT symbol clause is given, the symbol value, if used, must be unique in the database. If the clause is not given, or a symbol is not included following the CONSTRAINT keyword, a name for the constraint is created automatically.
InnoDB does not currently support foreign keys for tables with user-defined partitioning. This includes both parent and child tables.
Referential Actions
This section describes how foreign keys help guarantee referential integrity.
For storage engines supporting foerign keys, MySQL rejects any INSERT or UPDATE operation that attempts to create a foreign key value in a child table if there is no a matching candidate key value in the parent table.
When an UPDATE or DELETE operation affects a key value in the parent table that has matching rows in the child table, the result depends on the referential action specified using ON UPDATE and ON DELETE subclauses of the FOREIGN KEY clause. MySQL supports five options regarding the action to be taken, listed here:
CASCADE: Delete or update the row from the parent table, and automatically delete or update the matching rows in the child table. Both ON DELETE CASCADE and ON UPDATE CASCADE are supported. Between two tables, do not define several ON UPDATE CASCADE clauses that act on the same column in the parent table or in the child table.
Note
Currently, cascaded foreign key actions do not activate triggers.
SET NULL: Delete or update the row from the parent table, and set the foreign key column or columns in the child table to NULL. Both ON DELETE SET NULL and ON UPDATE SET NULL clauses are supported.
If you specify a SET NULL action, make sure that you have not declared the columns in the child table as NOT NULL.
RESTRICT: Rejects the delete or update operation for the parent table. Specifying RESTRICT (or NO ACTION) is the same as omitting the ON DELETE or ON UPDATE clause.
NO ACTION: A keyword from standard SQL. In MySQL, equivalent to RESTRICT. The MySQL Server rejects the delete or update operation for the parent table if there is a related foreign key value in the referenced table. Some database systems have deferred checks, and NO ACTION is a deferred check. In MySQL, foreign key constraints are checked immediately, so NO ACTION is the same as RESTRICT.
SET DEFAULT: This action is recognized by the MySQL parser, but InnoDB rejects table definitions containing ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.
For an ON DELETE or ON UPDATE that is not specified, the default action is always RESTRICT.
MySQL supports foreign key references between one column and another within a table. (A column cannot have a foreign key reference to itself.) In these cases, “child table records” really refers to dependent records within the same table.
Examples of Foreign Key Clauses
Here is a simple example that relates parent and child tables through a single-column foreign key:
CREATE TABLE parent (
id INT NOT NULL,
PRIMARY KEY (id)
) ENGINE=INNODB;
CREATE TABLE child (
id INT,
parent_id INT,
INDEX par_ind (parent_id),
FOREIGN KEY (parent_id)
REFERENCES parent(id)
ON DELETE CASCADE
) ENGINE=INNODB;
A more complex example in which a product_order table has foreign keys for two other tables. One foreign key references a two-column index in the product table. The other references a single-column index in the customer table:
CREATE TABLE product (
category INT NOT NULL, id INT NOT NULL,
price DECIMAL,
PRIMARY KEY(category, id)
) ENGINE=INNODB;
CREATE TABLE customer (
id INT NOT NULL,
PRIMARY KEY (id)
) ENGINE=INNODB;
CREATE TABLE product_order (
no INT NOT NULL AUTO_INCREMENT,
product_category INT NOT NULL,
product_id INT NOT NULL,
customer_id INT NOT NULL,
PRIMARY KEY(no),
INDEX (product_category, product_id),
INDEX (customer_id),
FOREIGN KEY (product_category, product_id)
REFERENCES product(category, id)
ON UPDATE CASCADE ON DELETE RESTRICT,
FOREIGN KEY (customer_id)
REFERENCES customer(id)
) ENGINE=INNODB;
Adding foreign keys
You can add a new foreign key constraint to an existing table by using ALTER TABLE. The syntax relating to foreign keys for this statement is shown here:
ALTER TABLE tbl_name
ADD [CONSTRAINT [symbol]] FOREIGN KEY
[index_name] (index_col_name, ...)
REFERENCES tbl_name (index_col_name,...)
[ON DELETE reference_option]
[ON UPDATE reference_option]
The foreign key can be self referential (referring to the same table). When you add a foreign key constraint to a table using ALTER TABLE, remember to create the required indexes first.
Dropping Foreign Keys
You can also use ALTER TABLE to drop foreign keys, using the syntax shown here:
ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;
If the FOREIGN KEY clause included a CONSTRAINT name when you created the foreign key, you can refer to that name to drop the foreign key. Otherwise, the fk_symbol value is generated internally when the foreign key is created. To find out the symbol value when you want to drop a foreign key, use a SHOW CREATE TABLE statement, as shown here:
mysql> SHOW CREATE TABLE ibtest11c\G
*************************** 1. row ***************************
Table: ibtest11c
Create Table: CREATE TABLE `ibtest11c` (
`A` int(11) NOT NULL auto_increment,
`D` int(11) NOT NULL default '0',
`B` varchar(200) NOT NULL default '',
`C` varchar(175) default NULL,
PRIMARY KEY (`A`,`D`,`B`),
KEY `B` (`B`,`C`),
KEY `C` (`C`),
CONSTRAINT `0_38775` FOREIGN KEY (`A`, `D`)
REFERENCES `ibtest11a` (`A`, `D`)
ON DELETE CASCADE ON UPDATE CASCADE,
CONSTRAINT `0_38776` FOREIGN KEY (`B`, `C`)
REFERENCES `ibtest11a` (`B`, `C`)
ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=INNODB CHARSET=latin1
1 row in set (0.01 sec)
mysql> ALTER TABLE ibtest11c DROP FOREIGN KEY `0_38775`;
You cannot add a foreign key and drop a foreign key in the same ALTER TABLE statement. A separate statements is required for each operation.
Before MySQL 5.6.7, using ALTER TABLE to change the definition of a foreign key column could cause a loss of referential integrity. For example, changing a foreign key column that contained NULL values to be NOT NULL caused the NULL values to be the empty string. Similarly, an ALTER TABLE IGNORE that removed rows in a parent table could break referential integrity.
As of 5.6.7, the server prohibits changes to foreign key columns with the potential to cause loss of referential integrity. A workaround is to use ALTER TABLE ... DROP FOREIGN KEY before changing the column definition and ALTER TABLE ... ADD FOREIGN KEY afterward.
Foreign Keys and Other MySQL Statements
Table and column identifiers in a FOREIGN KEY ... REFERENCES ... clause can be quoted within backticks (`). Alternatively, double quotation marks (") can be used if the ANSI_QUOTES SQL mode is enabled. The setting of the lower_case_table_names system variable is also taken into account.
You can view a child table's foreign key definitions as part of the output of the SHOW CREATE TABLE statement:
SHOW CREATE TABLE tbl_name;
You can also obtain information about foreign keys by querying the INFORMATION_SCHEMA.KEY_COLUMN_USAGE table.
You can find information about foreign keys used by InnoDB tables in the INNODB_SYS_FOREIGN and INNODB_SYS_FOREIGN_COLS tables, also in the INFORMATION_SCHEMA database.
mysqldump produces correct definitions of tables in the dump file, including the foreign keys for child tables.
To make it easier to reload dump files for tables that have foreign key relationships, mysqldump automatically includes a statement in the dump output to set foreign_key_checks to 0. This avoids problems with tables having to be reloaded in a particular order when the dump is reloaded. It is also possible to set this variable manually:
mysql> SET foreign_key_checks = 0;
mysql> SOURCE dump_file_name;
mysql> SET foreign_key_checks = 1;
This enables you to import the tables in any order if the dump file contains tables that are not correctly ordered for foreign keys. It also speeds up the import operation. Setting foreign_key_checks to 0 can also be useful for ignoring foreign key constraints during LOAD DATA and ALTER TABLE operations. However, even if foreign_key_checks = 0, MySQL does not permit the creation of a foreign key constraint where a column references a nonmatching column type. Also, if a table has foreign key constraints, ALTER TABLE cannot be used to alter the table to use another storage engine. To change the storage engine, you must drop any foreign key constraints first.
You cannot issue DROP TABLE for a table that is referenced by a FOREIGN KEY constraint, unless you do SET foreign_key_checks = 0. When you drop a table, any constraints that were defined in the statement used to create that table are also dropped.
If you re-create a table that was dropped, it must have a definition that conforms to the foreign key constraints referencing it. It must have the correct column names and types, and it must have indexes on the referenced keys, as stated earlier. If these are not satisfied, MySQL returns Error 1005 and refers to Error 150 in the error message, which means that a foreign key constraint was not correctly formed. Similarly, if an ALTER TABLE fails due to Error 150, this means that a foreign key definition would be incorrectly formed for the altered table.
For InnoDB tables, you can obtain a detailed explanation of the most recent InnoDB foreign key error in the MySQL Server, by checking the output of SHOW ENGINE INNODB STATUS.
Important
For users familiar with the ANSI/ISO SQL Standard, please note that no storage engine, including InnoDB, recognizes or enforces the MATCH clause used in referential-integrity constraint definitions. Use of an explicit MATCH clause will not have the specified effect, and also causes ON DELETE and ON UPDATE clauses to be ignored. For these reasons, specifying MATCH should be avoided.
The MATCH clause in the SQL standard controls how NULL values in a composite (multiple-column) foreign key are handled when comparing to a primary key. MySQL essentially implements the semantics defined by MATCH SIMPLE, which permit a foreign key to be all or partially NULL. In that case, the (child table) row containing such a foreign key is permitted to be inserted, and does not match any row in the referenced (parent) table. It is possible to implement other semantics using triggers.
Additionally, MySQL requires that the referenced columns be indexed for performance reasons. However, the system does not enforce a requirement that the referenced columns be UNIQUE or be declared NOT NULL. The handling of foreign key references to nonunique keys or keys that contain NULL values is not well defined for operations such as UPDATE or DELETE CASCADE. You are advised to use foreign keys that reference only UNIQUE (including PRIMARY) and NOT NULL keys.
Furthermore, MySQL does not recognize or support “inline REFERENCES specifications” (as defined in the SQL standard) where the references are defined as part of the column specification. MySQL accepts REFERENCES clauses only when specified as part of a separate FOREIGN KEY specification. For storage engines that do not support foreign keys (such as MyISAM), MySQL Server parses and ignores foreign key specifications.
13.1.14.3. Silent Column Specification Changes
In some cases, MySQL silently changes column specifications from those given in a CREATE TABLE or ALTER TABLE statement. These might be changes to a data type, to attributes associated with a data type, or to an index specification.
All changes are subject to the internal row-size limit of 65,535 bytes, which may cause some attempts at data type changes to fail. See Section E.10.4, “Limits on Table Column Count and Row Size”.
Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.
Trailing spaces are automatically deleted from ENUM and SET member values when the table is created.
MySQL maps certain data types used by other SQL database vendors to MySQL types. See Section 11.8, “Using Data Types from Other Database Engines”.
If you include a USING clause to specify an index type that is not permitted for a given storage engine, but there is another index type available that the engine can use without affecting query results, the engine uses the available type.
If strict SQL mode is not enabled, a VARCHAR column with a length specification greater than 65535 is converted to TEXT, and a VARBINARY column with a length specification greater than 65535 is converted to BLOB. Otherwise, an error occurs in either of these cases.
Specifying the CHARACTER SET binary attribute for a character data type causes the column to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they are created as declared. Suppose that you specify a table using this definition:
CREATE TABLE t
(
c1 VARCHAR(10) CHARACTER SET binary,
c2 TEXT CHARACTER SET binary,
c3 ENUM('a','b','c') CHARACTER SET binary
);
The resulting table has this definition:
CREATE TABLE t
(
c1 VARBINARY(10),
c2 BLOB,
c3 ENUM('a','b','c') CHARACTER SET binary
);
To see whether MySQL used a data type other than the one you specified, issue a DESCRIBE or SHOW CREATE TABLE statement after creating or altering the table.
Certain other data type changes can occur if you compress a table using myisampack. See Section 14.3.3.3, “Compressed Table Characteristics”.
13.1.15. CREATE TRIGGER Syntax
CREATE
[DEFINER = { user | CURRENT_USER }]
TRIGGER trigger_name trigger_time trigger_event
ON tbl_name FOR EACH ROW trigger_body
This statement creates a new trigger. A trigger is a named database object that is associated with a table, and that activates when a particular event occurs for the table. The trigger becomes associated with the table named tbl_name, which must refer to a permanent table. You cannot associate a trigger with a TEMPORARY table or a view.
CREATE TRIGGER requires the TRIGGER privilege for the table associated with the trigger. The statement might also require the SUPER privilege, depending on the DEFINER value, as described later in this section. If binary logging is enabled, CREATE TRIGGER might require the SUPER privilege, as described in Section 18.7, “Binary Logging of Stored Programs”.
The DEFINER clause determines the security context to be used when checking access privileges at trigger activation time. See later in this section for more information.
trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger activates before or after each row to be modified.
trigger_event indicates the kind of statement that activates the trigger. The trigger_event can be one of the following:
INSERT: The trigger is activated whenever a new row is inserted into the table; for example, through INSERT, LOAD DATA, and REPLACE statements.
UPDATE: The trigger is activated whenever a row is modified; for example, through UPDATE statements.
DELETE: The trigger is activated whenever a row is deleted from the table; for example, through DELETE and REPLACE statements. However, DROP TABLE and TRUNCATE TABLE statements on the table do not activate this trigger, because they do not use DELETE. Dropping a partition does not activate DELETE triggers, either. See Section 13.1.27, “TRUNCATE TABLE Syntax”.
It is important to understand that the trigger_event does not represent a literal type of SQL statement that activates the trigger so much as it represents a type of table operation. For example, an INSERT trigger is activated by not only INSERT statements but also LOAD DATA statements because both statements insert rows into a table.
A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY UPDATE ... syntax: a BEFORE INSERT trigger will activate for every row, followed by either an AFTER INSERT trigger or both the BEFORE UPDATE and AFTER UPDATE triggers, depending on whether there was a duplicate key for the row.
There cannot be two triggers for a given table that have the same trigger action time and event. For example, you cannot have two BEFORE UPDATE triggers for a table. But you can have a BEFORE UPDATE and a BEFORE INSERT trigger, or a BEFORE UPDATE and an AFTER UPDATE trigger.
trigger_body is the statement to execute when the trigger activates. If you want to execute multiple statements, use the BEGIN ... END compound statement construct. This also enables you to use the same statements that are permissible within stored routines. See Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”. Some statements are not permitted in triggers; see Section E.1, “Restrictions on Stored Programs”.
You can refer to columns in the subject table (the table associated with the trigger) by using the aliases OLD and NEW. OLD.col_name refers to a column of an existing row before it is updated or deleted. NEW.col_name refers to the column of a new row to be inserted or an existing row after it is updated.
MySQL stores the sql_mode system variable setting that is in effect at the time a trigger is created, and always executes the trigger with this setting in force, regardless of the server SQL mode in effect when the event begins executing.
Note
Currently, cascaded foreign key actions do not activate triggers.
The DEFINER clause specifies the MySQL account to be used when checking access privileges at trigger activation time. If a user value is given, it should be a MySQL account specified as 'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER, or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE TRIGGER statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.
If you specify the DEFINER clause, these rules determine the valid DEFINER user values:
If you do not have the SUPER privilege, the only permitted user value is your own account, either specified literally or by using CURRENT_USER. You cannot set the definer to some other account.
If you have the SUPER privilege, you can specify any syntactically valid account name. If the account does not actually exist, a warning is generated.
Although it is possible to create a trigger with a nonexistent DEFINER account, it is not a good idea for such triggers to be activated until the account actually does exist. Otherwise, the behavior with respect to privilege checking is undefined.
MySQL takes the DEFINER user into account when checking trigger privileges as follows:
At CREATE TRIGGER time, the user who issues the statement must have the TRIGGER privilege.
At trigger activation time, privileges are checked against the DEFINER user. This user must have these privileges:
The TRIGGER privilege.
The SELECT privilege for the subject table if references to table columns occur using OLD.col_name or NEW.col_name in the trigger definition.
The UPDATE privilege for the subject table if table columns are targets of SET NEW.col_name = value assignments in the trigger definition.
Whatever other privileges normally are required for the statements executed by the trigger.
For more information about trigger security, see Section 18.6, “Access Control for Stored Programs and Views”.
Within a trigger, the CURRENT_USER() function returns the account used to check privileges at trigger activation time. This is the DEFINER user, not the user whose actions caused the trigger to be activated. For information about user auditing within triggers, see Section 6.3.12, “SQL-Based MySQL Account Activity Auditing”.
If you use LOCK TABLES to lock a table that has triggers, the tables used within the trigger are also locked, as described in Section 13.3.5.2, “LOCK TABLES and Triggers”.
In MySQL 5.6, you can write triggers containing direct references to tables by name, such as the trigger named testref shown in this example:
CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(
a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
b4 INT DEFAULT 0
);
delimiter |
CREATE TRIGGER testref BEFORE INSERT ON test1
FOR EACH ROW BEGIN
INSERT INTO test2 SET a2 = NEW.a1;
DELETE FROM test3 WHERE a3 = NEW.a1;
UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;
END;
|
delimiter ;
INSERT INTO test3 (a3) VALUES
(NULL), (NULL), (NULL), (NULL), (NULL),
(NULL), (NULL), (NULL), (NULL), (NULL);
INSERT INTO test4 (a4) VALUES
(0), (0), (0), (0), (0), (0), (0), (0), (0), (0);
Suppose that you insert the following values into table test1 as shown here:
mysql> INSERT INTO test1 VALUES
-> (1), (3), (1), (7), (1), (8), (4), (4);
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0
As a result, the data in the four tables will be as follows:
mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)
mysql> SELECT * FROM test2;
+------+
| a2 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)
mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |
| 10 |
+----+
5 rows in set (0.00 sec)
mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |
+----+------+
| 1 | 3 |
| 2 | 0 |
| 3 | 1 |
| 4 | 2 |
| 5 | 0 |
| 6 | 0 |
| 7 | 1 |
| 8 | 1 |
| 9 | 0 |
| 10 | 0 |
+----+------+
10 rows in set (0.00 sec)
13.1.16. CREATE VIEW Syntax
CREATE
[OR REPLACE]
[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = { user | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]
VIEW view_name [(column_list)]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]
The CREATE VIEW statement creates a new view, or replaces an existing one if the OR REPLACE clause is given. If the view does not exist, CREATE OR REPLACE VIEW is the same as CREATE VIEW. If the view does exist, CREATE OR REPLACE VIEW is the same as ALTER VIEW.
The select_statement is a SELECT statement that provides the definition of the view. (When you select from the view, you select in effect using the SELECT statement.) select_statement can select from base tables or other views.
The view definition is “frozen” at creation time, so changes to the underlying tables afterward do not affect the view definition. For example, if a view is defined as SELECT * on a table, new columns added to the table later do not become part of the view.
The ALGORITHM clause affects how MySQL processes the view. The DEFINER and SQL SECURITY clauses specify the security context to be used when checking access privileges at view invocation time. The WITH CHECK OPTION clause can be given to constrain inserts or updates to rows in tables referenced by the view. These clauses are described later in this section.
The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege for each column selected by the SELECT statement. For columns used elsewhere in the SELECT statement you must have the SELECT privilege. If the OR REPLACE clause is present, you must also have the DROP privilege for the view. CREATE VIEW might also require the SUPER privilege, depending on the DEFINER value, as described later in this section.
When a view is referenced, privilege checking occurs as described later in this section.
A view belongs to a database. By default, a new view is created in the default database. To create the view explicitly in a given database, specify the name as db_name.view_name when you create it:
mysql> CREATE VIEW test.v AS SELECT * FROM t;
Within a database, base tables and views share the same namespace, so a base table and a view cannot have the same name.
Columns retrieved by the SELECT statement can be simple references to table columns. They can also be expressions that use functions, constant values, operators, and so forth.
Views must have unique column names with no duplicates, just like base tables. By default, the names of the columns retrieved by the SELECT statement are used for the view column names. To define explicit names for the view columns, the optional column_list clause can be given as a list of comma-separated identifiers. The number of names in column_list must be the same as the number of columns retrieved by the SELECT statement.
Unqualified table or view names in the SELECT statement are interpreted with respect to the default database. A view can refer to tables or views in other databases by qualifying the table or view name with the proper database name.
A view can be created from many kinds of SELECT statements. It can refer to base tables or other views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The following example defines a view that selects two columns from another table, as well as an expression calculated from those columns:
mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
+------+-------+-------+
A view definition is subject to the following restrictions:
The SELECT statement cannot contain a subquery in the FROM clause.
The SELECT statement cannot refer to system or user variables.
Within a stored program, the definition cannot refer to program parameters or local variables.
The SELECT statement cannot refer to prepared statement parameters.
Any table or view referred to in the definition must exist. However, after a view has been created, it is possible to drop a table or view that the definition refers to. In this case, use of the view results in an error. To check a view definition for problems of this kind, use the CHECK TABLE statement.
The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.
Any tables named in the view definition must exist at definition time.
You cannot associate a trigger with a view.
Aliases for column names in the SELECT statement are checked against the maximum column length of 64 characters (not the maximum alias length of 256 characters).
ORDER BY is permitted in a view definition, but it is ignored if you select from a view using a statement that has its own ORDER BY.
For other options or clauses in the definition, they are added to the options or clauses of the statement that references the view, but the effect is undefined. For example, if a view definition includes a LIMIT clause, and you select from the view using a statement that has its own LIMIT clause, it is undefined which limit applies. This same principle applies to options such as ALL, DISTINCT, or SQL_SMALL_RESULT that follow the SELECT keyword, and to clauses such as INTO, FOR UPDATE, LOCK IN SHARE MODE, and PROCEDURE.
If you create a view and then change the query processing environment by changing system variables, that may affect the results that you get from the view:
mysql> CREATE VIEW v (mycol) AS SELECT 'abc';
Query OK, 0 rows affected (0.01 sec)
mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| mycol |
+-------+
1 row in set (0.01 sec)
mysql> SET sql_mode = 'ANSI_QUOTES';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| abc |
+-------+
1 row in set (0.00 sec)
The DEFINER and SQL SECURITY clauses determine which MySQL account to use when checking access privileges for the view when a statement is executed that references the view. The valid SQL SECURITY characteristic values are DEFINER and INVOKER. These indicate that the required privileges must be held by the user who defined or invoked the view, respectively. The default SQL SECURITY value is DEFINER.
If a user value is given for the DEFINER clause, it should be a MySQL account specified as 'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER, or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE VIEW statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.
If you specify the DEFINER clause, these rules determine the valid DEFINER user values:
If you do not have the SUPER privilege, the only valid user value is your own account, either specified literally or by using CURRENT_USER. You cannot set the definer to some other account.
If you have the SUPER privilege, you can specify any syntactically valid account name. If the account does not actually exist, a warning is generated.
Although it is possible to create a view with a nonexistent DEFINER account, an error occurs when the view is referenced if the SQL SECURITY value is DEFINER but the definer account does not exist.
For more information about view security, see Section 18.6, “Access Control for Stored Programs and Views”.
Within a view definition, CURRENT_USER returns the view's DEFINER value by default. For views defined with the SQL SECURITY INVOKER characteristic, CURRENT_USER returns the account for the view's invoker. For information about user auditing within views, see Section 6.3.12, “SQL-Based MySQL Account Activity Auditing”.
Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic, CURRENT_USER returns the routine's DEFINER value. This also affects a view defined within such a routine, if the view definition contains a DEFINER value of CURRENT_USER.
View privileges are checked like this:
At view definition time, the view creator must have the privileges needed to use the top-level objects accessed by the view. For example, if the view definition refers to table columns, the creator must have some privilege for each column in the select list of the definition, and the SELECT privilege for each column used elsewhere in the definition. If the definition refers to a stored function, only the privileges needed to invoke the function can be checked. The privileges required at function invocation time can be checked only as it executes: For different invocations, different execution paths within the function might be taken.
The user who references a view must have appropriate privileges to access it (SELECT to select from it, INSERT to insert into it, and so forth.)
When a view has been referenced, privileges for objects accessed by the view are checked against the privileges held by the view DEFINER account or invoker, depending on whether the SQL SECURITY characteristic is DEFINER or INVOKER, respectively.
If reference to a view causes execution of a stored function, privilege checking for statements executed within the function depend on whether the function SQL SECURITY characteristic is DEFINER or INVOKER. If the security characteristic is DEFINER, the function runs with the privileges of the DEFINER account. If the characteristic is INVOKER, the function runs with the privileges determined by the view's SQL SECURITY characteristic.
Example: A view might depend on a stored function, and that function might invoke other stored routines. For example, the following view invokes a stored function f():
CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);
Suppose that f() contains a statement such as this:
IF name IS NULL then
CALL p1();
ELSE
CALL p2();
END IF;
The privileges required for executing statements within f() need to be checked when f() executes. This might mean that privileges are needed for p1() or p2(), depending on the execution path within f(). Those privileges must be checked at runtime, and the user who must possess the privileges is determined by the SQL SECURITY values of the view v and the function f().
The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard SQL, views are handled using the rules for SQL SECURITY DEFINER. The standard says that the definer of the view, which is the same as the owner of the view's schema, gets applicable privileges on the view (for example, SELECT) and may grant them. MySQL has no concept of a schema “owner”, so MySQL adds a clause to identify the definer. The DEFINER clause is an extension where the intent is to have what the standard has; that is, a permanent record of who defined the view. This is why the default DEFINER value is the account of the view creator.
The optional ALGORITHM clause is a MySQL extension to standard SQL. It affects how MySQL processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED. The default algorithm is UNDEFINED if no ALGORITHM clause is present. For more information, see Section 18.5.2, “View Processing Algorithms”.
Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to update the contents of the underlying table. For a view to be updatable, there must be a one-to-one relationship between the rows in the view and the rows in the underlying table. There are also certain other constructs that make a view nonupdatable.
The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to rows except those for which the WHERE clause in the select_statement is true.
In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine the scope of check testing when the view is defined in terms of another view. The LOCAL keyword restricts the CHECK OPTION only to the view being defined. CASCADED causes the checks for underlying views to be evaluated as well. When neither keyword is given, the default is CASCADED.
For more information about updatable views and the WITH CHECK OPTION clause, see Section 18.5.3, “Updatable and Insertable Views”.
13.1.17. DROP DATABASE Syntax
DROP {DATABASE | SCHEMA} [IF EXISTS] db_name
DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this statement! To use DROP DATABASE, you need the DROP privilege on the database. DROP SCHEMA is a synonym for DROP DATABASE.
Important
When a database is dropped, user privileges on the database are not automatically dropped. See Section 13.7.1.4, “GRANT Syntax”.
IF EXISTS is used to prevent an error from occurring if the database does not exist.
If the default database is dropped, the default database is unset (the DATABASE() function returns NULL).
If you use DROP DATABASE on a symbolically linked database, both the link and the original database are deleted.
DROP DATABASE returns the number of tables that were removed. This corresponds to the number of .frm files removed.
The DROP DATABASE statement removes from the given database directory those files and directories that MySQL itself may create during normal operation:
All files with the following extensions.
.BAK | .DAT | .HSH | .MRG |
.MYD | .MYI | .TRG | .TRN |
.db | .frm | .ibd | .ndb |
.par |
The db.opt file, if it exists.
If other files or directories remain in the database directory after MySQL removes those just listed, the database directory cannot be removed. In this case, you must remove any remaining files or directories manually and issue the DROP DATABASE statement again.
You can also drop databases with mysqladmin. See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.
13.1.18. DROP EVENT Syntax
DROP EVENT [IF EXISTS] event_name
This statement drops the event named event_name. The event immediately ceases being active, and is deleted completely from the server.
If the event does not exist, the error ERROR 1517 (HY000): Unknown event 'event_name' results. You can override this and cause the statement to generate a warning for nonexistent events instead using IF EXISTS.
This statement requires the EVENT privilege for the schema to which the event to be dropped belongs.
13.1.19. DROP FUNCTION Syntax
The DROP FUNCTION statement is used to drop stored functions and user-defined functions (UDFs):
For information about dropping stored functions, see Section 13.1.21, “DROP PROCEDURE and DROP FUNCTION Syntax”.
For information about dropping user-defined functions, see Section 13.7.3.2, “DROP FUNCTION Syntax”.
13.1.20. DROP INDEX Syntax
DROP INDEX index_name ON tbl_name
[algorithm_option | lock_option] ...
algorithm_option:
ALGORITHM [=] {DEFAULT|INPLACE|COPY}
lock_option:
LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}
DROP INDEX drops the index named index_name from the table tbl_name. This statement is mapped to an ALTER TABLE statement to drop the index. See Section 13.1.6, “ALTER TABLE Syntax”.
To drop a primary key, the index name is always PRIMARY, which must be specified as a quoted identifier because PRIMARY is a reserved word:
DROP INDEX `PRIMARY` ON t;
As of MySQL 5.6.6, the ALGORITHM and LOCK clauses may be given. These influence the table copying method and level of concurrency for reading and writing the table while its indexes are being modified. They have the same meaning as for the ALTER TABLE statement. For more information, see Section 13.1.6, “ALTER TABLE Syntax”
13.1.21. DROP PROCEDURE and DROP FUNCTION Syntax
DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name
This statement is used to drop a stored procedure or function. That is, the specified routine is removed from the server. You must have the ALTER ROUTINE privilege for the routine. (If the automatic_sp_privileges system variable is enabled, that privilege and EXECUTE are granted automatically to the routine creator when the routine is created and dropped from the creator when the routine is dropped. See Section 18.2.2, “Stored Routines and MySQL Privileges”.)
The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure or function does not exist. A warning is produced that can be viewed with SHOW WARNINGS.
DROP FUNCTION is also used to drop user-defined functions (see Section 13.7.3.2, “DROP FUNCTION Syntax”).
13.1.22. DROP SERVER Syntax
DROP SERVER [IF EXISTS] server_name
Drops the server definition for the server named server_name. The corresponding row in the mysql.servers table is deleted. This statement requires the SUPER privilege.
Dropping a server for a table does not affect any FEDERATED tables that used this connection information when they were created. See Section 13.1.13, “CREATE SERVER Syntax”.
DROP SERVER does not cause an automatic commit.
In MySQL 5.6, DROP SERVER is not written to the binary log, regardless of the logging format that is in use.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
13.1.23. DROP TABLE Syntax
DROP [TEMPORARY] TABLE [IF EXISTS]
tbl_name [, tbl_name] ...
[RESTRICT | CASCADE]
DROP TABLE removes one or more tables. You must have the DROP privilege for each table. All table data and the table definition are removed, so be careful with this statement! If any of the tables named in the argument list do not exist, MySQL returns an error indicating by name which nonexisting tables it was unable to drop, but it also drops all of the tables in the list that do exist.
Important
When a table is dropped, user privileges on the table are not automatically dropped. See Section 13.7.1.4, “GRANT Syntax”.
Note that for a partitioned table, DROP TABLE permanently removes the table definition, all of its partitions, and all of the data which was stored in those partitions. It also removes the partitioning definition (.par) file associated with the dropped table.
Use IF EXISTS to prevent an error from occurring for tables that do not exist. A NOTE is generated for each nonexistent table when using IF EXISTS. See Section 13.7.5.41, “SHOW WARNINGS Syntax”.
RESTRICT and CASCADE are permitted to make porting easier. In MySQL 5.6, they do nothing.
Note
DROP TABLE automatically commits the current active transaction, unless you use the TEMPORARY keyword.
The TEMPORARY keyword has the following effects:
The statement drops only TEMPORARY tables.
The statement does not end an ongoing transaction.
No access rights are checked. (A TEMPORARY table is visible only to the session that created it, so no check is necessary.)
Using TEMPORARY is a good way to ensure that you do not accidentally drop a non-TEMPORARY table.
13.1.24. DROP TRIGGER Syntax
DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name
This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the trigger is dropped from the default schema. DROP TRIGGER requires the TRIGGER privilege for the table associated with the trigger.
Use IF EXISTS to prevent an error from occurring for a trigger that does not exist. A NOTE is generated for a nonexistent trigger when using IF EXISTS. See Section 13.7.5.41, “SHOW WARNINGS Syntax”.
Triggers for a table are also dropped if you drop the table.
13.1.25. DROP VIEW Syntax
DROP VIEW [IF EXISTS]
view_name [, view_name] ...
[RESTRICT | CASCADE]
DROP VIEW removes one or more views. You must have the DROP privilege for each view. If any of the views named in the argument list do not exist, MySQL returns an error indicating by name which nonexisting views it was unable to drop, but it also drops all of the views in the list that do exist.
The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause is given, a NOTE is generated for each nonexistent view. See Section 13.7.5.41, “SHOW WARNINGS Syntax”.
RESTRICT and CASCADE, if given, are parsed and ignored.
13.1.26. RENAME TABLE Syntax
RENAME TABLE tbl_name TO new_tbl_name
[, tbl_name2 TO new_tbl_name2] ...
This statement renames one or more tables.
The rename operation is done atomically, which means that no other session can access any of the tables while the rename is running. For example, if you have an existing table old_table, you can create another table new_table that has the same structure but is empty, and then replace the existing table with the empty one as follows (assuming that backup_table does not already exist):
CREATE TABLE new_table (...);
RENAME TABLE old_table TO backup_table, new_table TO old_table;
If the statement renames more than one table, renaming operations are done from left to right. If you want to swap two table names, you can do so like this (assuming that tmp_table does not already exist):
RENAME TABLE old_table TO tmp_table,
new_table TO old_table,
tmp_table TO new_table;
As long as two databases are on the same file system, you can use RENAME TABLE to move a table from one database to another:
RENAME TABLE current_db.tbl_name TO other_db.tbl_name;
If there are any triggers associated with a table which is moved to a different database using RENAME TABLE, then the statement fails with the error Trigger in wrong schema.
RENAME TABLE also works for views, as long as you do not try to rename a view into a different database.
Any privileges granted specifically for the renamed table or view are not migrated to the new name. They must be changed manually.
When you execute RENAME, you cannot have any locked tables or active transactions. You must also have the ALTER and DROP privileges on the original table, and the CREATE and INSERT privileges on the new table.
If MySQL encounters any errors in a multiple-table rename, it does a reverse rename for all renamed tables to return everything to its original state.
You cannot use RENAME to rename a TEMPORARY table. However, you can use ALTER TABLE instead:
mysql> ALTER TABLE orig_name RENAME new_name;
13.1.27. TRUNCATE TABLE Syntax
TRUNCATE [TABLE] tbl_name
TRUNCATE TABLE empties a table completely. It requires the DROP privilege.
Logically, TRUNCATE TABLE is similar to a DELETE statement that deletes all rows, or a sequence of DROP TABLE and CREATE TABLE statements. To achieve high performance, it bypasses the DML method of deleting data. Thus, it cannot be rolled back, it does not cause ON DELETE triggers to fire, and it cannot be performed for InnoDB tables with parent-child foreign key relationships.
Although TRUNCATE TABLE is similar to DELETE, it is classified as a DDL statement rather than a DML statement. It differs from DELETE in the following ways in MySQL 5.6:
Truncate operations drop and re-create the table, which is much faster than deleting rows one by one, particularly for large tables.
Truncate operations cause an implicit commit, and so cannot be rolled back.
Truncation operations cannot be performed if the session holds an active table lock.
TRUNCATE TABLE fails for an InnoDB table if there are any FOREIGN KEY constraints from other tables that reference the table. Foreign key constraints between columns of the same table are permitted.
Truncation operations do not return a meaningful value for the number of deleted rows. The usual result is “0 rows affected,” which should be interpreted as “no information.”
As long as the table format file tbl_name.frm is valid, the table can be re-created as an empty table with TRUNCATE TABLE, even if the data or index files have become corrupted.
Any AUTO_INCREMENT value is reset to its start value. This is true even for MyISAM and InnoDB, which normally do not reuse sequence values.
When used with partitioned tables, TRUNCATE TABLE preserves the partitioning; that is, the data and index files are dropped and re-created, while the partition definitions (.par) file is unaffected.
The TRUNCATE TABLE statement does not invoke ON DELETE triggers.
TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.
TRUNCATE TABLE is treated for purposes of binary logging and replication as DROP TABLE followed by CREATE TABLE—that is, as DDL rather than DML. This is due to the fact that, when using InnoDB and other transactional storage engines where the transaction isolation level does not permit statement-based logging (READ COMMITTED or READ UNCOMMITTED), the statement was not logged and replicated when using STATEMENT or MIXED logging mode. (Bug #36763) However, it is still applied on replication slaves using InnoDB in the manner described previously.
TRUNCATE TABLE can be used with Performance Schema summary tables, but the effect is to reset the summary columns to 0 or NULL, not to remove rows. See Section 20.9.8, “Performance Schema Summary Tables”.
13.2. Data Manipulation Statements
13.2.1. CALL Syntax
CALL sp_name([parameter[,...]])
CALL sp_name[()]
The CALL statement invokes a stored procedure that was defined previously with CREATE PROCEDURE.
Stored procedures that take no arguments can be invoked without parentheses. That is, CALL p() and CALL p are equivalent.
CALL can pass back values to its caller using parameters that are declared as OUT or INOUT parameters. When the procedure returns, a client program can also obtain the number of rows affected for the final statement executed within the routine: At the SQL level, call the ROW_COUNT() function; from the C API, call the mysql_affected_rows() function.
To get back a value from a procedure using an OUT or INOUT parameter, pass the parameter by means of a user variable, and then check the value of the variable after the procedure returns. (If you are calling the procedure from within another stored procedure or function, you can also pass a routine parameter or local routine variable as an IN or INOUT parameter.) For an INOUT parameter, initialize its value before passing it to the procedure. The following procedure has an OUT parameter that the procedure sets to the current server version, and an INOUT value that the procedure increments by one from its current value:
CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT incr_param INT)
BEGIN
Set value of OUT parameter
SELECT VERSION() INTO ver_param;
Increment value of INOUT parameter
SET incr_param = incr_param + 1;
END;
Before calling the procedure, initialize the variable to be passed as the INOUT parameter. After calling the procedure, the values of the two variables will have been set or modified:
mysql> SET @increment = 10;
mysql> CALL p(@version, @increment);
mysql> SELECT @version, @increment;
+--------------+------------+
| @version | @increment |
+--------------+------------+
| 5.5.3-m3-log | 11 |
+--------------+------------+
In prepared CALL statements used with PREPARE and EXECUTE, placeholders can be used for IN parameters. For OUT and INOUT parameters, placeholder support is available as of MySQL 5.5.3. These types of parameters can be used as follows:
mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(?, ?)';
mysql> EXECUTE s USING @version, @increment;
mysql> SELECT @version, @increment;
+--------------+------------+
| @version | @increment |
+--------------+------------+
| 5.5.3-m3-log | 11 |
+--------------+------------+
Before MySQL 5.5.3, placeholder support is not available for OUT or INOUT parameters. To work around this limitation for OUT and INOUT parameters, forego the use of placeholders; instead, refer to user variables in the CALL statement itself and do not specify them in the EXECUTE statement:
mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(@version, @increment)';
mysql> EXECUTE s;
mysql> SELECT @version, @increment;
+--------------+------------+
| @version | @increment |
+--------------+------------+
| 5.5.0-m2-log | 11 |
+--------------+------------+
To write C programs that use the CALL SQL statement to execute stored procedures that produce result sets, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition to any result sets that might be returned by statements executed within the procedure. CLIENT_MULTI_RESULTS must also be enabled if CALL is used to execute any stored procedure that contains prepared statements. It cannot be determined when such a procedure is loaded whether those statements will produce result sets, so it is necessary to assume that they will.
CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). In MySQL 5.6, CLIENT_MULTI_RESULTS is enabled by default.
To process the result of a CALL statement executed using mysql_query() or mysql_real_query(), use a loop that calls mysql_next_result() to determine whether there are more results. For an example, see Section 21.8.16, “C API Support for Multiple Statement Execution”.
For programs written in a language that provides a MySQL interface, there is no native method prior to MySQL 5.5.3 for directly retrieving the results of OUT or INOUT parameters from CALL statements. To get the parameter values, pass user-defined variables to the procedure in the CALL statement and then execute a SELECT statement to produce a result set containing the variable values. To handle an INOUT parameter, execute a statement prior to the CALL that sets the corresponding user variable to the value to be passed to the procedure.
The following example illustrates the technique (without error checking) for the stored procedure p described earlier that has an OUT parameter and an INOUT parameter:
mysql_query(mysql, "SET @increment = 10");
mysql_query(mysql, "CALL p(@version, @increment)");
mysql_query(mysql, "SELECT @version, @increment");
result = mysql_store_result(mysql);
row = mysql_fetch_row(result);
mysql_free_result(result);
After the preceding code executes, row[0] and row[1] contain the values of @version and @increment, respectively.
In MySQL 5.6, C programs can use the prepared-statement interface to execute CALL statements and access OUT and INOUT parameters. This is done by processing the result of a CALL statement using a loop that calls mysql_stmt_next_result() to determine whether there are more results. For an example, see Section 21.8.19, “C API Support for Prepared CALL Statements”. Languages that provide a MySQL interface can use prepared CALL statements to directly retrieve OUT and INOUT procedure parameters.
As of MySQL 5.6.6, metadata changes to objects referred to by stored programs are detected and cause automatic reparsing of the affected statements when the program is next executed. For more information, see Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.
13.2.2. DELETE Syntax
DELETE is a DML statement that removes rows from a table.
Single-table syntax:
DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
[PARTITION (partition_name,...)]
[WHERE where_condition]
[ORDER BY ...]
[LIMIT row_count]
The DELETE statement deletes rows from tbl_name and returns the number of deleted rows. To check the number of deleted rows, call the ROW_COUNT() function described in Section 12.14, “Information Functions”.
Main Clauses
The conditions in the optional WHERE clause identify which rows to delete. With no WHERE clause, all rows are deleted.
where_condition is an expression that evaluates to true for each row to be deleted. It is specified as described in Section 13.2.9, “SELECT Syntax”.
If the ORDER BY clause is specified, the rows are deleted in the order that is specified. The LIMIT clause places a limit on the number of rows that can be deleted. These clauses apply to single-table deletes, but not multi-table deletes.
Multiple-table syntax:
DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
tbl_name[.*] [, tbl_name[.*]] ...
FROM table_references
[WHERE where_condition]
Or:
DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
FROM tbl_name[.*] [, tbl_name[.*]] ...
USING table_references
[WHERE where_condition]
Privileges
You need the DELETE privilege on a table to delete rows from it. You need only the SELECT privilege for any columns that are only read, such as those named in the WHERE clause.
Performance
When you do not need to know the number of deleted rows, the TRUNCATE TABLE statement is a faster way to empty a table than a DELETE statement with no WHERE clause. Unlike DELETE, TRUNCATE TABLE cannot be used within a transaction or if you have a lock on the table. See Section 13.1.27, “TRUNCATE TABLE Syntax” and Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”.
The speed of delete operations may also be affected by factors discussed in Section 8.2.2.3, “Speed of DELETE Statements”.
To ensure that a given DELETE statement does not take too much time, the MySQL-specific LIMIT row_count clause for DELETE specifies the maximum number of rows to be deleted. If the number of rows to delete is larger than the limit, repeat the DELETE statement until the number of affected rows is less than the LIMIT value.
Subqueries
Currently, you cannot delete from a table and select from the same table in a subquery.
Partitioned Tables
Beginning with MySQL 5.6.2, DELETE supports explicit partition selection using the PARTITION option, which takes a comma-separated list of the names of one or more partitions or subpartitions (or both) from which to select rows to be dropped. Partitions not included in the list are ignored. Given a partitioned table t with a partition named p0, executing the statement DELETE FROM t PARTITION (p0) has the same effect on the table as executing ALTER TABLE t TRUNCATE PARTITION (p0); in both cases, all rows in partition p0 are dropped.
PARTITION can be used along with a WHERE condition, in which case the condition is tested only on rows in the listed partitions. For example, DELETE FROM t PARTITION (p0) WHERE c < 5 deletes rows only from partition p0 for which the condition c < 5 is true; rows in any other partitions are not checked and thus not affected by the DELETE.
The PARTITION option can also be used in multiple-table DELETE statements. You can use up to one such option per table named in the FROM option.
See Section 17.5, “Partition Selection”, for more information and examples.
Auto-Increment Columns
If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value is not reused for a MyISAM or InnoDB table. If you delete all rows in the table with DELETE FROM tbl_name (without a WHERE clause) in autocommit mode, the sequence starts over for all storage engines except InnoDB and MyISAM. There are some exceptions to this behavior for InnoDB tables, as discussed in Section 5.4.4, “AUTO_INCREMENT Handling in InnoDB”.
For MyISAM tables, you can specify an AUTO_INCREMENT secondary column in a multiple-column key. In this case, reuse of values deleted from the top of the sequence occurs even for MyISAM tables. See Section 3.6.9, “Using AUTO_INCREMENT”.
Modifiers
The DELETE statement supports the following modifiers:
If you specify LOW_PRIORITY, the server delays execution of the DELETE until no other clients are reading from the table. This affects only storage engines that use only table-level locking (such as MyISAM, MEMORY, and MERGE).
For MyISAM tables, if you use the QUICK keyword, the storage engine does not merge index leaves during delete, which may speed up some kinds of delete operations.
The IGNORE keyword causes MySQL to ignore all errors during the process of deleting rows. (Errors encountered during the parsing stage are processed in the usual manner.) Errors that are ignored due to the use of IGNORE are returned as warnings.
Order of Deletion
If the DELETE statement includes an ORDER BY clause, rows are deleted in the order specified by the clause. This is useful primarily in conjunction with LIMIT. For example, the following statement finds rows matching the WHERE clause, sorts them by timestamp_column, and deletes the first (oldest) one:
DELETE FROM somelog WHERE user = 'jcole'
ORDER BY timestamp_column LIMIT 1;
ORDER BY also helps to delete rows in an order required to avoid referential integrity violations.
InnoDB Tables
If you are deleting many rows from a large table, you may exceed the lock table size for an InnoDB table. To avoid this problem, or simply to minimize the time that the table remains locked, the following strategy (which does not use DELETE at all) might be helpful:
Select the rows not to be deleted into an empty table that has the same structure as the original table:
INSERT INTO t_copy SELECT * FROM t WHERE ... ;
Use RENAME TABLE to atomically move the original table out of the way and rename the copy to the original name:
RENAME TABLE t TO t_old, t_copy TO t;
Drop the original table:
DROP TABLE t_old;
No other sessions can access the tables involved while RENAME TABLE executes, so the rename operation is not subject to concurrency problems. See Section 13.1.26, “RENAME TABLE Syntax”.
MyISAM Tables
In MyISAM tables, deleted rows are maintained in a linked list and subsequent INSERT operations reuse old row positions. To reclaim unused space and reduce file sizes, use the OPTIMIZE TABLE statement or the myisamchk utility to reorganize tables. OPTIMIZE TABLE is easier to use, but myisamchk is faster. See Section 13.7.2.4, “OPTIMIZE TABLE Syntax”, and Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.
The QUICK modifier affects whether index leaves are merged for delete operations. DELETE QUICK is most useful for applications where index values for deleted rows are replaced by similar index values from rows inserted later. In this case, the holes left by deleted values are reused.
DELETE QUICK is not useful when deleted values lead to underfilled index blocks spanning a range of index values for which new inserts occur again. In this case, use of QUICK can lead to wasted space in the index that remains unreclaimed. Here is an example of such a scenario:
Create a table that contains an indexed AUTO_INCREMENT column.
Insert many rows into the table. Each insert results in an index value that is added to the high end of the index.
Delete a block of rows at the low end of the column range using DELETE QUICK.
In this scenario, the index blocks associated with the deleted index values become underfilled but are not merged with other index blocks due to the use of QUICK. They remain underfilled when new inserts occur, because new rows do not have index values in the deleted range. Furthermore, they remain underfilled even if you later use DELETE without QUICK, unless some of the deleted index values happen to lie in index blocks within or adjacent to the underfilled blocks. To reclaim unused index space under these circumstances, use OPTIMIZE TABLE.
If you are going to delete many rows from a table, it might be faster to use DELETE QUICK followed by OPTIMIZE TABLE. This rebuilds the index rather than performing many index block merge operations.
Multi-Table Deletes
You can specify multiple tables in a DELETE statement to delete rows from one or more tables depending on the condition in the WHERE clause. You cannot use ORDER BY or LIMIT in a multiple-table DELETE. The table_references clause lists the tables involved in the join, as described in Section 13.2.9.2, “JOIN Syntax”.
For the first multiple-table syntax, only matching rows from the tables listed before the FROM clause are deleted. For the second multiple-table syntax, only matching rows from the tables listed in the FROM clause (before the USING clause) are deleted. The effect is that you can delete rows from many tables at the same time and have additional tables that are used only for searching:
DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;
Or:
DELETE FROM t1, t2 USING t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;
These statements use all three tables when searching for rows to delete, but delete matching rows only from tables t1 and t2.
The preceding examples use INNER JOIN, but multiple-table DELETE statements can use other types of join permitted in SELECT statements, such as LEFT JOIN. For example, to delete rows that exist in t1 that have no match in t2, use a LEFT JOIN:
DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;
The syntax permits .* after each tbl_name for compatibility with Access.
If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign key constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/child relationship. In this case, the statement fails and rolls back. Instead, you should delete from a single table and rely on the ON DELETE capabilities that InnoDB provides to cause the other tables to be modified accordingly.
Note
If you declare an alias for a table, you must use the alias when referring to the table:
DELETE t1 FROM test AS t1, test2 WHERE ...
Table aliases in a multiple-table DELETE should be declared only in the table_references part of the statement. Elsewhere, alias references are permitted but not alias declarations.
Correct:
DELETE a1, a2 FROM t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;
DELETE FROM a1, a2 USING t1 AS a1 INNER JOIN t2 AS a2
WHERE a1.id=a2.id;
Incorrect:
DELETE t1 AS a1, t2 AS a2 FROM t1 INNER JOIN t2
WHERE a1.id=a2.id;
DELETE FROM t1 AS a1, t2 AS a2 USING t1 INNER JOIN t2
WHERE a1.id=a2.id;
13.2.3. DO Syntax
DO expr [, expr] ...
DO executes the expressions but does not return any results. In most respects, DO is shorthand for SELECT expr, ..., but has the advantage that it is slightly faster when you do not care about the result.
DO is useful primarily with functions that have side effects, such as RELEASE_LOCK().
13.2.4. HANDLER Syntax
HANDLER tbl_name OPEN [[AS] alias]
HANDLER tbl_name READ index_name { = | <= | >= | < | > } (value1,value2,...)
[WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }
[WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ { FIRST | NEXT }
[WHERE where_condition] [LIMIT ...]
HANDLER tbl_name CLOSE
The HANDLER statement provides direct access to table storage engine interfaces. It is available for InnoDB and MyISAM tables.
The HANDLER ... OPEN statement opens a table, making it accessible using subsequent HANDLER ... READ statements. This table object is not shared by other sessions and is not closed until the session calls HANDLER ... CLOSE or the session terminates. If you open the table using an alias, further references to the open table with other HANDLER statements must use the alias rather than the table name.
The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given values and the WHERE condition is met. If you have a multiple-column index, specify the index column values as a comma-separated list. Either specify values for all the columns in the index, or specify values for a leftmost prefix of the index columns. Suppose that an index my_idx includes three columns named col_a, col_b, and col_c, in that order. The HANDLER statement can specify values for all three columns in the index, or for the columns in a leftmost prefix. For example:
HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... READ my_idx = (col_a_val,col_b_val) ...
HANDLER ... READ my_idx = (col_a_val) ...
To employ the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier `PRIMARY`:
HANDLER tbl_name READ `PRIMARY` ...
The second HANDLER ... READ syntax fetches a row from the table in index order that matches the WHERE condition.
The third HANDLER ... READ syntax fetches a row from the table in natural row order that matches the WHERE condition. It is faster than HANDLER tbl_name READ index_name when a full table scan is desired. Natural row order is the order in which rows are stored in a MyISAM table data file. This statement works for InnoDB tables as well, but there is no such concept because there is no separate data file.
Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available. To return a specific number of rows, include a LIMIT clause. It has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT Syntax”.
HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.
There are several reasons to use the HANDLER interface instead of normal SELECT statements:
HANDLER is faster than SELECT:
A designated storage engine handler object is allocated for the HANDLER ... OPEN. The object is reused for subsequent HANDLER statements for that table; it need not be reinitialized for each one.
There is less parsing involved.
There is no optimizer or query-checking overhead.
The handler interface does not have to provide a consistent look of the data (for example, dirty reads are permitted), so the storage engine can use optimizations that SELECT does not normally permit.
HANDLER makes it easier to port to MySQL applications that use a low-level ISAM-like interface. (See Section 14.2.9, “InnoDB Integration with memcached” for an alternative way to adapt applications that use the key-value store paradigm.)
HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to accomplish with SELECT. The HANDLER interface is a more natural way to look at data when working with applications that provide an interactive user interface to the database.
HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is, HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table. This means that after a HANDLER ... OPEN statement is issued, table data can be modified (by the current session or other sessions) and these modifications might be only partially visible to HANDLER ... NEXT or HANDLER ... PREV scans.
An open handler can be closed and marked for reopen, in which case the handler loses its position in the table. This occurs when both of the following circumstances are true:
Any session executes FLUSH TABLES or DDL statements on the handler's table.
The session in which the handler is open executes non-HANDLER statements that use tables.
TRUNCATE TABLE for a table closes all handlers for the table that were opened with HANDLER OPEN.
If a table is flushed with FLUSH TABLES tbl_name WITH READ LOCK was opened with HANDLER, the handler is implicitly flushed and loses its position.
13.2.5. INSERT Syntax
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] tbl_name
[PARTITION (partition_name,...)]
[(col_name,...)]
{VALUES | VALUE} ({expr | DEFAULT},...),(...),...
[ON DUPLICATE KEY UPDATE
col_name=expr
[, col_name=expr] ...]
Or:
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] tbl_name
[PARTITION (partition_name,...)]
SET col_name={expr | DEFAULT}, ...
[ON DUPLICATE KEY UPDATE
col_name=expr
[, col_name=expr] ...]
Or:
INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
[INTO] tbl_name
[PARTITION (partition_name,...)]
[(col_name,...)]
SELECT ...
[ON DUPLICATE KEY UPDATE
col_name=expr
[, col_name=expr] ...]
INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ... SET forms of the statement insert rows based on explicitly specified values. The INSERT ... SELECT form inserts rows selected from another table or tables. INSERT ... SELECT is discussed further in Section 13.2.5.1, “INSERT ... SELECT Syntax”.
In MySQL 5.6.2 and later, when inserting into a partitioned table, you can control which partitions and subpartitions accept new rows. The PARTITION option takes a comma-separated list of the names of one or more partitions or subpartitions (or both) of the table. If any of the rows to be inserted by a given INSERT statement do not match one of the partitions listed, the INSERT statement fails with the error Found a row not matching the given partition set. See Section 17.5, “Partition Selection”, for more information and examples.
You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to INSERT IGNORE in the treatment of new rows that contain unique key values that duplicate old rows: The new rows are used to replace the old rows rather than being discarded. See Section 13.2.8, “REPLACE Syntax”.
tbl_name is the table into which rows should be inserted. The columns for which the statement provides values can be specified as follows:
You can provide a comma-separated list of column names following the table name. In this case, a value for each named column must be provided by the VALUES list or the SELECT statement.
If you do not specify a list of column names for INSERT ... VALUES or INSERT ... SELECT, values for every column in the table must be provided by the VALUES list or the SELECT statement. If you do not know the order of the columns in the table, use DESCRIBE tbl_name to find out.
The SET clause indicates the column names explicitly.
Column values can be given in several ways:
If you are not running in strict SQL mode, any column not explicitly given a value is set to its default (explicit or implicit) value. For example, if you specify a column list that does not name all the columns in the table, unnamed columns are set to their default values. Default value assignment is described in Section 11.5, “Data Type Default Values”. See also Section 1.8.6.3, “Constraints on Invalid Data”.
If you want an INSERT statement to generate an error unless you explicitly specify values for all columns that do not have a default value, you should use strict mode. See Section 5.1.7, “Server SQL Modes”.
Use the keyword DEFAULT to set a column explicitly to its default value. This makes it easier to write INSERT statements that assign values to all but a few columns, because it enables you to avoid writing an incomplete VALUES list that does not include a value for each column in the table. Otherwise, you would have to write out the list of column names corresponding to each value in the VALUES list.
You can also use DEFAULT(col_name) as a more general form that can be used in expressions to produce a given column's default value.
If both the column list and the VALUES list are empty, INSERT creates a row with each column set to its default value:
INSERT INTO tbl_name () VALUES();
In strict mode, an error occurs if any column doesn't have a default value. Otherwise, MySQL uses the implicit default value for any column that does not have an explicitly defined default.
You can specify an expression expr to provide a column value. This might involve type conversion if the type of the expression does not match the type of the column, and conversion of a given value can result in different inserted values depending on the data type. For example, inserting the string '1999.0e-2' into an INT, FLOAT, DECIMAL(10,6), or YEAR column results in the values 1999, 19.9921, 19.992100, and 1999 being inserted, respectively. The reason the value stored in the INT and YEAR columns is 1999 is that the string-to-integer conversion looks only at as much of the initial part of the string as may be considered a valid integer or year. For the floating-point and fixed-point columns, the string-to-floating-point conversion considers the entire string a valid floating-point value.
An expression expr can refer to any column that was set earlier in a value list. For example, you can do this because the value for col2 refers to col1, which has previously been assigned:
INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);
But the following is not legal, because the value for col1 refers to col2, which is assigned after col1:
INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);
One exception involves columns that contain AUTO_INCREMENT values. Because the AUTO_INCREMENT value is generated after other value assignments, any reference to an AUTO_INCREMENT column in the assignment returns a 0.
INSERT statements that use VALUES syntax can insert multiple rows. To do this, include multiple lists of column values, each enclosed within parentheses and separated by commas. Example:
INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);
The values list for each row must be enclosed within parentheses. The following statement is illegal because the number of values in the list does not match the number of column names:
INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);
VALUE is a synonym for VALUES in this context. Neither implies anything about the number of values lists, and either may be used whether there is a single values list or multiple lists.
The affected-rows value for an INSERT can be obtained using the ROW_COUNT() function (see Section 12.14, “Information Functions”), or the mysql_affected_rows() C API function (see Section 21.8.6.1, “mysql_affected_rows()”).
If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SELECT, the statement returns an information string in this format:
Records: 100 Duplicates: 0 Warnings: 0
Records indicates the number of rows processed by the statement. (This is not necessarily the number of rows actually inserted because Duplicates can be nonzero.) Duplicates indicates the number of rows that could not be inserted because they would duplicate some existing unique index value. Warnings indicates the number of attempts to insert column values that were problematic in some way. Warnings can occur under any of the following conditions:
Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT statements or INSERT INTO ... SELECT statements, the column is set to the implicit default value for the column data type. This is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date and time types. INSERT INTO ... SELECT statements are handled the same way as multiple-row inserts because the server does not examine the result set from the SELECT to see whether it returns a single row. (For a single-row INSERT, no warning occurs when NULL is inserted into a NOT NULL column. Instead, the statement fails with an error.)
Setting a numeric column to a value that lies outside the column's range. The value is clipped to the closest endpoint of the range.
Assigning a value such as '10.34 a' to a numeric column. The trailing nonnumeric text is stripped off and the remaining numeric part is inserted. If the string value has no leading numeric part, the column is set to 0.
Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the column's maximum length. The value is truncated to the column's maximum length.
Inserting a value into a date or time column that is illegal for the data type. The column is set to the appropriate zero value for the type.
If you are using the C API, the information string can be obtained by invoking the mysql_info() function. See Section 21.8.6.35, “mysql_info()”.
If INSERT inserts a row into a table that has an AUTO_INCREMENT column, you can find the value used for that column by using the SQL LAST_INSERT_ID() function. From within the C API, use the mysql_insert_id() function. However, you should note that the two functions do not always behave identically. The behavior of INSERT statements with respect to AUTO_INCREMENT columns is discussed further in Section 12.14, “Information Functions”, and Section 21.8.6.37, “mysql_insert_id()”.
The INSERT statement supports the following modifiers:
If you use the DELAYED keyword, the server puts the row or rows to be inserted into a buffer, and the client issuing the INSERT DELAYED statement can then continue immediately. If the table is in use, the server holds the rows. When the table is free, the server begins inserting rows, checking periodically to see whether there are any new read requests for the table. If there are, the delayed row queue is suspended until the table becomes free again. See Section 13.2.5.2, “INSERT DELAYED Syntax”.
DELAYED is ignored with INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE.
DELAYED is also disregarded for an INSERT that uses functions accessing tables or triggers, or that is called from a function or a trigger.
Note
As of MySQL 5.6.6, INSERT DELAYED is deprecated, and will be removed in a future release. Use INSERT (without DELAYED) instead.
If you use the LOW_PRIORITY keyword, execution of the INSERT is delayed until no other clients are reading from the table. This includes other clients that began reading while existing clients are reading, and while the INSERT LOW_PRIORITY statement is waiting. It is possible, therefore, for a client that issues an INSERT LOW_PRIORITY statement to wait for a very long time (or even forever) in a read-heavy environment. (This is in contrast to INSERT DELAYED, which lets the client continue at once.) Note that LOW_PRIORITY should normally not be used with MyISAM tables because doing so disables concurrent inserts. See Section 8.10.3, “Concurrent Inserts”.
If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the server was started with that option. It also causes concurrent inserts not to be used. See Section 8.10.3, “Concurrent Inserts”.
LOW_PRIORITY and HIGH_PRIORITY affect only storage engines that use only table-level locking (such as MyISAM, MEMORY, and MERGE).
If you use the IGNORE keyword, errors that occur while executing the INSERT statement are treated as warnings instead. For example, without IGNORE, a row that duplicates an existing UNIQUE index or PRIMARY KEY value in the table causes a duplicate-key error and the statement is aborted. With IGNORE, the row still is not inserted, but no error is issued.
IGNORE has a similar effect on inserts into partitioned tables where no partition matching a given value is found. Without IGNORE, such INSERT statements are aborted with an error; however, when INSERT IGNORE is used, the insert operation fails silently for the row containing the unmatched value, but any rows that are matched are inserted. For an example, see Section 17.2.2, “LIST Partitioning”.
Data conversions that would trigger errors abort the statement if IGNORE is not specified. With IGNORE, invalid values are adjusted to the closest values and inserted; warnings are produced but the statement does not abort. You can determine with the mysql_info() C API function how many rows were actually inserted into the table.
If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row is performed. The affected-rows value per row is 1 if the row is inserted as a new row and 2 if an existing row is updated. See Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.
Inserting into a table requires the INSERT privilege for the table. If the ON DUPLICATE KEY UPDATE clause is used and a duplicate key causes an UPDATE to be performed instead, the statement requires the UPDATE privilege for the columns to be updated. For columns that are read but not modified you need only the SELECT privilege (such as for a column referenced only on the right hand side of an col_name=expr assignment in an ON DUPLICATE KEY UPDATE clause).
Prior to MySQL 5.6.6, an INSERT that affected a partitioned table using a storage engine such as MyISAM that employs table-level locks locked all partitions of the table. This was true even for INSERT ... PARTITION statements. (This did not and does not occur with storage engines such as InnoDB that employ row-level locking.) In MySQL 5.6.6 and later, MySQL uses partition lock pruning, so that only partitions into which rows are inserted are actually locked. For more information, see Section 17.6.4, “Partitioning and Locking”.
13.2.5.1. INSERT ... SELECT Syntax
INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
[INTO] tbl_name
[PARTITION (partition_name,...)]
[(col_name,...)]
SELECT ...
[ON DUPLICATE KEY UPDATE col_name=expr, ...]
With INSERT ... SELECT, you can quickly insert many rows into a table from one or many tables. For example:
INSERT INTO tbl_temp2 (fld_id)
SELECT tbl_temp1.fld_order_id
FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;
The following conditions hold for a INSERT ... SELECT statements:
Specify IGNORE to ignore rows that would cause duplicate-key violations.
DELAYED is ignored with INSERT ... SELECT.
The target table of the INSERT statement may appear in the FROM clause of the SELECT part of the query. (This was not possible in some older versions of MySQL.) However, you cannot insert into a table and select from the same table in a subquery.
When selecting from and inserting into a table at the same time, MySQL creates a temporary table to hold the rows from the SELECT and then inserts those rows into the target table. However, it remains true that you cannot use INSERT INTO t ... SELECT ... FROM t when t is a TEMPORARY table, because TEMPORARY tables cannot be referred to twice in the same statement (see Section C.5.7.2, “TEMPORARY Table Problems”).
AUTO_INCREMENT columns work as usual.
To ensure that the binary log can be used to re-create the original tables, MySQL does not permit concurrent inserts for INSERT ... SELECT statements.
To avoid ambiguous column reference problems when the SELECT and the INSERT refer to the same table, provide a unique alias for each table used in the SELECT part, and qualify column names in that part with the appropriate alias.
Starting with MySQL 5.6.2, you can explicitly select which partitions or subpartitions (or both) of the source or target table (or both) are to be used with a PARTITION option following the name of the table. When PARTITION is used with the name of the source table in the SELECT portion of the statement, rows are selected only from the partitions or subpartitions named in its partition list. When PARTITION is used with the name of the target table for the INSERT portion of the statement, then it must be possible to insert all rows selected into the partitions or subpartitions named in the partition list following the option, else the INSERT ... SELECT statement fails. For more information and examples, see Section 17.5, “Partition Selection”.
In the values part of ON DUPLICATE KEY UPDATE, you can refer to columns in other tables, as long as you do not use GROUP BY in the SELECT part. One side effect is that you must qualify nonunique column names in the values part.
The order in which rows are returned by a SELECT statement with no ORDER BY clause is not determined. This means that, when using replication, there is no guarantee that such a SELECT returns rows in the same order on the master and the slave; this can lead to inconsistencies between them. To prevent this from occurring, you should always write INSERT ... SELECT statements that are to be replicated as INSERT ... SELECT ... ORDER BY column. The choice of column does not matter as long as the same order for returning the rows is enforced on both the master and the slave. See also Section 16.4.1.15, “Replication and LIMIT”.
Due to this issue, beginning with MySQL 5.6.4, INSERT ... SELECT ON DUPLICATE KEY UPDATE and INSERT IGNORE ... SELECT statements are flagged as unsafe for statement-based replication. With this change, such statements produce a warning in the log when using statement-based mode and are logged using the row-based format when using MIXED mode. (Bug #11758262, Bug #50439)
See also Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.
Prior to MySQL 5.6.6, an INSERT ... SELECT statement that acted on partitioned tables using a storage engine such as MyISAM that employs table-level locks locked all partitions of the source and target tables. (This did not and does not occur with tables using storage engines such as InnoDB that employ row-level locking.) In MySQL 5.6.6 and later, only those partitions of the source table that are actually read are locked, although all partitions of the target table are locked. See Section 17.6.4, “Partitioning and Locking”, for more information.
13.2.5.2. INSERT DELAYED Syntax
INSERT DELAYED ...
The DELAYED option for the INSERT statement is a MySQL extension to standard SQL that can be used for certain kinds of tables (such as MyISAM). When a client uses INSERT DELAYED, it gets an okay from the server at once, and the row is queued to be inserted when the table is not in use by any other thread.
Note
INSERT DELAYED is slower than a normal INSERT if the table is not otherwise in use. There is also the additional overhead for the server to handle a separate thread for each table for which there are delayed rows. This means that you should use INSERT DELAYED only when you are really sure that you need it.
As of MySQL 5.6.6, INSERT DELAYED is deprecated, and will be removed in a future release. Use INSERT (without DELAYED) instead.
The queued rows are held only in memory until they are inserted into the table. This means that if you terminate mysqld forcibly (for example, with kill -9) or if mysqld dies unexpectedly, any queued rows that have not been written to disk are lost.
There are some constraints on the use of DELAYED:
INSERT DELAYED works only with MyISAM, MEMORY, ARCHIVE, and BLACKHOLE tables. For engines that do not support DELAYED, an error occurs.
An error occurs for INSERT DELAYED if used with a table that has been locked with LOCK TABLES because the insert must be handled by a separate thread, not by the session that holds the lock.
For MyISAM tables, if there are no free blocks in the middle of the data file, concurrent SELECT and INSERT statements are supported. Under these circumstances, you very seldom need to use INSERT DELAYED with MyISAM.
INSERT DELAYED should be used only for INSERT statements that specify value lists. The server ignores DELAYED for INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE statements.
Because the INSERT DELAYED statement returns immediately, before the rows are inserted, you cannot use LAST_INSERT_ID() to get the AUTO_INCREMENT value that the statement might generate.
DELAYED rows are not visible to SELECT statements until they actually have been inserted.
Prior to MySQL 5.6, INSERT DELAYED was treated as a normal INSERT if the statement inserted multiple rows, binary logging was enabled, and the global logging format was statement-based (that is, whenever binlog_format was set to STATEMENT). Beginning with MySQL 5.6, INSERT DELAYED is always handled as a simple INSERT (that is, without the DELAYED option) whenever the value of binlog_format is STATEMENT or MIXED. (In the latter case, the statement no longer triggers a switch to row-based logging, and so is logged using the statement-based format.)
This does not apply when using row-based binary logging mode (binlog_format set to ROW), in which INSERT DELAYED statements are always executed using the DELAYED option as specified, and logged as row-update events.
DELAYED is ignored on slave replication servers, so that INSERT DELAYED is treated as a normal INSERT on slaves. This is because DELAYED could cause the slave to have different data than the master.
Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is used to modify the table structure.
INSERT DELAYED is not supported for views.
INSERT DELAYED is not supported for partitioned tables.
The following describes in detail what happens when you use the DELAYED option to INSERT or REPLACE. In this description, the “thread” is the thread that received an INSERT DELAYED statement and “handler” is the thread that handles all INSERT DELAYED statements for a particular table.
When a thread executes a DELAYED statement for a table, a handler thread is created to process all DELAYED statements for the table, if no such handler already exists.
The thread checks whether the handler has previously acquired a DELAYED lock; if not, it tells the handler thread to do so. The DELAYED lock can be obtained even if other threads have a READ or WRITE lock on the table. However, the handler waits for all ALTER TABLE locks or FLUSH TABLES statements to finish, to ensure that the table structure is up to date.
The thread executes the INSERT statement, but instead of writing the row to the table, it puts a copy of the final row into a queue that is managed by the handler thread. Any syntax errors are noticed by the thread and reported to the client program.
The client cannot obtain from the server the number of duplicate rows or the AUTO_INCREMENT value for the resulting row, because the INSERT returns before the insert operation has been completed. (If you use the C API, the mysql_info() function does not return anything meaningful, for the same reason.)
The binary log is updated by the handler thread when the row is inserted into the table. In case of multiple-row inserts, the binary log is updated when the first row is inserted.
Each time that delayed_insert_limit rows are written, the handler checks whether any SELECT statements are still pending. If so, it permits these to execute before continuing.
When the handler has no more rows in its queue, the table is unlocked. If no new INSERT DELAYED statements are received within delayed_insert_timeout seconds, the handler terminates.
If more than delayed_queue_size rows are pending in a specific handler queue, the thread requesting INSERT DELAYED waits until there is room in the queue. This is done to ensure that mysqld does not use all memory for the delayed memory queue.
The handler thread shows up in the MySQL process list with delayed_insert in the Command column. It is killed if you execute a FLUSH TABLES statement or kill it with KILL thread_id. However, before exiting, it first stores all queued rows into the table. During this time it does not accept any new INSERT statements from other threads. If you execute an INSERT DELAYED statement after this, a new handler thread is created.
Note that this means that INSERT DELAYED statements have higher priority than normal INSERT statements if there is an INSERT DELAYED handler running. Other update statements have to wait until the INSERT DELAYED queue is empty, someone terminates the handler thread (with KILL thread_id), or someone executes a FLUSH TABLES.
The following status variables provide information about INSERT DELAYED statements.
Status Variable | Meaning |
---|---|
Delayed_insert_threads | Number of handler threads |
Delayed_writes | Number of rows written with INSERT DELAYED |
Not_flushed_delayed_rows | Number of rows waiting to be written |
You can view these variables by issuing a SHOW STATUS statement or by executing a mysqladmin extended-status command.
13.2.5.3. INSERT ... ON DUPLICATE KEY UPDATE Syntax
If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value in a UNIQUE index or PRIMARY KEY, MySQL performs an UPDATE of the old row. For example, if column a is declared as UNIQUE and contains the value 1, the following two statements have similar effect:
INSERT INTO table (a,b,c) VALUES (1,2,3)
ON DUPLICATE KEY UPDATE c=c+1;
UPDATE table SET c=c+1 WHERE a=1;
(The effects are not identical for an InnoDB table where a is an auto-increment column. With an auto-increment column, an INSERT statement increases the auto-increment value but UPDATE does not.)
The ON DUPLICATE KEY UPDATE clause can contain multiple column assignments, separated by commas.
With ON DUPLICATE KEY UPDATE, the affected-rows value per row is 1 if the row is inserted as a new row, and 2 if an existing row is updated.
If column b is also unique, the INSERT is equivalent to this UPDATE statement instead:
UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;
If a=1 OR b=2 matches several rows, only one row is updated. In general, you should try to avoid using an ON DUPLICATE KEY UPDATE clause on tables with multiple unique indexes.
You can use the VALUES(col_name) function in the UPDATE clause to refer to column values from the INSERT portion of the INSERT ... ON DUPLICATE KEY UPDATE statement. In other words, VALUES(col_name) in the ON DUPLICATE KEY UPDATE clause refers to the value of col_name that would be inserted, had no duplicate-key conflict occurred. This function is especially useful in multiple-row inserts. The VALUES() function is meaningful only in INSERT ... UPDATE statements and returns NULL otherwise. Example:
INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);
That statement is identical to the following two statements:
INSERT INTO table (a,b,c) VALUES (1,2,3)
ON DUPLICATE KEY UPDATE c=3;
INSERT INTO table (a,b,c) VALUES (4,5,6)
ON DUPLICATE KEY UPDATE c=9;
If a table contains an AUTO_INCREMENT column and INSERT ... ON DUPLICATE KEY UPDATE inserts or updates a row, the LAST_INSERT_ID() function returns the AUTO_INCREMENT value.
The DELAYED option is ignored when you use ON DUPLICATE KEY UPDATE.
Because the results of INSERT ... SELECT statements depend on the ordering of rows from the SELECT and this order cannot always be guaranteed, it is possible when logging INSERT ... SELECT ON DUPLICATE KEY UPDATE statements for the master and the slave to diverge. Thus, in MySQL 5.6.4 and later, INSERT ... SELECT ON DUPLICATE KEY UPDATE statements are flagged as unsafe for statement-based replication. With this change, such statements produce a warning in the log when using statement-based mode and are logged using the row-based format when using MIXED mode. In addition, beginning with MySQL 5.6.6, an INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than one unique or primary key is also marked as unsafe. (Bug #11765650, Bug #58637) See also Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.
Prior to MySQL 5.6.6, an INSERT ... ON DUPLICATE KEY UPDATE on a partitioned table using a storage engine such as MyISAM that employs table-level locks locked all partitions of the table. (This did not and does not occur with tables using storage engines such as InnoDB that employ row-level locking.) In MySQL 5.6.6 and later, such statements lock only those partitions in which a partitioning key column is updated. See Section 17.6.4, “Partitioning and Locking”, for more information.
13.2.6. LOAD DATA INFILE Syntax
LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
[REPLACE | IGNORE]
INTO TABLE tbl_name
[PARTITION (partition_name,...)]
[CHARACTER SET charset_name]
[{FIELDS | COLUMNS}
[TERMINATED BY 'string']
[[OPTIONALLY] ENCLOSED BY 'char']
[ESCAPED BY 'char']
]
[LINES
[STARTING BY 'string']
[TERMINATED BY 'string']
]
[IGNORE number {LINES | ROWS}]
[(col_name_or_user_var,...)]
[SET col_name = expr,...]
The LOAD DATA INFILE statement reads rows from a text file into a table at a very high speed. LOAD DATA INFILE is the complement of SELECT ... INTO OUTFILE. (See Section 13.2.9.1, “SELECT ... INTO Syntax”.) To write data from a table to a file, use SELECT ... INTO OUTFILE. To read the file back into a table, use LOAD DATA INFILE. The syntax of the FIELDS and LINES clauses is the same for both statements. Both clauses are optional, but FIELDS must precede LINES if both are specified.
You can also load data files by using the mysqlimport utility; it operates by sending a LOAD DATA INFILE statement to the server. The --local option causes mysqlimport to read data files from the client host. You can specify the --compress option to get better performance over slow networks if the client and server support the compressed protocol. See Section 4.5.5, “mysqlimport — A Data Import Program”.
For more information about the efficiency of INSERT versus LOAD DATA INFILE and speeding up LOAD DATA INFILE, see Section 8.2.2.1, “Speed of INSERT Statements”.
The file name must be given as a literal string. On Windows, specify backslashes in path names as forward slashes or doubled backslashes. The character_set_filesystem system variable controls the interpretation of the file name.
In MySQL 5.6.2 and later, LOAD DATA supports explicit partition selection using the PARTITION option with a comma-separated list of more or more names of partitions, subpartitions, or both. When this option is used, if any rows from the file cannot be inserted into any of the partitions or subpartitions named in the list, the statement fails with the error Found a row not matching the given partition set. For more information, see Section 17.5, “Partition Selection”.
For partitioned tables using storage engines that employ table locks, such as MyISAM, LOAD DATA cannot prune any partition locks. This does not apply to tables using storage engines which employ row-level locking, such as InnoDB. For more information, see Section 17.6.4, “Partitioning and Locking”.
The character set indicated by the character_set_database system variable is used to interpret the information in the file. SET NAMES and the setting of character_set_client do not affect interpretation of input. If the contents of the input file use a character set that differs from the default, it is usually preferable to specify the character set of the file by using the CHARACTER SET clause. A character set of binary specifies “no conversion.”
LOAD DATA INFILE interprets all fields in the file as having the same character set, regardless of the data types of the columns into which field values are loaded. For proper interpretation of file contents, you must ensure that it was written with the correct character set. For example, if you write a data file with mysqldump -T or by issuing a SELECT ... INTO OUTFILE statement in mysql, be sure to use a --default-character-set option so that output is written in the character set to be used when the file is loaded with LOAD DATA INFILE.
Note
It is not possible to load data files that use the ucs2, utf16, utf16le, or utf32 character set.
If you use LOW_PRIORITY, execution of the LOAD DATA statement is delayed until no other clients are reading from the table. This affects only storage engines that use only table-level locking (such as MyISAM, MEMORY, and MERGE).
If you specify CONCURRENT with a MyISAM table that satisfies the condition for concurrent inserts (that is, it contains no free blocks in the middle), other threads can retrieve data from the table while LOAD DATA is executing. This option affects the performance of LOAD DATA a bit, even if no other thread is using the table at the same time.
With row-based replication, CONCURRENT is replicated regardless of MySQL version. With statement-based replication CONCURRENT is not replicated prior to MySQL 5.5.1 (see Bug #34628). For more information, see Section 16.4.1.16, “Replication and LOAD DATA INFILE”.
The LOCAL keyword affects expected location of the file and error handling, as described later. LOCAL works only if your server and your client both have been configured to permit it. For example, if mysqld was started with --local-infile=0, LOCAL does not work. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”.
The LOCAL keyword affects where the file is expected to be found:
If LOCAL is specified, the file is read by the client program on the client host and sent to the server. The file can be given as a full path name to specify its exact location. If given as a relative path name, the name is interpreted relative to the directory in which the client program was started.
When using LOCAL with LOAD DATA, a copy of the file is created in the server's temporary directory. This is not the directory determined by the value of tmpdir or slave_load_tmpdir, but rather the operating system's temporary directory, and is not configurable in the MySQL Server. (Typically the system temporary directory is /tmp on Linux systems and C:\WINDOWS\TEMP on Windows.) Lack of sufficient space for the copy in this directory can cause the LOAD DATA LOCAL statement to fail.
If LOCAL is not specified, the file must be located on the server host and is read directly by the server. The server uses the following rules to locate the file:
If the file name is an absolute path name, the server uses it as given.
If the file name is a relative path name with one or more leading components, the server searches for the file relative to the server's data directory.
If a file name with no leading components is given, the server looks for the file in the database directory of the default database.
In the non-LOCAL case, these rules mean that a file named as ./myfile.txt is read from the server's data directory, whereas the file named as myfile.txt is read from the database directory of the default database. For example, if db1 is the default database, the following LOAD DATA statement reads the file data.txt from the database directory for db1, even though the statement explicitly loads the file into a table in the db2 database:
LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;
For security reasons, when reading text files located on the server, the files must either reside in the database directory or be readable by all. Also, to use LOAD DATA INFILE on server files, you must have the FILE privilege. See Section 6.2.1, “Privileges Provided by MySQL”. For non-LOCAL load operations, if the secure_file_priv system variable is set to a nonempty directory name, the file to be loaded must be located in that directory.
Using LOCAL is a bit slower than letting the server access the files directly, because the contents of the file must be sent over the connection by the client to the server. On the other hand, you do not need the FILE privilege to load local files.
LOCAL also affects error handling:
With LOAD DATA INFILE, data-interpretation and duplicate-key errors terminate the operation.
With LOAD DATA LOCAL INFILE, data-interpretation and duplicate-key errors become warnings and the operation continues because the server has no way to stop transmission of the file in the middle of the operation. For duplicate-key errors, this is the same as if IGNORE is specified. IGNORE is explained further later in this section.
The REPLACE and IGNORE keywords control handling of input rows that duplicate existing rows on unique key values:
If you specify REPLACE, input rows replace existing rows. In other words, rows that have the same value for a primary key or unique index as an existing row. See Section 13.2.8, “REPLACE Syntax”.
If you specify IGNORE, input rows that duplicate an existing row on a unique key value are skipped.
If you do not specify either option, the behavior depends on whether the LOCAL keyword is specified. Without LOCAL, an error occurs when a duplicate key value is found, and the rest of the text file is ignored. With LOCAL, the default behavior is the same as if IGNORE is specified; this is because the server has no way to stop transmission of the file in the middle of the operation.
To ignore foreign key constraints during the load operation, issue a SET foreign_key_checks = 0 statement before executing LOAD DATA.
If you use LOAD DATA INFILE on an empty MyISAM table, all nonunique indexes are created in a separate batch (as for REPAIR TABLE). Normally, this makes LOAD DATA INFILE much faster when you have many indexes. In some extreme cases, you can create the indexes even faster by turning them off with ALTER TABLE ... DISABLE KEYS before loading the file into the table and using ALTER TABLE ... ENABLE KEYS to re-create the indexes after loading the file. See Section 8.2.2.1, “Speed of INSERT Statements”.
For both the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements, the syntax of the FIELDS and LINES clauses is the same. Both clauses are optional, but FIELDS must precede LINES if both are specified.
If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] ENCLOSED BY, and ESCAPED BY) is also optional, except that you must specify at least one of them.
If you specify no FIELDS or LINES clause, the defaults are the same as if you had written this:
FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'
LINES TERMINATED BY '\n' STARTING BY ''
(Backslash is the MySQL escape character within strings in SQL statements, so to specify a literal backslash, you must specify two backslashes for the value to be interpreted as a single backslash. The escape sequences '\t' and '\n' specify tab and newline characters, respectively.)
In other words, the defaults cause LOAD DATA INFILE to act as follows when reading input:
Look for line boundaries at newlines.
Do not skip over any line prefix.
Break lines into fields at tabs.
Do not expect fields to be enclosed within any quoting characters.
Interpret characters preceded by the escape character “\” as escape sequences. For example, “\t”, “\n”, and “\\” signify tab, newline, and backslash, respectively. See the discussion of FIELDS ESCAPED BY later for the full list of escape sequences.
Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing output:
Write tabs between fields.
Do not enclose fields within any quoting characters.
Use “\” to escape instances of tab, newline, or “\” that occur within field values.
Write newlines at the ends of lines.
Note
If you have generated the text file on a Windows system, you might have to use LINES TERMINATED BY '\r\n' to read the file properly, because Windows programs typically use two characters as a line terminator. Some programs, such as WordPad, might use \r as a line terminator when writing files. To read such files, use LINES TERMINATED BY '\r'.
If all the lines you want to read in have a common prefix that you want to ignore, you can use LINES STARTING BY 'prefix_string' to skip over the prefix, and anything before it. If a line does not include the prefix, the entire line is skipped. Suppose that you issue the following statement:
LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test
FIELDS TERMINATED BY ',' LINES STARTING BY 'xxx';
If the data file looks like this:
xxx"abc",1
something xxx"def",2
"ghi",3
The resulting rows will be ("abc",1) and ("def",2). The third row in the file is skipped because it does not contain the prefix.
The IGNORE number LINES option can be used to ignore lines at the start of the file. For example, you can use IGNORE 1 LINES to skip over an initial header line containing column names:
LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;
When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA INFILE to write data from a database into a file and then read the file back into the database later, the field- and line-handling options for both statements must match. Otherwise, LOAD DATA INFILE will not interpret the contents of the file properly. Suppose that you use SELECT ... INTO OUTFILE to write a file with fields delimited by commas:
SELECT * INTO OUTFILE 'data.txt'
FIELDS TERMINATED BY ','
FROM table2;
To read the comma-delimited file back in, the correct statement would be:
LOAD DATA INFILE 'data.txt' INTO TABLE table2
FIELDS TERMINATED BY ',';
If instead you tried to read in the file with the statement shown following, it wouldn't work because it instructs LOAD DATA INFILE to look for tabs between fields:
LOAD DATA INFILE 'data.txt' INTO TABLE table2
FIELDS TERMINATED BY '\t';
The likely result is that each input line would be interpreted as a single field.
LOAD DATA INFILE can be used to read files obtained from external sources. For example, many programs can export data in comma-separated values (CSV) format, such that lines have fields separated by commas and enclosed within double quotation marks, with an initial line of column names. If the lines in such a file are terminated by carriage return/newline pairs, the statement shown here illustrates the field- and line-handling options you would use to load the file:
LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' ENCLOSED BY '"'
LINES TERMINATED BY '\r\n'
IGNORE 1 LINES;
If the input values are not necessarily enclosed within quotation marks, use OPTIONALLY before the ENCLOSED BY keywords.
Any of the field- or line-handling options can specify an empty string (''). If not empty, the FIELDS [OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single character. The FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMINATED BY values can be more than one character. For example, to write lines that are terminated by carriage return/linefeed pairs, or to read a file containing such lines, specify a LINES TERMINATED BY '\r\n' clause.
To read a file containing jokes that are separated by lines consisting of %%, you can do this
CREATE TABLE jokes
(a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
joke TEXT NOT NULL);
LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
FIELDS TERMINATED BY ''
LINES TERMINATED BY '\n%%\n' (joke);
FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ... INTO OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY character. An example of such output (using a comma as the field delimiter) is shown here:
"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"
"4","a string containing a \", quote and comma","102.20"
If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose values from columns that have a string data type (such as CHAR, BINARY, TEXT, or ENUM):
1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20
Note that occurrences of the ENCLOSED BY character within a field value are escaped by prefixing them with the ESCAPED BY character. Also note that if you specify an empty ESCAPED BY value, it is possible to inadvertently generate output that cannot be read properly by LOAD DATA INFILE. For example, the preceding output just shown would appear as follows if the escape character is empty. Observe that the second field in the fourth line contains a comma following the quote, which (erroneously) appears to terminate the field:
1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20
For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is true regardless of whether OPTIONALLY is specified; OPTIONALLY has no effect on input interpretation.) Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character are interpreted as part of the current field value.
If the field begins with the ENCLOSED BY character, instances of that character are recognized as terminating a field value only if followed by the field or line TERMINATED BY sequence. To avoid ambiguity, occurrences of the ENCLOSED BY character within a field value can be doubled and are interpreted as a single instance of the character. For example, if ENCLOSED BY '"' is specified, quotation marks are handled as shown here:
"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss
The ""BIG"" boss -> The ""BIG"" boss
FIELDS ESCAPED BY controls how to read or write special characters:
For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are stripped and the following character is taken literally as part of a field value. Some two-character sequences that are exceptions, where the first character is the escape character. These sequences are shown in the following table (using “\” for the escape character). The rules for NULL handling are described later in this section.
Character | Escape Sequence |
---|---|
\0 | An ASCII NUL (0x00) character |
\b | A backspace character |
\n | A newline (linefeed) character |
\r | A carriage return character |
\t | A tab character. |
\Z | ASCII 26 (Control+Z) |
\N | NULL |
For more information about “\”-escape syntax, see Section 9.1.1, “String Literals”.
If the FIELDS ESCAPED BY character is empty, escape-sequence interpretation does not occur.
For output, if the FIELDS ESCAPED BY character is not empty, it is used to prefix the following characters on output:
The FIELDS ESCAPED BY character
The FIELDS [OPTIONALLY] ENCLOSED BY character
The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values
ASCII 0 (what is actually written following the escape character is ASCII “0”, not a zero-valued byte)
If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field values in your data contain any of the characters in the list just given.
In certain cases, field- and line-handling options interact:
If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is nonempty, lines are also terminated with FIELDS TERMINATED BY.
If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''), a fixed-row (nondelimited) format is used. With fixed-row format, no delimiters are used between fields (but you can still have a line terminator). Instead, column values are read and written using a field width wide enough to hold all values in the field. For TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT, the field widths are 4, 6, 8, 11, and 20, respectively, no matter what the declared display width is.
LINES TERMINATED BY is still used to separate lines. If a line does not contain all fields, the rest of the columns are set to their default values. If you do not have a line terminator, you should set this to ''. In this case, the text file must contain all fields for each row.
Fixed-row format also affects handling of NULL values, as described later. Note that fixed-size format does not work if you are using a multi-byte character set.
Handling of NULL values varies according to the FIELDS and LINES options in use:
For the default FIELDS and LINES values, NULL is written as a field value of \N for output, and a field value of \N is read as NULL for input (assuming that the ESCAPED BY character is “\”).
If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value is read as a NULL value. This differs from the word NULL enclosed within FIELDS ENCLOSED BY characters, which is read as the string 'NULL'.
If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.
With fixed-row format (which is used when FIELDS TERMINATED BY and FIELDS ENCLOSED BY are both empty), NULL is written as an empty string. Note that this causes both NULL values and empty strings in the table to be indistinguishable when written to the file because both are written as empty strings. If you need to be able to tell the two apart when reading the file back in, you should not use fixed-row format.
An attempt to load NULL into a NOT NULL column causes assignment of the implicit default value for the column's data type and a warning, or an error in strict SQL mode. Implicit default values are discussed in Section 11.5, “Data Type Default Values”.
Some cases are not supported by LOAD DATA INFILE:
Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and BLOB or TEXT columns.
If you specify one separator that is the same as or a prefix of another, LOAD DATA INFILE cannot interpret the input properly. For example, the following FIELDS clause would cause problems:
FIELDS TERMINATED BY '"' ENCLOSED BY '"'
If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS ENCLOSED BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value causes LOAD DATA INFILE to stop reading a field or line too early. This happens because LOAD DATA INFILE cannot properly determine where the field or line value ends.
The following example loads all columns of the persondata table:
LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;
By default, when no column list is provided at the end of the LOAD DATA INFILE statement, input lines are expected to contain a field for each table column. If you want to load only some of a table's columns, specify a column list:
LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata (col1,col2,...);
You must also specify a column list if the order of the fields in the input file differs from the order of the columns in the table. Otherwise, MySQL cannot tell how to match input fields with table columns.
The column list can contain either column names or user variables. With user variables, the SET clause enables you to perform transformations on their values before assigning the result to columns.
User variables in the SET clause can be used in several ways. The following example uses the first input column directly for the value of t1.column1, and assigns the second input column to a user variable that is subjected to a division operation before being used for the value of t1.column2:
LOAD DATA INFILE 'file.txt'
INTO TABLE t1
(column1, @var1)
SET column2 = @var1/100;
The SET clause can be used to supply values not derived from the input file. The following statement sets column3 to the current date and time:
LOAD DATA INFILE 'file.txt'
INTO TABLE t1
(column1, column2)
SET column3 = CURRENT_TIMESTAMP;
You can also discard an input value by assigning it to a user variable and not assigning the variable to a table column:
LOAD DATA INFILE 'file.txt'
INTO TABLE t1
(column1, @dummy, column2, @dummy, column3);
Use of the column/variable list and SET clause is subject to the following restrictions:
Assignments in the SET clause should have only column names on the left hand side of assignment operators.
You can use subqueries in the right hand side of SET assignments. A subquery that returns a value to be assigned to a column may be a scalar subquery only. Also, you cannot use a subquery to select from the table that is being loaded.
Lines ignored by an IGNORE clause are not processed for the column/variable list or SET clause.
User variables cannot be used when loading data with fixed-row format because user variables do not have a display width.
When processing an input line, LOAD DATA splits it into fields and uses the values according to the column/variable list and the SET clause, if they are present. Then the resulting row is inserted into the table. If there are BEFORE INSERT or AFTER INSERT triggers for the table, they are activated before or after inserting the row, respectively.
If an input line has too many fields, the extra fields are ignored and the number of warnings is incremented.
If an input line has too few fields, the table columns for which input fields are missing are set to their default values. Default value assignment is described in Section 11.5, “Data Type Default Values”.
An empty field value is interpreted different from a missing field:
For string types, the column is set to the empty string.
For numeric types, the column is set to 0.
For date and time types, the column is set to the appropriate “zero” value for the type. See Section 11.3, “Date and Time Types”.
These are the same values that result if you assign an empty string explicitly to a string, numeric, or date or time type explicitly in an INSERT or UPDATE statement.
Treatment of empty or incorrect field values differs from that just described if the SQL mode is set to a restrictive value. For example, if sql_mode='TRADITIONAL, conversion of an empty value or a value such as 'x' for a numeric column results in an error, not conversion to 0. (With LOCAL, warnings occur rather than errors, even with a restrictive sql_mode value, because the server has no way to stop transmission of the file in the middle of the operation.)
TIMESTAMP columns are set to the current date and time only if there is a NULL value for the column (that is, \N) and the column is not declared to permit NULL values, or if the TIMESTAMP column's default value is the current timestamp and it is omitted from the field list when a field list is specified.
LOAD DATA INFILE regards all input as strings, so you cannot use numeric values for ENUM or SET columns the way you can with INSERT statements. All ENUM and SET values must be specified as strings.
BIT values cannot be loaded using binary notation (for example, b'011010'). To work around this, specify the values as regular integers and use the SET clause to convert them so that MySQL performs a numeric type conversion and loads them into the BIT column properly:
shell> cat /tmp/bit_test.txt
2
127
shell> mysql test
mysql> LOAD DATA INFILE '/tmp/bit_test.txt'
-> INTO TABLE bit_test (@var1) SET b = CAST(@var1 AS UNSIGNED);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
mysql> SELECT BIN(b+0) FROM bit_test;
+----------+
| bin(b+0) |
+----------+
| 10 |
| 1111111 |
+----------+
2 rows in set (0.00 sec)
On Unix, if you need LOAD DATA to read from a pipe, you can use the following technique (the example loads a listing of the / directory into the table db1.t1):
mkfifo /mysql/data/db1/ls.dat
chmod 666 /mysql/data/db1/ls.dat
find / -ls > /mysql/data/db1/ls.dat &
mysql -e "LOAD DATA INFILE 'ls.dat' INTO TABLE t1" db1
Note that you must run the command that generates the data to be loaded and the mysql commands either on separate terminals, or run the data generation process in the background (as shown in the preceding example). If you do not do this, the pipe will block until data is read by the mysql process.
When the LOAD DATA INFILE statement finishes, it returns an information string in the following format:
Records: 1 Deleted: 0 Skipped: 0 Warnings: 0
Warnings occur under the same circumstances as when values are inserted using the INSERT statement (see Section 13.2.5, “INSERT Syntax”), except that LOAD DATA INFILE also generates warnings when there are too few or too many fields in the input row.
You can use SHOW WARNINGS to get a list of the first max_error_count warnings as information about what went wrong. See Section 13.7.5.41, “SHOW WARNINGS Syntax”.
If you are using the C API, you can get information about the statement by calling the mysql_info() function. See Section 21.8.6.35, “mysql_info()”.
13.2.7. LOAD XML Syntax
LOAD XML [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
[REPLACE | IGNORE]
INTO TABLE [db_name.]tbl_name
[PARTITION (partition_name,...)]
[CHARACTER SET charset_name]
[ROWS IDENTIFIED BY '<tagname>']
[IGNORE number {LINES | ROWS}]
[(column_or_user_var,...)]
[SET col_name = expr,...]
The LOAD XML statement reads data from an XML file into a table. The file_name must be given as a literal string. The tagname in the optional ROWS IDENTIFIED BY clause must also be given as a literal string, and must be surrounded by angle brackets (< and >).
LOAD XML acts as the complement of running the mysql client in XML output mode (that is, starting the client with the --xml option). To write data from a table to an XML file, use a command such as the following one from the system shell:
shell> mysql --xml -e 'SELECT * FROM mytable' > file.xml
To read the file back into a table, use LOAD XML INFILE. By default, the <row> element is considered to be the equivalent of a database table row; this can be changed using the ROWS IDENTIFIED BY clause.
This statement supports three different XML formats:
Column names as attributes and column values as attribute values:
<row column1="value1" column2="value2" .../>
Column names as tags and column values as the content of these tags:
<row>
<column1>value1</column1>
<column2>value2</column2>
</row>
Column names are the name attributes of <field> tags, and values are the contents of these tags:
<row>
<field name='column1'>value1</field>
<field name='column2'>value2</field>
</row>
This is the format used by other MySQL tools, such as mysqldump.
All 3 formats can be used in the same XML file; the import routine automatically detects the format for each row and interprets it correctly. Tags are matched based on the tag or attribute name and the column name.
The following clauses work essentially the same way for LOAD XML as they do for LOAD DATA:
LOW_PRIORITY or CONCURRENT
LOCAL
REPLACE or IGNORE
PARTITION
CHARACTER SET
(column_or_user_var,...)
SET
See Section 13.2.6, “LOAD DATA INFILE Syntax”, for more information about these clauses.
The IGNORE number LINES or IGNORE number ROWS clause causes the first number rows in the XML file to be skipped. It is analogous to the LOAD DATA statement's IGNORE ... LINES clause.
To illustrate how this statement is used, suppose that we have a table created as follows:
USE test;
CREATE TABLE person (
person_id INT NOT NULL PRIMARY KEY,
fname VARCHAR(40) NULL,
lname VARCHAR(40) NULL,
created TIMESTAMP
);
Suppose further that this table is initially empty.
Now suppose that we have a simple XML file person.xml, whose contents are as shown here:
<?xml version="1.0"?>
<list>
<person person_id="1" fname="Pekka" lname="Nousiainen"/>
<person person_id="2" fname="Jonas" lname="Oreland"/>
<person person_id="3"><fname>Mikael</fname><lname>Ronström</lname></person>
<person person_id="4"><fname>Lars</fname><lname>Thalmann</lname></person>
<person><field name="person_id">5</field><field name="fname">Tomas</field>
<field name="lname">Ulin</field></person>
<person><field name="person_id">6</field><field name="fname">Martin</field>
<field name="lname">Sköld</field></person>
</list>
Each of the permissible XML formats discussed previously is represented in this example file.
To import the data in person.xml into the person table, you can use this statement:
mysql> LOAD XML LOCAL INFILE 'person.xml'
-> INTO TABLE person
-> ROWS IDENTIFIED BY '<person>';
Query OK, 6 rows affected (0.00 sec)
Records: 6 Deleted: 0 Skipped: 0 Warnings: 0
Here, we assume that person.xml is located in the MySQL data directory. If the file cannot be found, the following error results:
ERROR 2 (HY000): File '/person.xml' not found (Errcode: 2)
The ROWS IDENTIFIED BY '<person>' clause means that each <person> element in the XML file is considered equivalent to a row in the table into which the data is to be imported. In this case, this is the person table in the test database.
As can be seen by the response from the server, 6 rows were imported into the test.person table. This can be verified by a simple SELECT statement:
mysql> SELECT * FROM person;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
| 1 | Pekka | Nousiainen | 2007-07-13 16:18:47 |
| 2 | Jonas | Oreland | 2007-07-13 16:18:47 |
| 3 | Mikael | Ronström | 2007-07-13 16:18:47 |
| 4 | Lars | Thalmann | 2007-07-13 16:18:47 |
| 5 | Tomas | Ulin | 2007-07-13 16:18:47 |
| 6 | Martin | Sköld | 2007-07-13 16:18:47 |
+-----------+--------+------------+---------------------+
6 rows in set (0.00 sec)
This shows, as stated earlier in this section, that any or all of the 3 permitted XML formats may appear in a single file and be read in using LOAD XML.
The inverse of the above operation—that is, dumping MySQL table data into an XML file—can be accomplished using the mysql client from the system shell, as shown here:
Note
The --xml option causes the mysql client to use XML formatting for its output; the -e option causes the client to execute the SQL statement immediately following the option.
shell> mysql --xml -e "SELECT * FROM test.person" > person-dump.xml
shell> cat person-dump.xml
<?xml version="1.0"?>
<resultset statement="SELECT * FROM test.person" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<row>
<field name="person_id">1</field>
<field name="fname">Pekka</field>
<field name="lname">Nousiainen</field>
<field name="created">2007-07-13 16:18:47</field>
</row>
<row>
<field name="person_id">2</field>
<field name="fname">Jonas</field>
<field name="lname">Oreland</field>
<field name="created">2007-07-13 16:18:47</field>
</row>
<row>
<field name="person_id">3</field>
<field name="fname">Mikael</field>
<field name="lname">Ronström</field>
<field name="created">2007-07-13 16:18:47</field>
</row>
<row>
<field name="person_id">4</field>
<field name="fname">Lars</field>
<field name="lname">Thalmann</field>
<field name="created">2007-07-13 16:18:47</field>
</row>
<row>
<field name="person_id">5</field>
<field name="fname">Tomas</field>
<field name="lname">Ulin</field>
<field name="created">2007-07-13 16:18:47</field>
</row>
<row>
<field name="person_id">6</field>
<field name="fname">Martin</field>
<field name="lname">Sköld</field>
<field name="created">2007-07-13 16:18:47</field>
</row>
</resultset>
You can verify that the dump is valid by creating a copy of the person and then importing the dump file into the new table, like this:
mysql> USE test;
mysql> CREATE TABLE person2 LIKE person;
Query OK, 0 rows affected (0.00 sec)
mysql> LOAD XML LOCAL INFILE 'person-dump.xml'
-> INTO TABLE person2;
Query OK, 6 rows affected (0.01 sec)
Records: 6 Deleted: 0 Skipped: 0 Warnings: 0
mysql> SELECT * FROM person2;
+-----------+--------+------------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+------------+---------------------+
| 1 | Pekka | Nousiainen | 2007-07-13 16:18:47 |
| 2 | Jonas | Oreland | 2007-07-13 16:18:47 |
| 3 | Mikael | Ronström | 2007-07-13 16:18:47 |
| 4 | Lars | Thalmann | 2007-07-13 16:18:47 |
| 5 | Tomas | Ulin | 2007-07-13 16:18:47 |
| 6 | Martin | Sköld | 2007-07-13 16:18:47 |
+-----------+--------+------------+---------------------+
6 rows in set (0.00 sec)
Using a ROWS IDENTIFIED BY '<tagname>' clause, it is possible to import data from the same XML file into database tables with different definitions. For this example, suppose that you have a file named address.xml which contains the following XML:
<?xml version="1.0"?>
<list>
<person person_id="1">
<fname>Robert</fname>
<lname>Jones</lname>
<address address_id="1" street="Mill Creek Road" zip="45365" city="Sidney"/>
<address address_id="2" street="Main Street" zip="28681" city="Taylorsville"/>
</person>
<person person_id="2">
<fname>Mary</fname>
<lname>Smith</lname>
<address address_id="3" street="River Road" zip="80239" city="Denver"/>
<!-- <address address_id="4" street="North Street" zip="37920" city="Knoxville"/> -->
</person>
</list>
You can again use the test.person table as defined previously in this section, after clearing all the existing records from the table and then showing its structure as shown here:
mysql< TRUNCATE person;
Query OK, 0 rows affected (0.04 sec)
mysql< SHOW CREATE TABLE person\G
*************************** 1. row ***************************
Table: person
Create Table: CREATE TABLE `person` (
`person_id` int(11) NOT NULL,
`fname` varchar(40) DEFAULT NULL,
`lname` varchar(40) DEFAULT NULL,
`created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`person_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
Now create an address table in the test database using the following CREATE TABLE statement:
CREATE TABLE address (
address_id INT NOT NULL PRIMARY KEY,
person_id INT NULL,
street VARCHAR(40) NULL,
zip INT NULL,
city VARCHAR(40) NULL,
created TIMESTAMP
);
To import the data from the XML file into the person table, execute the following LOAD XML statement, which specifies that rows are to be specified by the <person> element, as shown here;
mysql> LOAD XML LOCAL INFILE 'address.xml'
-> INTO TABLE person
-> ROWS IDENTIFIED BY '<person>';
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
You can verify that the records were imported using a SELECT statement:
mysql> SELECT * FROM person;
+-----------+--------+-------+---------------------+
| person_id | fname | lname | created |
+-----------+--------+-------+---------------------+
| 1 | Robert | Jones | 2007-07-24 17:37:06 |
| 2 | Mary | Smith | 2007-07-24 17:37:06 |
+-----------+--------+-------+---------------------+
2 rows in set (0.00 sec)
Since the <address> elements in the XML file have no corresponding columns in the person table, they are skipped.
To import the data from the <address> elements into the address table, use the LOAD XML statement shown here:
mysql> LOAD XML LOCAL INFILE 'address.xml'
-> INTO TABLE address
-> ROWS IDENTIFIED BY '<address>';
Query OK, 3 rows affected (0.00 sec)
Records: 3 Deleted: 0 Skipped: 0 Warnings: 0
You can see that the data was imported using a SELECT statement such as this one:
mysql> SELECT * FROM address;
+------------+-----------+-----------------+-------+--------------+---------------------+
| address_id | person_id | street | zip | city | created |
+------------+-----------+-----------------+-------+--------------+---------------------+
| 1 | 1 | Mill Creek Road | 45365 | Sidney | 2007-07-24 17:37:37 |
| 2 | 1 | Main Street | 28681 | Taylorsville | 2007-07-24 17:37:37 |
| 3 | 2 | River Road | 80239 | Denver | 2007-07-24 17:37:37 |
+------------+-----------+-----------------+-------+--------------+---------------------+
3 rows in set (0.00 sec)
The data from the <address> element that is enclosed in XML comments is not imported. However, since there is a person_id column in the address table, the value of the person_id attribute from the parent <person> element for each <address> is imported into the address table.
Security Considerations. As with the LOAD DATA statement, the transfer of the XML file from the client host to the server host is initiated by the MySQL server. In theory, a patched server could be built that would tell the client program to transfer a file of the server's choosing rather than the file named by the client in the LOAD XML statement. Such a server could access any file on the client host to which the client user has read access.
In a Web environment, clients usually connect to MySQL from a Web server. A user that can run any command against the MySQL server can use LOAD XML LOCAL to read any files to which the Web server process has read access. In this environment, the client with respect to the MySQL server is actually the Web server, not the remote program being run by the user who connects to the Web server.
You can disable loading of XML files from clients by starting the server with --local-infile=0 or --local-infile=OFF. This option can also be used when starting the mysql client to disable LOAD XML for the duration of the client session.
To prevent a client from loading XML files from the server, do not grant the FILE privilege to the corresponding MySQL user account, or revoke this privilege if the client user account already has it.
Important
Revoking the FILE privilege (or not granting it in the first place) keeps the user only from executing the LOAD XML INFILE statement (as well as the LOAD_FILE() function; it does not prevent the user from executing LOAD XML LOCAL INFILE. To disallow this statement, you must start the server or the client with --local-infile=OFF.
In other words, the FILE privilege affects only whether the client can read files on the server; it has no bearing on whether the client can read files on the local file system.
For partitioned tables using storage engines that employ table locks, such as MyISAM, LOAD XML cannot prune any partition locks. This does not apply to tables using storage engines which employ row-level locking, such as InnoDB. For more information, see Section 17.6.4, “Partitioning and Locking”.
13.2.8. REPLACE Syntax
REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name
[PARTITION (partition_name,...)]
[(col_name,...)]
{VALUES | VALUE} ({expr | DEFAULT},...),(...),...
Or:
REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name
[PARTITION (partition_name,...)]
SET col_name={expr | DEFAULT}, ...
Or:
REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name
[PARTITION (partition_name,...)]
[(col_name,...)]
SELECT ...
REPLACE works exactly like INSERT, except that if an old row in the table has the same value as a new row for a PRIMARY KEY or a UNIQUE index, the old row is deleted before the new row is inserted. See Section 13.2.5, “INSERT Syntax”.
REPLACE is a MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For another MySQL extension to standard SQL—that either inserts or updates—see Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.
Note that unless the table has a PRIMARY KEY or UNIQUE index, using a REPLACE statement makes no sense. It becomes equivalent to INSERT, because there is no index to be used to determine whether a new row duplicates another.
Values for all columns are taken from the values specified in the REPLACE statement. Any missing columns are set to their default values, just as happens for INSERT. You cannot refer to values from the current row and use them in the new row. If you use an assignment such as SET col_name = col_name + 1, the reference to the column name on the right hand side is treated as DEFAULT(col_name), so the assignment is equivalent to SET col_name = DEFAULT(col_name) + 1.
To use REPLACE, you must have both the INSERT and DELETE privileges for the table.
Beginning with MySQL 5.6.2, REPLACE supports explicit partition selection using the PARTITION option with a comma-separated list of names of partitions, subpartitions, or both. As with INSERT, if it is not possible to insert the new row into any of these partitions or subpartitions, the REPLACE statement fails with the error Found a row not matching the given partition set. See Section 17.5, “Partition Selection”, for more information.
The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of the rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was inserted and no rows were deleted. If the count is greater than 1, one or more old rows were deleted before the new row was inserted. It is possible for a single row to replace more than one old row if the table contains multiple unique indexes and the new row duplicates values for different old rows in different unique indexes.
The affected-rows count makes it easy to determine whether REPLACE only added a row or whether it also replaced any rows: Check whether the count is 1 (added) or greater (replaced).
If you are using the C API, the affected-rows count can be obtained using the mysql_affected_rows() function.
Currently, you cannot replace into a table and select from the same table in a subquery.
MySQL uses the following algorithm for REPLACE (and LOAD DATA ... REPLACE):
Try to insert the new row into the table
While the insertion fails because a duplicate-key error occurs for a primary key or unique index:
Delete from the table the conflicting row that has the duplicate key value
Try again to insert the new row into the table
It is possible that in the case of a duplicate-key error, a storage engine may perform the REPLACE as an update rather than a delete plus insert, but the semantics are the same. There are no user-visible effects other than a possible difference in how the storage engine increments Handler_xxx status variables.
Because the results of REPLACE ... SELECT statements depend on the ordering of rows from the SELECT and this order cannot always be guaranteed, it is possible when logging these statements for the master and the slave to diverge. For this reason, in MySQL 5.6.4 and later, REPLACE ... SELECT statements are flagged as unsafe for statement-based replication. With this change, such statements produce a warning in the log when using the STATEMENT binary logging mode, and are logged using the row-based format when using MIXED mode. See also Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.
Prior to MySQL 5.6.6, a REPLACE that affected a partitioned table using a storage engine such as MyISAM that employs table-level locks locked all partitions of the table. This was true even for REPLACE ... PARTITION statements. (This did not and does not occur with storage engines such as InnoDB that employ row-level locking.) In MySQL 5.6.6 and later, MySQL uses partition lock pruning, so that only partitions containing rows matching the REPLACE statement's WHERE clause are actually locked, as long as none of the table's partitioning columns are updated; otherwise the entire table is locked. For more information, see Section 17.6.4, “Partitioning and Locking”.
13.2.9. SELECT Syntax
SELECT
[ALL | DISTINCT | DISTINCTROW]
[HIGH_PRIORITY]
[STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
[SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
select_expr [, select_expr ...]
[FROM table_references
[PARTITION partition_list]
[WHERE where_condition]
[GROUP BY {col_name | expr | position}
[ASC | DESC], ... [WITH ROLLUP]]
[HAVING where_condition]
[ORDER BY {col_name | expr | position}
[ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]
[PROCEDURE procedure_name(argument_list)]
[INTO OUTFILE 'file_name'
[CHARACTER SET charset_name]
export_options
| INTO DUMPFILE 'file_name'
| INTO var_name [, var_name]]
[FOR UPDATE | LOCK IN SHARE MODE]]
SELECT is used to retrieve rows selected from one or more tables, and can include UNION statements and subqueries. See Section 13.2.9.4, “UNION Syntax”, and Section 13.2.10, “Subquery Syntax”.
The most commonly used clauses of SELECT statements are these:
Each select_expr indicates a column that you want to retrieve. There must be at least one select_expr.
table_references indicates the table or tables from which to retrieve rows. Its syntax is described in Section 13.2.9.2, “JOIN Syntax”.
Starting in MySQL 5.6.2, SELECT supports explicit partition selection using the PARTITION keyword with a list of partitions or subpartitions (or both) following the name of the table in a table_reference (see Section 13.2.9.2, “JOIN Syntax”). In this case, rows are selected only from the partitions listed, and any other partitions of the table are ignored. For more information and examples, see Section 17.5, “Partition Selection”.
In MySQL 5.6.6 and later, SELECT ... PARTITION from tables using storage engines such as MyISAM that perform table-level locks (and thus partition locks) lock only the partitions or subpartitions named by the PARTITION option.
See Section 17.6.4, “Partitioning and Locking”, for more information.
The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be selected. where_condition is an expression that evaluates to true for each row to be selected. The statement selects all rows if there is no WHERE clause.
In the WHERE expression, you can use any of the functions and operators that MySQL supports, except for aggregate (summary) functions. See Section 9.5, “Expression Syntax”, and Chapter 12, Functions and Operators.
SELECT can also be used to retrieve rows computed without reference to any table.
For example:
mysql> SELECT 1 + 1;
-> 2
You are permitted to specify DUAL as a dummy table name in situations where no tables are referenced:
mysql> SELECT 1 + 1 FROM DUAL;
-> 2
DUAL is purely for the convenience of people who require that all SELECT statements should have FROM and possibly other clauses. MySQL may ignore the clauses. MySQL does not require FROM DUAL if no tables are referenced.
In general, clauses used must be given in exactly the order shown in the syntax description. For example, a HAVING clause must come after any GROUP BY clause and before any ORDER BY clause. The exception is that the INTO clause can appear either as shown in the syntax description or immediately following the select_expr list. For more information about INTO, see Section 13.2.9.1, “SELECT ... INTO Syntax”.
The list of select_expr terms comprises the select list that indicates which columns to retrieve. Terms specify a column or expression or can use *-shorthand:
A select list consisting only of a single unqualified * can be used as shorthand to select all columns from all tables:
SELECT * FROM t1 INNER JOIN t2 ...
tbl_name.* can be used as a qualified shorthand to select all columns from the named table:
SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ...
Use of an unqualified * with other items in the select list may produce a parse error. To avoid this problem, use a qualified tbl_name.* reference
SELECT AVG(score), t1.* FROM t1 ...
The following list provides additional information about other SELECT clauses:
A select_expr can be given an alias using AS alias_name. The alias is used as the expression's column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For example:
SELECT CONCAT(last_name,', ',first_name) AS full_name
FROM mytable ORDER BY full_name;
The AS keyword is optional when aliasing a select_expr with an identifier. The preceding example could have been written like this:
SELECT CONCAT(last_name,', ',first_name) full_name
FROM mytable ORDER BY full_name;
However, because the AS is optional, a subtle problem can occur if you forget the comma between two select_expr expressions: MySQL interprets the second as an alias name. For example, in the following statement, columnb is treated as an alias name:
SELECT columna columnb FROM mytable;
For this reason, it is good practice to be in the habit of using AS explicitly when specifying column aliases.
It is not permissible to refer to a column alias in a WHERE clause, because the column value might not yet be determined when the WHERE clause is executed. See Section C.5.5.4, “Problems with Column Aliases”.
The FROM table_references clause indicates the table or tables from which to retrieve rows. If you name more than one table, you are performing a join. For information on join syntax, see Section 13.2.9.2, “JOIN Syntax”. For each table specified, you can optionally specify an alias.
tbl_name [[AS] alias] [index_hint]
The use of index hints provides the optimizer with information about how to choose indexes during query processing. For a description of the syntax for specifying these hints, see Section 13.2.9.3, “Index Hint Syntax”.
You can use SET max_seeks_for_key=value as an alternative way to force MySQL to prefer key scans instead of table scans. See Section 5.1.4, “Server System Variables”.
You can refer to a table within the default database as tbl_name, or as db_name.tbl_name to specify a database explicitly. You can refer to a column as col_name, tbl_name.col_name, or db_name.tbl_name.col_name. You need not specify a tbl_name or db_name.tbl_name prefix for a column reference unless the reference would be ambiguous. See Section 9.2.1, “Identifier Qualifiers”, for examples of ambiguity that require the more explicit column reference forms.
A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:
SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
WHERE t1.name = t2.name;
SELECT t1.name, t2.salary FROM employee t1, info t2
WHERE t1.name = t2.name;
Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using column names, column aliases, or column positions. Column positions are integers and begin with 1:
SELECT college, region, seed FROM tournament
ORDER BY region, seed;
SELECT college, region AS r, seed AS s FROM tournament
ORDER BY r, s;
SELECT college, region, seed FROM tournament
ORDER BY 2, 3;
To sort in reverse order, add the DESC (descending) keyword to the name of the column in the ORDER BY clause that you are sorting by. The default is ascending order; this can be specified explicitly using the ASC keyword.
If ORDER BY occurs within a subquery and also is applied in the outer query, the outermost ORDER BY takes precedence. For example, results for the following statement are sorted in descending order, not ascending order:
(SELECT ... ORDER BY a) ORDER BY a DESC;
Use of column positions is deprecated because the syntax has been removed from the SQL standard.
If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you had an ORDER BY for the same columns. To avoid the overhead of sorting that GROUP BY produces, add ORDER BY NULL:
SELECT a, COUNT(b) FROM test_table GROUP BY a ORDER BY NULL;
Relying on implicit GROUP BY sorting in MySQL 5.6 is deprecated. To achieve a specific sort order of grouped results, it is preferable to use an explicit ORDER BY clause. GROUP BY sorting is a MySQL extension that may change in a future release; for example, to make it possible for the optimizer to order groupings in whatever manner it deems most efficient and to avoid the sorting overhead.
MySQL extends the GROUP BY clause so that you can also specify ASC and DESC after columns named in the clause:
SELECT a, COUNT(b) FROM test_table GROUP BY a DESC;
MySQL extends the use of GROUP BY to permit selecting fields that are not mentioned in the GROUP BY clause. If you are not getting the results that you expect from your query, please read the description of GROUP BY found in Section 12.17, “Functions and Modifiers for Use with GROUP BY Clauses”.
GROUP BY permits a WITH ROLLUP modifier. See Section 12.17.2, “GROUP BY Modifiers”.
The HAVING clause is applied nearly last, just before items are sent to the client, with no optimization. (LIMIT is applied after HAVING.)
The SQL standard requires that HAVING must reference only columns in the GROUP BY clause or columns used in aggregate functions. However, MySQL supports an extension to this behavior, and permits HAVING to refer to columns in the SELECT list and columns in outer subqueries as well.
If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following statement, col2 is ambiguous because it is used as both an alias and a column name:
SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;
Preference is given to standard SQL behavior, so if a HAVING column name is used both in GROUP BY and as an aliased column in the output column list, preference is given to the column in the GROUP BY column.
Do not use HAVING for items that should be in the WHERE clause. For example, do not write the following:
SELECT col_name FROM tbl_name HAVING col_name > 0;
Write this instead:
SELECT col_name FROM tbl_name WHERE col_name > 0;
The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:
SELECT user, MAX(salary) FROM users
GROUP BY user HAVING MAX(salary) > 10;
(This did not work in some older versions of MySQL.)
MySQL permits duplicate column names. That is, there can be more than one select_expr with the same name. This is an extension to standard SQL. Because MySQL also permits GROUP BY and HAVING to refer to select_expr values, this can result in an ambiguity:
SELECT 12 AS a, a FROM t GROUP BY a;
In that statement, both columns have the name a. To ensure that the correct column is used for grouping, use different names for each select_expr.
MySQL resolves unqualified column or alias references in ORDER BY clauses by searching in the select_expr values, then in the columns of the tables in the FROM clause. For GROUP BY or HAVING clauses, it searches the FROM clause before searching in the select_expr values. (For GROUP BY and HAVING, this differs from the pre-MySQL 5.0 behavior that used the same rules as for ORDER BY.)
The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement. LIMIT takes one or two numeric arguments, which must both be nonnegative integer constants, with these exceptions:
Within prepared statements, LIMIT parameters can be specified using ? placeholder markers.
Within stored programs, LIMIT parameters can be specified using integer-valued routine parameters or local variables.
With two arguments, the first argument specifies the offset of the first row to return, and the second specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):
SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15
To retrieve all rows from a certain offset up to the end of the result set, you can use some large number for the second parameter. This statement retrieves all rows from the 96th row to the last:
SELECT * FROM tbl LIMIT 95,18446744073709551615;
With one argument, the value specifies the number of rows to return from the beginning of the result set:
SELECT * FROM tbl LIMIT 5; # Retrieve first 5 rows
In other words, LIMIT row_count is equivalent to LIMIT 0, row_count.
For prepared statements, you can use placeholders. The following statements will return one row from the tbl table:
SET @a=1;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?';
EXECUTE STMT USING @a;
The following statements will return the second to sixth row from the tbl table:
SET @skip=1; SET @numrows=5;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?';
EXECUTE STMT USING @skip, @numrows;
For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET offset syntax.
If LIMIT occurs within a subquery and also is applied in the outer query, the outermost LIMIT takes precedence. For example, the following statement produces two rows, not one:
(SELECT ... LIMIT 1) LIMIT 2;
A PROCEDURE clause names a procedure that should process the data in the result set. For an example, see Section 8.4.2.4, “Using PROCEDURE ANALYSE”, which describes ANALYSE, a procedure that can be used to obtain suggestions for optimal column data types that may help reduce table sizes.
The SELECT ... INTO form of SELECT enables the query result to be written to a file or stored in variables. For more information, see Section 13.2.9.1, “SELECT ... INTO Syntax”.
If you use FOR UPDATE with a storage engine that uses page or row locks, rows examined by the query are write-locked until the end of the current transaction. Using LOCK IN SHARE MODE sets a shared lock that permits other transactions to read the examined rows but not to update or delete them. See Section 14.2.3.4, “Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)”.
In addition, you cannot use FOR UPDATE as part of the SELECT in a statement such as CREATE TABLE new_table SELECT ... FROM old_table (If you attempt to do so, the statement is rejected with the error Can't update table 'old_table' while 'new_table' is being created.) This is a change in behavior from MySQL 5.5 and earlier, which permitted CREATE TABLE ... SELECT statements to make changes in tables other than the table being created.
Following the SELECT keyword, you can use a number of options that affect the operation of the statement. HIGH_PRIORITY, STRAIGHT_JOIN, and options beginning with SQL_ are MySQL extensions to standard SQL.
The ALL and DISTINCT options specify whether duplicate rows should be returned. ALL (the default) specifies that all matching rows should be returned, including duplicates. DISTINCT specifies removal of duplicate rows from the result set. It is an error to specify both options. DISTINCTROW is a synonym for DISTINCT.
HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table. You should use this only for queries that are very fast and must be done at once. A SELECT HIGH_PRIORITY query that is issued while the table is locked for reading runs even if there is an update statement waiting for the table to be free. This affects only storage engines that use only table-level locking (such as MyISAM, MEMORY, and MERGE).
HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.
STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in the FROM clause. You can use this to speed up a query if the optimizer joins the tables in nonoptimal order. STRAIGHT_JOIN also can be used in the table_references list. See Section 13.2.9.2, “JOIN Syntax”.
STRAIGHT_JOIN does not apply to any table that the optimizer treats as a const or system table. Such a table produces a single row, is read during the optimization phase of query execution, and references to its columns are replaced with the appropriate column values before query execution proceeds. These tables will appear first in the query plan displayed by EXPLAIN. See Section 8.8.1, “Optimizing Queries with EXPLAIN”. This exception may not apply to const or system tables that are used on the NULL-complemented side of an outer join (that is, the right-side table of a LEFT JOIN or the left-side table of a RIGHT JOIN.
SQL_BIG_RESULT or SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the optimizer that the result set has many rows or is small, respectively. For SQL_BIG_RESULT, MySQL directly uses disk-based temporary tables if needed, and prefers sorting to using a temporary table with a key on the GROUP BY elements. For SQL_SMALL_RESULT, MySQL uses fast temporary tables to store the resulting table instead of using sorting. This should not normally be needed.
SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL free the table locks early and helps in cases where it takes a long time to send the result set to the client. This option can be used only for top-level SELECT statements, not for subqueries or following UNION.
SQL_CALC_FOUND_ROWS tells MySQL to calculate how many rows there would be in the result set, disregarding any LIMIT clause. The number of rows can then be retrieved with SELECT FOUND_ROWS(). See Section 12.14, “Information Functions”.
The SQL_CACHE and SQL_NO_CACHE options affect caching of query results in the query cache (see Section 8.9.3, “The MySQL Query Cache”). SQL_CACHE tells MySQL to store the result in the query cache if it is cacheable and the value of the query_cache_type system variable is 2 or DEMAND. With SQL_NO_CACHE, the server does not use the query cache. It neither checks the query cache to see whether the result is already cached, nor does it cache the query result. (Due to a limitation in the parser, a space character must precede and follow the SQL_NO_CACHE keyword; a nonspace such as a newline causes the server to check the query cache to see whether the result is already cached.)
For views, SQL_NO_CACHE applies if it appears in any SELECT in the query. For a cacheable query, SQL_CACHE applies if it appears in the first SELECT of a view referred to by the query.
In MySQL 5.6, these two options are mutually exclusive and an error occurs if they are both specified. Also, these options are not permitted in subqueries (including subqueries in the FROM clause), and SELECT statements in unions other than the first SELECT.
Prior to MySQL 5.6.6, a SELECT from a partitioned table using a storage engine such as MyISAM that employs table-level locks locked all partitions of the table. This was true even for SELECT ... PARTITION queries. (This did not and does not occur with storage engines such as InnoDB that employ row-level locking.) In MySQL 5.6.6 and later, MySQL uses partition lock pruning, so that only partitions containing rows matching the SELECT statement's WHERE clause are actually locked. For more information, see Section 17.6.4, “Partitioning and Locking”.
13.2.9.1. SELECT ... INTO Syntax
The SELECT ... INTO form of SELECT enables a query result to be stored in variables or written to a file:
SELECT ... INTO var_list selects column values and into variables.
SELECT ... INTO OUTFILE writes the selected rows to a file. Column and line terminators can be specified to produce a specific output format.
SELECT ... INTO DUMPFILE writes a single row to a file without any formatting.
The SELECT syntax description (see Section 13.2.9, “SELECT Syntax”) shows the INTO clause near the end of the statement. It is also possible to use INTO immediately following the select_expr list.
An INTO clause should not be used in a nested SELECT because such a SELECT must return its result to the outer context.
The INTO clause can name a list of one or more variables, which can be user-defined variables, stored procedure or function parameters, or stored program local variables. (Within a prepared SELECT ... INTO OUTFILE statement, only user-defined variables are permitted;see Section 13.6.4.2, “Local Variable Scope and Resolution”.)
The selected values are assigned to the variables. The number of variables must match the number of columns. The query should return a single row. If the query returns no rows, a warning with error code 1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple rows, error 1172 occurs (Result consisted of more than one row). If it is possible that the statement may retrieve multiple rows, you can use LIMIT 1 to limit the result set to a single row.
SELECT id, data INTO @x, @y FROM test.t1 LIMIT 1;
User variable names are not case sensitive. See Section 9.4, “User-Defined Variables”.
The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected rows to a file. The file is created on the server host, so you must have the FILE privilege to use this syntax. file_name cannot be an existing file, which among other things prevents files such as /etc/passwd and database tables from being destroyed. The character_set_filesystem system variable controls the interpretation of the file name.
The SELECT ... INTO OUTFILE statement is intended primarily to let you very quickly dump a table to a text file on the server machine. If you want to create the resulting file on some other host than the server host, you normally cannot use SELECT ... INTO OUTFILE since there is no way to write a path to the file relative to the server host's file system.
However, if the MySQL client software is installed on the remote machine, you can instead use a client command such as mysql -e "SELECT ..." > file_name to generate the file on the client host.
It is also possible to create the resulting file on a different host other than the server host, if the location of the file on the remote host can be accessed using a network-mapped path on the server's file system. In this case, the presence of mysql (or some other MySQL client program) is not required on the target host.
SELECT ... INTO OUTFILE is the complement of LOAD DATA INFILE. Column values are written converted to the character set specified in the CHARACTER SET clause. If no such clause is present, values are dumped using the binary character set. In effect, there is no character set conversion. If a result set contains columns in several character sets, the output data file will as well and you may not be able to reload the file correctly.
The syntax for the export_options part of the statement consists of the same FIELDS and LINES clauses that are used with the LOAD DATA INFILE statement. See Section 13.2.6, “LOAD DATA INFILE Syntax”, for information about the FIELDS and LINES clauses, including their default values and permissible values.
FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY character is not empty, it is used when necessary to avoid ambiguity as a prefix that precedes following characters on output:
The FIELDS ESCAPED BY character
The FIELDS [OPTIONALLY] ENCLOSED BY character
The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values
ASCII NUL (the zero-valued byte; what is actually written following the escape character is ASCII “0”, not a zero-valued byte)
The FIELDS TERMINATED BY, ENCLOSED BY, ESCAPED BY, or LINES TERMINATED BY characters must be escaped so that you can read the file back in reliably. ASCII NUL is escaped to make it easier to view with some pagers.
The resulting file does not have to conform to SQL syntax, so nothing else need be escaped.
If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field values in your data contain any of the characters in the list just given.
Here is an example that produces a file in the comma-separated values (CSV) format used by many programs:
SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY '\n'
FROM test_table;
If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the file, without any column or line termination and without performing any escape processing. This is useful if you want to store a BLOB value in a file.
Note
Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users on the server host. The reason for this is that the MySQL server cannot create a file that is owned by anyone other than the user under whose account it is running. (You should never run mysqld as root for this and other reasons.) The file thus must be world-writable so that you can manipulate its contents.
If the secure_file_priv system variable is set to a nonempty directory name, the file to be written must be located in that directory.
In the context of SELECT ... INTO statements that occur as part of events executed by the Event Scheduler, diagnostics messages (not only errors, but also warnings) are written to the error log, and, on Windows, to the application event log. For additional information, see Section 18.4.5, “Event Scheduler Status”.
13.2.9.2. JOIN Syntax
MySQL supports the following JOIN syntaxes for the table_references part of SELECT statements and multiple-table DELETE and UPDATE statements:
table_references:
escaped_table_reference [, escaped_table_reference] ...
escaped_table_reference:
table_reference
| { OJ table_reference }
table_reference:
table_factor
| join_table
table_factor:
tbl_name [PARTITION (partition_names)]
[[AS] alias] [index_hint_list]
| table_subquery [AS] alias
| (table_references)
join_table:
table_reference [INNER | CROSS] JOIN table_factor [join_condition]
| table_reference STRAIGHT_JOIN table_factor
| table_reference STRAIGHT_JOIN table_factor ON conditional_expr
| table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_condition
| table_reference NATURAL [{LEFT|RIGHT} [OUTER]] JOIN table_factor
join_condition:
ON conditional_expr
| USING (column_list)
index_hint_list:
index_hint [, index_hint] ...
index_hint:
USE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
| IGNORE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
| FORCE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
index_list:
index_name [, index_name] ...
A table reference is also known as a join expression.
In MySQL 5.6.2 and later, a table reference (when it refers to a partitioned table) may contain a PARTITION option, including a comma-separated list of partitions, subpartitions, or both. This option follows the name of the table and precedes any alias declaration. The effect of this option is that rows are selected only from the listed partitions or subpartitions—in other words, any partitions or subpartitions not named in the list are ignored For more information, see Section 17.5, “Partition Selection”.
The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts only table_reference, not a list of them inside a pair of parentheses.
This is a conservative extension if we consider each comma in a list of table_reference items as equivalent to an inner join. For example:
SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)
is equivalent to:
SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)
In MySQL, JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents (they can replace each other). In standard SQL, they are not equivalent. INNER JOIN is used with an ON clause, CROSS JOIN is used otherwise.
In general, parentheses can be ignored in join expressions containing only inner join operations. MySQL also supports nested joins (see Section 8.13.9, “Nested Join Optimization”).
Index hints can be specified to affect how the MySQL optimizer makes use of indexes. For more information, see Section 13.2.9.3, “Index Hint Syntax”.
The following list describes general factors to take into account when writing joins.
A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:
SELECT t1.name, t2.salary
FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name;
SELECT t1.name, t2.salary
FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;
A table_subquery is also known as a subquery in the FROM clause. Such subqueries must include an alias to give the subquery result a table name. A trivial example follows; see also Section 13.2.10.8, “Subqueries in the FROM Clause”.
SELECT * FROM (SELECT 1, 2, 3) AS t1;
INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition: both produce a Cartesian product between the specified tables (that is, each and every row in the first table is joined to each and every row in the second table).
However, the precedence of the comma operator is less than of INNER JOIN, CROSS JOIN, LEFT JOIN, and so on. If you mix comma joins with the other join types when there is a join condition, an error of the form Unknown column 'col_name' in 'on clause' may occur. Information about dealing with this problem is given later in this section.
The conditional_expr used with ON is any conditional expression of the form that can be used in a WHERE clause. Generally, you should use the ON clause for conditions that specify how to join tables, and the WHERE clause to restrict which rows you want in the result set.
If there is no matching row for the right table in the ON or USING part in a LEFT JOIN, a row with all columns set to NULL is used for the right table. You can use this fact to find rows in a table that have no counterpart in another table:
SELECT left_tbl.*
FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id
WHERE right_tbl.id IS NULL;
This example finds all rows in left_tbl with an id value that is not present in right_tbl (that is, all rows in left_tbl with no corresponding row in right_tbl). This assumes that right_tbl.id is declared NOT NULL. See Section 8.13.7, “LEFT JOIN and RIGHT JOIN Optimization”.
The USING(column_list) clause names a list of columns that must exist in both tables. If tables a and b both contain columns c1, c2, and c3, the following join compares corresponding columns from the two tables:
a LEFT JOIN b USING (c1,c2,c3)
The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an INNER JOIN or a LEFT JOIN with a USING clause that names all columns that exist in both tables.
RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it is recommended that you use LEFT JOIN instead of RIGHT JOIN.
The { OJ ... } syntax shown in the join syntax description exists only for compatibility with ODBC. The curly braces in the syntax should be written literally; they are not metasyntax as used elsewhere in syntax descriptions.
SELECT left_tbl.*
FROM { OJ left_tbl LEFT OUTER JOIN right_tbl ON left_tbl.id = right_tbl.id }
WHERE right_tbl.id IS NULL;
You can use other types of joins within { OJ ... }, such as INNER JOIN or RIGHT OUTER JOIN. This helps with compatibility with some third-party applications, but is not official ODBC syntax.
STRAIGHT_JOIN is similar to JOIN, except that the left table is always read before the right table. This can be used for those (few) cases for which the join optimizer puts the tables in the wrong order.
Some join examples:
SELECT * FROM table1, table2;
SELECT * FROM table1 INNER JOIN table2 ON table1.id=table2.id;
SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id;
SELECT * FROM table1 LEFT JOIN table2 USING (id);
SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id
LEFT JOIN table3 ON table2.id=table3.id;
Join Processing Changes in MySQL 5.0.12
Note
Natural joins and joins with USING, including outer join variants, are processed according to the SQL:2003 standard. The goal was to align the syntax and semantics of MySQL with respect to NATURAL JOIN and JOIN ... USING according to SQL:2003. However, these changes in join processing can result in different output columns for some joins. Also, some queries that appeared to work correctly in older versions (prior to 5.0.12) must be rewritten to comply with the standard.
These changes have five main aspects:
The way that MySQL determines the result columns of NATURAL or USING join operations (and thus the result of the entire FROM clause).
Expansion of SELECT * and SELECT tbl_name.* into a list of selected columns.
Resolution of column names in NATURAL or USING joins.
Transformation of NATURAL or USING joins into JOIN ... ON.
Resolution of column names in the ON condition of a JOIN ... ON.
The following list provides more detail about several effects of current join processing versus join processing in older versions. The term “previously” means “prior to MySQL 5.0.12.”
The columns of a NATURAL join or a USING join may be different from previously. Specifically, redundant output columns no longer appear, and the order of columns for SELECT * expansion may be different from before.
Consider this set of statements:
CREATE TABLE t1 (i INT, j INT);
CREATE TABLE t2 (k INT, j INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
SELECT * FROM t1 NATURAL JOIN t2;
SELECT * FROM t1 JOIN t2 USING (j);
Previously, the statements produced this output:
+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+
+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+
In the first SELECT statement, column j appears in both tables and thus becomes a join column, so, according to standard SQL, it should appear only once in the output, not twice. Similarly, in the second SELECT statement, column j is named in the USING clause and should appear only once in the output, not twice. But in both cases, the redundant column is not eliminated. Also, the order of the columns is not correct according to standard SQL.
Now the statements produce this output:
+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+
+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+
The redundant column is eliminated and the column order is correct according to standard SQL:
First, coalesced common columns of the two joined tables, in the order in which they occur in the first table
Second, columns unique to the first table, in order in which they occur in that table
Third, columns unique to the second table, in order in which they occur in that table
The single result column that replaces two common columns is defined using the coalesce operation. That is, for two t1.a and t2.a the resulting single join column a is defined as a = COALESCE(t1.a, t2.a), where:
COALESCE(x, y) = (CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END)
If the join operation is any other join, the result columns of the join consists of the concatenation of all columns of the joined tables. This is the same as previously.
A consequence of the definition of coalesced columns is that, for outer joins, the coalesced column contains the value of the non-NULL column if one of the two columns is always NULL. If neither or both columns are NULL, both common columns have the same value, so it doesn't matter which one is chosen as the value of the coalesced column. A simple way to interpret this is to consider that a coalesced column of an outer join is represented by the common column of the inner table of a JOIN. Suppose that the tables t1(a,b) and t2(a,c) have the following contents:
t1 t2
---- ----
1 x 2 z
2 y 3 w
Then:
mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a | b | c |
+------+------+------+
| 1 | x | NULL |
| 2 | y | z |
+------+------+------+
Here column a contains the values of t1.a.
mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a | c | b |
+------+------+------+
| 2 | z | y |
| 3 | w | NULL |
+------+------+------+
Here column a contains the values of t2.a.
Compare these results to the otherwise equivalent queries with JOIN ... ON:
mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 1 | x | NULL | NULL |
| 2 | y | 2 | z |
+------+------+------+------+
mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 2 | y | 2 | z |
| NULL | NULL | 3 | w |
+------+------+------+------+
Previously, a USING clause could be rewritten as an ON clause that compares corresponding columns. For example, the following two clauses were semantically identical:
a LEFT JOIN b USING (c1,c2,c3)
a LEFT JOIN b ON a.c1=b.c1 AND a.c2=b.c2 AND a.c3=b.c3
Now the two clauses no longer are quite the same:
With respect to determining which rows satisfy the join condition, both joins remain semantically identical.
With respect to determining which columns to display for SELECT * expansion, the two joins are not semantically identical. The USING join selects the coalesced value of corresponding columns, whereas the ON join selects all columns from all tables. For the preceding USING join, SELECT * selects these values:
COALESCE(a.c1,b.c1), COALESCE(a.c2,b.c2), COALESCE(a.c3,b.c3)
For the ON join, SELECT * selects these values:
a.c1, a.c2, a.c3, b.c1, b.c2, b.c3
With an inner join, COALESCE(a.c1,b.c1) is the same as either a.c1 or b.c1 because both columns will have the same value. With an outer join (such as LEFT JOIN), one of the two columns can be NULL. That column will be omitted from the result.
The evaluation of multi-way natural joins differs in a very important way that affects the result of NATURAL or USING joins and that can require query rewriting. Suppose that you have three tables t1(a,b), t2(c,b), and t3(a,c) that each have one row: t1(1,2), t2(10,2), and t3(7,10). Suppose also that you have this NATURAL JOIN on the three tables:
SELECT ... FROM t1 NATURAL JOIN t2 NATURAL JOIN t3;
Previously, the left operand of the second join was considered to be t2, whereas it should be the nested join (t1 NATURAL JOIN t2). As a result, the columns of t3 are checked for common columns only in t2, and, if t3 has common columns with t1, these columns are not used as equi-join columns. Thus, previously, the preceding query was transformed to the following equi-join:
SELECT ... FROM t1, t2, t3
WHERE t1.b = t2.b AND t2.c = t3.c;
That join is missing one more equi-join predicate (t1.a = t3.a). As a result, it produces one row, not the empty result that it should. The correct equivalent query is this:
SELECT ... FROM t1, t2, t3
WHERE t1.b = t2.b AND t2.c = t3.c AND t1.a = t3.a;
If you require the same query result in current versions of MySQL as in older versions, rewrite the natural join as the first equi-join.
Previously, the comma operator (,) and JOIN both had the same precedence, so the join expression t1, t2 JOIN t3 was interpreted as ((t1, t2) JOIN t3). Now JOIN has higher precedence, so the expression is interpreted as (t1, (t2 JOIN t3)). This change affects statements that use an ON clause, because that clause can refer only to columns in the operands of the join, and the change in precedence changes interpretation of what those operands are.
Example:
CREATE TABLE t1 (i1 INT, j1 INT);
CREATE TABLE t2 (i2 INT, j2 INT);
CREATE TABLE t3 (i3 INT, j3 INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
INSERT INTO t3 VALUES(1,1);
SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);
Previously, the SELECT was legal due to the implicit grouping of t1,t2 as (t1,t2). Now the JOIN takes precedence, so the operands for the ON clause are t2 and t3. Because t1.i1 is not a column in either of the operands, the result is an Unknown column 't1.i1' in 'on clause' error. To allow the join to be processed, group the first two tables explicitly with parentheses so that the operands for the ON clause are (t1,t2) and t3:
SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);
Alternatively, avoid the use of the comma operator and use JOIN instead:
SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);
This change also applies to statements that mix the comma operator with INNER JOIN, CROSS JOIN, LEFT JOIN, and RIGHT JOIN, all of which now have higher precedence than the comma operator.
Previously, the ON clause could refer to columns in tables named to its right. Now an ON clause can refer only to its operands.
Example:
CREATE TABLE t1 (i1 INT);
CREATE TABLE t2 (i2 INT);
CREATE TABLE t3 (i3 INT);
SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;
Previously, the SELECT statement was legal. Now the statement fails with an Unknown column 'i3' in 'on clause' error because i3 is a column in t3, which is not an operand of the ON clause. The statement should be rewritten as follows:
SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);
Resolution of column names in NATURAL or USING joins is different than previously. For column names that are outside the FROM clause, MySQL now handles a superset of the queries compared to previously. That is, in cases when MySQL formerly issued an error that some column is ambiguous, the query now is handled correctly. This is due to the fact that MySQL now treats the common columns of NATURAL or USING joins as a single column, so when a query refers to such columns, the query compiler does not consider them as ambiguous.
Example:
SELECT * FROM t1 NATURAL JOIN t2 WHERE b > 1;
Previously, this query would produce an error ERROR 1052 (23000): Column 'b' in where clause is ambiguous. Now the query produces the correct result:
+------+------+------+
| b | c | y |
+------+------+------+
| 4 | 2 | 3 |
+------+------+------+
One extension of MySQL compared to the SQL:2003 standard is that MySQL enables you to qualify the common (coalesced) columns of NATURAL or USING joins (just as previously), while the standard disallows that.
13.2.9.3. Index Hint Syntax
You can provide hints to give the optimizer information about how to choose indexes during query processing. Section 13.2.9.2, “JOIN Syntax”, describes the general syntax for specifying tables in a SELECT statement. The syntax for an individual table, including that for index hints, looks like this:
tbl_name [[AS] alias] [index_hint_list]
index_hint_list:
index_hint [, index_hint] ...
index_hint:
USE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] ([index_list])
| IGNORE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
| FORCE {INDEX|KEY}
[FOR {JOIN|ORDER BY|GROUP BY}] (index_list)
index_list:
index_name [, index_name] ...
By specifying USE INDEX (index_list), you can tell MySQL to use only one of the named indexes to find rows in the table. The alternative syntax IGNORE INDEX (index_list) can be used to tell MySQL to not use some particular index or indexes. These hints are useful if EXPLAIN shows that MySQL is using the wrong index from the list of possible indexes.
You can also use FORCE INDEX, which acts like USE INDEX (index_list) but with the addition that a table scan is assumed to be very expensive. In other words, a table scan is used only if there is no way to use one of the given indexes to find rows in the table.
Each hint requires the names of indexes, not the names of columns. The name of a PRIMARY KEY is PRIMARY. To see the index names for a table, use SHOW INDEX.
An index_name value need not be a full index name. It can be an unambiguous prefix of an index name. If a prefix is ambiguous, an error occurs.
Examples:
SELECT * FROM table1 USE INDEX (col1_index,col2_index)
WHERE col1=1 AND col2=2 AND col3=3;
SELECT * FROM table1 IGNORE INDEX (col3_index)
WHERE col1=1 AND col2=2 AND col3=3;
The syntax for index hints has the following characteristics:
It is syntactically valid to specify an empty index_list for USE INDEX, which means “use no indexes.” Specifying an empty index_list for FORCE INDEX or IGNORE INDEX is a syntax error.
You can specify the scope of a index hint by adding a FOR clause to the hint. This provides more fine-grained control over the optimizer's selection of an execution plan for various phases of query processing. To affect only the indexes used when MySQL decides how to find rows in the table and how to process joins, use FOR JOIN. To influence index usage for sorting or grouping rows, use FOR ORDER BY or FOR GROUP BY. (However, if there is a covering index for the table and it is used to access the table, the optimizer will ignore IGNORE INDEX FOR {ORDER BY|GROUP BY} hints that disable that index.)
You can specify multiple index hints:
SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX FOR ORDER BY (i2) ORDER BY a;
It is not a error to name the same index in several hints (even within the same hint):
SELECT * FROM t1 USE INDEX (i1) USE INDEX (i1,i1);
However, it is an error to mix USE INDEX and FORCE INDEX for the same table:
SELECT * FROM t1 USE INDEX FOR JOIN (i1) FORCE INDEX FOR JOIN (i2);
if you specify no FOR clause for an index hint, the hint by default applies to all parts of the statement. For example, this hint:
IGNORE INDEX (i1)
is equivalent to this combination of hints:
IGNORE INDEX FOR JOIN (i1)
IGNORE INDEX FOR ORDER BY (i1)
IGNORE INDEX FOR GROUP BY (i1)
To cause the server to use the older behavior for hint scope when no FOR clause is present (so that hints apply only to row retrieval), enable the old system variable at server startup. Take care about enabling this variable in a replication setup. With statement-based binary logging, having different modes for the master and slaves might lead to replication errors.
When index hints are processed, they are collected in a single list by type (USE, FORCE, IGNORE) and by scope (FOR JOIN, FOR ORDER BY, FOR GROUP BY). For example:
SELECT * FROM t1
USE INDEX () IGNORE INDEX (i2) USE INDEX (i1) USE INDEX (i2);
is equivalent to:
SELECT * FROM t1
USE INDEX (i1,i2) IGNORE INDEX (i2);
The index hints then are applied for each scope in the following order:
{USE|FORCE} INDEX is applied if present. (If not, the optimizer-determined set of indexes is used.)
IGNORE INDEX is applied over the result of the previous step. For example, the following two queries are equivalent:
SELECT * FROM t1 USE INDEX (i1) IGNORE INDEX (i2) USE INDEX (i2);
SELECT * FROM t1 USE INDEX (i1);
For FULLTEXT searches, index hints work as follows:
For natural language mode searches, index hints are silently ignored. For example, IGNORE INDEX(i) is ignored with no warning and the index is still used.
For boolean mode searches, index hints with FOR ORDER BY or FOR GROUP BY are silently ignored. Index hints with FOR JOIN or no FOR modifier are honored. In contrast to how hints apply for non-FULLTEXT searches, the hint is used for all phases of query execution (finding rows and retrieval, grouping, and ordering). This is true even if the hint is given for a non-FULLTEXT index.
For example, the following two queries are equivalent:
SELECT * FROM t
USE INDEX (index1)
IGNORE INDEX (index1) FOR ORDER BY
IGNORE INDEX (index1) FOR GROUP BY
WHERE ... IN BOOLEAN MODE ... ;
SELECT * FROM t
USE INDEX (index1)
WHERE ... IN BOOLEAN MODE ... ;
13.2.9.4. UNION Syntax
SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]
UNION is used to combine the result from multiple SELECT statements into a single result set.
The column names from the first SELECT statement are used as the column names for the results returned. Selected columns listed in corresponding positions of each SELECT statement should have the same data type. (For example, the first column selected by the first statement should have the same type as the first column selected by the other statements.)
If the data types of corresponding SELECT columns do not match, the types and lengths of the columns in the UNION result take into account the values retrieved by all of the SELECT statements. For example, consider the following:
mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',10);
+---------------+
| REPEAT('a',1) |
+---------------+
| a |
| bbbbbbbbbb |
+---------------+
The SELECT statements are normal select statements, but with the following restrictions:
Only the last SELECT statement can use INTO OUTFILE. (However, the entire UNION result is written to the file.)
HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION. If you specify it for the first SELECT, it has no effect. If you specify it for any subsequent SELECT statements, a syntax error results.
The default behavior for UNION is that duplicate rows are removed from the result. The optional DISTINCT keyword has no effect other than the default because it also specifies duplicate-row removal. With the optional ALL keyword, duplicate-row removal does not occur and the result includes all matching rows from all the SELECT statements.
You can mix UNION ALL and UNION DISTINCT in the same query. Mixed UNION types are treated such that a DISTINCT union overrides any ALL union to its left. A DISTINCT union can be produced explicitly by using UNION DISTINCT or implicitly by using UNION with no following DISTINCT or ALL keyword.
To apply ORDER BY or LIMIT to an individual SELECT, place the clause inside the parentheses that enclose the SELECT:
(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);
However, use of ORDER BY for individual SELECT statements implies nothing about the order in which the rows appear in the final result because UNION by default produces an unordered set of rows. Therefore, the use of ORDER BY in this context is typically in conjunction with LIMIT, so that it is used to determine the subset of the selected rows to retrieve for the SELECT, even though it does not necessarily affect the order of those rows in the final UNION result. If ORDER BY appears without LIMIT in a SELECT, it is optimized away because it will have no effect anyway.
To use an ORDER BY or LIMIT clause to sort or limit the entire UNION result, parenthesize the individual SELECT statements and place the ORDER BY or LIMIT after the last one. The following example uses both clauses:
(SELECT a FROM t1 WHERE a=10 AND B=1)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2)
ORDER BY a LIMIT 10;
A statement without parentheses is equivalent to one parenthesized as just shown.
This kind of ORDER BY cannot use column references that include a table name (that is, names in tbl_name.col_name format). Instead, provide a column alias in the first SELECT statement and refer to the alias in the ORDER BY. (Alternatively, refer to the column in the ORDER BY using its column position. However, use of column positions is deprecated.)
Also, if a column to be sorted is aliased, the ORDER BY clause must refer to the alias, not the column name. The first of the following statements will work, but the second will fail with an Unknown column 'a' in 'order clause' error:
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b;
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;
To cause rows in a UNION result to consist of the sets of rows retrieved by each SELECT one after the other, select an additional column in each SELECT to use as a sort column and add an ORDER BY following the last SELECT:
(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;
To additionally maintain sort order within individual SELECT results, add a secondary column to the ORDER BY clause:
(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;
Use of an additional column also enables you to determine which SELECT each row comes from. Extra columns can provide other identifying information as well, such as a string that indicates a table name.
13.2.10. Subquery Syntax
A subquery is a SELECT statement within another statement.
Starting with MySQL 4.1, all subquery forms and operations that the SQL standard requires are supported, as well as a few features that are MySQL-specific.
Here is an example of a subquery:
SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);
In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT column1 FROM t2) is the subquery. We say that the subquery is nested within the outer query, and in fact it is possible to nest subqueries within other subqueries, to a considerable depth. A subquery must always appear within parentheses.
The main advantages of subqueries are:
They allow queries that are structured so that it is possible to isolate each part of a statement.
They provide alternative ways to perform operations that would otherwise require complex joins and unions.
Many people find subqueries more readable than complex joins or unions. Indeed, it was the innovation of subqueries that gave people the original idea of calling the early SQL “Structured Query Language.”
Here is an example statement that shows the major points about subquery syntax as specified by the SQL standard and supported in MySQL:
DELETE FROM t1
WHERE s11 > ANY
(SELECT COUNT(*) /* no hint */ FROM t2
WHERE NOT EXISTS
(SELECT * FROM t3
WHERE ROW(5*t2.s1,77)=
(SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
(SELECT * FROM t5) AS t5)));
A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more rows of one or more columns). These are called scalar, column, row, and table subqueries. Subqueries that return a particular kind of result often can be used only in certain contexts, as described in the following sections.
There are few restrictions on the type of statements in which subqueries can be used. A subquery can contain many of the keywords or clauses that an ordinary SELECT can contain: DISTINCT, GROUP BY, ORDER BY, LIMIT, joins, index hints, UNION constructs, comments, functions, and so on.
A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET, or DO.
In MySQL, you cannot modify a table and select from the same table in a subquery. This applies to statements such as DELETE, INSERT, REPLACE, UPDATE, and (because subqueries can be used in the SET clause) LOAD DATA INFILE.
For information about how the optimizer handles subqueries, see Section 8.13.16, “Subquery Optimization”. For a discussion of restrictions on subquery use, including performance issues for certain forms of subquery syntax, see Section E.4, “Restrictions on Subqueries”.
13.2.10.1. The Subquery as Scalar Operand
In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is a simple operand, and you can use it almost anywhere a single column value or literal is legal, and you can expect it to have those characteristics that all operands have: a data type, a length, an indication that it can be NULL, and so on. For example:
CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');
SELECT (SELECT s2 FROM t1);
The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a length of 5, a character set and collation equal to the defaults in effect at CREATE TABLE time, and an indication that the value in the column can be NULL. Nullability of the value selected by a scalar subquery is not copied because if the subquery result is empty, the result is NULL. For the subquery just shown, if t1 were empty, the result would be NULL even though s2 is NOT NULL.
There are a few contexts in which a scalar subquery cannot be used. If a statement permits only a literal value, you cannot use a subquery. For example, LIMIT requires literal integer arguments, and LOAD DATA INFILE requires a literal string file name. You cannot use subqueries to supply these values.
When you see examples in the following sections that contain the rather spartan construct (SELECT column1 FROM t1), imagine that your own code contains much more diverse and complex constructions.
Suppose that we make two tables:
CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);
Then perform a SELECT:
SELECT (SELECT s1 FROM t2) FROM t1;
The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.
A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is an operand that provides an argument for a function. For example:
SELECT UPPER((SELECT s1 FROM t1)) FROM t2;
13.2.10.2. Comparisons Using Subqueries
The most common use of a subquery is in the form:
non_subquery_operand comparison_operator (subquery)
Where comparison_operator is one of these operators:
= > < >= <= <> != <=>
For example:
... WHERE 'a' = (SELECT column1 FROM t1)
MySQL also permits this construct:
non_subquery_operand LIKE (subquery)
At one time the only legal place for a subquery was on the right side of a comparison, and you might still find some old DBMSs that insist on this.
Here is an example of a common-form subquery comparison that you cannot do with a join. It finds all the rows in table t1 for which the column1 value is equal to a maximum value in table t2:
SELECT * FROM t1
WHERE column1 = (SELECT MAX(column2) FROM t2);
Here is another example, which again is impossible with a join because it involves aggregating for one of the tables. It finds all rows in table t1 containing a value that occurs twice in a given column:
SELECT * FROM t1 AS t
WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);
For a comparison of the subquery to a scalar, the subquery must return a scalar. For a comparison of the subquery to a row constructor, the subquery must be a row subquery that returns a row with the same number of values as the row constructor. See Section 13.2.10.5, “Row Subqueries”.
13.2.10.3. Subqueries with ANY, IN, or SOME
Syntax:
operand comparison_operator ANY (subquery)
operand IN (subquery)
operand comparison_operator SOME (subquery)
Where comparison_operator is one of these operators:
= > < >= <= <> !=
The ANY keyword, which must follow a comparison operator, means “return TRUE if the comparison is TRUE for ANY of the values in the column that the subquery returns.” For example:
SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);
Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains (21,14,7) because there is a value 7 in t2 that is less than 10. The expression is FALSE if table t2 contains (20,10), or if table t2 is empty. The expression is unknown (that is, NULL) if table t2 contains (NULL,NULL,NULL).
When used with a subquery, the word IN is an alias for = ANY. Thus, these two statements are the same:
SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);
IN and = ANY are not synonyms when used with an expression list. IN can take an expression list, but = ANY cannot. See Section 12.3.2, “Comparison Functions and Operators”.
NOT IN is not an alias for <> ANY, but for <> ALL. See Section 13.2.10.4, “Subqueries with ALL”.
The word SOME is an alias for ANY. Thus, these two statements are the same:
SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);
Use of the word SOME is rare, but this example shows why it might be useful. To most people, the English phrase “a is not equal to any b” means “there is no b which is equal to a,” but that is not what is meant by the SQL syntax. The syntax means “there is some b to which a is not equal.” Using <> SOME instead helps ensure that everyone understands the true meaning of the query.
13.2.10.4. Subqueries with ALL
Syntax:
operand comparison_operator ALL (subquery)
The word ALL, which must follow a comparison operator, means “return TRUE if the comparison is TRUE for ALL of the values in the column that the subquery returns.” For example:
SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);
Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains (-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE if table t2 contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is greater than 10. The expression is unknown (that is, NULL) if table t2 contains (0,NULL,1).
Finally, the expression is TRUE if table t2 is empty. So, the following expression is TRUE when table t2 is empty:
SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);
But this expression is NULL when table t2 is empty:
SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);
In addition, the following expression is NULL when table t2 is empty:
SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);
In general, tables containing NULL values and empty tables are “edge cases.” When writing subqueries, always consider whether you have taken those two possibilities into account.
NOT IN is an alias for <> ALL. Thus, these two statements are the same:
SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);
13.2.10.5. Row Subqueries
The discussion to this point has been of scalar or column subqueries; that is, subqueries that return a single value or a column of values. A row subquery is a subquery variant that returns a single row and can thus return more than one column value. Legal operators for row subquery comparisons are:
= > < >= <= <> != <=>
Here are two examples:
SELECT * FROM t1
WHERE (col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
SELECT * FROM t1
WHERE ROW(col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
For both queries, if the table t2 contains a single row with id = 10, the subquery returns a single row. If this row has col3 and col4 values equal to the col1 and col2 values of any rows in t1, the WHERE expression is TRUE and each query returns those t1 rows. If the t2 row col3 and col4 values are not equal the col1 and col2 values of any t1 row, the expression is FALSE and the query returns an empty result set. The expression is unknown (that is, NULL) if the subquery produces no rows. An error occurs if the subquery produces multiple rows because a row subquery can return at most one row.
The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are equivalent. The row constructor and the row returned by the subquery must contain the same number of values.
A row constructor is used for comparisons with subqueries that return two or more columns. When a subquery returns a single column, this is regarded as a scalar value and not as a row, so a row constructor cannot be used with a subquery that does not return at least two columns. Thus, the following query fails with a syntax error:
SELECT * FROM t1 WHERE ROW(1) = (SELECT column1 FROM t2)
Row constructors are legal in other contexts. For example, the following two statements are semantically equivalent (and are handled in the same way by the optimizer):
SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;
The following query answers the request, “find all rows in table t1 that also exist in table t2”:
SELECT column1,column2,column3
FROM t1
WHERE (column1,column2,column3) IN
(SELECT column1,column2,column3 FROM t2);
13.2.10.6. Subqueries with EXISTS or NOT EXISTS
If a subquery returns any rows at all, EXISTS subquery is TRUE, and NOT EXISTS subquery is FALSE. For example:
SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);
Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or SELECT column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it makes no difference.
For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, the EXISTS condition is TRUE. This is actually an unlikely example because a [NOT] EXISTS subquery almost always contains correlations. Here are some more realistic examples:
What kind of store is present in one or more cities?
SELECT DISTINCT store_type FROM stores
WHERE EXISTS (SELECT * FROM cities_stores
WHERE cities_stores.store_type = stores.store_type);
What kind of store is present in no cities?
SELECT DISTINCT store_type FROM stores
WHERE NOT EXISTS (SELECT * FROM cities_stores
WHERE cities_stores.store_type = stores.store_type);
What kind of store is present in all cities?
SELECT DISTINCT store_type FROM stores s1
WHERE NOT EXISTS (
SELECT * FROM cities WHERE NOT EXISTS (
SELECT * FROM cities_stores
WHERE cities_stores.city = cities.city
AND cities_stores.store_type = stores.store_type));
The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause within a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store that is not in Stores”? But it is easier to say that a nested NOT EXISTS answers the question “is x TRUE for all y?”
13.2.10.7. Correlated Subqueries
A correlated subquery is a subquery that contains a reference to a table that also appears in the outer query. For example:
SELECT * FROM t1
WHERE column1 = ANY (SELECT column1 FROM t2
WHERE t2.column2 = t1.column2);
Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM clause does not mention a table t1. So, MySQL looks outside the subquery, and finds t1 in the outer query.
Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table t2 contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE column1 = ANY (SELECT column1 FROM t2) would be TRUE, but in this example, the WHERE clause within the subquery is FALSE (because (5,6) is not equal to (5,7)), so the expression as a whole is FALSE.
Scoping rule: MySQL evaluates from inside to outside. For example:
SELECT column1 FROM t1 AS x
WHERE x.column1 = (SELECT column1 FROM t2 AS x
WHERE x.column1 = (SELECT column1 FROM t3
WHERE x.column2 = t3.column1));
In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2 AS x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ... is an outer query that is farther out.
For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the outer select list.
For certain cases, a correlated subquery is optimized. For example:
val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)
Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve performance.
Aggregate functions in correlated subqueries may contain outer references, provided the function contains nothing but outer references, and provided the function is not contained in another function or expression.
13.2.10.8. Subqueries in the FROM Clause
Subqueries are legal in a SELECT statement's FROM clause. The actual syntax is:
SELECT ... FROM (subquery) [AS] name ...
The [AS] name clause is mandatory, because every table in a FROM clause must have a name. Any columns in the subquery select list must have unique names.
For the sake of illustration, assume that you have this table:
CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);
Here is how to use a subquery in the FROM clause, using the example table:
INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3
FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
WHERE sb1 > 1;
Result: 2, '2', 4.0.
Here is another example: Suppose that you want to know the average of a set of sums for a grouped table. This does not work:
SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;
However, this query provides the desired information:
SELECT AVG(sum_column1)
FROM (SELECT SUM(column1) AS sum_column1
FROM t1 GROUP BY column1) AS t1;
Notice that the column name used within the subquery (sum_column1) is recognized in the outer query.
Subqueries in the FROM clause can return a scalar, column, row, or table. Subqueries in the FROM clause cannot be correlated subqueries, unless used within the ON clause of a JOIN operation.
Before MySQL 5.6.3, subqueries in the FROM clause are executed even for the EXPLAIN statement (that is, derived temporary tables are materialized). This occurs because upper-level queries need information about all tables during the optimization phase, and the table represented by a subquery in the FROM clause is unavailable unless the subquery is executed. As of MySQL 5.6.3, the optimizer determines information about derived tables in a different way and materialization of them does not occur for EXPLAIN. See Section 8.13.16.3, “Optimizing Subqueries in the FROM Clause (Derived Tables)”.
It is possible under certain circumstances to modify table data using EXPLAIN SELECT. This can occur if the outer query accesses any tables and an inner query invokes a stored function that changes one or more rows of a table. Suppose that there are two tables t1 and t2 in database d1, created as shown here:
mysql> CREATE DATABASE d1;
Query OK, 1 row affected (0.00 sec)
mysql> USE d1;
Database changed
mysql> CREATE TABLE t1 (c1 INT);
Query OK, 0 rows affected (0.15 sec)
mysql> CREATE TABLE t2 (c1 INT);
Query OK, 0 rows affected (0.08 sec)
Now we create a stored function f1 which modifies t2:
mysql> DELIMITER //
mysql> CREATE FUNCTION f1(p1 INT) RETURNS INT
mysql> BEGIN
mysql> INSERT INTO t2 VALUES (p1);
mysql> RETURN p1;
mysql> END //
Query OK, 0 rows affected (0.01 sec)
mysql> DELIMITER ;
Referencing the function directly in an EXPLAIN SELECT does not have any effect on t2, as shown here:
mysql> SELECT * FROM t2;
Empty set (0.00 sec)
mysql> EXPLAIN SELECT f1(5);
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | SIMPLE | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set (0.00 sec)
mysql> SELECT * FROM t2;
Empty set (0.00 sec)
This is because the SELECT statement did not reference any tables, as can be seen in the table and Extra columns of the output. This is also true of the following nested SELECT:
mysql> EXPLAIN SELECT NOW() AS a1, (SELECT f1(5)) AS a2;
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | PRIMARY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 1249 | Select 2 was reduced during optimization |
+-------+------+--+
1 row in set (0.00 sec)
mysql> SELECT * FROM t2;
Empty set (0.00 sec)
However, if the outer SELECT references any tables, the optimizer executes the statement in the subquery as well:
mysql> EXPLAIN SELECT * FROM t1 AS a1, (SELECT f1(5)) AS a2;
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
| 1 | PRIMARY | a1 | system | NULL | NULL | NULL | NULL | 0 | const row not found |
| 1 | PRIMARY | <derived2> | system | NULL | NULL | NULL | NULL | 1 | |
| 2 | DERIVED | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
3 rows in set (0.00 sec)
mysql> SELECT * FROM t2;
+------+
| c1 |
+------+
| 5 |
+------+
1 row in set (0.00 sec)
This also means that an EXPLAIN SELECT statement such as the one shown here may take a long time to execute because the BENCHMARK() function is executed once for each row in t1:
EXPLAIN SELECT * FROM t1 AS a1, (SELECT BENCHMARK(1000000, MD5(NOW())));
13.2.10.9. Subquery Errors
There are some errors that apply only to subqueries. This section describes them.
Unsupported subquery syntax:
ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL doesn't yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"
This means that MySQL does not support statements of the following form:
SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)
Incorrect number of columns from subquery:
ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"
This error occurs in cases like this:
SELECT (SELECT column1, column2 FROM t2) FROM t1;
You may use a subquery that returns multiple columns, if the purpose is row comparison. In other contexts, the subquery must be a scalar operand. See Section 13.2.10.5, “Row Subqueries”.
Incorrect number of rows from subquery:
ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"
This error occurs for statements where the subquery must return at most one row but returns multiple rows. Consider the following example:
SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);
If SELECT column1 FROM t2 returns just one row, the previous query will work. If the subquery returns more than one row, error 1242 will occur. In that case, the query should be rewritten as:
SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);
Incorrectly used table in subquery:
Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"
This error occurs in cases such as the following, which attempts to modify a table and select from the same table in the subquery:
UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);
You can use a subquery for assignment within an UPDATE statement because subqueries are legal in UPDATE and DELETE statements as well as in SELECT statements. However, you cannot use the same table (in this case, table t1) for both the subquery FROM clause and the update target.
For transactional storage engines, the failure of a subquery causes the entire statement to fail. For nontransactional storage engines, data modifications made before the error was encountered are preserved.
13.2.10.10. Optimizing Subqueries
Development is ongoing, so no optimization tip is reliable for the long term. The following list provides some interesting tricks that you might want to play with:
Use subquery clauses that affect the number or order of the rows in the subquery. For example:
SELECT * FROM t1 WHERE t1.column1 IN
(SELECT column1 FROM t2 ORDER BY column1);
SELECT * FROM t1 WHERE t1.column1 IN
(SELECT DISTINCT column1 FROM t2);
SELECT * FROM t1 WHERE EXISTS
(SELECT * FROM t2 LIMIT 1);
Replace a join with a subquery. For example, try this:
SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
SELECT column1 FROM t2);
Instead of this:
SELECT DISTINCT t1.column1 FROM t1, t2
WHERE t1.column1 = t2.column1;
Some subqueries can be transformed to joins for compatibility with older versions of MySQL that do not support subqueries. However, in some cases, converting a subquery to a join may improve performance. See Section 13.2.10.11, “Rewriting Subqueries as Joins”.
Move clauses from outside to inside the subquery. For example, use this query:
SELECT * FROM t1
WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);
Instead of this query:
SELECT * FROM t1
WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);
For another example, use this query:
SELECT (SELECT column1 + 5 FROM t1) FROM t2;
Instead of this query:
SELECT (SELECT column1 FROM t1) + 5 FROM t2;
Use a row subquery instead of a correlated subquery. For example, use this query:
SELECT * FROM t1
WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);
Instead of this query:
SELECT * FROM t1
WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
AND t2.column2=t1.column2);
Use NOT (a = ANY (...)) rather than a <> ALL (...).
Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.
Use = ANY rather than EXISTS.
For uncorrelated subqueries that always return one row, IN is always slower than =. For example, use this query:
SELECT * FROM t1
WHERE t1.col_name = (SELECT a FROM t2 WHERE b = some_const);
Instead of this query:
SELECT * FROM t1
WHERE t1.col_name IN (SELECT a FROM t2 WHERE b = some_const);
These tricks might cause programs to go faster or slower. Using MySQL facilities like the BENCHMARK() function, you can get an idea about what helps in your own situation. See Section 12.14, “Information Functions”.
Some optimizations that MySQL itself makes are:
MySQL executes uncorrelated subqueries only once. Use EXPLAIN to make sure that a given subquery really is uncorrelated.
MySQL rewrites IN, ALL, ANY, and SOME subqueries in an attempt to take advantage of the possibility that the select-list columns in the subquery are indexed.
MySQL replaces subqueries of the following form with an index-lookup function, which EXPLAIN describes as a special join type (unique_subquery or index_subquery):
... IN (SELECT indexed_column FROM single_table ...)
MySQL enhances expressions of the following form with an expression involving MIN() or MAX(), unless NULL values or empty sets are involved:
value {ALL|ANY|SOME} {> | < | >= | <=} (uncorrelated subquery)
For example, this WHERE clause:
WHERE 5 > ALL (SELECT x FROM t)
might be treated by the optimizer like this:
WHERE 5 > (SELECT MAX(x) FROM t)
See also MySQL Internals: How MySQL Transforms Subqueries.
13.2.10.11. Rewriting Subqueries as Joins
Sometimes there are other ways to test membership in a set of values than by using a subquery. Also, on some occasions, it is not only possible to rewrite a query without a subquery, but it can be more efficient to make use of some of these techniques rather than to use subqueries. One of these is the IN() construct:
For example, this query:
SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);
Can be rewritten as:
SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;
The queries:
SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);
Can be rewritten as:
SELECT table1.*
FROM table1 LEFT JOIN table2 ON table1.id=table2.id
WHERE table2.id IS NULL;
A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be able to optimize it better—a fact that is not specific to MySQL Server alone. Prior to SQL-92, outer joins did not exist, so subqueries were the only way to do certain things. Today, MySQL Server and many other modern database systems offer a wide range of outer join types.
MySQL Server supports multiple-table DELETE statements that can be used to efficiently delete rows based on information from one table or even from many tables at the same time. Multiple-table UPDATE statements are also supported. See Section 13.2.2, “DELETE Syntax”, and Section 13.2.11, “UPDATE Syntax”.
13.2.11. UPDATE Syntax
Single-table syntax:
UPDATE [LOW_PRIORITY] [IGNORE] table_reference
SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...
[WHERE where_condition]
[ORDER BY ...]
[LIMIT row_count]
Multiple-table syntax:
UPDATE [LOW_PRIORITY] [IGNORE] table_references
SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...
[WHERE where_condition]
For the single-table syntax, the UPDATE statement updates columns of existing rows in the named table with new values. The SET clause indicates which columns to modify and the values they should be given. Each value can be given as an expression, or the keyword DEFAULT to set a column explicitly to its default value. The WHERE clause, if given, specifies the conditions that identify which rows to update. With no WHERE clause, all rows are updated. If the ORDER BY clause is specified, the rows are updated in the order that is specified. The LIMIT clause places a limit on the number of rows that can be updated.
For the multiple-table syntax, UPDATE updates rows in each table named in table_references that satisfy the conditions. In this case, ORDER BY and LIMIT cannot be used.
For partitioned tables, both the single-single and multiple-table forms of this statement support the use of a PARTITION option as part of a table reference. This option takes a list of one or more partitions or subpartitions (or both). Only the partitions (or subpartitions) listed are checked for matches, and a row that is not in any of these partitions or subpartitions is not updated, whether it satisfies the where_condition or not.
Note
Unlike the case when using PARTITION with an INSERT or REPLACE statement, an otherwise valid UPDATE ... PARTITION statement is considered successful even if no rows in the listed partitions (or subpartitions) match the where_condition.
See Section 17.5, “Partition Selection”, for more information and examples.
where_condition is an expression that evaluates to true for each row to be updated. For expression syntax, see Section 9.5, “Expression Syntax”.
table_references and where_condition are is specified as described in Section 13.2.9, “SELECT Syntax”.
You need the UPDATE privilege only for columns referenced in an UPDATE that are actually updated. You need only the SELECT privilege for any columns that are read but not modified.
The UPDATE statement supports the following modifiers:
With the LOW_PRIORITY keyword, execution of the UPDATE is delayed until no other clients are reading from the table. This affects only storage engines that use only table-level locking (such as MyISAM, MEMORY, and MERGE).
With the IGNORE keyword, the update statement does not abort even if errors occur during the update. Rows for which duplicate-key conflicts occur are not updated. Rows for which columns are updated to values that would cause data conversion errors are updated to the closest valid values instead.
In MySQL 5.6.4 and later, UPDATE IGNORE statements, including those having an ORDER BY clause, are flagged as unsafe for statement-based replication. (This is because the order in which the rows are updated determines which rows are ignored.) With this change, such statements produce a warning in the log when using statement-based mode and are logged using the row-based format when using MIXED mode. (Bug #11758262, Bug #50439) See Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”, for more information.
If you access a column from the table to be updated in an expression, UPDATE uses the current value of the column. For example, the following statement sets col1 to one more than its current value:
UPDATE t1 SET col1 = col1 + 1;
The second assignment in the following statement sets col2 to the current (updated) col1 value, not the original col1 value. The result is that col1 and col2 have the same value. This behavior differs from standard SQL.
UPDATE t1 SET col1 = col1 + 1, col2 = col1;
Single-table UPDATE assignments are generally evaluated from left to right. For multiple-table updates, there is no guarantee that assignments are carried out in any particular order.
If you set a column to the value it currently has, MySQL notices this and does not update it.
If you update a column that has been declared NOT NULL by setting to NULL, an error occurs if strict SQL mode is enabled; otherwise, the column is set to the implicit default value for the column data type and the warning count is incremented. The implicit default value is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date and time types. See Section 11.5, “Data Type Default Values”.
UPDATE returns the number of rows that were actually changed. The mysql_info() C API function returns the number of rows that were matched and updated and the number of warnings that occurred during the UPDATE.
You can use LIMIT row_count to restrict the scope of the UPDATE. A LIMIT clause is a rows-matched restriction. The statement stops as soon as it has found row_count rows that satisfy the WHERE clause, whether or not they actually were changed.
If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified by the clause. This can be useful in certain situations that might otherwise result in an error. Suppose that a table t contains a column id that has a unique index. The following statement could fail with a duplicate-key error, depending on the order in which rows are updated:
UPDATE t SET id = id + 1;
For example, if the table contains 1 and 2 in the id column and 1 is updated to 2 before 2 is updated to 3, an error occurs. To avoid this problem, add an ORDER BY clause to cause the rows with larger id values to be updated before those with smaller values:
UPDATE t SET id = id + 1 ORDER BY id DESC;
You can also perform UPDATE operations covering multiple tables. However, you cannot use ORDER BY or LIMIT with a multiple-table UPDATE. The table_references clause lists the tables involved in the join. Its syntax is described in Section 13.2.9.2, “JOIN Syntax”. Here is an example:
UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;
The preceding example shows an inner join that uses the comma operator, but multiple-table UPDATE statements can use any type of join permitted in SELECT statements, such as LEFT JOIN.
If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign key constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/child relationship. In this case, the statement fails and rolls back. Instead, update a single table and rely on the ON UPDATE capabilities that InnoDB provides to cause the other tables to be modified accordingly. See Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”.
Currently, you cannot update a table and select from the same table in a subquery.
Index hints (see Section 13.2.9.3, “Index Hint Syntax”) are accepted but ignored for UPDATE statements.
Prior to MySQL 5.6.6, an UPDATE on a partitioned table using a storage engine such as MyISAM that employs table-level locks locked all partitions of the table. This was true even for UPDATE ... PARTITION queries. (This did not and does not occur with storage engines such as InnoDB that employ row-level locking.) In MySQL 5.6.6 and later, MySQL uses partition lock pruning, so that only partitions containing rows matching the UPDATE statement's WHERE clause are actually locked, as long as none of the table's partitioning columns are updated. For more information, see Section 17.6.4, “Partitioning and Locking”.
13.3. MySQL Transactional and Locking Statements
MySQL supports local transactions (within a given client session) through statements such as SET autocommit, START TRANSACTION, COMMIT, and ROLLBACK. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”. XA transaction support enables MySQL to participate in distributed transactions as well. See Section 13.3.7, “XA Transactions”.
13.3.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax
START TRANSACTION
[transaction_characteristic [, transaction_characteristic] ...]
transaction_characteristic:
WITH CONSISTENT SNAPSHOT
| READ WRITE
| READ ONLY
BEGIN [WORK]
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
SET autocommit = {0 | 1}
These statements provide control over use of transactions:
START TRANSACTION or BEGIN start a new transaction.
COMMIT commits the current transaction, making its changes permanent.
ROLLBACK rolls back the current transaction, canceling its changes.
SET autocommit disables or enables the default autocommit mode for the current session.
By default, MySQL runs with autocommit mode enabled. This means that as soon as you execute a statement that updates (modifies) a table, MySQL stores the update on disk to make it permanent. The change cannot be rolled back.
To disable autocommit mode implicitly for a single series of statements, use the START TRANSACTION statement:
START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;
With START TRANSACTION, autocommit remains disabled until you end the transaction with COMMIT or ROLLBACK. The autocommit mode then reverts to its previous state.
START TRANSACTION permits several modifiers that control transaction characteristics. To specify multiple modifiers, separate them by commas.
The WITH CONSISTENT SNAPSHOT modifier starts a consistent read for storage engines that are capable of it. This applies only to InnoDB. The effect is the same as issuing a START TRANSACTION followed by a SELECT from any InnoDB table. See Section 14.2.3.3, “Consistent Nonlocking Reads”. The WITH CONSISTENT SNAPSHOT modifier does not change the current transaction isolation level, so it provides a consistent snapshot only if the current isolation level is one that permits consistent read (REPEATABLE READ or SERIALIZABLE).
The READ WRITE and READ ONLY modifiers set the transaction access mode. They permit or prohibit changes to tables used in the transaction. The READ ONLY restriction prevents the transaction from modifying or locking both transactional and nontransactional tables that are visible to other transactions; the transaction can still modify or lock temporary tables. These modifiers are available as of MySQL 5.6.5.
MySQL enables extra optimizations for queries on InnoDB tables when the transaction is known to be read-only. Specifying READ ONLY ensures these optimizations are applied in cases where the read-only status cannot be determined automatically. See Section 14.2.4.2.3, “Optimizations for Read-Only Transactions” for more information.
If no access mode is specified, the default mode applies. Unless the default has been changed, it is read/write. It is not permitted to specify both READ WRITE and READ ONLY in the same statement.
In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using DML statements. Changes made with DDL statements are not permitted, just as with permanent tables.
For additional information about transaction access mode, including ways to change the default mode, see Section 13.3.6, “SET TRANSACTION Syntax”.
If the read_only system variable is enabled, explicitly starting a transaction with START TRANSACTION READ WRITE requires the SUPER privilege.
Important
Many APIs used for writing MySQL client applications (such as JDBC) provide their own methods for starting transactions that can (and sometimes should) be used instead of sending a START TRANSACTION statement from the client. See Chapter 21, Connectors and APIs, or the documentation for your API, for more information.
To disable autocommit mode explicitly, use the following statement:
SET autocommit=0;
After disabling autocommit mode by setting the autocommit variable to zero, changes to transaction-safe tables (such as those for InnoDB or NDB) are not made permanent immediately. You must use COMMIT to store your changes to disk or ROLLBACK to ignore the changes.
autocommit is a session variable and must be set for each session. To disable autocommit mode for each new connection, see the description of the autocommit system variable at Section 5.1.4, “Server System Variables”.
BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a transaction. START TRANSACTION is standard SQL syntax, is the recommended way to start an ad-hoc transaction, and permits modifiers that BEGIN does not.
The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END compound statement. The latter does not begin a transaction. See Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”.
Note
Within all stored programs (stored procedures and functions, triggers, and events), the parser treats BEGIN [WORK] as the beginning of a BEGIN ... END block. Begin a transaction in this context with START TRANSACTION instead.
The optional WORK keyword is supported for COMMIT and ROLLBACK, as are the CHAIN and RELEASE clauses. CHAIN and RELEASE can be used for additional control over transaction completion. The value of the completion_type system variable determines the default completion behavior. See Section 5.1.4, “Server System Variables”.
The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the new transaction has the same isolation level as the just-terminated transaction. The RELEASE clause causes the server to disconnect the current client session after terminating the current transaction. Including the NO keyword suppresses CHAIN or RELEASE completion, which can be useful if the completion_type system variable is set to cause chaining or release completion by default.
Beginning a transaction causes any pending transaction to be committed. See Section 13.3.3, “Statements That Cause an Implicit Commit”, for more information.
Beginning a transaction also causes table locks acquired with LOCK TABLES to be released, as though you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock acquired with FLUSH TABLES WITH READ LOCK.
For best results, transactions should be performed using only tables managed by a single transaction-safe storage engine. Otherwise, the following problems can occur:
If you use tables from more than one transaction-safe storage engine (such as InnoDB), and the transaction isolation level is not SERIALIZABLE, it is possible that when one transaction commits, another ongoing transaction that uses the same tables will see only some of the changes made by the first transaction. That is, the atomicity of transactions is not guaranteed with mixed engines and inconsistencies can result. (If mixed-engine transactions are infrequent, you can use SET TRANSACTION ISOLATION LEVEL to set the isolation level to SERIALIZABLE on a per-transaction basis as necessary.)
If you use tables that are not transaction-safe within a transaction, changes to those tables are stored at once, regardless of the status of autocommit mode.
If you issue a ROLLBACK statement after updating a nontransactional table within a transaction, an ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables are rolled back, but not changes to nontransaction-safe tables.
Each transaction is stored in the binary log in one chunk, upon COMMIT. Transactions that are rolled back are not logged. (Exception: Modifications to nontransactional tables cannot be rolled back. If a transaction that is rolled back includes modifications to nontransactional tables, the entire transaction is logged with a ROLLBACK statement at the end to ensure that modifications to the nontransactional tables are replicated.) See Section 5.2.4, “The Binary Log”.
You can change the isolation level or access mode for transactions with the SET TRANSACTION statement. See Section 13.3.6, “SET TRANSACTION Syntax”.
Rolling back can be a slow operation that may occur implicitly without the user having explicitly asked for it (for example, when an error occurs). Because of this, SHOW PROCESSLIST displays Rolling back in the State column for the session, not only for explicit rollbacks performed with the ROLLBACK statement but also for implicit rollbacks.
Note
In MySQL 5.6, BEGIN, COMMIT, and ROLLBACK are not affected by --replicate-do-db or --replicate-ignore-db rules.
13.3.2. Statements That Cannot Be Rolled Back
Some statements cannot be rolled back. In general, these include data definition language (DDL) statements, such as those that create or drop databases, those that create, drop, or alter tables or stored routines.
You should design your transactions not to include such statements. If you issue a statement early in a transaction that cannot be rolled back, and then another statement later fails, the full effect of the transaction cannot be rolled back in such cases by issuing a ROLLBACK statement.
13.3.3. Statements That Cause an Implicit Commit
The statements listed in this section (and any synonyms for them) implicitly end any transaction active in the current session, as if you had done a COMMIT before executing the statement. As of MySQL 5.5.3, most of these statements also cause an implicit commit after executing; for additional details, see the end of this section.
Data definition language (DDL) statements that define or modify database objects. ALTER DATABASE ... UPGRADE DATA DIRECTORY NAME, ALTER EVENT, ALTER PROCEDURE, ALTER SERVER, ALTER TABLE, ALTER VIEW, CREATE DATABASE, CREATE EVENT, CREATE INDEX, CREATE PROCEDURE, CREATE SERVER, CREATE TABLE, CREATE TRIGGER, CREATE VIEW, DROP DATABASE, DROP EVENT, DROP INDEX, DROP PROCEDURE, DROP SERVER, DROP TABLE, DROP TRIGGER, DROP VIEW, RENAME TABLE, TRUNCATE TABLE.
ALTER FUNCTION, CREATE FUNCTION and DROP FUNCTION also cause an implicit commit when used with stored functions, but not with UDFs. (ALTER FUNCTION can only be used with stored functions.)
ALTER TABLE, CREATE TABLE, and DROP TABLE do not commit a transaction if the TEMPORARY keyword is used. (This does not apply to other operations on temporary tables such as CREATE INDEX, which do cause a commit.) However, although no implicit commit occurs, neither can the statement be rolled back. Therefore, use of such statements will violate transaction atomicity: For example, if you use CREATE TEMPORARY TABLE and then roll back the transaction, the table remains in existence.
The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that a ROLLBACK from the user does not undo CREATE TABLE statements the user made during that transaction.
CREATE TABLE ... SELECT causes an implicit commit before and after the statement is executed when you are creating nontemporary tables. (No commit occurs for CREATE TEMPORARY TABLE ... SELECT.) This is to prevent an issue during replication where the table could be created on the master after a rollback, but fail to be recorded in the binary log, and therefore not replicated to the slave. For more information, see Bug #22865.
Statements that implicitly use or modify tables in the mysql database. CREATE USER, DROP USER, GRANT, RENAME USER, REVOKE, SET PASSWORD.
Transaction-control and locking statements. BEGIN, LOCK TABLES, SET autocommit = 1 (if the value is not already 1), START TRANSACTION, UNLOCK TABLES.
UNLOCK TABLES commits a transaction only if any tables currently have been locked with LOCK TABLES to acquire nontransactional table locks. A commit does not occur for UNLOCK TABLES following FLUSH TABLES WITH READ LOCK because the latter statement does not acquire table-level locks.
Transactions cannot be nested. This is a consequence of the implicit commit performed for any current transaction when you issue a START TRANSACTION statement or one of its synonyms.
Statements that cause an implicit commit cannot be used in an XA transaction while the transaction is in an ACTIVE state.
The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END compound statement. The latter does not cause an implicit commit. See Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”.
Data loading statements. LOAD DATA INFILE. LOAD DATA INFILE causes an implicit commit only for tables using the NDB storage engine. For more information, see Bug #11151.
Administrative statements. ANALYZE TABLE, CACHE INDEX, CHECK TABLE, LOAD INDEX INTO CACHE, OPTIMIZE TABLE, REPAIR TABLE.
Replication control statements. Beginning with MySQL 5.6.7: START SLAVE, STOP SLAVE, RESET SLAVE, CHANGE MASTER TO. (Bug #13858841)
As of MySQL 5.5.3, most statements that previously caused an implicit commit before executing also do so after executing. The intent is to handle each such statement in its own special transaction because it cannot be rolled back anyway. The following list provides additional details pertaining to this change:
The CREATE TABLE variants (CREATE TABLE for InnoDB tables and CREATE TABLE ... SELECT) that previously were special cases no longer are so because CREATE TABLE uniformly causes an implicit commit before and after executing.
Transaction-control and locking statements behave as before.
13.3.4. SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax
SAVEPOINT identifier
ROLLBACK [WORK] TO [SAVEPOINT] identifier
RELEASE SAVEPOINT identifier
InnoDB supports the SQL statements SAVEPOINT, ROLLBACK TO SAVEPOINT, RELEASE SAVEPOINT and the optional WORK keyword for ROLLBACK.
The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If the current transaction has a savepoint with the same name, the old savepoint is deleted and a new one is set.
The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint without terminating the transaction. Modifications that the current transaction made to rows after the savepoint was set are undone in the rollback, but InnoDB does not release the row locks that were stored in memory after the savepoint. (For a new inserted row, the lock information is carried by the transaction ID stored in the row; the lock is not separately stored in memory. In this case, the row lock is released in the undo.) Savepoints that were set at a later time than the named savepoint are deleted.
If the ROLLBACK TO SAVEPOINT statement returns the following error, it means that no savepoint with the specified name exists:
ERROR 1305 (42000): SAVEPOINT identifier does not exist
The RELEASE SAVEPOINT statement removes the named savepoint from the set of savepoints of the current transaction. No commit or rollback occurs. It is an error if the savepoint does not exist.
All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that does not name a savepoint.
A new savepoint level is created when a stored function is invoked or a trigger is activated. The savepoints on previous levels become unavailable and thus do not conflict with savepoints on the new level. When the function or trigger terminates, any savepoints it created are released and the previous savepoint level is restored.
13.3.5. LOCK TABLES and UNLOCK TABLES Syntax
LOCK TABLES
tbl_name [[AS] alias] lock_type
[, tbl_name [[AS] alias] lock_type] ...
lock_type:
READ [LOCAL]
| [LOW_PRIORITY] WRITE
UNLOCK TABLES
MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with other sessions for access to tables, or to prevent other sessions from modifying tables during periods when a session requires exclusive access to them. A session can acquire or release locks only for itself. One session cannot acquire locks for another session or release locks held by another session.
Locks may be used to emulate transactions or to get more speed when updating tables. This is explained in more detail later in this section.
LOCK TABLES explicitly acquires table locks for the current client session. Table locks can be acquired for base tables or views. You must have the LOCK TABLES privilege, and the SELECT privilege for each object to be locked.
For view locking, LOCK TABLES adds all base tables used in the view to the set of tables to be locked and locks them automatically. If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly, as described in Section 13.3.5.2, “LOCK TABLES and Triggers”.
UNLOCK TABLES explicitly releases any table locks held by the current session. LOCK TABLES implicitly releases any table locks held by the current session before acquiring new locks.
Another use for UNLOCK TABLES is to release the global read lock acquired with the FLUSH TABLES WITH READ LOCK statement, which enables you to lock all tables in all databases. See Section 13.7.6.3, “FLUSH Syntax”. (This is a very convenient way to get backups if you have a file system such as Veritas that can take snapshots in time.)
A table lock protects only against inappropriate reads or writes by other sessions. The session holding the lock, even a read lock, can perform table-level operations such as DROP TABLE. Truncate operations are not transaction-safe, so an error occurs if the session attempts one during an active transaction or while holding a table lock.
The following discussion applies only to non-TEMPORARY tables. LOCK TABLES is permitted (but ignored) for a TEMPORARY table. The table can be accessed freely by the session within which it was created, regardless of what other locking may be in effect. No lock is necessary because no other session can see the table.
For information about other conditions on the use of LOCK TABLES and statements that cannot be used while LOCK TABLES is in effect, see Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Rules for Lock Acquisition
To acquire table locks within the current session, use the LOCK TABLES statement. The following lock types are available:
READ [LOCAL] lock:
The session that holds the lock can read the table (but not write it).
Multiple sessions can acquire a READ lock for the table at the same time.
Other sessions can read the table without explicitly acquiring a READ lock.
The LOCAL modifier enables nonconflicting INSERT statements (concurrent inserts) by other sessions to execute while the lock is held. (See Section 8.10.3, “Concurrent Inserts”.) However, READ LOCAL cannot be used if you are going to manipulate the database using processes external to the server while you hold the lock. For InnoDB tables, READ LOCAL is the same as READ.
[LOW_PRIORITY] WRITE lock:
The session that holds the lock can read and write the table.
Only the session that holds the lock can access the table. No other session can access it until the lock is released.
Lock requests for the table by other sessions block while the WRITE lock is held.
The LOW_PRIORITY modifier has no effect. In previous versions of MySQL, it affected locking behavior, but this is no longer true. As of MySQL 5.6.5, it is deprecated and its use produces a warning. Use WRITE without LOW_PRIORITY instead.
If the LOCK TABLES statement must wait due to locks held by other sessions on any of the tables, it blocks until all locks can be acquired.
A session that requires locks must acquire all the locks that it needs in a single LOCK TABLES statement. While the locks thus obtained are held, the session can access only the locked tables. For example, in the following sequence of statements, an error occurs for the attempt to access t2 because it was not locked in the LOCK TABLES statement:
mysql> LOCK TABLES t1 READ;
mysql> SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
mysql> SELECT COUNT(*) FROM t2;
ERROR 1100 (HY000): Table 't2' was not locked with LOCK TABLES
Tables in the INFORMATION_SCHEMA database are an exception. They can be accessed without being locked explicitly even while a session holds table locks obtained with LOCK TABLES.
You cannot refer to a locked table multiple times in a single query using the same name. Use aliases instead, and obtain a separate lock for the table and each alias:
mysql> LOCK TABLE t WRITE, t AS t1 READ;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;
The error occurs for the first INSERT because there are two references to the same name for a locked table. The second INSERT succeeds because the references to the table use different names.
If your statements refer to a table by means of an alias, you must lock the table using that same alias. It does not work to lock the table without specifying the alias:
mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES
Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:
mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> SELECT * FROM t AS myalias;
WRITE locks normally have higher priority than READ locks to ensure that updates are processed as soon as possible. This means that if one session obtains a READ lock and then another session requests a WRITE lock, subsequent READ lock requests wait until the session that requested the WRITE lock has obtained the lock and released it.
LOCK TABLES acquires locks as follows:
Sort all tables to be locked in an internally defined order. From the user standpoint, this order is undefined.
If a table is to be locked with a read and a write lock, put the write lock request before the read lock request.
Lock one table at a time until the session gets all locks.
This policy ensures that table locking is deadlock free.
Note
LOCK TABLES or UNLOCK TABLES, when applied to a partitioned table, always locks or unlocks the entire table; these statements do not support partition lock pruning. See Section 17.6.4, “Partitioning and Locking”.
Rules for Lock Release
When the table locks held by a session are released, they are all released at the same time. A session can release its locks explicitly, or locks may be released implicitly under certain conditions.
A session can release its locks explicitly with UNLOCK TABLES.
If a session issues a LOCK TABLES statement to acquire a lock while already holding locks, its existing locks are released implicitly before the new locks are granted.
If a session begins a transaction (for example, with START TRANSACTION), an implicit UNLOCK TABLES is performed, which causes existing locks to be released. (For additional information about the interaction between table locking and transactions, see Section 13.3.5.1, “Interaction of Table Locking and Transactions”.)
If the connection for a client session terminates, whether normally or abnormally, the server implicitly releases all table locks held by the session (transactional and nontransactional). If the client reconnects, the locks will no longer be in effect. In addition, if the client had an active transaction, the server rolls back the transaction upon disconnect, and if reconnect occurs, the new session begins with autocommit enabled. For this reason, clients may wish to disable auto-reconnect. With auto-reconnect in effect, the client is not notified if reconnect occurs but any table locks or current transaction will have been lost. With auto-reconnect disabled, if the connection drops, an error occurs for the next statement issued. The client can detect the error and take appropriate action such as reacquiring the locks or redoing the transaction. See Section 21.8.15, “Controlling Automatic Reconnection Behavior”.
Note
If you use ALTER TABLE on a locked table, it may become unlocked. For example, if you attempt a second ALTER TABLE operation, the result may be an error Table 'tbl_name' was not locked with LOCK TABLES. To handle this, lock the table again prior to the second alteration. See also Section C.5.7.1, “Problems with ALTER TABLE”.
13.3.5.1. Interaction of Table Locking and Transactions
LOCK TABLES and UNLOCK TABLES interact with the use of transactions as follows:
LOCK TABLES is not transaction-safe and implicitly commits any active transaction before attempting to lock the tables.
UNLOCK TABLES implicitly commits any active transaction, but only if LOCK TABLES has been used to acquire table locks. For example, in the following set of statements, UNLOCK TABLES releases the global read lock but does not commit the transaction because no table locks are in effect:
FLUSH TABLES WITH READ LOCK;
START TRANSACTION;
SELECT ... ;
UNLOCK TABLES;
Beginning a transaction (for example, with START TRANSACTION) implicitly commits any current transaction and releases existing table locks.
FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking and implicit commits. For example, START TRANSACTION does not release the global read lock. See Section 13.7.6.3, “FLUSH Syntax”.
Other statements that implicitly cause transactions to be committed do not release existing table locks. For a list of such statements, see Section 13.3.3, “Statements That Cause an Implicit Commit”.
The correct way to use LOCK TABLES and UNLOCK TABLES with transactional tables, such as InnoDB tables, is to begin a transaction with SET autocommit = 0 (not START TRANSACTION) followed by LOCK TABLES, and to not call UNLOCK TABLES until you commit the transaction explicitly. For example, if you need to write to table t1 and read from table t2, you can do this:
SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;
When you call LOCK TABLES, InnoDB internally takes its own table lock, and MySQL takes its own table lock. InnoDB releases its internal table lock at the next commit, but for MySQL to release its table lock, you have to call UNLOCK TABLES. You should not have autocommit = 1, because then InnoDB releases its internal table lock immediately after the call of LOCK TABLES, and deadlocks can very easily happen. InnoDB does not acquire the internal table lock at all if autocommit = 1, to help old applications avoid unnecessary deadlocks.
ROLLBACK does not release table locks.
13.3.5.2. LOCK TABLES and Triggers
If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly:
The locks are taken as the same time as those acquired explicitly with the LOCK TABLES statement.
The lock on a table used in a trigger depends on whether the table is used only for reading. If so, a read lock suffices. Otherwise, a write lock is used.
If a table is locked explicitly for reading with LOCK TABLES, but needs to be locked for writing because it might be modified within a trigger, a write lock is taken rather than a read lock. (That is, an implicit write lock needed due to the table's appearance within a trigger causes an explicit read lock request for the table to be converted to a write lock request.)
Suppose that you lock two tables, t1 and t2, using this statement:
LOCK TABLES t1 WRITE, t2 READ;
If t1 or t2 have any triggers, tables used within the triggers will also be locked. Suppose that t1 has a trigger defined like this:
CREATE TRIGGER t1_a_ins AFTER INSERT ON t1 FOR EACH ROW
BEGIN
UPDATE t4 SET count = count+1
WHERE id = NEW.id AND EXISTS (SELECT a FROM t3);
INSERT INTO t2 VALUES(1, 2);
END;
The result of the LOCK TABLES statement is that t1 and t2 are locked because they appear in the statement, and t3 and t4 are locked because they are used within the trigger:
t1 is locked for writing per the WRITE lock request.
t2 is locked for writing, even though the request is for a READ lock. This occurs because t2 is inserted into within the trigger, so the READ request is converted to a WRITE request.
t3 is locked for reading because it is only read from within the trigger.
t4 is locked for writing because it might be updated within the trigger.
13.3.5.3. Table-Locking Restrictions and Conditions
You can safely use KILL to terminate a session that is waiting for a table lock. See Section 13.7.6.4, “KILL Syntax”.
Do not lock any tables that you are using with INSERT DELAYED. An INSERT DELAYED in this case results in an error because the insert must be handled by a separate thread, not by the session which holds the lock.
LOCK TABLES and UNLOCK TABLES cannot be used within stored programs.
Tables in the performance_schema database cannot be locked with LOCK TABLES, except the setup_xxx tables.
The following statements are prohibited while a LOCK TABLES statement is in effect: CREATE TABLE, CREATE TABLE ... LIKE, CREATE VIEW, DROP VIEW, and DDL statements on stored functions and procedures and events.
For some operations, system tables in the mysql database must be accessed. For example, the HELP statement requires the contents of the server-side help tables, and CONVERT_TZ() might need to read the time zone tables. The server implicitly locks the system tables for reading as necessary so that you need not lock them explicitly. These tables are treated as just described:
mysql.help_category
mysql.help_keyword
mysql.help_relation
mysql.help_topic
mysql.proc
mysql.time_zone
mysql.time_zone_leap_second
mysql.time_zone_name
mysql.time_zone_transition
mysql.time_zone_transition_type
If you want to explicitly place a WRITE lock on any of those tables with a LOCK TABLES statement, the table must be the only one locked; no other table can be locked with the same statement.
Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other session can interfere with any other currently executing SQL statement. However, there are a few cases when locking tables may provide an advantage:
If you are going to run many operations on a set of MyISAM tables, it is much faster to lock the tables you are going to use. Locking MyISAM tables speeds up inserting, updating, or deleting on them because MySQL does not flush the key cache for the locked tables until UNLOCK TABLES is called. Normally, the key cache is flushed after each SQL statement.
The downside to locking the tables is that no session can update a READ-locked table (including the one holding the lock) and no session can access a WRITE-locked table other than the one holding the lock.
If you are using tables for a nontransactional storage engine, you must use LOCK TABLES if you want to ensure that no other session modifies the tables between a SELECT and an UPDATE. The example shown here requires LOCK TABLES to execute safely:
LOCK TABLES trans READ, customer WRITE;
SELECT SUM(value) FROM trans WHERE customer_id=some_id;
UPDATE customer
SET total_value=sum_from_previous_statement
WHERE customer_id=some_id;
UNLOCK TABLES;
Without LOCK TABLES, it is possible that another session might insert a new row in the trans table between execution of the SELECT and UPDATE statements.
You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer SET value=value+new_value) or the LAST_INSERT_ID() function. See Section 1.8.5.3, “Transaction and Atomic Operation Differences”.
You can also avoid locking tables in some cases by using the user-level advisory lock functions GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and implemented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See Section 12.16, “Miscellaneous Functions”.
See Section 8.10.1, “Internal Locking Methods”, for more information on locking policy.
13.3.6. SET TRANSACTION Syntax
SET [GLOBAL | SESSION] TRANSACTION
transaction_characteristic [, transaction_characteristic] ...
transaction_characteristic:
ISOLATION LEVEL level
| READ WRITE
| READ ONLY
level:
REPEATABLE READ
| READ COMMITTED
| READ UNCOMMITTED
| SERIALIZABLE
This statement specifies transaction characteristics. It takes a list of one or more characteristic values separated by commas. These characteristics set the transaction isolation level or access mode. The isolation level is used for operations on InnoDB tables. The access mode may be specified as of MySQL 5.6.5 and indicates whether transactions operate in read/write or read-only mode.
In addition, SET TRANSACTION can include an optional GLOBAL or SESSION keyword to indicate the scope of the statement.
Scope of Transaction Characteristics
You can set transaction characteristics globally, for the current session, or for the next transaction:
With the GLOBAL keyword, the statement applies globally for all subsequent sessions. Existing sessions are unaffected.
With the SESSION keyword, the statement applies to all subsequent transactions performed within the current session.
Without any SESSION or GLOBAL keyword, the statement applies to the next (not started) transaction performed within the current session.
A global change to transaction characteristics requires the SUPER privilege. Any session is free to change its session characteristics (even in the middle of a transaction), or the characteristics for its next transaction.
SET TRANSACTION without GLOBAL or SESSION is not permitted while there is an active transaction:
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.02 sec)
mysql> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
ERROR 1568 (25001): Transaction characteristics can't be changed
while a transaction is in progress
To set the global default isolation level at server startup, use the --transaction-isolation=level option to mysqld on the command line or in an option file. Values of level for this option use dashes rather than spaces, so the permissible values are READ-UNCOMMITTED, READ-COMMITTED, REPEATABLE-READ, or SERIALIZABLE. For example, to set the default isolation level to REPEATABLE READ, use these lines in the [mysqld] section of an option file:
[mysqld]
transaction-isolation = REPEATABLE-READ
It is possible to check or set the global and session transaction isolation levels at runtime by using the tx_isolation system variable:
SELECT @@GLOBAL.tx_isolation, @@tx_isolation;
SET GLOBAL tx_isolation='REPEATABLE-READ';
SET SESSION tx_isolation='SERIALIZABLE';
Similarly, to set the transaction access mode at server startup or at runtime, use the --transaction-read-only option or tx_read_only system variable. By default, these are OFF (the mode is read/write) but can be set to ON for a default mode of read only.
Setting the global or session value of tx_isolation or tx_read_only is equivalent to setting the isolation level or access mode with SET GLOBAL TRANSACTION or SET SESSION TRANSACTION.
Details and Usage of Isolation Levels
InnoDB supports each of the transaction isolation levels described here using different locking strategies. You can enforce a high degree of consistency with the default REPEATABLE READ level, for operations on crucial data where ACID compliance is important. Or you can relax the consistency rules with READ COMMITTED or even READ UNCOMMITTED, in situations such as bulk reporting where precise consistency and repeatable results are less important than minimizing the amount of overhead for locking. SERIALIZABLE enforces even stricter rules than REPEATABLE READ, and is used mainly in specialized situations, such as with XA transactions and for troubleshooting issues with concurrency and deadlocks.
For full information about how these isolation levels work with InnoDB transactions, see Section 14.2.3.1, “The InnoDB Transaction Model and Locking”. In particular, for additional information about InnoDB record-level locks and how it uses them to execute various types of statements, see Section 14.2.3.5, “InnoDB Record, Gap, and Next-Key Locks” and Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”.
The following list describes how MySQL supports the different transaction levels. The list goes from the most commonly used level to the least used.
REPEATABLE READ
This is the default isolation level for InnoDB. For consistent reads, there is an important difference from the READ COMMITTED isolation level: All consistent reads within the same transaction read the snapshot established by the first read. This convention means that if you issue several plain (nonlocking) SELECT statements within the same transaction, these SELECT statements are consistent also with respect to each other. See Section 14.2.3.3, “Consistent Nonlocking Reads”.
For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE statements, locking depends on whether the statement uses a unique index with a unique search condition, or a range-type search condition. For a unique index with a unique search condition, InnoDB locks only the index record found, not the gap before it. For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key locks to block insertions by other sessions into the gaps covered by the range.
READ COMMITTED
A somewhat Oracle-like isolation level with respect to consistent (nonlocking) reads: Each consistent read, even within the same transaction, sets and reads its own fresh snapshot. See Section 14.2.3.3, “Consistent Nonlocking Reads”.
For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), InnoDB locks only index records, not the gaps before them, and thus permits the free insertion of new records next to locked records. For UPDATE and DELETE statements, locking depends on whether the statement uses a unique index with a unique search condition (such as WHERE id = 100), or a range-type search condition (such as WHERE id > 100). For a unique index with a unique search condition, InnoDB locks only the index record found, not the gap before it. For range-type searches, InnoDB locks the index range scanned, using gap locks or next-key locks to block insertions by other sessions into the gaps covered by the range. This is necessary because “phantom rows” must be blocked for MySQL replication and recovery to work.
Note
In MySQL 5.6, if the READ COMMITTED isolation level is used, or the deprecated innodb_locks_unsafe_for_binlog system variable is enabled, there is no InnoDB gap locking except for foreign-key constraint checking and duplicate-key checking. Also, record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition.
If you use READ COMMITTED or enable innodb_locks_unsafe_for_binlog, you must use row-based binary logging.
READ UNCOMMITTED
SELECT statements are performed in a nonlocking fashion, but a possible earlier version of a row might be used. Thus, using this isolation level, such reads are not consistent. This is also called a dirty read. Otherwise, this isolation level works like READ COMMITTED.
SERIALIZABLE
This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements to SELECT ... LOCK IN SHARE MODE if autocommit is disabled. If autocommit is enabled, the SELECT is its own transaction. It therefore is known to be read only and can be serialized if performed as a consistent (nonlocking) read and need not block for other transactions. (To force a plain SELECT to block if other transactions have modified the selected rows, disable autocommit.)
Transaction Access Mode
As of MySQL 5.6.5, the transaction access mode may be specified with SET TRANSACTION. By default, a transaction takes place in read/write mode, with both reads and writes permitted to tables used in the transaction. This mode may be specified explicitly using an access mode of READ WRITE.
If the transaction access mode is set to READ ONLY, changes to tables are prohibited. This may enable storage engines to make performance improvements that are possible when writes are not permitted.
It is not permitted to specify both READ WRITE and READ ONLY in the same statement.
In read-only mode, it remains possible to change tables created with the TEMPORARY keyword using DML statements. Changes made with DDL statements are not permitted, just as with permanent tables.
The READ WRITE and READ ONLY access modes also may be specified for an individual transaction using the START TRANSACTION statement.
13.3.7. XA Transactions
Support for XA transactions is available for the InnoDB storage engine. The MySQL XA implementation is based on the X/Open CAE document Distributed Transaction Processing: The XA Specification. This document is published by The Open Group and available at http://www.opengroup.org/public/pubs/catalog/c193.htm. Limitations of the current XA implementation are described in Section E.6, “Restrictions on XA Transactions”.
On the client side, there are no special requirements. The XA interface to a MySQL server consists of SQL statements that begin with the XA keyword. MySQL client programs must be able to send SQL statements and to understand the semantics of the XA statement interface. They do not need be linked against a recent client library. Older client libraries also will work.
Currently, among the MySQL Connectors, MySQL Connector/J 5.0.0 and higher supports XA directly, by means of a class interface that handles the Xan SQL statement interface for you.
XA supports distributed transactions; that is, the ability to permit multiple separate transactional resources to participate in a global transaction. Transactional resources often are RDBMSs but may be other kinds of resources.
A global transaction involves several actions that are transactional in themselves, but that all must either complete successfully as a group, or all be rolled back as a group. In essence, this extends ACID properties “up a level” so that multiple ACID transactions can be executed in concert as components of a global operation that also has ACID properties. (However, for a distributed transaction, you must use the SERIALIZABLE isolation level to achieve ACID properties. It is enough to use REPEATABLE READ for a nondistributed transaction, but not for a distributed transaction.)
Some examples of distributed transactions:
An application may act as an integration tool that combines a messaging service with an RDBMS. The application makes sure that transactions dealing with message sending, retrieval, and processing that also involve a transactional database all happen in a global transaction. You can think of this as “transactional email.”
An application performs actions that involve different database servers, such as a MySQL server and an Oracle server (or multiple MySQL servers), where actions that involve multiple servers must happen as part of a global transaction, rather than as separate transactions local to each server.
A bank keeps account information in an RDBMS and distributes and receives money through automated teller machines (ATMs). It is necessary to ensure that ATM actions are correctly reflected in the accounts, but this cannot be done with the RDBMS alone. A global transaction manager integrates the ATM and database resources to ensure overall consistency of financial transactions.
Applications that use global transactions involve one or more Resource Managers and a Transaction Manager:
A Resource Manager (RM) provides access to transactional resources. A database server is one kind of resource manager. It must be possible to either commit or roll back transactions managed by the RM.
A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It communicates with the RMs that handle each of these transactions. The individual transactions within a global transaction are “branches” of the global transaction. Global transactions and their branches are identified by a naming scheme described later.
The MySQL implementation of XA MySQL enables a MySQL server to act as a Resource Manager that handles XA transactions within a global transaction. A client program that connects to the MySQL server acts as the Transaction Manager.
To carry out a global transaction, it is necessary to know which components are involved, and bring each component to a point when it can be committed or rolled back. Depending on what each component reports about its ability to succeed, they must all commit or roll back as an atomic group. That is, either all components must commit, or all components must roll back. To manage a global transaction, it is necessary to take into account that any component or the connecting network might fail.
The process for executing a global transaction uses two-phase commit (2PC). This takes place after the actions performed by the branches of the global transaction have been executed.
In the first phase, all branches are prepared. That is, they are told by the TM to get ready to commit. Typically, this means each RM that manages a branch records the actions for the branch in stable storage. The branches indicate whether they are able to do this, and these results are used for the second phase.
In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated when they were prepared that they will be able to commit, all branches are told to commit. If any branch indicated when it was prepared that it will not be able to commit, all branches are told to roll back.
In some cases, a global transaction might use one-phase commit (1PC). For example, when a Transaction Manager finds that a global transaction consists of only one transactional resource (that is, a single branch), that resource can be told to prepare and commit at the same time.
13.3.7.1. XA Transaction SQL Syntax
To perform XA transactions in MySQL, use the following statements:
XA {START|BEGIN} xid [JOIN|RESUME]
XA END xid [SUSPEND [FOR MIGRATE]]
XA PREPARE xid
XA COMMIT xid [ONE PHASE]
XA ROLLBACK xid
XA RECOVER
For XA START, the JOIN and RESUME clauses are not supported.
For XA END the SUSPEND [FOR MIGRATE] clause is not supported.
Each XA statement begins with the XA keyword, and most of them require an xid value. An xid is an XA transaction identifier. It indicates which transaction the statement applies to. xid values are supplied by the client, or generated by the MySQL server. An xid value has from one to three parts:
xid: gtrid [, bqual [, formatID]]
gtrid is a global transaction identifier, bqual is a branch qualifier, and formatID is a number that identifies the format used by the gtrid and bqual values. As indicated by the syntax, bqual and formatID are optional. The default bqual value is '' if not given. The default formatID value is 1 if not given.
gtrid and bqual must be string literals, each up to 64 bytes (not characters) long. gtrid and bqual can be specified in several ways. You can use a quoted string ('ab'), hex string (0x6162, X'ab'), or bit value (b'nnnn').
formatID is an unsigned integer.
The gtrid and bqual values are interpreted in bytes by the MySQL server's underlying XA support routines. However, while an SQL statement containing an XA statement is being parsed, the server works with some specific character set. To be safe, write gtrid and bqual as hex strings.
xid values typically are generated by the Transaction Manager. Values generated by one TM must be different from values generated by other TMs. A given TM must be able to recognize its own xid values in a list of values returned by the XA RECOVER statement.
XA START xid starts an XA transaction with the given xid value. Each XA transaction must have a unique xid value, so the value must not currently be used by another XA transaction. Uniqueness is assessed using the gtrid and bqual values. All following XA statements for the XA transaction must be specified using the same xid value as that given in the XA START statement. If you use any of those statements but specify an xid value that does not correspond to some existing XA transaction, an error occurs.
One or more XA transactions can be part of the same global transaction. All XA transactions within a given global transaction must use the same gtrid value in the xid value. For this reason, gtrid values must be globally unique so that there is no ambiguity about which global transaction a given XA transaction is part of. The bqual part of the xid value must be different for each XA transaction within a global transaction. (The requirement that bqual values be different is a limitation of the current MySQL XA implementation. It is not part of the XA specification.)
The XA RECOVER statement returns information for those XA transactions on the MySQL server that are in the PREPARED state. (See Section 13.3.7.2, “XA Transaction States”.) The output includes a row for each such XA transaction on the server, regardless of which client started it.
XA RECOVER output rows look like this (for an example xid value consisting of the parts 'abc', 'def', and 7):
mysql> XA RECOVER;
+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+--------+
| 7 | 3 | 3 | abcdef |
+----------+--------------+--------------+--------+
The output columns have the following meanings:
formatID is the formatID part of the transaction xid
gtrid_length is the length in bytes of the gtrid part of the xid
bqual_length is the length in bytes of the bqual part of the xid
data is the concatenation of the gtrid and bqual parts of the xid
13.3.7.2. XA Transaction States
An XA transaction progresses through the following states:
Use XA START to start an XA transaction and put it in the ACTIVE state.
For an ACTIVE XA transaction, issue the SQL statements that make up the transaction, and then issue an XA END statement. XA END puts the transaction in the IDLE state.
For an IDLE XA transaction, you can issue either an XA PREPARE statement or an XA COMMIT ... ONE PHASE statement:
XA PREPARE puts the transaction in the PREPARED state. An XA RECOVER statement at this point will include the transaction's xid value in its output, because XA RECOVER lists all XA transactions that are in the PREPARED state.
XA COMMIT ... ONE PHASE prepares and commits the transaction. The xid value will not be listed by XA RECOVER because the transaction terminates.
For a PREPARED XA transaction, you can issue an XA COMMIT statement to commit and terminate the transaction, or XA ROLLBACK to roll back and terminate the transaction.
Here is a simple XA transaction that inserts a row into a table as part of a global transaction:
mysql> XA START 'xatest';
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec)
mysql> XA END 'xatest';
Query OK, 0 rows affected (0.00 sec)
mysql> XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec)
mysql> XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)
Within the context of a given client connection, XA transactions and local (non-XA) transactions are mutually exclusive. For example, if XA START has been issued to begin an XA transaction, a local transaction cannot be started until the XA transaction has been committed or rolled back. Conversely, if a local transaction has been started with START TRANSACTION, no XA statements can be used until the transaction has been committed or rolled back.
Note that if an XA transaction is in the ACTIVE state, you cannot issue any statements that cause an implicit commit. That would violate the XA contract because you could not roll back the XA transaction. You will receive the following error if you try to execute such a statement:
ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed
when global transaction is in the ACTIVE state
Statements to which the preceding remark applies are listed at Section 13.3.3, “Statements That Cause an Implicit Commit”.
13.4. Replication Statements
Replication can be controlled through the SQL interface using the statements described in this section. One group of statements controls master servers, the other controls slave servers.
13.4.1. SQL Statements for Controlling Master Servers
This section discusses statements for managing master replication servers. Section 13.4.2, “SQL Statements for Controlling Slave Servers”, discusses statements for managing slave servers.
In addition to the statements described here, the following SHOW statements are used with master servers in replication. For information about these statements, see Section 13.7.5, “SHOW Syntax”.
13.4.1.1. PURGE BINARY LOGS Syntax
PURGE { BINARY | MASTER } LOGS
{ TO 'log_name' | BEFORE datetime_expr }
The binary log is a set of files that contain information about data modifications made by the MySQL server. The log consists of a set of binary log files, plus an index file (see Section 5.2.4, “The Binary Log”).
The PURGE BINARY LOGS statement deletes all the binary log files listed in the log index file prior to the specified log file name or date. BINARY and MASTER are synonyms. Deleted log files also are removed from the list recorded in the index file, so that the given log file becomes the first in the list.
This statement has no effect if the server was not started with the --log-bin option to enable binary logging.
Examples:
PURGE BINARY LOGS TO 'mysql-bin.010';
PURGE BINARY LOGS BEFORE '2008-04-02 22:46:26';
The BEFORE variant's datetime_expr argument should evaluate to a DATETIME value (a value in 'YYYY-MM-DD hh:mm:ss' format).
This statement is safe to run while slaves are replicating. You need not stop them. If you have an active slave that currently is reading one of the log files you are trying to delete, this statement does nothing and fails with an error. However, if a slave is not connected and you happen to purge one of the log files it has yet to read, the slave will be unable to replicate after it reconnects.
To safely purge binary log files, follow this procedure:
On each slave server, use SHOW SLAVE STATUS to check which log file it is reading.
Obtain a listing of the binary log files on the master server with SHOW BINARY LOGS.
Determine the earliest log file among all the slaves. This is the target file. If all the slaves are up to date, this is the last log file on the list.
Make a backup of all the log files you are about to delete. (This step is optional, but always advisable.)
Purge all log files up to but not including the target file.
You can also set the expire_logs_days system variable to expire binary log files automatically after a given number of days (see Section 5.1.4, “Server System Variables”). If you are using replication, you should set the variable no lower than the maximum number of days your slaves might lag behind the master.
PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE both fail with an error when binary log files listed in the .index file had been removed from the system by some other means (such as using rm on Linux). (Bug #18199, Bug #18453) To handle such errors, edit the .index file (which is a simple text file) manually to ensure that it lists only the binary log files that are actually present, then run again the PURGE BINARY LOGS statement that failed.
13.4.1.2. RESET MASTER Syntax
RESET MASTER
Deletes all binary log files listed in the index file, resets the binary log index file to be empty, and creates a new binary log file.
In MySQL 5.6.5 and later, RESET MASTER also clears the values of the gtid_purged system variable (known as gtid_lost in MySQL 5.6.8 and earlier) as well as the global value of the gtid_executed (gtid_done, prior to MySQL 5.6.9) system variable (but not its session value); that is, executing this statement sets each of these values to an empty string ('').
This statement is intended to be used only when the master is started for the first time.
Important
The effects of RESET MASTER differ from those of PURGE BINARY LOGS in 2 key ways:
RESET MASTER removes all binary log files that are listed in the index file, leaving only a single, empty binary log file with a numeric suffix of .000001, whereas the numbering is not reset by PURGE BINARY LOGS.
RESET MASTER is not intended to be used while any replication slaves are running. The behavior of RESET MASTER when used while slaves are running is undefined (and thus unsupported), whereas PURGE BINARY LOGS may be safely used while replication slaves are running.
See also Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.
RESET MASTER can prove useful when you first set up the master and the slave, so that you can verify the setup as follows:
Start the master and slave, and start replication (see Section 16.1.1, “How to Set Up Replication”).
Execute a few test queries on the master.
Check that the queries were replicated to the slave.
When replication is running correctly, issue STOP SLAVE followed by RESET SLAVE on the slave, then verify that any unwanted data no longer exists on the slave.
Issue RESET MASTER on the master to clean up the test queries.
After verifying the setup and getting rid of any unwanted and log files generated by testing, you can start the slave and begin replicating.
13.4.1.3. SET sql_log_bin Syntax
SET sql_log_bin = {0|1}
The sql_log_bin variable controls whether logging to the binary log is done. The default value is 1 (do logging). To change logging for the current session, change the session value of this variable. The session user must have the SUPER privilege to set this variable.
In MySQL 5.6, it is not possible to set @@session.sql_log_bin within a transaction or subquery. (Bug #53437)
13.4.2. SQL Statements for Controlling Slave Servers
This section discusses statements for managing slave replication servers. Section 13.4.1, “SQL Statements for Controlling Master Servers”, discusses statements for managing master servers.
In addition to the statements described here, SHOW SLAVE STATUS and SHOW RELAYLOG EVENTS are also used with replication slaves. For information about these statements, see Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”, and Section 13.7.5.33, “SHOW RELAYLOG EVENTS Syntax”.
13.4.2.1. CHANGE MASTER TO Syntax
CHANGE MASTER TO option [, option] ...
option:
MASTER_BIND = 'interface_name'
| MASTER_HOST = 'host_name'
| MASTER_USER = 'user_name'
| MASTER_PASSWORD = 'password'
| MASTER_PORT = port_num
| MASTER_CONNECT_RETRY = interval
| MASTER_RETRY_COUNT = count
| MASTER_DELAY = interval
| MASTER_HEARTBEAT_PERIOD = interval
| MASTER_LOG_FILE = 'master_log_name'
| MASTER_LOG_POS = master_log_pos
| MASTER_AUTO_POSITION = {0|1}
| RELAY_LOG_FILE = 'relay_log_name'
| RELAY_LOG_POS = relay_log_pos
| MASTER_SSL = {0|1}
| MASTER_SSL_CA = 'ca_file_name'
| MASTER_SSL_CAPATH = 'ca_directory_name'
| MASTER_SSL_CERT = 'cert_file_name'
| MASTER_SSL_CRL = 'crl_file_name'
| MASTER_SSL_CRLPATH = 'crl_directory_name'
| MASTER_SSL_KEY = 'key_file_name'
| MASTER_SSL_CIPHER = 'cipher_list'
| MASTER_SSL_VERIFY_SERVER_CERT = {0|1}
| IGNORE_SERVER_IDS = (server_id_list)
server_id_list:
[server_id [, server_id] ...]
CHANGE MASTER TO changes the parameters that the slave server uses for connecting to the master server, for reading the master binary log, and reading the slave relay log. It also updates the contents of the master.info and relay-log.info files. To use CHANGE MASTER TO, the slave replication threads must be stopped (use STOP SLAVE if necessary). In MySQL 5.6.11 and later, gtid_next must also be set to AUTOMATIC (BUG#16062608).
Options not specified retain their value, except as indicated in the following discussion. Thus, in most cases, there is no need to specify options that do not change. For example, if the password to connect to your MySQL master has changed, you just need to issue these statements to tell the slave about the new password:
STOP SLAVE; -- if replication was running
CHANGE MASTER TO MASTER_PASSWORD='new3cret';
START SLAVE; -- if you want to restart replication
MASTER_HOST, MASTER_USER, MASTER_PASSWORD, and MASTER_PORT provide information to the slave about how to connect to its master:
MASTER_HOST and MASTER_PORT are the host name (or IP address) of the master host and its TCP/IP port.
Note
Replication cannot use Unix socket files. You must be able to connect to the master MySQL server using TCP/IP.
If you specify the MASTER_HOST or MASTER_PORT option, the slave assumes that the master server is different from before (even if the option value is the same as its current value.) In this case, the old values for the master binary log file name and position are considered no longer applicable, so if you do not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement, MASTER_LOG_FILE='' and MASTER_LOG_POS=4 are silently appended to it.
Setting MASTER_HOST='' (that is, setting its value explicitly to an empty string) is not the same as not setting MASTER_HOST at all. Beginning with MySQL 5.5, trying to set MASTER_HOST to an empty string fails with an error. Previously, setting MASTER_HOST to an empty string caused START SLAVE subsequently to fail. (Bug #28796)
In MySQL 5.6.5 and later, values used for MASTER_HOST and other CHANGE MASTER TO options are checked for linefeed (\n or 0x0A) characters; the presence of such characters in these values causes the statement to fail with ER_MASTER_INFO. (Bug #11758581, Bug #50801)
MASTER_USER and MASTER_PASSWORD are the user name and password of the account to use for connecting to the master.
In MySQL 5.6.4 and later, MASTER_USER cannot be made empty; setting MASTER_USER = '' or leaving it unset when setting a value for for MASTER_PASSWORD causes an error (Bug #13427949).
Currently, a password used for a replication slave account is effectively limited to 32 characters in length; the password can be longer, but any excess characters are truncated. This is not due to any limit imposed by the MySQL Server generally, but rather is an issue specific to MySQL Replication. (For more information, see Bug #43439.)
The text of a running CHANGE MASTER TO statement, including values for MASTER_USER and MASTER_PASSWORD, can be seen in the output of a concurrent SHOW PROCESSLIST statement. (The complete text of a START SLAVE statement is also visible to SHOW PROCESSLIST.)
The MASTER_SSL_xxx options provide information about using SSL for the connection. They correspond to the --ssl-xxx options described in Section 6.3.9.4, “SSL Command Options”, and Section 16.3.7, “Setting Up Replication Using SSL”. These options can be changed even on slaves that are compiled without SSL support. They are saved to the master.info file, but are ignored if the slave does not have SSL support enabled. MASTER_SSL_CRL and MASTER_SSL_CRLPATH were added in MySQL 5.6.3.
MASTER_CONNECT_RETRY specifies how many seconds to wait between connect retries. The default is 60.
MASTER_RETRY_COUNT, added in MySQL 5.6.1, limits the number of reconnection attempts and updates the value of the Master_Retry_Count column in the output of SHOW SLAVE STATUS (also added in MySQL 5.6.1). The default value is 24 * 3600 = 86400. MASTER_RETRY_COUNT is intended to replace the older --master-retry-count server option, and is now the preferred method for setting this limit. You are encouraged not to rely on --master-retry-count in new applications and, when upgrading to MySQL 5.6.1 or later from earlier versions of MySQL, to update any existing applications that rely on it, so that they use CHANGE MASTER TO ... MASTER_RETRY_COUNT instead.
MASTER_DELAY specifies how many seconds behind the master the slave must lag. An event received from the master is not executed until at least interval seconds later than its execution on the master. The default is 0. An error occurs if interval is not a nonnegative integer in the range from 0 to 231–1. For more information, see Section 16.3.9, “Delayed Replication”. This option was added in MySQL 5.6.0.
MASTER_BIND is for use on replication slaves having multiple network interfaces, and determines which of the slave's network interfaces is chosen for connecting to the master.
The address configured with this option, if any, can be seen in the Master_Bind column of the output from SHOW SLAVE STATUS. If you are using slave status log tables (server started with --master-info-repository=TABLE), the value can also be seen as the Master_bind column of the mysql.slave_master_info table.
The ability to bind a replication slave to a specific network interface was added in MySQL 5.6.2.
MASTER_HEARTBEAT_PERIOD sets the interval in seconds between replication heartbeats. Whenever the master's binary log is updated with an event, the waiting period for the next heartbeat is reset. interval is a decimal value having the range 0 to 4294967 seconds and a resolution in milliseconds; the smallest nonzero value is 0.001. Heartbeats are sent by the master only if there are no unsent events in the binary log file for a period longer than interval.
If you are logging master connection information to tables, MASTER_HEARTBEAT_PERIOD can be seen as the value of the Heartbeat column of the mysql.slave_master_info table.
Setting interval to 0 disables heartbeats altogether. The default value for interval is equal to the value of slave_net_timeout divided by 2.
Setting @@global.slave_net_timeout to a value less than that of the current heartbeat interval results in a warning being issued. The effect of issuing RESET SLAVE on the heartbeat interval is to reset it to the default value.
MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the slave I/O thread should begin reading from the master the next time the thread starts. RELAY_LOG_FILE and RELAY_LOG_POS are the coordinates at which the slave SQL thread should begin reading from the relay log the next time the thread starts. If you specify either of MASTER_LOG_FILE or MASTER_LOG_POS, you cannot specify RELAY_LOG_FILE or RELAY_LOG_POS. In MySQL 5.6.5 and later, if you specify either of MASTER_LOG_FILE or MASTER_LOG_POS, you also cannot specify MASTER_AUTO_POSITION = 1 (described later in this section). If neither of MASTER_LOG_FILE or MASTER_LOG_POS is specified, the slave uses the last coordinates of the slave SQL thread before CHANGE MASTER TO was issued. This ensures that there is no discontinuity in replication, even if the slave SQL thread was late compared to the slave I/O thread, when you merely want to change, say, the password to use.
MASTER_AUTO_POSITION was added in MySQL 5.6.5. If MASTER_AUTO_POSITION = 1 is used with CHANGE MASTER TO, the slave attempts to connect to the master using the GTID-based replication protocol. In this case, the coordinates represented by MASTER_LOG_FILE and MASTER_LOG_POS are not used, and global transaction identifiers are used instead. Thus the use of either or both of these options together with MASTER_AUTO_POSITION causes an error.
Beginning with MySQL 5.6.10, you can see whether replication is running with autopositioning enabled by checking the output of SHOW SLAVE STATUS. (Bug #15992220)
gtid_mode must also be enabled before issuing CHANGE MASTER TO ... MASTER_AUTO_POSITION = 1. Otherwise, the statement fails with an error.
To revert to the older file-based replication protocol after using GTIDs, you can issue a new CHANGE MASTER TO statement that specifies MASTER_AUTO_POSITION = 0, as well as at least one of MASTER_LOG_FILE or MASTER_LOG_POSITION.
CHANGE MASTER TO deletes all relay log files and starts a new one, unless you specify RELAY_LOG_FILE or RELAY_LOG_POS. In that case, relay log files are kept; the relay_log_purge global variable is set silently to 0.
Prior to MySQL 5.6.2, RELAY_LOG_FILE required an absolute path. Beginning with MySQL 5.6.2, the path can be relative, in which case it is assumed to be relative to the slave's data directory. (Bug #12190)
IGNORE_SERVER_IDS takes a comma-separated list of 0 or more server IDs. Events originating from the corresponding servers are ignored, with the exception of log rotation and deletion events, which are still recorded in the relay log.
In circular replication, the originating server normally acts as the terminator of its own events, so that they are not applied more than once. Thus, this option is useful in circular replication when one of the servers in the circle is removed. Suppose that you have a circular replication setup with 4 servers, having server IDs 1, 2, 3, and 4, and server 3 fails. When bridging the gap by starting replication from server 2 to server 4, you can include IGNORE_SERVER_IDS = (3) in the CHANGE MASTER TO statement that you issue on server 4 to tell it to use server 2 as its master instead of server 3. Doing so causes it to ignore and not to propagate any statements that originated with the server that is no longer in use.
If a CHANGE MASTER TO statement is issued without any IGNORE_SERVER_IDS option, any existing list is preserved; RESET SLAVE also has no effect on the server ID list. To clear the list of ignored servers, it is necessary to use the option with an empty list:
CHANGE MASTER TO IGNORE_SERVER_IDS = ();
If IGNORE_SERVER_IDS contains the server's own ID and the server was started with the --replicate-same-server-id option enabled, an error results.
In MySQL 5.6, the master.info file and the output of SHOW SLAVE STATUS provide the list of servers that are currently ignored. For more information, see Section 16.2.2.2, “Slave Status Logs”, and Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”.
In MySQL 5.6, invoking CHANGE MASTER TO causes the previous values for MASTER_HOST, MASTER_PORT, MASTER_LOG_FILE, and MASTER_LOG_POS to be written to the error log, along with other information about the slave's state prior to execution.
In MySQL 5.6.7 and later, CHANGE MASTER TO causes an implicit commit of an ongoing transaction. See Section 13.3.3, “Statements That Cause an Implicit Commit”.
CHANGE MASTER TO is useful for setting up a slave when you have the snapshot of the master and have recorded the master binary log coordinates corresponding to the time of the snapshot. After loading the snapshot into the slave to synchronize it to the slave, you can run CHANGE MASTER TO MASTER_LOG_FILE='log_name', MASTER_LOG_POS=log_pos on the slave to specify the coordinates at which the slave should begin reading the master binary log.
The following example changes the master server the slave uses and establishes the master binary log coordinates from which the slave begins reading. This is used when you want to set up the slave to replicate the master:
CHANGE MASTER TO
MASTER_HOST='master2.mycompany.com',
MASTER_USER='replication',
MASTER_PASSWORD='bigs3cret',
MASTER_PORT=3306,
MASTER_LOG_FILE='master2-bin.001',
MASTER_LOG_POS=4,
MASTER_CONNECT_RETRY=10;
The next example shows an operation that is less frequently employed. It is used when the slave has relay log files that you want it to execute again for some reason. To do this, the master need not be reachable. You need only use CHANGE MASTER TO and start the SQL thread (START SLAVE SQL_THREAD):
CHANGE MASTER TO
RELAY_LOG_FILE='slave-relay-bin.006',
RELAY_LOG_POS=4025;
You can even use the second operation in a nonreplication setup with a standalone, nonslave server for recovery following a crash. Suppose that your server has crashed and you have restored it from a backup. You want to replay the server's own binary log files (not relay log files, but regular binary log files), named (for example) myhost-bin.*. First, make a backup copy of these binary log files in some safe place, in case you don't exactly follow the procedure below and accidentally have the server purge the binary log. Use SET GLOBAL relay_log_purge=0 for additional safety. Then start the server without the --log-bin option, Instead, use the --replicate-same-server-id, --relay-log=myhost-bin (to make the server believe that these regular binary log files are relay log files) and --skip-slave-start options. After the server starts, issue these statements:
CHANGE MASTER TO
RELAY_LOG_FILE='myhost-bin.153',
RELAY_LOG_POS=410,
MASTER_HOST='some_dummy_string';
START SLAVE SQL_THREAD;
The server reads and executes its own binary log files, thus achieving crash recovery. Once the recovery is finished, run STOP SLAVE, shut down the server, delete the master.info and relay-log.info files, and restart the server with its original options.
Specifying the MASTER_HOST option (even with a dummy value) is required to make the server think it is a slave.
The following table shows the maximum permissible length for the string-valued options.
Option | Maximum Length |
---|---|
MASTER_HOST | 60 |
MASTER_USER | 16 |
MASTER_PASSWORD | 32 |
MASTER_LOG_FILE | 255 |
RELAY_LOG_FILE | 255 |
MASTER_SSL_CA | 255 |
MASTER_SSL_CAPATH | 255 |
MASTER_SSL_CERT | 255 |
MASTER_SSL_CRL | 255 |
MASTER_SSL_CRLPATH | 255 |
MASTER_SSL_KEY | 255 |
MASTER_SSL_CIPHER | 511 |
13.4.2.2. MASTER_POS_WAIT() Syntax
SELECT MASTER_POS_WAIT('master_log_file', master_log_pos [, timeout])
This is actually a function, not a statement. It is used to ensure that the slave has read and executed events up to a given position in the master's binary log. See Section 12.16, “Miscellaneous Functions”, for a full description.
13.4.2.3. RESET SLAVE Syntax
RESET SLAVE [ALL]
RESET SLAVE makes the slave forget its replication position in the master's binary log. This statement is meant to be used for a clean start: It deletes the master.info and relay-log.info files, all the relay log files, and starts a new relay log file. It also resets to 0 the replication delay specified with the MASTER_DELAY option to CHANGE MASTER TO. To use RESET SLAVE, the slave replication threads must be stopped (use STOP SLAVE if necessary).
Note
All relay log files are deleted, even if they have not been completely executed by the slave SQL thread. (This is a condition likely to exist on a replication slave if you have issued a STOP SLAVE statement or if the slave is highly loaded.)
In MySQL 5.6 (unlike the case in MySQL 5.1 and earlier), RESET SLAVE does not change any replication connection parameters such as master host, master port, master user, or master password, which are retained in memory. This means that START SLAVE can be issued without requiring a CHANGE MASTER TO statement following RESET SLAVE.
Connection parameters are reset if the slave mysqld is shut down following RESET SLAVE. In MySQL 5.6.3 and later, you can instead use RESET SLAVE ALL to reset these connection parameters (Bug #11809016).
In MySQL 5.6.7 and later, RESET SLAVE causes an implicit commit of an ongoing transaction. See Section 13.3.3, “Statements That Cause an Implicit Commit”.
If the slave SQL thread was in the middle of replicating temporary tables when it was stopped, and RESET SLAVE is issued, these replicated temporary tables are deleted on the slave.
13.4.2.4. SET GLOBAL sql_slave_skip_counter Syntax
SET GLOBAL sql_slave_skip_counter = N
This statement skips the next N events from the master. This is useful for recovering from replication stops caused by a statement.
This statement is valid only when the slave threads are not running. Otherwise, it produces an error.
When using this statement, it is important to understand that the binary log is actually organized as a sequence of groups known as event groups. Each event group consists of a sequence of events.
For transactional tables, an event group corresponds to a transaction.
For nontransactional tables, an event group corresponds to a single SQL statement.
Note
A single transaction can contain changes to both transactional and nontransactional tables.
When you use SET GLOBAL sql_slave_skip_counter to skip events and the result is in the middle of a group, the slave continues to skip events until it reaches the end of the group. Execution then starts with the next event group.
In MySQL 5.6, issuing this statement causes the previous values of RELAY_LOG_FILE, RELAY_LOG_POS, and sql_slave_skip_counter to be written to the error log.
13.4.2.5. START SLAVE Syntax
START SLAVE [thread_types] [until_option] [connection_options]
thread_types:
[thread_type [, thread_type] ...]
thread_type:
IO_THREAD | SQL_THREAD
until_option:
UNTIL { {SQL_BEFORE_GTIDS | SQL_AFTER_GTIDS} = gtid_set
| MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
| RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos
| SQL_AFTER_MTS_GAPS }
connection_options:
[USER='user_name'] [PASSWORD='user_pass'] [DEFAULT_AUTH='plugin_name'] [PLUGIN_DIR='plugin_dir']
gtid_set:
uuid_set [, uuid_set] ...
| ''
uuid_set:
uuid:interval[:interval]...
uuid:
hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh
h:
[0-9,A-F]
interval:
n[-n]
(n >= 1)
START SLAVE with no thread_type options starts both of the slave threads. The I/O thread reads events from the master server and stores them in the relay log. The SQL thread reads events from the relay log and executes them. START SLAVE requires the SUPER privilege.
If START SLAVE succeeds in starting the slave threads, it returns without any error. However, even in that case, it might be that the slave threads start and then later stop (for example, because they do not manage to connect to the master or read its binary log, or some other problem). START SLAVE does not warn you about this. You must check the slave's error log for error messages generated by the slave threads, or check that they are running satisfactorily with SHOW SLAVE STATUS.
In MySQL 5.6.7 and later, START SLAVE causes an implicit commit of an ongoing transaction. See Section 13.3.3, “Statements That Cause an Implicit Commit”.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
MySQL 5.6.4 and later supports pluggable user-password authentication with START SLAVE with the USER, PASSWORD, DEFAULT_AUTH and PLUGIN_DIR options, as described in the following list:
USER: User name. Cannot be set to an empty or null string, or left unset if PASSWORD is used.
PASSWORD: Password.
DEFAULT_AUTH: Name of plugin; default is MySQL native authentication.
PLUGIN_DIR: Location of plugin.
Starting with MySQL 5.6.4, you cannot use the SQL_THREAD option when specifying USER, PASSWORD, or both. (Bug #13083642).
See Section 6.3.7, “Pluggable Authentication”, for more information.
If an insecure connection is used with any these options, the server issues the warning Sending passwords in plain text without SSL/TLS is extremely insecure.
Starting with MySQL 5.6.6, START SLAVE ... UNTIL supports two additional options for use with global transaction identifiers (GTIDs) (see Section 16.1.3, “Replication with Global Transaction Identifiers”). Each of these takes a set of one or more global transaction identifiers gtid_set as an argument (see GTID sets, for more information).
When no thread_type is specified, START SLAVE UNTIL SQL_BEFORE_GTIDS causes both the slave SQL thread to process and the slave I/O thread to fetch transactions until both of them have reached the first transaction whose GTID is listed in the gtid_set. START SLAVE UNTIL SQL_AFTER_GTIDS causes the slave threads to process all transactions until the last transaction in the gtid_set has been processed by both threads. In other words, START SLAVE UNTIL SQL_BEFORE_GTIDS causes the slave SQL to process and I/O threads to fetch all transactions occurring before the first GTID in the gtid_set is reached, and START SLAVE UNTIL SQL_AFTER_GTIDS causes the slave threads to handle all transactions, including those whose GTIDs are found in gtid_set, until each has encountered a transaction whose GTID is not part of the set. SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS each support the SQL_THREAD and IO_THREAD options.
For example, START SLAVE SQL_THREAD UNTIL SQL_BEFORE_GTIDS = 3E11FA47-71CA-11E1-9E33-C80AA9429562:11-56 causes the slave SQL thread to process all transactions originating from the master whose server_uuid is 3E11FA47-71CA-11E1-9E33-C80AA9429562 until it encounters the transaction having sequence number 11; it then stops without processing this transaction. In other words, all transactions up to and including the transaction with sequence number 10 are processed. Executing START SLAVE IO_THREAD UNTIL SQL_AFTER_GTIDS = 3E11FA47-71CA-11E1-9E33-C80AA9429562:11-56, on the other hand, would cause the slave I/O thread to obtain all transactions just mentioned from the master, including all of the transactions having the sequence numbers 11 through 56, and then to stop without processing any additional transactions; that is, the transaction having sequence number 56 would be the last transaction fetched by the slave I/O thread.
With neither the SQL_THREAD option nor the IO_THREAD option, the previous statement would cause the slave SQL thread to execute all transactions originating from this master, including all transactions with sequence numbers 11 through 56, and then to stop without processing any additional transactions. The same command would also cause the slave I/O thread to start. When the SQL thread reaches the condition, it is stopped. In other words, START SLAVE UNTIL SQL_BEFORE_GTIDS has the same effect as START SLAVE SQL_THREAD, IO_THREAD UNTIL SQL_BEFORE_GTIDS; the slave SQL thread and slave I/O thread are each started, and the SQL thread continues executing transactions until the stop condition for that thread is met. (Similarly, START SLAVE UNTIL SQL_AFTER_GTIDS is effectively the same as START SLAVE SQL_THREAD, IO_THREAD UNTIL SQL_AFTER_GTIDS.)
Note
The SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS keywords are present in the MySQL 5.6.5 server; however, neither of them functioned correctly as options with START SLAVE [SQL_THREAD | IO_THREAD] UNTIL in that version, and are therefore supported beginning only with MySQL 5.6.6. (Bug#13810456)
START SLAVE UNTIL SQL_AFTER_MTS_GAPS is available in MySQL 5.6.6 or later. This statement causes a multi-threaded slave's SQL threads to run until no more gaps are found in the relay log, and then to stop. This statement can take an SQL_THREAD option, but the effects of the statement remain unchanged. It has no effect on the slave I/O thread (and cannot be used with the IO_THREAD option). START SLAVE UNTIL SQL_AFTER_MTS_GAPS should be used before switching the slave from multi-threaded mode to single-threaded mode (that is, when resetting slave_parallel_workers back to 0 from a positive, nonzero value) after slave has failed with errors in multi-threaded mode.
To change a failed multi-threaded slave to single-threaded mode, you can issue the following series of statements, in the order shown:
START SLAVE UNTIL SQL_AFTER_MTS_GAPS;
SET @@GLOBAL.slave_parallel_workers = 0;
START SLAVE SQL_THREAD;
If you were running the failed multi-threaded slave with relay_log_recovery enabled, then you must issue START SLAVE UNTIL SQL_AFTER_MTS_GAPS prior to executing CHANGE MASTER TO. Otherwise the latter statement fails.
Note
It is possible to view the entire text of a running START SLAVE ... statement, including any USER or PASSWORD values used, in the output of SHOW PROCESSLIST. This is also true for the text of a running CHANGE MASTER TO statement, including any values it employs for MASTER_USER or MASTER_PASSWORD.
START SLAVE sends an acknowledgment to the user after both the I/O thread and the SQL thread have started. However, the I/O thread may not yet have connected. For this reason, a successful START SLAVE causes SHOW SLAVE STATUS to show Slave_SQL_Running=Yes, but this does not guarantee that Slave_IO_Running=Yes (because Slave_IO_Running=Yes only if the I/O thread is running and connected). For more information, see Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”, and Section 16.1.5.1, “Checking Replication Status”.
You can add IO_THREAD and SQL_THREAD options to the statement to name which of the threads to start. In MySQL 5.6.4 and later, the SQL_THREAD option is disallowed when specifying USER, PASSWORD, or both (Bug #13083642).
An UNTIL clause (until_option, in the preceding grammar) may be added to specify that the slave should start and run until the SQL thread reaches a given point in the master binary log or in the slave relay log. When the SQL thread reaches that point, it stops. If the SQL_THREAD option is specified in the statement, it starts only the SQL thread. Otherwise, it starts both slave threads. If the SQL thread is running, the UNTIL clause is ignored and a warning is issued. You cannot use an UNTIL clause with the IO_THREAD option.
In MySQL 5.6.6 and later, it is also possible with START SLAVE UNTIL to specify a stop point relative to a given GTID or set of GTIDs using one of the options SQL_BEFORE_GTIDS or SQL_AFTER_GTIDS, as explained previously in this section. When using one of these options, you can specify SQL_THREAD, IO_THREAD, both of these, or neither of them. If you specify only SQL_THREAD, then only the slave SQL thread is affected by the statement; if only IO_THREAD is used, then only the slave I/O is affected. If both SQL_THREAD and IO_THREAD are used, or if neither of them is used, then both the SQL and I/O threads are affected by the statement.
The UNTIL clause is not supported for multi-threaded slaves except when also using SQL_AFTER_MTS_GAPS. Prior to MySQL 5.6.6, UNTIL was not supported at all for multi-threaded slaves.
For an UNTIL clause, you must specify any one of the following:
Both a log file name and a position in that file
(MySQL 5.6.6 or later:) Either of SQL_BEFORE_GTIDS or SQL_AFTER_GTIDS
(MySQL 5.6.6 or later:) SQL_AFTER_MTS_GAPS
Do not mix master and relay log options. In MySQL 5.6.6 and later, do not mix log file options with GTID options.
Any UNTIL condition is reset by a subsequent STOP SLAVE statement, a START SLAVE statement that includes no UNTIL clause, or a server restart.
When specifying a log file and position, you can use the IO_THREAD option with START SLAVE ... UNTIL even though only the SQL thread is affected by this statement. The IO_THREAD option is ignored in such cases. The preceding restriction does not apply when using one of the GTID options (SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS) introduced in MySQL 5.6.6; the GTID options support both SQL_THREAD and IO_THREAD, as explained previously in this section.
The UNTIL clause can be useful for debugging replication, or to cause replication to proceed until just before the point where you want to avoid having the slave replicate an event. For example, if an unwise DROP TABLE statement was executed on the master, you can use UNTIL to tell the slave to execute up to that point but no farther. To find what the event is, use mysqlbinlog with the master binary log or slave relay log, or by using a SHOW BINLOG EVENTS statement.
If you are using UNTIL to have the slave process replicated queries in sections, it is recommended that you start the slave with the --skip-slave-start option to prevent the SQL thread from running when the slave server starts. It is probably best to use this option in an option file rather than on the command line, so that an unexpected server restart does not cause it to be forgotten.
The SHOW SLAVE STATUS statement includes output fields that display the current values of the UNTIL condition.
In very old versions of MySQL (before 4.0.5), this statement was called SLAVE START. That syntax is no longer accepted as of MySQL 5.6.1.
13.4.2.6. STOP SLAVE Syntax
STOP SLAVE [thread_types]
thread_types:
[thread_type [, thread_type] ...]
thread_type: IO_THREAD | SQL_THREAD
Stops the slave threads. STOP SLAVE requires the SUPER privilege. Recommended best practice is to execute STOP SLAVE on the slave before stopping the slave server (see Section 5.1.12, “The Shutdown Process”, for more information).
When using the row-based logging format: You should execute STOP SLAVE or STOP SLAVE SQL_THREAD on the slave prior to shutting down the slave server if you are replicating any tables that use a nontransactional storage engine (see the Note later in this section).
Like START SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options to name the thread or threads to be stopped.
In MySQL 5.6.7 and later, STOP SLAVE causes an implicit commit of an ongoing transaction. See Section 13.3.3, “Statements That Cause an Implicit Commit”.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
Note
In MySQL 5.6, STOP SLAVE waits until the current replication event group affecting one or more nontransactional tables has finished executing (if there is any such replication group), or until the user issues a KILL QUERY or KILL CONNECTION statement. (Bug #319, Bug #38205)
In old versions of MySQL (before 4.0.5), this statement was called SLAVE STOP. That syntax is no longer accepted as of MySQL 5.6.1.
13.5. SQL Syntax for Prepared Statements
MySQL 5.6 provides support for server-side prepared statements. This support takes advantage of the efficient client/server binary protocol available since MySQL 4.1. Using prepared statements with placeholders for parameter values has the following benefits:
Less overhead for parsing the statement each time it is executed. Typically, database applications process large volumes of almost-identical statements, with only changes to literal or variable values in clauses such as WHERE for queries and deletes, SET for updates, and VALUES for inserts.
Protection against SQL injection attacks. The parameter values can contain unescaped SQL quote and delimiter characters.
Prepared Statements in Application Programs
You can use server-side prepared statements through client programming interfaces, including the MySQL C API client library or MySQL Connector/C for C programs, MySQL Connector/J for Java programs, and MySQL Connector/Net for programs using .NET technologies. For example, the C API provides a set of function calls that make up its prepared statement API. See Section 21.8.7, “C API Prepared Statements”. Other language interfaces can provide support for prepared statements that use the binary protocol by linking in the C client library, one example being the mysqli extension, available in PHP 5.0 and later.
Prepared Statements in SQL Scripts
An alternative SQL interface to prepared statements is available. This interface is not as efficient as using the binary protocol through a prepared statement API, but requires no programming because it is available directly at the SQL level:
You can use it when no programming interface is available to you.
You can use it from any program that can send SQL statements to the server to be executed, such as the mysql client program.
You can use it even if the client is using an old version of the client library, as long as you connect to a server running MySQL 4.1 or higher.
SQL syntax for prepared statements is intended to be used for situations such as these:
To test how prepared statements work in your application before coding it.
To use prepared statements when you do not have access to a programming API that supports them.
To interactively troubleshoot application issues with prepared statements.
To create a test case that reproduces a problem with prepared statements, so that you can file a bug report.
PREPARE, EXECUTE, and DEALLOCATE PREPARE Statements
SQL syntax for prepared statements is based on three SQL statements:
PREPARE prepares a statement for execution (see Section 13.5.1, “PREPARE Syntax”).
EXECUTE executes a prepared statement (see Section 13.5.2, “EXECUTE Syntax”).
DEALLOCATE PREPARE releases a prepared statement (see Section 13.5.3, “DEALLOCATE PREPARE Syntax”).
The following examples show two equivalent ways of preparing a statement that computes the hypotenuse of a triangle given the lengths of the two sides.
The first example shows how to create a prepared statement by using a string literal to supply the text of the statement:
mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;
The second example is similar, but supplies the text of the statement as a user variable:
mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;
Here is an additional example that demonstrates how to choose the table on which to perform a query at runtime, by storing the name of the table as a user variable:
mysql> USE test;
mysql> CREATE TABLE t1 (a INT NOT NULL);
mysql> INSERT INTO t1 VALUES (4), (8), (11), (32), (80);
mysql> SET @table = 't1';
mysql> SET @s = CONCAT('SELECT * FROM ', @table);
mysql> PREPARE stmt3 FROM @s;
mysql> EXECUTE stmt3;
+----+
| a |
+----+
| 4 |
| 8 |
| 11 |
| 32 |
| 80 |
+----+
mysql> DEALLOCATE PREPARE stmt3;
A prepared statement is specific to the session in which it was created. If you terminate a session without deallocating a previously prepared statement, the server deallocates it automatically.
A prepared statement is also global to the session. If you create a prepared statement within a stored routine, it is not deallocated when the stored routine ends.
To guard against too many prepared statements being created simultaneously, set the max_prepared_stmt_count system variable. To prevent the use of prepared statements, set the value to 0.
SQL Syntax Allowed in Prepared Statements
The following SQL statements can be used as prepared statements:
ALTER TABLE
ALTER USER (as of MySQL 5.6.8)
ANALYZE TABLE
CACHE INDEX
CALL
CHANGE MASTER
CHECKSUM {TABLE | TABLES}
COMMIT
{CREATE | RENAME | DROP} DATABASE
{CREATE | DROP} INDEX
{CREATE | RENAME | DROP} TABLE
{CREATE | RENAME | DROP} USER
DELETE
DO
FLUSH {TABLE | TABLES | TABLES WITH READ LOCK | HOSTS | PRIVILEGES
| LOGS | STATUS | MASTER | SLAVE | DES_KEY_FILE | USER_RESOURCES}
GRANT
INSERT
INSTALL PLUGIN
KILL
LOAD INDEX INTO CACHE
OPTIMIZE TABLE
REPAIR TABLE
REPLACE
RESET {MASTER | SLAVE | QUERY CACHE}
REVOKE
SELECT
SET
SHOW {AUTHORS | CONTRIBUTORS | WARNINGS | ERRORS}
SHOW BINLOG EVENTS
SHOW CREATE {PROCEDURE | FUNCTION | EVENT | TABLE | VIEW}
SHOW {MASTER | BINARY} LOGS
SHOW {MASTER | SLAVE} STATUS
SLAVE {START | STOP}
TRUNCATE TABLE
UNINSTALL PLUGIN
UPDATE
Other statements are not supported in MySQL 5.6.
Generally, statements not permitted in SQL prepared statements are also not permitted in stored programs. Exceptions are noted in Section E.1, “Restrictions on Stored Programs”.
Metadata changes to tables or views referred to by prepared statements are detected and cause automatic repreparation of the statement when it is next executed. For more information, see Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.
Placeholders can be used for the arguments of the LIMIT clause when using prepared statements. See Section 13.2.9, “SELECT Syntax”.
In prepared CALL statements used with PREPARE and EXECUTE, placeholder support for OUT and INOUT parameters is available beginning with MySQL 5.6. See Section 13.2.1, “CALL Syntax”, for an example and a workaround for earlier versions. Placeholders can be used for IN parameters regardless of version.
SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to PREPARE cannot itself be a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.
SQL syntax for prepared statements is distinct from using prepared statement API calls. For example, you cannot use the mysql_stmt_prepare() C API function to prepare a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.
SQL syntax for prepared statements can be used within stored procedures, but not in stored functions or triggers. However, a cursor cannot be used for a dynamic statement that is prepared and executed with PREPARE and EXECUTE. The statement for a cursor is checked at cursor creation time, so the statement cannot be dynamic.
SQL syntax for prepared statements does not support multi-statements (that is, multiple statements within a single string separated by “;” characters).
Prepared statements use the query cache under the conditions described in Section 8.9.3.1, “How the Query Cache Operates”.
To write C programs that use the CALL SQL statement to execute stored procedures that contain prepared statements, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition to any result sets that might be returned by statements executed within the procedure.
CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). For additional information, see Section 13.2.1, “CALL Syntax”.
13.5.1. PREPARE Syntax
PREPARE stmt_name FROM preparable_stmt
The PREPARE statement prepares a SQL statement and assigns it a name, stmt_name, by which to refer to the statement later. The prepared statement is executed with EXECUTE and released with DEALLOCATE PREPARE. For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.
Statement names are not case sensitive. preparable_stmt is either a string literal or a user variable that contains the text of the SQL statement. The text must represent a single statement, not multiple statements. Within the statement, ? characters can be used as parameter markers to indicate where data values are to be bound to the query later when you execute it. The ? characters should not be enclosed within quotation marks, even if you intend to bind them to string values. Parameter markers can be used only where data values should appear, not for SQL keywords, identifiers, and so forth.
If a prepared statement with the given name already exists, it is deallocated implicitly before the new statement is prepared. This means that if the new statement contains an error and cannot be prepared, an error is returned and no statement with the given name exists.
The scope of a prepared statement is the session within which it is created, which as several implications:
A prepared statement created in one session is not available to other sessions.
When a session ends, whether normally or abnormally, its prepared statements no longer exist. If auto-reconnect is enabled, the client is not notified that the connection was lost. For this reason, clients may wish to disable auto-reconnect. See Section 21.8.15, “Controlling Automatic Reconnection Behavior”.
A prepared statement created within a stored program continues to exist after the program finishes executing and can be executed outside the program later.
A statement prepared in stored program context cannot refer to stored procedure or function parameters or local variables because they go out of scope when the program ends and would be unavailable were the statement to be executed later outside the program. As a workaround, refer instead to user-defined variables, which also have session scope; see Section 9.4, “User-Defined Variables”.
13.5.2. EXECUTE Syntax
EXECUTE stmt_name
[USING @var_name [, @var_name] ...]
After preparing a statement with PREPARE, you execute it with an EXECUTE statement that refers to the prepared statement name. If the prepared statement contains any parameter markers, you must supply a USING clause that lists user variables containing the values to be bound to the parameters. Parameter values can be supplied only by user variables, and the USING clause must name exactly as many variables as the number of parameter markers in the statement.
You can execute a given prepared statement multiple times, passing different variables to it or setting the variables to different values before each execution.
For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.
13.5.3. DEALLOCATE PREPARE Syntax
{DEALLOCATE | DROP} PREPARE stmt_name
To deallocate a prepared statement produced with PREPARE, use a DEALLOCATE PREPARE statement that refers to the prepared statement name. Attempting to execute a prepared statement after deallocating it results in an error. If too many prepared statements are created and not deallocated by either the DEALLOCATE PREPARE statement or the end of the session, you might encounter the upper limit enforced by the max_prepared_stmt_count system variable.
For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.
13.6. MySQL Compound-Statement Syntax
This section describes the syntax for the BEGIN ... END compound statement and other statements that can be used in the body of stored programs: Stored procedures and functions, triggers, and events. These objects are defined in terms of SQL code that is stored on the server for later invocation (see Chapter 18, Stored Programs and Views).
A compound statement is a block that can contain other blocks; declarations for variables, condition handlers, and cursors; and flow control constructs such as loops and conditional tests.
13.6.1. BEGIN ... END Compound-Statement Syntax
[begin_label:] BEGIN
[statement_list]
END [end_label]
BEGIN ... END syntax is used for writing compound statements, which can appear within stored programs (stored procedures and functions, triggers, and events). A compound statement can contain multiple statements, enclosed by the BEGIN and END keywords. statement_list represents a list of one or more statements, each terminated by a semicolon (;) statement delimiter. The statement_list itself is optional, so the empty compound statement (BEGIN END) is legal.
BEGIN ... END blocks can be nested.
Use of multiple statements requires that a client is able to send statement strings containing the ; statement delimiter. In the mysql command-line client, this is handled with the delimiter command. Changing the ; end-of-statement delimiter (for example, to //) permit ; to be used in a program body. For an example, see Section 18.1, “Defining Stored Programs”.
A BEGIN ... END block can be labeled. See Section 13.6.2, “Statement Label Syntax”.
The optional [NOT] ATOMIC clause is not supported. This means that no transactional savepoint is set at the start of the instruction block and the BEGIN clause used in this context has no effect on the current transaction.
Note
Within all stored programs, the parser treats BEGIN [WORK] as the beginning of a BEGIN ... END block. To begin a transaction in this context, use START TRANSACTION instead.
13.6.2. Statement Label Syntax
[begin_label:] BEGIN
[statement_list]
END [end_label]
[begin_label:] LOOP
statement_list
END LOOP [end_label]
[begin_label:] REPEAT
statement_list
UNTIL search_condition
END REPEAT [end_label]
[begin_label:] WHILE search_condition DO
statement_list
END WHILE [end_label]
Labels are permitted for BEGIN ... END blocks and for the LOOP, REPEAT, and WHILE statements. Label use for those statements follows these rules:
begin_label must be followed by a colon.
begin_label can be given without end_label. If end_label is present, it must be the same as begin_label.
end_label cannot be given without begin_label.
Labels at the same nesting level must be distinct.
Labels can be up to 16 characters long.
To refer to a label within the labeled construct, use an ITERATE or LEAVE statement. The following example uses those statements to continue iterating or terminate the loop:
CREATE PROCEDURE doiterate(p1 INT)
BEGIN
label1: LOOP
SET p1 = p1 + 1;
IF p1 < 10 THEN ITERATE label1; END IF;
LEAVE label1;
END LOOP label1;
END;
The scope of a block label does not include the code for handlers declared within the block. For details, see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.
13.6.3. DECLARE Syntax
The DECLARE statement is used to define various items local to a program:
Local variables. See Section 13.6.4, “Variables in Stored Programs”.
Conditions and handlers. See Section 13.6.7, “Condition Handling”.
Cursors. See Section 13.6.6, “Cursors”.
DECLARE is permitted only inside a BEGIN ... END compound statement and must be at its start, before any other statements.
Declarations must follow a certain order. Cursor declarations must appear before handler declarations. Variable and condition declarations must appear before cursor or handler declarations.
13.6.4. Variables in Stored Programs
System variables and user-defined variables can be used in stored programs, just as they can be used outside stored-program context. In addition, stored programs can use DECLARE to define local variables, and stored routines (procedures and functions) can be declared to take parameters that communicate values between the routine and its caller.
To declare local variables, use the DECLARE statement, as described in Section 13.6.4.1, “Local Variable DECLARE Syntax”.
Variables can be set directly with the SET statement. See Section 13.7.4, “SET Syntax”.
Results from queries can be retrieved into local variables using SELECT ... INTO var_list or by opening a cursor and using FETCH ... INTO var_list. See Section 13.2.9.1, “SELECT ... INTO Syntax”, and Section 13.6.6, “Cursors”.
For information about the scope of local variables and how MySQL resolves ambiguous names, see Section 13.6.4.2, “Local Variable Scope and Resolution”.
It is not permitted to assign the value DEFAULT to stored procedure or function parameters or stored program local variables (for example with a SET var_name = DEFAULT statement). As of MySQL 5.6.6, this results in a syntax error.
13.6.4.1. Local Variable DECLARE Syntax
DECLARE var_name [, var_name] ... type [DEFAULT value]
This statement declares local variables within stored programs. To provide a default value for a variable, include a DEFAULT clause. The value can be specified as an expression; it need not be a constant. If the DEFAULT clause is missing, the initial value is NULL.
Local variables are treated like stored routine parameters with respect to data type and overflow checking. See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.
Variable declarations must appear before cursor or handler declarations.
Local variable names are not case sensitive. Permissible characters and quoting rules are the same as for other identifiers, as described in Section 9.2, “Schema Object Names”.
The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can be referred to in blocks nested within the declaring block, except those blocks that declare a variable with the same name.
13.6.4.2. Local Variable Scope and Resolution
The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can be referred to in blocks nested within the declaring block, except those blocks that declare a variable with the same name.
Because local variables are in scope only during stored program execution, references to them are not permitted in prepared statements created within a stored program. Prepared statement scope is the current session, not the stored program, so the statement could be executed after the program ends, at which point the variables would no longer be in scope. For example, SELECT ... INTO local_var cannot be used as a prepared statement. This restriction also applies to stored procedure and function parameters. See Section 13.5.1, “PREPARE Syntax”.
A local variable should not have the same name as a table column. If an SQL statement, such as a SELECT ... INTO statement, contains a reference to a column and a declared local variable with the same name, MySQL currently interprets the reference as the name of a variable. Consider the following procedure definition:
CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
DECLARE xname VARCHAR(5) DEFAULT 'bob';
DECLARE newname VARCHAR(5);
DECLARE xid INT;
SELECT xname, id INTO newname, xid
FROM table1 WHERE xname = xname;
SELECT newname;
END;
MySQL interprets xname in the SELECT statement as a reference to the xname variable rather than the xname column. Consequently, when the procedure sp1()is called, the newname variable returns the value 'bob' regardless of the value of the table1.xname column.
Similarly, the cursor definition in the following procedure contains a SELECT statement that refers to xname. MySQL interprets this as a reference to the variable of that name rather than a column reference.
CREATE PROCEDURE sp2 (x VARCHAR(5))
BEGIN
DECLARE xname VARCHAR(5) DEFAULT 'bob';
DECLARE newname VARCHAR(5);
DECLARE xid INT;
DECLARE done TINYINT DEFAULT 0;
DECLARE cur1 CURSOR FOR SELECT xname, id FROM table1;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;
OPEN cur1;
read_loop: LOOP
FETCH FROM cur1 INTO newname, xid;
IF done THEN LEAVE read_loop; END IF;
SELECT newname;
END LOOP;
CLOSE cur1;
END;
See also Section E.1, “Restrictions on Stored Programs”.
13.6.5. Flow Control Statements
MySQL supports the IF, CASE, ITERATE, LEAVE LOOP, WHILE, and REPEAT constructs for flow control within stored programs. It also supports RETURN within stored functions.
Many of these constructs contain other statements, as indicated by the grammar specifications in the following sections. Such constructs may be nested. For example, an IF statement might contain a WHILE loop, which itself contains a CASE statement.
MySQL does not support FOR loops.
13.6.5.1. CASE Syntax
CASE case_value
WHEN when_value THEN statement_list
[WHEN when_value THEN statement_list] ...
[ELSE statement_list]
END CASE
Or:
CASE
WHEN search_condition THEN statement_list
[WHEN search_condition THEN statement_list] ...
[ELSE statement_list]
END CASE
The CASE statement for stored programs implements a complex conditional construct.
Note
There is also a CASE expression, which differs from the CASE statement described here. See Section 12.4, “Control Flow Functions”. The CASE statement cannot have an ELSE NULL clause, and it is terminated with END CASE instead of END.
For the first syntax, case_value is an expression. This value is compared to the when_value expression in each WHEN clause until one of them is equal. When an equal when_value is found, the corresponding THEN clause statement_list executes. If no when_value is equal, the ELSE clause statement_list executes, if there is one.
This syntax cannot be used to test for equality with NULL because NULL = NULL is false. See Section 3.3.4.6, “Working with NULL Values”.
For the second syntax, each WHEN clause search_condition expression is evaluated until one is true, at which point its corresponding THEN clause statement_list executes. If no search_condition is equal, the ELSE clause statement_list executes, if there is one.
If no when_value or search_condition matches the value tested and the CASE statement contains no ELSE clause, a Case not found for CASE statement error results.
Each statement_list consists of one or more SQL statements; an empty statement_list is not permitted.
To handle situations where no value is matched by any WHEN clause, use an ELSE containing an empty BEGIN ... END block, as shown in this example. (The indentation used here in the ELSE clause is for purposes of clarity only, and is not otherwise significant.)
DELIMITER |
CREATE PROCEDURE p()
BEGIN
DECLARE v INT DEFAULT 1;
CASE v
WHEN 2 THEN SELECT v;
WHEN 3 THEN SELECT 0;
ELSE
BEGIN
END;
END CASE;
END;
|
13.6.5.2. IF Syntax
IF search_condition THEN statement_list
[ELSEIF search_condition THEN statement_list] ...
[ELSE statement_list]
END IF
The IF statement for stored programs implements a basic conditional construct.
Note
There is also an IF() function, which differs from the IF statement described here. See Section 12.4, “Control Flow Functions”. The IF statement can have THEN, ELSE, and ELSEIF clauses, and it is terminated with END IF.
If the search_condition evaluates to true, the corresponding THEN or ELSEIF clause statement_list executes. If no search_condition matches, the ELSE clause statement_list executes.
Each statement_list consists of one or more SQL statements; an empty statement_list is not permitted.
An IF ... END IF block, like all other flow-control blocks used within stored programs, must be terminated with a semicolon, as shown in this example:
DELIMITER //
CREATE FUNCTION SimpleCompare(n INT, m INT)
RETURNS VARCHAR(20)
BEGIN
DECLARE s VARCHAR(20);
IF n > m THEN SET s = '>';
ELSEIF n = m THEN SET s = '=';
ELSE SET s = '<';
END IF;
SET s = CONCAT(n, ' ', s, ' ', m);
RETURN s;
END //
DELIMITER ;
As with other flow-control constructs, IF ... END IF blocks may be nested within other flow-control constructs, including other IF statements. Each IF must be terminated by its own END IF followed by a semicolon. You can use indentation to make nested flow-control blocks more easily readable by humans (although this is not required by MySQL), as shown here:
DELIMITER //
CREATE FUNCTION VerboseCompare (n INT, m INT)
RETURNS VARCHAR(50)
BEGIN
DECLARE s VARCHAR(50);
IF n = m THEN SET s = 'equals';
ELSE
IF n > m THEN SET s = 'greater';
ELSE SET s = 'less';
END IF;
SET s = CONCAT('is ', s, ' than');
END IF;
SET s = CONCAT(n, ' ', s, ' ', m, '.');
RETURN s;
END //
DELIMITER ;
In this example, the inner IF is evaluated only if n is not equal to m.
13.6.5.3. ITERATE Syntax
ITERATE label
ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “start the loop again.”
For an example, see Section 13.6.5.5, “LOOP Syntax”.
13.6.5.4. LEAVE Syntax
LEAVE label
This statement is used to exit the flow control construct that has the given label. If the label is for the outermost stored program block, LEAVE exits the program.
LEAVE can be used within BEGIN ... END or loop constructs (LOOP, REPEAT, WHILE).
For an example, see Section 13.6.5.5, “LOOP Syntax”.
13.6.5.5. LOOP Syntax
[begin_label:] LOOP
statement_list
END LOOP [end_label]
LOOP implements a simple loop construct, enabling repeated execution of the statement list, which consists of one or more statements, each terminated by a semicolon (;) statement delimiter. The statements within the loop are repeated until the loop is terminated. Usually, this is accomplished with a LEAVE statement. Within a stored function, RETURN can also be used, which exits the function entirely.
Neglecting to include a loop-termination statement results in an infinite loop.
A LOOP statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement Label Syntax”.
Example:
CREATE PROCEDURE doiterate(p1 INT)
BEGIN
label1: LOOP
SET p1 = p1 + 1;
IF p1 < 10 THEN
ITERATE label1;
END IF;
LEAVE label1;
END LOOP label1;
SET @x = p1;
END;
13.6.5.6. REPEAT Syntax
[begin_label:] REPEAT
statement_list
UNTIL search_condition
END REPEAT [end_label]
The statement list within a REPEAT statement is repeated until the search_condition expression is true. Thus, a REPEAT always enters the loop at least once. statement_list consists of one or more statements, each terminated by a semicolon (;) statement delimiter.
A REPEAT statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement Label Syntax”.
Example:
mysql> delimiter //
mysql> CREATE PROCEDURE dorepeat(p1 INT)
-> BEGIN
-> SET @x = 0;
-> REPEAT
-> SET @x = @x + 1;
-> UNTIL @x > p1 END REPEAT;
-> END
-> //
Query OK, 0 rows affected (0.00 sec)
mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)
13.6.5.7. RETURN Syntax
RETURN expr
The RETURN statement terminates execution of a stored function and returns the value expr to the function caller. There must be at least one RETURN statement in a stored function. There may be more than one if the function has multiple exit points.
This statement is not used in stored procedures, triggers, or events. The LEAVE statement can be used to exit a stored program of those types.
13.6.5.8. WHILE Syntax
[begin_label:] WHILE search_condition DO
statement_list
END WHILE [end_label]
The statement list within a WHILE statement is repeated as long as the search_condition expression is true. statement_list consists of one or more SQL statements, each terminated by a semicolon (;) statement delimiter.
A WHILE statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement Label Syntax”.
Example:
CREATE PROCEDURE dowhile()
BEGIN
DECLARE v1 INT DEFAULT 5;
WHILE v1 > 0 DO
...
SET v1 = v1 - 1;
END WHILE;
END;
13.6.6. Cursors
MySQL supports cursors inside stored programs. The syntax is as in embedded SQL. Cursors have these properties:
Asensitive: The server may or may not make a copy of its result table
Read only: Not updatable
Nonscrollable: Can be traversed only in one direction and cannot skip rows
Cursor declarations must appear before handler declarations and after variable and condition declarations.
Example:
CREATE PROCEDURE curdemo()
BEGIN
DECLARE done INT DEFAULT FALSE;
DECLARE a CHAR(16);
DECLARE b, c INT;
DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;
OPEN cur1;
OPEN cur2;
read_loop: LOOP
FETCH cur1 INTO a, b;
FETCH cur2 INTO c;
IF done THEN
LEAVE read_loop;
END IF;
IF b < c THEN
INSERT INTO test.t3 VALUES (a,b);
ELSE
INSERT INTO test.t3 VALUES (a,c);
END IF;
END LOOP;
CLOSE cur1;
CLOSE cur2;
END;
13.6.6.1. Cursor CLOSE Syntax
CLOSE cursor_name
This statement closes a previously opened cursor. For an example, see Section 13.6.6, “Cursors”.
An error occurs if the cursor is not open.
If not closed explicitly, a cursor is closed at the end of the BEGIN ... END block in which it was declared.
13.6.6.2. Cursor DECLARE Syntax
DECLARE cursor_name CURSOR FOR select_statement
This statement declares a cursor and associates it with a SELECT statement that retrieves the rows to be traversed by the cursor. To fetch the rows later, use a FETCH statement. The number of columns retrieved by the SELECT statement must match the number of output variables specified in the FETCH statement.
The SELECT statement cannot have an INTO clause.
Cursor declarations must appear before handler declarations and after variable and condition declarations.
A stored program may contain multiple cursor declarations, but each cursor declared in a given block must have a unique name. For an example, see Section 13.6.6, “Cursors”.
For information available through SHOW statements, it is possible in many cases to obtain equivalent information by using a cursor with an INFORMATION_SCHEMA table.
13.6.6.3. Cursor FETCH Syntax
FETCH [[NEXT] FROM] cursor_name INTO var_name [, var_name] ...
This statement fetches the next row for the SELECT statement associated with the specified cursor (which must be open), and advances the cursor pointer. If a row exists, the fetched columns are stored in the named variables. The number of columns retrieved by the SELECT statement must match the number of output variables specified in the FETCH statement.
If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect this condition, you can set up a handler for it (or for a NOT FOUND condition). For an example, see Section 13.6.6, “Cursors”.
13.6.6.4. Cursor OPEN Syntax
OPEN cursor_name
This statement opens a previously declared cursor. For an example, see Section 13.6.6, “Cursors”.
13.6.7. Condition Handling
Conditions may arise during stored program execution that require special handling, such as exiting the current program block or continuing execution. Handlers can be defined for general conditions such as warnings or exceptions, or for specific conditions such as a particular error code. Specific conditions can be assigned names and referred to that way in handlers.
To name a condition, use the DECLARE ... CONDITION statement. To declare a handler, use the DECLARE ... HANDLER statement. See Section 13.6.7.1, “DECLARE ... CONDITION Syntax”, and Section 13.6.7.2, “DECLARE ... HANDLER Syntax”. For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6, “Scope Rules for Handlers”.
To raise a condition, use the SIGNAL statement. To modify condition information within a condition handler, use RESIGNAL. See Section 13.6.7.1, “DECLARE ... CONDITION Syntax”, and Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.
To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see Section 13.6.7.7, “The MySQL Diagnostics Area”.
13.6.7.1. DECLARE ... CONDITION Syntax
DECLARE condition_name CONDITION FOR condition_value
condition_value:
mysql_error_code
| SQLSTATE [VALUE] sqlstate_value
The DECLARE ... CONDITION statement declares a named error condition, associating a name with a condition that needs specific handling. The name can be referred to in a subsequent DECLARE ... HANDLER statement (see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”).
Condition declarations must appear before cursor or handler declarations.
The condition_value for DECLARE ... CONDITION can be a MySQL error code (a number) or an SQLSTATE value (a 5-character string literal). You should not use MySQL error code 0 or SQLSTATE values that begin with '00', because those indicate success rather than an error condition. For a list of MySQL error codes and SQLSTATE values, see Section C.3, “Server Error Codes and Messages”.
Using names for conditions can help make stored program code clearer. For example, this handler applies to attempts to drop a nonexistent table, but that is apparent only if you know the meaning of MySQL error code 1051:
DECLARE CONTINUE HANDLER FOR 1051
BEGIN
-- body of handler
END;
By declaring a name for the condition, the purpose of the handler is more readily seen:
DECLARE no_such_table CONDITION FOR 1051;
DECLARE CONTINUE HANDLER FOR no_such_table
BEGIN
-- body of handler
END;
Here is a named condition for the same condition, but based on the corresponding SQLSTATE value rather than the MySQL error code:
DECLARE no_such_table CONDITION FOR SQLSTATE '42S02';
DECLARE CONTINUE HANDLER FOR no_such_table
BEGIN
-- body of handler
END;
Condition names referred to in SIGNAL or use RESIGNAL statements must be associated with SQLSTATE values, not MySQL error codes.
13.6.7.2. DECLARE ... HANDLER Syntax
DECLARE handler_action HANDLER
FOR condition_value [, condition_value] ...
statement
handler_action:
CONTINUE
| EXIT
| UNDO
condition_value:
mysql_error_code
| SQLSTATE [VALUE] sqlstate_value
| condition_name
| SQLWARNING
| NOT FOUND
| SQLEXCEPTION
The DECLARE ... HANDLER statement specifies a handler that deals with one or more conditions. If one of these conditions occurs, the specified statement executes. statement can be a simple statement such as SET var_name = value, or a compound statement written using BEGIN and END (see Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”).
Handler declarations must appear after variable or condition declarations.
The handler_action value indicates what action the handler takes after execution of the handler statement:
CONTINUE: Execution of the current program continues.
EXIT: Execution terminates for the BEGIN ... END compound statement in which the handler is declared. This is true even if the condition occurs in an inner block.
UNDO: Not supported.
The condition_value for DECLARE ... HANDLER indicates the specific condition or class of conditions that activates the handler:
A MySQL error code (a number) or an SQLSTATE value (a 5-character string literal). You should not use MySQL error code 0 or SQLSTATE values that begin with '00', because those indicate success rather than an error condition. For a list of MySQL error codes and SQLSTATE values, see Section C.3, “Server Error Codes and Messages”.
A condition name previously specified with DECLARE ... CONDITION. A condition name can be associated with a MySQL error code or SQLSTATE value. See Section 13.6.7.1, “DECLARE ... CONDITION Syntax”.
SQLWARNING is shorthand for the class of SQLSTATE values that begin with '01'.
NOT FOUND is shorthand for the class of SQLSTATE values that begin with '02'. This is relevant within the context of cursors and is used to control what happens when a cursor reaches the end of a data set. If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect this condition, you can set up a handler for it (or for a NOT FOUND condition). For an example, see Section 13.6.6, “Cursors”. This condition also occurs for SELECT ... INTO var_list statements that retrieve no rows.
SQLEXCEPTION is shorthand for the class of SQLSTATE values that do not begin with '00', '01', or '02'.
For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6, “Scope Rules for Handlers”.
If a condition occurs for which no handler has been declared, the action taken depends on the condition class:
For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the condition, as if there were an EXIT handler. If the program was called by another stored program, the calling program handles the condition using the handler selection rules applied to its own handlers.
For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE handler.
For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was raised by SIGNAL or RESIGNAL, the action is EXIT.
The following example uses a handler for SQLSTATE '23000', which occurs for a duplicate-key error:
mysql> CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));
Query OK, 0 rows affected (0.00 sec)
mysql> delimiter //
mysql> CREATE PROCEDURE handlerdemo ()
-> BEGIN
-> DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
-> SET @x = 1;
-> INSERT INTO test.t VALUES (1);
-> SET @x = 2;
-> INSERT INTO test.t VALUES (1);
-> SET @x = 3;
-> END;
-> //
Query OK, 0 rows affected (0.00 sec)
mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @x//
+------+
| @x |
+------+
| 3 |
+------+
1 row in set (0.00 sec)
Notice that @x is 3 after the procedure executes, which shows that execution continued to the end of the procedure after the error occurred. If the DECLARE ... HANDLER statement had not been present, MySQL would have taken the default action (EXIT) after the second INSERT failed due to the PRIMARY KEY constraint, and SELECT @x would have returned 2.
To ignore a condition, declare a CONTINUE handler for it and associate it with an empty block. For example:
DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;
The scope of a block label does not include the code for handlers declared within the block. Therefore, the statement associated with a handler cannot use ITERATE or LEAVE to refer to labels for blocks that enclose the handler declaration. Consider the following example, where the REPEAT block has a label of retry:
CREATE PROCEDURE p ()
BEGIN
DECLARE i INT DEFAULT 3;
retry:
REPEAT
BEGIN
DECLARE CONTINUE HANDLER FOR SQLWARNING
BEGIN
ITERATE retry; # illegal
END;
IF i < 0 THEN
LEAVE retry; # legal
END IF;
SET i = i - 1;
END;
UNTIL FALSE END REPEAT;
END;
The retry label is in scope for the IF statement within the block. It is not in scope for the CONTINUE handler, so the reference there is invalid and results in an error:
ERROR 1308 (42000): LEAVE with no matching label: retry
To avoid references to outer labels in handlers, use one of these strategies:
To leave the block, use an EXIT handler. If no block cleanup is required, the BEGIN ... END handler body can be empty:
DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;
Otherwise, put the cleanup statements in the handler body:
DECLARE EXIT HANDLER FOR SQLWARNING
BEGIN
block cleanup statements
END;
To continue execution, set a status variable in a CONTINUE handler that can be checked in the enclosing block to determine whether the handler was invoked. The following example uses the variable done for this purpose:
CREATE PROCEDURE p ()
BEGIN
DECLARE i INT DEFAULT 3;
DECLARE done INT DEFAULT FALSE;
retry:
REPEAT
BEGIN
DECLARE CONTINUE HANDLER FOR SQLWARNING
BEGIN
SET done = TRUE;
END;
IF done OR i < 0 THEN
LEAVE retry;
END IF;
SET i = i - 1;
END;
UNTIL FALSE END REPEAT;
END;
13.6.7.3. GET DIAGNOSTICS Syntax
GET [CURRENT] DIAGNOSTICS
{
statement_information_item
[, statement_information_item] ...
| CONDITION condition_number
condition_information_item
[, condition_information_item] ...
}
statement_information_item:
target = statement_information_item_name
condition_information_item:
target = condition_information_item_name
statement_information_item_name:
NUMBER
| ROW_COUNT
condition_information_item_name:
CLASS_ORIGIN
| SUBCLASS_ORIGIN
| RETURNED_SQLSTATE
| MESSAGE_TEXT
| MYSQL_ERRNO
| CONSTRAINT_CATALOG
| CONSTRAINT_SCHEMA
| CONSTRAINT_NAME
| CATALOG_NAME
| SCHEMA_NAME
| TABLE_NAME
| COLUMN_NAME
| CURSOR_NAME
condition_number, target:
(see following discussion)
SQL statements produce diagnostic information that populates the diagnostics area. The GET DIAGNOSTICS statement enables applications to inspect this information. It is available as of MySQL 5.6.4. (You can also use SHOW WARNINGS or SHOW ERRORS to see all conditions or all errors.)
No special privileges are required to execute GET DIAGNOSTICS.
The keyword CURRENT means to retrieve information from the current diagnostics area. In MySQL, it has no effect because that is the default behavior.
For a description of the diagnostics area, see Section 13.6.7.7, “The MySQL Diagnostics Area”. Briefly, it contains two kinds of information:
Statement information, such as the affected-rows count or the number of conditions that occurred.
Condition information, such as the error code and message. If a statement raises multiple conditions, this part of the diagnostics area has a condition area for each one. If a statement raises no conditions, this part of the diagnostics area is empty.
For a statement that produces three conditions, the diagnostics area contains statement and condition information like this:
Statement information:
row count
... other statement information items ...
Condition area list:
Condition area 1:
error code for condition 1
error message for condition 1
... other condition information items ...
Condition area 2:
error code for condition 2:
error message for condition 2
... other condition information items ...
Condition area 3:
error code for condition 3
error message for condition 3
... other condition information items ...
GET DIAGNOSTICS can obtain either statement or condition information, but not both in the same statement:
To obtain statement information, retrieve the desired statement items into target variables:
GET DIAGNOSTICS @p1 = ROW_COUNT, @p2 = NUMBER;
To obtain condition information, specify the condition number and retrieve the desired condition items into target variables:
GET DIAGNOSTICS CONDITION 1
@p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT;
The retrieval list specifies one or more target = item_name assignments, separated by commas. Each assignment names a target variable and either a statement_information_item_name or condition_information_item_name designator, depending on whether the statement retrieves statement or condition information.
Valid target designators for storing item information can be stored procedure or function parameters, stored program local variables declared with DECLARE, or user-defined variables.
Valid condition_number designators can be stored procedure or function parameters, stored program local variables declared with DECLARE, user-defined variables, system variables, or literals. A character literal may include a _charset introducer. A warning occurs if the condition number is not in the range from 1 to the number of condition areas that have information. In this case, the warning is added to the diagnostics area without clearing it.
GET DIAGNOSTICS is typically used in a handler within a stored program, but it is a MySQL extension that it is permitted outside that context to check the execution of any SQL statement. For example, if you invoke the mysql client program, you can enter these statements at the prompt:
mysql> DROP TABLE test.no_such_table;
ERROR 1051 (42S02): Unknown table 'test.no_such_table'
mysql> GET DIAGNOSTICS CONDITION 1
-> @p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT;
mysql> SELECT @p1, @p2;
+-------+------------------------------------+
| @p1 | @p2 |
+-------+------------------------------------+
| 42S02 | Unknown table 'test.no_such_table' |
+-------+------------------------------------+
Currently, not all condition items recognized by GET DIAGNOSTICS are populated when a condition occurs. For example:
mysql> GET DIAGNOSTICS CONDITION 1
-> @p3 = SCHEMA_NAME, @p4 = TABLE_NAME;
mysql> SELECT @p3, @p4;
+------+------+
| @p3 | @p4 |
+------+------+
| | |
+------+------+
For information about permissible statement and condition information items, and which ones are populated when a condition occurs, see Section 13.6.7.7.2, “Diagnostics Area Information Items”.
Here is an example that uses GET DIAGNOSTICS and an exception handler in stored procedure context to assess the outcome of an insert operation. If the insert was successful, the procedure also uses GET DIAGNOSTICS to get the rows-affected count. This shows that you can use GET DIAGNOSTICS multiple times to retrieve information about a statement as long as the diagnostics area has not been cleared.
CREATE PROCEDURE do_insert(value INT)
BEGIN
-- declare variables to hold diagnostics area information
DECLARE code CHAR(5) DEFAULT '00000';
DECLARE msg TEXT;
DECLARE rows INT;
DECLARE result TEXT;
-- declare exception handler for failed insert
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
GET DIAGNOSTICS CONDITION 1
code = RETURNED_SQLSTATE, msg = MESSAGE_TEXT;
END;
-- perform the insert
INSERT INTO t1 (int_col) VALUES(value);
-- check whether the insert was successful
IF code = '00000' THEN
GET DIAGNOSTICS rows = ROW_COUNT;
SET result = CONCAT('insert succeeded, row count = ',rows);
ELSE
SET result = CONCAT('insert failed, error = ',code,', message = ',msg);
END IF;
-- say what happened
SELECT result;
END;
Suppose that t1.int_col is an integer column that is declared as NOT NULL. The procedure produces these results:
mysql> CALL do_insert(1);
+---------------------------------+
| result |
+---------------------------------+
| insert succeeded, row count = 1 |
+---------------------------------+
mysql> CALL do_insert(NULL);
+---+
| result |
+---+
| insert failed, error = 23000, message = Column 'int_col' cannot be null |
+---+
Within a condition handler, GET DIAGNOSTICS should be used before other statements that might clear the diagnostics area and cause information to be lost about the condition that activated the handler. For information about when the diagnostics area is set and cleared, see Section 13.6.7.7.3, “How the Diagnostics Area is Populated”.
In standard SQL, the first condition relates to the SQLSTATE value returned for the previous SQL statement. In MySQL, this is not guaranteed, so to get the main error, you cannot do this:
GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;
Instead, do this:
GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;
13.6.7.4. RESIGNAL Syntax
RESIGNAL [condition_value]
[SET signal_information_item
[, signal_information_item] ...]
condition_value:
SQLSTATE [VALUE] sqlstate_value
| condition_name
signal_information_item:
condition_information_item_name = simple_value_specification
condition_information_item_name:
CLASS_ORIGIN
| SUBCLASS_ORIGIN
| MESSAGE_TEXT
| MYSQL_ERRNO
| CONSTRAINT_CATALOG
| CONSTRAINT_SCHEMA
| CONSTRAINT_NAME
| CATALOG_NAME
| SCHEMA_NAME
| TABLE_NAME
| COLUMN_NAME
| CURSOR_NAME
condition_name, simple_value_specification:
(see following discussion)
RESIGNAL passes on the error condition information that is available during execution of a condition handler within a compound statement inside a stored procedure or function, trigger, or event. RESIGNAL may change some or all information before passing it on. RESIGNAL is related to SIGNAL, but instead of originating a condition as SIGNAL does, RESIGNAL relays existing condition information, possibly after modifying it.
RESIGNAL makes it possible to both handle an error and return the error information. Otherwise, by executing an SQL statement within the handler, information that caused the handler's activation is destroyed. RESIGNAL also can make some procedures shorter if a given handler can handle part of a situation, then pass the condition “up the line” to another handler.
All forms of RESIGNAL require that a handler be active. Otherwise, RESIGNAL is illegal and a RESIGNAL when handler not active error occurs.
No special privileges are required to execute the RESIGNAL statement.
To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see Section 13.6.7.7, “The MySQL Diagnostics Area”.
For condition_value and signal_information_item, the definitions and rules are the same for RESIGNAL as for SIGNAL (see Section 13.6.7.5, “SIGNAL Syntax”).
The RESIGNAL statement takes condition_value and SET clauses, both of which are optional. This leads to several possible uses:
RESIGNAL alone:
RESIGNAL;
RESIGNAL with new signal information:
RESIGNAL SET signal_information_item [, signal_information_item] ...;
RESIGNAL with a condition value and possibly new signal information:
RESIGNAL condition_value
[SET signal_information_item [, signal_information_item] ...];
These use cases all cause changes to the diagnostics and condition areas:
A diagnostics area contains one or more condition areas.
A condition area contains condition information items, such as the SQLSTATE value, MYSQL_ERRNO, or MESSAGE_TEXT.
The maximum number of condition areas in a diagnostics area is determined by the value of the max_error_count system variable. See Section 13.6.7.7.4, “Diagnostics Area-Related System Variables”.
13.6.7.4.1. RESIGNAL Alone
A simple RESIGNAL alone means “pass on the error with no change.” It restores the last diagnostics area and makes it the current diagnostics area. That is, it “pops” the diagnostics area stack.
Within a condition handler that catches a condition, one use for RESIGNAL alone is to perform some other actions, and then pass on without change the original condition information (the information that existed before entry into the handler).
Example:
DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN
SET @error_count = @error_count + 1;
IF @a = 0 THEN RESIGNAL; END IF;
END;
DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();
Suppose that the DROP TABLE xx statement fails. The diagnostics area stack looks like this:
DA 1. ERROR 1051 (42S02): Unknown table 'xx'
Then execution enters the EXIT handler. It starts by pushing the top of the diagnostics area stack, which now looks like this:
DA 1. ERROR 1051 (42S02): Unknown table 'xx'
DA 2. ERROR 1051 (42S02): Unknown table 'xx'
At this point, the contents of the first (current) and second (stacked) diagnostics areas are the same. The first diagnostics area may be modified by statements executing subsequently within the handler.
Usually a procedure statement clears the first diagnostics area. BEGIN is an exception, it does not clear, it does nothing. SET is not an exception, it clears, performs the operation, and then produces a result of “success.” The diagnostics area stack now looks like this:
DA 1. ERROR 0000 (00000): Successful operation
DA 2. ERROR 1051 (42S02): Unknown table 'xx'
At this point, if @a = 0, RESIGNAL pops the diagnostics area stack, which now looks like this:
DA 1. ERROR 1051 (42S02): Unknown table 'xx'
And that is what the caller sees.
If @a is not 0, the handler simply ends, which means that there is no more use for the current diagnostics area (it has been “handled”), so it can be thrown away, causing the stacked diagnostics area to become the current diagnistics area again. The diagnostics area stack looks like this:
DA 1. ERROR 0000 (00000): Successful operation
The details make it look complex, but the end result is quite useful: Handlers can execute without destroying information about the condition that caused activation of the handler.
13.6.7.4.2. RESIGNAL with New Signal Information
RESIGNAL with a SET clause provides new signal information, so the statement means “pass on the error with changes”:
RESIGNAL SET signal_information_item [, signal_information_item] ...;
As with RESIGNAL alone, the idea is to pop the diagnostics area stack so that the original information will go out. Unlike RESIGNAL alone, anything specified in the SET clause changes.
Example:
DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN
SET @error_count = @error_count + 1;
IF @a = 0 THEN RESIGNAL SET MYSQL_ERRNO = 5; END IF;
END;
DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();
Remember from the previous discussion that RESIGNAL alone results in a diagnostics area stack like this:
DA 1. ERROR 1051 (42S02): Unknown table 'xx'
The RESIGNAL SET MYSQL_ERRNO = 5 statement results in this stack instead:
DA 1. ERROR 5 (42S02): Unknown table 'xx'
In other words, it changes the error number, and nothing else.
The RESIGNAL statement can change any or all of the signal information items, making the first condition area of the diagnostics area look quite different.
13.6.7.4.3. RESIGNAL with a Condition Value and Optional New Signal Information
RESIGNAL with a condition value means “push a condition into the current diagnostics area.” If the SET clause is present, it also changes the error information.
RESIGNAL condition_value
[SET signal_information_item [, signal_information_item] ...];
This form of RESIGNAL restores the last diagnostics area and makes it the current diagnostics area. That is, it “pops” the diagnostics area stack, which is the same as what a simple RESIGNAL alone would do. However, it also changes the diagnostics area depending on the condition value or signal information.
Example:
DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN
SET @error_count = @error_count + 1;
IF @a = 0 THEN RESIGNAL SQLSTATE '45000' SET MYSQL_ERRNO=5; END IF;
END;
DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
SET @@max_error_count = 2;
CALL p();
SHOW ERRORS;
This is similar to the previous example, and the effects are the same, except that if RESIGNAL happens the current condition area looks different at the end. (The reason the condition is added rather than replaced is the use of a condition value.)
The RESIGNAL statement includes a condition value (SQLSTATE '45000'), so it “pushes” a new condition area, resulting in a diagnostics area stack that looks like this:
DA 1. (condition 1) ERROR 5 (45000) Unknown table 'xx'
(condition 2) ERROR 1051 (42S02): Unknown table 'xx'
The result of CALL p() and SHOW ERRORS for this example is:
mysql> CALL p();
ERROR 5 (45000): Unknown table 'xx'
mysql> SHOW ERRORS;
+-------+------+----------------------------------+
| Level | Code | Message |
+-------+------+----------------------------------+
| Error | 5 | Unknown table 'xx' |
| Error | 1051 | Unknown table 'xx' |
+-------+------+----------------------------------+
13.6.7.4.4. RESIGNAL Requires an Active Handler
All forms of RESIGNAL require that a handler be active. Otherwise, RESIGNAL is illegal and a RESIGNAL when handler not active error occurs. For example:
mysql> CREATE PROCEDURE p () RESIGNAL;
Query OK, 0 rows affected (0.00 sec)
mysql> CALL p();
ERROR 1739 (0K000): RESIGNAL when handler not active
Here is a more difficult example:
delimiter //
CREATE FUNCTION f () RETURNS INT
BEGIN
RESIGNAL;
RETURN 5;
END//
CREATE PROCEDURE p ()
BEGIN
DECLARE EXIT HANDLER FOR SQLEXCEPTION SET @a=f();
SIGNAL SQLSTATE '55555';
END//
delimiter ;
CALL p();
At the time the RESIGNAL executes, there is a handler, even though the RESIGNAL is not defined inside the handler.
A statement such as the one following may appear bizarre because RESIGNAL apparently is not in a handler:
CREATE TRIGGER t_bi BEFORE INSERT ON t FOR EACH ROW RESIGNAL;
But it does not matter. RESIGNAL does not have to be technically “in” (that is, contained in), a handler declaration. The requirement is that a handler must be active. If that is true when the trigger activates, the RESIGNAL is legal.
13.6.7.5. SIGNAL Syntax
SIGNAL condition_value
[SET signal_information_item
[, signal_information_item] ...]
condition_value:
SQLSTATE [VALUE] sqlstate_value
| condition_name
signal_information_item:
condition_information_item_name = simple_value_specification
condition_information_item_name:
CLASS_ORIGIN
| SUBCLASS_ORIGIN
| MESSAGE_TEXT
| MYSQL_ERRNO
| CONSTRAINT_CATALOG
| CONSTRAINT_SCHEMA
| CONSTRAINT_NAME
| CATALOG_NAME
| SCHEMA_NAME
| TABLE_NAME
| COLUMN_NAME
| CURSOR_NAME
condition_name, simple_value_specification:
(see following discussion)
SIGNAL is the way to “return” an error. SIGNAL provides error information to a handler, to an outer portion of the application, or to the client. Also, it provides control over the error's characteristics (error number, SQLSTATE value, message). Without SIGNAL, it is necessary to resort to workarounds such as deliberately referring to a nonexistent table to cause a routine to return an error.
No special privileges are required to execute the SIGNAL statement.
To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see Section 13.6.7.7, “The MySQL Diagnostics Area”.
The condition_value in a SIGNAL statement indicates the error value to be returned. It can be an SQLSTATE value (a 5-character string literal) or a condition_name that refers to a named condition previously defined with DECLARE ... CONDITION (see Section 13.6.7.1, “DECLARE ... CONDITION Syntax”).
An SQLSTATE value can indicate errors, warnings, or “not found.” The first two characters of the value indicate its error class, as discussed in Section 13.6.7.5.1, “Signal Condition Information Items”. Some signal values cause statement termination; see Section 13.6.7.5.2, “Effect of Signals on Handlers, Cursors, and Statements”.
The SQLSTATE value for a SIGNAL statement should not start with '00' because such values indicate success and are not valid for signaling an error. This is true whether the SQLSTATE value is specified directly in the SIGNAL statement or in a named condition referred to in the statement. If the value is invalid, a Bad SQLSTATE error occurs.
To signal a generic SQLSTATE value, use '45000', which means “unhandled user-defined exception.”
The SIGNAL statement optionally includes a SET clause that contains multiple signal items, in a comma-separated list of condition_information_item_name = simple_value_specification assignments.
Each condition_information_item_name may be specified only once in the SET clause. Otherwise, a Duplicate condition information item error occurs.
Valid simple_value_specification designators can be specified using stored procedure or function parameters, stored program local variables declared with DECLARE, user-defined variables, system variables, or literals. A character literal may include a _charset introducer.
For information about permissible condition_information_item_name values, see Section 13.6.7.5.1, “Signal Condition Information Items”.
The following procedure signals an error or warning depending on the value of pval, its input parameter:
CREATE PROCEDURE p (pval INT)
BEGIN
DECLARE specialty CONDITION FOR SQLSTATE '45000';
IF pval = 0 THEN
SIGNAL SQLSTATE '01000';
ELSEIF pval = 1 THEN
SIGNAL SQLSTATE '45000'
SET MESSAGE_TEXT = 'An error occurred';
ELSEIF pval = 2 THEN
SIGNAL specialty
SET MESSAGE_TEXT = 'An error occurred';
ELSE
SIGNAL SQLSTATE '01000'
SET MESSAGE_TEXT = 'A warning occurred', MYSQL_ERRNO = 1000;
SIGNAL SQLSTATE '45000'
SET MESSAGE_TEXT = 'An error occurred', MYSQL_ERRNO = 1001;
END IF;
END;
If pval is 0, p() signals a warning because SQLSTATE values that begin with '01' are signals in the warning class. The warning does not terminate the procedure, and can be seen with SHOW WARNINGS after the procedure returns.
If pval is 1, p() signals an error and sets the MESSAGE_TEXT condition information item. The error terminates the procedure, and the text is returned with the error information.
If pval is 2, the same error is signaled, although the SQLSTATE value is specified using a named condition in this case.
If pval is anything else, p() first signals a warning and sets the message text and error number condition information items. This warning does not terminate the procedure, so execution continues and p() then signals an error. The error does terminate the procedure. The message text and error number set by the warning are replaced by the values set by the error, which are returned with the error information.
SIGNAL is typically used within stored programs, but it is a MySQL extension that it is permitted outside that context. For example, if you invoke the mysql client program, you can enter any of these statements at the prompt:
mysql> SIGNAL SQLSTATE '77777';
mysql> CREATE TRIGGER t_bi BEFORE INSERT ON t
-> FOR EACH ROW SIGNAL SQLSTATE '77777';
mysql> CREATE EVENT e ON SCHEDULE EVERY 1 SECOND
-> DO SIGNAL SQLSTATE '77777';
SIGNAL executes according to the following rules:
If the SIGNAL statement indicates a particular SQLSTATE value, that value is used to signal the condition specified. Example:
CREATE PROCEDURE p (divisor INT)
BEGIN
IF divisor = 0 THEN
SIGNAL SQLSTATE '22012';
END IF;
END;
If the SIGNAL statement uses a named condition, the condition must be declared in some scope that applies to the SIGNAL statement, and must be defined using an SQLSTATE value, not a MySQL error number. Example:
CREATE PROCEDURE p (divisor INT)
BEGIN
DECLARE divide_by_zero CONDITION FOR SQLSTATE '22012';
IF divisor = 0 THEN
SIGNAL divide_by_zero;
END IF;
END;
If the named condition does not exist in the scope of the SIGNAL statement, an Undefined CONDITION error occurs.
If SIGNAL refers to a named condition that is defined with a MySQL error number rather than an SQLSTATE value, a SIGNAL/RESIGNAL can only use a CONDITION defined with SQLSTATE error occurs. The following statements cause that error because the named condition is associated with a MySQL error number:
DECLARE no_such_table CONDITION FOR 1051;
SIGNAL no_such_table;
If a condition with a given name is declared multiple times in different scopes, the declaration with the most local scope applies. Consider the following procedure:
CREATE PROCEDURE p (divisor INT)
BEGIN
DECLARE my_error CONDITION FOR SQLSTATE '45000';
IF divisor = 0 THEN
BEGIN
DECLARE my_error CONDITION FOR SQLSTATE '22012';
SIGNAL my_error;
END;
END IF;
SIGNAL my_error;
END;
If divisor is 0, the first SIGNAL statement executes. The innermost my_error condition declaration applies, raising SQLSTATE '22012'.
If divisor is not 0, the second SIGNAL statement executes. The outermost my_error condition declaration applies, raising SQLSTATE '45000'.
For information about how the server chooses handlers when a condition occurs, see Section 13.6.7.6, “Scope Rules for Handlers”.
Signals can be raised within exception handlers:
CREATE PROCEDURE p ()
BEGIN
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN
SIGNAL SQLSTATE VALUE '99999'
SET MESSAGE_TEXT = 'An error occurred';
END;
DROP TABLE no_such_table;
END;
CALL p() reaches the DROP TABLE statement. There is no table named no_such_table, so the error handler is activated. The error handler destroys the original error (“no such table”) and makes a new error with SQLSTATE '99999' and message An error occurred.
13.6.7.5.1. Signal Condition Information Items
The following table lists the names of diagnostics area condition information items that can be set in a SIGNAL (or RESIGNAL) statement. All items are standard SQL except MYSQL_ERRNO, which is a MySQL extension. For more information about these items see Section 13.6.7.7, “The MySQL Diagnostics Area”.
Item Name Definition
--------- ----------
CLASS_ORIGIN VARCHAR(64)
SUBCLASS_ORIGIN VARCHAR(64)
CONSTRAINT_CATALOG VARCHAR(64)
CONSTRAINT_SCHEMA VARCHAR(64)
CONSTRAINT_NAME VARCHAR(64)
CATALOG_NAME VARCHAR(64)
SCHEMA_NAME VARCHAR(64)
TABLE_NAME VARCHAR(64)
COLUMN_NAME VARCHAR(64)
CURSOR_NAME VARCHAR(64)
MESSAGE_TEXT VARCHAR(128)
MYSQL_ERRNO SMALLINT UNSIGNED
The character set for character items is UTF-8.
It is illegal to assign NULL to a condition information item in a SIGNAL statement.
A SIGNAL statement always specifies an SQLSTATE value, either directly, or indirectly by referring to a named condition defined with an SQLSTATE value. The first two characters of an SQLSTATE value are its class, and the class determines the default value for the condition information items:
Class = '00' (success)
Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.
Class = '01' (warning)
MESSAGE_TEXT = 'Unhandled user-defined warning';
MYSQL_ERRNO = ER_SIGNAL_WARN
Class = '02' (not found)
MESSAGE_TEXT = 'Unhandled user-defined not found';
MYSQL_ERRNO = ER_SIGNAL_NOT_FOUND
Class > '02' (exception)
MESSAGE_TEXT = 'Unhandled user-defined exception';
MYSQL_ERRNO = ER_SIGNAL_EXCEPTION
For legal classes, the other condition information items are set as follows:
CLASS_ORIGIN = SUBCLASS_ORIGIN = '';
CONSTRAINT_CATALOG = CONSTRAINT_SCHEMA = CONSTRAINT_NAME = '';
CATALOG_NAME = SCHEMA_NAME = TABLE_NAME = COLUMN_NAME = '';
CURSOR_NAME = '';
The error values that are accessible after SIGNAL executes are the SQLSTATE value raised by the SIGNAL statement and the MESSAGE_TEXT and MYSQL_ERRNO items. These values are available from the C API:
SQLSTATE value: Call mysql_sqlstate()
MYSQL_ERRNO value: Call mysql_errno()
MESSAGE_TEXT value: Call mysql_error()
From SQL, the output from SHOW WARNINGS and SHOW ERRORS indicates the MYSQL_ERRNO and MESSAGE_TEXT values in the Code and Message columns.
To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement (see Section 13.6.7.3, “GET DIAGNOSTICS Syntax”). For information about the diagnostics area, see Section 13.6.7.7, “The MySQL Diagnostics Area”.
13.6.7.5.2. Effect of Signals on Handlers, Cursors, and Statements
Signals have different effects on statement execution depending on the signal class. The class determines how severe an error is. MySQL ignores the value of the sql_mode system variable; in particular, strict SQL mode does not matter. MySQL also ignores IGNORE: The intent of SIGNAL is to raise a user-generated error explicitly, so a signal is never ignored.
In the following descriptions, “unhandled” means that no handler for the signaled SQLSTATE value has been defined with DECLARE ... HANDLER.
Class = '00' (success)
Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.
Class = '01' (warning)
The value of the warning_count system variable goes up. SHOW WARNINGS shows the signal. SQLWARNING handlers catch the signal. If the signal is unhandled in a function, statements do not end.
Class = '02' (not found)
NOT FOUND handlers catch the signal. There is no effect on cursors. If the signal is unhandled in a function, statements end.
Class > '02' (exception)
SQLEXCEPTION handlers catch the signal. If the signal is unhandled in a function, statements end.
Class = '40'
Treated as an ordinary exception.
Example:
mysql> delimiter //
mysql> CREATE FUNCTION f () RETURNS INT
-> BEGIN
-> SIGNAL SQLSTATE '01234'; -- signal a warning
-> RETURN 5;
-> END//
mysql> delimiter ;
mysql> CREATE TABLE t (s1 INT);
mysql> INSERT INTO t VALUES (f());
The result is that a row containing 5 is inserted into table t. The warning that is signaled can be viewed with SHOW WARNINGS.
13.6.7.6. Scope Rules for Handlers
A stored program may include handlers to be invoked when certain conditions occur within the program. The applicability of each handler depends on its location within the program definition and on the condition or conditions that it handles:
A handler declared in a BEGIN ... END block is in scope only for the SQL statements following the handler declarations in the block. If the handler itself raises a condition, it cannot handle that condition, nor can any other handlers declared in the block. In the following example, handlers H1 and H2 are in scope for conditions raised by statements stmt1 and stmt2. But neither H1 nor H2 are in scope for conditions raised in the body of H1 or H2.
BEGIN -- outer block
DECLARE EXIT HANDLER FOR ...; -- handler H1
DECLARE EXIT HANDLER FOR ...; -- handler H2
stmt1;
stmt2;
END;
A handler is in scope only for the block in which it is declared, and cannot be activated for conditions occurring outside that block. In the following example, handler H1 is in scope for stmt1 in the inner block, but not for stmt2 in the outer block:
BEGIN -- outer block
BEGIN -- inner block
DECLARE EXIT HANDLER FOR ...; -- handler H1
stmt1;
END;
stmt2;
END;
A handler can be specific or general. A specific handler is for a MySQL error code, SQLSTATE value, or condition name. A general handler is for a condition in the SQLWARNING, SQLEXCEPTION, or NOT FOUND class. Condition specificity is related to condition precedence, as described later.
Multiple handlers can be declared in different scopes and with different specificities. For example, there might be a specific MySQL error code handler in an outer block, and a general SQLWARNING handler in an inner block. Or there might be handlers for a specific MySQL error code and the general SQLWARNING class in the same block.
Whether a handler is activated depends not only on its own scope and condition value, but on what other handlers are present. When a condition occurs in a stored program, the server searches for applicable handlers in the current scope (current BEGIN ... END block). If there are no applicable handlers, the search continues outward with the handlers in each successive containing scope (block). When the server finds one or more applicable handlers at a given scope, it chooses among them based on condition precedence:
A MySQL error code handler takes precedence over an SQLSTATE value handler.
An SQLSTATE value handler takes precedence over general SQLWARNING, SQLEXCEPTION, or NOT FOUND handlers.
An SQLEXCEPTION handler takes precedence over an SQLWARNING handler.
The precedence of NOT FOUND depends on how the condition is raised:
Normally, a condition in the NOT FOUND class can be handled by an SQLWARNING or NOT FOUND handler, with the SQLWARNING handler taking precedence if both are present. Normal occurrence of NOT FOUND takes place when a cursor used to fetch a set of rows reaches the end of the data set, or for instances of SELECT ... INTO var_list such that the WHERE clause finds no rows.
If a NOT FOUND condition is raised by a SIGNAL (or RESIGNAL) statement, the condition can be handled by a NOT FOUND handler but not an SQLWARNING handler.
It is possible to have several applicable handlers with the same precedence. For example, a statement could generate multiple warnings with different error codes, for each of which an error-specific handler exists. In this case, the choice of which handler the server activates is indeterminate, and may change depending on the circumstances under which the condition occurs.
One implication of the handler selection rules is that if multiple applicable handlers occur in different scopes, handlers with the most local scope take precedence over handlers in outer scopes, even over those for more specific conditions.
If there is no appropriate handler when a condition occurs, the action taken depends on the class of the condition:
For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the condition, as if there were an EXIT handler. If the program was called by another stored program, the calling program handles the condition using the handler selection rules applied to its own handlers.
For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE handler.
For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was raised by SIGNAL or RESIGNAL, the action is EXIT.
The following examples demonstrate how MySQL applies the handler selection rules.
This procedure contains two handlers, one for the specific SQLSTATE value ('42S02') that occurs for attempts to drop a nonexistent table, and one for the general SQLEXCEPTION class:
CREATE PROCEDURE p1()
BEGIN
DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
SELECT 'SQLSTATE handler was activated' AS msg;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SELECT 'SQLEXCEPTION handler was activated' AS msg;
DROP TABLE test.t;
END;
Both handlers are declared in the same block and have the same scope. However, SQLSTATE handlers take precedence over SQLEXCEPTION handlers, so if the table t is nonexistent, the DROP TABLE statement raises a condition that activates the SQLSTATE handler:
mysql> CALL p1();
+--------------------------------+
| msg |
+--------------------------------+
| SQLSTATE handler was activated |
+--------------------------------+
This procedure contains the same two handlers. But this time, the DROP TABLE statement and SQLEXCEPTION handler are in an inner block relative to the SQLSTATE handler:
CREATE PROCEDURE p2()
BEGIN -- outer block
DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
SELECT 'SQLSTATE handler was activated' AS msg;
BEGIN -- inner block
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SELECT 'SQLEXCEPTION handler was activated' AS msg;
DROP TABLE test.t; -- occurs within inner block
END;
END;
In this case, the handler that is more local to where the condition occurs takes precedence. The SQLEXCEPTION handler activates, even though it is more general than the SQLSTATE handler:
mysql> CALL p2();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+
In this procedure, one of the handlers is declared in a block inner to the scope of the DROP TABLE statement:
CREATE PROCEDURE p3()
BEGIN -- outer block
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SELECT 'SQLEXCEPTION handler was activated' AS msg;
BEGIN -- inner block
DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
SELECT 'SQLSTATE handler was activated' AS msg;
END;
DROP TABLE test.t; -- occurs within outer block
END;
Only the SQLEXCEPTION handler applies because the other one is not in scope for the condition raised by the DROP TABLE:
mysql> CALL p3();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+
In this procedure, both handlers are declared in a block inner to the scope of the DROP TABLE statement:
CREATE PROCEDURE p4()
BEGIN -- outer block
BEGIN -- inner block
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SELECT 'SQLEXCEPTION handler was activated' AS msg;
DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
SELECT 'SQLSTATE handler was activated' AS msg;
END;
DROP TABLE test.t; -- occurs within outer block
END;
Neither handler applies because they are not in scope for the DROP TABLE. The condition raised by the statement goes unhandled and terminates the procedure with an error:
mysql> CALL p4();
ERROR 1051 (42S02): Unknown table 'test.t'
13.6.7.7. The MySQL Diagnostics Area
SQL statements produce diagnostic information that populates the diagnostics area. This section describes the structure of the diagnostics area in MySQL and how it differs from standard SQL. It also discusses the information items recognized by MySQL and how statements clear and set the diagnostics area.
13.6.7.7.1. Diagnostics Area Structure
The diagnostics area contains two kinds of information:
Statement information, such as the affected-rows count or the number of conditions that occurred.
Condition information, such as the error code and message. If a statement raises multiple conditions, this part of the diagnostics area has a condition area for each one. If a statement raises no conditions, this part of the diagnostics area is empty.
For a statement that produces three conditions, the diagnostics area contains statement and condition information like this:
Statement information:
row count
... other statement information items ...
Condition area list:
Condition area 1:
error code for condition 1
error message for condition 1
... other condition information items ...
Condition area 2:
error code for condition 2:
error message for condition 2
... other condition information items ...
Condition area 3:
error code for condition 3
error message for condition 3
... other condition information items ...
Standard SQL has a diagnostics area stack, containing a diagnostics area for each nested execution context. Standard SQL syntax includes GET STACKED DIAGNOSTICS for referring to the second diagnostics area. MySQL does not support the STACKED keyword because there is a single diagnostics area containing information from the most recent statement that wrote to it.
13.6.7.7.2. Diagnostics Area Information Items
The diagnostics area contains statement and condition information items. Numeric items are integers. The character set for character items is UTF-8. No item can be NULL. If a statement or condition item is not set by a statement that populates the diagnostics area, its value will be 0 or the empty string, depending on the item data type.
The statement information part of the diagnostics area contains these items:
NUMBER: An integer indicating the number of condition areas that have information.
ROW_COUNT: An integer indicating the number of rows affected by the statement. ROW_COUNT has the same value as the ROW_COUNT() function (see Section 12.14, “Information Functions”).
The condition information part of the diagnostics area contains a condition area for each condition. Condition areas are numbered from 1 to the value of the NUMBER statement condition item. If NUMBER is 0, there are no condition areas.
Each condition area contains the items in the following list. All items are standard SQL except MYSQL_ERRNO, which is a MySQL extension. The definitions apply for conditions generated other than by a signal (that is, by a SIGNAL or RESIGNAL statement). For nonsignal conditions, MySQL populates only those condition items not described as always empty. The effects of signals on the condition area are described later.
CLASS_ORIGIN: A string containing the class of the RETURNED_SQLSTATE value. If the RETURNED_SQLSTATE value begins with a class value defined in SQL standards document ISO 9075-2 (section 24.1, SQLSTATE), CLASS_ORIGIN is 'ISO 9075'. Otherwise, CLASS_ORIGIN is 'MySQL'.
SUBCLASS_ORIGIN: A string containing the subclass of the RETURNED_SQLSTATE value. If CLASS_ORIGIN is 'ISO 9075' or RETURNED_SQLSTATE ends with '000', SUBCLASS_ORIGIN is 'ISO 9075'. Otherwise, SUBCLASS_ORIGIN is 'MySQL'.
RETURNED_SQLSTATE: A string that indicates the SQLSTATE value for the condition.
MESSAGE_TEXT: A string that indicates the error message for the condition.
MYSQL_ERRNO: An integer that indicates the MySQL error code for the condition.
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME: Strings that indicate the catalog, schema, and name for a violated constraint. They are always empty.
CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, COLUMN_NAME: Strings that indicate the catalog, schema, table, and column related to the condition. They are always empty.
CURSOR_NAME: A string that indicates the cursor name. This is always empty.
For the RETURNED_SQLSTATE, MESSAGE_TEXT, and MYSQL_ERRNO values for particular errors, see Section C.3, “Server Error Codes and Messages”.
If a SIGNAL (or RESIGNAL) statement populates the diagnostics area, its SET clause can assign to any condition information item except RETURNED_SQLSTATE any value that is legal for the item data type. SIGNAL also sets the RETURNED_SQLSTATE value, but not directly in its SET clause. That value comes from the SIGNAL statement SQLSTATE argument.
SIGNAL also sets statement information items. It sets NUMBER to 1, and ROW_COUNT to –1 for errors and 0 otherwise.
13.6.7.7.3. How the Diagnostics Area is Populated
Most SQL statements populate the diagnostics area automatically, and its contents can be set explicitly with the SIGNAL and RESIGNAL statements. The diagnostics area can be examined with GET DIAGNOSTICS to extract specific items, or with SHOW WARNINGS or SHOW ERRORS to see all conditions or all errors.
SQL statements clear and set the diagnostics area as follows:
When the server starts executing a statement after parsing it, it clears the diagnostics area for nondiagnostic statements that use tables. Diagnostic statements are SHOW WARNINGS, SHOW ERRORS, and GET DIAGNOSTICS.
If a statement raises a condition, the diagnostics area is cleared of conditions that belong to earlier statements. The exception is that conditions raised by GET DIAGNOSTICS and RESIGNAL are added to the diagnostics area without clearing it.
Thus, even a statement that does not normally clear the diagnostics area when it begins executing clears it if the statement raises a condition.
The following example shows the effect of various statements on the diagnostics area, using SHOW WARNINGS to display information about all conditions stored there.
This DROP TABLE statement uses a table, so it clears the diagnostics area and populates it when the condition occurs:
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.01 sec)
mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)
This SET statement does not use tables, and SET does not generate warnings, so it leaves the diagnostics area unchanged:
mysql> SET @x = 1;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)
This SET statement generates an error, so it clears and populates the diagnostics area:
mysql> SET @x = @@x;
ERROR 1193 (HY000): Unknown system variable 'x'
mysql> SHOW WARNINGS;
+-------+------+-----------------------------+
| Level | Code | Message |
+-------+------+-----------------------------+
| Error | 1193 | Unknown system variable 'x' |
+-------+------+-----------------------------+
1 row in set (0.00 sec)
The previous SET statement produced a single condition, so 1 is the only valid condition number for GET DIAGNOSTICS at this point. The following statement uses a condition number of 2, which produces a warning that is added to the diagnostics area without clearing it:
mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+------------------------------+
| Level | Code | Message |
+-------+------+------------------------------+
| Error | 1193 | Unknown system variable 'xx' |
| Error | 1753 | Invalid condition number |
+-------+------+------------------------------+
2 rows in set (0.00 sec)
Now there are two conditions in the diagnostics area, so the same GET DIAGNOSTICS statement succeeds:
mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @p;
+--------------------------+
| @p |
+--------------------------+
| Invalid condition number |
+--------------------------+
1 row in set (0.01 sec)
13.6.7.7.4. Diagnostics Area-Related System Variables
Certain system variables control or are related to some aspects of the diagnostics area:
max_error_count controls the number of condition areas in the diagnostics area. If more conditions than this occur, MySQL silently discards information for the excess conditions. (Conditions added by RESIGNAL are always added, with older conditions being discarded as necessary to make room.)
warning_count indicates the number of conditions that occurred. This includes errors, warnings, and notes. Normally, NUMBER and warning_count are the same. However, as the number of conditions generated exceeds max_error_count, the value of warning_count continues to rise whereas NUMBER remains capped at max_error_count because no additional conditions are stored in the diagnostics area.
error_count indicates the number of errors that occurred. This value includes “not found” and exception conditions, but excludes warnings and notes. Like warning_count, its value can exceed max_error_count.
If the sql_notes system variable is set to 0, notes are not recorded and do not increment warning_count.
Example: If max_error_count is 10, the diagnostics area can contain a maximum of 10 condition areas. Suppose that a statement raises 20 conditions, 12 of which are errors. In that case, the diagnostics area contains the first 10 conditions, NUMBER is 10, warning_count is 20, and error_count is 12.
Changes to the value of max_error_count have no effect until the next attempt to modify the diagnostics area. If the diagnostics area contains 10 condition areas and max_error_count is set to 5, that has no immediate effect on the size or content of the diagnostics area.
Before MySQL 5.6, statement information items are not available directly. ROW_COUNT can be obtained by calling the ROW_COUNT() function. NUMBER is approximated by the value of the warning_count system variable. However, whereas NUMBER is capped to the value of max_error_count, warning_count is not.
13.7. Database Administration Statements
13.7.1. Account Management Statements
MySQL account information is stored in the tables of the mysql database. This database and the access control system are discussed extensively in Chapter 5, MySQL Server Administration, which you should consult for additional details.
Important
Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or features. Whenever you update to a new version of MySQL, you should update your grant tables to make sure that they have the current structure so that you can take advantage of any new capabilities. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
13.7.1.1. ALTER USER Syntax
ALTER USER user_specification
[, user_specification] ...
user_specification:
user PASSWORD EXPIRE
The ALTER USER statement alters MySQL accounts. To use it, you must have the global CREATE USER privilege or the INSERT privilege for the mysql database. This statement was added in MySQL 5.6.6.
For each account, ALTER USER expires its password. For example:
ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;
The account name uses the format described in Section 6.2.3, “Specifying Account Names”. If you specify only the user name part of the account name, a host name part of '%' is used.
Password expiration for an account affects the corresponding row of the mysql.user table: The server sets the password_expired column to 'Y'.
Warning
In MySQL 5.6.6, ALTER USER also sets the Password column to the empty string, so do not use this statement until 5.6.7.
After an account's password has been expired, all operations performed in subsequent connections to the server using the account result in an error until the user issues a SET PASSWORD statement to establish a new account password:
mysql> SELECT 1;
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement
mysql> SET PASSWORD = PASSWORD('new_password');
Query OK, 0 rows affected (0.01 sec)
mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)
As of MySQL 5.6.8, this restricted mode of operation also permits SET statements, which is useful if the account password uses a hashing format that requires old_passwords to be set to a value different from its default.
It is also possible for an administrative user to reset the account password, but any existing connections for the account remain under restriction. Clients using the account must disconnect and reconnect before statements can be executed successfully.
It is possible after password expiration to “reset” a password by using SET PASSWORD to set it to its current value. As a matter of good policy, it is preferable to choose a different password.
13.7.1.2. CREATE USER Syntax
CREATE USER user_specification
[, user_specification] ...
user_specification:
user
[
IDENTIFIED BY [PASSWORD] 'password'
| IDENTIFIED WITH auth_plugin [AS 'auth_string']
]
The CREATE USER statement creates new MySQL accounts. To use it, you must have the global CREATE USER privilege or the INSERT privilege for the mysql database. For each account, CREATE USER creates a new row in the mysql.user table and assigns the account no privileges. An error occurs if the account already exists.
For CREATE USER statements that do not specify an IDENTIFIED WITH auth_plugin clause, the server associates the account with the default authentication plugin. As of MySQL 5.6.6, this is the plugin named by the --default-authentication-plugin option at server startup, or mysql_native_password if that option is not used. Before 5.6.6, the default plugin is mysql_native_password. For information about authentication plugins, see Section 6.3.7, “Pluggable Authentication”.
Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For example:
CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
If you specify only the user name part of the account name, a host name part of '%' is used.
The user specification may indicate how the user should authenticate when connecting to the server:
To enable the user to connect with no password (which is insecure), include no IDENTIFIED BY clause:
CREATE USER 'jeffrey'@'localhost';
In this case, the account uses the default authentication plugin and clients must provide no password.
To assign a password, use IDENTIFIED BY with the literal plaintext password value:
CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
The account uses the default authentication plugin and clients must match the given password.
To avoid specifying the plaintext password if you know its hash value (the value that PASSWORD() would return for the password), specify the hash value preceded by the keyword PASSWORD:
CREATE USER 'jeffrey'@'localhost'
IDENTIFIED BY PASSWORD '*90E462C37378CED12064BB3388827D2BA3A9B689';
The account uses the default authentication plugin and the has must be in the format required by that plugin. Clients must match the given password.
To authenticate the account using a specific authentication plugin, use IDENTIFIED WITH, where auth_plugin is the plugin name. It can be an unquoted name or a quoted string literal. 'auth_string' is an optional quoted string literal to pass to the plugin. The plugin interprets the meaning of the string, so its format is plugin specific. Consult the documentation for a given plugin for information about the authentication string values it accepts.
CREATE USER 'jeffrey'@'localhost'
IDENTIFIED WITH my_auth_plugin;
For connections that use this account, the server invokes the named plugin and clients must provide credentials as required for the authentication method that the plugin implements. If the server cannot find the plugin, either at account-creation time or connect time, an error occurs.
The IDENTIFIED BY and IDENTIFIED WITH clauses are mutually exclusive, so at most one of them can be specified for a given user.
For additional information about setting passwords, see Section 6.3.5, “Assigning Account Passwords”.
Important
CREATE USER may be recorded in server logs or in a history file such as ~/.mysql_history, which means that cleartext passwords may be read by anyone having read access to that information. See Section 6.1.2, “Keeping Passwords Secure”.
Important
Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or features. Whenever you update to a new version of MySQL, you should update your grant tables to make sure that they have the current structure so that you can take advantage of any new capabilities. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
13.7.1.3. DROP USER Syntax
DROP USER user [, user] ...
The DROP USER statement removes one or more MySQL accounts and their privileges. It removes privilege rows for the account from all grant tables. To use this statement, you must have the global CREATE USER privilege or the DELETE privilege for the mysql database. Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For example:
DROP USER 'jeffrey'@'localhost';
If you specify only the user name part of the account name, a host name part of '%' is used.
Important
DROP USER does not automatically close any open user sessions. Rather, in the event that a user with an open session is dropped, the statement does not take effect until that user's session is closed. Once the session is closed, the user is dropped, and that user's next attempt to log in will fail. This is by design.
DROP USER does not automatically drop or invalidate databases or objects within them that the old user created. This includes stored programs or views for which the DEFINER attribute names the dropped user. Attempts to access such objects may produce an error if they execute in definer security context. (For information about security context, see Section 18.6, “Access Control for Stored Programs and Views”.)
13.7.1.4. GRANT Syntax
GRANT
priv_type [(column_list)]
[, priv_type [(column_list)]] ...
ON [object_type] priv_level
TO user_specification [, user_specification] ...
[REQUIRE {NONE | ssl_option [[AND] ssl_option] ...}]
[WITH with_option ...]
GRANT PROXY ON user_specification
TO user_specification [, user_specification] ...
[WITH GRANT OPTION]
object_type:
TABLE
| FUNCTION
| PROCEDURE
priv_level:
*
| *.*
| db_name.*
| db_name.tbl_name
| tbl_name
| db_name.routine_name
user_specification:
user
[
IDENTIFIED BY [PASSWORD] 'password'
| IDENTIFIED WITH auth_plugin [AS 'auth_string']
]
ssl_option:
SSL
| X509
| CIPHER 'cipher'
| ISSUER 'issuer'
| SUBJECT 'subject'
with_option:
GRANT OPTION
| MAX_QUERIES_PER_HOUR count
| MAX_UPDATES_PER_HOUR count
| MAX_CONNECTIONS_PER_HOUR count
| MAX_USER_CONNECTIONS count
The GRANT statement grants privileges to MySQL user accounts. GRANT also serves to specify other account characteristics such as use of secure connections and limits on access to server resources. To use GRANT, you must have the GRANT OPTION privilege, and you must have the privileges that you are granting.
Normally, a database administrator first uses CREATE USER to create an account, then GRANT to define its privileges and characteristics. For example:
CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
GRANT ALL ON db1.* TO 'jeffrey'@'localhost';
GRANT SELECT ON db2.invoice TO 'jeffrey'@'localhost';
GRANT USAGE ON *.* TO 'jeffrey'@'localhost' WITH MAX_QUERIES_PER_HOUR 90;
However, if an account named in a GRANT statement does not already exist, GRANT may create it under the conditions described later in the discussion of the NO_AUTO_CREATE_USER SQL mode.
The REVOKE statement is related to GRANT and enables administrators to remove account privileges. See Section 13.7.1.6, “REVOKE Syntax”.
When successfully executed from the mysql program, GRANT responds with Query OK, 0 rows affected. To determine what privileges result from the operation, use SHOW GRANTS. See Section 13.7.5.22, “SHOW GRANTS Syntax”.
There are several aspects to the GRANT statement, described under the following topics in this section:
Important
Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or features. Whenever you update to a new version of MySQL, you should update your grant tables to make sure that they have the current structure so that you can take advantage of any new capabilities. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
Privileges Supported by MySQL
The following table summarizes the permissible priv_type privilege types that can be specified for the GRANT and REVOKE statements. For additional information about these privileges, see Section 6.2.1, “Privileges Provided by MySQL”.
Table 13.1. Permissible Privileges for GRANT and REVOKE
Privilege | Meaning |
---|---|
ALL [PRIVILEGES] | Grant all privileges at specified access level except GRANT OPTION |
ALTER | Enable use of ALTER TABLE |
ALTER ROUTINE | Enable stored routines to be altered or dropped |
CREATE | Enable database and table creation |
CREATE ROUTINE | Enable stored routine creation |
CREATE TABLESPACE | Enable tablespaces and log file groups to be created, altered, or dropped |
CREATE TEMPORARY TABLES | Enable use of CREATE TEMPORARY TABLE |
CREATE USER | Enable use of CREATE USER, DROP USER, RENAME USER, and REVOKE ALL PRIVILEGES |
CREATE VIEW | Enable views to be created or altered |
DELETE | Enable use of DELETE |
DROP | Enable databases, tables, and views to be dropped |
EVENT | Enable use of events for the Event Scheduler |
EXECUTE | Enable the user to execute stored routines |
FILE | Enable the user to cause the server to read or write files |
GRANT OPTION | Enable privileges to be granted to or removed from other accounts |
INDEX | Enable indexes to be created or dropped |
INSERT | Enable use of INSERT |
LOCK TABLES | Enable use of LOCK TABLES on tables for which you have the SELECT privilege |
PROCESS | Enable the user to see all processes with SHOW PROCESSLIST |
PROXY | Enable user proxying |
REFERENCES | Not implemented |
RELOAD | Enable use of FLUSH operations |
REPLICATION CLIENT | Enable the user to ask where master or slave servers are |
REPLICATION SLAVE | Enable replication slaves to read binary log events from the master |
SELECT | Enable use of SELECT |
SHOW DATABASES | Enable SHOW DATABASES to show all databases |
SHOW VIEW | Enable use of SHOW CREATE VIEW |
SHUTDOWN | Enable use of mysqladmin shutdown |
SUPER | Enable use of other administrative operations such as CHANGE MASTER TO, KILL, PURGE BINARY LOGS, SET GLOBAL, and mysqladmin debug command |
TRIGGER | Enable trigger operations |
UPDATE | Enable use of UPDATE |
USAGE | Synonym for “no privileges” |
A trigger is associated with a table, so to create or drop a trigger, you must have the TRIGGER privilege for the table, not the trigger.
In GRANT statements, the ALL [PRIVILEGES] or PROXY privilege must be named by itself and cannot be specified along with other privileges. ALL [PRIVILEGES] stands for all privileges available for the level at which privileges are to be granted except for the GRANT OPTION and PROXY privileges.
USAGE can be specified to create a user that has no privileges, or to specify the REQUIRE or WITH clauses for an account without changing its existing privileges.
MySQL account information is stored in the tables of the mysql database. This database and the access control system are discussed extensively in Section 6.2, “The MySQL Access Privilege System”, which you should consult for additional details.
If the grant tables hold privilege rows that contain mixed-case database or table names and the lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to revoke these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not create such rows when lower_case_table_names is set, but such rows might have been created prior to setting that variable.)
Privileges can be granted at several levels, depending on the syntax used for the ON clause. For REVOKE, the same ON syntax specifies which privileges to take away. The examples shown here include no IDENTIFIED BY 'password' clause for brevity, but you should include one if the account does not already exist, to avoid creating an insecure account that has no password.
Global Privileges
Global privileges are administrative or apply to all databases on a given server. To assign global privileges, use ON *.* syntax:
GRANT ALL ON *.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON *.* TO 'someuser'@'somehost';
The CREATE TABLESPACE, CREATE USER, FILE, PROCESS, RELOAD, REPLICATION CLIENT, REPLICATION SLAVE, SHOW DATABASES, SHUTDOWN, and SUPER privileges are administrative and can only be granted globally.
Other privileges can be granted globally or at more specific levels.
MySQL stores global privileges in the mysql.user table.
Database Privileges
Database privileges apply to all objects in a given database. To assign database-level privileges, use ON db_name.* syntax:
GRANT ALL ON mydb.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.* TO 'someuser'@'somehost';
If you use ON * syntax (rather than ON *.*) and you have selected a default database, privileges are assigned at the database level for the default database. An error occurs if there is no default database.
The CREATE, DROP, EVENT, GRANT OPTION, and LOCK TABLES privileges can be specified at the database level. Table or routine privileges also can be specified at the database level, in which case they apply to all tables or routines in the database.
MySQL stores database privileges in the mysql.db table.
Table Privileges
Table privileges apply to all columns in a given table. To assign table-level privileges, use ON db_name.tbl_name syntax:
GRANT ALL ON mydb.mytbl TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.mytbl TO 'someuser'@'somehost';
If you specify tbl_name rather than db_name.tbl_name, the statement applies to tbl_name in the default database. An error occurs if there is no default database.
The permissible priv_type values at the table level are ALTER, CREATE VIEW, CREATE, DELETE, DROP, GRANT OPTION, INDEX, INSERT, SELECT, SHOW VIEW, TRIGGER, and UPDATE.
MySQL stores table privileges in the mysql.tables_priv table.
Column Privileges
Column privileges apply to single columns in a given table. Each privilege to be granted at the column level must be followed by the column or columns, enclosed within parentheses.
GRANT SELECT (col1), INSERT (col1,col2) ON mydb.mytbl TO 'someuser'@'somehost';
The permissible priv_type values for a column (that is, when you use a column_list clause) are INSERT, SELECT, and UPDATE.
MySQL stores column privileges in the mysql.columns_priv table.
Stored Routine Privileges
The ALTER ROUTINE, CREATE ROUTINE, EXECUTE, and GRANT OPTION privileges apply to stored routines (procedures and functions). They can be granted at the global and database levels. Except for CREATE ROUTINE, these privileges can be granted at the routine level for individual routines.
GRANT CREATE ROUTINE ON mydb.* TO 'someuser'@'somehost';
GRANT EXECUTE ON PROCEDURE mydb.myproc TO 'someuser'@'somehost';
The permissible priv_type values at the routine level are ALTER ROUTINE, EXECUTE, and GRANT OPTION. CREATE ROUTINE is not a routine-level privilege because you must have this privilege to create a routine in the first place.
MySQL stores routine-level privileges in the mysql.procs_priv table.
Proxy User Privileges
The PROXY privilege enables one user to be a proxy for another. The proxy user impersonates or takes the identity of the proxied user.
GRANT PROXY ON 'localuser'@'localhost' TO 'externaluser'@'somehost';
When PROXY is granted, it must be the only privilege named in the GRANT statement, the REQUIRE clause cannot be given, and the only permitted WITH option is WITH GRANT OPTION.
Proxying requires that the proxy user authenticate through a plugin that returns the name of the proxied user to the server when the proxy user connects, and that the proxy user have the PROXY privilege for the proxied user. For details and examples, see Section 6.3.8, “Proxy Users”.
MySQL stores proxy privileges in the mysql.proxies_priv table.
For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist at the level you are granting. For example, GRANT ALL ON db_name.* is a database-level statement, so it does not grant any global-only privileges such as FILE. Granting ALL does not assign the PROXY privilege.
The object_type clause, if present, should be specified as TABLE, FUNCTION, or PROCEDURE when the following object is a table, a stored function, or a stored procedure.
The privileges for a database, table, column, or routine are formed additively as the logical OR of the privileges at each of the privilege levels. For example, if a user has a global SELECT privilege, the privilege cannot be denied by an absence of the privilege at the database, table, or column level. Details of the privilege-checking procedure are presented in Section 6.2.5, “Access Control, Stage 2: Request Verification”.
MySQL enables you to grant privileges on databases or tables that do not exist. For tables, the privileges to be granted must include the CREATE privilege. This behavior is by design, and is intended to enable the database administrator to prepare user accounts and privileges for databases or tables that are to be created at a later time.
Important
MySQL does not automatically revoke any privileges when you drop a database or table. However, if you drop a routine, any routine-level privileges granted for that routine are revoked.
Account Names and Passwords
The user value indicates the MySQL account to which the GRANT statement applies. To accommodate granting rights to users from arbitrary hosts, MySQL supports specifying the user value in the form user_name@host_name. If a user_name or host_name value is legal as an unquoted identifier, you need not quote it. However, quotation marks are necessary to specify a user_name string containing special characters (such as “-”), or a host_name string containing special characters or wildcard characters (such as “%”); for example, 'test-user'@'%.com'. Quote the user name and host name separately.
You can specify wildcards in the host name. For example, user_name@'%.example.com' applies to user_name for any host in the example.com domain, and user_name@'192.168.1.%' applies to user_name for any host in the 192.168.1 class C subnet.
The simple form user_name is a synonym for user_name@'%'.
MySQL does not support wildcards in user names. To refer to an anonymous user, specify an account with an empty user name with the GRANT statement:
GRANT ALL ON test.* TO ''@'localhost' ...
In this case, any user who connects from the local host with the correct password for the anonymous user will be permitted access, with the privileges associated with the anonymous-user account.
For additional information about user name and host name values in account names, see Section 6.2.3, “Specifying Account Names”.
To specify quoted values, quote database, table, column, and routine names as identifiers. Quote user names and host names as identifiers or as strings. Quote passwords as strings. For string-quoting and identifier-quoting guidelines, see Section 9.1.1, “String Literals”, and Section 9.2, “Schema Object Names”.
The “_” and “%” wildcards are permitted when specifying database names in GRANT statements that grant privileges at the global or database levels. This means, for example, that if you want to use a “_” character as part of a database name, you should specify it as “_” in the GRANT statement, to prevent the user from being able to access additional databases matching the wildcard pattern; for example, GRANT ... ON `foo_bar`.* TO
Warning
If you permit anonymous users to connect to the MySQL server, you should also grant privileges to all local users as user_name@localhost. Otherwise, the anonymous user account for localhost in the mysql.user table (created during MySQL installation) is used when named users try to log in to the MySQL server from the local machine. For details, see Section 6.2.4, “Access Control, Stage 1: Connection Verification”.
To determine whether the preceding warning applies to you, execute the following query, which lists any anonymous users:
SELECT Host, User FROM mysql.user WHERE User='';
To avoid the problem just described, delete the local anonymous user account using this statement:
DROP USER ''@'localhost';
GRANT supports host names up to 60 characters long. Database, table, column, and routine names can be up to 64 characters. User names can be up to 16 characters.
Warning
The permissible length for user names cannot be changed by altering the mysql.user table. Attempting to do so results in unpredictable behavior which may even make it impossible for users to log in to the MySQL server. You should never alter any of the tables in the mysql database in any manner whatsoever except by means of the procedure described in Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
The user specification may indicate how the user should authenticate when connecting to the server, through inclusion of an IDENTIFIED BY or IDENTIFIED WITH clause. The syntax is the same as for the CREATE USER statement. See Section 13.7.1.2, “CREATE USER Syntax”.
When the IDENTIFIED BY clause is present and you have global grant privileges, the password becomes the new password for the account, even if the account exists and already has a password. With no IDENTIFIED BY clause, the account password remains unchanged.
If the account named in a GRANT statement does not exist in the mysql.user table, GRANT creates it if the NO_AUTO_CREATE_USER SQL mode is not enabled. This is very insecure unless you specify a nonempty password using IDENTIFIED BY or an authentication plugin using IDENTIFIED WITH.
If the account does not exist and NO_AUTO_CREATE_USER is enabled, GRANT fails and does not create the account unless you specify a nonempty password with IDENTIFIED BY or specify an IDENTIFIED WITH clause to name an authentication plugin.
Important
GRANT may be recorded in server logs or in a history file such as ~/.mysql_history, which means that cleartext passwords may be read by anyone having read access to that information. See Section 6.1.2, “Keeping Passwords Secure”.
Other Account Characteristics
The WITH clause is used for several purposes:
To enable a user to grant privileges to other users
To specify resource limits for a user
To specify whether and how a user must use secure connections to the server
The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges the user has at the specified privilege level. You should be careful to whom you give the GRANT OPTION privilege because two users with different privileges may be able to combine privileges!
You cannot grant another user a privilege which you yourself do not have; the GRANT OPTION privilege enables you to assign only those privileges which you yourself possess.
Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level, any privileges the user possesses (or may be given in the future) at that level can also be granted by that user to other users. Suppose that you grant a user the INSERT privilege on a database. If you then grant the SELECT privilege on the database and specify WITH GRANT OPTION, that user can give to other users not only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to the user on the database, the user can grant INSERT, SELECT, and UPDATE.
For a nonadministrative user, you should not grant the ALTER privilege globally or for the mysql database. If you do that, the user can try to subvert the privilege system by renaming tables!
For additional information about security risks associated with particular privileges, see Section 6.2.1, “Privileges Provided by MySQL”.
Several WITH clause options specify limits on use of server resources by an account:
The MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count, and MAX_CONNECTIONS_PER_HOUR count limits restrict the number of queries, updates, and connections to the server permitted to this account during any given one-hour period. (Queries for which results are served from the query cache do not count against the MAX_QUERIES_PER_HOUR limit.) If count is 0 (the default), this means that there is no limitation for the account.
The MAX_USER_CONNECTIONS count limit restricts the maximum number of simultaneous connections to the server by the account. A nonzero count specifies the limit for the account explicitly. If count is 0 (the default), the server determines the number of simultaneous connections for the account from the global value of the max_user_connections system variable. If max_user_connections is also zero, there is no limit for the account.
To specify resource limits for an existing user without affecting existing privileges, use GRANT USAGE at the global level (ON *.*) and name the limits to be changed. For example:
GRANT USAGE ON *.* TO ...
WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;
Limits not specified retain their current values.
For more information on restricting access to server resources, see Section 6.3.4, “Setting Account Resource Limits”.
MySQL can check X509 certificate attributes in addition to the usual authentication that is based on the user name and password. To specify SSL-related options for a MySQL account, use the REQUIRE clause of the GRANT statement. (For background information on the use of SSL with MySQL, see Section 6.3.9, “Using SSL for Secure Connections”.)
There are a number of different possibilities for limiting connection types for a given account:
REQUIRE NONE indicates that the account has no SSL or X509 requirements. This is the default if no SSL-related REQUIRE options are specified. Unencrypted connections are permitted if the user name and password are valid. However, encrypted connections can also be used, at the client's option, if the client has the proper certificate and key files. That is, the client need not specify any SSL command options, in which case the connection will be unencrypted. To use an encrypted connection, the client must specify either the --ssl-ca option, or all three of the --ssl-ca, --ssl-key, and --ssl-cert options.
The REQUIRE SSL option tells the server to permit only SSL-encrypted connections for the account.
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret' REQUIRE SSL;
To connect, the client must specify the --ssl-ca option to authenticate the server certificate, and may additionally specify the --ssl-key and --ssl-cert options. If neither --ssl-ca option nor --ssl-capath option is specified, the client does not authenticate the server certificate.
REQUIRE X509 means that the client must have a valid certificate but that the exact certificate, issuer, and subject do not matter. The only requirement is that it should be possible to verify its signature with one of the CA certificates.
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret' REQUIRE X509;
To connect, the client must specify the --ssl-ca, --ssl-key, and --ssl-cert options. This is also true for ISSUER and SUBJECT because those REQUIRE options imply X509.
REQUIRE ISSUER 'issuer' places the restriction on connection attempts that the client must present a valid X509 certificate issued by CA 'issuer'. If the client presents a certificate that is valid but has a different issuer, the server rejects the connection. Use of X509 certificates always implies encryption, so the SSL option is unnecessary in this case.
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE ISSUER '/C=FI/ST=Some-State/L=Helsinki/
O=MySQL Finland AB/CN=Tonu Samuel/emailAddress=tonu@example.com';
The 'issuer' value should be entered as a single string.
Note
If MySQL is linked against a version of OpenSSL older than 0.9.6h, use Email rather than emailAddress in the 'issuer' value.
REQUIRE SUBJECT 'subject' places the restriction on connection attempts that the client must present a valid X509 certificate containing the subject subject. If the client presents a certificate that is valid but has a different subject, the server rejects the connection.
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/
O=MySQL demo client certificate/
CN=Tonu Samuel/emailAddress=tonu@example.com';
The 'subject' value should be entered as a single string. MySQL does a simple string comparison of this value to the value in the certificate, so lettercase and component ordering must be given exactly as present in the certificate.
Note
Regarding emailAddress, see the note in the description of REQUIRE ISSUER.
REQUIRE CIPHER 'cipher' is needed to ensure that ciphers and key lengths of sufficient strength are used. SSL itself can be weak if old algorithms using short encryption keys are used. Using this option, you can ask that a specific cipher method is used for a connection.
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';
The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like this:
GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/
O=MySQL demo client certificate/
CN=Tonu Samuel/emailAddress=tonu@example.com'
AND ISSUER '/C=FI/ST=Some-State/L=Helsinki/
O=MySQL Finland AB/CN=Tonu Samuel/emailAddress=tonu@example.com'
AND CIPHER 'EDH-RSA-DES-CBC3-SHA';
The order of the options does not matter, but no option can be specified twice. The AND keyword is optional between REQUIRE options.
If you are using table, column, or routine privileges for even one user, the server examines table, column, and routine privileges for all users and this slows down MySQL a bit. Similarly, if you limit the number of queries, updates, or connections for any users, the server must monitor these values.
MySQL and Standard SQL Versions of GRANT
The biggest differences between the MySQL and standard SQL versions of GRANT are:
MySQL associates privileges with the combination of a host name and user name and not with only a user name.
Standard SQL does not have global or database-level privileges, nor does it support all the privilege types that MySQL supports.
MySQL does not support the standard SQL UNDER privilege.
Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all privileges the user has been granted are revoked. This is also true in MySQL if you use DROP USER. See Section 13.7.1.3, “DROP USER Syntax”.
In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL, when you revoke a privilege, all privileges that were granted based on that privilege are also revoked. In MySQL, privileges can be dropped only with explicit DROP USER or REVOKE statements or by manipulating the MySQL grant tables directly.
In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In this case, you can still execute INSERT statements on the table, provided that you insert values only for those columns for which you have the INSERT privilege. The omitted columns are set to their implicit default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any of the omitted columns have no default value. (Standard SQL requires you to have the INSERT privilege on all columns.) Section 5.1.7, “Server SQL Modes”, discusses strict mode. Section 11.5, “Data Type Default Values”, discusses implicit default values.
13.7.1.5. RENAME USER Syntax
RENAME USER old_user TO new_user
[, old_user TO new_user] ...
The RENAME USER statement renames existing MySQL accounts. To use it, you must have the global CREATE USER privilege or the UPDATE privilege for the mysql database. An error occurs if any old account does not exist or any new account exists. Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For example:
RENAME USER 'jeffrey'@'localhost' TO 'jeff'@'127.0.0.1';
If you specify only the user name part of the account name, a host name part of '%' is used.
RENAME USER causes the privileges held by the old user to be those held by the new user. However, RENAME USER does not automatically drop or invalidate databases or objects within them that the old user created. This includes stored programs or views for which the DEFINER attribute names the old user. Attempts to access such objects may produce an error if they execute in definer security context. (For information about security context, see Section 18.6, “Access Control for Stored Programs and Views”.)
The privilege changes take effect as indicated in Section 6.2.6, “When Privilege Changes Take Effect”.
13.7.1.6. REVOKE Syntax
REVOKE
priv_type [(column_list)]
[, priv_type [(column_list)]] ...
ON [object_type] priv_level
FROM user [, user] ...
REVOKE ALL PRIVILEGES, GRANT OPTION
FROM user [, user] ...
REVOKE PROXY ON user
FROM user [, user] ...
The REVOKE statement enables system administrators to revoke privileges from MySQL accounts. Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For example:
REVOKE INSERT ON *.* FROM 'jeffrey'@'localhost';
If you specify only the user name part of the account name, a host name part of '%' is used.
For details on the levels at which privileges exist, the permissible priv_type and priv_level values, and the syntax for specifying users and passwords, see Section 13.7.1.4, “GRANT Syntax”
To use the first REVOKE syntax, you must have the GRANT OPTION privilege, and you must have the privileges that you are revoking.
To revoke all privileges, use the second syntax, which drops all global, database, table, column, and routine privileges for the named user or users:
REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...
To use this REVOKE syntax, you must have the global CREATE USER privilege or the UPDATE privilege for the mysql database.
REVOKE removes privileges, but does not drop mysql.user table entries. To remove a user account entirely, use DROP USER (see Section 13.7.1.3, “DROP USER Syntax”) or DELETE.
If the grant tables hold privilege rows that contain mixed-case database or table names and the lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to revoke these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not create such rows when lower_case_table_names is set, but such rows might have been created prior to setting the variable.)
When successfully executed from the mysql program, REVOKE responds with Query OK, 0 rows affected. To determine what privileges result from the operation, use SHOW GRANTS. See Section 13.7.5.22, “SHOW GRANTS Syntax”.
13.7.1.7. SET PASSWORD Syntax
SET PASSWORD [FOR user] =
{
PASSWORD('cleartext password')
| OLD_PASSWORD('cleartext password')
| 'encrypted password'
}
The SET PASSWORD statement assigns a password to an existing MySQL user account. When the read_only system variable is enabled, the SUPER privilege is required to use SET PASSWORD, in addition to whatever other privileges might be required.
If the password is specified using the PASSWORD() or OLD_PASSWORD() function, the cleartext (unencrypted) password should be given as the argument to the function, which hashes the password and returns the encrypted password string. If the password is specified without using either function, it should be the already encrypted password value as a literal string. In all cases, the encrypted password string must be in the format required by the authentication method used for the account.
With no FOR user clause, this statement sets the password for the current user. (To see which account the server authenticated you as, invoke the CURRENT_USER() function.) Any client who successfully connects to the server using a nonanonymous account can change the password for that account.
With a FOR user clause, this statement sets the password for the named user. You must have the UPDATE privilege for the mysql database to do this. The user account name uses the format described in Section 6.2.3, “Specifying Account Names”. The user value should be given as 'user_name'@'host_name', where 'user_name' and 'host_name' are exactly as listed in the User and Host columns of the mysql.user table row. (If you specify only a user name, a host name of '%' is used.) For example, to set the password for an account with User and Host column values of 'bob' and '%.example.org', write the statement like this:
SET PASSWORD FOR 'bob'@'%.example.org' = PASSWORD('cleartext password');
That is equivalent to the following statements:
UPDATE mysql.user SET Password=PASSWORD('cleartext password')
WHERE User='bob' AND Host='%.example.org';
FLUSH PRIVILEGES;
Another way to set the password is to use GRANT:
GRANT USAGE ON *.* TO 'bob'@'%.example.org' IDENTIFIED BY 'cleartext password';
The old_passwords system variable value determines the hashing method used by PASSWORD(). If you specify the password using that function and SET PASSWORD rejects the password as not being in the correct format, it may be necessary to set old_passwords to change the hashing method. For descriptions of the permitted values, see Section 5.1.4, “Server System Variables”.
For more information about setting passwords, see Section 6.3.5, “Assigning Account Passwords”
Important
SET PASSWORD may be recorded in server logs or in a history file such as ~/.mysql_history, which means that cleartext passwords may be read by anyone having read access to that information. See Section 6.1.2, “Keeping Passwords Secure”.
Caution
If you are connecting to a MySQL 4.1 or later server using a pre-4.1 client program, do not change your password without first reading Section 6.1.2.4, “Password Hashing in MySQL”. The default password hashing format changed in MySQL 4.1, and if you change your password, it might be stored using a hashing format that pre-4.1 clients cannot generate, thus preventing you from connecting to the server afterward.
If you are using MySQL Replication, be aware that, currently, a password used by a replication slave as part of a CHANGE MASTER TO statement is effectively limited to 32 characters in length; the password can be longer, but any excess characters are truncated. This is not due to any limit imposed by the MySQL Server generally, but rather is an issue specific to MySQL Replication. (For more information, see Bug #43439.)
13.7.2. Table Maintenance Statements
13.7.2.1. ANALYZE TABLE Syntax
ANALYZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE
tbl_name [, tbl_name] ...
ANALYZE TABLE analyzes and stores the key distribution for a table. During the analysis, the table is locked with a read lock for InnoDB and MyISAM. This statement works with InnoDB, NDB, and MyISAM tables. For MyISAM tables, this statement is equivalent to using myisamchk --analyze.
For more information on how the analysis works within InnoDB, see Section 14.2.4.2.10, “Persistent Optimizer Statistics for InnoDB Tables” and Section 14.2.7, “Limits on InnoDB Tables”. In particular, when you enable the innodb_stats_persistent option, you must run ANALYZE TABLE after loading substantial data into an InnoDB table, or creating a new index for one.
MySQL uses the stored key distribution to decide the order in which tables should be joined when you perform a join on something other than a constant. In addition, key distributions can be used when deciding which indexes to use for a specific table within a query.
This statement requires SELECT and INSERT privileges for the table.
ANALYZE TABLE is supported for partitioned tables, and you can use ALTER TABLE ... ANALYZE PARTITION to analyze one or more partitions; for more information, see Section 13.1.6, “ALTER TABLE Syntax”, and Section 17.3.4, “Maintenance of Partitions”.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
ANALYZE TABLE returns a result set with the following columns.
Column | Value |
---|---|
Table | The table name |
Op | Always analyze |
Msg_type | status, error, info, note, or warning |
Msg_text | An informational message |
You can check the stored key distribution with the SHOW INDEX statement. See Section 13.7.5.23, “SHOW INDEX Syntax”.
If the table has not changed since the last ANALYZE TABLE statement, the table is not analyzed again.
By default, the server writes ANALYZE TABLE statements to the binary log so that they replicate to replication slaves. To suppress logging, use the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.
13.7.2.2. CHECK TABLE Syntax
CHECK TABLE tbl_name [, tbl_name] ... [option] ...
option = {FOR UPGRADE | QUICK | FAST | MEDIUM | EXTENDED | CHANGED}
CHECK TABLE checks a table or tables for errors. CHECK TABLE works for InnoDB, MyISAM, ARCHIVE, and CSV tables. For MyISAM tables, the key statistics are updated as well.
To check a table, you must have some privilege for it.
CHECK TABLE can also check views for problems, such as tables that are referenced in the view definition that no longer exist.
CHECK TABLE is supported for partitioned tables, and you can use ALTER TABLE ... CHECK PARTITION to check one or more partitions; for more information, see Section 13.1.6, “ALTER TABLE Syntax”, and Section 17.3.4, “Maintenance of Partitions”.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
Output
CHECK TABLE returns a result set with the following columns.
Column | Value |
---|---|
Table | The table name |
Op | Always check |
Msg_type | status, error, info, note, or warning |
Msg_text | An informational message |
Note that the statement might produce many rows of information for each checked table. The last row has a Msg_type value of status and the Msg_text normally should be OK. If you don't get OK, or Table is already up to date you should normally run a repair of the table. See Section 7.6, “MyISAM Table Maintenance and Crash Recovery”. Table is already up to date means that the storage engine for the table indicated that there was no need to check the table.
Checking Version Compatibility
The FOR UPGRADE option checks whether the named tables are compatible with the current version of MySQL. With FOR UPGRADE, the server checks each table to determine whether there have been any incompatible changes in any of the table's data types or indexes since the table was created. If not, the check succeeds. Otherwise, if there is a possible incompatibility, the server runs a full check on the table (which might take some time). If the full check succeeds, the server marks the table's .frm file with the current MySQL version number. Marking the .frm file ensures that further checks for the table with the same version of the server will be fast.
Incompatibilities might occur because the storage format for a data type has changed or because its sort order has changed. Our aim is to avoid these changes, but occasionally they are necessary to correct problems that would be worse than an incompatibility between releases.
Currently, FOR UPGRADE discovers these incompatibilities:
The indexing order for end-space in TEXT columns for InnoDB and MyISAM tables changed between MySQL 4.1 and 5.0.
The storage method of the new DECIMAL data type changed between MySQL 5.0.3 and 5.0.5.
If your table was created by a different version of the MySQL server than the one you are currently running, FOR UPGRADE indicates that the table has an .frm file with an incompatible version. In this case, the result set returned by CHECK TABLE contains a line with a Msg_type value of error and a Msg_text value of Table upgrade required. Please do "REPAIR TABLE `tbl_name`" to fix it!
Changes are sometimes made to character sets or collations that require table indexes to be rebuilt. For details about these changes and when FOR UPGRADE detects them, see Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”.
The YEAR(2) is deprecated as of MySQL 5.6.6. CHECK TABLE recommends REPAIR TABLE for tables containing this data type. REPAIR TABLE converts YEAR(2) to YEAR(4).
Checking Data Consistency
The other check options that can be given are shown in the following table. These options are passed to the storage engine, which may use them or not.
Type | Meaning |
---|---|
QUICK | Do not scan the rows to check for incorrect links. Applies to InnoDB and MyISAM tables and views. |
FAST | Check only tables that have not been closed properly. Applies only to MyISAM tables and views; ignored for InnoDB. |
CHANGED | Check only tables that have been changed since the last check or that have not been closed properly. Applies only to MyISAM tables and views; ignored for InnoDB. |
MEDIUM | Scan rows to verify that deleted links are valid. This also calculates a key checksum for the rows and verifies this with a calculated checksum for the keys. Applies only to MyISAM tables and views; ignored for InnoDB. |
EXTENDED | Do a full key lookup for all keys for each row. This ensures that the table is 100% consistent, but takes a long time. Applies only to MyISAM tables and views; ignored for InnoDB. |
If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for dynamic-format MyISAM tables is MEDIUM. This has the same result as running myisamchk --medium-check tbl_name on the table. The default check type also is MEDIUM for static-format MyISAM tables, unless CHANGED or FAST is specified. In that case, the default is QUICK. The row scan is skipped for CHANGED and FAST because the rows are very seldom corrupted.
You can combine check options, as in the following example that does a quick check on the table to determine whether it was closed properly:
CHECK TABLE test_table FAST QUICK;
Note
In some cases, CHECK TABLE changes the table. This happens if the table is marked as “corrupted” or “not closed properly” but CHECK TABLE does not find any problems in the table. In this case, CHECK TABLE marks the table as okay.
If a table is corrupted, it is most likely that the problem is in the indexes and not in the data part. All of the preceding check types check the indexes thoroughly and should thus find most errors.
If you just want to check a table that you assume is okay, you should use no check options or the QUICK option. The latter should be used when you are in a hurry and can take the very small risk that QUICK does not find an error in the data file. (In most cases, under normal usage, MySQL should find any error in the data file. If this happens, the table is marked as “corrupted” and cannot be used until it is repaired.)
FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from cron) if you want to check tables from time to time. In most cases, FAST is to be preferred over CHANGED. (The only case when it is not preferred is when you suspect that you have found a bug in the MyISAM code.)
EXTENDED is to be used only after you have run a normal check but still get strange errors from a table when MySQL tries to update a row or find a row by key. This is very unlikely if a normal check has succeeded.
Use of CHECK TABLE ... EXTENDED might influence the execution plan generated by the query optimizer.
Some problems reported by CHECK TABLE cannot be corrected automatically:
Found row where the auto_increment column has the value 0.
This means that you have a row in the table where the AUTO_INCREMENT index column contains the value 0. (It is possible to create a row where the AUTO_INCREMENT column is 0 by explicitly setting the column to 0 with an UPDATE statement.)
This is not an error in itself, but could cause trouble if you decide to dump the table and restore it or do an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column changes value according to the rules of AUTO_INCREMENT columns, which could cause problems such as a duplicate-key error.
To get rid of the warning, simply execute an UPDATE statement to set the column to some value other than 0.
InnoDB Tables
The following notes apply to InnoDB tables:
If CHECK TABLE finds a problem for an InnoDB table, the server shuts down to prevent error propagation. Details of the error will be written to the error log.
When an InnoDB table is stored in its own .ibd file in file-per-table mode, the first 3 pages of the .ibd contain header information rather than table or index data. The CHECK TABLE statement does not detect inconsistencies that only affect the header data. To verify the entire contents of an InnoDB .ibd file, use the innochecksum command.
13.7.2.3. CHECKSUM TABLE Syntax
CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]
CHECKSUM TABLE reports a checksum for the contents of a table. You can use this statement to verify that the contents are the same before and after a backup, rollback, or other operation that is intended to put the data back to a known state. This statement requires the SELECT privilege for the table.
Performance Considerations
By default, the entire table is read row by row and the checksum is calculated. For large tables, this could take a long time, thus you would only perform this operation occasionally. This row-by-row calculation is what you get with the EXTENDED clause, with InnoDB and all other storage engines other than MyISAM, and with MyISAM tables not created with the CHECKSUM=1 clause.
For MyISAM tables created with the CHECKSUM=1 clause, CHECKSUM TABLE or CHECKSUM TABLE ... QUICK returns the “live” table checksum that can be returned very fast. If the table does not meet all these conditions, the QUICK method returns NULL. See Section 13.1.14, “CREATE TABLE Syntax” for the syntax of the CHECKSUM clause.
For a nonexistent table, CHECKSUM TABLE returns NULL and generates a warning.
Prior to MySQL 5.6.4, CHECKSUM TABLE returned 0 for partitioned tables unless the EXTENDED option was used. (Bug #11933226, Bug #60681)
The checksum value depends on the table row format. If the row format changes, the checksum also changes. For example, the storage format for VARCHAR changed between MySQL 4.1 and 5.0, so if a 4.1 table is upgraded to MySQL 5.0, the checksum value may change.
Important
If the checksums for two tables are different, then it is almost certain that the tables are different in some way. However, because the hashing function used by CHECKSUM TABLE is not guaranteed to be collision-free, there is a slight chance that two tables which are not identical can produce the same checksum.
13.7.2.4. OPTIMIZE TABLE Syntax
OPTIMIZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE
tbl_name [, tbl_name] ...
Reorganizes the physical storage of table data and associated index data, to reduce storage space and improve I/O efficiency when accessing the table. The exact changes made to each table depend on the storage engine used by that table.
Use OPTIMIZE TABLE in these cases, depending on the type of table:
After doing substantial insert, update, or delete operations on an InnoDB table that has its own .ibd file because it was created with the innodb_file_per_table option enabled. The table and indexes are reorganized, and disk space can be reclaimed for use by the operating system.
After doing substantial insert, update, or delete operations on columns that are part of a FULLTEXT index in an InnoDB table. Set the configuration option innodb_optimize_fulltext_only=1 first. To keep the index maintenance period to a reasonable time, set the innodb_ft_num_word_optimize option to specify how many words to update in the search index, and run a sequence of OPTIMIZE TABLE statements until the search index is fully updated.
After deleting a large part of a MyISAM or ARCHIVE table, or making many changes to a MyISAM or ARCHIVE table with variable-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT columns). Deleted rows are maintained in a linked list and subsequent INSERT operations reuse old row positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defragment the data file. After extensive changes to a table, this statement may also improve performance of statements that use the table, sometimes significantly.
This statement requires SELECT and INSERT privileges for the table.
OPTIMIZE TABLE is also supported for partitioned tables. For information about using this statement with partitioned tables and table partitions, see Section 17.3.4, “Maintenance of Partitions”.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
OPTIMIZE TABLE works only for InnoDB, MyISAM, and ARCHIVE tables. By default, it does not work for tables created using any other storage engine. You can make OPTIMIZE TABLE work on other storage engines by starting mysqld with the --skip-new option. In this case, OPTIMIZE TABLE is just mapped to ALTER TABLE.
InnoDB Details
For InnoDB tables, OPTIMIZE TABLE is mapped to ALTER TABLE, which rebuilds the table to update index statistics and free unused space in the clustered index. This is displayed in the output of OPTIMIZE TABLE when you run it on an InnoDB table, as shown here:
mysql> OPTIMIZE TABLE foo;
+----------+----------+----------+---+
| Table | Op | Msg_type | Msg_text |
+----------+----------+----------+---+
| test.foo | optimize | note | Table does not support optimize, doing recreate + analyze instead |
| test.foo | optimize | status | OK |
+----------+----------+----------+---+
InnoDB stores data using a page-allocation method and does not suffer from fragmentation in the same way that legacy storage engines (such as MyISAM) will. When considering whether or not to run optimize, consider the workload of transactions that your server will process:
Some level of fragmentation is expected. InnoDB only fills pages 93% full, to leave room for updates without having to split pages.
Delete operations might leave gaps that leave pages less filled than desired, which could make it worthwhile to optimize the table.
Updates to rows usually rewrite the data within the same page, depending on the data type and row format, when sufficient space is available. See Section 5.4.6.5, “How Compression Works for InnoDB Tables” and Section 5.4.8.1, “Overview of InnoDB Row Storage”.
High-concurrency workloads might leave gaps in indexes over time, as InnoDB retains multiple versions of the same data due through its MVCC mechanism. See Section 14.2.3.11, “InnoDB Multi-Versioning”.
MyISAM Details
For MyISAM tables, OPTIMIZE TABLE works as follows:
If the table has deleted or split rows, repair the table.
If the index pages are not sorted, sort them.
If the table's statistics are not up to date (and the repair could not be accomplished by sorting the index), update them.
Result Set
OPTIMIZE TABLE returns a result set with the following columns.
Column | Value |
---|---|
Table | The table name |
Op | Always optimize |
Msg_type | status, error, info, note, or warning |
Msg_text | An informational message |
Note that MySQL locks the table during the time OPTIMIZE TABLE is running.
By default, the server writes OPTIMIZE TABLE statements to the binary log so that they replicate to replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG clause or its alias LOCAL.
OPTIMIZE TABLE does not sort R-tree indexes, such as spatial indexes on POINT columns. (Bug #23578)
OPTIMIZE TABLE table catches and throws any errors that occur while copying table statistics from the old file to the newly created file. For example. if the user ID of the owner of the .frm, .MYD, or .MYI file is different from the user ID of the mysqld process, OPTIMIZE TABLE generates a "cannot change ownership of the file" error unless mysqld is started by the root user.
13.7.2.5. REPAIR TABLE Syntax
REPAIR [NO_WRITE_TO_BINLOG | LOCAL] TABLE
tbl_name [, tbl_name] ...
[QUICK] [EXTENDED] [USE_FRM]
REPAIR TABLE repairs a possibly corrupted table, for certain storage engines only. By default, it has the same effect as myisamchk --recover tbl_name.
Note
REPAIR TABLE only applies to MyISAM, ARCHIVE, and CSV tables. See Section 14.3, “The MyISAM Storage Engine”, and Section 14.6, “The ARCHIVE Storage Engine”, and Section 14.5, “The CSV Storage Engine”
This statement requires SELECT and INSERT privileges for the table.
REPAIR TABLE is supported for partitioned tables. However, the USE_FRM option cannot be used with this statement on a partitioned table.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
You can use ALTER TABLE ... REPAIR PARTITION to repair one or more partitions; for more information, see Section 13.1.6, “ALTER TABLE Syntax”, and Section 17.3.4, “Maintenance of Partitions”.
Although normally you should never have to run REPAIR TABLE, if disaster strikes, this statement is very likely to get back all your data from a MyISAM table. If your tables become corrupted often, try to find the reason for it, to eliminate the need to use REPAIR TABLE. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”, and Section 14.3.4, “MyISAM Table Problems”.
Caution
Make a backup of a table before performing a table repair operation; under some circumstances the operation might cause data loss. Possible causes include but are not limited to file system errors. See Chapter 7, Backup and Recovery.
Warning
If the server crashes during a REPAIR TABLE operation, it is essential after restarting it that you immediately execute another REPAIR TABLE statement for the table before performing any other operations on it. In the worst case, you might have a new clean index file without information about the data file, and then the next operation you perform could overwrite the data file. This is an unlikely but possible scenario that underscores the value of making a backup first.
REPAIR TABLE returns a result set with the following columns.
Column | Value |
---|---|
Table | The table name |
Op | Always repair |
Msg_type | status, error, info, note, or warning |
Msg_text | An informational message |
The REPAIR TABLE statement might produce many rows of information for each repaired table. The last row has a Msg_type value of status and Msg_test normally should be OK. If you do not get OK for a MyISAM table, you should try repairing it with myisamchk --safe-recover. (REPAIR TABLE does not implement all the options of myisamchk.) With myisamchk --safe-recover, you can also use options that REPAIR TABLE does not support, such as --max-record-length.
If you use the QUICK option, REPAIR TABLE tries to repair only the index file, and not the data file. This type of repair is like that done by myisamchk --recover --quick.
If you use the EXTENDED option, MySQL creates the index row by row instead of creating one index at a time with sorting. This type of repair is like that done by myisamchk --safe-recover.
The USE_FRM option is available for use if the .MYI index file is missing or if its header is corrupted. This option tells MySQL not to trust the information in the .MYI file header and to re-create it using information from the .frm file. This kind of repair cannot be done with myisamchk.
Note
Use the USE_FRM option only if you cannot use regular REPAIR modes! Telling the server to ignore the .MYI file makes important table metadata stored in the .MYI unavailable to the repair process, which can have deleterious consequences:
The current AUTO_INCREMENT value is lost.
The link to deleted records in the table is lost, which means that free space for deleted records will remain unoccupied thereafter.
The .MYI header indicates whether the table is compressed. If the server ignores this information, it cannot tell that a table is compressed and repair can cause change or loss of table contents. This means that USE_FRM should not be used with compressed tables. That should not be necessary, anyway: Compressed tables are read only, so they should not become corrupt.
Caution
If you use USE_FRM for a table that was created by a different version of the MySQL server than the one you are currently running, REPAIR TABLE will not attempt to repair the table. In this case, the result set returned by REPAIR TABLE contains a line with a Msg_type value of error and a Msg_text value of Failed repairing incompatible .FRM file.
If USE_FRM is not used, REPAIR TABLE checks the table to see whether an upgrade is required. If so, it performs the upgrade, following the same rules as CHECK TABLE ... FOR UPGRADE. See Section 13.7.2.2, “CHECK TABLE Syntax”, for more information. REPAIR TABLE without USE_FRM upgrades the .frm file to the current version.
By default, the server writes REPAIR TABLE statements to the binary log so that they replicate to replication slaves. To suppress logging, use the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.
Important
In the event that a table on the master becomes corrupted and you run REPAIR TABLE on it, any resulting changes to the original table are not propagated to slaves.
You may be able to increase REPAIR TABLE performance by setting certain system variables. See Section 8.6.3, “Speed of REPAIR TABLE Statements”.
REPAIR TABLE table catches and throws any errors that occur while copying table statistics from the old corrupted file to the newly created file. For example. if the user ID of the owner of the .frm, .MYD, or .MYI file is different from the user ID of the mysqld process, REPAIR TABLE generates a "cannot change ownership of the file" error unless mysqld is started by the root user.
13.7.3. Plugin and User-Defined Function Statements
13.7.3.1. CREATE FUNCTION Syntax for User-Defined Functions
CREATE [AGGREGATE] FUNCTION function_name RETURNS {STRING|INTEGER|REAL|DECIMAL}
SONAME shared_library_name
A user-defined function (UDF) is a way to extend MySQL with a new function that works like a native (built-in) MySQL function such as ABS() or CONCAT().
function_name is the name that should be used in SQL statements to invoke the function. The RETURNS clause indicates the type of the function's return value. DECIMAL is a legal value after RETURNS, but currently DECIMAL functions return string values and should be written like STRING functions.
shared_library_name is the basename of the shared object file that contains the code that implements the function. The file must be located in the plugin directory. This directory is given by the value of the plugin_dir system variable. For more information, see Section 22.3.2.5, “Compiling and Installing User-Defined Functions”.
To create a function, you must have the INSERT privilege for the mysql database. This is necessary because CREATE FUNCTION adds a row to the mysql.func system table that records the function's name, type, and shared library name. If you do not have this table, you should run the mysql_upgrade command to create it. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld with the --skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are unavailable.
For instructions on writing user-defined functions, see Section 22.3.2, “Adding a New User-Defined Function”. For the UDF mechanism to work, functions must be written in C or C++ (or another language that can use C calling conventions), your operating system must support dynamic loading and you must have compiled mysqld dynamically (not statically).
An AGGREGATE function works exactly like a native MySQL aggregate (summary) function such as SUM or COUNT(). For AGGREGATE to work, your mysql.func table must contain a type column. If your mysql.func table does not have this column, you should run the mysql_upgrade program to create it (see Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”).
Note
To upgrade the shared library associated with a UDF, issue a DROP FUNCTION statement, upgrade the shared library, and then issue a CREATE FUNCTION statement. If you upgrade the shared library first and then use DROP FUNCTION, the server may crash.
13.7.3.2. DROP FUNCTION Syntax
DROP FUNCTION function_name
This statement drops the user-defined function (UDF) named function_name.
To drop a function, you must have the DELETE privilege for the mysql database. This is because DROP FUNCTION removes a row from the mysql.func system table that records the function's name, type, and shared library name.
Note
To upgrade the shared library associated with a UDF, issue a DROP FUNCTION statement, upgrade the shared library, and then issue a CREATE FUNCTION statement. If you upgrade the shared library first and then use DROP FUNCTION, the server may crash.
DROP FUNCTION is also used to drop stored functions (see Section 13.1.21, “DROP PROCEDURE and DROP FUNCTION Syntax”).
13.7.3.3. INSTALL PLUGIN Syntax
INSTALL PLUGIN plugin_name SONAME 'shared_library_name'
This statement installs a server plugin. It requires the INSERT privilege for the mysql.plugin table.
plugin_name is the name of the plugin as defined in the plugin descriptor structure contained in the library file (see Section 22.2.4.2, “Plugin Data Structures”). Plugin names are not case sensitive. For maximal compatibility, plugin names should be limited to ASCII letters, digits, and underscore because they are used in C source files, shell command lines, M4 and Bourne shell scripts, and SQL environments.
shared_library_name is the name of the shared library that contains the plugin code. The name includes the file name extension (for example, libmyplugin.so, libmyplugin.dll, or libmyplugin.dylib).
The shared library must be located in the plugin directory (the directory named by the plugin_dir system variable). The library must be in the plugin directory itself, not in a subdirectory. By default, plugin_dir is the plugin directory under the directory named by the pkglibdir configuration variable, but it can be changed by setting the value of plugin_dir at server startup. For example, set its value in a my.cnf file:
[mysqld]
plugin_dir=/path/to/plugin/directory
If the value of plugin_dir is a relative path name, it is taken to be relative to the MySQL base directory (the value of the basedir system variable).
INSTALL PLUGIN loads and initializes the plugin code to make the plugin available for use. A plugin is initialized by executing its initialization function, which handles any setup that the plugin must perform before it can be used. When the server shuts down, it executes the deinitialization function for each plugin that is loaded so that the plugin has a change to perform any final cleanup.
INSTALL PLUGIN also registers the plugin by adding a line that indicates the plugin name and library file name to the mysql.plugin table. At server startup, the server loads and initializes any plugin that is listed in the mysql.plugin table. This means that a plugin is installed with INSTALL PLUGIN only once, not every time the server starts. Plugin loading at startup does not occur if the server is started with the --skip-grant-tables option.
A plugin library can contain multiple plugins. For each of them to be installed, use a separate INSTALL PLUGIN statement. Each statement names a different plugin, but all of them specify the same library name.
INSTALL PLUGIN causes the server to read option (my.cnf) files just as during server startup. This enables the plugin to pick up any relevant options from those files. It is possible to add plugin options to an option file even before loading a plugin (if the loose prefix is used). It is also possible to uninstall a plugin, edit my.cnf, and install the plugin again. Restarting the plugin this way enables it to the new option values without a server restart.
For options that control individual plugin loading at server startup, see Section 5.1.8.1, “Installing and Uninstalling Plugins”. If you need to load plugins for a single server startup when the --skip-grant-tables option is given (which tells the server not to read system tables), use the --plugin-load option. See Section 5.1.3, “Server Command Options”.
To remove a plugin, use the UNINSTALL PLUGIN statement.
For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.
To see what plugins are installed, use the SHOW PLUGINS statement or query the INFORMATION_SCHEMA.PLUGINS table.
If you recompile a plugin library and need to reinstall it, you can use either of the following methods:
Use UNINSTALL PLUGIN to uninstall all plugins in the library, install the new plugin library file in the plugin directory, and then use INSTALL PLUGIN to install all plugins in the library. This procedure has the advantage that it can be used without stopping the server. However, if the plugin library contains many plugins, you must issue many INSTALL PLUGIN and UNINSTALL PLUGIN statements.
Stop the server, install the new plugin library file in the plugin directory, and restart the server.
13.7.3.4. UNINSTALL PLUGIN Syntax
UNINSTALL PLUGIN plugin_name
This statement removes an installed server plugin. It requires the DELETE privilege for the mysql.plugin table.
plugin_name must be the name of some plugin that is listed in the mysql.plugin table. The server executes the plugin's deinitialization function and removes the row for the plugin from the mysql.plugin table, so that subsequent server restarts will not load and initialize the plugin. UNINSTALL PLUGIN does not remove the plugin's shared library file.
You cannot uninstall a plugin if any table that uses it is open.
Plugin removal has implications for the use of associated tables. For example, if a full-text parser plugin is associated with a FULLTEXT index on the table, uninstalling the plugin makes the table unusable. Any attempt to access the table results in an error. The table cannot even be opened, so you cannot drop an index for which the plugin is used. This means that uninstalling a plugin is something to do with care unless you do not care about the table contents. If you are uninstalling a plugin with no intention of reinstalling it later and you care about the table contents, you should dump the table with mysqldump and remove the WITH PARSER clause from the dumped CREATE TABLE statement so that you can reload the table later. If you do not care about the table, DROP TABLE can be used even if any plugins associated with the table are missing.
For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.
13.7.4. SET Syntax
SET variable_assignment [, variable_assignment] ...
variable_assignment:
user_var_name = expr
| [GLOBAL | SESSION] system_var_name = expr
| [@@global. | @@session. | @@]system_var_name = expr
The SET statement assigns values to different types of variables that affect the operation of the server or your client.
This section describes use of SET for assigning values to variables. The SET statement can be used to assign values to these types of variables:
System variables. See Section 5.1.4, “Server System Variables”. System variables also can be set at server startup, as described in Section 5.1.5, “Using System Variables”.
User-defined variables. See Section 9.4, “User-Defined Variables”.
Stored procedure and function parameters, and stored program local variables. See Section 13.6.4, “Variables in Stored Programs”.
Some variants of SET syntax are used in other contexts:
SET CHARACTER SET and SET NAMES assign values to character set and collation variables associated with the connection to the server. SET ONE_SHOT is used for replication. These variants are described later in this section.
SET PASSWORD assigns account passwords. See Section 13.7.1.7, “SET PASSWORD Syntax”.
SET TRANSACTION ISOLATION LEVEL sets the isolation level for transaction processing. See Section 13.3.6, “SET TRANSACTION Syntax”.
The following discussion shows the different SET syntaxes that you can use to set variables. The examples use the = assignment operator, but you can also use the := assignment operator for this purpose.
A user variable is written as @var_name and can be set as follows:
SET @var_name = expr;
Many system variables are dynamic and can be changed while the server runs by using the SET statement. For a list, see Section 5.1.5.2, “Dynamic System Variables”. To change a system variable with SET, refer to it as var_name, optionally preceded by a modifier:
To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or @@global.. The SUPER privilege is required to set global variables.
To indicate explicitly that a variable is a session variable, precede its name by SESSION, @@session., or @@. Setting a session variable requires no special privilege, but a client can change only its own session variables, not those of any other client.
LOCAL and @@local. are synonyms for SESSION and @@session..
If no modifier is present, SET changes the session variable.
A SET statement can contain multiple variable assignments, separated by commas. For example, the statement can assign values to a user-defined variable and a system variable. If you set several system variables, the most recent GLOBAL or SESSION modifier in the statement is used for following variables that have no modifier specified.
Examples:
SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;
The @@var_name syntax for system variables is supported for compatibility with some other database systems.
If you change a session system variable, the value remains in effect until your session ends or until you change the variable to a different value. The change is not visible to other clients.
If you change a global system variable, the value is remembered and used for new connections until the server restarts. (To make a global system variable setting permanent, you should set it in an option file.) The change is visible to any client that accesses that global variable. However, the change affects the corresponding session variable only for clients that connect after the change. The global variable change does not affect the session variable for any client that is currently connected (not even that of the client that issues the SET GLOBAL statement).
To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that can only be used with SET SESSION or if you do not specify GLOBAL (or @@global.) when setting a global variable.
To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL default value, use the DEFAULT keyword. For example, the following two statements are identical in setting the session value of max_join_size to the global value:
SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;
Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.
It is not permitted to assign the value DEFAULT to user-defined variables, stored procedure or function parameters, or stored program local variables. This results in a syntax error for user-defined variables, and also for parameters or local variables as of MySQL 5.6.6.
You can refer to the values of specific global or session system variables in expressions by using one of the @@-modifiers. For example, you can retrieve values in a SELECT statement like this:
SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;
When you refer to a system variable in an expression as @@var_name (that is, when you do not specify @@global. or @@session.), MySQL returns the session value if it exists and the global value otherwise. (This differs from SET @@var_name = value, which always refers to the session value.)
Note
Some variables displayed by SHOW VARIABLES may not be available using SELECT @@var_name syntax; an Unknown system variable occurs. As a workaround in such cases, you can use SHOW VARIABLES LIKE 'var_name'.
Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not to set the value with SET at runtime. On the other hand, with SET you can assign a variable's value using an expression, which is not true when you set a variable at server startup. For example, the first of the following lines is legal at server startup, but the second is not:
shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024
Conversely, the second of the following lines is legal at runtime, but the first is not:
mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;
To display system variables names and values, use the SHOW VARIABLES statement. (See Section 13.7.5.40, “SHOW VARIABLES Syntax”.)
The following list describes SET options that have nonstandard syntax (that is, options that are not set with name = value syntax).
CHARACTER SET {charset_name | DEFAULT}
This maps all strings from and to the client with the given mapping. You can add new mappings by editing sql/convert.cc in the MySQL source distribution. SET CHARACTER SET sets three session system variables: character_set_client and character_set_results are set to the given character set, and character_set_connection to the value of character_set_database. See Section 10.1.4, “Connection Character Sets and Collations”.
The default mapping can be restored by using the value DEFAULT. The default depends on the server configuration.
ucs2, utf16, and utf32 cannot be used as a client character set, which means that they do not work for SET CHARACTER SET.
NAMES {'charset_name' [COLLATE 'collation_name'] | DEFAULT}
SET NAMES sets the three session system variables character_set_client, character_set_connection, and character_set_results to the given character set. Setting character_set_connection to charset_name also sets collation_connection to the default collation for charset_name. The optional COLLATE clause may be used to specify a collation explicitly. See Section 10.1.4, “Connection Character Sets and Collations”.
The default mapping can be restored by using a value of DEFAULT. The default depends on the server configuration.
ucs2, utf16, and utf32 cannot be used as a client character set, which means that they do not work for SET NAMES.
ONE_SHOT
ONE_SHOT is for internal use only, has been deprecated since MySQL 5.0, and was removed in MySQL 5.6.1.
13.7.5. SHOW Syntax
SHOW has many forms that provide information about databases, tables, columns, or status information about the server. This section describes those following:
SHOW AUTHORS
SHOW {BINARY | MASTER} LOGS
SHOW BINLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW CHARACTER SET [like_or_where]
SHOW COLLATION [like_or_where]
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [like_or_where]
SHOW CONTRIBUTORS
SHOW CREATE DATABASE db_name
SHOW CREATE EVENT event_name
SHOW CREATE FUNCTION func_name
SHOW CREATE PROCEDURE proc_name
SHOW CREATE TABLE tbl_name
SHOW CREATE TRIGGER trigger_name
SHOW CREATE VIEW view_name
SHOW DATABASES [like_or_where]
SHOW ENGINE engine_name {STATUS | MUTEX}
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW EVENTS
SHOW FUNCTION CODE func_name
SHOW FUNCTION STATUS [like_or_where]
SHOW GRANTS FOR user
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW MASTER STATUS
SHOW OPEN TABLES [FROM db_name] [like_or_where]
SHOW PLUGINS
SHOW PROCEDURE CODE proc_name
SHOW PROCEDURE STATUS [like_or_where]
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
SHOW PROFILES
SHOW SLAVE HOSTS
SHOW SLAVE STATUS
SHOW [GLOBAL | SESSION] STATUS [like_or_where]
SHOW TABLE STATUS [FROM db_name] [like_or_where]
SHOW [FULL] TABLES [FROM db_name] [like_or_where]
SHOW TRIGGERS [FROM db_name] [like_or_where]
SHOW [GLOBAL | SESSION] VARIABLES [like_or_where]
SHOW WARNINGS [LIMIT [offset,] row_count]
like_or_where:
LIKE 'pattern'
| WHERE expr
If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string that can contain the SQL “%” and “_” wildcard characters. The pattern is useful for restricting statement output to matching values.
Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which rows to display. See Section 19.32, “Extensions to SHOW Statements”.
Many MySQL APIs (such as PHP) enable you to treat the result returned from a SHOW statement as you would a result set from a SELECT; see Chapter 21, Connectors and APIs, or your API documentation for more information. In addition, you can work in SQL with results from queries on tables in the INFORMATION_SCHEMA database, which you cannot easily do with results from SHOW statements. See Chapter 19, INFORMATION_SCHEMA Tables.
13.7.5.1. SHOW AUTHORS Syntax
SHOW AUTHORS
The SHOW AUTHORS statement displays information about the people who work on MySQL. For each author, it displays Name, Location, and Comment values.
This statement is removed as of MySQL 5.6.8.
13.7.5.2. SHOW BINARY LOGS Syntax
SHOW BINARY LOGS
SHOW MASTER LOGS
Lists the binary log files on the server. This statement is used as part of the procedure described in Section 13.4.1.1, “PURGE BINARY LOGS Syntax”, that shows how to determine which logs can be purged.
mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+
SHOW MASTER LOGS is equivalent to SHOW BINARY LOGS.
In MySQL 5.6.5 and earlier, the SUPER privilege was required to use this statement. Starting with MySQL 5.6.6, a user with the REPLICATION CLIENT privilege may also execute this statement.
13.7.5.3. SHOW BINLOG EVENTS Syntax
SHOW BINLOG EVENTS
[IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
Shows the events in the binary log. If you do not specify 'log_name', the first binary log is displayed.
The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT Syntax”.
Note
Issuing a SHOW BINLOG EVENTS with no LIMIT clause could start a very time- and resource-consuming process because the server returns to the client the complete contents of the binary log (which includes all statements executed by the server that modify data). As an alternative to SHOW BINLOG EVENTS, use the mysqlbinlog utility to save the binary log to a text file for later examination and analysis. See Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”.
Note
Some events relating to the setting of user and system variables are not included in the output from SHOW BINLOG EVENTS. To get complete coverage of events within a binary log, use mysqlbinlog.
Note
SHOW BINLOG EVENTS does not work with relay log files. You can use SHOW RELAYLOG EVENTS for this purpose.
13.7.5.4. SHOW CHARACTER SET Syntax
SHOW CHARACTER SET
[LIKE 'pattern' | WHERE expr]
The SHOW CHARACTER SET statement shows all available character sets. The LIKE clause, if present, indicates which character set names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”. For example:
mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |
| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1 |
+---------+-----------------------------+-------------------+--------+
The Maxlen column shows the maximum number of bytes required to store one character.
13.7.5.5. SHOW COLLATION Syntax
SHOW COLLATION
[LIKE 'pattern' | WHERE expr]
This statement lists collations supported by the server. By default, the output from SHOW COLLATION includes all available collations. The LIKE clause, if present, indicates which collation names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”. For example:
mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1 | 5 | | | 0 |
| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 0 |
| latin1_danish_ci | latin1 | 15 | | | 0 |
| latin1_german2_ci | latin1 | 31 | | Yes | 2 |
| latin1_bin | latin1 | 47 | | Yes | 0 |
| latin1_general_ci | latin1 | 48 | | | 0 |
| latin1_general_cs | latin1 | 49 | | | 0 |
| latin1_spanish_ci | latin1 | 94 | | | 0 |
+-------------------+---------+----+---------+----------+---------+
The Collation and Charset columns indicate the names of the collation and the character set with which it is associated. Id is the collation ID. Default indicates whether the collation is the default for its character set. Compiled indicates whether the character set is compiled into the server. Sortlen is related to the amount of memory required to sort strings expressed in the character set.
To see the default collation for each character set, use the following statement. Default is a reserved word, so to use it as an identifier, it must be quoted as such:
mysql> SHOW COLLATION WHERE `Default` = 'Yes';
+---------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+----------+----+---------+----------+---------+
| big5_chinese_ci | big5 | 1 | Yes | Yes | 1 |
| dec8_swedish_ci | dec8 | 3 | Yes | Yes | 1 |
| cp850_general_ci | cp850 | 4 | Yes | Yes | 1 |
| hp8_english_ci | hp8 | 6 | Yes | Yes | 1 |
| koi8r_general_ci | koi8r | 7 | Yes | Yes | 1 |
| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 1 |
...
13.7.5.6. SHOW COLUMNS Syntax
SHOW [FULL] COLUMNS {FROM | IN} tbl_name [{FROM | IN} db_name]
[LIKE 'pattern' | WHERE expr]
SHOW COLUMNS displays information about the columns in a given table. It also works for views. The LIKE clause, if present, indicates which column names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”.
SHOW COLUMNS displays information only for those columns for which you have some privilege.
mysql> SHOW COLUMNS FROM City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
| Id | int(11) | NO | PRI | NULL | auto_increment |
| Name | char(35) | NO | | | |
| Country | char(3) | NO | UNI | | |
| District | char(20) | YES | MUL | | |
| Population | int(11) | NO | | 0 | |
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)
If the data types differ from what you expect them to be based on a CREATE TABLE statement, note that MySQL sometimes changes data types when you create or alter a table. The conditions under which this occurs are described in Section 13.1.14.3, “Silent Column Specification Changes”.
The FULL keyword causes the output to include the column collation and comments, as well as the privileges you have for each column.
You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. In other words, these two statements are equivalent:
mysql> SHOW COLUMNS FROM mytable FROM mydb;
mysql> SHOW COLUMNS FROM mydb.mytable;
SHOW COLUMNS displays the following values for each table column:
Field indicates the column name.
Type indicates the column data type.
Collation indicates the collation for nonbinary string columns, or NULL for other columns. This value is displayed only if you use the FULL keyword.
The Null field contains YES if NULL values can be stored in the column, NO if not.
The Key field indicates whether the column is indexed:
If Key is empty, the column either is not indexed or is indexed only as a secondary column in a multiple-column, nonunique index.
If Key is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column PRIMARY KEY.
If Key is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits multiple NULL values, but you can tell whether the column permits NULL by checking the Null field.)
If Key is MUL, the column is the first column of a nonunique index in which multiple occurrences of a given value are permitted within the column.
If more than one of the Key values applies to a given column of a table, Key displays the one with the highest priority, in the order PRI, UNI, MUL.
A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE index; although the combination of the columns is unique, each column can still hold multiple occurrences of a given value.
The Default field indicates the default value that is assigned to the column. This is NULL if the column has an explicit default of NULL, or if the column definition has no DEFAULT clause.
The Extra field contains any additional information that is available about a given column. The value is nonempty in these cases: auto_increment for columns that have the AUTO_INCREMENT attribute; on update CURRENT_TIMESTAMP for TIMESTAMP or DATETIME columns that have the ON UPDATE CURRENT_TIMESTAMP attribute.
Privileges indicates the privileges you have for the column. This value is displayed only if you use the FULL keyword.
Comment indicates any comment the column has. This value is displayed only if you use the FULL keyword.
SHOW FIELDS is a synonym for SHOW COLUMNS. You can also list a table's columns with the mysqlshow db_name tbl_name command.
The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 13.8.1, “DESCRIBE Syntax”.
The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide information about tables. See Section 13.7.5, “SHOW Syntax”.
13.7.5.7. SHOW CONTRIBUTORS Syntax
SHOW CONTRIBUTORS
The SHOW CONTRIBUTORS statement displays information about the people who contribute to MySQL source or to causes that we support. For each contributor, it displays Name, Location, and Comment values.
This statement is removed as of MySQL 5.6.8.
13.7.5.8. SHOW CREATE DATABASE Syntax
SHOW CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name
Shows the CREATE DATABASE statement that creates the given database. If the SHOW statement includes an IF NOT EXISTS clause, the output too includes such a clause. SHOW CREATE SCHEMA is a synonym for SHOW CREATE DATABASE.
mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************
Database: test
Create Database: CREATE DATABASE `test`
/*!40100 DEFAULT CHARACTER SET latin1 */
mysql> SHOW CREATE SCHEMA test\G
*************************** 1. row ***************************
Database: test
Create Database: CREATE DATABASE `test`
/*!40100 DEFAULT CHARACTER SET latin1 */
SHOW CREATE DATABASE quotes table and column names according to the value of the sql_quote_show_create option. See Section 5.1.4, “Server System Variables”.
13.7.5.9. SHOW CREATE EVENT Syntax
SHOW CREATE EVENT event_name
This statement displays the CREATE EVENT statement needed to re-create a given event. It requires the EVENT privilege for the database from which the event is to be shown. For example (using the same event e_daily defined and then altered in Section 13.7.5.19, “SHOW EVENTS Syntax”):
mysql> SHOW CREATE EVENT test.e_daily\G
*************************** 1. row ***************************
Event: e_daily
sql_mode:
time_zone: SYSTEM
Create Event: CREATE EVENT `e_daily`
ON SCHEDULE EVERY 1 DAY
STARTS CURRENT_TIMESTAMP + INTERVAL 6 HOUR
ON COMPLETION NOT PRESERVE
ENABLE
COMMENT 'Saves total number of sessions then
clears the table each day'
DO BEGIN
INSERT INTO site_activity.totals (time, total)
SELECT CURRENT_TIMESTAMP, COUNT(*)
FROM site_activity.sessions;
DELETE FROM site_activity.sessions;
END
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
character_set_client is the session value of the character_set_client system variable when the event was created. collation_connection is the session value of the collation_connection system variable when the event was created. Database Collation is the collation of the database with which the event is associated.
Note that the output reflects the current status of the event (ENABLE) rather than the status with which it was created.
13.7.5.10. SHOW CREATE FUNCTION Syntax
SHOW CREATE FUNCTION func_name
This statement is similar to SHOW CREATE PROCEDURE but for stored functions. See Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”.
13.7.5.11. SHOW CREATE PROCEDURE Syntax
SHOW CREATE PROCEDURE proc_name
This statement is a MySQL extension. It returns the exact string that can be used to re-create the named stored procedure. A similar statement, SHOW CREATE FUNCTION, displays information about stored functions (see Section 13.7.5.10, “SHOW CREATE FUNCTION Syntax”).
Both statements require that you be the owner of the routine or have SELECT access to the mysql.proc table. If you do not have privileges for the routine itself, the value displayed for the Create Procedure or Create Function field will be NULL.
mysql> SHOW CREATE PROCEDURE test.simpleproc\G
*************************** 1. row ***************************
Procedure: simpleproc
sql_mode:
Create Procedure: CREATE PROCEDURE `simpleproc`(OUT param1 INT)
BEGIN
SELECT COUNT(*) INTO param1 FROM t;
END
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************
Function: hello
sql_mode:
Create Function: CREATE FUNCTION `hello`(s CHAR(20))
RETURNS CHAR(50)
RETURN CONCAT('Hello, ',s,'!')
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
character_set_client is the session value of the character_set_client system variable when the routine was created. collation_connection is the session value of the collation_connection system variable when the routine was created. Database Collation is the collation of the database with which the routine is associated.
13.7.5.12. SHOW CREATE TABLE Syntax
SHOW CREATE TABLE tbl_name
Shows the CREATE TABLE statement that creates the given table. To use this statement, you must have some privilege for the table. This statement also works with views.
mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
Table: t
Create Table: CREATE TABLE t (
id INT(11) default NULL auto_increment,
s char(60) default NULL,
PRIMARY KEY (id)
) ENGINE=MyISAM
SHOW CREATE TABLE quotes table and column names according to the value of the sql_quote_show_create option. See Section 5.1.4, “Server System Variables”.
13.7.5.13. SHOW CREATE TRIGGER Syntax
SHOW CREATE TRIGGER trigger_name
This statement shows a CREATE TRIGGER statement that creates the given trigger.
mysql> SHOW CREATE TRIGGER ins_sum\G
*************************** 1. row ***************************
Trigger: ins_sum
sql_mode:
SQL Original Statement: CREATE DEFINER=`bob`@`localhost` TRIGGER ins_sum
BEFORE INSERT ON account
FOR EACH ROW SET @sum = @sum + NEW.amount
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
You can also obtain information about trigger objects from INFORMATION_SCHEMA, which contains a TRIGGERS table. See Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”.
13.7.5.14. SHOW CREATE VIEW Syntax
SHOW CREATE VIEW view_name
This statement shows a CREATE VIEW statement that creates the given view.
mysql> SHOW CREATE VIEW v\G
*************************** 1. row ***************************
View: v
Create View: CREATE ALGORITHM=UNDEFINED
DEFINER=`bob`@`localhost`
SQL SECURITY DEFINER VIEW
`v` AS select 1 AS `a`,2 AS `b`
character_set_client: latin1
collation_connection: latin1_swedish_ci
character_set_client is the session value of the character_set_client system variable when the view was created. collation_connection is the session value of the collation_connection system variable when the view was created.
Use of SHOW CREATE VIEW requires the SHOW VIEW privilege and the SELECT privilege for the view in question.
You can also obtain information about view objects from INFORMATION_SCHEMA, which contains a VIEWS table. See Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”.
MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support. For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard SQL concatenation operator, the double bar (||), in your queries. If you then create a view that concatenates items, you might worry that changing the sql_mode setting to a value different from ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a view definition, MySQL always stores it the same way, in a canonical form. Here is an example that shows how the server changes a double bar concatenation operator to a CONCAT() function:
mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.01 sec)
mysql> SHOW CREATE VIEW test.v\G
*************************** 1. row ***************************
View: v
Create View: CREATE VIEW "v" AS select concat('a','b') AS "col1"
...
1 row in set (0.00 sec)
The advantage of storing a view definition in canonical form is that changes made later to the value of sql_mode will not affect the results from the view. However an additional consequence is that comments prior to SELECT are stripped from the definition by the server.
13.7.5.15. SHOW DATABASES Syntax
SHOW {DATABASES | SCHEMAS}
[LIKE 'pattern' | WHERE expr]
SHOW DATABASES lists the databases on the MySQL server host. SHOW SCHEMAS is a synonym for SHOW DATABASES. The LIKE clause, if present, indicates which database names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”.
You see only those databases for which you have some kind of privilege, unless you have the global SHOW DATABASES privilege. You can also get this list using the mysqlshow command.
If the server was started with the --skip-show-database option, you cannot use this statement at all unless you have the SHOW DATABASES privilege.
MySQL implements databases as directories in the data directory, so this statement simply lists directories in that location. However, the output may include names of directories that do not correspond to actual databases.
13.7.5.16. SHOW ENGINE Syntax
SHOW ENGINE engine_name {STATUS | MUTEX}
SHOW ENGINE displays operational information about a storage engine. The following statements currently are supported:
SHOW ENGINE INNODB STATUS
SHOW ENGINE INNODB MUTEX
SHOW ENGINE PERFORMANCE_SCHEMA STATUS
SHOW ENGINE INNODB STATUS displays extensive information from the standard InnoDB Monitor about the state of the InnoDB storage engine. For information about the standard monitor and other InnoDB Monitors that provide information about InnoDB processing, see Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”.
SHOW ENGINE INNODB MUTEX displays InnoDB mutex statistics. The statement displays the following fields:
Type
Always InnoDB.
Name
The source file where the mutex is implemented, and the line number in the file where the mutex is created. The line number may change depending on your version of MySQL.
Status
The mutex status. This field displays several values if UNIV_DEBUG was defined at MySQL compilation time (for example, in include/univ.i in the InnoDB part of the MySQL source tree). If UNIV_DEBUG was not defined, the statement displays only the os_waits value. In the latter case (without UNIV_DEBUG), the information on which the output is based is insufficient to distinguish regular mutexes and mutexes that protect rw-locks (which permit multiple readers or a single writer). Consequently, the output may appear to contain multiple rows for the same mutex.
count indicates how many times the mutex was requested.
spin_waits indicates how many times the spinlock had to run.
spin_rounds indicates the number of spinlock rounds. (spin_rounds divided by spin_waits provides the average round count.)
os_waits indicates the number of operating system waits. This occurs when the spinlock did not work (the mutex was not locked during the spinlock and it was necessary to yield to the operating system and wait).
os_yields indicates the number of times a the thread trying to lock a mutex gave up its timeslice and yielded to the operating system (on the presumption that permitting other threads to run will free the mutex so that it can be locked).
os_wait_times indicates the amount of time (in ms) spent in operating system waits, if the timed_mutexes system variable is 1 (ON). If timed_mutexes is 0 (OFF), timing is disabled, so os_wait_times is 0. timed_mutexes is off by default.
Information from this statement can be used to diagnose system problems. For example, large values of spin_waits and spin_rounds may indicate scalability problems.
Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the Performance Schema code:
mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
Type: performance_schema
Name: events_waits_history.row_size
Status: 76
*************************** 4. row ***************************
Type: performance_schema
Name: events_waits_history.row_count
Status: 10000
*************************** 5. row ***************************
Type: performance_schema
Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
Type: performance_schema
Name: performance_schema.memory
Status: 26459600
...
This statement is intended to help the DBA understand the effects that different Performance Schema options have on memory requirements.
Name values consist of two parts, which name an internal buffer and a buffer attribute, respectively. Interpret buffer names as follows:
An internal buffer that is not exposed as a table is named within parentheses. Examples: (pfs_cond_class).row_size, (pfs_mutex_class).memory.
An internal buffer that is exposed as a table in the performance_schema database is named after the table, without parentheses. Examples: events_waits_history.row_size, mutex_instances.row_count.
A value that applies to the Performance Schema as a whole begins with performance_schema. Example: performance_schema.memory.
Buffer attributes have these meanings:
row_size is the size of the internal record used by the implementation, such as the size of a row in a table. row_size values cannot be changed.
row_count is the number of internal records, such as the number of rows in a table. row_count values can be changed using Performance Schema configuration options.
For a table, tbl_name.memory is the product of row_size and row_count. For the Performance Schema as a whole, performance_schema.memory is the sum of all the memory used (the sum of all other memory values).
In some cases, there is a direct relationship between a Performance Schema configuration parameter and a SHOW ENGINE value. For example, events_waits_history_long.row_count corresponds to performance_schema_events_waits_history_long_size. In other cases, the relationship is more complex. For example, events_waits_history.row_count corresponds to performance_schema_events_waits_history_size (the number of rows per thread) multiplied by performance_schema_max_thread_instances (the number of threads).
13.7.5.17. SHOW ENGINES Syntax
SHOW [STORAGE] ENGINES
SHOW ENGINES displays status information about the server's storage engines. This is particularly useful for checking whether a storage engine is supported, or to see what the default engine is.
mysql> SHOW ENGINES\G
*************************** 1. row ***************************
Engine: MEMORY
Support: YES
Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
XA: NO
Savepoints: NO
*************************** 2. row ***************************
Engine: MyISAM
Support: YES
Comment: MyISAM storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 3. row ***************************
Engine: InnoDB
Support: DEFAULT
Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
XA: YES
Savepoints: YES
*************************** 4. row ***************************
Engine: EXAMPLE
Support: YES
Comment: Example storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 5. row ***************************
Engine: ARCHIVE
Support: YES
Comment: Archive storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 6. row ***************************
Engine: CSV
Support: YES
Comment: CSV storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 7. row ***************************
Engine: BLACKHOLE
Support: YES
Comment: /dev/null storage engine (anything you write »
to it disappears)
Transactions: NO
XA: NO
Savepoints: NO
*************************** 8. row ***************************
Engine: FEDERATED
Support: YES
Comment: Federated MySQL storage engine
Transactions: NO
XA: NO
Savepoints: NO
*************************** 9. row ***************************
Engine: MRG_MYISAM
Support: YES
Comment: Collection of identical MyISAM tables
Transactions: NO
XA: NO
Savepoints: NO
The output from SHOW ENGINES may vary according to the MySQL version used and other factors. The values shown in the Support column indicate the server's level of support for the storage engine, as shown in the following table.
Value | Meaning |
---|---|
YES | The engine is supported and is active |
DEFAULT | Like YES, plus this is the default engine |
NO | The engine is not supported |
DISABLED | The engine is supported but has been disabled |
A value of NO means that the server was compiled without support for the engine, so it cannot be enabled at runtime.
A value of DISABLED occurs either because the server was started with an option that disables the engine, or because not all options required to enable it were given. In the latter case, the error log file should contain a reason indicating why the option is disabled. See Section 5.2.2, “The Error Log”.
You might also see DISABLED for a storage engine if the server was compiled to support it, but was started with a --skip-engine_name option.
All MySQL servers support MyISAM tables, because MyISAM is the default storage engine. It is not possible to disable MyISAM.
The Transactions, XA, and Savepoints columns indicate whether the storage engine supports transactions, XA transactions, and savepoints, respectively.
13.7.5.18. SHOW ERRORS Syntax
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS
This statement is similar to SHOW WARNINGS, except that it displays information only for errors, rather than for errors, warnings, and notes.
The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT Syntax”.
The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this number from the error_count variable:
SHOW COUNT(*) ERRORS;
SELECT @@error_count;
SHOW ERRORS and error_count apply only to errors, not warnings or notes. In other respects, they are similar to SHOW WARNINGS and warning_count. In particular, SHOW ERRORS cannot display information for more than max_error_count messages, and error_count can exceed the value of max_error_count if the number of errors exceeds max_error_count.
For more information, see Section 13.7.5.41, “SHOW WARNINGS Syntax”.
13.7.5.19. SHOW EVENTS Syntax
SHOW EVENTS [{FROM | IN} schema_name]
[LIKE 'pattern' | WHERE expr]
This statement displays information about Event Manager events. It requires the EVENT privilege for the database from which the events are to be shown.
In its simplest form, SHOW EVENTS lists all of the events in the current schema:
mysql> SELECT CURRENT_USER(), SCHEMA();
+----------------+----------+
| CURRENT_USER() | SCHEMA() |
+----------------+----------+
| jon@ghidora | myschema |
+----------------+----------+
1 row in set (0.00 sec)
mysql> SHOW EVENTS\G
*************************** 1. row ***************************
Db: myschema
Name: e_daily
Definer: jon@ghidora
Time zone: SYSTEM
Type: RECURRING
Execute at: NULL
Interval value: 10
Interval field: SECOND
Starts: 2006-02-09 10:41:23
Ends: NULL
Status: ENABLED
Originator: 0
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
To see events for a specific schema, use the FROM clause. For example, to see events for the test schema, use the following statement:
SHOW EVENTS FROM test;
The LIKE clause, if present, indicates which event names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”.
SHOW EVENTS output has the following columns:
Db: The schema (database) on which the event is defined.
Name: The name of the event.
Time zone: The event time zone, which is the time zone used for scheduling the event and that is in effect within the event as it executes. The default value is SYSTEM.
Definer: The account of the user who created the event, in 'user_name'@'host_name' format.
Type: The event repetition type, either ONE TIME (transient) or RECURRING (repeating).
Execute At: The date and time when a transient event is set to execute. Shown as a DATETIME value.
For a recurring event, the value of this column is always NULL.
Interval Value: For a recurring event, the number of intervals to wait between event executions.
For a transient event, the value of this column is always NULL.
Interval Field: The time units used for the interval which a recurring event waits before repeating.
For a transient event, the value of this column is always NULL.
Starts: The start date and time for a recurring event. This is displayed as a DATETIME value, and is NULL if no start date and time are defined for the event.
For a transient event, this column is always NULL.
Ends: The end date and time for a recurring event. This is displayed as a DATETIME value, and defaults to NULL if no end date and time is defined for the event.
For a transient event, this column is always NULL.
Status: The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED.
SLAVESIDE_DISABLED indicates that the creation of the event occurred on another MySQL server acting as a replication master and replicated to the current MySQL server which is acting as a slave, but the event is not presently being executed on the slave.
Originator: The server ID of the MySQL server on which the event was created. Defaults to 0.
character_set_client is the session value of the character_set_client system variable when the routine was created. collation_connection is the session value of the collation_connection system variable when the routine was created. Database Collation is the collation of the database with which the routine is associated.
For more information about SLAVE_DISABLED and the Originator column, see Section 16.4.1.10, “Replication of Invoked Features”.
The event action statement is not shown in the output of SHOW EVENTS. Use SHOW CREATE EVENT or the INFORMATION_SCHEMA.EVENTS table.
Times displayed by SHOW EVENTS are given in the event time zone, as discussed in Section 18.4.4, “Event Metadata”.
The columns in the output of SHOW EVENTS are similar to, but not identical to the columns in the INFORMATION_SCHEMA.EVENTS table. See Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”.
13.7.5.20. SHOW FUNCTION CODE Syntax
SHOW FUNCTION CODE func_name
This statement is similar to SHOW PROCEDURE CODE but for stored functions. See Section 13.7.5.28, “SHOW PROCEDURE CODE Syntax”.
13.7.5.21. SHOW FUNCTION STATUS Syntax
SHOW FUNCTION STATUS
[LIKE 'pattern' | WHERE expr]
This statement is similar to SHOW PROCEDURE STATUS but for stored functions. See Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”.
13.7.5.22. SHOW GRANTS Syntax
SHOW GRANTS [FOR user]
This statement lists the GRANT statement or statements that must be issued to duplicate the privileges that are granted to a MySQL user account. The account is named using the same format as for the GRANT statement; for example, 'jeffrey'@'localhost'. If you specify only the user name part of the account name, a host name part of '%' is used. For additional information about specifying account names, see Section 13.7.1.4, “GRANT Syntax”.
mysql> SHOW GRANTS FOR 'root'@'localhost';
+---+
| Grants for root@localhost |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---+
To list the privileges granted to the account that you are using to connect to the server, you can use any of the following statements:
SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();
If SHOW GRANTS FOR CURRENT_USER (or any of the equivalent syntaxes) is used in DEFINER context, such as within a stored procedure that is defined with SQL SECURITY DEFINER), the grants displayed are those of the definer and not the invoker.
SHOW GRANTS displays only the privileges granted explicitly to the named account. Other privileges might be available to the account, but they are not displayed. For example, if an anonymous account exists, the named account might be able to use its privileges, but SHOW GRANTS will not display them.
SHOW GRANTS requires the SELECT privilege for the mysql database, except to see the privileges for the current user.
13.7.5.23. SHOW INDEX Syntax
SHOW {INDEX | INDEXES | KEYS}
{FROM | IN} tbl_name
[{FROM | IN} db_name]
[WHERE expr]
SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call in ODBC. This statement requires some privilege for any column in the table.
SHOW INDEX returns the following fields:
Table
The name of the table.
Non_unique
0 if the index cannot contain duplicates, 1 if it can.
Key_name
The name of the index. If the index is the primary key, the name is always PRIMARY.
Seq_in_index
The column sequence number in the index, starting with 1.
Column_name
The column name.
Collation
How the column is sorted in the index. In MySQL, this can have values “A” (Ascending) or NULL (Not sorted).
Cardinality
An estimate of the number of unique values in the index. This is updated by running ANALYZE TABLE or myisamchk -a. Cardinality is counted based on statistics stored as integers, so the value is not necessarily exact even for small tables. The higher the cardinality, the greater the chance that MySQL uses the index when doing joins.
Sub_part
The number of indexed characters if the column is only partly indexed, NULL if the entire column is indexed.
Packed
Indicates how the key is packed. NULL if it is not.
Null
Contains YES if the column may contain NULL values and '' if not.
Index_type
The index method used (BTREE, FULLTEXT, HASH, RTREE).
Comment
Information about the index not described in its own column, such as disabled if the index is disabled.
Index_comment
Any comment provided for the index with a COMMENT attribute when the index was created.
You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. These two statements are equivalent:
SHOW INDEX FROM mytable FROM mydb;
SHOW INDEX FROM mydb.mytable;
The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”.
You can also list a table's indexes with the mysqlshow -k db_name tbl_name command.
13.7.5.24. SHOW MASTER STATUS Syntax
SHOW MASTER STATUS
This statement provides status information about the binary log files of the master. It requires either the SUPER or REPLICATION CLIENT privilege.
Example:
mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
File: master-bin.000002
Position: 1307
Binlog_Do_DB: test
Binlog_Ignore_DB: manual, mysql
Executed_Gtid_Set: 3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
1 row in set (0.00 sec)
The Executed_Gtid_Set column was added in MySQL 5.6.5. When global transaction IDs are in use, this column shows the set of GTIDs for transactions that have been executed on the master. This is the same as the master's value for the global gtid_executed system variable (named gtid_done prior to MySQL 5.6.9).
13.7.5.25. SHOW OPEN TABLES Syntax
SHOW OPEN TABLES [{FROM | IN} db_name]
[LIKE 'pattern' | WHERE expr]
SHOW OPEN TABLES lists the non-TEMPORARY tables that are currently open in the table cache. See Section 8.4.3.1, “How MySQL Opens and Closes Tables”. The FROM clause, if present, restricts the tables shown to those present in the db_name database. The LIKE clause, if present, indicates which table names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”.
SHOW OPEN TABLES returns the following columns:
Database
The database containing the table.
Table
The table name.
In_use
The number of table locks or lock requests there are for the table. For example, if one client acquires a lock for a table using LOCK TABLE t1 WRITE, In_use will be 1. If another client issues LOCK TABLE t1 WRITE while the table remains locked, the client will block waiting for the lock, but the lock request causes In_use to be 2. If the count is zero, the table is open but not currently being used. In_use is also increased by the HANDLER ... OPEN statement and decreased by HANDLER ... CLOSE.
Name_locked
Whether the table name is locked. Name locking is used for operations such as dropping or renaming tables.
If you have no privileges for a table, it does not show up in the output from SHOW OPEN TABLES.
13.7.5.26. SHOW PLUGINS Syntax
SHOW PLUGINS
SHOW PLUGINS displays information about server plugins. Plugin information is also available in the INFORMATION_SCHEMA.PLUGINS table. See Section 19.15, “The INFORMATION_SCHEMA PLUGINS Table”.
Example of SHOW PLUGINS output:
mysql> SHOW PLUGINS\G
*************************** 1. row ***************************
Name: binlog
Status: ACTIVE
Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 2. row ***************************
Name: CSV
Status: ACTIVE
Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 3. row ***************************
Name: MEMORY
Status: ACTIVE
Type: STORAGE ENGINE
Library: NULL
License: GPL
*************************** 4. row ***************************
Name: MyISAM
Status: ACTIVE
Type: STORAGE ENGINE
Library: NULL
License: GPL
...
SHOW PLUGINS returns the following columns:
Name: The name used to refer to the plugin in statements such as INSTALL PLUGIN and UNINSTALL PLUGIN.
Status: The plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.
Type: The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or AUTHENTICATION.
Library: The name of the plugin shared object file. This is the name used to refer to the plugin file in statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the directory named by the plugin_dir system variable. If the library name is NULL, the plugin is compiled in and cannot be uninstalled with UNINSTALL PLUGIN.
License: How the plugin is licensed; for example, GPL.
For plugins installed with INSTALL PLUGIN, the Name and Library values are also registered in the mysql.plugin table.
For information about plugin data structures that form the basis of the information displayed by SHOW PLUGINS, see Section 22.2, “The MySQL Plugin API”.
13.7.5.27. SHOW PRIVILEGES Syntax
SHOW PRIVILEGES
SHOW PRIVILEGES shows the list of system privileges that the MySQL server supports. The exact list of privileges depends on the version of your server.
mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
Context: Tables
Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
Context: Functions,Procedures
Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
Context: Databases,Tables,Indexes
Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine
Context: Databases
Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
Context: Databases
Comment: To use CREATE TEMPORARY TABLE
...
Privileges belonging to a specific user are displayed by the SHOW GRANTS statement. See Section 13.7.5.22, “SHOW GRANTS Syntax”, for more information.
13.7.5.28. SHOW PROCEDURE CODE Syntax
SHOW PROCEDURE CODE proc_name
This statement is a MySQL extension that is available only for servers that have been built with debugging support. It displays a representation of the internal implementation of the named stored procedure. A similar statement, SHOW FUNCTION CODE, displays information about stored functions (see Section 13.7.5.20, “SHOW FUNCTION CODE Syntax”).
Both statements require that you be the owner of the routine or have SELECT access to the mysql.proc table.
If the named routine is available, each statement produces a result set. Each row in the result set corresponds to one “instruction” in the routine. The first column is Pos, which is an ordinal number beginning with 0. The second column is Instruction, which contains an SQL statement (usually changed from the original source), or a directive which has meaning only to the stored-routine handler.
mysql> DELIMITER //
mysql> CREATE PROCEDURE p1 ()
-> BEGIN
-> DECLARE fanta INT DEFAULT 55;
-> DROP TABLE t2;
-> LOOP
-> INSERT INTO t3 VALUES (fanta);
-> END LOOP;
-> END//
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW PROCEDURE CODE p1//
+-----+--+
| Pos | Instruction |
+-----+--+
| 0 | set fanta@0 55 |
| 1 | stmt 9 "DROP TABLE t2" |
| 2 | stmt 5 "INSERT INTO t3 VALUES (fanta)" |
| 3 | jump 2 |
+-----+--+
4 rows in set (0.00 sec)
In this example, the nonexecutable BEGIN and END statements have disappeared, and for the DECLARE variable_name statement, only the executable part appears (the part where the default is assigned). For each statement that is taken from source, there is a code word stmt followed by a type (9 means DROP, 5 means INSERT, and so on). The final row contains an instruction jump 2, meaning GOTO instruction #2.
13.7.5.29. SHOW PROCEDURE STATUS Syntax
SHOW PROCEDURE STATUS
[LIKE 'pattern' | WHERE expr]
This statement is a MySQL extension. It returns characteristics of a stored procedure, such as the database, name, type, creator, creation and modification dates, and character set information. A similar statement, SHOW FUNCTION STATUS, displays information about stored functions (see Section 13.7.5.21, “SHOW FUNCTION STATUS Syntax”).
The LIKE clause, if present, indicates which procedure or function names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”.
mysql> SHOW PROCEDURE STATUS LIKE 'sp1'\G
*************************** 1. row ***************************
Db: test
Name: sp1
Type: PROCEDURE
Definer: testuser@localhost
Modified: 2004-08-03 15:29:37
Created: 2004-08-03 15:29:37
Security_type: DEFINER
Comment:
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
character_set_client is the session value of the character_set_client system variable when the routine was created. collation_connection is the session value of the collation_connection system variable when the routine was created. Database Collation is the collation of the database with which the routine is associated.
You can also get information about stored routines from the ROUTINES table in INFORMATION_SCHEMA. See Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”.
13.7.5.30. SHOW PROCESSLIST Syntax
SHOW [FULL] PROCESSLIST
SHOW PROCESSLIST shows you which threads are running. You can also get this information from the INFORMATION_SCHEMA PROCESSLIST table or the mysqladmin processlist command. If you have the PROCESS privilege, you can see all threads. Otherwise, you can see only your own threads (that is, threads associated with the MySQL account that you are using). If you do not use the FULL keyword, only the first 100 characters of each statement are shown in the Info field.
Process information is also available from the performance_schema.threads table. However, access to threads does not require a mutex and has minimal impact on server performance. INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance consequences because they require a mutex. threads also shows information about background threads, which INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST do not. This means that threads can be used to monitor activity the other thread information sources cannot.
The SHOW PROCESSLIST statement is very useful if you get the “too many connections” error message and want to find out what is going on. MySQL reserves one extra connection to be used by accounts that have the SUPER privilege, to ensure that administrators should always be able to connect and check the system (assuming that you are not giving this privilege to all your users).
Threads can be killed with the KILL statement. See Section 13.7.6.4, “KILL Syntax”.
Here is an example of SHOW PROCESSLIST output:
mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
Id: 1
User: system user
Host:
db: NULL
Command: Connect
Time: 1030455
State: Waiting for master to send event
Info: NULL
*************************** 2. row ***************************
Id: 2
User: system user
Host:
db: NULL
Command: Connect
Time: 1004
State: Has read all relay log; waiting for the slave
I/O thread to update it
Info: NULL
*************************** 3. row ***************************
Id: 3112
User: replikator
Host: artemis:2204
db: NULL
Command: Binlog Dump
Time: 2144
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 4. row ***************************
Id: 3113
User: replikator
Host: iconnect2:45781
db: NULL
Command: Binlog Dump
Time: 2086
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 5. row ***************************
Id: 3123
User: stefan
Host: localhost
db: apollon
Command: Query
Time: 0
State: NULL
Info: SHOW FULL PROCESSLIST
5 rows in set (0.00 sec)
The columns produced by SHOW PROCESSLIST have the following meanings:
Id
The connection identifier.
User
The MySQL user who issued the statement. If this is system user, it refers to a nonclient thread spawned by the server to handle tasks internally. This could be the I/O or SQL thread used on replication slaves or a delayed-row handler. unauthenticated user refers to a thread that has become associated with a client connection but for which authentication of the client user has not yet been done. event_scheduler refers to the thread that monitors scheduled events. For system user, there is no host specified in the Host column.
Host
The host name of the client issuing the statement (except for system user where there is no host). SHOW PROCESSLIST reports the host name for TCP/IP connections in host_name:client_port format to make it easier to determine which client is doing what.
db
The default database, if one is selected, otherwise NULL.
Command
The type of command the thread is executing. For descriptions for thread commands, see Section 8.12.5, “Examining Thread Information”. The value of this column corresponds to the COM_xxx commands of the client/server protocol and Com_xxx status variables. See Section 5.1.6, “Server Status Variables”
Time
The time in seconds that the thread has been in its current state.
State
An action, event, or state that indicates what the thread is doing. Descriptions for State values can be found at Section 8.12.5, “Examining Thread Information”.
Most states correspond to very quick operations. If a thread stays in a given state for many seconds, there might be a problem that needs to be investigated.
For the SHOW PROCESSLIST statement, the value of State is NULL.
Info
The statement the thread is executing, or NULL if it is not executing any statement. The statement might be the one sent to the server, or an innermost statement if the statement executes other statements. For example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the Info value shows the SELECT statement.
13.7.5.31. SHOW PROFILE Syntax
SHOW PROFILE [type [, type] ...]
[FOR QUERY n]
[LIMIT row_count [OFFSET offset]]
type:
ALL
| BLOCK IO
| CONTEXT SWITCHES
| CPU
| IPC
| MEMORY
| PAGE FAULTS
| SOURCE
| SWAPS
The SHOW PROFILE and SHOW PROFILES statements display profiling information that indicates resource usage for statements executed during the course of the current session.
Note
These statements are deprecated as of MySQL 5.6.7 and will be removed in a future MySQL release. Use the Performance Schema instead; see Chapter 20, MySQL Performance Schema.
Profiling is controlled by the profiling session variable, which has a default value of 0 (OFF). Profiling is enabled by setting profiling to 1 or ON:
mysql> SET profiling = 1;
SHOW PROFILES displays a list of the most recent statements sent to the server. The size of the list is controlled by the profiling_history_size session variable, which has a default value of 15. The maximum value is 100. Setting the value to 0 has the practical effect of disabling profiling.
All statements are profiled except SHOW PROFILE and SHOW PROFILES, so you will find neither of those statements in the profile list. Malformed statements are profiled. For example, SHOW PROFILING is an illegal statement, and a syntax error occurs if you try to execute it, but it will show up in the profiling list.
SHOW PROFILE displays detailed information about a single statement. Without the FOR QUERY n clause, the output pertains to the most recently executed statement. If FOR QUERY n is included, SHOW PROFILE displays information for statement n. The values of n correspond to the Query_ID values displayed by SHOW PROFILES.
The LIMIT row_count clause may be given to limit the output to row_count rows. If LIMIT is given, OFFSET offset may be added to begin the output offset rows into the full set of rows.
By default, SHOW PROFILE displays Status and Duration columns. The Status values are like the State values displayed by SHOW PROCESSLIST, although there might be some minor differences in interpretion for the two statements for some status values (see Section 8.12.5, “Examining Thread Information”).
Optional type values may be specified to display specific additional types of information:
ALL displays all information
BLOCK IO displays counts for block input and output operations
CONTEXT SWITCHES displays counts for voluntary and involuntary context switches
CPU displays user and system CPU usage times
IPC displays counts for messages sent and received
MEMORY is not currently implemented
PAGE FAULTS displays counts for major and minor page faults
SOURCE displays the names of functions from the source code, together with the name and line number of the file in which the function occurs
SWAPS displays swap counts
Profiling is enabled per session. When a session ends, its profiling information is lost.
mysql> SELECT @@profiling;
+-------------+
| @@profiling |
+-------------+
| 0 |
+-------------+
1 row in set (0.00 sec)
mysql> SET profiling = 1;
Query OK, 0 rows affected (0.00 sec)
mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> CREATE TABLE T1 (id INT);
Query OK, 0 rows affected (0.01 sec)
mysql> SHOW PROFILES;
+----------+----------+--------------------------+
| Query_ID | Duration | Query |
+----------+----------+--------------------------+
| 0 | 0.000088 | SET PROFILING = 1 |
| 1 | 0.000136 | DROP TABLE IF EXISTS t1 |
| 2 | 0.011947 | CREATE TABLE t1 (id INT) |
+----------+----------+--------------------------+
3 rows in set (0.00 sec)
mysql> SHOW PROFILE;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+
| checking permissions | 0.000040 |
| creating table | 0.000056 |
| After create | 0.011363 |
| query end | 0.000375 |
| freeing items | 0.000089 |
| logging slow query | 0.000019 |
| cleaning up | 0.000005 |
+----------------------+----------+
7 rows in set (0.00 sec)
mysql> SHOW PROFILE FOR QUERY 1;
+--------------------+----------+
| Status | Duration |
+--------------------+----------+
| query end | 0.000107 |
| freeing items | 0.000008 |
| logging slow query | 0.000015 |
| cleaning up | 0.000006 |
+--------------------+----------+
4 rows in set (0.00 sec)
mysql> SHOW PROFILE CPU FOR QUERY 2;
+----------------------+----------+----------+------------+
| Status | Duration | CPU_user | CPU_system |
+----------------------+----------+----------+------------+
| checking permissions | 0.000040 | 0.000038 | 0.000002 |
| creating table | 0.000056 | 0.000028 | 0.000028 |
| After create | 0.011363 | 0.000217 | 0.001571 |
| query end | 0.000375 | 0.000013 | 0.000028 |
| freeing items | 0.000089 | 0.000010 | 0.000014 |
| logging slow query | 0.000019 | 0.000009 | 0.000010 |
| cleaning up | 0.000005 | 0.000003 | 0.000002 |
+----------------------+----------+----------+------------+
7 rows in set (0.00 sec)
Note
Profiling is only partially functional on some architectures. For values that depend on the getrusage() system call, NULL is returned on systems such as Windows that do not support the call. In addition, profiling is per process and not per thread. This means that activity on threads within the server other than your own may affect the timing information that you see.
You can also get profiling information from the PROFILING table in INFORMATION_SCHEMA. See Section 19.17, “The INFORMATION_SCHEMA PROFILING Table”. For example, the following queries produce the same result:
SHOW PROFILE FOR QUERY 2;
SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;
13.7.5.32. SHOW PROFILES Syntax
SHOW PROFILES
The SHOW PROFILES statement, together with SHOW PROFILE, displays profiling information that indicates resource usage for statements executed during the course of the current session. For more information, see Section 13.7.5.31, “SHOW PROFILE Syntax”.
Note
These statements are deprecated as of MySQL 5.6.7 and will be removed in a future MySQL release. Use the Performance Schema instead; see Chapter 20, MySQL Performance Schema.
13.7.5.33. SHOW RELAYLOG EVENTS Syntax
SHOW RELAYLOG EVENTS
[IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
Shows the events in the relay log of a replication slave. If you do not specify 'log_name', the first relay log is displayed. This statement has no effect on the master.
The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT Syntax”.
Note
Issuing a SHOW RELAYLOG EVENTS with no LIMIT clause could start a very time- and resource-consuming process because the server returns to the client the complete contents of the relay log (including all statements modifying data that have been received by the slave).
Note
Some events relating to the setting of user and system variables are not included in the output from SHOW RELAYLOG EVENTS. To get complete coverage of events within a relay log, use mysqlbinlog.
13.7.5.34. SHOW SLAVE HOSTS Syntax
SHOW SLAVE HOSTS
Displays a list of replication slaves currently registered with the master.
The list is displayed on any server (not just the master server). The output looks like this:
mysql> SHOW SLAVE HOSTS;
+-----------+-----------+-------+-----------+--------------------------------------+
| Server_id | Host | Port | Master_id | Slave_UUID |
+-----------+-----------+-------+-----------+--------------------------------------+
| 192168010 | iconnect2 | 3306 | 192168011 | 14cb6624-7f93-11e0-b2c0-c80aa9429562 |
| 1921680101 | athena | 3306 | 192168011 | 07af4990-f41f-11df-a566-7ac56fdaf645 |
+------------+-----------+------+-----------+--------------------------------------+
Server_id: The unique server ID of the slave server, as configured in the server's option file, or on the command line with --server-id=value.
Host: The host name of the slave server, as configured in the server's option file, or on the command line with --report-host=host_name. Note that this can differ from the machine name as configured in the operating system.
Port: The port the slave server is listening on.
In MySQL 5.6.5 and later, a zero in this column means that the slave port (--report-port) was not set. Prior to MySQL 5.6.5, 3306 was used as the default in such cases (Bug #13333431).
Master_id: The unique server ID of the master server that the slave server is replicating from.
Slave_UUID: The globally unique ID of this slave, as generated on the slave and found in the slave's auto.cnf file.
This column was added in MySQL 5.6.0.
13.7.5.35. SHOW SLAVE STATUS Syntax
SHOW SLAVE STATUS
This statement provides status information on essential parameters of the slave threads. It requires either the SUPER or REPLICATION CLIENT privilege.
If you issue this statement using the mysql client, you can use a \G statement terminator rather than a semicolon to obtain a more readable vertical layout:
mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
Master_Host: localhost
Master_User: root
Master_Port: 13000
Connect_Retry: 60
Master_Log_File: master-bin.000002
Read_Master_Log_Pos: 1307
Relay_Log_File: slave-relay-bin.000003
Relay_Log_Pos: 1508
Relay_Master_Log_File: master-bin.000002
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
Replicate_Do_DB:
Replicate_Ignore_DB:
Replicate_Do_Table:
Replicate_Ignore_Table:
Replicate_Wild_Do_Table:
Replicate_Wild_Ignore_Table:
Last_Errno: 0
Last_Error:
Skip_Counter: 0
Exec_Master_Log_Pos: 1307
Relay_Log_Space: 1858
Until_Condition: None
Until_Log_File:
Until_Log_Pos: 0
Master_SSL_Allowed: No
Master_SSL_CA_File:
Master_SSL_CA_Path:
Master_SSL_Cert:
Master_SSL_Cipher:
Master_SSL_Key:
Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
Last_IO_Errno: 0
Last_IO_Error:
Last_SQL_Errno: 0
Last_SQL_Error:
Replicate_Ignore_Server_Ids:
Master_Server_Id: 1
Master_UUID: 3e11fa47-71ca-11e1-9e33-c80aa9429562
Master_Info_File: /var/mysqld.2/data/master.info
SQL_Delay: 0
SQL_Remaining_Delay: NULL
Slave_SQL_Running_State: Slave has read all relay log; waiting for the slave I/O thread to update it
Master_Retry_Count: 10
Master_Bind:
Last_IO_Error_Timestamp:
Last_SQL_Error_Timestamp:
Master_SSL_Crl:
Master_SSL_Crlpath:
Retrieved_Gtid_Set: 3e11fa47-71ca-11e1-9e33-c80aa9429562:1-5
Executed_Gtid_Set: 3e11fa47-71ca-11e1-9e33-c80aa9429562:1-5
Auto_Position: 1
1 row in set (0.00 sec)
The following list describes the fields returned by SHOW SLAVE STATUS. For additional information about interpreting their meanings, see Section 8.12.5.6, “Replication Slave I/O Thread States”.
Slave_IO_State
A copy of the State field of the SHOW PROCESSLIST output for the slave I/O thread. This tells you what the thread is doing: trying to connect to the master, waiting for events from the master, reconnecting to the master, and so on. For a listing of possible states, see Section 8.12.5.6, “Replication Slave I/O Thread States”.
Master_Host
The master host that the slave is connected to.
Master_User
The user name of the account used to connect to the master.
Master_Port
The port used to connect to the master.
Connect_Retry
The number of seconds between connect retries (default 60). This can be set with the CHANGE MASTER TO statement.
Master_Log_File
The name of the master binary log file from which the I/O thread is currently reading.
Read_Master_Log_Pos
The position in the current master binary log file up to which the I/O thread has read.
Relay_Log_File
The name of the relay log file from which the SQL thread is currently reading and executing.
Relay_Log_Pos
The position in the current relay log file up to which the SQL thread has read and executed.
Relay_Master_Log_File
The name of the master binary log file containing the most recent event executed by the SQL thread.
Slave_IO_Running
Whether the I/O thread is started and has connected successfully to the master. Internally, the state of this thread is represented by one of the following three values:
MYSQL_SLAVE_NOT_RUN. The slave I/O thread is not running. For this state, Slave_IO_Running is No.
MYSQL_SLAVE_RUN_NOT_CONNECT. The slave I/O thread is running, but is not connected to a replication master. For this state, Slave_IO_Running depends on the server version as shown in the following table.
MySQL Version | Slave_IO_Running |
---|---|
4.1 (4.1.13 and earlier); 5.0 (5.0.11 and earlier) | Yes |
4.1 (4.1.14 and later); 5.0 (5.0.12 and later) | No |
5.1 (5.1.45 and earlier); 5.4 | No |
5.1 (5.1.46 and later); 5.5; 5.6 | Connecting |
MYSQL_SLAVE_RUN_CONNECT. The slave I/O thread is running, and is connected to a replication master. For this state, Slave_IO_Running is Yes.
The value of the Slave_running system status variable corresponds with this value.
Slave_SQL_Running
Whether the SQL thread is started.
Replicate_Do_DB, Replicate_Ignore_DB
The lists of databases that were specified with the --replicate-do-db and --replicate-ignore-db options, if any.
Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table, Replicate_Wild_Ignore_Table
The lists of tables that were specified with the --replicate-do-table, --replicate-ignore-table, --replicate-wild-do-table, and --replicate-wild-ignore-table options, if any.
Last_Errno, Last_Error
These columns are aliases for Last_SQL_Errno and Last_SQL_Error.
Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.
Note
When the slave SQL thread receives an error, it reports the error first, then stops the SQL thread. This means that there is a small window of time during which SHOW SLAVE STATUS shows a nonzero value for Last_SQL_Errno even though Slave_SQL_Running still displays Yes.
Skip_Counter
The current value of the sql_slave_skip_counter system variable. See Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Syntax”.
Exec_Master_Log_Pos
The position in the current master binary log file to which the SQL thread has read and executed, marking the start of the next transaction or event to be processed. You can use this value with the CHANGE MASTER TO statement's MASTER_LOG_POS option when starting a new slave from an existing slave, so that the new slave reads from this point. The coordinates given by (Relay_Master_Log_File, Exec_Master_Log_Pos) in the master's binary log correspond to the coordinates given by (Relay_Log_File, Relay_Log_Pos) in the relay log.
When using a multi-threaded slave (by setting slave_parallel_workers to a nonzero value in MySQL 5.6.3 and later), the value in this column actually represents a “low-water” mark, before which no uncommitted transactions remain. Because the current implementation allows execution of transactions on different databases in a different order on the slave than on the master, this is not necessarily the position of the most recently executed transaction.
Relay_Log_Space
The total combined size of all existing relay log files.
Until_Condition, Until_Log_File, Until_Log_Pos
The values specified in the UNTIL clause of the START SLAVE statement.
Until_Condition has these values:
None if no UNTIL clause was specified
Master if the slave is reading until a given position in the master's binary log
Relay if the slave is reading until a given position in its relay log
Until_Log_File and Until_Log_Pos indicate the log file name and position that define the coordinates at which the SQL thread stops executing.
Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Master_SSL_Cert, Master_SSL_Cipher, Master_SSL_CRL_File, Master_SSL_CRL_Path, Master_SSL_Key, Master_SSL_Verify_Server_Cert
These fields show the SSL parameters used by the slave to connect to the master, if any.
Master_SSL_Allowed has these values:
Yes if an SSL connection to the master is permitted
No if an SSL connection to the master is not permitted
Ignored if an SSL connection is permitted but the slave server does not have SSL support enabled
The values of the other SSL-related fields correspond to the values of the MASTER_SSL_CA, MASTER_SSL_CAPATH, MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL, MASTER_SSL_CRLPATH, MASTER_SSL_KEY, and MASTER_SSL_VERIFY_SERVER_CERT options to the CHANGE MASTER TO statement. See Section 13.4.2.1, “CHANGE MASTER TO Syntax”.
Master_SSL_CRL_File and Master_SSL_CRL_Path were added in MySQL 5.6.3.
Seconds_Behind_Master
This field is an indication of how “late” the slave is:
When the slave SQL thread is actively processing updates, this field is the number of seconds that have elapsed since the timestamp of the most recent event on the master executed by that thread.
When the SQL thread has caught up to the slave I/O thread and is idle waiting for more events from the I/O thread, this field is zero.
In essence, this field measures the time difference in seconds between the slave SQL thread and the slave I/O thread.
If the network connection between master and slave is fast, the slave I/O thread is very close to the master, so this field is a good approximation of how late the slave SQL thread is compared to the master. If the network is slow, this is not a good approximation; the slave SQL thread may quite often be caught up with the slow-reading slave I/O thread, so Seconds_Behind_Master often shows a value of 0, even if the I/O thread is late compared to the master. In other words, this column is useful only for fast networks.
This time difference computation works even if the master and slave do not have identical clock times, provided that the difference, computed when the slave I/O thread starts, remains constant from then on. Any changes—including NTP updates—can lead to clock skews that can make calculation of Seconds_Behind_Master less reliable.
In MySQL 5.6.9 and later, this field is NULL (undefined or unknown) if the slave SQL thread is not running, or if the SQL thread has consumed all of the relay log and the slave I/O thread is not running. Previously, this field was NULL if the slave SQL thread or the slave I/O thread was not running or was not connected to the master. (Bug #12946333) For example, if (prior to MySQL 5.6.9) the slave I/O thread was running but was not connected to the master and was sleeping for the number of seconds given by the CHANGE MASTER TO statement or --master-connect-retry option (default 60) before reconnecting, the value was NULL. Now in such cases, the connection to the master is not tested; instead, if the I/O thread is running but the relay log is exhausted, Seconds_Behind_Master is set to 0.
The value of Seconds_Behind_Master is based on the timestamps stored in events, which are preserved through replication. This means that if a master M1 is itself a slave of M0, any event from M1's binary log that originates from M0's binary log has M0's timestamp for that event. This enables MySQL to replicate TIMESTAMP successfully. However, the problem for Seconds_Behind_Master is that if M1 also receives direct updates from clients, the Seconds_Behind_Master value randomly fluctuates because sometimes the last event from M1 originates from M0 and sometimes is the result of a direct update on M1.
When using a multi-threaded slave (MySQL 5.6.3 and later), you should keep in mind that this value is based on Exec_Master_Log_Pos, and so may not reflect the position of the most recently committed transaction.
Last_IO_Errno, Last_IO_Error
The error number and error message of the last error that caused the I/O thread to stop. An error number of 0 and message of the empty string mean “no error.” If the Last_IO_Error value is not empty, the error values also appear in the slave's error log.
Beginning with MySQL 5.6.1, I/O error information includes a timestamp showing when the most recent I/O thread error occurred. This timestamp uses the format YYMMDD HH:MM:SS.
Previous to MySQL 5.6.3, this timestamp was prefixed to the error message text shown in the Last_IO_Error column. In MySQL 5.6.3 and later, the timestamp appears instead in the Last_SQL_Error_Timestamp column.
Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.
Last_SQL_Errno, Last_SQL_Error
The error number and error message of the last error that caused the SQL thread to stop. An error number of 0 and message of the empty string mean “no error.” If the Last_SQL_Error value is not empty, the error values also appear in the slave's error log.
Beginning with MySQL 5.6.1, SQL error information includes a timestamp showing when the most recent SQL thread error occurred. This timestamp uses the format YYMMDD HH:MM:SS.
Previous to MySQL 5.6.3, this timestamp was prefixed to the error message text shown in the Last_SQL_Error column. In MySQL 5.6.3 and later, the timestamp appears instead in the Last_SQL_Error_Timestamp column.
Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.
Replicate_Ignore_Server_Ids
In MySQL 5.6, you can tell a slave to ignore events from 0 or more masters using the IGNORE_SERVER_IDS option in a CHANGE MASTER TO statement. This is normally of interest only when using a circular or other multi-master replication setup.
The message shown for Replicate_Ignore_Server_Ids consists of a space-delimited list of one or more numbers, the first value indicating the number of servers to be ignored; if not 0 (the default), this server-count value is followed by the actual server IDs. For example, if a CHANGE MASTER TO statement containing the IGNORE_SERVER_IDS = (2,6,9) option has been issued to tell a slave to ignore masters having the server ID 2, 6, or 9, that information appears as shown here:
Replicate_Ignore_Server_Ids: 3 2 6 9
Master_Server_Id
The server_id value from the master.
Master_UUID
The server_uuid value from the master. This field was added in MySQL 5.6.0.
Master_Info_File
The location of the master.info file. This field was added in MySQL 5.6.0.
SQL_Delay
The number of seconds that the slave must lag the master. This field was added in MySQL 5.6.0.
SQL_Remaining_Delay
When Slave_SQL_Running_State is Waiting until MASTER_DELAY seconds after master executed event, this field contains the number of seconds left of the delay. At other times, this field is NULL. This field was added in MySQL 5.6.0.
Slave_SQL_Running_State
The state of the SQL thread (analogous to Slave_IO_State). The value is identical to the State value of the SQL thread as displayed by SHOW PROCESSLIST; Section 8.12.5.7, “Replication Slave SQL Thread States”, provides a listing of possible states. This field was added in MySQL 5.6.0.
Master_Retry_Count
The number of times the slave can attempt to reconnect to the master in the event of a lost connection. This value can be set using the MASTER_RETRY_COUNT option in a CHANGE MASTER TO statement (preferred) or the older --master-retry-count server option (still supported for backward compatibility). This field was added in MySQL 5.6.1.
Master_Bind
Shows the network interface that the slave is bound to, if any, set using the MASTER_BIND option for the CHANGE MASTER TO statement.
This column was added in MySQL 5.6.2.
Last_IO_Error_Timestamp
A timestamp in YYMMDD HH:MM:SS format that shows when the most recent I/O error took place.
This column was added in MySQL 5.6.3. Previously in MySQL 5.6, this timestamp was prepended to the error text shown in Last_IO_Error.
Last_SQL_Error_Timestamp
A timestamp in YYMMDD HH:MM:SS format that shows when the last SQL error occurred.
This column was added in MySQL 5.6.3. Previously in MySQL 5.6, this timestamp was prepended to the error text shown in Last_SQL_Error.
Retrieved_Gtid_Set
The set of global transaction IDs corresponding to all transactions received by this slave. Empty if GTIDs are not in use.
This column was added in MySQL 5.6.5.
Prior to MySQL 5.6.10, this value was printed using uppercase. In MySQL 5.6.10 and later, it is always printed using lowercase. (Bug #15869441)
Executed_Gtid_Set
The set of global transaction IDs for all received transactions subsequently executed on this slave. Empty if GTIDs are not in use.
This column was added in MySQL 5.6.5.
Prior to MySQL 5.6.10, this value was printed using uppercase. In MySQL 5.6.10 and later, it is always printed using lowercase. (Bug #15869441)
Auto_Position
The value of this column is 1 if autopositioning is in use; otherwise it is 0.
This column was added in MySQL 5.6.10. (Bug #15992220)
13.7.5.36. SHOW STATUS Syntax
SHOW [GLOBAL | SESSION] STATUS
[LIKE 'pattern' | WHERE expr]
SHOW STATUS provides server status information. This information also can be obtained using the mysqladmin extended-status command. The LIKE clause, if present, indicates which variable names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”. This statement does not require any privilege. It requires only the ability to connect to the server.
Partial output is shown here. The list of names and values may be different for your server. The meaning of each variable is given in Section 5.1.6, “Server Status Variables”.
mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
| Aborted_clients | 0 |
| Aborted_connects | 0 |
| Bytes_received | 155372598 |
| Bytes_sent | 1176560426 |
| Connections | 30023 |
| Created_tmp_disk_tables | 0 |
| Created_tmp_tables | 8340 |
| Created_tmp_files | 60 |
...
| Open_tables | 1 |
| Open_files | 2 |
| Open_streams | 0 |
| Opened_tables | 44600 |
| Questions | 2026873 |
...
| Table_locks_immediate | 1920382 |
| Table_locks_waited | 0 |
| Threads_cached | 0 |
| Threads_created | 30022 |
| Threads_connected | 1 |
| Threads_running | 1 |
| Uptime | 80380 |
+--------------------------+------------+
With a LIKE clause, the statement displays only rows for those variables with names that match the pattern:
mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
| Key_blocks_used | 14955 |
| Key_read_requests | 96854827 |
| Key_reads | 162040 |
| Key_write_requests | 7589728 |
| Key_writes | 3813196 |
+--------------------+----------+
With the GLOBAL modifier, SHOW STATUS displays the status values for all connections to MySQL. With SESSION, it displays the status values for the current connection. If no modifier is present, the default is SESSION. LOCAL is a synonym for SESSION.
Some status variables have only a global value. For these, you get the same value for both GLOBAL and SESSION. The scope for each status variable is listed at Section 5.1.6, “Server Status Variables”.
Each invocation of the SHOW STATUS statement uses an internal temporary table and increments the global Created_tmp_tables value.
13.7.5.37. SHOW TABLE STATUS Syntax
SHOW TABLE STATUS [{FROM | IN} db_name]
[LIKE 'pattern' | WHERE expr]
SHOW TABLE STATUS works likes SHOW TABLES, but provides a lot of information about each non-TEMPORARY table. You can also get this list using the mysqlshow --status db_name command. The LIKE clause, if present, indicates which table names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”.
This statement also displays information about views.
SHOW TABLE STATUS returns the following fields:
Name
The name of the table.
Engine
The storage engine for the table. See Chapter 14, Storage Engines.
Version
The version number of the table's .frm file.
Row_format
The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM tables, (Dynamic corresponds to what myisamchk -dvv reports as Packed. The format of InnoDB tables is reported as Redundant or Compact. For the Barracuda file format of the InnoDB Plugin, the format may be Compressed or Dynamic.
Rows
The number of rows. Some storage engines, such as MyISAM, store the exact count. For other storage engines, such as InnoDB, this value is an approximation, and may vary from the actual value by as much as 40 to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.
The Rows value is NULL for tables in the INFORMATION_SCHEMA database.
Avg_row_length
The average row length.
Data_length
The length of the data file.
Max_data_length
The maximum length of the data file. This is the total number of bytes of data that can be stored in the table, given the data pointer size used.
Index_length
The length of the index file.
Data_free
The number of allocated but unused bytes.
This information is also shown for InnoDB tables (previously, it was in the Comment value). InnoDB tables report the free space of the tablespace to which the table belongs. For a table located in the shared tablespace, this is the free space of the shared tablespace. If you are using multiple tablespaces and the table has its own tablespace, the free space is for only that table. Free space means the number of completely free 1MB extents minus a safety margin. Even if free space displays as 0, it may be possible to insert rows as long as new extents need not be allocated.
For partitioned tables, this value is only an estimate and may not be absolutely correct. A more accurate method of obtaining this information in such cases is to query the INFORMATION_SCHEMA.PARTITIONS table, as shown in this example:
SELECT SUM(DATA_FREE)
FROM INFORMATION_SCHEMA.PARTITIONS
WHERE TABLE_SCHEMA = 'mydb'
AND TABLE_NAME = 'mytable';
For more information, see Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”.
Auto_increment
The next AUTO_INCREMENT value.
Create_time
When the table was created.
Update_time
When the data file was last updated. For some storage engines, this value is NULL. For example, InnoDB stores multiple tables in its system tablespace and the data file timestamp does not apply. Even with file-per-table mode with each InnoDB table in a separate .ibd file, change buffering can delay the write to the data file, so the file modification time is different from the time of the last insert, update, or delete. For MyISAM, the data file timestamp is used; however, on Windows the timestamp is not updated by updates so the value is inaccurate.
Check_time
When the table was last checked. Not all storage engines update this time, in which case the value is always NULL.
Collation
The table's character set and collation.
Checksum
The live checksum value (if any).
Create_options
Extra options used with CREATE TABLE. The original options supplied when CREATE TABLE is called are retained and the options reported here may differ from the active table settings and options.
Comment
The comment used when creating the table (or information as to why MySQL could not access the table information).
For MEMORY tables, the Data_length, Max_data_length, and Index_length values approximate the actual amount of allocated memory. The allocation algorithm reserves memory in large amounts to reduce the number of allocation operations.
For views, all the fields displayed by SHOW TABLE STATUS are NULL except that Name indicates the view name and Comment says view.
13.7.5.38. SHOW TABLES Syntax
SHOW [FULL] TABLES [{FROM | IN} db_name]
[LIKE 'pattern' | WHERE expr]
SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list using the mysqlshow db_name command. The LIKE clause, if present, indicates which table names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”.
Matching performed by the LIKE clause is dependent on the setting of the lower_case_table_names system variable.
This statement also lists any views in the database. The FULL modifier is supported such that SHOW FULL TABLES displays a second output column. Values for the second column are BASE TABLE for a table and VIEW for a view.
If you have no privileges for a base table or view, it does not show up in the output from SHOW TABLES or mysqlshow db_name.
13.7.5.39. SHOW TRIGGERS Syntax
SHOW TRIGGERS [{FROM | IN} db_name]
[LIKE 'pattern' | WHERE expr]
SHOW TRIGGERS lists the triggers currently defined for tables in a database (the default database unless a FROM clause is given). This statement returns results only for databases and tables for which you have the TRIGGER privilege. The LIKE clause, if present, indicates which table names to match and causes the statement to display triggers for those tables. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”.
For the trigger ins_sum as defined in Section 18.3, “Using Triggers”, the output of this statement is as shown here:
mysql> SHOW TRIGGERS LIKE 'acc%'\G
*************************** 1. row ***************************
Trigger: ins_sum
Event: INSERT
Table: account
Statement: SET @sum = @sum + NEW.amount
Timing: BEFORE
Created: NULL
sql_mode:
Definer: myname@localhost
character_set_client: latin1
collation_connection: latin1_swedish_ci
Database Collation: latin1_swedish_ci
character_set_client is the session value of the character_set_client system variable when the trigger was created. collation_connection is the session value of the collation_connection system variable when the trigger was created. Database Collation is the collation of the database with which the trigger is associated.
Note
When using a LIKE clause with SHOW TRIGGERS, the expression to be matched (expr) is compared with the name of the table on which the trigger is declared, and not with the name of the trigger:
mysql> SHOW TRIGGERS LIKE 'ins%';
Empty set (0.01 sec)
A brief explanation of the columns in the output of this statement is shown here:
Trigger
The name of the trigger.
Event
The event that causes trigger activation: one of 'INSERT', 'UPDATE', or 'DELETE'.
Table
The table for which the trigger is defined.
Statement
The statement to be executed when the trigger is activated. This is the same as the text shown in the ACTION_STATEMENT column of INFORMATION_SCHEMA.TRIGGERS.
Timing
One of the two values 'BEFORE' or 'AFTER'.
Created
Currently, the value of this column is always NULL.
The SQL mode in effect when the trigger executes.
Definer
The account that created the trigger.
See also Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”.
13.7.5.40. SHOW VARIABLES Syntax
SHOW [GLOBAL | SESSION] VARIABLES
[LIKE 'pattern' | WHERE expr]
SHOW VARIABLES shows the values of MySQL system variables. This information also can be obtained using the mysqladmin variables command. The LIKE clause, if present, indicates which variable names to match. The WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.32, “Extensions to SHOW Statements”. This statement does not require any privilege. It requires only the ability to connect to the server.
With the GLOBAL modifier, SHOW VARIABLES displays the values that are used for new connections to MySQL. In MySQL 5.6, if a variable has no global value, no value is displayed. With SESSION, SHOW VARIABLES displays the values that are in effect for the current connection. If no modifier is present, the default is SESSION. LOCAL is a synonym for SESSION.
SHOW VARIABLES is subject to a version-dependent display-width limit. For variables with very long values that are not completely displayed, use SELECT as a workaround. For example:
SELECT @@GLOBAL.innodb_data_file_path;
If the default system variable values are unsuitable, you can set them using command options when mysqld starts, and most can be changed at runtime with the SET statement. See Section 5.1.5, “Using System Variables”, and Section 13.7.4, “SET Syntax”.
Partial output is shown here. The list of names and values may be different for your server. Section 5.1.4, “Server System Variables”, describes the meaning of each variable, and Section 8.11.2, “Tuning Server Parameters”, provides information about tuning them.
mysql> SHOW VARIABLES;
+---+---------------------------+
| Variable_name | Value |
+---+---------------------------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
| autocommit | ON |
| automatic_sp_privileges | ON |
| back_log | 50 |
| basedir | /home/jon/bin/mysql-5.5 |
| big_tables | OFF |
| binlog_cache_size | 32768 |
| binlog_direct_non_transactional_updates | OFF |
| binlog_format | STATEMENT |
| binlog_stmt_cache_size | 32768 |
| bulk_insert_buffer_size | 8388608 |
...
| max_allowed_packet | 1048576 |
| max_binlog_cache_size | 18446744073709547520 |
| max_binlog_size | 1073741824 |
| max_binlog_stmt_cache_size | 18446744073709547520 |
| max_connect_errors | 10 |
| max_connections | 151 |
| max_delayed_threads | 20 |
| max_error_count | 64 |
| max_heap_table_size | 16777216 |
| max_insert_delayed_threads | 20 |
| max_join_size | 18446744073709551615 |
...
| thread_handling | one-thread-per-connection |
| thread_stack | 262144 |
| time_format | %H:%i:%s |
| time_zone | SYSTEM |
| timed_mutexes | OFF |
| timestamp | 1316689732 |
| tmp_table_size | 16777216 |
| tmpdir | /tmp |
| transaction_alloc_block_size | 8192 |
| transaction_prealloc_size | 4096 |
| tx_isolation | REPEATABLE-READ |
| unique_checks | ON |
| updatable_views_with_limit | YES |
| version | 5.5.17-log |
| version_comment | Source distribution |
| version_compile_machine | x86_64 |
| version_compile_os | Linux |
| wait_timeout | 28800 |
| warning_count | 0 |
+---+---------------------------+
With a LIKE clause, the statement displays only rows for those variables with names that match the pattern. To obtain the row for a specific variable, use a LIKE clause as shown:
SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';
To get a list of variables whose name match a pattern, use the “%” wildcard character in a LIKE clause:
SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';
Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking, because “_” is a wildcard that matches any single character, you should escape it as “_” to match it literally. In practice, this is rarely necessary.
13.7.5.41. SHOW WARNINGS Syntax
SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS
SHOW WARNINGS shows information about the conditions (errors, warnings, and notes) that resulted from the last statement in the current session that generated messages. It shows nothing if the last statement used a table and generated no messages. (That is, a statement that uses a table but generates no messages clears the message list.) Statements that do not use tables and do not generate messages have no effect on the message list.
Warnings are generated for DML statements such as INSERT, UPDATE, and LOAD DATA INFILE as well as DDL statements such as CREATE TABLE and ALTER TABLE.
SHOW WARNINGS is also used following EXPLAIN EXTENDED, to display the extra information generated by EXPLAIN when the EXTENDED keyword is used. See Section 8.8.3, “EXPLAIN EXTENDED Output Format”.
The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.9, “SELECT Syntax”.
A related statement, SHOW ERRORS, shows only the error conditions (it excludes warnings and notes). See Section 13.7.5.18, “SHOW ERRORS Syntax”. GET DIAGNOSTICS can be used to examine information for individual conditions. See Section 13.6.7.3, “GET DIAGNOSTICS Syntax”.
The SHOW COUNT(*) WARNINGS statement displays the total number of errors, warnings, and notes. You can also retrieve this number from the warning_count system variable:
SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;
Here is a simple example that shows a syntax warning for CREATE TABLE and conversion warnings for INSERT:
mysql> CREATE TABLE t1
> (a TINYINT NOT NULL, b CHAR(4))
> TYPE=MyISAM;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1287
Message: 'TYPE=storage_engine' is deprecated, use
'ENGINE=storage_engine' instead
1 row in set (0.00 sec)
mysql> INSERT INTO t1 VALUES(10,'mysql'),
-> (NULL,'test'), (300,'Open Source');
Query OK, 3 rows affected, 4 warnings (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 4
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1265
Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************
Level: Warning
Code: 1263
Message: Data truncated, NULL supplied to NOT NULL column 'a' at row 2
*************************** 3. row ***************************
Level: Warning
Code: 1264
Message: Data truncated, out of range for column 'a' at row 3
*************************** 4. row ***************************
Level: Warning
Code: 1265
Message: Data truncated for column 'b' at row 3
4 rows in set (0.00 sec)
The max_error_count system variable controls the maximum number of error, warning, and note messages for which the server stores information, and thus the number of messages that SHOW WARNINGS displays. By default, max_error_count is 64. To change the number of messages the server can store, change the value of max_error_count.
The value of warning_count is not limited by max_error_count if the number of messages generated exceeds max_error_count.
In the following example, the ALTER TABLE statement produces three warning messages (as shown by the value of warning_count), but only one is stored because max_error_count has been set to 1:
mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_error_count | 64 |
+-----------------+-------+
1 row in set (0.00 sec)
mysql> SET max_error_count=1;
Query OK, 0 rows affected (0.00 sec)
mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3
mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
| 3 |
+-----------------+
1 row in set (0.01 sec)
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)
To disable warnings, set max_error_count to 0. In this case, warning_count still indicates how many warnings have occurred, but none of the messages are stored.
The following DROP TABLE statement results in a note:
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.01 sec)
mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
If the sql_notes system variable is set to 0, notes do not increment warning_count and the server does not record them.
The MySQL server sends back a count indicating the total number of errors, warnings, and notes resulting from the last statement. From the C API, this value can be obtained by calling mysql_warning_count(). See Section 21.8.6.73, “mysql_warning_count()”.
13.7.6. Other Administrative Statements
13.7.6.1. BINLOG Syntax
BINLOG 'str'
BINLOG is an internal-use statement. It is generated by the mysqlbinlog program as the printable representation of certain events in binary log files. (See Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”.) The 'str' value is a base 64-encoded string the that server decodes to determine the data change indicated by the corresponding event. This statement requires the SUPER privilege.
As of MySQL 5.6, this statement can execute only format description events and row events. Previously it could execute all types of events.
13.7.6.2. CACHE INDEX Syntax
CACHE INDEX
tbl_index_list [, tbl_index_list] ...
[PARTITION (partition_list | ALL)]
IN key_cache_name
tbl_index_list:
tbl_name [[INDEX|KEY] (index_name[, index_name] ...)]
partition_list:
partition_name[, partition_name][, ...]
The CACHE INDEX statement assigns table indexes to a specific key cache. It is used only for MyISAM tables. After the indexes have been assigned, they can be preloaded into the cache if desired with LOAD INDEX INTO CACHE.
The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named hot_cache:
mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
| test.t1 | assign_to_keycache | status | OK |
| test.t2 | assign_to_keycache | status | OK |
| test.t3 | assign_to_keycache | status | OK |
+---------+--------------------+----------+----------+
The syntax of CACHE INDEX enables you to specify that only particular indexes from a table should be assigned to the cache. The current implementation assigns all the table's indexes to the cache, so there is no reason to specify anything other than the table name.
The key cache referred to in a CACHE INDEX statement can be created by setting its size with a parameter setting statement or in the server parameter settings. For example:
mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;
Key cache parameters can be accessed as members of a structured system variable. See Section 5.1.5.1, “Structured System Variables”.
A key cache must exist before you can assign indexes to it:
mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'
By default, table indexes are assigned to the main (default) key cache created at the server startup. When a key cache is destroyed, all indexes assigned to it become assigned to the default key cache again.
Index assignment affects the server globally: If one client assigns an index to a given cache, this cache is used for all queries involving the index, no matter which client issues the queries.
In MySQL 5.6, this statement is also supported for partitioned MyISAM tables. You can assign one or more indexes for one, several, or all partitions to a given key cache. For example, you can do the following:
CREATE TABLE pt (c1 INT, c2 VARCHAR(50), INDEX i(c1))
PARTITION BY HASH(c1)
PARTITIONS 4;
SET GLOBAL kc_fast.key_buffer_size = 128 * 1024;
SET GLOBAL kc_slow.key_buffer_size = 128 * 1024;
CACHE INDEX pt PARTITION (p0) IN kc_fast;
CACHE INDEX pt PARTITION (p1, p3) IN kc_slow;
The previous set of statements performs the following actions:
Creates a partitioned table with 4 partitions; these partitions are automatically named p0, ..., p3; this table has an index named i on column c1.
Creates 2 key caches named kc_fast and kc_slow
Assigns the index for partition p0 to the kc_fast key cache and the index for partitions p1 and p3 to the kc_slow key cache; the index for the remaining partition (p2) uses the server's default key cache.
If you wish instead to assign the indexes for all partitions in table pt to a single key cache named kc_all, you can use either one of the following 2 statements:
CACHE INDEX pt PARTITION (ALL) IN kc_all;
CACHE INDEX pt IN kc_all;
The two statements just shown are equivalent, and issuing either one of them has exactly the same effect. In other words, if you wish to assign indexes for all partitions of a partitioned table to the same key cache, then the PARTITION (ALL) clause is optional.
When assigning indexes for multiple partitions to a key cache, the partitions do not have to be contiguous, and you are not required to list their names in any particular order. Indexes for any partitions that are not explicitly assigned to a key cache automatically use the server's default key cache.
In MySQL 5.6, index preloading is also supported for partitioned MyISAM tables. For more information, see Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
13.7.6.3. FLUSH Syntax
FLUSH [NO_WRITE_TO_BINLOG | LOCAL]
flush_option [, flush_option] ...
The FLUSH statement has several variant forms that clear or reload various internal caches, flush tables, or acquire locks. To execute FLUSH, you must have the RELOAD privilege. Specific flush options might require additional privileges, as described later.
By default, the server writes FLUSH statements to the binary log so that they replicate to replication slaves. To suppress logging, use the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.
Note
FLUSH LOGS, FLUSH TABLES WITH READ LOCK (with or without a table list), and FLUSH TABLES tbl_name ... FOR EXPORT are not written to the binary log in any case because they would cause problems if replicated to a slave.
The FLUSH statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit Commit”.
The RESET statement is similar to FLUSH. See Section 13.7.6.6, “RESET Syntax”, for information about using the RESET statement with replication.
flush_option can be any of the following items.
DES_KEY_FILE
Reloads the DES keys from the file that was specified with the --des-key-file option at server startup time.
HOSTS
Empties the host cache. You should flush the host cache if some of your hosts change IP address or if the error message Host 'host_name' is blocked occurs. (See Section C.5.2.6, “Host 'host_name' is blocked”.) When more than max_connect_errors errors occur successively for a given host while connecting to the MySQL server, MySQL assumes that something is wrong and blocks the host from further connection requests. Flushing the host cache enables further connection attempts from the host. The default value of max_connect_errors is 10. To avoid this error message, start the server with max_connect_errors set to a large value.
[log_type] LOGS
With no log_type option, FLUSH LOGS closes and reopens all log files. If binary logging is enabled, the sequence number of the binary log file is incremented by one relative to the previous file. On Unix, this is the same thing as sending a SIGHUP signal to the mysqld server (except on some Mac OS X 10.3 versions where mysqld ignores SIGHUP and SIGQUIT).
With a log_type option, only the specified log type is flushed. These log_type options are permitted:
BINARY closes and reopens the binary log files.
ENGINE closes and reopens any flushable logs for installed storage engines. Currently, this causes InnoDB to flush its logs to disk.
ERROR closes and reopens the error log file.
GENERAL closes and reopens the general query log file.
RELAY closes and reopens the relay log files.
SLOW closes and reopens the slow query log file.
PRIVILEGES
Reloads the privileges from the grant tables in the mysql database. On Unix, this also occurs if the server receives a SIGHUP signal.
The server caches information in memory as a result of GRANT, CREATE USER, CREATE SERVER, and INSTALL PLUGIN statements. This memory is not released by the corresponding REVOKE, DROP USER, DROP SERVER, and UNINSTALL PLUGIN statements, so for a server that executes many instances of the statements that cause caching, there will be an increase in memory use. This cached memory can be freed with FLUSH PRIVILEGES.
QUERY CACHE
Defragment the query cache to better utilize its memory. FLUSH QUERY CACHE does not remove any queries from the cache, unlike FLUSH TABLES or RESET QUERY CACHE.
STATUS
This option adds the current thread's session status variable values to the global values and resets the session values to zero. Some global variables may be reset to zero as well. It also resets the counters for key caches (default and named) to zero and sets Max_used_connections to the current number of open connections. This is something you should use only when debugging a query. See Section 1.7, “How to Report Bugs or Problems”.
TABLES
FLUSH TABLES flushes tables, and, depending on the variant used, acquires locks. The permitted syntax is discussed later in this section.
USER_RESOURCES
Resets all per-hour user resources to zero. This enables clients that have reached their hourly connection, query, or update limits to resume activity immediately. FLUSH USER_RESOURCES does not apply to the limit on maximum simultaneous connections. See Section 6.3.4, “Setting Account Resource Limits”.
The mysqladmin utility provides a command-line interface to some flush operations, using commands such as flush-hosts, flush-logs, flush-privileges, flush-status, and flush-tables. See Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.
Note
It is not possible to issue FLUSH statements within stored functions or triggers. However, you may use FLUSH in stored procedures, so long as these are not called from stored functions or triggers. See Section E.1, “Restrictions on Stored Programs”.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing FLUSH statements (BUG#16062608).
FLUSH TABLES Syntax
FLUSH TABLES has several forms, described following. If any variant of the TABLES option is used in a FLUSH statement, it must be the only option used. FLUSH TABLE is a synonym for FLUSH TABLES.
FLUSH TABLES
Closes all open tables, forces all tables in use to be closed, and flushes the query cache. FLUSH TABLES also removes all query results from the query cache, like the RESET QUERY CACHE statement.
In MySQL 5.6, FLUSH TABLES is not permitted when there is an active LOCK TABLES ... READ. To flush and lock tables, use FLUSH TABLES tbl_name ... WITH READ LOCK instead.
FLUSH TABLES tbl_name [, tbl_name] ...
With a list of one or more comma-separated table names, this statement is like FLUSH TABLES with no names except that the server flushes only the named tables. No error occurs if a named table does not exist.
FLUSH TABLES WITH READ LOCK
Closes all open tables and locks all tables for all databases with a global read lock. This is a very convenient way to get backups if you have a file system such as Veritas or ZFS that can take snapshots in time. Use UNLOCK TABLES to release the lock.
FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking and implicit commits:
UNLOCK TABLES implicitly commits any active transaction only if any tables currently have been locked with LOCK TABLES. The commit does not occur for UNLOCK TABLES following FLUSH TABLES WITH READ LOCK because the latter statement does not acquire table locks.
Beginning a transaction causes table locks acquired with LOCK TABLES to be released, as though you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock acquired with FLUSH TABLES WITH READ LOCK.
FLUSH TABLES WITH READ LOCK does not prevent the server from inserting rows into the log tables (see Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”).
FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK
This statement flushes and acquires read locks for the named tables. The statement first acquires exclusive metadata locks for the tables, so it waits for transactions that have those tables open to complete. Then the statement flushes the tables from the table cache, reopens the tables, acquires table locks (like LOCK TABLES ... READ), and downgrades the metadata locks from exclusive to shared. After the statement acquires locks and downgrades the metadata locks, other sessions can read but not modify the tables.
Because this statement acquires table locks, you must have the LOCK TABLES privilege for each table, in addition to the RELOAD privilege that is required to use any FLUSH statement.
This statement applies only to existing base tables. If a name refers to a base table, that table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.
Use UNLOCK TABLES to release the locks, LOCK TABLES to release the locks and acquire other locks, or START TRANSACTION to release the locks and begin a new transaction.
This variant of FLUSH enables tables to be flushed and locked in a single operation. It provides a workaround for the restriction in MySQL 5.6 that FLUSH TABLES is not permitted when there is an active LOCK TABLES ... READ.
This statement does not perform an implicit UNLOCK TABLES, so an error results if you use the statement while there is any active LOCK TABLES or use it a second time without first releasing the locks acquired.
If a flushed table was opened with HANDLER, the handler is implicitly flushed and loses its position.
FLUSH TABLES tbl_name [, tbl_name] ... FOR EXPORT
This FLUSH TABLES variant applies to InnoDB tables. It is available as of MySQL 5.6.6. The statement ensures that changes to the named tables have been flushed to disk so that binary table copies can be made while the server is running.
The statement works like this:
It acquires shared metadata locks for the named tables. The statement blocks as long as other sessions have active transactions that have modified those tables or hold table locks for them. When the locks have been acquired, the statement blocks transactions that attempt to update the tables while permitting read-only operations to continue.
It checks whether all storage engines for the tables support FOR EXPORT. If any do not, an ER_ILLEGAL_HA error occurs and the statement fails.
The statement notifies the storage engine for each table to make the table ready for export. The storage engine must ensure that any pending changes are written to disk.
The statement puts the session in lock-tables mode so that the metadata locks acquired earlier are not released when the FOR EXPORT statement completes.
Because this statement acquires table locks, you must have the LOCK TABLES privilege for each table, in addition to the RELOAD privilege that is required to use any FLUSH statement.
This statement applies only to existing base tables. If a name refers to a base table, that table is used. If it refers to a TEMPORARY table, it is ignored. If a name applies to a view, an ER_WRONG_OBJECT error occurs. Otherwise, an ER_NO_SUCH_TABLE error occurs.
InnoDB supports FOR EXPORT for tables that have their own .ibd file file (that is, tables that were created with the innodb_file_per_table setting enabled). InnoDB ensures when notified by the FOR EXPORT statement that any changes have been flushed to disk. This permits a binary copy of table contents to be made while the FOR EXPORT statement is in effect because the .ibd file is transaction consistent and can be copied while the server is running. FOR EXPORT does not apply to InnoDB system tablespace files, or to InnoDB tables that have any FULLTEXT indexes.
When notified by FOR EXPORT, InnoDB writes to disk certain kinds of data that is normally held in memory or in separate disk buffers outside the tablespace files. For each table, InnoDB also produces a file named table_name.cfg in the same database directory as the table. The .cfg file contains metadata needed to reimport the tablespace files later, into the same or different server.
When the FOR EXPORT statement completes, InnoDB will have flushed all dirty pages to the table data files. Any change buffer entries are merged prior to flushing. At this point, the tables are locked and quiescent: The tables are in a transactionally consistent state on disk and you can copy the .ibd tablespace files along with the corresponding .cfg files to get a consistent snapshot of those tables.
For the procedure to reimport the copied table data into a MySQL instance, see Section 14.2.4.2.34, “Improved Tablespace Management”.
After you are done with the tables, use UNLOCK TABLES to release the locks, LOCK TABLES to release the locks and acquire other locks, or START TRANSACTION to release the locks and begin a new transaction.
While any of these statements is in effect within the session, attempts to use FLUSH TABLES ... FOR EXPORT produce an error:
FLUSH TABLES ... WITH READ LOCK
FLUSH TABLES ... FOR EXPORT
LOCK TABLES ... READ
LOCK TABLES ... WRITE
While FLUSH TABLES ... FOR EXPORT is in effect within the session, attempts to use any of these statements produce an error:
FLUSH TABLES WITH READ LOCK
FLUSH TABLES ... WITH READ LOCK
FLUSH TABLES ... FOR EXPORT
13.7.6.4. KILL Syntax
KILL [CONNECTION | QUERY] thread_id
Each connection to mysqld runs in a separate thread. You can see which threads are running with the SHOW PROCESSLIST statement and kill a thread with the KILL thread_id statement.
KILL permits an optional CONNECTION or QUERY modifier:
KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated with the given thread_id.
KILL QUERY terminates the statement that the connection is currently executing, but leaves the connection itself intact.
If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege, you can kill all threads and statements. Otherwise, you can see and kill only your own threads and statements.
You can also use the mysqladmin processlist and mysqladmin kill commands to examine and kill threads.
Note
You cannot use KILL with the Embedded MySQL Server library because the embedded server merely runs inside the threads of the host application. It does not create any connection threads of its own.
When you use KILL, a thread-specific kill flag is set for the thread. In most cases, it might take some time for the thread to die because the kill flag is checked only at specific intervals:
In SELECT, ORDER BY and GROUP BY loops, the flag is checked after reading a block of rows. If the kill flag is set, the statement is aborted.
During ALTER TABLE, the kill flag is checked before each block of rows are read from the original table. If the kill flag was set, the statement is aborted and the temporary table is deleted.
During UPDATE or DELETE operations, the kill flag is checked after each block read and after each updated or deleted row. If the kill flag is set, the statement is aborted. Note that if you are not using transactions, the changes are not rolled back.
GET_LOCK() aborts and returns NULL.
An INSERT DELAYED thread quickly flushes (inserts) all rows it has in memory and then terminates.
If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.
If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error message.
Warning
Killing a REPAIR TABLE or OPTIMIZE TABLE operation on a MyISAM table results in a table that is corrupted and unusable. Any reads or writes to such a table fail until you optimize or repair it again (without interruption).
13.7.6.5. LOAD INDEX INTO CACHE Syntax
LOAD INDEX INTO CACHE
tbl_index_list [, tbl_index_list] ...
tbl_index_list:
tbl_name
[PARTITION (partition_list | ALL)]
[[INDEX|KEY] (index_name[, index_name] ...)]
[IGNORE LEAVES]
partition_list:
partition_name[, partition_name][, ...]
The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has been assigned by an explicit CACHE INDEX statement, or into the default key cache otherwise.
LOAD INDEX INTO CACHE is used only for MyISAM tables. In MySQL 5.6, it is also supported for partitioned MyISAM tables; in addition, indexes on partitioned tables can be preloaded for one, several, or all partitions.
The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.
IGNORE LEAVES is also supported for partitioned MyISAM tables.
The following statement preloads nodes (index blocks) of indexes for the tables t1 and t2:
mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+
This statement preloads all index blocks from t1. It preloads only blocks for the nonleaf nodes from t2.
The syntax of LOAD INDEX INTO CACHE enables you to specify that only particular indexes from a table should be preloaded. The current implementation preloads all the table's indexes into the cache, so there is no reason to specify anything other than the table name.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
In MySQL 5.6, it is possible to preload indexes on specific partitions of partitioned MyISAM tables. For example, of the following 2 statements, the first preloads indexes for partition p0 of a partitioned table pt, while the second preloads the indexes for partitions p1 and p3 of the same table:
LOAD INDEX INTO CACHE pt PARTITION (p0);
LOAD INDEX INTO CACHE pt PARTITION (p1, p3);
To preload the indexes for all partitions in table pt, you can use either one of the following 2 statements:
LOAD INDEX INTO CACHE pt PARTITION (ALL);
LOAD INDEX INTO CACHE pt;
The two statements just shown are equivalent, and issuing either one of them has exactly the same effect. In other words, if you wish to preload indexes for all partitions of a partitioned table, then the PARTITION (ALL) clause is optional.
When preloading indexes for multiple partitions, the partitions do not have to be contiguous, and you are not required to list their names in any particular order.
LOAD INDEX INTO CACHE ... IGNORE LEAVES fails unless all indexes in a table have the same block size. You can determine index block sizes for a table by using myisamchk -dv and checking the Blocksize column.
13.7.6.6. RESET Syntax
RESET reset_option [, reset_option] ...
The RESET statement is used to clear the state of various server operations. You must have the RELOAD privilege to execute RESET.
RESET acts as a stronger version of the FLUSH statement. See Section 13.7.6.3, “FLUSH Syntax”.
The RESET statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit Commit”.
Beginning with MySQL 5.6.11, gtid_next must be set to AUTOMATIC before issuing this statement (BUG#16062608).
reset_option can be any of the following:
MASTER
Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates a new binary log file.
QUERY CACHE
Removes all query results from the query cache.
SLAVE
Makes the slave forget its replication position in the master binary logs. Also resets the relay log by deleting any existing relay log files and beginning a new one.
13.8. MySQL Utility Statements
13.8.1. DESCRIBE Syntax
The DESCRIBE and EXPLAIN statements are synonyms, used either to obtain information about table structure or query execution plans. For more information, see Section 13.8.2, “EXPLAIN Syntax”.
13.8.2. EXPLAIN Syntax
{EXPLAIN | DESCRIBE | DESC}
tbl_name [col_name | wild]
{EXPLAIN | DESCRIBE | DESC}
[explain_type] explainable_stmt
explain_type:
EXTENDED
| PARTITIONS
| FORMAT = format_name
format_name:
TRADITIONAL
| JSON
explainable_stmt:
SELECT statement
| DELETE statement
| INSERT statement
| REPLACE statement
| UPDATE statement
The DESCRIBE and EXPLAIN statements are synonyms. In practice, the DESCRIBE keyword is more often used to obtain information about table structure, whereas EXPLAIN is used to obtain a query execution plan (that is, an explanation of how MySQL would execute a query). The following discussion uses the DESCRIBE and EXPLAIN keywords in accordance with those uses, but the MySQL parser treats them as completely synonymous.
Obtaining Table Structure Information
DESCRIBE provides information about the columns in a table. It is a shortcut for SHOW COLUMNS FROM. These statements also display information for views. (See Section 13.7.5.6, “SHOW COLUMNS Syntax”.)
col_name can be a column name, or a string containing the SQL “%” and “_” wildcard characters to obtain output only for the columns with names matching the string. There is no need to enclose the string within quotation marks unless it contains spaces or other special characters.
mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
| Id | int(11) | NO | PRI | NULL | auto_increment |
| Name | char(35) | NO | | | |
| Country | char(3) | NO | UNI | | |
| District | char(20) | YES | MUL | | |
| Population | int(11) | NO | | 0 | |
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)
The description for SHOW COLUMNS provides more information about the output columns (see Section 13.7.5.6, “SHOW COLUMNS Syntax”).
If the data types differ from what you expect them to be based on a CREATE TABLE statement, note that MySQL sometimes changes data types when you create or alter a table. The conditions under which this occurs are described in Section 13.1.14.3, “Silent Column Specification Changes”.
The DESCRIBE statement is provided for compatibility with Oracle.
The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide information about tables. See Section 13.7.5, “SHOW Syntax”.
Obtaining Query Execution Plan Information
The EXPLAIN statement provides a way to obtain information about how MySQL executes a statement:
When you precede a statement with the keyword EXPLAIN, MySQL displays information from the optimizer about the statement execution plan. That is, MySQL explains how it would process the statement, including information about how tables are joined and in which order. EXPLAIN EXTENDED can be used to obtain additional information.
As of MySQL 5.6.3, EXPLAIN provides information about SELECT, DELETE, INSERT, REPLACE, and UPDATE statements. Before MySQL 5.6.3, EXPLAIN provides information only about SELECT statements.
For information about using EXPLAIN and EXPLAIN EXTENDED to obtain query execution plan information, see Section 8.8.1, “Optimizing Queries with EXPLAIN”.
EXPLAIN PARTITIONS is useful only when examining queries involving partitioned tables. For details, see Section 17.3.5, “Obtaining Information About Partitions”.
As of MySQL 5.6.5, the FORMAT option can be used to select the output format. TRADITIONAL presents the output in tabular format. This is the default if no FORMAT option is present. JSON format displays the information in JSON format. With FORMAT = JSON, the output includes extended and partition information.
13.8.3. HELP Syntax
HELP 'search_string'
The HELP statement returns online information from the MySQL Reference manual. Its proper operation requires that the help tables in the mysql database be initialized with help topic information (see Section 5.1.10, “Server-Side Help”).
The HELP statement searches the help tables for the given search string and displays the result of the search. The search string is not case sensitive.
The search string can contain the the wildcard characters “%” and “_”. These have the same meaning as for pattern-matching operations performed with the LIKE operator. For example, HELP 'rep%' returns a list of topics that begin with rep.
The HELP statement understands several types of search strings:
At the most general level, use contents to retrieve a list of the top-level help categories:
HELP 'contents'
For a list of topics in a given help category, such as Data Types, use the category name:
HELP 'data types'
For help on a specific help topic, such as the ASCII() function or the CREATE TABLE statement, use the associated keyword or keywords:
HELP 'ascii'
HELP 'create table'
In other words, the search string matches a category, many topics, or a single topic. You cannot necessarily tell in advance whether a given search string will return a list of items or the help information for a single help topic. However, you can tell what kind of response HELP returned by examining the number of rows and columns in the result set.
The following descriptions indicate the forms that the result set can take. Output for the example statements is shown using the familiar “tabular” or “vertical” format that you see when using the mysql client, but note that mysql itself reformats HELP result sets in a different way.
Empty result set
No match could be found for the search string.
Result set containing a single row with three columns
This means that the search string yielded a hit for the help topic. The result has three columns:
name: The topic name.
description: Descriptive help text for the topic.
example: Usage example or examples. This column might be blank.
Example: HELP 'replace'
Yields:
name: REPLACE
description: Syntax:
REPLACE(str,from_str,to_str)
Returns the string str with all occurrences of the string from_str
replaced by the string to_str. REPLACE() performs a case-sensitive
match when searching for from_str.
example: mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
-> 'WwWwWw.mysql.com'
Result set containing multiple rows with two columns
This means that the search string matched many help topics. The result set indicates the help topic names:
name: The help topic name.
is_it_category: Y if the name represents a help category, N if it does not. If it does not, the name value when specified as the argument to the HELP statement should yield a single-row result set containing a description for the named item.
Example: HELP 'status'
Yields:
+-----------------------+----------------+
| name | is_it_category |
+-----------------------+----------------+
| SHOW | N |
| SHOW ENGINE | N |
| SHOW MASTER STATUS | N |
| SHOW PROCEDURE STATUS | N |
| SHOW SLAVE STATUS | N |
| SHOW STATUS | N |
| SHOW TABLE STATUS | N |
+-----------------------+----------------+
Result set containing multiple rows with three columns
This means the search string matches a category. The result set contains category entries:
source_category_name: The help category name.
name: The category or topic name
is_it_category: Y if the name represents a help category, N if it does not. If it does not, the name value when specified as the argument to the HELP statement should yield a single-row result set containing a description for the named item.
Example: HELP 'functions'
Yields:
+----------------------+-------------------------+----------------+
| source_category_name | name | is_it_category |
+----------------------+-------------------------+----------------+
| Functions | CREATE FUNCTION | N |
| Functions | DROP FUNCTION | N |
| Functions | Bit Functions | Y |
| Functions | Comparison operators | Y |
| Functions | Control flow functions | Y |
| Functions | Date and Time Functions | Y |
| Functions | Encryption Functions | Y |
| Functions | Information Functions | Y |
| Functions | Logical operators | Y |
| Functions | Miscellaneous Functions | Y |
| Functions | Numeric Functions | Y |
| Functions | String Functions | Y |
+----------------------+-------------------------+----------------+
13.8.4. USE Syntax
USE db_name
The USE db_name statement tells MySQL to use the db_name database as the default (current) database for subsequent statements. The database remains the default until the end of the session or another USE statement is issued:
USE db1;
SELECT COUNT(*) FROM mytable; # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable; # selects from db2.mytable
Making a particular database the default by means of the USE statement does not preclude you from accessing tables in other databases. The following example accesses the author table from the db1 database and the editor table from the db2 database:
USE db1;
SELECT author_name,editor_name FROM author,db2.editor
WHERE author.editor_id = db2.editor.editor_id;
Chapter 14. Storage Engines
Table of Contents
14.1. Setting the Storage Engine
14.2. The InnoDB Storage Engine
14.2.1. Getting Started with InnoDB Tables
14.2.2. Administering InnoDB
14.2.3. InnoDB Concepts and Architecture
14.2.4. InnoDB Performance Tuning and Troubleshooting
14.2.5. InnoDB Features for Flexibility, Ease of Use and Reliability
14.2.6. InnoDB Startup Options and System Variables
14.2.7. Limits on InnoDB Tables
14.2.8. MySQL and the ACID Model
14.2.9. InnoDB Integration with memcached
14.3. The MyISAM Storage Engine
14.3.1. MyISAM Startup Options
14.3.2. Space Needed for Keys
14.3.3. MyISAM Table Storage Formats
14.3.4. MyISAM Table Problems
14.4. The MEMORY Storage Engine
14.5.1. Repairing and Checking CSV Tables
14.5.2. CSV Limitations
14.6. The ARCHIVE Storage Engine
14.7. The BLACKHOLE Storage Engine
14.8. The MERGE Storage Engine
14.8.1. MERGE Table Advantages and Disadvantages
14.8.2. MERGE Table Problems
14.9. The FEDERATED Storage Engine
14.9.1. FEDERATED Storage Engine Overview
14.9.2. How to Create FEDERATED Tables
14.9.3. FEDERATED Storage Engine Notes and Tips
14.9.4. FEDERATED Storage Engine Resources
14.10. The EXAMPLE Storage Engine
14.12. Overview of MySQL Storage Engine Architecture
14.12.1. Pluggable Storage Engine Architecture
14.12.2. The Common Database Server Layer
Storage engines are MySQL components that handle the SQL operations for different table types. InnoDB is the most general-purpose storage engine, and Oracle recommends using it for tables except for specialized use cases. (The CREATE TABLE statement in MySQL 5.6 creates InnoDB tables by default.)
MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded into and unloaded from a running MySQL server.
To determine which storage engines your server supports, use the SHOW ENGINES statement. The value in the Support column indicates whether an engine can be used. A value of YES, NO, or DEFAULT indicates that an engine is available, not available, or available and currently set as the default storage engine.
This chapter primarily describes the features and performance characteristics of InnoDB tables. It also covers the use cases for the special-purpose MySQL storage engines, except for NDB which is covered in MySQL Cluster NDB 7.2. For advanced users, it also contains a description of the pluggable storage engine architecture (see Section 14.12, “Overview of MySQL Storage Engine Architecture”).
For information about storage engine support offered in commercial MySQL Server binaries, see MySQL Enterprise Server 5.6, on the MySQL Web site. The storage engines available might depend on which edition of Enterprise Server you are using.
For answers to some commonly asked questions about MySQL storage engines, see Section B.2, “MySQL 5.6 FAQ: Storage Engines”.
MySQL 5.6 Supported storage Engines
InnoDB: A transaction-safe (ACID compliant) storage engine for MySQL that has commit, rollback, and crash-recovery capabilities to protect user data. InnoDB row-level locking (without escalation to coarser granularity locks) and Oracle-style consistent nonlocking reads increase multi-user concurrency and performance. InnoDB stores user data in clustered indexes to reduce I/O for common queries based on primary keys. To maintain data integrity, InnoDB also supports FOREIGN KEY referential-integrity constraints. InnoDB is the default storage engine in MySQL 5.6.
MyISAM: These tables have a small footprint. Table-level locking limits the performance in read/write workloads, so it is often used in read-only or read-mostly workloads in Web and data warehousing configurations.
Memory: Stores all data in RAM, for fast access in environments that require quick lookups of non-critical data. This engine was formerly known as the HEAP engine. Its use cases are decreasing; InnoDB with its buffer pool memory area provides a general-purpose and durable way to keep most or all data in memory, and NDBCLUSTER provides fast key-value lookups for huge distributed data sets.
CSV: Its tables are really text files with comma-separated values. CSV tables let you import or dump data in CSV format, to exchange data with scripts and applications that read and write that same format. Because CSV tables are not indexed, you typically keep the data in InnoDB tables during normal operation, and only use CSV tables during the import or export stage.
Archive: These compact, unindexed tables are intended for storing and retrieving large amounts of seldom-referenced historical, archived, or security audit information.
Blackhole: The Blackhole storage engine accepts but does not store data, similar to the Unix /dev/null device. Queries always return an empty set. These tables can be used in replication configurations where DML statements are sent to slave servers, but the master server does not keep its own copy of the data.
Merge: Enables a MySQL DBA or developer to logically group a series of identical MyISAM tables and reference them as one object. Good for VLDB environments such as data warehousing.
Federated: Offers the ability to link separate MySQL servers to create one logical database from many physical servers. Very good for distributed or data mart environments.
Example: This engine serves as an example in the MySQL source code that illustrates how to begin writing new storage engines. It is primarily of interest to developers. The storage engine is a “stub” that does nothing. You can create tables with this engine, but no data can be stored in them or retrieved from them.
You are not restricted to using the same storage engine for an entire server or schema. You can specify the storage engine for any table. For example, an application might use mostly InnoDB tables, with one CSV table for exporting data to a spreadsheet and a few MEMORY tables for temporary workspaces.
Choosing a Storage Engine
The various storage engines provided with MySQL are designed with different use cases in mind. The following table provides an overview of some storage engines provided with MySQL:
Table 14.1. Storage Engines Feature Summary
Feature | MyISAM | Memory | InnoDB | Archive | NDB |
---|---|---|---|---|---|
Storage limits | 256TB | RAM | 64TB | None | 384EB |
Transactions | No | No | Yes | No | Yes |
Locking granularity | Table | Table | Row | Table | Row |
MVCC | No | No | Yes | No | No |
Geospatial data type support | Yes | No | Yes | Yes | Yes |
Geospatial indexing support | Yes | No | No | No | No |
B-tree indexes | Yes | Yes | Yes | No | No |
T-tree indexes | No | No | No | No | Yes |
Hash indexes | No | Yes | No | No | Yes |
Full-text search indexes | Yes | No | Yes | No | No |
Clustered indexes | No | No | Yes | No | No |
Data caches | No | N/A | Yes | No | Yes |
Index caches | Yes | N/A | Yes | No | Yes |
Compressed data | Yes | No | Yes | Yes | No |
Encrypted data | Yes | Yes | Yes | Yes | Yes |
Cluster database support | No | No | No | No | Yes |
Replication support | Yes | Yes | Yes | Yes | Yes |
Foreign key support | No | No | Yes | No | No |
Backup / point-in-time recovery | Yes | Yes | Yes | Yes | Yes |
Query cache support | Yes | Yes | Yes | Yes | Yes |
Update statistics for data dictionary | Yes | Yes | Yes | Yes | Yes |
[a] InnoDB utilizes hash indexes internally for its Adaptive Hash Index feature. [b] InnoDB support for FULLTEXT indexes is available in MySQL 5.6.4 and higher. [c] Compressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format with MyISAM are read only. [d] Compressed InnoDB tables require the InnoDB Barracuda file format. [e] Implemented in the server (via encryption functions), rather than in the storage engine. [f] Implemented in the server, rather than in the storage engine. [g] Implemented in the server, rather than in the storage engine. |
14.1. Setting the Storage Engine
When you create a new table, you can specify a special-purpose storage engine to use by adding an ENGINE table option to the CREATE TABLE statement:
-- ENGINE=INNODB not needed unless you have set a different default storage engine.
CREATE TABLE t1 (i INT) ENGINE = INNODB;
-- Simple table definitions can be switched from one to another.
CREATE TABLE t2 (i INT) ENGINE = CSV;
-- Some storage engines have their own specific clauses in CREATE TABLE syntax.
CREATE TABLE t3 (i INT) ENGINE = MEMORY USING BTREE;
When you omit the ENGINE option, the default storage engine is used. The default engine is InnoDB in MySQL 5.6. You can specify the default engine by using the --default-storage-engine server startup option, or by setting the default-storage-engine option in the my.cnf configuration file.
You can set the default storage engine for the current session by setting the default_storage_engine variable:
SET default_storage_engine=NDBCLUSTER;
As of MySQL 5.6.3, the storage engine for TEMPORARY tables created with CREATE TEMPORARY TABLE can be set separately from the engine for permanent tables by setting the default_tmp_storage_engine, either at startup or at runtime. Before MySQL 5.6.3, default_storage_engine sets the engine for both permanent and TEMPORARY tables.
To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates the new engine:
ALTER TABLE t ENGINE = InnoDB;
See Section 13.1.14, “CREATE TABLE Syntax”, and Section 13.1.6, “ALTER TABLE Syntax”.
If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL instead creates a table using the default storage engine. For example, in a replication setup, perhaps your master server uses InnoDB tables for maximum safety, but the slave servers use other storage engines for speed at the expense of durability or concurrency.
By default, a warning is generated whenever CREATE TABLE or ALTER TABLE cannot use the default storage engine. To prevent confusing, unintended behavior if the desired engine is unavailable, enable the NO_ENGINE_SUBSTITUTION SQL mode. If the desired engine is unavailable, this setting produces an error instead of a warning, and the table is not created or altered. See Section 5.1.7, “Server SQL Modes”.
For new tables, MySQL always creates an .frm file to hold the table and column definitions. The table's index and data may be stored in one or more other files, depending on the storage engine. The server creates the .frm file above the storage engine level. Individual storage engines create any additional files required for the tables that they manage. If a table name contains special characters, the names for the table files contain encoded versions of those characters as described in Section 9.2.3, “Mapping of Identifiers to File Names”.
14.2. The InnoDB Storage Engine
InnoDB is a general-purpose storage engine that balances high reliability and high performance. In MySQL 5.6, issuing the CREATE TABLE statement with no ENGINE= clause creates an InnoDB table.
Key advantages of InnoDB tables include:
Its DML operations follow the ACID model, with transactions featuring commit, rollback, and crash-recovery capabilities to protect user data.
Row-level locking and Oracle-style consistent reads increase multi-user concurrency and performance.
InnoDB tables arrange your data on disk to optimize queries based on primary keys.
To maintain data integrity, InnoDB also supports FOREIGN KEY constraints. Inserts, updates, and deletes are all checked to ensure they do not result in inconsistencies across different tables.
You can freely mix InnoDB tables with tables from other MySQL storage engines, even within the same statement. For example, you can use a join operation to combine data from InnoDB and MEMORY tables in a single query.
The latest InnoDB offers significant new features over MySQL 5.1 and earlier. These features focus on performance and scalability, reliability, flexibility, and usability:
Fast index creation: add or drop indexes without copying the data.
Data compression: shrink tables, to significantly reduce storage and I/O.
More efficient storage for large column values: fully off-page storage of long BLOB, TEXT, and VARCHAR columns.
Barracuda file format: enables new features while protecting upward and downward compatibility
INFORMATION_SCHEMA tables: information about compression and locking
Performance and scalability enhancements: includes features such as multiple background I/O threads, multiple buffer pools, and group commit.
Other changes: for flexibility, ease of use and reliability.
Table 14.2. InnoDB Storage Engine Features
Storage limits | 64TB | Transactions | Yes | Locking granularity | Row |
MVCC | Yes | Geospatial data type support | Yes | Geospatial indexing support | No |
B-tree indexes | Yes | T-tree indexes | No | Hash indexes | No |
Full-text search indexes | Yes | Clustered indexes | Yes | Data caches | Yes |
Index caches | Yes | Compressed data | Yes | Encrypted data | Yes |
Cluster database support | No | Replication support | Yes | Foreign key support | Yes |
Backup / point-in-time recovery | Yes | Query cache support | Yes | Update statistics for data dictionary | Yes |
[a] InnoDB utilizes hash indexes internally for its Adaptive Hash Index feature. [b] InnoDB support for FULLTEXT indexes is available in MySQL 5.6.4 and higher. [c] Compressed InnoDB tables require the InnoDB Barracuda file format. [d] Implemented in the server (via encryption functions), rather than in the storage engine. [e] Implemented in the server, rather than in the storage engine. [f] Implemented in the server, rather than in the storage engine. |
InnoDB has been designed for maximum performance when processing large data volumes. Its CPU efficiency is probably not matched by any other disk-based relational database engine.
The InnoDB storage engine maintains its own buffer pool for caching data and indexes in main memory. By default, with the innodb_file_per_table setting enabled, each new InnoDB table and its associated indexes are stored in a separate file. When the innodb_file_per_table option is disabled, InnoDB stores all its tables and indexes in the single system tablespace, which may consist of several files (or raw disk partitions). InnoDB tables can handle large quantities of data, even on operating systems where file size is limited to 2GB.
InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For more information on MySQL licensing, see http://www.mysql.com/company/legal/licensing/.
Additional Resources
For InnoDB-related terms and definitions, see MySQL Glossary.
A forum dedicated to the InnoDB storage engine is available at http://forums.mysql.com/list.php?22.
14.2.1. Getting Started with InnoDB Tables
14.2.1.1. InnoDB as the Default MySQL Storage Engine
MySQL has a well-earned reputation for being easy-to-use and delivering performance and scalability. In previous versions of MySQL, MyISAM was the default storage engine. In our experience, most users never changed the default settings. With MySQL 5.5, InnoDB becomes the default storage engine. Again, we expect most users will not change the default settings. But, because of InnoDB, the default settings deliver the benefits users expect from their RDBMS: ACID Transactions, Referential Integrity, and Crash Recovery. Let's explore how using InnoDB tables improves your life as a MySQL user, DBA, or developer.
Trends in Storage Engine Usage
In the first years of MySQL growth, early web-based applications didn't push the limits of concurrency and availability. In 2010, hard drive and memory capacity and the performance/price ratio have all gone through the roof. Users pushing the performance boundaries of MySQL care a lot about reliability and crash recovery. MySQL databases are big, busy, robust, distributed, and important.
InnoDB hits the sweet spot of these top user priorities. The trend of storage engine usage has shifted in favor of the more scalable InnoDB. Thus MySQL 5.5 is the logical transition release to make InnoDB the default storage engine.
MySQL continues to work on addressing use cases that formerly required MyISAM tables. In MySQL 5.6 and higher:
InnoDB can perform full-text search using the FULLTEXT index type. See Section 14.2.3.12.3, “FULLTEXT Indexes” for details.
InnoDB now performs better with read-only or read-mostly workloads. Automatic optimizations apply to InnoDB queries in autocommit mode, and you can explicitly mark transactions as read-only with the syntax START TRANSACTION READ ONLY. See Section 14.2.4.2.3, “Optimizations for Read-Only Transactions” for details.
Applications distributed on read-only media can now use InnoDB tables. See Section 14.2.5.1, “Support for Read-Only Media” for details.
Consequences of InnoDB as Default MySQL Storage Engine
Starting from MySQL 5.5.5, the default storage engine for new tables is InnoDB. This change applies to newly created tables that don't specify a storage engine with a clause such as ENGINE=MyISAM. (Given this change of default behavior, MySQL 5.5 might be a logical point to evaluate whether your tables that do use MyISAM could benefit from switching to InnoDB.)
The mysql and information_schema databases, that implement some of the MySQL internals, still use MyISAM. In particular, you cannot switch the grant tables to use InnoDB.
Benefits of InnoDB Tables
If you use MyISAM tables but aren't tied to them for technical reasons, you'll find many things more convenient when you use InnoDB tables in MySQL 5.5:
If your server crashes because of a hardware or software issue, regardless of what was happening in the database at the time, you don't need to do anything special after restarting the database. InnoDB crash recovery automatically finalizes any changes that were committed before the time of the crash, and undoes any changes that were in process but not committed. Just restart and continue where you left off. This process is now much faster than in MySQL 5.1 and earlier.
The InnoDB buffer pool caches table and index data as the data is accessed. Frequently used data is processed directly from memory. This cache applies to so many types of information, and speeds up processing so much, that dedicated database servers assign up to 80% of their physical memory to the InnoDB buffer pool.
If you split up related data into different tables, you can set up foreign keys that enforce referential integrity. Update or delete data, and the related data in other tables is updated or deleted automatically. Try to insert data into a secondary table without corresponding data in the primary table, and the bad data gets kicked out automatically.
If data becomes corrupted on disk or in memory, a checksum mechanism alerts you to the bogus data before you use it.
When you design your database with appropriate primary key columns for each table, operations involving those columns are automatically optimized. It is very fast to reference the primary key columns in WHERE clauses, ORDER BY clauses, GROUP BY clauses, and join operations.
Inserts, updates, deletes are optimized by an automatic mechanism called change buffering. InnoDB not only allows concurrent read and write access to the same table, it caches changed data to streamline disk I/O.
Performance benefits are not limited to giant tables with long-running queries. When the same rows are accessed over and over from a table, a feature called the Adaptive Hash Index takes over to make these lookups even faster, as if they came out of a hash table.
Best Practices for InnoDB Tables
If you have been using InnoDB for a long time, you already know about features like transactions and foreign keys. If not, read about them throughout this chapter. To make a long story short:
Specify a primary key for every table using the most frequently queried column or columns, or anauto-increment value if there is no obvious primary key.
Embrace the idea of joins, where data is pulled from multiple tables based on identical ID values from those tables. For fast join performance, define foreign keys on the join columns, and declare those columns with the same data type in each table. The foreign keys also propagate deletes or updates to all affected tables, and prevent insertion of data in a child table if the corresponding IDs are not present in the parent table.
Turn off autocommit. Committing hundreds of times a second puts a cap on performance (limited by the write speed of your storage device).
Group sets of related DML operations into transactions, by bracketing them with START TRANSACTION and COMMIT statements. While you don't want to commit too often, you also don't want to issue huge batches of INSERT, UPDATE, or DELETE statements that run for hours without committing.
Stop using LOCK TABLE statements. InnoDB can handle multiple sessions all reading and writing to the same table at once, without sacrificing reliability or high performance. To get exclusive write access to a set of rows, use the SELECT ... FOR UPDATE syntax to lock just the rows you intend to update.
Enable the innodb_file_per_table option to put the data and indexes for individual tables into separate files, instead of in a single giant system tablespace. (This setting is required to use some of the other features, such as table compression and fast truncation.)
Evaluate whether your data and access patterns benefit from the new InnoDB table compression feature (ROW_FORMAT=COMPRESSED on the CREATE TABLE statement. You can compress InnoDB tables without sacrificing read/write capability.
Run your server with the option --sql_mode=NO_ENGINE_SUBSTITUTION to prevent tables being created with a different storage engine if there is an issue with the one specified in the ENGINE= clause of CREATE TABLE.
Recent Improvements for InnoDB Tables
If you have experience with InnoDB, but from MySQL 5.1 or earlier, read about the latest InnoDB enhancements in Section 14.2.4.2, “InnoDB Performance and Scalability Enhancements” and Section 14.2.5, “InnoDB Features for Flexibility, Ease of Use and Reliability”. To make a long story short:
You can compress tables and associated indexes.
You can create and drop indexes with much less performance or availability impact than before.
Truncating a table is very fast, and can free up disk space for the operating system to reuse, rather than freeing up space within the system tablespace that only InnoDB could reuse.
The storage layout for table data is more efficient for BLOBs and long text fields, with the DYNAMIC row format.
You can monitor the internal workings of the storage engine by querying INFORMATION_SCHEMA tables.
You can monitor the performance details of the storage engine by querying performance_schema tables.
There are many many performance improvements. In particular, crash recovery, the automatic process that makes all data consistent when the database is restarted, is fast and reliable. (Now much much faster than long-time InnoDB users are used to.) The bigger the database, the more dramatic the speedup.
Most new performance features are automatic, or at most require setting a value for a configuration option. For details, see Section 14.2.4.2, “InnoDB Performance and Scalability Enhancements”. For InnoDB-specific tuning techniques you can apply in your application code, see Section 8.5, “Optimizing for InnoDB Tables”. Advanced users can review Section 14.2.6, “InnoDB Startup Options and System Variables”.
Testing and Benchmarking with InnoDB as Default Storage Engine
Even before completing your upgrade from MySQL 5.1 or earlier to MySQL 5.5 or higher, you can preview whether your database server or application works correctly with InnoDB as the default storage engine. To set up InnoDB as the default storage engine with an earlier MySQL release, either specify on the command line --default-storage-engine=InnoDB, or add to your my.cnf file default-storage-engine=innodb in the [mysqld] section, then restart the server.
Since changing the default storage engine only affects new tables as they are created, run all your application installation and setup steps to confirm that everything installs properly. Then exercise all the application features to make sure all the data loading, editing, and querying features work. If a table relies on some MyISAM-specific feature, you'll receive an error; add the ENGINE=MyISAM clause to the CREATE TABLE statement to avoid the error. (For example, tables that rely on full-text search must be MyISAM tables rather than InnoDB ones.)
If you did not make a deliberate decision about the storage engine, and you just want to preview how certain tables work when they're created under InnoDB, issue the command ALTER TABLE table_name ENGINE=InnoDB; for each table. Or, to run test queries and other statements without disturbing the original table, make a copy like so:
CREATE TABLE InnoDB_Table (...) ENGINE=InnoDB AS SELECT * FROM MyISAM_Table;
Since there are so many performance enhancements in InnoDB in MySQL 5.5 and higher, to get a true idea of the performance with a full application under a realistic workload, install the latest MySQL server and run benchmarks.
Test the full application lifecycle, from installation, through heavy usage, and server restart. Kill the server process while the database is busy to simulate a power failure, and verify that the data is recovered successfully when you restart the server.
Test any replication configurations, especially if you use different MySQL versions and options on the master and the slaves.
Verifying that InnoDB is the Default Storage Engine
To know what the status of InnoDB is, whether you're doing what-if testing with an older MySQL or comprehensive testing with the latest MySQL:
Issue the command SHOW ENGINES; to see all the different MySQL storage engines. Look for DEFAULT in the InnoDB line.
If InnoDB is not present at all, you have a mysqld binary that was compiled without InnoDB support and you need to get a different one.
If InnoDB is present but disabled, go back through your startup options and configuration file and get rid of any skip-innodb option.
14.2.1.2. Configuring InnoDB
The first decisions to make about InnoDB configuration involve how to lay out InnoDB data files, and how much memory to allocate for the InnoDB storage engine. You record these choices either by recording them in a configuration file that MySQL reads at startup, or by specifying them as command-line options in a startup script. The full list of options, descriptions, and allowed parameter values is at Section 14.2.6, “InnoDB Startup Options and System Variables”.
Overview of InnoDB Tablespace and Log Files
Two important disk-based resources managed by the InnoDB storage engine are its tablespace data files and its log files. If you specify no InnoDB configuration options, MySQL creates an auto-extending data file, slightly larger than 12MB, named ibdata1 and two log files named ib_logfile0 and ib_logfile1 in the MySQL data directory. Their size is given by the size of the innodb_log_file_size system variable. To get good performance, explicitly provide InnoDB parameters as discussed in the following examples. Naturally, edit the settings to suit your hardware and requirements.
The examples shown here are representative. See Section 14.2.6, “InnoDB Startup Options and System Variables” for additional information about InnoDB-related configuration parameters.
Considerations for Storage Devices
In some cases, database performance improves if the data is not all placed on the same physical disk. Putting log files on a different disk from data is very often beneficial for performance. The example illustrates how to do this. It places the two data files on different disks and places the log files on the third disk. InnoDB fills the tablespace beginning with the first data file. You can also use raw disk partitions (raw devices) as InnoDB data files, which may speed up I/O. See Section 14.2.2.3, “Using Raw Disk Partitions for the Shared Tablespace”.
Caution
InnoDB is a transaction-safe (ACID compliant) storage engine for MySQL that has commit, rollback, and crash-recovery capabilities to protect user data. However, it cannot do so if the underlying operating system or hardware does not work as advertised. Many operating systems or disk subsystems may delay or reorder write operations to improve performance. On some operating systems, the very fsync() system call that should wait until all unwritten data for a file has been flushed might actually return before the data has been flushed to stable storage. Because of this, an operating system crash or a power outage may destroy recently committed data, or in the worst case, even corrupt the database because of write operations having been reordered. If data integrity is important to you, perform some “pull-the-plug” tests before using anything in production. On Mac OS X 10.3 and up, InnoDB uses a special fcntl() file flush method. Under Linux, it is advisable to disable the write-back cache.
On ATA/SATA disk drives, a command such hdparm -W0 /dev/hda may work to disable the write-back cache. Beware that some drives or disk controllers may be unable to disable the write-back cache.
Caution
If reliability is a consideration for your data, do not configure InnoDB to use data files or log files on NFS volumes. Potential problems vary according to OS and version of NFS, and include such issues as lack of protection from conflicting writes, and limitations on maximum file sizes.
Specifying the Location and Size for InnoDB Tablespace Files
To set up the InnoDB tablespace files, use the innodb_data_file_path option in the [mysqld] section of the my.cnf option file. On Windows, you can use my.ini instead. The value of innodb_data_file_path should be a list of one or more data file specifications. If you name more than one data file, separate them by semicolon (“;”) characters:
innodb_data_file_path=datafile_spec1[;datafile_spec2]...
For example, the following setting explicitly creates a minimally sized system tablespace:
[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend
This setting configures a single 12MB data file named ibdata1 that is auto-extending. No location for the file is given, so by default, InnoDB creates it in the MySQL data directory.
Sizes are specified using K, M, or G suffix letters to indicate units of KB, MB, or GB.
A tablespace containing a fixed-size 50MB data file named ibdata1 and a 50MB auto-extending file named ibdata2 in the data directory can be configured like this:
[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend
The full syntax for a data file specification includes the file name, its size, and several optional attributes:
file_name:file_size[:autoextend[:max:max_file_size]]
The autoextend and max attributes can be used only for the last data file in the innodb_data_file_path line.
If you specify the autoextend option for the last data file, InnoDB extends the data file if it runs out of free space in the tablespace. The increment is 8MB at a time by default. To modify the increment, change the innodb_autoextend_increment system variable.
If the disk becomes full, you might want to add another data file on another disk. For tablespace reconfiguration instructions, see Section 14.2.2.2, “Adding, Removing, or Resizing InnoDB Data and Log Files”.
InnoDB is not aware of the file system maximum file size, so be cautious on file systems where the maximum file size is a small value such as 2GB. To specify a maximum size for an auto-extending data file, use the max attribute following the autoextend attribute. Use the max attribute only in cases where constraining disk usage is of critical importance, because exceeding the maximum size causes a fatal error, possibly including a crash. The following configuration permits ibdata1 to grow up to a limit of 500MB:
[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend:max:500M
InnoDB creates tablespace files in the MySQL data directory by default. To specify a location explicitly, use the innodb_data_home_dir option. For example, to use two files named ibdata1 and ibdata2 but create them in the /ibdata directory, configure InnoDB like this:
[mysqld]
innodb_data_home_dir = /ibdata
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend
Note
InnoDB does not create directories, so make sure that the /ibdata directory exists before you start the server. This is also true of any log file directories that you configure. Use the Unix or DOS mkdir command to create any necessary directories.
Make sure that the MySQL server has the proper access rights to create files in the data directory. More generally, the server must have access rights in any directory where it needs to create data files or log files.
InnoDB forms the directory path for each data file by textually concatenating the value of innodb_data_home_dir to the data file name, adding a path name separator (slash or backslash) between values if necessary. If the innodb_data_home_dir option is not specified in my.cnf at all, the default value is the “dot” directory ./, which means the MySQL data directory. (The MySQL server changes its current working directory to its data directory when it begins executing.)
If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for the data files listed in the innodb_data_file_path value. The following example is equivalent to the preceding one:
[mysqld]
innodb_data_home_dir =
innodb_data_file_path=/ibdata/ibdata1:50M;/ibdata/ibdata2:50M:autoextend
Specifying InnoDB Configuration Options
Sample my.cnf file for small systems. Suppose that you have a computer with 512MB RAM and one hard disk. The following example shows possible configuration parameters in my.cnf or my.ini for InnoDB, including the autoextend attribute. The example suits most users, both on Unix and Windows, who do not want to distribute InnoDB data files and log files onto several disks. It creates an auto-extending data file ibdata1 and two InnoDB log files ib_logfile0 and ib_logfile1 in the MySQL data directory.
[mysqld]
You can write your other MySQL server options here
...
Data files must be able to hold your data and indexes.
Make sure that you have enough free disk space.
innodb_data_file_path = ibdata1:12M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory
innodb_buffer_pool_size=256M
innodb_additional_mem_pool_size=20M
#
Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=64M
innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1
Note that data files must be less than 2GB in some file systems. The combined size of the log files can be up to 512GB. The combined size of data files must be at least slightly larger than 10MB.
Setting Up the InnoDB System Tablespace
When you create an InnoDB system tablespace for the first time, it is best that you start the MySQL server from the command prompt. InnoDB then prints the information about the database creation to the screen, so you can see what is happening. For example, on Windows, if mysqld is located in C:\Program Files\MySQL\MySQL Server 5.6\bin, you can start it like this:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld" --console
If you do not send server output to the screen, check the server's error log to see what InnoDB prints during the startup process.
For an example of what the information displayed by InnoDB should look like, see Section 14.2.2.1, “Creating the InnoDB Tablespace”.
Editing the MySQL Configuration File
You can place InnoDB options in the [mysqld] group of any option file that your server reads when it starts. The locations for option files are described in Section 4.2.3.3, “Using Option Files”.
If you installed MySQL on Windows using the installation and configuration wizards, the option file will be the my.ini file located in your MySQL installation directory. See Section 2.3.3, “Installing MySQL on Microsoft Windows Using MySQL Installer”.
If your PC uses a boot loader where the C: drive is not the boot drive, your only option is to use the my.ini file in your Windows directory (typically C:\WINDOWS). You can use the SET command at the command prompt in a console window to print the value of WINDIR:
C:\> SET WINDIR
windir=C:\WINDOWS
To make sure that mysqld reads options only from a specific file, use the --defaults-file option as the first option on the command line when starting the server:
mysqld --defaults-file=your_path_to_my_cnf
Sample my.cnf file for large systems. Suppose that you have a Linux computer with 2GB RAM and three 60GB hard disks at directory paths /, /dr2 and /dr3. The following example shows possible configuration parameters in my.cnf for InnoDB.
[mysqld]
You can write your other MySQL server options here
...
innodb_data_home_dir =
#
Data files must be able to hold your data and indexes
innodb_data_file_path = /db/ibdata1:2000M;/dr2/db/ibdata2:2000M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory,
but make sure on Linux x86 total memory usage is < 2GB
innodb_buffer_pool_size=1G
innodb_additional_mem_pool_size=20M
innodb_log_group_home_dir = /dr3/iblogs
#
Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=250M
innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1
innodb_lock_wait_timeout=50
#
Uncomment the next line if you want to use it
#innodb_thread_concurrency=5
Determining the Maximum Memory Allocation for InnoDB
Warning
On 32-bit GNU/Linux x86, be careful not to set memory usage too high. glibc may permit the process heap to grow over thread stacks, which crashes your server. It is a risk if the value of the following expression is close to or exceeds 2GB:
innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)
+ max_connections*2MB
Each thread uses a stack (often 2MB, but only 256KB in MySQL binaries provided by Oracle Corporation.) and in the worst case also uses sort_buffer_size + read_buffer_size additional memory.
Tuning other mysqld server parameters. The following values are typical and suit most users:
[mysqld]
skip-external-locking
max_connections=200
read_buffer_size=1M
sort_buffer_size=1M
#
Set key_buffer to 5 - 50% of your RAM depending on how much
you use MyISAM tables, but keep key_buffer_size + InnoDB
buffer pool size < 80% of your RAM
key_buffer_size=value
On Linux, if the kernel is enabled for large page support, InnoDB can use large pages to allocate memory for its buffer pool and additional memory pool. See Section 8.11.4.2, “Enabling Large Page Support”.
14.2.2. Administering InnoDB
Administration tasks related to InnoDB mainly involve these aspects:
Managing the data files that represent the system tablespace, InnoDB tables, and their associated indexes. You can change the way these files are laid out and divided, which affects both performance and the features available for specific tables.
Managing the redo log files that are used for crash recovery. You can specify the size of these files.
Making sure that InnoDB is used for the tables where it is intended, rather than a different storage engine.
General administrative tasks related to performance. You might consult with application developers during the application design phase, monitor performance on an ongoing basis to ensure the system settings are working well, and diagnose and help fix performance and capacity issues that arise suddenly.
Since InnoDB tables are now the default for MySQL, much of the associated administration material is now in the main “Administration” chapter, Chapter 5, MySQL Server Administration.
14.2.2.1. Creating the InnoDB Tablespace
Suppose that you have installed MySQL and have edited your option file so that it contains the necessary InnoDB configuration parameters. Before starting MySQL, verify that the directories you have specified for InnoDB data files and log files exist and that the MySQL server has access rights to those directories. InnoDB does not create directories, only files. Check also that you have enough disk space for the data and log files.
It is best to run the MySQL server mysqld from the command prompt when you first start the server with InnoDB enabled, not from mysqld_safe or as a Windows service. When you run from a command prompt you see what mysqld prints and what is happening. On Unix, just invoke mysqld. On Windows, start mysqld with the --console option to direct the output to the console window.
When you start the MySQL server after initially configuring InnoDB in your option file, InnoDB creates your data files and log files, and prints something like this:
InnoDB: The first specified datafile /home/heikki/data/ibdata1
did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file /home/heikki/data/ibdata1 size to 134217728
InnoDB: Database physically writes the file full: wait...
InnoDB: datafile /home/heikki/data/ibdata2 did not exist:
new to be created
InnoDB: Setting file /home/heikki/data/ibdata2 size to 262144000
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file /home/heikki/data/logs/ib_logfile0 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile0 size
to 5242880
InnoDB: Log file /home/heikki/data/logs/ib_logfile1 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile1 size
to 5242880
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created
InnoDB: Started
mysqld: ready for connections
At this point InnoDB has initialized its tablespace and log files. You can connect to the MySQL server with the usual MySQL client programs like mysql. When you shut down the MySQL server with mysqladmin shutdown, the output is like this:
010321 18:33:34 mysqld: Normal shutdown
010321 18:33:34 mysqld: Shutdown Complete
InnoDB: Starting shutdown...
InnoDB: Shutdown completed
You can look at the data file and log directories and you see the files created there. When MySQL is started again, the data files and log files have been created already, so the output is much briefer:
InnoDB: Started
mysqld: ready for connections
If you add the innodb_file_per_table option to my.cnf, InnoDB stores each table in its own .ibd file, in the same MySQL database directory where the .frm file is created. See Section 5.4.1, “Managing InnoDB Tablespaces”.
14.2.2.2. Adding, Removing, or Resizing InnoDB Data and Log Files
This section describes what you can do when your InnoDB system tablespace runs out of room or when you want to change the size of the redo log files.
The easiest way to increase the size of the InnoDB system tablespace is to configure it from the beginning to be auto-extending. Specify the autoextend attribute for the last data file in the tablespace definition. Then InnoDB increases the size of that file automatically in 8MB increments when it runs out of space. The increment size can be changed by setting the value of the innodb_autoextend_increment system variable, which is measured in megabytes.
You can expand the system tablespace by a defined amount by adding another data file:
Shut down the MySQL server.
If the previous last data file is defined with the keyword autoextend, change its definition to use a fixed size, based on how large it has actually grown. Check the size of the data file, round it down to the closest multiple of 1024 × 1024 bytes (= 1MB), and specify this rounded size explicitly in innodb_data_file_path.
Add a new data file to the end of innodb_data_file_path, optionally making that file auto-extending. Only the last data file in the innodb_data_file_path can be specified as auto-extending.
Start the MySQL server again.
For example, this tablespace has just one auto-extending data file ibdata1:
innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend
Suppose that this data file, over time, has grown to 988MB. Here is the configuration line after modifying the original data file to use a fixed size and adding a new auto-extending data file:
innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend
When you add a new data file to the system tablespace configuration, make sure that the filename does not refer to an existing file. InnoDB creates and initializes the file when you restart the server.
Currently, you cannot remove a data file from the system tablespace. To decrease the system tablespace size, use this procedure:
Use mysqldump to dump all your InnoDB tables.
Stop the server.
Remove all the existing tablespace files, including the ibdata and ib_log files. If you want to keep a backup copy of the information, then copy all the ib* files to another location before the removing the files in your MySQL installation.
Remove any .frm files for InnoDB tables.
Configure a new tablespace.
Restart the server.
Import the dump files.
If you want to change the number or the size of your InnoDB log files, use the following instructions. The procedure to use depends on the value of innodb_fast_shutdown, which determines whether or not to bring the system tablespace fully up-to-date before a shutdown operation:
If innodb_fast_shutdown is not set to 2: Stop the MySQL server and make sure that it shuts down without errors, to ensure that there is no information for outstanding transactions in the redo log. Copy the old redo log files to a safe place, in case something went wrong during the shutdown and you need them to recover the tablespace. Delete the old log files from the log file directory, edit my.cnf to change the log file configuration, and start the MySQL server again. mysqld sees that no InnoDB log files exist at startup and creates new ones.
If innodb_fast_shutdown is set to 2: Set innodb_fast_shutdown to 1:
mysql> SET GLOBAL innodb_fast_shutdown = 1;
Then follow the instructions in the previous item.
14.2.2.3. Using Raw Disk Partitions for the Shared Tablespace
You can use raw disk partitions as data files in the InnoDB system tablespace. This technique enables nonbuffered I/O on Windows and on some Linux and Unix systems without file system overhead. Perform tests with and without raw partitions to verify whether this change actually improves performance on your system.
When you create a new data file, put the keyword newraw immediately after the data file size in innodb_data_file_path. The partition must be at least as large as the size that you specify. Note that 1MB in InnoDB is 1024 × 1024 bytes, whereas 1MB in disk specifications usually means 1,000,000 bytes.
[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw
The next time you start the server, InnoDB notices the newraw keyword and initializes the new partition. However, do not create or change any InnoDB tables yet. Otherwise, when you next restart the server, InnoDB reinitializes the partition and your changes are lost. (As a safety measure InnoDB prevents users from modifying data when any partition with newraw is specified.)
After InnoDB has initialized the new partition, stop the server, change newraw in the data file specification to raw:
[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Graw;/dev/hdd2:2Graw
Then restart the server and InnoDB permits changes to be made.
On Windows, you can allocate a disk partition as a data file like this:
[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Gnewraw
The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives.
When you use a raw disk partition, ensure that the user ID that runs the MySQL server has read and write privileges for that partition. For example, if you run the server as the mysql user, the partition must be readable and writeable by mysql. If you run the server with the --memlock option, the server must be run as root, so the partition must be readable and writeable by root.
14.2.2.4. Backing Up and Recovering an InnoDB Database
The key to safe database management is making regular backups. Depending on your data volume, number of MySQL servers, and database workload, you can use these techniques, alone or in combination: hot backup with MySQL Enterprise Backup; cold backup by copying files while the MySQL server is shut down; physical backup for fast operation (especially for restore); logical backup with mysqldump for smaller data volumes or to record the structure of schema objects.
Hot Backups
The mysqlbackup command, part of the MySQL Enterprise Backup component, lets you back up a running MySQL instance, including InnoDB and MyISAM tables, with minimal disruption to operations while producing a consistent snapshot of the database. When mysqlbackup is copying InnoDB tables, reads and writes to both InnoDB and MyISAM tables can continue. During the copying of MyISAM tables, reads (but not writes) to those tables are permitted. MySQL Enterprise Backup can also create compressed backup files, and back up subsets of tables and databases. In conjunction with MySQL’s binary log, users can perform point-in-time recovery. MySQL Enterprise Backup is part of the MySQL Enterprise subscription. For more details, see Section 23.2, “MySQL Enterprise Backup”.
Cold Backups
If you can shut down your MySQL server, you can make a binary backup that consists of all files used by InnoDB to manage its tables. Use the following procedure:
Do a slow shutdown of the MySQL server and make sure that it stops without errors.
Copy all InnoDB data files (ibdata files and .ibd files) into a safe place.
Copy all the .frm files for InnoDB tables to a safe place.
Copy all InnoDB log files (ib_logfile files) to a safe place.
Copy your my.cnf configuration file or files to a safe place.
Alternative Backup Types
In addition to making binary backups as just described, regularly make dumps of your tables with mysqldump. A binary file might be corrupted without you noticing it. Dumped tables are stored into text files that are human-readable, so spotting table corruption becomes easier. Also, because the format is simpler, the chance for serious data corruption is smaller. mysqldump also has a --single-transaction option for making a consistent snapshot without locking out other clients. See Section 7.3.1, “Establishing a Backup Policy”.
Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy of your database at database sites requiring high availability.
Performing Recovery
To recover your InnoDB database to the present from the time at which the binary backup was made, you must run your MySQL server with binary logging turned on, even before taking the backup. To achieve point-in-time recovery after restoring a backup, you can apply changes from the binary log that occurred after the backup was made. See Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”.
To recover from a crash of your MySQL server, the only requirement is to restart it. InnoDB automatically checks the logs and performs a roll-forward of the database to the present. InnoDB automatically rolls back uncommitted transactions that were present at the time of the crash. During recovery, mysqld displays output something like this:
InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections
If your database becomes corrupted or disk failure occurs, you must perform the recovery using a backup. In the case of corruption, first find a backup that is not corrupted. After restoring the base backup, do a point-in-time recovery from the binary log files using mysqlbinlog and mysql to restore the changes that occurred after the backup was made.
In some cases of database corruption, it is enough just to dump, drop, and re-create one or a few corrupt tables. You can use the CHECK TABLE SQL statement to check whether a table is corrupt, although CHECK TABLE naturally cannot detect every possible kind of corruption. You can use the Tablespace Monitor to check the integrity of the file space management inside the tablespace files.
In some cases, apparent database page corruption is actually due to the operating system corrupting its own file cache, and the data on disk may be okay. It is best first to try restarting your computer. Doing so may eliminate errors that appeared to be database page corruption. If MySQL still has trouble starting because of InnoDB consistency problems, see Section 14.2.4.6, “Starting InnoDB on a Corrupted Database” for steps to start the instance in a diagnostic mode where you can dump the data.
14.2.2.5. Moving or Copying InnoDB Tables to Another Machine
This section explains various techniques for moving or copying some or all InnoDB tables to a different server. For example, you might move an entire MySQL instance to a larger, faster server; you might clone an entire MySQL instance to a new replication slave server; you might copy individual tables to another server to development and test an application, or to a data warehouse server to produce reports.
Using Lowercase Table Names
On Windows, InnoDB always stores database and table names internally in lowercase. To move databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and tables using lowercase names. A convenient way to accomplish this is to add the following line to the [mysqld] section of your my.cnf or my.ini file before creating any databases or tables:
[mysqld]
lower_case_table_names=1
Using MySQL Enterprise Backup
The MySQL Enterprise Backup product lets you back up a running MySQL database, including InnoDB and MyISAM tables, with minimal disruption to operations while producing a consistent snapshot of the database. When MySQL Enterprise Backup is copying InnoDB tables, reads and writes to both InnoDB and MyISAM tables can continue. During the copying of MyISAM and other non-InnoDB tables, reads (but not writes) to those tables are permitted. In addition, MySQL Enterprise Backup can create compressed backup files, and back up subsets of InnoDB tables. In conjunction with the MySQL binary log, you can perform point-in-time recovery. MySQL Enterprise Backup is included as part of the MySQL Enterprise subscription.
For more details about MySQL Enterprise Backup, see MySQL Enterprise Backup User's Guide (Version 3.8.1).
Copying Data Files
Like MyISAM data files, InnoDB data and log files are binary-compatible on all platforms having the same floating-point number format. You can move an InnoDB database simply by copying all the relevant files listed in Section 14.2.2.4, “Backing Up and Recovering an InnoDB Database”. If the floating-point formats differ but you have not used FLOAT or DOUBLE data types in your tables, then the procedure is the same: simply copy the relevant files.
Portability Considerations for .ibd Files
When you move or copy .ibd files, the database directory name must be the same on the source and destination systems. The table definition stored in the InnoDB shared tablespace includes the database name. The transaction IDs and log sequence numbers stored in the tablespace files also differ between databases.
To move an .ibd file and the associated table from one database to another, use a RENAME TABLE statement:
RENAME TABLE db1.tbl_name TO db2.tbl_name;
If you have a “clean” backup of an .ibd file, you can restore it to the MySQL installation from which it originated as follows:
The table must not have been dropped or truncated since you copied the .ibd file, because doing so changes the table ID stored inside the tablespace.
Issue this ALTER TABLE statement to delete the current .ibd file:
ALTER TABLE tbl_name DISCARD TABLESPACE;
Copy the backup .ibd file to the proper database directory.
Issue this ALTER TABLE statement to tell InnoDB to use the new .ibd file for the table:
ALTER TABLE tbl_name IMPORT TABLESPACE;
In this context, a “clean” .ibd file backup is one for which the following requirements are satisfied:
There are no uncommitted modifications by transactions in the .ibd file.
There are no unmerged insert buffer entries in the .ibd file.
Purge has removed all delete-marked index records from the .ibd file.
mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.
You can make a clean backup .ibd file using the following method:
Stop all activity from the mysqld server and commit all transactions.
Wait until SHOW ENGINE INNODB STATUS shows that there are no active transactions in the database, and the main thread status of InnoDB is Waiting for server activity. Then you can make a copy of the .ibd file.
Another method for making a clean copy of an .ibd file is to use the MySQL Enterprise Backup product:
Use MySQL Enterprise Backup to back up the InnoDB installation.
Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.
Export and Import
If you use mysqldump to dump your tables on one machine and then import the dump files on the other machine, it does not matter whether the formats differ or your tables contain floating-point data.
One way to increase performance is to switch off autocommit mode when importing data, assuming that the tablespace has enough space for the big rollback segment that the import transactions generate. Do the commit only after importing a whole table or a segment of a table.
14.2.2.6. InnoDB and MySQL Replication
MySQL replication works for InnoDB tables as it does for MyISAM tables. It is also possible to use replication in a way where the storage engine on the slave is not the same as the original storage engine on the master. For example, you can replicate modifications to an InnoDB table on the master to a MyISAM table on the slave.
To set up a new slave for a master, make a copy of the InnoDB tablespace and the log files, as well as the .frm files of the InnoDB tables, and move the copies to the slave. If the innodb_file_per_table option is enabled, copy the .ibd files as well. For the proper procedure to do this, see Section 14.2.2.4, “Backing Up and Recovering an InnoDB Database”.
To make a new slave without taking down the master or an existing slave, use the MySQL Enterprise Backup product. If you can shut down the master or an existing slave, take a cold backup of the InnoDB tablespaces and log files and use that to set up a slave.
Transactions that fail on the master do not affect replication at all. MySQL replication is based on the binary log where MySQL writes SQL statements that modify data. A transaction that fails (for example, because of a foreign key violation, or because it is rolled back) is not written to the binary log, so it is not sent to slaves. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.
Replication and CASCADE. Cascading actions for InnoDB tables on the master are replicated on the slave only if the tables sharing the foreign key relation use InnoDB on both the master and slave. This is true whether you are using statement-based or row-based replication. Suppose that you have started replication, and then create two tables on the master using the following CREATE TABLE statements:
CREATE TABLE fc1 (
i INT PRIMARY KEY,
j INT
) ENGINE = InnoDB;
CREATE TABLE fc2 (
m INT PRIMARY KEY,
n INT,
FOREIGN KEY ni (n) REFERENCES fc1 (i)
ON DELETE CASCADE
) ENGINE = InnoDB;
Suppose that the slave does not have InnoDB support enabled. If this is the case, then the tables on the slave are created, but they use the MyISAM storage engine, and the FOREIGN KEY option is ignored. Now we insert some rows into the tables on the master:
master> INSERT INTO fc1 VALUES (1, 1), (2, 2);
Query OK, 2 rows affected (0.09 sec)
Records: 2 Duplicates: 0 Warnings: 0
master> INSERT INTO fc2 VALUES (1, 1), (2, 2), (3, 1);
Query OK, 3 rows affected (0.19 sec)
Records: 3 Duplicates: 0 Warnings: 0
At this point, on both the master and the slave, table fc1 contains 2 rows, and table fc2 contains 3 rows, as shown here:
master> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)
master> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
| 1 | 1 |
| 2 | 2 |
| 3 | 1 |
+---+------+
3 rows in set (0.00 sec)
slave> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)
slave> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
| 1 | 1 |
| 2 | 2 |
| 3 | 1 |
+---+------+
3 rows in set (0.00 sec)
Now suppose that you perform the following DELETE statement on the master:
master> DELETE FROM fc1 WHERE i=1;
Query OK, 1 row affected (0.09 sec)
Due to the cascade, table fc2 on the master now contains only 1 row:
master> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 2 | 2 |
+---+---+
1 row in set (0.00 sec)
However, the cascade does not propagate on the slave because on the slave the DELETE for fc1 deletes no rows from fc2. The slave's copy of fc2 still contains all of the rows that were originally inserted:
slave> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 1 | 1 |
| 3 | 1 |
| 2 | 2 |
+---+---+
3 rows in set (0.00 sec)
This difference is due to the fact that the cascading deletes are handled internally by the InnoDB storage engine, which means that none of the changes are logged.
14.2.2.7. Checking InnoDB Availability
To determine whether your server supports InnoDB, use the SHOW ENGINES statement. (Now that InnoDB is the default MySQL storage engine, only very specialized environments might not support it.)
14.2.2.8. Turning Off InnoDB
Oracle recommends InnoDB as the preferred storage engine for typical database applications, from single-user wikis and blogs running on a local system, to high-end applications pushing the limits of performance. In MySQL 5.6, InnoDB is is the default storage engine for new tables.
If you do not want to use InnoDB tables:
Start the server with the --innodb=OFF or --skip-innodb option to disable the InnoDB storage engine.
Because the default storage engine is InnoDB, the server will not start unless you also use --default-storage-engine and --default-tmp-storage-engine to set the default to some other engine for both permanent and TEMPORARY tables.
To prevent the server from crashing when the InnoDB-related information_schema tables are queried, also disable the plugins associated with those tables. Specify in the [mysqld] section of the MySQL configuration file:
loose-innodb-trx=0
loose-innodb-locks=0
loose-innodb-lock-waits=0
loose-innodb-cmp=0
loose-innodb-cmp-per-index=0
loose-innodb-cmp-per-index-reset=0
loose-innodb-cmp-reset=0
loose-innodb-cmpmem=0
loose-innodb-cmpmem-reset=0
loose-innodb-buffer-page=0
loose-innodb-buffer-page-lru=0
loose-innodb-buffer-pool-stats=0
loose-innodb-metrics=0
loose-innodb-ft-default-stopword=0
loose-innodb-ft-inserted=0
loose-innodb-ft-deleted=0
loose-innodb-ft-being-deleted=0
loose-innodb-ft-config=0
loose-innodb-ft-index-cache=0
loose-innodb-ft-index-table=0
loose-innodb-sys-tables=0
loose-innodb-sys-tablestats=0
loose-innodb-sys-indexes=0
loose-innodb-sys-columns=0
loose-innodb-sys-fields=0
loose-innodb-sys-foreign=0
loose-innodb-sys-foreign-cols=0
14.2.3. InnoDB Concepts and Architecture
The information in this section provides background to help you get the most performance and functionality from using InnoDB tables. It is intended for:
Anyone switching to MySQL from another database system, to explain what things might seem familiar and which might be all-new.
Anyone moving from MyISAM tables to InnoDB, now that InnoDB is the default MySQL storage engine.
Anyone considering their application architecture or software stack, to understand the design considerations, performance characteristics, and scalability of InnoDB tables at a detailed level.
In this section, you will learn:
How InnoDB implements transactions, and how the inner workings of transactions compare compare with other database systems you might be familiar with.
How InnoDB implements row-level locking to allow queries and DML statements to read and write the same table simultaneously.
How multi-version concurrency control (MVCC) keeps transactions from viewing or modifying each others' data before the appropriate time.
The physical layout of InnoDB-related objects on disk, such as tables, indexes, tablespaces, undo logs, and the redo log.
14.2.3.1. The InnoDB Transaction Model and Locking
To implement a large-scale, busy, or highly reliable database application, to port substantial code from a different database system, or to push MySQL performance to the limits of the laws of physics, you must understand the notions of transactions and locking as they relate to the InnoDB storage engine.
In the InnoDB transaction model, the goal is to combine the best properties of a multi-versioning database with traditional two-phase locking. InnoDB does locking on the row level and runs queries as nonlocking consistent reads by default, in the style of Oracle. The lock information in InnoDB is stored so space-efficiently that lock escalation is not needed: Typically, several users are permitted to lock every row in InnoDB tables, or any random subset of the rows, without causing InnoDB memory exhaustion.
In InnoDB, all user activity occurs inside a transaction. If autocommit mode is enabled, each SQL statement forms a single transaction on its own. By default, MySQL starts the session for each new connection with autocommit enabled, so MySQL does a commit after each SQL statement if that statement did not return an error. If a statement returns an error, the commit or rollback behavior depends on the error. See Section 14.2.3.14, “InnoDB Error Handling”.
A session that has autocommit enabled can perform a multiple-statement transaction by starting it with an explicit START TRANSACTION or BEGIN statement and ending it with a COMMIT or ROLLBACK statement. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.
If autocommit mode is disabled within a session with SET autocommit = 0, the session always has a transaction open. A COMMIT or ROLLBACK statement ends the current transaction and a new one starts.
A COMMIT means that the changes made in the current transaction are made permanent and become visible to other sessions. A ROLLBACK statement, on the other hand, cancels all modifications made by the current transaction. Both COMMIT and ROLLBACK release all InnoDB locks that were set during the current transaction.
In terms of the SQL:1992 transaction isolation levels, the default InnoDB level is REPEATABLE READ. InnoDB offers all four transaction isolation levels described by the SQL standard: READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE.
A user can change the isolation level for a single session or for all subsequent connections with the SET TRANSACTION statement. To set the server's default isolation level for all connections, use the --transaction-isolation option on the command line or in an option file. For detailed information about isolation levels and level-setting syntax, see Section 13.3.6, “SET TRANSACTION Syntax”.
In row-level locking, InnoDB normally uses next-key locking. That means that besides index records, InnoDB can also lock the gap preceding an index record to block insertions by other sessions where the indexed values would be inserted in that gap within the tree data structure. A next-key lock refers to a lock that locks an index record and the gap before it. A gap lock refers to a lock that locks only the gap before some index record.
For more information about row-level locking, and the circumstances under which gap locking is disabled, see Section 14.2.3.5, “InnoDB Record, Gap, and Next-Key Locks”.
14.2.3.2. InnoDB Lock Modes
InnoDB implements standard row-level locking where there are two types of locks:
A shared (S) lock permits the transaction that holds the lock to read a row.
An exclusive (X) lock permits the transaction that holds the lock to update or delete a row.
If transaction T1 holds a shared (S) lock on row r, then requests from some distinct transaction T2 for a lock on row r are handled as follows:
A request by T2 for an S lock can be granted immediately. As a result, both T1 and T2 hold an S lock on r.
A request by T2 for an X lock cannot be granted immediately.
If a transaction T1 holds an exclusive (X) lock on row r, a request from some distinct transaction T2 for a lock of either type on r cannot be granted immediately. Instead, transaction T2 has to wait for transaction T1 to release its lock on row r.
Additionally, InnoDB supports multiple granularity locking which permits coexistence of record locks and locks on entire tables. To make locking at multiple granularity levels practical, additional types of locks called intention locks are used. Intention locks are table locks in InnoDB that indicate which type of lock (shared or exclusive) a transaction will require later for a row in that table. There are two types of intention locks used in InnoDB (assume that transaction T has requested a lock of the indicated type on table t):
Intention shared (IS): Transaction T intends to set S locks on individual rows in table t.
Intention exclusive (IX): Transaction T intends to set X locks on those rows.
For example, SELECT ... LOCK IN SHARE MODE sets an IS lock and SELECT ... FOR UPDATE sets an IX lock.
The intention locking protocol is as follows:
Before a transaction can acquire an S lock on a row in table t, it must first acquire an IS or stronger lock on t.
Before a transaction can acquire an X lock on a row, it must first acquire an IX lock on t.
These rules can be conveniently summarized by means of the following lock type compatibility matrix.
X | IX | S | IS | |
---|---|---|---|---|
X | Conflict | Conflict | Conflict | Conflict |
IX | Conflict | Compatible | Conflict | Compatible |
S | Conflict | Conflict | Compatible | Compatible |
IS | Conflict | Compatible | Compatible | Compatible |
A lock is granted to a requesting transaction if it is compatible with existing locks, but not if it conflicts with existing locks. A transaction waits until the conflicting existing lock is released. If a lock request conflicts with an existing lock and cannot be granted because it would cause deadlock, an error occurs.
Thus, intention locks do not block anything except full table requests (for example, LOCK TABLES ... WRITE). The main purpose of IX and IS locks is to show that someone is locking a row, or going to lock a row in the table.
The following example illustrates how an error can occur when a lock request would cause a deadlock. The example involves two clients, A and B.
First, client A creates a table containing one row, and then begins a transaction. Within the transaction, A obtains an S lock on the row by selecting it in share mode:
mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
Query OK, 0 rows affected (1.07 sec)
mysql> INSERT INTO t (i) VALUES(1);
Query OK, 1 row affected (0.09 sec)
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM t WHERE i = 1 LOCK IN SHARE MODE;
+------+
| i |
+------+
| 1 |
+------+
1 row in set (0.10 sec)
Next, client B begins a transaction and attempts to delete the row from the table:
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> DELETE FROM t WHERE i = 1;
The delete operation requires an X lock. The lock cannot be granted because it is incompatible with the S lock that client A holds, so the request goes on the queue of lock requests for the row and client B blocks.
Finally, client A also attempts to delete the row from the table:
mysql> DELETE FROM t WHERE i = 1;
ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction
Deadlock occurs here because client A needs an X lock to delete the row. However, that lock request cannot be granted because client B already has a request for an X lock and is waiting for client A to release its S lock. Nor can the S lock held by A be upgraded to an X lock because of the prior request by B for an X lock. As a result, InnoDB generates an error for one of the clients and releases its locks. The client returns this error:
ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction
At that point, the lock request for the other client can be granted and it deletes the row from the table.
14.2.3.3. Consistent Nonlocking Reads
A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the database at a point in time. The query sees the changes made by transactions that committed before that point of time, and no changes made by later or uncommitted transactions. The exception to this rule is that the query sees the changes made by earlier statements within the same transaction. This exception causes the following anomaly: If you update some rows in a table, a SELECT sees the latest version of the updated rows, but it might also see older versions of any rows. If other sessions simultaneously update the same table, the anomaly means that you might see the table in a state that never existed in the database.
If the transaction isolation level is REPEATABLE READ (the default level), all consistent reads within the same transaction read the snapshot established by the first such read in that transaction. You can get a fresher snapshot for your queries by committing the current transaction and after that issuing new queries.
With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its own fresh snapshot.
Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED and REPEATABLE READ isolation levels. A consistent read does not set any locks on the tables it accesses, and therefore other sessions are free to modify those tables at the same time a consistent read is being performed on the table.
Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a consistent read (that is, an ordinary SELECT statement), InnoDB gives your transaction a timepoint according to which your query sees the database. If another transaction deletes a row and commits after your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates are treated similarly.
Note
The snapshot of the database state applies to SELECT statements within a transaction, not necessarily to DML statements. If you insert or modify some rows and then commit that transaction, a DELETE or UPDATE statement issued from another concurrent REPEATABLE READ transaction could affect those just-committed rows, even though the session could not query them. If a transaction does update or delete rows committed by a different transaction, those changes do become visible to the current transaction. For example, you might encounter a situation like the following:
SELECT COUNT(c1) FROM t1 WHERE c1 = 'xyz'; -- Returns 0: no rows match.
DELETE FROM t1 WHERE c1 = 'xyz'; -- Deletes several rows recently committed by other transaction.
SELECT COUNT(c2) FROM t1 WHERE c2 = 'abc'; -- Returns 0: no rows match.
UPDATE t1 SET c2 = 'cba' WHERE c2 = 'abc'; -- Affects 10 rows: another txn just committed 10 rows with 'abc' values.
SELECT COUNT(c2) FROM t1 WHERE c2 = 'cba'; -- Returns 10: this txn can now see the rows it just updated.
You can advance your timepoint by committing your transaction and then doing another SELECT or START TRANSACTION WITH CONSISTENT SNAPSHOT.
This is called multi-versioned concurrency control.
In the following example, session A sees the row inserted by B only when B has committed the insert and A has committed as well, so that the timepoint is advanced past the commit of B.
Session A Session B
SET autocommit=0; SET autocommit=0;
time
| SELECT * FROM t;
| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;
empty set
COMMIT;
SELECT * FROM t;
empty set
COMMIT;
SELECT * FROM t;

| 1 | 2 |

1 row in set
If you want to see the “freshest” state of the database, use either the READ COMMITTED isolation level or a locking read:
SELECT * FROM t LOCK IN SHARE MODE;
With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its own fresh snapshot. With LOCK IN SHARE MODE, a locking read occurs instead: A SELECT blocks until the transaction containing the freshest rows ends (see Section 14.2.3.4, “Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)”).
Consistent read does not work over certain DDL statements:
Consistent read does not work over DROP TABLE, because MySQL cannot use a table that has been dropped and InnoDB destroys the table.
Consistent read does not work over ALTER TABLE, because that statement makes a temporary copy of the original table and deletes the original table when the temporary copy is built. When you reissue a consistent read within a transaction, rows in the new table are not visible because those rows did not exist when the transaction's snapshot was taken. In this case, the transaction returns an error as of MySQL 5.6.6: ER_TABLE_DEF_CHANGED, “Table definition has changed, please retry transaction”.
The type of read varies for selects in clauses like INSERT INTO ... SELECT, UPDATE ... (SELECT), and CREATE TABLE ... SELECT that do not specify FOR UPDATE or LOCK IN SHARE MODE:
By default, InnoDB uses stronger locks and the SELECT part acts like READ COMMITTED, where each consistent read, even within the same transaction, sets and reads its own fresh snapshot.
To use a consistent read in such cases, enable the innodb_locks_unsafe_for_binlog option and set the isolation level of the transaction to READ UNCOMMITTED, READ COMMITTED, or REPEATABLE READ (that is, anything other than SERIALIZABLE). In this case, no locks are set on rows read from the selected table.
14.2.3.4. Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)
If you query data and then insert or update related data within the same transaction, the regular SELECT statement does not give enough protection. Other transactions can update or delete the same rows you just queried. InnoDB supports two types of locking reads that offer extra safety:
SELECT ... LOCK IN SHARE MODE sets a shared mode lock on any rows that are read. Other sessions can read the rows, but cannot modify them until your transaction commits. If any of these rows were changed by another transaction that has not yet committed, your query waits until that transaction ends and then uses the latest values.
For index records the search encounters, SELECT ... FOR UPDATE locks the rows and any associated index entries, the same as if you issued an UPDATE statement for those rows. Other transactions are blocked from updating those rows, from doing SELECT ... LOCK IN SHARE MODE, or from reading the data in certain transaction isolation levels. Consistent reads ignore any locks set on the records that exist in the read view. (Old versions of a record cannot be locked; they are reconstructed by applying undo logs on an in-memory copy of the record.)
These clauses are primarily useful when dealing with tree-structured or graph-structured data, either in a single table or split across multiple tables. You traverse edges or tree branches from one place to another, while reserving the right to come back and change any of these “pointer” values.
All locks set by LOCK IN SHARE MODE and FOR UPDATE queries are released when the transaction is committed or rolled back.
Note
Locking of rows for update using SELECT FOR UPDATE only applies when autocommit is disabled (either by beginning transaction with START TRANSACTION or by setting autocommit to 0. If autocommit is enabled, the rows matching the specification are not locked.
Usage Examples
Suppose that you want to insert a new row into a table child, and make sure that the child row has a parent row in table parent. Your application code can ensure referential integrity throughout this sequence of operations.
First, use a consistent read to query the table PARENT and verify that the parent row exists. Can you safely insert the child row to table CHILD? No, because some other session could delete the parent row in the moment between your SELECT and your INSERT, without you being aware of it.
To avoid this potential issue, perform the SELECT using LOCK IN SHARE MODE:
SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;
After the LOCK IN SHARE MODE query returns the parent 'Jones', you can safely add the child record to the CHILD table and commit the transaction. Any transaction that tries to read or write to the applicable row in the PARENT table waits until you are finished, that is, the data in all tables is in a consistent state.
For another example, consider an integer counter field in a table CHILD_CODES, used to assign a unique identifier to each child added to table CHILD. Do not use either consistent read or a shared mode read to read the present value of the counter, because two users of the database could see the same value for the counter, and a duplicate-key error occurs if two transactions attempt to add rows with the same identifier to the CHILD table.
Here, LOCK IN SHARE MODE is not a good solution because if two users read the counter at the same time, at least one of them ends up in deadlock when it attempts to update the counter.
Here are two ways to implement reading and incrementing the counter without interference from another transaction:
First update the counter by incrementing it by 1, then read it and use the new value in the CHILD table. Any other transaction that tries to read the counter waits until your transaction commits. If another transaction is in the middle of this same sequence, your transaction waits until the other one commits.
First perform a locking read of the counter using FOR UPDATE, and then increment the counter:
SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;
A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it reads. Thus, it sets the same locks a searched SQL UPDATE would set on the rows.
The preceding description is merely an example of how SELECT ... FOR UPDATE works. In MySQL, the specific task of generating a unique identifier actually can be accomplished using only a single access to the table:
UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();
The SELECT statement merely retrieves the identifier information (specific to the current connection). It does not access any table.
14.2.3.5. InnoDB Record, Gap, and Next-Key Locks
InnoDB has several types of record-level locks:
Record lock: This is a lock on an index record.
Gap lock: This is a lock on a gap between index records, or a lock on the gap before the first or after the last index record.
Next-key lock: This is a combination of a record lock on the index record and a gap lock on the gap before the index record.
Record locks always lock index records, even if a table is defined with no indexes. For such cases, InnoDB creates a hidden clustered index and uses this index for record locking. See Section 14.2.3.12.2, “Clustered and Secondary Indexes”.
By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-key locks for searches and index scans, which prevents phantom rows (see Section 14.2.3.6, “Avoiding the Phantom Problem Using Next-Key Locking”).
Next-key locking combines index-row locking with gap locking. InnoDB performs row-level locking in such a way that when it searches or scans a table index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-level locks are actually index-record locks. In addition, a next-key lock on an index record also affects the “gap” before that index record. That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding the index record. If one session has a shared or exclusive lock on record R in an index, another session cannot insert a new index record in the gap immediately before R in the index order.
Suppose that an index contains the values 10, 11, 13, and 20. The possible next-key locks for this index cover the following intervals, where (or) denote exclusion of the interval endpoint and [or] denote inclusion of the endpoint:
(negative infinity, 10]
(10, 11]
(11, 13]
(13, 20]
(20, positive infinity)
For the last interval, the next-key lock locks the gap above the largest value in the index and the “supremum” pseudo-record having a value higher than any value actually in the index. The supremum is not a real index record, so, in effect, this next-key lock locks only the gap following the largest index value.
The preceding example shows that a gap might span a single index value, multiple index values, or even be empty.
Gap locking is not needed for statements that lock rows using a unique index to search for a unique row. (This does not include the case that the search condition includes only some columns of a multiple-column unique index; in that case, gap locking does occur.) For example, if the id column has a unique index, the following statement uses only an index-record lock for the row having id value 100 and it does not matter whether other sessions insert rows in the preceding gap:
SELECT * FROM child WHERE id = 100;
If id is not indexed or has a nonunique index, the statement does lock the preceding gap.
A type of gap lock called an insertion intention gap lock is set by INSERT operations prior to row insertion. This lock signals the intent to insert in such a way that multiple transactions inserting into the same index gap need not wait for each other if they are not inserting at the same position within the gap. Suppose that there are index records with values of 4 and 7. Separate transactions that attempt to insert values of 5 and 6 each lock the gap between 4 and 7 with insert intention locks prior to obtaining the exclusive lock on the inserted row, but do not block each other because the rows are nonconflicting.
Gap locking can be disabled explicitly. This occurs if you change the transaction isolation level to READ COMMITTED or enable the innodb_locks_unsafe_for_binlog system variable (which is now deprecated). Under these circumstances, gap locking is disabled for searches and index scans and is used only for foreign-key constraint checking and duplicate-key checking.
There are also other effects of using the READ COMMITTED isolation level or enabling innodb_locks_unsafe_for_binlog: Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition. For UPDATE statements, InnoDB does a “semi-consistent” read, such that it returns the latest committed version to MySQL so that MySQL can determine whether the row matches the WHERE condition of the UPDATE.
14.2.3.6. Avoiding the Phantom Problem Using Next-Key Locking
The so-called phantom problem occurs within a transaction when the same query produces different sets of rows at different times. For example, if a SELECT is executed twice, but returns a row the second time that was not returned the first time, the row is a “phantom” row.
Suppose that there is an index on the id column of the child table and that you want to read and lock all rows from the table having an identifier value larger than 100, with the intention of updating some column in the selected rows later:
SELECT * FROM child WHERE id > 100 FOR UPDATE;
The query scans the index starting from the first record where id is bigger than 100. Let the table contain rows having id values of 90 and 102. If the locks set on the index records in the scanned range do not lock out inserts made in the gaps (in this case, the gap between 90 and 102), another session can insert a new row into the table with an id of 101. If you were to execute the same SELECT within the same transaction, you would see a new row with an id of 101 (a “phantom”) in the result set returned by the query. If we regard a set of rows as a data item, the new phantom child would violate the isolation principle of transactions that a transaction should be able to run so that the data it has read does not change during the transaction.
To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row locking with gap locking. InnoDB performs row-level locking in such a way that when it searches or scans a table index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-level locks are actually index-record locks. In addition, a next-key lock on an index record also affects the “gap” before that index record. That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding the index record. If one session has a shared or exclusive lock on record R in an index, another session cannot insert a new index record in the gap immediately before R in the index order.
When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that happens in the preceding example: To prevent any insert into the table where id would be bigger than 100, the locks set by InnoDB include a lock on the gap following id value 102.
You can use next-key locking to implement a uniqueness check in your application: If you read your data in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert your row and know that the next-key lock set on the successor of your row during the read prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the nonexistence of something in your table.
Gap locking can be disabled as discussed in Section 14.2.3.5, “InnoDB Record, Gap, and Next-Key Locks”. This may cause phantom problems because other sessions can insert new rows into the gaps when gap locking is disabled.
14.2.3.7. Locks Set by Different SQL Statements in InnoDB
A locking read, an UPDATE, or a DELETE generally set record locks on every index record that is scanned in the processing of the SQL statement. It does not matter whether there are WHERE conditions in the statement that would exclude the row. InnoDB does not remember the exact WHERE condition, but only knows which index ranges were scanned. The locks are normally next-key locks that also block inserts into the “gap” immediately before the record. However, gap locking can be disabled explicitly, which causes next-key locking not to be used. For more information, see Section 14.2.3.5, “InnoDB Record, Gap, and Next-Key Locks”. The transaction isolation level also can affect which locks are set; see Section 13.3.6, “SET TRANSACTION Syntax”.
If a secondary index is used in a search and index record locks to be set are exclusive, InnoDB also retrieves the corresponding clustered index records and sets locks on them.
Differences between shared and exclusive locks are described in Section 14.2.3.2, “InnoDB Lock Modes”.
If you have no indexes suitable for your statement and MySQL must scan the entire table to process the statement, every row of the table becomes locked, which in turn blocks all inserts by other users to the table. It is important to create good indexes so that your queries do not unnecessarily scan many rows.
For SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE, locks are acquired for scanned rows, and expected to be released for rows that do not qualify for inclusion in the result set (for example, if they do not meet the criteria given in the WHERE clause). However, in some cases, rows might not be unlocked immediately because the relationship between a result row and its original source is lost during query execution. For example, in a UNION, scanned (and locked) rows from a table might be inserted into a temporary table before evaluation whether they qualify for the result set. In this circumstance, the relationship of the rows in the temporary table to the rows in the original table is lost and the latter rows are not unlocked until the end of query execution.
InnoDB sets specific types of locks as follows.
SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE level, the search sets shared next-key locks on the index records it encounters.
SELECT ... FROM ... LOCK IN SHARE MODE sets shared next-key locks on all index records the search encounters.
For index records the search encounters, SELECT ... FROM ... FOR UPDATE blocks other sessions from doing SELECT ... FROM ... LOCK IN SHARE MODE or from reading in certain transaction isolation levels. Consistent reads will ignore any locks set on the records that exist in the read view.
UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.
DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search encounters.
INSERT sets an exclusive lock on the inserted row. This lock is an index-record lock, not a next-key lock (that is, there is no gap lock) and does not prevent other sessions from inserting into the gap before the inserted row.
Prior to inserting the row, a type of gap lock called an insertion intention gap lock is set. This lock signals the intent to insert in such a way that multiple transactions inserting into the same index gap need not wait for each other if they are not inserting at the same position within the gap. Suppose that there are index records with values of 4 and 7. Separate transactions that attempt to insert values of 5 and 6 each lock the gap between 4 and 7 with insert intention locks prior to obtaining the exclusive lock on the inserted row, but do not block each other because the rows are nonconflicting.
If a duplicate-key error occurs, a shared lock on the duplicate index record is set. This use of a shared lock can result in deadlock should there be multiple sessions trying to insert the same row if another session already has an exclusive lock. This can occur if another session deletes the row. Suppose that an InnoDB table t1 has the following structure:
CREATE TABLE t1 (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;
Now suppose that three sessions perform the following operations in order:
Session 1:
START TRANSACTION;
INSERT INTO t1 VALUES(1);
Session 2:
START TRANSACTION;
INSERT INTO t1 VALUES(1);
Session 3:
START TRANSACTION;
INSERT INTO t1 VALUES(1);
Session 1:
ROLLBACK;
The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions 2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When session 1 rolls back, it releases its exclusive lock on the row and the queued shared lock requests for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an exclusive lock for the row because of the shared lock held by the other.
A similar situation occurs if the table already contains a row with key value 1 and three sessions perform the following operations in order:
Session 1:
START TRANSACTION;
DELETE FROM t1 WHERE i = 1;
Session 2:
START TRANSACTION;
INSERT INTO t1 VALUES(1);
Session 3:
START TRANSACTION;
INSERT INTO t1 VALUES(1);
Session 1:
COMMIT;
The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions 2 and 3 both result in a duplicate-key error and they both request a shared lock for the row. When session 1 commits, it releases its exclusive lock on the row and the queued shared lock requests for sessions 2 and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an exclusive lock for the row because of the shared lock held by the other.
INSERT ... ON DUPLICATE KEY UPDATE differs from a simple INSERT in that an exclusive next-key lock rather than a shared lock is placed on the row to be updated when a duplicate-key error occurs.
REPLACE is done like an INSERT if there is no collision on a unique key. Otherwise, an exclusive next-key lock is placed on the row to be replaced.
INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive index record without a gap lock on each row inserted into T. If the transaction isolation level is READ COMMITTED or innodb_locks_unsafe_for_binlog is enabled, and the transaction isolation level is not SERIALIZABLE, InnoDB does the search on S as a consistent read (no locks). Otherwise, InnoDB sets shared next-key locks on rows from S. InnoDB has to set locks in the latter case: In roll-forward recovery from a backup, every SQL statement must be executed in exactly the same way it was done originally.
CREATE TABLE ... SELECT ... performs the SELECT with shared next-key locks or as a consistent read, as for INSERT ... SELECT.
When a SELECT is used in the constructs REPLACE INTO t SELECT ... FROM s WHERE ... or UPDATE t ... WHERE col IN (SELECT ... FROM s ...), InnoDB sets shared next-key locks on rows from table s.
While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an exclusive lock on the end of the index associated with the AUTO_INCREMENT column. In accessing the auto-increment counter, InnoDB uses a specific AUTO-INC table lock mode where the lock lasts only to the end of the current SQL statement, not to the end of the entire transaction. Other sessions cannot insert into the table while the AUTO-INC table lock is held; see Section 14.2.3.1, “The InnoDB Transaction Model and Locking”.
InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting any locks.
If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the constraint condition to be checked sets shared record-level locks on the records that it looks at to check the constraint. InnoDB also sets these locks in the case where the constraint fails.
LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that sets these locks. InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit = 0, and the MySQL layer above InnoDB knows about row-level locks.
Otherwise, InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks are involved. Also, because in this case the higher MySQL layer does not know about row-level locks, it is possible to get a table lock on a table where another session currently has row-level locks. However, this does not endanger transaction integrity, as discussed in Section 14.2.3.9, “Deadlock Detection and Rollback”. See also Section 14.2.7, “Limits on InnoDB Tables”.
14.2.3.8. Implicit Transaction Commit and Rollback
By default, MySQL starts the session for each new connection with autocommit mode enabled, so MySQL does a commit after each SQL statement if that statement did not return an error. If a statement returns an error, the commit or rollback behavior depends on the error. See Section 14.2.3.14, “InnoDB Error Handling”.
If a session that has autocommit disabled ends without explicitly committing the final transaction, MySQL rolls back that transaction.
Some statements implicitly end a transaction, as if you had done a COMMIT before executing the statement. For details, see Section 13.3.3, “Statements That Cause an Implicit Commit”.
14.2.3.9. Deadlock Detection and Rollback
InnoDB automatically detects transaction deadlocks and rolls back a transaction or transactions to break the deadlock. InnoDB tries to pick small transactions to roll back, where the size of a transaction is determined by the number of rows inserted, updated, or deleted.
InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit = 0, and the MySQL layer above it knows about row-level locks. Otherwise, InnoDB cannot detect deadlocks where a table lock set by a MySQL LOCK TABLES statement or a lock set by a storage engine other than InnoDB is involved. Resolve these situations by setting the value of the innodb_lock_wait_timeout system variable.
When InnoDB performs a complete rollback of a transaction, all locks set by the transaction are released. However, if just a single SQL statement is rolled back as a result of an error, some of the locks set by the statement may be preserved. This happens because InnoDB stores row locks in a format such that it cannot know afterward which lock was set by which statement.
If a SELECT calls a stored function in a transaction, and a statement within the function fails, that statement rolls back. Furthermore, if ROLLBACK is executed after that, the entire transaction rolls back.
For techniques to organize database operations to avoid deadlocks, see Section 14.2.3.10, “How to Cope with Deadlocks”.
14.2.3.10. How to Cope with Deadlocks
This section builds on the conceptual information about deadlocks in Section 14.2.3.9, “Deadlock Detection and Rollback”. It explains how to organize database operations to minimize deadlocks and the subsequent error handling required in applications.
Deadlocks are a classic problem in transactional databases, but they are not dangerous unless they are so frequent that you cannot run certain transactions at all. Normally, you must write your applications so that they are always prepared to re-issue a transaction if it gets rolled back because of a deadlock.
InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions that just insert or delete a single row. That is because these operations are not really “atomic”; they automatically set locks on the (possibly several) index records of the row inserted or deleted.
You can cope with deadlocks and reduce the likelihood of their occurrence with the following techniques:
At any time, issue the SHOW ENGINE INNODB STATUS command to determine the cause of the most recent deadlock. That can help you to tune your application to avoid deadlocks.
If frequent deadlock warnings cause concern, collect more extensive debugging information by restarting the server with the innodb_print_all_deadlocks configuration option enabled. Information about each deadlock, not just the latest one, is recorded in the MySQL error log. Remove this option and restart the server again once the debugging is finished.
Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dangerous. Just try again.
Commit your transactions immediately after making a set of related changes. Small transactions are less prone to collision. In particular, do not leave an interactive mysql session open for a long time with an uncommitted transaction.
If you use locking reads (SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE), try using a lower isolation level such as READ COMMITTED.
When modifying multiple tables within a transaction, or different sets of rows in the same table, do those operations in a consistent order each time. Then transactions form well-defined queues and do not deadlock. For example, organize database operations into functions within your application, or call stored routines, rather than coding multiple similar sequences of INSERT, UPDATE, and DELETE statements in different places.
Add well-chosen indexes to your tables. Then your queries need to scan fewer index records and consequently set fewer locks. Use EXPLAIN SELECT to determine which indexes the MySQL server regards as the most appropriate for your queries.
Use less locking. If you can afford to permit a SELECT to return data from an old snapshot, do not add the clause FOR UPDATE or LOCK IN SHARE MODE to it. Using the READ COMMITTED isolation level is good here, because each consistent read within the same transaction reads from its own fresh snapshot.
If nothing else helps, serialize your transactions with table-level locks. The correct way to use LOCK TABLES with transactional tables, such as InnoDB tables, is to begin a transaction with SET autocommit = 0 (not START TRANSACTION) followed by LOCK TABLES, and to not call UNLOCK TABLES until you commit the transaction explicitly. For example, if you need to write to table t1 and read from table t2, you can do this:
SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;
Table-level locks prevent concurrent updates to the table, avoiding deadlocks at the expense of less responsiveness for a busy system.
Another way to serialize transactions is to create an auxiliary “semaphore” table that contains just a single row. Have each transaction update that row before accessing other tables. In that way, all transactions happen in a serial fashion. Note that the InnoDB instant deadlock detection algorithm also works in this case, because the serializing lock is a row-level lock. With MySQL table-level locks, the timeout method must be used to resolve deadlocks.
14.2.3.11. InnoDB Multi-Versioning
InnoDB is a multi-versioned storage engine: it keeps information about old versions of changed rows, to support transactional features such as concurrency and rollback. This information is stored in the tablespace in a data structure called a rollback segment (after an analogous data structure in Oracle). InnoDB uses the information in the rollback segment to perform the undo operations needed in a transaction rollback. It also uses the information to build earlier versions of a row for a consistent read.
Internal Details of Multi-Versioning
Internally, InnoDB adds three fields to each row stored in the database. A 6-byte DB_TRX_ID field indicates the transaction identifier for the last transaction that inserted or updated the row. Also, a deletion is treated internally as an update where a special bit in the row is set to mark it as deleted. Each row also contains a 7-byte DB_ROLL_PTR field called the roll pointer. The roll pointer points to an undo log record written to the rollback segment. If the row was updated, the undo log record contains the information necessary to rebuild the content of the row before it was updated. A 6-byte DB_ROW_ID field contains a row ID that increases monotonically as new rows are inserted. If InnoDB generates a clustered index automatically, the index contains row ID values. Otherwise, the DB_ROW_ID column does not appear in any index.
Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs are needed only in transaction rollback and can be discarded as soon as the transaction commits. Update undo logs are used also in consistent reads, but they can be discarded only after there is no transaction present for which InnoDB has assigned a snapshot that in a consistent read could need the information in the update undo log to build an earlier version of a database row.
Guidelines for Managing Rollback Segments
Commit your transactions regularly, including those transactions that issue only consistent reads. Otherwise, InnoDB cannot discard data from the update undo logs, and the rollback segment may grow too big, filling up your tablespace.
The physical size of an undo log record in the rollback segment is typically smaller than the corresponding inserted or updated row. You can use this information to calculate the space needed for your rollback segment.
In the InnoDB multi-versioning scheme, a row is not physically removed from the database immediately when you delete it with an SQL statement. InnoDB only physically removes the corresponding row and its index records when it discards the update undo log record written for the deletion. This removal operation is called a purge, and it is quite fast, usually taking the same order of time as the SQL statement that did the deletion.
If you insert and delete rows in smallish batches at about the same rate in the table, the purge thread can start to lag behind and the table can grow bigger and bigger because of all the “dead” rows, making everything disk-bound and very slow. In such a case, throttle new row operations, and allocate more resources to the purge thread by tuning the innodb_max_purge_lag system variable. See Section 14.2.6, “InnoDB Startup Options and System Variables” for more information.
14.2.3.12. InnoDB Table and Index Structures
This section describes how InnoDB tables, indexes, and their associated metadata is represented at the physical level. This information is primarily useful for performance tuning and troubleshooting.
14.2.3.12.1. Role of the .frm File for InnoDB Tables
MySQL stores its data dictionary information for tables in .frm files in database directories. Unlike other MySQL storage engines, InnoDB also encodes information about the table in its own internal data dictionary inside the tablespace. When MySQL drops a table or a database, it deletes one or more .frm files as well as the corresponding entries inside the InnoDB data dictionary. You cannot move InnoDB tables between databases simply by moving the .frm files.
14.2.3.12.2. Clustered and Secondary Indexes
Every InnoDB table has a special index called the clustered index where the data for the rows is stored. Typically, the clustered index is synonymous with the primary key. To get the best performance from queries, inserts, and other database operations, you must understand how InnoDB uses the clustered index to optimize the most common lookup and DML operations for each table.
When you define a PRIMARY KEY on your table, InnoDB uses it as the clustered index. Define a primary key for each table that you create. If there is no logical unique and non-null column or set of columns, add a new auto-increment column, whose values are filled in automatically.
If you do not define a PRIMARY KEY for your table, MySQL locates the first UNIQUE index where all the key columns are NOT NULL and InnoDB uses it as the clustered index.
If the table has no PRIMARY KEY or suitable UNIQUE index, InnoDB internally generates a hidden clustered index on a synthetic column containing row ID values. The rows are ordered by the ID that InnoDB assigns to the rows in such a table. The row ID is a 6-byte field that increases monotonically as new rows are inserted. Thus, the rows ordered by the row ID are physically in insertion order.
How the Clustered Index Speeds Up Queries
Accessing a row through the clustered index is fast because the index search leads directly to the page with all the row data. If a table is large, the clustered index architecture often saves a disk I/O operation when compared to storage organizations that store row data using a different page from the index record. (For example, MyISAM uses one file for data rows and another for index records.)
How Secondary Indexes Relate to the Clustered Index
All indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in a secondary index contains the primary key columns for the row, as well as the columns specified for the secondary index. InnoDB uses this primary key value to search for the row in the clustered index.
If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short primary key.
For coding guidelines to take advantage of InnoDB clustered and secondary indexes, see Section 8.3.2, “Using Primary Keys” Section 8.3, “Optimization and Indexes” Section 8.5, “Optimizing for InnoDB Tables” Section 8.3.2, “Using Primary Keys”.
14.2.3.12.3. FULLTEXT Indexes
A special kind of index, the FULLTEXT index, helps InnoDB deal with queries and DML operations involving text-based columns and the words they contain. These indexes are physically represented as entire InnoDB tables, which are acted upon by SQL keywords such as the FULLTEXT clause of the CREATE INDEX statement, the MATCH() ... AGAINST syntax in a SELECT statement, and the OPTIMIZE TABLE statement. For usage information, see Section 12.9, “Full-Text Search Functions”.
You can examine FULLTEXT indexes by querying tables in the INFORMATION_SCHEMA database. You can see basic index information for FULLTEXT indexes by querying INNODB_SYS_INDEXES. Although InnoDB FULLTEXT indexes are represented by tables, which show up in INNODB_SYS_TABLES queries, the way to monitor the special text-processing aspects of a FULLTEXT index is to query the tables INNODB_FT_CONFIG, INNODB_FT_INDEX_TABLE, INNODB_FT_INDEX_CACHE, INNODB_FT_DEFAULT_STOPWORD, INNODB_FT_DELETED, and INNODB_FT_BEING_DELETED.
InnoDB FULLTEXT indexes are updated by the OPTIMIZE TABLE command, using a special mode controlled by the configuration options innodb_ft_num_word_optimize and innodb_optimize_fulltext_only.
14.2.3.12.4. Physical Structure of an InnoDB Index
All InnoDB indexes are B-trees where the index records are stored in the leaf pages of the tree. The default size of an index page is 16KB. When new records are inserted, InnoDB tries to leave 1/16 of the page free for future insertions and updates of the index records.
If index records are inserted in a sequential order (ascending or descending), the resulting index pages are about 15/16 full. If records are inserted in a random order, the pages are from 1/2 to 15/16 full. If the fill factor of an index page drops below 1/2, InnoDB tries to contract the index tree to free the page.
Note
You can specify the page size for all InnoDB tablespaces in a MySQL instance by setting the innodb_page_size configuration option before creating the instance. Once the page size for a MySQL instance is set, you cannot change it. Supported sizes are 16KB, 8KB, and 4KB, corresponding to the option values 16k, 8k, and 4k.
A MySQL instance using a particular InnoDB page size cannot use data files or log files from an instance that uses a different page size.
14.2.3.12.5. Insert Buffering
Database applications often insert new rows in the ascending order of the primary key. In this case, due to the layout of the clustered index in the same order as the primary key, insertions into an InnoDB table do not require random reads from a disk.
On the other hand, secondary indexes are usually nonunique, and insertions into secondary indexes happen in a relatively random order. In the same way, deletes and updates can affect data pages that are not adjacent in secondary indexes. This would cause a lot of random disk I/O operations without a special mechanism used in InnoDB.
When an index record is inserted, marked for deletion, or deleted from a nonunique secondary index, InnoDB checks whether the secondary index page is in the buffer pool. If that is the case, InnoDB applies the change directly to the index page. If the index page is not found in the buffer pool, InnoDB records the change in a special structure known as the insert buffer. The insert buffer is kept small so that it fits entirely in the buffer pool, and changes can be applied very quickly. This process is known as change buffering. (Formerly, it applied only to inserts and was called insert buffering. The data structure is still called the insert buffer.)
Disk I/O for Flushing the Insert Buffer
Periodically, the insert buffer is merged into the secondary index trees in the database. Often, it is possible to merge several changes into the same page of the index tree, saving disk I/O operations. It has been measured that the insert buffer can speed up insertions into a table up to 15 times.
The insert buffer merging may continue to happen after the transaction has been committed. In fact, it may continue to happen after a server shutdown and restart (see Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”).
Insert buffer merging may take many hours when many secondary indexes must be updated and many rows have been inserted. During this time, disk I/O will be increased, which can cause significant slowdown on disk-bound queries. Another significant background I/O operation is the purge thread (see Section 14.2.3.11, “InnoDB Multi-Versioning”).
14.2.3.12.6. Adaptive Hash Indexes
The feature known as the adaptive hash index (AHI) lets InnoDB perform more like an in-memory database on systems with appropriate combinations of workload and ample memory for the buffer pool, without sacrificing any transactional features or reliability. This feature is enabled by the innodb_adaptive_hash_index option, or turned off by the --skip-innodb_adaptive_hash_index at server startup.
Based on the observed pattern of searches, MySQL builds a hash index using a prefix of the index key. The prefix of the key can be any length, and it may be that only some of the values in the B-tree appear in the hash index. Hash indexes are built on demand for those pages of the index that are often accessed.
If a table fits almost entirely in main memory, a hash index can speed up queries by enabling direct lookup of any element, turning the index value into a sort of pointer. InnoDB has a mechanism that monitors index searches. If InnoDB notices that queries could benefit from building a hash index, it does so automatically.
With some workloads, the speedup from hash index lookups greatly outweighs the extra work to monitor index lookups and maintain the hash index structure. Sometimes, the read/write lock that guards access to the adaptive hash index can become a source of contention under heavy workloads, such as multiple concurrent joins. Queries with LIKE operators and % wildcards also tend not to benefit from the AHI. For workloads where the adaptive hash index is not needed, turning it off reduces unnecessary performance overhead. Because it is difficult to predict in advance whether this feature is appropriate for a particular system, consider running benchmarks with it both enabled and disabled, using a realistic workload. The architectural changes in MySQL 5.6 and higher make more workloads suitable for disabling the adaptive hash index than in earlier releases, although it is still enabled by default.
The hash index is always built based on an existing B-tree index on the table. InnoDB can build a hash index on a prefix of any length of the key defined for the B-tree, depending on the pattern of searches that InnoDB observes for the B-tree index. A hash index can be partial, covering only those pages of the index that are often accessed.
You can monitor the use of the adaptive hash index and the contention for its use in the SEMAPHORES section of the output of the SHOW ENGINE INNODB STATUS command. If you see many threads waiting on an RW-latch created in btr0sea.c, then it might be useful to disable adaptive hash indexing.
For more information about the performance characteristics of hash indexes, see Section 8.3.8, “Comparison of B-Tree and Hash Indexes”.
14.2.3.12.7. Physical Row Structure
The physical row structure for an InnoDB table depends on the row format specified when the table was created. By default, InnoDB uses the Antelope file format and its COMPACT row format. The REDUNDANT format is available to retain compatibility with older versions of MySQL. When you enable the innodb_file_per_table setting, you can also make use of the newer Barracuda file format, with its DYNAMIC and COMPRESSED row formats, as explained in Section 5.4.8, “How InnoDB Stores Variable-Length Columns” and Section 5.4.6, “Working with InnoDB Compressed Tables”.
To check the row format of an InnoDB table, use SHOW TABLE STATUS.
The COMPACT row format decreases row storage space by about 20% at the cost of increasing CPU use for some operations. If your workload is a typical one that is limited by cache hit rates and disk speed, COMPACT format is likely to be faster. If the workload is a rare case that is limited by CPU speed, COMPACT format might be slower.
Rows in InnoDB tables that use REDUNDANT row format have the following characteristics:
Each index record contains a 6-byte header. The header is used to link together consecutive records, and also in row-level locking.
Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-byte transaction ID field and a 7-byte roll pointer field.
If no primary key was defined for a table, each clustered index record also contains a 6-byte row ID field.
Each secondary index record also contains all the primary key fields defined for the clustered index key that are not in the secondary index.
A record contains a pointer to each field of the record. If the total length of the fields in a record is less than 128 bytes, the pointer is one byte; otherwise, two bytes. The array of these pointers is called the record directory. The area where these pointers point is called the data part of the record.
Internally, InnoDB stores fixed-length character columns such as CHAR(10) in a fixed-length format. InnoDB does not truncate trailing spaces from VARCHAR columns.
An SQL NULL value reserves one or two bytes in the record directory. Besides that, an SQL NULL value reserves zero bytes in the data part of the record if stored in a variable length column. In a fixed-length column, it reserves the fixed length of the column in the data part of the record. Reserving the fixed space for NULL values enables an update of the column from NULL to a non-NULL value to be done in place without causing fragmentation of the index page.
Rows in InnoDB tables that use COMPACT row format have the following characteristics:
Each index record contains a 5-byte header that may be preceded by a variable-length header. The header is used to link together consecutive records, and also in row-level locking.
The variable-length part of the record header contains a bit vector for indicating NULL columns. If the number of columns in the index that can be NULL is N, the bit vector occupies CEILING(N/8) bytes. (For example, if there are anywhere from 9 to 15 columns that can be NULL, the bit vector uses two bytes.) Columns that are NULL do not occupy space other than the bit in this vector. The variable-length part of the header also contains the lengths of variable-length columns. Each length takes one or two bytes, depending on the maximum length of the column. If all columns in the index are NOT NULL and have a fixed length, the record header has no variable-length part.
For each non-NULL variable-length field, the record header contains the length of the column in one or two bytes. Two bytes will only be needed if part of the column is stored externally in overflow pages or the maximum length exceeds 255 bytes and the actual length exceeds 127 bytes. For an externally stored column, the 2-byte length indicates the length of the internally stored part plus the 20-byte pointer to the externally stored part. The internal part is 768 bytes, so the length is 768+20. The 20-byte pointer stores the true length of the column.
The record header is followed by the data contents of the non-NULL columns.
Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-byte transaction ID field and a 7-byte roll pointer field.
If no primary key was defined for a table, each clustered index record also contains a 6-byte row ID field.
Each secondary index record also contains all the primary key fields defined for the clustered index key that are not in the secondary index. If any of these primary key fields are variable length, the record header for each secondary index will have a variable-length part to record their lengths, even if the secondary index is defined on fixed-length columns.
Internally, InnoDB stores fixed-length, fixed-width character columns such as CHAR(10) in a fixed-length format. InnoDB does not truncate trailing spaces from VARCHAR columns.
Internally, InnoDB attempts to store UTF-8 CHAR(N) columns in N bytes by trimming trailing spaces. (With REDUNDANT row format, such columns occupy 3 × N bytes.) Reserving the minimum space N in many cases enables column updates to be done in place without causing fragmentation of the index page.
14.2.3.13. The InnoDB Recovery Process
InnoDB crash recovery consists of several steps:
The first step, applying the redo log, is performed during initialization, before accepting any connections. If all changes were flushed from the buffer pool to the tablespaces (ibdata* and *.ibd files) at the time of the shutdown or crash, the redo log application can be skipped. If the redo log files are missing at startup, InnoDB skips the redo log application.
The remaining steps after redo log application do not depend on the redo log (other than for logging the writes) and are performed in parallel with normal processing. These include:
Rolling back incomplete transactions: Any transactions that were active at the time of crash or fast shutdown.
Insert buffer merge: Applying changes from the insert buffer (part of the system tablespace) to leaf pages of secondary indexes, as the index pages are read to the buffer pool.
Purge: Deleting delete-marked records that are no longer visible for any active transaction.
Of these, only rollback of incomplete transactions is special to crash recovery. The insert buffer merge and the purge are performed during normal processing.
In most situations, even if the MySQL server was killed unexpectedly in the middle of heavy activity, the recovery process happens automatically and no action is needed from the DBA. If a hardware failure or severe system error corrupted InnoDB data, MySQL might refuse to start. In that case, see Section 14.2.4.6, “Starting InnoDB on a Corrupted Database” for the steps to troubleshoot such an issue.
14.2.3.14. InnoDB Error Handling
Error handling in InnoDB is not always the same as specified in the SQL standard. According to the standard, any error during an SQL statement should cause rollback of that statement. InnoDB sometimes rolls back only part of the statement, or the whole transaction. The following items describe how InnoDB performs error handling:
If you run out of file space in a tablespace, a MySQL Table is full error occurs and InnoDB rolls back the SQL statement.
A transaction deadlock causes InnoDB to roll back the entire transaction. Retry the whole transaction when this happens.
A lock wait timeout causes InnoDB to roll back only the single statement that was waiting for the lock and encountered the timeout. (To have the entire transaction roll back, start the server with the --innodb_rollback_on_timeout option.) Retry the statement if using the current behavior, or the entire transaction if using --innodb_rollback_on_timeout.
Both deadlocks and lock wait timeouts are normal on busy servers and it is necessary for applications to be aware that they may happen and handle them by retrying. You can make them less likely by doing as little work as possible between the first change to data during a transaction and the commit, so the locks are held for the shortest possible time and for the smallest possible number of rows. Sometimes splitting work between different transactions may be practical and helpful.
When a transaction rollback occurs due to a deadlock or lock wait timeout, it cancels the effect of the statements within the transaction. But if the start-transaction statement was START TRANSACTION or BEGIN statement, rollback does not cancel that statement. Further SQL statements become part of the transaction until the occurrence of COMMIT, ROLLBACK, or some SQL statement that causes an implicit commit.
A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in your statement.
A row too long error rolls back the SQL statement.
Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage engine level), and they roll back the corresponding SQL statement. Locks are not released in a rollback of a single SQL statement.
During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL statement, SHOW PROCESSLIST displays Rolling back in the State column for the relevant connection.
14.2.3.14.1. InnoDB Error Codes
The following is a nonexhaustive list of common InnoDB-specific errors that you may encounter, with information about why each occurs and how to resolve the problem.
1005 (ER_CANT_CREATE_TABLE)
Cannot create table. If the error message refers to error 150, table creation failed because a foreign key constraint was not correctly formed. If the error message refers to error –1, table creation probably failed because the table includes a column name that matched the name of an internal InnoDB table.
1016 (ER_CANT_OPEN_FILE)
Cannot find the InnoDB table from the InnoDB data files, although the .frm file for the table exists. See Section 14.2.4.7, “Troubleshooting InnoDB Data Dictionary Operations”.
1114 (ER_RECORD_FILE_FULL)
InnoDB has run out of free space in the tablespace. Reconfigure the tablespace to add a new data file.
1205 (ER_LOCK_WAIT_TIMEOUT)
Lock wait timeout expired. The statement that waited too long was rolled back (not the entire transaction). You can increase the value of the innodb_lock_wait_timeout configuration option if SQL statements should wait longer for other transactions to complete, or decrease it if too many long-running transactions are causing locking problems and reducing concurrency on a busy system.
1206 (ER_LOCK_TABLE_FULL)
The total number of locks exceeds the amount of memory InnoDB devotes to managing locks. To avoid this error, increase the value of innodb_buffer_pool_size. Within an individual application, a workaround may be to break a large operation into smaller pieces. For example, if the error occurs for a large INSERT, perform several smaller INSERT operations.
1213 (ER_LOCK_DEADLOCK)
The transaction encountered a deadlock and was automatically rolled back so that your application could take corrective action. To recover from this error, run all the operations in this transaction again. A deadlock occurs when requests for locks arrive in inconsistent order between transactions. The transaction that was rolled back released all its locks, and the other transaction can now get all the locks it requested. Thus when you re-run the transaction that was rolled back, it might have to wait for other transactions to complete, but typically the deadlock does not recur. If you encounter frequent deadlocks, make the sequence of locking operations (LOCK TABLES, SELECT ... FOR UPDATE, and so on) consistent between the different transactions or applications that experience the issue. See Section 14.2.3.10, “How to Cope with Deadlocks” for details.
1216 (ER_NO_REFERENCED_ROW)
You are trying to add a row but there is no parent row, and a foreign key constraint fails. Add the parent row first.
1217 (ER_ROW_IS_REFERENCED)
You are trying to delete a parent row that has children, and a foreign key constraint fails. Delete the children first.
14.2.3.14.2. Operating System Error Codes
To print the meaning of an operating system error number, use the perror program that comes with the MySQL distribution.
Linux System Error Codes
The following table provides a list of some common Linux system error codes. For a more complete list, see Linux source code.
Number | Macro | Description |
---|---|---|
1 | EPERM | Operation not permitted |
2 | ENOENT | No such file or directory |
3 | ESRCH | No such process |
4 | EINTR | Interrupted system call |
5 | EIO | I/O error |
6 | ENXIO | No such device or address |
7 | E2BIG | Arg list too long |
8 | ENOEXEC | Exec format error |
9 | EBADF | Bad file number |
10 | ECHILD | No child processes |
11 | EAGAIN | Try again |
12 | ENOMEM | Out of memory |
13 | EACCES | Permission denied |
14 | EFAULT | Bad address |
15 | ENOTBLK | Block device required |
16 | EBUSY | Device or resource busy |
17 | EEXIST | File exists |
18 | EXDEV | Cross-device link |
19 | ENODEV | No such device |
20 | ENOTDIR | Not a directory |
21 | EISDIR | Is a directory |
22 | EINVAL | Invalid argument |
23 | ENFILE | File table overflow |
24 | EMFILE | Too many open files |
25 | ENOTTY | Inappropriate ioctl for device |
26 | ETXTBSY | Text file busy |
27 | EFBIG | File too large |
28 | ENOSPC | No space left on device |
29 | ESPIPE | File descriptor does not allow seeking |
30 | EROFS | Read-only file system |
31 | EMLINK | Too many links |
Windows System Error Codes
The following table provides a list of some common Windows system error codes. For a complete list, see the Microsoft Web site.
Number | Macro | Description |
---|---|---|
1 | ERROR_INVALID_FUNCTION | Incorrect function. |
2 | ERROR_FILE_NOT_FOUND | The system cannot find the file specified. |
3 | ERROR_PATH_NOT_FOUND | The system cannot find the path specified. |
4 | ERROR_TOO_MANY_OPEN_FILES | The system cannot open the file. |
5 | ERROR_ACCESS_DENIED | Access is denied. |
6 | ERROR_INVALID_HANDLE | The handle is invalid. |
7 | ERROR_ARENA_TRASHED | The storage control blocks were destroyed. |
8 | ERROR_NOT_ENOUGH_MEMORY | Not enough storage is available to process this command. |
9 | ERROR_INVALID_BLOCK | The storage control block address is invalid. |
10 | ERROR_BAD_ENVIRONMENT | The environment is incorrect. |
11 | ERROR_BAD_FORMAT | An attempt was made to load a program with an incorrect format. |
12 | ERROR_INVALID_ACCESS | The access code is invalid. |
13 | ERROR_INVALID_DATA | The data is invalid. |
14 | ERROR_OUTOFMEMORY | Not enough storage is available to complete this operation. |
15 | ERROR_INVALID_DRIVE | The system cannot find the drive specified. |
16 | ERROR_CURRENT_DIRECTORY | The directory cannot be removed. |
17 | ERROR_NOT_SAME_DEVICE | The system cannot move the file to a different disk drive. |
18 | ERROR_NO_MORE_FILES | There are no more files. |
19 | ERROR_WRITE_PROTECT | The media is write protected. |
20 | ERROR_BAD_UNIT | The system cannot find the device specified. |
21 | ERROR_NOT_READY | The device is not ready. |
22 | ERROR_BAD_COMMAND | The device does not recognize the command. |
23 | ERROR_CRC | Data error (cyclic redundancy check). |
24 | ERROR_BAD_LENGTH | The program issued a command but the command length is incorrect. |
25 | ERROR_SEEK | The drive cannot locate a specific area or track on the disk. |
26 | ERROR_NOT_DOS_DISK | The specified disk or diskette cannot be accessed. |
27 | ERROR_SECTOR_NOT_FOUND | The drive cannot find the sector requested. |
28 | ERROR_OUT_OF_PAPER | The printer is out of paper. |
29 | ERROR_WRITE_FAULT | The system cannot write to the specified device. |
30 | ERROR_READ_FAULT | The system cannot read from the specified device. |
31 | ERROR_GEN_FAILURE | A device attached to the system is not functioning. |
32 | ERROR_SHARING_VIOLATION | The process cannot access the file because it is being used by another process. |
33 | ERROR_LOCK_VIOLATION | The process cannot access the file because another process has locked a portion of the file. |
34 | ERROR_WRONG_DISK | The wrong diskette is in the drive. Insert %2 (Volume Serial Number: %3) into drive %1. |
36 | ERROR_SHARING_BUFFER_EXCEEDED | Too many files opened for sharing. |
38 | ERROR_HANDLE_EOF | Reached the end of the file. |
39 | ERROR_HANDLE_DISK_FULL | The disk is full. |
87 | ERROR_INVALID_PARAMETER | The parameter is incorrect. |
112 | ERROR_DISK_FULL | The disk is full. |
123 | ERROR_INVALID_NAME | The file name, directory name, or volume label syntax is incorrect. |
1450 | ERROR_NO_SYSTEM_RESOURCES | Insufficient system resources exist to complete the requested service. |
14.2.4. InnoDB Performance Tuning and Troubleshooting
This section explains the actions to take for InnoDB issues. Because much of the InnoDB focus is on performance, many issues are performance-related. You can use the tips here to track down problems after they occur, or do advance planning to avoid the problems entirely.
14.2.4.1. InnoDB Performance Tuning Tips
With InnoDB becoming the default storage engine in MySQL 5.5 and higher, the tips and guidelines for InnoDB tables are now part of the main optimization chapter. See Section 8.5, “Optimizing for InnoDB Tables”.
14.2.4.2. InnoDB Performance and Scalability Enhancements
This section summarizes the major InnoDB features and enhancements for performance and scalability. This information is useful to any DBA or developer who is concerned with performance and scalability. Although some of the enhancements do not require any action on your part, knowing this information can still help you diagnose performance issues more quickly and modernize systems and applications that rely on older, inefficient behavior.
14.2.4.2.1. Overview of InnoDB Performance
InnoDB has always been highly efficient, and includes several unique architectural elements to assure high performance and scalability. The latest InnoDB storage engine includes new features that take advantage of advances in operating systems and hardware platforms, such as multi-core processors and improved memory allocation systems. In addition, new configuration options let you better control some InnoDB internal subsystems to achieve the best performance with your workload.
Starting with MySQL 5.5 and InnoDB 1.1, the built-in InnoDB storage engine within MySQL is upgraded to the full feature set and performance of the former InnoDB Plugin. This change makes these performance and scalability enhancements available to a much wider audience than before, and eliminates the separate installation step of the InnoDB Plugin. After learning about the InnoDB performance features in this section, continue with Chapter 8, Optimization to learn the best practices for overall MySQL performance, and Section 8.5, “Optimizing for InnoDB Tables” in particular for InnoDB tips and guidelines.
14.2.4.2.2. Compression Enhancements for OLTP Workloads
Traditionally, the InnoDB compression feature was recommended primarily for read-only or read-mostly workloads, such as in a data warehouse configuration. The rise of SSD storage devices, which are fast but relatively small and expensive, makes compression attractive also for OLTP workloads: high-traffic, interactive web sites can reduce their storage requirements and their I/O operations per second (IOPS) by using compressed tables with applications that do frequent INSERT, UPDATE, and DELETE operations.
New configuration options in MySQL 5.6 let you adjust the way compression works for a particular MySQL instance, with an emphasis on performance and scalability for write-intensive operations:
innodb_compression_level lets you turn the degree of compression up or down. A higher value lets you fit more data onto a storage device, at the expense of more CPU overhead during compression. A lower value lets you reduce CPU overhead when storage space is not critical, or you expect the data is not especially compressible.
innodb_compression_failure_threshold_pct specifies a cutoff point for compression failures during updates to a compressed table. When this threshold is passed, MySQL begins to leave additional free space within each new compressed page, dynamically adjusting the amount of free space up to the percentage of page size specified by innodb_compression_pad_pct_max
innodb_compression_pad_pct_max lets you adjust the maximum amount of space reserved within each page to record changes to compressed rows, without needing to compress the entire page again. The higher the value, the more changes can be recorded without recompressing the page. MySQL uses a variable amount of free space for the pages within each compressed table, only when a designated percentage of compression operations “fail” at runtime, requiring an expensive operation to split the compressed page.
Because working with compressed data sometimes involves keeping both compressed and uncompressed versions of a page in memory at the same time, when using compression with an OLTP-style workload, be prepared to increase the value of the innodb_buffer_pool_size configuration option.
For more information on MySQL data compression, see Section 5.4.6, “Working with InnoDB Compressed Tables”. For the performance aspects, especially see the section Section 5.4.6.3, “Tuning Compression for InnoDB Tables”.
14.2.4.2.3. Optimizations for Read-Only Transactions
When a transaction is known to be read-only, InnoDB can avoid the overhead associated with setting up the transaction ID (TRX_ID field). The transaction ID is only needed for a transaction that might perform write operations or locking reads such as SELECT ... FOR UPDATE. Eliminating these unnecessary transaction IDs reduces the size of internal data structures that are consulted each time a query or DML statement constructs a read view.
Currently, InnoDB detects the read-only nature of the transaction and applies this optimization when any of the following conditions are met:
The transaction is started with the START TRANSACTION READ ONLY statement. In this case, attempting to make any changes to the database (for InnoDB, MyISAM, or other types of tables) causes an error, and the transaction continues in read-only state:
ERROR 1792 (25006): Cannot execute statement in a READ ONLY transaction.
You can still make changes to session-specific temporary tables in a read-only transaction, or issue locking queries for them, because those changes and locks are not visible to any other transaction.
The autocommit setting is turned on, so that the transaction is guaranteed to be a single statement, and the single statement making up the transaction is a “non-locking” SELECT statement. That is, a SELECT that does not use a FOR UPDATE or LOCK IN SHARED MODE clause.
Thus, for a read-intensive application such as a report generator, you can tune a sequence of InnoDB queries by grouping them inside START TRANSACTION READ ONLY and COMMIT, or by turning on the autocommit setting before running the SELECT statements, or simply by avoiding any DML statements interspersed with the queries.
Note
Because these optimized transactions are kept out of certain internal InnoDB data structures, they are not listed in SHOW ENGINE INNODB STATUS output.
14.2.4.2.4. Separate Tablespaces for InnoDB Undo Logs
This feature optionally moves the InnoDB undo log out of the system tablespace into one or more separate tablespaces. The I/O patterns for the undo log make these new tablespaces good candidates to move to SSD storage, while keeping the system tablespace on hard disk storage. Users cannot drop the separate tablespaces created to hold InnoDB undo logs, or the individual segments inside those tablespaces.
Because these files handle I/O operations formerly done inside the system tablespace, we broaden the definition of system tablespace to include these new files.
The undo logs are also known as the rollback segments.
This feature involves the following new or renamed configuration options:
innodb_rollback_segments becomes innodb_undo_logs. The old name is still available for compatibility.
Usage Notes
To use this feature, follow these steps:
Decide on a path on a fast storage device to hold the undo logs. You will specify that path as the argument to the innodb_undo_directory option in your MySQL configuration file or startup script.
Decide on a non-zero starting value for the innodb_undo_logs option. You can start with a relatively low value and increase it over time to examine the effect on performance.
Decide on a non-zero value for the innodb_undo_tablespaces option. The multiple undo logs specified by the innodb_undo_logs value are divided between this many separate tablespaces (represented by .ibd files). This value is fixed for the life of the MySQL instance, so if you are uncertain about the optimal value, estimate on the high side.
Set up an entirely new MySQL instance for testing, using the values you chose in the configuration file or in your MySQL startup script. Use a realistic workload with data volume similar to your production servers.
Benchmark the performance of I/O intensive workloads.
Periodically increase the value of innodb_undo_logs and re-do the performance tests. Find the value where you stop experiencing gains in I/O performance.
Deploy a new production instance using the ideal settings for these options. Set it up as a slave server in a replication configuration, or transfer data from an earlier production instance.
Performance and Scalability Considerations
Keeping the undo logs in separate files allows the MySQL team to implement I/O and memory optimizations related to this transactional data. For example, because the undo data is written to disk and then rarely used (only in case of crash recovery), it does not need to be kept in the filesystem memory cache, in turn allowing a higher percentage of system memory to be devoted to the InnoDB buffer pool.
The typical SSD best practice of keeping the InnoDB system tablespace on a hard drive and moving the per-table tablespaces to SSD, is assisted by moving the undo information into separate tablespace files.
Internals
The physical tablespace files are named undoN, where N is the space ID, including leading zeros.
Currently, MySQL instances containing separate undo tablespaces cannot be downgraded to earlier releases such as MySQL 5.5 or 5.1.
14.2.4.2.5. Faster Extension for InnoDB Data Files
The benefits of the InnoDB file-per-table setting come with the tradeoff that each .ibd file is extended as the data inside the table grows. This I/O operation can be a bottleneck for busy systems with many InnoDB tables. When all InnoDB tables are stored inside the system tablespace, this extension operation happens less frequently, as space freed by DELETE or TRUNCATE operations within one table can be reused by another table.
MySQL 5.6 improves the concurrency of the extension operation, so that multiple .ibd files can be extended simultaneously, and this operation does not block read or write operations performed by other threads.
14.2.4.2.6. Non-Recursive Deadlock Detection
The code that detects deadlocks in InnoDB transactions has been modified to use a fixed-size work area rather than a recursive algorithm. The resulting detection operation is faster as a result. You do not need to do anything to take advantage of this enhancement.
Under both the old and new detection mechanisms, you might encounter a search too deep error that is not a true deadlock, but requires you to re-try the transaction the same way as with a deadlock.
14.2.4.2.7. Fast CRC32 Checksum Algorithm
You can enable the configuration option innodb_checksum_algorithm=crc32 configuration setting to change the checksum algorithm to a faster one that scans the block 32 bits at a time rather than 8 bits at a time. When the CRC32 algorithm is enabled, data blocks that are written to disk by InnoDB contain different values in their checksum fields than before. This process could be gradual, with a mix of old and new checksum values within the same table or database.
For maximum downward compatibility, this setting is off by default:
Current versions of MySQL Enterprise Backup (up to 3.8.0) do not support backing up tablespaces that use crc32 checksums.
.ibd files containing crc32 checksums could cause problems downgrading to MySQL versions prior to 5.6.3. MySQL 5.6.3 and up recognizes either the new or old checksum values for the block as correct when reading the block from disk, ensuring that data blocks are compatible during upgrade and downgrade regardless of the algorithm setting. If data written with new checksum values is processed by an level of MySQL earlier than 5.6.3, it could be reported as corrupted.
When you set up a new MySQL instance, and can be sure that all the InnoDB data is created using the CRC32 checksum algorithm, you can use the setting innodb_checksum_algorithm=strict_crc32, which can be faster than the crc32 setting because it does not do the extra checksum calculations to support both old and new values.
The innodb_checksum_algorithm option has other values that allow it to replace the innodb_checksums option. innodb_checksum_algorithm=none is the same as innodb_checksums=OFF. innodb_checksum_algorithm=innodb is the same as innodb_checksums=ON. To avoid conflicts, remove references to innodb_checksums from your configuration file and MySQL startup scripts. The new option also accepts values strict_none and strict_innodb, again offering better performance in situations where all InnoDB data in an instance is created with the same checksum algorithm.
The following table illustrates the difference between the none, innodb, and crc32 option values, and their strict_ counterparts. none, innodb, and crc32 write the specified type checksum value into each data block, but for compatibility accept any of the other checksum values when verifying a block during a read operation. The strict_ form of each parameter only recognizes one kind of checksum, which makes verification faster but requires that all InnoDB data files in an instance be created under the identical innodb_checksum_algorithm value.
Table 14.3. Allowed Settings for innodb_checksum_algorithm
Value | Generated checksum (when writing) | Allowed checksums (when reading) |
---|---|---|
none | A constant number. | Any of the checksums generated by none, innodb, or crc32. |
innodb | A checksum calculated in software, using the original algorithm from InnoDB. | Any of the checksums generated by none, innodb, or crc32. |
crc32 | A checksum calculated using the crc32 algorithm, possibly done with a hardware assist. | Any of the checksums generated by none, innodb, or crc32. |
strict_none | A constant number | Only the checksum generated by none. |
strict_innodb | A checksum calculated in software, using the original algorithm from InnoDB. | Only the checksum generated by innodb. |
strict_crc32 | A checksum calculated using the crc32 algorithm, possibly done with a hardware assist. | Only the checksum generated by crc32. |
14.2.4.2.8. Faster Restart by Preloading the InnoDB Buffer Pool
After you restart a busy server, there is typically a warmup period with steadily increasing throughput, as disk pages that were in the InnoDB buffer pool are brought back into memory as the same data is queried, updated, and so on. Once the buffer pool holds a similar set of pages as before the restart, many operations are performed in memory rather than involving disk I/O, and throughput stabilizes at a high level.
This feature shortens the warmup period by immediately reloading disk pages that were in the buffer pool before the restart, rather than waiting for DML operations to access the corresponding rows. The I/O requests can be performed in large batches, making the overall I/O faster. The page loading happens in the background, and does not delay the database startup.
In addition to saving the buffer pool state at shutdown and restoring it at startup, you can also save or restore the state at any time. For example, you might save the state of the buffer pool after reaching a stable throughput under a steady workload. You might restore the previous buffer pool state after running reports or maintenance jobs that bring data pages into the buffer pool that are only needed during the time period for those operations, or after some other period with a non-typical workload.
Although the buffer pool itself could be many gigabytes in size, the data that InnoDB saves on disk to restore the buffer pool is tiny by comparison: just the tablespace and page IDs necessary to locate the appropriate pages on disk. This information is derived from the information_schema table innodb_buffer_page_lru.
Because the data is cached in and aged out of the buffer pool the same as with regular database operations, there is no problem if the disk pages were updated recently, or if a DML operation involves data that has not yet been loaded. The loading mechanism skips any requested pages that no longer exist.
This feature involves the configuration variables:
and the status variables:
To save the current state of the InnoDB buffer pool, issue the statement:
SET innodb_buffer_pool_dump_now=ON;
The underlying mechanism involves a background thread that is dispatched to perform the dump and load operations.
By default, the buffer pool state is saved in a file ib_buffer_pool in the InnoDB data directory.
Disk pages from compressed tables are loaded into the buffer pool in their compressed form. Uncompression happens as usual when the page contents are accessed in the course of DML operations. Because decompression is a CPU-intensive process, it is more efficient for concurrency to perform that operation in one of the connection threads rather than the single thread that performs the buffer pool restore operation.
Example 14.1. Examples of Dumping and Restoring the InnoDB Buffer Pool
Trigger a dump of the buffer pool manually:
SET innodb_buffer_pool_dump_now=ON;
Specify that a dump should be taken at shutdown:
SET innodb_buffer_pool_dump_at_shutdown=ON;
Specify that a dump should be loaded at startup:
SET innodb_buffer_pool_load_at_startup=ON;
Trigger a load of the buffer pool manually:
SET innodb_buffer_pool_load_now=ON;
Specify which filename to use for storing the dump to and loading the dump from:
SET innodb_buffer_pool_filename='filename';
Display progress of dump:
SHOW STATUS LIKE 'innodb_buffer_pool_dump_status';
or:
SELECT variable_value FROM information_schema.global_status WHERE
variable_name = 'INNODB_BUFFER_POOL_DUMP_STATUS';
Outputs any of: not started, Dumping buffer pool 5/7, page 237/2873, Finished at 110505 12:18:02
Display progress of load:
SHOW STATUS LIKE 'innodb_buffer_pool_load_status';
or:
SELECT variable_value FROM information_schema.global_status WHERE
variable_name = 'INNODB_BUFFER_POOL_LOAD_STATUS';
Outputs any of: not started, Loaded 123/22301 pages, Finished at 110505 12:23:24
Abort a buffer pool load:
SET innodb_buffer_pool_load_abort=ON;
14.2.4.2.9. Improvements to Buffer Pool Flushing
The new configuration options innodb_flush_neighbors and innodb_lru_scan_depth let you fine-tune certain aspects of the flushing process for the InnoDB buffer pool. These options primarily help write-intensive workloads. With heavy DML activity, flushing can fall behind if it is not aggressive enough, resulting in excessive memory use in the buffer pool; or, disk writes due to flushing can saturate your I/O capacity if that mechanism is too aggressive. The ideal settings depend on your workload, data access patterns, and storage configuration (for example, whether data is stored on HDD or SSD devices).
For systems with constant heavy workloads, or workloads that fluctuate widely, several new configuration options let you fine-tune the flushing behavior for InnoDB tables: innodb_adaptive_flushing_lwm, innodb_max_dirty_pages_pct_lwm, innodb_io_capacity_max, and innodb_flushing_avg_loops. These options feed into an improved formula used by the innodb_adaptive_flushing option.
The existing innodb_adaptive_flushing, innodb_io_capacity and innodb_max_dirty_pages_pct options work as before, except that they are limited or extended by other options: innodb_adaptive_flushing_lwm, innodb_io_capacity_max and innodb_max_dirty_pages_pct_lwm:
The InnoDB adaptive flushing mechanism is not appropriate in all cases. It gives the most benefit when the redo log is in danger of filling up. The innodb_adaptive_flushing_lwm option specifies a percentage of redo log capacity; when that threshold is crossed, InnoDB turns on adaptive flushing even if not specified by the innodb_adaptive_flushing option.
If flushing activity falls far behind, InnoDB can flush more aggressively than specified by innodb_io_capacity. innodb_io_capacity_max represents an upper limit on the I/O capacity used in such emergency situations, so that the spike in I/O does not consume all the capacity of the server.
When the innodb_max_dirty_pages_pct threshold is crossed, InnoDB can begin aggressively flushing pages to disk. The innodb_max_dirty_pages_pct_lwm option specifies a higher value at which InnoDB begins gently flushing pages, ideally preventing the percentage of dirty pages from reaching innodb_max_dirty_pages_pct. A value of innodb_max_dirty_pages_pct_lwm=0 disables this “preflushing” behavior.
All of these options are most applicable for servers running heavy workloads for long periods of time, when there is rarely enough idle time to catch up with changes waiting to be written to disk. The innodb_flushing_avg_loops lets you distinguish between a server that is running at full capacity 24x7 and one that experiences periodic spikes in workload. For a server with a consistently high workload, keep this value high so that the adaptive flushing algorithm responds immediately to changes in the I/O rate. For a server that experiences peaks and troughs in its workload, keep this value low so that InnoDB does not overreact to sudden spikes in DML activity.
14.2.4.2.10. Persistent Optimizer Statistics for InnoDB Tables
Plan stability is a desirable goal for your biggest and most important queries. InnoDB has always computed statistics for each InnoDB table to help the optimizer find the most efficient query execution plan. Now you can make these statistics persistent, so that the index usage and join order for a particular query is less likely to change.
This feature is on by default, enabled by the configuration option innodb_stats_persistent.
You control how much sampling is done to collect the statistics by setting the configuration options innodb_stats_persistent_sample_pages and innodb_stats_transient_sample_pages.
The configuration option innodb_stats_auto_recalc determines whether the statistics are calculated automatically whenever a table undergoes substantial changes (to more than 10% of the rows). If that setting is disabled, ensure the accuracy of optimizer statistics by issuing the ANALYZE TABLE statement for each applicable table after creating an index or making substantial changes to indexed columns. You might run this statement in your setup scripts after representative data has been loaded into the table, and run it periodically after DML operations significantly change the contents of indexed columns, or on a schedule at times of low activity.
Caution
To ensure statistics are gathered when a new index is created, either enable the innodb_stats_auto_recalc option, or run ANALYZE TABLE after creating each new index when the persistent statistics mode is enabled.
You can also set innodb_stats_persistent, innodb_stats_auto_recalc, and innodb_stats_sample_pages options at the session level before creating a table, or use the STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES clauses on the CREATE TABLE and ALTER TABLE statements, to override the system-wide setting and configure persistent statistics for individual tables.
Formerly, these statistics were cleared on each server restart and after some other operations, and recomputed when the table was next accessed. The statistics are computed using a random sampling technique that could produce different estimates the next time, leading to different choices in the execution plan and thus variations in query performance.
To revert to the previous method of collecting statistics that are periodically erased, run the command ALTER TABLE tbl_name STATS_PERSISTENT=0.
The persistent statistics feature relies on the internally managed tables in the mysql database, named innodb_table_stats and innodb_index_stats. These tables are set up automatically in all install, upgrade, and build-from-source procedures.
If you manually update the statistics in the tables during troubleshooting or tuning, issue the command FLUSH TABLE tbl_name to make MySQL reload the updated statistics.
14.2.4.2.11. Faster Locking for Improved Scalability
In MySQL and InnoDB, multiple threads of execution access shared data structures. InnoDB synchronizes these accesses with its own implementation of mutexes and read/write locks. InnoDB has historically protected the internal state of a read/write lock with an InnoDB mutex. On Unix and Linux platforms, the internal state of an InnoDB mutex is protected by a Pthreads mutex, as in IEEE Std 1003.1c (POSIX.1c).
On many platforms, there is a more efficient way to implement mutexes and read/write locks. Atomic operations can often be used to synchronize the actions of multiple threads more efficiently than Pthreads. Each operation to acquire or release a lock can be done in fewer CPU instructions, and thus result in less wasted time when threads are contending for access to shared data structures. This in turn means greater scalability on multi-core platforms.
InnoDB implements mutexes and read/write locks with the built-in functions provided by the GNU Compiler Collection (GCC) for atomic memory access instead of using the Pthreads approach previously used. More specifically, an InnoDB that is compiled with GCC version 4.1.2 or later uses the atomic builtins instead of a pthread_mutex_t to implement InnoDB mutexes and read/write locks.
On 32-bit Microsoft Windows, InnoDB has implemented mutexes (but not read/write locks) with hand-written assembler instructions. Beginning with Microsoft Windows 2000, functions for Interlocked Variable Access are available that are similar to the built-in functions provided by GCC. On Windows 2000 and higher, InnoDB makes use of the Interlocked functions. Unlike the old hand-written assembler code, the new implementation supports read/write locks and 64-bit platforms.
Solaris 10 introduced library functions for atomic operations, and InnoDB uses these functions by default. When MySQL is compiled on Solaris 10 with a compiler that does not support the built-in functions provided by the GNU Compiler Collection (GCC) for atomic memory access, InnoDB uses the library functions.
This change improves the scalability of InnoDB on multi-core systems. This feature is enabled out-of-the-box on the platforms where it is supported. You do not have to set any parameter or option to take advantage of the improved performance. On platforms where the GCC, Windows, or Solaris functions for atomic memory access are not available, InnoDB uses the traditional Pthreads method of implementing mutexes and read/write locks.
When MySQL starts, InnoDB writes a message to the log file indicating whether atomic memory access is used for mutexes, for mutexes and read/write locks, or neither. If suitable tools are used to build InnoDB and the target CPU supports the atomic operations required, InnoDB uses the built-in functions for mutexing. If, in addition, the compare-and-swap operation can be used on thread identifiers (pthread_t), then InnoDB uses the instructions for read-write locks as well.
Note: If you are building from source, ensure that the build process properly takes advantage of your platform capabilities.
For more information about the performance implications of locking, see Section 8.10, “Optimizing Locking Operations”.
14.2.4.2.12. Using Operating System Memory Allocators
When InnoDB was developed, the memory allocators supplied with operating systems and run-time libraries were often lacking in performance and scalability. At that time, there were no memory allocator libraries tuned for multi-core CPUs. Therefore, InnoDB implemented its own memory allocator in the mem subsystem. This allocator is guarded by a single mutex, which may become a bottleneck. InnoDB also implements a wrapper interface around the system allocator (malloc and free) that is likewise guarded by a single mutex.
Today, as multi-core systems have become more widely available, and as operating systems have matured, significant improvements have been made in the memory allocators provided with operating systems. New memory allocators perform better and are more scalable than they were in the past. The leading high-performance memory allocators include Hoard, libumem, mtmalloc, ptmalloc, tbbmalloc, and TCMalloc. Most workloads, especially those where memory is frequently allocated and released (such as multi-table joins), benefit from using a more highly tuned memory allocator as opposed to the internal, InnoDB-specific memory allocator.
You can control whether InnoDB uses its own memory allocator or an allocator of the operating system, by setting the value of the system configuration parameter innodb_use_sys_malloc in the MySQL option file (my.cnf or my.ini). If set to ON or 1 (the default), InnoDB uses the malloc and free functions of the underlying system rather than manage memory pools itself. This parameter is not dynamic, and takes effect only when the system is started. To continue to use the InnoDB memory allocator, set innodb_use_sys_malloc to 0.
Note
When the InnoDB memory allocator is disabled, InnoDB ignores the value of the parameter innodb_additional_mem_pool_size. The InnoDB memory allocator uses an additional memory pool for satisfying allocation requests without having to fall back to the system memory allocator. When the InnoDB memory allocator is disabled, all such allocation requests are fulfilled by the system memory allocator.
On Unix-like systems that use dynamic linking, replacing the memory allocator may be as easy as making the environment variable LD_PRELOAD or LD_LIBRARY_PATH point to the dynamic library that implements the allocator. On other systems, some relinking may be necessary. Please refer to the documentation of the memory allocator library of your choice.
Since InnoDB cannot track all memory use when the system memory allocator is used (innodb_use_sys_malloc is ON), the section “BUFFER POOL AND MEMORY” in the output of the SHOW ENGINE INNODB STATUS command only includes the buffer pool statistics in the “Total memory allocated”. Any memory allocated using the mem subsystem or using ut_malloc is excluded.
For more information about the performance implications of InnoDB memory usage, see Section 8.9, “Buffering and Caching”.
14.2.4.2.13. Controlling InnoDB Change Buffering
When INSERT, UPDATE, and DELETE operations are done to a table, often the values of indexed columns (particularly the values of secondary keys) are not in sorted order, requiring substantial I/O to bring secondary indexes up to date. InnoDB has an insert buffer that caches changes to secondary index entries when the relevant page is not in the buffer pool, thus avoiding I/O operations by not reading in the page from the disk. The buffered changes are merged when the page is loaded to the buffer pool, and the updated page is later flushed to disk using the normal mechanism. The InnoDB main thread merges buffered changes when the server is nearly idle, and during a slow shutdown.
Because it can result in fewer disk reads and writes, this feature is most valuable for workloads that are I/O-bound, for example applications with a high volume of DML operations such as bulk inserts.
However, the insert buffer occupies a part of the buffer pool, reducing the memory available to cache data pages. If the working set almost fits in the buffer pool, or if your tables have relatively few secondary indexes, it may be useful to disable insert buffering. If the working set entirely fits in the buffer pool, insert buffering does not impose any extra overhead, because it only applies to pages that are not in the buffer pool.
You can control the extent to which InnoDB performs insert buffering with the system configuration parameter innodb_change_buffering. You can turn on and off buffering for inserts, delete operations (when index records are initially marked for deletion) and purge operations (when index records are physically deleted). An update operation is represented as a combination of an insert and a delete. In MySQL 5.5 and higher, the default value is changed from inserts to all.
The allowed values of innodb_change_buffering are:
all
The default value: buffer inserts, delete-marking operations, and purges.
none
Do not buffer any operations.
inserts
Buffer insert operations.
deletes
Buffer delete-marking operations.
changes
Buffer both inserts and delete-marking.
purges
Buffer the physical deletion operations that happen in the background.
You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege. Changing the setting affects the buffering of new operations; the merging of already buffered entries is not affected.
For more information about speeding up INSERT, UPDATE, and DELETE statements, see Section 8.2.2, “Optimizing DML Statements”.
14.2.4.2.14. Controlling Adaptive Hash Indexing
If a table fits almost entirely in main memory, the fastest way to perform queries on it is to use hash indexes rather than B-tree lookups. MySQL monitors searches on each index defined for an InnoDB table. If it notices that certain index values are being accessed frequently, it automatically builds an in-memory hash table for that index. See Section 14.2.3.12.6, “Adaptive Hash Indexes” for background information and usage guidelines for the adaptive hash index feature and the innodb_adaptive_hash_index configuration option.
14.2.4.2.15. Changes Regarding Thread Concurrency
InnoDB uses operating system threads to process requests from user transactions. (Transactions may issue many requests to InnoDB before they commit or roll back.) On modern operating systems and servers with multi-core processors, where context switching is efficient, most workloads run well without any limit on the number of concurrent threads. Scalability improvements in MySQL 5.5 and up reduce the need to limit the number of concurrently executing threads inside InnoDB.
In situations where it is helpful to minimize context switching between threads, InnoDB can use a number of techniques to limit the number of concurrently executing operating system threads (and thus the number of requests that are processed at any one time). When InnoDB receives a new request from a user session, if the number of threads concurrently executing is at a pre-defined limit, the new request sleeps for a short time before it tries again. A request that cannot be rescheduled after the sleep is put in a first-in/first-out queue and eventually is processed. Threads waiting for locks are not counted in the number of concurrently executing threads.
You can limit the number of concurrent threads by setting the configuration parameter innodb_thread_concurrency. Once the number of executing threads reaches this limit, additional threads sleep for a number of microseconds, set by the configuration parameter innodb_thread_sleep_delay, before being placed into the queue.
Previously, it required experimentation to find the optimal value for innodb_thread_sleep_delay, and the optimal value could change depending on the workload. In MySQL 5.6.3 and higher, you can set the configuration option innodb_adaptive_max_sleep_delay to the highest value you would allow for innodb_thread_sleep_delay, and InnoDB automatically adjusts innodb_thread_sleep_delay up or down depending on the current thread-scheduling activity. This dynamic adjustment helps the thread scheduling mechanism to work smoothly during times when the system is lightly loaded and when it is operating near full capacity.
The default value for innodb_thread_concurrency and the implied default limit on the number of concurrent threads has been changed in various releases of MySQL and InnoDB. Currently, the default value of innodb_thread_concurrency is 0, so that by default there is no limit on the number of concurrently executing threads, as shown in Table 14.4, “Changes to innodb_thread_concurrency”.
Table 14.4. Changes to innodb_thread_concurrency
InnoDB Version | MySQL Version | Default value | Default limit of concurrent threads | Value to allow unlimited threads |
---|---|---|---|---|
Built-in | Earlier than 5.1.11 | 20 | No limit | 20 or higher |
Built-in | 5.1.11 and newer | 8 | 8 | 0 |
InnoDB before 1.0.3 | (corresponding to Plugin) | 8 | 8 | 0 |
InnoDB 1.0.3 and newer | (corresponding to Plugin) | 0 | No limit | 0 |
Note that InnoDB causes threads to sleep only when the number of concurrent threads is limited. When there is no limit on the number of threads, all contend equally to be scheduled. That is, if innodb_thread_concurrency is 0, the value of innodb_thread_sleep_delay is ignored.
When there is a limit on the number of threads, InnoDB reduces context switching overhead by permitting multiple requests made during the execution of a single SQL statement to enter InnoDB without observing the limit set by innodb_thread_concurrency. Since an SQL statement (such as a join) may comprise multiple row operations within InnoDB, InnoDB assigns “tickets” that allow a thread to be scheduled repeatedly with minimal overhead.
When a new SQL statement starts, a thread has no tickets, and it must observe innodb_thread_concurrency. Once the thread is entitled to enter InnoDB, it is assigned a number of tickets that it can use for subsequently entering InnoDB. If the tickets run out, innodb_thread_concurrency is observed again and further tickets are assigned. The number of tickets to assign is specified by the global option innodb_concurrency_tickets, which is 500 by default. A thread that is waiting for a lock is given one ticket once the lock becomes available.
The correct values of these variables depend on your environment and workload. Try a range of different values to determine what value works for your applications. Before limiting the number of concurrently executing threads, review configuration options that may improve the performance of InnoDB on multi-core and multi-processor computers, such as innodb_use_sys_malloc and innodb_adaptive_hash_index.
For general performance information about MySQL thread handling, see Section 8.11.5.1, “How MySQL Uses Threads for Client Connections”.
14.2.4.2.16. Changes in the Read-Ahead Algorithm
A read-ahead request is an I/O request to prefetch multiple pages in the buffer pool asynchronously, in anticipation that these pages will be needed soon. The requests bring in all the pages in one extent. InnoDB uses two read-ahead algorithms to improve I/O performance:
Linear read-ahead is a technique that predicts what pages might be needed soon based on pages in the buffer pool being accessed sequentially. You control when InnoDB performs a read-ahead operation by adjusting the number of sequential page accesses required to trigger an asynchronous read request, using the configuration parameter innodb_read_ahead_threshold. Before this parameter was added, InnoDB would only calculate whether to issue an asynchronous prefetch request for the entire next extent when it read in the last page of the current extent.
The new configuration parameter innodb_read_ahead_threshold controls how sensitive InnoDB is in detecting patterns of sequential page access. If the number of pages read sequentially from an extent is greater than or equal to innodb_read_ahead_threshold, InnoDB initiates an asynchronous read-ahead operation of the entire following extent. It can be set to any value from 0-64. The default value is 56. The higher the value, the more strict the access pattern check. For example, if you set the value to 48, InnoDB triggers a linear read-ahead request only when 48 pages in the current extent have been accessed sequentially. If the value is 8, InnoDB would trigger an asynchronous read-ahead even if as few as 8 pages in the extent were accessed sequentially. You can set the value of this parameter in the MySQL configuration file, or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege.
Random read-ahead is a technique that predicts when pages might be needed soon based on pages already in the buffer pool, regardless of the order in which those pages were read. If 13 consecutive pages from the same extent are found in the buffer pool, InnoDB asynchronously issues a request to prefetch the remaining pages of the extent. This feature was initially turned off in MySQL 5.5. It is available once again starting in MySQL 5.1.59 and 5.5.16 and higher, turned off by default. To enable this feature, set the configuration variable innodb_random_read_ahead.
The SHOW ENGINE INNODB STATUS command displays statistics to help you evaluate the effectiveness of the read-ahead algorithm. With the return of random read-ahead in MySQL 5.6, the SHOW ENGINE INNODB STATUS command once again includes Innodb_buffer_pool_read_ahead_rnd. Innodb_buffer_pool_read_ahead keeps its current name. (In earlier releases, it was listed as Innodb_buffer_pool_read_ahead_seq.) See Section 14.2.5.11, “More Read-Ahead Statistics” for more information.
For more information about I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O” and Section 8.11.3, “Optimizing Disk I/O”.
14.2.4.2.17. Multiple Background InnoDB I/O Threads
InnoDB uses background threads to service various types of I/O requests. You can configure the number of background threads that service read and write I/O on data pages, using the configuration parameters innodb_read_io_threads and innodb_write_io_threads. These parameters signify the number of background threads used for read and write requests respectively. They are effective on all supported platforms. You can set the value of these parameters in the MySQL option file (my.cnf or my.ini); you cannot change them dynamically. The default value for these parameters is 4 and the permissible values range from 1-64.
The purpose of this change is to make InnoDB more scalable on high end systems. Each background thread can handle up to 256 pending I/O requests. A major source of background I/O is the read-ahead requests. InnoDB tries to balance the load of incoming requests in such way that most of the background threads share work equally. InnoDB also attempts to allocate read requests from the same extent to the same thread to increase the chances of coalescing the requests together. If you have a high end I/O subsystem and you see more than 64 × innodb_read_io_threads pending read requests in SHOW ENGINE INNODB STATUS, you might gain by increasing the value of innodb_read_io_threads.
For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
14.2.4.2.18. Asynchronous I/O on Linux
Starting in InnoDB 1.1 with MySQL 5.5, the asynchronous I/O capability that InnoDB has had on Windows systems is now available on Linux systems. (Other Unix-like systems continue to use synchronous I/O calls.) This feature improves the scalability of heavily I/O-bound systems, which typically show many pending reads/writes in the output of the command SHOW ENGINE INNODB STATUS\G.
Running with a large number of InnoDB I/O threads, and especially running multiple such instances on the same server machine, can exceed capacity limits on Linux systems. In this case, you can fix the error:
EAGAIN: The specified maxevents exceeds the user's limit of available events.
by writing a higher limit to /proc/sys/fs/aio-max-nr.
In general, if a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from starting, set the option innodb_use_native_aio=0 in the configuration file. This new configuration option applies to Linux systems only, and cannot be changed once the server is running.
For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
14.2.4.2.19. Group Commit
InnoDB, like any other ACID-compliant database engine, flushes the redo log of a transaction before it is committed. Historically, InnoDB used group commit functionality to group multiple such flush requests together to avoid one flush for each commit. With group commit, InnoDB issues a single write to the log file to perform the commit action for multiple user transactions that commit at about the same time, significantly improving throughput.
Group commit in InnoDB worked until MySQL 4.x, and works once again with MySQL 5.1 with the InnoDB Plugin, and MySQL 5.5 and higher. The introduction of support for the distributed transactions and Two Phase Commit (2PC) in MySQL 5.0 interfered with the InnoDB group commit functionality. This issue is now resolved.
The group commit functionality inside InnoDB works with the Two Phase Commit protocol in MySQL. Re-enabling of the group commit functionality fully ensures that the ordering of commit in the MySQL binlog and the InnoDB logfile is the same as it was before. It means it is totally safe to use the MySQL Enterprise Backup product with InnoDB 1.0.4 (that is, the InnoDB Plugin with MySQL 5.1) and above. When the binlog is enabled, you typically also set the configuration option sync_binlog=0, because group commit for the binary log is only supported if it is set to 0.
Group commit is transparent; you do not need to do anything to take advantage of this significant performance improvement.
For more information about performance of COMMIT and other transactional operations, see Section 8.5.2, “Optimizing InnoDB Transaction Management”.
14.2.4.2.20. Controlling the InnoDB Master Thread I/O Rate
The master thread in InnoDB is a thread that performs various tasks in the background. Most of these tasks are I/O related, such as flushing dirty pages from the buffer pool or writing changes from the insert buffer to the appropriate secondary indexes. The master thread attempts to perform these tasks in a way that does not adversely affect the normal working of the server. It tries to estimate the free I/O bandwidth available and tune its activities to take advantage of this free capacity. Historically, InnoDB has used a hard coded value of 100 IOPs (input/output operations per second) as the total I/O capacity of the server.
The parameter innodb_io_capacity indicates the overall I/O capacity available to InnoDB, per buffer pool instance. This parameter should be set to approximately the number of I/O operations that the system can perform per second. The value depends on your system configuration. When innodb_io_capacity is set, the master threads estimates the I/O bandwidth available for background tasks based on the set value. Setting the value to 100 reverts to the old behavior.
You can set the value of innodb_io_capacity to any number 100 or greater. The default value is 200, reflecting that the performance of typical modern I/O devices is higher than in the early days of MySQL. Typically, values around the previous default of 100 are appropriate for consumer-level storage devices, such as hard drives up to 7200 RPMs. Faster hard drives, RAID configurations, and SSDs benefit from higher values.
You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege.
Formerly, the InnoDB master thread also performed any needed purge operations. In MySQL 5.6.5 and higher, those I/O operations are moved to other background threads, whose number is controlled by the innodb_purge_threads configuration option.
For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
14.2.4.2.21. Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool
InnoDB performs certain tasks in the background, including flushing of dirty pages (those pages that have been changed but are not yet written to the database files) from the buffer pool, a task performed by the master thread. Currently, InnoDB aggressively flushes buffer pool pages if the percentage of dirty pages in the buffer pool exceeds innodb_max_dirty_pages_pct.
InnoDB uses a new algorithm to estimate the required rate of flushing, based on the speed of redo log generation and the current rate of flushing. The intent is to smooth overall performance by ensuring that buffer flush activity keeps up with the need to keep the buffer pool “clean”. Automatically adjusting the rate of flushing can help to avoid sudden dips in throughput, when excessive buffer pool flushing limits the I/O capacity available for ordinary read and write activity.
InnoDB uses its log files in a circular fashion. Before reusing a portion of a log file, InnoDB flushes to disk all dirty buffer pool pages whose redo entries are contained in that portion of the log file, a process known as a sharp checkpoint. If a workload is write-intensive, it generates a lot of redo information, all written to the log file. If all available space in the log files is used up, a sharp checkpoint occurs, causing a temporary reduction in throughput. This situation can happen even though innodb_max_dirty_pages_pct is not reached.
InnoDB uses a heuristic-based algorithm to avoid such a scenario, by measuring the number of dirty pages in the buffer pool and the rate at which redo is being generated. Based on these numbers, InnoDB decides how many dirty pages to flush from the buffer pool each second. This self-adapting algorithm is able to deal with sudden changes in the workload.
Internal benchmarking has also shown that this algorithm not only maintains throughput over time, but can also improve overall throughput significantly.
Because adaptive flushing is a new feature that can significantly affect the I/O pattern of a workload, a new configuration parameter lets you turn off this feature. The default value of the boolean parameter innodb_adaptive_flushing is TRUE, enabling the new algorithm. You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege.
For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
14.2.4.2.22. Using the PAUSE Instruction in InnoDB Spin Loops
Synchronization inside InnoDB frequently involves the use of spin loops: while waiting, InnoDB executes a tight loop of instructions repeatedly to avoid having the InnoDB process and threads be rescheduled by the operating system. If the spin loops are executed too quickly, system resources are wasted, imposing a performance penalty on transaction throughput. Most modern processors implement the PAUSE instruction for use in spin loops, so the processor can be more efficient.
InnoDB uses a PAUSE instruction in its spin loops on all platforms where such an instruction is available. This technique increases overall performance with CPU-bound workloads, and has the added benefit of minimizing power consumption during the execution of the spin loops.
You do not have to do anything to take advantage of this performance improvement.
For performance considerations for InnoDB locking operations, see Section 8.10, “Optimizing Locking Operations”.
14.2.4.2.23. Control of Spin Lock Polling
Many InnoDB mutexes and rw-locks are reserved for a short time. On a multi-core system, it can be more efficient for a thread to continuously check if it can acquire a mutex or rw-lock for a while before sleeping. If the mutex or rw-lock becomes available during this polling period, the thread can continue immediately, in the same time slice. However, too-frequent polling by multiple threads of a shared object can cause “cache ping pong”, different processors invalidating portions of each others' cache. InnoDB minimizes this issue by waiting a random time between subsequent polls. The delay is implemented as a busy loop.
You can control the maximum delay between testing a mutex or rw-lock using the parameter innodb_spin_wait_delay. The duration of the delay loop depends on the C compiler and the target processor. (In the 100MHz Pentium era, the unit of delay was one microsecond.) On a system where all processor cores share a fast cache memory, you might reduce the maximum delay or disable the busy loop altogether by setting innodb_spin_wait_delay=0. On a system with multiple processor chips, the effect of cache invalidation can be more significant and you might increase the maximum delay.
The default value of innodb_spin_wait_delay is 6. The spin wait delay is a dynamic global parameter that you can specify in the MySQL option file (my.cnf or my.ini) or change at runtime with the command SET GLOBAL innodb_spin_wait_delay=delay, where delay is the desired maximum delay. Changing the setting requires the SUPER privilege.
For performance considerations for InnoDB locking operations, see Section 8.10, “Optimizing Locking Operations”.
14.2.4.2.24. Making the Buffer Pool Scan Resistant
Rather than using a strictly LRU algorithm, InnoDB uses a technique to minimize the amount of data that is brought into the buffer pool and never accessed again. The goal is to make sure that frequently accessed (“hot”) pages remain in the buffer pool, even as read-ahead and full table scans bring in new blocks that might or might not be accessed afterward.
Newly read blocks are inserted into the middle of the list representing the buffer pool. of the LRU list. All newly read pages are inserted at a location that by default is 3/8 from the tail of the LRU list. The pages are moved to the front of the list (the most-recently used end) when they are accessed in the buffer pool for the first time. Thus pages that are never accessed never make it to the front portion of the LRU list, and “age out” sooner than with a strict LRU approach. This arrangement divides the LRU list into two segments, where the pages downstream of the insertion point are considered “old” and are desirable victims for LRU eviction.
For an explanation of the inner workings of the InnoDB buffer pool and the specifics of its LRU replacement algorithm, see Section 8.9.1, “The InnoDB Buffer Pool”.
You can control the insertion point in the LRU list, and choose whether InnoDB applies the same optimization to blocks brought into the buffer pool by table or index scans. The configuration parameter innodb_old_blocks_pct controls the percentage of “old” blocks in the LRU list. The default value of innodb_old_blocks_pct is 37, corresponding to the original fixed ratio of 3/8. The value range is 5 (new pages in the buffer pool age out very quickly) to 95 (only 5% of the buffer pool is reserved for hot pages, making the algorithm close to the familiar LRU strategy).
The optimization that keeps the buffer pool from being churned by read-ahead can avoid similar problems due to table or index scans. In these scans, a data page is typically accessed a few times in quick succession and is never touched again. The configuration parameter innodb_old_blocks_time specifies the time window (in milliseconds) after the first access to a page during which it can be accessed without being moved to the front (most-recently used end) of the LRU list. The default value of innodb_old_blocks_time is 0, corresponding to the original behavior of moving a page to the most-recently used end of the buffer pool list when it is first accessed in the buffer pool. Increasing this value makes more and more blocks likely to age out faster from the buffer pool.
Both innodb_old_blocks_pct and innodb_old_blocks_time are dynamic, global and can be specified in the MySQL option file (my.cnf or my.ini) or changed at runtime with the SET GLOBAL command. Changing the setting requires the SUPER privilege.
To help you gauge the effect of setting these parameters, the SHOW ENGINE INNODB STATUS command reports additional statistics. The BUFFER POOL AND MEMORY section looks like:
Total memory allocated 1107296256; in additional pool allocated 0
Dictionary memory allocated 80360
Buffer pool size 65535
Free buffers 0
Database pages 63920
Old database pages 23600
Modified db pages 34969
Pending reads 32
Pending writes: LRU 0, flush list 0, single page 0
Pages made young 414946, not young 2930673
1274.75 youngs/s, 16521.90 non-youngs/s
Pages read 486005, created 3178, written 160585
2132.37 reads/s, 3.40 creates/s, 323.74 writes/s
Buffer pool hit rate 950 / 1000, young-making rate 30 / 1000 not 392 / 1000
Pages read ahead 1510.10/s, evicted without access 0.00/s
LRU len: 63920, unzip_LRU len: 0
I/O sum[43690]:cur[221], unzip sum[0]:cur[0]
Old database pages is the number of pages in the “old” segment of the LRU list.
Pages made young and not young is the total number of “old” pages that have been made young or not respectively.
youngs/s and non-young/s is the rate at which page accesses to the “old” pages have resulted in making such pages young or otherwise respectively since the last invocation of the command.
young-making rate and not provides the same rate but in terms of overall buffer pool accesses instead of accesses just to the “old” pages.
Because the effects of these parameters can vary widely based on your hardware configuration, your data, and the details of your workload, always benchmark to verify the effectiveness before changing these settings in any performance-critical or production environment.
In mixed workloads where most of the activity is OLTP type with periodic batch reporting queries which result in large scans, setting the value of innodb_old_blocks_time during the batch runs can help keep the working set of the normal workload in the buffer pool.
When scanning large tables that cannot fit entirely in the buffer pool, setting innodb_old_blocks_pct to a small value keeps the data that is only read once from consuming a significant portion of the buffer pool. For example, setting innodb_old_blocks_pct=5 restricts this data that is only read once to 5% of the buffer pool.
When scanning small tables that do fit into memory, there is less overhead for moving pages around within the buffer pool, so you can leave innodb_old_blocks_pct at its default value, or even higher, such as innodb_old_blocks_pct=50.
The effect of the innodb_old_blocks_time parameter is harder to predict than the innodb_old_blocks_pct parameter, is relatively small, and varies more with the workload. To arrive at an optimal value, conduct your own benchmarks if the performance improvement from adjusting innodb_old_blocks_pct is not sufficient.
For more information about the InnoDB buffer pool, see Section 8.9.1, “The InnoDB Buffer Pool”.
14.2.4.2.25. Improvements to Crash Recovery Performance
A number of optimizations speed up certain steps of the recovery that happens on the next startup after a crash. In particular, scanning the redo log and applying the redo log are faster than in MySQL 5.1 and earlier, due to improved algorithms for memory management. You do not need to take any actions to take advantage of this performance enhancement. If you kept the size of your redo log files artificially low because recovery took a long time, you can consider increasing the file size.
For more information about InnoDB recovery, see Section 14.2.3.13, “The InnoDB Recovery Process”.
14.2.4.2.26. Integration with the MySQL Performance Schema
Starting with InnoDB 1.1 with MySQL 5.5, you can profile certain internal InnoDB operations using the MySQL Performance Schema feature. This type of tuning is primarily for expert users, those who push the limits of MySQL performance, read the MySQL source code, and evaluate optimization strategies to overcome performance bottlenecks. DBAs can also use this feature for capacity planning, to see whether their typical workload encounters any performance bottlenecks with a particular combination of CPU, RAM, and disk storage; and if so, to judge whether performance can be improved by increasing the capacity of some part of the system.
To use this feature to examine InnoDB performance:
You must be running MySQL 5.5 or higher. You must build the database server from source, enabling the Performance Schema feature by building with the --with-perfschema option. Since the Performance Schema feature introduces some performance overhead, you should use it on a test or development system rather than on a production system.
You must be running InnoDB 1.1 or higher.
You must be generally familiar with how to use the Performance Schema feature, for example to query tables in the performance_schema database.
Examine the following kinds of InnoDB objects by querying the appropriate performance_schema tables. The items associated with InnoDB all contain the substring innodb in the EVENT_NAME column.
For the definitions of the *_instances tables, see Section 20.9.2, “Performance Schema Instance Tables”. For the definitions of the *_summary_* tables, see Section 20.9.8, “Performance Schema Summary Tables”. For the definition of the thread table, see Section 20.9.9, “Performance Schema Miscellaneous Tables”. For the definition of the *_current_* and *_history_* tables, see Section 20.9.3, “Performance Schema Wait Event Tables”.
Mutexes in the mutex_instances table. (Mutexes and RW-locks related to the InnoDB buffer pool are not included in this coverage; the same applies to the output of the SHOW ENGINE INNODB MUTEX command.)
RW-locks in the rwlock_instances table.
RW-locks in the rwlock_instances table.
File I/O operations in the file_instances, file_summary_by_event_name, and file_summary_by_instance tables.
Threads in the PROCESSLIST table.
During performance testing, examine the performance data in the events_waits_current and events_waits_history_long tables. If you are interested especially in InnoDB-related objects, use the clause WHERE EVENT_NAME LIKE '%innodb%' to see just those entries; otherwise, examine the performance statistics for the overall MySQL server.
You must be running MySQL 5.5, with the Performance Schema enabled by building with the --with-perfschema build option.
For more information about the MySQL Performance Schema, see Chapter 20, MySQL Performance Schema.
14.2.4.2.27. Improvements to Performance from Multiple Buffer Pools
This performance enhancement is primarily useful for people with a large buffer pool size, typically in the multi-gigabyte range. To take advantage of this speedup, you must set the new innodb_buffer_pool_instances configuration option, and you might also adjust the innodb_buffer_pool_size value.
When the InnoDB buffer pool is large, many data requests can be satisfied by retrieving from memory. You might encounter bottlenecks from multiple threads trying to access the buffer pool at once. Starting in InnoDB 1.1 and MySQL 5.5, you can enable multiple buffer pools to minimize this contention. Each page that is stored in or read from the buffer pool is assigned to one of the buffer pools randomly, using a hashing function. Each buffer pool manages its own free lists, flush lists, LRUs, and all other data structures connected to a buffer pool, and is protected by its own buffer pool mutex.
To enable this feature, set the innodb_buffer_pool_instances configuration option to a value greater than 1 (the default) up to 64 (the maximum). This option takes effect only when you set the innodb_buffer_pool_size to a size of 1 gigabyte or more. The total size you specify is divided among all the buffer pools. For best efficiency, specify a combination of innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool instance is at least 1 gigabyte.
For more information about the InnoDB buffer pool, see Section 8.9.1, “The InnoDB Buffer Pool”.
14.2.4.2.28. Better Scalability with Multiple Rollback Segments
Starting in InnoDB 1.1 with MySQL 5.5, the limit on concurrent transactions is greatly expanded, removing a bottleneck with the InnoDB rollback segment that affected high-capacity systems. The limit applies to concurrent transactions that change any data; read-only transactions do not count against that maximum.
The single rollback segment is now divided into 128 segments, each of which can support up to 1023 transactions that perform writes, for a total of approximately 128K concurrent transactions. The original transaction limit was 1023.
Each transaction is assigned to one of the rollback segments, and remains tied to that rollback segment for the duration. This enhancement improves both scalability (higher number of concurrent transactions) and performance (less contention when different transactions access the rollback segments).
To take advantage of this feature, you do not need to create any new database or tables, or reconfigure anything. You must do a slow shutdown before upgrading from MySQL 5.1 or earlier, or some time afterward. InnoDB makes the required changes inside the system tablespace automatically, the first time you restart after performing a slow shutdown.
If your workload was not constrained by the original limit of 1023 concurrent transactions, you can reduce the number of rollback segments used within a MySQL instance or within a session by setting the configuration option innodb_rollback_segments.
For more information about performance of InnoDB under high transactional load, see Section 8.5.2, “Optimizing InnoDB Transaction Management”.
14.2.4.2.29. Better Scalability with Improved Purge Scheduling
The purge operations (a type of garbage collection) that InnoDB performs automatically is now done in one or more separate threads, rather than as part of the master thread. This change improves scalability, because the main database operations run independently from maintenance work happening in the background.
To control this feature, increase the value of the configuration option innodb_purge_threads=n. If DML action is concentrated on a single table or a few tables, keep the setting low so that the threads do not contend with each other for access to the busy tables. If DML operations are spread across many tables, increase the setting. Its maximum is 32.
There is another related configuration option, innodb_purge_batch_size with a default of 20 and maximum of 5000. This option is mainly intended for experimentation and tuning of purge operations, and should not be interesting to typical users.
For more information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
14.2.4.2.30. Improved Log Sys Mutex
This is another performance improvement that comes for free, with no user action or configuration needed. The details here are intended for performance experts who delve into the InnoDB source code, or interpret reports with keywords such as “mutex” and “log_sys”.
The mutex known as the log sys mutex has historically done double duty, controlling access to internal data structures related to log records and the LSN, as well as pages in the buffer pool that are changed when a mini-transaction is committed. Starting in InnoDB 1.1 with MySQL 5.5, these two kinds of operations are protected by separate mutexes, with a new log_buf mutex controlling writes to buffer pool pages due to mini-transactions.
For performance considerations for InnoDB locking operations, see Section 8.10, “Optimizing Locking Operations”.
14.2.4.2.31. Separate Flush List Mutex
Starting with InnoDB 1.1 with MySQL 5.5, concurrent access to the buffer pool is faster. Operations involving the flush list, a data structure related to the buffer pool, are now controlled by a separate mutex and do not block access to the buffer pool. You do not need to configure anything to take advantage of this speedup; it is fully automatic.
For more information about the InnoDB buffer pool, see Section 8.9.1, “The InnoDB Buffer Pool”.
14.2.4.2.32. Kernel Mutex Split
The mutex controlling concurrent access to the InnoDB kernel is now divided into separate mutexes and rw-locks to reduce contention. You do not need to configure anything to take advantage of this speedup; it is fully automatic.
14.2.4.2.33. InnoDB Configurable Data Dictionary Cache
To ease the memory load on systems with huge numbers of tables, InnoDB now frees up the memory associated with an opened table, using an LRU algorithm to select tables that have gone the longest without being accessed. To reserve more memory to hold metadata for open InnoDB tables, increase the value of the table_definition_cache configuration option. InnoDB treats this value as a “soft limit”. The actual number of tables with cached metadata could be higher, because metadata for InnoDB system tables, and parent and child tables in foreign key relationships, is never evicted from memory.
14.2.4.2.34. Improved Tablespace Management
Several new features extend the file-per-table mode enabled by the innodb_file_per_table configuration option, allowing more flexibility in how the .ibd files are placed, exported, and restored. We characterize this as a performance enhancement because it solves the common customer request to put data from different tables onto different storage devices, for best price/performance depending on the access patterns of the data. For example, tables with high levels of random reads and writes might be placed on an SSD device, while less-often-accessed data or data processed with large batches of sequential I/O might be placed on an HDD device. See Section 5.4.1, “Managing InnoDB Tablespaces” for details.
14.2.4.2.35. memcached Plugin for InnoDB
The memcached daemon is frequently used as an in-memory caching layer in front of a MySQL database server. Now MySQL allows direct access to InnoDB tables using the familiar memcached protocol and client libraries. Instead of formulating queries in SQL, you can perform simple get, set, and increment operations that avoid the performance overhead of SQL parsing and constructing a query optimization plan. You can also access the underlying InnoDB tables through SQL to load data, generate reports, or perform multi-step transactional computations.
This technique allows the data to be stored in MySQL for reliability and consistency, while coding application logic that uses the database as a fast key-value store.
This feature combines the best of both worlds:
Data that is written using the memcached protocol is transparently written to an InnoDB table, without going through the MySQL SQL layer. You can control the frequency of writes to achieve higher raw performance when updating non-critical data.
Data that is requested data through the memcached protocol is transparently queried from an InnoDB table, without going through the MySQL SQL layer.
Subsequent requests for the same data will be served from the InnoDB buffer pool. The buffer pool handles the in-memory caching. You can tune the performance of data-intensive operations using the familiar InnoDB configuration options.
InnoDB can handle composing and decomposing multiple column values into a single memcached item value, reducing the amount of string parsing and concatenation required in your application. For example, you might store a string value 2|4|6|8 in the memcached cache, and InnoDB splits that value based on a separator character, then stores the result into four numeric columns.
For details on using this NoSQL-style interface to MySQL, see Section 14.2.9, “InnoDB Integration with memcached”. For additional background on memcached and considerations for writing applications for its API, see Section 15.6, “Using MySQL with memcached”.
14.2.4.2.36. Online DDL
This feature is a continuation of the “Fast Index Creation” feature introduced in Fast Index Creation in the InnoDB Storage Engine. Now you can perform other kinds of DDL operations on InnoDB tables online: that is, with minimal delay for operations on that table, without rebuilding the entire table, or both. This enhancement improves responsiveness and availability in busy production environments, where making a table unavailable for minutes or hours whenever its column definitions change is not practical.
For full details, see Section 5.5, “Online DDL for InnoDB Tables”.
The DDL operations enhanced by this feature are these variations on the ALTER TABLE statement:
Create secondary indexes: CREATE INDEX name ON table (col_list) or ALTER TABLE table ADD INDEX name (col_list). (Creating a primary key or a FULLTEXT index still requires locking the table.)
Drop secondary indexes: DROP INDEX name ON table; or ALTER TABLE table DROP INDEX name
Creating and dropping secondary indexes on InnoDB tables has avoided the table-copying behavior since the days of MySQL 5.1 with the InnoDB Plugin. Now, the table remains available for read and write operations while the index is being created or dropped. The CREATE TABLE or DROP TABLE statement only finishes after all transactions that are modifying the table are completed, so that the initial state of the index reflects the most recent contents of the table.
Previously, modifying the table while an index was being created or dropped typically resulted in a deadlock that cancelled the insert, update, or delete statement on the table.
Changing the auto-increment value for a column: ALTER TABLE table AUTO_INCREMENT=next_value;
Especially in a distributed system using replication or sharding, you sometimes reset the auto-increment counter for a table to a specific value. The next row inserted into the table uses the specified value for its auto-increment column. You might also use this technique in a data warehousing environment where you periodically empty all the tables and reload them, and you can restart the auto-increment sequence from 1.
Adding or dropping a foreign key constraint:
ALTER TABLE tbl1 ADD CONSTRAINT fk_name FOREIGN KEY index (col1) REFERENCES tbl2(col2) referential_actions;
ALTER TABLE tbl DROP FOREIGN KEY fk_name;
Dropping a foreign key can be performed online with the foreign_key_checks option enabled or disabled. Creating a foreign key online requires foreign_key_checks to be disabled.
If you do not know the names of the foreign key constraints on a particular table, issue the following statement and find the constraint name in the CONSTRAINT clause for each foreign key:
show create table table\G
Or, query the information_schema.table_constraints table and use the constraint_name and constraint_type columns to identify the foreign key names.
As a consequence of this enhancement, you can now also drop a foreign key and its associated index in a single statement, which previously required separate statements in a strict order:
ALTER TABLE table DROP FOREIGN KEY constraint, DROP INDEX index;
Renaming a column: ALTER TABLE tbl CHANGE old_col_name new_col_name datatype
When you keep the same data type and only change the column name, this operation can always be performed online. As part of this enhancement, you can now rename a column that is part of a foreign key constraint, which was not allowed before.
Some other ALTER TABLE operations are non-blocking, and are faster than before because the table-copying operation is optimized, even though a table copy is still required:
Changing the ROW_FORMAT or KEY_BLOCK_SIZE properties for a table.
Changing the nullable status for a column.
Adding, dropping, or reordering columns.
Note
As your database schema evolves with new columns, data types, constraints, indexes, and so on, keep your CREATE TABLE statements up to date with the latest table definitions. Even with the performance improvements of online DDL, it is more efficient to create stable database structures at the beginning, rather than creating part of the schema and then issuing ALTER TABLE statements afterward.
The main exception to this guideline is for secondary indexes on tables with large numbers of rows. It is typically most efficient to create the table with all details specified except the secondary indexes, load the data, then create the secondary indexes.
Whatever sequence of CREATE TABLE, CREATE INDEX, ALTER TABLE, and similar statements went into putting a table together, you can capture the SQL needed to reconstruct the current form of the table by issuing the statement SHOW CREATE TABLE table\G (uppercase \G required for tidy formatting). This output shows clauses such as numeric precision, NOT NULL, and CHARACTER SET that are sometimes added behind the scenes, and you might otherwise leave out when cloning the table on a new system or setting up foreign key columns with identical type.
14.2.4.3. InnoDB INFORMATION_SCHEMA tables
The INFORMATION_SCHEMA is a MySQL feature that helps you monitor server activity to diagnose capacity and performance issues. Several InnoDB-related INFORMATION_SCHEMA tables (INNODB_CMP, INNODB_CMP_RESET, INNODB_CMPMEM, INNODB_CMPMEM_RESET, INNODB_TRX, INNODB_LOCKS and INNODB_LOCK_WAITS) contain live information about compressed InnoDB tables, the compressed InnoDB buffer pool, all transactions currently executing inside InnoDB, the locks that transactions hold and those that are blocking transactions waiting for access to a resource (a table or row).
This section describes the InnoDB-related Information Schema tables and shows some examples of their use.
14.2.4.3.1. Information Schema Tables about Compression
Two new pairs of Information Schema tables can give you some insight into how well compression is working overall. One pair of tables contains information about the number of compression operations and the amount of time spent performing compression. Another pair of tables contains information on the way memory is allocated for compression.
14.2.4.3.1.1. INNODB_CMP and INNODB_CMP_RESET
The tables INNODB_CMP and INNODB_CMP_RESET contain status information on the operations related to compressed tables, which are covered in Section 5.4.6, “Working with InnoDB Compressed Tables”. The compressed page size is in the column PAGE_SIZE.
These two tables have identical contents, but reading from INNODB_CMP_RESET resets the statistics on compression and uncompression operations. For example, if you archive the output of INNODB_CMP_RESET every 60 minutes, you see the statistics for each hourly period. If you monitor the output of INNODB_CMP (making sure never to read INNODB_CMP_RESET), you see the cumulated statistics since InnoDB was started.
For the table definition, see Table 19.1, “Columns of INNODB_CMP and INNODB_CMP_RESET”.
14.2.4.3.1.2. INNODB_CMPMEM and INNODB_CMPMEM_RESET
The tables INNODB_CMPMEM and INNODB_CMPMEM_RESET contain status information on the compressed pages that reside in the buffer pool. Please consult Section 5.4.6, “Working with InnoDB Compressed Tables” for further information on compressed tables and the use of the buffer pool. The tables INNODB_CMP and INNODB_CMP_RESET should provide more useful statistics on compression.
Internal Details
InnoDB uses a buddy allocator system to manage memory allocated to pages of various sizes, from 1KB to 16KB. Each row of the two tables described here corresponds to a single page size.
These two tables have identical contents, but reading from INNODB_CMPMEM_RESET resets the statistics on relocation operations. For example, if every 60 minutes you archived the output of INNODB_CMPMEM_RESET, it would show the hourly statistics. If you never read INNODB_CMPMEM_RESET and monitored the output of INNODB_CMPMEM instead, it would show the cumulated statistics since InnoDB was started.
For the table definition, see Table 19.3, “Columns of INNODB_CMPMEM and INNODB_CMPMEM_RESET”.
14.2.4.3.1.3. Using the Compression Information Schema Tables
Example 14.2. Using the Compression Information Schema Tables
The following is sample output from a database that contains compressed tables (see Section 5.4.6, “Working with InnoDB Compressed Tables”, INNODB_CMP, INNODB_CMP_PER_INDEX, and INNODB_CMPMEM).
The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMP under a light workload. The only compressed page size that the buffer pool contains is 8K. Compressing or uncompressing pages has consumed less than a second since the time the statistics were reset, because the columns COMPRESS_TIME and UNCOMPRESS_TIME are zero.
page size | compress ops | compress ops ok | compress time | uncompress ops | uncompress time |
---|---|---|---|---|---|
1024 | 0 | 0 | 0 | 0 | 0 |
2048 | 0 | 0 | 0 | 0 | 0 |
4096 | 0 | 0 | 0 | 0 | 0 |
8192 | 1048 | 921 | 0 | 61 | 0 |
16384 | 0 | 0 | 0 | 0 | 0 |
According to INNODB_CMPMEM, there are 6169 compressed 8KB pages in the buffer pool. The only other allocated block size is 64 bytes. The smallest PAGE_SIZE in INNODB_CMPMEM is used for block descriptors of those compressed pages for which no uncompressed page exists in the buffer pool. We see that there are 5910 such pages. Indirectly, we see that 259 (6169-5910) compressed pages also exist in the buffer pool in uncompressed form.
The following table shows the contents of INFORMATION_SCHEMA.INNODB_CMPMEM under a light workload. Some memory is unusable due to fragmentation of the memory allocator for compressed pages: SUM(PAGE_SIZE*PAGES_FREE)=6784. This is because small memory allocation requests are fulfilled by splitting bigger blocks, starting from the 16K blocks that are allocated from the main buffer pool, using the buddy allocation system. The fragmentation is this low because some allocated blocks have been relocated (copied) to form bigger adjacent free blocks. This copying of SUM(PAGE_SIZE*RELOCATION_OPS) bytes has consumed less than a second (SUM(RELOCATION_TIME)=0).
page size | pages used | pages free | relocation ops | relocation time |
---|---|---|---|---|
64 | 5910 | 0 | 2436 | 0 |
128 | 0 | 1 | 0 | 0 |
256 | 0 | 0 | 0 | 0 |
512 | 0 | 1 | 0 | 0 |
1024 | 0 | 0 | 0 | 0 |
2048 | 0 | 1 | 0 | 0 |
4096 | 0 | 1 | 0 | 0 |
8192 | 6169 | 0 | 5 | 0 |
16384 | 0 | 0 | 0 | 0 |
14.2.4.3.2. Information Schema Tables about Transactions
Three InnoDB-related Information Schema tables make it easy to monitor transactions and diagnose possible locking problems. The three tables are INNODB_TRX, INNODB_LOCKS and INNODB_LOCK_WAITS.
14.2.4.3.2.1. INNODB_TRX
Contains information about every transaction currently executing inside InnoDB, including whether the transaction is waiting for a lock, when the transaction started, and the particular SQL statement the transaction is executing.
For the table definition, see Table 19.4, “INNODB_TRX Columns”.
14.2.4.3.2.2. INNODB_LOCKS
Each transaction in InnoDB that is waiting for another transaction to release a lock (INNODB_TRX.TRX_STATE='LOCK WAIT') is blocked by exactly one “blocking lock request”. That blocking lock request is for a row or table lock held by another transaction in an incompatible mode. The waiting or blocked transaction cannot proceed until the other transaction commits or rolls back, thereby releasing the requested lock. For every blocked transaction, INNODB_LOCKS contains one row that describes each lock the transaction has requested, and for which it is waiting. INNODB_LOCKS also contains one row for each lock that is blocking another transaction, whatever the state of the transaction that holds the lock ('RUNNING', 'LOCK WAIT', 'ROLLING BACK' or 'COMMITTING'). The lock that is blocking a transaction is always held in a mode (read vs. write, shared vs. exclusive) incompatible with the mode of requested lock.
For the table definition, see Table 19.5, “INNODB_LOCKS Columns”.
14.2.4.3.2.3. INNODB_LOCK_WAITS
Using this table, you can tell which transactions are waiting for a given lock, or for which lock a given transaction is waiting. This table contains one or more rows for each blocked transaction, indicating the lock it has requested and the lock(s) that is (are) blocking that request. The REQUESTED_LOCK_ID refers to the lock that a transaction is requesting, and the BLOCKING_LOCK_ID refers to the lock (held by another transaction) that is preventing the first transaction from proceeding. For any given blocked transaction, all rows in INNODB_LOCK_WAITS have the same value for REQUESTED_LOCK_ID and different values for BLOCKING_LOCK_ID.
For the table definition, see Table 19.6, “INNODB_LOCK_WAITS Columns”.
14.2.4.3.2.4. Using the Transaction Information Schema Tables
Example 14.3. Identifying Blocking Transactions
It is sometimes helpful to be able to identify which transaction is blocking another. You can use the Information Schema tables to find out which transaction is waiting for another, and which resource is being requested.
Suppose you have the following scenario, with three users running concurrently. Each user (or session) corresponds to a MySQL thread, and executes one transaction after another. Consider the state of the system when these users have issued the following commands, but none has yet committed its transaction:
User A:
BEGIN;
SELECT a FROM t FOR UPDATE;
SELECT SLEEP(100);
User B:
SELECT b FROM t FOR UPDATE;
User C:
SELECT c FROM t FOR UPDATE;
In this scenario, you can use this query to see who is waiting for whom:
SELECT r.trx_id waiting_trx_id,
r.trx_mysql_thread_id waiting_thread,
r.trx_query waiting_query,
b.trx_id blocking_trx_id,
b.trx_mysql_thread_id blocking_thread,
b.trx_query blocking_query
FROM information_schema.innodb_lock_waits w
INNER JOIN information_schema.innodb_trx b ON
b.trx_id = w.blocking_trx_id
INNER JOIN information_schema.innodb_trx r ON
r.trx_id = w.requesting_trx_id;
waiting trx id | waiting thread | waiting query | blocking trx id | blocking thread | blocking query |
---|---|---|---|---|---|
A4 | 6 | SELECT b FROM t FOR UPDATE | A3 | 5 | SELECT SLEEP(100) |
A5 | 7 | SELECT c FROM t FOR UPDATE | A3 | 5 | SELECT SLEEP(100) |
A5 | 7 | SELECT c FROM t FOR UPDATE | A4 | 6 | SELECT b FROM t FOR UPDATE |
In the above result, you can identify users by the “waiting query” or “blocking query”. As you can see:
User B (trx id 'A4', thread 6) and User C (trx id 'A5', thread 7) are both waiting for User A (trx id 'A3', thread 5).
User C is waiting for User B as well as User A.
You can see the underlying data in the tables INNODB_TRX, INNODB_LOCKS, and INNODB_LOCK_WAITS.
The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_TRX.
trx id | trx state | trx started | trx requested lock id | trx wait started | trx weight | trx mysql thread id | trx query |
---|---|---|---|---|---|---|---|
A3 | RUNNING | 2008-01-15 16:44:54 | NULL | NULL | 2 | 5 | SELECT SLEEP(100) |
A4 | LOCK WAIT | 2008-01-15 16:45:09 | A4:1:3:2 | 2008-01-15 16:45:09 | 2 | 6 | SELECT b FROM t FOR UPDATE |
A5 | LOCK WAIT | 2008-01-15 16:45:14 | A5:1:3:2 | 2008-01-15 16:45:14 | 2 | 7 | SELECT c FROM t FOR UPDATE |
The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_LOCKS.
lock id | lock trx id | lock mode | lock type | lock table | lock index | lock space | lock page | lock rec | lock data |
---|---|---|---|---|---|---|---|---|---|
A3:1:3:2 | A3 | X | RECORD | `test`.`t` | `PRIMARY` | 1 | 3 | 2 | 0x0200 |
A4:1:3:2 | A4 | X | RECORD | `test`.`t` | `PRIMARY` | 1 | 3 | 2 | 0x0200 |
A5:1:3:2 | A5 | X | RECORD | `test`.`t` | `PRIMARY` | 1 | 3 | 2 | 0x0200 |
The following table shows some sample contents of INFORMATION_SCHEMA.INNODB_LOCK_WAITS.
requesting trx id | requested lock id | blocking trx id | blocking lock id |
---|---|---|---|
A4 | A4:1:3:2 | A3 | A3:1:3:2 |
A5 | A5:1:3:2 | A3 | A3:1:3:2 |
A5 | A5:1:3:2 | A4 | A4:1:3:2 |
Example 14.4. More Complex Example of Transaction Data in Information Schema Tables
Sometimes you would like to correlate the internal InnoDB locking information with session-level information maintained by MySQL. For example, you might like to know, for a given InnoDB transaction ID, the corresponding MySQL session ID and name of the user that may be holding a lock, and thus blocking another transaction.
The following output from the INFORMATION_SCHEMA tables is taken from a somewhat loaded system.
As can be seen in the following tables, there are several transactions running.
The following INNODB_LOCKS and INNODB_LOCK_WAITS tables shows that:
Transaction 77F (executing an INSERT) is waiting for transactions 77E, 77D and 77B to commit.
Transaction 77E (executing an INSERT) is waiting for transactions 77D and 77B to commit.
Transaction 77D (executing an INSERT) is waiting for transaction 77B to commit.
Transaction 77B (executing an INSERT) is waiting for transaction 77A to commit.
Transaction 77A is running, currently executing SELECT.
Transaction E56 (executing an INSERT) is waiting for transaction E55 to commit.
Transaction E55 (executing an INSERT) is waiting for transaction 19C to commit.
Transaction 19C is running, currently executing an INSERT.
Note that there may be an inconsistency between queries shown in the two tables INNODB_TRX.TRX_QUERY and PROCESSLIST.INFO. The current transaction ID for a thread, and the query being executed in that transaction, may be different in these two tables for any given thread. See Section 14.2.4.3.4.3, “Possible Inconsistency with PROCESSLIST” for an explanation.
The following table shows the contents of INFORMATION_SCHEMA.PROCESSLIST in a system running a heavy workload.
ID | USER | HOST | DB | COMMAND | TIME | STATE | INFO |
---|---|---|---|---|---|---|---|
384 | root | localhost | test | Query | 10 | update | insert into t2 values … |
257 | root | localhost | test | Query | 3 | update | insert into t2 values … |
130 | root | localhost | test | Query | 0 | update | insert into t2 values … |
61 | root | localhost | test | Query | 1 | update | insert into t2 values … |
8 | root | localhost | test | Query | 1 | update | insert into t2 values … |
4 | root | localhost | test | Query | 0 | preparing | SELECT * FROM processlist |
2 | root | localhost | test | Sleep | 566 | NULL |
The following table shows the contents of INFORMATION_SCHEMA.INNODB_TRX in a system running a heavy workload.
trx id | trx state | trx started | trx requested lock id | trx wait started | trx weight | trx mysql thread id | trx query |
---|---|---|---|---|---|---|---|
77F | LOCK WAIT | 2008-01-15 13:10:16 | 77F:806 | 2008-01-15 13:10:16 | 1 | 876 | insert into t09 (D, B, C) values … |
77E | LOCK WAIT | 2008-01-15 13:10:16 | 77E:806 | 2008-01-15 13:10:16 | 1 | 875 | insert into t09 (D, B, C) values … |
77D | LOCK WAIT | 2008-01-15 13:10:16 | 77D:806 | 2008-01-15 13:10:16 | 1 | 874 | insert into t09 (D, B, C) values … |
77B | LOCK WAIT | 2008-01-15 13:10:16 | 77B:733:12:1 | 2008-01-15 13:10:16 | 4 | 873 | insert into t09 (D, B, C) values … |
77A | RUNNING | 2008-01-15 13:10:16 | NULL | NULL | 4 | 872 | select b, c from t09 where … |
E56 | LOCK WAIT | 2008-01-15 13:10:06 | E56:743:6:2 | 2008-01-15 13:10:06 | 5 | 384 | insert into t2 values … |
E55 | LOCK WAIT | 2008-01-15 13:10:06 | E55:743:38:2 | 2008-01-15 13:10:13 | 965 | 257 | insert into t2 values … |
19C | RUNNING | 2008-01-15 13:09:10 | NULL | NULL | 2900 | 130 | insert into t2 values … |
E15 | RUNNING | 2008-01-15 13:08:59 | NULL | NULL | 5395 | 61 | insert into t2 values … |
51D | RUNNING | 2008-01-15 13:08:47 | NULL | NULL | 9807 | 8 | insert into t2 values … |
The following table shows the contents of INFORMATION_SCHEMA.INNODB_LOCK_WAITS in a system running a heavy workload.
requesting trx id | requested lock id | blocking trx id | blocking lock id |
---|---|---|---|
77F | 77F:806 | 77E | 77E:806 |
77F | 77F:806 | 77D | 77D:806 |
77F | 77F:806 | 77B | 77B:806 |
77E | 77E:806 | 77D | 77D:806 |
77E | 77E:806 | 77B | 77B:806 |
77D | 77D:806 | 77B | 77B:806 |
77B | 77B:733:12:1 | 77A | 77A:733:12:1 |
E56 | E56:743:6:2 | E55 | E55:743:6:2 |
E55 | E55:743:38:2 | 19C | 19C:743:38:2 |
The following table shows the contents of INFORMATION_SCHEMA.INNODB_LOCKS in a system running a heavy workload.
lock id | lock trx id | lock mode | lock type | lock table | lock index | lock space | lock page | lock rec | lock data |
---|---|---|---|---|---|---|---|---|---|
77F:806 | 77F | AUTO_INC | TABLE | `test`.`t09` | NULL | NULL | NULL | NULL | NULL |
77E:806 | 77E | AUTO_INC | TABLE | `test`.`t09` | NULL | NULL | NULL | NULL | NULL |
77D:806 | 77D | AUTO_INC | TABLE | `test`.`t09` | NULL | NULL | NULL | NULL | NULL |
77B:806 | 77B | AUTO_INC | TABLE | `test`.`t09` | NULL | NULL | NULL | NULL | NULL |
77B:733:12:1 | 77B | X | RECORD | `test`.`t09` | `PRIMARY` | 733 | 12 | 1 | supremum pseudo-record |
77A:733:12:1 | 77A | X | RECORD | `test`.`t09` | `PRIMARY` | 733 | 12 | 1 | supremum pseudo-record |
E56:743:6:2 | E56 | S | RECORD | `test`.`t2` | `PRIMARY` | 743 | 6 | 2 | 0, 0 |
E55:743:6:2 | E55 | X | RECORD | `test`.`t2` | `PRIMARY` | 743 | 6 | 2 | 0, 0 |
E55:743:38:2 | E55 | S | RECORD | `test`.`t2` | `PRIMARY` | 743 | 38 | 2 | 1922, 1922 |
19C:743:38:2 | 19C | X | RECORD | `test`.`t2` | `PRIMARY` | 743 | 38 | 2 | 1922, 1922 |
14.2.4.3.3. Information Schema Tables about Full-Text Search
A set of related INFORMATION_SCHEMA tables contains information about FULLTEXT search indexes on InnoDB tables:
14.2.4.3.4. Special Locking Considerations for InnoDB INFORMATION_SCHEMA Tables
14.2.4.3.4.1. Understanding InnoDB Locking
When a transaction updates a row in a table, or locks it with SELECT FOR UPDATE, InnoDB establishes a list or queue of locks on that row. Similarly, InnoDB maintains a list of locks on a table for table-level locks transactions hold. If a second transaction wants to update a row or lock a table already locked by a prior transaction in an incompatible mode, InnoDB adds a lock request for the row to the corresponding queue. For a lock to be acquired by a transaction, all incompatible lock requests previously entered into the lock queue for that row or table must be removed (the transactions holding or requesting those locks either commit or roll back).
A transaction may have any number of lock requests for different rows or tables. At any given time, a transaction may be requesting a lock that is held by another transaction, in which case it is blocked by that other transaction. The requesting transaction must wait for the transaction that holds the blocking lock to commit or rollback. If a transaction is not waiting for a a lock, it is in the 'RUNNING' state. If a transaction is waiting for a lock, it is in the 'LOCK WAIT' state.
The table INNODB_LOCKS holds one or more row for each 'LOCK WAIT' transaction, indicating the lock request(s) that is (are) preventing its progress. This table also contains one row describing each lock in a queue of locks pending for a given row or table. The table INNODB_LOCK_WAITS shows which locks already held by a transaction are blocking locks requested by other transactions.
14.2.4.3.4.2. Granularity of INFORMATION_SCHEMA Data
The data exposed by the transaction and locking tables represent a glimpse into fast-changing data. This is not like other (user) tables, where the data only changes when application-initiated updates occur. The underlying data is internal system-managed data, and can change very quickly.
For performance reasons, and to minimize the chance of misleading JOINs between the INFORMATION_SCHEMA tables, InnoDB collects the required transaction and locking information into an intermediate buffer whenever a SELECT on any of the tables is issued. This buffer is refreshed only if more than 0.1 seconds has elapsed since the last time the buffer was read. The data needed to fill the three tables is fetched atomically and consistently and is saved in this global internal buffer, forming a point-in-time “snapshot”. If multiple table accesses occur within 0.1 seconds (as they almost certainly do when MySQL processes a join among these tables), then the same snapshot is used to satisfy the query.
A correct result is returned when you JOIN any of these tables together in a single query, because the data for the three tables comes from the same snapshot. Because the buffer is not refreshed with every query of any of these tables, if you issue separate queries against these tables within a tenth of a second, the results are the same from query to query. On the other hand, two separate queries of the same or different tables issued more than a tenth of a second apart may see different results, since the data come from different snapshots.
Because InnoDB must temporarily stall while the transaction and locking data is collected, too frequent queries of these tables can negatively impact performance as seen by other users.
As these tables contain sensitive information (at least INNODB_LOCKS.LOCK_DATA and INNODB_TRX.TRX_QUERY), for security reasons, only the users with the PROCESS privilege are allowed to SELECT from them.
14.2.4.3.4.3. Possible Inconsistency with PROCESSLIST
As just described, while the transaction and locking data is correct and consistent when these INFORMATION_SCHEMA tables are populated, the underlying data changes so fast that similar glimpses at other, similarly fast-changing data, may not be in sync. Thus, you should be careful in comparing the data in the InnoDB transaction and locking tables with that in the MySQL table PROCESSLIST. The data from the PROCESSLIST table does not come from the same snapshot as the data about locking and transactions. Even if you issue a single SELECT (JOINing INNODB_TRX and PROCESSLIST, for example), the content of those tables is generally not consistent. INNODB_TRX may reference rows that are not present in PROCESSLIST or the currently executing SQL query of a transaction, shown in INNODB_TRX.TRX_QUERY may be different from the one in PROCESSLIST.INFO. The query in INNODB_TRX is always consistent with the rest of INNODB_TRX, INNODB_LOCKS and INNODB_LOCK_WAITS when the data comes from the same snapshot.
14.2.4.4. SHOW ENGINE INNODB STATUS and the InnoDB Monitors
InnoDB Monitors provide information about the InnoDB internal state. This information is useful for performance tuning. Each Monitor can be enabled by creating a table with a special name, which causes InnoDB to write Monitor output periodically. Also, output for the standard InnoDB Monitor is available on demand through the SHOW ENGINE INNODB STATUS SQL statement.
There are several types of InnoDB Monitors:
The standard InnoDB Monitor displays the following types of information:
Table and record locks held by each active transaction.
Lock waits of a transaction.
Semaphore waits of threads.
Pending file I/O requests.
Buffer pool statistics.
Purge and insert buffer merge activity of the main InnoDB thread.
For a discussion of InnoDB lock modes, see Section 14.2.3.2, “InnoDB Lock Modes”.
To enable the standard InnoDB Monitor for periodic output, create a table named innodb_monitor. To obtain Monitor output on demand, use the SHOW ENGINE INNODB STATUS SQL statement to fetch the output to your client program. If you are using the mysql interactive client, the output is more readable if you replace the usual semicolon statement terminator with \G:
mysql> SHOW ENGINE INNODB STATUS\G
The InnoDB Lock Monitor is like the standard Monitor but also provides extensive lock information. To enable this Monitor for periodic output, create a table named innodb_lock_monitor.
The InnoDB Tablespace Monitor prints a list of file segments in the shared tablespace and validates the tablespace allocation data structures. To enable this Monitor for periodic output, create a table named innodb_tablespace_monitor.
The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary. To enable this Monitor for periodic output, create a table named innodb_table_monitor.
Note
As of MySQL 5.6.3, the innodb_table_monitor table is deprecated and will be removed in a future MySQL release. Similar information can be obtained from InnoDB INFORMATION_SCHEMA tables. See Section 19.30, “INFORMATION_SCHEMA Tables for InnoDB”.
To enable an InnoDB Monitor for periodic output, use a CREATE TABLE statement to create the table associated with the Monitor. For example, to enable the standard InnoDB Monitor, create the innodb_monitor table:
CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;
To stop the Monitor, drop the table:
DROP TABLE innodb_monitor;
The CREATE TABLE syntax is just a way to pass a command to the InnoDB engine through MySQL's SQL parser: The only things that matter are the table name innodb_monitor and that it be an InnoDB table. The structure of the table is not relevant at all for the InnoDB Monitor. If you shut down the server, the Monitor does not restart automatically when you restart the server. Drop the Monitor table and issue a new CREATE TABLE statement to start the Monitor. (This syntax may change in a future release.)
The PROCESS privilege is required to start or stop the InnoDB Monitor tables.
When you enable InnoDB Monitors for periodic output, InnoDB writes their output to the mysqld server standard error output (stderr). In this case, no output is sent to clients. When switched on, InnoDB Monitors print data about every 15 seconds. Server output usually is directed to the error log (see Section 5.2.2, “The Error Log”). This data is useful in performance tuning. On Windows, start the server from a command prompt in a console window with the --console option if you want to direct the output to the window rather than to the error log.
InnoDB sends diagnostic output to stderr or to files rather than to stdout or fixed-size memory buffers, to avoid potential buffer overflows. As a side effect, the output of SHOW ENGINE INNODB STATUS is written to a status file in the MySQL data directory every fifteen seconds. The name of the file is innodb_status.pid, where pid is the server process ID. InnoDB removes the file for a normal shutdown. If abnormal shutdowns have occurred, instances of these status files may be present and must be removed manually. Before removing them, you might want to examine them to see whether they contain useful information about the cause of abnormal shutdowns. The innodb_status.pid file is created only if the configuration option innodb-status-file=1 is set.
InnoDB Monitors should be enabled only when you actually want to see Monitor information because output generation does result in some performance decrement. Also, if you enable monitor output by creating the associated table, your error log may become quite large if you forget to remove the table later.
For additional information about InnoDB monitors, see:
Mark Leith: InnoDB Table and Tablespace Monitors
Each monitor begins with a header containing a timestamp and the monitor name. For example:
==
090407 12:06:19 INNODB TABLESPACE MONITOR OUTPUT
==
The header for the standard Monitor (INNODB MONITOR OUTPUT) is also used for the Lock Monitor because the latter produces the same output with the addition of extra lock information.
The following sections describe the output for each Monitor.
14.2.4.4.1. InnoDB Standard Monitor and Lock Monitor Output
The Lock Monitor is the same as the standard Monitor except that it includes additional lock information. Enabling either monitor for periodic output by creating the associated InnoDB table turns on the same output stream, but the stream includes the extra information if the Lock Monitor is enabled. For example, if you create the innodb_monitor and innodb_lock_monitor tables, that turns on a single output stream. The stream includes extra lock information until you disable the Lock Monitor by removing the innodb_lock_monitor table.
Example InnoDB Monitor output:
mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
Status:
=====================================
030709 13:00:59 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 18 seconds

BACKGROUND THREAD

srv_master_thread loops: 53 1_second, 44 sleeps, 5 10_second, 7 background,
7 flush
srv_master_thread log flush and writes: 48

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 413452, signal count 378357
--Thread 32782 has waited at btr0sea.c line 1477 for 0.00 seconds the
semaphore: X-lock on RW-latch at 41a28668 created in file btr0sea.c line 135
a writer (thread id 32782) has reserved it in mode wait exclusive
number of readers 1, waiters flag 1
Last time read locked in file btr0sea.c line 731
Last time write locked in file btr0sea.c line 1347
Mutex spin waits 0, rounds 0, OS waits 0
RW-shared spins 2, rounds 60, OS waits 2
RW-excl spins 0, rounds 0, OS waits 0
Spin rounds per wait: 0.00 mutex, 20.00 RW-shared, 0.00 RW-excl

LATEST FOREIGN KEY ERROR

030709 13:00:59 Transaction:
TRANSACTION 0 290328284, ACTIVE 0 sec, process no 3195
inserting
15 lock struct(s), heap size 2496, undo log entries 9
MySQL thread id 25, query id 4668733 localhost heikki update
insert into ibtest11a (D, B, C) values (5, 'khDk' ,'khDk')
Foreign key constraint fails for table test/ibtest11a:
,
CONSTRAINT `0_219242` FOREIGN KEY (`A`, `D`) REFERENCES `ibtest11b` (`A`,
`D`) ON DELETE CASCADE ON UPDATE CASCADE
Trying to add in child table, in index PRIMARY tuple:
0: len 4; hex 80000101; asc;; 1: len 4; hex 80000005; asc;; 2:
len 4; hex 6b68446b; asc khDk;; 3: len 6; hex 0000114e0edc; asc ...N..;; 4:
len 7; hex 00000000c3e0a7; asc;; 5: len 4; hex 6b68446b; asc khDk;;
But in parent table test/ibtest11b, in index PRIMARY,
the closest match we can find is record:
RECORD: info bits 0 0: len 4; hex 8000015b; asc ...[;; 1: len 4; hex
80000005; asc;; 2: len 3; hex 6b6864; asc khd;; 3: len 6; hex
0000111ef3eb; asc;; 4: len 7; hex 800001001e0084; asc;; 5:
len 3; hex 6b6864; asc khd;;

LATEST DETECTED DEADLOCK

030709 12:59:58
*** (1) TRANSACTION:
TRANSACTION 0 290252780, ACTIVE 1 sec, process no 3185
inserting
LOCK WAIT 3 lock struct(s), heap size 320, undo log entries 146
MySQL thread id 21, query id 4553379 localhost heikki update
INSERT INTO alex1 VALUES(86, 86, 794,'aA35818','bb','c79166','d4766t',
'e187358f','g84586','h794',date_format('2001-04-03 12:54:22','%Y-%m-%d
%H:%i'),7
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290252780 lock mode S waiting
Record lock, heap no 324 RECORD: info bits 0 0: len 7; hex 61613335383138;
asc aa35818;; 1:
*** (2) TRANSACTION:
TRANSACTION 0 290251546, ACTIVE 2 sec, process no 3190
inserting
130 lock struct(s), heap size 11584, undo log entries 437
MySQL thread id 23, query id 4554396 localhost heikki update
REPLACE INTO alex1 VALUES(NULL, 32, NULL,'aa3572','','c3572','d6012t','',
NULL,'h396', NULL, NULL, 7.31,7.31,7.31,200)
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290251546 lock_mode X locks rec but not gap
Record lock, heap no 324 RECORD: info bits 0 0: len 7; hex 61613335383138;
asc aa35818;; 1:
*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290251546 lock_mode X locks gap before rec insert intention
waiting
Record lock, heap no 82 RECORD: info bits 0 0: len 7; hex 61613335373230;
asc aa35720;; 1:
*** WE ROLL BACK TRANSACTION (1)

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
History list length 20
Total number of lock structs in row lock hash table 70
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0 0, not started, process no 3491
MySQL thread id 32, query id 4668737 localhost heikki
show innodb status
---TRANSACTION 0 290328384, ACTIVE 0 sec, process no 3205
38929 inserting
1 lock struct(s), heap size 320
MySQL thread id 29, query id 4668736 localhost heikki update
insert into speedc values (1519229,1, 'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgjg
jlhhgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjfh
---TRANSACTION 0 290328383, ACTIVE 0 sec, process no 3180
28684 committing
1 lock struct(s), heap size 320, undo log entries 1
MySQL thread id 19, query id 4668734 localhost heikki update
insert into speedcm values (1603393,1, 'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgj
gjlhhgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjf
---TRANSACTION 0 290328327, ACTIVE 0 sec, process no 3200
36880 starting index read
LOCK WAIT 2 lock struct(s), heap size 320
MySQL thread id 27, query id 4668644 localhost heikki Searching rows for
update
update ibtest11a set B = 'kHdkkkk' where A = 89572
------- TRX HAS BEEN WAITING 0 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 65556 n bits 232 table test/ibtest11a index
PRIMARY trx id 0 290328327 lock_mode X waiting
Record lock, heap no 1 RECORD: info bits 0 0: len 9; hex 73757072656d756d00;
asc supremum.;;

---TRANSACTION 0 290328284, ACTIVE 0 sec, process no 3195
34831 rollback of SQL statement
ROLLING BACK 14 lock struct(s), heap size 2496, undo log entries 9
MySQL thread id 25, query id 4668733 localhost heikki update
insert into ibtest11a (D, B, C) values (5, 'khDk' ,'khDk')
---TRANSACTION 0 290327208, ACTIVE 1 sec, process no 3190
32782
58 lock struct(s), heap size 5504, undo log entries 159
MySQL thread id 23, query id 4668732 localhost heikki update
REPLACE INTO alex1 VALUES(86, 46, 538,'aa95666','bb','c95666','d9486t',
'e200498f','g86814','h538',date_format('2001-04-03 12:54:22','%Y-%m-%d
%H:%i'),
---TRANSACTION 0 290323325, ACTIVE 3 sec, process no 3185
30733 inserting
4 lock struct(s), heap size 1024, undo log entries 165
MySQL thread id 21, query id 4668735 localhost heikki update
INSERT INTO alex1 VALUES(NULL, 49, NULL,'aa42837','','c56319','d1719t','',
NULL,'h321', NULL, NULL, 7.31,7.31,7.31,200)

FILE I/O

I/O thread 0 state: waiting for i/o request (insert buffer thread)
I/O thread 1 state: waiting for i/o request (log thread)
I/O thread 2 state: waiting for i/o request (read thread)
I/O thread 3 state: waiting for i/o request (write thread)
Pending normal aio reads: 0, aio writes: 0,
ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
151671 OS file reads, 94747 OS file writes, 8750 OS fsyncs
25.44 reads/s, 18494 avg bytes/read, 17.55 writes/s, 2.33 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf for space 0: size 1, free list len 19, seg size 21,
85004 inserts, 85004 merged recs, 26669 merges
Hash table size 207619, used cells 14461, node heap has 16 buffer(s)
1877.67 hash searches/s, 5121.10 non-hash searches/s

LOG

Log sequence number 18 1212842764
Log flushed up to 18 1212665295
Last checkpoint at 18 1135877290
0 pending log writes, 0 pending chkp writes
4341 log i/o's done, 1.22 log i/o's/second

BUFFER POOL AND MEMORY

Total memory allocated 84966343; in additional pool allocated 1402624
Buffer pool size 3200
Free buffers 110
Database pages 3074
Modified db pages 2674
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages read 171380, created 51968, written 194688
28.72 reads/s, 20.72 creates/s, 47.55 writes/s
Buffer pool hit rate 999 / 1000

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
Main thread process no. 3004, id 7176, state: purging
Number of rows inserted 3738558, updated 127415, deleted 33707, read 755779
1586.13 inserts/s, 50.89 updates/s, 28.44 deletes/s, 107.88 reads/s

END OF INNODB MONITOR OUTPUT
============================
InnoDB Monitor output is limited to 1MB when produced using the SHOW ENGINE INNODB STATUS statement. This limit does not apply to output written to the server's error output.
Some notes on the output sections:
BACKGROUND THREAD
The srv_master_thread lines shows work done by the main background thread.
SEMAPHORES
This section reports threads waiting for a semaphore and statistics on how many times threads have needed a spin or a wait on a mutex or a rw-lock semaphore. A large number of threads waiting for semaphores may be a result of disk I/O, or contention problems inside InnoDB. Contention can be due to heavy parallelism of queries or problems in operating system thread scheduling. Setting the innodb_thread_concurrency system variable smaller than the default value might help in such situations. The Spin rounds per wait line shows the number of spinlock rounds per OS wait for a mutex.
LATEST FOREIGN KEY ERROR
This section provides information about the most recent foreign key constraint error. It is not present if no such error has occurred. The contents include the statement that failed as well as information about the constraint that failed and the referenced and referencing tables.
LATEST DETECTED DEADLOCK
This section provides information about the most recent deadlock. It is not present if no deadlock has occurred. The contents show which transactions are involved, the statement each was attempting to execute, the locks they have and need, and which transaction InnoDB decided to roll back to break the deadlock. The lock modes reported in this section are explained in Section 14.2.3.2, “InnoDB Lock Modes”.
TRANSACTIONS
If this section reports lock waits, your applications might have lock contention. The output can also help to trace the reasons for transaction deadlocks.
FILE I/O
This section provides information about threads that InnoDB uses to perform various types of I/O. The first few of these are dedicated to general InnoDB processing. The contents also display information for pending I/O operations and statistics for I/O performance.
The number of these threads are controlled by the innodb_read_io_threads and innodb_write_io_threads parameters. See Section 14.2.6, “InnoDB Startup Options and System Variables”.
INSERT BUFFER AND ADAPTIVE HASH INDEX
This section shows the status of the InnoDB insert buffer and adaptive hash index. (See Section 14.2.3.12.5, “Insert Buffering”, and Section 14.2.3.12.6, “Adaptive Hash Indexes”.) The contents include the number of operations performed for each, plus statistics for hash index performance.
LOG
This section displays information about the InnoDB log. The contents include the current log sequence number, how far the log has been flushed to disk, and the position at which InnoDB last took a checkpoint. (See Section 5.3.3, “InnoDB Checkpoints”.) The section also displays information about pending writes and write performance statistics.
BUFFER POOL AND MEMORY
This section gives you statistics on pages read and written. You can calculate from these numbers how many data file I/O operations your queries currently are doing.
For additional information about the operation of the buffer pool, see Section 8.9.1, “The InnoDB Buffer Pool”.
ROW OPERATIONS
This section shows what the main thread is doing, including the number and performance rate for each type of row operation.
14.2.4.4.2. InnoDB Tablespace Monitor Output
The InnoDB Tablespace Monitor prints information about the file segments in the shared tablespace and validates the tablespace allocation data structures. If you use individual tablespaces by enabling innodb_file_per_table, the Tablespace Monitor does not describe those tablespaces.
Example InnoDB Tablespace Monitor output:
==
090408 21:28:09 INNODB TABLESPACE MONITOR OUTPUT
==
FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845
SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14
SEGMENT id 0 2 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 3 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0
SEGMENT id 0 488 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 17 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 171 space 0; page 2; res 592 used 481; full ext 7
fragm pages 16; free extents 0; not full extents 2: pages 17
SEGMENT id 0 172 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 173 space 0; page 2; res 96 used 44; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 12
...
SEGMENT id 0 601 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
NUMBER of file segments: 73
Validating tablespace
Validation ok

END OF INNODB TABLESPACE MONITOR OUTPUT
=======================================
The Tablespace Monitor output includes information about the shared tablespace as a whole, followed by a list containing a breakdown for each segment within the tablespace.
In this example using the default page size, the tablespace consists of database pages that are 16KB each. The pages are grouped into extents of size 1MB (64 consecutive pages).
The initial part of the output that displays overall tablespace information has this format:
FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845
Overall tablespace information includes these values:
id: The tablespace ID. A value of 0 refers to the shared tablespace.
size: The current tablespace size in pages.
free limit: The minimum page number for which the free list has not been initialized. Pages at or above this limit are free.
free extents: The number of free extents.
not full frag extents, used pages: The number of fragment extents that are not completely filled, and the number of pages in those extents that have been allocated.
full frag extents: The number of completely full fragment extents.
first seg id not used: The first unused segment ID.
Individual segment information has this format:
SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0
Segment information includes these values:
id: The segment ID.
space, page: The tablespace number and page within the tablespace where the segment “inode” is located. A tablespace number of 0 indicates the shared tablespace. InnoDB uses inodes to keep track of segments in the tablespace. The other fields displayed for a segment (id, res, and so forth) are derived from information in the inode.
res: The number of pages allocated (reserved) for the segment.
used: The number of allocated pages in use by the segment.
full ext: The number of extents allocated for the segment that are completely used.
fragm pages: The number of initial pages that have been allocated to the segment.
free extents: The number of extents allocated for the segment that are completely unused.
not full extents: The number of extents allocated for the segment that are partially used.
pages: The number of pages used within the not-full extents.
When a segment grows, it starts as a single page, and InnoDB allocates the first pages for it one at a time, up to 32 pages (this is the fragm pages value). After that, InnoDB allocates complete extents. InnoDB can add up to 4 extents at a time to a large segment to ensure good sequentiality of data.
For the example segment shown earlier, it has 32 fragment pages, plus 2 full extents (64 pages each), for a total of 160 pages used out of 160 pages allocated. The following segment has 32 fragment pages and one partially full extent using 14 pages for a total of 46 pages used out of 96 pages allocated:
SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14
It is possible for a segment that has extents allocated to it to have a fragm pages value less than 32 if some of the individual pages have been deallocated subsequent to extent allocation.
14.2.4.4.3. InnoDB Table Monitor Output
The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary.
The output contains one section per table. The SYS_FOREIGN and SYS_FOREIGN_COLS sections are for internal data dictionary tables that maintain information about foreign keys. There are also sections for the Table Monitor table and each user-created InnoDB table. Suppose that the following two tables have been created in the test database:
CREATE TABLE parent
(
par_id INT NOT NULL,
fname CHAR(20),
lname CHAR(20),
PRIMARY KEY (par_id),
UNIQUE INDEX (lname, fname)
) ENGINE = INNODB;
CREATE TABLE child
(
par_id INT NOT NULL,
child_id INT NOT NULL,
name VARCHAR(40),
birth DATE,
weight DECIMAL(10,2),
misc_info VARCHAR(255),
last_update TIMESTAMP,
PRIMARY KEY (par_id, child_id),
INDEX (name),
FOREIGN KEY (par_id) REFERENCES parent (par_id)
ON DELETE CASCADE
ON UPDATE CASCADE
) ENGINE = INNODB;
Then the Table Monitor output will look something like this (reformatted slightly):
===
090420 12:09:32 INNODB TABLE MONITOR OUTPUT
===

TABLE: name SYS_FOREIGN, id 0 11, columns 7, indexes 3, appr.rows 1
COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0;
FOR_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
REF_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
N_COLS: DATA_INT len 4;
DB_ROW_ID: DATA_SYS prtype 256 len 6;
DB_TRX_ID: DATA_SYS prtype 257 len 6;
INDEX: name ID_IND, id 0 11, fields 1/6, uniq 1, type 3
root page 46, appr.key vals 1, leaf pages 1, size pages 1
FIELDS: ID DB_TRX_ID DB_ROLL_PTR FOR_NAME REF_NAME N_COLS
INDEX: name FOR_IND, id 0 12, fields 1/2, uniq 2, type 0
root page 47, appr.key vals 1, leaf pages 1, size pages 1
FIELDS: FOR_NAME ID
INDEX: name REF_IND, id 0 13, fields 1/2, uniq 2, type 0
root page 48, appr.key vals 1, leaf pages 1, size pages 1
FIELDS: REF_NAME ID

TABLE: name SYS_FOREIGN_COLS, id 0 12, columns 7, indexes 1, appr.rows 1
COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0;
POS: DATA_INT len 4;
FOR_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
REF_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0;
DB_ROW_ID: DATA_SYS prtype 256 len 6;
DB_TRX_ID: DATA_SYS prtype 257 len 6;
INDEX: name ID_IND, id 0 14, fields 2/6, uniq 2, type 3
root page 49, appr.key vals 1, leaf pages 1, size pages 1
FIELDS: ID POS DB_TRX_ID DB_ROLL_PTR FOR_COL_NAME REF_COL_NAME

TABLE: name test/child, id 0 14, columns 10, indexes 2, appr.rows 201
COLUMNS: par_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
child_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
name: DATA_VARCHAR prtype 524303 len 40;
birth: DATA_INT DATA_BINARY_TYPE len 3;
weight: DATA_FIXBINARY DATA_BINARY_TYPE len 5;
misc_info: DATA_VARCHAR prtype 524303 len 255;
last_update: DATA_INT DATA_UNSIGNED DATA_BINARY_TYPE DATA_NOT_NULL len 4;
DB_ROW_ID: DATA_SYS prtype 256 len 6;
DB_TRX_ID: DATA_SYS prtype 257 len 6;
INDEX: name PRIMARY, id 0 17, fields 2/9, uniq 2, type 3
root page 52, appr.key vals 201, leaf pages 5, size pages 6
FIELDS: par_id child_id DB_TRX_ID DB_ROLL_PTR name birth weight misc_info last_update
INDEX: name name, id 0 18, fields 1/3, uniq 3, type 0
root page 53, appr.key vals 210, leaf pages 1, size pages 1
FIELDS: name par_id child_id
FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child (par_id)
REFERENCES test/parent (par_id)

TABLE: name test/innodb_table_monitor, id 0 15, columns 4, indexes 1, appr.rows 0
COLUMNS: i: DATA_INT DATA_BINARY_TYPE len 4;
DB_ROW_ID: DATA_SYS prtype 256 len 6;
DB_TRX_ID: DATA_SYS prtype 257 len 6;
INDEX: name GEN_CLUST_INDEX, id 0 19, fields 0/4, uniq 1, type 1
root page 193, appr.key vals 0, leaf pages 1, size pages 1
FIELDS: DB_ROW_ID DB_TRX_ID DB_ROLL_PTR i

TABLE: name test/parent, id 0 13, columns 6, indexes 2, appr.rows 299
COLUMNS: par_id: DATA_INT DATA_BINARY_TYPE DATA_NOT_NULL len 4;
fname: DATA_CHAR prtype 524542 len 20;
lname: DATA_CHAR prtype 524542 len 20;
DB_ROW_ID: DATA_SYS prtype 256 len 6;
DB_TRX_ID: DATA_SYS prtype 257 len 6;
INDEX: name PRIMARY, id 0 15, fields 1/5, uniq 1, type 3
root page 50, appr.key vals 299, leaf pages 2, size pages 3
FIELDS: par_id DB_TRX_ID DB_ROLL_PTR fname lname
INDEX: name lname, id 0 16, fields 2/3, uniq 2, type 2
root page 51, appr.key vals 300, leaf pages 1, size pages 1
FIELDS: lname fname par_id
FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child (par_id)
REFERENCES test/parent (par_id)

END OF INNODB TABLE MONITOR OUTPUT
==================================
For each table, Table Monitor output contains a section that displays general information about the table and specific information about its columns, indexes, and foreign keys.
The general information for each table includes the table name (in db_name/tbl_name format except for internal tables), its ID, the number of columns and indexes, and an approximate row count.
The COLUMNS part of a table section lists each column in the table. Information for each column indicates its name and data type characteristics. Some internal columns are added by InnoDB, such as DB_ROW_ID (row ID), DB_TRX_ID (transaction ID), and DB_ROLL_PTR (a pointer to the rollback/undo data).
DATA_xxx: These symbols indicate the data type. There may be multiple DATA_xxx symbols for a given column.
prtype: The column's “precise” type. This field includes information such as the column data type, character set code, nullability, signedness, and whether it is a binary string. This field is described in the innobase/include/data0type.h source file.
len: The column length in bytes.
Each INDEX part of the table section provides the name and characteristics of one table index:
name: The index name. If the name is PRIMARY, the index is a primary key. If the name is GEN_CLUST_INDEX, the index is the clustered index that is created automatically if the table definition doesn't include a primary key or non-NULL unique index. See Section 14.2.3.12.2, “Clustered and Secondary Indexes”.
id: The index ID.
fields: The number of fields in the index, as a value in m/n format:
m is the number of user-defined columns; that is, the number of columns you would see in the index definition in a CREATE TABLE statement.
n is the total number of index columns, including those added internally. For the clustered index, the total includes the other columns in the table definition, plus any columns added internally. For a secondary index, the total includes the columns from the primary key that are not part of the secondary index.
uniq: The number of leading fields that are enough to determine index values uniquely.
type: The index type. This is a bit field. For example, 1 indicates a clustered index and 2 indicates a unique index, so a clustered index (which always contains unique values), will have a type value of 3. An index with a type value of 0 is neither clustered nor unique. The flag values are defined in the innobase/include/dict0mem.h source file.
root page: The index root page number.
appr. key vals: The approximate index cardinality.
leaf pages: The approximate number of leaf pages in the index.
size pages: The approximate total number of pages in the index.
FIELDS: The names of the fields in the index. For a clustered index that was generated automatically, the field list begins with the internal DB_ROW_ID (row ID) field. DB_TRX_ID and DB_ROLL_PTR are always added internally to the clustered index, following the fields that comprise the primary key. For a secondary index, the final fields are those from the primary key that are not part of the secondary index.
The end of the table section lists the FOREIGN KEY definitions that apply to the table. This information appears whether the table is a referencing or referenced table.
14.2.4.5. InnoDB General Troubleshooting
The following general guidelines apply to troubleshooting InnoDB problems:
When an operation fails or you suspect a bug, look at the MySQL server error log (see Section 5.2.2, “The Error Log”).
If the failure is related to a deadlock, run with the innodb_print_all_deadlocks option enabled so that details about each InnoDB deadlock are printed to the MySQL server error log.
Issues relating to the InnoDB data dictionary include failed CREATE TABLE statements (orphaned table files), inability to open .InnoDB files, and system cannot find the path specified errors. For information about these sorts of problems and errors, see Section 14.2.4.7, “Troubleshooting InnoDB Data Dictionary Operations”.
When troubleshooting, it is usually best to run the MySQL server from the command prompt, rather than through mysqld_safe or as a Windows service. You can then see what mysqld prints to the console, and so have a better grasp of what is going on. On Windows, start mysqld with the --console option to direct the output to the console window.
Use the InnoDB Monitors to obtain information about a problem (see Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”). If the problem is performance-related, or your server appears to be hung, use the standard Monitor to print information about the internal state of InnoDB. If the problem is with locks, use the Lock Monitor. If the problem is in creation of tables or other data dictionary operations, use the Table Monitor to print the contents of the InnoDB internal data dictionary. To see tablespace information use the Tablespace Monitor.
If you suspect that a table is corrupt, run CHECK TABLE on that table.
14.2.4.5.1. Troubleshooting InnoDB I/O Problems
The troubleshooting steps for InnoDB I/O problems depend on when the problem occurs: during startup of the MySQL server, or during normal operations when a DML or DDL statement fails due to problems at the file system level.
Initialization Problems
If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, delete all files created by InnoDB: all ibdata files and all ib_logfile files. If you already created some InnoDB tables, also delete the corresponding .frm files for these tables, and any .ibd files if you are using multiple tablespaces, from the MySQL database directories. Then try the InnoDB database creation again. For easiest troubleshooting, start the MySQL server from a command prompt so that you see what is happening.
Runtime Problems
If InnoDB prints an operating system error during a file operation, usually the problem has one of the following solutions:
Make sure the InnoDB data file directory and the InnoDB log directory exist.
Make sure mysqld has access rights to create files in those directories.
Make sure mysqld can read the proper my.cnf or my.ini option file, so that it starts with the options that you specified.
Make sure the disk is not full and you are not exceeding any disk quota.
Make sure that the names you specify for subdirectories and data files do not clash.
Doublecheck the syntax of the innodb_data_home_dir and innodb_data_file_path values. In particular, any MAX value in the innodb_data_file_path option is a hard limit, and exceeding that limit causes a fatal error.
14.2.4.6. Starting InnoDB on a Corrupted Database
To investigate database page corruption, you might dump your tables from the database with SELECT ... INTO OUTFILE. Usually, most of the data obtained in this way is intact. Serious corruption might cause SELECT * FROM tbl_name statements or InnoDB background operations to crash or assert, or even cause InnoDB roll-forward recovery to crash. In such cases, use the innodb_force_recovery option to force the InnoDB storage engine to start up while preventing background operations from running, so that you can dump your tables. For example, you can add the following line to the [mysqld] section of your option file before restarting the server:
[mysqld]
innodb_force_recovery = 4
innodb_force_recovery is 0 by default (normal startup without forced recovery). The permissible nonzero values for innodb_force_recovery follow. A larger number includes all precautions of smaller numbers. If you can dump your tables with an option value of at most 4, then you are relatively safe that only some data on corrupt individual pages is lost. A value of 6 is more drastic because database pages are left in an obsolete state, which in turn may introduce more corruption into B-trees and other database structures.
1 (SRV_FORCE_IGNORE_CORRUPT)
Lets the server run even if it detects a corrupt page. Tries to make SELECT * FROM tbl_name jump over corrupt index records and pages, which helps in dumping tables.
2 (SRV_FORCE_NO_BACKGROUND)
Prevents the master thread and any purge threads from running. If a crash would occur during the purge operation, this recovery value prevents it.
3 (SRV_FORCE_NO_TRX_UNDO)
Does not run transaction rollbacks after crash recovery.
4 (SRV_FORCE_NO_IBUF_MERGE)
Prevents insert buffer merge operations. If they would cause a crash, does not do them. Does not calculate table statistics.
5 (SRV_FORCE_NO_UNDO_LOG_SCAN)
Does not look at undo logs when starting the database: InnoDB treats even incomplete transactions as committed.
6 (SRV_FORCE_NO_LOG_REDO)
Does not do the redo log roll-forward in connection with recovery.
With this value, you might not be able to do queries other than a basic SELECT * FROM t, with no WHERE, ORDER BY, or other clauses. More complex queries could encounter corrupted data structures and fail.
If corruption within the table data prevents you from dumping the entire table contents, a query with an ORDER BY primary_key DESC clause might be able to dump the portion of the table after the corrupted part.
The database must not otherwise be used with any nonzero value of innodb_force_recovery. As a safety measure, InnoDB prevents INSERT, UPDATE, or DELETE operations when innodb_force_recovery is greater than 0.
You can SELECT from tables to dump them, or DROP or CREATE tables even if forced recovery is used. If you know that a given table is causing a crash on rollback, you can drop it. You can also use this to stop a runaway rollback caused by a failing mass import or ALTER TABLE: kill the mysqld process and set innodb_force_recovery to 3 to bring the database up without the rollback, then DROP the table that is causing the runaway rollback.
14.2.4.7. Troubleshooting InnoDB Data Dictionary Operations
Information about table definitions is stored both in the .frm files, and in the InnoDB data dictionary. If you move .frm files around, or if the server crashes in the middle of a data dictionary operation, these sources of information can become inconsistent.
Problem with CREATE TABLE
A symptom of an out-of-sync data dictionary is that a CREATE TABLE statement fails. If this occurs, look in the server's error log. If the log says that the table already exists inside the InnoDB internal data dictionary, you have an orphaned table inside the InnoDB tablespace files that has no corresponding .frm file. The error message looks like this:
InnoDB: Error: table test/parent already exists in InnoDB internal
InnoDB: data dictionary. Have you deleted the .frm file
InnoDB: and not used DROP TABLE? Have you used DROP DATABASE
InnoDB: for InnoDB tables in MySQL version <= 3.23.43?
InnoDB: See the Restrictions section of the InnoDB manual.
InnoDB: You can drop the orphaned table inside InnoDB by
InnoDB: creating an InnoDB table with the same name in another
InnoDB: database and moving the .frm file to the current database.
InnoDB: Then MySQL thinks the table exists, and DROP TABLE will
InnoDB: succeed.
You can drop the orphaned table by following the instructions given in the error message. If you are still unable to use DROP TABLE successfully, the problem may be due to name completion in the mysql client. To work around this problem, start the mysql client with the --skip-auto-rehash option and try DROP TABLE again. (With name completion on, mysql tries to construct a list of table names, which fails when a problem such as just described exists.)
Problem Opening Table
Another symptom of an out-of-sync data dictionary is that MySQL prints an error that it cannot open a .InnoDB file:
ERROR 1016: Can't open file: 'child2.InnoDB'. (errno: 1)
In the error log you can find a message like this:
InnoDB: Cannot find table test/child2 from the internal data dictionary
InnoDB: of InnoDB though the .frm file for the table exists. Maybe you
InnoDB: have deleted and recreated InnoDB data files but have forgotten
InnoDB: to delete the corresponding .frm files of InnoDB tables?
This means that there is an orphaned .frm file without a corresponding table inside InnoDB. You can drop the orphaned .frm file by deleting it manually.
Problem with Temporary Table
If MySQL crashes in the middle of an ALTER TABLE operation, you may end up with an orphaned temporary table inside the InnoDB tablespace. Using the Table Monitor, you can see listed a table with a name that begins with #sql-. You can perform SQL statements on tables whose name contains the character “#” if you enclose the name within backticks. Thus, you can drop such an orphaned table like any other orphaned table using the method described earlier. To copy or rename a file in the Unix shell, you need to put the file name in double quotation marks if the file name contains “#”.
Problem with Missing Tablespace
With innodb_file_per_table enabled, the following message might occur if the .frm or .ibd files (or both) are missing:
InnoDB: in InnoDB data dictionary has tablespace id N,
InnoDB: but tablespace with that id or name does not exist. Have
InnoDB: you deleted or moved .ibd files?
InnoDB: This may also be a table created with CREATE TEMPORARY TABLE
InnoDB: whose .ibd and .frm files MySQL automatically removed, but the
InnoDB: table still exists in the InnoDB internal data dictionary.
If this occurs, try the following procedure to resolve the problem:
Create a matching .frm file in some other database directory and copy it to the database directory where the orphan table is located.
Issue DROP TABLE for the original table. That should successfully drop the table and InnoDB should print a warning to the error log that the .ibd file was missing.
14.2.5. InnoDB Features for Flexibility, Ease of Use and Reliability
This section describes several recently added InnoDB features that offer new flexibility and improve ease of use, reliability and performance. The Barracuda file format improves efficiency for storing large variable-length columns, and enables table compression. Configuration options that once were unchangeable after startup, are now flexible and can be changed dynamically. Some improvements are automatic, such as faster and more efficient TRUNCATE TABLE. Others allow you the flexibility to control InnoDB behavior; for example, you can control whether certain problems cause errors or just warnings. And informational messages and error reporting continue to be made more user-friendly.
14.2.5.1. Support for Read-Only Media
You can now query InnoDB tables where the MySQL data directory is on read-only media, by enabling the --innodb-read-only configuration option at server startup.
How to Enable
To prepare an instance for read-only operation, make sure all the necessary information is flushed to the data files before storing it on the read-only medium. Run the server with change buffering disabled (innodb_change_buffering=0) and do a slow shutdown.
To enable read-only mode for an entire MySQL instance, specify the following configuration options at server startup:
If the instance is on read-only media such as a DVD or CD, or the /var directory is not writeable by all: --pid-file=path_on_writeable_media and --event-scheduler=disabled
Usage Scenarios
This mode of operation is appropriate in situations such as:
Distributing a MySQL application, or a set of MySQL data, on a read-only storage medium such as a DVD or CD.
Multiple MySQL instances querying the same data directory simultaneously, typically in a data warehousing configuration. You might use this technique to avoid bottlenecks that can occur with a heavily loaded MySQL instance, or you might use different configuration options for the various instances to tune each one for particular kinds of queries.
Querying data that has been put into a read-only state for security or data integrity reasons, such as archived backup data.
Note
This feature is mainly intended for flexibility in distribution and deployment, rather than raw performance based on the read-only aspect. See Section 14.2.4.2.3, “Optimizations for Read-Only Transactions” for ways to tune the performance of read-only queries, which do not require making the entire server read-only.
How It Works
When the server is run in read-only mode through the --innodb-read-only option, certain InnoDB features and components are reduced or turned off entirely:
No change buffering is done, in particular no merges from the change buffer. To make sure the change buffer is empty when you prepare the instance for read-only operation, disable change buffering (innodb_change_buffering=0) and do a slow shutdown first.
There is no crash recovery phase at startup. The instance must have performed a slow shutdown before being put into the read-only state.
Because the redo log is not used in read-only operation, you can set innodb_log_file_size to the smallest size possible (1 MB) before making the instance read-only.
All background threads other than I/O read threads are turned off. As a consequence, a read-only instance cannot encounter any deadlocks.
Information about deadlocks, monitor output, and so on is not written to temporary files. As a consequence, SHOW ENGINE INNODB STATUS does not produce any output.
If the MySQL server is started with --innodb-read-only but the data directory is still on writeable media, the root user can still perform DCL operations such as GRANT and REVOKE.
Changes to configuration option settings that would normally change the the behavior of write operations, have no effect when the server is in read-only mode.
The MVCC processing to enforce isolation levels is turned off. All queries read the latest version of a record, because update and deletes are not possible.
The undo log is not used. Disable any settings for the innodb_undo_tablespaces and innodb_undo_directory configuration options.
14.2.5.2. Larger Size Limit for Redo Log Files
Formerly, the combined size of the InnoDB redo log files was limited to 4 gigabytes. Starting in MySQL 5.6.3, this size limit is raised to 512GB.
You do not need any special upgrade process or file format to take advantage of this feature. The bytes that record the extra size information were already reserved and set to zero in the InnoDB system tablespace.
If you develop applications that interact with the InnoDB logical sequence number (LSN) value, change your code to use guaranteed 64-bit variables to store and compare LSN values, rather than 32-bit variables.
14.2.5.3. 2-Byte Collation IDs for InnoDB Tables
InnoDB tables can now use collation IDs greater than 255. Currently, the collation IDs in this range are all user-defined. For example, the following InnoDB table can now be created, where formerly the collation ID of 359 was beyond the range supported by InnoDB.
sql> show collation like 'ucs2_vn_ci';
+------------+---------+-----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+------------+---------+-----+---------+----------+---------+
| ucs2_vn_ci | ucs2 | 359 | | | 8 |
+------------+---------+-----+---------+----------+---------+
1 row in set (0.00 sec)
mysql> create table two_byte_collation (c1 char(1) character set ucs2 collate ucs2_vn_ci)
-> engine = InnoDB;
Query OK, 0 rows affected (0.16 sec)
14.2.5.4. The Barracuda File Format
InnoDB has started using named file formats to improve compatibility in upgrade and downgrade situations, or heterogeneous systems running different levels of MySQL. Many important InnoDB features, such as table compression and the DYNAMIC row format for more efficient BLOB storage, require creating tables in the Barracuda file format. The original file format, which previously didn't have a name, is known now as Antelope.
To create new tables that take advantage of the Barracuda features, enable that file format using the configuration parameter innodb_file_format. The value of this parameter determines whether a newly created table or index can use compression or the new DYNAMIC row format.
To preclude the use of new features that would make your database inaccessible to the built-in InnoDB in MySQL 5.1 and prior releases, omit innodb_file_format or set it to Antelope.
You can set the value of innodb_file_format on the command line when you start mysqld, or in the option file my.cnf (Unix operating systems) or my.ini (Windows). You can also change it dynamically with the SET GLOBAL statement.
For more information about managing file formats, see Section 5.4.7, “InnoDB File-Format Management”.
14.2.5.5. Dynamic Control of System Configuration Parameters
In MySQL 5.5 and higher, you can change certain system configuration parameters without shutting down and restarting the server, as was necessary in MySQL 5.1 and lower. This increases uptime, and makes it easier to test and prototype new SQL and application code. The following sections explain these parameters.
14.2.5.5.1. Dynamically Changing innodb_file_per_table
Since MySQL version 4.1, InnoDB has provided two alternatives for how tables are stored on disk. You can create a new table and its indexes in the shared system tablespace, physically stored in the ibdata files. Or, you can store a new table and its indexes in a separate tablespace (a .ibd file). The storage layout for each InnoDB table is determined by the the configuration parameter innodb_file_per_table at the time the table is created.
In MySQL 5.5 and higher, the configuration parameter innodb_file_per_table is dynamic, and can be set ON or OFF using the SET GLOBAL. Previously, the only way to set this parameter was in the MySQL configuration file (my.cnf or my.ini), and changing it required shutting down and restarting the server.
The default setting is OFF, so new tables and indexes are created in the system tablespace. Dynamically changing the value of this parameter requires the SUPER privilege and immediately affects the operation of all connections.
Tables created when innodb_file_per_table is enabled can use the Barracuda file format, and TRUNCATE returns the disk space for those tables to the operating system. The Barracuda file format in turn enables features such as table compression and the DYNAMIC row format. Tables created when innodb_file_per_table is off cannot use these features. To take advantage of those features for an existing table, you can turn on the file-per-table setting and run ALTER TABLE t ENGINE=INNODB for that table.
When you redefine the primary key for an InnoDB table, the table is re-created using the current settings for innodb_file_per_table and innodb_file_format. This behavior does not apply when adding or dropping InnoDB secondary indexes, as explained in Fast Index Creation in the InnoDB Storage Engine. When a secondary index is created without rebuilding the table, the index is stored in the same file as the table data, regardless of the current innodb_file_per_table setting.
14.2.5.5.2. Dynamically Changing innodb_stats_on_metadata
In MySQL 5.5 and higher, you can change the setting of innodb_stats_on_metadata dynamically at runtime, to control whether or not InnoDB performs statistics gathering when metadata statements are executed. To change the setting, issue the statement SET GLOBAL innodb_stats_on_metadata=mode, where mode is either ON or OFF (or 1 or 0). Changing this setting requires the SUPER privilege and immediately affects the operation of all connections.
This setting is related to the feature described in Section 14.2.5.8, “Controlling Optimizer Statistics Estimation”.
14.2.5.5.3. Dynamically Changing innodb_lock_wait_timeout
The length of time a transaction waits for a resource, before giving up and rolling back the statement, is determined by the value of the configuration parameter innodb_lock_wait_timeout. (In MySQL 5.0.12 and earlier, the entire transaction was rolled back, not just the statement.) Your application can try the statement again (usually after waiting for a while), or roll back the entire transaction and restart.
The error returned when the timeout period is exceeded is:
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
In MySQL 5.5 and higher, the configuration parameter innodb_lock_wait_timeout can be set at runtime with the SET GLOBAL or SET SESSION statement. Changing the GLOBAL setting requires the SUPER privilege and affects the operation of all clients that subsequently connect. Any client can change the SESSION setting for innodb_lock_wait_timeout, which affects only that client.
In MySQL 5.1 and earlier, the only way to set this parameter was in the MySQL configuration file (my.cnf or my.ini), and changing it required shutting down and restarting the server.
14.2.5.5.4. Dynamically Changing innodb_adaptive_hash_index
As described in Section 14.2.4.2.14, “Controlling Adaptive Hash Indexing”, it may be desirable, depending on your workload, to dynamically enable or disable the adaptive hash indexing scheme InnoDB uses to improve query performance.
The configuration option innodb_adaptive_hash_index lets you disable the adaptive hash index. It is enabled by default. You can modify this parameter through the SET GLOBAL statement, without restarting the server. Changing the setting requires the SUPER privilege.
Disabling the adaptive hash index empties the hash table immediately. Normal operations can continue while the hash table is emptied, and executing queries that were using the hash table access the index B-trees directly instead. When the adaptive hash index is re-enabled, the hash table is populated again during normal operation.
14.2.5.6. TRUNCATE TABLE Reclaims Space
When you truncate a table that is stored in a .ibd file of its own (because innodb_file_per_table was enabled when the table was created), and if the table is not referenced in a FOREIGN KEY constraint, the table is dropped and re-created in a new .ibd file. This operation is much faster than deleting the rows one by one. The operating system can reuse the disk space, in contrast to tables within the InnoDB system tablespace, where only InnoDB can use the space after they are truncated. Physical backups can also be smaller, without big blocks of unused space in the middle of the system tablespace.
MySQL 5.1 and earlier would re-use the existing .ibd file, thus releasing the space only to InnoDB for storage management, but not to the operating system. Note that when the table is truncated, the count of rows affected by the TRUNCATE TABLE statement is an arbitrary number.
Note
If there is a foreign key constraint between two columns in the same table, that table can still be truncated using this fast technique.
If there are foreign key constraints between the table being truncated and other tables, the truncate operation fails. This is a change to the previous behavior, which would transform the TRUNCATE operation to a DELETE operation that removed all the rows and triggered ON DELETE operations on child tables.
14.2.5.7. InnoDB Strict Mode
To guard against ignored typos and syntax errors in SQL, or other unintended consequences of various combinations of operational modes and SQL statements, InnoDB provides a strict mode of operations. In this mode, InnoDB raises error conditions in certain cases, rather than issuing a warning and processing the specified statement (perhaps with unintended behavior). This is analogous to sql_mode in MySQL, which controls what SQL syntax MySQL accepts, and determines whether it silently ignores errors, or validates input syntax and data values. Since InnoDB strict mode is relatively new, some statements that execute without errors with earlier versions of MySQL might generate errors unless you disable strict mode.
The setting of InnoDB strict mode affects the handling of syntax errors on the CREATE TABLE, ALTER TABLE and CREATE INDEX statements. The strict mode also enables a record size check, so that an INSERT or UPDATE never fails due to the record being too large for the selected page size.
Oracle recommends enabling innodb_strict_mode when using the ROW_FORMAT and KEY_BLOCK_SIZE clauses on CREATE TABLE, ALTER TABLE, and CREATE INDEX statements. Without strict mode, InnoDB ignores conflicting clauses and creates the table or index, with only a warning in the message log. The resulting table might have different behavior than you intended, such as having no compression when you tried to create a compressed table. When InnoDB strict mode is on, such problems generate an immediate error and the table or index is not created, avoiding a troubleshooting session later.
InnoDB strict mode is set with the configuration parameter innodb_strict_mode, which can be specified as ON or OFF. You can set the value on the command line when you start mysqld, or in the configuration file my.cnf or my.ini. You can also enable or disable InnoDB strict mode at runtime with the statement SET [GLOBAL|SESSION] innodb_strict_mode=mode, where mode is either ON or OFF. Changing the GLOBAL setting requires the SUPER privilege and affects the operation of all clients that subsequently connect. Any client can change the SESSION setting for innodb_strict_mode, and the setting affects only that client.
14.2.5.8. Controlling Optimizer Statistics Estimation
The MySQL query optimizer uses estimated statistics about key distributions to choose the indexes for an execution plan, based on the relative selectivity of the index. Certain operations cause InnoDB to sample random pages from each index on a table to estimate the cardinality of the index. (This technique is known as random dives.) These operations include the ANALYZE TABLE statement, the SHOW TABLE STATUS statement, and accessing the table for the first time after a restart.
To give you control over the quality of the statistics estimate (and thus better information for the query optimizer), you can now change the number of sampled pages using the parameter innodb_stats_sample_pages. Previously, the number of sampled pages was always 8, which could be insufficient to produce an accurate estimate, leading to poor index choices by the query optimizer. This technique is especially important for large tables and tables used in joins. Unnecessary full table scans for such tables can be a substantial performance issue. See Section 8.2.1.4, “How to Avoid Full Table Scans” for tips on tuning such queries.
You can set the global parameter innodb_stats_sample_pages, at runtime. The default value for this parameter is 8, preserving the same behavior as in past releases.
Note
The value of innodb_stats_sample_pages affects the index sampling for all InnoDB tables and indexes. There are the following potentially significant impacts when you change the index sample size:
Small values like 1 or 2 can result in very inaccurate estimates of cardinality.
Increasing the innodb_stats_sample_pages value might require more disk reads. Values much larger than 8 (say, 100), can cause a big slowdown in the time it takes to open a table or execute SHOW TABLE STATUS.
The optimizer might choose very different query plans based on different estimates of index selectivity.
To disable the cardinality estimation for metadata statements such as SHOW TABLE STATUS, execute the statement SET GLOBAL innodb_stats_on_metadata=OFF (or 0). The ability to set this option dynamically is also relatively new.
All InnoDB tables are opened, and the statistics are re-estimated for all associated indexes, when the mysql client starts if the auto-rehash setting is set on (the default). To improve the start up time of the mysql client, you can turn auto-rehash off. The auto-rehash feature enables automatic name completion of database, table, and column names for interactive users.
Whatever value of innodb_stats_sample_pages works best for a system, set the option and leave it at that value. Choose a value that results in reasonably accurate estimates for all tables in your database without requiring excessive I/O. Because the statistics are automatically recalculated at various times other than on execution of ANALYZE TABLE, it does not make sense to increase the index sample size, run ANALYZE TABLE, then decrease sample size again. The more accurate statistics calculated by ANALYZE running with a high value of innodb_stats_sample_pages can be wiped away later.
Although it is not possible to specify the sample size on a per-table basis, smaller tables generally require fewer index samples than larger tables do. If your database has many large tables, consider using a higher value for innodb_stats_sample_pages than if you have mostly smaller tables.
14.2.5.9. Better Error Handling when Dropping Indexes
For optimal performance with DML statements, InnoDB requires an index to exist on foreign key columns, so that UPDATE and DELETE operations on a parent table can easily check whether corresponding rows exist in the child table. MySQL creates or drops such indexes automatically when needed, as a side-effect of CREATE TABLE, CREATE INDEX, and ALTER TABLE statements.
When you drop an index, InnoDB checks whether the index is not used for checking a foreign key constraint. It is still OK to drop the index if there is another index that can be used to enforce the same constraint. InnoDB prevents you from dropping the last index that can enforce a particular referential constraint.
The message that reports this error condition is:
ERROR 1553 (HY000): Cannot drop index 'fooIdx':
needed in a foreign key constraint
This message is friendlier than the earlier message it replaces:
ERROR 1025 (HY000): Error on rename of './db2/#sql-18eb_3'
to './db2/foo'(errno: 150)
A similar change in error reporting applies to an attempt to drop the primary key index. For tables without an explicit PRIMARY KEY, InnoDB creates an implicit clustered index using the first columns of the table that are declared UNIQUE and NOT NULL. When you drop such an index, InnoDB automatically copies the table and rebuilds the index using a different UNIQUE NOT NULL group of columns or a system-generated key. Since this operation changes the primary key, it uses the slow method of copying the table and re-creating the index, rather than the Fast Index Creation technique from Section 5.5.6, “Implementation Details of Online DDL”.
Previously, an attempt to drop an implicit clustered index (the first UNIQUE NOT NULL index) failed if the table did not contain a PRIMARY KEY:
ERROR 42000: This table type requires a primary key
14.2.5.10. More Compact Output of SHOW ENGINE INNODB MUTEX
The statement SHOW ENGINE INNODB MUTEX displays information about InnoDB mutexes and rw-locks. Although this information is useful for tuning on multi-core systems, the amount of output can be overwhelming on systems with a big buffer pool. There is one mutex and one rw-lock in each 16K buffer pool block, and there are 65,536 blocks per gigabyte. It is unlikely that a single block mutex or rw-lock from the buffer pool could become a performance bottleneck.
SHOW ENGINE INNODB MUTEX now skips the mutexes and rw-locks of buffer pool blocks. It also does not list any mutexes or rw-locks that have never been waited on (os_waits=0). Thus, SHOW ENGINE INNODB MUTEX only displays information about mutexes and rw-locks outside of the buffer pool that have caused at least one OS-level wait.
14.2.5.11. More Read-Ahead Statistics
As described in Section 14.2.4.2.16, “Changes in the Read-Ahead Algorithm”, a read-ahead request is an asynchronous I/O request issued in anticipation that a page will be used in the near future. Knowing how many pages are read through this read-ahead mechanism, and how many of them are evicted from the buffer pool without ever being accessed, can be useful to help fine-tune the parameter innodb_read_ahead_threshold.
SHOW ENGINE INNODB STATUS output displays the global status variables Innodb_buffer_pool_read_ahead and Innodb_buffer_pool_read_ahead_evicted. These variables indicate the number of pages brought into the buffer pool by read-ahead requests, and the number of such pages evicted from the buffer pool without ever being accessed respectively. These counters provide global values since the last server restart.
SHOW ENGINE INNODB STATUS also shows the rate at which the read-ahead pages are read in and the rate at which such pages are evicted without being accessed. The per-second averages are based on the statistics collected since the last invocation of SHOW ENGINE INNODB STATUS and are displayed in the BUFFER POOL AND MEMORY section of the output.
14.2.6. InnoDB Startup Options and System Variables
This section describes the InnoDB-related command options and system variables. System variables that are true or false can be enabled at server startup by naming them, or disabled by using a --skip- prefix. For example, to enable or disable InnoDB checksums, you can use --innodb_checksums or --skip-innodb_checksums on the command line, or innodb_checksums or skip-innodb_checksums in an option file. System variables that take a numeric value can be specified as --var_name=value on the command line or as var_name=value in option files. For more information on specifying options and system variables, see Section 4.2.3, “Specifying Program Options”. Many of the system variables can be changed at runtime (see Section 5.1.5.2, “Dynamic System Variables”).
Certain options control the locations and layout of the InnoDB data files. Section 14.2.1.2, “Configuring InnoDB” explains how to use these options. Many other options, that you might not use initially, help to tune InnoDB performance characteristics based on machine capacity and your database workload. The performance-related options are explained in Section 14.2.4, “InnoDB Performance Tuning and Troubleshooting” and Section 14.2.4.2, “InnoDB Performance and Scalability Enhancements”.
Table 14.5. InnoDB Option/Variable Reference
InnoDB Command Options
--ignore-builtin-innodb
Command-Line Format | --ignore-builtin-innodb | ||
Option-File Format | ignore-builtin-innodb | ||
Option Sets Variable | Yes, ignore_builtin_innodb | ||
Variable Name | ignore-builtin-innodb | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Deprecated | 5.2.22 | ||
Permitted Values | |||
Type | boolean |
In MySQL 5.1, this option caused the server to behave as if the built-in InnoDB were not present, which enabled InnoDB Plugin to be used instead. In MySQL 5.6, InnoDB is the default storage engine and InnoDB Plugin is not used, so this option has no effect. As of MySQL 5.6.5, it is ignored.
--innodb[=value]
Controls loading of the InnoDB storage engine, if the server was compiled with InnoDB support. This option has a tristate format, with possible values of OFF, ON, or FORCE. See Section 5.1.8.1, “Installing and Uninstalling Plugins”.
To disable InnoDB, use --innodb=OFF or --skip-innodb. In this case, because the default storage engine is InnoDB, the server will not start unless you also use --default-storage-engine and --default-tmp-storage-engine to set the default to some other engine for both permanent and TEMPORARY tables.
--innodb-status-file
Command-Line Format | --innodb-status-file | ||
Option-File Format | innodb-status-file | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Controls whether InnoDB creates a file named innodb_status.pid in the MySQL data directory. If enabled, InnoDB periodically writes the output of SHOW ENGINE INNODB STATUS to this file.
By default, the file is not created. To create it, start mysqld with the --innodb-status-file=1 option. The file is deleted during normal shutdown.
Disable the InnoDB storage engine. See the description of --innodb.
InnoDB System Variables
daemon_memcached_enable_binlog
Version Introduced | 5.6.6 | ||
Command-Line Format | --daemon_memcached_enable_binlog=# | ||
Option-File Format | daemon_memcached_enable_binlog | ||
Option Sets Variable | Yes, daemon_memcached_enable_binlog | ||
Variable Name | daemon_memcached_enable_binlog | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | false |
See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option.
daemon_memcached_engine_lib_name
Version Introduced | 5.6.6 | ||
Command-Line Format | --daemon_memcached_engine_lib_name=library | ||
Option-File Format | daemon_memcached_engine_lib_name | ||
Option Sets Variable | Yes, daemon_memcached_engine_lib_name | ||
Variable Name | daemon_memcached_engine_lib_name | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string | ||
Default | innodb_engine.so |
Specifies the shared library that implements the InnoDB memcached plugin.
See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option.
daemon_memcached_engine_lib_path
Version Introduced | 5.6.6 | ||
Command-Line Format | --daemon_memcached_engine_lib_path=directory | ||
Option-File Format | daemon_memcached_engine_lib_path | ||
Option Sets Variable | Yes, daemon_memcached_engine_lib_path | ||
Variable Name | daemon_memcached_engine_lib_path | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string | ||
Default |
The path of the directory containing the shared library that implements the InnoDB memcached plugin.
See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option.
daemon_memcached_option
Version Introduced | 5.6.6 | ||
Command-Line Format | --daemon_memcached_option=options | ||
Option-File Format | daemon_memcached_option | ||
Option Sets Variable | Yes, daemon_memcached_option | ||
Variable Name | daemon_memcached_option | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string | ||
Default |
Space-separated options that are passed to the underlying memcached daemon on startup.
See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option.
daemon_memcached_r_batch_size
Version Introduced | 5.6.6 | ||
Command-Line Format | --daemon_memcached_r_batch_size=# | ||
Option-File Format | daemon_memcached_r_batch_size | ||
Option Sets Variable | Yes, daemon_memcached_r_batch_size | ||
Variable Name | daemon_memcached_r_batch_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 |
Specifies how many memcached read operations (get) to perform before doing a COMMIT to start a new transaction. Counterpart of daemon_memcached_w_batch_size.
This value is set to 1 by default, so that any changes made to the table through SQL statements are immediately visible to the memcached operations. You might increase it to reduce the overhead from frequent commits on a system where the underlying table is only being accessed through the memcached interface. If you set the value too large, the amount of undo or redo data could impose some storage overhead, as with any long-running transaction.
See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option.
daemon_memcached_w_batch_size
Version Introduced | 5.6.6 | ||
Command-Line Format | --daemon_memcached_w_batch_size=# | ||
Option-File Format | daemon_memcached_w_batch_size | ||
Option Sets Variable | Yes, daemon_memcached_w_batch_size | ||
Variable Name | daemon_memcached_w_batch_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 |
Specifies how many memcached write operations, such as add, set, or incr, to perform before doing a COMMIT to start a new transaction. Counterpart of daemon_memcached_r_batch_size.
This value is set to 1 by default, on the assumption that any data being stored is important to preserve in case of an outage and should immediately be committed. When storing non-critical data, you might increase this value to reduce the overhead from frequent commits; but then the last N-1 uncommitted write operations could be lost in case of a crash.
See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option.
ignore_builtin_innodb
See the description of --ignore-builtin-innodb under “InnoDB Command Options” earlier in this section.
innodb_adaptive_flushing
Command-Line Format | --innodb_adaptive_flushing=# | ||
Option-File Format | innodb_adaptive_flushing | ||
Option Sets Variable | Yes, innodb_adaptive_flushing | ||
Variable Name | innodb_adaptive_flushing | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
Specifies whether to dynamically adjust the rate of flushing dirty pages in the InnoDB buffer pool based on the workload. Adjusting the flush rate dynamically is intended to avoid bursts of I/O activity. This setting is enabled by default. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_adaptive_flushing_lwm
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_adaptive_flushing_lwm=# | ||
Option-File Format | innodb_adaptive_flushing_lwm | ||
Option Sets Variable | Yes, innodb_adaptive_flushing_lwm | ||
Variable Name | innodb_adaptive_flushing_lwm | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 10 | ||
Range | 0 .. 70 |
Low water mark representing percentage of redo log capacity at which adaptive flushing is enabled.
innodb_adaptive_hash_index
Command-Line Format | --innodb_adaptive_hash_index=# | ||
Option-File Format | innodb_adaptive_hash_index | ||
Option Sets Variable | Yes, innodb_adaptive_hash_index | ||
Variable Name | innodb_adaptive_hash_index | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
Whether the InnoDB adaptive hash index is enabled or disabled. The adaptive hash index feature is useful for some workloads, and not for others; conduct benchmarks with it both enabled and disabled, using realistic workloads. See Section 14.2.3.12.6, “Adaptive Hash Indexes” for details. This variable is enabled by default. Use --skip-innodb_adaptive_hash_index at server startup to disable it.
innodb_adaptive_max_sleep_delay
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_adaptive_max_sleep_delay=# | ||
Option-File Format | innodb_adaptive_max_sleep_delay | ||
Option Sets Variable | Yes, innodb_adaptive_max_sleep_delay | ||
Variable Name | innodb_adaptive_max_sleep_delay | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 150000 | ||
Range | 0 .. 1000000 |
Allows InnoDB to automatically adjust the value of innodb_thread_sleep_delay up or down according to the current workload. Any non-zero value enables automated, dynamic adjustment of the innodb_thread_sleep_delay value, up to the maximum value specified in the innodb_adaptive_max_sleep_delay option. The value represents the number of microseconds. This option can be useful in busy systems, with greater than 16 InnoDB threads. (In practice, it is most valuable for MySQL systems with hundreds or thousands of simultaneous connections.)
innodb_additional_mem_pool_size
Version Deprecated | 5.6.3 | ||
Command-Line Format | --innodb_additional_mem_pool_size=# | ||
Option-File Format | innodb_additional_mem_pool_size | ||
Option Sets Variable | Yes, innodb_additional_mem_pool_size | ||
Variable Name | innodb_additional_mem_pool_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Deprecated | 5.6.3 | ||
Permitted Values | |||
Type | numeric | ||
Default | 8388608 | ||
Range | 2097152 .. 4294967295 |
The size in bytes of a memory pool InnoDB uses to store data dictionary information and other internal data structures. The more tables you have in your application, the more memory you allocate here. If InnoDB runs out of memory in this pool, it starts to allocate memory from the operating system and writes warning messages to the MySQL error log. The default value is 8MB.
This variable relates to the InnoDB internal memory allocator, which is unused if innodb_use_sys_malloc is enabled. As of MySQL 5.6.3, innodb_additional_mem_pool_size is deprecated and will be removed in a future MySQL release.
innodb_api_bk_commit_interval
Version Introduced | 5.6.7 | ||
Command-Line Format | --innodb_api_bk_commit_interval=# | ||
Option-File Format | innodb_api_bk_commit_interval | ||
Option Sets Variable | Yes, innodb_api_bk_commit_interval | ||
Variable Name | innodb_api_bk_commit_interval | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 5 | ||
Range | 1 .. 1073741824 |
Specifies how often to auto-commit idle connections that use the InnoDB memcached interface. See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option.
innodb_api_disable_rowlock
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_api_disable_rowlock=# | ||
Option-File Format | innodb_api_disable_rowlock | ||
Option Sets Variable | Yes, innodb_api_disable_rowlock | ||
Variable Name | innodb_api_disable_rowlock | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option.
innodb_api_enable_binlog
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_api_enable_binlog=# | ||
Option-File Format | innodb_api_enable_binlog | ||
Option Sets Variable | Yes, innodb_api_enable_binlog | ||
Variable Name | innodb_api_enable_binlog | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Lets you use the InnoDB memcached plugin with the MySQL binary log. See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option.
innodb_api_enable_mdl
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_api_enable_mdl=# | ||
Option-File Format | innodb_api_enable_mdl | ||
Option Sets Variable | Yes, innodb_api_enable_mdl | ||
Variable Name | innodb_api_enable_mdl | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Locks the table used by the InnoDB memcached plugin, so that it cannot be dropped or altered by DDL through the SQL interface. See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option.
innodb_api_trx_level
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_api_trx_level=# | ||
Option-File Format | innodb_api_trx_level | ||
Option Sets Variable | Yes, innodb_api_trx_level | ||
Variable Name | innodb_api_trx_level | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 |
Lets you control the transaction isolation level on queries processed by the memcached interface. See Section 14.2.9, “InnoDB Integration with memcached” for usage details for this option. The constants corresponding to the familiar names are:
0 = READ UNCOMMITTED
1 = READ COMMITTED
2 = REPEATABLE READ
3 = SERIALIZABLE
innodb_autoextend_increment
Command-Line Format | --innodb_autoextend_increment=# | ||
Option-File Format | innodb_autoextend_increment | ||
Option Sets Variable | Yes, innodb_autoextend_increment | ||
Variable Name | innodb_autoextend_increment | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 8 | ||
Range | 1 .. 1000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | 64 | ||
Range | 1 .. 1000 |
The increment size (in MB) for extending the size of an auto-extend InnoDB system tablespace file when it becomes full. The default value is 64 as of MySQL 5.6.6, 8 before that. This variable does not affect the per-table tablespace files that are created if you use innodb_file_per_table=1. Those files are auto-extending regardless of the value of innodb_autoextend_increment. The initial extensions are by small amounts, after which extensions occur in increments of 4MB.
innodb_autoinc_lock_mode
Command-Line Format | --innodb_autoinc_lock_mode=# | ||
Option-File Format | innodb_autoinc_lock_mode | ||
Option Sets Variable | Yes, innodb_autoinc_lock_mode | ||
Variable Name | innodb_autoinc_lock_mode | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 | ||
Valid Values | 0 1 2 |
The lock mode to use for generating auto-increment values. The permissible values are 0, 1, or 2, for “traditional”, “consecutive”, or “interleaved” lock mode, respectively. Section 5.4.4, “AUTO_INCREMENT Handling in InnoDB”, describes the characteristics of these modes.
This variable has a default of 1 (“consecutive” lock mode).
innodb_buffer_pool_dump_at_shutdown
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_buffer_pool_dump_at_shutdown=# | ||
Option-File Format | innodb_buffer_pool_dump_at_shutdown | ||
Option Sets Variable | Yes, innodb_buffer_pool_dump_at_shutdown | ||
Variable Name | innodb_buffer_pool_dump_at_shutdown | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Specifies whether to record the pages cached in the InnoDB buffer pool when the MySQL server is shut down, to shorten the warmup process at the next restart. Typically used in combination with innodb_buffer_pool_load_at_startup.
innodb_buffer_pool_dump_now
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_buffer_pool_dump_now=# | ||
Option-File Format | innodb_buffer_pool_dump_now | ||
Option Sets Variable | Yes, innodb_buffer_pool_dump_now | ||
Variable Name | innodb_buffer_pool_dump_now | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Immediately records the pages cached in the InnoDB buffer pool. Typically used in combination with innodb_buffer_pool_load_now.
innodb_buffer_pool_filename
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_buffer_pool_filename=file | ||
Option-File Format | innodb_buffer_pool_filename | ||
Option Sets Variable | Yes, innodb_buffer_pool_filename | ||
Variable Name | innodb_buffer_pool_filename | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string | ||
Default | ib_buffer_pool |
Specifies the file that holds the list of page numbers produced by innodb_buffer_pool_dump_at_shutdown or innodb_buffer_pool_dump_now.
innodb_buffer_pool_instances
Command-Line Format | --innodb_buffer_pool_instances=# | ||
Option-File Format | innodb_buffer_pool_instances | ||
Option Sets Variable | Yes, innodb_buffer_pool_instances | ||
Variable Name | innodb_buffer_pool_instances | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 1 | ||
Range | 1 .. 64 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | 1 .. 64 |
The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency, by reducing contention as different threads read and write to cached pages. Each page that is stored in or read from the buffer pool is assigned to one of the buffer pool instances randomly, using a hashing function. Each buffer pool manages its own free lists, flush lists, LRUs, and all other data structures connected to a buffer pool, and is protected by its own buffer pool mutex.
This option takes effect only when you set the innodb_buffer_pool_size to a size of 1 gigabyte or more. The total size you specify is divided among all the buffer pools. For best efficiency, specify a combination of innodb_buffer_pool_instances and innodb_buffer_pool_size so that each buffer pool instance is at least 1 gigabyte.
Before MySQL 5.6.6, the default is 1. As of MySQL 5.6.6, the default is 8, except on 32-bit Windows systems, where the default depends on the value of innodb_buffer_pool_size:
If innodb_buffer_pool_size is greater than 1.3GB, the default for innodb_buffer_pool_instances is innodb_buffer_pool_size/128MB, with individual memory allocation requests for each chunk. 1.3GB was chosen as the boundary at which there is significant risk for 32-bit Windows to be unable to allocate the contiguous address space needed for a single buffer pool.
Otherwise, the default is 1.
innodb_buffer_pool_load_abort
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_buffer_pool_load_abort=# | ||
Option-File Format | innodb_buffer_pool_load_abort | ||
Option Sets Variable | Yes, innodb_buffer_pool_load_abort | ||
Variable Name | innodb_buffer_pool_load_abort | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Interrupts the process of restoring InnoDB buffer pool contents triggered by innodb_buffer_pool_load_at_startup or innodb_buffer_pool_load_now.
innodb_buffer_pool_load_at_startup
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_buffer_pool_load_at_startup=# | ||
Option-File Format | innodb_buffer_pool_load_at_startup | ||
Option Sets Variable | Yes, innodb_buffer_pool_load_at_startup | ||
Variable Name | innodb_buffer_pool_load_at_startup | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Specifies that, on MySQL server startup, the InnoDB buffer pool is automatically warmed up by loading the same pages it held at an earlier time. Typically used in combination with innodb_buffer_pool_dump_at_shutdown.
innodb_buffer_pool_load_now
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_buffer_pool_load_now=# | ||
Option-File Format | innodb_buffer_pool_load_now | ||
Option Sets Variable | Yes, innodb_buffer_pool_load_now | ||
Variable Name | innodb_buffer_pool_load_now | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Immediately warms up the InnoDB buffer pool by loading a set of data pages, without waiting for a server restart. Can be useful to bring cache memory back to a known state during benchmarking, or to ready the MySQL server to resume its normal workload after running queries for reports or maintenance.
innodb_buffer_pool_size
Command-Line Format | --innodb_buffer_pool_size=# | ||
Option-File Format | innodb_buffer_pool_size | ||
Option Sets Variable | Yes, innodb_buffer_pool_size | ||
Variable Name | innodb_buffer_pool_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 134217728 | ||
Range | 1048576 .. 2**32-1 |
The size in bytes of the buffer pool, the memory area where InnoDB caches table and index data. The default value is 128MB. The maximum value depends on the CPU architecture; the maximum is 4294967295 (232-1) on 32-bit systems and 18446744073709551615 (264-1) on 64-bit systems. On 32-bit systems, the CPU architecture and operating system may impose a lower practical maximum size than the stated maximum. When the size of the buffer pool is greater than 1GB, setting innodb_buffer_pool_instances to a value greater than 1 can improve the scalability on a busy server.
The larger you set this value, the less disk I/O is needed to access the same data in tables more than once. On a dedicated database server, you might set this to up to 80% of the machine physical memory size. Be prepared to scale back this value if these other issues occur:
Competition for physical memory might cause paging in the operating system.
InnoDB reserves additional memory for buffers and control structures, so that the total allocated space is approximately 10% greater than the specified size.
The address space must be contiguous, which can be an issue on Windows systems with DLLs that load at specific addresses.
The time to initialize the buffer pool is roughly proportional to its size. On large installations, this initialization time might be significant. For example, on a modern Linux x86_64 server, initialization of a 10GB buffer pool takes approximately 6 seconds. See Section 8.9.1, “The InnoDB Buffer Pool”.
innodb_change_buffer_max_size
Version Introduced | 5.6.2 | ||
Command-Line Format | --innodb_change_buffer_max_size=# | ||
Option-File Format | innodb_change_buffer_max_size | ||
Option Sets Variable | Yes, innodb_change_buffer_max_size | ||
Variable Name | innodb_change_buffer_max_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 25 | ||
Range | 0 .. 50 |
Maximum size for the InnoDB change buffer, as a percentage of the total size of the buffer pool. You might increase this value for a MySQL server with heavy insert, update, and delete activity, or decrease it for a MySQL server with unchanging data used for reporting. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_change_buffering
Command-Line Format | --innodb_change_buffering=# | ||
Option-File Format | innodb_change_buffering | ||
Option Sets Variable | Yes, innodb_change_buffering | ||
Variable Name | innodb_change_buffering | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | all | ||
Valid Values | inserts deletes purges changes all none |
Whether InnoDB performs change buffering, an optimization that delays write operations to secondary indexes so that the I/O operations can be performed sequentially. The permitted values are inserts (buffer insert operations), deletes (buffer delete operations; strictly speaking, the writes that mark index records for later deletion during a purge operation), changes (buffer insert and delete-marking operations), purges (buffer purge operations, the writes when deleted index entries are finally garbage-collected), all (buffer insert, delete-marking, and purge operations) and none (do not buffer any operations). The default is all. For details, see Section 14.2.4.2.13, “Controlling InnoDB Change Buffering”. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_checksum_algorithm=# | ||
Option-File Format | innodb_checksum_algorithm | ||
Option Sets Variable | Yes, innodb_checksum_algorithm | ||
Variable Name | innodb_checksum_algorithm | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type | enumeration | ||
Default | innodb | ||
Valid Values | innodb crc32 none strict_innodb strict_crc32 strict_none | ||
Permitted Values (>= 5.6.6, <= 5.6.6) | |||
Type | enumeration | ||
Default | crc32 | ||
Valid Values | innodb crc32 none strict_innodb strict_crc32 strict_none | ||
Permitted Values (>= 5.6.7) | |||
Type | enumeration | ||
Default | innodb | ||
Valid Values | innodb crc32 none strict_innodb strict_crc32 strict_none |
Specifies how to generate and verify the checksum stored in each disk block of each InnoDB tablespace. Replaces the innodb_checksums option.
The value innodb is backward-compatible with all versions of MySQL. The value crc32 uses an algorithm that is faster to compute the checksum for every modified block, and to check the checksums for each disk read. The value none writes a constant value in the checksum field rather than computing a value based on the block data. The blocks in a tablespace can use a mix of old, new, and no checksum values, being updated gradually as the data is modified; once any blocks in a tablespace are modified to use the crc32 algorithm, the associated tables cannot be read by earlier versions of MySQL.
The default value was changed from innodb to crc32 in MySQL 5.6.6, but switched back to innodb in 5.6.7 for improved compatibility of InnoDB data files during a downgrade to an earlier MySQL version, and for use of MySQL Enterprise Backup for backups.
The strict_* forms work the same as innodb, crc32, and none, except that InnoDB halts if it encounters a mix of checksum values in the same tablespace. You can only use these options in a completely new instance, to set up all tablespaces for the first time. The strict_* settings are somewhat faster, because they do not need to compute both new and old checksum values to accept both during disk reads.
For usage information, including a matrix of valid combinations of checksum values during read and write operations, see Section 14.2.4.2.7, “Fast CRC32 Checksum Algorithm”.
innodb_checksums
Command-Line Format | --innodb_checksums | ||
Option-File Format | innodb_checksums | ||
Option Sets Variable | Yes, innodb_checksums | ||
Variable Name | innodb_checksums | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
InnoDB can use checksum validation on all tablespace pages read from the disk to ensure extra fault tolerance against hardware faults or corrupted data files. This validation is enabled by default. Under specialized circumstances (such as when running benchmarks) this extra safety feature can be disabled with --skip-innodb-checksums. You can specify the method of calculating the checksum with innodb_checksum_algorithm.
In MySQL 5.6.3 and higher, this option is deprecated, replaced by innodb_checksum_algorithm. innodb_checksum_algorithm=innodb is the same as innodb_checksums=ON (the default). innodb_checksum_algorithm=none is the same as innodb_checksums=OFF. Remove any innodb_checksums options from your configuration files and startup scripts, to avoid conflicts with innodb_checksum_algorithm: innodb_checksums=OFF would automatically set innodb_checksum_algorithm=none; innodb_checksums=ON would be ignored and overridden by any other setting for innodb_checksum_algorithm.
innodb_cmp_per_index_enabled
Version Introduced | 5.6.7 | ||
Command-Line Format | --innodb_cmp_per_index_enabled=# | ||
Option-File Format | innodb_cmp_per_index_enabled | ||
Option Sets Variable | Yes, innodb_cmp_per_index_enabled | ||
Variable Name | innodb_cmp_per_index_enabled | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF | ||
Valid Values | OFF ON |
Enables per-index compression-related statistics in the INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX table. Because these statistics can be expensive to gather, only enable this option on development, test, or slave instances during performance tuning related to InnoDB compressed tables.
innodb_commit_concurrency
Command-Line Format | --innodb_commit_concurrency=# | ||
Option-File Format | innodb_commit_concurrency | ||
Option Sets Variable | Yes, innodb_commit_concurrency | ||
Variable Name | innodb_commit_concurrency | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 1000 |
The number of threads that can commit at the same time. A value of 0 (the default) permits any number of transactions to commit simultaneously.
The value of innodb_commit_concurrency cannot be changed at runtime from zero to nonzero or vice versa. The value can be changed from one nonzero value to another.
innodb_compression_failure_threshold_pct
Version Introduced | 5.6.7 | ||
Command-Line Format | --innodb_compression_failure_threshold_pct=# | ||
Option-File Format | innodb_compression_failure_threshold_pct | ||
Option Sets Variable | Yes, innodb_compression_failure_threshold_pct | ||
Variable Name | innodb_compression_failure_threshold_pct | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 5 | ||
Range | 0 .. 100 |
Sets the cutoff point at which MySQL begins adding padding within compressed pages to avoid expensive compression failures. A value of zero disables the mechanism that monitors compression efficiency and dynamically adjusts the padding amount.
innodb_compression_level
Version Introduced | 5.6.7 | ||
Command-Line Format | --innodb_compression_level=# | ||
Option-File Format | innodb_compression_level | ||
Option Sets Variable | Yes, innodb_compression_level | ||
Variable Name | innodb_compression_level | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 6 | ||
Range | 0 .. 9 |
Specifies the level of zlib compression to use for InnoDB compressed tables and indexes.
innodb_compression_pad_pct_max
Version Introduced | 5.6.7 | ||
Command-Line Format | --innodb_compression_pad_pct_max=# | ||
Option-File Format | innodb_compression_pad_pct_max | ||
Option Sets Variable | Yes, innodb_compression_pad_pct_max | ||
Variable Name | innodb_compression_pad_pct_max | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 50 | ||
Range | 0 .. 75 |
Specifies the maximum percentage that can be reserved as free space within each compressed page, allowing room to reorganize the data and modification log within the page when a compressed table or index is updated and the data might be recompressed. Only applies when innodb_compression_failure_threshold_pct is set to a non-zero value, and the rate of compression failures passes the cutoff point.
innodb_concurrency_tickets
Command-Line Format | --innodb_concurrency_tickets=# | ||
Option-File Format | innodb_concurrency_tickets | ||
Option Sets Variable | Yes, innodb_concurrency_tickets | ||
Variable Name | innodb_concurrency_tickets | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 500 | ||
Range | 1 .. 4294967295 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | 5000 | ||
Range | 1 .. 4294967295 |
Determines the number of threads that can enter InnoDB concurrently. A thread is placed in a queue when it tries to enter InnoDB if the number of threads has already reached the concurrency limit. When a thread is permitted to enter InnoDB, it is given a number of “free tickets” equal to the value of innodb_concurrency_tickets, and the thread can enter and leave InnoDB freely until it has used up its tickets. After that point, the thread again becomes subject to the concurrency check (and possible queuing) the next time it tries to enter InnoDB. The default value is 5000 as of MySQL 5.6.6, 500 before that.
innodb_data_file_path
Command-Line Format | --innodb_data_file_path=name | ||
Option-File Format | innodb_data_file_path | ||
Variable Name | innodb_data_file_path | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.6) | |||
Type | string | ||
Default | ibdata1:10M:autoextend | ||
Permitted Values (>= 5.6.7) | |||
Type | string | ||
Default | ibdata1:12M:autoextend |
The paths to individual InnoDB data files and their sizes. The full directory path to each data file is formed by concatenating innodb_data_home_dir to each path specified here. The file sizes are specified in KB, MB, or GB (1024MB) by appending K, M, or G to the size value. The sum of the sizes of the files must be at least slightly larger than 10MB. If you do not specify innodb_data_file_path, the default behavior is to create a single auto-extending data file, slightly larger than 12MB, named ibdata1. The size limit of individual files is determined by your operating system. You can set the file size to more than 4GB on those operating systems that support big files. You can also use raw disk partitions as data files. For detailed information on configuring InnoDB tablespace files, see Section 14.2.1.2, “Configuring InnoDB”.
innodb_data_home_dir
Command-Line Format | --innodb_data_home_dir=path | ||
Option-File Format | innodb_data_home_dir | ||
Option Sets Variable | Yes, innodb_data_home_dir | ||
Variable Name | innodb_data_home_dir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The common part of the directory path for all InnoDB data files in the system tablespace. This setting does not affect the location offile-per-table tablespaces when innodb_file_per_table is enabled. The default value is the MySQL data directory. If you specify the value as an empty string, you can use absolute file paths in innodb_data_file_path.
innodb_disable_sort_file_cache
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_disable_sort_file_cache=# | ||
Option-File Format | innodb_disable_sort_file_cache | ||
Option Sets Variable | Yes, innodb_disable_sort_file_cache | ||
Variable Name | innodb_disable_sort_file_cache | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
If enabled, this variable disables the operating system file system cache for merge-sort temporary files. The effect is to open such files with the equivalent of O_DIRECT. This variable was added in MySQL 5.6.4.
innodb_doublewrite
Command-Line Format | --innodb-doublewrite | ||
Option-File Format | innodb_doublewrite | ||
Option Sets Variable | Yes, innodb_doublewrite | ||
Variable Name | innodb_doublewrite | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean |
If this variable is enabled (the default), InnoDB stores all data twice, first to the doublewrite buffer, then to the actual data files. This variable can be turned off with --skip-innodb_doublewrite for benchmarks or cases when top performance is needed rather than concern for data integrity or possible failures.
innodb_fast_shutdown
Command-Line Format | --innodb_fast_shutdown[=#] | ||
Option-File Format | innodb_fast_shutdown | ||
Option Sets Variable | Yes, innodb_fast_shutdown | ||
Variable Name | innodb_fast_shutdown | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 | ||
Valid Values | 0 1 2 |
The InnoDB shutdown mode. If the value is 0, InnoDB does a slow shutdown, a full purge and an insert buffer merge before shutting down. If the value is 1 (the default), InnoDB skips these operations at shutdown, a process known as a fast shutdown. If the value is 2, InnoDB flushes its logs and shuts down cold, as if MySQL had crashed; no committed transactions are lost, but the crash recovery operation makes the next startup take longer.
The slow shutdown can take minutes, or even hours in extreme cases where substantial amounts of data are still buffered. Use the slow shutdown technique before upgrading or downgrading between MySQL major releases, so that all data files are fully prepared in case the upgrade process updates the file format.
Use innodb_fast_shutdown=2 in emergency or troubleshooting situations, to get the absolute fastest shutdown if data is at risk of corruption.
innodb_file_format
Command-Line Format | --innodb_file_format=# | ||
Option-File Format | innodb_file_format | ||
Option Sets Variable | Yes, innodb_file_format | ||
Variable Name | innodb_file_format | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string | ||
Default | Antelope | ||
Valid Values | Antelope Barracuda |
The file format to use for new InnoDB tables. Currently, Antelope and Barracuda are supported. This applies only for tables that have their own tablespace, so for it to have an effect, innodb_file_per_table must be enabled. The Barracuda file format is required for certain InnoDB features such as table compression.
innodb_file_format_check
Command-Line Format | --innodb_file_format_check=# | ||
Option-File Format | innodb_file_format_check | ||
Option Sets Variable | Yes, innodb_file_format_check | ||
Variable Name | innodb_file_format_check | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
This variable can be set to 1 or 0 at server startup to enable or disable whether InnoDB checks the file format tag in the system tablespace (for example, Antelope or Barracuda). If the tag is checked and is higher than that supported by the current version of InnoDB, an error occurs and InnoDB does not start. If the tag is not higher, InnoDB sets the value of innodb_file_format_max to the file format tag.
Note
Despite the default value sometimes being displayed as ON or OFF, always use the numeric values 1 or 0 to turn this option on or off in your configuration file or command line.
innodb_file_format_max
Command-Line Format | --innodb_file_format_max=# | ||
Option-File Format | innodb_file_format_max | ||
Option Sets Variable | Yes, innodb_file_format_max | ||
Variable Name | innodb_file_format_max | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string | ||
Default | Antelope | ||
Valid Values | Antelope Barracuda |
At server startup, InnoDB sets the value of this variable to the file format tag in the system tablespace (for example, Antelope or Barracuda). If the server creates or opens a table with a “higher” file format, it sets the value of innodb_file_format_max to that format.
innodb_file_per_table
Command-Line Format | --innodb_file_per_table | ||
Option-File Format | innodb_file_per_table | ||
Variable Name | innodb_file_per_table | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (>= 5.6.0, <= 5.6.5) | |||
Type | boolean | ||
Default | OFF | ||
Permitted Values (>= 5.6.6) | |||
Type | boolean | ||
Default | ON |
When innodb_file_per_table is enabled (the default in 5.6.6 and higher), InnoDB stores the data and indexes for each newly created table in a separate .ibd file, rather than in the system tablespace. The storage for these InnoDB tables is reclaimed when such tables are dropped or truncated. This setting enables several other InnoDB features, such as table compression. See Section 5.4.1, “Managing InnoDB Tablespaces” for details about such features.
When innodb_file_per_table is disabled, InnoDB stores the data for all tables and indexes in the ibdata files that make up the system tablespace. This setting reduces the performance overhead of filesystem operations for operations such as DROP TABLE or TRUNCATE TABLE. It is most appropriate for a server environment where entire storage devices are devoted to MySQL data. Because the system tablespace never shrinks, and is shared across all databases in an instance, avoid loading huge amounts of temporary data on a space-constrained system when innodb_file_per_table=OFF. Set up a separate instance in such cases, so that you can drop the entire instance to reclaim the space.
By default, innodb_file_per_table is enabled as of MySQL 5.6.6, disabled before that. Consider disabling it if backward compatibility with MySQL 5.5 or 5.1 is a concern. This will prevent ALTER TABLE from moving InnoDB tables from the system tablespace to individual .ibd files.
innodb_flush_log_at_timeout
Version Introduced | 5.6.6 | ||
Variable Name | innodb_flush_log_at_timeout | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 | ||
Range | 0 .. 2700 |
Write and flush the logs every N seconds. This setting has an effect only when innodb_flush_log_at_trx_commit has a value of 2.
This variable was added in MySQL 5.6.6.
innodb_flush_log_at_trx_commit
Command-Line Format | --innodb_flush_log_at_trx_commit[=#] | ||
Option-File Format | innodb_flush_log_at_trx_commit | ||
Option Sets Variable | Yes, innodb_flush_log_at_trx_commit | ||
Variable Name | innodb_flush_log_at_trx_commit | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | 1 | ||
Valid Values | 0 1 2 |
Controls the balance between strict ACID compliance for commit operations, and higher performance that is possible when commit-related I/O operations are rearranged and done in batches. You can achieve better performance by changing the default value, but then you can lose up to one second worth of transactions in a crash.
The default value of 1 is required for full ACID compliance. With this value, the log buffer is written out to the log file at each transaction commit and the flush to disk operation is performed on the log file.
With a value of 0, any mysqld process crash can erase the last second of transactions. The log buffer is written out to the log file once per second and the flush to disk operation is performed on the log file, but no writes are done at a transaction commit.
With a value of 2, only an operating system crash or a power outage can erase the last second of transactions. The log buffer is written out to the file at each commit, but the flush to disk operation is not performed on it. Before MySQL 5.6.6, the flushing on the log file takes place once per second. Note that the once-per-second flushing is not 100% guaranteed to happen every second, due to process scheduling issues. As of MySQL 5.6.6, flushing frequency is is controlled by innodb_flush_log_at_timeout instead.
InnoDB's crash recovery works regardless of the value. Transactions are either applied entirely or erased entirely.
For the greatest possible durability and consistency in a replication setup using InnoDB with transactions, use innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in your master server my.cnf file.
Caution
Many operating systems and some disk hardware fool the flush-to-disk operation. They may tell mysqld that the flush has taken place, even though it has not. Then the durability of transactions is not guaranteed even with the setting 1, and in the worst case a power outage can even corrupt InnoDB data. Using a battery-backed disk cache in the SCSI disk controller or in the disk itself speeds up file flushes, and makes the operation safer. You can also try using the Unix command hdparm to disable the caching of disk writes in hardware caches, or use some other command specific to the hardware vendor.
innodb_flush_method
Command-Line Format | --innodb_flush_method=name | ||
Option-File Format | innodb_flush_method | ||
Option Sets Variable | Yes, innodb_flush_method | ||
Variable Name | innodb_flush_method | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.6) | |||
Type (solaris) | enumeration | ||
Default | fdatasync | ||
Valid Values | O_DSYNC O_DIRECT | ||
Permitted Values (<= 5.6.6) | |||
Type (linux) | enumeration | ||
Default | fdatasync | ||
Valid Values | O_DSYNC O_DIRECT | ||
Permitted Values (<= 5.6.6) | |||
Type (hpux) | enumeration | ||
Default | fdatasync | ||
Valid Values | O_DSYNC O_DIRECT | ||
Permitted Values (>= 5.6.7) | |||
Type (linux) | enumeration | ||
Default | fdatasync | ||
Valid Values | fdatasync O_DSYNC O_DIRECT O_DIRECT_NO_FSYNC | ||
Permitted Values (>= 5.6.7) | |||
Type (hpux) | enumeration | ||
Default | fdatasync | ||
Valid Values | fdatasync O_DSYNC O_DIRECT O_DIRECT_NO_FSYNC | ||
Permitted Values (>= 5.6.7) | |||
Type (solaris) | enumeration | ||
Default | fdatasync | ||
Valid Values | fdatasync O_DSYNC O_DIRECT O_DIRECT_NO_FSYNC |
Controls the system calls used to flush data to the InnoDB data files and log files, which can influence I/O throughput. This variable is relevant only for Unix and Linux systems. On Windows systems, the flush method is always async_unbuffered and cannot be changed.
By default, InnoDB uses the fsync() system call to flush both the data and log files. If innodb_flush_method option is set to O_DSYNC, InnoDB uses O_SYNC to open and flush the log files, and fsync() to flush the data files. If O_DIRECT is specified (available on some GNU/Linux versions, FreeBSD, and Solaris), InnoDB uses O_DIRECT (or directio() on Solaris) to open the data files, and uses fsync() to flush both the data and log files. Note that InnoDB uses fsync() instead of fdatasync(), and it does not use O_DSYNC by default because there have been problems with it on many varieties of Unix.
An alternative setting is O_DIRECT_NO_FSYNC: it uses the O_DIRECT flag during flushing I/O, but skips the fsync() system call afterwards. This setting is suitable for some types of filesystems but not others. For example, it is not suitable for XFS. If you are not sure whether the filesystem you use requires an fsync(), for example to preserve all file metadata, use O_DIRECT instead.
Depending on hardware configuration, setting innodb_flush_method to O_DIRECT or O_DIRECT_NO_FSYNC can have either a positive or negative effect on performance. Benchmark your particular configuration to decide which setting to use, or whether to keep the default. Examine the Innodb_data_fsyncs status variable to see the overall number of fsync() calls done with each setting. The mix of read and write operations in your workload can also affect which setting performs better for you. For example, on a system with a hardware RAID controller and battery-backed write cache, O_DIRECT can help to avoid double buffering between the InnoDB buffer pool and the operating system's filesystem cache. On some systems where InnoDB data and log files are located on a SAN, the default value or O_DSYNC might be faster for a read-heavy workload with mostly SELECT statements. Always test this parameter with the same type of hardware and workload that reflects your production environment. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
Formerly, a value of fdatasync also specified the default behavior. This value was removed, due to confusion that a value of fdatasync caused fsync() system calls rather than fdatasync() for flushing. To obtain the default value now, do not set any value for innodb_flush_method at startup.
innodb_flush_neighbors
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_flush_neighbors | ||
Option-File Format | innodb_flush_neighbors | ||
Option Sets Variable | Yes, innodb_flush_neighbors | ||
Variable Name | innodb_flush_neighbors | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
Specifies whether flushing a page from the InnoDB buffer pool also flushes other dirty pages in the same extent. When the table data is stored on a traditional HDD storage device, flushing such neighbor pages in one operation reduces I/O overhead (primarily for disk seek operations) compared to flushing individual pages at different times. For table data stored on SSD, seek time is not a significant factor and you can turn this setting off to spread out the write operations. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_flushing_avg_loops
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_flushing_avg_loops=# | ||
Option-File Format | innodb_flushing_avg_loops | ||
Option Sets Variable | Yes, innodb_flushing_avg_loops | ||
Variable Name | innodb_flushing_avg_loops | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 30 | ||
Range | 1 .. 1000 |
Number of iterations for which InnoDB keeps the previously calculated snapshot of the flushing state, controlling how quickly adaptive flushing responds to changing workloads. Increasing the value makes the the rate of flush operations change smoothly and gradually as the workload changes. Decreasing the value makes adaptive flushing adjust quickly to workload changes, which can cause spikes in flushing activity if the workload increases and decreases suddenly.
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_force_load_corrupted | ||
Option-File Format | innodb_force_load_corrupted | ||
Option Sets Variable | Yes, innodb_force_load_corrupted | ||
Variable Name | innodb_force_load_corrupted | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Lets InnoDB load tables at startup that are marked as corrupted. Use only during troubleshooting, to recover data that is otherwise inaccessible. When troubleshooting is complete, turn this setting back off and restart the server.
innodb_force_recovery
Command-Line Format | --innodb_force_recovery=# | ||
Option-File Format | innodb_force_recovery | ||
Option Sets Variable | Yes, innodb_force_recovery | ||
Variable Name | innodb_force_recovery | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | enumeration | ||
Default | 0 | ||
Valid Values | 0 1 2 3 4 5 6 |
The crash recovery mode, typically only changed in serious troubleshooting situations. Possible values are from 0 to 6. The meanings of these values are described in Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”.
Warning
Only set this variable greater than 0 in an emergency situation, to dump your tables from a corrupt database. As a safety measure, InnoDB prevents any changes to its data when this variable is greater than 0. This restriction also prohibits some queries that use WHERE or ORDER BY clauses, because high values can prevent queries from using indexes, to guard against possible corrupt index data.
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_ft_aux_table=db_name/table_name | ||
Option-File Format | innodb_ft_aux_table | ||
Option Sets Variable | Yes, innodb_ft_aux_table | ||
Variable Name | innodb_ft_aux_table | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
Specifies the qualified name of an InnoDB table containing a FULLTEXT index. After you set this variable to a name in the format db_name/table_name the INFORMATION_SCHEMA tables INNODB_FT_INDEX_TABLE, INNODB_FT_INDEX_CACHE, INNODB_FT_CONFIG, INNODB_FT_DELETED, and INNODB_FT_BEING_DELETED then reflect information about the search index for the specified table.
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_ft_cache_size=# | ||
Option-File Format | innodb_ft_cache_size | ||
Option Sets Variable | Yes, innodb_ft_cache_size | ||
Variable Name | innodb_ft_cache_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (>= 5.6.4, <= 5.6.9) | |||
Type | numeric | ||
Default | 32000000 | ||
Permitted Values (>= 5.6.10) | |||
Type | numeric | ||
Default | 8000000 |
Size of the cache that holds a parsed document in memory while creating an InnoDB FULLTEXT index.
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_ft_enable_stopword=# | ||
Option-File Format | innodb_ft_enable_stopword | ||
Option Sets Variable | Yes, innodb_ft_enable_stopword | ||
Variable Name | innodb_ft_enable_stopword | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
Specifies that a set of stopwords is associated with an InnoDB FULLTEXT index at the time the index is created. If the innodb_ft_user_stopword_table option is set, the stopwords are taken from that table. Else, if the innodb_ft_server_stopword_table option is set, the stopwords are taken from that table. Otherwise, a built-in set of default stopwords is used.
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_ft_max_token_size=# | ||
Option-File Format | innodb_ft_max_token_size | ||
Option Sets Variable | Yes, innodb_ft_max_token_size | ||
Variable Name | innodb_ft_max_token_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 84 | ||
Range | 10 .. 252 |
Maximum length of words that are stored in an InnoDB FULLTEXT index. Setting a limit on this value reduces the size of the index, thus speeding up queries, by omitting long keywords or arbitrary collections of letters that are not real words and are not likely to be search terms.
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_ft_min_token_size=# | ||
Option-File Format | innodb_ft_min_token_size | ||
Option Sets Variable | Yes, innodb_ft_min_token_size | ||
Variable Name | innodb_ft_min_token_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 3 | ||
Range | 0 .. 16 |
Minimum length of words that are stored in an InnoDB FULLTEXT index. Increasing this value reduces the size of the index, thus speeding up queries, by omitting common word that are unlikely to be significant in a search context, such as the English words “a” and “to”. For content using a CJK (Chinese, Japanese, Korean) character set, specify a value of 1.
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_ft_num_word_optimize=# | ||
Option-File Format | innodb_ft_num_word_optimize | ||
Option Sets Variable | Yes, innodb_ft_num_word_optimize | ||
Variable Name | innodb_ft_num_word_optimize | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 2000 |
Number of words to process during each OPTIMIZE TABLE operation on an InnoDB FULLTEXT index. Because a bulk insert or update operation to a table containing a full-text search index could require substantial index maintenance to incorporate all changes, you might do a series of OPTIMIZE TABLE statements, each picking up where the last left off.
innodb_ft_server_stopword_table
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_ft_server_stopword_table=db_name/table_name | ||
Option-File Format | innodb_ft_server_stopword_table | ||
Option Sets Variable | Yes, innodb_ft_server_stopword_table | ||
Variable Name | innodb_ft_server_stopword_table | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string | ||
Default | NULL |
Name of the table containing a list of words to ignore when creating an InnoDB FULLTEXT index, in the format db_name/table_name.
Note
The stopword table must be an InnoDB table, containing a single VARCHAR column named VALUE. The stopword table must exist before you specify its name in the configuration option value.
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_ft_sort_pll_degree=# | ||
Option-File Format | innodb_ft_sort_pll_degree | ||
Option Sets Variable | Yes, innodb_ft_sort_pll_degree | ||
Variable Name | innodb_ft_sort_pll_degree | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 2 | ||
Range | 1 .. 32 |
Number of threads used in parallel to index and tokenize text in an InnoDB FULLTEXT index, when building a search index for a large table.
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_ft_user_stopword_table=db_name/table_name | ||
Option-File Format | innodb_ft_user_stopword_table | ||
Option Sets Variable | Yes, innodb_ft_user_stopword_table | ||
Variable Name | innodb_ft_user_stopword_table | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string | ||
Default | NULL |
Name of the table containing a list of words to ignore when creating an InnoDB FULLTEXT index, in the format db_name/table_name.
Note
The stopword table must be an InnoDB table, containing a single VARCHAR column named VALUE. The stopword table must exist before you specify its name in the configuration option value.
innodb_io_capacity
Command-Line Format | --innodb_io_capacity=# | ||
Option-File Format | innodb_io_capacity | ||
Option Sets Variable | Yes, innodb_io_capacity | ||
Variable Name | innodb_io_capacity | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 200 | ||
Range | 100 .. 2**32-1 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 200 | ||
Range | 100 .. 2**64-1 |
The innodb_io_capacity parameter sets an upper limit, per buffer pool instance, on the I/O activity performed by the InnoDB background tasks, such as flushing pages from the buffer pool and merging data from the insert buffer. The default value is 200. For busy systems capable of higher I/O rates, you can set a higher value at server startup, to help the server handle the background maintenance work associated with a high rate of row changes.
Note
Specifying a server startup value for innodb_io_capacity will render innodb_io_capacity_max inoperable.
For systems with individual 5400 RPM or 7200 RPM drives, you might lower the value to the former default of 100.
This parameter should be set to approximately the number of I/O operations that the system can perform per second. Ideally, keep this setting as low as practical, but not so low that these background activities fall behind. If the value is too high, data is removed from the buffer pool and insert buffer too quickly to provide significant benefit from the caching.
The value represents an estimated proportion of the I/O operations per second (IOPS) available to older-generation disk drives that could perform about 100 IOPS. The current default of 200 reflects that modern storage devices are capable of much higher I/O rates.
In general, you can increase the value as a function of the number of drives used for InnoDB I/O, particularly fast drives capable of high numbers of IOPS. For example, systems that use multiple disks or solid-state disks for InnoDB are likely to benefit from the ability to control this parameter.
Although you can specify a very high number, in practice such large values have little if any benefit; for example, a value of one million would be considered very high.
You can set the innodb_io_capacity value to any number 100 or greater, and the default value is 200. You can set the value of this parameter in the MySQL option file (my.cnf or my.ini) or change it dynamically with the SET GLOBAL command, which requires the SUPER privilege.
See Section 14.2.4.2.20, “Controlling the InnoDB Master Thread I/O Rate” for more guidelines about this option. For general information about InnoDB I/O performance, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_io_capacity_max
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_io_capacity_max=# | ||
Option-File Format | innodb_io_capacity_max | ||
Option Sets Variable | Yes, innodb_io_capacity_max | ||
Variable Name | innodb_io_capacity_max | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | see formula in description | ||
Min Value | 2000 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Max Value | 18446744073709547520 |
The limit up to which InnoDB is allowed to extend the innodb_io_capacity setting, per buffer pool instance, in case of emergency. Its default value is twice the default value of innodb_io_capacity, with a lower limit of 2000. It is inoperative if you have specified any value for innodb_io_capacity at server startup.
For a brief period during MySQL 5.6 development, this variable was known as innodb_max_io_capacity.
innodb_large_prefix
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_large_prefix | ||
Option-File Format | innodb_large_prefix | ||
Option Sets Variable | Yes, innodb_large_prefix | ||
Variable Name | innodb_large_prefix | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Enable this option to allow index key prefixes longer than 767 bytes (up to 3072 bytes), for InnoDB tables that use the DYNAMIC and COMPRESSED row formats. (Creating such tables also requires the option values innodb_file_format=barracuda and innodb_file_per_table=true.) See Section 14.2.7, “Limits on InnoDB Tables” for the relevant maximums associated with index key prefixes under various settings.
For tables using the REDUNDANT and COMPACT row formats, this option does not affect the allowed key prefix length. It does introduce a new error possibility. When this setting is enabled, attempting to create an index prefix with a key length greater than 3072 for a REDUNDANT or COMPACT table causes an error ER_INDEX_COLUMN_TOO_LONG (1727).
innodb_lock_wait_timeout
Command-Line Format | --innodb_lock_wait_timeout=# | ||
Option-File Format | innodb_lock_wait_timeout | ||
Option Sets Variable | Yes, innodb_lock_wait_timeout | ||
Variable Name | innodb_lock_wait_timeout | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 50 | ||
Range | 1 .. 1073741824 |
The timeout in seconds an InnoDB transaction waits for a row lock before giving up. The default value is 50 seconds. A transaction that tries to access a row that is locked by another InnoDB transaction waits at most this many seconds for write access to the row before issuing the following error:
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
When a lock wait timeout occurs, the current statement is rolled back (not the entire transaction). To have the entire transaction roll back, start the server with the --innodb_rollback_on_timeout option. See also Section 14.2.3.14, “InnoDB Error Handling”.
You might decrease this value for highly interactive applications or OLTP systems, to display user feedback quickly or put the update into a queue for processing later. You might increase this value for long-running back-end operations, such as a transform step in a data warehouse that waits for other large insert or update operations to finish.
innodb_lock_wait_timeout applies to InnoDB row locks only. A MySQL table lock does not happen inside InnoDB and this timeout does not apply to waits for table locks.
The lock wait timeout value does not apply to deadlocks, because InnoDB detects them immediately and rolls back one of the deadlocked transactions.
innodb_locks_unsafe_for_binlog
Version Deprecated | 5.6.3 | ||
Command-Line Format | --innodb_locks_unsafe_for_binlog | ||
Option-File Format | innodb_locks_unsafe_for_binlog | ||
Option Sets Variable | Yes, innodb_locks_unsafe_for_binlog | ||
Variable Name | innodb_locks_unsafe_for_binlog | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Deprecated | 5.6.3 | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
This variable affects how InnoDB uses gap locking for searches and index scans. As of MySQL 5.6.3, innodb_locks_unsafe_for_binlog is deprecated and will be removed in a future MySQL release.
Normally, InnoDB uses an algorithm called next-key locking that combines index-row locking with gap locking. InnoDB performs row-level locking in such a way that when it searches or scans a table index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-level locks are actually index-record locks. In addition, a next-key lock on an index record also affects the “gap” before that index record. That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding the index record. If one session has a shared or exclusive lock on record R in an index, another session cannot insert a new index record in the gap immediately before R in the index order. See Section 14.2.3.5, “InnoDB Record, Gap, and Next-Key Locks”.
By default, the value of innodb_locks_unsafe_for_binlog is 0 (disabled), which means that gap locking is enabled: InnoDB uses next-key locks for searches and index scans. To enable the variable, set it to 1. This causes gap locking to be disabled: InnoDB uses only index-record locks for searches and index scans.
Enabling innodb_locks_unsafe_for_binlog does not disable the use of gap locking for foreign-key constraint checking or duplicate-key checking.
The effect of enabling innodb_locks_unsafe_for_binlog is similar to but not identical to setting the transaction isolation level to READ COMMITTED:
Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions, whereas the isolation level can be set globally for all sessions, or individually per session.
innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation level can be set at startup or changed at runtime.
READ COMMITTED therefore offers finer and more flexible control than innodb_locks_unsafe_for_binlog. For additional details about the effect of isolation level on gap locking, see Section 13.3.6, “SET TRANSACTION Syntax”.
Enabling innodb_locks_unsafe_for_binlog may cause phantom problems because other sessions can insert new rows into the gaps when gap locking is disabled. Suppose that there is an index on the id column of the child table and that you want to read and lock all rows from the table having an identifier value larger than 100, with the intention of updating some column in the selected rows later:
SELECT * FROM child WHERE id > 100 FOR UPDATE;
The query scans the index starting from the first record where id is greater than 100. If the locks set on the index records in that range do not lock out inserts made in the gaps, another session can insert a new row into the table. Consequently, if you were to execute the same SELECT again within the same transaction, you would see a new row in the result set returned by the query. This also means that if new items are added to the database, InnoDB does not guarantee serializability. Therefore, if innodb_locks_unsafe_for_binlog is enabled, InnoDB guarantees at most an isolation level of READ COMMITTED. (Conflict serializability is still guaranteed.) For additional information about phantoms, see Section 14.2.3.6, “Avoiding the Phantom Problem Using Next-Key Locking”.
Enabling innodb_locks_unsafe_for_binlog has additional effects:
For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes. Record locks for nonmatching rows are released after MySQL has evaluated the WHERE condition. This greatly reduces the probability of deadlocks, but they can still happen.
For UPDATE statements, if a row is already locked, InnoDB performs a “semi-consistent” read, returning the latest committed version to MySQL so that MySQL can determine whether the row matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads the row again and this time InnoDB either locks it or waits for a lock on it.
Consider the following example, beginning with this table:
CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;
In this case, table has no indexes, so searches and index scans use the hidden clustered index for record locking (see Section 14.2.3.12.2, “Clustered and Secondary Indexes”).
Suppose that one client performs an UPDATE using these statements:
SET autocommit = 0;
UPDATE t SET b = 5 WHERE b = 3;
Suppose also that a second client performs an UPDATE by executing these statements following those of the first client:
SET autocommit = 0;
UPDATE t SET b = 4 WHERE b = 2;
As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row, and then determines whether to modify it. If InnoDB does not modify the row and innodb_locks_unsafe_for_binlog is enabled, it releases the lock. Otherwise, InnoDB retains the lock until the end of the transaction. This affects transaction processing as follows.
If innodb_locks_unsafe_for_binlog is disabled, the first UPDATE acquires x-locks and does not release any of them:
x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock
The second UPDATE blocks as soon as it tries to acquire any locks (because first update has retained locks on all rows), and does not proceed until the first UPDATE commits or rolls back:
x-lock(1,2); block and wait for first UPDATE to commit or roll back
If innodb_locks_unsafe_for_binlog is enabled, the first UPDATE acquires x-locks and releases those for rows that it does not modify:
x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)
For the second UPDATE, InnoDB does a “semi-consistent” read, returning the latest committed version of each row to MySQL so that MySQL can determine whether the row matches the WHERE condition of the UPDATE:
x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); unlock(2,3)
x-lock(3,2); update(3,2) to (3,4); retain x-lock
x-lock(4,3); unlock(4,3)
x-lock(5,2); update(5,2) to (5,4); retain x-lock
innodb_log_buffer_size
Command-Line Format | --innodb_log_buffer_size=# | ||
Option-File Format | innodb_log_buffer_size | ||
Option Sets Variable | Yes, innodb_log_buffer_size | ||
Variable Name | innodb_log_buffer_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 8388608 | ||
Range | 262144 .. 4294967295 |
The size in bytes of the buffer that InnoDB uses to write to the log files on disk. The default value is 8MB. A large log buffer enables large transactions to run without a need to write the log to disk before the transactions commit. Thus, if you have transactions that update, insert, or delete many rows, making the log buffer larger saves disk I/O. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_log_compressed_pages
Version Introduced | 5.6.11 | ||
Command-Line Format | --innodb_log_compressed_pages=# | ||
Option-File Format | innodb_log_compressed_pages | ||
Option Sets Variable | Yes, innodb_log_compressed_pages | ||
Variable Name | innodb_log_compressed_pages | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
Specifies whether images of re-compressed pages are stored in InnoDB redo logs.
This variable was added in MySQL 5.6.11.
innodb_log_file_size
Command-Line Format | --innodb_log_file_size=# | ||
Option-File Format | innodb_log_file_size | ||
Option Sets Variable | Yes, innodb_log_file_size | ||
Variable Name | innodb_log_file_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (>= 5.6.3, <= 5.6.7) | |||
Type | numeric | ||
Default | 5242880 | ||
Range | 1048576 .. 512GB / innodb_log_files_in_group | ||
Permitted Values (>= 5.6.8) | |||
Type | numeric | ||
Default | 50331648 | ||
Range | 1048576 .. 512GB / innodb_log_files_in_group |
The size in bytes of each log file in a log group. The combined size of log files (innodb_log_file_size * innodb_log_files_in_group) can be up to 512GB. The default value is 48MB. Sensible values range from 1MB to 1/N-th of the size of the buffer pool, where N is the number of log files in the group. The larger the value, the less checkpoint flush activity is needed in the buffer pool, saving disk I/O. Larger log files also make crash recovery slower, although improvements to recovery performance in MySQL 5.5 and higher make the log file size less of a consideration. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_log_files_in_group
Command-Line Format | --innodb_log_files_in_group=# | ||
Option-File Format | innodb_log_files_in_group | ||
Option Sets Variable | Yes, innodb_log_files_in_group | ||
Variable Name | innodb_log_files_in_group | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 2 | ||
Range | 2 .. 100 |
The number of log files in the log group. InnoDB writes to the files in a circular fashion. The default (and recommended) value is 2. The location of these files is specified by innodb_log_group_home_dir. The combined size of log files (innodb_log_file_size * innodb_log_files_in_group) can be up to 512GB.
innodb_log_group_home_dir
Command-Line Format | --innodb_log_group_home_dir=path | ||
Option-File Format | innodb_log_group_home_dir | ||
Option Sets Variable | Yes, innodb_log_group_home_dir | ||
Variable Name | innodb_log_group_home_dir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The directory path to the InnoDB redo log files, whose number is specified by innodb_log_files_in_group. If you do not specify any InnoDB log variables, the default is to create two files named ib_logfile0 and ib_logfile1 in the MySQL data directory. Their size is given by the size of the innodb_log_file_size system variable.
innodb_lru_scan_depth
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_lru_scan_depth=# | ||
Option-File Format | innodb_lru_scan_depth | ||
Option Sets Variable | Yes, innodb_lru_scan_depth | ||
Variable Name | innodb_lru_scan_depth | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 1024 | ||
Range | 100 .. 2**32-1 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1024 | ||
Range | 100 .. 2**64-1 |
A parameter that influences the algorithms and heuristics for the flush operation for the InnoDB buffer pool. Primarily of interest to performance experts tuning I/O-intensive workloads. It specifies, per buffer pool instance, how far down the buffer pool LRU list the page_cleaner thread scans looking for dirty pages to flush. This is a background operation performed once a second. If you have spare I/O capacity under a typical workload, increase the value. If a write-intensive workload saturates your I/O capacity, decrease the value, especially if you have a large buffer pool. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_max_dirty_pages_pct
Command-Line Format | --innodb_max_dirty_pages_pct=# | ||
Option-File Format | innodb_max_dirty_pages_pct | ||
Option Sets Variable | Yes, innodb_max_dirty_pages_pct | ||
Variable Name | innodb_max_dirty_pages_pct | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 75 | ||
Range | 0 .. 99 |
InnoDB tries to flush data from the buffer pool so that the percentage of dirty pages does not exceed this value. Specify an integer in the range from 0 to 99. The default value is 75. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_max_dirty_pages_pct_lwm
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_max_dirty_pages_pct_lwm=# | ||
Option-File Format | innodb_max_dirty_pages_pct_lwm | ||
Option Sets Variable | Yes, innodb_max_dirty_pages_pct_lwm | ||
Variable Name | innodb_max_dirty_pages_pct_lwm | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 99 |
Low water mark representing percentage of dirty pages where preflushing is enabled to control the dirty page ratio. The default of 0 disables the preflushing behavior entirely.
innodb_max_purge_lag
Command-Line Format | --innodb_max_purge_lag=# | ||
Option-File Format | innodb_max_purge_lag | ||
Option Sets Variable | Yes, innodb_max_purge_lag | ||
Variable Name | innodb_max_purge_lag | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 |
This variable controls how to delay INSERT, UPDATE, and DELETE operations when purge operations are lagging (see Section 14.2.3.11, “InnoDB Multi-Versioning”). The default value is 0 (no delays).
The InnoDB transaction system maintains a list of transactions that have index records delete-marked by UPDATE or DELETE operations. The length of this list represents the purge_lag value. When purge_lag exceeds innodb_max_purge_lag, each INSERT, UPDATE, and DELETE operation is delayed.
The amount of the delay is ((purge_lag/innodb_max_purge_lag)*10)-5 milliseconds. To prevent excessive delays in extreme situations where purge_lag becomes huge, you can put a cap on the amount of delay by setting the innodb_max_purge_lag_delay configuration option. The delay is computed in the beginning of a purge batch, every ten seconds. The operations are not delayed if purge cannot run because of an old consistent read view that could see the rows to be purged.
A typical setting for a problematic workload might be 1 million, assuming that transactions are small, only 100 bytes in size, and it is permissible to have 100MB of unpurged InnoDB table rows.
The lag value is displayed as the history list length in the TRANSACTIONS section of InnoDB Monitor output. For example, if the output includes the following lines, the lag value is 20:

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
History list length 20
For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_max_purge_lag_delay
Version Introduced | 5.6.5 | ||
Command-Line Format | --innodb_max_purge_lag_delay=# | ||
Option-File Format | innodb_max_purge_lag_delay | ||
Option Sets Variable | Yes, innodb_max_purge_lag_delay | ||
Variable Name | innodb_max_purge_lag_delay | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Min Value | 0 |
Specifies the maximum delay in milliseconds for the delay imposed by the innodb_max_purge_lag configuration option. Any non-zero value represents an upper limit on the delay period computed from the formula based on the value of innodb_max_purge_lag. The default of zero means that there is no upper limit imposed on the delay interval.
For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_mirrored_log_groups
Has no effect. This variable is deprecated as of MySQL 5.6.11 and will be removed in a future MySQL release.
innodb_monitor_disable
Version Introduced | 5.6.2 | ||
Command-Line Format | --innodb_monitor_disable=[counter|module|pattern|all] | ||
Option-File Format | innodb_monitor_disable | ||
Option Sets Variable | Yes, innodb_monitor_disable | ||
Variable Name | innodb_monitor_disable | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
Turns off one or more counters in the INFORMATION_SCHEMA.INNODB_METRICS table. For usage information, see Section 19.30.17, “The INFORMATION_SCHEMA INNODB_METRICS Table”.
innodb_monitor_enable
Version Introduced | 5.6.2 | ||
Command-Line Format | --innodb_monitor_enable=name | ||
Option-File Format | innodb_monitor_enable | ||
Option Sets Variable | Yes, innodb_monitor_enable | ||
Variable Name | innodb_monitor_enable | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
Turns on one or more counters in the INFORMATION_SCHEMA.INNODB_METRICS table. For usage information, see Section 19.30.17, “The INFORMATION_SCHEMA INNODB_METRICS Table”.
innodb_monitor_reset
Version Introduced | 5.6.2 | ||
Command-Line Format | --innodb_monitor_reset=[counter|module|pattern|all] | ||
Option-File Format | innodb_monitor_reset | ||
Option Sets Variable | Yes, innodb_monitor_reset | ||
Variable Name | innodb_monitor_reset | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
Resets to zero the count value for one or more counters in the INFORMATION_SCHEMA.INNODB_METRICS table. For usage information, see Section 19.30.17, “The INFORMATION_SCHEMA INNODB_METRICS Table”.
innodb_monitor_reset_all
Version Introduced | 5.6.2 | ||
Command-Line Format | --innodb_monitor_reset_all=[counter|module|pattern|all] | ||
Option-File Format | innodb_monitor_reset_all | ||
Option Sets Variable | Yes, innodb_monitor_reset_all | ||
Variable Name | innodb_monitor_reset_all | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
Resets all values (minimum, maximum, and so on) for one or more counters in the INFORMATION_SCHEMA.INNODB_METRICS table. For usage information, see Section 19.30.17, “The INFORMATION_SCHEMA INNODB_METRICS Table”.
innodb_old_blocks_pct
Command-Line Format | --innodb_old_blocks_pct=# | ||
Option-File Format | innodb_old_blocks_pct | ||
Variable Name | innodb_old_blocks_pct | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 37 | ||
Range | 5 .. 95 |
Specifies the approximate percentage of the InnoDB buffer pool used for the old block sublist. The range of values is 5 to 95. The default value is 37 (that is, 3/8 of the pool). Often used in combination with innodb_old_blocks_time. See Section 8.9.1, “The InnoDB Buffer Pool” for information about buffer pool management, such as the LRU algorithm and eviction policies.
innodb_old_blocks_time
Command-Line Format | --innodb_old_blocks_time=# | ||
Option-File Format | innodb_old_blocks_time | ||
Variable Name | innodb_old_blocks_time | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 2**32-1 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | 1000 | ||
Range | 0 .. 2**32-1 |
Non-zero values protect against the buffer pool being filled up by data that is referenced only for a brief period, such as during a full table scan. Increasing this value offers more protection against full table scans interfering with data cached in the buffer pool.
Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before it can be moved to the new sublist. If the value is 0, a block inserted into the old sublist moves immediately to the new sublist the first time it is accessed, no matter how soon after insertion the access occurs. If the value is greater than 0, blocks remain in the old sublist until an access occurs at least that many ms after the first access. For example, a value of 1000 causes blocks to stay in the old sublist for 1 second after the first access before they become eligible to move to the new sublist.
The default value is 1000 as of MySQL 5.6.6, 0 before that.
This variable is often used in combination with innodb_old_blocks_pct. See Section 8.9.1, “The InnoDB Buffer Pool” for information about buffer pool management, such as the LRU algorithm and eviction policies.
innodb_online_alter_log_max_size
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_online_alter_log_max_size=# | ||
Option-File Format | innodb_online_alter_log_max_size | ||
Option Sets Variable | Yes, innodb_online_alter_log_max_size | ||
Variable Name | innodb_online_alter_log_max_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 134217728 | ||
Range | 65536 .. 2**64-1 |
Specifies an upper limit on the size of the temporary log files used during online DDL operations for InnoDB tables. There is one such log file for each index being created or table being altered. This log file stores data inserted, updated, or deleted in the table during the DDL operation. The temporary log file is extended when needed by the value of innodb_sort_buffer_size, up to the maximum specified by innodb_online_alter_log_max_size. If any temporary log file exceeds the upper size limit, the ALTER TABLE operation fails and all uncommitted concurrent DML operations are rolled back. Thus, a large value for this option allows more DML to happen during an online DDL operation, but also causes a longer period at the end of the DDL operation when the table is locked to apply the data from the log.
innodb_open_files
Command-Line Format | --innodb_open_files=# | ||
Option-File Format | innodb_open_files | ||
Variable Name | innodb_open_files | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 300 | ||
Range | 10 .. 4294967295 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | 10 .. 4294967295 |
This variable is relevant only if you use multiple InnoDB tablespaces. It specifies the maximum number of .ibd files that MySQL can keep open at one time. The minimum value is 10. As of MySQL 5.6.6, the default value is 300 if innodb_file_per_table is not enabled, and the higher of 300 and table_open_cache otherwise. Before 5.6.6, the default value is 300.
The file descriptors used for .ibd files are for InnoDB tables only. They are independent of those specified by the --open-files-limit server option, and do not affect the operation of the table cache. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_optimize_fulltext_only
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_optimize_fulltext_only=# | ||
Option-File Format | innodb_optimize_fulltext_only | ||
Option Sets Variable | Yes, innodb_optimize_fulltext_only | ||
Variable Name | innodb_optimize_fulltext_only | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Changes the way the OPTIMIZE TABLE statement operates on InnoDB tables. Intended to be enabled temporarily, during maintenance operations for InnoDB tables with FULLTEXT indexes.
By default, OPTIMIZE TABLE reorganizes the data in the clustered index of the table. When this option is enabled, OPTIMIZE TABLE skips this reorganization of the table data, and instead processes the newly added, deleted, and updated token data for a FULLTEXT index, See Section 14.2.3.12.3, “FULLTEXT Indexes” for more information about FULLTEXT indexes for InnoDB tables.
innodb_page_size
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_page_size=#k | ||
Option-File Format | innodb_page_size | ||
Option Sets Variable | Yes, innodb_page_size | ||
Variable Name | innodb_page_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | enumeration | ||
Default | 16384 | ||
Valid Values | 4k 8k 16k 4096 8192 16384 |
Specifies the page size for all InnoDB tablespaces in a MySQL instance. This value is set when the instance is created and remains constant afterwards. You can specify page size using the values 16k (the default), 8k, or 4k.
The default, with the largest page size, is appropriate for a wide range of workloads, particularly for queries involving table scans and DML operations involving bulk updates. Smaller page sizes might be more efficient for OLTP workloads involving many small writes, where contention can be an issue when a single page contains many rows. Smaller pages might also be efficient with SSD storage devices, which typically use small block sizes. Keeping the InnoDB page size close to the storage device block size minimizes the amount of unchanged data that is rewritten to disk. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_print_all_deadlocks
Version Introduced | 5.6.2 | ||
Command-Line Format | --innodb_print_all_deadlocks=# | ||
Option-File Format | innodb_print_all_deadlocks | ||
Option Sets Variable | Yes, innodb_print_all_deadlocks | ||
Variable Name | innodb_print_all_deadlocks | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
When this option is enabled, information about all deadlocks in InnoDB user transactions is recorded in the mysqld error log. Otherwise, you see information about only the last deadlock, using the SHOW ENGINE INNODB STATUS command. An occasional InnoDB deadlock is not necessarily an issue, because InnoDB detects the condition immediately, and rolls back one of the transactions automatically. You might use this option to troubleshoot why deadlocks are happening if an application does not have appropriate error-handling logic to detect the rollback and retry its operation. A large number of deadlocks might indicate the need to restructure transactions that issue DML or SELECT ... FOR UPDATE statements for multiple tables, so that each transaction accesses the tables in the same order, thus avoiding the deadlock condition.
innodb_purge_batch_size
Command-Line Format | --innodb_purge_batch_size=# | ||
Option-File Format | innodb_purge_batch_size | ||
Variable Name | innodb_purge_batch_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (>= 5.6.3) | |||
Type | numeric | ||
Default | 300 | ||
Range | 1 .. 5000 |
The granularity of changes, expressed in units of redo log records, that trigger a purge operation, flushing the changed buffer pool blocks to disk. This option is intended for tuning performance in combination with the setting innodb_purge_threads=n, and typical users do not need to modify it.
innodb_purge_threads
Command-Line Format | --innodb_purge_threads=# | ||
Option-File Format | innodb_purge_threads | ||
Variable Name | innodb_purge_threads | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (>= 5.6.2) | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 32 | ||
Permitted Values (>= 5.6.5) | |||
Type | numeric | ||
Default | 1 | ||
Range | 1 .. 32 |
The number of background threads devoted to the InnoDB purge operation. The new default and minimum value of 1 in MySQL 5.6.5 signifies that the purge operation is always performed by background threads, never as part of the master thread. Non-zero values runs the purge operation in one or more background threads, which can reduce internal contention within InnoDB, improving scalability. Increasing the value to greater than 1 creates that many separate purge threads, which can improve efficiency on systems where DML operations are performed on multiple tables. The maximum is 32.
innodb_random_read_ahead
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_random_read_ahead=# | ||
Option-File Format | innodb_random_read_ahead | ||
Option Sets Variable | Yes, innodb_random_read_ahead | ||
Variable Name | innodb_random_read_ahead | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Enables the random read-ahead technique for optimizing InnoDB I/O. This is a setting that was originally on by default, then was removed in MySQL 5.5, and now is available but turned off by default. See Section 14.2.4.2.16, “Changes in the Read-Ahead Algorithm” for details about the performance considerations for the different types of read-ahead requests. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_read_ahead_threshold
Command-Line Format | --innodb_read_ahead_threshold=# | ||
Option-File Format | innodb_read_ahead_threshold | ||
Option Sets Variable | Yes, innodb_read_ahead_threshold | ||
Variable Name | innodb_read_ahead_threshold | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 56 | ||
Range | 0 .. 64 |
Controls the sensitivity of linear read-ahead that InnoDB uses to prefetch pages into the buffer pool. If InnoDB reads at least innodb_read_ahead_threshold pages sequentially from an extent (64 pages), it initiates an asynchronous read for the entire following extent. The permissible range of values is 0 to 64. The default is 56: InnoDB must read at least 56 pages sequentially from an extent to initiate an asynchronous read for the following extent. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_read_io_threads
Command-Line Format | --innodb_read_io_threads=# | ||
Option-File Format | innodb_read_io_threads | ||
Option Sets Variable | Yes, innodb_read_io_threads | ||
Variable Name | innodb_read_io_threads | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 4 | ||
Range | 1 .. 64 |
The number of I/O threads for read operations in InnoDB. The default value is 4. Its counterpart for write threads is innodb_write_io_threads. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
Note
On Linux systems, running multiple MySQL servers (typically more than 12) with default settings for innodb_read_io_threads, innodb_write_io_threads, and the Linux aio-max-nr setting can exceed system limits. Ideally, increase the aio-max-nr setting; as a workaround, you might reduce the settings for one or both of the MySQL configuration options.
innodb_read_only
Version Introduced | 5.6.7 | ||
Command-Line Format | --innodb_read_only=# | ||
Option-File Format | innodb_read_only | ||
Option Sets Variable | Yes, innodb_read_only | ||
Variable Name | innodb_read_only | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Starts the server in read-only mode. For distributing database applications or data sets on read-only media. Can also be used in data warehouses to share the same data directory between multiple instances. See Section 14.2.5.1, “Support for Read-Only Media” for usage instructions.
innodb_replication_delay
Command-Line Format | --innodb_replication_delay=# | ||
Option-File Format | innodb_replication_delay | ||
Option Sets Variable | Yes, innodb_replication_delay | ||
Variable Name | innodb_replication_delay | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 |
The replication thread delay (in ms) on a slave server if innodb_thread_concurrency is reached.
innodb_rollback_on_timeout
Command-Line Format | --innodb_rollback_on_timeout | ||
Option-File Format | innodb_rollback_on_timeout | ||
Option Sets Variable | Yes, innodb_rollback_on_timeout | ||
Variable Name | innodb_rollback_on_timeout | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
In MySQL 5.6, InnoDB rolls back only the last statement on a transaction timeout by default. If --innodb_rollback_on_timeout is specified, a transaction timeout causes InnoDB to abort and roll back the entire transaction (the same behavior as in MySQL 4.1).
innodb_rollback_segments
Version Introduced | 5.6.2 | ||
Command-Line Format | --innodb_rollback_segments=# | ||
Option-File Format | innodb_rollback_segments | ||
Option Sets Variable | Yes, innodb_rollback_segments | ||
Variable Name | innodb_rollback_segments | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 128 | ||
Range | 1 .. 128 |
Defines how many of the rollback segments in the system tablespace that InnoDB uses within a transaction. You might reduce this value from its default of 128 if a smaller number of rollback segments performs better for your workload. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
innodb_sort_buffer_size
Version Introduced | 5.6.4 | ||
Command-Line Format | --innodb_sort_buffer_size=# | ||
Option-File Format | innodb_sort_buffer_size | ||
Option Sets Variable | Yes, innodb_sort_buffer_size | ||
Variable Name | innodb_sort_buffer_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (>= 5.6.4) | |||
Type | numeric | ||
Default | 1048576 | ||
Range | 524288 .. 67108864 | ||
Permitted Values (>= 5.6.5) | |||
Type | numeric | ||
Default | 1048576 | ||
Range | 65536 .. 67108864 |
Specifies the sizes of several buffers used for sorting data during creation of an InnoDB index. Before this setting was made configurable, the size was hardcoded to 1MB, and that value remains the default. This sort area is only used for merge sorts during index creation, not during later index maintenance operations. During an ALTER TABLE or CREATE TABLE statement that creates an index, 3 buffers are allocated, each with a size defined by this option. These buffers are deallocated when the index creation completes.
The value of this option also controls the amount by which the temporary log file is extended, to record concurrent DML during online DDL operations.
innodb_spin_wait_delay
Command-Line Format | --innodb_spin_wait_delay=# | ||
Option-File Format | innodb_spin_wait_delay | ||
Option Sets Variable | Yes, innodb_spin_wait_delay | ||
Variable Name | innodb_spin_wait_delay | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 6 | ||
Range | 0 .. 4294967295 |
The maximum delay between polls for a spin lock. The low-level implementation of this mechanism varies depending on the combination of hardware and operating system, so the delay does not correspond to a fixed time interval. The default value is 6.
innodb_stats_auto_recalc
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_stats_auto_recalc=# | ||
Option-File Format | innodb_stats_auto_recalc | ||
Option Sets Variable | Yes, innodb_stats_auto_recalc | ||
Variable Name | innodb_stats_auto_recalc | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
Causes InnoDB to automatically recalculate persistent statistics after the data in a table is changed substantially. The threshold value is currently 10% of the rows in the table. This setting applies to tables created when the innodb_stats_persistent option is enabled, or where the clause STATS_PERSISTENT=1 is enabled by a CREATE TABLE or ALTER TABLE statement. The amount of data sampled to produce the statistics is controlled by the innodb_stats_persistent_sample_pages configuration option.
innodb_stats_method
Version Introduced | 5.6.2 | ||
Command-Line Format | --innodb_stats_method=name | ||
Option-File Format | innodb_stats_method | ||
Option Sets Variable | Yes, innodb_stats_method | ||
Variable Name | innodb_stats_method | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | nulls_equal | ||
Valid Values | nulls_equal nulls_unequal nulls_ignored |
How the server treats NULL values when collecting statistics about the distribution of index values for InnoDB tables. This variable has three possible values, nulls_equal, nulls_unequal, and nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values are considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored, NULL values are ignored.
The method that is used for generating table statistics influences how the optimizer chooses indexes for query execution, as described in Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”.
innodb_stats_on_metadata
Command-Line Format | --innodb_stats_on_metadata | ||
Option-File Format | innodb_stats_on_metadata | ||
Option Sets Variable | Yes, innodb_stats_on_metadata | ||
Variable Name | innodb_stats_on_metadata | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type | boolean | ||
Default | ON | ||
Permitted Values (>= 5.6.6) | |||
Type | boolean | ||
Default | OFF |
When this variable is enabled, InnoDB updates statistics during metadata statements such as SHOW TABLE STATUS or SHOW INDEX, or when accessing the INFORMATION_SCHEMA tables TABLES or STATISTICS. (These updates are similar to what happens for ANALYZE TABLE.) When disabled, InnoDB does not update statistics during these operations. Leaving this setting disabled can improve access speed for schemas that have a large number of tables or indexes. It can also improve the stability of execution plans for queries that involve InnoDB tables.
This variable is disabled by default as of MySQL 5.6.6, enabled before that.
innodb_stats_persistent
Version Introduced | 5.6.6 | ||
Command-Line Format | --innodb_stats_persistent=setting | ||
Option-File Format | innodb_stats_persistent | ||
Option Sets Variable | Yes, innodb_stats_persistent | ||
Variable Name | innodb_stats_persistent | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | ON | ||
Valid Values | OFF ON 0 1 default |
Specifies whether the InnoDB index statistics produced by the ANALYZE TABLE command are stored on disk, remaining consistent until a subsequent ANALYZE TABLE. Otherwise, the statistics are recalculated more frequently, such as at each server restart, which can lead to variations in query execution plans. This setting is stored with each table when the table is created. You can specify or change it through SQL with the STATS_PERSISTENT clause of the CREATE TABLE and ALTER TABLE commands.
innodb_stats_persistent_sample_pages
Version Introduced | 5.6.2 | ||
Command-Line Format | --innodb_stats_persistent_sample_pages=# | ||
Option-File Format | innodb_stats_persistent_sample_pages | ||
Option Sets Variable | Yes, innodb_stats_persistent_sample_pages | ||
Variable Name | innodb_stats_persistent_sample_pages | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 20 |
The number of index pages to sample when estimating cardinality and other statistics for an indexed column, such as those calculated by ANALYZE TABLE. Increasing the value improves the accuracy of index statistics, which can improve the query execution plan, at the expense of increased I/O during the execution of ANALYZE TABLE for an InnoDB table.
This option only applies when the innodb_stats_persistent setting is turned on for a table; when that option is turned off for a table, the innodb_stats_transient_sample_pages setting applies instead.
innodb_stats_sample_pages
Version Deprecated | 5.6.3 | ||
Command-Line Format | --innodb_stats_sample_pages=# | ||
Option-File Format | innodb_stats_sample_pages | ||
Option Sets Variable | Yes, innodb_stats_sample_pages | ||
Variable Name | innodb_stats_sample_pages | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Deprecated | 5.6.3 | ||
Permitted Values | |||
Type | numeric | ||
Default | 8 | ||
Range | 1 .. 2**64-1 |
Deprecated, use innodb_stats_transient_sample_pages instead.
innodb_stats_transient_sample_pages
Version Introduced | 5.6.2 | ||
Command-Line Format | --innodb_stats_transient_sample_pages=# | ||
Option-File Format | innodb_stats_transient_sample_pages | ||
Option Sets Variable | Yes, innodb_stats_transient_sample_pages | ||
Variable Name | innodb_stats_transient_sample_pages | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 8 |
The number of index pages to sample when estimating cardinality and other statistics for an indexed column, such as those calculated by ANALYZE TABLE. The default value is 8. Increasing the value improves the accuracy of index statistics, which can improve the query execution plan, at the expense of increased I/O when opening an InnoDB table or recalculating statistics.
This option only applies when the innodb_stats_persistent setting is turned off for a table; when this option is turned on for a table, the innodb_stats_persistent_sample_pages setting applies instead. Takes the place of the innodb_stats_sample_pages option. For more information, see Section 14.2.5, “InnoDB Features for Flexibility, Ease of Use and Reliability”.
innodb_strict_mode
Command-Line Format | --innodb_strict_mode=# | ||
Option-File Format | innodb_strict_mode | ||
Option Sets Variable | Yes, innodb_strict_mode | ||
Variable Name | innodb_strict_mode | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Whether InnoDB returns errors rather than warnings for certain conditions. This is analogous to strict SQL mode. The default value is OFF. See Section 14.2.5.7, “InnoDB Strict Mode” for a list of the conditions that are affected.
innodb_support_xa
Command-Line Format | --innodb_support_xa | ||
Option-File Format | innodb_support_xa | ||
Option Sets Variable | Yes, innodb_support_xa | ||
Variable Name | innodb_support_xa | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | TRUE |
Enables InnoDB support for two-phase commit in XA transactions, causing an extra disk flush for transaction preparation. This setting is the default. The XA mechanism is used internally and is essential for any server that has its binary log turned on and is accepting changes to its data from more than one thread. If you turn it off, transactions can be written to the binary log in a different order from the one in which the live database is committing them. This can produce different data when the binary log is replayed in disaster recovery or on a replication slave. Do not turn it off on a replication master server unless you have an unusual setup where only one thread is able to change data.
For a server that is accepting data changes from only one thread, it is safe and recommended to turn off this option to improve performance for InnoDB tables. For example, you can turn it off on replication slaves where only the replication SQL thread is changing data.
You can also turn off this option if you do not need it for safe binary logging or replication, and you also do not use an external XA transaction manager.
innodb_sync_array_size
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_sync_array_size=# | ||
Option-File Format | innodb_sync_array_size | ||
Option Sets Variable | Yes, innodb_sync_array_size | ||
Variable Name | innodb_sync_array_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 | ||
Range | 1 .. 1024 |
Splits an internal data structure used to coordinate threads, for higher concurrency in workloads with large numbers of waiting threads. This setting must be configured when the MySQL instance is starting up, and cannot be changed afterward. Increasing this option value is recommended for workloads that frequently produce a large number of waiting threads, typically greater than 768.
innodb_sync_spin_loops
Command-Line Format | --innodb_sync_spin_loops=# | ||
Option-File Format | innodb_sync_spin_loops | ||
Option Sets Variable | Yes, innodb_sync_spin_loops | ||
Variable Name | innodb_sync_spin_loops | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 30 | ||
Range | 0 .. 4294967295 |
The number of times a thread waits for an InnoDB mutex to be freed before the thread is suspended. The default value is 30.
innodb_table_locks
Command-Line Format | --innodb_table_locks | ||
Option-File Format | innodb_table_locks | ||
Option Sets Variable | Yes, innodb_table_locks | ||
Variable Name | innodb_table_locks | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | TRUE |
If autocommit = 0, InnoDB honors LOCK TABLES; MySQL does not return from LOCK TABLES ... WRITE until all other threads have released all their locks to the table. The default value of innodb_table_locks is 1, which means that LOCK TABLES causes InnoDB to lock a table internally if autocommit = 0.
In MySQL 5.6, innodb_table_locks = 0 has no effect for tables locked explicitly with LOCK TABLES ... WRITE. It does have an effect for tables locked for read or write by LOCK TABLES ... WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.
innodb_thread_concurrency
Command-Line Format | --innodb_thread_concurrency=# | ||
Option-File Format | innodb_thread_concurrency | ||
Option Sets Variable | Yes, innodb_thread_concurrency | ||
Variable Name | innodb_thread_concurrency | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 1000 |
InnoDB tries to keep the number of operating system threads concurrently inside InnoDB less than or equal to the limit given by this variable. Once the number of threads reaches this limit, additional threads are placed into a wait state within a FIFO queue for execution. Threads waiting for locks are not counted in the number of concurrently executing threads.
The correct value for this variable is dependent on environment and workload. Try a range of different values to determine what value works for your applications. A recommended value is 2 times the number of CPUs plus the number of disks.
The range of this variable is 0 to 1000. A value of 0 (the default) is interpreted as infinite concurrency (no concurrency checking). Disabling thread concurrency checking enables InnoDB to create as many threads as it needs. A value of 0 also disables the queries inside InnoDB and queries in queue counters in the ROW OPERATIONS section of SHOW ENGINE INNODB STATUS output.
innodb_thread_sleep_delay
Command-Line Format | --innodb_thread_sleep_delay=# | ||
Option-File Format | innodb_thread_sleep_delay | ||
Option Sets Variable | Yes, innodb_thread_sleep_delay | ||
Variable Name | innodb_thread_sleep_delay | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 10000 |
How long InnoDB threads sleep before joining the InnoDB queue, in microseconds. The default value is 10,000. A value of 0 disables sleep.
innodb_undo_directory
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_undo_directory=name | ||
Option-File Format | innodb_undo_directory | ||
Option Sets Variable | Yes, innodb_undo_directory | ||
Variable Name | innodb_undo_directory | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string | ||
Default | . |
The relative or absolute directory path where InnoDB creates separate tablespaces for the undo logs. Typically used to place those logs on a different storage device. Used in conjunction with innodb_undo_logs and innodb_undo_tablespaces, which determine the disk layout of the undo logs outside the system tablespace. Its default value of . represents the same directory where InnoDB creates its other log files by default.
innodb_undo_logs
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_undo_logs=# | ||
Option-File Format | innodb_undo_logs | ||
Option Sets Variable | Yes, innodb_undo_logs | ||
Variable Name | innodb_undo_logs | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 128 | ||
Range | 0 .. 128 |
Defines how many of the rollback segments in the system tablespace that InnoDB uses within a transaction. This setting is appropriate for tuning performance if you observe mutex contention related to the undo logs. Replaces the innodb_rollback_segments setting. For the total number of available undo logs, rather than the number of active ones, see the Innodb_available_undo_logs status variable.
Although you can increase or decrease how many rollback segments are used within a transaction, the number of rollback segments physically present in the system never decreases. Thus you might start with a low value for this parameter and gradually increase it, to avoid allocating rollback segments that are not needed later.
innodb_undo_tablespaces
Version Introduced | 5.6.3 | ||
Command-Line Format | --innodb_undo_tablespaces=# | ||
Option-File Format | innodb_undo_tablespaces | ||
Option Sets Variable | Yes, innodb_undo_tablespaces | ||
Variable Name | innodb_undo_tablespaces | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 126 | ||
Min Value | 0 |
The number of tablespace files that the undo logs are divided between, when you use a non-zero innodb_undo_logs setting. By default, all the undo logs are part of the system tablespace. Because the undo logs can become large during long-running transactions, splitting the undo logs between multiple tablespaces reduces the maximum size of any one tablespace. The tablespace files are created in the location defined by innodb_undo_directory, with names of the form innodbN, where N is a sequential series of integers, including leading zeros.
innodb_use_native_aio
Command-Line Format | --innodb_use_native_aio=# | ||
Option-File Format | innodb_use_native_aio | ||
Option Sets Variable | Yes, innodb_use_native_aio | ||
Variable Name | innodb_use_native_aio | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
Specifies whether to use the Linux asynchronous I/O subsystem. This variable applies to Linux systems only, and cannot be changed while the server is running.
Normally, you do not need to touch this option, because it is enabled by default. If a problem with the asynchronous I/O subsystem in the OS prevents InnoDB from starting, start the server with this variable disabled (use innodb_use_native_aio=0 in the option file). This option could also be turned off automatically during startup, if InnoDB detects a potential problem such as a combination of tmpdir location, tmpfs filesystem, and Linux kernel that that does not support AIO on tmpfs.
innodb_use_sys_malloc
Version Deprecated | 5.6.3 | ||
Command-Line Format | --innodb_use_sys_malloc=# | ||
Option-File Format | innodb_use_sys_malloc | ||
Option Sets Variable | Yes, innodb_use_sys_malloc | ||
Variable Name | innodb_use_sys_malloc | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Deprecated | 5.6.3 | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
Whether InnoDB uses the operating system memory allocator (ON) or its own (OFF). The default value is ON.
As of MySQL 5.6.3, innodb_use_sys_malloc is deprecated and will be removed in a future MySQL release.
innodb_version
The InnoDB version number. Starting in 5.6.11, the separate numbering for InnoDB is discontinued and this value is the same as for the version variable.
innodb_write_io_threads
Command-Line Format | --innodb_write_io_threads=# | ||
Option-File Format | innodb_write_io_threads | ||
Option Sets Variable | Yes, innodb_write_io_threads | ||
Variable Name | innodb_write_io_threads | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 4 | ||
Range | 1 .. 64 |
The number of I/O threads for write operations in InnoDB. The default value is 4. Its counterpart for read threads is innodb_read_io_threads. For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
Note
On Linux systems, running multiple MySQL servers (typically more than 12) with default settings for innodb_read_io_threads, innodb_write_io_threads, and the Linux aio-max-nr setting can exceed system limits. Ideally, increase the aio-max-nr setting; as a workaround, you might reduce the settings for one or both of the MySQL configuration options.
sync_binlog
Command-Line Format | --sync-binlog=# | ||
Option-File Format | sync_binlog | ||
Option Sets Variable | Yes, sync_binlog | ||
Variable Name | sync_binlog | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 18446744073709547520 |
If the value of this variable is greater than 0, the MySQL server synchronizes its binary log to disk (using fdatasync()) after every sync_binlog writes to the binary log. There is one write to the binary log per statement if autocommit is enabled, and one write per transaction otherwise. The default value of sync_binlog is 0, which does no synchronizing to disk. A value of 1 is the safest choice, because in the event of a crash you lose at most one statement or transaction from the binary log. However, it is also the slowest choice (unless the disk has a battery-backed cache, which makes synchronization very fast). For general I/O tuning advice, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
14.2.6.1. List of Parameters Recently Changed in InnoDB
14.2.6.1.1. New Parameters
Throughout the course of development, InnoDB 1.1 and its predecessor the InnoDB Plugin introduced new configuration parameters.
The following InnoDB-related configuration parameters were added between MySQL 5.5 and 5.6:
innodb_adaptive_max_sleep_delay, innodb_buffer_pool_dump_at_shutdown, innodb_buffer_pool_dump_now, innodb_buffer_pool_filename, innodb_buffer_pool_load_abort, innodb_buffer_pool_load_at_startup, innodb_buffer_pool_load_now, innodb_change_buffer_max_size, innodb_checksum_algorithm, innodb_disable_sort_file_cache, innodb_flush_neighbors, innodb_force_load_corrupted, innodb_ft_aux_table, innodb_ft_cache_size, innodb_ft_enable_diag_print, innodb_ft_enable_stopword, innodb_ft_max_token_size, innodb_ft_min_token_size, innodb_ft_num_word_optimize, innodb_ft_server_stopword_table, innodb_ft_sort_pll_degree, innodb_ft_user_stopword_table, innodb_large_prefix, innodb_lru_scan_depth, innodb_monitor_disable, innodb_monitor_enable, innodb_monitor_reset, innodb_monitor_reset_all, innodb_optimize_fulltext_only, innodb_page_size, innodb_print_all_deadlocks, innodb_random_read_ahead, innodb_sort_buffer_size, innodb_stats_persistent_sample_pages, innodb_stats_transient_sample_pages, innodb_sync_array_size, innodb_undo_directory, innodb_undo_logs, innodb_undo_tablespaces
14.2.6.1.2. Parameters with New Defaults
For better out-of-the-box performance, the following InnoDB configuration parameters have new default values since MySQL 5.1:
Table 14.6. InnoDB Parameters with New Defaults
Name | Old Default | New Default |
---|---|---|
innodb_additional_mem_pool_size | 1MB | 8MB |
innodb_buffer_pool_size | 8MB | 128MB |
innodb_change_buffering | inserts | all |
innodb_file_format_check | ON | 1 |
innodb_log_buffer_size | 1MB | 8MB |
innodb_max_dirty_pages_pct | 90 | 75 |
innodb_sync_spin_loops | 20 | 30 |
innodb_thread_concurrency | 8 | 0 |
14.2.7. Limits on InnoDB Tables
Warning
Do not convert MySQL system tables in the mysql database from MyISAM to InnoDB tables! This is an unsupported operation. If you do this, MySQL does not restart until you restore the old system tables from a backup or re-generate them with the mysql_install_db script.
Warning
It is not a good idea to configure InnoDB to use data files or log files on NFS volumes. Otherwise, the files might be locked by other processes and become unavailable for use by MySQL.
Maximums and Minimums
A table can contain a maximum of 1020 columns. (Raised in MySQL 5.6.9 from the earlier limit of 1000.
A table can contain a maximum of 64 secondary indexes.
By default, an index key for a single-column index can be up to 767 bytes. The same length limit applies to any index key prefix. See Section 13.1.11, “CREATE INDEX Syntax”. For example, you might hit this limit with a column prefix index of more than 255 characters on a TEXT or VARCHAR column, assuming a UTF-8 character set and the maximum of 3 bytes for each character. When the innodb_large_prefix configuration option is enabled, this length limit is raised to 3072 bytes, for InnoDB tables that use the DYNAMIC and COMPRESSED row formats.
When you attempt to specify an index prefix length longer than allowed, the length is silently reduced to the maximum length for a nonunique index. For a unique index, exceeding the index prefix limit produces an error. To avoid such errors for replication configurations, avoid setting the innodb_large_prefix option on the master if it cannot also be set on the slaves, and the slaves have unique indexes that could be affected by this limit.
This configuration option changes the error handling for some combinations of row format and prefix length longer than the maximum allowed. See innodb_large_prefix for details.
The InnoDB internal maximum key length is 3500 bytes, but MySQL itself restricts this to 3072 bytes. This limit applies to the length of the combined index key in a multi-column index.
If you reduce the InnoDB page size to 8KB or 4KB by specifying the innodb_page_size option when creating the MySQL instance, the maximum length of the index key is lowered proportionally, based on the limit of 3072 bytes for a 16KB page size. That is, the maximum index key length is 1536 bytes when the page size is 8KB, and 768 bytes when the page size is 4KB.
The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB and TEXT), is slightly less than half of a database page. That is, the maximum row length is about 8000 bytes for the default page size of 16KB; if you reduce the page size by specifying the innodb_page_size option when creating the MySQL instance, the maximum row length is 4000 bytes for 8KB pages and 2000 bytes for 4KB pages. LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB and TEXT columns, must be less than 4GB.
If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a page, variable-length columns are chosen for external off-page storage until the row fits within half a page, as described in Section 5.3.2, “File Space Management”.
Although InnoDB supports row sizes larger than 65,535 bytes internally, MySQL itself imposes a row-size limit of 65,535 for the combined size of all columns:
mysql> CREATE TABLE t (a VARCHAR(8000), b VARCHAR(10000),
-> c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
-> f VARCHAR(10000), g VARCHAR(10000)) ENGINE=InnoDB;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs
See Section E.10.4, “Limits on Table Column Count and Row Size”.
On some older operating systems, files must be less than 2GB. This is not a limitation of InnoDB itself, but if you require a large tablespace, you will need to configure it using several smaller data files rather than one or a file large data files.
The combined size of the InnoDB log files can be up to 512GB.
The minimum tablespace size is slightly larger than 10MB. The maximum tablespace size is four billion database pages (64TB). This is also the maximum size for a table.
The default database page size in InnoDB is 16KB, or you can lower the page size to 8KB or 4KB by specifying the innodb_page_size option when creating the MySQL instance.
Note
Increasing the page size is not a supported operation: there is no guarantee that InnoDB will function normally with a page size greater than 16KB. Problems compiling or running InnoDB may occur. In particular, ROW_FORMAT=COMPRESSED in the Barracuda file format assumes that the page size is at most 16KB and uses 14-bit pointers.
A MySQL instance using a particular InnoDB page size cannot use data files or log files from an instance that uses a different page size. This limitation could affect restore or downgrade operations using data from MySQL 5.6, which does support page sizes other than 16KB.
Index Types
InnoDB tables support FULLTEXT indexes, starting in MySQL 5.6.4. See Section 14.2.3.12.3, “FULLTEXT Indexes” for details.
InnoDB tables support spatial data types, but not indexes on them.
Restrictions on InnoDB Tables
ANALYZE TABLE determines index cardinality (as displayed in the Cardinality column of SHOW INDEX output) by doing random dives to each of the index trees and updating index cardinality estimates accordingly. Because these are only estimates, repeated runs of ANALYZE TABLE could produce different numbers. This makes ANALYZE TABLE fast on InnoDB tables but not 100% accurate because it does not take all rows into account.
You can make the statistics collected by ANALYZE TABLE more precise and more stable by turning on the innodb_stats_persistent configuration option, as explained in Section 14.2.4.2.10, “Persistent Optimizer Statistics for InnoDB Tables”. When that setting is enabled, it is important to run ANALYZE TABLE after major changes to indexed column data, because the statistics are not recalculated periodically (such as after a server restart) as they traditionally have been.
You can change the number of random dives by modifying the innodb_stats_persistent_sample_pages system variable (if the persistent statistics setting is turned on), or the innodb_stats_transient_sample_pages system variable (if the persistent statistics setting is turned off). For more information, see Section 14.2.5, “InnoDB Features for Flexibility, Ease of Use and Reliability”.
MySQL uses index cardinality estimates only in join optimization. If some join is not optimized in the right way, you can try using ANALYZE TABLE. In the few cases that ANALYZE TABLE does not produce values good enough for your particular tables, you can use FORCE INDEX with your queries to force the use of a particular index, or set the max_seeks_for_key system variable to ensure that MySQL prefers index lookups over table scans. See Section 5.1.4, “Server System Variables”, and Section C.5.6, “Optimizer-Related Issues”.
SHOW TABLE STATUS does not give accurate statistics on InnoDB tables, except for the physical size reserved by the table. The row count is only a rough estimate used in SQL optimization.
InnoDB does not keep an internal count of rows in a table because concurrent transactions might “see” different numbers of rows at the same time. To process a SELECT COUNT(*) FROM t statement, InnoDB scans an index of the table, which takes some time if the index is not entirely in the buffer pool. If your table does not change often, using the MySQL query cache is a good solution. To get a fast count, you have to use a counter table you create yourself and let your application update it according to the inserts and deletes it does. If an approximate row count is sufficient, SHOW TABLE STATUS can be used. See Section 14.2.4.1, “InnoDB Performance Tuning Tips”.
On Windows, InnoDB always stores database and table names internally in lowercase. To move databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and tables using lowercase names.
An AUTO_INCREMENT column ai_col must be defined as part of an index such that it is possible to perform the equivalent of an indexed SELECT MAX(ai_col) lookup on the table to obtain the maximum column value. Typically, this is achieved by making the column the first column of some table index.
While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an exclusive lock on the end of the index associated with the AUTO_INCREMENT column. While accessing the auto-increment counter, InnoDB uses a specific AUTO-INC table lock mode where the lock lasts only to the end of the current SQL statement, not to the end of the entire transaction. Other clients cannot insert into the table while the AUTO-INC table lock is held. See Section 5.4.4, “AUTO_INCREMENT Handling in InnoDB”.
When you restart the MySQL server, InnoDB may reuse an old value that was generated for an AUTO_INCREMENT column but never stored (that is, a value that was generated during an old transaction that was rolled back).
When an AUTO_INCREMENT integer column runs out of values, a subsequent INSERT operation returns a duplicate-key error. This is general MySQL behavior, similar to how MyISAM works.
DELETE FROM tbl_name does not regenerate the table but instead deletes all rows, one by one.
Currently, cascaded foreign key actions do not activate triggers.
You cannot create a table with a column name that matches the name of an internal InnoDB column (including DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR, and DB_MIX_ID). The server reports error 1005 and refers to error –1 in the error message. This restriction applies only to use of the names in uppercase.
Locking and Transactions
LOCK TABLES acquires two locks on each table if innodb_table_locks=1 (the default). In addition to a table lock on the MySQL layer, it also acquires an InnoDB table lock. Versions of MySQL before 4.1.2 did not acquire InnoDB table locks; the old behavior can be selected by setting innodb_table_locks=0. If no InnoDB table lock is acquired, LOCK TABLES completes even if some records of the tables are being locked by other transactions.
In MySQL 5.6, innodb_table_locks=0 has no effect for tables locked explicitly with LOCK TABLES ... WRITE. It does have an effect for tables locked for read or write by LOCK TABLES ... WRITE implicitly (for example, through triggers) or by LOCK TABLES ... READ.
All InnoDB locks held by a transaction are released when the transaction is committed or aborted. Thus, it does not make much sense to invoke LOCK TABLES on InnoDB tables in autocommit=1 mode because the acquired InnoDB table locks would be released immediately.
You cannot lock additional tables in the middle of a transaction because LOCK TABLES performs an implicit COMMIT and UNLOCK TABLES.
The limit of 1023 concurrent data-modifying transactions has been raised in MySQL 5.5 and above. The limit is now 128 * 1023 concurrent transactions that generate undo records. You can remove any workarounds that require changing the proper structure of your transactions, such as committing more frequently.
14.2.8. MySQL and the ACID Model
The ACID model is a set of database design principles that emphasize aspects of reliability that are important for business data and mission-critical applications. MySQL includes components such as the InnoDB storage engine that adhere closely to the ACID model, so that data is not corrupted and results are not distorted by exceptional conditions such as software crashes and hardware malfunctions. When you rely on ACID-compliant features, you do not need to reinvent the wheel of consistency checking and crash recovery mechanisms. In cases where you have additional software safeguards, ultra-reliable hardware, or an application that can tolerate a small amount of data loss or inconsistency, you can adjust MySQL settings to trade some of the ACID reliability for greater performance or throughput.
The following sections discuss how MySQL features, in particular the InnoDB storage engine, interact with the categories of the ACID model:
A: atomicity.
C: consistency.
I:: isolation.
D: durability.
Atomicity
The atomicity aspect of the ACID model mainly involves InnoDB transactions. Related MySQL features include:
Autocommit setting.
COMMIT statement.
ROLLBACK statement.
Operational data from the INFORMATION_SCHEMA tables.
Consistency
The consistency aspect of the ACID model mainly involves internal InnoDB processing to protect data from crashes. Related MySQL features include:
InnoDB doublewrite buffer.
InnoDB crash recovery.
Isolation
The isolation aspect of the ACID model mainly involves InnoDB transactions, in particular the isolation level that applies to each transaction. Related MySQL features include:
Autocommit setting.
SET ISOLATION LEVEL statement.
The low-level details of InnoDB locking. During performance tuning, you see these details through INFORMATION_SCHEMA tables.
Durability
The durability aspect of the ACID model involves MySQL software features interacting with your particular hardware configuration. Because of the many possibilities depending on the capabilities of your CPU, network, and storage devices, this aspect is the most complicated to provide concrete guidelines for. (And those guidelines might take the form of buy “new hardware”.) Related MySQL features include:
InnoDB doublewrite buffer, turned on and off by the innodb_doublewrite configuration option.
Configuration option innodb_flush_log_at_trx_commit.
Configuration option sync_binlog.
Configuration option innodb_file_per_table.
Write buffer in a storage device, such as a disk drive, SSD, or RAID array.
Battery-backed cache in a storage device.
The operating system used to run MySQL, in particular its support for the fsync() system call.
Uninterruptible power supply (UPS) protecting the electrical power to all computer servers and storage devices that run MySQL servers and store MySQL data.
Your backup strategy, such as frequency and types of backups, and backup retention periods.
For distributed or hosted data applications, the particular characteristics of the data centers where the hardware for the MySQL servers is located, and network connections between the data centers.
14.2.9. InnoDB Integration with memcached
The ever-increasing performance demands of web-based services have generated significant interest in simple data access methods that maximize performance. These techniques are broadly classified under the name “NoSQL”: to increase performance and throughput, they take away the overhead of parsing an SQL statement, constructing an execution plan, and dealing with strongly typed data values split into multiple fields.
MySQL 5.6 includes a NoSQL interface, using an integrated memcached daemon that can automatically store data and retrieve it from InnoDB tables, turning the MySQL server into a fast “key-value store” for single-row insert, update, or delete operations. You can still also access the same tables through SQL for convenience, complex queries, bulk operations, application compatibility, and other strengths of traditional database software.
With this NoSQL interface, you use the familiar memcached API to speed up database operations, letting InnoDB handle memory caching using its buffer pool mechanism. Data modified through memcached operations such as ADD, SET, INCR are stored to disk, using the familiar InnoDB mechanisms such as change buffering, the doublewrite buffer, and crash recovery. The combination of memcached simplicity and InnoDB durability provides users with the best of both worlds, as explained in Section 14.2.9.1, “Benefits of the InnoDB / memcached Combination”. For architectural details about how the components fit together, see Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”.
14.2.9.1. Benefits of the InnoDB / memcached Combination
This section outlines advantages and usage scenarios for the memcached interface to InnoDB tables introduced in Section 14.2.9, “InnoDB Integration with memcached”. The combination of InnoDB tables and memcached offers advantages over using either by themselves:
Raw performance for simple lookups. Direct access to the InnoDB storage engine avoids the parsing and planning overhead of SQL. Running memcached in the same process space as the MySQL server avoids the network overhead of passing requests back and forth.
Data is stored in a MySQL database to protect against crashes, outages, and corruption.
The transfer between memory and disk is handled automatically, simplifying application logic.
Data can be unstructured or structured, depending on the type of application. You can make an all-new table for the data, or map the NoSQL-style processing to one or more existing tables.
You can still access the underlying table through SQL, for reporting, analysis, ad hoc queries, bulk loading, set operations such as union and intersection, and other operations well suited to the expressiveness and flexibility of SQL.
You can ensure high availability of the NoSQL data by using this feature on a master server in combination with MySQL replication.
The integration of memcached with MySQL provides a painless way to make the in-memory data persistent, so you can use it for more significant kinds of data. You can put more add, incr, and similar write operations into your application, without worrying that the data could disappear at any moment. You can bounce the memcached server without losing updates made to the cached data. To guard against unexpected outages, you can take advantage of InnoDB crash recovery, replication, and backup procedures.
The way InnoDB does fast primary key lookups is a natural fit for memcached single-item queries. The direct, low-level database access path used by the memcached plugin is much more efficient for key-value lookups than equivalent SQL queries.
The serialization features of memcached, which can turn complex data structures, binary files, or even code blocks into storeable strings, offer a simple way to get such objects into a database.
Because you can access the underlying data through SQL, you can produce reports, search or update across multiple keys, and call functions such as AVG() and MAX() on the memcached data. All of these operations are expensive or complicated with the standalone memcached.
You do not need to manually load data into memcached at startup. As particular keys are requested by an application, the values are retrieved from the database automatically, and cached in memory using the InnoDB buffer pool.
Because memcached consumes relatively little CPU, and its memory footprint is easy to control, it can run comfortably alongside a MySQL instance on the same system.
Because data consistency is enforced through the usual mechanism as with regular InnoDB tables, you do not have to worry about stale memcached data or fallback logic to query the database in the case of a missing key.
14.2.9.2. Architecture of InnoDB and memcached Integration
This section describes how the memcached daemon is integrated into the MySQL Server, to help understand how this approach compares with other techniques that combine NoSQL components or interfaces with a MySQL back-end.
When integrated with MySQL Server, memcached is implemented as a MySQL plugin daemon, accessing the InnoDB storage engine directly and bypassing the SQL layer:
Features provided in the current release:
memcached as a daemon plugin of mysqld: both mysqld and memcached run in the same process space, with very low latency access to data.
Direct access to InnoDB tables, bypassing the SQL parser, the optimizer, and even the Handler API layer.
Standard memcached protocols, both the text-based protocol and the binary protocol. The InnoDB + memcached combination passes all 55 compatibility tests from the memcapable command.
Multi-column support: you can map multiple columns into the “value” part of the key/value store, with column values delimited by a user-specified separator character.
By default, you use the memcached protocol to read and write data directly to InnoDB, and let MySQL manage the in-memory caching through the InnoDB buffer pool. The default settings represent the combination of high reliability with the fewest surprises for database applications. For example, the default settings avoid uncommitted data on the database side, or stale data returned for memcached get requests.
You can control how often data is passed back and forth between InnoDB and memcached operations through the innodb_api_bk_commit_interval, daemon_memcached_r_batch_size, and daemon_memcached_w_batch_size configuration options. Both the batch size options default to a value of 1 for maximum reliability.
You can specify any memcached configuration options through the MySQL configuration variable daemon_memcached_option. For example, you might change the port that memcached listens on, reduce the maximum number of simultaneous connections, change the maximum memory size for a key/value pair, or enable debugging messages for the error log.
A configuration option innodb_api_trx_level lets you control the transaction isolation level on queries processed by the memcached interface. Although memcached has concept of transactions, you might use this property to control how soon memcached sees changes caused by SQL statements, if you issue DML statements on the same table that memcached interfaces with. By default, it is set to READ UNCOMMITTED.
Another configuration option is innodb_api_enable_mdl. “MDL” stands for “metadata locking”. This basically locks the table from the MySQL level, so that the mapped table cannot be dropped or altered by DDL through the SQL interface. Without the lock, the table can be dropped from MySQL layer, but will be kept in the InnoDB storage until memcached or any other user stops using it.
Differences Between Using memcached Standalone or with InnoDB
MySQL users might already be familiar with using memcached along with MySQL, as described in Section 15.6, “Using MySQL with memcached”. This section describes the similarities and differences between the information in that section, and when using the InnoDB integration features of the memcached that is built into MySQL. The link at the start of each item goes to the associated information about the traditional memcached server.
Installation: Because the memcached library comes with the MySQL server, installation and setup are straightforward. You run a SQL script to set up a table for memcached to use, issue a one-time install plugin statement to enable memcached, and add to the MySQL configuration file or startup script any desired memcached options, for example to use a different port. You might still install the regular memcached distribution to get the additional utilities such as memcp, memcat, and memcapable.
Deployment: It is typical to run large numbers of low-capacity memcached servers. Because the InnoDB + memcached combination has a 1:1 ratio between database and memcached servers, the typical deployment involves a smaller number of moderate or high-powered servers, machines that were already running MySQL. The benefit of this server configuration is more for improving the efficiency of each individual database server than in tapping into unused memory or distributing lookups across large numbers of servers. In the default configuration, very little memory is used for memcached, and the in-memory lookups are served from the InnoDB buffer pool, which automatically caches the most recently used and most frequently used data. As in a traditional MySQL server instance, keep the value of the innodb_buffer_pool_size configuration option as high as practical (without causing paging at the OS level), so that as much of the workload as possible is done in memory.
Expiry: By default (that is, with the caching policy innodb_only), the latest data from the InnoDB table is always returned, so the expiry options have no practical effect. If you change the caching policy to caching or cache-only, the expiry options work as usual, but requested data might be stale if it was updated in the underlying table before it expires from the memory cache.
Namespaces: memcached is like a single giant directory, where to keep files from conflicting with each other you might give them elaborate names with prefixes and suffixes. The integrated InnoDB / memcached server lets you use these same naming conventions for keys, with one addition. Key names of the format @@table_id.key.table_id are decoded to reference a specific a table, using mapping data from the innodb_memcache.containers table. The key is looked up in or written to the specified table.
The @@ notation only works for individual calls to the get, add, and set functions, not the others such as incr or delete. To designate the default table for all subsequent memcached operations within a session, perform a get request using the @@ notation and a table ID, but without the key portion. For example:
get @@table_x
Subsequent get, set, incr, delete and other operations use the table designated by table_x in the innodb_memcache.containers.name column.
Hashing and distribution: The default configuration, with the caching policy innodb_only, is suitable for the traditional deployment configuration where all data is available on all servers, such as a set of replication slave servers.
If you physically divide the data, as in a sharded configuration, you can split the data across several machines running the InnoDB and memcached combined server, and use the traditional memcached hashing mechanism to route requests to a particular machine. On the MySQL side, typically you would let all the data be inserted by add requests to memcached so the appropriate values were stored in the database on the appropriate server.
These types of deployment best practices are still being codified.
Memory usage: By default (with the caching policy innodb_only), the memcached protocol passes information back and forth with InnoDB tables, and the fixed-size InnoDB buffer pool handles the in-memory lookups rather than memcached memory usage growing and shrinking. Relatively little memory is used on the memcached side.
If you switch the caching policy to caching or cache-only, the normal rules of memcached memory usage apply. Memory for the memcached data values is allocated in terms of “slabs”. You can control the slab size and maximum memory used for memcached.
Either way, you can monitor and troubleshoot the integrated memcached daemon using the familiar statistics system, accessed through the standard protocol, for example over a telnet session. Because extra utilities are not included with the integrated daemon, to use the memcached-tool script, install a full memcached distribution.
Thread usage: MySQL threads and memcached threads must co-exist on the same server, so any limits imposed on threads by the operating system apply to this total number.
Log usage: Because the memcached daemon is run alongside the MySQL server and writes to stderr, the -v, -vv, and -vvv options for logging write their output to the MySQL error log.
memcached operations: All the familiar operations such as get, set, add, and delete are available. Serialization (that is, the exact string format to represent complex data structures) depends on the language interface. Still to confirm if there are any special nuances for these operations:
delete(key, [, time]): Deletes the key and its associated item from the cache.
If you supply a time, then adding another item with the specified key is blocked
for the specified period.
flush_all: Invalidates (or expires) all the current items in the cache.
Technically they still exist (they are not deleted), but they are silently destroyed
the next time you try to access them.
Using memcached as a MySQL front end: That is what the InnoDB integration with memcached is all about. Putting these components together improves the performance of your application. Making InnoDB handle data transfers between memory and disk simplifies the logic of your application.
Utilities: The MySQL server includes the libmemcached library but not the additional command-line utilities. To get the commands such as memcp, memcat, and memcapable commands, install a full memcached distribution. When memrm and memflush remove items from the cache, they are also removed from the underlying InnoDB table.
Programming interfaces: You can access the MySQL server through the InnoDB and memcached combination using the same language as always: C and C++, Java, Perl, Python, PHP, and Ruby. Specify the server hostname and port as with any other memcached server. By default, the integrated memcached server listens on the same port as usual, 11211. You can use both the text and binary protocols. You can customize the behavior of the memcached functions at runtime. Serialization (that is, the exact string format to represent complex data structures) depends on the language interface.
Frequently asked questions: MySQL has had an extensive memcached FAQ for several releases. In MySQL 5.6, the answers are largely the same, except that using InnoDB tables as a storage medium for memcached data means that you can use this combination for more write-intensive applications than before, rather than as a read-only cache.
For a more detailed look at the workings of this feature, see Section 14.2.9.7, “Internals of the InnoDB memcached Plugin”.
14.2.9.3. Getting Started with InnoDB Memcached Plugin
This section describes the steps to activate the InnoDB / memcached integration on a MySQL Server. Because the memcached daemon is tightly integrated with the MySQL Server to avoid network traffic and minimize latency, you perform this process on each MySQL instance that uses this feature.
Note
Before setting up the memcached interface for any data, consult Section 14.2.9.4, “Security Considerations for the InnoDB memcached Plugin” to understand the security procedures needed to prevent any unauthorized access.
14.2.9.3.1. Prerequisites for the InnoDB memcached Plugin
Before you set up the plugin itself and the internal tables is uses, verify that your server has the required prerequisite software.
Platform Support
Currently, the memcached Daemon Plugin is only supported on Linux, Solaris, and OS X platforms.
Software Prerequisites
You must have libevent installed, since it is required by memcached. The way to get this library is different if you use the MySQL installer or build from source, as described in the following sections.
Using a MySQL Installation Package
When you use a MySQL installer, the libevent library is not included. Use the particular method for your operating system to download and install libevent 1.4.3 or later: for example, depending on the operating system, you might use the command apt-get, yum, or port install.
The libraries for memcached and the InnoDB plugin for memcached are put into the right place by the MySQL installer. For typical operation, the files lib/plugin/libmemcached.so and lib/plugin/innodb_engine.so are used.
Building from Source
For a brief introduction on the setup steps, see the file README-innodb_memcached in the source distribution. This is a more detailed explanation of that procedure.
If you have the source code release, then there is a libevent 1.4.3 included in the package.
Go to the directory plugin/innodb_memcached/libevent.
Issue the following commands to build and install the libevent library:
autoconf
./configure
make
make install
When building the MySQL Server from source, once libevent is installed, build the MySQL server as usual. No special build steps are required.
The source code for the InnoDB-memcached plugin is in the plugin/innodb_memcached directory. As part of the server build, it generates two shared libraries:
libmemcached.so: the memcached daemon plugin to MySQL.
innodb_engine.so: an InnoDB API plugin to memcached.
Put these two shared libraries in the MySQL plugin directory. To find the MySQL plugin directory, issue the following command:
mysql> select @@plugin_dir;
+---+
| @@plugin_dir |
+---+
| /Users/cirrus/sandbox-setup/5.6.10/lib/plugin/ |
+---+
1 row in set (0.00 sec)
Setting Operating System Limits
The memcached daemon can sometimes cause the MySQL server to exceed the OS limit on the number of open files. You might need to run the ulimit command to increase the limit, and then start the MySQL server from that same shell. See Section 14.2.9.8, “Troubleshooting the InnoDB memcached Plugin” for the steps to resolve this issue.
14.2.9.3.2. Installing and Configuring the InnoDB memcached Plugin
Setting Up Required Tables
To configure the memcached plugin so it can interact with InnoDB tables, run the configuration script scripts/innodb_memcached_config.sql to install the necessary tables used behind the scenes:
mysql: source MYSQL_HOME/share/innodb_memcached_config.sql
This is a one-time operation. The tables remain in place if you later disable and re-enable the memcached support. For information about the layout and purpose of these tables, see Section 14.2.9.7, “Internals of the InnoDB memcached Plugin”.
Installing the Daemon Plugin
To activate the daemon plugin, use the install plugin statement, just as when installing any other MySQL plugin:
mysql> install plugin daemon_memcached soname "libmemcached.so";
Once the plugin is installed this way, it is automatically activated each time the MySQL server is booted or restarted.
Disabling the Daemon Plugin
When making major changes to the plugin configuration, you might need to turn off the plugin. To do so, issue the following statement:
mysql> uninstall plugin daemon_memcached;
To re-enable it, issue the preceding install plugin statement again. All the previous configuration settings, internal tables, and data are preserved when the plugin is bounced this way.
Specifying memcached Configuration Options
If you have any memcached specific configuration parameters, specify them on the mysqld command line or enter them in the MySQL configuration file, encoded in the argument to the daemon_memcached_option MySQL configuration option. The memcached configuration options take effect when the plugin is installed, which you do each time the MySQL server is started.
For example, to make memcached listen on port 11222 instead of the default port 11211, add -p11222 to the MySQL configuration option daemon_memcached_option:
mysqld --loose-daemon_memcached_option="-p11222"
You can add other memcached command line options to the daemon_memcached_option string. The other configuration options are:
daemon_memcached_engine_lib_name (default innodb_engine.so)
daemon_memcached_engine_lib_path (default NULL, representing the plugin directory).
daemon_memcached_r_batch_size, batch commit size for read operations (get). It specifies after how many memcached read operations the system automatically does a commit. By default, this is set to 1 so that every get request can access the very latest committed data in the InnoDB table, whether the data was updated through memcached or by SQL. When its value is greater than 1, the counter for read operations is incremented once for every get call. The flush_all call resets both the read and write counters.
daemon_memcached_w_batch_size, batch commit for any write operations (set, replace, append, prepend, incr, decr, and so on) By default, this is set as 1, so that no uncommitted data is lost in case of an outage, and any SQL queries on the underlying table can access the very latest data. When its value is greater than 1, the counter for write operations is incremented once for every add, set, incr, decr, and delete call. The flush_all call resets both the read and write counters.
By default, you do not need to change anything with the first two configuration options. Those options allow you to load any other storage engine for memcached (such as the NDB memcached engine).
Again, please note that you will have these configuration parameter in your MySQL configure file or MySQL boot command line. They take effect when you load the memcached plugin.
Summary
Now you have everything set up. You can directly interact with InnoDB tables through the memcached interface. To verify that the feature is working properly, see Section 14.2.9.3.3, “Verifying the InnoDB and memcached Setup”.
14.2.9.3.3. Verifying the InnoDB and memcached Setup
Now that everything is set up, you can experiment with the InnoDB and memcached combination:
Here is an example using the Unix, Linux, or OS X command shell:
Point memcached-related commands at the memcached attached to the mysqld process.
export MEMCACHED_SERVERS=127.0.0.1:11211
Store the contents of a modestly sized text file in memcached, with the data passed
to MySQL and stored in a table. The key is the basename of the file, 'mime.types'.
memcp /etc/apache2/mime.types
Retrieve the data we just stored, from the memory cache.
memcat mime.types
Here is an example using telnet to send memcached commands and receive results through the ASCII protocol:
telnet 127.0.0.1 11211
set a11 10 0 9
123456789
STORED
get a11
VALUE a11 0 9
123456789
END
quit
To prove that all the same data has been stored in MySQL, connect to the MySQL server and issue:
mysql> select * from test.demo_test;
Now, shut down the MySQL server, which also shuts off the integrated memcached server. Further attempts to access the memcached data now fail with a connection error. Normally, the memcached data would disappear at this point, and you would write application logic to load the data back into memory when memcached was restarted. But the MySQL / memcached integration automates this process:
Restart the MySQL server.
Run the install plugin statement to start the daemon_memcached plugin again.
Now any memcat commands or get operations once again return the key/value pairs you stored in the earlier memcached session. When a key is requested and the associated value is not already in the memory cache, it is automatically queried from the MySQL table, by default test.demo_test.
14.2.9.4. Security Considerations for the InnoDB memcached Plugin
Caution
Consult this section before deploying the InnoDB memcached plugin on any production servers, or even test servers if the MySQL instance contains any sensitive information.
Because memcached does not use an authentication mechanism by default, and the optional SASL authentication is not as strong as traditional DBMS security measures, make sure to keep only non-sensitive data in the MySQL instance using the InnoDB memcached plugin, and wall off any servers using this configuration from potential intruders. Do not allow memcached access to such servers from the Internet, only from within a firewalled intranet, ideally from a subnet whose membership you can restrict.
14.2.9.4.1. Password-Protecting the memcached Interface through SASL
SASL support gives you the capability to protect your MySQL database from unauthenticated access through memcached clients. This section explains the steps to enable this option. The steps to enable such support are almost identical to those you would do to enable SASL for a traditional memcached server.
Background Info:
SASL stands for “Simple Authentication and Security Layer”, a standard for adding authentication support to connection-based protocols. memcached added SASL support starting in its 1.4.3 release.
For the InnoDB + memcached combination, the table that stores the memcached data must be registered in the container system table. And memcached clients can only access such a registered table. Even though the DBA can add access restrictions on a table that is registered with the memcached plugin, they have no control over who can access it through memcached applications. This is why we provide a means (through SASL) to control who can access InnoDB tables associated with the memcached plugin.
The following section shows how to build, enable, and test an SASL-enabled InnoDB memcached plugin.
Steps to Build and Enable SASL in InnoDB Memcached Plugin:
By default, SASL-enabled InnoDB memcached is not included in the release package, since it relies on building memcached with SASL libraries. To enable this feature, download the MySQL source and rebuild the InnoDB memcached plugin after downloading the SASL libraries:
First, get the SASL development and utility libraries. For example, on Ubuntu, you can get these libraries through:
sudo apt-get -f install libsasl2-2 sasl2-bin libsasl2-2 libsasl2-dev libsasl2-modules
Then build the InnoDB memcached plugin (shared libraries) with SASL capability, by adding ENABLE_MEMCACHED_SASL=1 to the cmake options. In addition, memcached provides a simple plaintext password support, which is easier to use for testing. To enable this, set the option ENABLE_MEMCACHED_SASL_PWDB=1.
Overall, you will add following three options to the cmake:
cmake ... -DWITH_INNODB_MEMCACHED=1
-DENABLE_MEMCACHED_SASL=1 -DENABLE_MEMCACHED_SASL_PWDB=1
The third step is to install the InnoDB memcached plugin as before, as explained in Section 14.2.9.3, “Getting Started with InnoDB Memcached Plugin”.
As previously mentioned, memcached provides a simple plaintext password support through SASL, which will be used for this demo.
Create a user named testname and its password as testpasswd in a file:
echo "testname:testpasswd:::::::" >/home/jy/memcached-sasl-db
Let memcached know about it by setting the environment variable MEMCACHED_SASL_PWDB:
export MEMCACHED_SASL_PWDB=/home/jy/memcached-sasl-db
Also tell memcached that it is a plaintext password:
echo "mech_list: plain" > /home/jy/work2/msasl/clients/memcached.conf
export SASL_CONF_PATH=/home/jy/work2/msasl/clients/memcached.conf
Then reboot the server, and add a daemon_memcached_option option -S to enable SASL:
mysqld ... --daemon_memcached_option="-S"
Now the setup is complete. To test it, you might need an SASL-enabled client, such as this SASL-enabled libmemcached.
memcp --servers=localhost:11211 --binary --username=testname
--password=testpasswd myfile.txt
memcat --servers=localhost:11211 --binary --username=testname
--password=testpasswd myfile.txt
Without appropriate user name or password, the above operation is rejected with the error message memcache error AUTHENTICATION FAILURE. Otherwise, the operation succeed. You can also examine the plaintext password set in the memcached-sasl-db file to verify it.
There are other methods to test SASL authentication with memcached. But the one described above is the most straightforward.
14.2.9.5. Writing Applications for the InnoDB memcached Interface
Typically, writing an application for the InnoDB memcached interface involves some degree of rewriting or adapting existing code that uses MySQL or the memcached API:
Instead of many memcached servers running on low-powered machines, you have the same number of memcached servers as MySQL servers, running on relatively high-powered machines with substantial disk storage and memory. You might reuse some existing code that works with the memcached API, but some adaptation is likely needed due to the different server configuration.
The data stored through this interface all goes into VARCHAR, TEXT, or BLOB columns, and must be converted to do numeric operations. You can do the conversion on the application side, or by using the CAST() function in queries.
Coming from a database background, you might be used to general-purpose SQL tables with many columns. The tables accessed by the memcached code likely have only a few or even just a single column holding data values.
You might adapt parts of your application that do single-row queries, inserts, updates, or deletes, to squeeze more performance out of critical sections of code. Both queries (read) and DML (write) operations can be substantially faster when performed through the memcached interface. The speedup for writes is typically greater than the speedup for reads, so you might focus on adapting the code that performs logging or records interactive choices on a web site.
The following sections explore these aspects in more detail.
14.2.9.5.1. Adapting an Existing MySQL Schema for a memcached Application
Consider these aspects of memcached applications when adapting an existing MySQL schema or application to use the memcached interface:
memcached keys cannot contain spaces or newlines, because those characters are used as separators in the ASCII protocol. If you are using lookup values that contain spaces, transform or hash them into values without spaces before using them as keys in calls to add(), set(), get() and so on. Although theoretically those characters are allowed in keys in programs that use the binary protocol, you should always restrict the characters used in keys to ensure compatibility with a broad range of clients.
If you have a short numeric primary key column in an InnoDB table, you can use that as the unique lookup key for memcached by converting the integer to a string value. If the memcached server is being used for more than one application, or with more than one InnoDB table, consider modifying the name to make sure it is unique. For example, you might prepend the table name, or the database name and the table name, before the numeric value.
You cannot use a partitioned table for data queried or stored through the memcached interface.
The memcached protocol passes numeric values around as strings. To store numeric values in the underlying InnoDB table, for example to implement counters that can be used in SQL functions such as SUM() or AVG():
Use VARCHAR columns with enough characters to hold all the digits of the largest expected number (and additional characters if appropriate for the negative sign, decimal point, or both).
In any query that performs arithmetic using the column values, use the CAST() function to convert from string to integer or other numeric type. For example:
-- Alphabetic entries are returned as zero.
select cast(c2 as unsigned integer) from demo_test;
-- Since there could be numeric values of 0, can't disqualify them.
-- Test the string values to find the ones that are integers, and average only those.
select avg(cast(c2 as unsigned integer)) from demo_test
where c2 between '0' and '9999999999';
-- Views let you hide the complexity of queries. The results are already converted;
-- no need to repeat conversion functions and WHERE clauses each time.
create view numbers as select c1 key, cast(c2 as unsigned integer) val
from demo_test where c2 between '0' and '9999999999';
select sum(val) from numbers;
Note that any alphabetic values in the result set are turned into 0 by the call to CAST(). When using functions such as AVG() that depend on the number of rows in the result set, include WHERE clauses to filter out any non-numeric values.
If the InnoDB column you use as a key can be longer than 250 bytes, hash it to a value that is less than 250 bytes.
To use an existing table with the memcached interface, define an entry for it in the innodb_memcache.containers table. To make that the table the default for all requests relayed through memcached, specify the value default in the name column, then restart the MySQL server to make that change take effect. If you are using multiple tables for different classes of memcached data, set up multiple entries in the innodb_memcache.containers table with name values of your choosing, then issue a memcached request of the form get @@name or set @@name within the application to switch the table used for subsequent requests through the memcached API.
For an example of using a table other than the predefined test.demo_test table, see Example 14.5, “Specifying the Table and Column Mapping for an InnoDB + memcached Application”. For the required layout and meaning of the columns in such a table, see Section 14.2.9.7, “Internals of the InnoDB memcached Plugin”.
To use multiple MySQL column values with memcached key/value pairs, in the innodb_memcache.containers entry associated with the MySQL table, specify in the value_columns field several column names separated by comma, semicolon, space, or pipe characters; for example, col1,col2,col3 or col1|col2|col3.
Concatenate the column values into a single string using the pipe character as a separator, before passing that string to memcached add or set calls. The string is unpacked automatically into the various columns. Each get call returns a single string with the column values, also delimited by the pipe separator character. you unpack those values using the appropriate syntax depending on your application language.
Example 14.5. Specifying the Table and Column Mapping for an InnoDB + memcached Application
Here is an example showing how to use your own table for a MySQL application going through the InnoDB memcached plugin for data manipulation.
First, we set up a table to hold some country data: the population, area in metric units, and 'R' or 'L' indicating if people drive on the right or on the left.
use test;
CREATE TABLE `multicol` (
`country` varchar(128) NOT NULL DEFAULT '',
`population` varchar(10) DEFAULT NULL,
`area_sq_km` varchar(9) DEFAULT NULL,
`drive_side` varchar(1) DEFAULT NULL,
`c3` int(11) DEFAULT NULL,
`c4` bigint(20) unsigned DEFAULT NULL,
`c5` int(11) DEFAULT NULL,
PRIMARY KEY (`country`),
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
Now we make a descriptor for this table so that the InnoDB memcached plugin knows how to access it:
The sample entry in the CONTAINERS table has a name column 'aaa'; we set up another identifier 'bbb'. If we made a single master table for all memcached applications to use, we would make the ID 'default' and skip the @@ requests to switch tables.
We specify the test.multicol table. The schema name is stored in one column and the table name is stored in another column.
The key column will be our unique country value. That column was specified as the primary key when we created the table above, so we also specify the index name 'PRIMARY' here.
Rather than a single column to hold a composite data value, we will divide the data among three table columns, so we specify a comma-separated list of those columns that will be used when storing or retrieving values.
And for the flags, expire, and CAS values, we specify corresponding columns based on the settings from the sample table demo.test. These values are typically not significant in applications using the InnoDB memcached plugin, because MySQL keeps the data synchronized and there is no need to worry about data expiring or being stale.
insert into innodb_memcache.containers
(name,db_schema,db_table,key_columns,value_columns,flags,cas_column,
expire_time_column,unique_idx_name_on_key)
values
('bbb','test','multicol','country','population,area_sq_km,drive_side',
'c3','c4','c5','PRIMARY');
commit;
Here is a sample Python program showing how we would access this table from a program:
No database authorization is needed, since all data manipulation is done through the memcached interface. All we need to know is the port number the memcached daemon is listening to on the local system.
We load sample values for a few arbitrary countries. (Area and population figures from Wikipedia.)
To make the program use the multicol table, we call the switch_table() function that does a dummy GET or SET request using @@ notation. The name in the request is bbb, which is the value we stored in innodb_memcache.containers.name. (In a real application, we would use a more descriptive name. This example just illustrates that you specify a table identifier, not the table name, with the GET @@... request.
The utility functions to insert and query the data demonstrate how we might turn a Python data structure into pipe-separated values for sending to MySQL with ADD or SET requests, and unpack the pipe-separated values returned by GET requests. This extra processing is only required when mapping the single memcached value to multiple MySQL table columns.
import sys, os
import memcache
def connect_to_memcached():
memc = memcache.Client(['127.0.0.1:11211'], debug=0);
print "Connected to memcached."
return memc
def banner(message):
print "=" * len(message)
print message
print "=" * len(message)
country_data = [
("Canada","34820000","9984670","R"),
("USA","314242000","9826675","R"),
("Ireland","6399152","84421","L"),
("UK","62262000","243610","L"),
("Mexico","113910608","1972550","R"),
("Denmark","5543453","43094","R"),
("Norway","5002942","385252","R"),
("UAE","8264070","83600","R"),
("India","1210193422","3287263","L"),
("China","1347350000","9640821","R"),
]
def switch_table(memc,table):
key = "@@" + table
print "Switching default table to '" + table + "' by issuing GET for '" + key + "'."
result = memc.get(key)
def insert_country_data(memc):
banner("Inserting initial data via memcached interface")
for item in country_data:
country = item[0]
population = item[1]
area = item[2]
drive_side = item[3]
key = country
value = "|".join([population,area,drive_side])
print "Key = " + key
print "Value = " + value
if memc.add(key,value):
print "Added new key, value pair."
else:
print "Updating value for existing key."
memc.set(key,value)
def query_country_data(memc):
banner("Retrieving data for all keys (country names)")
for item in country_data:
key = item[0]
result = memc.get(key)
print "Here is the result retrieved from the database for key " + key + ":"
print result
(m_population, m_area, m_drive_side) = result.split("|")
print "Unpacked population value: " + m_population
print "Unpacked area value : " + m_area
print "Unpacked drive side value: " + m_drive_side
if __name__ == '__main__':
memc = connect_to_memcached()
switch_table(memc,"bbb")
insert_country_data(memc)
query_country_data(memc)
sys.exit(0)
Here are some SQL queries to illustrate the state of the MySQL data after the script is run, and show how you could access the same data directly through SQL, or from an application written in any language using the appropriate MySQL Connector or API.
The table descriptor 'bbb' is in place, allowing us to switch to the multicol table by issuing a memcached request GET @bbb:
mysql: use innodb_memcache;
Database changed
mysql: select * from containers;
+------+-----------+-----------+-------------+----------------------------------+-------+------------+--------------------+------------------------+
| name | db_schema | db_table | key_columns | value_columns | flags | cas_column | expire_time_column | unique_idx_name_on_key |
+------+-----------+-----------+-------------+----------------------------------+-------+------------+--------------------+------------------------+
| aaa | test | demo_test | c1 | c2 | c3 | c4 | c5 | PRIMARY |
| bbb | test | multicol | country | population,area_sq_km,drive_side | c3 | c4 | c5 | PRIMARY |
+------+-----------+-----------+-------------+----------------------------------+-------+------------+--------------------+------------------------+
2 rows in set (0.01 sec)
After running the script, the data is in the multicol table, available for traditional MySQL queries or DML statements:
mysql: use test;
Database changed
mysql: select * from multicol;
+---------+------------+------------+------------+------+------+------+
| country | population | area_sq_km | drive_side | c3 | c4 | c5 |
+---------+------------+------------+------------+------+------+------+
| Canada | 34820000 | 9984670 | R | 0 | 11 | 0 |
| China | 1347350000 | 9640821 | R | 0 | 20 | 0 |
| Denmark | 5543453 | 43094 | R | 0 | 16 | 0 |
| India | 1210193422 | 3287263 | L | 0 | 19 | 0 |
| Ireland | 6399152 | 84421 | L | 0 | 13 | 0 |
| Mexico | 113910608 | 1972550 | R | 0 | 15 | 0 |
| Norway | 5002942 | 385252 | R | 0 | 17 | 0 |
| UAE | 8264070 | 83600 | R | 0 | 18 | 0 |
| UK | 62262000 | 243610 | L | 0 | 14 | 0 |
| USA | 314242000 | 9826675 | R | 0 | 12 | 0 |
+---------+------------+------------+------------+------+------+------+
10 rows in set (0.00 sec)
mysql: desc multicol;
+------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------------+------+-----+---------+-------+
| country | varchar(128) | NO | PRI | | |
| population | varchar(10) | YES | | NULL | |
| area_sq_km | varchar(9) | YES | | NULL | |
| drive_side | varchar(1) | YES | | NULL | |
| c3 | int(11) | YES | | NULL | |
| c4 | bigint(20) unsigned | YES | | NULL | |
| c5 | int(11) | YES | | NULL | |
+------------+---------------------+------+-----+---------+-------+
7 rows in set (0.01 sec)
Allow sufficient size to hold all necessary digits, decimal points, sign characters, leading zeros, and so on when defining the length for columns that will be treated as numbers. Too-long values in a string column such as a VARCHAR are truncated by removing some characters, which might produce a nonsensical numeric value.
We can produce reports through SQL queries, doing calculations and tests across any columns, not just the country key column. (Because these examples use data from only a few countries, the numbers are for illustration purposes only.) Here, we find the average population of countries where people drive on the right, and the average size of countries whose names start with “U”:
mysql: select avg(population) from multicol where drive_side = 'R';
+-------------------+
| avg(population) |
+-------------------+
| 261304724.7142857 |
+-------------------+
1 row in set (0.00 sec)
mysql: select sum(area_sq_km) from multicol where country like 'U%';
+-----------------+
| sum(area_sq_km) |
+-----------------+
| 10153885 |
+-----------------+
1 row in set (0.00 sec)
Because the population and area_sq_km columns store character data rather than strongly typed numeric data, functions such as avg() and sum() work by converting each value to a number first. This approach does not work for operators such as < or >: for example, when comparing character-based values, 9 > 1000, which is not you expect from a clause such as ORDER BY population DESC. For the most accurate type treatment, perform queries against views that cast numeric columns to the appropriate types. This technique lets you issue very simple SELECT * queries from your database applications, while ensuring that all casting, filtering, and ordering is correct. Here, we make a view that can be queried to find the top 3 countries in descending order of population, with the results always reflecting the latest data from the multicol table, and with the population and area figures always treated as numbers:
mysql: create view populous_countries as
select
country,
cast(population as unsigned integer) population,
cast(area_sq_km as unsigned integer) area_sq_km,
drive_side from multicol
order by cast(population as unsigned integer) desc
limit 3;
Query OK, 0 rows affected (0.01 sec)
mysql: select * from populous_countries;
+---------+------------+------------+------------+
| country | population | area_sq_km | drive_side |
+---------+------------+------------+------------+
| China | 1347350000 | 9640821 | R |
| India | 1210193422 | 3287263 | L |
| USA | 314242000 | 9826675 | R |
+---------+------------+------------+------------+
3 rows in set (0.00 sec)
mysql: desc populous_countries;
+------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+---------------------+------+-----+---------+-------+
| country | varchar(128) | NO | | | |
| population | bigint(10) unsigned | YES | | NULL | |
| area_sq_km | int(9) unsigned | YES | | NULL | |
| drive_side | varchar(1) | YES | | NULL | |
+------------+---------------------+------+-----+---------+-------+
4 rows in set (0.02 sec)
14.2.9.5.2. Adapting an Existing memcached Application for the Integrated memcached Daemon
Consider these aspects of MySQL and InnoDB tables when adapting an existing memcached application to use the MySQL integration:
If you have key values longer than a few bytes, you might find it more efficient to use a numeric auto-increment column for the primary key in the InnoDB table, and create a unique secondary index on the column holding the memcached key values. This is because InnoDB performs best for large-scale insertions if the primary key values are added in sorted order (as they are with auto-increment values), and the primary key values are duplicated in each secondary index, which can take up unnecessary space when the primary key is a long string value.
If you store several different classes of information in memcached, you might set up a separate InnoDB table for each kind of data. Define additional table identifiers in the innodb_memcache.containers table, and use the notation @@table_id.key to store or retrieve items from different tables. Physically dividing the items lets you tune the characteristics of each table for best space utilization, performance, and reliability. For example, you might enable compression for a table that holds blog posts, but not for one that holds thumbnail images. You might back up one table more frequently than another because it holds critical data. You might create additional secondary indexes on tables that are frequently used to generate reports through SQL.
Preferably, set up a stable set of table definitions for use with the memcached interface and leave them in place permanently. Changes to the containers table take effect the next time that table is queried. The entries in that table are processed at startup, and are consulted whenever an unrecognized table ID is requested by the @@ notation. Thus, new entries are visible as soon as you try to use the associated table ID, but changes to existing entries require a server restart before they take effect.
When you use the default caching policy innodb_only, your calls to add(), set(), incr(), and so on can succeed but still trigger debugging messages such as while expecting 'STORED', got unexpected response 'NOT_STORED. This is because in the innodb_only configuration, new and updated values are sent directly to the InnoDB table without being saved in the memory cache.
14.2.9.5.3. Tuning Performance of the InnoDB memcached Plugin
Because using InnoDB in combination with memcached involves writing all data to disk, whether immediately or sometime later, understand that raw performance is expected to be somewhat lower than using memcached by itself. Focus your tuning goals for the InnoDB memcached plugin on achieving higher performance than equivalent SQL operations.
Benchmarks suggest that both queries and DML operations (inserts, updates, and deletes) are faster going through the memcached interface than with traditional SQL. DML operations typically see a larger speedup. Thus, the types of applications you might adapt to use the memcached interface first are those that are write-intensive. You might also use MySQL as a data store for types of write-intensive applications that formerly used some fast, lightweight mechanism where reliability was not a priority.
Adapting SQL Queries
The types of queries that are most suited to the simple GET request style are those with a single clause, or a set of AND conditions, in the WHERE clause:
SQL:
select col from tbl where key = 'key_value';
memcached:
GET key_value
SQL:
select col from tbl where col1 = val1 and col2 = val2 and col3 = val3;
memcached:
Since you must always know these 3 values to look up the key,
combine them into a unique string and use that as the key
for all ADD, SET, and GET operations.
key_value = val1 + ":" + val2 + ":" + val3
GET key_value
SQL:
select 'key exists!' from tbl
where exists (select col1 from tbl where key = 'key_value') limit 1;
memcached:
Test for existence of key by asking for its value and checking if the call succeeds,
ignoring the value itself. For existence checking, you typically only store a very
short value such as "1".
GET key_value
Taking Advantage of System Memory
For best performance, deploy the InnoDB memcached plugin on machines that are configured like typical database servers: in particular, with the majority of system RAM devoted to the InnoDB buffer pool through the innodb_buffer_pool_size configuration option. For systems with multi-gigabyte buffer pools, consider raising the value of the innodb_buffer_pool_instances configuration option for maximum throughput when most operations involve data already cached in memory.
Reducing Redundant I/O
InnoDB has a number of settings that let you choose the balance between high reliability in case of a crash, and the amount of I/O overhead during high write workloads. For example, consider setting the configuration options innodb_doublewrite=0 and innodb_flush_log_at_trx_commit=2. Measure the performance with different settings for the innodb_flush_method option. If the binary log is not turned on for the server, use the setting innodb_support_xa=0.
For other ways to reduce or tune I/O for table operations, see Section 8.5.7, “Optimizing InnoDB Disk I/O”.
Reducing Transactional Overhead
The default value of 1 for the configuration options daemon_memcached_r_batch_size and daemon_memcached_w_batch_size is intended for maximum reliability of results and safety of stored or updated data.
Depending on the type of application, you might increase one or both of these settings to reduce the overhead of frequent commit operations. On a busy system, you might increase daemon_memcached_r_batch_size, knowing that changes to the data made through SQL might not become visible to memcached immediately (that is, until N more get operations were processed). When processing data where every write operation must be reliably stored, you would leave daemon_memcached_w_batch_size set to 1. You might increase it when processing large numbers of updates intended to only be used for statistical analysis, where it is not critical if the last N updates are lost in case of a crash.
For example, imagine a system that monitors traffic crossing a busy bridge, recording approximately 100,000 vehicles each day. If the application simply counts different types of vehicles to analyze traffic patterns, it might change daemon_memcached_w_batch_size from 1 to 100, reducing the I/O overhead for commit operations by 99%. In case of an unexpected outage, only a maximum of 100 records could be lost, which might be an acceptable margin of error. If instead the application was doing automated toll collection for each car, it would keep daemon_memcached_w_batch_size set to 1 to ensure that every toll record was immediately saved to disk.
Because of the way InnoDB organizes the memcached key values on disk, if you have a large number of keys to create, it can be faster to sort all the data items by the key value in your application and add them in sorted order, rather than creating them in arbitrary order.
The memslap command, which is part of the regular memcached distribution but not included with the MySQL server, can be useful for benchmarking different configurations. It can also be used to generate sample key/value pairs that you can use in your own benchmarking. See Section 15.6.3.3.6, “libmemcached Command-Line Utilities” for details.
14.2.9.5.4. Controlling Transactional Behavior of the InnoDB memcached Plugin
Unlike with the traditional memcached, with the InnoDB + memcached combination you can control how “durable” are the data values produced through calls to add, set, incr, and so on. Because MySQL places a high priority on durability and consistency of data, by default all data written through the memcached interface is always stored to disk, and calls to get always return the most recent value from disk. Although this default setting does not give the highest possible raw performance, it is still very fast compared to the traditional SQL interface for InnoDB tables.
As you gain experience with this feature, you can make the decision to relax the durability settings for non-critical classes of data, at the risk of possibly losing some updated values in case of an outage, or returning data that is slightly out-of-date.
Frequency of Commits
One tradeoff between durability and raw performance is how frequently new and changed data is committed. If the data is critical, you want it to be committed immediately so that it is safe in case of any crash or outage. If the data is less critical, such as counters that would be reset after a crash, or debugging or logging data where you could afford to lose a few seconds worth, you might prefer the higher raw throughput that comes with less frequent commits.
When a memcached operation causes an insert, update, or delete in the underlying InnoDB table, that change might be committed to the underlying table instantly (if daemon_memcached_w_batch_size=1) or some time later (if that configuration option value is greater than 1). In either case, the change cannot be rolled back. If you increase the value of daemon_memcached_w_batch_size=1 to avoid high I/O overhead during busy times, commits could become very infrequent when the workload decreases. As a safety measure, a background thread automatically commits changes made through the memcached API at regular intervals. The interval is controlled by the innodb_api_bk_commit_interval configuration option, and by default is 5 seconds.
When a memcached operation causes an insert or update in the underlying InnoDB table, the changed data is immediately visible to other memcached requests because the new value remains in the memory cache, even if it is not committed yet on the MySQL side.
Transaction Isolation
When a memcached operation such as get or incr causes a query or DML operation in the underlying InnoDB table, you can control whether it sees the very latest data written to the table, only data that has been committed, or other variations of transaction isolation level. You control this feature through the innodb_api_trx_level configuration option. The numeric values specified with this option correspond to the familiar isolation level names such as REPEATABLE READ. See the description of the innodb_api_trx_level option for the full list.
The stricter the isolation level, the more certain you can be that the data you retrieve will not be rolled back or changed suddenly so that a subsequent query sees a different value. But that strictness comes with greater locking overhead that can cause waits. For a NoSQL-style application that does not use long-running transactions, you can typically stay with the default isolation level or switch to a less strict one.
Allowing or Disallowing DDL
By default, you can perform DDL operations such as ALTER TABLE on the tables being used by the InnoDB memcached plugin. To avoid potential slowdowns when these tables are being used for high-throughput applications, you can disable DDL operations on these tables by turning on the innodb_api_enable_mdl configuration option at startup. This option is less appropriate when you are accessing the same underlying tables through both the memcached interface and SQL, because it blocks CREATE INDEX statements on the tables, which could be important for configuring the system to run reporting queries.
Data Stored on Disk, in Memory, or Both
Table innodb_memcache.cache_policies specifies whether to store data written through the memcached on disk (innodb_only, the default); to store the data in memory only, as in the traditional memcached (cache-only); or both (caching).
With the caching setting, if memcached cannot find a key in memory, it searches for the value in an InnoDB table. Values returned from get calls under the caching setting could be out-of-date, if they were updated on disk in the InnoDB table but not yet expired from the memory cache.
The caching policy can be set independently for get, set (including incr and decr), delete, and flush operations. For example:
You might allow get and set operations to query or update a table and the memcached memory cache at the same time (through the caching setting), while making delete, flush, or both operate only on the in-memory copy (through the cache_only setting). That way, deleting or flushing an item just expires it from the cache, and the latest value is returned from the InnoDB table the next time the item is requested.
mysql> desc innodb_memcache.cache_policies;
+---------------+---+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+---+------+-----+---------+-------+
| policy_name | varchar(40) | NO | PRI | NULL | |
| get_policy | enum('innodb_only','cache_only','caching','disabled') | NO | | NULL | |
| set_policy | enum('innodb_only','cache_only','caching','disabled') | NO | | NULL | |
| delete_policy | enum('innodb_only','cache_only','caching','disabled') | NO | | NULL | |
| flush_policy | enum('innodb_only','cache_only','caching','disabled') | NO | | NULL | |
+---------------+---+------+-----+---------+-------+
mysql> select * from innodb_memcache.cache_policies;
+--------------+-------------+-------------+---------------+--------------+
| policy_name | get_policy | set_policy | delete_policy | flush_policy |
+--------------+-------------+-------------+---------------+--------------+
| cache_policy | innodb_only | innodb_only | innodb_only | innodb_only |
+--------------+-------------+-------------+---------------+--------------+
mysql> update innodb_memcache.cache_policies set set_policy = 'caching'
-> where policy_name = 'cache_policy';
The cache_policies values are only read at startup, and are tightly integrated with the operation of the memcached plugin. After changing any of the values in this table, uninstall the plugin and reinstall it:
mysql> uninstall plugin daemon_memcached;
Query OK, 0 rows affected (2.00 sec)
mysql> install plugin daemon_memcached soname "libmemcached.so";
Query OK, 0 rows affected (0.00 sec)
14.2.9.5.5. Adapting DML Statements to memcached Operations
Benchmarks suggest that the InnoDB memcached plugin speeds up DML operations (inserts, updates, and deletes) more than it speeds up queries. You might focus your initial development efforts on write-intensive applications that are I/O-bound, and look for opportunities to use MySQL for new kinds of write-intensive applications.
INSERT INTO t1 (key,val) VALUES (some_key,some_value);
SELECT val FROM t1 WHERE key = some_key;
UPDATE t1 SET val = new_value WHERE key = some_key;
UPDATE t1 SET val = val + x WHERE key = some_key;
DELETE FROM t1 WHERE key = some_key;
Single-row DML statements are the most straightforward kinds of statements to turn into memcached operations: INSERT becomes add, UPDATE becomes set, incr or decr, and DELETE becomes delete. When issued through the memcached interface, these operations are guaranteed to affect only 1 row because key is unique within the table.
In the preceding SQL examples, t1 refers to the table currently being used by the InnoDB memcached plugin based on the configuration settings in the innodb_memcache.containers table, key refers to the column listed under key_columns, and val refers to the column listed under value_columns.
TRUNCATE TABLE t1;
DELETE FROM t1;
Corresponds to the flush_all operation, when t1 is configured as the table for memcached operations as in the previous step. Removes all the rows in the table.
14.2.9.5.6. Performing DML and DDL Statements on the Underlying InnoDB Table
You can access the InnoDB table (by default, test.demo_test) through the standard SQL interfaces. However, there are some restrictions:
When query a table through SQL that is also being accessed through the memcached interface, remember that memcached operations can be configured to be committed periodically rather than after every write operation. This behavior is controlled by the daemon_memcached_w_batch_size option. If this option is set to a value greater than 1, use READ UNCOMMITTED queries to find the just-inserted rows:
mysql> set session TRANSACTION ISOLATION LEVEL read uncommitted;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from demo_test;
+------+------+------+------+-----------+------+------+------+------+------+------+
| cx | cy | c1 | cz | c2 | ca | CB | c3 | cu | c4 | C5 |
+------+------+------+------+-----------+------+------+------+------+------+------+
| NULL | NULL | a11 | NULL | 123456789 | NULL | NULL | 10 | NULL | 3 | NULL |
+------+------+------+------+-----------+------+------+------+------+------+------+
1 row in set (0.00 sec)
To modify a table through SQL that is also being accessed through the memcached interface, remember that memcached operations can be configured to be start a new transaction periodically rather than for every read operation. This behavior is controlled by the daemon_memcached_r_batch_size option. If this option is set to a value greater than 1, ...
The InnoDB table is locked IS (shared intention) or IX (exclusive intentional) for all operations in a transaction. If you increase daemon_memcached_r_batch_size and daemon_memcached_w_batch_size substantially from their default value of 1, the table is most likely intentionally locked between each operation, preventing you from running DDL statements on the table.
14.2.9.6. Using the InnoDB memcached Plugin with Replication
Because the InnoDB memcached daemon plugin supports the MySQL binary log, any updates made on a master server through the memcached interface can be replicated for backup, balancing intensive read workloads, and high availability. All memcached commands are supported for binlogging.
You do not need to set up the InnoDB memcached plugin on the slave servers. In this configuration, the primary advantage is increased write throughput on the master. The speed of the replication mechanism is not affected.
The following sections show how to use the binlog capability, to use the InnoDB memcached plugin along with MySQL replication. It assumes you have already done the basic setup described in Section 14.2.9.3, “Getting Started with InnoDB Memcached Plugin”.
Enable InnoDB Memcached Binary Log with innodb_api_enable_binlog:
To use the InnoDB memcached plugin with the MySQL binary log, enable the innodb_api_enable_binlog configuration option on the master server. This option can only be set at server boot time. You must also enable the MySQL binary log on the master server with the --log-bin option. You can add these options to your server configuration file such as my.cnf, or on the mysqld command line.
mysqld ... --log-bin -–innodb_api_enable_binlog=1
Then configure your master and slave server, as described in Section 16.1.1, “How to Set Up Replication”.
Use mysqldump to create a master data snapshot, and sync it to the slave server.
master shell: mysqldump --all-databases --lock-all-tables > dbdump.db
slave shell: mysql < dbdump.db
On the master server, issue show master status to obtain the Master Binary Log Coordinates:
mysql> show master status;
On the slave server, use a change master to statement to set up a slave server with the above coordinates:
mysql> CHANGE MASTER TO
MASTER_HOST='localhost',
MASTER_USER='root',
MASTER_PASSWORD='',
MASTER_PORT = 13000,
MASTER_LOG_FILE='0.000001,
MASTER_LOG_POS=114;
Then start the slave:
mysql> start slave;
If the error log prints output similar to the following, the slave is ready for replication:
111002 18:47:15 [Note] Slave I/O thread: connected to master 'root@localhost:13000',
replication started in log '0.000001' at position 114
Test with the memcached telnet interface:
To test the server with the above replication setup, we use the memcached telnet interface, and also query the master and slave servers using SQL to verify the results.
In our configuration setup SQL, one example table demo_test is created in the test database for use by memcached. We will use this default table for the demonstrations:
Use set to insert a record, key test1, value t1, and flag 10:
telnet 127.0.0.1 11211
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 2
t1
STORED
In the master server, you can see that the row is inserted. c1 maps to the key, c2 maps to the value, c3 is the flag, c4 is the cas value, and c5 is the expiration.
mysql> select * from test.demo_test;
c1 | c2 | c3 | c4 | c5 |
---|---|---|---|---|
test1 | t1 | 10 | 2 | 0 |
1 row in set (0.00 sec)
In the slave server, you will see the same record is inserted by replication:
mysql> select * from test.demo_test;
c1 | c2 | c3 | c4 | c5 |
---|---|---|---|---|
test1 | t1 | 10 | 2 | 0 |
1 row in set (0.00 sec)
Use set command to update the key test1 to a new value new:
Connected to 127.0.0.1.
Escape character is '^]'.
set test1 10 0 3
new
STORED
From the slave server, the update is replicated (notice the cas value also updated):
mysql> select * from test.demo_test;
c1 | c2 | c3 | c4 | c5 |
---|---|---|---|---|
test1 | new | 10 | 3 | 0 |
1 row in set (0.00 sec)
Delete the record with a delete command:
Connected to 127.0.0.1.
Escape character is '^]'.
delete test1
DELETED
When the delete is replicated to the slave, the record on the slave is also deleted:
mysql> select * from test.demo_test;
Empty set (0.00 sec)
Truncate the table with the flush_all command.
First, insert two records by telnetting to the master server:
Connected to 127.0.0.1.
Escape character is '^]'
set test2 10 0 5
again
STORED
set test3 10 0 6
again1
STORED
In the slave server, confirm these two records are replicated:
mysql> select * from test.demo_test;
c1 | c2 | c3 | c4 | c5 |
---|---|---|---|---|
test2 | again | 10 | 5 | 0 |
test3 | again1 | 10 | 6 | 0 |
2 rows in set (0.00 sec)
Call flush_all in the telnet interface to truncate the table:
Connected to 127.0.0.1.
Escape character is '^]'.
flush_all
OK
Then check that the truncation operation is replicated on the slave server:
mysql> select * from test.demo_test;
Empty set (0.00 sec)
All memcached commands are supported in terms of replication.
Notes for the InnoDB Memcached Binlog:
Binlog Format:
Most memcached operations are mapped to DML statements (analogous to insert, delete, update). Since there is no actual SQL statement being processed by the MySQL server, all memcached commands (except for flush_all) use Row-Based Replication (RBR) logging. This is independent of any server binlog_format setting.
The memcached flush_all command is mapped to the TRUNCATE TABLE command. Since DDL commands can only use statement-based logging, this flush_all command is replicated by sending a TRUNCATE TABLE statement.
Transactions:
The concept of transactions has not typically been part of memcached applications. We use daemon_memcached_r_batch_size and daemon_memcached_w_batch_size to control the read and write transaction batch size for performance considerations. These settings do not affect replication: each SQL operation on the underlying table is replicated right after successful completion.
The default value of daemon_memcached_w_batch_size is 1, so each memcached write operation is committed immediately. This default setting incurs a certain amount of performance overhead, to avoid any inconsistency in the data visible on the master and slave servers. The replicated records will always be available immediately on the slave server. If you set daemon_memcached_w_batch_size greater than 1, records inserted or updated through the memcached interface are not immediately visible on the master server; to view these records on the master server before they are committed, issue set transaction isolation level read uncommitted.
14.2.9.7. Internals of the InnoDB memcached Plugin
This section explains the details of the underlying tables used by the InnoDB / memcached plugin.
The configuration script installs 3 tables needed by the InnoDB memcached. These tables are created in a dedicated database innodb_memcache:
mysql> use innodb_memcache;
Database changed
mysql> show tables;
+---------------------------+
| Tables_in_innodb_memcache |
+---------------------------+
| cache_policies |
| config_options |
| containers |
+---------------------------+
3 rows in set (0.01 sec)
The tables are:
containers - This table is the most important table for the memcached daemon. It describes the table or tables used to store the memcached values. You must make changes to this table to start using the memcached interface with one or more of your own tables, rather than just experimenting with the test.demo_test table.
The mapping is done through specifying corresponding column values in the table:
mysql> desc containers;
+------------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------------+--------------+------+-----+---------+-------+
| name | varchar(50) | NO | PRI | NULL | |
| db_schema | varchar(250) | NO | | NULL | |
| db_table | varchar(250) | NO | | NULL | |
| key_columns | varchar(250) | NO | | NULL | |
| value_columns | varchar(250) | YES | | NULL | |
| flags | varchar(250) | NO | | 0 | |
| cas_column | varchar(250) | YES | | NULL | |
| expire_time_column | varchar(250) | YES | | NULL | |
| unique_idx_name_on_key | varchar(250) | NO | | NULL | |
+------------------------+--------------+------+-----+---------+-------+
9 rows in set (0.02 sec)
db_schema and db_table columns specify the database and table name for storing the memcached value.
key_columns specifies the single column name used as the lookup key for memcached operations.
value_columns describes the columns (one or more) used as values for memcached operations. To specify multiple columns, separate them with pipe characters (such as col1|col2|col3 and so on).
unique_idx_name_on_key is the name of the index on the key column. It must be a unique index. It can be the primary key or a secondary index. Preferably, make the key column the primary key of the InnoDB table. Doing so saves a lookup step over using a secondary index for this column. You cannot make a covering index for memcached lookups; InnoDB returns an error if you try to define a composite secondary index over both the key and value columns.
The above 5 column values (table name, key column, value column and index) must be supplied. Otherwise, the setup will fail.
Although the following values are optional, they are needed for full compliance with the memcached protocol:
flags specifies the columns used as flags (a user-defined numeric value that is stored and retrieved along with the main value) for memcached. It is also used as the column specifier for some operations (such as incr, prepend) if memcached value is mapped to multiple columns. So the operation would be done on the specified column. For example, if you have mapped a value to 3 columns, and only want the increment operation performed on one of these columns, you can use flags to specify which column will be used for these operations.
cas_column and exp_column are used specifically to store the cas (compare-and-swap) and exp (expiry) value of memcached. Those values are related to the way memcached hashes requests to different servers and caches data in memory. Because the InnoDB memcached plugin is so tightly integrated with a single memcached daemon, and the in-memory caching mechanism is handled by MySQL and the buffer pool, these columns are rarely needed in this type of deployment.
Table cache_policies specifies whether to use InnoDB as the data store of memcached (innodb_only), or to use the traditional memcached engine as the backstore (cache-only), or both (caching). In the last case, if memcached cannot find a key in memory, it searches for the value in an InnoDB table.
Table config_options stores memcached-related settings that are appropriate to change at runtime, through SQL. Currently, MySQL supports the following configuration options through this table:
separator: The separator used to separate values of a long string into smaller values for multiple columns values. By default, this is the | character. For example, if you defined col1, col2 as value columns, And you define | as separator, you could issue the following command in memcached to insert values into col1 and col2 respectively:
set keyx 10 0 19
valuecolx|valuecoly
So valuecol1x is stored in col1 and valuecoly is stored in col2.
table_map_delimiter: The character separating the schema name and the table name when you use the @@ notation in a key name to access a key in a specific table. For example, @@t1.some_key and @@t2.some_key have the same key value, but are stored in different tables and so do not conflict.
Example Tables
Finally, the configuration script creates a table demo_test in the test database as an example. It also allows the Daemon Memcached to work immediately, without creating any additional tables.
The entries in the container table define which column is used for what purpose as described above:
mysql> select * from innodb_memcache.containers;
+------+-----------+-----------+-------------+---------------+-------+------------+--------------------+------------------------+
| name | db_schema | db_table | key_columns | value_columns | flags | cas_column | expire_time_column | unique_idx_name_on_key |
+------+-----------+-----------+-------------+---------------+-------+------------+--------------------+------------------------+
| aaa | test | demo_test | c1 | c2 | c3 | c4 | c5 | PRIMARY |
+------+-----------+-----------+-------------+---------------+-------+------------+--------------------+------------------------+
1 row in set (0.00 sec)
mysql> desc test.demo_test;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| c1 | varchar(32) | NO | PRI | | |
| c2 | varchar(1024) | YES | | NULL | |
| c3 | int(11) | YES | | NULL | |
| c4 | bigint(20) unsigned | YES | | NULL | |
| c5 | int(11) | YES | | NULL | |
+-------+---------------------+------+-----+---------+-------+
5 rows in set (0.01 sec)
When no table ID is requested through the @@ notation in the key name:
If a row has a name value of default, the corresponding table is used by the memcached plugin. Thus, when you make your first entry in innodb_memcache.containers to move beyond the demo_test table, use a name value of default.
If there is no innodb_memcache.containers.name value of default, the row with the first name value in alphabetical order is used.
14.2.9.8. Troubleshooting the InnoDB memcached Plugin
The following list shows some potential issues you might encounter using the InnoDB memcached daemon, and solutions or workarounds where available:
If you see this error in your MySQL error log, the server might fail to start:
failed to set rlimit for open files. Try running as root or requesting
smaller maxconns value.
The error message is actually from the memcached daemon. One solution is to raise the OS limit for the number of open files. The command varies depending on the operating system. For example, here are the commands to check and increase the limit on several operating systems:
Linux
$ ulimit -n
1024
ulimit -n 4096
$ ulimit -n
4096
OS X Lion (10.6)
$ ulimit -n
256
ulimit -n 4096
$ ulimit -n
4096
The other solution is to reduce the number of concurrent connections available for the memcached daemon, using the -c option which defaults to 1024. Encode that memcached option using the MySQL option daemon_memcached_option inside the MySQL configuration file:
[mysqld]
...
loose-daemon_memcached_option='-c 64'
To troubleshoot problems where the memcached daemon is unable to store data in or retrieve data from the InnoDB table, specify the memcached option -vvv through the MySQL configuration option daemon_memcached_option. Examine the MySQL error log for debug output related to memcached operations.
If the column specified to hold the memcached item values is the wrong data type, such as a numeric type instead of a string type, attempts to store key/value pairs will fail with no specific error code or message.
If the daemon_memcached plugin causes any issues with starting the MySQL server, disable it during troubleshooting by adding this line under the [mysqld] group in your MySQL configuration file:
daemon_memcached=OFF
For example, if you run the install plugin command before running the scripts/innodb_memcached_config.sql script to set up the necessary database and tables, the server might crash and be unable to start. Or, if you set up an incorrect entry in the innodb_memcache.containers table, the server might be unable to start.
To permanently turn off the memcached plugin for a MySQL instance, issue the following command:
mysql> uninstall plugin daemon_memcached;
If you run more than one instance of MySQL on the same machine, with the memcached daemon plugin enabled in each, make sure to specify a unique memcached port for each one using the daemon_memcached_option configuration option.
You might find that a SQL statement cannot find an expected table, or there is no data in the table, but memcached API calls still work and retrieve the expected data. This can happen if you do not set up the entry in the innodb_memcache.containers table, or do not switch to that table by issuing a GET or SET request with the key @@table_id, or make a change to an existing entry in innodb_memcache.containers without restarting the MySQL server afterward. The free-form storage mechanism is flexible enough that your requests to store or retrieve a multi-column value like col1|col2|col3 will usually still work, even if the daemon is using the test.demo_test table which stores all the data within a single column.
As the length of the memcached key and values increase, you encounter size and length limits at different points:
When the key exceeds 250 bytes in size, memcached operations return an error. This is currently a fixed limit within memcached.
You might encounter InnoDB-related limits when the value exceeds 768 bytes in size, or 3072 bytes in size, or 1/2 of the size specified by innodb_page_size. These limits primarily apply if you intend to create an index on the value column to run report-generating queries on that column from SQL. See Section 14.2.7, “Limits on InnoDB Tables” for details.
The maximum size for the combination of the key and the value is 1 MB.
If you share configuration files across MySQL servers with different versions, using the latest configuration options for the memcached plugin could cause startup errors for older MySQL versions. To avoid compatibility problems, use the loose forms of these option names, for example loose-daemon_memcached_option='-c 64' instead of daemon_memcached_option='-c 64'.
14.3. The MyISAM Storage Engine
MyISAM is based on the older (and no longer available) ISAM storage engine but has many useful extensions.
Table 14.7. MyISAM Storage Engine Features
Storage limits | 256TB | Transactions | No | Locking granularity | Table |
MVCC | No | Geospatial data type support | Yes | Geospatial indexing support | Yes |
B-tree indexes | Yes | T-tree indexes | No | Hash indexes | No |
Full-text search indexes | Yes | Clustered indexes | No | Data caches | No |
Index caches | Yes | Compressed data | Yes | Encrypted data | Yes |
Cluster database support | No | Replication support | Yes | Foreign key support | No |
Backup / point-in-time recovery | Yes | Query cache support | Yes | Update statistics for data dictionary | Yes |
[a] Compressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format with MyISAM are read only. [b] Implemented in the server (via encryption functions), rather than in the storage engine. [c] Implemented in the server, rather than in the storage engine. [d] Implemented in the server, rather than in the storage engine. |
Each MyISAM table is stored on disk in three files. The files have names that begin with the table name and have an extension to indicate the file type. An .frm file stores the table format. The data file has an .MYD (MYData) extension. The index file has an .MYI (MYIndex) extension.
To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:
CREATE TABLE t (i INT) ENGINE = MYISAM;
In MySQL 5.6, it is normally necessary to use ENGINE to specify the MyISAM storage engine because InnoDB is the default engine.
You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can also compress MyISAM tables with myisampack to take up much less space. See Section 4.5.3, “mysqlcheck — A Table Maintenance Program”, Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, and Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”.
MyISAM tables have the following characteristics:
All data values are stored with the low byte first. This makes the data machine and operating system independent. The only requirements for binary portability are that the machine uses two's-complement signed integers and IEEE floating-point format. These requirements are widely used among mainstream machines. Binary compatibility might not be applicable to embedded systems, which sometimes have peculiar processors.
There is no significant speed penalty for storing data low byte first; the bytes in a table row normally are unaligned and it takes little more processing to read an unaligned byte in order than in reverse order. Also, the code in the server that fetches column values is not time critical compared to other code.
All numeric key values are stored with the high byte first to permit better index compression.
Large files (up to 63-bit file length) are supported on file systems and operating systems that support large files.
There is a limit of (232)2 (1.844E+19) rows in a MyISAM table.
The maximum number of indexes per MyISAM table is 64.
The maximum number of columns per index is 16.
The maximum key length is 1000 bytes. This can also be changed by changing the source and recompiling. For the case of a key longer than 250 bytes, a larger key block size than the default of 1024 bytes is used.
When rows are inserted in sorted order (as when you are using an AUTO_INCREMENT column), the index tree is split so that the high node only contains one key. This improves space utilization in the index tree.
Internal handling of one AUTO_INCREMENT column per table is supported. MyISAM automatically updates this column for INSERT and UPDATE operations. This makes AUTO_INCREMENT columns faster (at least 10%). Values at the top of the sequence are not reused after being deleted. (When an AUTO_INCREMENT column is defined as the last column of a multiple-column index, reuse of values deleted from the top of a sequence does occur.) The AUTO_INCREMENT value can be reset with ALTER TABLE or myisamchk.
Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts. This is done by automatically combining adjacent deleted blocks and by extending blocks if the next block is deleted.
MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can INSERT new rows into it at the same time that other threads are reading from the table. A free block can occur as a result of deleting rows or an update of a dynamic length row with more data than its current contents. When all free blocks are used up (filled in), future inserts become concurrent again. See Section 8.10.3, “Concurrent Inserts”.
You can put the data file and index file in different directories on different physical devices to get more speed with the DATA DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE. See Section 13.1.14, “CREATE TABLE Syntax”.
NULL values are permitted in indexed columns. This takes 0 to 1 bytes per key.
Each character column can have a different character set. See Section 10.1, “Character Set Support”.
There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If mysqld is started with the --myisam-recover-options option, MyISAM tables are automatically checked when opened, and are repaired if the table wasn't closed properly.
myisamchk marks tables as checked if you run it with the --update-state option. myisamchk --fast checks only those tables that don't have this mark.
myisamchk --analyze stores statistics for portions of keys, as well as for entire keys.
myisampack can pack BLOB and VARCHAR columns.
MyISAM also supports the following features:
Support for a true VARCHAR type; a VARCHAR column starts with a length stored in one or two bytes.
Tables with VARCHAR columns may have fixed or dynamic row length.
The sum of the lengths of the VARCHAR and CHAR columns in a table may be up to 64KB.
Arbitrary length UNIQUE constraints.
Additional Resources
A forum dedicated to the MyISAM storage engine is available at http://forums.mysql.com/list.php?21.
14.3.1. MyISAM Startup Options
The following options to mysqld can be used to change the behavior of MyISAM tables. For additional information, see Section 5.1.3, “Server Command Options”.
Table 14.8. MyISAM Option/Variable Reference
Name | Cmd-Line | Option file | System Var | Status Var | Var Scope | Dynamic |
---|---|---|---|---|---|---|
bulk_insert_buffer_size | Yes | Yes | Yes | Both | Yes | |
concurrent_insert | Yes | Yes | Yes | Global | Yes | |
delay-key-write | Yes | Yes | Global | Yes | ||
- Variable: delay_key_write | Yes | Global | Yes | |||
have_rtree_keys | Yes | Global | No | |||
key_buffer_size | Yes | Yes | Yes | Global | Yes | |
log-isam | Yes | Yes | ||||
myisam-block-size | Yes | Yes | ||||
myisam_data_pointer_size | Yes | Yes | Yes | Global | Yes | |
myisam_max_sort_file_size | Yes | Yes | Yes | Global | Yes | |
myisam_mmap_size | Yes | Yes | Yes | Global | No | |
myisam-recover-options | Yes | Yes | ||||
- Variable: myisam_recover_options | ||||||
myisam_recover_options | Yes | Global | No | |||
myisam_repair_threads | Yes | Yes | Yes | Both | Yes | |
myisam_sort_buffer_size | Yes | Yes | Yes | Both | Yes | |
myisam_stats_method | Yes | Yes | Yes | Both | Yes | |
myisam_use_mmap | Yes | Yes | Yes | Global | Yes | |
skip-concurrent-insert | Yes | Yes | ||||
- Variable: concurrent_insert | ||||||
tmp_table_size | Yes | Yes | Yes | Both | Yes |
Set the mode for automatic recovery of crashed MyISAM tables.
Don't flush key buffers between writes for any MyISAM table.
Note
If you do this, you should not access MyISAM tables from another program (such as from another MySQL server or with myisamchk) when the tables are in use. Doing so risks index corruption. Using --external-locking does not eliminate this risk.
The following system variables affect the behavior of MyISAM tables. For additional information, see Section 5.1.4, “Server System Variables”.
The size of the tree cache used in bulk insert optimization.
Note
This is a limit per thread!
The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be larger than this value, the index is created using the key cache instead, which is slower. The value is given in bytes.
Set the size of the buffer used when recovering tables.
Automatic recovery is activated if you start mysqld with the --myisam-recover-options option. In this case, when the server opens a MyISAM table, it checks whether the table is marked as crashed or whether the open count variable for the table is not 0 and you are running the server with external locking disabled. If either of these conditions is true, the following happens:
The server checks the table for errors.
If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating the data file).
If the repair fails because of an error in the data file (for example, a duplicate-key error), the server tries again, this time re-creating the data file.
If the repair still fails, the server tries once more with the old repair option method (write row by row without sorting). This method should be able to repair any type of error and has low disk space requirements.
If the recovery wouldn't be able to recover all rows from previously completed statements and you didn't specify FORCE in the value of the --myisam-recover-options option, automatic repair aborts with an error message in the error log:
Error: Couldn't repair table: test.g00pages
If you specify FORCE, a warning like this is written instead:
Warning: Found 344 of 354 rows when repairing ./test/g00pages
Note that if the automatic recovery value includes BACKUP, the recovery process creates files with names of the form tbl_name-datetime.BAK. You should have a cron script that automatically moves these files from the database directories to backup media.
14.3.2. Space Needed for Keys
MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as (key_length+4)/0.67, summed over all keys. This is for the worst case when all keys are inserted in sorted order and the table doesn't have any compressed keys.
String indexes are space compressed. If the first index part is a string, it is also prefix compressed. Space compression makes the index file smaller than the worst-case figure if a string column has a lot of trailing space or is a VARCHAR column that is not always used to the full length. Prefix compression is used on keys that start with a string. Prefix compression helps if there are many strings with an identical prefix.
In MyISAM tables, you can also prefix compress numbers by specifying the PACK_KEYS=1 table option when you create the table. Numbers are stored with the high byte first, so this helps when you have many integer keys that have an identical prefix.
14.3.3. MyISAM Table Storage Formats
MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen automatically depending on the type of columns you are using. The third, compressed format, can be created only with the myisampack utility (see Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”).
When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns, you can force the table format to FIXED or DYNAMIC with the ROW_FORMAT table option.
See Section 13.1.14, “CREATE TABLE Syntax”, for information about ROW_FORMAT.
You can decompress (unpack) compressed MyISAM tables using myisamchk --unpack; see Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, for more information.
14.3.3.1. Static (Fixed-Length) Table Characteristics
Static format is the default for MyISAM tables. It is used when the table contains no variable-length columns (VARCHAR, VARBINARY, BLOB, or TEXT). Each row is stored using a fixed number of bytes.
Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to corruption). It is also the fastest of the on-disk formats due to the ease with which rows in the data file can be found on disk: To look up a row based on a row number in the index, multiply the row number by the row length to calculate the row position. Also, when scanning a table, it is very easy to read a constant number of rows with each disk read operation.
The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format MyISAM file. In this case, myisamchk can easily determine where each row starts and ends, so it can usually reclaim all rows except the partially written one. Note that MyISAM table indexes can always be reconstructed based on the data rows.
Note
Fixed-length row format is only available for tables without BLOB or TEXT columns. Creating a table with these columns with an explicit ROW_FORMAT clause will not raise an error or warning; the format specification will be ignored.
Static-format tables have these characteristics:
CHAR and VARCHAR columns are space-padded to the specified column width, although the column type is not altered. BINARY and VARBINARY columns are padded with 0x00 bytes to the column width.
Very quick.
Easy to cache.
Easy to reconstruct after a crash, because rows are located in fixed positions.
Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.
Usually require more disk space than dynamic-format tables.
14.3.3.2. Dynamic Table Characteristics
Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR, VARBINARY, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC table option.
Dynamic format is a little more complex than static format because each row has a header that indicates how long it is. A row can become fragmented (stored in noncontiguous pieces) when it is made longer as a result of an update.
You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length columns that you access or change frequently in a table that also contains some variable-length columns, it might be a good idea to move the variable-length columns to other tables just to avoid fragmentation.
Dynamic-format tables have these characteristics:
All string columns are dynamic except those with a length less than four.
Each row is preceded by a bitmap that indicates which columns contain the empty string (for string columns) or zero (for numeric columns). Note that this does not include columns that contain NULL values. If a string column has a length of zero after trailing space removal, or a numeric column has a value of zero, it is marked in the bitmap and not saved to disk. Nonempty strings are saved as a length byte plus the string contents.
Much less disk space usually is required than for fixed-length tables.
Each row uses only as much space as is required. However, if a row becomes larger, it is split into as many pieces as are required, resulting in row fragmentation. For example, if you update a row with information that extends the row length, the row becomes fragmented. In this case, you may have to run OPTIMIZE TABLE or myisamchk -r from time to time to improve performance. Use myisamchk -ei to obtain table statistics.
More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented into many pieces and links (fragments) may be missing.
The expected row length for dynamic-sized rows is calculated using the following expression:
3
+ (number of columns + 7) / 8
+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8
There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an enlargement of the row. Each new link is at least 20 bytes, so the next enlargement probably goes in the same link. If not, another link is created. You can find the number of links using myisamchk -ed. All links may be removed with OPTIMIZE TABLE or myisamchk -r.
14.3.3.3. Compressed Table Characteristics
Compressed storage format is a read-only format that is generated with the myisampack tool. Compressed tables can be uncompressed with myisamchk.
Compressed tables have the following characteristics:
Compressed tables take very little disk space. This minimizes disk usage, which is helpful when using slow disks (such as CD-ROMs).
Each row is compressed separately, so there is very little access overhead. The header for a row takes up one to three bytes depending on the biggest row in the table. Each column is compressed differently. There is usually a different Huffman tree for each column. Some of the compression types are:
Suffix space compression.
Prefix space compression.
Numbers with a value of zero are stored using one bit.
If values in an integer column have a small range, the column is stored using the smallest possible type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte) if all its values are in the range from -128 to 127.
If a column has only a small set of possible values, the data type is converted to ENUM.
A column may use any combination of the preceding compression types.
Can be used for fixed-length or dynamic-length rows.
Note
While a compressed table is read only, and you cannot therefore update or add rows in the table, DDL (Data Definition Language) operations are still valid. For example, you may still use DROP to drop the table, and TRUNCATE TABLE to empty the table.
14.3.4. MyISAM Table Problems
The file format that MySQL uses to store data has been extensively tested, but there are always circumstances that may cause database tables to become corrupted. The following discussion describes how this can happen and how to handle it.
14.3.4.1. Corrupted MyISAM Tables
Even though the MyISAM table format is very reliable (all changes to a table made by an SQL statement are written before the statement returns), you can still get corrupted tables if any of the following events occur:
The mysqld process is killed in the middle of a write.
An unexpected computer shutdown occurs (for example, the computer is turned off).
Hardware failures.
You are using an external program (such as myisamchk) to modify a table that is being modified by the server at the same time.
A software bug in the MySQL or MyISAM code.
Typical symptoms of a corrupt table are:
You get the following error while selecting data from the table:
Incorrect key file for table: '...'. Try to repair it
Queries don't find rows in the table or return incomplete results.
You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a corrupted MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check or repair a table with the myisamchk command. See Section 13.7.2.2, “CHECK TABLE Syntax”, Section 13.7.2.5, “REPAIR TABLE Syntax”, and Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.
If your tables become corrupted frequently, you should try to determine why this is happening. The most important thing to know is whether the table became corrupted as a result of a server crash. You can verify this easily by looking for a recent restarted mysqld message in the error log. If there is such a message, it is likely that table corruption is a result of the server dying. Otherwise, corruption may have occurred during normal operation. This is a bug. You should try to create a reproducible test case that demonstrates the problem. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”, and MySQL Internals: Porting to Other Systems.
14.3.4.2. Problems from Tables Not Being Closed Properly
Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a table has been closed properly. If you get the following warning from CHECK TABLE or myisamchk, it means that this counter has gone out of sync:
clients are using or haven't closed the table properly
This warning doesn't necessarily mean that the table is corrupted, but you should at least check the table.
The counter works as follows:
The first time a table is updated in MySQL, a counter in the header of the index files is incremented.
The counter is not changed during further updates.
When the last instance of a table is closed (because a FLUSH TABLES operation was performed or because there is no room in the table cache), the counter is decremented if the table has been updated at any point.
When you repair the table or check the table and it is found to be okay, the counter is reset to zero.
To avoid problems with interaction with other processes that might check the table, the counter is not decremented on close if it was zero.
In other words, the counter can become incorrect only under these conditions:
A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.
MySQL has crashed between an update and the final close. (Note that the table may still be okay, because MySQL always issues writes for everything between each statement.)
A table was modified by myisamchk --recover or myisamchk --update-state at the same time that it was in use by mysqld.
Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or CHECK TABLE on the table while it was in use by another server. In this setup, it is safe to use CHECK TABLE, although you might get the warning from other servers. However, REPAIR TABLE should be avoided because when one server replaces the data file with a new one, this is not known to the other servers.
In general, it is a bad idea to share a data directory among multiple servers. See Section 5.6, “Running Multiple MySQL Instances on One Machine”, for additional discussion.
14.4. The MEMORY Storage Engine
The MEMORY storage engine (formerly known as HEAP) creates special-purpose tables with contents that are stored in memory. Because the data is vulnerable to crashes, hardware issues, or power outages, only use these tables as temporary work areas or read-only caches for data pulled from other tables.
Table 14.9. MEMORY Storage Engine Features
Storage limits | RAM | Transactions | No | Locking granularity | Table |
MVCC | No | Geospatial data type support | No | Geospatial indexing support | No |
B-tree indexes | Yes | T-tree indexes | No | Hash indexes | Yes |
Full-text search indexes | No | Clustered indexes | No | Data caches | N/A |
Index caches | N/A | Compressed data | No | Encrypted data | Yes |
Cluster database support | No | Replication support | Yes | Foreign key support | No |
Backup / point-in-time recovery | Yes | Query cache support | Yes | Update statistics for data dictionary | Yes |
[a] Implemented in the server (via encryption functions), rather than in the storage engine. [b] Implemented in the server, rather than in the storage engine. [c] Implemented in the server, rather than in the storage engine. |
When to Use MEMORY or MySQL Cluster. Developers looking to deploy applications that use the MEMORY storage engine for important, highly available, or frequently updated data should consider whether MySQL Cluster is a better choice. A typical use case for the MEMORY engine involves these characteristics:
Operations involving transient, non-critical data such as session management or caching. When the MySQL server halts or restarts, the data in MEMORY tables is lost.
In-memory storage for fast access and low latency. Data volume can fit entirely in memory without causing the operating system to swap out virtual memory pages.
A read-only or read-mostly data access pattern (limited updates).
MySQL Cluster offers the same features as the MEMORY engine with higher performance levels, and provides additional features not available with MEMORY:
Row-level locking and multiple-thread operation for low contention between clients.
Scalability even with statement mixes that include writes.
Optional disk-backed operation for data durability.
Shared-nothing architecture and multiple-host operation with no single point of failure, enabling 99.999% availability.
Automatic data distribution across nodes; application developers need not craft custom sharding or partitioning solutions.
Support for variable-length data types (including BLOB and TEXT) not supported by MEMORY.
For a white paper with more detailed comparison of the MEMORY storage engine and MySQL Cluster, see Scaling Web Services with MySQL Cluster: An Alternative to the MySQL Memory Storage Engine. This white paper includes a performance study of the two technologies and a step-by-step guide describing how existing MEMORY users can migrate to MySQL Cluster.
Performance Characteristics
MEMORY performance is constrained by contention resulting from single-thread execution and table lock overhead when processing updates. This limits scalability when load increases, particularly for statement mixes that include writes.
Despite the in-memory processing for MEMORY tables, they are not necessarily faster than InnoDB tables on a busy server, for general-purpose queries, or under a read/write workload. In particular, the table locking involved with performing updates can slow down concurrent usage of MEMORY tables from multiple sessions.
Depending on the kinds of queries performed on a MEMORY table, you might create indexes as either the default hash data structure (for looking up single values based on a unique key), or a general-purpose B-tree data structure (for all kinds of queries involving equality, inequality, or range operators such as less than or greater than). The following sections illustrate the syntax for creating both kinds of indexes. A common performance issue is using the default hash indexes in workloads where B-tree indexes are more efficient.
Physical Characteristics of MEMORY Tables
The MEMORY storage engine associates each table with one disk file, which stores the table definition (not the data). The file name begins with the table name and has an extension of .frm.
MEMORY tables have the following characteristics:
Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts. No overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows are put in a linked list and are reused when you insert new data into the table. MEMORY tables also have none of the problems commonly associated with deletes plus inserts in hashed tables.
MEMORY tables use a fixed-length row-storage format. Variable-length types such as VARCHAR are stored using a fixed length.
MEMORY includes support for AUTO_INCREMENT columns.
Non-TEMPORARY MEMORY tables are shared among all clients, just like any other non-TEMPORARY table.
DDL Operations for MEMORY Tables
To create a MEMORY table, specify the clause ENGINE=MEMORY on the CREATE TABLE statement.
CREATE TABLE t (i INT) ENGINE = MEMORY;
As indicated by the engine name, MEMORY tables are stored in memory. They use hash indexes by default, which makes them very fast for single-value lookups, and very useful for creating temporary tables. However, when the server shuts down, all rows stored in MEMORY tables are lost. The tables themselves continue to exist because their definitions are stored in .frm files on disk, but they are empty when the server restarts.
This example shows how you might create, use, and remove a MEMORY table:
mysql> CREATE TABLE test ENGINE=MEMORY
-> SELECT ip,SUM(downloads) AS down
-> FROM log_table GROUP BY ip;
mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;
The maximum size of MEMORY tables is limited by the max_heap_table_size system variable, which has a default value of 16MB. To enforce different size limits for MEMORY tables, change the value of this variable. The value in effect for CREATE TABLE, or a subsequent ALTER TABLE or TRUNCATE TABLE, is the value used for the life of the table. A server restart also sets the maximum size of existing MEMORY tables to the global max_heap_table_size value. You can set the size for individual tables as described later in this section.
Indexes
The MEMORY storage engine supports both HASH and BTREE indexes. You can specify one or the other for a given index by adding a USING clause as shown here:
CREATE TABLE lookup
(id INT, INDEX USING HASH (id))
ENGINE = MEMORY;
CREATE TABLE lookup
(id INT, INDEX USING BTREE (id))
ENGINE = MEMORY;
For general characteristics of B-tree and hash indexes, see Section 8.3.1, “How MySQL Uses Indexes”.
MEMORY tables can have up to 64 indexes per table, 16 columns per index and a maximum key length of 3072 bytes.
If a MEMORY table hash index has a high degree of key duplication (many index entries containing the same value), updates to the table that affect key values and all deletes are significantly slower. The degree of this slowdown is proportional to the degree of duplication (or, inversely proportional to the index cardinality). You can use a BTREE index to avoid this problem.
MEMORY tables can have nonunique keys. (This is an uncommon feature for implementations of hash indexes.)
Columns that are indexed can contain NULL values.
User-Created and Temporary Tables
MEMORY table contents are stored in memory, which is a property that MEMORY tables share with internal temporary tables that the server creates on the fly while processing queries. However, the two types of tables differ in that MEMORY tables are not subject to storage conversion, whereas internal temporary tables are:
If an internal temporary table becomes too large, the server automatically converts it to on-disk storage, as described in Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”.
User-created MEMORY tables are never converted to disk tables.
Loading Data
To populate a MEMORY table when the MySQL server starts, you can use the --init-file option. For example, you can put statements such as INSERT INTO ... SELECT or LOAD DATA INFILE into this file to load the table from a persistent data source. See Section 5.1.3, “Server Command Options”, and Section 13.2.6, “LOAD DATA INFILE Syntax”.
For loading data into MEMORY tables accessed by other sessions concurrently, MEMORY supports INSERT DELAYED. See Section 13.2.5.2, “INSERT DELAYED Syntax”.
MEMORY Tables and Replication
A server's MEMORY tables become empty when it is shut down and restarted. If the server is a replication master, its slaves are not aware that these tables have become empty, so you see out-of-date content if you select data from the tables on the slaves. To synchronize master and slave MEMORY tables, when a MEMORY table is used on a master for the first time since it was started, a DELETE statement is written to the master's binary log, to empty the table on the slaves also. The slave still has outdated data in the table during the interval between the master's restart and its first use of the table. To avoid this interval when a direct query to the slave could return stale data, use the --init-file option to populate the MEMORY table on the master at startup.
Managing Memory Use
The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.
Memory is not reclaimed if you delete individual rows from a MEMORY table. Memory is reclaimed only when the entire table is deleted. Memory that was previously used for deleted rows is re-used for new rows within the same table. To free all the memory used by a MEMORY table when you no longer require its contents, execute DELETE or TRUNCATE TABLE to remove all rows, or remove the table altogether using DROP TABLE. To free up the memory used by deleted rows, use ALTER TABLE ENGINE=MEMORY to force a table rebuild.
The memory needed for one row in a MEMORY table is calculated using the following expression:
SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) * 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) * 2)
+ ALIGN(length_of_row+1, sizeof(char*))
ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char pointer size. sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.
As mentioned earlier, the max_heap_table_size system variable sets the limit on the maximum size of MEMORY tables. To control the maximum size for individual tables, set the session value of this variable before creating each table. (Do not change the global max_heap_table_size value unless you intend the value to be used for MEMORY tables created by all clients.) The following example creates two MEMORY tables, with a maximum size of 1MB and 2MB, respectively:
mysql> SET max_heap_table_size = 1024*1024;
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.01 sec)
mysql> SET max_heap_table_size = 1024*1024*2;
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.00 sec)
Both tables revert to the server's global max_heap_table_size value if the server restarts.
You can also specify a MAX_ROWS table option in CREATE TABLE statements for MEMORY tables to provide a hint about the number of rows you plan to store in them. This does not enable the table to grow beyond the max_heap_table_size value, which still acts as a constraint on maximum table size. For maximum flexibility in being able to use MAX_ROWS, set max_heap_table_size at least as high as the value to which you want each MEMORY table to be able to grow.
Additional Resources
A forum dedicated to the MEMORY storage engine is available at http://forums.mysql.com/list.php?92.
14.5. The CSV Storage Engine
The CSV storage engine stores data in text files using comma-separated values format.
The CSV storage engine is always compiled into the MySQL server.
To examine the source for the CSV engine, look in the storage/csv directory of a MySQL source distribution.
When you create a CSV table, the server creates a table format file in the database directory. The file begins with the table name and has an .frm extension. The storage engine also creates a data file. Its name begins with the table name and has a .CSV extension. The data file is a plain text file. When you store data into the table, the storage engine saves it into the data file in comma-separated values format.
mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)
-> ENGINE = CSV;
Query OK, 0 rows affected (0.12 sec)
mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM test;
+------+------------+
| i | c |
+------+------------+
| 1 | record one |
| 2 | record two |
+------+------------+
2 rows in set (0.00 sec)
Creating a CSV table also creates a corresponding Metafile that stores the state of the table and the number of rows that exist in the table. The name of this file is the same as the name of the table with the extension CSM.
If you examine the test.CSV file in the database directory created by executing the preceding statements, its contents should look like this:
"1","record one"
"2","record two"
This format can be read, and even written, by spreadsheet applications such as Microsoft Excel or StarOffice Calc.
14.5.1. Repairing and Checking CSV Tables
The CSV storage engines supports the CHECK and REPAIR statements to verify and if possible repair a damaged CSV table.
When running the CHECK statement, the CSV file will be checked for validity by looking for the correct field separators, escaped fields (matching or missing quotation marks), the correct number of fields compared to the table definition and the existence of a corresponding CSV metafile. The first invalid row discovered will report an error. Checking a valid table produces output like that shown below:
mysql> check table csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------+
1 row in set (0.00 sec)
A check on a corrupted table returns a fault:
mysql> check table csvtest;
+--------------+-------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| test.csvtest | check | error | Corrupt |
+--------------+-------+----------+----------+
1 row in set (0.01 sec)
If the check fails, the table is marked as crashed (corrupt). Once a table has been marked as corrupt, it is automatically repaired when you next run CHECK or execute a SELECT statement. The corresponding corrupt status and new status will be displayed when running CHECK:
mysql> check table csvtest;
+--------------+-------+----------+----------------------------+
| Table | Op | Msg_type | Msg_text |
+--------------+-------+----------+----------------------------+
| test.csvtest | check | warning | Table is marked as crashed |
| test.csvtest | check | status | OK |
+--------------+-------+----------+----------------------------+
2 rows in set (0.08 sec)
To repair a table you can use REPAIR, this copies as many valid rows from the existing CSV data as possible, and then replaces the existing CSV file with the recovered rows. Any rows beyond the corrupted data are lost.
mysql> repair table csvtest;
+--------------+--------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------+--------+----------+----------+
| test.csvtest | repair | status | OK |
+--------------+--------+----------+----------+
1 row in set (0.02 sec)
Warning
Note that during repair, only the rows from the CSV file up to the first damaged row are copied to the new table. All other rows from the first damaged row to the end of the table are removed, even valid rows.
14.5.2. CSV Limitations
The CSV storage engine does not support indexing.
Partitioning is not supported for tables using the CSV storage engine.
All tables that you create using the CSV storage engine must have the NOT NULL attribute on all columns. However, for backward compatibility, you can continue to use tables with nullable columns that were created in previous MySQL releases. (Bug #32050)
14.6. The ARCHIVE Storage Engine
The ARCHIVE storage engine produces special-purpose tables that store large amounts of unindexed data in a very small footprint.
Table 14.10. ARCHIVE Storage Engine Features
Storage limits | None | Transactions | No | Locking granularity | Table |
MVCC | No | Geospatial data type support | Yes | Geospatial indexing support | No |
B-tree indexes | No | T-tree indexes | No | Hash indexes | No |
Full-text search indexes | No | Clustered indexes | No | Data caches | No |
Index caches | No | Compressed data | Yes | Encrypted data | Yes |
Cluster database support | No | Replication support | Yes | Foreign key support | No |
Backup / point-in-time recovery | Yes | Query cache support | Yes | Update statistics for data dictionary | Yes |
[a] Implemented in the server (via encryption functions), rather than in the storage engine. [b] Implemented in the server, rather than in the storage engine. [c] Implemented in the server, rather than in the storage engine. |
The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine if you build MySQL from source, invoke CMake with the -DWITH_ARCHIVE_STORAGE_ENGINE option.
To examine the source for the ARCHIVE engine, look in the storage/archive directory of a MySQL source distribution.
You can check whether the ARCHIVE storage engine is available with the SHOW ENGINES statement.
When you create an ARCHIVE table, the server creates a table format file in the database directory. The file begins with the table name and has an .frm extension. The storage engine creates other files, all having names beginning with the table name. The data file has an extension of .ARZ. An .ARN file may appear during optimization operations.
The ARCHIVE engine supports INSERT and SELECT, but not DELETE, REPLACE, or UPDATE. It does support ORDER BY operations, BLOB columns, and basically all but spatial data types (see Section 12.18.4.1, “MySQL Spatial Data Types”). The ARCHIVE engine uses row-level locking.
The ARCHIVE engine supports the AUTO_INCREMENT column attribute. The AUTO_INCREMENT column can have either a unique or nonunique index. Attempting to create an index on any other column results in an error. The ARCHIVE engine also supports the AUTO_INCREMENT table option in CREATE TABLE and ALTER TABLE statements to specify the initial sequence value for a new table or reset the sequence value for an existing table, respectively.
The ARCHIVE engine ignores BLOB columns if they are not requested and scans past them while reading.
Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data compression (see http://www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack it into a smaller format (for a reason to use OPTIMIZE TABLE, see later in this section). The engine also supports CHECK TABLE. There are several types of insertions that are used:
An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as necessary. The insertion into the buffer is protected by a lock. A SELECT forces a flush to occur, unless the only insertions that have come in were INSERT DELAYED (those flush as necessary). See Section 13.2.5.2, “INSERT DELAYED Syntax”.
A bulk insert is visible only after it completes, unless other inserts occur at the same time, in which case it can be seen partially. A SELECT never causes a flush of a bulk insert unless a normal insert occurs while it is loading.
Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT operation performs a complete table scan: When a SELECT occurs, it finds out how many rows are currently available and reads that number of rows. SELECT is performed as a consistent read. Note that lots of SELECT statements during insertion can deteriorate the compression, unless only bulk or delayed inserts are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR TABLE. The number of rows in ARCHIVE tables reported by SHOW TABLE STATUS is always accurate. See Section 13.7.2.4, “OPTIMIZE TABLE Syntax”, Section 13.7.2.5, “REPAIR TABLE Syntax”, and Section 13.7.5.37, “SHOW TABLE STATUS Syntax”.
Additional Resources
A forum dedicated to the ARCHIVE storage engine is available at http://forums.mysql.com/list.php?112.
14.7. The BLACKHOLE Storage Engine
The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does not store it. Retrievals always return an empty result:
mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;
Query OK, 0 rows affected (0.03 sec)
mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM test;
Empty set (0.00 sec)
To enable the BLACKHOLE storage engine if you build MySQL from source, invoke CMake with the -DWITH_BLACKHOLE_STORAGE_ENGINE option.
To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source distribution.
When you create a BLACKHOLE table, the server creates a table format file in the database directory. The file begins with the table name and has an .frm extension. There are no other files associated with the table.
The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index declarations in the table definition.
You can check whether the BLACKHOLE storage engine is available with the SHOW ENGINES statement.
Inserts into a BLACKHOLE table do not store any data, but if the binary log is enabled, the SQL statements are logged (and replicated to slave servers). This can be useful as a repeater or filter mechanism. Suppose that your application requires slave-side filtering rules, but transferring all binary log data to the slave first results in too much traffic. In such a case, it is possible to set up on the master host a “dummy” slave process whose default storage engine is BLACKHOLE, depicted as follows:
The master writes to its binary log. The “dummy” mysqld process acts as a slave, applying the desired combination of replicate-do-* and replicate-ignore-* rules, and writes a new, filtered binary log of its own. (See Section 16.1.4, “Replication and Binary Logging Options and Variables”.) This filtered log is provided to the slave.
The dummy process does not actually store any data, so there is little processing overhead incurred by running the additional mysqld process on the replication master host. This type of setup can be repeated with additional replication slaves.
INSERT triggers for BLACKHOLE tables work as expected. However, because the BLACKHOLE table does not actually store any data, UPDATE and DELETE triggers are not activated: The FOR EACH ROW clause in the trigger definition does not apply because there are no rows.
Other possible uses for the BLACKHOLE storage engine include:
Verification of dump file syntax.
Measurement of the overhead from binary logging, by comparing performance using BLACKHOLE with and without binary logging enabled.
BLACKHOLE is essentially a “no-op” storage engine, so it could be used for finding performance bottlenecks not related to the storage engine itself.
The BLACKHOLE engine is transaction-aware, in the sense that committed transactions are written to the binary log and rolled-back transactions are not.
Blackhole Engine and Auto Increment Columns
The Blackhole engine is a no-op engine. Any operations performed on a table using Blackhole will have no effect. This should be born in mind when considering the behavior of primary key columns that auto increment. The engine will not automatically increment field values, and does not retain auto increment field state. This has important implications in replication.
Consider the following replication scenario where all three of the following conditions apply:
On a master server there is a blackhole table with an auto increment field that is a primary key.
On a slave the same table exists but using the MyISAM engine.
Inserts are performed into the master's table without explicitly setting the auto increment value in the INSERT statement itself or through using a SET INSERT_ID statement.
In this scenario replication will fail with a duplicate entry error on the primary key column.
In statement based replication, the value of INSERT_ID in the context event will always be the same. Replication will therefore fail due to trying insert a row with a duplicate value for a primary key column.
In row based replication, the value that the engine returns for the row always be the same for each insert. This will result in the slave attempting to replay two insert log entries using the same value for the primary key column, and so replication will fail.
Column Filtering
When using row-based replication, (binlog_format=ROW), a slave where the last columns are missing from a table is supported, as described in the section Section 16.4.1.8, “Replication with Differing Table Definitions on Master and Slave”.
This filtering works on the slave side, that is, the columns are copied to the slave before they are filtered out. There are at least two cases where it is not desirable to copy the columns to the slave:
If the data is confidential, so the slave server should not have access to it.
If the master has many slaves, filtering before sending to the slaves may reduce network traffic.
Master column filtering can be achieved using the BLACKHOLE engine. This is carried out in a way similar to how master table filtering is achieved - by using the BLACKHOLE engine and the --replicate-do-table or --replicate-ignore-table option.
The setup for the master is:
CREATE TABLE t1 (public_col_1, ..., public_col_N,
secret_col_1, ..., secret_col_M) ENGINE=MyISAM;
The setup for the trusted slave is:
CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=BLACKHOLE;
The setup for the untrusted slave is:
CREATE TABLE t1 (public_col_1, ..., public_col_N) ENGINE=MyISAM;
14.8. The MERGE Storage Engine
The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM tables that can be used as one. “Identical” means that all tables have identical column and index information. You cannot merge MyISAM tables in which the columns are listed in a different order, do not have exactly the same columns, or have the indexes in different order. However, any or all of the MyISAM tables can be compressed with myisampack. See Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”. Differences in table options such as AVG_ROW_LENGTH, MAX_ROWS, or PACK_KEYS do not matter.
An alternative to a MERGE table is a partitioned table, which stores partitions of a single table in separate files. Partitioning enables some operations to be performed more efficiently and is not limited to the MyISAM storage engine. For more information, see Chapter 17, Partitioning.
When you create a MERGE table, MySQL creates two files on disk. The files have names that begin with the table name and have an extension to indicate the file type. An .frm file stores the table format, and an .MRG file contains the names of the underlying MyISAM tables that should be used as one. The tables do not have to be in the same database as the MERGE table.
You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT, DELETE, and UPDATE privileges on the MyISAM tables that you map to a MERGE table.
Note
The use of MERGE tables entails the following security issue: If a user has access to MyISAM table t, that user can create a MERGE table m that accesses t. However, if the user's privileges on t are subsequently revoked, the user can continue to access t by doing so through m.
Use of DROP TABLE with a MERGE table drops only the MERGE specification. The underlying tables are not affected.
To create a MERGE table, you must specify a UNION=(list-of-tables) option that indicates which MyISAM tables to use. You can optionally specify an INSERT_METHOD option to control how inserts into the MERGE table take place. Use a value of FIRST or LAST to cause inserts to be made in the first or last underlying table, respectively. If you specify no INSERT_METHOD option or if you specify it with a value of NO, inserts into the MERGE table are not permitted and attempts to do so result in an error.
The following example shows how to create a MERGE table:
mysql> CREATE TABLE t1 (
-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> message CHAR(20)) ENGINE=MyISAM;
mysql> CREATE TABLE t2 (
-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> message CHAR(20)) ENGINE=MyISAM;
mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (
-> a INT NOT NULL AUTO_INCREMENT,
-> message CHAR(20), INDEX(a))
-> ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;
Note that column a is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in the MERGE table. There it is indexed but not as a PRIMARY KEY because a MERGE table cannot enforce uniqueness over the set of underlying tables. (Similarly, a column with a UNIQUE index in the underlying tables should be indexed in the MERGE table but not as a UNIQUE index.)
After creating the MERGE table, you can use it to issue queries that operate on the group of tables as a whole:
mysql> SELECT * FROM total;
+---+---------+
| a | message |
+---+---------+
| 1 | Testing |
| 2 | table |
| 3 | t1 |
| 1 | Testing |
| 2 | table |
| 3 | t2 |
+---+---------+
To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following methods:
DROP the MERGE table and re-create it.
Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.
It is also possible to use ALTER TABLE ... UNION=() (that is, with an empty UNION clause) to remove all of the underlying tables.
The underlying table definitions and indexes must conform closely to the definition of the MERGE table. Conformance is checked when a table that is part of a MERGE table is opened, not when the MERGE table is created. If any table fails the conformance checks, the operation that triggered the opening of the table fails. This means that changes to the definitions of tables within a MERGE may cause a failure when the MERGE table is accessed. The conformance checks applied to each table are:
The underlying table and the MERGE table must have the same number of columns.
The column order in the underlying table and the MERGE table must match.
Additionally, the specification for each corresponding column in the parent MERGE table and the underlying tables are compared and must satisfy these checks:
The column type in the underlying table and the MERGE table must be equal.
The column length in the underlying table and the MERGE table must be equal.
The column of the underlying table and the MERGE table can be NULL.
The underlying table must have at least as many indexes as the MERGE table. The underlying table may have more indexes than the MERGE table, but cannot have fewer.
Note
A known issue exists where indexes on the same columns must be in identical order, in both the MERGE table and the underlying MyISAM table. See Bug #33653.
Each index must satisfy these checks:
The index type of the underlying table and the MERGE table must be the same.
The number of index parts (that is, multiple columns within a compound index) in the index definition for the underlying table and the MERGE table must be the same.
For each index part:
Index part lengths must be equal.
Index part types must be equal.
Index part languages must be equal.
Check whether index parts can be NULL.
If a MERGE table cannot be opened or used because of a problem with an underlying table, CHECK TABLE displays information about which table caused the problem.
Additional Resources
A forum dedicated to the MERGE storage engine is available at http://forums.mysql.com/list.php?93.
14.8.1. MERGE Table Advantages and Disadvantages
MERGE tables can help you solve the following problems:
Easily manage a set of log tables. For example, you can put data from different months into separate tables, compress some of them with myisampack, and then create a MERGE table to use them as one.
Obtain more speed. You can split a large read-only table based on some criteria, and then put individual tables on different disks. A MERGE table structured this way could be much faster than using a single large table.
Perform more efficient searches. If you know exactly what you are looking for, you can search in just one of the underlying tables for some queries and use a MERGE table for others. You can even have many different MERGE tables that use overlapping sets of tables.
Perform more efficient repairs. It is easier to repair individual smaller tables that are mapped to a MERGE table than to repair a single large table.
Instantly map many tables as one. A MERGE table need not maintain an index of its own because it uses the indexes of the individual tables. As a result, MERGE table collections are very fast to create or remap. (You must still specify the index definitions when you create a MERGE table, even though no indexes are created.)
If you have a set of tables from which you create a large table on demand, you can instead create a MERGE table from them on demand. This is much faster and saves a lot of disk space.
Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a collection of MyISAM tables is not.
You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that single table. There should be no really notable performance impact from doing this (only a couple of indirect calls and memcpy() calls for each read).
The disadvantages of MERGE tables are:
You can use only identical MyISAM tables for a MERGE table.
Some MyISAM features are unavailable in MERGE tables. For example, you cannot create FULLTEXT indexes on MERGE tables. (You can create FULLTEXT indexes on the underlying MyISAM tables, but you cannot search the MERGE table with a full-text search.)
If the MERGE table is nontemporary, all underlying MyISAM tables must be nontemporary. If the MERGE table is temporary, the MyISAM tables can be any mix of temporary and nontemporary.
MERGE tables use more file descriptors than MyISAM tables. If 10 clients are using a MERGE table that maps to 10 tables, the server uses (10 × 10) + 10 file descriptors. (10 data file descriptors for each of the 10 clients, and 10 index file descriptors shared among the clients.)
Index reads are slower. When you read an index, the MERGE storage engine needs to issue a read on all underlying tables to check which one most closely matches a given index value. To read the next index value, the MERGE storage engine needs to search the read buffers to find the next value. Only when one index buffer is used up does the storage engine need to read the next index block. This makes MERGE indexes much slower on eq_ref searches, but not much slower on ref searches. For more information about eq_ref and ref, see Section 13.8.2, “EXPLAIN Syntax”.
14.8.2. MERGE Table Problems
The following are known problems with MERGE tables:
In versions of MySQL Server prior to 5.1.23, it was possible to create temporary merge tables with nontemporary child MyISAM tables.
From versions 5.1.23, MERGE children were locked through the parent table. If the parent was temporary, it was not locked and so the children were not locked either. Parallel use of the MyISAM tables corrupted them.
If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into the altered table, which then uses the specified storage engine.
The INSERT_METHOD table option for a MERGE table indicates which underlying MyISAM table to use for inserts into the MERGE table. However, use of the AUTO_INCREMENT table option for that MyISAM table has no effect for inserts into the MERGE table until at least one row has been inserted directly into the MyISAM table.
A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an INSERT, the data goes into the first or last MyISAM table (as determined by the INSERT_METHOD option). MySQL ensures that unique key values remain unique within that MyISAM table, but not over all the underlying tables in the collection.
Because the MERGE engine cannot enforce uniqueness over the set of underlying tables, REPLACE does not work as expected. The two key facts are:
REPLACE can detect unique key violations only in the underlying table to which it is going to write (which is determined by the INSERT_METHOD option). This differs from violations in the MERGE table itself.
If REPLACE detects a unique key violation, it will change only the corresponding row in the underlying table it is writing to; that is, the first or last table, as determined by the INSERT_METHOD option.
Similar considerations apply for INSERT ... ON DUPLICATE KEY UPDATE.
MERGE tables do not support partitioning. That is, you cannot partition a MERGE table, nor can any of a MERGE table's underlying MyISAM tables be partitioned.
You should not use ANALYZE TABLE, REPAIR TABLE, OPTIMIZE TABLE, ALTER TABLE, DROP TABLE, DELETE without a WHERE clause, or TRUNCATE TABLE on any of the tables that are mapped into an open MERGE table. If you do so, the MERGE table may still refer to the original table and yield unexpected results. To work around this problem, ensure that no MERGE tables remain open by issuing a FLUSH TABLES statement prior to performing any of the named operations.
The unexpected results include the possibility that the operation on the MERGE table will report table corruption. If this occurs after one of the named operations on the underlying MyISAM tables, the corruption message is spurious. To deal with this, issue a FLUSH TABLES statement after modifying the MyISAM tables.
DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the MERGE storage engine's table mapping is hidden from the upper layer of MySQL. Windows does not permit open files to be deleted, so you first must flush all MERGE tables (with FLUSH TABLES) or drop the MERGE table before dropping the table.
The definition of the MyISAM tables and the MERGE table are checked when the tables are accessed (for example, as part of a SELECT or INSERT statement). The checks ensure that the definitions of the tables and the parent MERGE table definition match by comparing column order, types, sizes and associated indexes. If there is a difference between the tables, an error is returned and the statement fails. Because these checks take place when the tables are opened, any changes to the definition of a single table, including column changes, column ordering, and engine alterations will cause the statement to fail.
The order of indexes in the MERGE table and its underlying tables should be the same. If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table, and then use ALTER TABLE to add a nonunique index on the MERGE table, the index ordering is different for the tables if there was already a nonunique index in the underlying table. (This happens because ALTER TABLE puts UNIQUE indexes before nonunique indexes to facilitate rapid detection of duplicate keys.) Consequently, queries on tables with such indexes may return unexpected results.
If you encounter an error message similar to ERROR 1017 (HY000): Can't find file: 'tbl_name.MRG' (errno: 2), it generally indicates that some of the underlying tables do not use the MyISAM storage engine. Confirm that all of these tables are MyISAM.
The maximum number of rows in a MERGE table is 264 (~1.844E+19; the same as for a MyISAM table). It is not possible to merge multiple MyISAM tables into a single MERGE table that would have more than this number of rows.
The MERGE storage engine does not support INSERT DELAYED statements.
Use of underlying MyISAM tables of differing row formats with a parent MERGE table is currently known to fail. See Bug #32364.
You cannot change the union list of a nontemporary MERGE table when LOCK TABLES is in effect. The following does not work:
CREATE TABLE m1 ... ENGINE=MRG_MYISAM ...;
LOCK TABLES t1 WRITE, t2 WRITE, m1 WRITE;
ALTER TABLE m1 ... UNION=(t1,t2) ...;
However, you can do this with a temporary MERGE table.
You cannot create a MERGE table with CREATE ... SELECT, neither as a temporary MERGE table, nor as a nontemporary MERGE table. For example:
CREATE TABLE m1 ... ENGINE=MRG_MYISAM ... SELECT ...;
Attempts to do this result in an error: tbl_name is not BASE TABLE.
In some cases, differing PACK_KEYS table option values among the MERGE and underlying tables cause unexpected results if the underlying tables contain CHAR or BINARY columns. As a workaround, use ALTER TABLE to ensure that all involved tables have the same PACK_KEYS value. (Bug #50646)
14.9. The FEDERATED Storage Engine
The FEDERATED storage engine lets you access data from a remote MySQL database without using replication or cluster technology. Querying a local FEDERATED table automatically pulls the data from the remote (federated) tables. No data is stored on the local tables.
To include the FEDERATED storage engine if you build MySQL from source, invoke CMake with the -DWITH_FEDERATED_STORAGE_ENGINE option.
The FEDERATED storage engine is not enabled by default in the running server; to enable FEDERATED, you must start the MySQL server binary using the --federated option.
To examine the source for the FEDERATED engine, look in the storage/federated directory of a MySQL source distribution.
14.9.1. FEDERATED Storage Engine Overview
When you create a table using one of the standard storage engines (such as MyISAM, CSV or InnoDB), the table consists of the table definition and the associated data. When you create a FEDERATED table, the table definition is the same, but the physical storage of the data is handled on a remote server.
A FEDERATED table consists of two elements:
A remote server with a database table, which in turn consists of the table definition (stored in the .frm file) and the associated table. The table type of the remote table may be any type supported by the remote mysqld server, including MyISAM or InnoDB.
A local server with a database table, where the table definition matches that of the corresponding table on the remote server. The table definition is stored within the .frm file. However, there is no data file on the local server. Instead, the table definition includes a connection string that points to the remote table.
When executing queries and statements on a FEDERATED table on the local server, the operations that would normally insert, update or delete information from a local data file are instead sent to the remote server for execution, where they update the data file on the remote server or return matching rows from the remote server.
The basic structure of a FEDERATED table setup is shown in Figure 14.1, “FEDERATED Table Structure”.
Figure 14.1. FEDERATED Table Structure
When a client issues an SQL statement that refers to a FEDERATED table, the flow of information between the local server (where the SQL statement is executed) and the remote server (where the data is physically stored) is as follows:
The storage engine looks through each column that the FEDERATED table has and constructs an appropriate SQL statement that refers to the remote table.
The statement is sent to the remote server using the MySQL client API.
The remote server processes the statement and the local server retrieves any result that the statement produces (an affected-rows count or a result set).
If the statement produces a result set, each column is converted to internal storage engine format that the FEDERATED engine expects and can use to display the result to the client that issued the original statement.
The local server communicates with the remote server using MySQL client C API functions. It invokes mysql_real_query() to send the statement. To read a result set, it uses mysql_store_result() and fetches rows one at a time using mysql_fetch_row().
14.9.2. How to Create FEDERATED Tables
To create a FEDERATED table you should follow these steps:
Create the table on the remote server. Alternatively, make a note of the table definition of an existing table, perhaps using the SHOW CREATE TABLE statement.
Create the table on the local server with an identical table definition, but adding the connection information that links the local table to the remote table.
For example, you could create the following table on the remote server:
CREATE TABLE test_table (
id INT(20) NOT NULL AUTO_INCREMENT,
name VARCHAR(32) NOT NULL DEFAULT '',
other INT(20) NOT NULL DEFAULT '0',
PRIMARY KEY (id),
INDEX name (name),
INDEX other_key (other)
)
ENGINE=MyISAM
DEFAULT CHARSET=latin1;
To create the local table that will be federated to the remote table, there are two options available. You can either create the local table and specify the connection string (containing the server name, login, password) to be used to connect to the remote table using the CONNECTION, or you can use an existing connection that you have previously created using the CREATE SERVER statement.
Important
When you create the local table it must have an identical field definition to the remote table.
Note
You can improve the performance of a FEDERATED table by adding indexes to the table on the host. The optimization will occur because the query sent to the remote server will include the contents of the WHERE clause and will be sent to the remote server and subsequently executed locally. This reduces the network traffic that would otherwise request the entire table from the server for local processing.
14.9.2.1. Creating a FEDERATED Table Using CONNECTION
To use the first method, you must specify the CONNECTION string after the engine type in a CREATE TABLE statement. For example:
CREATE TABLE federated_table (
id INT(20) NOT NULL AUTO_INCREMENT,
name VARCHAR(32) NOT NULL DEFAULT '',
other INT(20) NOT NULL DEFAULT '0',
PRIMARY KEY (id),
INDEX name (name),
INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';
Note
CONNECTION replaces the COMMENT used in some previous versions of MySQL.
The CONNECTION string contains the information required to connect to the remote server containing the table that will be used to physically store the data. The connection string specifies the server name, login credentials, port number and database/table information. In the example, the remote table is on the server remote_host, using port 9306. The name and port number should match the host name (or IP address) and port number of the remote MySQL server instance you want to use as your remote table.
The format of the connection string is as follows:
scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name
Where:
scheme: A recognized connection protocol. Only mysql is supported as the scheme value at this point.
user_name: The user name for the connection. This user must have been created on the remote server, and must have suitable privileges to perform the required actions (SELECT, INSERT, UPDATE, and so forth) on the remote table.
password: (Optional) The corresponding password for user_name.
host_name: The host name or IP address of the remote server.
port_num: (Optional) The port number for the remote server. The default is 3306.
db_name: The name of the database holding the remote table.
tbl_name: The name of the remote table. The name of the local and the remote table do not have to match.
Sample connection strings:
CONNECTION='mysql://username:password@hostname:port/database/tablename'
CONNECTION='mysql://username@hostname/database/tablename'
CONNECTION='mysql://username:password@hostname/database/tablename'
14.9.2.2. Creating a FEDERATED Table Using CREATE SERVER
If you are creating a number of FEDERATED tables on the same server, or if you want to simplify the process of creating FEDERATED tables, you can use the CREATE SERVER statement to define the server connection parameters, just as you would with the CONNECTION string.
The format of the CREATE SERVER statement is:
CREATE SERVERserver_name
FOREIGN DATA WRAPPER wrapper_name
OPTIONS (option [, option] ...)
The server_name is used in the connection string when creating a new FEDERATED table.
For example, to create a server connection identical to the CONNECTION string:
CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';
You would use the following statement:
CREATE SERVER fedlink
FOREIGN DATA WRAPPER mysql
OPTIONS (USER 'fed_user', HOST 'remote_host', PORT 9306, DATABASE 'federated');
To create a FEDERATED table that uses this connection, you still use the CONNECTION keyword, but specify the name you used in the CREATE SERVER statement.
CREATE TABLE test_table (
id INT(20) NOT NULL AUTO_INCREMENT,
name VARCHAR(32) NOT NULL DEFAULT '',
other INT(20) NOT NULL DEFAULT '0',
PRIMARY KEY (id),
INDEX name (name),
INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='fedlink/test_table';
The connection name in this example contains the name of the connection (fedlink) and the name of the table (test_table) to link to, separated by a slash. If you specify only the connection name without a table name, the table name of the local table is used instead.
For more information on CREATE SERVER, see Section 13.1.13, “CREATE SERVER Syntax”.
The CREATE SERVER statement accepts the same arguments as the CONNECTION string. The CREATE SERVER statement updates the rows in the mysql.servers table. See the following table for information on the correspondence between parameters in a connection string, options in the CREATE SERVER statement, and the columns in the mysql.servers table. For reference, the format of the CONNECTION string is as follows:
scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name
Description | CONNECTION string | CREATE SERVER option | mysql.servers column |
---|---|---|---|
Connection scheme | scheme | wrapper_name | Wrapper |
Remote user | user_name | USER | Username |
Remote password | password | PASSWORD | Password |
Remote host | host_name | HOST | Host |
Remote port | port_num | PORT | Port |
Remote database | db_name | DATABASE | Db |
14.9.3. FEDERATED Storage Engine Notes and Tips
You should be aware of the following points when using the FEDERATED storage engine:
FEDERATED tables may be replicated to other slaves, but you must ensure that the slave servers are able to use the user/password combination that is defined in the CONNECTION string (or the row in the mysql.servers table) to connect to the remote server.
The following items indicate features that the FEDERATED storage engine does and does not support:
The remote server must be a MySQL server.
The remote table that a FEDERATED table points to must exist before you try to access the table through the FEDERATED table.
It is possible for one FEDERATED table to point to another, but you must be careful not to create a loop.
A FEDERATED table does not support indexes per se. Because access to the table is handled remotely, it is the remote table that supports the indexes. Care should be taken when creating a FEDERATED table since the index definition from an equivalent MyISAM or other table may not be supported. For example, creating a FEDERATED table with an index prefix on VARCHAR, TEXT or BLOB columns will fail. The following definition in MyISAM is valid:
CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=MYISAM;
The key prefix in this example is incompatible with the FEDERATED engine, and the equivalent statement will fail:
CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=FEDERATED
CONNECTION='MYSQL://127.0.0.1:3306/TEST/T1';
If possible, you should try to separate the column and index definition when creating tables on both the remote server and the local server to avoid these index issues.
Internally, the implementation uses SELECT, INSERT, UPDATE, and DELETE, but not HANDLER.
The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, TRUNCATE TABLE, and indexes. It does not support ALTER TABLE, or any Data Definition Language statements that directly affect the structure of the table, other than DROP TABLE. The current implementation does not use prepared statements.
FEDERATED accepts INSERT ... ON DUPLICATE KEY UPDATE statements, but if a duplicate-key violation occurs, the statement fails with an error.
Performance on a FEDERATED table when performing bulk inserts (for example, on a INSERT INTO ... SELECT ... statement) is slower than with other table types because each selected row is treated as an individual INSERT statement on the FEDERATED table.
Transactions are not supported.
FEDERATED performs bulk-insert handling such that multiple rows are sent to the remote table in a batch. This provides a performance improvement and enables the remote table to perform improvement. Also, if the remote table is transactional, it enables the remote storage engine to perform statement rollback properly should an error occur. This capability has the following limitations:
The size of the insert cannot exceed the maximum packet size between servers. If the insert exceeds this size, it is broken into multiple packets and the rollback problem can occur.
Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.
There is no way for the FEDERATED engine to know if the remote table has changed. The reason for this is that this table must work like a data file that would never be written to by anything other than the database system. The integrity of the data in the local table could be breached if there was any change to the remote database.
When using a CONNECTION string, you cannot use an '@' character in the password. You can get round this limitation by using the CREATE SERVER statement to create a server connection.
The insert_id and timestamp options are not propagated to the data provider.
Any DROP TABLE statement issued against a FEDERATED table drops only the local table, not the remote table.
FEDERATED tables do not work with the query cache.
User-defined partitioning is not supported for FEDERATED tables.
14.9.4. FEDERATED Storage Engine Resources
The following additional resources are available for the FEDERATED storage engine:
A forum dedicated to the FEDERATED storage engine is available at http://forums.mysql.com/list.php?105.
14.10. The EXAMPLE Storage Engine
The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example in the MySQL source code that illustrates how to begin writing new storage engines. As such, it is primarily of interest to developers.
To enable the EXAMPLE storage engine if you build MySQL from source, invoke CMake with the -DWITH_EXAMPLE_STORAGE_ENGINE option.
To examine the source for the EXAMPLE engine, look in the storage/example directory of a MySQL source distribution.
When you create an EXAMPLE table, the server creates a table format file in the database directory. The file begins with the table name and has an .frm extension. No other files are created. No data can be stored into the table. Retrievals return an empty result.
mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)
mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't »
have this option
mysql> SELECT * FROM test;
Empty set (0.31 sec)
The EXAMPLE storage engine does not support indexing.
14.11. Other Storage Engines
Other storage engines may be available from third parties and community members that have used the Custom Storage Engine interface.
Third party engines are not supported by MySQL. For further information, documentation, installation guides, bug reporting or for any help or assistance with these engines, please contact the developer of the engine directly.
For more information on developing a customer storage engine that can be used with the Pluggable Storage Engine Architecture, see MySQL Internals: Writing a Custom Storage Engine.
14.12. Overview of MySQL Storage Engine Architecture
The MySQL pluggable storage engine architecture enables a database professional to select a specialized storage engine for a particular application need while being completely shielded from the need to manage any specific application coding requirements. The MySQL server architecture isolates the application programmer and DBA from all of the low-level implementation details at the storage level, providing a consistent and easy application model and API. Thus, although there are different capabilities across different storage engines, the application is shielded from these differences.
The pluggable storage engine architecture provides a standard set of management and support services that are common among all underlying storage engines. The storage engines themselves are the components of the database server that actually perform actions on the underlying data that is maintained at the physical server level.
This efficient and modular architecture provides huge benefits for those wishing to specifically target a particular application need—such as data warehousing, transaction processing, or high availability situations—while enjoying the advantage of utilizing a set of interfaces and services that are independent of any one storage engine.
The application programmer and DBA interact with the MySQL database through Connector APIs and service layers that are above the storage engines. If application changes bring about requirements that demand the underlying storage engine change, or that one or more storage engines be added to support new needs, no significant coding or process changes are required to make things work. The MySQL server architecture shields the application from the underlying complexity of the storage engine by presenting a consistent and easy-to-use API that applies across storage engines.
14.12.1. Pluggable Storage Engine Architecture
MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded into and unloaded from a running MySQL server.
Plugging in a Storage Engine
Before a storage engine can be used, the storage engine plugin shared library must be loaded into MySQL using the INSTALL PLUGIN statement. For example, if the EXAMPLE engine plugin is named example and the shared library is named ha_example.so, you load it with the following statement:
mysql> INSTALL PLUGIN example SONAME 'ha_example.so';
To install a pluggable storage engine, the plugin file must be located in the MySQL plugin directory, and the user issuing the INSTALL PLUGIN statement must have INSERT privilege for the mysql.plugin table.
The shared library must be located in the MySQL server plugin directory, the location of which is given by the plugin_dir system variable.
Unplugging a Storage Engine
To unplug a storage engine, use the UNINSTALL PLUGIN statement:
mysql> UNINSTALL PLUGIN example;
If you unplug a storage engine that is needed by existing tables, those tables become inaccessible, but will still be present on disk (where applicable). Ensure that there are no tables using a storage engine before you unplug the storage engine.
14.12.2. The Common Database Server Layer
A MySQL pluggable storage engine is the component in the MySQL database server that is responsible for performing the actual data I/O operations for a database as well as enabling and enforcing certain feature sets that target a specific application need. A major benefit of using specific storage engines is that you are only delivered the features needed for a particular application, and therefore you have less system overhead in the database, with the end result being more efficient and higher database performance. This is one of the reasons that MySQL has always been known to have such high performance, matching or beating proprietary monolithic databases in industry standard benchmarks.
From a technical perspective, what are some of the unique supporting infrastructure components that are in a storage engine? Some of the key feature differentiations include:
Concurrency: Some applications have more granular lock requirements (such as row-level locks) than others. Choosing the right locking strategy can reduce overhead and therefore improve overall performance. This area also includes support for capabilities such as multi-version concurrency control or “snapshot” read.
Transaction Support: Not every application needs transactions, but for those that do, there are very well defined requirements such as ACID compliance and more.
Referential Integrity: The need to have the server enforce relational database referential integrity through DDL defined foreign keys.
Physical Storage: This involves everything from the overall page size for tables and indexes as well as the format used for storing data to physical disk.
Index Support: Different application scenarios tend to benefit from different index strategies. Each storage engine generally has its own indexing methods, although some (such as B-tree indexes) are common to nearly all engines.
Memory Caches: Different applications respond better to some memory caching strategies than others, so although some memory caches are common to all storage engines (such as those used for user connections or MySQL's high-speed Query Cache), others are uniquely defined only when a particular storage engine is put in play.
Performance Aids: This includes multiple I/O threads for parallel operations, thread concurrency, database checkpointing, bulk insert handling, and more.
Miscellaneous Target Features: This may include support for geospatial operations, security restrictions for certain data manipulation operations, and other similar features.
Each set of the pluggable storage engine infrastructure components are designed to offer a selective set of benefits for a particular application. Conversely, avoiding a set of component features helps reduce unnecessary overhead. It stands to reason that understanding a particular application's set of requirements and selecting the proper MySQL storage engine can have a dramatic impact on overall system efficiency and performance.
Chapter 15. High Availability and Scalability
Table of Contents
15.1. Oracle VM Template for MySQL Enterprise Edition
15.2. Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linux
15.3. Overview of MySQL with Windows Failover Clustering
15.4. Using MySQL within an Amazon EC2 Instance
15.4.1. Setting Up MySQL on an EC2 AMI
15.4.2. EC2 Instance Limitations
15.4.3. Deploying a MySQL Database Using EC2
15.5.1. Using ZFS for File System Replication
15.5.2. Configuring MySQL for ZFS Replication
15.5.3. Handling MySQL Recovery with ZFS
15.6. Using MySQL with memcached
15.6.1. Installing memcached
15.6.2. Using memcached
15.6.3. Developing a memcached Application
15.6.4. Getting memcached Statistics
15.6.5. memcached FAQ
15.7.1. MySQL Proxy Supported Platforms
15.7.2. Installing MySQL Proxy
15.7.3. MySQL Proxy Command Options
15.7.4. MySQL Proxy Scripting
15.7.5. Using MySQL Proxy
15.7.6. MySQL Proxy FAQ
Data is the currency of today's web, mobile, social, enterprise and cloud applications. Ensuring data is always available is a top priority for any organization. Minutes of downtime can result in significant loss of revenue and reputation.
There is no “one size fits all” approach to delivering High Availability (HA). Unique application attributes, business requirements, operational capabilities and legacy infrastructure can all influence HA technology selection. And technology is only one element in delivering HA: people and processes are just as critical as the technology itself.
MySQL is deployed into many applications demanding availability and scalability. Availability refers to the ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL, the operating system, or the hardware and maintenance activity that may otherwise cause downtime. Scalability refers to the ability to spread both the database and the load of your application queries across multiple MySQL servers.
Because each application has different operational and availability requirements, MySQL offers a range of certified and supported solutions, delivering the appropriate levels of High Availability (HA) and scalability to meet service level requirements. Such solutions extend from replication, through virtualization and geographically redundant, multi-data center solutions delivering 99.999% uptime.
Selecting the right high availability solution for an application largely depends on:
The level of availability required.
The type of application being deployed.
Accepted best practices within your own environment.
The primary solutions supported by MySQL include:
MySQL Replication. Learn more: Chapter 16, Replication
MySQL Cluster. Learn more: MySQL Cluster NDB 7.2
Oracle VM Template for MySQL. Learn more: Section 15.1, “Oracle VM Template for MySQL Enterprise Edition”.
MySQL with DRBD with Corosync and Pacemaker. Learn more: Section 15.2, “Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linux”.
MySQL with Windows Failover Clustering. Learn more: Section 15.3, “Overview of MySQL with Windows Failover Clustering”.
MySQL with Solaris Cluster. Learn more about Solaris Cluster.
Further options are available using third-party solutions.
Each architecture used to achieve highly available database services is differentiated by the levels of uptime it offers. These architectures can be grouped into three main categories:
Data Replication.
Clustered & Virtualized Systems.
Shared-Nothing, Geographically-Replicated Clusters.
As illustrated in the following figure, each of these architectures offers progressively higher levels of uptime, which must be balanced against potentially greater levels of cost and complexity that each can incur. Simply deploying a high availability architecture is not a guarantee of actually delivering HA. In fact, a poorly implemented and maintained shared-nothing cluster could easily deliver lower levels of availability than a simple data replication solution.
Figure 15.1. Tradeoffs: Cost and Complexity versus Availability
The following table compares the HA and Scalability capabilities of the various MySQL solutions:
Table 15.1. Feature Comparison of MySQL HA Solutions
Requirement | MySQL Replication | Windows Server | DRBD | Oracle VM Template | MySQL Cluster |
---|---|---|---|---|---|
Availability | |||||
Platform Support | All Supported by MySQL Server | Linux | Linux | Oracle Linux | All Supported by MySQL Cluster |
Automated IP Failover | No | Yes | Yes | Depends on Connector and Configuration | |
Automated Database Failover | No | Yes | Yes | Yes | |
Automatic Data Resynchronization | No | Yes | N/A - Shared Storage | Yes | |
Typical Failover Time | User / Script Dependent | Configuration Dependent, 60 seconds and Above | Configuration Dependent, 60 seconds and Above | 1 Second and Less | |
Synchronous Replication | No, Asynchronous and Semisynchronous | Yes | N/A - Shared Storage | Yes | |
Shared Storage | No, Distributed | No, Distributed | Yes | No, Distributed | |
Geographic redundancy support | Yes | Yes, via MySQL Replication | Yes, via MySQL Replication | Yes, via MySQL Replication | |
Update Schema On-Line | No | No | No | Yes | |
Scalability | |||||
Number of Nodes | One Master, Multiple Slaves | One Active (primary), one Passive (secondary) Node | One Active (primary), one Passive (secondary) Node | 255 | |
Built-in Load Balancing | Reads, via MySQL Replication | Reads, via MySQL Replication | Reads, via MySQL Replication & During Failover | Yes, Reads and Writes | |
Supports Read-Intensive Workloads | Yes | Yes | Yes | Yes | |
Supports Write-Intensive Workloads | Yes, via Application-Level Sharding | Yes, via Application-Level Sharding to Multiple Active/Passive Pairs | Yes, via Application-Level Sharding to Multiple Active/Passive Pairs | Yes, via Auto-Sharding | |
Scale On-Line (add nodes, repartition, etc.) | No | No | No | Yes |
15.1. Oracle VM Template for MySQL Enterprise Edition
Virtualization is a key technology to enable data center efficiency and high availability while providing the foundation for cloud computing. Integrating MySQL Enterprise Edition with Oracle Linux, the Oracle VM Template is the fastest, easiest, and most reliable way to provision virtualized MySQL instances, enabling users to meet the explosive demand for highly available services.
The Oracle VM Template enables rapid deployment and eliminates manual configuration efforts. It provides a pre-installed and pre-configured virtualized MySQL 5.5 Enterprise Edition software image running on Oracle Linux and Oracle VM, certified for production use. The MySQL software image has undergone extensive integration and quality assurance testing as part of the development process.
In addition to rapid provisioning, MySQL users also benefit from the integrated high availability features of Oracle VM which are designed to enable organizations to meet stringent SLA (Service Level Agreement) demands through a combination of:
Automatic recovery from failures, with Oracle VM automatically restarting failed instances on available servers in the server pool after outages of the physical server, VM or MySQL database.
Live Migration, enabling operations staff to move running instances of MySQL to alternative hosts within a server pool during maintenance operations.
Instructions for the creation, deployment and use of the Oracle VM Template for MySQL Enterprise Edition are available from:
The Oracle VM Template for MySQL Enterprise Edition whitepaper: http://www.mysql.com/why-mysql/white-papers/mysql_wp_oracle-vm-template-for-mee.php.
The README file accompanying the download of the Template.
To download the Oracle VM Template for MySQL Enterprise, go to http://edelivery.oracle.com/oraclevm and follow these instructions:
Complete your registration information (Name, Company Name, Email Address and Country) and click on the download agreement.
Select "Oracle VM Templates" from the "Select a Product Pack" pull-down menu and click "Go".
Select MySQL Enterprise from the list of Oracle VM Templates.
Download and unzip the files and refer to the README for further instructions.
15.2. Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linux
DRBD (Distributed Replication Block Device) is one of the leading solutions for MySQL HA (High Availability). When combined with Pacemaker and Corosync, users have:
An end-to-end, integrated stack of mature and proven open source technologies, fully supported by Oracle (as part of MySQL Enterprise Edition).
Automatic failover and recovery for service continuity.
Mirroring, via synchronous replication, to ensure failover between nodes without the risk of losing committed transactions.
Building of HA clusters from commodity hardware, without the requirement for shared-storage.
The following figure illustrates the stack that can be used to deliver a level of High Availability for the MySQL service.
At the lowest level, 2 hosts are required in order to provide physical redundancy; if using a virtual environment, those 2 hosts should be on different physical machines. It is an important feature that no shared storage is required. At any point in time, the services will be active on one host and in standby mode on the other.
Pacemaker and Corosync combine to provide the clustering layer that sits between the services and the underlying hosts and operating systems. Pacemaker is responsible for starting and stopping services, ensuring that they are running on exactly one host, thus delivering high availability and avoiding data corruption. Corosync provides the underlying messaging infrastructure between the nodes that enables Pacemaker to do its job; it also handles the nodes membership within the cluster and informs Pacemaker of any changes.
Figure 15.2. MySQL, DRBD, Pacemaker, and Corosync Stack
The core Pacemaker process does not have built-in knowledge of the specific services to be managed; instead, it uses agents that provide a wrapper for the service-specific actions. For example, in this solution we use agents for Virtual IP Addresses, MySQL and DRBD: these are all existing agents and come packaged with Pacemaker.
The essential services managed by Pacemaker in this configuration are DRBD, MySQL and the Virtual IP Address that applications use to connect to the active MySQL service.
DRBD synchronizes data at the block device (typically a spinning or solid state disk) – transparent to the application, database and even the file system. DRBD requires the use of a journaling file system such as ext3 or ext4. For this solution, it acts in an active-standby mode: at any point in time, the directories being managed by DRBD are accessible for reads and writes on exactly one of the two hosts and inaccessible (even for reads) on the other. Any changes made on the active host are synchronously replicated to the standby host by DRBD.
Download the following guide for detailed instructions on installing, configuring, provisioning and testing the complete MySQL and DRBD stack, including:
MySQL Database.
DRBD kernel module and userland utilities.
Pacemaker and Corosync cluster messaging and management processes.
Oracle Linux operating system.
Download the guide at: http://www.mysql.com/why-mysql/white-papers/mysql-high-availability-drbd-configuration-deployment-guide/.
Support for DRBD
The complete DRBD stack for MySQL has been certified by Oracle, and commercial support is available as part of MySQL Enterprise Edition and Oracle Linux Premier Support, providing a single point of contact for the entire stack, whether issues relate to the operating system, DRBD, clustering software or MySQL.
15.3. Overview of MySQL with Windows Failover Clustering
Microsoft Windows is consistently ranked as the top development platform for MySQL, based on surveys of the MySQL user community.
MySQL Enterprise Edition is certified and supported with Windows Server 2008 R2 Failover Clustering (WSFC), enabling organizations to safely deploy business-critical applications demanding high levels of availability using Microsoft's native Windows clustering services.
The following figure illustrates the integration of MySQL with Windows Server Failover Clustering to provide a highly available service:
Figure 15.3. Typical MySQL HA Configuration with Windows Server Failover Clustering
In this architecture, MySQL is deployed in an Active / Passive configuration. Failures of either MySQL or the underlying server are automatically detected and the MySQL instance is restarted on the Passive node. Applications accessing the database, as well as any MySQL replication slaves, can automatically reconnect to the new MySQL process using the same Virtual IP address once MySQL recovery has completed and it starts accepting connections.
MySQL with Windows Failover Clustering requires at least 2 servers within the cluster together with shared storage (for example, FC-AL SAN or iSCSI disks).
The MySQL binaries and data files are stored in the shared storage and Windows Failover Clustering ensures that only one of the cluster nodes will access those files at any point in time.
Clients connect to the MySQL service through a Virtual IP Address (VIP). In the event of failover they experience a brief loss of connection, but otherwise do not need to be aware that the failover has happened, other than to handle the failure of any transactions that were active when the failover occurred.
You can learn more about configuring MySQL with Windows Server Failover Clustering from the whitepaper posted here: http://www.mysql.com/why-mysql/white-papers/mysql_wp_windows_failover_clustering.php
For background and usage information about Windows Server Failover Clustering, see these pages on the Microsoft Technet site:
15.4. Using MySQL within an Amazon EC2 Instance
The Amazon Elastic Compute Cloud (EC2) service provides virtual servers that you can build and deploy to run a variety of different applications and services, including MySQL. The EC2 service is based around the Xen framework, supporting x86, Linux based, platforms with individual instances of a virtual machine referred to as an Amazon Machine Image (AMI). You have complete (root) access to the AMI instance that you create, enabling you to configure and install your AMI in any way you choose.
To use EC2, you create an AMI based on the configuration and applications that you intend to use, and upload the AMI to the Amazon Simple Storage Service (S3). From the S3 resource, you can deploy one or more copies of the AMI to run as an instance within the EC2 environment. The EC2 environment provides management and control of the instance and contextual information about the instance while it is running.
Because you can create and control the AMI, the configuration, and the applications, you can deploy and create any environment you choose. This includes a basic MySQL server in addition to more extensive replication, HA and scalability scenarios that enable you to take advantage of the EC2 environment, and the ability to deploy additional instances as the demand for your MySQL services and applications grow.
To aid the deployment and distribution of work, three different Amazon EC2 instances are available, small (identified as m1.small), large (m1.large) and extra large (m1.xlarge). The different types provide different levels of computing power measured in EC2 computer units (ECU). A summary of the different instance configurations is shown in the following table.
EC2 Attribute | Small | Large | Extra Large |
---|---|---|---|
Platform | 32-bit | 64-bit | 64-bit |
CPU cores | 1 | 2 | 4 |
ECUs | 1 | 4 | 8 |
RAM | 1.7GB | 7.5GB | 15GB |
Storage | 150GB | 840GB | 1680GB |
I/O Performance | Medium | High | High |
The typical model for deploying and using MySQL within the EC2 environment is to create a basic AMI that you can use to hold your database data and application. Once the basic environment for your database and application has been created you can then choose to deploy the AMI to a suitable instance. Here the flexibility of having an AMI that can be re-deployed from the small to the large or extra large EC2 instance makes it easy to upgrade the hardware environment without rebuilding your application or database stack.
To get started with MySQL on EC2, including information on how to set up and install MySQL within an EC2 installation and how to port and migrate your data to the running instance, see Section 15.4.1, “Setting Up MySQL on an EC2 AMI”.
For tips and advice on how to create a scalable EC2 environment using MySQL, including guides on setting up replication, see Section 15.4.3, “Deploying a MySQL Database Using EC2”.
15.4.1. Setting Up MySQL on an EC2 AMI
There are many different ways of setting up an EC2 AMI with MySQL, including using any of the pre-configured AMIs supplied by Amazon.
The default Getting Started AMI provided by Amazon uses Fedora Core 4, and you can install MySQL by using yum:
shell> yum install mysql
This installs both the MySQL server and the Perl DBD::mysql driver for the Perl DBI API.
Alternatively, you can use one of the AMIs that include MySQL within the standard installation.
Finally, you can also install a standard version of MySQL downloaded from the MySQL Web site. The installation process and instructions are identical to any other installation of MySQL on Linux. See Chapter 2, Installing and Upgrading MySQL.
The standard configuration for MySQL places the data files in the default location, /var/lib/mysql. The default data directory on an EC2 instance is /mnt (although on the large and extra large instance you can alter this configuration). You must edit /etc/my.cnf to set the datadir option to point to the larger storage area.
Important
The first time you use the main storage location within an EC2 instance it needs to be initialized. The initialization process starts automatically the first time you write to the device. You can start using the device right away, but the write performance of the new device is significantly lower on the initial writes until the initialization process has finished.
To avoid this problem when setting up a new instance, you should start the initialization process before populating your MySQL database. One way to do this is to use dd to write to the file system:
root-shell> dd if=/dev/zero of=initialize bs=1024M count=50
The preceding creates a 50GB on the file system and starts the initialization process. Delete the file once the process has finished.
The initialization process can be time-consuming. On the small instance, initialization takes between two and three hours. For the large and extra large drives, the initialization can be 10 or 20 hours, respectively.
In addition to configuring the correct storage location for your MySQL data files, also consider setting the following other settings in your instance before you save the instance configuration for deployment:
Set the MySQL server ID, so that when you use it for replication, the ID information is set correctly.
Enabling binary logging, so that replication can be initialized without starting and stopping the server.
Set the caching and memory parameters for your storage engines. There are no limitations or restrictions on what storage engines you use in your EC2 environment. Choose a configuration, possibly using one of the standard configurations provided with MySQL appropriate for the instance on which you expect to deploy. The large and extra large instances have RAM that can be dedicated to caching. Be aware that if you choose to install memcached on the servers as part of your application stack you must ensure there is enough memory for both MySQL and memcached.
Once you have configured your AMI with MySQL and the rest of your application stack, save the AMI so that you can deploy and reuse the instance.
Once you have your application stack configured in an AMI, populating your MySQL database with data should be performed by creating a dump of your database using mysqldump, transferring the dump to the EC2 instance, and then reloading the information into the EC2 instance database.
Before using your instance with your application in a production situation, be aware of the limitations of the EC2 instance environment. See Section 15.4.2, “EC2 Instance Limitations”. To begin using your MySQL AMI, consult the notes on deployment. See Section 15.4.3, “Deploying a MySQL Database Using EC2”.
15.4.2. EC2 Instance Limitations
Be aware of the following limitations of the EC2 instances before deploying your applications. Although these shouldn't affect your ability to deploy within the Amazon EC2 environment, they may alter the way you setup and configure your environment to support your application.
Data stored within instances is not persistent. If you create an instance and populate the instance with data, then the data only remains in place while the machine is running, and does not survive a reboot. If you shut down the instance, any data it contained is lost.
To ensure that you do not lose information, take regular backups using mysqldump. If the data being stored is critical, consider using replication to keep a “live” backup of your data in the event of a failure. When creating a backup, write the data to the Amazon S3 service to avoid the transfer charges applied when copying data offsite.
EC2 instances are not persistent. If the hardware on which an instance is running fails, the instance is shut down. This can lead to loss of data or service.
However, if you use EBS, you can attach an EBS storage volume to an EC2 instance, and that EBS volume is persistent. Like a disk, an EBS volume can fail, but it is possible to create point-in-time snapshots of the volume. Snapshots are persisted to Amazon S3 and can be used to restore data in the event of volume failure.
To replicate your EC2 instances to a non-EC2 environment, be aware of the transfer costs to and from the EC2 service. Data transfer between different EC2 instances is free, so using replication within the EC2 environment does not incur additional charges.
Certain HA features are either not directly supported, or have limiting factors or problems that could reduce their utility. For example, using DRBD or MySQL Cluster might not work. The default storage configuration is also not redundant. You can use software-based RAID to improve redundancy, but this implies a further performance hit.
15.4.3. Deploying a MySQL Database Using EC2
Because you cannot guarantee the uptime and availability of your EC2 instances, when deploying MySQL within the EC2 environment, use an approach that enables you to easily distribute work among your EC2 instances. There are a number of ways of doing this. Using sharding techniques, where you split the application across multiple servers dedicating specific blocks of your dataset and users to different servers is an effective way of doing this. As a general rule, it is easier to create more EC2 instances to support more users than to upgrade the instance to a larger machine.
The EC2 architecture works best when you treat the EC2 instances as temporary, cache-based solutions, rather than as a long-term, high availability solution. In addition to using multiple machines, take advantage of other services, such as memcached to provide additional caching for your application to help reduce the load on the MySQL server so that it can concentrate on writes. On the large and extra large instances within EC2, the RAM available can provide a large memory cache for data.
Most types of scale-out topology that you would use with your own hardware can be used and applied within the EC2 environment. However, use the limitations and advice already given to ensure that any potential failures do not lose you any data. Also, because the relative power of each EC2 instance is so low, be prepared to alter your application to use sharding and add further EC2 instances to improve the performance of your application.
For example, take the typical scale-out environment shown following, where a single master replicates to one or more slaves (three in this example), with a web server running on each replication slave.
You can reproduce this structure completely within the EC2 environment, using an EC2 instance for the master, and one instance for each of the web and MySQL slave servers.
Note
Within the EC2 environment, internal (private) IP addresses used by the EC2 instances are constant. Always use these internal addresses and names when communicating between instances. Only use public IP addresses when communicating with the outside world - for example, when publicizing your application.
To ensure reliability of your database, add at least one replication slave dedicated to providing an active backup and storage to the Amazon S3 facility. You can see an example of this in the following topology.
Using memcached within your EC2 instances should provide better performance. The large and extra large instances have a significant amount of RAM. To use memcached in your application, when loading information from the database, first check whether the item exists in the cache. If the data you are looking for exists in the cache, use it. If not, reload the data from the database and populate the cache.
Sharding divides up data in your entire database by allocating individual machines or machine groups to provide a unique set of data according to an appropriate group. For example, you might put all users with a surname ending in the letters A-D onto a single server. When a user connects to the application and their surname is known, queries can be redirected to the appropriate MySQL server.
When using sharding with EC2, separate the web server and MySQL server into separate EC2 instances, and then apply the sharding decision logic into your application. Once you know which MySQL server you should be using for accessing the data you then distribute queries to the appropriate server. You can see a sample of this in the following illustration.
Warning
With sharding and EC2, be careful that the potential for failure of an instance does not affect your application. If the EC2 instance that provides the MySQL server for a particular shard fails, then all of the data on that shard becomes unavailable.
15.5. Using ZFS Replication
To support high availability environments, providing an instant copy of the information on both the currently active machine and the hot backup is a critical part of the HA solution. There are many solutions to this problem, including Chapter 16, Replication and Section 15.2, “Overview of MySQL with DRBD/Pacemaker/Corosync/Oracle Linux”.
The ZFS file system provides functionality to create a snapshot of the file system contents, transfer the snapshot to another machine, and extract the snapshot to recreate the file system. You can create a snapshot at any time, and you can create as many snapshots as you like. By continually creating, transferring, and restoring snapshots, you can provide synchronization between one or more machines in a fashion similar to DRBD.
The following example shows a simple Solaris system running with a single ZFS pool, mounted at /scratchpool:
Filesystem size used avail capacity Mounted on
/dev/dsk/c0d0s0 4.6G 3.7G 886M 82% /
/devices 0K 0K 0K 0% /devices
ctfs 0K 0K 0K 0% /system/contract
proc 0K 0K 0K 0% /proc
mnttab 0K 0K 0K 0% /etc/mnttab
swap 1.4G 892K 1.4G 1% /etc/svc/volatile
objfs 0K 0K 0K 0% /system/object
/usr/lib/libc/libc_hwcap1.so.1
4.6G 3.7G 886M 82% /lib/libc.so.1
fd 0K 0K 0K 0% /dev/fd
swap 1.4G 40K 1.4G 1% /tmp
swap 1.4G 28K 1.4G 1% /var/run
/dev/dsk/c0d0s7 26G 913M 25G 4% /export/home
scratchpool 16G 24K 16G 1% /scratchpool
The MySQL data is stored in a directory on /scratchpool. To help demonstrate some of the basic replication functionality, there are also other items stored in /scratchpool as well:
total 17
drwxr-xr-x 31 root bin 50 Jul 21 07:32 DTT/
drwxr-xr-x 4 root bin 5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x 14 root sys 16 Nov 5 09:56 SUNWspro/
drwxrwxrwx 19 1000 1000 40 Nov 6 19:16 emacs-22.1/
To create a snapshot of the file system, you use zfs snapshot, specifying the pool and the snapshot name:
root-shell> zfs snapshot scratchpool@snap1
To list the snapshots already taken:
root-shell> zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
scratchpool@snap1 0 - 24.5K -
scratchpool@snap2 0 - 24.5K -
The snapshots themselves are stored within the file system metadata, and the space required to keep them varies as time goes on because of the way the snapshots are created. The initial creation of a snapshot is very quick, because instead of taking an entire copy of the data and metadata required to hold the entire snapshot, ZFS records only the point in time and metadata of when the snapshot was created.
As more changes to the original file system are made, the size of the snapshot increases because more space is required to keep the record of the old blocks. If you create lots of snapshots, say one per day, and then delete the snapshots from earlier in the week, the size of the newer snapshots might also increase, as the changes that make up the newer state have to be included in the more recent snapshots, rather than being spread over the seven snapshots that make up the week.
You cannot directly back up the snapshots because they exist within the file system metadata rather than as regular files. To get the snapshot into a format that you can copy to another file system, tape, and so on, you use the zfs send command to create a stream version of the snapshot.
For example, to write the snapshot out to a file:
root-shell> zfs send scratchpool@snap1 >/backup/scratchpool-snap1
Or tape:
root-shell> zfs send scratchpool@snap1 >/dev/rmt/0
You can also write out the incremental changes between two snapshots using zfs send:
root-shell> zfs send scratchpool@snap1 scratchpool@snap2 >/backup/scratchpool-changes
To recover a snapshot, you use zfs recv, which applies the snapshot information either to a new file system, or to an existing one.
15.5.1. Using ZFS for File System Replication
Because zfs send and zfs recv use streams to exchange data, you can use them to replicate information from one system to another by combining zfs send, ssh, and zfs recv.
For example, to copy a snapshot of the scratchpool file system to a new file system called slavepool on a new server, you would use the following command. This sequence combines the snapshot of scratchpool, the transmission to the slave machine (using ssh with login credentials), and the recovery of the snapshot on the slave using zfs recv:
root-shell> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool
The first part of the pipeline, zfs send scratchpool@snap1, streams the snapshot. The ssh command, and the command that it executes on the other server, pfexec zfs recv -F slavepool, receives the streamed snapshot data and writes it to slavepool. In this instance, I've specified the -F option which forces the snapshot data to be applied, and is therefore destructive. This is fine, as I'm creating the first version of my replicated file system.
On the slave machine, the replicated file system contains the exact same content:
root-shell> ls -al /slavepool/
total 23
drwxr-xr-x 6 root root 7 Nov 8 09:13 ./
drwxr-xr-x 29 root root 34 Nov 9 07:06 ../
drwxr-xr-x 31 root bin 50 Jul 21 07:32 DTT/
drwxr-xr-x 4 root bin 5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x 14 root sys 16 Nov 5 09:56 SUNWspro/
drwxrwxrwx 19 1000 1000 40 Nov 6 19:16 emacs-22.1/
Once a snapshot has been created, to synchronize the file system again, you create a new snapshot and then use the incremental snapshot feature of zfs send to send the changes between the two snapshots to the slave machine again:
root-shell> zfs send -i scratchpool@snapshot1 scratchpool@snapshot2 |ssh id@host pfexec zfs recv slavepool
This operation only succeeds if the file system on the slave machine has not been modified at all. You cannot apply the incremental changes to a destination file system that has changed. In the example above, the ls command would cause problems by changing the metadata, such as the last access time for files or directories.
To prevent changes on the slave file system, set the file system on the slave to be read-only:
root-shell> zfs set readonly=on slavepool
Setting readonly means that you cannot change the file system on the slave by normal means, including the file system metadata. Operations that would normally update metadata (like our ls) silently perform their function without attempting to update the file system state.
In essence, the slave file system is nothing but a static copy of the original file system. However, even when configured to to be read-only, a file system can have snapshots applied to it. With the file system set to read only, re-run the initial copy:
root-shell> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool
Now you can make changes to the original file system and replicate them to the slave.
15.5.2. Configuring MySQL for ZFS Replication
Configuring MySQL on the source file system is a case of creating the data on the file system that you intend to replicate. The configuration file in the example below has been updated to use /scratchpool/mysql-data as the data directory, and now you can initialize the tables:
root-shell> mysql_install_db --defaults-file=/etc/mysql/5.5/my.cnf --user=mysql
To synchronize the initial information, perform a new snapshot and then send an incremental snapshot to the slave using zfs send:
root-shell> zfs snapshot scratchpool@snap2
root-shell> zfs send -i scratchpool@snap1 scratchpool@snap2|ssh id@host pfexec zfs recv slavepool
Doublecheck that the slave has the data by looking at the MySQL data directory on the slavepool:
root-shell> ls -al /slavepool/mysql-data/
Now you can start up MySQL, create some data, and then replicate the changes using zfs send/ zfs recv to the slave to synchronize the changes.
The rate at which you perform the synchronization depends on your application and environment. The limitation is the speed required to perform the snapshot and then to send the changes over the network.
To automate the process, create a script that performs the snapshot, send, and receive operation, and use cron to synchronize the changes at set times or intervals.
15.5.3. Handling MySQL Recovery with ZFS
When using ZFS replication to provide a constant copy of your data, ensure that you can recover your tables, either manually or automatically, in the event of a failure of the original system.
In the event of a failure, follow this sequence:
Stop the script on the master, if it is still up and running.
Set the slave file system to be read/write:
root-shell> zfs set readonly=off slavepool
Start up mysqld on the slave. If you are using InnoDB, you get auto-recovery, if it is needed, to make sure the table data is correct, as shown here when I started up from our mid-INSERT snapshot:
InnoDB: The log sequence number in ibdata files does not match
InnoDB: the log sequence number in the ib_logfiles!
081109 15:59:59 InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...
081109 16:00:03 InnoDB: Started; log sequence number 0 1142807951
081109 16:00:03 [Note] /slavepool/mysql-5.0.67-solaris10-i386/bin/mysqld: ready for connections.
Version: '5.0.67' socket: '/tmp/mysql.sock' port: 3306 MySQL Community Server (GPL)
Use InnoDB tables and a regular synchronization schedule to reduce the risk for significant data loss. On MyISAM tables, you might need to run REPAIR TABLE, and you might even have lost some information.
15.6. Using MySQL with memcached
memcached is a simple, highly scalable key-based cache that stores data and objects wherever dedicated or spare RAM is available for quick access by applications, without going through layers of parsing or disk I/O. To use, you run the memcached command on one or more hosts and then use the shared cache to store objects. For more usage instructions, see Section 15.6.2, “Using memcached”
Benefits of using memcached include:
Because all information is stored in RAM, the access speed is faster than loading the information each time from disk.
Because the “value” portion of the key-value pair does not have any data type restrictions, you can cache data such as complex structures, documents, images, or a mixture of such things.
If you use the in-memory cache to hold transient information, or as a read-only cache for information also stored in a database, the failure of any memcached server is not critical. For persistent data, you can fall back to an alternative lookup method using database queries, and reload the data into RAM on a different server.
The typical usage environment is to modify your application so that information is read from the cache provided by memcached. If the information is not in memcached, then the data is loaded from the MySQL database and written into the cache so that future requests for the same object benefit from the cached data.
For a typical deployment layout, see Figure 15.4, “memcached Architecture Overview”.
Figure 15.4. memcached Architecture Overview
In the example structure, any of the clients can contact one of the memcached servers to request a given key. Each client is configured to talk to all of the servers shown in the illustration. Within the client, when the request is made to store the information, the key used to reference the data is hashed and this hash is then used to select one of the memcached servers. The selection of the memcached server takes place on the client before the server is contacted, keeping the process lightweight.
The same algorithm is used again when a client requests the same key. The same key generates the same hash, and the same memcached server is selected as the source for the data. Using this method, the cached data is spread among all of the memcached servers, and the cached information is accessible from any client. The result is a distributed, memory-based, cache that can return information, particularly complex data and structures, much faster than natively reading the information from the database.
The data held within a traditional memcached server is never stored on disk (only in RAM, which means there is no persistence of data), and the RAM cache is always populated from the backing store (a MySQL database). If a memcached server fails, the data can always be recovered from the MySQL database.
memcached Integration with MySQL Storage Engines
In April 2011, MySQL announced the preview of a new memcached interface for the InnoDB and MySQL Cluster storage engines.
Using the memcached API, web services can directly access the InnoDB and MySQL Cluster storage engines without transformations to SQL, ensuring low latency and high throughput for read/write queries. Operations such as SQL parsing are eliminated and more of the server’s hardware resources (CPU, memory and I/O) are dedicated to servicing the query within the storage engine itself. The memcached data can be persisted to disk while still cached in memory for fast retrieval.
These are targeted to be incorporated into future MySQL 5.6 Milestone and MySQL Cluster Development Releases.
You can learn more about these interfaces from this Dev Zone article: http://dev.mysql.com/tech-resources/articles/nosql-to-mysql-with-memcached.html.
15.6.1. Installing memcached
You can build and install memcached from the source code directly, or you can use an existing operating system package or installation.
Installing memcached from a Binary Distribution
To install memcached on a Red Hat, or Fedora host, use yum:
root-shell> yum install memcached
Note
On CentOS, you may be able to obtain a suitable RPM from another source, or use the source tarball.
To install memcached on a Debian or Ubuntu host, use apt-get:
root-shell> apt-get install memcached
To install memcached on a Gentoo host, use emerge:
root-shell> emerge install memcached
Building memcached from Source
On other Unix-based platforms, including Solaris, AIX, HP-UX and Mac OS X, and Linux distributions not mentioned already, you must install from source. For Linux, make sure you have a 2.6-based kernel, which includes the improved epoll interface. For all platforms, ensure that you have libevent 1.1 or higher installed. You can obtain libevent from libevent web page.
You can obtain the source for memcached from memcached Web site.
To build memcached, follow these steps:
Extract the memcached source package:
shell> gunzip -c memcached-1.2.5.tar.gz | tar xf -
Change to the memcached-1.2.5 directory:
shell> cd memcached-1.2.5
Run configure
shell> ./configure
Some additional options you might specify to the configure:
--prefix
To specify a different installation directory, use the --prefix option:
shell> ./configure --prefix=/opt
The default is to use the /usr/local directory.
--with-libevent
If you have installed libevent and configure cannot find the library, use the --with-libevent option to specify the location of the installed library.
--enable-64bit
To build a 64-bit version of memcached (which enables you to use a single instance with a large RAM allocation), use --enable-64bit.
--enable-threads
To enable multi-threading support in memcached, which improves the response times on servers with a heavy load, use --enable-threads. You must have support for the POSIX threads within your operating system to enable thread support. For more information on the threading support, see Section 15.6.2.7, “memcached Thread Support”.
--enable-dtrace
memcached includes a range of DTrace threads that can be used to monitor and benchmark a memcached instance. For more information, see Section 15.6.2.5, “Using memcached and DTrace”.
Run make to build memcached:
shell> make
Run make install to install memcached:
shell> make install
15.6.2. Using memcached
To start using memcached, start the memcached service on one or more servers. Running memcached sets up the server, allocates the memory and starts listening for connections from clients.
Note
You do not need to be a privileged user (root) to run memcached except to listen on one of the privileged TCP/IP ports (below 1024). You must, however, use a user that has not had their memory limits restricted using setrlimit or similar.
To start the server, run memcached as a nonprivileged (that is, non-root) user:
shell> memcached
By default, memcached uses the following settings:
Memory allocation of 64MB
Listens for connections on all network interfaces, using port 11211
Supports a maximum of 1024 simultaneous connections
Typically, you would specify the full combination of options that you want when starting memcached, and normally provide a startup script to handle the initialization of memcached. For example, the following line starts memcached with a maximum of 1024MB RAM for the cache, listening on port 11211 on the IP address 192.168.0.110, running as a background daemon:
shell> memcached -d -m 1024 -p 11211 -l 192.168.0.110
To ensure that memcached is started up on boot, check the init script and configuration parameters.
memcached supports the following options:
-u user
If you start memcached as root, use the -u option to specify the user for executing memcached:
shell> memcached -u memcache
-m memory
Set the amount of memory allocated to memcached for object storage. Default is 64MB.
To increase the amount of memory allocated for the cache, use the -m option to specify the amount of RAM to be allocated (in megabytes). The more RAM you allocate, the more data you can store and therefore the more effective your cache is.
Warning
Do not specify a memory allocation larger than your available RAM. If you specify too large a value, then some RAM allocated for memcached uses swap space, and not physical RAM. This may lead to delays when storing and retrieving values, because data is swapped to disk, instead of storing the data directly in RAM.
You can use the output of the vmstat command to get the free memory, as shown in free column:
shell> vmstat
kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr s1 s2 -- -- in sy cs us sy id
0 0 0 5170504 3450392 2 7 2 0 0 0 4 0 0 0 0 296 54 199 0 0 100
For example, to allocate 3GB of RAM:
shell> memcached -m 3072
On 32-bit x86 systems where you are using PAE to access memory above the 4GB limit, you cannot allocate RAM beyond the maximum process size. You can get around this by running multiple instances of memcached, each listening on a different port:
shell> memcached -m 1024 -p11211
shell> memcached -m 1024 -p11212
shell> memcached -m 1024 -p11213
Note
On all systems, particularly 32-bit, ensure that you leave enough room for both memcached application in addition to the memory setting. For example, if you have a dedicated memcached host with 4GB of RAM, do not set the memory size above 3500MB. Failure to do this may cause either a crash or severe performance issues.
-l interface
Specify a network interface/address to listen for connections. The default is to listen on all available address (INADDR_ANY).
shell> memcached -l 192.168.0.110
Support for IPv6 address support was added in memcached 1.2.5.
-p port
Specify the TCP port to use for connections. Default is 18080.
shell> memcached -p 18080
-U port
Specify the UDP port to use for connections. Default is 11211, 0 switches UDP off.
shell> memcached -U 18080
-s socket
Specify a Unix socket to listen on.
If you are running memcached on the same server as the clients, you can disable the network interface and use a local UNIX socket using the -s option:
shell> memcached -s /tmp/memcached
Using a UNIX socket automatically disables network support, and saves network ports (allowing more ports to be used by your web server or other process).
-a mask
Specify the access mask to be used for the Unix socket, in octal. Default is 0700.
-c connections
Specify the maximum number of simultaneous connections to the memcached service. The default is 1024.
shell> memcached -c 2048
Use this option, either to reduce the number of connections (to prevent overloading memcached service) or to increase the number to make more effective use of the server running memcached server.
-t threads
Specify the number of threads to use when processing incoming requests.
By default, memcached is configured to use 4 concurrent threads. The threading improves the performance of storing and retrieving data in the cache, using a locking system to prevent different threads overwriting or updating the same values. To increase or decrease the number of threads, use the -t option:
shell> memcached -t 8
-d
Run memcached as a daemon (background) process:
shell> memcached -d
-r
Maximize the size of the core file limit. In the event of a failure, this attempts to dump the entire memory space to disk as a core file, up to any limits imposed by setrlimit.
-M
Return an error to the client when the memory has been exhausted. This replaces the normal behavior of removing older items from the cache to make way for new items.
-k
Lock down all paged memory. This reserves the memory before use, instead of allocating new slabs of memory as new items are stored in the cache.
Note
There is a user-level limit on how much memory you can lock. Trying to allocate more than the available memory fails. You can set the limit for the user you started the daemon with (not for the -u user user) within the shell by using ulimit -S -l NUM_KB
-v
Verbose mode. Prints errors and warnings while executing the main event loop.
-vv
Very verbose mode. In addition to information printed by -v, also prints each client command and the response.
-vvv
Extremely verbose mode. In addition to information printed by -vv, also show the internal state transitions.
-h
Print the help message and exit.
-i
Print the memcached and libevent license.
-I mem
Specify the maximum size permitted for storing an object within the memcached instance. The size supports a unit postfix (k for kilobytes, m for megabytes). For example, to increase the maximum supported object size to 32MB:
shell> memcached -I 32m
The maximum object size you can specify is 128MB, the default remains at 1MB.
This option was added in 1.4.2.
-b
Set the backlog queue limit. The backlog queue configures how many network connections can be waiting to be processed by memcached. Increasing this limit may reduce errors received by the client that it is not able to connect to the memcached instance, but does not improve the performance of the server. The default is 1024.
-P pidfile
Save the process ID of the memcached instance into file.
-f
Set the chunk size growth factor. When allocating new memory chunks, the allocated size of new chunks is determined by multiplying the default slab size by this factor.
To see the effects of this option without extensive testing, use the -vv command-line option to show the calculated slab sizes. For more information, see Section 15.6.2.8, “memcached Logs”.
-n bytes
The minimum space allocated for the key+value+flags information. The default is 48 bytes.
-L
On systems that support large memory pages, enables large memory page use. Using large memory pages enables memcached to allocate the item cache in one large chunk, which can improve the performance by reducing the number misses when accessing memory.
-C
Disable the use of compare and swap (CAS) operations.
This option was added in memcached 1.3.x.
-D char
Set the default character to be used as a delimiter between the key prefixes and IDs. This is used for the per-prefix statistics reporting (see Section 15.6.4, “Getting memcached Statistics”). The default is the colon (:). If this option is used, statistics collection is turned on automatically. If not used, you can enable stats collection by sending the stats detail on command to the server.
This option was added in memcached 1.3.x.
-R num
Sets the maximum number of requests per event process. The default is 20.
-B protocol
Set the binding protocol, that is, the default memcached protocol support for client connections. Options are ascii, binary or auto. Automatic (auto) is the default.
This option was added in memcached 1.4.0.
15.6.2.1. memcached Deployment
When using memcached you can use a number of different potential deployment strategies and topologies. The exact strategy to use depends on your application and environment. When developing a system for deploying memcached within your system, keep in mind the following points:
memcached is only a caching mechanism. It shouldn't be used to store information that you cannot otherwise afford to lose and then load from a different location.
There is no security built into the memcached protocol. At a minimum, make sure that the servers running memcached are only accessible from inside your network, and that the network ports being used are blocked (using a firewall or similar). If the information on the memcached servers that is being stored is any sensitive, then encrypt the information before storing it in memcached.
memcached does not provide any sort of failover. Because there is no communication between different memcached instances. If an instance fails, your application must capable of removing it from the list, reloading the data and then writing data to another memcached instance.
Latency between the clients and the memcached can be a problem if you are using different physical machines for these tasks. If you find that the latency is a problem, move the memcached instances to be on the clients.
Key length is determined by the memcached server. The default maximum key size is 250 bytes.
Try to use at least two memcached instances, especially for multiple clients, to avoid having a single point of failure. Ideally, create as many memcached nodes as possible. When adding and removing memcached instances from a pool, the hashing and distribution of key/value pairs may be affected. For information on how to avoid problems, see Section 15.6.2.4, “memcached Hashing/Distribution Types”.
15.6.2.2. Using Namespaces
The memcached cache is a very simple massive key/value storage system, and as such there is no way of compartmentalizing data automatically into different sections. For example, if you are storing information by the unique ID returned from a MySQL database, then storing the data from two different tables could run into issues because the same ID might be valid in both tables.
Some interfaces provide an automated mechanism for creating namespaces when storing information into the cache. In practice, these namespaces are merely a prefix before a given ID that is applied every time a value is stored or retrieve from the cache.
You can implement the same basic principle by using keys that describe the object and the unique identifier within the key that you supply when the object is stored. For example, when storing user data, prefix the ID of the user with user: or user-.
Note
Using namespaces or prefixes only controls the keys stored/retrieved. There is no security within memcached, and therefore no way to enforce that a particular client only accesses keys with a particular namespace. Namespaces are only useful as a method of identifying data and preventing corruption of key/value pairs.
15.6.2.3. Data Expiry
There are two types of data expiry within a memcached instance. The first type is applied at the point when you store a new key/value pair into the memcached instance. If there is not enough space within a suitable slab to store the value, then an existing least recently used (LRU) object is removed (evicted) from the cache to make room for the new item.
The LRU algorithm ensures that the object that is removed is one that is either no longer in active use or that was used so long ago that its data is potentially out of date or of little value. However, in a system where the memory allocated to memcached is smaller than the number of regularly used objects required in the cache, a lot of expired items could be removed from the cache even though they are in active use. You use the statistics mechanism to get a better idea of the level of evictions (expired objects). For more information, see Section 15.6.4, “Getting memcached Statistics”.
You can change this eviction behavior by setting the -M command-line option when starting memcached. This option forces an error to be returned when the memory has been exhausted, instead of automatically evicting older data.
The second type of expiry system is an explicit mechanism that you can set when a key/value pair is inserted into the cache, or when deleting an item from the cache. Using an expiration time can be a useful way of ensuring that the data in the cache is up to date and in line with your application needs and requirements.
A typical scenario for explicitly setting the expiry time might include caching session data for a user when accessing a Web site. memcached uses a lazy expiry mechanism where the explicit expiry time that has been set is compared with the current time when the object is requested. Only objects that have not expired are returned.
You can also set the expiry time when explicitly deleting an object from the cache. In this case, the expiry time is really a timeout and indicates the period when any attempts to set the value for a given key are rejected.
15.6.2.4. memcached Hashing/Distribution Types
The memcached client interface supports a number of different distribution algorithms that are used in multi-server configurations to determine which host should be used when setting or getting data from a given memcached instance. When you get or set a value, a hash is constructed from the supplied key and then used to select a host from the list of configured servers. Because the hashing mechanism uses the supplied key as the basis for the hash, the same server is selected during both set and get operations.
You can think of this process as follows. Given an array of servers (a, b, and c), the client uses a hashing algorithm that returns an integer based on the key being stored or retrieved. The resulting value is then used to select a server from the list of servers configured in the client. Most standard client hashing within memcache clients uses a simple modulus calculation on the value against the number of configured memcached servers. You can summarize the process in pseudocode as:
@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash($key);
$chosen = $value % length(@memcservers);
Replacing the above with values:
@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash('myid');
$chosen = 7009 % 3;
In the above example, the client hashing algorithm chooses the server at index 1 (7009 % 3 = 1), and store or retrieve the key and value with that server.
Note
This selection and hashing process is handled automatically by the memcached client you are using; you need only provide the list of memcached servers to use.
You can see a graphical representation of this below in Figure 15.5, “memcached Hash Selection”.
Figure 15.5. memcached Hash Selection
The same hashing and selection process takes place during any operation on the specified key within the memcached client.
Using this method provides a number of advantages:
The hashing and selection of the server to contact is handled entirely within the client. This eliminates the need to perform network communication to determine the right machine to contact.
Because the determination of the memcached server occurs entirely within the client, the server can be selected automatically regardless of the operation being executed (set, get, increment, etc.).
Because the determination is handled within the client, the hashing algorithm returns the same value for a given key; values are not affected or reset by differences in the server environment.
Selection is very fast. The hashing algorithm on the key value is quick and the resulting selection of the server is from a simple array of available machines.
Using client-side hashing simplifies the distribution of data over each memcached server. Natural distribution of the values returned by the hashing algorithm means that keys are automatically spread over the available servers.
Providing that the list of servers configured within the client remains the same, the same stored key returns the same value, and therefore selects the same server.
However, if you do not use the same hashing mechanism then the same data may be recorded on different servers by different interfaces, both wasting space on your memcached and leading to potential differences in the information.
Note
One way to use a multi-interface compatible hashing mechanism is to use the libmemcached library and the associated interfaces. Because the interfaces for the different languages (including C, Ruby, Perl and Python) use the same client library interface, they always generate the same hash code from the ID.
The problem with client-side selection of the server is that the list of the servers (including their sequential order) must remain consistent on each client using the memcached servers, and the servers must be available. If you try to perform an operation on a key when:
A new memcached instance has been added to the list of available instances
A memcached instance has been removed from the list of available instances
The order of the memcached instances has changed
If a new memcached instance is added into the list of servers, as new.memc is in the example below, then a GET operation using the same key, myid, can result in a cache-miss. This is because the same value is computed from the key, which selects the same index from the array of servers, but index 2 now points to the new server, not the server c.memc where the data was originally stored. This would result in a cache miss, even though the key exists within the cache on another memcached instance.
Figure 15.6. memcached Hash Selection with New memcached instance
This means that servers c.memc and new.memc both contain the information for key myid, but the information stored against the key in eachs server may be different in each instance. A more significant problem is a much higher number of cache-misses when retrieving data, as the addition of a new server changes the distribution of keys, and this in turn requires rebuilding the cached data on the memcached instances, causing an increase in database reads.
The same effect can occur if you actively manage the list of servers configured in your clients, adding and removing the configured memcached instances as each instance is identified as being available. For example, removing a memcached instance when the client notices that the instance can no longer be contacted can cause the server selection to fail as described here.
To prevent this causing significant problems and invalidating your cache, you can select the hashing algorithm used to select the server. There are two common types of hashing algorithm, consistent and modula.
With consistent hashing algorithms, the same key when applied to a list of servers always uses the same server to store or retrieve the keys, even if the list of configured servers changes. This means that you can add and remove servers from the configure list and always use the same server for a given key. There are two types of consistent hashing algorithms available, Ketama and Wheel. Both types are supported by libmemcached, and implementations are available for PHP and Java.
Any consistent hashing algorithm has some limitations. When you add servers to an existing list of configured servers, keys are distributed to the new servers as part of the normal distribution. When you remove servers from the list, the keys are re-allocated to another server within the list, meaning that the cache needs to be re-populated with the information. Also, a consistent hashing algorithm does not resolve the issue where you want consistent selection of a server across multiple clients, but where each client contains a different list of servers. The consistency is enforced only within a single client.
With a modula hashing algorithm, the client selects a server by first computing the hash and then choosing a server from the list of configured servers. As the list of servers changes, so the server selected when using a modula hashing algorithm also changes. The result is the behavior described above; changes to the list of servers mean that different servers are selected when retrieving data, leading to cache misses and increase in database load as the cache is re-seeded with information.
If you use only a single memcached instance for each client, or your list of memcached servers configured for a client never changes, then the selection of a hashing algorithm is irrelevant, as it has no noticeable effect.
If you change your servers regularly, or you use a common set of servers that are shared among a large number of clients, then using a consistent hashing algorithm should help to ensure that your cache data is not duplicated and the data is evenly distributed.
15.6.2.5. Using memcached and DTrace
memcached includes a number of different DTrace probes that can be used to monitor the operation of the server. The probes included can monitor individual connections, slab allocations, and modifications to the hash table when a key/value pair is added, updated, or removed.
For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.
Support for DTrace probes was added to memcached 1.2.6 includes a number of DTrace probes that can be used to help monitor your application. DTrace is supported on Solaris 10, OpenSolaris, Mac OS X 10.5 and FreeBSD. To enable the DTrace probes in memcached, build from source and use the --enable-dtrace option. For more information, see Section 15.6.1, “Installing memcached”.
The probes supported by memcached are:
conn-allocate(connid)
Fired when a connection object is allocated from the connection pool.
connid: The connection ID.
conn-release(connid)
Fired when a connection object is released back to the connection pool.
Arguments:
connid: The connection ID.
conn-create(ptr)
Fired when a new connection object is being created (that is, there are no free connection objects in the connection pool).
Arguments:
ptr: A pointer to the connection. object
conn-destroy(ptr)
Fired when a connection object is being destroyed.
Arguments:
ptr: A pointer to the connection object.
conn-dispatch(connid, threadid)
Fired when a connection is dispatched from the main or connection-management thread to a worker thread.
Arguments:
connid: The connection ID.
threadid: The thread ID.
slabs-allocate(size, slabclass, slabsize, ptr)
Allocate memory from the slab allocator.
Arguments:
size: The requested size.
slabclass: The allocation is fulfilled in this class.
slabsize: The size of each item in this class.
ptr: A pointer to allocated memory.
slabs-allocate-failed(size, slabclass)
Failed to allocate memory (out of memory).
Arguments:
size: The requested size.
slabclass: The class that failed to fulfill the request.
slabs-slabclass-allocate(slabclass)
Fired when a slab class needs more space.
Arguments:
slabclass: The class that needs more memory.
slabs-slabclass-allocate-failed(slabclass)
Failed to allocate memory (out of memory).
Arguments:
slabclass: The class that failed to grab more memory.
slabs-free(size, slabclass, ptr)
Release memory.
Arguments:
size: The amount of memory to release, in bytes.
slabclass: The class the memory belongs to.
ptr: A pointer to the memory to release.
assoc-find(key, depth)
Fired when we have searched the hash table for a named key. These two elements provide an insight into how well the hash function operates. Traversals are a sign of a less optimal function, wasting CPU capacity.
Arguments:
key: The key searched for.
depth: The depth in the list of hash table.
assoc-insert(key, nokeys)
Fired when a new item has been inserted.
Arguments:
key: The key just inserted.
nokeys: The total number of keys currently being stored, including the key for which insert was called.
assoc-delete(key, nokeys)
Fired when a new item has been removed.
Arguments:
key: The key just deleted.
nokeys: The total number of keys currently being stored, excluding the key for which delete was called.
item-link(key, size)
Fired when an item is being linked in the cache.
Arguments:
key: The items key.
size: The size of the data.
item-unlink(key, size)
Fired when an item is being deleted.
Arguments:
key: The items key.
size: The size of the data.
item-remove(key, size)
Fired when the refcount for an item is reduced.
Arguments:
key: The item's key.
size: The size of the data.
item-update(key, size)
Fired when the "last referenced" time is updated.
Arguments:
key: The item's key.
size: The size of the data.
item-replace(oldkey, oldsize, newkey, newsize)
Fired when an item is being replaced with another item.
Arguments:
oldkey: The key of the item to replace.
oldsize: The size of the old item.
newkey: The key of the new item.
newsize: The size of the new item.
process-command-start(connid, request, size)
Fired when the processing of a command starts.
Arguments:
connid: The connection ID.
request: The incoming request.
size: The size of the request.
process-command-end(connid, response, size)
Fired when the processing of a command is done.
Arguments:
connid: The connection ID.
response: The response to send back to the client.
size: The size of the response.
command-get(connid, key, size)
Fired for a get command.
Arguments:
connid: The connection ID.
key: The requested key.
size: The size of the key's data (or -1 if not found).
command-gets(connid, key, size, casid)
Fired for a gets command.
Arguments:
connid: The connection ID.
key: The requested key.
size: The size of the key's data (or -1 if not found).
casid: The casid for the item.
command-add(connid, key, size)
Fired for a add command.
Arguments:
connid: The connection ID.
key: The requested key.
size: The new size of the key's data (or -1 if not found).
command-set(connid, key, size)
Fired for a set command.
Arguments:
connid: The connection ID.
key: The requested key.
size: The new size of the key's data (or -1 if not found).
command-replace(connid, key, size)
Fired for a replace command.
Arguments:
connid: The connection ID.
key: The requested key.
size: The new size of the key's data (or -1 if not found).
command-prepend(connid, key, size)
Fired for a prepend command.
Arguments:
connid: The connection ID.
key: The requested key.
size: The new size of the key's data (or -1 if not found).
command-append(connid, key, size)
Fired for a append command.
Arguments:
connid: The connection ID.
key: The requested key.
size: The new size of the key's data (or -1 if not found).
command-cas(connid, key, size, casid)
Fired for a cas command.
Arguments:
connid: The connection ID.
key: The requested key.
size: The size of the key's data (or -1 if not found).
casid: The cas ID requested.
command-incr(connid, key, val)
Fired for incr command.
Arguments:
connid: The connection ID.
key: The requested key.
val: The new value.
command-decr(connid, key, val)
Fired for decr command.
Arguments:
connid: The connection ID.
key: The requested key.
val: The new value.
command-delete(connid, key, exptime)
Fired for a delete command.
Arguments:
connid: The connection ID.
key: The requested key.
exptime: The expiry time.
15.6.2.6. Memory Allocation within memcached
When you first start memcached, the memory that you have configured is not automatically allocated. Instead, memcached only starts allocating and reserving physical memory once you start saving information into the cache.
When you start to store data into the cache, memcached does not allocate the memory for the data on an item by item basis. Instead, a slab allocation is used to optimize memory usage and prevent memory fragmentation when information expires from the cache.
With slab allocation, memory is reserved in blocks of 1MB. The slab is divided up into a number of blocks of equal size. When you try to store a value into the cache, memcached checks the size of the value that you are adding to the cache and determines which slab contains the right size allocation for the item. If a slab with the item size already exists, the item is written to the block within the slab.
If the new item is bigger than the size of any existing blocks, then a new slab is created, divided up into blocks of a suitable size. If an existing slab with the right block size already exists, but there are no free blocks, a new slab is created. If you update an existing item with data that is larger than the existing block allocation for that key, then the key is re-allocated into a suitable slab.
For example, the default size for the smallest block is 88 bytes (40 bytes of value, and the default 48 bytes for the key and flag data). If the size of the first item you store into the cache is less than 40 bytes, then a slab with a block size of 88 bytes is created and the value stored.
If the size of the data that you intend to store is larger than this value, then the block size is increased by the chunk size factor until a block size large enough to hold the value is determined. The block size is always a function of the scale factor, rounded up to a block size which is exactly divisible into the chunk size.
For a sample of the structure, see Figure 15.7, “Memory Allocation in memcached”.
Figure 15.7. Memory Allocation in memcached
The result is that you have multiple pages allocated within the range of memory allocated to memcached. Each page is 1MB in size (by default), and is split into a different number of chunks, according to the chunk size required to store the key/value pairs. Each instance has multiple pages allocated, and a page is always created when a new item needs to be created requiring a chunk of a particular size. A slab may consist of multiple pages, and each page within a slab contains an equal number of chunks.
The chunk size of a new slab is determined by the base chunk size combined with the chunk size growth factor. For example, if the initial chunks are 104 bytes in size, and the default chunk size growth factor is used (1.25), then the next chunk size allocated would be the best power of 2 fit for 104*1.25, or 136 bytes.
Allocating the pages in this way ensures that memory does not get fragmented. However, depending on the distribution of the objects that you store, it may lead to an inefficient distribution of the slabs and chunks if you have significantly different sized items. For example, having a relatively small number of items within each chunk size may waste a lot of memory with just few chunks in each allocated page.
You can tune the growth factor to reduce this effect by using the -f command line option, which adapts the growth factor applied to make more effective use of the chunks and slabs allocated. For information on how to determine the current slab allocation statistics, see Section 15.6.4.2, “memcached Slabs Statistics”.
If your operating system supports it, you can also start memcached with the -L command line option. This option preallocates all the memory during startup using large memory pages. This can improve performance by reducing the number of misses in the CPU memory cache.
15.6.2.7. memcached Thread Support
If you enable the thread implementation within when building memcached from source, then memcached uses multiple threads in addition to the libevent system to handle requests.
When enabled, the threading implementation operates as follows:
Threading is handled by wrapping functions within the code to provide basic protection from updating the same global structures at the same time.
Each thread uses its own instance of the libevent to help improve performance.
TCP/IP connections are handled with a single thread listening on the TCP/IP socket. Each connection is then distributed to one of the active threads on a simple round-robin basis. Each connection then operates solely within this thread while the connection remains open.
For UDP connections, all the threads listen to a single UDP socket for incoming requests. Threads that are not currently dealing with another request ignore the incoming packet. One of the remaining, nonbusy, threads reads the request and sends the response. This implementation can lead to increased CPU load as threads wake from sleep to potentially process the request.
Using threads can increase the performance on servers that have multiple CPU cores available, as the requests to update the hash table can be spread between the individual threads. To minimize overhead from the locking mechanism employed, experiment with different thread values to achieve the best performance based on the number and type of requests within your given workload.
15.6.2.8. memcached Logs
If you enable verbose mode, using the -v, -vv, or -vvv options, then the information output by memcached includes details of the operations being performed.
Without the verbose options, memcached normally produces no output during normal operating.
Output when using -v
The lowest verbosity level shows you:
Errors and warnings
Transient errors
Protocol and socket errors, including exhausting available connections
Each registered client connection, including the socket descriptor number and the protocol used.
For example:
32: Client using the ascii protocol
33: Client using the ascii protocol
Note that the socket descriptor is only valid while the client remains connected. Non-persistent connections may not be effectively represented.
Examples of the error messages output at this level include:
<%d send buffer was %d, now %d
Can't listen for events on fd %d
Can't read from libevent pipe
Catastrophic: event fd doesn't match conn fd!
Couldn't build response
Couldn't realloc input buffer
Couldn't update event
Failed to build UDP headers
Failed to read, and not due to blocking
Too many open connections
Unexpected state %d
Output when using -vv
When using the second level of verbosity, you get more detailed information about protocol operations, keys updated, chunk and network operatings and details.
During the initial start-up of memcached with this level of verbosity, you are shown the sizes of the individual slab classes, the chunk sizes, and the number of entries per slab. These do not show the allocation of the slabs, just the slabs that would be created when data is added. You are also given information about the listen queues and buffers used to send information. A sample of the output generated for a TCP/IP based system with the default memory and growth factors is given below:
shell> memcached -vv
slab class 1: chunk size 80 perslab 13107
slab class 2: chunk size 104 perslab 10082
slab class 3: chunk size 136 perslab 7710
slab class 4: chunk size 176 perslab 5957
slab class 5: chunk size 224 perslab 4681
slab class 6: chunk size 280 perslab 3744
slab class 7: chunk size 352 perslab 2978
slab class 8: chunk size 440 perslab 2383
slab class 9: chunk size 552 perslab 1899
slab class 10: chunk size 696 perslab 1506
slab class 11: chunk size 872 perslab 1202
slab class 12: chunk size 1096 perslab 956
slab class 13: chunk size 1376 perslab 762
slab class 14: chunk size 1720 perslab 609
slab class 15: chunk size 2152 perslab 487
slab class 16: chunk size 2696 perslab 388
slab class 17: chunk size 3376 perslab 310
slab class 18: chunk size 4224 perslab 248
slab class 19: chunk size 5280 perslab 198
slab class 20: chunk size 6600 perslab 158
slab class 21: chunk size 8256 perslab 127
slab class 22: chunk size 10320 perslab 101
slab class 23: chunk size 12904 perslab 81
slab class 24: chunk size 16136 perslab 64
slab class 25: chunk size 20176 perslab 51
slab class 26: chunk size 25224 perslab 41
slab class 27: chunk size 31536 perslab 33
slab class 28: chunk size 39424 perslab 26
slab class 29: chunk size 49280 perslab 21
slab class 30: chunk size 61600 perslab 17
slab class 31: chunk size 77000 perslab 13
slab class 32: chunk size 96256 perslab 10
slab class 33: chunk size 120320 perslab 8
slab class 34: chunk size 150400 perslab 6
slab class 35: chunk size 188000 perslab 5
slab class 36: chunk size 235000 perslab 4
slab class 37: chunk size 293752 perslab 3
slab class 38: chunk size 367192 perslab 2
slab class 39: chunk size 458992 perslab 2
<26 server listening (auto-negotiate)
<29 server listening (auto-negotiate)
<30 send buffer was 57344, now 2097152
<31 send buffer was 57344, now 2097152
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)
Using this verbosity level can be a useful way to check the effects of the growth factor used on slabs with different memory allocations, which in turn can be used to better tune the growth factor to suit the data you are storing in the cache. For example, if you set the growth factor to 4 (quadrupling the size of each slab):
shell> memcached -f 4 -m 1g -vv
slab class 1: chunk size 80 perslab 13107
slab class 2: chunk size 320 perslab 3276
slab class 3: chunk size 1280 perslab 819
slab class 4: chunk size 5120 perslab 204
slab class 5: chunk size 20480 perslab 51
slab class 6: chunk size 81920 perslab 12
slab class 7: chunk size 327680 perslab 3
...
During use of the cache, this verbosity level also prints out detailed information on the storage and recovery of keys and other information. An example of the output during a typical set/get and increment/decrement operation is shown below.
32: Client using the ascii protocol
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key
>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key
>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key
>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key1 1 36
>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545
During client communication, for each line, the initial character shows the direction of flow of the information. The < for communication from the client to the memcached server and > for communication back to the client. The number is the numeric socket descriptor for the connection.
Output when using -vvv
This level of verbosity includes the transitions of connections between different states in the event library while reading and writing content to/from the clients. It should be used to diagnose and identify issues in client communication. For example, you can use this information to determine if memcached is taking a long time to return information to the client, during the read of the client operation or before returning and completing the operation. An example of the typical sequence for a set operation is provided below:
<32 new auto-negotiating client connection
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_parse_cmd
32: Client using the ascii protocol
<32 set my_key 0 0 10
32: going from conn_parse_cmd to conn_nread
> NOT FOUND my_key
>32 STORED
32: going from conn_nread to conn_write
32: going from conn_write to conn_new_cmd
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_closing
<32 connection closed.
All of the verbosity levels in memcached are designed to be used during debugging or examination of issues. The quantity of information generated, particularly when using -vvv, is significant, particularly on a busy server. Also be aware that writing the error information out, especially to disk, may negate some of the performance gains you achieve by using memcached. Therefore, use in production or deployment environments is not recommended.
15.6.3. Developing a memcached Application
A number of language interfaces let applications store and retrieve information with memcached servers. You can write memcached applications in popular languages such as Perl, PHP, Python, Ruby, C, and Java.
Data stored into a memcached server is referred to by a single string (the key), with storage into the cache and retrieval from the cache using the key as the reference. The cache therefore operates like a large associative array or hash table. It is not possible to structure or otherwise organize the information stored in the cache. To emulate database notions such as multiple tables or composite key values, you must use encode the extra information into the strings used as keys. For example, to store or look up the address corresponding to a specific latitude and longitude, you might turn those two numeric values into a single comma-separated string to use as a key.
15.6.3.1. Basic memcached Operations
The interface to memcached supports the following methods for storing and retrieving information in the cache, and these are consistent across all the different APIs, although the language specific mechanics might be different:
get(key): Retrieves information from the cache. Returns the value associated with the key if the specified key exists. Returns NULL, nil, undefined, or the closest equivalent in the corresponding language, if the specified key does not exist.
set(key, , value, [, expiry]): Sets the item associated with a key in the cache to the specified value. Note that this either updates an existing item if the key already exists, or adds a new key/value pair if the key doesn't exist. If the expiry time is specified, then the item expires (and is deleted) when the expiry time is reached. The time is specified in seconds, and is taken as a relative time if the value is less than 30 days (30*24*60*60), or an absolute time (epoch) if larger than this value.
add(key, , value, [, expiry]): Adds the key and associated value to the cache, if the specified key does not already exist.
replace(key, , value, [, expiry]): Replaces the item associated with the specified key, only if the key already exists. The new value is given by the value parameter.
delete(key, [, time]): Deletes the key and its associated item from the cache. If you supply a time, then adding another item with the specified key is blocked for the specified period.
incr(key, [, value]): Increments the item associated with the key by one or the optional value.
decr(key, [, value]): Decrements the item associated with the key by one or the optional value.
flush_all: Invalidates (or expires) all the current items in the cache. Technically they still exist (they are not deleted), but they are silently destroyed the next time you try to access them.
In all implementations, most or all of these functions are duplicated through the corresponding native language interface.
When practical, use memcached to store full items, rather than caching a single column value from the database. For example, when displaying a record about an object (invoice, user history, or blog post), load all the data for the associated entry from the database, and compile it into the internal structure that would normally be required by the application. Save the complete object in the cache.
Complex data structures cannot be stored directly. Most interfaces serialize the data for you, that is, put it in a textual form that can reconstruct the original pointers and nesting. Perl uses Storable, PHP uses serialize, Python uses cPickle (or Pickle) and Java uses the Serializable interface. In most cases, the serialization interface used is customizable. To share data stored in memcached instances between different language interfaces, consider using a common serialization solution such as JSON (Javascript Object Notation).
15.6.3.2. Using memcached as a MySQL Caching Layer
When using memcached to cache MySQL data, your application must retrieve data from the database and load the appropriate key-value pairs into the cache. Then, subsequent lookups can be done directly from the cache.
Because MySQL has its own in-memory caching mechanisms for queried data, such as the InnoDB buffer pool and the MySQL query cache, look for opportunities beyond loading individual column values or rows into the cache. Prefer to cache composite values, such as those retrieved from multiple tables through a join query, or result sets assembled from multiple rows.
Caution
Limit the information in the cache to non-sensitive data, because there is no security required to access or update the information within a memcached instance. Anybody with access to the machine has the ability to read, view and potentially update the information. To keep the data secure, encrypt the information before caching it. To restrict the users capable of connecting to the server, either disable network access, or use IPTables or similar techniques to restrict access to the memcached ports to a select set of hosts.
You can introduce memcached to an existing application, even if caching was not part of the original design. In many languages and environments the changes to the application will be just a few lines, first to attempt to read from the cache when loading data, fall back to the old method if the information is not cached, and to update the cache with information once the data has been read.
The general sequence for using memcached in any language as a caching solution for MySQL is as follows:
Request the item from the cache.
If the item exists, use the item data.
If the item does not exist, load the data from MySQL, and store the value into the cache. This means the value is available to the next client that requests it from the cache.
For a flow diagram of this sequence, see Figure 15.8, “Typical memcached Application Flowchart”.
Figure 15.8. Typical memcached Application Flowchart
Adapting Database Best Practices to memcached Applications
The most direct way to cache MySQL data is to use a 2-column table, where the first column is a primary key. Because of the uniqueness requirements for memcached keys, make sure your database schema makes appropriate use of primary keys and unique constraints.
If you combine multiple column values into a single memcached item value, choose data types to make it easy to parse the value back into its components, for example by using a separator character between numeric values.
The queries that map most easily to memcached lookups are those with a single WHERE clause, using an = or IN operator. For complicated WHERE clauses, or those using operators such as <, >, BETWEEN, or LIKE, memcached does not provide a simple or efficient way to scan through or filter the keys or associated values, so typically you perform those operations as SQL queries on the underlying database.
15.6.3.3. Using libmemcached with C and C++
The libmemcached library provides both C and C++ interfaces to memcached and is also the basis for a number of different additional API implementations, including Perl, Python and Ruby. Understanding the core libmemcached functions can help when using these other interfaces.
The C library is the most comprehensive interface library for memcached and provides functions and operational systems not always exposed in interfaces not based on the libmemcached library.
The different functions can be divided up according to their basic operation. In addition to functions that interface to the core API, a number of utility functions provide extended functionality, such as appending and prepending data.
To build and install libmemcached, download the libmemcached package, run configure, and then build and install:
shell> tar xjf libmemcached-0.21.tar.gz
shell> cd libmemcached-0.21
shell> ./configure
shell> make
shell> make install
On many Linux operating systems, you can install the corresponding libmemcached package through the usual yum, apt-get, or similar commands.
To build an application that uses the library, first set the list of servers. Either directly manipulate the servers configured within the main memcached_st structure, or separately populate a list of servers, and then add this list to the memcached_st structure. The latter method is used in the following example. Once the server list has been set, you can call the functions to store or retrieve data. A simple application for setting a preset value to localhost is provided here:
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <libmemcached/memcached.h>
int main(int argc, char *argv[])
{
memcached_server_st *servers = NULL;
memcached_st *memc;
memcached_return rc;
char *key= "keystring";
char *value= "keyvalue";
memcached_server_st *memcached_servers_parse (char *server_strings);
memc= memcached_create(NULL);
servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
rc= memcached_server_push(memc, servers);
if (rc == MEMCACHED_SUCCESS)
fprintf(stderr,"Added server successfully\n");
else
fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));
rc= memcached_set(memc, key, strlen(key), value, strlen(value), (time_t)0, (uint32_t)0);
if (rc == MEMCACHED_SUCCESS)
fprintf(stderr,"Key stored successfully\n");
else
fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));
return 0;
}
To test the success of an operation, use the return value, or populated result code, for a given function. The value is always set to MEMCACHED_SUCCESS if the operation succeeded. In the event of a failure, use the memcached_strerror() function to translate the result code into a printable string.
To build the application, specify the memcached library:
shell> gcc -o memc_basic memc_basic.c -lmemcached
Running the above sample application, after starting a memcached server, should return a success message:
shell> memc_basic
Added server successfully
Key stored successfully
15.6.3.3.1. libmemcached Base Functions
The base libmemcached functions let you create, destroy and clone the main memcached_st structure that is used to interface with the memcached servers. The main functions are defined below:
memcached_st *memcached_create (memcached_st *ptr);
Creates a new memcached_st structure for use with the other libmemcached API functions. You can supply an existing, static, memcached_st structure, or NULL to have a new structured allocated. Returns a pointer to the created structure, or NULL on failure.
void memcached_free (memcached_st *ptr);
Frees the structure and memory allocated to a previously created memcached_st structure.
memcached_st *memcached_clone(memcached_st *clone, memcached_st *source);
Clones an existing memcached structure from the specified source, copying the defaults and list of servers defined in the structure.
15.6.3.3.2. libmemcached Server Functions
The libmemcached API uses a list of servers, stored within the memcached_server_st structure, to act as the list of servers used by the rest of the functions. To use memcached, you first create the server list, and then apply the list of servers to a valid libmemcached object.
Because the list of servers, and the list of servers within an active libmemcached object can be manipulated separately, you can update and manage server lists while an active libmemcached interface is running.
The functions for manipulating the list of servers within a memcached_st structure are:
memcached_return
memcached_server_add (memcached_st *ptr,
char *hostname,
unsigned int port);
Adds a server, using the given hostname and port into the memcached_st structure given in ptr.
memcached_return
memcached_server_add_unix_socket (memcached_st *ptr,
char *socket);
Adds a Unix socket to the list of servers configured in the memcached_st structure.
unsigned int memcached_server_count (memcached_st *ptr);
Returns a count of the number of configured servers within the memcached_st structure.
memcached_server_st *
memcached_server_list (memcached_st *ptr);
Returns an array of all the defined hosts within a memcached_st structure.
memcached_return
memcached_server_push (memcached_st *ptr,
memcached_server_st *list);
Pushes an existing list of servers onto list of servers configured for a current memcached_st structure. This adds servers to the end of the existing list, and duplicates are not checked.
The memcached_server_st structure can be used to create a list of memcached servers which can then be applied individually to memcached_st structures.
memcached_server_st *
memcached_server_list_append (memcached_server_st *ptr,
char *hostname,
unsigned int port,
memcached_return *error);
Adds a server, with hostname and port, to the server list in ptr. The result code is handled by the error argument, which should point to an existing memcached_return variable. The function returns a pointer to the returned list.
unsigned int memcached_server_list_count (memcached_server_st *ptr);
Returns the number of the servers in the server list.
void memcached_server_list_free (memcached_server_st *ptr);
Frees the memory associated with a server list.
memcached_server_st *memcached_servers_parse (char *server_strings);
Parses a string containing a list of servers, where individual servers are separated by a comma, space, or both, and where individual servers are of the form server[:port]. The return value is a server list structure.
15.6.3.3.3. libmemcached Set Functions
The set-related functions within libmemcached provide the same functionality as the core functions supported by the memcached protocol. The full definition for the different functions is the same for all the base functions (add, replace, prepend, append). For example, the function definition for memcached_set() is:
memcached_return
memcached_set (memcached_st *ptr,
const char *key,
size_t key_length,
const char *value,
size_t value_length,
time_t expiration,
uint32_t flags);
The ptr is the memcached_st structure. The key and key_length define the key name and length, and value and value_length the corresponding value and length. You can also set the expiration and optional flags. For more information, see Section 15.6.3.3.5, “Controlling libmemcached Behaviors”.
This table outlines the remainder of the set-related libmemcached functions and the equivalent core functions supported by the memcached protocol.
libmemcached Function | Equivalent Core Function |
---|---|
memcached_set(memc, key, key_length, value, value_length, expiration, flags) | Generic set() operation. |
memcached_add(memc, key, key_length, value, value_length, expiration, flags) | Generic add() function. |
memcached_replace(memc, key, key_length, value, value_length, expiration, flags) | Generic replace(). |
memcached_prepend(memc, key, key_length, value, value_length, expiration, flags) | Prepends the specified value before the current value of the specified key. |
memcached_append(memc, key, key_length, value, value_length, expiration, flags) | Appends the specified value after the current value of the specified key. |
memcached_cas(memc, key, key_length, value, value_length, expiration, flags, cas) | Overwrites the data for a given key as long as the corresponding cas value is still the same within the server. |
memcached_set_by_key(memc, master_key, master_key_length, key, key_length, value, value_length, expiration, flags) | Similar to the generic set(), but has the option of an additional master key that can be used to identify an individual server. |
memcached_add_by_key(memc, master_key, master_key_length, key, key_length, value, value_length, expiration, flags) | Similar to the generic add(), but has the option of an additional master key that can be used to identify an individual server. |
memcached_replace_by_key(memc, master_key, master_key_length, key, key_length, value, value_length, expiration, flags) | Similar to the generic replace(), but has the option of an additional master key that can be used to identify an individual server. |
memcached_prepend_by_key(memc, master_key, master_key_length, key, key_length, value, value_length, expiration, flags) | Similar to the memcached_prepend(), but has the option of an additional master key that can be used to identify an individual server. |
memcached_append_by_key(memc, master_key, master_key_length, key, key_length, value, value_length, expiration, flags) | Similar to the memcached_append(), but has the option of an additional master key that can be used to identify an individual server. |
memcached_cas_by_key(memc, master_key, master_key_length, key, key_length, value, value_length, expiration, flags) | Similar to the memcached_cas(), but has the option of an additional master key that can be used to identify an individual server. |
The by_key methods add two further arguments that define the master key, to be used and applied during the hashing stage for selecting the servers. You can see this in the following definition:
memcached_return
memcached_set_by_key(memcached_st *ptr,
const char *master_key,
size_t master_key_length,
const char *key,
size_t key_length,
const char *value,
size_t value_length,
time_t expiration,
uint32_t flags);
All the functions return a value of type memcached_return, which you can compare against the MEMCACHED_SUCCESS constant.
15.6.3.3.4. libmemcached Get Functions
The libmemcached functions provide both direct access to a single item, and a multiple-key request mechanism that provides much faster responses when fetching a large number of keys simultaneously.
The main get-style function, which is equivalent to the generic get() is memcached_get(). This function returns a string pointer, pointing to the value associated with the specified key.
char *memcached_get (memcached_st *ptr,
const char *key, size_t key_length,
size_t *value_length,
uint32_t *flags,
memcached_return *error);
A multi-key get, memcached_mget(), is also available. Using a multiple key get operation is much quicker to do in one block than retrieving the key values with individual calls to memcached_get(). To start the multi-key get, call memcached_mget():
memcached_return
memcached_mget (memcached_st *ptr,
char **keys, size_t *key_length,
unsigned int number_of_keys);
The return value is the success of the operation. The keys parameter should be an array of strings containing the keys, and key_length an array containing the length of each corresponding key. number_of_keys is the number of keys supplied in the array.
To fetch the individual values, use memcached_fetch() to get each corresponding value.
char *memcached_fetch (memcached_st *ptr,
const char *key, size_t *key_length,
size_t *value_length,
uint32_t *flags,
memcached_return *error);
The function returns the key value, with the key, key_length and value_length parameters being populated with the corresponding key and length information. The function returns NULL when there are no more values to be returned. A full example, including the populating of the key data and the return of the information is provided here.
#include <stdio.h>
#include <sstring.h>
#include <unistd.h>
#include <libmemcached/memcached.h>
int main(int argc, char *argv[])
{
memcached_server_st *servers = NULL;
memcached_st *memc;
memcached_return rc;
char *keys[]= {"huey", "dewey", "louie"};
size_t key_length[3];
char *values[]= {"red", "blue", "green"};
size_t value_length[3];
unsigned int x;
uint32_t flags;
char return_key[MEMCACHED_MAX_KEY];
size_t return_key_length;
char *return_value;
size_t return_value_length;
memc= memcached_create(NULL);
servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
rc= memcached_server_push(memc, servers);
if (rc == MEMCACHED_SUCCESS)
fprintf(stderr,"Added server successfully\n");
else
fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));
for(x= 0; x < 3; x++)
{
key_length[x] = strlen(keys[x]);
value_length[x] = strlen(values[x]);
rc= memcached_set(memc, keys[x], key_length[x], values[x],
value_length[x], (time_t)0, (uint32_t)0);
if (rc == MEMCACHED_SUCCESS)
fprintf(stderr,"Key %s stored successfully\n",keys[x]);
else
fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));
}
rc= memcached_mget(memc, keys, key_length, 3);
if (rc == MEMCACHED_SUCCESS)
{
while ((return_value= memcached_fetch(memc, return_key, &return_key_length,
&return_value_length, &flags, &rc)) != NULL)
{
if (rc == MEMCACHED_SUCCESS)
{
fprintf(stderr,"Key %s returned %s\n",return_key, return_value);
}
}
}
return 0;
}
Running the above application produces the following output:
shell> memc_multi_fetch
Added server successfully
Key huey stored successfully
Key dewey stored successfully
Key louie stored successfully
Key huey returned red
Key dewey returned blue
Key louie returned green
15.6.3.3.5. Controlling libmemcached Behaviors
The behavior of libmemcached can be modified by setting one or more behavior flags. These can either be set globally, or they can be applied during the call to individual functions. Some behaviors also accept an additional setting, such as the hashing mechanism used when selecting servers.
To set global behaviors:
memcached_return
memcached_behavior_set (memcached_st *ptr,
memcached_behavior flag,
uint64_t data);
To get the current behavior setting:
uint64_t
memcached_behavior_get (memcached_st *ptr,
memcached_behavior flag);
The following table describes libmemcached behavior flags.
Behavior | Description |
---|---|
MEMCACHED_BEHAVIOR_NO_BLOCK | Caused libmemcached to use asynchronous I/O. |
MEMCACHED_BEHAVIOR_TCP_NODELAY | Turns on no-delay for network sockets. |
MEMCACHED_BEHAVIOR_HASH | Without a value, sets the default hashing algorithm for keys to use MD5. Other valid values include MEMCACHED_HASH_DEFAULT, MEMCACHED_HASH_MD5, MEMCACHED_HASH_CRC, MEMCACHED_HASH_FNV1_64, MEMCACHED_HASH_FNV1A_64, MEMCACHED_HASH_FNV1_32, and MEMCACHED_HASH_FNV1A_32. |
MEMCACHED_BEHAVIOR_DISTRIBUTION | Changes the method of selecting the server used to store a given value. The default method is MEMCACHED_DISTRIBUTION_MODULA. You can enable consistent hashing by setting MEMCACHED_DISTRIBUTION_CONSISTENT. MEMCACHED_DISTRIBUTION_CONSISTENT is an alias for the value MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA. |
MEMCACHED_BEHAVIOR_CACHE_LOOKUPS | Cache the lookups made to the DNS service. This can improve the performance if you are using names instead of IP addresses for individual hosts. |
MEMCACHED_BEHAVIOR_SUPPORT_CAS | Support CAS operations. By default, this is disabled because it imposes a performance penalty. |
MEMCACHED_BEHAVIOR_KETAMA | Sets the default distribution to MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA and the hash to MEMCACHED_HASH_MD5. |
MEMCACHED_BEHAVIOR_POLL_TIMEOUT | Modify the timeout value used by poll(). Supply a signed int pointer for the timeout value. |
MEMCACHED_BEHAVIOR_BUFFER_REQUESTS | Buffers IO requests instead of them being sent. A get operation, or closing the connection causes the data to be flushed. |
MEMCACHED_BEHAVIOR_VERIFY_KEY | Forces libmemcached to verify that a specified key is valid. |
MEMCACHED_BEHAVIOR_SORT_HOSTS | If set, hosts added to the list of configured hosts for a memcached_st structure are placed into the host list in sorted order. This breaks consistent hashing if that behavior has been enabled. |
MEMCACHED_BEHAVIOR_CONNECT_TIMEOUT | In nonblocking mode this changes the value of the timeout during socket connection. |
15.6.3.3.6. libmemcached Command-Line Utilities
In addition to the main C library interface, libmemcached also includes a number of command-line utilities that can be useful when working with and debugging memcached applications.
All of the command-line tools accept a number of arguments, the most critical of which is servers, which specifies the list of servers to connect to when returning information.
The main tools are:
memcat: Display the value for each ID given on the command line:
shell> memcat --servers=localhost hwkey
Hello world
memcp: Copy the contents of a file into the cache, using the file name as the key:
shell> echo "Hello World" > hwkey
shell> memcp --servers=localhost hwkey
shell> memcat --servers=localhost hwkey
Hello world
memrm: Remove an item from the cache:
shell> memcat --servers=localhost hwkey
Hello world
shell> memrm --servers=localhost hwkey
shell> memcat --servers=localhost hwkey
memslap: Test the load on one or more memcached servers, simulating get/set and multiple client operations. For example, you can simulate the load of 100 clients performing get operations:
shell> memslap --servers=localhost --concurrency=100 --flush --test=get
memslap --servers=localhost --concurrency=100 --flush --test=get Threads connecting to servers 100
Took 13.571 seconds to read data
memflush: Flush (empty) the contents of the memcached cache.
shell> memflush --servers=localhost
15.6.3.4. Using MySQL and memcached with Perl
The Cache::Memcached module provides a native interface to the Memcache protocol, and provides support for the core functions offered by memcached. Install the module using your operating system's package management system, or using CPAN:
root-shell> perl -MCPAN -e 'install Cache::Memcached'
To use memcached from Perl through the Cache::Memcached module, first create a new Cache::Memcached object that defines the list of servers and other parameters for the connection. The only argument is a hash containing the options for the cache interface. For example, to create a new instance that uses three memcached servers:
use Cache::Memcached;
my $cache = new Cache::Memcached {
'servers' => [
'192.168.0.100:11211',
'192.168.0.101:11211',
'192.168.0.102:11211',
],
};
Note
When using the Cache::Memcached interface with multiple servers, the API automatically performs certain operations across all the servers in the group. For example, getting statistical information through Cache::Memcached returns a hash that contains data on a host-by-host basis, as well as generalized statistics for all the servers in the group.
You can set additional properties on the cache object instance when it is created by specifying the option as part of the option hash. Alternatively, you can use a corresponding method on the instance:
servers or method set_servers(): Specifies the list of the servers to be used. The servers list should be a reference to an array of servers, with each element as the address and port number combination (separated by a colon). You can also specify a local connection through a UNIX socket (for example /tmp/sock/memcached). To specify the server with a weight (indicating how much more frequently the server should be used during hashing), specify an array reference with the memcached server instance and a weight number. Higher numbers give higher priority.
compress_threshold or method set_compress_threshold(): Specifies the threshold when values are compressed. Values larger than the specified number are automatically compressed (using zlib) during storage and retrieval.
no_rehash or method set_norehash(): Disables finding a new server if the original choice is unavailable.
readonly or method set_readonly(): Disables writes to the memcached servers.
Once the Cache::Memcached object instance has been configured, you can use the set() and get() methods to store and retrieve information from the memcached servers. Objects stored in the cache are automatically serialized and deserialized using the Storable module.
The Cache::Memcached interface supports the following methods for storing/retrieving data, and relate to the generic methods as shown in the table.
Cache::Memcached Function | Equivalent Generic Method |
---|---|
get() | Generic get(). |
get_multi(keys) | Gets multiple keys from memcache using just one query. Returns a hash reference of key/value pairs. |
set() | Generic set(). |
add() | Generic add(). |
replace() | Generic replace(). |
delete() | Generic delete(). |
incr() | Generic incr(). |
decr() | Generic decr(). |
Below is a complete example for using memcached with Perl and the Cache::Memcached module:
#!/usr/bin/perl
use Cache::Memcached;
use DBI;
use Data::Dumper;
Configure the memcached server
my $cache = new Cache::Memcached {
'servers' => [
'localhost:11211',
],
};
Get the film name from the command line
memcached keys must not contain spaces, so create
a key name by replacing spaces with underscores
my $filmname = shift or die "Must specify the film name\n";
my $filmkey = $filmname;
$filmkey =~ s/ /_/;
Load the data from the cache
my $filmdata = $cache->get($filmkey);
If the data wasn't in the cache, then we load it from the database
if (!defined($filmdata))
{
$filmdata = load_filmdata($filmname);
if (defined($filmdata))
{
Set the data into the cache, using the key
if ($cache->set($filmkey,$filmdata))
{
print STDERR "Film data loaded from database and cached\n";
}
else
{
print STDERR "Couldn't store to cache\n";
}
}
else
{
die "Couldn't find $filmname\n";
}
}
else
{
print STDERR "Film data loaded from Memcached\n";
}
sub load_filmdata
{
my ($filmname) = @_;
my $dsn = "DBI:mysql:database=sakila;host=localhost;port=3306";
$dbh = DBI->connect($dsn, 'sakila','password');
my ($filmbase) = $dbh->selectrow_hashref(sprintf('select * from film where title = %s',
$dbh->quote($filmname)));
if (!defined($filmname))
{
return (undef);
}
$filmbase->{stars} =
$dbh->selectall_arrayref(sprintf('select concat(first_name," ",last_name) ' .
'from film_actor left join (actor) ' .
'on (film_actor.actor_id = actor.actor_id) ' .
' where film_id=%s',
$dbh->quote($filmbase->{film_id})));
return($filmbase);
}
The example uses the Sakila database, obtaining film data from the database and writing a composite record of the film and actors to memcached. When calling it for a film does not exist, you get this result:
shell> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from database and cached
When accessing a film that has already been added to the cache:
shell> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from Memcached
15.6.3.5. Using MySQL and memcached with Python
The Python memcache module interfaces to memcached servers, and is written in pure Python (that is, without using one of the C APIs). You can download and install a copy from Python Memcached.
To install, download the package and then run the Python installer:
python setup.py install
running install
running bdist_egg
running egg_info
creating python_memcached.egg-info
...
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing python_memcached-1.43-py2.4.egg
creating /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Extracting python_memcached-1.43-py2.4.egg to /usr/lib64/python2.4/site-packages
Adding python-memcached 1.43 to easy-install.pth file
Installed /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Processing dependencies for python-memcached==1.43
Finished processing dependencies for python-memcached==1.43
Once installed, the memcache module provides a class-based interface to your memcached servers. When you store Python data structures as memcached items, they are automatically serialized (turned into string values) using the Python cPickle or pickle modules.
To create a new memcache interface, import the memcache module and create a new instance of the memcache.Client class. For example, if the memcached daemon is running on localhost using the default port:
import memcache
memc = memcache.Client(['127.0.0.1:11211'])
The first argument is an array of strings containing the server and port number for each memcached instance to use. To enable debugging, set the optional debug parameter to 1.
By default, the hashing mechanism used to divide the items among multiple servers is crc32. To change the function used, set the value of memcache.serverHashFunction to the alternate function to use. For example:
from zlib import adler32
memcache.serverHashFunction = adler32
Once you have defined the servers to use within the memcache instance, the core functions provide the same functionality as in the generic interface specification. The following table provides a summary of the supported functions:
Python memcache Function | Equivalent Generic Function |
---|---|
get() | Generic get(). |
get_multi(keys) | Gets multiple values from the supplied array of keys. Returns a hash reference of key/value pairs. |
set() | Generic set(). |
set_multi(dict [, expiry [, key_prefix]]) | Sets multiple key/value pairs from the supplied dict. |
add() | Generic add(). |
replace() | Generic replace(). |
prepend(key, value [, expiry]) | Prepends the supplied value to the value of the existing key. |
append(key, value [, expiry[) | Appends the supplied value to the value of the existing key. |
delete() | Generic delete(). |
delete_multi(keys [, expiry [, key_prefix]]) | Deletes all the keys from the hash matching each string in the array keys. |
incr() | Generic incr(). |
decr() | Generic decr(). |
Note
Within the Python memcache module, all the *_multi()functions support an optional key_prefix parameter. If supplied, then the string is used as a prefix to all key lookups. For example, if you call:
memc.get_multi(['a','b'], key_prefix='users:')
The function retrieves the keys users:a and users:b from the servers.
Here is an example showing the storage and retrieval of information to a memcache instance, loading the raw data from MySQL:
import sys
import MySQLdb
import memcache
memc = memcache.Client(['127.0.0.1:11211'], debug=1);
try:
conn = MySQLdb.connect (host = "localhost",
user = "sakila",
passwd = "password",
db = "sakila")
except MySQLdb.Error, e:
print "Error %d: %s" % (e.args[0], e.args[1])
sys.exit (1)
popularfilms = memc.get('top5films')
if not popularfilms:
cursor = conn.cursor()
cursor.execute('select film_id,title from film order by rental_rate desc limit 5')
rows = cursor.fetchall()
memc.set('top5films',rows,60)
print "Updated memcached with MySQL data"
else:
print "Loaded data from memcached"
for row in popularfilms:
print "%s, %s" % (row[0], row[1])
When executed for the first time, the data is loaded from the MySQL database and stored to the memcached server.
shell> python memc_python.py
Updated memcached with MySQL data
Because the data is automatically serialized using cPickle/pickle, when you load the data back from memcached, you can use the object directly. In the example above, the information stored to memcached is in the form of rows from a Python DB cursor. When accessing the information (within the 60 second expiry time), the data is loaded from memcached and dumped:
shell> python memc_python.py
Loaded data from memcached
2, ACE GOLDFINGER
7, AIRPLANE SIERRA
8, AIRPORT POLLOCK
10, ALADDIN CALENDAR
13, ALI FOREVER
The serialization and deserialization happens automatically. Because serialization of Python data may be incompatible with other interfaces and languages, you can change the serialization module used during initialization. For example, you might use JSON format when you store complex data structures using a script written in one language, and access them in a script written in a different language.
15.6.3.6. Using MySQL and memcached with PHP
PHP provides support for the Memcache functions through a PECL extension. To enable the PHP memcache extensions, build PHP using the --enable-memcache option to configure when building from source.
If you are installing on a Red Hat-based server, you can install the php-pecl-memcache RPM:
root-shell> yum --install php-pecl-memcache
On Debian-based distributions, use the php-memcache package.
To set global runtime configuration options, specify the configuration option values within your php.ini file. The following table provides the name, default value, and a description for each global runtime configuration option.
Configuration option | Default | Description |
---|---|---|
memcache.allow_failover | 1 | Specifies whether another server in the list should be queried if the first server selected fails. |
memcache.max_failover_attempts | 20 | Specifies the number of servers to try before returning a failure. |
memcache.chunk_size | 8192 | Defines the size of network chunks used to exchange data with the memcached server. |
memcache.default_port | 11211 | Defines the default port to use when communicating with the memcached servers. |
memcache.hash_strategy | standard | Specifies which hash strategy to use. Set to consistent to enable servers to be added or removed from the pool without causing the keys to be remapped to other servers. When set to standard, an older (modula) strategy is used that potentially uses different servers for storage. |
memcache.hash_function | crc32 | Specifies which function to use when mapping keys to servers. crc32 uses the standard CRC32 hash. fnv uses the FNV-1a hashing algorithm. |
To create a connection to a memcached server, create a new Memcache object and then specify the connection options. For example:
<?php
$cache = new Memcache;
$cache->connect('localhost',11211);
?>
This opens an immediate connection to the specified server.
To use multiple memcached servers, you need to add servers to the memcache object using addServer():
bool Memcache::addServer (string $host [, int $port [, bool $persistent
[, int $weight [, int $timeout [, int $retry_interval
[, bool $status [, callback $failure_callback
]]]]]]])
The server management mechanism within the php-memcache module is a critical part of the interface as it controls the main interface to the memcached instances and how the different instances are selected through the hashing mechanism.
To create a simple connection to two memcached instances:
<?php
$cache = new Memcache;
$cache->addServer('192.168.0.100',11211);
$cache->addServer('192.168.0.101',11211);
?>
In this scenario, the instance connection is not explicitly opened, but only opened when you try to store or retrieve a value. To enable persistent connections to memcached instances, set the $persistent argument to true. This is the default setting, and causes the connections to remain open.
To help control the distribution of keys to different instances, use the global memcache.hash_strategy setting. This sets the hashing mechanism used to select. You can also add another weight to each server, which effectively increases the number of times the instance entry appears in the instance list, therefore increasing the likelihood of the instance being chosen over other instances. To set the weight, set the value of the $weight argument to more than one.
The functions for setting and retrieving information are identical to the generic functional interface offered by memcached, as shown in this table:
PECL memcache Function | Generic Function |
---|---|
get() | Generic get(). |
set() | Generic set(). |
add() | Generic add(). |
replace() | Generic replace(). |
delete() | Generic delete(). |
increment() | Generic incr(). |
decrement() | Generic decr(). |
A full example of the PECL memcache interface is provided below. The code loads film data from the Sakila database when the user provides a film name. The data stored into the memcached instance is recorded as a mysqli result row, and the API automatically serializes the information for you.
<?php
$memc = new Memcache;
$memc->addServer('localhost','11211');
if(empty($_POST['film'])) {
?>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Simple Memcache Lookup</title>
</head>
<body>
<form method="post">
<p>Film: <input type="text" size="20" name="film"></p>
<input type="submit">
</form>
<hr/>
<?php
} else {
echo "Loading data...\n";
$film = htmlspecialchars($_POST['film'], ENT_QUOTES, 'UTF-8');
$mfilms = $memc->get($film);
if ($mfilms) {
printf("<p>Film data for %s loaded from memcache</p>", $mfilms['title']);
foreach (array_keys($mfilms) as $key) {
printf("<p>%s: %s</p>", $key, $mfilms[$key]);
}
} else {
$mysqli = mysqli('localhost','sakila','password','sakila');
if (mysqli_connect_error()) {
sprintf("Database error: (%d) %s", mysqli_connect_errno(), mysqli_connect_error());
exit;
}
$sql = sprintf('SELECT * FROM film WHERE title="%s"', $mysqli->real_escape_string($film));
$result = $mysqli->query($sql);
if (!$result) {
sprintf("Database error: (%d) %s", $mysqli->errno, $mysqli->error);
exit;
}
$row = $result->fetch_assoc();
$memc->set($row['title'], $row);
printf("<p>Loaded (%s) from MySQL</p>", htmlspecialchars($row['title'], ENT_QUOTES, 'UTF-8');
}
}
?>
</body>
</html>
With PHP, the connections to the memcached instances are kept open as long as the PHP and associated Apache instance remain running. When adding or removing servers from the list in a running instance (for example, when starting another script that mentions additional servers), the connections are shared, but the script only selects among the instances explicitly configured within the script.
To ensure that changes to the server list within a script do not cause problems, make sure to use the consistent hashing mechanism.
15.6.3.7. Using MySQL and memcached with Ruby
There are a number of different modules for interfacing to memcached within Ruby. The Ruby-MemCache client library provides a native interface to memcached that does not require any external libraries, such as libmemcached. You can obtain the installer package from http://www.deveiate.org/projects/RMemCache.
To install, extract the package and then run install.rb:
shell> install.rb
If you have RubyGems, you can install the Ruby-MemCache gem:
shell> gem install Ruby-MemCache
Bulk updating Gem source index for: http://gems.rubyforge.org
Install required dependency io-reactor? [Yn] y
Successfully installed Ruby-MemCache-0.0.1
Successfully installed io-reactor-0.05
Installing ri documentation for io-reactor-0.05...
Installing RDoc documentation for io-reactor-0.05...
To use a memcached instance from within Ruby, create a new instance of the MemCache object.
require 'memcache'
memc = MemCache::new '192.168.0.100:11211'
You can add a weight to each server to increase the likelihood of the server being selected during hashing by appending the weight count to the server host name/port string:
require 'memcache'
memc = MemCache::new '192.168.0.100:11211:3'
To add servers to an existing list, you can append them directly to the MemCache object:
memc += ["192.168.0.101:11211"]
To set data into the cache, you can just assign a value to a key within the new cache object, which works just like a standard Ruby hash object:
memc["key"] = "value"
Or to retrieve the value:
print memc["key"]
For more explicit actions, you can use the method interface, which mimics the main memcached API functions, as summarized in the following table:
Ruby MemCache Method | Equivalent memcached API Functions |
---|---|
get() | Generic get(). |
get_hash(keys) | Get the values of multiple keys, returning the information as a hash of the keys and their values. |
set() | Generic set(). |
set_many(pairs) | Set the values of the keys and values in the hash pairs. |
add() | Generic add(). |
replace() | Generic replace(). |
delete() | Generic delete(). |
incr() | Generic incr(). |
decr() | Generic decr(). |
15.6.3.8. Using MySQL and memcached with Java
The com.danga.MemCached class within Java provides a native interface to memcached instances. You can obtain the client from http://whalin.com/memcached/. The Java class uses hashes that are compatible with libmemcached, so you can mix and match Java and libmemcached applications accessing the same memcached instances. The serialization between Java and other interfaces are not compatible. If this is a problem, use JSON or a similar nonbinary serialization format.
On most systems, you can download the package and use the jar directly.
To use the com.danga.MemCached interface, you create a MemCachedClient instance and then configure the list of servers by configuring the SockIOPool. Through the pool specification you set up the server list, weighting, and the connection parameters to optimized the connections between your client and the memcached instances that you configure.
Generally, you can configure the memcached interface once within a single class, then use this interface throughout the rest of your application.
For example, to create a basic interface, first configure the MemCachedClient and base SockIOPool settings:
public class MyClass {
protected static MemCachedClient mcc = new MemCachedClient();
static {
String[] servers =
{
"localhost:11211",
};
Integer[] weights = { 1 };
SockIOPool pool = SockIOPool.getInstance();
pool.setServers(servers);
pool.setWeights(weights);
In the above sample, the list of servers is configured by creating an array of the memcached instances to use. You can then configure individual weights for each server.
The remainder of the properties for the connection are optional, but you can set the connection numbers (initial connections, minimum connections, maximum connections, and the idle timeout) by setting the pool parameters:
pool.setInitConn(5);
pool.setMinConn(5);
pool.setMaxConn(250);
pool.setMaxIdle(1000 * 60 * 60 * 6
Once the parameters have been configured, initialize the connection pool:
pool.initialize();
The pool, and the connection to your memcached instances should now be ready to use.
To set the hashing algorithm used to select the server used when storing a given key, use pool.setHashingAlg():
pool.setHashingAlg(SockIOPool.NEW_COMPAT_HASH);
Valid values are NEW_COMPAT_HASH, OLD_COMPAT_HASH and NATIVE_HASH are also basic modula hashing algorithms. For a consistent hashing algorithm, use CONSISTENT_HASH. These constants are equivalent to the corresponding hash settings within libmemcached.
The following table outlines the Java com.danga.MemCached methods and the equivalent generic methods in the memcached interface specification.
Java com.danga.MemCached Method | Equivalent Generic Method |
---|---|
get() | Generic get(). |
getMulti(keys) | Get the values of multiple keys, returning the information as Hash map using java.lang.String for the keys and java.lang.Object for the corresponding values. |
set() | Generic set(). |
add() | Generic add(). |
replace() | Generic replace(). |
delete() | Generic delete(). |
incr() | Generic incr(). |
decr() | Generic decr(). |
15.6.3.9. Using the memcached TCP Text Protocol
Communicating with a memcached server can be achieved through either the TCP or UDP protocols. When using the TCP protocol, you can use a simple text based interface for the exchange of information.
When communicating with memcached, you can connect to the server using the port configured for the server. You can open a connection with the server without requiring authorization or login. As soon as you have connected, you can start to send commands to the server. When you have finished, you can terminate the connection without sending any specific disconnection command. Clients are encouraged to keep their connections open to decrease latency and improve performance.
Data is sent to the memcached server in two forms:
Text lines, which are used to send commands to the server, and receive responses from the server.
Unstructured data, which is used to receive or send the value information for a given key. Data is returned to the client in exactly the format it was provided.
Both text lines (commands and responses) and unstructured data are always terminated with the string \r\n. Because the data being stored may contain this sequence, the length of the data (returned by the client before the unstructured data is transmitted should be used to determine the end of the data.
Commands to the server are structured according to their operation:
Storage commands: set, add, replace, append, prepend, cas
Storage commands to the server take the form:
command key [flags] [exptime] length [noreply]
Or when using compare and swap (cas):
cas key [flags] [exptime] length [casunique] [noreply]
Where:
command: The command name.
set: Store value against key
add: Store this value against key if the key does not already exist
replace: Store this value against key if the key already exists
append: Append the supplied value to the end of the value for the specified key. The flags and exptime arguments should not be used.
prepend: Append value currently in the cache to the end of the supplied value for the specified key. The flags and exptime arguments should not be used.
cas: Set the specified key to the supplied value, only if the supplied casunique matches. This is effectively the equivalent of change the information if nobody has updated it since I last fetched it.
key: The key. All data is stored using a the specific key. The key cannot contain control characters or whitespace, and can be up to 250 characters in size.
flags: The flags for the operation (as an integer). Flags in memcached are transparent. The memcached server ignores the contents of the flags. They can be used by the client to indicate any type of information. In memcached 1.2.0 and lower the value is a 16-bit integer value. In memcached 1.2.1 and higher the value is a 32-bit integer.
exptime: The expiry time, or zero for no expiry.
length: The length of the supplied value block in bytes, excluding the terminating \r\n characters.
casunique: A unique 64-bit value of an existing entry. This is used to compare against the existing value. Use the value returned by the gets command when issuing cas updates.
noreply: Tells the server not to reply to the command.
For example, to store the value abcdef into the key xyzkey, you would use:
set xyzkey 0 0 6\r\nabcdef\r\n
The return value from the server is one line, specifying the status or error information. For more information, see Table 15.3, “memcached Protocol Responses”.
Retrieval commands: get, gets
Retrieval commands take the form:
get key1 [key2 keyn]
gets key1 [key2 ... keyn]
You can supply multiple keys to the commands, with each requested key separated by whitespace.
The server responds with an information line of the form:
VALUE key flags bytes [casunique]
Where:
key: The key name.
flags: The value of the flag integer supplied to the memcached server when the value was stored.
bytes: The size (excluding the terminating \r\n character sequence) of the stored value.
casunique: The unique 64-bit integer that identifies the item.
The information line is immediately followed by the value data block. For example:
get xyzkey\r\n
VALUE xyzkey 0 6\r\n
abcdef\r\n
If you have requested multiple keys, an information line and data block is returned for each key found. If a requested key does not exist in the cache, no information is returned.
Delete commands: delete
Deletion commands take the form:
delete key [time] [noreply]
Where:
key: The key name.
time: The time in seconds (or a specific Unix time) for which the client wishes the server to refuse add or replace commands on this key. All add, replace, get, and gets commands fail during this period. set operations succeed. After this period, the key is deleted permanently and all commands are accepted.
If not supplied, the value is assumed to be zero (delete immediately).
noreply: Tells the server not to reply to the command.
Responses to the command are either DELETED to indicate that the key was successfully removed, or NOT_FOUND to indicate that the specified key could not be found.
Increment/Decrement: incr, decr
The increment and decrement commands change the value of a key within the server without performing a separate get/set sequence. The operations assume that the currently stored value is a 64-bit integer. If the stored value is not a 64-bit integer, then the value is assumed to be zero before the increment or decrement operation is applied.
Increment and decrement commands take the form:
incr key value [noreply]
decr key value [noreply]
Where:
key: The key name.
value: An integer to be used as the increment or decrement value.
noreply: Tells the server not to reply to the command.
The response is:
NOT_FOUND: The specified key could not be located.
value: The new value associated with the specified key.
Values are assumed to be unsigned. For decr operations, the value is never decremented below 0. For incr operations, the value wraps around the 64-bit maximum.
Statistics commands: stats
The stats command provides detailed statistical information about the current status of the memcached instance and the data it is storing.
Statistics commands take the form:
STAT [name] [value]
Where:
name: The optional name of the statistics to return. If not specified, the general statistics are returned.
value: A specific value to be used when performing certain statistics operations.
The return value is a list of statistics data, formatted as follows:
STAT name value
The statistics are terminated with a single line, END.
For more information, see Section 15.6.4, “Getting memcached Statistics”.
For reference, a list of the different commands supported and their formats is provided below.
Table 15.2. memcached Command Reference
Command | Command Formats |
---|---|
set | set key flags exptime length, set key flags exptime length noreply |
add | add key flags exptime length, add key flags exptime length noreply |
replace | replace key flags exptime length, replace key flags exptime length noreply |
append | append key length, append key length noreply |
prepend | prepend key length, prepend key length noreply |
cas | cas key flags exptime length casunique, cas key flags exptime length casunique noreply |
get | get key1 [key2 ... keyn] |
gets | |
delete | delete key, delete key noreply, delete key expiry, delete key expiry noreply |
incr | incr key, incr key noreply, incr key value, incr key value noreply |
decr | decr key, decr key noreply, decr key value, decr key value noreply |
stat | stat, stat name, stat name value |
When sending a command to the server, the response from the server is one of the settings in the following table. All response values from the server are terminated by \r\n:
Table 15.3. memcached Protocol Responses
String | Description |
---|---|
STORED | Value has successfully been stored. |
NOT_STORED | The value was not stored, but not because of an error. For commands where you are adding a or updating a value if it exists (such as add and replace), or where the item has already been set to be deleted. |
EXISTS | When using a cas command, the item you are trying to store already exists and has been modified since you last checked it. |
NOT_FOUND | The item you are trying to store, update or delete does not exist or has already been deleted. |
ERROR | You submitted a nonexistent command name. |
CLIENT_ERROR errorstring | There was an error in the input line, the detail is contained in errorstring. |
SERVER_ERROR errorstring | There was an error in the server that prevents it from returning the information. In extreme conditions, the server may disconnect the client after this error occurs. |
VALUE keys flags length | The requested key has been found, and the stored key, flags and data block are returned, of the specified length. |
DELETED | The requested key was deleted from the server. |
STAT name value | A line of statistics data. |
END | The end of the statistics data. |
15.6.4. Getting memcached Statistics
The memcached system has a built-in statistics system that collects information about the data being stored into the cache, cache hit ratios, and detailed information on the memory usage and distribution of information through the slab allocation used to store individual items. Statistics are provided at both a basic level that provide the core statistics, and more specific statistics for specific areas of the memcached server.
This information can be useful to ensure that you are getting the correct level of cache and memory usage, and that your slab allocation and configuration properties are set at an optimal level.
The stats interface is available through the standard memcached protocol, so the reports can be accessed by using telnet to connect to the memcached. The supplied memcached-tool includes support for obtaining the Section 15.6.4.2, “memcached Slabs Statistics” and Section 15.6.4.1, “memcached General Statistics” information. For more information, see Section 15.6.4.6, “Using memcached-tool”.
Alternatively, most of the language API interfaces provide a function for obtaining the statistics from the server.
For example, to get the basic stats using telnet:
shell> telnet localhost 11211
Trying ::1...
Connected to localhost.
Escape character is '^]'.
stats
STAT pid 23599
STAT uptime 675
STAT time 1211439587
STAT version 1.2.5
STAT pointer_size 32
STAT rusage_user 1.404992
STAT rusage_system 4.694685
STAT curr_items 32
STAT total_items 56361
STAT bytes 2642
STAT curr_connections 53
STAT total_connections 438
STAT connection_structures 55
STAT cmd_get 113482
STAT cmd_set 80519
STAT get_hits 78926
STAT get_misses 34556
STAT evictions 0
STAT bytes_read 6379783
STAT bytes_written 4860179
STAT limit_maxbytes 67108864
STAT threads 1
END
When using Perl and the Cache::Memcached module, the stats() function returns information about all the servers currently configured in the connection object, and total statistics for all the memcached servers as a whole.
For example, the following Perl script obtains the stats and dumps the hash reference that is returned:
use Cache::Memcached;
use Data::Dumper;
my $memc = new Cache::Memcached;
$memc->set_servers(\@ARGV);
print Dumper($memc->stats());
When executed on the same memcached as used in the Telnet example above we get a hash reference with the host by host and total statistics:
$VAR1 = {
'hosts' => {
'localhost:11211' => {
'misc' => {
'bytes' => '2421',
'curr_connections' => '3',
'connection_structures' => '56',
'pointer_size' => '32',
'time' => '1211440166',
'total_items' => '410956',
'cmd_set' => '588167',
'bytes_written' => '35715151',
'evictions' => '0',
'curr_items' => '31',
'pid' => '23599',
'limit_maxbytes' => '67108864',
'uptime' => '1254',
'rusage_user' => '9.857805',
'cmd_get' => '838451',
'rusage_system' => '34.096988',
'version' => '1.2.5',
'get_hits' => '581511',
'bytes_read' => '46665716',
'threads' => '1',
'total_connections' => '3104',
'get_misses' => '256940'
},
'sizes' => {
'128' => '16',
'64' => '15'
}
}
},
'self' => {},
'total' => {
'cmd_get' => 838451,
'bytes' => 2421,
'get_hits' => 581511,
'connection_structures' => 56,
'bytes_read' => 46665716,
'total_items' => 410956,
'total_connections' => 3104,
'cmd_set' => 588167,
'bytes_written' => 35715151,
'curr_items' => 31,
'get_misses' => 256940
}
};
The statistics are divided up into a number of distinct sections, and then can be requested by adding the type to the stats command. Each statistics output is covered in more detail in the following sections.
General statistics, see Section 15.6.4.1, “memcached General Statistics”.
Slab statistics (slabs), see Section 15.6.4.2, “memcached Slabs Statistics”.
Item statistics (items), see Section 15.6.4.3, “memcached Item Statistics”.
Size statistics (sizes), see Section 15.6.4.4, “memcached Size Statistics”.
Detailed status (detail), see Section 15.6.4.5, “memcached Detail Statistics”.
15.6.4.1. memcached General Statistics
The output of the general statistics provides an overview of the performance and use of the memcached instance. The statistics returned by the command and their meaning is shown in the following table.
The following terms are used to define the value type for each statistics value:
32u: 32-bit unsigned integer
64u: 64-bit unsigned integer
32u:32u: Two 32-bit unsigned integers separated by a colon
String: Character string
Statistic | Data type | Description | Version |
---|---|---|---|
pid | 32u | Process ID of the memcached instance. | |
uptime | 32u | Uptime (in seconds) for this memcached instance. | |
time | 32u | Current time (as epoch). | |
version | string | Version string of this instance. | |
pointer_size | string | Size of pointers for this host specified in bits (32 or 64). | |
rusage_user | 32u:32u | Total user time for this instance (seconds:microseconds). | |
rusage_system | 32u:32u | Total system time for this instance (seconds:microseconds). | |
curr_items | 32u | Current number of items stored by this instance. | |
total_items | 32u | Total number of items stored during the life of this instance. | |
bytes | 64u | Current number of bytes used by this server to store items. | |
curr_connections | 32u | Current number of open connections. | |
total_connections | 32u | Total number of connections opened since the server started running. | |
connection_structures | 32u | Number of connection structures allocated by the server. | |
cmd_get | 64u | Total number of retrieval requests (get operations). | |
cmd_set | 64u | Total number of storage requests (set operations). | |
get_hits | 64u | Number of keys that have been requested and found present. | |
get_misses | 64u | Number of items that have been requested and not found. | |
delete_hits | 64u | Number of keys that have been deleted and found present. | 1.3.x |
delete_misses | 64u | Number of items that have been delete and not found. | 1.3.x |
incr_hits | 64u | Number of keys that have been incremented and found present. | 1.3.x |
incr_misses | 64u | Number of items that have been incremented and not found. | 1.3.x |
decr_hits | 64u | Number of keys that have been decremented and found present. | 1.3.x |
decr_misses | 64u | Number of items that have been decremented and not found. | 1.3.x |
cas_hits | 64u | Number of keys that have been compared and swapped and found present. | 1.3.x |
cas_misses | 64u | Number of items that have been compared and swapped and not found. | 1.3.x |
cas_badvalue | 64u | Number of keys that have been compared and swapped, but the comparison (original) value did not match the supplied value. | 1.3.x |
evictions | 64u | Number of valid items removed from cache to free memory for new items. | |
bytes_read | 64u | Total number of bytes read by this server from network. | |
bytes_written | 64u | Total number of bytes sent by this server to network. | |
limit_maxbytes | 32u | Number of bytes this server is permitted to use for storage. | |
threads | 32u | Number of worker threads requested. | |
conn_yields | 64u | Number of yields for connections (related to the -R option). | 1.4.0 |
The most useful statistics from those given here are the number of cache hits, misses, and evictions.
A large number of get_misses may just be an indication that the cache is still being populated with information. The number should, over time, decrease in comparison to the number of cache get_hits. If, however, you have a large number of cache misses compared to cache hits after an extended period of execution, it may be an indication that the size of the cache is too small and you either need to increase the total memory size, or increase the number of the memcached instances to improve the hit ratio.
A large number of evictions from the cache, particularly in comparison to the number of items stored is a sign that your cache is too small to hold the amount of information that you regularly want to keep cached. Instead of items being retained in the cache, items are being evicted to make way for new items keeping the turnover of items in the cache high, reducing the efficiency of the cache.
15.6.4.2. memcached Slabs Statistics
To get the slabs statistics, use the stats slabs command, or the API equivalent.
The slab statistics provide you with information about the slabs that have created and allocated for storing information within the cache. You get information both on each individual slab-class and total statistics for the whole slab.
STAT 1:chunk_size 104
STAT 1:chunks_per_page 10082
STAT 1:total_pages 1
STAT 1:total_chunks 10082
STAT 1:used_chunks 10081
STAT 1:free_chunks 1
STAT 1:free_chunks_end 10079
STAT 9:chunk_size 696
STAT 9:chunks_per_page 1506
STAT 9:total_pages 63
STAT 9:total_chunks 94878
STAT 9:used_chunks 94878
STAT 9:free_chunks 0
STAT 9:free_chunks_end 0
STAT active_slabs 2
STAT total_malloced 67083616
END
Individual stats for each slab class are prefixed with the slab ID. A unique ID is given to each allocated slab from the smallest size up to the largest. The prefix number indicates the slab class number in relation to the calculated chunk from the specified growth factor. Hence in the example, 1 is the first chunk size and 9 is the 9th chunk allocated size.
The parameters returned for each chunk size and a description of each parameter are provided in the following table.
Statistic | Description | Version |
---|---|---|
chunk_size | Space allocated to each chunk within this slab class. | |
chunks_per_page | Number of chunks within a single page for this slab class. | |
total_pages | Number of pages allocated to this slab class. | |
total_chunks | Number of chunks allocated to the slab class. | |
used_chunks | Number of chunks allocated to an item.. | |
free_chunks | Number of chunks not yet allocated to items. | |
free_chunks_end | Number of free chunks at the end of the last allocated page. | |
get_hits | Number of get hits to this chunk | 1.3.x |
cmd_set | Number of set commands on this chunk | 1.3.x |
delete_hits | Number of delete hits to this chunk | 1.3.x |
incr_hits | Number of increment hits to this chunk | 1.3.x |
decr_hits | Number of decrement hits to this chunk | 1.3.x |
cas_hits | Number of CAS hits to this chunk | 1.3.x |
cas_badval | Number of CAS hits on this chunk where the existing value did not match | 1.3.x |
mem_requested | The true amount of memory of memory requested within this chunk | 1.4.1 |
The following additional statistics cover the information for the entire server, rather than on a chunk by chunk basis:
Statistic | Description | Version |
---|---|---|
active_slabs | Total number of slab classes allocated. | |
total_malloced | Total amount of memory allocated to slab pages. |
The key values in the slab statistics are the chunk_size, and the corresponding total_chunks and used_chunks parameters. These given an indication of the size usage of the chunks within the system. Remember that one key/value pair is placed into a chunk of a suitable size.
From these stats, you can get an idea of your size and chunk allocation and distribution. If you store many items with a number of largely different sizes, consider adjusting the chunk size growth factor to increase in larger steps to prevent chunk and memory wastage. A good indication of a bad growth factor is a high number of different slab classes, but with relatively few chunks actually in use within each slab. Increasing the growth factor creates fewer slab classes and therefore makes better use of the allocated pages.
15.6.4.3. memcached Item Statistics
To get the items statistics, use the stats items command, or the API equivalent.
The items statistics give information about the individual items allocated within a given slab class.
STAT items:2:number 1
STAT items:2:age 452
STAT items:2:evicted 0
STAT items:2:evicted_nonzero 0
STAT items:2:evicted_time 2
STAT items:2:outofmemory 0
STAT items:2:tailrepairs 0
...
STAT items:27:number 1
STAT items:27:age 452
STAT items:27:evicted 0
STAT items:27:evicted_nonzero 0
STAT items:27:evicted_time 2
STAT items:27:outofmemory 0
STAT items:27:tailrepairs 0
The prefix number against each statistics relates to the corresponding chunk size, as returned by the stats slabs statistics. The result is a display of the number of items stored within each chunk within each slab size, and specific statistics about their age, eviction counts, and out of memory counts. A summary of the statistics is given in the following table.
Statistic | Description | |
---|---|---|
number | The number of items currently stored in this slab class. | |
age | The age of the oldest item within the slab class, in seconds. | |
evicted | The number of items evicted to make way for new entries. | |
evicted_time | The time of the last evicted entry | |
evicted_nonzero | The time of the last evicted non-zero entry | 1.4.0 |
outofmemory | The number of items for this slab class that have triggered an out of memory error (only value when the -M command line option is in effect). | |
tailrepairs | Number of times the entries for a particular ID need repairing |
Item level statistics can be used to determine how many items are stored within a given slab and their freshness and recycle rate. You can use this to help identify whether there are certain slab classes that are triggering a much larger number of evictions that others.
15.6.4.4. memcached Size Statistics
To get size statistics, use the stats sizes command, or the API equivalent.
The size statistics provide information about the sizes and number of items of each size within the cache. The information is returned as two columns, the first column is the size of the item (rounded up to the nearest 32 byte boundary), and the second column is the count of the number of items of that size within the cache:
96 35
128 38
160 807
192 804
224 410
256 222
288 83
320 39
352 53
384 33
416 64
448 51
480 30
512 54
544 39
576 10065
Caution
Running this statistic locks up your cache as each item is read from the cache and its size calculated. On a large cache, this may take some time and prevent any set or get operations until the process completes.
The item size statistics are useful only to determine the sizes of the objects you are storing. Since the actual memory allocation is relevant only in terms of the chunk size and page size, the information is only useful during a careful debugging or diagnostic session.
15.6.4.5. memcached Detail Statistics
For memcached 1.3.x and higher, you can enable and obtain detailed statistics about the get, set, and del operations on theindividual keys stored in the cache, and determine whether the attempts hit (found) a particular key. These operations are only recorded while the detailed stats analysis is turned on.
To enable detailed statistics, you must send the stats detail on command to the memcached server:
$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.stats detail on
OK
Individual statistics are recorded for every get, set and del operation on a key, including keys that are not currently stored in the server. For example, if an attempt is made to obtain the value of key abckey and it does not exist, the get operating on the specified key are recorded while detailed statistics are in effect, even if the key is not currently stored. The hits, that is, the number of get or del operations for a key that exists in the server are also counted.
To turn detailed statistics off, send the stats detail off command to the memcached server:
$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.stats detail on
OK
To obtain the detailed statistics recorded during the process, send the stats detail dump command to the memcached server:
stats detail dump
PREFIX hykkey get 0 hit 0 set 1 del 0
PREFIX xyzkey get 0 hit 0 set 1 del 0
PREFIX yukkey get 1 hit 0 set 0 del 0
PREFIX abckey get 3 hit 3 set 1 del 0
END
You can use the detailed statistics information to determine whether your memcached clients are using a large number of keys that do not exist in the server by comparing the hit and get or del counts. Because the information is recorded by key, you can also determine whether the failures or operations are clustered around specific keys.
15.6.4.6. Using memcached-tool
The memcached-tool, located within the scripts directory within the memcached source directory. The tool provides convenient access to some reports and statistics from any memcached instance.
The basic format of the command is:
shell> ./memcached-tool hostname:port [command]
The default output produces a list of the slab allocations and usage. For example:
shell> memcached-tool localhost:11211 display
Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM
1 80B 93s 1 20 no 0 0 0
2 104B 93s 1 16 no 0 0 0
3 136B 1335s 1 28 no 0 0 0
4 176B 1335s 1 24 no 0 0 0
5 224B 1335s 1 32 no 0 0 0
6 280B 1335s 1 34 no 0 0 0
7 352B 1335s 1 36 no 0 0 0
8 440B 1335s 1 46 no 0 0 0
9 552B 1335s 1 58 no 0 0 0
10 696B 1335s 1 66 no 0 0 0
11 872B 1335s 1 89 no 0 0 0
12 1.1K 1335s 1 112 no 0 0 0
13 1.3K 1335s 1 145 no 0 0 0
14 1.7K 1335s 1 123 no 0 0 0
15 2.1K 1335s 1 198 no 0 0 0
16 2.6K 1335s 1 199 no 0 0 0
17 3.3K 1335s 1 229 no 0 0 0
18 4.1K 1335s 1 248 yes 36 2 0
19 5.2K 1335s 2 328 no 0 0 0
20 6.4K 1335s 2 316 yes 387 1 0
21 8.1K 1335s 3 381 yes 492 1 0
22 10.1K 1335s 3 303 yes 598 2 0
23 12.6K 1335s 5 405 yes 605 1 0
24 15.8K 1335s 6 384 yes 766 2 0
25 19.7K 1335s 7 357 yes 908 170 0
26 24.6K 1336s 7 287 yes 1012 1 0
27 30.8K 1336s 7 231 yes 1193 169 0
28 38.5K 1336s 4 104 yes 1323 169 0
29 48.1K 1336s 1 21 yes 1287 1 0
30 60.2K 1336s 1 17 yes 1093 169 0
31 75.2K 1337s 1 13 yes 713 168 0
32 94.0K 1337s 1 10 yes 278 168 0
33 117.5K 1336s 1 3 no 0 0 0
This output is the same if you specify the command as display:
shell> memcached-tool localhost:11211 display
Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM
1 80B 93s 1 20 no 0 0 0
2 104B 93s 1 16 no 0 0 0
...
The output shows a summarized version of the output from the slabs statistics. The columns provided in the output are shown below:
#: The slab number
Item_Size: The size of the slab
Max_age: The age of the oldest item in the slab
Pages: The number of pages allocated to the slab
Count: The number of items in this slab
Full?: Whether the slab is fully populated
Evicted: The number of objects evicted from this slab
Evict_Time: The time (in seconds) since the last eviction
OOM: The number of items that have triggered an out of memory error
You can also obtain a dump of the general statistics for the server using the stats command:
shell> memcached-tool localhost:11211 stats
#localhost:11211 Field Value
accepting_conns 1
bytes 162
bytes_read 485
bytes_written 6820
cas_badval 0
cas_hits 0
cas_misses 0
cmd_flush 0
cmd_get 4
cmd_set 2
conn_yields 0
connection_structures 11
curr_connections 10
curr_items 2
decr_hits 0
decr_misses 1
delete_hits 0
delete_misses 0
evictions 0
get_hits 4
get_misses 0
incr_hits 0
incr_misses 2
limit_maxbytes 67108864
listen_disabled_num 0
pid 12981
pointer_size 32
rusage_system 0.013911
rusage_user 0.011876
threads 4
time 1255518565
total_connections 20
total_items 2
uptime 880
version 1.4.2
15.6.5. memcached FAQ
Questions
16.6.5.1: Can memcached be run on a Windows environment?
16.6.5.2: What is the maximum size of an object you can store in memcached? Is that configurable?
16.6.5.3: Is it true memcached will be much more effective with db-read-intensive applications than with db-write-intensive applications?
16.6.5.4: Is there any overhead in not using persistent connections? If persistent is always recommended, what are the downsides (for example, locking up)?
16.6.5.5: How is an event such as a crash of one of the memcached servers handled by the memcached client?
16.6.5.6: What is a recommended hardware configuration for a memcached server?
16.6.5.7: Is memcached more effective for video and audio as opposed to textual read/writes?
16.6.5.8: Can memcached work with ASPX?
16.6.5.9: How expensive is it to establish a memcache connection? Should those connections be pooled?
16.6.5.10: How is the data handled when the memcached server is down?
16.6.5.11: How are auto-increment columns in the MySQL database coordinated across multiple instances of memcached?
16.6.5.12: Is compression available?
16.6.5.13: Can we implement different types of memcached as different nodes in the same server, so can there be deterministic and non-deterministic in the same server?
16.6.5.14: What are best practices for testing an implementation, to ensure that it improves performance, and to measure the impact of memcached configuration changes? And would you recommend keeping the configuration very simple to start?
Questions and Answers
16.6.5.1: Can memcached be run on a Windows environment?
No. Currently memcached is available only on the Unix/Linux platform. There is an unofficial port available, see http://www.codeplex.com/memcachedproviders.
16.6.5.2: What is the maximum size of an object you can store in memcached? Is that configurable?
The default maximum object size is 1MB. In memcached 1.4.2 and later, you can change the maximum size of an object using the -I command line option.
For versions before this, to increase this size, you have to re-compile memcached. You can modify the value of the POWER_BLOCK within the slabs.c file within the source.
In memcached 1.4.2 and higher, you can configure the maximum supported object size by using the -I command-line option. For example, to increase the maximum object size to 5MB:
$ memcached -I 5m
If an object is larger than the maximum object size, you must manually split it. memcached is very simple: you give it a key and some data, it tries to cache it in RAM. If you try to store more than the default maximum size, the value is just truncated for speed reasons.
16.6.5.3: Is it true memcached will be much more effective with db-read-intensive applications than with db-write-intensive applications?
Yes. memcached plays no role in database writes, it is a method of caching data already read from the database in RAM.
16.6.5.4: Is there any overhead in not using persistent connections? If persistent is always recommended, what are the downsides (for example, locking up)?
If you don't use persistent connections when communicating with memcached, there will be a small increase in the latency of opening the connection each time. The effect is comparable to use nonpersistent connections with MySQL.
In general, the chance of locking or other issues with persistent connections is minimal, because there is very little locking within memcached. If there is a problem, eventually your request will time out and return no result, so your application will need to load from MySQL again.
16.6.5.5: How is an event such as a crash of one of the memcached servers handled by the memcached client?
There is no automatic handling of this. If your client fails to get a response from a server, code a fallback mechanism to load the data from the MySQL database.
The client APIs all provide the ability to add and remove memcached instances on the fly. If within your application you notice that memcached server is no longer responding, you can remove the server from the list of servers, and keys will automatically be redistributed to another memcached server in the list. If retaining the cache content on all your servers is important, make sure you use an API that supports a consistent hashing algorithm. For more information, see Section 15.6.2.4, “memcached Hashing/Distribution Types”.
16.6.5.6: What is a recommended hardware configuration for a memcached server?
memcached has a very low processing overhead. All that is required is spare physical RAM capacity. A memcached server does not require a dedicated machine. If you have web, application, or database servers that have spare RAM capacity, then use them with memcached.
To build and deploy a dedicated memcached server, use a relatively low-power CPU, lots of RAM, and one or more Gigabit Ethernet interfaces.
16.6.5.7: Is memcached more effective for video and audio as opposed to textual read/writes?
memcached works equally well for all kinds of data. To memcached, any value you store is just a stream of data. Remember, though, that the maximum size of an object you can store in memcached is 1MB, but can be configured to be larger by using the -I option in memcached 1.4.2 and later, or by modifying the source in versions before 1.4.2. If you plan on using memcached with audio and video content, you will probably want to increase the maximum object size. Also remember that memcached is a solution for caching information for reading. It shouldn't be used for writes, except when updating the information in the cache.
16.6.5.8: Can memcached work with ASPX?
There are ports and interfaces for many languages and environments. ASPX relies on an underlying language such as C# or VisualBasic, and if you are using ASP.NET then there is a C# memcached library. For more information, see https://sourceforge.net/projects/memcacheddotnet/.
16.6.5.9: How expensive is it to establish a memcache connection? Should those connections be pooled?
Opening the connection is relatively inexpensive, because there is no security, authentication or other handshake taking place before you can start sending requests and getting results. Most APIs support a persistent connection to a memcached instance to reduce the latency. Connection pooling would depend on the API you are using, but if you are communicating directly over TCP/IP, then connection pooling would provide some small performance benefit.
16.6.5.10: How is the data handled when the memcached server is down?
The behavior is entirely application dependent. Most applications fall back to loading the data from the database (just as if they were updating the memcached information). If you are using multiple memcached servers, you might also remove a downed server from the list to prevent it from affecting performance. Otherwise, the client will still attempt to communicate with the memcached server that corresponds to the key you are trying to load.
16.6.5.11: How are auto-increment columns in the MySQL database coordinated across multiple instances of memcached?
They aren't. There is no relationship between MySQL and memcached unless your application (or, if you are using the MySQL UDFs for memcached, your database definition) creates one.
If you are storing information based on an auto-increment key into multiple instances of memcached, the information is only stored on one of the memcached instances anyway. The client uses the key value to determine which memcached instance to store the information. It doesn't store the same information across all the instances, as that would be a waste of cache memory.
16.6.5.12: Is compression available?
Yes. Most of the client APIs support some sort of compression, and some even allow you to specify the threshold at which a value is deemed appropriate for compression during storage.
16.6.5.13: Can we implement different types of memcached as different nodes in the same server, so can there be deterministic and non-deterministic in the same server?
Yes. You can run multiple instances of memcached on a single server, and in your client configuration you choose the list of servers you want to use.
16.6.5.14: What are best practices for testing an implementation, to ensure that it improves performance, and to measure the impact of memcached configuration changes? And would you recommend keeping the configuration very simple to start?
The best way to test the performance is to start up a memcached instance. First, modify your application so that it stores the data just before the data is about to be used or displayed into memcached. Since the APIs handle the serialization of the data, it should just be a one-line modification to your code. Then, modify the start of the process that would normally load that information from MySQL with the code that requests the data from memcached. If the data cannot be loaded from memcached, default to the MySQL process.
All of the changes required will probably amount to just a few lines of code. To get the best benefit, make sure you cache entire objects (for example, all the components of a web page, blog post, discussion thread, and so on), rather than using memcached as a simple cache of individual rows of MySQL tables.
Keeping the configuration simple at the start, or even over the long term, is easy with memcached. Once you have the basic structure up and running, often the only ongoing change is to add more servers into the list of servers used by your applications. You don't need to manage the memcached servers, and there is no complex configuration; just add more servers to the list and let the client API and the memcached servers make the decisions.
15.7. MySQL Proxy
The MySQL Proxy is an application that communicates over the network using the MySQL network protocol and provides communication between one or more MySQL servers and one or more MySQL clients. Because MySQL Proxy uses the MySQL network protocol, it can be used without modification with any MySQL-compatible client that uses the protocol. This includes the mysql command-line client, any clients that uses the MySQL client libraries, and any connector that supports the MySQL network protocol.
In the most basic configuration, MySQL Proxy simply interposes itself between the server and clients, passing queries from the clients to the MySQL Server and returning the responses from the MySQL Server to the appropriate client. In more advanced configurations, the MySQL Proxy can also monitor and alter the communication between the client and the server. Query interception enables you to add profiling, and interception of the exchanges is scriptable using the Lua scripting language.
By intercepting the queries from the client, the proxy can insert additional queries into the list of queries sent to the server, and remove the additional results when they are returned by the server. Using this functionality you can return the results from the original query to the client while adding informational statements to each query, for example, to monitor their execution time or progress, and separately log the results.
The proxy enables you to perform additional monitoring, filtering, or manipulation of queries without requiring you to make any modifications to the client and without the client even being aware that it is communicating with anything but a genuine MySQL server.
This documentation covers MySQL Proxy 0.8.2. And MySQL Proxy contains third-party code. For license information on third-party code, see Appendix A, Licenses for Third-Party Components.
Warning
MySQL Proxy is currently an Alpha release and should not be used within production environments.
Important
MySQL Proxy is compatible with MySQL 5.0 or later. Testing has not been performed with Version 4.1. Please provide feedback on your experiences using the MySQL Proxy Forum.
For release notes detailing the changes in each release of MySQL Proxy, see MySQL Proxy Release Notes.
15.7.1. MySQL Proxy Supported Platforms
MySQL Proxy is currently available as a precompiled binary for the following platforms:
Linux (including Red Hat, Fedora, Debian, SuSE) and derivatives
Mac OS X
FreeBSD
IBM AIX
Sun Solaris
Microsoft Windows (including Microsoft Windows XP, Microsoft Windows Vista, Microsoft Windows Server 2003, Microsoft Windows Server 2008)
Note
You must have the .NET Framework 1.1 or higher installed.
Other Unix/Linux platforms not listed should be compatible by using the source package and building MySQL Proxy locally.
System requirements for the MySQL Proxy application are the same as the main MySQL server. Currently MySQL Proxy is compatible only with MySQL 5.0.1 and later. MySQL Proxy is provided as a standalone, statically linked binary. You need not have MySQL or Lua installed.
15.7.2. Installing MySQL Proxy
You have three choices for installing MySQL Proxy:
Precompiled binaries are available for a number of different platforms. See Section 15.7.2.1, “Installing MySQL Proxy from a Binary Distribution”.
You can install from the source code to build on an environment not supported by the binary distributions. See Section 15.7.2.2, “Installing MySQL Proxy from a Source Distribution”.
The latest version of the MySQL Proxy source code is available through a development repository is the best way to stay up to date with the latest fixes and revisions. See Section 15.7.2.3, “Installing MySQL Proxy from the Bazaar Repository”.
15.7.2.1. Installing MySQL Proxy from a Binary Distribution
If you download a binary package, you must extract and copy the package contents to your desired installation directory. The package contains files required by MySQL Proxy, including additional Lua scripts and other components required for execution.
To install, unpack the archive into the desired directory, then modify your PATH environment variable so that you can use the mysql-proxy command directly:
shell> cd /usr/local
shell> tar zxf mysql-proxy-0.8.2-platform.tar.gz
shell> PATH=$PATH:/usr/local/mysql-proxy-0.8.2-platform/sbin
To update the path globally on a system, you might need administrator privileges to modify the appropriate /etc/profile, /etc/bashrc, or other system configuration file.
On Windows, you can update the PATH environment variable using this procedure:
On the Windows desktop, right-click the My Computer icon, and select Properties.
Next select the Advanced tab from the System Properties menu that appears, and click the Environment Variables button.
Under System Variables, select Path, then click the Edit button. The Edit System Variable dialogue should appear.
The Microsoft Visual C++ runtime libraries are a requirement for running MySQL Proxy as of version 0.8.2. Users that do not have these libraries must download and install the Microsoft Visual C++ 2008 Service Pack 1 Redistributable Package MFC Security Update. Use the following link to obtain the package:
http://www.microsoft.com/download/en/details.aspx?id=26368
15.7.2.2. Installing MySQL Proxy from a Source Distribution
You can download a source package and compile the MySQL Proxy yourself. To build from source, you must have the following prerequisite components installed:
libevent 1.x or higher (1.3b or later is preferred).
lua 5.1.x or higher.
glib2 2.6.0 or higher.
pkg-config.
libtool 1.5 or higher.
MySQL 5.0.x or higher developer files.
Note
On some operating systems, you might need to manually build the required components to get the latest version. If you have trouble compiling MySQL Proxy, consider using a binary distributions instead.
After verifying that the prerequisite components are installed, configure and build MySQL Proxy:
shell> tar zxf mysql-proxy-0.8.2.tar.gz
shell> cd mysql-proxy-0.8.2
shell> ./configure
shell> make
To test the build, use the check target to make:
shell> make check
The tests try to connect to localhost using the root user. To provide a password, set the MYSQL_PASSWORD environment variable:
shell> MYSQL_PASSWORD=root_pwd make check
You can install using the install target:
shell> make install
By default, mysql-proxy is installed into /usr/local/sbin/mysql-proxy. The Lua example scripts are installed into /usr/local/share.
15.7.2.3. Installing MySQL Proxy from the Bazaar Repository
The MySQL Proxy source is available through a public Bazaar repository and is the quickest way to get the latest releases and fixes.
A build from the Bazaar repository requires that the following prerequisite components be installed:
Bazaar 1.10.0 or later.
libtool 1.5 or higher.
autoconf 2.56 or higher.
automake 1.10 or higher.
libevent 1.x or higher (1.3b or later is preferred).
lua 5.1.x or higher.
glib2 2.4.0 or higher.
pkg-config.
MySQL 5.0.x or higher developer files.
The mysql-proxy source is hosted on Launchpad. To check out a local copy of the Bazaar repository, use bzr:
shell> bzr branch lp:mysql-proxy
The preceding command downloads a complete version of the Bazaar repository for mysql-proxy. The main source files are located within the trunk subdirectory. The configuration scripts must be generated before you can configure and build mysql-proxy. The autogen.sh script generates the required configuration scripts for you:
shell> sh ./autogen.sh
The autogen.sh script creates the standard configure script, which you then use to configure and build with make:
shell> ./configure
shell> make
shell> make install
To create a standalone source distribution, identical to the source distribution available for download, use this command:
shell> make distcheck
The preceding command creates the file mysql-proxy-0.8.2.tar.gz (with the corresponding current version) within the current directory.
15.7.2.4. Setting Up MySQL Proxy as a Windows Service
The MySQL distribution on Windows includes the mysql-proxy-svc.exe command that enables a MySQL Proxy instance to be managed by the Windows service control manager. You can control the service, including automatically starting and stopping it during boot, reboot and shutdown, without separately running the MySQL Proxy application.
To set up a MySQL Proxy service, use the sc command to create a new service using the MySQL Proxy service command. Specify the MySQL Proxy options on the sc command line, and identify the service with a unique name. For example, to configure a new MySQL Proxy instance that will automatically start when your system boots, redirecting queries to the local MySQL server:
C:\> sc create "Proxy" DisplayName= "MySQL Proxy" start= "auto" »
binPath= "C:\Program Files\MySQL\mysql-proxy-0.8.2\bin\mysql-proxy-svc.exe »
--proxy-backend-addresses=127.0.0.1:3306"
Note
The space following the equal sign after each property is required; failure to include it results in an error.
The preceding command creates a new service called Proxy. You can start and stop the service using the net start|stop command with the service name. The service is not automatically started after it is created. To start the service:
C:\> net start proxy
The MySQL Proxy service is starting.
The MySQL Proxy service was started successfully.
You can specify additional command-line options to the sc command. You can also set up multiple MySQL Proxy services on the same machine (providing they are configured to listen on different ports and/or IP addresses.
You can delete a service that you have created:
C:\> sc delete proxy
For more information on creating services using sc, see How to create a Windows service by using Sc.exe.
15.7.3. MySQL Proxy Command Options
To start MySQL Proxy, you can run it directly from the command line:
shell> mysql-proxy
For most situations, you specify at least the host name or address and the port number of the backend MySQL server to which the MySQL Proxy should pass queries.
You can specify options to mysql-proxy either on the command line, or by using a configuration file and the --defaults-file command-line option to specify the file location.
If you use a configuration file, format it as follows:
Specify the options within a [mysql-proxy] configuration group. For example:
[mysql-proxy]
admin-address = host:port
Specify all configuration options in the form of a configuration name and the value to set.
For options that are a simple toggle on the command line (for example, --proxy-skip-profiling), use true or false. For example, the following is invalid:
[mysql-proxy]
proxy-skip-profiling
But this is valid:
[mysql-proxy]
proxy-skip-profiling = true
Give the configuration file Unix permissions of 0660 (readable and writable by user and group, no access for others).
Failure to adhere to any of these requirements causes mysql-proxy to generate an error during startup.
The following tables list the supported configuration file and command-line options.
Table 15.4. mysql-proxy Help Options
Format | Option File | Description |
---|---|---|
--help | Show help options | |
--help-admin | Show admin module options | |
--help-all | Show all help options | |
--help-proxy | Show proxy module options |
Table 15.5. mysql-proxy Admin Options
Format | Option File | Description |
---|---|---|
--admin-address=host:port | admin-address=host:port | The admin module listening host and port |
--admin-lua-script=file_name | admin-lua-script=file_name | Script to execute by the admin module |
--admin-password=password | admin-password=password | Authentication password for admin module |
--admin-username=user_name | admin-username=user_name | Authentication user name for admin module |
--proxy-address=host:port | proxy-address=host:port | The listening proxy server host and port |
Table 15.6. mysql-proxy Proxy Options
Format | Option File | Description | Removed |
---|---|---|---|
--no-proxy | no-proxy | Do not start the proxy module | |
--proxy-backend-addresses=host:port | proxy-backend-addresses=host:port | The MySQL server host and port | |
--proxy-fix-bug-25371 | proxy-fix-bug-25371 | Enable the fix for Bug #25371 for older libmysql versions | 0.8.1 |
--proxy-lua-script=file_name | proxy-lua-script=file_name | Filename for Lua script for proxy operations | |
--proxy-pool-no-change-user | proxy-pool-no-change-user | Do not use the protocol CHANGE_USER command to reset the connection when coming from the connection pool | |
--proxy-read-only-backend-addresses=host:port | proxy-read-only-backend-addresses=host:port | The MySQL server host and port (read only) | |
--proxy-skip-profiling | proxy-skip-profiling | Disable query profiling |
Table 15.7. mysql-proxy Applications Options
Format | Option File | Description |
---|---|---|
--basedir=dir_name | basedir=dir_name | The base directory prefix for paths in the configuration |
--daemon | daemon | Start in daemon mode |
--defaults-file=file_name | The configuration file to use | |
--event-threads=count | event-threads=count | The number of event-handling threads |
--keepalive | keepalive | Try to restart the proxy if a crash occurs |
--log-backtrace-on-crash | log-backtrace-on-crash | Try to invoke the debugger and generate a backtrace on crash |
--log-file=file_name | log-file=file_name | The file where error messages are logged |
--log-level=level | log-level=level | The logging level |
--log-use-syslog | log-use-syslog | Log errors to syslog |
--lua-cpath=dir_name | lua-cpath=dir_name | Set the LUA_CPATH |
--lua-path=dir_name | lua-path=dir_name | Set the LUA_PATH |
--max-open-files=count | max-open-files=count | The maximum number of open files to support |
--pid-file=file_name | pid-file=file_name | File in which to store the process ID |
--plugin-dir=dir_name | plugin-dir=dir_name | Directory containing plugin files |
--plugins=plugin,... | plugins=plugin,... | List of plugins to load |
--user=user_name | user=user_name | The user to use when running mysql-proxy |
--version | Show version information |
Except as noted in the following details, all of the options can be used within the configuration file by supplying the option and the corresponding value. For example:
[mysql-proxy]
log-file = /var/log/mysql-proxy.log
log-level = message
--help, -h
Command-Line Format | --help | ||
-h |
Show available help options.
Command-Line Format | --help-admin |
Show options for the admin module.
Command-Line Format | --help-all |
Show all help options.
Command-Line Format | --help-proxy |
Show options for the proxy module.
Command-Line Format | --admin-address=host:port | ||
Option-File Format | admin-address=host:port | ||
Permitted Values | |||
Type | string | ||
Default | :4041 |
The host name (or IP address) and port for the administration port. The default is localhost:4041.
Command-Line Format | --admin-lua-script=file_name | ||
Option-File Format | admin-lua-script=file_name | ||
Permitted Values | |||
Type | file name | ||
Default |
The script to use for the proxy administration module.
Command-Line Format | --admin-password=password | ||
Option-File Format | admin-password=password | ||
Permitted Values | |||
Type | string | ||
Default |
The password to use to authenticate users wanting to connect to the MySQL Proxy administration module. This module uses the MySQL protocol to request a user name and password for connections.
Command-Line Format | --admin-username=user_name | ||
Option-File Format | admin-username=user_name | ||
Permitted Values | |||
Type | string | ||
Default | root |
The user name to use to authenticate users wanting to connect to the MySQL Proxy administration module. This module uses the MySQL protocol to request a user name and password for connections. The default user name is root.
Command-Line Format | --basedir=dir_name | ||
Option-File Format | basedir=dir_name | ||
Permitted Values | |||
Type | directory name |
The base directory to use as a prefix for all other file name configuration options. The base name should be an absolute (not relative) directory. If you specify a relative directory, mysql-proxy generates an error during startup.
Command-Line Format | --daemon | ||
Option-File Format | daemon |
Starts the proxy in daemon mode.
Command-Line Format | --defaults-file=file_name |
The file to read for configuration options. If not specified, MySQL Proxy takes options only from the command line.
Command-Line Format | --event-threads=count | ||
Option-File Format | event-threads=count | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 |
The number of event threads to reserve to handle incoming requests.
Command-Line Format | --keepalive | ||
Option-File Format | keepalive |
Create a process surrounding the main mysql-proxy process that attempts to restart the main mysql-proxy process in the event of a crash or other failure.
Note
The --keepalive option is not available on Microsoft Windows. When running as a service, mysql-proxy automatically restarts.
Command-Line Format | --log-backtrace-on-crash | ||
Option-File Format | log-backtrace-on-crash |
Log a backtrace to the error log and try to initialize the debugger in the event of a failure.
Command-Line Format | --log-file=file_name | ||
Option-File Format | log-file=file_name | ||
Permitted Values | |||
Type | file name |
The file to use to record log information. If this option is not given, mysql-proxy logs to the standard error output.
Command-Line Format | --log-level=level | ||
Option-File Format | log-level=level | ||
Permitted Values | |||
Type | enumeration | ||
Valid Values | error warning info message debug |
The log level to use when outputting error messages. Messages with that level (or lower) are output. For example, message level also outputs message with info, warning, and error levels.
Command-Line Format | --log-use-syslog | ||
Option-File Format | log-use-syslog |
Log errors to the syslog (Unix/Linux only).
Command-Line Format | --lua-cpath=dir_name | ||
Option-File Format | lua-cpath=dir_name | ||
Permitted Values | |||
Type | directory name |
The LUA_CPATH to use when loading compiled modules or libraries for Lua scripts.
Command-Line Format | --lua-path=dir_name | ||
Option-File Format | lua-path=dir_name | ||
Permitted Values | |||
Type | directory name |
The LUA_CPATH to use when loading modules for Lua.
Command-Line Format | --max-open-files=count | ||
Option-File Format | max-open-files=count | ||
Permitted Values | |||
Type | numeric |
The maximum number of open files and sockets supported by the mysql-proxy process. Certain scripts might require a higher value.
Command-Line Format | --no-proxy | ||
Option-File Format | no-proxy |
Disable the proxy module.
Command-Line Format | --plugin-dir=dir_name | ||
Option-File Format | plugin-dir=dir_name | ||
Permitted Values | |||
Type | directory name |
The directory to use when loading plugins for mysql-proxy.
Command-Line Format | --plugins=plugin,... | ||
Option-File Format | plugins=plugin,... | ||
Permitted Values | |||
Type | string |
Loads a plugin.
When using this option on the command line, you can specify the option multiple times to specify multiple plugins. For example:
shell> mysql-proxy --plugins=proxy --plugins=admin
When using the option within the configuration file, you should separate multiple plugins by commas. The equivalent of the preceding example would be:
...
plugins=proxy,admin
--proxy-address=host:port, -P host:port
Command-Line Format | --proxy-address=host:port | ||
-P host:port | |||
Option-File Format | proxy-address=host:port | ||
Permitted Values | |||
Type | string | ||
Default | :4040 |
The listening host name (or IP address) and port of the proxy server. The default is :4040 (all IPs on port 4040).
--proxy-read-only-backend-addresses=host:port, -r host:port
Command-Line Format | --proxy-read-only-backend-addresses=host:port | ||
-r host:port | |||
Option-File Format | proxy-read-only-backend-addresses=host:port | ||
Permitted Values | |||
Type | string |
The listening host name (or IP address) and port of the proxy server for read-only connections. The default is for this information not to be set.
Note
Setting this value only configures the servers within the corresponding internal structure (see proxy.global.backends). You can determine the backend type by checking the type field for each connection.
You should therefore only use this option in combination with a script designed to make use of the different backend types.
When using this option on the command line, you can specify the option and the server multiple times to specify multiple backends. For example:
shell> mysql-proxy --proxy-read-only-backend-addresses=192.168.0.1:3306 --proxy-read-only-backend-addresses=192.168.0.2:3306
When using the option within the configuration file, you should separate multiple servers by commas. The equivalent of the preceding example would be:
...
proxy-read-only-backend-addresses = 192.168.0.1:3306,192.168.0.2:3306
--proxy-backend-addresses=host:port, -b host:port
Command-Line Format | --proxy-backend-addresses=host:port | ||
-b host:port | |||
Option-File Format | proxy-backend-addresses=host:port | ||
Permitted Values | |||
Type | string | ||
Default | 127.0.0.1:3306 |
The host name (or IP address) and port of the MySQL server to connect to. You can specify multiple backend servers by supplying multiple options. Clients are connected to each backend server in round-robin fashion. For example, if you specify two servers A and B, the first client connection will go to server A; the second client connection to server B and the third client connection to server A.
When using this option on the command line, you can specify the option and the server multiple times to specify multiple backends. For example:
shell> mysql-proxy --proxy-backend-addresses 192.168.0.1:3306 --proxy-backend-addresses 192.168.0.2:3306
When using the option within the configuration file, you should separate multiple servers by commas. The equivalent of the preceding example would be:
...
proxy-backend-addresses = 192.168.0.1:3306,192.168.0.2:3306
Command-Line Format | --proxy-pool-no-change-user | ||
Option-File Format | proxy-pool-no-change-user |
Disable use of the MySQL protocol CHANGE_USER command when reusing a connection from the pool of connections specified by the proxy-backend-addresses list.
Command-Line Format | --proxy-skip-profiling | ||
Option-File Format | proxy-skip-profiling |
Disable query profiling (statistics time tracking). The default is for tracking to be enabled.
Version Removed | 0.8.1 | ||
Command-Line Format | --proxy-fix-bug-25371 | ||
Option-File Format | proxy-fix-bug-25371 |
Enable a workaround for an issue when connecting to a MySQL server later than 5.1.12 when using a MySQL client library of any earlier version.
This option was removed in mysql-proxy 0.8.1. Now, mysql-proxy returns an error message at the protocol level if it sees a COM_CHANGE_USER being sent to a server that has a version from 5.1.14 to 5.1.17.
--proxy-lua-script=file_name, -s file_name
Command-Line Format | --proxy-lua-script=file_name | ||
-s file_name | |||
Option-File Format | proxy-lua-script=file_name | ||
Permitted Values | |||
Type | file name |
The Lua script file to be loaded. Note that the script file is not physically loaded and parsed until a connection is made. Also note that the specified Lua script is reloaded for each connection; if the content of the Lua script changes while mysql-proxy is running, the updated content is automatically used when a new connection is made.
Command-Line Format | --pid-file=file_name | ||
Option-File Format | pid-file=file_name | ||
Permitted Values | |||
Type | file name |
The name of the file in which to store the process ID.
Command-Line Format | --user=user_name | ||
Option-File Format | user=user_name | ||
Permitted Values | |||
Type | string |
Run mysql-proxy as the specified user.
--version, -V
Command-Line Format | --version | ||
-V |
Show the version number.
The most common usage is as a simple proxy service (that is, without additional scripting). For basic proxy operation, you must specify at least one proxy-backend-addresses option to specify the MySQL server to connect to by default:
shell> mysql-proxy --proxy-backend-addresses=MySQL.example.com:3306
The default proxy port is 4040, so you can connect to your MySQL server through the proxy by specifying the host name and port details:
shell> mysql --host=localhost --port=4040
If your server requires authentication information, this will be passed through natively without alteration by mysql-proxy, so you must also specify the required authentication information:
shell> mysql --host=localhost --port=4040 \
--user=user_name --password=password
You can also connect to a read-only port (which filters out UPDATE and INSERT queries) by connecting to the read-only port. By default the host name is the default, and the port is 4042, but you can alter the host/port information by using the --proxy-read-only-backend-addresses command-line option.
For more detailed information on how to use these command-line options, and mysql-proxy in general in combination with Lua scripts, see Section 15.7.5, “Using MySQL Proxy”.
15.7.4. MySQL Proxy Scripting
You can control how MySQL Proxy manipulates and works with the queries and results that are passed on to the MySQL server through the use of the embedded Lua scripting language. You can find out more about the Lua programming language from the Lua Web site.
The following diagram shows an overview of the classes exposed by MySQL Proxy.
The primary interaction between MySQL Proxy and the server is provided by defining one or more functions through an Lua script. A number of functions are supported, according to different events and operations in the communication sequence between a client and one or more backend MySQL servers:
connect_server(): This function is called each time a connection is made to MySQL Proxy from a client. You can use this function during load-balancing to intercept the original connection and decide which server the client should ultimately be attached to. If you do not define a special solution, a simple round-robin style distribution is used by default.
read_handshake(): This function is called when the initial handshake information is returned by the server. You can capture the handshake information returned and provide additional checks before the authorization exchange takes place.
read_auth(): This function is called when the authorization packet (user name, password, default database) are submitted by the client to the server for authentication.
read_auth_result(): This function is called when the server returns an authorization packet to the client indicating whether the authorization succeeded.
read_query(): This function is called each time a query is sent by the client to the server. You can use this to edit and manipulate the original query, including adding new queries before and after the original statement. You can also use this function to return information directly to the client, bypassing the server, which can be useful to filter unwanted queries or queries that exceed known limits.
read_query_result(): This function is called each time a result is returned from the server, providing you have manually injected queries into the query queue. If you have not explicitly injected queries within the read_query() function, this function is not triggered. You can use this to edit the result set, or to remove or filter the result sets generated from additional queries you injected into the queue when using read_query().
The following table lists MySQL proxy and server communication functions, the supplied information, and the direction of information flow when the function is triggered.
Function | Supplied Information | Direction |
---|---|---|
connect_server() | None | Client to Server |
read_handshake() | None | Server to Client |
read_auth() | None | Client to Server |
read_auth_result() | None | Server to Client |
read_query() | Query | Client to Server |
read_query_result() | Query result | Server to Client |
By default, all functions return a result that indicates whether the data should be passed on to the client or server (depending on the direction of the information being transferred). This return value can be overridden by explicitly returning a constant indicating that a particular response should be sent. For example, it is possible to construct result set information by hand within read_query() and to return the result set directly to the client without ever sending the original query to the server.
In addition to these functions, a number of built-in structures provide control over how MySQL Proxy forwards queries and returns the results by providing a simplified interface to elements such as the list of queries and the groups of result sets that are returned.
15.7.4.1. Proxy Scripting Sequence During Query Injection
The following figure gives an example of how the proxy might be used when injecting queries into the query queue. Because the proxy sits between the client and MySQL server, what the proxy sends to the server, and the information that the proxy ultimately returns to the client, need not match or correlate. Once the client has connected to the proxy, the sequence shown in the following diagram occurs for each individual query sent by the client.
When the client submits one query to the proxy, the read_query() function within the proxy is triggered. The function adds the query to the query queue.
Once manipulation by read_query() has completed, the queries are submitted, sequentially, to the MySQL server.
The MySQL server returns the results from each query, one result set for each query submitted. The read_query_result() function is triggered for each result set, and each invocation can decide which result set to return to the client
For example, you can queue additional queries into the global query queue to be processed by the server. This can be used to add statistical information by adding queries before and after the original query, changing the original query:
SELECT * FROM City;
Into a sequence of queries:
SELECT NOW();
SELECT * FROM City;
SELECT NOW();
You can also modify the original statement; for example, to add EXPLAIN to each statement executed to get information on how the statement was processed, again altering our original SQL statement into a number of statements:
SELECT * FROM City;
EXPLAIN SELECT * FROM City;
In both of these examples, the client would have received more result sets than expected. Regardless of how you manipulate the incoming query and the returned result, the number of queries returned by the proxy must match the number of original queries sent by the client.
You could adjust the client to handle the multiple result sets sent by the proxy, but in most cases you will want the existence of the proxy to remain transparent. To ensure that the number of queries and result sets match, you can use the MySQL Proxy read_query_result() to extract the additional result set information and return only the result set the client originally requested back to the client. You can achieve this by giving each query that you add to the query queue a unique ID, then filter out queries that do not match the original query ID when processing them with read_query_result().
15.7.4.2. Internal Structures
There are a number of internal structures within the scripting element of MySQL Proxy. The primary structure is proxy and this provides an interface to the many common structures used throughout the script, such as connection lists and configured backend servers. Other structures, such as the incoming packet from the client and result sets are only available within the context of one of the scriptable functions.
The following table describes common attributes of the MySQL proxy scripting element.
Attribute | Description |
---|---|
connection | A structure containing the active client connections. For a list of attributes, see proxy.connection. |
servers | A structure containing the list of configured backend servers. For a list of attributes, see proxy.global.backends. |
queries | A structure containing the queue of queries that will be sent to the server during a single client query. For a list of attributes, see proxy.queries. |
PROXY_VERSION | The version number of MySQL Proxy, encoded in hex. You can use this to check that the version number supports a particular option from within the Lua script. Note that the value is encoded as a hex value, so to check the version is at least 0.5.1 you compare against 0x00501. |
proxy.connection
The proxy.connection object is read only, and provides information about the current connection, and is split into a client and server tables. This enables you to examine information about both the incoming client connections to the proxy (client), and to the backend servers (server).
The following table describes the client and server attributes of the proxy.connection object.
Attribute | Description |
---|---|
client.default_db | Default database requested by the client |
client.username | User name used to authenticate |
client.scrambled_password | The scrambled version of the password used to authenticate |
client.dst.name | The combined address:port of the Proxy port used by this client (should match the --proxy-address configuration parameter) |
client.dst.address | The IP address of the of the Proxy port used by this client |
client.dst.port | The port number of the of the Proxy port used by this client |
client.src.name | The combined address:port of the client (originating) TCP/IP endpoint |
client.src.address | The IP address of the client (originating) TCP/IP port |
client.src.port | The port of the client (originating) TCP/IP endpoint |
server.scramble_buffer | The scramble buffer used to scramble the password |
server.mysqld_version | The MySQL version number of the server |
server.thread_id | The ID of the thread handling the connection to the current server |
server.dst.name | The combined address:port for the backend server for the current connection (i.e. the connection to the MySQL server) |
server.dst.address | The address for the backend server |
server.dst.port | The port for the backend server |
server.src.name | The combined address:port for the TCP/IP endpoint used by the Proxy to connect to the backend server |
server.src.address | The address of the endpoint for the proxy-side connection to the MySQL server |
server.src.port | The port of the endpoint for the proxy-side connection to the MySQL server |
proxy.global.backends
The proxy.global.backends table is partially writable and contains an array of all the configured backend servers and the server metadata (IP address, status, etc.). You can determine the array index of the current connection using proxy.connection["backend_ndx"] which is the index into this table of the backend server being used by the active connection.
The attributes for each entry within the proxy.global.backends table are shown in the following table.
Attribute | Description |
---|---|
dst.name | The combined address:port of the backend server. |
dst.address | The IP address of the backend server. |
dst.port | The port of the backend server. |
connected_clients | The number of clients currently connected. |
state | The status of the backend server. See Backend State/Type Constants. |
type | The type of the backend server. You can use this to identify whether the backed was configured as a standard read/write backend, or a read-only backend. You can compare this value to the proxy.BACKEND_TYPE_RW and proxy.BACKEND_TYPE_RO. |
proxy.queries
The proxy.queries object is a queue representing the list of queries to be sent to the server. The queue is not populated automatically, but if you do not explicitly populate the queue, queries are passed on to the backend server verbatim. Also, if you do not populate the query queue by hand, the read_query_result() function is not triggered.
The following functions are supported for populating the proxy.queries object.
Function | Description |
---|---|
append(id,packet,[options]) | Appends a query to the end of the query queue. The id is an integer identifier that you can use to recognize the query results when they are returned by the server. The packet should be a properly formatted query packet. The optional options should be a table containing the options specific to this packet. |
prepend(id,packet) | Prepends a query to the query queue. The id is an identifier that you can use to recognize the query results when they are returned by the server. The packet should be a properly formatted query packet. |
reset() | Empties the query queue. |
len() | Returns the number of query packets in the queue. |
For example, you could append a query packet to the proxy.queries queue by using the append():
proxy.queries:append(1,packet)
The optional third argument to append() should contain the options for the packet. To have access to the result set through the read_query_result() function, set the resultset_is_needed flag to true:
proxy.queries:append(1, packet, { resultset_is_needed = true })
If that flag is false (the default), proxy will:
Send the result set to the client as soon as it is received
Reduce memory usage (because the result set is not stored internally for processing)
Reduce latency of returning results to the client
Pass data from server to client unaltered
The default mode is therefore quicker and useful if you only want to monitor the queries sent, and the basic statistics.
To perform any kind of manipulation on the returned data, you must set the flag to true, which will:
Store the result set so that it can be processed.
Enable modification of the result set before it is returned to the client.
Enable you to discard the result set instead of returning it to the client.
proxy.response
The proxy.response structure is used when you want to return your own MySQL response, instead of forwarding a packet that you have received a backend server. The structure holds the response type information, an optional error message, and the result set (rows/columns) to return.
The following table describes the attributes of the proxy.response structure.
Attribute | Description |
---|---|
type | The type of the response. The type must be either MYSQLD_PACKET_OK or MYSQLD_PACKET_ERR. If the MYSQLD_PACKET_ERR, you should set the value of the mysql.response.errmsg with a suitable error message. |
errmsg | A string containing the error message that will be returned to the client. |
resultset | A structure containing the result set information (columns and rows), identical to what would be returned when returning a results from a SELECT query. |
When using proxy.response you either set proxy.response.type to proxy.MYSQLD_PACKET_OK and then build resultset to contain the results to return, or set proxy.response.type to proxy.MYSQLD_PACKET_ERR and set the proxy.response.errmsg to a string with the error message. To send the completed result set or error message, you should return the proxy.PROXY_SEND_RESULT to trigger the return of the packet information.
An example of this can be seen in the tutorial-resultset.lua script within the MySQL Proxy package:
if string.lower(command) == "show" and string.lower(option) == "querycounter" then

-- proxy.PROXY_SEND_RESULT requires
--
-- proxy.response.type to be either
-- * proxy.MYSQLD_PACKET_OK or
-- * proxy.MYSQLD_PACKET_ERR
--
-- for proxy.MYSQLD_PACKET_OK you need a resultset
-- * fields
-- * rows
--
-- for proxy.MYSQLD_PACKET_ERR
-- * errmsg
proxy.response.type = proxy.MYSQLD_PACKET_OK
proxy.response.resultset = {
fields = {
{ type = proxy.MYSQL_TYPE_LONG, name = "global_query_counter", },
{ type = proxy.MYSQL_TYPE_LONG, name = "query_counter", },
},
rows = {
{ proxy.global.query_counter, query_counter }
}
}
-- we have our result, send it back
return proxy.PROXY_SEND_RESULT
elseif string.lower(command) == "show" and string.lower(option) == "myerror" then
proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "my first error"
return proxy.PROXY_SEND_RESULT
proxy.response.resultset
The proxy.response.resultset structure should be populated with the rows and columns of data to return. The structure contains the information about the entire result set, with the individual elements of the data shown in the following table.
The following table describes the attributes of the proxy.response.resultset structure.
Attribute | Description |
---|---|
fields | The definition of the columns being returned. This should be a dictionary structure with the type specifying the MySQL data type, and the name specifying the column name. Columns should be listed in the order of the column data that will be returned. |
flags | A number of flags related to the result set. Valid flags include auto_commit (whether an automatic commit was triggered), no_good_index_used (the query executed without using an appropriate index), and no_index_used (the query executed without using any index). |
rows | The actual row data. The information should be returned as an array of arrays. Each inner array should contain the column data, with the outer array making up the entire result set. |
warning_count | The number of warnings for this result set. |
affected_rows | The number of rows affected by the original statement. |
insert_id | The last insert ID for an auto-incremented column in a table. |
query_status | The status of the query operation. You can use the MYSQLD_PACKET_OK or MYSQLD_PACKET_ERR constants to populate this parameter. |
For an example showing how to use this structure, see proxy.response.
Proxy Return State Constants
The following constants are used internally by the proxy to specify the response to send to the client or server. All constants are exposed as values within the main proxy table.
Constant | Description |
---|---|
PROXY_SEND_QUERY | Causes the proxy to send the current contents of the queries queue to the server. |
PROXY_SEND_RESULT | Causes the proxy to send a result set back to the client. |
PROXY_IGNORE_RESULT | Causes the proxy to drop the result set (nothing is returned to the client). |
As constants, these entities are available without qualification in the Lua scripts. For example, at the end of the read_query_result() you might return PROXY_IGNORE_RESULT:
return proxy.PROXY_IGNORE_RESULT
Packet State Constants
The following states describe the status of a network packet. These items are entries within the main proxy table.
Constant | Description |
---|---|
MYSQLD_PACKET_OK | The packet is OK |
MYSQLD_PACKET_ERR | The packet contains error information |
MYSQLD_PACKET_RAW | The packet contains raw data |
Backend State/Type Constants
The following constants are used either to define the status or type of the backend MySQL server to which the proxy is connected. These items are entries within the main proxy table.
Constant | Description |
---|---|
BACKEND_STATE_UNKNOWN | The current status is unknown |
BACKEND_STATE_UP | The backend is known to be up (available) |
BACKEND_STATE_DOWN | The backend is known to be down (unavailable) |
BACKEND_TYPE_UNKNOWN | Backend type is unknown |
BACKEND_TYPE_RW | Backend is available for read/write |
BACKEND_TYPE_RO | Backend is available only for read-only use |
Server Command Constants
The values described in the table below are used in the packets exchanged between the client and server to identify the information in the rest of the packet. These items are entries within the main proxy table. The packet type is defined as the first character in the sent packet. For example, when intercepting packets from the client to edit or monitor a query, you would check that the first byte of the packet was of type proxy.COM_QUERY.
Constant | Description |
---|---|
COM_SLEEP | Sleep |
COM_QUIT | Quit |
COM_INIT_DB | Initialize database |
COM_QUERY | Query |
COM_FIELD_LIST | Field List |
COM_CREATE_DB | Create database |
COM_DROP_DB | Drop database |
COM_REFRESH | Refresh |
COM_SHUTDOWN | Shutdown |
COM_STATISTICS | Statistics |
COM_PROCESS_INFO | Process List |
COM_CONNECT | Connect |
COM_PROCESS_KILL | Kill |
COM_DEBUG | Debug |
COM_PING | Ping |
COM_TIME | Time |
COM_DELAYED_INSERT | Delayed insert |
COM_CHANGE_USER | Change user |
COM_BINLOG_DUMP | Binlog dump |
COM_TABLE_DUMP | Table dump |
COM_CONNECT_OUT | Connect out |
COM_REGISTER_SLAVE | Register slave |
COM_STMT_PREPARE | Prepare server-side statement |
COM_STMT_EXECUTE | Execute server-side statement |
COM_STMT_SEND_LONG_DATA | Long data |
COM_STMT_CLOSE | Close server-side statement |
COM_STMT_RESET | Reset statement |
COM_SET_OPTION | Set option |
COM_STMT_FETCH | Fetch statement |
COM_DAEMON | Daemon (MySQL 5.1 only) |
COM_ERROR | Error |
MySQL Type Constants
These constants are used to identify the field types in the query result data returned to clients from the result of a query. These items are entries within the main proxy table.
Constant | Field Type |
---|---|
MYSQL_TYPE_DECIMAL | Decimal |
MYSQL_TYPE_NEWDECIMAL | Decimal (MySQL 5.0 or later) |
MYSQL_TYPE_TINY | Tiny |
MYSQL_TYPE_SHORT | Short |
MYSQL_TYPE_LONG | Long |
MYSQL_TYPE_FLOAT | Float |
MYSQL_TYPE_DOUBLE | Double |
MYSQL_TYPE_NULL | Null |
MYSQL_TYPE_TIMESTAMP | Timestamp |
MYSQL_TYPE_LONGLONG | Long long |
MYSQL_TYPE_INT24 | Integer |
MYSQL_TYPE_DATE | Date |
MYSQL_TYPE_TIME | Time |
MYSQL_TYPE_DATETIME | Datetime |
MYSQL_TYPE_YEAR | Year |
MYSQL_TYPE_NEWDATE | Date (MySQL 5.0 or later) |
MYSQL_TYPE_ENUM | Enumeration |
MYSQL_TYPE_SET | Set |
MYSQL_TYPE_TINY_BLOB | Tiny Blob |
MYSQL_TYPE_MEDIUM_BLOB | Medium Blob |
MYSQL_TYPE_LONG_BLOB | Long Blob |
MYSQL_TYPE_BLOB | Blob |
MYSQL_TYPE_VAR_STRING | Varstring |
MYSQL_TYPE_STRING | String |
MYSQL_TYPE_TINY | Tiny (compatible with MYSQL_TYPE_CHAR) |
MYSQL_TYPE_ENUM | Enumeration (compatible with MYSQL_TYPE_INTERVAL) |
MYSQL_TYPE_GEOMETRY | Geometry |
MYSQL_TYPE_BIT | Bit |
15.7.4.3. Capturing a Connection with connect_server()
When the proxy accepts a connection from a MySQL client, the connect_server() function is called.
There are no arguments to the function, but you can use and if necessary manipulate the information in the proxy.connection table, which is unique to each client session.
For example, if you have multiple backend servers, you can specify which server that connection should use by setting the value of proxy.connection.backend_ndx to a valid server number. The following code chooses between two servers based on whether the current time in minutes is odd or even:
function connect_server()
print("--> a client really wants to talk to a server")
if (tonumber(os.date("%M")) % 2 == 0) then
proxy.connection.backend_ndx = 2
print("Choosing backend 2")
else
proxy.connection.backend_ndx = 1
print("Choosing backend 1")
end
print("Using " .. proxy.global.backends[proxy.connection.backend_ndx].dst.name)
end
This example also displays the IP address/port combination by accessing the information from the internal proxy.global.backends table.
15.7.4.4. Examining the Handshake with read_handshake()
Handshake information is sent by the server to the client after the initial connection (through connect_server()) has been made. The handshake information contains details about the MySQL version, the ID of the thread that will handle the connection information, and the IP address of the client and server. This information is exposed through the proxy.connection structure.
proxy.connection.server.mysqld_version: The version of the MySQL server.
proxy.connection.server.thread_id: The thread ID.
proxy.connection.server.scramble_buffer: The password scramble buffer.
proxy.connection.server.dst.name: The IP address of the server.
proxy.connection.client.src.name: The IP address of the client.
For example, you can print out the handshake data and refuse clients by IP address with the following function:
function read_handshake()
print("<-- let's send him some information about us")
print(" mysqld-version: " .. proxy.connection.server.mysqld_version)
print(" thread-id : " .. proxy.connection.server.thread_id)
print(" scramble-buf : " .. string.format("%q",proxy.connection.server.scramble_buffer))
print(" server-addr : " .. proxy.connection.server.dst.name)
print(" client-addr : " .. proxy.connection.client.dst.name)
if not proxy.connection.client.src.name:match("^127.0.0.1:") then
proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "only local connects are allowed"
print("we don't like this client");
return proxy.PROXY_SEND_RESULT
end
end
Note that you must return an error packet to the client by using proxy.PROXY_SEND_RESULT.
15.7.4.5. Examining the Authentication Credentials with read_auth()
The read_auth() function is triggered when an authentication handshake is initiated by the client. In the execution sequence, read_auth() occurs immediately after read_handshake(), so the server selection has already been made, but the connection and authorization information has not yet been provided to the backend server.
You can obtain the authentication information by examining the proxy.connection.client structure. For more information, see proxy.connection.
For example, you can print the user name and password supplied during authorization using:
function read_auth()
print(" username : " .. proxy.connection.client.username)
print(" password : " .. string.format("%q", proxy.connection.client.scrambled_password))
end
You can interrupt the authentication process within this function and return an error packet back to the client by constructing a new packet and returning proxy.PROXY_SEND_RESULT:
proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "Logins are not allowed"
return proxy.PROXY_SEND_RESULT
15.7.4.6. Accessing Authentication Information with read_auth_result()
The return packet from the server during authentication is captured by read_auth_result(). The only argument to this function is the authentication packet returned by the server. As the packet is a raw MySQL network protocol packet, you must access the first byte to identify the packet type and contents. The MYSQLD_PACKET_ERR and MYSQLD_PACKET_OK constants can be used to identify whether the authentication was successful:
function read_auth_result(auth)
local state = auth.packet:byte()
if state == proxy.MYSQLD_PACKET_OK then
print("<-- auth ok");
elseif state == proxy.MYSQLD_PACKET_ERR then
print("<-- auth failed");
else
print("<-- auth ... don't know: " .. string.format("%q", auth.packet));
end
end
If a long-password capable client tries to authenticate to a server that supports long passwords, but the user password provided is actually short, read_auth_result() will be called twice. The first time, auth.packet:byte() will equal 254, indicating that the client should try again using the old password protocol. The second time time read_auth_result()/ is called, auth.packet:byte() will indicate whether the authentication actually succeeded.
15.7.4.7. Manipulating Queries with read_query()
The read_query() function is called once for each query submitted by the client and accepts a single argument, the query packet that was provided. To access the content of the packet, you must parse the packet contents manually.
For example, you can intercept a query packet and print out the contents using the following function definition:
function read_query(packet)
if packet:byte() == proxy.COM_QUERY then
print("we got a normal query: " .. packet:sub(2))
end
end
This example checks the first byte of the packet to determine the type. If the type is COM_QUERY (see Server Command Constants), we extract the query from the packet and print it. The structure of the packet type supplied is important. In the case of a COM_QUERY packet, the remaining contents of the packet are the text of the query string. In this example, no changes have been made to the query or the list of queries that will ultimately be sent to the MySQL server.
To modify a query, or add new queries, you must populate the query queue (proxy.queries), then execute the queries that you have placed into the queue. If you do not modify the original query or the queue, the query received from the client is sent to the MySQL server verbatim.
When adding queries to the queue, you should follow these guidelines:
The packets inserted into the queue must be valid query packets. For each packet, you must set the initial byte to the packet type. If you are appending a query, you can append the query statement to the rest of the packet.
Once you add a query to the queue, the queue is used as the source for queries sent to the server. If you add a query to the queue to add more information, you must also add the original query to the queue or it will not be executed.
Once the queue has been populated, you must set the return value from read_query() to indicate whether the query queue should be sent to the server.
When you add queries to the queue, you should add an ID. The ID you specify is returned with the result set so that you identify each query and corresponding result set. The ID has no other purpose than as an identifier for correlating the query and result set. When operating in a passive mode, during profiling for example, you identify the original query and the corresponding result set so that the results expected by the client can be returned correctly.
Unless your client is designed to cope with more result sets than queries, you should ensure that the number of queries from the client match the number of results sets returned to the client. Using the unique ID and removing result sets you inserted will help.
Normally, the read_query() and read_query_result() function are used in conjunction with each other to inject additional queries and remove the additional result sets. However, read_query_result() is only called if you populate the query queue within read_query().
15.7.4.8. Manipulating Results with read_query_result()
The read_query_result() is called for each result set returned by the server only if you have manually injected queries into the query queue. If you have not manipulated the query queue, this function is not called. The function supports a single argument, the result packet, which provides a number of properties:
id: The ID of the result set, which corresponds to the ID that was set when the query packet was submitted to the server when using append(id) on the query queue. You must have set the resultset_is_needed flag to append to intercept the result set before it is returned to the client. See proxy.queries.
query: The text of the original query.
query_time: The number of microseconds required to receive the first row of a result set since the query was sent to the server.
response_time: The number of microseconds required to receive the last row of the result set since the query was sent to the server.
resultset: The content of the result set data.
By accessing the result information from the MySQL server, you can extract the results that match the queries that you injected, return different result sets (for example, from a modified query), and even create your own result sets.
The following Lua script, for example, will output the query, followed by the query time and response time (that is, the time to execute the query and the time to return the data for the query) for each query sent to the server:
function read_query(packet)
if packet:byte() == proxy.COM_QUERY then
print("we got a normal query: " .. packet:sub(2))
proxy.queries:append(1, packet)
return proxy.PROXY_SEND_QUERY
end
end
function read_query_result(inj)
print("query-time: " .. (inj.query_time / 1000) .. "ms")
print("response-time: " .. (inj.response_time / 1000) .. "ms")
end
You can access the rows of returned results from the result set by accessing the rows property of the resultset property of the result that is exposed through read_query_result(). For example, you can iterate over the results showing the first column from each row using this Lua fragment:
for row in inj.resultset.rows do
print("injected query returned: " .. row[1])
end
Just like read_query(), read_query_result() can return different values for each result according to the result returned. If you have injected additional queries into the query queue, for example, remove the results returned from those additional queries and return only the results from the query originally submitted by the client.
The following example injects additional SELECT NOW() statements into the query queue, giving them a different ID to the ID of the original query. Within read_query_result(), if the ID for the injected queries is identified, we display the result row, and return the proxy.PROXY_IGNORE_RESULT from the function so that the result is not returned to the client. If the result is from any other query, we print out the query time information for the query and return the default, which passes on the result set unchanged. We could also have explicitly returned proxy.PROXY_IGNORE_RESULT to the MySQL client.
function read_query(packet)
if packet:byte() == proxy.COM_QUERY then
proxy.queries:append(2, string.char(proxy.COM_QUERY) .. "SELECT NOW()", {resultset_is_needed = true})
proxy.queries:append(1, packet, {resultset_is_needed = true})
proxy.queries:append(2, string.char(proxy.COM_QUERY) .. "SELECT NOW()", {resultset_is_needed = true})
return proxy.PROXY_SEND_QUERY
end
end
function read_query_result(inj)
if inj.id == 2 then
for row in inj.resultset.rows do
print("injected query returned: " .. row[1])
end
return proxy.PROXY_IGNORE_RESULT
else
print("query-time: " .. (inj.query_time / 1000) .. "ms")
print("response-time: " .. (inj.response_time / 1000) .. "ms")
end
end
For further examples, see Section 15.7.5, “Using MySQL Proxy”.
15.7.5. Using MySQL Proxy
There are a number of different ways to use MySQL Proxy. At the most basic level, you can allow MySQL Proxy to pass queries from clients to a single server. To use MySQL Proxy in this mode, you just have to specify on the command line the backend server to which the proxy should connect:
shell> mysql-proxy --proxy-backend-addresses=sakila:3306
If you specify multiple backend MySQL servers, the proxy connects each client to each server in a round-robin fashion. Suppose that you have two MySQL servers, A and B. The first client to connect is connected to server A, the second to server B, the third to server A. For example:
shell> mysql-proxy \
--proxy-backend-addresses=narcissus:3306 \
--proxy-backend-addresses=nostromo:3306
When you specify multiple servers in this way, the proxy automatically identifies when a MySQL server has become unavailable and marks it accordingly. New connections are automatically attached to a server that is available, and a warning is reported to the standard output from mysql-proxy:
network-mysqld.c.367: connect(nostromo:3306) failed: Connection refused
network-mysqld-proxy.c.2405: connecting to backend (nostromo:3306) failed, marking it as down for ...
Lua scripts enable a finer level of control, both over the connections and their distribution and how queries and result sets are processed. When using an Lua script, you must specify the name of the script on the command line using the --proxy-lua-script option:
shell> mysql-proxy --proxy-lua-script=mc.lua --proxy-backend-addresses=sakila:3306
When you specify a script, the script is not executed until a connection is made. This means that faults with the script are not raised until the script is executed. Script faults will not affect the distribution of queries to backend MySQL servers.
Note
Because a script is not read until the connection is made, you can modify the contents of the Lua script file while the proxy is still running and the modified script is automatically used for the next connection. This ensures that MySQL Proxy remains available because it need not be restarted for the changes to take effect.
15.7.5.1. Using the Administration Interface
The mysql-proxy administration interface can be accessed using any MySQL client using the standard protocols. You can use the administration interface to gain information about the proxy server as a whole - standard connections to the proxy are isolated to operate as if you were connected directly to the backend MySQL server.
In mysql-proxy 0.8.0 and earlier, a rudimentary interface was built into the proxy. In later versions this was replaced so that you must specify an administration script to be used when users connect to the administration interface.
To use the administration interface, specify the user name and password required to connect to the admin service, using the --admin-username and --admin-password options. You must also specify the Lua script to be used as the interface to the administration service by using the admin-lua-script script option to point to a Lua script.
For example, you can create a basic interface to the internal components of the mysql-proxy system using the following script, written by Diego Medina:
--[[
Copyright 2008, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- admin.lua
--[[
See http://www.chriscalender.com/?p=41
(Thanks to Chris Calender)
See http://datacharmer.blogspot.com/2009/01/mysql-proxy-is-back.html
(Thanks Giuseppe Maxia)
--]]
function set_error(errmsg)
proxy.response = {
type = proxy.MYSQLD_PACKET_ERR,
errmsg = errmsg or "error"
}
end
function read_query(packet)
if packet:byte() ~= proxy.COM_QUERY then
set_error("[admin] we only handle text-based queries (COM_QUERY)")
return proxy.PROXY_SEND_RESULT
end
local query = packet:sub(2)
local rows = { }
local fields = { }
-- try to match the string up to the first non-alphanum
local f_s, f_e, command = string.find(packet, "^%s*(%w+)", 2)
local option
if f_e then
-- if that match, take the next sub-string as option
f_s, f_e, option = string.find(packet, "^%s+(%w+)", f_e + 1)
end
-- we got our commands, execute it
if command == "show" and option == "querycounter" then

-- proxy.PROXY_SEND_RESULT requires
--
-- proxy.response.type to be either
-- * proxy.MYSQLD_PACKET_OK or
-- * proxy.MYSQLD_PACKET_ERR
--
-- for proxy.MYSQLD_PACKET_OK you need a resultset
-- * fields
-- * rows
--
-- for proxy.MYSQLD_PACKET_ERR
-- * errmsg
proxy.response.type = proxy.MYSQLD_PACKET_OK
proxy.response.resultset = {
fields = {
{ type = proxy.MYSQL_TYPE_LONG, name = "query_counter", },
},
rows = {
{ proxy.global.query_counter }
}
}
-- we have our result, send it back
return proxy.PROXY_SEND_RESULT
elseif command == "show" and option == "myerror" then
proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "my first error"
return proxy.PROXY_SEND_RESULT
elseif string.sub(packet, 2):lower() == 'select help' then
return show_process_help()
elseif string.sub(packet, 2):lower() == 'show proxy processlist' then
return show_process_table()
elseif query == "SELECT * FROM backends" then
fields = {
{ name = "backend_ndx",
type = proxy.MYSQL_TYPE_LONG },
{ name = "address",
type = proxy.MYSQL_TYPE_STRING },
{ name = "state",
type = proxy.MYSQL_TYPE_STRING },
{ name = "type",
type = proxy.MYSQL_TYPE_STRING },
}
for i = 1, #proxy.global.backends do
local b = proxy.global.backends[i]
rows[#rows + 1] = {
i, b.dst.name, b.state, b.type
}
end
else
set_error()
return proxy.PROXY_SEND_RESULT
end
proxy.response = {
type = proxy.MYSQLD_PACKET_OK,
resultset = {
fields = fields,
rows = rows
}
}
return proxy.PROXY_SEND_RESULT
end
function make_dataset (header, dataset)
proxy.response.type = proxy.MYSQLD_PACKET_OK
proxy.response.resultset = {
fields = {},
rows = {}
}
for i,v in pairs (header) do
table.insert(proxy.response.resultset.fields, {type = proxy.MYSQL_TYPE_STRING, name = v})
end
for i,v in pairs (dataset) do
table.insert(proxy.response.resultset.rows, v)
end
return proxy.PROXY_SEND_RESULT
end
function show_process_table()
local dataset = {}
local header = { 'Id', 'IP Address', 'Time' }
local rows = {}
for t_i, t_v in pairs (proxy.global.process) do
for s_i, s_v in pairs (t_v) do
table.insert(rows, { t_i, s_v.ip, os.date('%c',s_v.ts) })
end
end
return make_dataset(header,rows)
end
function show_process_help()
local dataset = {}
local header = { 'command', 'description' }
local rows = {
{'SELECT HELP', 'This command.'},
{'SHOW PROXY PROCESSLIST', 'Show all connections and their true IP Address.'},
}
return make_dataset(header,rows)
end
function dump_process_table()
proxy.global.initialize_process_table()
print('current contents of process table')
for t_i, t_v in pairs (proxy.global.process) do
print ('session id: ', t_i)
for s_i, s_v in pairs (t_v) do
print ('\t', s_i, s_v.ip, s_v.ts)
end
end
print ('---END PROCESS TABLE---')
end
--[[Help
we use a simple string-match to split commands are word-boundaries
mysql> show querycounter
is split into
command = "show"
option = "querycounter"
spaces are ignored, the case has to be as is.
mysql> show myerror
returns a error-packet
--]]
The script works in combination with a main proxy script, reporter.lua:
--[[
Copyright 2008, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- reporter.lua
--[[
See http://www.chriscalender.com/?p=41
(Thanks to Chris Calender)
See http://datacharmer.blogspot.com/2009/01/mysql-proxy-is-back.html
(Thanks Giuseppe Maxia)
--]]
proxy.global.query_counter = proxy.global.query_counter or 0
function proxy.global.initialize_process_table()
if proxy.global.process == nil then
proxy.global.process = {}
end
if proxy.global.process[proxy.connection.server.thread_id] == nil then
proxy.global.process[proxy.connection.server.thread_id] = {}
end
end
function read_auth_result(auth)
local state = auth.packet:byte()
if state == proxy.MYSQLD_PACKET_OK then
proxy.global.initialize_process_table()
table.insert(proxy.global.process[proxy.connection.server.thread_id],
{ ip = proxy.connection.client.src.name, ts = os.time() })
end
end
function disconnect_client()
local connection_id = proxy.connection.server.thread_id
if connection_id then
-- client has disconnected, set this to nil
proxy.global.process[connection_id] = nil
end
end

-- read_query() can return a resultset
--
-- You can use read_query() to return a result-set.
--
-- @param packet the mysql-packet sent by the client
--
-- @return
-- * nothing to pass on the packet as is,
-- * proxy.PROXY_SEND_QUERY to send the queries from the proxy.queries queue
-- * proxy.PROXY_SEND_RESULT to send your own result-set
--
function read_query(packet)
-- a new query came in in this connection
-- using proxy.global.* to make it available to the admin plugin
proxy.global.query_counter = proxy.global.query_counter + 1
end
To use the script, save the first script to a file (admin.lua in the following example) and the other to reporter.lua, then run mysql-proxy specifying the admin script and a backend MySQL server:
shell> mysql-proxy --admin-lua-script=admin.lua --admin-password=password \ »
--admin-username=root --proxy-backend-addresses=127.0.0.1:3306 -proxy-lua-script=reporter.lua
In a different window, connect to the MySQL server through the proxy:
shell> mysql --user=root --password=password --port=4040
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1798669
Server version: 5.0.70-log Gentoo Linux mysql-5.0.70-r1
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>
In another different window, connect to the mysql-proxy admin service using the specified user name and password:
shell> mysql --user=root --password=password --port=4041 --host=localhost
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.0.99-agent-admin
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>
To monitor the status of the proxy, ask for a list of the current active processes:
mysql> show proxy processlist;
+---------+---------------------+--------------------------+
| Id | IP Address | Time |
+---------+---------------------+--------------------------+
| 1798669 | 192.168.0.112:52592 | Wed Jan 20 16:58:00 2010 |
+---------+---------------------+--------------------------+
1 row in set (0.00 sec)
mysql>
For more information on the example, see MySQL Proxy Admin Example.
15.7.6. MySQL Proxy FAQ
Questions
16.7.6.1: In load balancing, how can I separate reads from writes?
16.7.6.2: How do I use a socket with MySQL Proxy? Proxy change logs mention that support for UNIX sockets has been added.
16.7.6.3: Can I use MySQL Proxy with all versions of MySQL?
16.7.6.4: Can I run MySQL Proxy as a daemon?
16.7.6.5: Do proxy applications run on a separate server? If not, what is the overhead incurred by Proxy on the DB server side?
16.7.6.6: With load balancing, what happens to transactions? Are all queries sent to the same server?
16.7.6.7: Is it possible to use MySQL Proxy with updating a Lucene index (or Solr) by making TCP calls to that server to update?
16.7.6.8: Is the system context switch expensive, how much overhead does the Lua script add?
16.7.6.9: How much latency does a proxy add to a connection?
16.7.6.10: Do you have to make one large script and call it at proxy startup, can I change scripts without stopping and restarting (interrupting) the proxy?
16.7.6.11: If MySQL Proxy has to live on same machine as MySQL, are there any tuning considerations to ensure both perform optimally?
16.7.6.12: I currently use SQL Relay for efficient connection pooling with a number of Apache processes connecting to a MySQL server. Can MySQL Proxy currently accomplish this? My goal is to minimize connection latency while keeping temporary tables available.
16.7.6.13: Are these reserved function names (for example, error_result()) that get automatically called?
16.7.6.14: As the script is re-read by MySQL Proxy, does it cache this or is it looking at the file system with each request?
16.7.6.15: Given that there is a connect_server() function, can a Lua script link up with multiple servers?
16.7.6.16: Is the MySQL Proxy an API?
16.7.6.17: The global namespace variable example with quotas does not persist after a reboot, is that correct?
16.7.6.18: Can MySQL Proxy handle SSL connections?
16.7.6.19: Could MySQL Proxy be used to capture passwords?
16.7.6.20: Are there tools for isolating problems? How can someone figure out whether a problem is in the client, the database, or the proxy?
16.7.6.21: Is MySQL Proxy similar to what is provided by Java connection pools?
16.7.6.22: So authentication with connection pooling has to be done at every connection? What is the authentication latency?
16.7.6.23: If you have multiple databases on the same box, can you use proxy to connect to databases on default port 3306?
16.7.6.24: What about caching the authorization information so clients connecting are given back-end connections that were established with identical authorization information, thus saving a few more round trips?
16.7.6.25: Is there any big web site using MySQL Proxy? For what purpose and what transaction rate have they achieved?
16.7.6.26: How does MySQL Proxy compare to DBSlayer?
16.7.6.27: I tried using MySQL Proxy without any Lua script to try a round-robin type load balancing. In this case, if the first database in the list is down, MySQL Proxy would not connect the client to the second database in the list.
16.7.6.28: Is it “safe” to use LuaSocket with proxy scripts?
16.7.6.29: How different is MySQL Proxy from DBCP (Database connection pooling) for Apache in terms of connection pooling?
16.7.6.30: MySQL Proxy can handle about 5000 connections, what is the limit on a MySQL server?
16.7.6.31: Would the Java-only connection pooling solution work for multiple web servers? With this, I would assume that you can pool across many web servers at once?
Questions and Answers
16.7.6.1: In load balancing, how can I separate reads from writes?
There is no automatic separation of queries that perform reads or writes to the different backend servers. However, you can specify to mysql-proxy that one or more of the “backend” MySQL servers are read only.
shell> mysql-proxy \
--proxy-backend-addresses=10.0.1.2:3306 \
--proxy-read-only-backend-addresses=10.0.1.3:3306 &
16.7.6.2: How do I use a socket with MySQL Proxy? Proxy change logs mention that support for UNIX sockets has been added.
Specify the path to the socket:
--proxy-backend-addresses=/path/to/socket
16.7.6.3: Can I use MySQL Proxy with all versions of MySQL?
MySQL Proxy is designed to work with MySQL 5.0 or higher, and supports the MySQL network protocol for 5.0 and higher.
16.7.6.4: Can I run MySQL Proxy as a daemon?
Use the --daemon option. To keep track of the process ID, the daemon can be started with the --pid-file=file option to save the PID to a known file name. On version 0.5.x, the Proxy cannot be started natively as a daemon.
16.7.6.5: Do proxy applications run on a separate server? If not, what is the overhead incurred by Proxy on the DB server side?
You can run the proxy on the application server, on its own box, or on the DB-server depending on the use case.
16.7.6.6: With load balancing, what happens to transactions? Are all queries sent to the same server?
Without any special customization the whole connection is sent to the same server. That keeps the whole connection state intact.
16.7.6.7: Is it possible to use MySQL Proxy with updating a Lucene index (or Solr) by making TCP calls to that server to update?
Yes, but it is not advised for now.
16.7.6.8: Is the system context switch expensive, how much overhead does the Lua script add?
Lua is fast and the overhead should be small enough for most applications. The raw packet overhead is around 400 microseconds.
16.7.6.9: How much latency does a proxy add to a connection?
In the range of 400 microseconds per request.
16.7.6.10: Do you have to make one large script and call it at proxy startup, can I change scripts without stopping and restarting (interrupting) the proxy?
You can just change the script and the proxy will reload it when a client connects.
16.7.6.11: If MySQL Proxy has to live on same machine as MySQL, are there any tuning considerations to ensure both perform optimally?
MySQL Proxy can live on any box: application, database, or its own box. MySQL Proxy uses comparatively little CPU or RAM, with negligible additional requirements or overhead.
16.7.6.12: I currently use SQL Relay for efficient connection pooling with a number of Apache processes connecting to a MySQL server. Can MySQL Proxy currently accomplish this? My goal is to minimize connection latency while keeping temporary tables available.
Yes.
16.7.6.13: Are these reserved function names (for example, error_result()) that get automatically called?
Only functions and values starting with proxy.* are provided by the proxy. All others are user provided.
16.7.6.14: As the script is re-read by MySQL Proxy, does it cache this or is it looking at the file system with each request?
It looks for the script at client-connect and reads it if it has changed, otherwise it uses the cached version.
16.7.6.15: Given that there is a connect_server() function, can a Lua script link up with multiple servers?
MySQL Proxy provides some tutorials in the source package; one is examples/tutorial-keepalive.lua.
16.7.6.16: Is the MySQL Proxy an API?
No, MySQL Proxy is an application that forwards packets from a client to a server using the MySQL network protocol. The MySQL Proxy provides a API allowing you to change its behavior.
16.7.6.17: The global namespace variable example with quotas does not persist after a reboot, is that correct?
Yes. If you restart the proxy, you lose the results, unless you save them in a file.
16.7.6.18: Can MySQL Proxy handle SSL connections?
No, being the man-in-the-middle, Proxy cannot handle encrypted sessions because it cannot share the SSL information.
16.7.6.19: Could MySQL Proxy be used to capture passwords?
The MySQL network protocol does not allow passwords to be sent in cleartext, all you could capture is the encrypted version.
16.7.6.20: Are there tools for isolating problems? How can someone figure out whether a problem is in the client, the database, or the proxy?
You can set a debug script in the proxy, which is an exceptionally good tool for this purpose. You can see very clearly which component is causing the problem, if you set the right breakpoints.
16.7.6.21: Is MySQL Proxy similar to what is provided by Java connection pools?
Yes and no. Java connection pools are specific to Java applications, MySQL Proxy works with any client API that talks the MySQL network protocol. Also, connection pools do not provide any functionality for intelligently examining the network packets and modifying the contents.
16.7.6.22: So authentication with connection pooling has to be done at every connection? What is the authentication latency?
You can skip the round-trip and use the connection as it was added to the pool. As long as the application cleans up the temporary tables it used. The overhead is (as always) around 400 microseconds.
16.7.6.23: If you have multiple databases on the same box, can you use proxy to connect to databases on default port 3306?
Yes, MySQL Proxy can listen on any port, provided that none of the MySQL servers are listening on the same port.
16.7.6.24: What about caching the authorization information so clients connecting are given back-end connections that were established with identical authorization information, thus saving a few more round trips?
There is an --proxy-pool-no-change-user option that provides this functionality.
16.7.6.25: Is there any big web site using MySQL Proxy? For what purpose and what transaction rate have they achieved?
Yes, gaiaonline. They have tested MySQL Proxy and seen it handle 2400 queries per second through the proxy.
16.7.6.26: How does MySQL Proxy compare to DBSlayer?
DBSlayer is a REST->MySQL tool, MySQL Proxy is transparent to your application. No change to the application is needed.
16.7.6.27: I tried using MySQL Proxy without any Lua script to try a round-robin type load balancing. In this case, if the first database in the list is down, MySQL Proxy would not connect the client to the second database in the list.
This issue is fixed in version 0.7.0.
16.7.6.28: Is it “safe” to use LuaSocket with proxy scripts?
You can, but it is not advised because it may block.
16.7.6.29: How different is MySQL Proxy from DBCP (Database connection pooling) for Apache in terms of connection pooling?
Connection Pooling is just one use case of the MySQL Proxy. You can use it for a lot more and it works in cases where you cannot use DBCP (for example, if you do not have Java).
16.7.6.30: MySQL Proxy can handle about 5000 connections, what is the limit on a MySQL server?
The server limit is given by the value of the max_connections system variable. The default value is version dependent.
16.7.6.31: Would the Java-only connection pooling solution work for multiple web servers? With this, I would assume that you can pool across many web servers at once?
Yes. But you can also start one proxy on each application server to get a similar behavior as you have it already.
Chapter 16. Replication
Table of Contents
16.1. Replication Configuration
16.1.1. How to Set Up Replication
16.1.2. Replication Formats
16.1.3. Replication with Global Transaction Identifiers
16.1.4. Replication and Binary Logging Options and Variables
16.1.5. Common Replication Administration Tasks
16.2. Replication Implementation
16.2.1. Replication Implementation Details
16.2.2. Replication Relay and Status Logs
16.2.3. How Servers Evaluate Replication Filtering Rules
16.3.1. Using Replication for Backups
16.3.2. Using Replication with Different Master and Slave Storage Engines
16.3.3. Using Replication for Scale-Out
16.3.4. Replicating Different Databases to Different Slaves
16.3.5. Improving Replication Performance
16.3.6. Switching Masters During Failover
16.3.7. Setting Up Replication Using SSL
16.3.8. Semisynchronous Replication
16.3.9. Delayed Replication
16.4. Replication Notes and Tips
16.4.1. Replication Features and Issues
16.4.2. Replication Compatibility Between MySQL Versions
16.4.3. Upgrading a Replication Setup
16.4.4. Troubleshooting Replication
16.4.5. How to Report Replication Bugs or Problems
Replication enables data from one MySQL database server (the master) to be replicated to one or more MySQL database servers (the slaves). Replication is asynchronous by default - slaves need not to connected permanently to receive updates from the master. This means that updates can occur over long-distance connections and even over temporary or intermittent connections such as a dial-up service. Depending on the configuration, you can replicate all databases, selected databases, or even selected tables within a database.
For answers to some questions often asked by those who are new to MySQL Replication, see Section B.13, “MySQL 5.6 FAQ: Replication”.
The target uses for replication in MySQL include:
Scale-out solutions - spreading the load among multiple slaves to improve performance. In this environment, all writes and updates must take place on the master server. Reads, however, may take place on one or more slaves. This model can improve the performance of writes (since the master is dedicated to updates), while dramatically increasing read speed across an increasing number of slaves.
Data security - because data is replicated to the slave, and the slave can pause the replication process, it is possible to run backup services on the slave without corrupting the corresponding master data.
Analytics - live data can be created on the master, while the analysis of the information can take place on the slave without affecting the performance of the master.
Long-distance data distribution - if a branch office would like to work with a copy of your main data, you can use replication to create a local copy of the data for their use without requiring permanent access to the master.
Replication in MySQL features support for one-way, asynchronous replication, in which one server acts as the master, while one or more other servers act as slaves. This is in contrast to the synchronous replication which is a characteristic of MySQL Cluster (see MySQL Cluster NDB 7.2). In MySQL 5.6, an interface to semisynchronous replication is supported in addition to the built-in asynchronous replication. With semisynchronous replication, a commit performed on the master side blocks before returning to the session that performed the transaction until at least one slave acknowledges that it has received and logged the events for the transaction. See Section 16.3.8, “Semisynchronous Replication” MySQL 5.6 also supports delayed replication such that a slave server deliberately lags behind the master by at least a specified amount of time. See Section 16.3.9, “Delayed Replication”.
There are a number of solutions available for setting up replication between two servers, but the best method to use depends on the presence of data and the engine types you are using. For more information on the available options, see Section 16.1.1, “How to Set Up Replication”.
There are two core types of replication format, Statement Based Replication (SBR), which replicates entire SQL statements, and Row Based Replication (RBR), which replicates only the changed rows. You may also use a third variety, Mixed Based Replication (MBR). For more information on the different replication formats, see Section 16.1.2, “Replication Formats”. In MySQL 5.6, statement-based format is the default.
MySQL 5.6.5 and later supports transactional replication based on global transaction identifiers (GTIDs). When using this type of replication, it is not necessary to work directly with log files or positions within these files, which greatly simplifies many common replication tasks. Because replication using GTIDs is entirely transactional, consistency between master and slave is guaranteed as long as all transactions committed on the master have also been applied on the slave. For more information about GTIDs and GTID-based replication, see Section 16.1.3, “Replication with Global Transaction Identifiers”.
Replication is controlled through a number of different options and variables. These control the core operation of the replication, timeouts, and the databases and filters that can be applied on databases and tables. For more information on the available options, see Section 16.1.4, “Replication and Binary Logging Options and Variables”.
You can use replication to solve a number of different problems, including problems with performance, supporting the backup of different databases, and as part of a larger solution to alleviate system failures. For information on how to address these issues, see Section 16.3, “Replication Solutions”.
For notes and tips on how different data types and statements are treated during replication, including details of replication features, version compatibility, upgrades, and problems and their resolution, including an FAQ, see Section 16.4, “Replication Notes and Tips”.
For detailed information on the implementation of replication, how replication works, the process and contents of the binary log, background threads and the rules used to decide how statements are recorded and replication, see Section 16.2, “Replication Implementation”.
16.1. Replication Configuration
Replication between servers in MySQL is based on the binary logging mechanism. The MySQL instance operating as the master (the source of the database changes) writes updates and changes as “events” to the binary log. The information in the binary log is stored in different logging formats according to the database changes being recorded. Slaves are configured to read the binary log from the master and to execute the events in the binary log on the slave's local database.
The master is “dumb” in this scenario. Once binary logging has been enabled, all statements are recorded in the binary log. Each slave receives a copy of the entire contents of the binary log. It is the responsibility of the slave to decide which statements in the binary log should be executed; you cannot configure the master to log only certain events. If you do not specify otherwise, all events in the master binary log are executed on the slave. If required, you can configure the slave to process only events that apply to particular databases or tables.
Each slave keeps a record of the binary log coordinates: The file name and position within the file that it has read and processed from the master. This means that multiple slaves can be connected to the master and executing different parts of the same binary log. Because the slaves control this process, individual slaves can be connected and disconnected from the server without affecting the master's operation. Also, because each slave remembers the position within the binary log, it is possible for slaves to be disconnected, reconnect and then “catch up” by continuing from the recorded position.
Both the master and each slave must be configured with a unique ID (using the server-id option). In addition, each slave must be configured with information about the master host name, log file name, and position within that file. These details can be controlled from within a MySQL session using the CHANGE MASTER TO statement on the slave. The details are stored within the slave's master.info file.
This section describes the setup and configuration required for a replication environment, including step-by-step instructions for creating a new replication environment. The major components of this section are:
For a guide to setting up two or more servers for replication, Section 16.1.1, “How to Set Up Replication”, deals with the configuration of the systems and provides methods for copying data between the master and slaves.
Events in the binary log are recorded using a number of formats. These are referred to as statement-based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication (MIXED), uses SBR or RBR replication automatically to take advantage of the benefits of both SBR and RBR formats when appropriate. The different formats are discussed in Section 16.1.2, “Replication Formats”.
Detailed information on the different configuration options and variables that apply to replication is provided in Section 16.1.4, “Replication and Binary Logging Options and Variables”.
Once started, the replication process should require little administration or monitoring. However, for advice on common tasks that you may want to execute, see Section 16.1.5, “Common Replication Administration Tasks”.
16.1.1. How to Set Up Replication
This section describes how to set up complete replication of a MySQL server. There are a number of different methods for setting up replication, and the exact method to use depends on how you are setting up replication, and whether you already have data within your master database.
There are some generic tasks that are common to all replication setups:
On the master, you must enable binary logging and configure a unique server ID. This might require a server restart. See Section 16.1.1.1, “Setting the Replication Master Configuration”.
On each slave that you want to connect to the master, you must configure a unique server ID. This might require a server restart. See Section 16.1.1.2, “Setting the Replication Slave Configuration”.
You may want to create a separate user that will be used by your slaves to authenticate with the master to read the binary log for replication. The step is optional. See Section 16.1.1.3, “Creating a User for Replication”.
Before creating a data snapshot or starting the replication process, you should record the position of the binary log on the master. You will need this information when configuring the slave so that the slave knows where within the binary log to start executing events. See Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”.
If you already have data on your master and you want to use it to synchronize your slave, you will need to create a data snapshot. You can create a snapshot using mysqldump (see Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”) or by copying the data files directly (see Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”).
You will need to configure the slave with settings for connecting to the master, such as the host name, login credentials, and binary log file name and position. See Section 16.1.1.10, “Setting the Master Configuration on the Slave”.
Once you have configured the basic options, you will need to follow the instructions for your replication setup. A number of alternatives are provided:
If you are establishing a new MySQL master and one or more slaves, you need only set up the configuration, as you have no data to exchange. For guidance on setting up replication in this situation, see Section 16.1.1.7, “Setting Up Replication with New Master and Slaves”.
If you are already running a MySQL server, and therefore already have data that must be transferred to your slaves before replication starts, have not previously configured the binary log and are able to shut down your MySQL server for a short period during the process, see Section 16.1.1.8, “Setting Up Replication with Existing Data”.
If you are adding slaves to an existing replication environment, you can set up the slaves without affecting the master. See Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”.
If you will be administering MySQL replication servers, we suggest that you read this entire chapter through and try all statements mentioned in Section 13.4.1, “SQL Statements for Controlling Master Servers”, and Section 13.4.2, “SQL Statements for Controlling Slave Servers”. You should also familiarize yourself with the replication startup options described in Section 16.1.4, “Replication and Binary Logging Options and Variables”.
Note
Note that certain steps within the setup process require the SUPER privilege. If you do not have this privilege, it might not be possible to enable replication.
16.1.1.1. Setting the Replication Master Configuration
On a replication master, you must enable binary logging and establish a unique server ID. If this has not already been done, this part of master setup requires a server restart.
Binary logging must be enabled on the master because the binary log is the basis for sending data changes from the master to its slaves. If binary logging is not enabled, replication will not be possible.
Each server within a replication group must be configured with a unique server ID. This ID is used to identify individual servers within the group, and must be a positive integer between 1 and (232)–1. How you organize and select the numbers is entirely up to you.
To configure the binary log and server ID options, you will need to shut down your MySQL server and edit the my.cnf or my.ini file. Add the following options to the configuration file within the [mysqld] section. If these options already exist, but are commented out, uncomment the options and alter them according to your needs. For example, to enable binary logging using a log file name prefix of mysql-bin, and configure a server ID of 1, use these lines:
[mysqld]
log-bin=mysql-bin
server-id=1
After making the changes, restart the server.
Note
If you omit server-id (or set it explicitly to its default value of 0), a master refuses connections from all slaves.
Note
For the greatest possible durability and consistency in a replication setup using InnoDB with transactions, you should use innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the master my.cnf file.
Note
Ensure that the skip-networking option is not enabled on your replication master. If networking has been disabled, your slave will not able to communicate with the master and replication will fail.
16.1.1.2. Setting the Replication Slave Configuration
On a replication slave, you must establish a unique server ID. If this has not already been done, this part of slave setup requires a server restart.
If the slave server ID is not already set, or the current value conflicts with the value that you have chosen for the master server, you should shut down your slave server and edit the configuration to specify a unique server ID. For example:
[mysqld]
server-id=2
After making the changes, restart the server.
If you are setting up multiple slaves, each one must have a unique server-id value that differs from that of the master and from each of the other slaves. Think of server-id values as something similar to IP addresses: These IDs uniquely identify each server instance in the community of replication partners.
Note
If you omit server-id (or set it explicitly to its default value of 0), a slave refuses to connect to a master.
You do not have to enable binary logging on the slave for replication to be enabled. However, if you enable binary logging on the slave, you can use the binary log for data backups and crash recovery on the slave, and also use the slave as part of a more complex replication topology (for example, where the slave acts as a master to other slaves).
16.1.1.3. Creating a User for Replication
Each slave must connect to the master using a MySQL user name and password, so there must be a user account on the master that the slave can use to connect. Any account can be used for this operation, providing it has been granted the REPLICATION SLAVE privilege. You may wish to create a different account for each slave, or connect to the master using the same account for each slave.
You need not create an account specifically for replication. However, you should be aware that the user name and password will be stored in plain text within the master.info file (see Section 16.2.2.2, “Slave Status Logs”). Therefore, you may want to create a separate account that has privileges only for the replication process, to minimize the possibility of compromise to other accounts.
To create a new account, use CREATE USER. To grant this account the privileges required for replication, use the GRANT statement. If you create an account solely for the purposes of replication, that account needs only the REPLICATION SLAVE privilege. For example, to set up a new user, repl, that can connect for replication from any host within the mydomain.com domain, issue these statements on the master:
mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.mydomain.com';
See Section 13.7.1, “Account Management Statements”, for more information on statements for manipulation of user accounts.
16.1.1.4. Obtaining the Replication Master Binary Log Coordinates
To configure replication on the slave you must determine the master's current coordinates within its binary log. You will need this information so that when the slave starts the replication process, it is able to start processing events from the binary log at the correct point.
If you have existing data on your master that you want to synchronize on your slaves before starting the replication process, you must stop processing statements on the master, and then obtain its current binary log coordinates and dump its data, before permitting the master to continue executing statements. If you do not stop the execution of statements, the data dump and the master status information that you use will not match and you will end up with inconsistent or corrupted databases on the slaves.
To obtain the master binary log coordinates, follow these steps:
Start a session on the master by connecting to it with the command-line client, and flush all tables and block write statements by executing the FLUSH TABLES WITH READ LOCK statement:
mysql> FLUSH TABLES WITH READ LOCK;
For InnoDB tables, note that FLUSH TABLES WITH READ LOCK also blocks COMMIT operations.
Warning
Leave the client from which you issued the FLUSH TABLES statement running so that the read lock remains in effect. If you exit the client, the lock is released.
In a different session on the master, use the SHOW MASTER STATUS statement to determine the current binary log file name and position:
mysql > SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 | 73 | test | manual,mysql |
+------------------+----------+--------------+------------------+
The File column shows the name of the log file and Position shows the position within the file. In this example, the binary log file is mysql-bin.000003 and the position is 73. Record these values. You need them later when you are setting up the slave. They represent the replication coordinates at which the slave should begin processing new updates from the master.
If the master has been running previously without binary logging enabled, the log file name and position values displayed by SHOW MASTER STATUS or mysqldump --master-data will be empty. In that case, the values that you need to use later when specifying the slave's log file and position are the empty string ('') and 4.
You now have the information you need to enable the slave to start reading from the binary log in the correct place to start replication.
If you have existing data that needs be to synchronized with the slave before you start replication, leave the client running so that the lock remains in place and then proceed to Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”, or Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”. The idea here is to prevent any further changes so that the data copied to the slaves is in synchrony with the master.
If you are setting up a brand new master and slave replication group, you can exit the first session to release the read lock.
16.1.1.5. Creating a Data Snapshot Using mysqldump
One way to create a snapshot of the data in an existing master database is to use the mysqldump tool. Once the data dump has been completed, you then import this data into the slave before starting the replication process.
To obtain a snapshot of the data using mysqldump:
If you have not already locked the tables on the server to prevent statements that update data from executing:
Start a session on the server by connecting to it with the command-line client, and flush all tables and block write statements by executing the FLUSH TABLES WITH READ LOCK statement:
mysql> FLUSH TABLES WITH READ LOCK;
Remember to use SHOW MASTER STATUS and record the binary log details for use when starting up the slave. The point in time of your snapshot and the binary log position must match. See Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”.
In another session, use mysqldump to create a dump either of all the databases you want to replicate, or of selected individual databases. For example:
shell> mysqldump --all-databases --lock-all-tables >dbdump.db
An alternative to using a bare dump, is to use the --master-data option, which automatically appends the CHANGE MASTER TO statement required on the slave to start the replication process.
shell> mysqldump --all-databases --master-data >dbdump.db
In the client where you acquired the read lock, release the lock:
mysql> UNLOCK TABLES;
Alternatively, exit the first session to release the read lock.
When choosing databases to include in the dump, remember to filter out databases on each slave that you do not want to include in the replication process.
Either to copy the dump file to the slave, or use the file from the master when connecting remotely to the slave to import the data.
16.1.1.6. Creating a Data Snapshot Using Raw Data Files
If your database is large, copying the raw data files can be more efficient than using mysqldump and importing the file on each slave. This technique skips the overhead of updating indexes as the INSERT statements are replayed.
Using this method with tables in storage engines with complex caching or logging algorithms requires extra steps to produce a perfect “point in time” snapshot: the initial copy command might leave out cache information and logging updates, even if you have acquired a global read lock. How the storage engine responds to this depends on its crash recovery abilities.
This method also does not work reliably if the master and slave have different values for ft_stopword_file, ft_min_word_len, or ft_max_word_len and you are copying tables having full-text indexes.
If you use InnoDB tables, you can use the mysqlbackup command from the MySQL Enterprise Backup component to produce a consistent snapshot. This command records the log name and offset corresponding to the snapshot to be later used on the slave. MySQL Enterprise Backup is a commercial product that is included as part of a MySQL Enterprise subscription. See Section 23.2, “MySQL Enterprise Backup” for detailed information.
Otherwise, use the cold backup technique to obtain a reliable binary snapshot of InnoDB tables: copy all data files after doing a slow shutdown of the MySQL Server.
To create a raw data snapshot of MyISAM tables, you can use standard copy tools such as cp or copy, a remote copy tool such as scp or rsync, an archiving tool such as zip or tar, or a file system snapshot tool such as dump, providing that your MySQL data files exist on a single file system. If you are replicating only certain databases, copy only those files that relate to those tables. (For InnoDB, all tables in all databases are stored in the system tablespace files, unless you have the innodb_file_per_table option enabled.)
You might want to specifically exclude the following files from your archive:
Files relating to the mysql database.
The master.info file.
The master's binary log files.
Any relay log files.
To get the most consistent results with a raw data snapshot, shut down the master server during the process, as follows:
Acquire a read lock and get the master's status. See Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”.
In a separate session, shut down the master server:
shell> mysqladmin shutdown
Make a copy of the MySQL data files. The following examples show common ways to do this. You need to choose only one of them:
shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata
Restart the master server.
If you are not using InnoDB tables, you can get a snapshot of the system from a master without shutting down the server as described in the following steps:
Acquire a read lock and get the master's status. See Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”.
Make a copy of the MySQL data files. The following examples show common ways to do this. You need to choose only one of them:
shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata
In the client where you acquired the read lock, release the lock:
mysql> UNLOCK TABLES;
Once you have created the archive or copy of the database, copy the files to each slave before starting the slave replication process.
16.1.1.7. Setting Up Replication with New Master and Slaves
The easiest and most straightforward method for setting up replication is to use new master and slave servers.
You can also use this method if you are setting up new servers but have an existing dump of the databases from a different server that you want to load into your replication configuration. By loading the data into a new master, the data will be automatically replicated to the slaves.
To set up replication between a new master and slave:
Configure the MySQL master with the necessary configuration properties. See Section 16.1.1.1, “Setting the Replication Master Configuration”.
Start up the MySQL master.
Set up a user. See Section 16.1.1.3, “Creating a User for Replication”.
Obtain the master status information. See Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”.
On the master, release the read lock:
mysql> UNLOCK TABLES;
On the slave, edit the MySQL configuration. See Section 16.1.1.2, “Setting the Replication Slave Configuration”.
Start up the MySQL slave.
Execute a CHANGE MASTER TO statement to set the master replication server configuration. See Section 16.1.1.10, “Setting the Master Configuration on the Slave”.
Perform the slave setup steps on each slave.
Because there is no data to load or exchange on a new server configuration you do not need to copy or import any information.
If you are setting up a new replication environment using the data from a different existing database server, you will now need to run the dump file generated from that server on the new master. The database updates will automatically be propagated to the slaves:
shell> mysql -h master < fulldb.dump
16.1.1.8. Setting Up Replication with Existing Data
When setting up replication with existing data, you will need to decide how best to get the data from the master to the slave before starting the replication service.
The basic process for setting up replication with existing data is as follows:
With the MySQL master running, create a user to be used by the slave when connecting to the master during replication. See Section 16.1.1.3, “Creating a User for Replication”.
If you have not already configured the server-id and enabled binary logging on the master server, you will need to shut it down to configure these options. See Section 16.1.1.1, “Setting the Replication Master Configuration”.
If you have to shut down your master server, this is a good opportunity to take a snapshot of its databases. You should obtain the master status (see Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”) before taking down the master, updating the configuration and taking a snapshot. For information on how to create a snapshot using raw data files, see Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”.
If your master server is already correctly configured, obtain its status (see Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”) and then use mysqldump to take a snapshot (see Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”) or take a raw snapshot of the live server using the guide in Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”.
Update the configuration of the slave. See Section 16.1.1.2, “Setting the Replication Slave Configuration”.
The next step depends on how you created the snapshot of data on the master.
If you used mysqldump:
Start the slave, using the --skip-slave-start option so that replication does not start.
Import the dump file:
shell> mysql < fulldb.dump
If you created a snapshot using the raw data files:
Extract the data files into your slave data directory. For example:
shell> tar xvf dbdump.tar
You may need to set permissions and ownership on the files so that the slave server can access and modify them.
Start the slave, using the --skip-slave-start option so that replication does not start.
Configure the slave with the replication coordinates from the master. This tells the slave the binary log file and position within the file where replication needs to start. Also, configure the slave with the login credentials and host name of the master. For more information on the CHANGE MASTER TO statement required, see Section 16.1.1.10, “Setting the Master Configuration on the Slave”.
Start the slave threads:
mysql> START SLAVE;
After you have performed this procedure, the slave should connect to the master and catch up on any updates that have occurred since the snapshot was taken.
If you have forgotten to set the server-id option for the master, slaves cannot connect to it.
If you have forgotten to set the server-id option for the slave, you get the following error in the slave's error log:
Warning: You should set server-id to a non-0 value if master_host
is set; we will force server id to 2, but this MySQL server will
not act as a slave.
You also find error messages in the slave's error log if it is not able to replicate for any other reason.
Once a slave is replicating, you can find in its data directory one file named master.info and another named relay-log.info. The slave uses these two files to keep track of how much of the master's binary log it has processed. Do not remove or edit these files unless you know exactly what you are doing and fully understand the implications. Even in that case, it is preferred that you use the CHANGE MASTER TO statement to change replication parameters. The slave will use the values specified in the statement to update the status files automatically.
Note
The content of master.info overrides some of the server options specified on the command line or in my.cnf. See Section 16.1.4, “Replication and Binary Logging Options and Variables”, for more details.
A single snapshot of the master suffices for multiple slaves. To set up additional slaves, use the same master snapshot and follow the slave portion of the procedure just described.
16.1.1.9. Introducing Additional Slaves to an Existing Replication Environment
To add another slave to an existing replication configuration, you can do so without stopping the master. Instead, set up the new slave by making a copy of an existing slave, except that you configure the new slave with a different server-id value.
To duplicate an existing slave:
Shut down the existing slave:
shell> mysqladmin shutdown
Copy the data directory from the existing slave to the new slave. You can do this by creating an archive using tar or WinZip, or by performing a direct copy using a tool such as cp or rsync. Ensure that you also copy the log files and relay log files.
A common problem that is encountered when adding new replication slaves is that the new slave fails with a series of warning and error messages like these:
071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a slave and has his hostname
changed!! Please use '--relay-log=new_slave_hostname-relay-bin' to avoid this problem.
071118 16:44:10 [ERROR] Failed to open the relay log './old_slave_hostname-relay-bin.003525'
(relay_log_pos 22940879)
071118 16:44:10 [ERROR] Could not find target log during relay log initialization
071118 16:44:10 [ERROR] Failed to initialize the master info structure
This is due to the fact that, if the --relay-log option is not specified, the relay log files contain the host name as part of their file names. (This is also true of the relay log index file if the --relay-log-index option is not used. See Section 16.1.4, “Replication and Binary Logging Options and Variables”, for more information about these options.)
To avoid this problem, use the same value for --relay-log on the new slave that was used on the existing slave. (If this option was not set explicitly on the existing slave, use existing_slave_hostname-relay-bin.) If this is not feasible, copy the existing slave's relay log index file to the new slave and set the --relay-log-index option on the new slave to match what was used on the existing slave. (If this option was not set explicitly on the existing slave, use existing_slave_hostname-relay-bin.index.) Alternatively—if you have already tried to start the new slave (after following the remaining steps in this section) and have encountered errors like those described previously—then perform the following steps:
If you have not already done so, issue a STOP SLAVE on the new slave.
If you have already started the existing slave again, issue a STOP SLAVE on the existing slave as well.
Copy the contents of the existing slave's relay log index file into the new slave's relay log index file, making sure to overwrite any content already in the file.
Proceed with the remaining steps in this section.
Copy the master.info and relay-log.info files from the existing slave to the new slave if they were not located in the data directory. These files hold the current log coordinates for the master's binary log and the slave's relay log.
Start the existing slave.
On the new slave, edit the configuration and give the new slave a unique server-id not used by the master or any of the existing slaves.
Start the new slave. The slave will use the information in its master.info file to start the replication process.
16.1.1.10. Setting the Master Configuration on the Slave
To set up the slave to communicate with the master for replication, you must tell the slave the necessary connection information. To do this, execute the following statement on the slave, replacing the option values with the actual values relevant to your system:
mysql> CHANGE MASTER TO
-> MASTER_HOST='master_host_name',
-> MASTER_USER='replication_user_name',
-> MASTER_PASSWORD='replication_password',
-> MASTER_LOG_FILE='recorded_log_file_name',
-> MASTER_LOG_POS=recorded_log_position;
Note
Replication cannot use Unix socket files. You must be able to connect to the master MySQL server using TCP/IP.
The CHANGE MASTER TO statement has other options as well. For example, it is possible to set up secure replication using SSL. For a full list of options, and information about the maximum permissible length for the string-valued options, see Section 13.4.2.1, “CHANGE MASTER TO Syntax”.
16.1.2. Replication Formats
Replication works because events written to the binary log are read from the master and then processed on the slave. The events are recorded within the binary log in different formats according to the type of event. The different replication formats used correspond to the binary logging format used when the events were recorded in the master's binary log. The correlation between binary logging formats and the terms used during replication are:
Replication capabilities in MySQL originally were based on propagation of SQL statements from master to slave. This is called statement-based replication (often abbreviated as SBR), which corresponds to the standard statement-based binary logging format. In older versions of MySQL (5.1.4 and earlier), binary logging and replication used this format exclusively.
Row-based binary logging logs changes in individual table rows. When used with MySQL replication, this is known as row-based replication (often abbreviated as RBR). In row-based replication, the master writes events to the binary log that indicate how individual table rows are changed.
The server can change the binary logging format in real time according to the type of event using mixed-format logging.
When the mixed format is in effect, statement-based logging is used by default, but automatically switches to row-based logging in particular cases as described later. Replication using the mixed format is often referred to as mixed-based replication or mixed-format replication. For more information, see Section 5.2.4.3, “Mixed Binary Logging Format”.
In MySQL 5.6, statement-based format is the default.
When using MIXED format, the binary logging format is determined in part by the storage engine being used and the statement being executed. For more information on mixed-format logging and the rules governing the support of different logging formats, see Section 5.2.4.3, “Mixed Binary Logging Format”.
The logging format in a running MySQL server is controlled by setting the binlog_format server system variable. This variable can be set with session or global scope. The rules governing when and how the new setting takes effect are the same as for other MySQL server system variables—setting the variable for the current session lasts only until the end of that session, and the change is not visible to other sessions; setting the variable globally requires a restart of the server to take effect. For more information, see Section 13.7.4, “SET Syntax”.
There are conditions under which you cannot change the binary logging format at runtime or doing so causes replication to fail. See Section 5.2.4.2, “Setting The Binary Log Format”.
You must have the SUPER privilege to set either the global or session binlog_format value.
The statement-based and row-based replication formats have different issues and limitations. For a comparison of their relative advantages and disadvantages, see Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.
With statement-based replication, you may encounter issues with replicating stored routines or triggers. You can avoid these issues by using row-based replication instead. For more information, see Section 18.7, “Binary Logging of Stored Programs”.
16.1.2.1. Advantages and Disadvantages of Statement-Based and Row-Based Replication
Each binary logging format has advantages and disadvantages. For most users, the mixed replication format should provide the best combination of data integrity and performance. If, however, you want to take advantage of the features specific to the statement-based or row-based replication format when performing certain tasks, you can use the information in this section, which provides a summary of their relative advantages and disadvantages, to determine which is best for your needs.
Advantages of statement-based replication
Proven technology that has existed in MySQL since 3.23.
Less data written to log files. When updates or deletes affect many rows, this results in much less storage space required for log files. This also means that taking and restoring from backups can be accomplished more quickly.
Log files contain all statements that made any changes, so they can be used to audit the database.
Disadvantages of statement-based replication
Statements that are unsafe for SBR. Not all statements which modify data (such as INSERT DELETE, UPDATE, and REPLACE statements) can be replicated using statement-based replication. Any nondeterministic behavior is difficult to replicate when using statement-based replication. Examples of such DML (Data Modification Language) statements include the following:
A statement that depends on a UDF or stored program that is nondeterministic, since the value returned by such a UDF or stored program or depends on factors other than the parameters supplied to it. (Row-based replication, however, simply replicates the value returned by the UDF or stored program, so its effect on table rows and data is the same on both the master and slave.) See Section 16.4.1.10, “Replication of Invoked Features”, for more information.
DELETE and UPDATE statements that use a LIMIT clause without an ORDER BY are nondeterministic. See Section 16.4.1.15, “Replication and LIMIT”.
Statements using any of the following functions cannot be replicated properly using statement-based replication:
SYSDATE() (unless both the master and the slave are started with the --sysdate-is-now option)
However, all other functions are replicated correctly using statement-based replication, including NOW() and so forth.
For more information, see Section 16.4.1.14, “Replication and System Functions”.
Statements that cannot be replicated correctly using statement-based replication are logged with a warning like the one shown here:
090213 16:58:54 [Warning] Statement is not safe to log in statement format.
A similar warning is also issued to the client in such cases. The client can display it using SHOW WARNINGS.
INSERT ... SELECT requires a greater number of row-level locks than with row-based replication.
UPDATE statements that require a table scan (because no index is used in the WHERE clause) must lock a greater number of rows than with row-based replication.
For InnoDB: An INSERT statement that uses AUTO_INCREMENT blocks other nonconflicting INSERT statements.
For complex statements, the statement must be evaluated and executed on the slave before the rows are updated or inserted. With row-based replication, the slave only has to modify the affected rows, not execute the full statement.
If there is an error in evaluation on the slave, particularly when executing complex statements, statement-based replication may slowly increase the margin of error across the affected rows over time. See Section 16.4.1.25, “Slave Errors During Replication”.
Stored functions execute with the same NOW() value as the calling statement. However, this is not true of stored procedures.
Deterministic UDFs must be applied on the slaves.
Table definitions must be (nearly) identical on master and slave. See Section 16.4.1.8, “Replication with Differing Table Definitions on Master and Slave”, for more information.
Advantages of row-based replication
All changes can be replicated. This is the safest form of replication.
The mysql database is not replicated. The mysql database is instead seen as a node-specific database. Row-based replication is not supported on tables in this database. Instead, statements that would normally update this information—such as GRANT, REVOKE and the manipulation of triggers, stored routines (including stored procedures), and views—are all replicated to slaves using statement-based replication.
For statements such as CREATE TABLE ... SELECT, a CREATE statement is generated from the table definition and replicated using statement-based format, while the row insertions are replicated using row-based format.
The technology is the same as in most other database management systems; knowledge about other systems transfers to MySQL.
Fewer row locks are required on the master, which thus achieves higher concurrency, for the following types of statements:
Fewer row locks are required on the slave for any INSERT, UPDATE, or DELETE statement.
Disadvantages of row-based replication
RBR tends to generate more data that must be logged. To replicate a DML statement (such as an UPDATE or DELETE statement), statement-based replication writes only the statement to the binary log. By contrast, row-based replication writes each changed row to the binary log. If the statement changes many rows, row-based replication may write significantly more data to the binary log; this is true even for statements that are rolled back. This also means that taking and restoring from backup can require more time. In addition, the binary log is locked for a longer time to write the data, which may cause concurrency problems.
Deterministic UDFs that generate large BLOB values take longer to replicate with row-based replication than with statement-based replication. This is because the BLOB column value is logged, rather than the statement generating the data.
You cannot examine the logs to see what statements were executed, nor can you see on the slave what statements were received from the master and executed.
However, you can see what data was changed using mysqlbinlog with the options --base64-output=DECODE-ROWS and --verbose.
For tables using the MyISAM storage engine, a stronger lock is required on the slave for INSERT statements when applying them as row-based events to the binary log than when applying them as statements. This means that concurrent inserts on MyISAM tables are not supported when using row-based replication.
16.1.2.2. Usage of Row-Based Logging and Replication
Major changes in the replication environment and in the behavior of applications can result from using row-based logging (RBL) or row-based replication (RBR) rather than statement-based logging or replication. This section describes a number of issues known to exist when using row-based logging or replication, and discusses some best practices for taking advantage of row-based logging and replication.
For additional information, see Section 16.1.2, “Replication Formats”, and Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.
RBL, RBR, and temporary tables. As noted in Section 16.4.1.21, “Replication and Temporary Tables”, temporary tables are not replicated when using row-based format. When mixed format is in effect, “safe” statements involving temporary tables are logged using statement-based format. For more information, see Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”.
Temporary tables are not replicated when using row-based format because there is no need. In addition, because temporary tables can be read only from the thread which created them, there is seldom if ever any benefit obtained from replicating them, even when using statement-based format.
In MySQL 5.6, you can switch from statement-based to row-based binary logging mode even when temporary tables have been created. However, while using the row-based format, the MySQL server cannot determine the logging mode that was in effect when a given temporary table was created. For this reason, the server in such cases logs a DROP TEMPORARY TABLE IF EXISTS statement for each temporary table that still exists for a given client session when that session ends. While this means that it is possible that an unnecessary DROP TEMPORARY TABLE statement might be logged in some cases, the statement is harmless, and does not cause an error even if the table does not exist, due to the presence of the IF NOT EXISTS option.
In MySQL 5.6.6 and earlier, the --disable-gtid-unsafe-statements option caused any nontransactional DML statement involving temporary tables to fail with an error when using row-based logging, in spite of the fact that they are not written to the binary log. In MySQL 5.6.7 and later, such statements are allowed when using binlog_format=ROW, as long as any nontransactional tables affected by the statements are temporary tables (Bug #14272672).
RBL and synchronization of nontransactional tables. When many rows are affected, the set of changes is split into several events; when the statement commits, all of these events are written to the binary log. When executing on the slave, a table lock is taken on all tables involved, and then the rows are applied in batch mode. (This may or may not be effective, depending on the engine used for the slave's copy of the table.)
Latency and binary log size. Because RBL writes changes for each row to the binary log, its size can increase quite rapidly. In a replication environment, this can significantly increase the time required to make changes on the slave that match those on the master. You should be aware of the potential for this delay in your applications.
Reading the binary log. mysqlbinlog displays row-based events in the binary log using the BINLOG statement (see Section 13.7.6.1, “BINLOG Syntax”). This statement displays an event in printable form, but as a base 64-encoded string the meaning of which is not evident. When invoked with the --base64-output=DECODE-ROWS and --verbose options, mysqlbinlog formats the contents of the binary log in a manner that is easily human readable. This is helpful when binary log events were written in row-based format if you want to read or recover from a replication or database failure using the contents of the binary log. For more information, see Section 4.6.8.2, “mysqlbinlog Row Event Display”.
Binary log execution errors and slave_exec_mode. If slave_exec_mode is IDEMPOTENT, a failure to apply changes from RBL because the original row cannot be found does not trigger an error or cause replication to fail. This means that it is possible that updates are not applied on the slave, so that the master and slave are no longer synchronized. Latency issues and use of nontransactional tables with RBR when slave_exec_mode is IDEMPOTENT can cause the master and slave to diverge even further. For more information about slave_exec_mode, see Section 5.1.4, “Server System Variables”.
Note
slave_exec_mode=IDEMPOTENT is generally useful only for circular replication or multi-master replication with MySQL Cluster, for which IDEMPOTENT is the default value.
For other scenarios, setting slave_exec_mode to STRICT is normally sufficient; this is the default value for storage engines other than NDB.
The NDBCLUSTER storage engine is currently not supported in MySQL 5.6. MySQL Cluster users wishing to upgrade from MySQL 5.0 should instead migrate to MySQL Cluster NDB 7.1 or later. For more information about MySQL Cluster NDB 7.1, see MySQL Cluster NDB 6.1 - 7.1; for more information about MySQL Cluster NDB 7.2, see MySQL Cluster NDB 7.2.
Lack of binary log checksums. RBL uses no checksums. This means that network, disk, and other errors may not be identified when processing the binary log. To ensure that data is transmitted without network corruption, you may want to consider using SSL, which adds another layer of checksumming, for replication connections. The CHANGE MASTER TO statement has options to enable replication over SSL. See also Section 13.4.2.1, “CHANGE MASTER TO Syntax”, for general information about setting up MySQL with SSL.
Filtering based on server ID not supported. A common practice is to filter out changes on some slaves by using a WHERE clause that includes the relation @@server_id <> id_value clause with UPDATE and DELETE statements, a simple example of such a clause being WHERE @@server_id <> 1. However, this does not work correctly with row-based logging. If you must use the server_id system variable for statement filtering, you must also use --binlog_format=STATEMENT.
In MySQL 5.6, you can do filtering based on server ID by using the IGNORE_SERVER_IDS option for the CHANGE MASTER TO statement. This option works with the statement-based and row-based logging formats.
Database-level replication options. The effects of the --replicate-do-db, --replicate-ignore-db, and --replicate-rewrite-db options differ considerably depending on whether row-based or statement-based logging is used. Because of this, it is recommended to avoid database-level options and instead use table-level options such as --replicate-do-table and --replicate-ignore-table. For more information about these options and the impact that your choice of replication format has on how they operate, see Section 16.1.4, “Replication and Binary Logging Options and Variables”.
RBL, nontransactional tables, and stopped slaves. When using row-based logging, if the slave server is stopped while a slave thread is updating a nontransactional table, the slave database may reaches an inconsistent state. For this reason, it is recommended that you use a transactional storage engine such as InnoDB for all tables replicated using the row-based format.
Use of STOP SLAVE or STOP SLAVE SQL_THREAD prior to shutting down the slave MySQL server helps prevent such issues from occurring, and is always recommended regardless of the logging format or storage engines employed.
16.1.2.3. Determination of Safe and Unsafe Statements in Binary Logging
When speaking of the “safeness” of a statement in MySQL Replication, we are referring to whether a statement and its effects can be replicated correctly using statement-based format. If this is true of the statement, we refer to the statement as safe; otherwise, we refer to it as unsafe.
In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain nondeterministic functions are not considered unsafe (see Nondeterministic functions not considered unsafe, later in this section). In addition, statements using results from floating-point math functions—which are hardware-dependent—are always considered safe (see Section 16.4.1.11, “Replication and Floating-Point Values”).
Handling of safe and unsafe statements. A statement is treated differently depending on whether the statement is considered safe, and with respect to the binary logging format (that is, the current value of binlog_format).
No distinction is made in the treatment of safe and unsafe statements when the binary logging mode is ROW.
If the binary logging format is MIXED, statements flagged as unsafe are logged using the row-based format; statements regarded as safe are logged using the statement-based format.
If the binary logging format is STATEMENT, statements flagged as being unsafe generate a warning to this effect. (Safe statements are logged normally.)
Each statement flagged as unsafe generates a warning. Formerly, in cases where a great many such statements were executed on the master, this could lead to very large error log files, sometimes even filling up an entire disk unexpectedly. To guard against this, MySQL 5.6.7 introduced a warning suppression mechanism, which behaves as follows: Whenever the 50 most recent ER_BINLOG_UNSAFE_STATEMENT warnings have been generated more than 50 times in any 50-second period, warning suppression is enabled. When activated, this causes such warnings not to be written to the error log; instead, for each 50 warnings of this type, a note The last warning was repeated N times in last S seconds is written to the error log. This continues as long as the 50 most recent such warnings were issued in 50 seconds or less; once the rate has decreased below this threshold, the warnings are once again logged normally. Warning suppression has no effect on how the safety of statements for statement-based logging is determined, nor on how warnings are sent to the client (MySQL clients still receive one warning for each such statement).
For more information, see Section 16.1.2, “Replication Formats”.
Statements considered unsafe. Statements having the following characteristics are considered unsafe:
Statements containing system functions that may return a different value on slave. These functions include FOUND_ROWS(), GET_LOCK(), IS_FREE_LOCK(), IS_USED_LOCK(), LOAD_FILE(), MASTER_POS_WAIT(), PASSWORD(), RAND(), RELEASE_LOCK(), ROW_COUNT(), SESSION_USER(), SLEEP(), SYSDATE(), SYSTEM_USER(), USER(), UUID(), and UUID_SHORT().
Nondeterministic functions not considered unsafe. Although these functions are not deterministic, they are treated as safe for purposes of logging and replication: CONNECTION_ID(), CURDATE(), CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP(), CURTIME(),, LAST_INSERT_ID(), LOCALTIME(), LOCALTIMESTAMP(), NOW(), UNIX_TIMESTAMP(), UTC_DATE(), UTC_TIME(), and UTC_TIMESTAMP().
For more information, see Section 16.4.1.14, “Replication and System Functions”.
References to system variables. Most system variables are not replicated correctly using the statement-based format. For exceptions, see Section 5.2.4.3, “Mixed Binary Logging Format”.
UDFs. Since we have no control over what a UDF does, we must assume that it is executing unsafe statements.
Updates a table having an AUTO_INCREMENT column. This is unsafe because the order in which the rows are updated may differ on the master and the slave.
In addition, an INSERT into a table that has a composite primary key containing an AUTO_INCREMENT column that is not the first column of this composite key is unsafe.
For more information, see Section 16.4.1.1, “Replication and AUTO_INCREMENT”.
INSERT DELAYED statement. This statement is considered unsafe because the insertion of the rows may interleave with concurrently executing statements.
INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or unique keys. When executed against a table that contains more than one primary or unique key, this statement is considered unsafe, being sensitive to the order in which the storage engine checks the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server depends.
An INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than one unique or primary key is marked as unsafe for statement-based replication beginning with MySQL 5.6.6. (Bug #11765650, Bug #58637)
Updates using LIMIT. The order in which rows are retrieved is not specified.
Accesses or references log tables. The contents of the system log table may differ between master and slave.
Nontransactional operations after transactional operations. Within a transaction, allowing any nontransactional reads or writes to execute after any transactional reads or writes is considered unsafe.
For more information, see Section 16.4.1.29, “Replication and Transactions”.
Accesses or references self-logging tables. All reads and writes to self-logging tables are considered unsafe. Within a transaction, any statement following a read or write to self-logging tables is also considered unsafe.
LOAD DATA INFILE statements. Beginning with MySQL 5.6, LOAD DATA INFILE is considered unsafe, it causes a warning in statement-based mode, and a switch to row-based format when using mixed-format logging. See Section 16.4.1.16, “Replication and LOAD DATA INFILE”.
For additional information, see Section 16.4.1, “Replication Features and Issues”.
16.1.3. Replication with Global Transaction Identifiers
In this section, we discuss transaction-based replication using global transaction identifiers (GTIDs), introduced in MySQL 5.6.5. When using GTIDs, each transaction can be identified and tracked as it is committed on the originating server and applied by any slaves; this means that it is not necessary when using GTIDs to refer to log files or positions within those files when starting a new slave or failing over to a new master, which greatly simplifies these tasks. Because GTID-based replication is completely transaction-based, it is simple to determine whether masters and slaves are consistent; as long as all transactions committed on a master are also committed on a slave, consistency between the two is guaranteed. You can use either statement-based or row-based replication with GTIDs (see Section 16.1.2, “Replication Formats”); however, for best results, we recommend that you use the row-based format.
The next few sections discuss the following topics:
How GTIDs are defined and created, and how they are represented in the MySQL Server (see Section 16.1.3.1, “GTID Concepts”).
A general procedure for setting up and starting GTID-based replication (see Section 16.1.3.2, “Setting Up Replication Using GTIDs”).
Suggested methods for provisioning new replication servers when using GTIDs (see Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”).
Restrictions and limitations that you should be aware of when using GTID-based replication (see Section 16.1.3.4, “Restrictions on Replication with GTIDs”).
For information about MySQL Server options and variables relating to GTID-based replication, see Section 16.1.4.5, “Global Transaction ID Options and Variables”. See also Section 12.15, “GTID Functions”, which describes SQL functions supported by MySQL 5.6 for use with GTIDs.
16.1.3.1. GTID Concepts
A global transaction identifier (GTID) is a unique identifier created and associated with each transaction when it is committed on the server of origin (master). This identifier is unique not only to the server on which it originated, but is unique across all servers in a given replication setup. There is a 1-to-1 mapping between all transactions and all GTIDs.
A GTID is represented as a pair of coordinates, separated by a colon character (:), as shown here:
GTID = source_id:transaction_id
The source_id identifies the originating server. Normally, the server's server_uuid is used for this purpose. (It is theoretically possible for it to be determined in a different manner if the source of the transaction is not a MySQL Server instance, but this is currently not supported.) The transaction_id is a sequence number determined by the order in which the transaction was committed on this server; for example, the first transaction to be committed has 1 as its transaction_id, and the tenth transaction to be committed on the same originating server is assigned a transaction_id of 10. (It is not possible for a transaction to have 0 as a sequence number in a GTID.) Thus, the twenty-third transaction to be committed originally on the server having the UUID 3E11FA47-71CA-11E1-9E33-C80AA9429562 has this GTID:
3E11FA47-71CA-11E1-9E33-C80AA9429562:23
This format is used to represent GTIDs in the output of statements such as SHOW SLAVE STATUS as well as in the binary log. They can also be seen when viewing the log file with mysqlbinlog --base64-output=DECODE-ROWS or in the output from SHOW BINLOG EVENTS.
As written in the output of statements such as SHOW MASTER STATUS, SHOW SLAVE STATUS, a sequence of GTIDs originating from the same server may be collapsed into a single expression, as shown here.
3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
The example just shown represents the first through fifth transactions originating on the MySQL Server whose server_uuid is 3E11FA47-71CA-11E1-9E33-C80AA9429562.
In MySQL 5.6.6 and later, this format is also used to supply the argument required by the START SLAVE options SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS.
GTID sets. A GTID set is a set of global transaction identifiers which is represented as shown here:
gtid_set:
uuid_set [, uuid_set] ...
| ''
uuid_set:
uuid:interval[:interval]...
uuid:
hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh
h:
[0-9,A-F]
interval:
n[-n]
(n >= 1)
GTID sets are used in the MySQL Server in several ways. For example, the values stored by the gtid_executed and gtid_purged system variables are represented as GTID sets. In addition, the functions GTID_SUBSET() and GTID_SUBTRACT() require GTID sets as input.
GTIDs are always preserved between master and slave. This means that you can always determine the source for any transaction applied on any slave by examining its binary log. In addition, once a transaction with a given GTID is committed on a given server, any subsequent transaction having the same GTID is ignored by that server. Thus, a transaction committed on the master can be applied no more than once on the slave, which helps to guarantee consistency.
When GTIDs are in use, the slave has no need for any nonlocal data, such as the name of a file on the master and a position within that file. All necessary information for synchronizing with the master is obtained directly from the replication data stream. From the perspective of the database administrator or developer, GTIDs entirely take the place of the file-offset pairs previously required to determine points for starting, stopping, or resuming the flow of data between master and slave. This means that, when you are using GTIDs for replication, you do not need (or want) to include MASTER_LOG_FILE or MASTER_LOG_POS options in the CHANGE MASTER TO statement used to direct a slave to replicate from a given master; in place of these options, it necessary only to enable the MASTER_AUTO_POSITION option introduced in MySQL 5.6.5. For the exact steps needed to configure and start masters and slaves using GTID-based replication, see Section 16.1.3.2, “Setting Up Replication Using GTIDs”.
The generation and lifecycle of a GTID consists of the following steps:
A transaction is executed and committed on the master.
This transaction is assigned a GTID using the master's UUID and the smallest nonzero transaction sequence number not yet used on this server; the GTID is written to the master's binary log (immediately preceding the transaction itself in the log).
After the binary log data is transmitted to the slave and stored in the slave's relay log (using established mechanisms for this process—see Section 16.2, “Replication Implementation”, for details), the slave reads the GTID and sets the value of its gtid_next system variable as this GTID. This tells the slave that the next transaction must be logged using this GTID.
It is important to note that the slave sets gtid_next in a session context.
The slave checks to make sure that this GTID has not already been used to log a transaction in its own binary log. If and only if this GTID has not been used, the slave then writes the GTID and applies the transaction (and writes the transaction to its binary log). By reading and checking the transaction's GTID first, before processing the transaction itself, the slave guarantees not only that no previous transaction having this GTID has been applied on the slave, but also that no other session has already read this GTID but has not yet committed the associated transaction. In other words, multiple clients are not permitted to apply the same transaction concurrently.
Because gtid_next is not empty, the slave does not attempt to generate a GTID for this transaction but instead writes the GTID stored in this variable—that is, the GTID obtained from the master—immediately preceding the transaction in its binary log.
16.1.3.2. Setting Up Replication Using GTIDs
This section describes a process for configuring and starting GTID-based replication in MySQL 5.6. This is a “cold start” procedure that assumes either that you are starting the replication master for the first time, or that it is possible to stop it; for information about provisioning replication slaves using GTIDs from a running master, see Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”.
The key steps in this startup process for the simplest possible GTID replication topology—consisting of one master and one slave—are as follows:
If replication is already running, synchronize both servers by making them read-only.
Stop both servers.
Restart both servers with GTIDs, binary logging, and slave update logging enabled, and with statements that are unsafe for GTID-based replication disabled. In addition, the servers should be started in read-only mode, and the slave SQL and I/O threads should be prevented from starting on the slave.
The mysqld options necessary to start the servers as described are discussed in the example that follows later in this section.
Instruct the slave to use the master as the replication data source and to use auto-positioning, and then start the slave.
The SQL statements needed to accomplish this step are described in the example that follows later in this section.
Disable read-only mode on both servers, so that they can once again accept updates.
We now present a more detailed example. We assume two servers already running as master and slave, using MySQL's “classic” file-based replication protocol.
Most of the steps that follow require the use of the MySQL root account or another MySQL user account that has the SUPER privilege. mysqladmin shutdown requires either the SUPER privilege or the SHUTDOWN privilege.
Step 1: Synchronize the servers. Make the servers read-only. To do this, enable the read_only system variable by executing the following statement on both servers:
mysql> SET @@global.read_only = ON;
Then, allow the slave to catch up with the master. It is extremely important that you make sure the slave has processed all updates before continuing.
Step 2: Stop both servers. Stop each server using mysqladmin as shown here, where username and password are the user name and password for a MySQL user having sufficient privileges to shut down the server:
shell> mysqladmin -uusername -ppassword shutdown
Step 3: Restart both servers with GTIDs enabled. To enable binary logging with global transaction identifiers, each server must be started with GTID mode, binary logging, slave update logging enabled, and with statements that are unsafe for GTID-based replication disabled. In addition, you should prevent unwanted or accidental updates from being performed on either server by starting both in read-only mode as well. This means that both servers must be started with (at least) the options shown in the following invocation of mysqld_safe:
shell> mysqld_safe --gtid_mode=ON --log-bin --log-slave-updates --enforce-gtid-consistency &
Note
Prior to MySQL 5.6.9, --enforce-gtid-consistency was named --disable-gtid-unsafe-statements.
In addition, you should start the slave with the --skip-slave-start option along with the other server options specified in the example just shown.
Although it may appear that --gtid-mode is a boolean, it is not (in fact, its values are enumerated). Use one of the values ON or OFF only, when setting this option. Using a numeric value such as 0 or 1 can lead to unexpected results.
For more information about the --gtid-mode and --enforce-gtid-consistency server options, see Section 16.1.4.5, “Global Transaction ID Options and Variables”.
Depending on your circumstances, you may want or need to supply additional options to mysqld_safe (or other mysqld startup script).
Step 4: Direct the slave to use the master. Instruct the slave to use the master as the replication data source, and to use GTID-based auto-positioning rather than file-based positioning. You can do this by executing a CHANGE MASTER TO statement on the slave, using the MASTER_AUTO_POSITION option to tell the slave that transactions will be identified by GTIDs.
You may also need to supply appropriate values for the master's host name and port number as well as the user name and password for a replication user account which can be used by the slave to connect to the master; if these have already been set prior to Step 1 and no further changes need to be made, the corresponding options can safely be omitted from the statement shown here.
mysql> CHANGE MASTER TO
> MASTER_HOST = host,
> MASTER_PORT = port,
> MASTER_USER = user,
> MASTER_PASSWORD = password,
> MASTER_AUTO_POSITION = 1;
Neither the MASTER_LOG_FILE option nor the MASTER_LOG_POS option may be used with MASTER_AUTO_POSITION set equal to 1. Attempting to do so causes the CHANGE MASTER TO statement to fail with an error. (If you need to revert from GTID-based replication to replication based on files and positions, you must use one or both of these options together with MASTER_AUTO_POSITION = 0 in the CHANGE MASTER TO statement.)
Assuming that the CHANGE MASTER TO statement has succeeded, you can then start the slave, like this:
mysql> START SLAVE;
Step 5: Disable read-only mode. Allow both servers to begin accepting updates once again by running the following statement on each of them:
mysql> SET @@global.read_only = OFF;
GTID-based replication should now be running, and you can begin (or resume) activity on the master as before. Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”, discusses creation of new slaves when using GTIDs.
16.1.3.3. Using GTIDs for Failover and Scaleout
There are a number of techniques when using MySQL Replication with Global Transaction Identifiers (GTIDs) in MySQL 5.6.9 and later for provisioning a new slave which can then be used for scaleout, being promoted to master as necessary for failover. In this section, we discuss the four techniques listed here:
Global transaction identifiers were added to MySQL Replication for the purpose of simplifying in general management of the replication data flow and of failover activities in particular. Each identifier uniquely identifies a set of binary log events that together make up a transaction. GTIDs play a key role in applying changes to the database: the server automatically skips any transaction having an identifier which the server recognizes as one that it has processed before. This behavior is critical for automatic replication positioning and correct failover.
The mapping between identifiers and sets of events comprising a given transaction is captured in the binary log. This poses some challenges when a user wants to provision a new server with data from another existing server. To reproduce the identifier set on the new server, it is necessary, not only to copy the identifiers from the old server to the new one, but to preserve the relationship between the identifiers and the actual events as well, which is what is needed for restoring a slave that is immediately available as a candidate to become a new master on failover or switchover.
Simple replication. This is the easiest way to reproduce all identifiers and transactions on a new server; you simply make the new server into the slave of a master that has the entire execution history, and enable global transaction identifiers on both servers. (This requires that both master and slave are running with the options --gtid-mode=ON --log-bin --log-slave-updates --enforce-gtid-consistency; see Section 16.1.3.2, “Setting Up Replication Using GTIDs”, for more information.)
Once replication is started, the new server copies the entire binary log from the master and thus obtains all information about all GTIDs.
This method is simple and effective, but requires the slave to read the binary log from the master; it can sometimes take a comparatively long time for the new slave to catch up with the master, so this method is not suitable for fast failover or restoring from backup. We can obviate the need to fetch all of the execution history from the master by copying binary log files to the new server, as discussed in the next few paragraphs.
Copying data and transactions to the slave. Playing back the entire transaction history can be time-consuming, and represents a major bottleneck when setting up a new replication slave. To eliminate this requirement, we can take from the master a backup that includes, in addition to a dump containing a snapshot of the data set, the binary logs and the global transaction information they contain. Setting up the slave then consists of importing the snapshot, then playing back the binary log, after which replication can be started, allowing the slave to become current with any remaining transactions.
There are several variants of this method; these can be distinguished by the manner in which data (dumps) and transactions (binary logs) are shipped to the new slave, as outlined here:
Data Set | Transaction History |
---|---|
| If gtid_mode is not ON, restart the server with GTID mode enabled.
|
See also Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”.
This method has the advantage that a new server is available almost immediately; only those transactions that were committed while the snapshot or dump file was being replayed still need to be obtained from the existing master. This means that the slave's availability is not instantanteous—but only a relatively short amount of time should be required for the slave to catch up with these few remaining transactions.
Copying over binary logs to the target server in advance is usually faster than reading the entire transaction execution history from the master in real time. However, due to size or other considerations, it may not always be feasible to move these files to the target when required. The two remaining methods for provisioning a new slave discussed in this section use other means to convey information about transactions to the new slave.
Injecting empty transactions. The master's global gtid_executed variable contains the set of all transactions executed on the master. Rather than copy the binary logs when taking a snapshot to provision a new server, you can instead note the content of gtid_executed on the server from which the snapshot was taken. Before adding the new server to the replication chain, simply commit an empty transaction on the new server for each transaction identifier contained in the master's gtid_executed, like this:
SET GTID_NEXT='aaa-bbb-ccc-ddd:N';
BEGIN;
COMMIT;
SET GTID_NEXT='AUTOMATIC';
Once all transaction identifiers have been reinstated in this way using empty transactions, you must flush and purge the slave's binary logs, as shown here, where N is the nonzero suffix of the current binary log file name:
FLUSH LOGS;
PURGE BINARY LOGS TO 'master-bin.00000N';
You should do this to prevent this server from flooding the replication stream with false transactions in the event that it is later promoted to master. (The FLUSH LOGS statement forces the creation of a new binary log file; PURGE BINARY LOGS purges the empty transactions, but retains their identifiers.)
This method creates a server that is essentially a snapshot, but in time is able to become a master as its binary log history converges with that of the replication stream (that is, as it catches up with the master or masters). This outcome is similar in effect to that obtained using the remaining provisioning method, which we discuss in the next few paragraphs.
Excluding transactions with gtid_purged. The master's global gtid_purged variable contains the set of all transactions that have been purged from the master's binary log. As with the method discussed previously (see Injecting empty transactions), you can record the value of gtid_executed on the server from which the snapshot was taken (in place of copying the binary logs to the new server). Unlike the previous method, there is no need to commit empty transactions (or to issue PURGE BINARY LOGS); instead, you can set gtid_purged on the slave directly, based on the value of gtid_executed on the server from which the backup or snapshot was taken.
Note
Prior to MySQL 5.6.9, gtid_purged was not settable. (Bug #14797808)
As with the method using empty transactions, this method creates a server that is functionally a snapshot, but in time is able to become a master as its binary log history converges with that of the replication master or group.
16.1.3.4. Restrictions on Replication with GTIDs
Because GTID-based replication is dependent on transactions, some features otherwise available in MySQL are not supported when using it. This section provides information about restrictions on and limitations of replication with GTIDs.
Updates involving nontransactional storage engines. When using GTIDs, updates to tables using nontransactional storage engines such as MyISAM cannot made in the same statement or transaction as updates to tables using transactional storage engines such as InnoDB.
This restriction is due to the fact that updates to using a nontransactional storage engine mixed with updates to tables that use a transactional storage engine within the same transaction can result in multiple GTIDs being assigned to the same transaction. This problem can also occur in at least two other cases, listed here:
When the master and the slave use different storage engines for their respective versions of the same table, where one storage engine is transactional and the other is not.
When both the master and the slave use a nontransactional engine, but use different binary logging formats (for example, when the master has binlog_format=ROW and the slave has binlog_format=STATEMENT).
In any of the cases just mentioned, the one-to-one correspondence between transactions and GTIDs is broken, with the result that GTID-based replication cannot function correctly.
CREATE TABLE ... SELECT statements. CREATE TABLE ... SELECT is not safe for statement-based replication. When using row-based replication, this statement is actually logged as two separate events—one for the creation of the table, and another for the insertion of rows from the source table into the new table just created. When this statement is executed within a transaction, it is possible in some cases for these two events to receive the same transaction identifier, which means that the transaction containing the inserts is skipped by the slave. Therefore, CREATE TABLE ... SELECT is not supported when using GTID-based replication.
Temporary tables. CREATE TEMPORARY TABLE and DROP TEMPORARY TABLE statements are not supported inside transactions when using GTIDs (that is, when the server was started with the --enforce-gtid-consistency option). It is possible to use use these statements with GTIDs enabled, but only outside of any transaction, and only with autocommit=1.
Preventing execution of unsupported statements. In order to prevent execution of statements that would cause GTID-based replication to fail, all servers must be started with the --enforce-gtid-consistency option when enabling GTIDs. This causes statements of any of the types discussed previously in this section to fail with an error.
For information about other required startup options when enabling GTIDs, see Section 16.1.3.2, “Setting Up Replication Using GTIDs”.
sql_slave_skip_counter is not supported when using GTIDs. If you need to skip transactions, use the value of the master's gtid_executed variable instead; see Injecting empty transactions, for more information.
GTID mode and mysqldump. In MySQL 5.6.9 and later, it is possible to import a dump made using mysqldump into a MySQL Server running with GTID mode enabled, provided that there are no GTIDs in the target server's binary log.
Prior to MySQL 5.6.9, mysqldump did not record global transaction IDs, and it was necessary to use the binary log and mysqlbinlog to restore GTIDs. (Bug #14797808, Bug #14832472)
GTID mode and mysql_upgrade. Prior to MySQL 5.6.7, mysql_upgrade could not connect to a MySQL Server that was running with --gtid-mode=ON unless mysql_upgrade was run with --write-binlog=OFF. (Otherwise, mysqld had to be restarted with --gtid-mode=OFF before running mysql_upgrade, then restarted with --gtid_mode=ON afterwards.) This is not an issue in MySQL 5.6.7 and later, where mysql_upgrade runs with --write-binlog=OFF by default. (Bug #13833710) However, it is not recommended to do so, since mysql_upgrade can make changes to system tables that use the MyISAM storage engine, which is nontransactional.
16.1.4. Replication and Binary Logging Options and Variables
The next few sections contain information about mysqld options and server variables that are used in replication and for controlling the binary log. Options and variables for use on replication masters and replication slaves are covered separately, as are options and variables relating to binary logging. A set of quick-reference tables providing basic information about these options and variables is also included (in the next section following this one).
Of particular importance is the --server-id option.
Command-Line Format | --server-id=# | ||
Option-File Format | server-id | ||
Option Sets Variable | Yes, server_id | ||
Variable Name | server_id | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 |
This option is common to both master and slave replication servers, and is used in replication to enable master and slave servers to identify themselves uniquely. For additional information, see Section 16.1.4.2, “Replication Master Options and Variables”, and Section 16.1.4.3, “Replication Slave Options and Variables”.
On the master and each slave, you must use the --server-id option to establish a unique replication ID in the range from 1 to 232 – 1. “Unique”, means that each ID must be different from every other ID in use by any other replication master or slave. Example: server-id=3.
If you omit --server-id, the default ID is 0, in which case a master refuses connections from all slaves, and a slave refuses to connect to a master. For more information, see Section 16.1.1.2, “Setting the Replication Slave Configuration”.
Beginning with MySQL 5.6, the server generates a true UUID in addition to the --server-id supplied by the user. This is available as the global, read-only variable server_uuid.
Version Introduced | 5.6.0 | ||
Variable Name | server_uuid | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
When starting, the MySQL server automatically obtains a UUID as follows:
Attempt to read and use the UUID written in the file data_dir/auto.cnf (where data_dir is the server's data directory); exit on success.
Otherwise, generate a new UUID and save it to this file, creating the file if necessary.
The auto.cnf file has a format similar to that used for my.cnf or my.ini files. In MySQL 5.6, auto.cnf has only a single [auto] section containing a single server_uuid setting and value; the file's contents appear similar to what is shown here:
[auto]
server_uuid=8a94f357-aab4-11df-86ab-c80aa9429562
Important
The auto.cnf file is automatically generated; you should not attempt to write or modify this file.
Also beginning with MySQL 5.6, when using MySQL replication, masters and slaves know one another's UUIDs. The value of a slave's UUID can be seen in the output of SHOW SLAVE HOSTS. Once START SLAVE has been executed (but not before), the value of the master's UUID is available on the slave in the output of SHOW SLAVE STATUS.
Note
Issuing a STOP SLAVE or RESET SLAVE statement does not reset the master's UUID as used on the slave.
In MySQL 5.6.5 and later, a server's server_uuid is also used in GTIDs for transactions originating on that server. For more information, see Section 16.1.3, “Replication with Global Transaction Identifiers”.
When starting, the slave I/O thread generates an error and aborts if its master's UUID is equal to its own unless the --replicate-same-server-id option has been set. In addition, the slave I/O thread generates a warning if either of the following is true:
No master having the expected server_uuid exists.
The master's server_uuid has changed, although no CHANGE MASTER TO statement has ever been executed.
Note
The addition of the server_uuid system variable in MySQL 5.6 does not change the requirement for setting a unique --server-id for each MySQL server as part of preparing and running MySQL replication, as described earlier in this section.
16.1.4.1. Replication and Binary Logging Option and Variable Reference
The following tables list basic information about the MySQL command-line options and system variables applicable to replication and the binary log.
Table 16.1. Replication Options and Variables: MySQL 5.6
Option or Variable Name | Command Line | System Variable | Scope |
---|---|---|---|
Option File | Status Variable | Dynamic | |
N | N | Both | |
N | Y | N | |
N | N | Both | |
N | Y | N | |
N | N | Both | |
N | Y | N | |
N | N | Both | |
N | Y | N | |
N | N | Both | |
N | Y | N | |
N | N | Both | |
N | Y | N | |
N | N | Both | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
Y | Y | Global | |
Y | N | Y | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
Y | N | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
N | Y | Both | |
N | N | N | |
N | Y | Both | |
N | N | N | |
N | Y | Global | |
N | N | N | |
Y | Y | Global | |
Y | N | N | |
N | Y | Global | |
N | N | N | |
N | Y | Session | |
N | N | Y | |
N | Y | Both | |
N | N | N | |
N | Y | Global | |
N | N | Y | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
N | Y | Global | |
N | N | Y | |
Y | N | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
N | Y | Global | |
N | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
N | Y | Global | |
N | N | Y | |
Y | Y | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
N | Y | Global | |
N | N | Y | |
N | Y | Global | |
N | N | Y | |
N | Y | Global | |
N | N | Y | |
N | Y | Global | |
N | N | Y | |
N | Y | Global | |
N | N | Y | |
N | Y | Global | |
N | N | Y | |
N | Y | Global | |
N | N | N | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | Y | |
Y | N | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Global | |
Y | N | Y | |
Y | N | Global | |
Y | N | N | |
N | Y | Global | |
N | N | Y | |
Y | Y | Global | |
Y | N | Y | |
N | Y | Global | |
N | N | Y | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
N | N | N | |
N | Y | Global | |
N | N | Y | |
Y | N | Global | |
Y | N | N | |
N | Y | Global | |
N | N | Y | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Global | |
Y | N | N | |
N | Y | Global | |
N | N | Y | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Global | |
Y | N | Y |
Section 16.1.4.2, “Replication Master Options and Variables”, provides more detailed information about options and variables relating to replication master servers. For more information about options and variables relating to replication slaves, see Section 16.1.4.3, “Replication Slave Options and Variables”.
Table 16.2. Binary Logging Options and Variables: MySQL 5.6
Option or Variable Name | Command Line | System Variable | Scope |
---|---|---|---|
Option File | Status Variable | Dynamic | |
N | N | Global | |
N | Y | N | |
Y | Y | Both | |
N | N | Y | |
N | Y | Both | |
N | N | Y | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Global | |
N | Y | N | |
N | N | Both | |
N | Y | N | |
N | N | Both | |
N | Y | N | |
Y | N | Global | |
Y | N | N | |
N | Y | Global | |
N | N | Y | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | Y | |
N | Y | Global | |
N | N | Y | |
N | Y | Global | |
N | N | Y | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Both | |
Y | N | Y | |
Y | N | Global | |
Y | N | N | |
Y | Y | Both | |
Y | N | Y | |
N | Y | Global | |
N | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | N | |
Y | N | Global | |
Y | N | N | |
N | Y | Global | |
N | N | Y | |
Y | N | Global | |
Y | N | N | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Global | |
Y | N | Y | |
Y | Y | Global | |
Y | N | Y | |
Y | N | Global | |
Y | N | N | |
N | Y | Global | |
N | N | Y | |
Y | N | Global | |
Y | N | N |
Section 16.1.4.4, “Binary Log Options and Variables”, provides more detailed information about options and variables relating to binary logging. For additional general information about the binary log, see Section 5.2.4, “The Binary Log”.
For a table showing all command-line options, system and status variables used with mysqld, see Section 5.1.1, “Server Option and Variable Reference”.
16.1.4.2. Replication Master Options and Variables
This section describes the server options and system variables that you can use on replication master servers. You can specify the options either on the command line or in an option file. You can specify system variable values using SET.
On the master and each slave, you must use the server-id option to establish a unique replication ID. For each server, you should pick a unique positive integer in the range from 1 to 232 – 1, and each ID must be different from every other ID in use by any other replication master or slave. Example: server-id=3.
For options used on the master for controlling binary logging, see Section 16.1.4.4, “Binary Log Options and Variables”.
Startup options used on replication masters. The following startup options are used for controlling replication masters:
slave-max-allowed-packet=bytes
Version Introduced | 5.6.6 | ||
Command-Line Format | --slave-max-allowed-packet=# | ||
Option-File Format | slave-max-allowed-packet | ||
Option Sets Variable | Yes, slave_max_allowed_packet | ||
Permitted Values | |||
Type | numeric | ||
Default | 1073741824 | ||
Range | 1024 .. 1073741824 |
In MySQL 5.6.6 and later, this option sets the maximum packet size in bytes for the slave SQL and I/O threads, so that large updates using row-based replication do not cause replication to fail because an update exceeded max_allowed_packet. (Bug #12400221, BUG#60926)
The corresponding server variable slave_max_allowed_packet always has a value that is a positive integer multiple of 1024; if you set it to some value that is not such a multiple, the value is automatically rounded down to the next highest multiple of 1024. (For example, if you start the server with --slave-max-allowed-packet=10000, the value used is 9216; setting 0 as the value causes 1024 to be used.) A truncation warning is issued in such cases.
The maximum (and default) value is 1073741824 (1 GB); the minimum is 1024.
slave-rows-search-algorithms=list
Version Introduced | 5.6.6 | ||
Command-Line Format | --slave-rows-search-algorithms=list | ||
Option-File Format | slave-rows-search-algorithms | ||
Option Sets Variable | Yes, slave_rows_search_algorithms | ||
Permitted Values | |||
Type | set | ||
Valid Values | TABLE_SCAN,INDEX_SCAN | default | |
INDEX_SCAN,HASH_SCAN | |||
TABLE_SCAN,HASH_SCAN | |||
TABLE_SCAN,INDEX_SCAN,HASH_SCAN | equivalent to INDEX_SCAN,HASH_SCAN |
When preparing batches of rows for row-based logging and replication using slave_allow_batching, this option controls how the rows are searched for matches—that is, whether or not hashing is used for searches using a primary or unique key, some other key, or no key at all. This option takes a comma-separated list of any 2 (or possibly 3) values from the list INDEX_SCAN, TABLE_SCAN, HASH_SCAN. The list need not be quoted, but must contain no spaces, whether or not quotes are used. Possible combinations (lists) and their effects are shown in the following table:
Index used / option value | INDEX_SCAN,HASH_SCAN or INDEX_SCAN,TABLE_SCAN,HASH_SCAN | INDEX_SCAN,TABLE_SCAN | TABLE_SCAN,HASH_SCAN |
---|---|---|---|
Primary key or unique key | Index scan | index scan | Index hash |
(Other) Key | Index hash | Index scan | Index hash |
No index | Table hash | Table scan | Table hash |
The order in which the algorithms are specified in the list does not make any difference in the order in which they are displayed by a SELECT or SHOW VARIABLES statement (which is the same as that used in the table just shown previously).The default value is TABLE_SCAN,INDEX_SCAN, which means that all searches that can use indexes do use them, and searches without any indexes use table scans.
Specifying INDEX_SCAN,TABLE_SCAN,HASH_SCAN has the same effect as specifying INDEX_SCAN,HASH_SCAN. To use hashing for any searches that does not use a primary or unique key, set this option to INDEX_SCAN,HASH_SCAN. To force hashing for all searches, set it to TABLE_SCAN,HASH_SCAN.
This option was added in MySQL 5.6.6.
System variables used on replication masters. The following system variables are used in controlling replication masters:
Command-Line Format | --auto-increment-increment[=#] | ||
Option-File Format | auto_increment_increment | ||
Option Sets Variable | Yes, auto_increment_increment | ||
Variable Name | auto_increment_increment | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 | ||
Range | 1 .. 65535 |
auto_increment_increment and auto_increment_offset are intended for use with master-to-master replication, and can be used to control the operation of AUTO_INCREMENT columns. Both variables have global and session values, and each can assume an integer value between 1 and 65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be set to 1 instead. Attempting to set the value of either of these two variables to an integer greater than 65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the value of auto_increment_increment or auto_increment_offset to a noninteger value gives rise to an error, and the actual value of the variable remains unchanged.
Note
auto_increment_increment is intended for use with MySQL Cluster, which is not currently supported in MySQL 5.6.
These two variables affect AUTO_INCREMENT column behavior as follows:
auto_increment_increment controls the interval between successive column values. For example:
mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)
mysql> CREATE TABLE autoinc1
-> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.04 sec)
mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)
mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0
mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)
auto_increment_offset determines the starting point for the AUTO_INCREMENT column value. Consider the following, assuming that these statements are executed during the same session as the example given in the description for auto_increment_increment:
mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)
mysql> CREATE TABLE autoinc2
-> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec)
mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0
mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+
4 rows in set (0.02 sec)
If the value of auto_increment_offset is greater than that of auto_increment_increment, the value of auto_increment_offset is ignored.
Should one or both of these variables be changed and then new rows inserted into a table containing an AUTO_INCREMENT column, the results may seem counterintuitive because the series of AUTO_INCREMENT values is calculated without regard to any values already present in the column, and the next value inserted is the least value in the series that is greater than the maximum existing value in the AUTO_INCREMENT column. In other words, the series is calculated like so:
auto_increment_offset + N × auto_increment_increment
where N is a positive integer value in the series [1, 2, 3, ...]. For example:
mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)
mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)
mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0
mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |
| 65 |
+-----+
8 rows in set (0.00 sec)
The values shown for auto_increment_increment and auto_increment_offset generate the series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The greatest value present in the col column prior to the INSERT is 31, and the next available value in the AUTO_INCREMENT series is 35, so the inserted values for col begin at that point and the results are as shown for the SELECT query.
It is not possible to confine the effects of these two variables to a single table, and thus they do not take the place of the sequences offered by some other database management systems; these variables control the behavior of all AUTO_INCREMENT columns in all tables on the MySQL server. If the global value of either variable is set, its effects persist until the global value is changed or overridden by setting the session value, or until mysqld is restarted. If the local value is set, the new value affects AUTO_INCREMENT columns for all tables into which new rows are inserted by the current user for the duration of the session, unless the values are changed during that session.
The default value of auto_increment_increment is 1. See Section 16.4.1.1, “Replication and AUTO_INCREMENT”.
Command-Line Format | --auto-increment-offset[=#] | ||
Option-File Format | auto_increment_offset | ||
Option Sets Variable | Yes, auto_increment_offset | ||
Variable Name | auto_increment_offset | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1 | ||
Range | 1 .. 65535 |
This variable has a default value of 1. For particulars, see the description for auto_increment_increment.
Note
auto_increment_offset is intended for use with MySQL Cluster, which is not currently supported in MySQL 5.6.
Command-Line Format | --slave-allow-batching | ||
Option-File Format | slave_allow_batching | ||
Option Sets Variable | Yes, slave_allow_batching | ||
Variable Name | slave_allow_batching | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | off |
Whether or not batched updates are enabled on replication slaves.
Version Introduced | 5.6.6 | ||
Variable Name | slave_max_allowed_packet | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1073741824 | ||
Range | 1024 .. 1073741824 |
In MySQL 5.6.6 and later, this variable sets the maximum packet size for the slave SQL and I/O threads, so that large updates using row-based replication do not cause replication to fail because an update exceeded max_allowed_packet.
This global variable always has a value that is a positive integer multiple of 1024; if you set it to some value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or used; setting slave_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning is issued in all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is 1024.
slave_max_allowed_packet can also be set at startup, using the --slave-max-allowed-packet option.
Version Introduced | 5.6.6 | ||
Variable Name | slave_rows_search_algorithms=list | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | set | ||
Valid Values | TABLE_SCAN,INDEX_SCAN | default | |
INDEX_SCAN,HASH_SCAN | |||
TABLE_SCAN,HASH_SCAN | |||
TABLE_SCAN,INDEX_SCAN,HASH_SCAN | equivalent to INDEX_SCAN,HASH_SCAN |
When preparing batches of rows for row-based logging and replication using slave_allow_batching, the slave_rows_search_algorithms variable controls how the rows are searched for matches—that is, whether or not hashing is used for searches using a primary or unique key, using some other key, or using no key at all. This option takes a comma-separated list of at least 2 values from the list INDEX_SCAN, TABLE_SCAN, HASH_SCAN. The value expected as a string, so the value must be quoted. In addition, the value must not contain any spaces. Possible combinations (lists) and their effects are shown in the following table:
Index used / option value | INDEX_SCAN,HASH_SCAN or INDEX_SCAN,TABLE_SCAN,HASH_SCAN | INDEX_SCAN,TABLE_SCAN | TABLE_SCAN,HASH_SCAN |
---|---|---|---|
Primary key or unique key | Index scan | index scan | Index hash |
(Other) Key | Index hash | Index scan | Index hash |
No index | Table hash | Table scan | Table hash |
The order in which the algorithms are specified in the list does not make any difference in the order in which they are displayed by a SELECT or SHOW VARIABLES statement, as shown here:
mysql> SET GLOBAL slave_rows_search_algorithms = "INDEX_SCAN,TABLE_SCAN";
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW VARIABLES LIKE '%algorithms%';
+------------------------------+-----------------------+
| Variable_name | Value |
+------------------------------+-----------------------+
| slave_rows_search_algorithms | TABLE_SCAN,INDEX_SCAN |
+------------------------------+-----------------------+
1 row in set (0.00 sec)
mysql> SET GLOBAL slave_rows_search_algorithms = "TABLE_SCAN,INDEX_SCAN";
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW VARIABLES LIKE '%algorithms%';
+------------------------------+-----------------------+
| Variable_name | Value |
+------------------------------+-----------------------+
| slave_rows_search_algorithms | TABLE_SCAN,INDEX_SCAN |
+------------------------------+-----------------------+
1 row in set (0.00 sec)
The default value is TABLE_SCAN,INDEX_SCAN, which means that all searches that can use indexes do use them, and searches without any indexes use table scans.
Specifying INDEX_SCAN,TABLE_SCAN,HASH_SCAN has the same effect as specifying INDEX_SCAN,HASH_SCAN. To use hashing for any searches that does not use a primary or unique key, set this variable to INDEX_SCAN,HASH_SCAN. To force hashing for all searches, set it to TABLE_SCAN,HASH_SCAN.
This variable was added in MySQL 5.6.6.
16.1.4.3. Replication Slave Options and Variables
This section describes the server options and system variables that apply to slave replication servers. You can specify the options either on the command line or in an option file. Many of the options can be set while the server is running by using the CHANGE MASTER TO statement. You can specify system variable values using SET.
Server ID. On the master and each slave, you must use the server-id option to establish a unique replication ID in the range from 1 to 232 – 1. “Unique” means that each ID must be different from every other ID in use by any other replication master or slave. Example my.cnf file:
[mysqld]
server-id=3
Startup options for replication slaves. The following list describes startup options for controlling replication slave servers. Many of these options can be set while the server is running by using the CHANGE MASTER TO statement. Others, such as the --replicate-* options, can be set only when the slave server starts. Replication-related system variables are discussed later in this section.
Command-Line Format | --abort-slave-event-count=# | ||
Option-File Format | abort-slave-event-count | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Min Value | 0 |
When this option is set to some positive integer value other than 0 (the default) it affects replication behavior as follows: After the slave SQL thread has started, value log events are permitted to be executed; after that, the slave SQL thread does not receive any more events, just as if the network connection from the master were cut. The slave thread continues to run, and the output from SHOW SLAVE STATUS displays Yes in both the Slave_IO_Running and the Slave_SQL_Running columns, but no further events are read from the relay log.
This option is used internally by the MySQL test suite for replication testing and debugging. It is not intended for use in a production setting.
--disconnect-slave-event-count
Command-Line Format | --disconnect-slave-event-count=# | ||
Option-File Format | disconnect-slave-event-count | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 |
This option is used internally by the MySQL test suite for replication testing and debugging.
Command-Line Format | --log-slave-updates | ||
Option-File Format | log-slave-updates | ||
Option Sets Variable | Yes, log_slave_updates | ||
Variable Name | log_slave_updates | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Normally, a slave does not log to its own binary log any updates that are received from a master server. This option tells the slave to log the updates performed by its SQL thread to its own binary log. For this option to have any effect, the slave must also be started with the --log-bin option to enable binary logging. Prior to MySQL 5.5, the server would not start when using the --log-slave-updates option without also starting the server with the --log-bin option, and would fail with an error; in MySQL 5.6, only a warning is generated. (Bug #44663) --log-slave-updates is used when you want to chain replication servers. For example, you might want to set up replication servers using this arrangement:
A -> B -> C
Here, A serves as the master for the slave B, and B serves as the master for the slave C. For this to work, B must be both a master and a slave. You must start both A and B with --log-bin to enable binary logging, and B with the --log-slave-updates option so that updates received from A are logged by B to its binary log.
Command-Line Format | --log-slow-slave-statements | ||
Option-File Format | log-slow-slave-statements | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
When the slow query log is enabled, this option enables logging for queries that have taken more than long_query_time seconds to execute on the slave.
Command-Line Format | --log-warnings[=#] | ||
-W [#] | |||
Option-File Format | log-warnings | ||
Option Sets Variable | Yes, log_warnings | ||
Variable Name | log_warnings | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Disabled by | skip-log-warnings | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1 | ||
Range | 0 .. 18446744073709547520 |
This option causes a server to print more messages to the error log about what it is doing. With respect to replication, the server generates warnings that it succeeded in reconnecting after a network/connection failure, and informs you as to how each slave thread started. This option is enabled by default; to disable it, use --skip-log-warnings. If the value is greater than 1, aborted connections are written to the error log, and access-denied errors for new connection attempts are written. See Section C.5.2.11, “Communication Errors and Aborted Connections”.
Note that the effects of this option are not limited to replication. It produces warnings across a spectrum of server activities.
Command-Line Format | --master-info-file=file_name | ||
Option-File Format | master-info-file=file_name | ||
Permitted Values | |||
Type | file name | ||
Default | master.info |
The name to use for the file in which the slave records information about the master. The default name is master.info in the data directory. For information about the format of this file, see Section 16.2.2.2, “Slave Status Logs”.
Version Deprecated | 5.6.1 | ||
Command-Line Format | --master-retry-count=# | ||
Option-File Format | master-retry-count | ||
Deprecated | 5.6.1 | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 86400 | ||
Range | 0 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 86400 | ||
Range | 0 .. 18446744073709551615 |
The number of times that the slave tries to connect to the master before giving up. Reconnects are attempted at intervals set by the MASTER_CONNECT_RETRY option of the CHANGE MASTER TO statement (default 60). Reconnects are triggered when data reads by the slave time out according to the --slave-net-timeout option. The default value is 86400. A value of 0 means “infinite”; the slave attempts to connect forever.
This option is deprecated as of MySQL 5.6.1 and will be removed in a future MySQL release. Applications should be updated to use the MASTER_RETRY_COUNT option of the CHANGE MASTER TO statement instead.
The size at which the server rotates relay log files automatically. For more information, see Section 16.2.2, “Replication Relay and Status Logs”. The default size is 1GB.
Cause the slave to permit no updates except from slave threads or from users having the SUPER privilege. On a slave server, this can be useful to ensure that the slave accepts updates only from its master server and not from clients. This variable does not apply to TEMPORARY tables.
Command-Line Format | --relay-log=name | ||
Option-File Format | relay-log | ||
Option Sets Variable | Yes, relay_log | ||
Variable Name | relay-log | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The basename for the relay log. The default basename is host_name-relay-bin. The server writes the file in the data directory unless the basename is given with a leading absolute path name to specify a different directory. The server creates relay log files in sequence by adding a numeric suffix to the basename.
Due to the manner in which MySQL parses server options, if you specify this option, you must supply a value; the default basename is used only if the option is not actually specified. If you use the --relay-log option without specifying a value, unexpected behavior is likely to result; this behavior depends on the other options used, the order in which they are specified, and whether they are specified on the command line or in an option file. For more information about how MySQL handles server options, see Section 4.2.3, “Specifying Program Options”.
If you specify this option, the value specified is also used as the basename for the relay log index file. You can override this behavior by specifying a different relay log index file basename using the --relay-log-index option.
Starting with MySQL 5.6.5, when the server reads an entry from the index file, it checks whether the entry contains a relative path. If it does, the relative part of the path in replaced with the absolute path set using the --relay-log option. An absolute path remains unchanged; in such a case, the index must be edited manually to enable the new path or paths to be used. Prior to MySQL 5.6.5, manual intervention was required whenever relocating the binary log or relay log files. (Bug #11745230, Bug #12133)
You may find the --relay-log option useful in performing the following tasks:
Creating relay logs whose names are independent of host names.
If you need to put the relay logs in some area other than the data directory because your relay logs tend to be very large and you do not want to decrease max_relay_log_size.
To increase speed by using load-balancing between disks.
Beginning with MySQL 5.6.2, you can obtain the relay log filename (and path) from the relay_log_basename system variable.
Command-Line Format | --relay-log-index=name | ||
Option-File Format | relay-log-index | ||
Option Sets Variable | Yes, relay_log_index | ||
Variable Name | relay-log-index | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The name to use for the relay log index file. The default name is host_name-relay-bin.index in the data directory, where host_name is the name of the slave server.
Due to the manner in which MySQL parses server options, if you specify this option, you must supply a value; the default basename is used only if the option is not actually specified. If you use the --relay-log-index option without specifying a value, unexpected behavior is likely to result; this behavior depends on the other options used, the order in which they are specified, and whether they are specified on the command line or in an option file. For more information about how MySQL handles server options, see Section 4.2.3, “Specifying Program Options”.
If you specify this option, the value specified is also used as the basename for the relay logs. You can override this behavior by specifying a different relay log file basename using the --relay-log option.
--relay-log-info-file=file_name
Command-Line Format | --relay-log-info-file=file_name | ||
Option-File Format | relay-log-info-file | ||
Option Sets Variable | Yes, relay_log_info_file | ||
Permitted Values | |||
Type | file name | ||
Default | relay-log.info |
The name to use for the file in which the slave records information about the relay logs. The default name is relay-log.info in the data directory. For information about the format of this file, see Section 16.2.2.2, “Slave Status Logs”.
Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL relay_log_purge = N.
Command-Line Format | --relay-log-recovery | ||
Option-File Format | relay-log-recovery | ||
Option Sets Variable | Yes, relay_log_recovery | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Enables automatic relay log recovery immediately following server startup, which means that the replication slave discards all unprocessed relay logs and retrieves them from the replication master. This should be used following a crash on the replication slave to ensure that no possibly corrupted relay logs are processed. The default value is 0 (disabled). This option must be enabled in order to provide a crash-proof slave.
Prior to MySQL 5.6.6, if this option is enabled for a multi-threaded slave, and the slave fails with errors, you cannot execute CHANGE MASTER TO on that slave. In MySQL 5.6.6 or later, you can use START SLAVE UNTIL SQL_AFTER_MTS_GAPS to ensure that any gaps in the relay log are processed; after running this statement, you can then use CHANGE MASTER TO to fail this slave over to a new master. (Bug #13893363)
This option places an upper limit on the total size in bytes of all relay logs on the slave. A value of 0 means “no limit.” This is useful for a slave server host that has limited disk space. When the limit is reached, the I/O thread stops reading binary log events from the master server until the SQL thread has caught up and deleted some unused relay logs. Note that this limit is not absolute: There are cases where the SQL thread needs more events before it can delete relay logs. In that case, the I/O thread exceeds the limit until it becomes possible for the SQL thread to delete some relay logs because not doing so would cause a deadlock. You should not set --relay-log-space-limit to less than twice the value of --max-relay-log-size (or --max-binlog-size if --max-relay-log-size is 0). In that case, there is a chance that the I/O thread waits for free space because --relay-log-space-limit is exceeded, but the SQL thread has no relay log to purge and is unable to satisfy the I/O thread. This forces the I/O thread to ignore --relay-log-space-limit temporarily.
Command-Line Format | --replicate-do-db=name | ||
Option-File Format | replicate-do-db | ||
Permitted Values | |||
Type | string |
The effects of this option depend on whether statement-based or row-based replication is in use.
Statement-based replication. Tell the slave SQL thread to restrict replication to statements where the default database (that is, the one selected by USE) is db_name. To specify more than one database, use this option multiple times, once for each database; however, doing so does not replicate cross-database statements such as UPDATE some_db.some_table SET foo='bar' while a different database (or no database) is selected.
Warning
To specify multiple databases you must use multiple instances of this option. Because database names can contain commas, if you supply a comma separated list then the list will be treated as the name of a single database.
An example of what does not work as you might expect when using statement-based replication: If the slave is started with --replicate-do-db=sales and you issue the following statements on the master, the UPDATE statement is not replicated:
USE prices;
UPDATE sales.january SET amount=amount+1000;
The main reason for this “check just the default database” behavior is that it is difficult from the statement alone to know whether it should be replicated (for example, if you are using multiple-table DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to check only the default database rather than all databases if there is no need.
Row-based replication. Tells the slave SQL thread to restrict replication to database db_name. Only tables belonging to db_name are changed; the current database has no effect on this. Suppose that the slave is started with --replicate-do-db=sales and row-based replication is in effect, and then the following statements are run on the master:
USE prices;
UPDATE sales.february SET amount=amount+100;
The february table in the sales database on the slave is changed in accordance with the UPDATE statement; this occurs whether or not the USE statement was issued. However, issuing the following statements on the master has no effect on the slave when using row-based replication and --replicate-do-db=sales:
USE prices;
UPDATE prices.march SET amount=amount-25;
Even if the statement USE prices were changed to USE sales, the UPDATE statement's effects would still not be replicated.
Another important difference in how --replicate-do-db is handled in statement-based replication as opposed to row-based replication occurs with regard to statements that refer to multiple databases. Suppose that the slave is started with --replicate-do-db=db1, and the following statements are executed on the master:
USE db1;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;
If you are using statement-based replication, then both tables are updated on the slave. However, when using row-based replication, only table1 is affected on the slave; since table2 is in a different database, table2 on the slave is not changed by the UPDATE. Now suppose that, instead of the USE db1 statement, a USE db4 statement had been used:
USE db4;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;
In this case, the UPDATE statement would have no effect on the slave when using statement-based replication. However, if you are using row-based replication, the UPDATE would change table1 on the slave, but not table2—in other words, only tables in the database named by --replicate-do-db are changed, and the choice of default database has no effect on this behavior.
If you need cross-database updates to work, use --replicate-wild-do-table=db_name.% instead. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.
Note
This option affects replication in the same manner that --binlog-do-db affects binary logging, and the effects of the replication format on how --replicate-do-db affects replication behavior are the same as those of the logging format on the behavior of --binlog-do-db.
This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.
Command-Line Format | --replicate-ignore-db=name | ||
Option-File Format | replicate-ignore-db | ||
Permitted Values | |||
Type | string |
As with --replicate-do-db, the effects of this option depend on whether statement-based or row-based replication is in use.
Statement-based replication. Tells the slave SQL thread not to replicate any statement where the default database (that is, the one selected by USE) is db_name.
Row-based replication. Tells the slave SQL thread not to update any tables in the database db_name. The default database has no effect.
When using statement-based replication, the following example does not work as you might expect. Suppose that the slave is started with --replicate-ignore-db=sales and you issue the following statements on the master:
USE prices;
UPDATE sales.january SET amount=amount+1000;
The UPDATE statement is replicated in such a case because --replicate-ignore-db applies only to the default database (determined by the USE statement). Because the sales database was specified explicitly in the statement, the statement has not been filtered. However, when using row-based replication, the UPDATE statement's effects are not propagated to the slave, and the slave's copy of the sales.january table is unchanged; in this instance, --replicate-ignore-db=sales causes all changes made to tables in the master's copy of the sales database to be ignored by the slave.
To specify more than one database to ignore, use this option multiple times, once for each database. Because database names can contain commas, if you supply a comma separated list then the list will be treated as the name of a single database.
You should not use this option if you are using cross-database updates and you do not want these updates to be replicated. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.
If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.% instead. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.
Note
This option affects replication in the same manner that --binlog-ignore-db affects binary logging, and the effects of the replication format on how --replicate-ignore-db affects replication behavior are the same as those of the logging format on the behavior of --binlog-ignore-db.
This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.
--replicate-do-table=db_name.tbl_name
Command-Line Format | --replicate-do-table=name | ||
Option-File Format | replicate-do-table | ||
Permitted Values | |||
Type | string |
Tells the slave SQL thread to restrict replication to the specified table. To specify more than one table, use this option multiple times, once for each table. This works for both cross-database updates and default database updates, in contrast to --replicate-do-db. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.
This option affects only statements that apply to tables. It does not affect statements that apply only to other database objects, such as stored routines. To filter statements operating on stored routines, use one or more of the --replicate-*-db options.
--replicate-ignore-table=db_name.tbl_name
Command-Line Format | --replicate-ignore-table=name | ||
Option-File Format | replicate-ignore-table | ||
Permitted Values | |||
Type | string |
Tells the slave SQL thread not to replicate any statement that updates the specified table, even if any other tables might be updated by the same statement. To specify more than one table to ignore, use this option multiple times, once for each table. This works for cross-database updates, in contrast to --replicate-ignore-db. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.
This option affects only statements that apply to tables. It does not affect statements that apply only to other database objects, such as stored routines. To filter statements operating on stored routines, use one or more of the --replicate-*-db options.
--replicate-rewrite-db=from_name->to_name
Command-Line Format | --replicate-rewrite-db=old_name->new_name | ||
Option-File Format | replicate-rewrite-db | ||
Permitted Values | |||
Type | string |
Tells the slave to translate the default database (that is, the one selected by USE) to to_name if it was from_name on the master. Only statements involving tables are affected (not statements such as CREATE DATABASE, DROP DATABASE, and ALTER DATABASE), and only if from_name is the default database on the master. This does not work for cross-database updates. To specify multiple rewrites, use this option multiple times. The server uses the first one with a from_name value that matches. The database name translation is done before the --replicate-* rules are tested.
If you use this option on the command line and the “>” character is special to your command interpreter, quote the option value. For example:
shell> mysqld --replicate-rewrite-db="olddb->newdb"
Note
Prior to MySQL 5.6.7, multithreaded slaves did not honor this option correctly. (Bug #14232958)
Command-Line Format | --replicate-same-server-id | ||
Option-File Format | replicate-same-server-id | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
To be used on slave servers. Usually you should use the default setting of 0, to prevent infinite loops caused by circular replication. If set to 1, the slave does not skip events having its own server ID. Normally, this is useful only in rare configurations. Cannot be set to 1 if --log-slave-updates is used. By default, the slave I/O thread does not write binary log events to the relay log if they have the slave's server ID (this optimization helps save disk usage). If you want to use --replicate-same-server-id, be sure to start the slave with this option before you make the slave read its own events that you want the slave SQL thread to execute.
--replicate-wild-do-table=db_name.tbl_name
Command-Line Format | --replicate-wild-do-table=name | ||
Option-File Format | replicate-wild-do-table | ||
Permitted Values | |||
Type | string |
Tells the slave thread to restrict replication to statements where any of the updated tables match the specified database and table name patterns. Patterns can contain the “%” and “_” wildcard characters, which have the same meaning as for the LIKE pattern-matching operator. To specify more than one table, use this option multiple times, once for each table. This works for cross-database updates. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.
This option applies to tables, views, and triggers. It does not apply to stored procedures and functions, or events. To filter statements operating on the latter objects, use one or more of the --replicate-*-db options.
Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a table where the database name starts with foo and the table name starts with bar.
If the table name pattern is %, it matches any table name and the option also applies to database-level statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if you use --replicate-wild-do-table=foo%.%, database-level statements are replicated if the database name matches the pattern foo%.
To include literal wildcard characters in the database or table name patterns, escape them with a backslash. For example, to replicate all tables of a database that is named my_own%db, but not replicate tables from the my1ownAABCdb database, you should escape the “_” and “%” characters like this: --replicate-wild-do-table=my_own\%db. If you use the option on the command line, you might need to double the backslashes or quote the option value, depending on your command interpreter. For example, with the bash shell, you would need to type --replicate-wild-do-table=my_own\\%db.
--replicate-wild-ignore-table=db_name.tbl_name
Command-Line Format | --replicate-wild-ignore-table=name | ||
Option-File Format | replicate-wild-ignore-table | ||
Permitted Values | |||
Type | string |
Tells the slave thread not to replicate a statement where any table matches the given wildcard pattern. To specify more than one table to ignore, use this option multiple times, once for each table. This works for cross-database updates. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.
Example: --replicate-wild-ignore-table=foo%.bar% does not replicate updates that use a table where the database name starts with foo and the table name starts with bar.
For information about how matching works, see the description of the --replicate-wild-do-table option. The rules for including literal wildcard characters in the option value are the same as for --replicate-wild-ignore-table as well.
Command-Line Format | --report-host=host_name | ||
Option-File Format | report-host | ||
Option Sets Variable | Yes, report_host | ||
Variable Name | report-host | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The host name or IP address of the slave to be reported to the master during slave registration. This value appears in the output of SHOW SLAVE HOSTS on the master server. Leave the value unset if you do not want the slave to register itself with the master. Note that it is not sufficient for the master to simply read the IP address of the slave from the TCP/IP socket after the slave connects. Due to NAT and other routing issues, that IP may not be valid for connecting to the slave from the master or other hosts.
Command-Line Format | --report-password=name | ||
Option-File Format | report-password | ||
Option Sets Variable | Yes, report_password | ||
Variable Name | report-password | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The account password of the slave to be reported to the master during slave registration. This value appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-info option is given.
Although the name of this option might imply otherwise, --report-password is not connected to the MySQL user privilege system and so is not necessarily (or even likely to be) the same as the password for the MySQL replication user account.
Command-Line Format | --report-port=# | ||
Option-File Format | report-port | ||
Option Sets Variable | Yes, report_port | ||
Variable Name | report-port | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (>= 5.6.5) | |||
Type | numeric | ||
Default | [slave_port] | ||
Range | 0 .. 65535 |
The TCP/IP port number for connecting to the slave, to be reported to the master during slave registration. Set this only if the slave is listening on a nondefault port or if you have a special tunnel from the master or other clients to the slave. If you are not sure, do not use this option.
Prior to MySQL 5.6.5, the default value for this option was 3306. In MySQL 5.6.5 and later, the value shown is the port number actually used by the slave (Bug #13333431). This change also affects the default value displayed by SHOW SLAVE HOSTS.
Command-Line Format | --report-user=name | ||
Option-File Format | report-user | ||
Option Sets Variable | Yes, report_user | ||
Variable Name | report-user | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
The account user name of the slave to be reported to the master during slave registration. This value appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-info option is given.
Although the name of this option might imply otherwise, --report-user is not connected to the MySQL user privilege system and so is not necessarily (or even likely to be) the same as the name of the MySQL replication user account.
Command-Line Format | --show-slave-auth-info | ||
Option-File Format | show-slave-auth-info | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Display slave user names and passwords in the output of SHOW SLAVE HOSTS on the master server for slaves started with the --report-user and --report-password options.
Version Introduced | 5.6.3 | ||
Command-Line Format | --slave-checkpoint-group=# | ||
Option-File Format | slave-checkpoint-group | ||
Option Sets Variable | Yes, slave_checkpoint_group | ||
Permitted Values | |||
Type | numeric | ||
Default | 512 | ||
Range | 32 .. 524280 | ||
Block Size | 8 |
Sets the maximum number of transactions that can be processed by a multi-threaded slave before a checkpoint operation is called to update its status as shown by SHOW SLAVE STATUS. Setting this option has no effect on slaves for which multithreading is not enabled.
This option works in combination with the --slave-checkpoint-period option in such a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the number of transactions and the time elapsed since the last checkpoint are reset.
The minimum allowed value for this option is 32, unless the server was built using -DWITH_DEBUG, in which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to a value that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before storing the value. (Exception: No such rounding is performed by the debug server.) Regardless of how the server was built, the default value is 512, and the maximum allowed value is 524280.
--slave-checkpoint-group was added in MySQL 5.6.3.
Version Introduced | 5.6.3 | ||
Command-Line Format | --slave-checkpoint-period=# | ||
Option-File Format | slave-checkpoint-period | ||
Option Sets Variable | Yes, slave_checkpoint_period | ||
Permitted Values | |||
Type | numeric | ||
Default | 300 | ||
Range | 1 .. 4G |
Sets the maximum time (in milliseconds) that is allowed to pass before a checkpoint operation is called to update the status of a multi-threaded slave as shown by SHOW SLAVE STATUS. Setting this option has no effect on slaves for which multithreading is not enabled.
This option works in combination with the --slave-checkpoint-group option in such a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the number of transactions and the time elapsed since the last checkpoint are reset.
The minimum allowed value for this option is 1, unless the server was built using -DWITH_DEBUG, in which case the minimum value is 0. Regardless of how the server was built, the default value is 300, and the maximum possible value is 4294967296 (4GB).
--slave-checkpoint-period was added in MySQL 5.6.3.
Version Introduced | 5.6.3 | ||
Command-Line Format | --slave-parallel-workers=# | ||
Option-File Format | slave-parallel-workers | ||
Option Sets Variable | Yes, slave_parallel_workers | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 1024 |
Sets the number of slave worker threads for executing replication events (transactions) in parallel. Setting this variable to 0 (the default) disables parallel execution. The maximum is 1024.
When parallel execution is enabled, the slave SQL thread acts as the coordinator for the slave worker threads, among which transactions are distributed on a per-database basis. This means that a worker thread on the slave slave can process successive transactions on a given database without waiting for updates to other databases to complete. The current implementation of multi-threading on the slave assumes that the data is partitioned per database, and that updates within a given database occur in the same relative order as they do on the master, in order to work correctly. However, transactions do not need to be coordinated between any two databases.
Due to the fact that transactions on different databases can occur in a different order on the slave than on the master, checking for the most recently executed transaction does not guarantee that all previous transactions from the master have been executed on the slave. This has implications for logging and recovery when using a multi-threaded slave. For information about how to interpret binary logging information when using multi-threading on the slave, see Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”. In addition, this means that START SLAVE UNTIL is not supported with a multi-threaded slave.
You should also note that, in MySQL 5.6.7 and later, enforcing foreign key relationships between tables in different databases causes multi-threaded slaves to use sequential rather than parallel mode, which can have a negative impact on performance. (Bug #14092635)
This option was added in MySQL 5.6.3.
Note
The value set for this option (or for the corresponding slave_parallel_workers system variable) was not always honored correctly in MySQL 5.6.3; this problem was fixed in MySQL 5.6.4 (Bug #13334470).
--slave-pending-jobs-size-max=#
Version Introduced | 5.6.3 | ||
Command-Line Format | --slave-pending-jobs-size-max=# | ||
Option Sets Variable | Yes, slave_pending_jobs_size_max | ||
Permitted Values | |||
Type | numeric | ||
Default | 16M | ||
Range | 1024 .. 18EB | ||
Block Size | 1024 |
For multithreaded slaves, this option sets the maximum amount of memory (in bytes) available to slave worker queues holding events not yet applied. Setting this option has no effect on slaves for which multithreading is not enabled.
The minimum possible value for this option is 1024; the default is 16MB. The maximum possible value is 18446744073709551615 (16 exabytes). Values that are not exact multiples of 1024 are rounded down to the next-highest multiple of 1024 prior to being stored.
Important
The value for this option must not be less than the master's value for max_allowed_packet; otherwise a slave worker queue may become full while there remain events coming from the master to be processed.
This option was added in MySQL 5.6.3.
Command-Line Format | --skip-slave-start | ||
Option-File Format | skip-slave-start | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Tells the slave server not to start the slave threads when the server starts. To start the threads later, use a START SLAVE statement.
--slave_compressed_protocol={0|1}
Command-Line Format | --slave_compressed_protocol | ||
Option-File Format | slave_compressed_protocol | ||
Option Sets Variable | Yes, slave_compressed_protocol | ||
Variable Name | slave_compressed_protocol | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
If this option is set to 1, use compression for the slave/master protocol if both the slave and the master support it. The default is 0 (no compression).
Command-Line Format | --slave-load-tmpdir=path | ||
Option-File Format | slave-load-tmpdir | ||
Option Sets Variable | Yes, slave_load_tmpdir | ||
Variable Name | slave_load_tmpdir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name | ||
Default | /tmp |
The name of the directory where the slave creates temporary files. This option is by default equal to the value of the tmpdir system variable. When the slave SQL thread replicates a LOAD DATA INFILE statement, it extracts the file to be loaded from the relay log into temporary files, and then loads these into the table. If the file loaded on the master is huge, the temporary files on the slave are huge, too. Therefore, it might be advisable to use this option to tell the slave to put temporary files in a directory located in some file system that has a lot of available space. In that case, the relay logs are huge as well, so you might also want to use the --relay-log option to place the relay logs in that file system.
The directory specified by this option should be located in a disk-based file system (not a memory-based file system) because the temporary files used to replicate LOAD DATA INFILE must survive machine restarts. The directory also should not be one that is cleared by the operating system during the system startup process.
Command-Line Format | --slave-net-timeout=# | ||
Option-File Format | slave-net-timeout | ||
Option Sets Variable | Yes, slave_net_timeout | ||
Variable Name | slave_net_timeout | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 3600 | ||
Min Value | 1 |
The number of seconds to wait for more data from the master before the slave considers the connection broken, aborts the read, and tries to reconnect. The first retry occurs immediately after the timeout. The interval between retries is controlled by the MASTER_CONNECT_RETRY option for the CHANGE MASTER TO statement, and the number of reconnection attempts is limited by the --master-retry-count option. The default is 3600 seconds (one hour).
--slave-skip-errors=[err_code1,err_code2,...|all]
Command-Line Format | --slave-skip-errors=name | ||
Option-File Format | slave-skip-errors | ||
Option Sets Variable | Yes, slave_skip_errors | ||
Variable Name | slave_skip_errors | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string | ||
Default | OFF | ||
Valid Values | [list of error codes] all ddl_exist_errors |
Normally, replication stops when an error occurs on the slave. This gives you the opportunity to resolve the inconsistency in the data manually. This option tells the slave SQL thread to continue replication when a statement returns any of the errors listed in the option value.
Do not use this option unless you fully understand why you are getting errors. If there are no bugs in your replication setup and client programs, and no bugs in MySQL itself, an error that stops replication should never occur. Indiscriminate use of this option results in slaves becoming hopelessly out of synchrony with the master, with you having no idea why this has occurred.
For error codes, you should use the numbers provided by the error message in your slave error log and in the output of SHOW SLAVE STATUS. Appendix C, Errors, Error Codes, and Common Problems, lists server error codes.
You can also (but should not) use the very nonrecommended value of all to cause the slave to ignore all error messages and keeps going regardless of what happens. Needless to say, if you use all, there are no guarantees regarding the integrity of your data. Please do not complain (or file bug reports) in this case if the slave's data is not anywhere close to what it is on the master. You have been warned.
MySQL 5.6 supports an additional shorthand value ddl_exists_errors, which is equivalent to the error code list 1007,1008,4050,1051,1054,1060,1061,1068,1094,1146.
Examples:
--slave-skip-errors=1062,1053
--slave-skip-errors=all
--slave-skip-errors=ddl_exist_errors
--slave-sql-verify-checksum={0|1}
Version Introduced | 5.6.2 | ||
Command-Line Format | --slave-sql-verify-checksum=value | ||
Option-File Format | slave-sql-verify-checksum | ||
Permitted Values | |||
Type | boolean | ||
Default | 0 | ||
Valid Values | 0 1 |
When this option is enabled, the slave examines checksums read from the relay log, in the event of a mismatch, the slave stops with an error. Disabled by default.
This option was added in MySQL 5.6.2.
Obsolete options. The following options are removed in MySQL 5.6. If you attempt to start mysqld with any of these options in MySQL 5.6, the server aborts with an unknown variable error. To set the replication parameters formerly associated with these options, you must use the CHANGE MASTER TO ... statement (see Section 13.4.2.1, “CHANGE MASTER TO Syntax”).
The options affected are shown in this list:
--master-host
--master-user
--master-password
--master-port
--master-connect-retry
--master-ssl
--master-ssl-ca
--master-ssl-capath
--master-ssl-cert
--master-ssl-cipher
--master-ssl-key
System variables used on replication slaves. The following list describes system variables for controlling replication slave servers. They can be set at server startup and some of them can be changed at runtime using SET. Server options used with replication slaves are listed earlier in this section.
Command-Line Format | --init-slave=name | ||
Option-File Format | init_slave | ||
Option Sets Variable | Yes, init_slave | ||
Variable Name | init_slave | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
This variable is similar to init_connect, but is a string to be executed by a slave server each time the SQL thread starts. The format of the string is the same as for the init_connect variable.
Note
The SQL thread sends an acknowledgment to the client before it executes init_slave. Therefore, it is not guaranteed that init_slave has been executed when START SLAVE returns. See Section 13.4.2.5, “START SLAVE Syntax”, for more information.
Version Introduced | 5.6.11 | ||
Variable Name | log_slow_slave_statements | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
When the slow query log is enabled, this variable enables logging for queries that have taken more than long_query_time seconds to execute on the slave. This variable was added in MySQL 5.6.11.
Version Introduced | 5.6.2 | ||
Variable Name | master_info_repository | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string | ||
Default | FILE | ||
Valid Values | FILE TABLE |
The setting of this variable determines whether the slave logs master status and connection information to a FILE (master.info), or to a TABLE (mysql.slave_master_info).
This variable was added in MySQL 5.6.2.
Command-Line Format | --relay-log=name | ||
Option-File Format | relay-log | ||
Option Sets Variable | Yes, relay_log | ||
Variable Name | relay-log | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name |
The name of the relay log file.
Version Introduced | 5.6.2 | ||
Variable Name | relay_log_basename | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name | ||
Default | datadir + '/' + hostname + '-relay-bin' |
Holds the name and complete path to the relay log file.
The relay_log_basename system variable was added in MySQL 5.6.2.
Command-Line Format | --relay-log-index | ||
Option-File Format | relay_log_index | ||
Option Sets Variable | Yes, relay_log_index | ||
Variable Name | relay_log_index | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string | ||
Default | *host_name*-relay-bin.index |
The name of the relay log index file. The default name is host_name-relay-bin.index in the data directory, where host_name is the name of the slave server.
Command-Line Format | --relay-log-info-file=file_name | ||
Option-File Format | relay_log_info_file | ||
Option Sets Variable | Yes, relay_log_info_file | ||
Variable Name | relay_log_info_file | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string | ||
Default | relay-log.info |
The name of the file in which the slave records information about the relay logs. The default name is relay-log.info in the data directory.
Version Introduced | 5.6.2 | ||
Variable Name | relay_log_info_repository | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string | ||
Default | FILE | ||
Valid Values | FILE TABLE |
This variable determines whether the slave's position in the relay logs is written to a FILE (relay-log.info) or to a TABLE (mysql.slave_relay_log_info).
This variable was added in MySQL 5.6.2.
Command-Line Format | --relay-log-recovery | ||
Option-File Format | relay_log_recovery | ||
Option Sets Variable | Yes, relay_log_recovery | ||
Variable Name | relay_log_recovery | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Enables automatic relay log recovery immediately following server startup, which means that the replication slave discards all unprocessed relay logs and retrieves them from the replication master. In MySQL 5.6.5 and earlier, it was possible to change this global variable dynamically; beginning with MySQL 5.6.6, it is read-only. (Bug #13840948) Regardless of the MySQL Server version, its value can be changed by starting the slave with the --relay-log-recovery option, which should be used following a crash on the replication slave to ensure that no possibly corrupted relay logs are processed, and must be used in order to guarantee a crash-proof slave. The default value is 0 (disabled).
When relay_log_recovery is enabled and the slave has stopped due to errors encountered while running in multi-threaded mode, you cannot execute CHANGE MASTER TO if there are any gaps in the log. Beginning with MySQL 5.6.6, you should use START SLAVE UNTIL SQL_AFTER_MTS_GAPS to ensure that all gaps are processed before switching back to single-threaded mode or executing a CHANGE MASTER TO statement.
Version Introduced | 5.6.3 | ||
Command-Line Format | --slave-checkpoint-group=# | ||
Option-File Format | slave_checkpoint_group | ||
Variable Name | slave_checkpoint_group=# | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 512 | ||
Range | 32 .. 524280 | ||
Block Size | 8 |
Sets the maximum number of transactions that can be processed by a multi-threaded slave before a checkpoint operation is called to update its status as shown by SHOW SLAVE STATUS. Setting this variable has no effect on slaves for which multithreading is not enabled.
This variable works in combination with the slave_checkpoint_period system variable in such a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the number of transactions and the time elapsed since the last checkpoint are reset.
The minimum allowed value for this variable is 32, unless the server was built using -DWITH_DEBUG, in which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to a value that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before storing the value. (Exception: No such rounding is performed by the debug server.) Regardless of how the server was built, the default value is 512, and the maximum allowed value is 524280.
slave_checkpoint_group was added in MySQL 5.6.3.
Version Introduced | 5.6.3 | ||
Command-Line Format | --slave-checkpoint-period=# | ||
Option-File Format | slave_checkpoint_period | ||
Variable Name | slave_checkpoint_period=# | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 300 | ||
Range | 1 .. 4G |
Sets the maximum time (in milliseconds) that is allowed to pass before a checkpoint operation is called to update the status of a multi-threaded slave as shown by SHOW SLAVE STATUS. Setting this variable has no effect on slaves for which multithreading is not enabled.
This variable works in combination with the slave_checkpoint_group system variable in such a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the number of transactions and the time elapsed since the last checkpoint are reset.
The minimum allowed value for this variable is 1, unless the server was built using -DWITH_DEBUG, in which case the minimum value is 0. Regardless of how the server was built, the default value is 300, and the maximum possible value is 4294967296 (4GB).
slave_checkpoint_period was added in MySQL 5.6.3.
Command-Line Format | --slave_compressed_protocol | ||
Option-File Format | slave_compressed_protocol | ||
Option Sets Variable | Yes, slave_compressed_protocol | ||
Variable Name | slave_compressed_protocol | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Whether to use compression of the slave/master protocol if both the slave and the master support it.
Command-Line Format | --slave-exec-mode=mode | ||
Option-File Format | slave_exec_mode | ||
Option Sets Variable | Yes, slave_exec_mode | ||
Variable Name | slave_exec_mode | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | STRICT (ALL) | ||
Default | IDEMPOTENT (NDB) | ||
Valid Values | IDEMPOTENT STRICT |
Controls whether IDEMPOTENT or STRICT mode is used in replication conflict resolution and error checking. IDEMPOTENT mode causes suppression of duplicate-key and no-key-found errors. This mode should be employed in multi-master replication, circular replication, and some other special replication scenarios. STRICT mode is the default, and is suitable for most other cases.
Command-Line Format | --slave-load-tmpdir=path | ||
Option-File Format | slave-load-tmpdir | ||
Option Sets Variable | Yes, slave_load_tmpdir | ||
Variable Name | slave_load_tmpdir | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name | ||
Default | /tmp |
The name of the directory where the slave creates temporary files for replicating LOAD DATA INFILE statements.
Command-Line Format | --slave-net-timeout=# | ||
Option-File Format | slave-net-timeout | ||
Option Sets Variable | Yes, slave_net_timeout | ||
Variable Name | slave_net_timeout | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 3600 | ||
Min Value | 1 |
The number of seconds to wait for more data from a master/slave connection before aborting the read.
Version Introduced | 5.6.3 | ||
Variable Name | slave_parallel_workers | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 1024 |
Sets the number of slave worker threads for executing replication events (transactions) in parallel. Setting this variable to 0 (the default) disables parallel execution. The maximum is 1024.
When parallel execution is enabled, the slave SQL thread acts as the coordinator for the slave worker threads, among which transactions are distributed on a per-database basis. This means that a worker thread on the slave slave can process successive transactions on a given database without waiting for updates to other databases to complete. The current implementation of multi-threading on the slave assumes that the data is partitioned per database, and that updates within a given database occur in the same relative order as they do on the master, in order to work correctly. However, transactions do not need to be coordinated between any two databases.
Due to the fact that transactions on different databases can occur in a different order on the slave than on the master, checking for the most recently executed transaction does not guarantee that all previous transactions from the master have been executed on the slave. This has implications for logging and recovery when using a multi-threaded slave. For information about how to interpret binary logging information when using multi-threading on the slave, see Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”. In addition, this means that START SLAVE UNTIL is not supported with a multi-threaded slave.
This variable was added in MySQL 5.6.3.
Note
The value set for this variable (or for the corresponding --slave-parallel-workers option) was not always honored correctly in MySQL 5.6.3; this problem was fixed in MySQL 5.6.4 (Bug #13334470).
Version Introduced | 5.6.3 | ||
Variable Name | slave_pending_jobs_size_max | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 1024 .. 18EB | ||
Block Size | 1024 |
For multithreaded slaves, this variable sets the maximum amount of memory (in bytes) available to slave worker queues holding events not yet applied. Setting this variable has no effect on slaves for which multithreading is not enabled.
The minimum possible value for this variable is 1024; the default is 16MB. The maximum possible value is 18446744073709551615 (16 exabytes). Values that are not exact multiples of 1024 are rounded down to the next-highest multiple of 1024 prior to being stored.
Important
The value of this variable must not be less than the master's value for max_allowed_packet; otherwise a slave worker queue may become full while there remain events coming from the master to be processed.
slave_pending_jobs_size_max was added in MySQL 5.6.3.
Command-Line Format | --slave-skip-errors=name | ||
Option-File Format | slave-skip-errors | ||
Option Sets Variable | Yes, slave_skip_errors | ||
Variable Name | slave_skip_errors | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string | ||
Default | OFF | ||
Valid Values | [list of error codes] all ddl_exist_errors |
Normally, replication stops when an error occurs on the slave. This gives you the opportunity to resolve the inconsistency in the data manually. This variable tells the slave SQL thread to continue replication when a statement returns any of the errors listed in the variable value.
Version Introduced | 5.6.2 | ||
Variable Name | slave_sql_verify_checksum | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | 0 | ||
Valid Values | 0 1 |
Cause the slave SQL thread to verify data using the checksums read from the relay log. In the event of a mismatch, the slave stops with an error.
Note
The slave I/O thread always reads checksums if possible when accepting events from over the network.
slave_sql_verify_checksum was added in MySQL 5.6.2.
Command-Line Format | --slave_transaction_retries=# | ||
Option-File Format | slave_transaction_retries | ||
Option Sets Variable | Yes, slave_transaction_retries | ||
Variable Name | slave_transaction_retries | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 10 | ||
Range | 0 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 10 | ||
Range | 0 .. 18446744073709547520 |
If a replication slave SQL thread fails to execute a transaction because of an InnoDB deadlock or because the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout, it automatically retries slave_transaction_retries times before stopping with an error. The default value is 10.
Command-Line Format | --slave_type_conversions=set | ||
Option-File Format | slave_type_conversions | ||
Option Sets Variable | Yes, slave_type_conversions | ||
Variable Name | slave_type_conversions | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | set | ||
Default | |||
Valid Values | ALL_LOSSY ALL_NON_LOSSY ALL_LOSSY,ALL_NON_LOSSY |
Controls the type conversion mode in effect on the slave when using row-based replication. Its value is a comma-delimited set of zero or more elements from the list: ALL_LOSSY, ALL_NON_LOSSY. Set this variable to an empty string to disallow type conversions between the master and the slave. Changes require a restart of the slave to take effect.
For additional information on type conversion modes applicable to attribute promotion and demotion in row-based replication, see Row-based replication: attribute promotion and demotion.
Variable Name | sql_slave_skip_counter | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric |
The number of events from the master that a slave server should skip.
This option is incompatible with GTID-based replication, and must not be set to a nonzero value when --gtid-mode=ON. In MySQL 5.6.10 and later, trying to do so is specifically disallowed. (Bug #15833516) If you need to skip transactions when employing GTIDs, use gtid_executed from the master instead. See Injecting empty transactions, for information about how to do this.
Important
If skipping the number of events specified by setting this variable would cause the slave to begin in the middle of an event group, the slave continues to skip until it finds the beginning of the next event group and begins from that point. For more information, see Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Syntax”.
Command-Line Format | --sync-master-info=# | ||
Option-File Format | sync_master_info | ||
Option Sets Variable | Yes, sync_master_info | ||
Variable Name | sync_master_info | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 18446744073709547520 | ||
Permitted Values (<= 5.6.5) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 10000 | ||
Range | 0 .. 18446744073709547520 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 10000 | ||
Range | 0 .. 4294967295 |
The effects of this variable on a replication slave depend on whether the slave's master_info_repository is set to FILE or TABLE, as explained in the following paragraphs.
master_info_repository = FILE. If the value of sync_master_info is greater than 0, the slave synchronizes its master.info file to disk (using fdatasync()) after every sync_master_info events. If it is 0, the MySQL server performs no synchronization of the master.info file to disk; instead, the server relies on the operating system to flush its contents periodically as with any other file.
master_info_repository = TABLE. If the value of sync_master_info is greater than 0, the slave updates its master info repository table after every sync_master_info events. If it is 0, the table is never updated.
The default value for sync_master_info is 10000 as of MySQL 5.6.6, 0 before that.
Command-Line Format | --sync-relay-log=# | ||
Option-File Format | sync_relay_log | ||
Option Sets Variable | Yes, sync_relay_log | ||
Variable Name | sync_relay_log | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 18446744073709547520 | ||
Permitted Values (<= 5.6.5) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 10000 | ||
Range | 0 .. 18446744073709547520 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 10000 | ||
Range | 0 .. 4294967295 |
If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk (using fdatasync()) after every sync_relay_log writes to the relay log. There is one write to the relay log per statement if autocommit is enabled, and one write per transaction otherwise. A value of 0 does no synchronizing to disk—in this case, the server relies on the operating system to flush the relay log's contents from time to time as for any other file. A value of 1 is the safest choice because in the event of a crash you lose at most one statement or transaction from the relay log. However, it is also the slowest choice (unless the disk has a battery-backed cache, which makes synchronization very fast). The default is 10000 as of MySQL 5.6.6, 0 before that.
Command-Line Format | --sync-relay-log-info=# | ||
Option-File Format | sync_relay_log_info | ||
Option Sets Variable | Yes, sync_relay_log_info | ||
Variable Name | sync_relay_log_info | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 18446744073709547520 | ||
Permitted Values (<= 5.6.5) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 10000 | ||
Range | 0 .. 18446744073709547520 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 10000 | ||
Range | 0 .. 4294967295 |
The effects of this variable on the slave depend on the server's relay_log_info_repository setting (FILE or TABLE), and if this is TABLE, additionally on whether the storage engine used by the relay log info table is transactional (such as InnoDB) or not (MyISAM). The effects of these factors on the behavior of the server for sync_relay_log_info values of zero and greater than zero are shown in the following table:
sync_relay_log_info | relay_log_info_repository | ||
---|---|---|---|
FILE | TABLE | ||
Transactional | Nontransactional | ||
N > 0 | The slave synchronizes its relay-log.info file to disk (using fdatasync()) after every N transactions. | The table is updated after each transaction. (N is effectively ignored.) | The table is updated after every N events. |
0 | The MySQL server performs no synchronization of the relay-log.info file to disk; instead, the server relies on the operating system to flush its contents periodically as with any other file. | The table is never updated. |
The default value for sync_relay_log_info is 10000 as of MySQL 5.6.6, 0 before that.
Options for logging slave status to tables. MySQL 5.6 and later supports logging of replication slave status information to tables rather than files. Writing of the master info log and the relay log info log can be configured separately using two server options added in MySQL 5.6.2 and listed here:
--master-info-repository={FILE|TABLE}
Version Introduced | 5.6.2 | ||
Command-Line Format | --master-info-repository=FILE|TABLE | ||
Option-File Format | master-info-repository | ||
Option Sets Variable | Yes, master_info_repository | ||
Permitted Values | |||
Type | string | ||
Default | FILE | ||
Valid Values | FILE TABLE |
This option causes the server to write its master info log to a file or a table. The name of the file defaults to master.info; you can change the name of the file using the --master-info-file server option.
The default value for this option is FILE. If you use TABLE, the log is written to the slave_master_info table in the mysql database.
The --master-info-repository option was added in MySQL 5.6.2.
--relay-log-info-repository={FILE|TABLE}
Version Introduced | 5.6.2 | ||
Command-Line Format | --relay-log-info-repository=FILE|TABLE | ||
Option-File Format | relay-log-info-repository | ||
Option Sets Variable | Yes, relay_log_info_repository | ||
Permitted Values | |||
Type | string | ||
Default | FILE | ||
Valid Values | FILE TABLE |
This option causes the server to log its relay log info to a file or a table. The name of the file defaults to relay-log.info; you can change the name of the file using the --relay-log-info-file server option.
The default value for this option is FILE. If you use TABLE, the log is written to the slave_relay_log_info table in the mysql database.
The --relay-log-info-repository option was added in MySQL 5.6.2.
The info log tables and their contents are considered local to a given MySQL Server. In MySQL 5.6.9 and later, they are not replicated, and changes to them are not written to the binary log. (Bug #14741537)
For more information, see Section 16.2.2, “Replication Relay and Status Logs”.
16.1.4.4. Binary Log Options and Variables
You can use the mysqld options and system variables that are described in this section to affect the operation of the binary log as well as to control which statements are written to the binary log. For additional information about the binary log, see Section 5.2.4, “The Binary Log”. For additional information about using MySQL server options and system variables, see Section 5.1.3, “Server Command Options”, and Section 5.1.4, “Server System Variables”.
Startup options used with binary logging. The following list describes startup options for enabling and configuring the binary log. System variables used with binary logging are discussed later in this section.
Command-Line Format | --binlog-row-event-max-size=# | ||
Option-File Format | binlog-row-event-max-size | ||
Permitted Values (<= 5.6.5) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 1024 | ||
Range | 256 .. 4294967295 | ||
Permitted Values (<= 5.6.5) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 1024 | ||
Range | 256 .. 18446744073709547520 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 8192 | ||
Range | 256 .. 4294967295 | ||
Permitted Values (>= 5.6.6) | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 8192 | ||
Range | 256 .. 18446744073709547520 |
Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events smaller than this size if possible. The value should be a multiple of 256. The default is 8192 as of MySQL 5.6.6 and 1024 before that. See Section 16.1.2, “Replication Formats”.
Command-Line Format | --log-bin | ||
Option-File Format | log-bin | ||
Variable Name | log_bin | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name | ||
Default | OFF |
Enable binary logging. The server logs all statements that change data to the binary log, which is used for backup and replication. See Section 5.2.4, “The Binary Log”.
The option value, if given, is the basename for the log sequence. The server creates binary log files in sequence by adding a numeric suffix to the basename. It is recommended that you specify a basename (see Section C.5.8, “Known Issues in MySQL”, for the reason). Otherwise, MySQL uses host_name-bin as the basename.
In MySQL 5.6.5 and later, when the server reads an entry from the index file, it checks whether the entry contains a relative path, and if it does, the relative part of the path in replaced with the absolute path set using the --log-bin option. An absolute path remains unchanged; in such a case, the index must be edited manually to enable the new path or paths to be used. Previous to MySQL 5.6.5, manual intervention was required whenever relocating the binary log or relay log files. (Bug #11745230, Bug #12133)
Setting this option causes the log_bin system variable to be set to ON (or 1), and not to the basename. Beginning with MySQL 5.6.2, the binary log filename (with path) is available as the log_bin_basename system variable.
Command-Line Format | --log-bin-index=name | ||
Option-File Format | log-bin-index | ||
Permitted Values | |||
Type | file name | ||
Default | OFF |
The index file for binary log file names. See Section 5.2.4, “The Binary Log”. If you omit the file name, and if you did not specify one with --log-bin, MySQL uses host_name-bin.index as the file name.
--log-bin-trust-function-creators[={0|1}]
Command-Line Format | --log-bin-trust-function-creators | ||
Option-File Format | log-bin-trust-function-creators | ||
Option Sets Variable | Yes, log_bin_trust_function_creators | ||
Variable Name | log_bin_trust_function_creators | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
This option sets the corresponding log_bin_trust_function_creators system variable. If no argument is given, the option sets the variable to 1. log_bin_trust_function_creators affects how MySQL enforces restrictions on stored function and trigger creation. See Section 18.7, “Binary Logging of Stored Programs”.
--log-bin-use-v1-row-events[={0|1}]
Version Introduced | 5.6.6 | ||
Command-Line Format | --log-bin-use-v1-row-events[={0|1}] | ||
Option-File Format | log-bin-use-v1-row-events | ||
Option Sets Variable | Yes, log_bin_use_v1_row_events | ||
Variable Name | log-bin-use-v1-row-events | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (>= 5.6.6) | |||
Type | boolean | ||
Default | 0 |
Version 2 binary log row events are available beginning with MySQL 5.6.6; however, Version 2 events cannot be read by previous MySQL Server releases. Setting this option to 1 causes mysqld to write the binary log using Version 1 logging events, which is the only version of binary log events used in previous releases, and thus produce binary logs that can be read by older slaves. Setting --log-bin-use-v1-row-events to 0 (the default) causes mysqld to use Version 2 binary log events.
The value used for this option can be obtained from the read-only log_bin_use_v1_row_events system variable.
Command-Line Format | --log-short-format | ||
Option-File Format | log-short-format | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Log less information to the binary log and slow query log, if they have been activated.
Statement selection options. The options in the following list affect which statements are written to the binary log, and thus sent by a replication master server to its slaves. There are also options for slave servers that control which statements received from the master should be executed or ignored. For details, see Section 16.1.4.3, “Replication Slave Options and Variables”.
Command-Line Format | --binlog-do-db=name | ||
Option-File Format | binlog-do-db | ||
Permitted Values | |||
Type | string |
This option affects binary logging in a manner similar to the way that --replicate-do-db affects replication.
The effects of this option depend on whether the statement-based or row-based logging format is in use, in the same way that the effects of --replicate-do-db depend on whether statement-based or row-based replication is in use. You should keep in mind that the format used to log a given statement may not necessarily be the same as that indicated by the value of binlog_format. For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as statements, without regard to the logging format in effect, so the following statement-based rules for --binlog-do-db always apply in determining whether or not the statement is logged.
Statement-based logging. Only those statements are written to the binary log where the default database (that is, the one selected by USE) is db_name. To specify more than one database, use this option multiple times, once for each database; however, doing so does not cause cross-database statements such as UPDATE some_db.some_table SET foo='bar' to be logged while a different database (or no database) is selected.
Warning
To specify multiple databases you must use multiple instances of this option. Because database names can contain commas, the list will be treated as the name of a single database if you supply a comma-separated list.
An example of what does not work as you might expect when using statement-based logging: If the server is started with --binlog-do-db=sales and you issue the following statements, the UPDATE statement is not logged:
USE prices;
UPDATE sales.january SET amount=amount+1000;
The main reason for this “just check the default database” behavior is that it is difficult from the statement alone to know whether it should be replicated (for example, if you are using multiple-table DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to check only the default database rather than all databases if there is no need.
Another case which may not be self-evident occurs when a given database is replicated even though it was not specified when setting the option. If the server is started with --binlog-do-db=sales, the following UPDATE statement is logged even though prices was not included when setting --binlog-do-db:
USE sales;
UPDATE prices.discounts SET percentage = percentage + 10;
Because sales is the default database when the UPDATE statement is issued, the UPDATE is logged.
Row-based logging. Logging is restricted to database db_name. Only changes to tables belonging to db_name are logged; the default database has no effect on this. Suppose that the server is started with --binlog-do-db=sales and row-based logging is in effect, and then the following statements are executed:
USE prices;
UPDATE sales.february SET amount=amount+100;
The changes to the february table in the sales database are logged in accordance with the UPDATE statement; this occurs whether or not the USE statement was issued. However, when using the row-based logging format and --binlog-do-db=sales, changes made by the following UPDATE are not logged:
USE prices;
UPDATE prices.march SET amount=amount-25;
Even if the USE prices statement were changed to USE sales, the UPDATE statement's effects would still not be written to the binary log.
Another important difference in --binlog-do-db handling for statement-based logging as opposed to the row-based logging occurs with regard to statements that refer to multiple databases. Suppose that the server is started with --binlog-do-db=db1, and the following statements are executed:
USE db1;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;
If you are using statement-based logging, the updates to both tables are written to the binary log. However, when using the row-based format, only the changes to table1 are logged; table2 is in a different database, so it is not changed by the UPDATE. Now suppose that, instead of the USE db1 statement, a USE db4 statement had been used:
USE db4;
UPDATE db1.table1 SET col1 = 10, db2.table2 SET col2 = 20;
In this case, the UPDATE statement is not written to the binary log when using statement-based logging. However, when using row-based logging, the change to table1 is logged, but not that to table2—in other words, only changes to tables in the database named by --binlog-do-db are logged, and the choice of default database has no effect on this behavior.
Command-Line Format | --binlog-ignore-db=name | ||
Option-File Format | binlog-ignore-db | ||
Permitted Values | |||
Type | string |
This option affects binary logging in a manner similar to the way that --replicate-ignore-db affects replication.
The effects of this option depend on whether the statement-based or row-based logging format is in use, in the same way that the effects of --replicate-ignore-db depend on whether statement-based or row-based replication is in use. You should keep in mind that the format used to log a given statement may not necessarily be the same as that indicated by the value of binlog_format. For example, DDL statements such as CREATE TABLE and ALTER TABLE are always logged as statements, without regard to the logging format in effect, so the following statement-based rules for --binlog-ignore-db always apply in determining whether or not the statement is logged.
Statement-based logging. Tells the server to not log any statement where the default database (that is, the one selected by USE) is db_name.
Row-based format. Tells the server not to log updates to any tables in the database db_name. The current database has no effect.
When using statement-based logging, the following example does not work as you might expect. Suppose that the server is started with --binlog-ignore-db=sales and you issue the following statements:
USE prices;
UPDATE sales.january SET amount=amount+1000;
The UPDATE statement is logged in such a case because --binlog-ignore-db applies only to the default database (determined by the USE statement). Because the sales database was specified explicitly in the statement, the statement has not been filtered. However, when using row-based logging, the UPDATE statement's effects are not written to the binary log, which means that no changes to the sales.january table are logged; in this instance, --binlog-ignore-db=sales causes all changes made to tables in the master's copy of the sales database to be ignored for purposes of binary logging.
To specify more than one database to ignore, use this option multiple times, once for each database. Because database names can contain commas, the list will be treated as the name of a single database if you supply a comma-separated list.
You should not use this option if you are using cross-database updates and you do not want these updates to be logged.
Checksum options. Beginning with MySQL 5.6.2, MySQL supports reading and writing of binary log checksums. These are enabled using the two options listed here:
--binlog-checksum={NONE|CRC32}
Version Introduced | 5.6.2 | ||
Command-Line Format | --binlog-checksum=type | ||
Option-File Format | binlog-checksum | ||
Permitted Values (<= 5.6.5) | |||
Type | string | ||
Default | NONE | ||
Valid Values | NONE CRC32 | ||
Permitted Values (>= 5.6.6) | |||
Type | string | ||
Default | CRC32 | ||
Valid Values | NONE CRC32 |
Enabling this option causes the master to write checksums for events written to the binary log. Set to NONE to disable, or the name of the algorithm to be used for generating checksums; currently, only CRC32 checksums are supported. As of MySQL 5.6.6, CRC32 is the default.
This option was added in MySQL 5.6.2.
--master-verify-checksum={0|1}
Version Introduced | 5.6.2 | ||
Command-Line Format | --master-verify-checksum=name | ||
Option-File Format | master-verify-checksum | ||
Option Sets Variable | Yes, master_verify_checksum | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Enabling this option causes the master to verify events from the binary log using checksums, and to stop with an error in the event of a mismatch. Disabled by default.
This option was added in MySQL 5.6.2.
To control reading of checksums by the slave (from the relay) log, use the --slave-sql-verify-checksum option.
Testing and debugging options. The following binary log options are used in replication testing and debugging. They are not intended for use in normal operations.
Command-Line Format | --max-binlog-dump-events=# | ||
Option-File Format | max-binlog-dump-events | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 |
This option is used internally by the MySQL test suite for replication testing and debugging.
Command-Line Format | --sporadic-binlog-dump-fail | ||
Option-File Format | sporadic-binlog-dump-fail | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
This option is used internally by the MySQL test suite for replication testing and debugging.
--binlog-rows-query-log-events
Version Introduced | 5.6.2 | ||
Command-Line Format | --binlog-rows-query-log-events | ||
Option-File Format | binlog-rows-query-log-events | ||
Option Sets Variable | Yes, binlog_rows_query_log_events | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Added in MySQL 5.6.2, this option enables binlog_rows_query_log_events. Must be set to OFF (the default) when generating logs for a MySQL 5.6.1 or earlier slave server or version of mysqlbinlog.
System variables used with the binary log. The following list describes system variables for controlling binary logging. They can be set at server startup and some of them can be changed at runtime using SET. Server options used to control binary logging are listed earlier in this section.
Variable Name | log_bin | ||
Variable Scope | Global | ||
Dynamic Variable | No |
Whether the binary log is enabled. If the --log-bin option is used, then the value of this variable is ON; otherwise it is OFF. This variable reports only on the status of binary logging (enabled or disabled); it does not actually report the value to which --log-bin is set.
Command-Line Format | --log-slave-updates | ||
Option-File Format | log_slave_updates | ||
Option Sets Variable | Yes, log_slave_updates | ||
Variable Name | log_slave_updates | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
Whether updates received by a slave server from a master server should be logged to the slave's own binary log. Binary logging must be enabled on the slave for this variable to have any effect. See Section 16.1.4, “Replication and Binary Logging Options and Variables”.
Command-Line Format | --binlog_cache_size=# | ||
Option-File Format | binlog_cache_size | ||
Option Sets Variable | Yes, binlog_cache_size | ||
Variable Name | binlog_cache_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 32768 | ||
Range | 4096 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 32768 | ||
Range | 4096 .. 18446744073709547520 |
The size of the cache to hold changes to the binary log during a transaction. A binary log cache is allocated for each client if the server supports any transactional storage engines and if the server has the binary log enabled (--log-bin option). If you often use large transactions, you can increase this cache size to get better performance. The Binlog_cache_use and Binlog_cache_disk_use status variables can be useful for tuning the size of this variable. See Section 5.2.4, “The Binary Log”.
binlog_cache_size sets the size for the transaction cache only; the size of the statement cache is governed by the binlog_stmt_cache_size system variable.
Version Introduced | 5.6.2 | ||
Variable Name | binlog_checksum | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values (<= 5.6.5) | |||
Type | string | ||
Default | NONE | ||
Valid Values | NONE CRC32 | ||
Permitted Values (>= 5.6.6) | |||
Type | string | ||
Default | CRC32 | ||
Valid Values | NONE CRC32 |
When enabled, this variable causes the master to write a checksum for each event in the binary log. binlog_checksum supports the values NONE (disabled) and CRC32. The default is CRC32 as of MySQL 5.6.6, NONE before that.
When binlog_checksum is disabled (value NONE), the server verifies that it is writing only complete events to the binary log by writing and checking the event length (rather than a checksum) for each event.
Changing the value of this variable causes the binary log to be rotated; checksums are always written to an entire binary log file, and never to only part of one.
This variable was added in MySQL 5.6.2.
In MySQL 5.6.6 and later, setting this variable on the master to a value unrecognized by the slave causes the slave to set its own binlog_checksum value to NONE, and to stop replication with an error. (Bug #13553750, Bug #61096) If backward compatibility with older slaves is a concern, you may want to set the value explicitly to NONE.
binlog_direct_non_transactional_updates
Command-Line Format | --binlog_direct_non_transactional_updates[=value] | ||
Option-File Format | binlog_direct_non_transactional_updates | ||
Option Sets Variable | Yes, binlog_direct_non_transactional_updates | ||
Variable Name | binlog_direct_non_transactional_updates | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Due to concurrency issues, a slave can become inconsistent when a transaction contains updates to both transactional and nontransactional tables. MySQL tries to preserve causality among these statements by writing nontransactional statements to the transaction cache, which is flushed upon commit. However, problems arise when modifications done to nontransactional tables on behalf of a transaction become immediately visible to other connections because these changes may not be written immediately into the binary log.
The binlog_direct_non_transactional_updates variable offers one possible workaround to this issue. By default, this variable is disabled. Enabling binlog_direct_non_transactional_updates causes updates to nontransactional tables to be written directly to the binary log, rather than to the transaction cache.
binlog_direct_non_transactional_updates works only for statements that are replicated using the statement-based binary logging format; that is, it works only when the value of binlog_format is STATEMENT, or when binlog_format is MIXED and a given statement is being replicated using the statement-based format. This variable has no effect when the binary log format is ROW, or when binlog_format is set to MIXED and a given statement is replicated using the row-based format.
Important
Before enabling this variable, you must make certain that there are no dependencies between transactional and nontransactional tables; an example of such a dependency would be the statement INSERT INTO myisam_table SELECT * FROM innodb_table. Otherwise, such statements are likely to cause the slave to diverge from the master.
In MySQL 5.6, this variable has no effect when the binary log format is ROW or MIXED. (Bug #51291)
Command-Line Format | --binlog-format=format | ||
Option-File Format | binlog-format=format | ||
Option Sets Variable | Yes, binlog_format | ||
Variable Name | binlog_format | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | STATEMENT | ||
Valid Values | ROW STATEMENT MIXED |
This variable sets the binary logging format, and can be any one of STATEMENT, ROW, or MIXED. See Section 16.1.2, “Replication Formats”. binlog_format is set by the --binlog-format option at startup, or by the binlog_format variable at runtime.
Note
While you can change the logging format at runtime, it is not recommended that you change it while replication is ongoing. This is due in part to the fact that slaves do not honor the master's binlog_format setting; a given MySQL Server can change only its own logging format.
In MySQL 5.6, the default format is STATEMENT.
You must have the SUPER privilege to set either the global or session binlog_format value.
The rules governing when changes to this variable take effect and how long the effect lasts are the same as for other MySQL server system variables. See Section 13.7.4, “SET Syntax”, for more information.
When MIXED is specified, statement-based replication is used, except for cases where only row-based replication is guaranteed to lead to proper results. For example, this happens when statements contain user-defined functions (UDF) or the UUID() function. An exception to this rule is that MIXED always uses statement-based replication for stored functions and triggers.
There are exceptions when you cannot switch the replication format at runtime:
From within a stored function or a trigger.
If the session is currently in row-based replication mode and has open temporary tables.
From within a transaction.
Trying to switch the format in those cases results in an error.
The binary log format affects the behavior of the following server options:
These effects are discussed in detail in the descriptions of the individual options.
Version Introduced | 5.6.6 | ||
Variable Name | binlog_max_flush_queue_time | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 100000 |
How long in microseconds to keep reading transactions from the flush queue before proceeding with the group commit (and syncing the log to disk, if sync_binlog is greater than 0). If the value is 0 (the default), there is no timeout and the server keeps reading new transactions until the queue is empty.
Normally, binlog_max_flush_queue_time can remain set to 0. If the server processes a large number of connections (for example, 100 or more) and many short transactions with low-latency requirements, it may be useful to set the value larger than 0 to force more frequent flushes to disk.
This variable was added in MySQL 5.6.6.
Version Introduced | 5.6.6 | ||
Variable Name | binlog_order_commits | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | ON |
If this variable is enabled (the default), transactions are committed in the same order they are written to the binary log. If disabled, transactions may be committed in parallel. In some cases, disabling this variable might produce a performance increment.
This variable was added in MySQL 5.6.6.
Version Introduced | 5.6.2 | ||
Command-Line Format | --binlog-row-image=image_type | ||
Variable Name | binlog_row_image=image_type | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | full | ||
Valid Values | full | Log all columns | |
minimal | Log only changed columns, and columns needed to identify rows | ||
noblob | Log all columns, except for unneeded BLOB and TEXT columns |
In MySQL row-based replication, each row change event contains two images, a “before” image whose columns are matched against when searching for the row to be updated, and an “after” image containing the changes. Normally, MySQL logs full rows (that is, all columns) for both the before and after images. However, it is not strictly necessary to include every column in both images, and we can often save disk, memory, and network usage by logging only those columns which are actually required.
Note
When deleting a row, only the before image is logged, since there are no changed values to propagate following the deletion. When inserting a row, only the after image is logged, since there is no existing row to be matched. Only when updating a row are both the before and after images required, and both written to the binary log.
For the before image, it is necessary only that the minimum set of columns required to uniquely identify rows is logged. If the table containing the row has a primary key, then only the primary key column or columns are written to the binary log. Otherwise, if the table has a unique key all of whose columns are NOT NULL, then only the columns in the unique key need be logged. (If the table has neither a primary key nor a unique key without any NULL columns, then all columns must be used in the before image, and logged.) In the after image, it is necessary to log only the columns which have actually changed.
In MySQL 5.6, you can cause the server to log full or minimal rows using the binlog_row_image system variable. This variable actually takes one of three possible values, as shown in the following list:
full: Log all columns in both the before image and the after image.
minimal: Log only those columns in the before image that are required to identify the row to be changed; log only those columns in the after image that are actually changed.
noblob: Log all columns (same as full), except for BLOB and TEXT columns that are not required to identify rows, or that have not changed.
The default value is full. In MySQL 5.5 and earlier, full row images are always used for both before images and after images. If you need to replicate from a MySQL 5.6 (or later) master to a slave running a previous version of MySQL, the master should always use this value.
When using minimal or noblob, deletes and updates are guaranteed to work correctly for a given table if and only if the following conditions are true for both the source and destination tables:
All columns must be present and in the same order; each column must use the same data type as its counterpart in the other table.
The tables must have identical primary key definitions.
(In other words, the tables must be identical with the possible exception of indexes that are not part of the tables' primary keys.)
If these conditions are not met, it is possible that the primary key column values in the destination table may prove insufficient to provide a unique match for a delete or update. In this event, no warning or error is issued; the master and slave silently diverge, thus breaking consistency.
Setting this variable has no effect when the binary logging format is STATEMENT. When binlog_format is MIXED, the setting for binlog_row_image is applied to changes that are logged using row-based format, but this setting no effect on changes logged as statements.
Setting binlog_row_image on either the global or session level does not cause an implicit commit; this means that this variable can be changed while a transaction is in progress without affecting the transaction.
binlog_rows_query_log_events
Version Introduced | 5.6.2 | ||
Variable Name | binlog_rows_query_log_events | ||
Variable Scope | Global, Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | FALSE |
The binlog_rows_query_log_events system variable affects row-based logging only. When enabled, it causes a MySQL 5.6.2 or later server to write informational log events such as row query log events into its binary log. This information can be used for debugging and related purposes; such as obtaining the original query issued on the master when it cannot be reconstructed from the row updates.
These events are normally ignored by MySQL 5.6.2 and later programs reading the binary log and so cause no issues when replicating or restoring from backup. This is not true for a mysqld or mysqlbinlog from MySQL 5.6.1 or earlier: When the older version of the program reading the log encounters an informational log event, it fails, and stops reading at that point. To make the binary log readable by slave replication MySQL servers and other readers (for example, mysqlbinlog) from a MySQL 5.6.1 or earlier distribution, binlog_rows_query_log_events must be disabled during logging.
Version Introduced | 5.6.1 | ||
Command-Line Format | --binlog_stmt_cache_size=# | ||
Option-File Format | binlog_stmt_cache_size | ||
Option Sets Variable | Yes, binlog_stmt_cache_size | ||
Variable Name | binlog_stmt_cache_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 32768 | ||
Range | 4096 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 32768 | ||
Range | 4096 .. 18446744073709547520 |
This variable determines the size of the cache for the binary log to hold nontransactional statements issued during a transaction. Separate binary log transaction and statement caches are allocated for each client if the server supports any transactional storage engines and if the server has the binary log enabled (--log-bin option). If you often use large nontransactional statements during transactions, you can increase this cache size to get better performance. The Binlog_stmt_cache_use and Binlog_stmt_cache_disk_use status variables can be useful for tuning the size of this variable. See Section 5.2.4, “The Binary Log”.
The binlog_cache_size system variable sets the size for the transaction cache.
Version Introduced | 5.6.2 | ||
Variable Name | log_bin_basename | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | file name | ||
Default | datadir + '/' + hostname + '-bin' |
Holds the name and complete path to the binary log file. Unlike the log_bin system variable, log_bin_basename reflects the name set with the --log-bin server option.
The log_bin_basename system variable was added in MySQL 5.6.2.
Version Introduced | 5.6.6 | ||
Command-Line Format | --log-bin-use-v1-row-events[={0|1}] | ||
Option-File Format | log_bin_use_v1_row_events | ||
Option Sets Variable | Yes, log_bin_use_v1_row_events | ||
Variable Name | log_bin_use_v1_row_events | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (>= 5.6.6) | |||
Type | boolean | ||
Default | 0 |
Shows whether Version 2 binary logging, available beginning with MySQL 5.6.6, is in use. A value of 1 shows that the server is writing the binary log using Version 1 logging events (the only version of binary log events used in MySQL 5.6.5 and previous MySQL Server releases), and thus producing a binary log that can be read by older slaves. 0 indicates that Version 2 binary log events are in use.
This variable is read-only. To switch between Version 1 and Version 2 binary event binary logging, it is necessary to restart mysqld with the --log-bin-use-v1-row-events option.
Version Introduced | 5.6.2 | ||
Variable Name | master_verify_checksum | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | boolean | ||
Default | OFF |
Enabling this variable causes the master to examine checksums when reading from the binary log. master_verify_checksum is disabled by default; in this case, the master uses the event length from the binary log to verify events, so that only complete events are read from the binary log.
This variable was added in MySQL 5.6.2.
Command-Line Format | --max_binlog_cache_size=# | ||
Option-File Format | max_binlog_cache_size | ||
Option Sets Variable | Yes, max_binlog_cache_size | ||
Variable Name | max_binlog_cache_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 18446744073709547520 | ||
Range | 4096 .. 18446744073709547520 |
If a transaction requires more than this many bytes of memory, the server generates a Multi-statement transaction required more than 'max_binlog_cache_size' bytes of storage error. The minimum value is 4096. The minimum value is 4096. The maximum possible value is 16EB (exabytes). The maximum recommended value is 4GB; this is due to the fact that MySQL currently cannot work with binary log positions greater than 4GB.
Note
Prior to MySQL 5.6.7, 64-bit Windows platforms truncated the stored value for this variable to 4G, even when it was set to a greater value (Bug #13961678).
max_binlog_cache_size sets the size for the transaction cache only; the upper limit for the statement cache is governed by the max_binlog_stmt_cache_size system variable.
In MySQL 5.6, the visibility to sessions of max_binlog_cache_size matches that of the binlog_cache_size system variable; in other words, changing its value effects only new sessions that are started after the value is changed.
Command-Line Format | --max_binlog_size=# | ||
Option-File Format | max_binlog_size | ||
Option Sets Variable | Yes, max_binlog_size | ||
Variable Name | max_binlog_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 1073741824 | ||
Range | 4096 .. 1073741824 |
If a write to the binary log causes the current log file size to exceed the value of this variable, the server rotates the binary logs (closes the current file and opens the next one). The minimum value is 4096 bytes. The maximum and default value is 1GB.
A transaction is written in one chunk to the binary log, so it is never split between several binary logs. Therefore, if you have big transactions, you might see binary log files larger than max_binlog_size.
If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.
Version Introduced | 5.6.1 | ||
Command-Line Format | --max_binlog_stmt_cache_size=# | ||
Option-File Format | max_binlog_stmt_cache_size | ||
Option Sets Variable | Yes, max_binlog_stmt_cache_size | ||
Variable Name | max_binlog_stmt_cache_size | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | numeric | ||
Default | 18446744073709547520 | ||
Range | 4096 .. 18446744073709547520 |
If nontransactional statements within a transaction require more than this many bytes of memory, the server generates an error. The minimum value is 4096. The maximum and default values are 4GB on 32-bit platforms and 16EB (exabytes) on 64-bit platforms.
Note
Prior to MySQL 5.6.7, 64-bit Windows platforms truncated the stored value for this variable to 4G, even when it was set to a greater value (Bug #13961678).
max_binlog_stmt_cache_size sets the size for the statement cache only; the upper limit for the transaction cache is governed exclusively by the max_binlog_cache_size system variable.
Command-Line Format | --sync-binlog=# | ||
Option-File Format | sync_binlog | ||
Option Sets Variable | Yes, sync_binlog | ||
Variable Name | sync_binlog | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Platform Bit Size | 32 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 4294967295 | ||
Permitted Values | |||
Platform Bit Size | 64 | ||
Type | numeric | ||
Default | 0 | ||
Range | 0 .. 18446744073709547520 |
If the value of this variable is greater than 0, the MySQL server synchronizes its binary log to disk (using fdatasync()) after sync_binlog commit groups are written to the binary log. The default value of sync_binlog is 0, which does no synchronizing to disk—in this case, the server relies on the operating system to flush the binary log's contents from to time as for any other file. A value of 1 is the safest choice because in the event of a crash you lose at most one commit group from the binary log. However, it is also the slowest choice (unless the disk has a battery-backed cache, which makes synchronization very fast).
16.1.4.5. Global Transaction ID Options and Variables
The MySQL Server options and system variables described in this section are used to monitor and control Global Transaction Identifiers (GTIDs), introduced in MySQL 5.6.5.
Note
Many of these options and variables were renamed in MySQL 5.6.9. See their descriptions in this section for more information.
For additional information, see Section 16.1.3, “Replication with Global Transaction Identifiers”.
Startup options used in GTID replication. The followup server startup options are used with GTID-based replication:
--disable-gtid-unsafe-statements
Version Introduced | 5.6.5 | ||
Version Removed | 5.6.9 | ||
Command-Line Format | --disable-gtid-unsafe-statements[=value] | ||
Option-File Format | disable-gtid-unsafe-statements | ||
Variable Name | disable-gtid-unsafe-statements | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | false |
Obsolete: Replaced by --enforce-gtid-consistency in MySQL 5.6.9. (Bug #14775984)
--enforce-gtid-consistency
Version Introduced | 5.6.9 | ||
Command-Line Format | --enforce-gtid-consistency[=value] | ||
Option-File Format | enforce-gtid-consistency | ||
Variable Name | enforce-gtid-consistency | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | false |
When set, this option allows execution of only those statements that can be logged in a transactionally safe manner. This means that the following operations cannot be used when this option is enabled:
CREATE TABLE ... SELECT statements
CREATE TEMPORARY TABLE statements inside transactions
Transactions or statements that update both transactional and nontransactional tables.
Prior to MySQL 5.6.9, this option was named --disable-gtid-unsafe-statements. (Bug #14775984)
Prior to MySQL 5.6.7, using this option caused nontransactional DML on temporary tables to fail, although changes to temporary tables are not logged when using row-based binary logging. In MySQL 5.6.7 and later, nontransactional DML statements are allowed on temporary tables with --disable-gtid-unsafe-statements (--enforce-gtid-consistency beginning with MySQL 5.6.9) as long as all affected tables are temporary tables (Bug #14272672).
Prior to MySQL 5.6.7, mysql_upgrade could not be used with a MySQL Server running with this option enabled, unless mysql_upgrade was running with --write-binlog explicitly disabled. (Bug #13833710, Bug #14221043) In MySQL 5.6.7 and later, it is possible but not recommended to run mysql_upgrade on a server where --gtid-mode=ON, since the MySQL system tables use the MyISAM storage engine, which is nontransactional.
In MySQL 5.6.8 and earlier, you could not use any statements affecting nontransactional tables when --enforce-gtid-consistency was used (the option was then called --disable-gtid-unsafe-statements). In MySQL 5.6.9 and later, this option allows single statements updating nontransactional tables. This is intended chiefly for use with programs such as mysql_install_db and mysql_upgrade. (Bug #14722659)
Version Introduced | 5.6.5 | ||
Command-Line Format | --gtid-mode=MODE | ||
Option-File Format | gtid-mode | ||
Option Sets Variable | Yes, gtid_mode | ||
Variable Name | gtid-mode | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | enumeration | ||
Default | OFF | ||
Valid Values | OFF UPGRADE_STEP_1 UPGRADE_STEP_2 ON |
This option specifies whether GTIDs are enabled. Starting the server with --gtid-mode=ON requires that the server also be started with the --log-bin and --log-slave-updates options as well. (In addition, you should also use --enforce-gtid-consistency.)
Setting this option to OFF when there are GTIDs in the binary log or in the relay log, or to ON when there remain anonymous transactions to be executed, causes an error.
Important
This option does not employ boolean values; its values are in fact enumerated. You should not attempt to use numeric values when setting this option, as these may lead to unexpected results. The values UPGRADE_STEP_1 and UPGRADE_STEP_2 are reserved for future use, but currently are not supported in production; if you use one of these two values with --gtid-mode, the server refuses to start.
Prior to MySQL 5.6.7, mysql_upgrade could not be used with a MySQL Server running with this option enabled, unless mysql_upgrade was running with --write-binlog explicitly disabled. (Bug #13833710, Bug #14221043) In MySQL 5.6.7 and later, it is possible but not recommended to run mysql_upgrade on a server where --gtid-mode=ON, since it may make changes to MySQL system tables that use the MyISAM storage engine, which is nontransactional.
Prior to MySQL 5.6.10, setting the global value for the sql_slave_skip_counter variable to 1 had no effect when --gtid-mode was set to ON. (Bug #15833516) A workaround in MySQL 5.6.9 and earlier versions is to reset the slave's position using CHANGE MASTER TO ... MASTER_LOG_FILE = ... MASTER_LOG_POS = ..., including the MASTER_AUTO_POSITION = 0 option with this statement if needed.
System variables used on replication masters. The following system variables are used with GTID-based replication:
disable_gtid_unsafe_statements
Version Introduced | 5.6.5 | ||
Version Removed | 5.6.9 | ||
Command-Line Format | --disable-gtid-unsafe-statements[=value] | ||
Option-File Format | disable_gtid_unsafe_statements | ||
Variable Name | disable_gtid_unsafe_statements | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | false |
Obsolete: Replaced by enforce_gtid_consistency in MySQL 5.6.9. (Bug #14775984)
Version Introduced | 5.6.5 | ||
Version Removed | 5.6.9 | ||
Variable Name | gtid_done | ||
Variable Scope | Global, Session | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
Obsolete: replaced in MySQL 5.6.9 by gtid_executed. (Bug #14775984)
enforce_gtid_consistency
Version Introduced | 5.6.9 | ||
Command-Line Format | --enforce-gtid-consistency[=value] | ||
Option-File Format | enforce_gtid_consistency | ||
Variable Name | enforce_gtid_consistency | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | boolean | ||
Default | false |
When this variable is true, execution is allowed of only those statements that can be logged in a transactionally safe manner, which means that the following operations cannot be used:
CREATE TABLE ... SELECT statements
CREATE TEMPORARY TABLE statements inside transactions
Transactions or statements that update both transactional and nontransactional tables.
This variable is read-only. To set it, use the --enforce-gtid-consistency option on the command line or in an option file when starting the MySQL Server.
Prior to MySQL 5.6.9, this variable was named disable_gtid_unsafe_statements. (Bug #14775984)
Version Introduced | 5.6.9 | ||
Variable Name | gtid_executed | ||
Variable Scope | Global, Session | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
When used with global scope, this variable contains a representation of the set of all transactions that are logged in the binary log. When used with session scope, it contains a representation of the set of transactions that are written to the cache in the current session.
Issuing RESET MASTER causes the global value (but not the session value) of this variable to be reset to an empty string.
Prior to MySQL 5.6.9, this variable was known as gtid_done.
Version Introduced | 5.6.5 | ||
Version Removed | 5.6.9 | ||
Variable Name | gtid_lost | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
Obsolete: Replaced by gtid_purged in MySQL 5.6.9. (Bug #14775984)
Version Introduced | 5.6.5 | ||
Variable Name | gtid_mode | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | enumeration | ||
Default | OFF | ||
Valid Values | OFF UPGRADE_STEP_1 UPGRADE_STEP_2 ON |
Shows whether GTIDs are enabled. Read-only; set using --gtid-mode.
Version Introduced | 5.6.5 | ||
Variable Name | gtid_next | ||
Variable Scope | Session | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | enumeration | ||
Default | AUTOMATIC | ||
Valid Values | AUTOMATIC ANONYMOUS UUID:NUMBER |
This variable is used to specify whether and how the next GTID is obtained. gtid_next can take any of the following values:
AUTOMATIC: Use the next automatically-generated global transaction ID.
ANONYMOUS: Transactions do not have global identifiers, and are identified by file and position only.
A global transaction ID in UUID:NUMBER format.
You must have the SUPER privilege to set this variable. Setting this variable has no effect if gtid_mode is OFF.
Beginning with MySQL 5.6.11, you cannot execute any of the statements CHANGE MASTER TO, START SLAVE, STOP SLAVE, REPAIR TABLE, OPTIMIZE TABLE, ANALYZE TABLE, CHECK TABLE, CREATE SERVER, ALTER SERVER, DROP SERVER, CACHE INDEX, LOAD INDEX INTO CACHE, FLUSH, or RESET when gtid_next is set to any value other than AUTOMATIC; in such cases, the statement fails with an error. (BUG#16062608)
Version Introduced | 5.6.5 | ||
Variable Name | gtid_owned | ||
Variable Scope | Global, Session | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | string |
This read-only variable holds a list whose contents depend on its scope. When used with session scope, the list holds all GTIDs that are owned by this client; when used with global scope, it holds a list of all GTIDs along with their owners.
Version Introduced | 5.6.9 | ||
Variable Name | gtid_purged | ||
Variable Scope | Global | ||
Dynamic Variable | Yes | ||
Permitted Values | |||
Type | string |
The set of all transactions that have been purged from the binary log.
Issuing RESET MASTER causes the value of this variable to be reset to an empty string.
Prior to MySQL 5.6.9, this variable was known as gtid_lost, and was read-only. In MySQL 5.6.9 and later, it is possible to update the value of this variable, but only by adding GTIDs to those already listed, and only when gtid_executed is unset—that is, on a new server. (Bug #14797808)
16.1.5. Common Replication Administration Tasks
Once replication has been started it should execute without requiring much regular administration. Depending on your replication environment, you will want to check the replication status of each slave periodically, daily, or even more frequently.
16.1.5.1. Checking Replication Status
The most common task when managing a replication process is to ensure that replication is taking place and that there have been no errors between the slave and the master. The primary statement for this is SHOW SLAVE STATUS, which you must execute on each slave:
mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
Master_Host: master1
Master_User: root
Master_Port: 3306
Connect_Retry: 60
Master_Log_File: mysql-bin.000004
Read_Master_Log_Pos: 931
Relay_Log_File: slave1-relay-bin.000056
Relay_Log_Pos: 950
Relay_Master_Log_File: mysql-bin.000004
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
Replicate_Do_DB:
Replicate_Ignore_DB:
Replicate_Do_Table:
Replicate_Ignore_Table:
Replicate_Wild_Do_Table:
Replicate_Wild_Ignore_Table:
Last_Errno: 0
Last_Error:
Skip_Counter: 0
Exec_Master_Log_Pos: 931
Relay_Log_Space: 1365
Until_Condition: None
Until_Log_File:
Until_Log_Pos: 0
Master_SSL_Allowed: No
Master_SSL_CA_File:
Master_SSL_CA_Path:
Master_SSL_Cert:
Master_SSL_Cipher:
Master_SSL_Key:
Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
Last_IO_Errno: 0
Last_IO_Error:
Last_SQL_Errno: 0
Last_SQL_Error:
Replicate_Ignore_Server_Ids: 0
The key fields from the status report to examine are:
Slave_IO_State: The current status of the slave. See Section 8.12.5.6, “Replication Slave I/O Thread States”, and Section 8.12.5.7, “Replication Slave SQL Thread States”, for more information.
Slave_IO_Running: Whether the I/O thread for reading the master's binary log is running. Normally, you want this to be Yes unless you have not yet started replication or have explicitly stopped it with STOP SLAVE.
Slave_SQL_Running: Whether the SQL thread for executing events in the relay log is running. As with the I/O thread, this should normally be Yes.
Last_IO_Error, Last_SQL_Error: The last errors registered by the I/O and SQL threads when processing the relay log. Ideally these should be blank, indicating no errors.
Seconds_Behind_Master: The number of seconds that the slave SQL thread is behind processing the master binary log. A high number (or an increasing one) can indicate that the slave is unable to handle events from the master in a timely fashion.
A value of 0 for Seconds_Behind_Master can usually be interpreted as meaning that the slave has caught up with the master, but there are some cases where this is not strictly true. For example, this can occur if the network connection between master and slave is broken but the slave I/O thread has not yet noticed this—that is, slave_net_timeout has not yet elapsed.
It is also possible that transient values for Seconds_Behind_Master may not reflect the situation accurately. When the slave SQL thread has caught up on I/O, Seconds_Behind_Master displays 0; but when the slave I/O thread is still queuing up a new event, Seconds_Behind_Master may show a large value until the SQL thread finishes executing the new event. This is especially likely when the events have old timestamps; in such cases, if you execute SHOW SLAVE STATUS several times in a relatively short period, you may see this value change back and forth repeatedly between 0 and a relatively large value.
Several pairs of fields provide information about the progress of the slave in reading events from the master binary log and processing them in the relay log:
(Master_Log_file, Read_Master_Log_Pos): Coordinates in the master binary log indicating how far the slave I/O thread has read events from that log.
(Relay_Master_Log_File, Exec_Master_Log_Pos): Coordinates in the master binary log indicating how far the slave SQL thread has executed events received from that log.
(Relay_Log_File, Relay_Log_Pos): Coordinates in the slave relay log indicating how far the slave SQL thread has executed the relay log. These correspond to the preceding coordinates, but are expressed in slave relay log coordinates rather than master binary log coordinates.
On the master, you can check the status of connected slaves using SHOW PROCESSLIST to examine the list of running processes. Slave connections have Binlog Dump in the Command field:
mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
Id: 10
User: root
Host: slave1:58371
db: NULL
Command: Binlog Dump
Time: 777
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
Because it is the slave that drives the replication process, very little information is available in this report.
For slaves that were started with the --report-host option and are connected to the master, the SHOW SLAVE HOSTS statement on the master shows basic information about the slaves. The output includes the ID of the slave server, the value of the --report-host option, the connecting port, and master ID:
mysql> SHOW SLAVE HOSTS;
+-----------+--------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+--------+------+-------------------+-----------+
| 10 | slave1 | 3306 | 0 | 1 |
+-----------+--------+------+-------------------+-----------+
1 row in set (0.00 sec)
16.1.5.2. Pausing Replication on the Slave
You can stop and start the replication of statements on the slave using the STOP SLAVE and START SLAVE statements.
To stop processing of the binary log from the master, use STOP SLAVE:
mysql> STOP SLAVE;
When replication is stopped, the slave I/O thread stops reading events from the master binary log and writing them to the relay log, and the SQL thread stops reading events from the relay log and executing them. You can pause the I/O or SQL thread individually by specifying the thread type:
mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;
To start execution again, use the START SLAVE statement:
mysql> START SLAVE;
To start a particular thread, specify the thread type:
mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;
For a slave that performs updates only by processing events from the master, stopping only the SQL thread can be useful if you want to perform a backup or other task. The I/O thread will continue to read events from the master but they are not executed. This makes it easier for the slave to catch up when you restart the SQL thread.
Stopping only the I/O thread enables the events in the relay log to be executed by the SQL thread up to the point where the relay log ends. This can be useful when you want to pause execution to catch up with events already received from the master, when you want to perform administration on the slave but also ensure that it has processed all updates to a specific point. This method can also be used to pause event receipt on the slave while you conduct administration on the master. Stopping the I/O thread but permitting the SQL thread to run helps ensure that there is not a massive backlog of events to be executed when replication is started again.
16.2. Replication Implementation
Replication is based on the master server keeping track of all changes to its databases (updates, deletes, and so on) in its binary log. The binary log serves as a written record of all events that modify database structure or content (data) from the moment the server was started. Typically, SELECT statements are not recorded because they modify neither database structure nor content.
Each slave that connects to the master requests a copy of the binary log. That is, it pulls the data from the master, rather than the master pushing the data to the slave. The slave also executes the events from the binary log that it receives. This has the effect of repeating the original changes just as they were made on the master. Tables are created or their structure modified, and data is inserted, deleted, and updated according to the changes that were originally made on the master.
Because each slave is independent, the replaying of the changes from the master's binary log occurs independently on each slave that is connected to the master. In addition, because each slave receives a copy of the binary log only by requesting it from the master, the slave is able to read and update the copy of the database at its own pace and can start and stop the replication process at will without affecting the ability to update to the latest database status on either the master or slave side.
For more information on the specifics of the replication implementation, see Section 16.2.1, “Replication Implementation Details”.
Masters and slaves report their status in respect of the replication process regularly so that you can monitor them. See Section 8.12.5, “Examining Thread Information”, for descriptions of all replicated-related states.
The master binary log is written to a local relay log on the slave before it is processed. The slave also records information about the current position with the master's binary log and the local relay log. See Section 16.2.2, “Replication Relay and Status Logs”.
Database changes are filtered on the slave according to a set of rules that are applied according to the various configuration options and variables that control event evaluation. For details on how these rules are applied, see Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.
16.2.1. Replication Implementation Details
MySQL replication capabilities are implemented using three threads, one on the master server and two on the slave:
Binlog dump thread. The master creates a thread to send the binary log contents to a slave when the slave connects. This thread can be identified in the output of SHOW PROCESSLIST on the master as the Binlog Dump thread.
The binlog dump thread acquires a lock on the master's binary log for reading each event that is to be sent to the slave. As soon as the event has been read, the lock is released, even before the event is sent to the slave.
Slave I/O thread. When a START SLAVE statement is issued on a slave server, the slave creates an I/O thread, which connects to the master and asks it to send the updates recorded in its binary logs.
The slave I/O thread reads the updates that the master's Binlog Dump thread sends (see previous item) and copies them to local files that comprise the slave's relay log.
The state of this thread is shown as Slave_IO_running in the output of SHOW SLAVE STATUS or as Slave_running in the output of SHOW STATUS.
Slave SQL thread. The slave creates an SQL thread to read the relay log that is written by the slave I/O thread and execute the events contained therein.
In the preceding description, there are three threads per master/slave connection. A master that has multiple slaves creates one binlog dump thread for each currently connected slave, and each slave has its own I/O and SQL threads.
A slave uses two threads to separate reading updates from the master and executing them into independent tasks. Thus, the task of reading statements is not slowed down if statement execution is slow. For example, if the slave server has not been running for a while, its I/O thread can quickly fetch all the binary log contents from the master when the slave starts, even if the SQL thread lags far behind. If the slave stops before the SQL thread has executed all the fetched statements, the I/O thread has at least fetched everything so that a safe copy of the statements is stored locally in the slave's relay logs, ready for execution the next time that the slave starts. This enables the master server to purge its binary logs sooner because it no longer needs to wait for the slave to fetch their contents.
The SHOW PROCESSLIST statement provides information that tells you what is happening on the master and on the slave regarding replication. For information on master states, see Section 8.12.5.5, “Replication Master Thread States”. For slave states, see Section 8.12.5.6, “Replication Slave I/O Thread States”, and Section 8.12.5.7, “Replication Slave SQL Thread States”.
The following example illustrates how the three threads show up in the output from SHOW PROCESSLIST.
On the master server, the output from SHOW PROCESSLIST looks like this:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
Id: 2
User: root
Host: localhost:32931
db: NULL
Command: Binlog Dump
Time: 94
State: Has sent all binlog to slave; waiting for binlog to
be updated
Info: NULL
Here, thread 2 is a Binlog Dump replication thread that services a connected slave. The State information indicates that all outstanding updates have been sent to the slave and that the master is waiting for more updates to occur. If you see no Binlog Dump threads on a master server, this means that replication is not running; that is, no slaves are currently connected.
On a slave server, the output from SHOW PROCESSLIST looks like this:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
Id: 10
User: system user
Host:
db: NULL
Command: Connect
Time: 11
State: Waiting for master to send event
Info: NULL
*************************** 2. row ***************************
Id: 11
User: system user
Host:
db: NULL
Command: Connect
Time: 11
State: Has read all relay log; waiting for the slave I/O
thread to update it
Info: NULL
The State information indicates that thread 10 is the I/O thread that is communicating with the master server, and thread 11 is the SQL thread that is processing the updates stored in the relay logs. At the time that SHOW PROCESSLIST was run, both threads were idle, waiting for further updates.
The value in the Time column can show how late the slave is compared to the master. See Section B.13, “MySQL 5.6 FAQ: Replication”. If sufficient time elapses on the master side without activity on the Binlog Dump thread, the master determines that the slave is no longer connected. As for any other client connection, the timeouts for this depend on the values of net_write_timeout and net_retry_count; for more information about these, see Section 5.1.4, “Server System Variables”.
The SHOW SLAVE STATUS statement provides additional information about replication processing on a slave server. See Section 16.1.5.1, “Checking Replication Status”.
16.2.2. Replication Relay and Status Logs
During replication, a slave server creates several logs that hold the binary log events relayed from the master to the slave, and to record information about the current status and location within the relay log. There are three types of logs used in the process, listed here:
The relay log consists of the events read from the binary log of the master and written by the slave I/O thread. Events in the relay log are executed on the slave as part of the SQL thread.
The master info log contains status and current configuration information for the slave's connection to the master. This log holds information on the master host name, login credentials, and coordinates indicating how far the slave has read from the master's binary log.
Prior to MySQL 5.6, this log was always a file (master.info), but in MySQL 5.6 and later, this log can be written to the mysql.slave_master_info table instead of a file, by starting the slave with --master-info-repository=TABLE.
The relay log info log holds status information about the execution point within the slave's relay log.
Prior to MySQL 5.6, this log was always a file (relay-log.info), but in MySQL 5.6 and later, this log can be written to the mysql.slave_relay_log_info table instead of a file by starting the slave with --relay-log-info-repository=TABLE.
Prior to MySQL 5.6.7, the Master_id column of the slave_master_info and slave_relay_log_info tables showed the slave's server ID instead of the master's server ID. (Bug #12334346)
In order for replication to be crash-safe when using tables for logging status and relay information, the tables must use a transactional storage engine, such as InnoDB. Beginning with MySQL 5.6.6, these tables are created using InnoDB. (Bug #13538891)
Note
In order to guarantee crash safety on the slave, you must also run the slave with --relay-log-recovery enabled.
Prior to MySQL 5.6.6, if mysqld was unable to initialize the replication logging tables, the slave refused to start. In MySQL 5.6.6 and later, a warning is given when this occurs, but the slave is allowed to continue starting. (Bug #13971348) This situation is most likely to occur when upgrading from a version of MySQL that does not support slave logging tables to one in which they are supported.
In MySQL 5.6.5 and earlier, the slave_master_info and slave_relay_log_info tables used MyISAM by default, which meant that it was necessary before starting replication to change the storage engine used by these tables by issuing ALTER TABLE ... ENGINE=InnoDB, as shown here:
ALTER TABLE mysql.slave_master_info ENGINE=InnoDB;
ALTER TABLE mysql.slave_relay_log_info ENGINE=InnoDB;
The ALTER TABLE statements must be executed by the MySQL root or other user account with the appropriate privileges on the mysql database. You should not attempt to do this while replication is running; beginning with MySQL 5.6.3, trying to execute an ALTER TABLE on either these tables while replication is ongoing is disallowed. Starting with MySQL 5.6.4, execution of any statement requiring a write lock on either or both of these tables is disallowed while replication is ongoing, while statements that perform only reads are permitted at any time.
Important
Do not attempt to update or insert rows in the slave_master_info or slave_relay_log_info table manually. Doing so can cause undefined behavior, and is not supported.
Prior to MySQL 5.6.4, mysqldump did not dump the replication log tables unless they were specified by name and the --master-data option was used.
16.2.2.1. The Slave Relay Log
The relay log, like the binary log, consists of a set of numbered files containing events that describe database changes, and an index file that contains the names of all used relay log files.
The term “relay log file” generally denotes an individual numbered file containing database events. The term “relay log” collectively denotes the set of numbered relay log files plus the index file.
Relay log files have the same format as binary log files and can be read using mysqlbinlog (see Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”).
By default, relay log file names have the form host_name-relay-bin.nnnnnn in the data directory, where host_name is the name of the slave server host and nnnnnn is a sequence number. Successive relay log files are created using successive sequence numbers, beginning with 000001. The slave uses an index file to track the relay log files currently in use. The default relay log index file name is host_name-relay-bin.index in the data directory.
The default relay log file and relay log index file names can be overridden with, respectively, the --relay-log and --relay-log-index server options (see Section 16.1.4, “Replication and Binary Logging Options and Variables”).
If a slave uses the default host-based relay log file names, changing a slave's host name after replication has been set up can cause replication to fail with the errors Failed to open the relay log and Could not find target log during relay log initialization. This is a known issue (see Bug #2122). If you anticipate that a slave's host name might change in the future (for example, if networking is set up on the slave such that its host name can be modified using DHCP), you can avoid this issue entirely by using the --relay-log and --relay-log-index options to specify relay log file names explicitly when you initially set up the slave. This will make the names independent of server host name changes.
If you encounter the issue after replication has already begun, one way to work around it is to stop the slave server, prepend the contents of the old relay log index file to the new one, and then restart the slave. On a Unix system, this can be done as shown here:
shell> cat new_relay_log_name.index >> old_relay_log_name.index
shell> mv old_relay_log_name.index new_relay_log_name.index
A slave server creates a new relay log file under the following conditions:
Each time the I/O thread starts.
When the logs are flushed; for example, with FLUSH LOGS or mysqladmin flush-logs.
When the size of the current relay log file becomes “too large,” determined as follows:
If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.
If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay log file size.
The SQL thread automatically deletes each relay log file as soon as it has executed all events in the file and no longer needs it. There is no explicit mechanism for deleting relay logs because the SQL thread takes care of doing so. However, FLUSH LOGS rotates relay logs, which influences when the SQL thread deletes them.
16.2.2.2. Slave Status Logs
A replication slave server creates two logs. By default, these logs are files named master.info and relay-log.info and created in the data directory. The names and locations of these files can be changed by using the --master-info-file and --relay-log-info-file options, respectively. In MySQL 5.6 and later, either or both of these logs can also be written to tables in the mysql database by starting the server with the appropriate option: use --master-info-repository to have the master info log written to the mysql.slave_master_info table, and use --relay-log-info-repository to have the relay log info log written to the mysql.slave_relay_log_info table. See Section 16.1.4, “Replication and Binary Logging Options and Variables”.
The two status logs contain information like that shown in the output of the SHOW SLAVE STATUS statement, which is discussed in Section 13.4.2, “SQL Statements for Controlling Slave Servers”. Because the status logs are stored on disk, they survive a slave server's shutdown. The next time the slave starts up, it reads the two logs to determine how far it has proceeded in reading binary logs from the master and in processing its own relay logs.
The master info log file or table should be protected because it contains the password for connecting to the master. See Section 6.1.2.3, “Passwords and Logging”.
The slave I/O thread updates the master info log. The following table shows the correspondence between the lines in the master.info file, the columns in the mysql.slave_master_info table, and the columns displayed by SHOW SLAVE STATUS.
Line in master.info File | slave_master_info Table Column | SHOW SLAVE STATUS Column | Description |
---|---|---|---|
1 | Number_of_lines | [None] | Number of lines in the file |
2 | Master_log_name | Master_Log_File | The name of the master binary log currently being read from the master |
3 | Master_log_pos | Read_Master_Log_Pos | The current position within the master binary log that have been read from the master |
4 | Host | Master_Host | The host name of the master |
5 | User | Master_User | The user name used to connect to the master |
6 | User_password | Password (not shown by SHOW SLAVE STATUS) | The password used to connect to the master |
7 | Port | Master_Port | The network port used to connect to the master |
8 | Connect_retry | Connect_Retry | The period (in seconds) that the slave will wait before trying to reconnect to the master |
9 | Enabled_ssl | Master_SSL_Allowed | Indicates whether the server supports SSL connections |
10 | Ssl_ca | Master_SSL_CA_File | The file used for the Certificate Authority (CA) certificate |
11 | Ssl_capath | Master_SSL_CA_Path | The path to the Certificate Authority (CA) certificates |
12 | Ssl_cert | Master_SSL_Cert | The name of the SSL certificate file |
13 | Ssl_cipher | Master_SSL_Cipher | The list of possible ciphers used in the handshake for the SSL connection |
14 | Ssl_key | Master_SSL_Key | The name of the SSL key file |
15 | Ssl_verify_server_cert | Master_SSL_Verify_Server_Cert | Whether to verify the server certificate |
16 | Heartbeat | [None] | Interval between replication heartbeats, in seconds |
17 | Bind | Master_Bind | Which of the slave's network interfaces should be used for connecting to the master |
18 | Ignored_server_ids | Replicate_Ignore_Server_Ids | The number of server IDs to be ignored, followed by the actual server IDs |
19 | Uuid | Master_UUID | The master's unique ID |
20 | Retry_count | Master_Retry_Count | Maximum number of reconnection attempts permitted (Added in MySQL 5.6.1) |
Note
Prior to MySQL 5.6.3, the name of the Ssl_verify_server_cert column was Ssl_verify_servert_cert. (Bug #12407446, Bug #60988)
The slave SQL thread updates the relay log info log. In MySQL 5.6, the relay-log.info file includes a line count and a replication delay value. The following table shows the correspondence between the lines in the relay-log.info file, the columns in the mysql.slave_relay_log_info table, and the columns displayed by SHOW SLAVE STATUS.
Line in relay-log.info | slave_relay_log_info Table Column | SHOW SLAVE STATUS Column | Description |
---|---|---|---|
1 | Number_of_lines | [None] | Number of lines in the file or rows in the table |
2 | Relay_log_name | Relay_Log_File | The name of the current relay log file |
3 | Relay_log_pos | Relay_Log_Pos | The current position within the relay log file; events up to this position have been executed on the slave database |
4 | Master_log_name | Relay_Master_Log_File | The name of the master binary log file from which the events in the relay log file were read |
5 | Master_log_pos | Exec_Master_Log_Pos | The equivalent position within the master's binary log file of events that have already been executed |
5 | Sql_delay | SQL_Delay | The number of seconds that the slave must lag the master |
Prior to MySQL 5.6, the relay-log.info file does not include a line count or a delay value (and the slave_relay_log_info table is not available).
Line | Status Column | Description |
---|---|---|
1 | Relay_Log_File | The name of the current relay log file |
2 | Relay_Log_Pos | The current position within the relay log file; events up to this position have been executed on the slave database |
3 | Relay_Master_Log_File | The name of the master binary log file from which the events in the relay log file were read |
4 | Exec_Master_Log_Pos | The equivalent position within the master's binary log file of events that have already been executed |
Note
If you downgrade a slave server to a version older than MySQL 5.6, the older server does not read the relay-log.info file correctly. To address this, modify the file in a text editor by deleting the initial line containing the number of lines.
The contents of the relay-log.info file and the states shown by the SHOW SLAVE STATUS statement might not match if the relay-log.info file has not been flushed to disk. Ideally, you should only view relay-log.info on a slave that is offline (that is, mysqld is not running). For a running system, you can use SHOW SLAVE STATUS, or query the slave_master_info and slave_relay_log_info tables if you are writing the status logs to tables.
When you back up the slave's data, you should back up these two status logs, along with the relay log files. The status logs are needed to resume replication after you restore the data from the slave. If you lose the relay logs but still have the relay log info log, you can check it to determine how far the SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with the MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from that point. Of course, this requires that the binary logs still exist on the master.
16.2.3. How Servers Evaluate Replication Filtering Rules
If a master server does not write a statement to its binary log, the statement is not replicated. If the server does log the statement, the statement is sent to all slaves and each slave determines whether to execute it or ignore it.
On the master, you can control which databases to log changes for by using the --binlog-do-db and --binlog-ignore-db options to control binary logging. For a description of the rules that servers use in evaluating these options, see Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”. You should not use these options to control which databases and tables are replicated. Instead, use filtering on the slave to control the events that are executed on the slave.
On the slave side, decisions about whether to execute or ignore statements received from the master are made according to the --replicate-* options that the slave was started with. (See Section 16.1.4, “Replication and Binary Logging Options and Variables”.)
In the simplest case, when there are no --replicate-* options, the slave executes all statements that it receives from the master. Otherwise, the result depends on the particular options given.
Database-level options (--replicate-do-db, --replicate-ignore-db) are checked first; see Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a description of this process. If no matching database-level options are found, option checking proceeds to any table-level options that may be in use, as discussed in Section 16.2.3.2, “Evaluation of Table-Level Replication Options”.
For statements affecting databases only (that is, CREATE DATABASE, DROP DATABASE, and ALTER DATABASE), database-level options always take precedence over any --replicate-wild-do-table options. In other words, for such statements, --replicate-wild-do-table options are checked if and only if there are no database-level options that apply. This is a change in behavior from previous versions of MySQL, where the statement CREATE DATABASE dbx was not replicated if the slave had been started with --replicate-do-db=dbx --replicate-wild-do-table=db%.t1. (Bug #46110)
To make it easier to determine what effect an option set will have, it is recommended that you avoid mixing “do” and “ignore” options, or wildcard and nonwildcard options.
If any --replicate-rewrite-db options were specified, they are applied before the --replicate-* filtering rules are tested.
Note
In MySQL 5.6, all replication filtering options follow the same rules for case sensitivity that apply to names of databases and tables elsewhere in the MySQL server, including the effects of the lower_case_table_names system variable.
This is a change from previous versions of MySQL. (Bug #51639)
16.2.3.1. Evaluation of Database-Level Replication and Binary Logging Options
When evaluating replication options, the slave begins by checking to see whether there are any --replicate-do-db or --replicate-ignore-db options that apply. When using --binlog-do-db or --binlog-ignore-db, the process is similar, but the options are checked on the master.
With statement-based replication, the default database is checked for a match. With row-based replication, the database where data is to be changed is the database that is checked. Regardless of the binary logging format, checking of database-level options proceeds as shown in the following diagram.
The steps involved are listed here:
Are there any --replicate-do-db options?
Yes. Do any of them match the database?
Yes. Execute the statement and exit.
No. Continue to step 2.
No. Continue to step 2.
Are there any --replicate-ignore-db options?
Yes. Do any of them match the database?
Yes. Ignore the statement and exit.
No. Continue to step 3.
No. Continue to step 3.
Proceed to checking the table-level replication options, if there are any. For a description of how these options are checked, see Section 16.2.3.2, “Evaluation of Table-Level Replication Options”.
Important
A statement that is still permitted at this stage is not yet actually executed. The statement is not executed until all table-level options (if any) have also been checked, and the outcome of that process permits execution of the statement.
For binary logging, the steps involved are listed here:
Are there any --binlog-do-db or --binlog-ignore-db options?
Yes. Continue to step 2.
No. Log the statement and exit.
Is there a default database (has any database been selected by USE)?
Yes. Continue to step 3.
No. Ignore the statement and exit.
There is a default database. Are there any --binlog-do-db options?
Yes. Do any of them match the database?
Yes. Log the statement and exit.
No. Ignore the statement and exit.
No. Continue to step 4.
Do any of the --binlog-ignore-db options match the database?
Yes. Ignore the statement and exit.
No. Log the statement and exit.
Important
For statement-based logging, an exception is made in the rules just given for the CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements. In those cases, the database being created, altered, or dropped replaces the default database when determining whether to log or ignore updates.
--binlog-do-db can sometimes mean “ignore other databases”. For example, when using statement-based logging, a server running with only --binlog-do-db=sales does not write to the binary log statements for which the default database differs from sales. When using row-based logging with the same option, the server logs only those updates that change data in sales.
16.2.3.2. Evaluation of Table-Level Replication Options
The slave checks for and evaluates table options only if no matching database options were found (see Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”).
First, as a preliminary condition, the slave checks whether statement-based replication is enabled. If so, and the statement occurs within a stored function, the slave executes the statement and exits. If row-based replication is enabled, the slave does not know whether a statement occurred within a stored function on the master, so this condition does not apply.
Note
For statement-based replication, replication events represent statements (all changes making up a given event are associated with a single SQL statement); for row-based replication, each event represents a change in a single table row (thus a single statement such as UPDATE mytable SET mycol = 1 may yield many row-based events). When viewed in terms of events, the process of checking table options is the same for both row-based and statement-based replication.
Having reached this point, if there are no table options, the slave simply executes all events. If there are any --replicate-do-table or --replicate-wild-do-table options, the event must match one of these if it is to be executed; otherwise, it is ignored. If there are any --replicate-ignore-table or --replicate-wild-ignore-table options, all events are executed except those that match any of these options. This process is illustrated in the following diagram.
The following steps describe this evaluation in more detail:
Are there any table options?
Yes. Continue to step 2.
No. Execute the event and exit.
Are there any --replicate-do-table options?
Yes. Does the table match any of them?
Yes. Execute the event and exit.
No. Continue to step 3.
No. Continue to step 3.
Are there any --replicate-ignore-table options?
Yes. Does the table match any of them?
Yes. Ignore the event and exit.
No. Continue to step 4.
No. Continue to step 4.
Are there any --replicate-wild-do-table options?
Yes. Does the table match any of them?
Yes. Execute the event and exit.
No. Continue to step 5.
No. Continue to step 5.
Are there any --replicate-wild-ignore-table options?
Yes. Does the table match any of them?
Yes. Ignore the event and exit.
No. Continue to step 6.
No. Continue to step 6.
Are there any --replicate-do-table or --replicate-wild-do-table options?
Yes. Ignore the event and exit.
No. Execute the event and exit.
16.2.3.3. Replication Rule Application
This section provides additional explanation and examples of usage for different combinations of replication filtering options.
Some typical combinations of replication filter rule types are given in the following table:
Condition (Types of Options) | Outcome |
---|---|
No --replicate-* options at all: | The slave executes all events that it receives from the master. |
--replicate-*-db options, but no table options: | The slave accepts or ignores events using the database options. It executes all events permitted by those options because there are no table restrictions. |
--replicate-*-table options, but no database options: | All events are accepted at the database-checking stage because there are no database conditions. The slave executes or ignores events based solely on the table options. |
A combination of database and table options: | The slave accepts or ignores events using the database options. Then it evaluates all events permitted by those options according to the table options. This can sometimes lead to results that seem counterintuitive, and that may be different depending on whether you are using statement-based or row-based replication; see the text for an example. |
A more complex example follows, in which we examine the outcomes for both statement-based and row-based settings.
Suppose that we have two tables mytbl1 in database db1 and mytbl2 in database db2 on the master, and the slave is running with the following options (and no other replication filtering options):
replicate-ignore-db = db1
replicate-do-table = db2.tbl2
Now we execute the following statements on the master:
USE db1;
INSERT INTO db2.tbl2 VALUES (1);
The results on the slave vary considerably depending on the binary log format, and may not match initial expectations in either case.
Statement-based replication. The USE statement causes db1 to be the default database. Thus the --replicate-ignore-db option matches, and the INSERT statement is ignored. The table options are not checked.
Row-based replication. The default database has no effect on how the slave reads database options when using row-based replication. Thus, the USE statement makes no difference in how the --replicate-ignore-db option is handled: the database specified by this option does not match the database where the INSERT statement changes data, so the slave proceeds to check the table options. The table specified by --replicate-do-table matches the table to be updated, and the row is inserted.
16.3. Replication Solutions
Replication can be used in many different environments for a range of purposes. This section provides general notes and advice on using replication for specific solution types.
For information on using replication in a backup environment, including notes on the setup, backup procedure, and files to back up, see Section 16.3.1, “Using Replication for Backups”.
For advice and tips on using different storage engines on the master and slaves, see Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”.
Using replication as a scale-out solution requires some changes in the logic and operation of applications that use the solution. See Section 16.3.3, “Using Replication for Scale-Out”.
For performance or data distribution reasons, you may want to replicate different databases to different replication slaves. See Section 16.3.4, “Replicating Different Databases to Different Slaves”
As the number of replication slaves increases, the load on the master can increase and lead to reduced performance (because of the need to replicate the binary log to each slave). For tips on improving your replication performance, including using a single secondary server as an replication master, see Section 16.3.5, “Improving Replication Performance”.
For guidance on switching masters, or converting slaves into masters as part of an emergency failover solution, see Section 16.3.6, “Switching Masters During Failover”.
To secure your replication communication, you can use SSL to encrypt the communication channel. For step-by-step instructions, see Section 16.3.7, “Setting Up Replication Using SSL”.
16.3.1. Using Replication for Backups
To use replication as a backup solution, replicate data from the master to a slave, and then back up the data slave. The slave can be paused and shut down without affecting the running operation of the master, so you can produce an effective snapshot of “live” data that would otherwise require the master to be shut down.
How you back up a database depends on its size and whether you are backing up only the data, or the data and the replication slave state so that you can rebuild the slave in the event of failure. There are therefore two choices:
If you are using replication as a solution to enable you to back up the data on the master, and the size of your database is not too large, the mysqldump tool may be suitable. See Section 16.3.1.1, “Backing Up a Slave Using mysqldump”.
For larger databases, where mysqldump would be impractical or inefficient, you can back up the raw data files instead. Using the raw data files option also means that you can back up the binary and relay logs that will enable you to recreate the slave in the event of a slave failure. For more information, see Section 16.3.1.2, “Backing Up Raw Data from a Slave”.
Another backup strategy, which can be used for either master or slave servers, is to put the server in a read-only state. The backup is performed against the read-only server, which then is changed back to its usual read/write operational status. See Section 16.3.1.3, “Backing Up a Master or Slave by Making It Read Only”.
16.3.1.1. Backing Up a Slave Using mysqldump
Using mysqldump to create a copy of a database enables you to capture all of the data in the database in a format that enables the information to be imported into another instance of MySQL Server (see Section 4.5.4, “mysqldump — A Database Backup Program”). Because the format of the information is SQL statements, the file can easily be distributed and applied to running servers in the event that you need access to the data in an emergency. However, if the size of your data set is very large, mysqldump may be impractical.
When using mysqldump, you should stop replication on the slave before starting the dump process to ensure that the dump contains a consistent set of data:
Stop the slave from processing requests. You can stop replication completely on the slave using mysqladmin:
shell> mysqladmin stop-slave
Alternatively, you can stop only the slave SQL thread to pause event execution:
shell> mysql -e 'STOP SLAVE SQL_THREAD;'
This enables the slave to continue to receive data change events from the master's binary log and store them in the relay logs using the I/O thread, but prevents the slave from executing these events and changing its data. Within busy replication environments, permitting the I/O thread to run during backup may speed up the catch-up process when you restart the slave SQL thread.
Run mysqldump to dump your databases. You may either dump all databases or select databases to be dumped. For example, to dump all databases:
shell> mysqldump --all-databases > fulldb.dump
Once the dump has completed, start slave operations again:
shell> mysqladmin start-slave
In the preceding example, you may want to add login credentials (user name, password) to the commands, and bundle the process up into a script that you can run automatically each day.
If you use this approach, make sure you monitor the slave replication process to ensure that the time taken to run the backup does not affect the slave's ability to keep up with events from the master. See Section 16.1.5.1, “Checking Replication Status”. If the slave is unable to keep up, you may want to add another slave and distribute the backup process. For an example of how to configure this scenario, see Section 16.3.4, “Replicating Different Databases to Different Slaves”.
16.3.1.2. Backing Up Raw Data from a Slave
To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL replication slave should take place while your slave server is shut down. If the MySQL server is still running, background tasks may still be updating the database files, particularly those involving storage engines with background processes such as InnoDB. With InnoDB, these problems should be resolved during crash recovery, but since the slave server can be shut down during the backup process without affecting the execution of the master it makes sense to take advantage of this capability.
To shut down the server and back up the files:
Shut down the slave MySQL server:
shell> mysqladmin shutdown
Copy the data files. You can use any suitable copying or archive utility, including cp, tar or WinZip. For example, assuming that the data directory is located under the current directory, you can archive the entire directory as follows:
shell> tar cf /tmp/dbbackup.tar ./data
Start the MySQL server again. Under Unix:
shell> mysqld_safe &
Under Windows:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld"
Normally you should back up the entire data directory for the slave MySQL server. If you want to be able to restore the data and operate as a slave (for example, in the event of failure of the slave), then in addition to the slave's data, you should also back up the slave status files, master.info and relay-log.info, along with the relay log files. These files are needed to resume replication after you restore the slave's data.
If you lose the relay logs but still have the relay-log.info file, you can check it to determine how far the SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with the MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from that point. This requires that the binary logs still exist on the master server.
If your slave is replicating LOAD DATA INFILE statements, you should also back up any SQL_LOAD-* files that exist in the directory that the slave uses for this purpose. The slave needs these files to resume replication of any interrupted LOAD DATA INFILE operations. The location of this directory is the value of the --slave-load-tmpdir option. If the server was not started with that option, the directory location is the value of the tmpdir system variable.
16.3.1.3. Backing Up a Master or Slave by Making It Read Only
It is possible to back up either master or slave servers in a replication setup by acquiring a global read lock and manipulating the read_only system variable to change the read-only state of the server to be backed up:
Make the server read-only, so that it processes only retrievals and blocks updates.
Perform the backup.
Change the server back to its normal read/write state.
Note
The instructions in this section place the server to be backed up in a state that is safe for backup methods that get the data from the server, such as mysqldump (see Section 4.5.4, “mysqldump — A Database Backup Program”). You should not attempt to use these instructions to make a binary backup by copying files directly because the server may still have modified data cached in memory and not flushed to disk.
The following instructions describe how to do this for a master server and for a slave server. For both scenarios discussed here, suppose that you have the following replication setup:
A master server M1
A slave server S1 that has M1 as its master
A client C1 connected to M1
A client C2 connected to S1
In either scenario, the statements to acquire the global read lock and manipulate the read_only variable are performed on the server to be backed up and do not propagate to any slaves of that server.
Scenario 1: Backup with a Read-Only Master
Put the master M1 in a read-only state by executing these statements on it:
mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;
While M1 is in a read-only state, the following properties are true:
Requests for updates sent by C1 to M1 will block because the server is in read-only mode.
Requests for query results sent by C1 to M1 will succeed.
Making a backup on M1 is safe.
Making a backup on S1 is not safe. This server is still running, and might be processing the binary log or update requests coming from client C2
While M1 is read only, perform the backup. For example, you can use mysqldump.
After the backup operation on M1 completes, restore M1 to its normal operational state by executing these statements:
mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;
Although performing the backup on M1 is safe (as far as the backup is concerned), it is not optimal for performance because clients of M1 are blocked from executing updates.
This strategy applies to backing up a master server in a replication setup, but can also be used for a single server in a nonreplication setting.
Scenario 2: Backup with a Read-Only Slave
Put the slave S1 in a read-only state by executing these statements on it:
mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;
While S1 is in a read-only state, the following properties are true:
The master M1 will continue to operate, so making a backup on the master is not safe.
The slave S1 is stopped, so making a backup on the slave S1 is safe.
These properties provide the basis for a popular backup scenario: Having one slave busy performing a backup for a while is not a problem because it does not affect the entire network, and the system is still running during the backup. In particular, clients can still perform updates on the master server, which remains unaffected by backup activity on the slave.
While S1 is read only, perform the backup. For example, you can use mysqldump.
After the backup operation on S1 completes, restore S1 to its normal operational state by executing these statements:
mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;
After the slave is restored to normal operation, it again synchronizes to the master by catching up with any outstanding updates from the binary log of the master.
16.3.2. Using Replication with Different Master and Slave Storage Engines
It does not matter for the replication process whether the source table on the master and the replicated table on the slave use different engine types. In fact, the default_storage_engine and storage_engine system variables are not replicated.
This provides a number of benefits in the replication process in that you can take advantage of different engine types for different replication scenarios. For example, in a typical scale-out scenario (see Section 16.3.3, “Using Replication for Scale-Out”), you want to use InnoDB tables on the master to take advantage of the transactional functionality, but use MyISAM on the slaves where transaction support is not required because the data is only read. When using replication in a data-logging environment you may want to use the Archive storage engine on the slave.
Configuring different engines on the master and slave depends on how you set up the initial replication process:
If you used mysqldump to create the database snapshot on your master, you could edit the dump file text to change the engine type used on each table.
Another alternative for mysqldump is to disable engine types that you do not want to use on the slave before using the dump to build the data on the slave. For example, you can add the --skip-innodb option on your slave to disable the InnoDB engine. If a specific engine does not exist for a table to be created, MySQL will use the default engine type, usually MyISAM. (This requires that the NO_ENGINE_SUBSTITUTION SQL mode is not enabled.) If you want to disable additional engines in this way, you may want to consider building a special binary to be used on the slave that only supports the engines you want.
If you are using raw data files (a binary backup) to set up the slave, you will be unable to change the initial table format. Instead, use ALTER TABLE to change the table types after the slave has been started.
For new master/slave replication setups where there are currently no tables on the master, avoid specifying the engine type when creating new tables.
If you are already running a replication solution and want to convert your existing tables to another engine type, follow these steps:
Stop the slave from running replication updates:
mysql> STOP SLAVE;
This will enable you to change engine types without interruptions.
Execute an ALTER TABLE ... ENGINE='engine_type' for each table to be changed.
Start the slave replication process again:
mysql> START SLAVE;
Although the default_storage_engine variable is not replicated, be aware that CREATE TABLE and ALTER TABLE statements that include the engine specification will be correctly replicated to the slave. For example, if you have a CSV table and you execute:
mysql> ALTER TABLE csvtable Engine='MyISAM';
The above statement will be replicated to the slave and the engine type on the slave will be converted to MyISAM, even if you have previously changed the table type on the slave to an engine other than CSV. If you want to retain engine differences on the master and slave, you should be careful to use the default_storage_engine variable on the master when creating a new table. For example, instead of:
mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;
Use this format:
mysql> SET default_storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);
When replicated, the default_storage_engine variable will be ignored, and the CREATE TABLE statement will execute on the slave using the slave's default engine.
16.3.3. Using Replication for Scale-Out
You can use replication as a scale-out solution; that is, where you want to split up the load of database queries across multiple database servers, within some reasonable limitations.
Because replication works from the distribution of one master to one or more slaves, using replication for scale-out works best in an environment where you have a high number of reads and low number of writes/updates. Most Web sites fit into this category, where users are browsing the Web site, reading articles, posts, or viewing products. Updates only occur during session management, or when making a purchase or adding a comment/message to a forum.
Replication in this situation enables you to distribute the reads over the replication slaves, while still enabling your web servers to communicate with the replication master when a write is required. You can see a sample replication layout for this scenario in Figure 16.1, “Using Replication to Improve Performance During Scale-Out”.
Figure 16.1. Using Replication to Improve Performance During Scale-Out
If the part of your code that is responsible for database access has been properly abstracted/modularized, converting it to run with a replicated setup should be very smooth and easy. Change the implementation of your database access to send all writes to the master, and to send reads to either the master or a slave. If your code does not have this level of abstraction, setting up a replicated system gives you the opportunity and motivation to clean it up. Start by creating a wrapper library or module that implements the following functions:
safe_writer_connect()
safe_reader_connect()
safe_reader_statement()
safe_writer_statement()
safe_ in each function name means that the function takes care of handling all error conditions. You can use different names for the functions. The important thing is to have a unified interface for connecting for reads, connecting for writes, doing a read, and doing a write.
Then convert your client code to use the wrapper library. This may be a painful and scary process at first, but it pays off in the long run. All applications that use the approach just described are able to take advantage of a master/slave configuration, even one involving multiple slaves. The code is much easier to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions; for example, to log how long each statement took, or which statement among those issued gave you an error.
If you have written a lot of code, you may want to automate the conversion task by using the replace utility that comes with standard MySQL distributions, or write your own conversion script. Ideally, your code uses consistent programming style conventions. If not, then you are probably better off rewriting it anyway, or at least going through and manually regularizing it to use a consistent style.
16.3.4. Replicating Different Databases to Different Slaves
There may be situations where you have a single master and want to replicate different databases to different slaves. For example, you may want to distribute different sales data to different departments to help spread the load during data analysis. A sample of this layout is shown in Figure 16.2, “Using Replication to Replicate Databases to Separate Replication Slaves”.
Figure 16.2. Using Replication to Replicate Databases to Separate Replication Slaves
You can achieve this separation by configuring the master and slaves as normal, and then limiting the binary log statements that each slave processes by using the --replicate-wild-do-table configuration option on each slave.
Important
You should not use --replicate-do-db for this purpose when using statement-based replication, since statement-based replication causes this option's affects to vary according to the database that is currently selected. This applies to mixed-format replication as well, since this enables some updates to be replicated using the statement-based format.
However, it should be safe to use --replicate-do-db for this purpose if you are using row-based replication only, since in this case the currently selected database has no effect on the option's operation.
For example, to support the separation as shown in Figure 16.2, “Using Replication to Replicate Databases to Separate Replication Slaves”, you should configure each replication slave as follows, before executing START SLAVE:
Replication slave 1 should use --replicate-wild-do-table=databaseA.%.
Replication slave 2 should use --replicate-wild-do-table=databaseB.%.
Replication slave 3 should use --replicate-wild-do-table=databaseC.%.
Each slave in this configuration receives the entire binary log from the master, but executes only those events from the binary log that apply to the databases and tables included by the --replicate-wild-do-table option in effect on that slave.
If you have data that must be synchronized to the slaves before replication starts, you have a number of choices:
Synchronize all the data to each slave, and delete the databases, tables, or both that you do not want to keep.
Use mysqldump to create a separate dump file for each database and load the appropriate dump file on each slave.
Use a raw data file dump and include only the specific files and databases that you need for each slave.
Note
This does not work with InnoDB databases unless you use innodb_file_per_table.
16.3.5. Improving Replication Performance
As the number of slaves connecting to a master increases, the load, although minimal, also increases, as each slave uses a client connection to the master. Also, as each slave must receive a full copy of the master binary log, the network load on the master may also increase and create a bottleneck.
If you are using a large number of slaves connected to one master, and that master is also busy processing requests (for example, as part of a scale-out solution), then you may want to improve the performance of the replication process.
One way to improve the performance of the replication process is to create a deeper replication structure that enables the master to replicate to only one slave, and for the remaining slaves to connect to this primary slave for their individual replication requirements. A sample of this structure is shown in Figure 16.3, “Using an Additional Replication Host to Improve Performance”.
Figure 16.3. Using an Additional Replication Host to Improve Performance
For this to work, you must configure the MySQL instances as follows:
Master 1 is the primary master where all changes and updates are written to the database. Binary logging should be enabled on this machine.
Master 2 is the slave to the Master 1 that provides the replication functionality to the remainder of the slaves in the replication structure. Master 2 is the only machine permitted to connect to Master 1. Master 2 also has binary logging enabled, and the --log-slave-updates option so that replication instructions from Master 1 are also written to Master 2's binary log so that they can then be replicated to the true slaves.
Slave 1, Slave 2, and Slave 3 act as slaves to Master 2, and replicate the information from Master 2, which actually consists of the upgrades logged on Master 1.
The above solution reduces the client load and the network interface load on the primary master, which should improve the overall performance of the primary master when used as a direct database solution.
If your slaves are having trouble keeping up with the replication process on the master, there are a number of options available:
If possible, put the relay logs and the data files on different physical drives. To do this, use the --relay-log option to specify the location of the relay log.
If the slaves are significantly slower than the master, you may want to divide up the responsibility for replicating different databases to different slaves. See Section 16.3.4, “Replicating Different Databases to Different Slaves”.
If your master makes use of transactions and you are not concerned about transaction support on your slaves, use MyISAM or another nontransactional engine on the slaves. See Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”.
If your slaves are not acting as masters, and you have a potential solution in place to ensure that you can bring up a master in the event of failure, then you can switch off --log-slave-updates. This prevents “dumb” slaves from also logging events they have executed into their own binary log.
16.3.6. Switching Masters During Failover
There is currently no official solution for providing failover between master and slaves in the event of a failure. With the currently available features, you would have to set up a master and a slave (or several slaves), and to write a script that monitors the master to check whether it is up. Then instruct your applications and the slaves to change master in case of failure.
Remember that you can tell a slave to change its master at any time, using the CHANGE MASTER TO statement. The slave will not check whether the databases on the master are compatible with the slave, it will just start reading and executing events from the specified binary log coordinates on the new master. In a failover situation, all the servers in the group are typically executing the same events from the same binary log file, so changing the source of the events should not affect the database structure or integrity providing you are careful.
Run your slaves with the --log-bin option and without --log-slave-updates. In this way, the slave is ready to become a master as soon as you issue STOP SLAVE; RESET MASTER, and CHANGE MASTER TO statement on the other slaves. For example, assume that you have the structure shown in Figure 16.4, “Redundancy Using Replication, Initial Structure”.
Figure 16.4. Redundancy Using Replication, Initial Structure
In this diagram, the MySQL Master holds the master database, the MySQL Slave hosts are replication slaves, and the Web Client machines are issuing database reads and writes. Web clients that issue only reads (and would normally be connected to the slaves) are not shown, as they do not need to switch to a new server in the event of failure. For a more detailed example of a read/write scale-out replication structure, see Section 16.3.3, “Using Replication for Scale-Out”.
Each MySQL Slave (Slave 1, Slave 2, and Slave 3) is a slave running with --log-bin and without --log-slave-updates. Because updates received by a slave from the master are not logged in the binary log unless --log-slave-updates is specified, the binary log on each slave is empty initially. If for some reason MySQL Master becomes unavailable, you can pick one of the slaves to become the new master. For example, if you pick Slave 1, all Web Clients should be redirected to Slave 1, which will log updates to its binary log. Slave 2 and Slave 3 should then replicate from Slave 1.
The reason for running the slave without --log-slave-updates is to prevent slaves from receiving updates twice in case you cause one of the slaves to become the new master. Suppose that Slave 1 has --log-slave-updates enabled. Then it will write updates that it receives from Master to its own binary log. When Slave 2 changes from Master to Slave 1 as its master, it may receive updates from Slave 1 that it has already received from Master
Make sure that all slaves have processed any statements in their relay log. On each slave, issue STOP SLAVE IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has read all relay log. When this is true for all slaves, they can be reconfigured to the new setup. On the slave Slave 1 being promoted to become the master, issue STOP SLAVE and RESET MASTER.
On the other slaves Slave 2 and Slave 3, use STOP SLAVE and CHANGE MASTER TO MASTER_HOST='Slave1' (where 'Slave1' represents the real host name of Slave 1). To use CHANGE MASTER TO, add all information about how to connect to Slave 1 from Slave 2 or Slave 3 (user, password, port). In CHANGE MASTER TO, there is no need to specify the name of the Slave 1 binary log file or log position to read from: We know it is the first binary log file and position 4, which are the defaults for CHANGE MASTER TO. Finally, use START SLAVE on Slave 2 and Slave 3.
Once the new replication is in place, you will then need to instruct each Web Client to direct its statements to Slave 1. From that point on, all updates statements sent by Web Client to Slave 1 are written to the binary log of Slave 1, which then contains every update statement sent to Slave 1 since Master died.
The resulting server structure is shown in Figure 16.5, “Redundancy Using Replication, After Master Failure”.
Figure 16.5. Redundancy Using Replication, After Master Failure
When Master is up again, you must issue on it the same CHANGE MASTER TO as that issued on Slave 2 and Slave 3, so that Master becomes a slave of S1 and picks up each Web Client writes that it missed while it was down.
To make Master a master again (for example, because it is the most powerful machine), use the preceding procedure as if Slave 1 was unavailable and Master was to be the new master. During this procedure, do not forget to run RESET MASTER on Master before making Slave 1, Slave 2, and Slave 3 slaves of Master. Otherwise, they may pick up old Web Client writes from before the point at which Master became unavailable.
Note that there is no synchronization between the different slaves to a master. Some slaves might be ahead of others. This means that the concept outlined in the previous example might not work. In practice, however, the relay logs of different slaves will most likely not be far behind the master, so it would work, anyway (but there is no guarantee).
A good way to keep your applications informed as to the location of the master is by having a dynamic DNS entry for the master. With bind you can use nsupdate to dynamically update your DNS.
16.3.7. Setting Up Replication Using SSL
To use SSL for encrypting the transfer of the binary log required during replication, both the master and the slave must support SSL network connections. If either host does not support SSL connections (because it has not been compiled or configured for SSL), replication through an SSL connection is not possible.
Setting up replication using an SSL connection is similar to setting up a server and client using SSL. You must obtain (or create) a suitable security certificate that you can use on the master, and a similar certificate (from the same certificate authority) on each slave.
For more information on setting up a server and client for SSL connectivity, see Section 6.3.9.2, “Configuring MySQL for SSL”.
To enable SSL on the master you must create or obtain suitable certificates, and then add the following configuration options to the master's configuration within the [mysqld] section of the master's my.cnf file:
[mysqld]
ssl-ca=cacert.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem
The paths to the certificates may be relative or absolute; we recommend that you always use complete paths for this purpose.
The options are as follows:
ssl-ca identifies the Certificate Authority (CA) certificate.
ssl-cert identifies the server public key. This can be sent to the client and authenticated against the CA certificate that it has.
ssl-key identifies the server private key.
On the slave, you have two options available for setting the SSL information. You can either add the slave certificates to the [client] section of the slave's my.cnf file, or you can explicitly specify the SSL information using the CHANGE MASTER TO statement:
To add the slave certificates using an option file, add the following lines to the [client] section of the slave's my.cnf file:
[client]
ssl-ca=cacert.pem
ssl-cert=client-cert.pem
ssl-key=client-key.pem
Restart the slave server, using the --skip-slave-start option to prevent the slave from connecting to the master. Use CHANGE MASTER TO to specify the master configuration, using the MASTER_SSL option to enable SSL connectivity:
mysql> CHANGE MASTER TO
-> MASTER_HOST='master_hostname',
-> MASTER_USER='replicate',
-> MASTER_PASSWORD='password',
-> MASTER_SSL=1;
To specify the SSL certificate options using the CHANGE MASTER TO statement, append the SSL options:
mysql> CHANGE MASTER TO
-> MASTER_HOST='master_hostname',
-> MASTER_USER='replicate',
-> MASTER_PASSWORD='password',
-> MASTER_SSL=1,
-> MASTER_SSL_CA = 'ca_file_name',
-> MASTER_SSL_CAPATH = 'ca_directory_name',
-> MASTER_SSL_CERT = 'cert_file_name',
-> MASTER_SSL_KEY = 'key_file_name';
After the master information has been updated, start the slave replication process:
mysql> START SLAVE;
You can use the SHOW SLAVE STATUS statement to confirm that the SSL connection was established successfully.
For more information on the CHANGE MASTER TO statement, see Section 13.4.2.1, “CHANGE MASTER TO Syntax”.
If you want to enforce the use of SSL connections during replication, then create a user with the REPLICATION SLAVE privilege and use the REQUIRE SSL option for that user. For example:
mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.*
-> TO 'repl'@'%.mydomain.com' REQUIRE SSL;
If the account already exists, you can add REQUIRE SSL to it with this statement:
mysql> GRANT USAGE ON *.*
-> TO 'repl'@'%.mydomain.com' REQUIRE SSL;
16.3.8. Semisynchronous Replication
MySQL 5.6 supports an interface to semisynchronous replication in addition to the built-in asynchronous replication. This section discusses what semisynchronous replication is and how it works. The following sections cover the administrative interface to semisynchronous replication and how to install, configure, and monitor it.
MySQL replication by default is asynchronous. The master writes events to its binary log but does not know whether or when a slave has retrieved and processed them. With asynchronous replication, if the master crashes, transactions that it has committed might not have been transmitted to any slave. Consequently, failover from master to slave in this case may result in failover to a server that is missing transactions relative to the master.
Semisynchronous replication can be used as an alternative to asynchronous replication:
A slave indicates whether it is semisynchronous-capable when it connects to the master.
If semisynchronous replication is enabled on the master side and there is at least one semisynchronous slave, a thread that performs a transaction commit on the master blocks after the commit is done and waits until at least one semisynchronous slave acknowledges that it has received all events for the transaction, or until a timeout occurs.
The slave acknowledges receipt of a transaction's events only after the events have been written to its relay log and flushed to disk.
If a timeout occurs without any slave having acknowledged the transaction, the master reverts to asynchronous replication. When at least one semisynchronous slave catches up, the master returns to semisynchronous replication.
Semisynchronous replication must be enabled on both the master and slave sides. If semisynchronous replication is disabled on the master, or enabled on the master but on no slaves, the master uses asynchronous replication.
While the master is blocking (waiting for acknowledgment from a slave after having performed a commit), it does not return to the session that performed the transaction. When the block ends, the master returns to the session, which then can proceed to execute other statements. At this point, the transaction has committed on the master side, and receipt of its events has been acknowledged by at least one slave.
Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction that modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though it has no effect for transactional tables because the modifications to the nontransactional tables cannot be rolled back and must be sent to slaves.
For statements that do not occur in transactional context (that is, when no transaction has been started with START TRANSACTION or SET autocommit = 0), autocommit is enabled and each statement commits implicitly. With semisynchronous replication, the master blocks after committing each such statement, just as it does for explicit transaction commits.
To understand what the “semi” in “semisynchronous replication” means, compare it with asynchronous and fully synchronous replication:
With asynchronous replication, the master writes events to its binary log and slaves request them when they are ready. There is no guarantee that any event will ever reach any slave.
With fully synchronous replication, when a master commits a transaction, all slaves also will have committed the transaction before the master returns to the session that performed the transaction. The drawback of this is that there might be a lot of delay to complete a transaction.
Semisynchronous replication falls between asynchronous and fully synchronous replication. The master waits after commit only until at least one slave has received and logged the events. It does not wait for all slaves to acknowledge receipt, and it requires only receipt, not that the events have been fully executed and committed on the slave side.
Compared to asynchronous replication, semisynchronous replication provides improved data integrity. When a commit returns successfully, it is known that the data exists in at least two places (on the master and at least one slave). If the master commits but a crash occurs while the master is waiting for acknowledgment from a slave, it is possible that the transaction may not have reached any slave.
Semisynchronous replication also places a rate limit on busy sessions by constraining the speed at which binary log events can be sent from master to slave. When one user is too busy, this will slow it down, which is useful in some deployment situations.
Semisynchronous replication does have some performance impact because commits are slower due to the need to wait for slaves. This is the tradeoff for increased data integrity. The amount of slowdown is at least the TCP/IP roundtrip time to send the commit to the slave and wait for the acknowledgment of receipt by the slave. This means that semisynchronous replication works best for close servers communicating over fast networks, and worst for distant servers communicating over slow networks.
16.3.8.1. Semisynchronous Replication Administrative Interface
The administrative interface to semisynchronous replication has several components:
Two plugins implement semisynchronous capability. There is one plugin for the master side and one for the slave side.
System variables control plugin behavior. Some examples:
Controls whether semisynchronous replication is enabled on the master. To enable or disable the plugin, set this variable to 1 or 0, respectively. The default is 1.
A value in milliseconds that controls how long the master waits on a commit for acknowledgment from a slave before timing out and reverting to asynchronous replication. The default value is 10000 (10 seconds).
Similar to rpl_semi_sync_master_enabled, but controls the slave plugin.
All rpl_semi_sync_xxx system variables are described at Section 5.1.4, “Server System Variables”.
Status variables enable semisynchronous replication monitoring. Some examples:
The number of semisynchronous slaves.
Whether semisynchronous replication currently is operational on the master. The value is 1 if the plugin has been enabled and a commit acknowledgment has not occurred. It is 0 if the plugin is not enabled or the master has fallen back to asynchronous replication due to commit acknowledgment timeout.
The number of commits that were not acknowledged successfully by a slave.
The number of commits that were acknowledged successfully by a slave.
Whether semisynchronous replication currently is operational on the slave. This is 1 if the plugin has been enabled and the slave I/O thread is running, 0 otherwise.
All Rpl_semi_sync_xxx status variables are described at Section 5.1.6, “Server Status Variables”.
The system and status variables are available only if the appropriate master or slave plugin has been installed with INSTALL PLUGIN.
16.3.8.2. Semisynchronous Replication Installation and Configuration
Semisynchronous replication is implemented using plugins, so the plugins must be installed into the server to make them available. After a plugin has been installed, you control it by means of the system variables associated with it. These system variables are unavailable until the associated plugin has been installed.
To use semisynchronous replication, the following requirements must be satisfied:
MySQL 5.5 or higher must be installed.
The capability of installing plugins requires a MySQL server that supports dynamic loading. To verify this, check that the value of the have_dynamic_loading system variable is YES. Binary distributions should support dynamic loading.
Replication must already be working. For information on creating a master/slave relationship, see Section 16.1.1, “How to Set Up Replication”.
To set up semisynchronous replication, use the following instructions. The INSTALL PLUGIN, SET GLOBAL, STOP SLAVE, and START SLAVE statements mentioned here require the SUPER privilege.
The semisynchronous replication plugins are included with MySQL distributions.
Unpack the component distribution, which contains files for the master side and the slave side.
Install the component files in the plugin directory of the appropriate server. Install the semisync_master* files in the plugin directory of the master server. Install the semisync_slave* files in the plugin directory of each slave server. The location of the plugin directory is available as the value of the server's plugin_dir system variable.
To load the plugins, use the INSTALL PLUGIN statement on the master and on each slave that is to be semisynchronous.
On the master:
mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
On each slave:
mysql> INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';
The preceding commands use a plugin file name suffix of .so. A different suffix might apply on your system. If you are not sure about the plugin file name, look for the plugins in the server's plugin directory.
If an attempt to install a plugin results in an error on Linux similar to that shown here, you will need to install libimf:
mysql> INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
ERROR 1126 (HY000): Can't open shared library
'/usr/local/mysql/lib/plugin/semisync_master.so' (errno: 22 libimf.so: cannot open
shared object file: No such file or directory)
You can obtain libimf from http://dev.mysql.com/downloads/os-linux.html.
To see which plugins are installed, use the SHOW PLUGINS statement, or query the INFORMATION_SCHEMA.PLUGINS table.
After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins must be enabled both on the master side and the slave side to enable semisynchronous replication. If only one side is enabled, replication will be asynchronous.
To control whether an installed plugin is enabled, set the appropriate system variables. You can set these variables at runtime using SET GLOBAL, or at server startup on the command line or in an option file.
At runtime, these master-side system variables are available:
mysql> SET GLOBAL rpl_semi_sync_master_enabled = {0|1};
mysql> SET GLOBAL rpl_semi_sync_master_timeout = N;
On the slave side, this system variable is available:
mysql> SET GLOBAL rpl_semi_sync_slave_enabled = {0|1};
For rpl_semi_sync_master_enabled or rpl_semi_sync_slave_enabled, the value should be 1 to enable semisynchronous replication or 0 to disable it. By default, these variables are set to 1.
For rpl_semi_sync_master_timeout, the value N is given in milliseconds. The default value is 10000 (10 seconds).
If you enable semisynchronous replication on a slave at runtime, you must also start the slave I/O thread (stopping it first if it is already running) to cause the slave to connect to the master and register as a semisynchronous slave:
mysql> STOP SLAVE IO_THREAD; START SLAVE IO_THREAD;
If the I/O thread is already running and you do not restart it, the slave continues to use asynchronous replication.
At server startup, the variables that control semisynchronous replication can be set as command-line options or in an option file. A setting listed in an option file takes effect each time the server starts. For example, you can set the variables in my.cnf files on the master and slave sides as follows.
On the master:
[mysqld]
rpl_semi_sync_master_enabled=1
rpl_semi_sync_master_timeout=1000 # 1 second
On each slave:
[mysqld]
rpl_semi_sync_slave_enabled=1
16.3.8.3. Semisynchronous Replication Monitoring
The plugins for the semisynchronous replication capability expose several system and status variables that you can examine to determine its configuration and operational state.
The system variable reflect how semisynchronous replication is configured. To check their values, use SHOW VARIABLES:
mysql> SHOW VARIABLES LIKE 'rpl_semi_sync%';
The status variables enable you to monitor the operation of semisynchronous replication. To check their values, use SHOW STATUS:
mysql> SHOW STATUS LIKE 'Rpl_semi_sync%';
When the master switches between asynchronous or semisynchronous replication due to commit-blocking timeout or a slave catching up, it sets the value of the Rpl_semi_sync_master_status status variable appropriately. Automatic fallback from semisynchronous to asynchronous replication on the master means that it is possible for the rpl_semi_sync_master_enabled system variable to have a value of 1 on the master side even when semisynchronous replication is in fact not operational at the moment. You can monitor the Rpl_semi_sync_master_status status variable to determine whether the master currently is using asynchronous or semisynchronous replication.
To see how many semisynchronous slaves are connected, check Rpl_semi_sync_master_clients.
The number of commits that have been acknowledged successfully or unsuccessfully by slaves are indicated by the Rpl_semi_sync_master_yes_tx and Rpl_semi_sync_master_no_tx variables.
On the slave side, Rpl_semi_sync_slave_status indicates whether semisynchronous replication currently is operational.
16.3.9. Delayed Replication
MySQL 5.6 supports delayed replication such that a slave server deliberately lags behind the master by at least a specified amount of time. The default delay is 0 seconds. Use the MASTER_DELAY option for CHANGE MASTER TO to set the delay to N seconds:
CHANGE MASTER TO MASTER_DELAY = N;
An event received from the master is not executed until at least N seconds later than its execution on the master. The exceptions are that there is no delay for format description events or log file rotation events, which affect only the internal state of the SQL thread.
Delayed replication can be used for several purposes:
To protect against user mistakes on the master. A DBA can roll back a delayed slave to the time just before the disaster.
To test how the system behaves when there is a lag. For example, in an application, a lag might be caused by a heavy load on the slave. However, it can be difficult to generate this load level. Delayed replication can simulate the lag without having to simulate the load. It can also be used to debug conditions related to a lagging slave.
To inspect what the database looked like long ago, without having to reload a backup. For example, if the delay is one week and the DBA needs to see what the database looked like before the last few days' worth of development, the delayed slave can be inspected.
START SLAVE and STOP SLAVE take effect immediately and ignore any delay. RESET SLAVE resets the delay to 0.
SHOW SLAVE STATUS has three fields that provide information about the delay:
SQL_Delay: A nonnegative integer indicating the number of seconds that the slave must lag the master.
SQL_Remaining_Delay: When Slave_SQL_Running_State is Waiting until MASTER_DELAY seconds after master executed event, this field contains an integer indicating the number of seconds left of the delay. At other times, this field is NULL.
Slave_SQL_Running_State: A string indicating the state of the SQL thread (analogous to Slave_IO_State). The value is identical to the State value of the SQL thread as displayed by SHOW PROCESSLIST.
When the slave SQL thread is waiting for the delay to elapse before executing an event, SHOW PROCESSLIST displays its State value as Waiting until MASTER_DELAY seconds after master executed event.
The relay-log.info file now contains the delay value, so the file format has changed. See Section 16.2.2.2, “Slave Status Logs”. In particular, the first line of the file now indicates how many lines are in the file. If you downgrade a slave server to a version older than MySQL 5.6, the older server will not read the file correctly. To address this, modify the file in a text editor to delete the initial line containing the number of lines.
16.4. Replication Notes and Tips
16.4.1. Replication Features and Issues
The following sections provide information about what is supported and what is not in MySQL replication, and about specific issues and situations that may occur when replicating certain statements.
Statement-based replication depends on compatibility at the SQL level between the master and slave. In others, successful SBR requires that any SQL features used be supported by both the master and the slave servers. For example, if you use a feature on the master server that is available only in MySQL 5.6 (or later), you cannot replicate to a slave that uses MySQL 5.5 (or earlier).
Such incompatibilities also can occur within a release series when using pre-production releases of MySQL. For example, the SLEEP() function is available beginning with MySQL 5.0.12. If you use this function on the master, you cannot replicate to a slave that uses MySQL 5.0.11 or earlier.
For this reason, use Generally Available (GA) releases of MySQL for statement-based replication in a production setting, since we do not introduce new SQL statements or change their behavior within a given release series once that series reaches GA release status.
If you are planning to use statement-based replication between MySQL 5.6 and a previous MySQL release series, it is also a good idea to consult the edition of the MySQL Reference Manual corresponding to the earlier release series for information regarding the replication characteristics of that series.
With MySQL's statement-based replication, there may be issues with replicating stored routines or triggers. You can avoid these issues by using MySQL's row-based replication instead. For a detailed list of issues, see Section 18.7, “Binary Logging of Stored Programs”. For more information about row-based logging and row-based replication, see Section 5.2.4.1, “Binary Logging Formats”, and Section 16.1.2, “Replication Formats”.
For additional information specific to replication and InnoDB, see Section 14.2.2.6, “InnoDB and MySQL Replication”. For information relating to replication with MySQL Cluster, see MySQL Cluster Replication.
16.4.1.1. Replication and AUTO_INCREMENT
Statement-based replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is done correctly, subject to the following exceptions:
When using statement-based replication prior to MySQL 5.6.10, AUTO_INCREMENT columns in tables on the slave must match the same columns on the master; that is, AUTO_INCREMENT columns must be replicated to AUTO_INCREMENT columns. (Bug #12669186)
A statement invoking a trigger or function that causes an update to an AUTO_INCREMENT column is not replicated correctly using statement-based replication. In MySQL 5.6, such statements are marked as unsafe. (Bug #45677)
An INSERT into a table that has a composite primary key that includes an AUTO_INCREMENT column that is not the first column of this composite key is not safe for statement-based logging or replication. Beginning with MySQL 5.6.6, such statements are marked as unsafe. (Bug #11754117, Bug #45670)
This issue does not affect tables using the InnoDB storage engine, since an InnoDB table with an AUTO_INCREMENT column requires at least one key where the auto-increment column is the only or leftmost column.
Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same ordering of the rows on the slave and the master. This occurs because the order in which the rows are numbered depends on the specific storage engine used for the table and the order in which the rows were inserted. If it is important to have the same order on the master and slave, the rows must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an AUTO_INCREMENT column to a table t1 that has columns col1 and col2, the following statements produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:
CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;
Important
To guarantee the same ordering on both master and slave, the ORDER BY clause must name all columns of t1.
The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options. If a table definition includes any of those characteristics, create t2 using a CREATE TABLE statement that is identical to the one used to create t1, but with the addition of the AUTO_INCREMENT column.
Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column, the final step is to drop the original table and then rename the copy:
DROP t1;
ALTER TABLE t2 RENAME t1;
16.4.1.2. Replication and Character Sets
The following applies to replication between MySQL servers that use different character sets:
If the master uses MySQL 4.1, you must always use the same global character set and collation on the master and the slave, regardless of the slave MySQL version. (These are controlled by the --character-set-server and --collation-server options.) Otherwise, you may get duplicate-key errors on the slave, because a key that is unique in the master character set might not be unique in the slave character set. Note that this is not a cause for concern when master and slave are both MySQL 5.0 or later.
If the master is older than MySQL 4.1.3, the character set of any client should never be made different from its global value because this character set change is not known to the slave. In other words, clients should not use SET NAMES, SET CHARACTER SET, and so forth. If both the master and the slave are 4.1.3 or newer, clients can freely set session values for character set variables because these settings are written to the binary log and so are known to the slave. That is, clients can use SET NAMES or SET CHARACTER SET or can set variables such as collation_client or collation_server. However, clients are prevented from changing the global value of these variables; as stated previously, the master and slave must always have identical global character set values. This is true whether you are using statement-based or row-based replication.
If the master has databases with a character set different from the global character_set_server value, you should design your CREATE TABLE statements so that they do not implicitly rely on the database default character set. A good workaround is to state the character set and collation explicitly in CREATE TABLE statements.
16.4.1.3. Replication of CREATE ... IF NOT EXISTS Statements
MySQL applies these rules when various CREATE ... IF NOT EXISTS statements are replicated:
Every CREATE DATABASE IF NOT EXISTS statement is replicated, whether or not the database already exists on the master.
Similarly, every CREATE TABLE IF NOT EXISTS statement without a SELECT is replicated, whether or not the table already exists on the master. This includes CREATE TABLE IF NOT EXISTS ... LIKE. Replication of CREATE TABLE IF NOT EXISTS ... SELECT follows somewhat different rules; see Section 16.4.1.4, “Replication of CREATE TABLE ... SELECT Statements”, for more information.
CREATE EVENT IF NOT EXISTS is always replicated in MySQL 5.6, whether or not the event named in the statement already exists on the master.
See also Bug #45574.
16.4.1.4. Replication of CREATE TABLE ... SELECT Statements
This section discusses how MySQL replicates CREATE TABLE ... SELECT statements.
MySQL 5.6 does not allow a CREATE TABLE ... SELECT statement to make any changes in tables other than the table that is created by the statement. This is a change in behavior from previous versions of MySQL, which permitted these statements to do so. This means that, when using statement-based replication between a MySQL 5.6 or later slave and a master running a previous version of MySQL, a CREATE TABLE ... SELECT statement causing changes in other tables on the master fails on the slave, causing replication to stop. To keep this from happening, you should use row-based replication, rewrite the offending statement before running it on the master, or upgrade the master to MySQL 5.6 (or later). (If you choose to upgrade the master, keep in mind that such a CREATE TABLE ... SELECT statement will fail following the upgrade unless it is rewritten to remove any side effects on other tables.) This is not an issue when using row-based replication, because the statement is logged as a CREATE TABLE statement with any changes to table data logged as row-insert events, rather than as the entire CREATE TABLE ... SELECT.
These behaviors are not dependent on MySQL version:
CREATE TABLE ... SELECT always performs an implicit commit (Section 13.3.3, “Statements That Cause an Implicit Commit”).
If destination table does not exist, logging occurs as follows. It does not matter whether IF NOT EXISTS is present.
STATEMENT or MIXED format: The statement is logged as written.
ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-row events.
If the statement fails, nothing is logged. This includes the case that the destination table exists and IF NOT EXISTS is not given.
When the destination table exists and IF NOT EXISTS is given, MySQL handles the statement in a version-dependent way.
In MySQL 5.1 before 5.1.51 and in MySQL 5.5 before 5.5.6 (this is the original behavior):
STATEMENT or MIXED format: The statement is logged as written.
ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-row events.
In MySQL 5.1 as of 5.1.51:
STATEMENT or MIXED format: The statement is logged as the equivalent pair of CREATE TABLE and INSERT INTO ... SELECT statements.
ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-row events.
In MySQL 5.5 as of 5.5.6:
Nothing is inserted or logged.
These version dependencies arise due to a change in MySQL 5.5.6 in handling of CREATE TABLE ... SELECT not to insert rows if the destination table already exists, and a change made in MySQL 5.1.51 to preserve forward compatibility in replication of such statements from a 5.1 master to a 5.5 slave. For details, see Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”.
16.4.1.5. Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
In MySQL 5.6, the statements CREATE SERVER, ALTER SERVER, and DROP SERVER are not written to the binary log, regardless of the binary logging format that is in use.
16.4.1.6. Replication of CURRENT_USER()
The following statements support use of the CURRENT_USER() function to take the place of the name of (and, possibly, the host for) an affected user or a definer; in such cases, CURRENT_USER() is expanded where and as needed:
When CURRENT_USER() or CURRENT_USER is used as the definer in any of the statements CREATE FUNCTION, CREATE PROCEDURE, CREATE TRIGGER, CREATE EVENT, CREATE VIEW, or ALTER VIEW when binary logging is enabled, the function reference is expanded before it is written to the binary log, so that the statement refers to the same user on both the master and the slave when the statement is replicated. CURRENT_USER() or CURRENT_USER is also expanded prior to being written to the binary log when used in DROP USER, RENAME USER, GRANT, REVOKE, or ALTER EVENT.
16.4.1.7. Replication of DROP ... IF EXISTS Statements
The DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, and DROP VIEW IF EXISTS statements are always replicated, even if the database, table, or view to be dropped does not exist on the master. This is to ensure that the object to be dropped no longer exists on either the master or the slave, once the slave has caught up with the master.
DROP ... IF EXISTS statements for stored programs (stored procedures and functions, triggers, and events) are also replicated, even if the stored program to be dropped does not exist on the master.
16.4.1.8. Replication with Differing Table Definitions on Master and Slave
Source and target tables for replication do not have to be identical. A table on the master can have more or fewer columns than the slave's copy of the table. In addition, corresponding table columns on the master and the slave can use different data types, subject to certain conditions.
In all cases where the source and target tables do not have identical definitions, the database and table names must be the same on both the master and the slave. Additional conditions are discussed, with examples, in the following two sections.
16.4.1.8.1. Replication with More Columns on Master or Slave
You can replicate a table from the master to the slave such that the master and slave copies of the table have differing numbers of columns, subject to the following conditions:
Columns common to both versions of the table must be defined in the same order on the master and the slave.
(This is true even if both tables have the same number of columns.)
Columns common to both versions of the table must be defined before any additional columns.
This means that executing an ALTER TABLE statement on the slave where a new column is inserted into the table within the range of columns common to both tables causes replication to fail, as shown in the following example:
Suppose that a table t, existing on the master and the slave, is defined by the following CREATE TABLE statement:
CREATE TABLE t (
c1 INT,
c2 INT,
c3 INT
);
Suppose that the ALTER TABLE statement shown here is executed on the slave:
ALTER TABLE t ADD COLUMN cnew1 INT AFTER c3;
The previous ALTER TABLE is permitted on the slave because the columns c1, c2, and c3 that are common to both versions of table t remain grouped together in both versions of the table, before any columns that differ.
However, the following ALTER TABLE statement cannot be executed on the slave without causing replication to break:
ALTER TABLE t ADD COLUMN cnew2 INT AFTER c3;
Replication fails after execution on the slave of the ALTER TABLE statement just shown, because the new column cnew2 comes between columns common to both versions of t.
Each “extra” column in the version of the table having more columns must have a default value.
A column's default value is determined by a number of factors, including its type, whether it is defined with a DEFAULT option, whether it is declared as NULL, and the server SQL mode in effect at the time of its creation; for more information, see Section 11.5, “Data Type Default Values”).
In addition, when the slave's copy of the table has more columns than the master's copy, each column common to the tables must use the same data type in both tables.
Examples. The following examples illustrate some valid and invalid table definitions:
More columns on the master. The following table definitions are valid and replicate correctly:
master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);
The following table definitions would raise Error 1532 (ER_BINLOG_ROW_RBR_TO_SBR) because the definitions of the columns common to both versions of the table are in a different order on the slave than they are on the master:
master> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
slave> CREATE TABLE t1 (c2 INT, c1 INT);
The following table definitions would also raise Error 1532 because the definition of the extra column on the master appears before the definitions of the columns common to both versions of the table:
master> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT);
More columns on the slave. The following table definitions are valid and replicate correctly:
master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
The following definitions raise Error 1532 because the columns common to both versions of the table are not defined in the same order on both the master and the slave:
master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);
The following table definitions also raise Error 1532 because the definition for the extra column in the slave's version of the table appears before the definitions for the columns which are common to both versions of the table:
master> CREATE TABLE t1 (c1 INT, c2 INT);
slave> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
The following table definitions fail because the slave's version of the table has additional columns compared to the master's version, and the two versions of the table use different data types for the common column c2:
master> CREATE TABLE t1 (c1 INT, c2 BIGINT);
slave> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
16.4.1.8.2. Replication of Columns Having Different Data Types
Corresponding columns on the master's and the slave's copies of the same table ideally should have the same data type. However, beginning with MySQL 5.1.21, this is not always strictly enforced, as long as certain conditions are met.
All other things being equal, it is always possible to replicate from a column of a given data type to another column of the same type and same size or width, where applicable, or larger. For example, you can replicate from a CHAR(10) column to another CHAR(10), or from a CHAR(10) column to a CHAR(25) column without any problems. In certain cases, it also possible to replicate from a column having one data type (on the master) to a column having a different data type (on the slave); when the data type of the master's version of the column is promoted to a type that is the same size or larger on the slave, this is known as attribute promotion.
Attribute promotion can be used with both statement-based and row-based replication, and is not dependent on the storage engine used by either the master or the slave. However, the choice of logging format does have an effect on the type conversions that are permitted; the particulars are discussed later in this section.
Important
Whether you use statement-based or row-based replication, the slave's copy of the table cannot contain more columns than the master's copy if you wish to employ attribute promotion.
Statement-based replication. When using statement-based replication, a simple rule of thumb to follow is, “If the statement run on the master would also execute successfully on the slave, it should also replicate successfully”. In other words, if the statement uses a value that is compatible with the type of a given column on the slave, the statement can be replicated. For example, you can insert any value that fits in a TINYINT column into a BIGINT column as well; it follows that, even if you change the type of a TINYINT column in the slave's copy of a table to BIGINT, any insert into that column on the master that succeeds should also succeed on the slave, since it is impossible to have a legal TINYINT value that is large enough to exceed a BIGINT column.
Prior to MySQL 5.6.10, when using statement-based replication, AUTO_INCREMENT columns were required to be the same on both the master and the slave; otherwise, updates could be applied to the wrong table on the slave. (Bug #12669186)
Row-based replication: attribute promotion and demotion. Formerly, due to the fact that in row-based replication changes rather than statements are replicated, and that these changes are transmitted using formats that do not always map directly to MySQL server column data types, you could not replicate between different subtypes of the same general type (for example, from TINYINT to BIGINT, both INT subtypes). However, beginning with MySQL 5.5.3, MySQL Replication supports attribute promotion and demotion between smaller data types and larger types. It is also possible to specify whether or not to permit lossy (truncated) or non-lossy conversions of demoted column values, as explained later in this section.
Lossy and non-lossy conversions. In the event that the target type cannot represent the value being inserted, a decision must be made on how to handle the conversion. If we permit the conversion but truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make what is known as a lossy conversion. A conversion which does not require truncation or similar modifications to fit the source column value in the target column is a non-lossy conversion.
Type conversion modes (slave_type_conversions variable). The setting of the slave_type_conversions global server variable controls the type conversion mode used on the slave. This variable takes a set of values from the following table, which shows the effects of each mode on the slave's type-conversion behavior:
Mode | Effect |
---|---|
ALL_LOSSY | In this mode, type conversions that would mean loss of information are permitted. This does not imply that non-lossy conversions are permitted, merely that only cases requiring either lossy conversions or no conversion at all are permitted; for example, enabling only this mode permits an INT column to be converted to TINYINT (a lossy conversion), but not a TINYINT column to an INT column (non-lossy). Attempting the latter conversion in this case would cause replication to stop with an error on the slave. |
ALL_NON_LOSSY | This mode permits conversions that do not require truncation or other special handling of the source value; that is, it permits conversions where the target type has a wider range than the source type. Setting this mode has no bearing on whether lossy conversions are permitted; this is controlled with the ALL_LOSSY mode. If only ALL_NON_LOSSY is set, but not ALL_LOSSY, then attempting a conversion that would result in the loss of data (such as INT to TINYINT, or CHAR(25) to VARCHAR(20)) causes the slave to stop with an error. |
ALL_LOSSY,ALL_NON_LOSSY | When this mode is set, all supported type conversions are permitted, whether or not they are lossy conversions. |
[empty] | When slave_type_conversions is not set, no attribute promotion or demotion is permitted; this means that all columns in the source and target tables must be of the same types. This mode is the default. |
Changing the type conversion mode requires restarting the slave with the new slave_type_conversions setting.
Supported conversions. Supported conversions between different but similar data types are shown in the following list:
Between any of the integer types TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.
This includes conversions between the signed and unsigned versions of these types.
Lossy conversions are made by truncating the source value to the maximum (or minimum) permitted by the target column. For insuring non-lossy conversions when going from unsigned to signed types, the target column must be large enough to accommodate the range of values in the source column. For example, you can demote TINYINT UNSIGNED non-lossily to SMALLINT, but not to TINYINT.
Between any of the decimal types DECIMAL, FLOAT, DOUBLE, and NUMERIC.
FLOAT to DOUBLE is a non-lossy conversion; DOUBLE to FLOAT can only be handled lossily. A conversion from DECIMAL(M,D) to DECIMAL(M',D') where M' => M and D' => D is non-lossy; for any case where M' < M, D' < D, or both, only a lossy conversion can be made.
For any of the decimal types, if a value to be stored cannot be fit in the target type, the value is rounded down according to the rounding rules defined for the server elsewhere in the documentation. See Section 12.19.4, “Rounding Behavior”, for information about how this is done for decimal types.
Between any of the string types CHAR, VARCHAR, and TEXT, including conversions between different widths.
Conversion of a CHAR, VARCHAR, or TEXT to a CHAR, VARCHAR, or TEXT column the same size or larger is never lossy. Lossy conversion is handled by inserting only the first N characters of the string on the slave, where N is the width of the target column.
Important
Replication between columns using different character sets is not supported.
Between any of the binary data types BINARY, VARBINARY, and BLOB, including conversions between different widths.
Conversion of a BINARY, VARBINARY, or BLOB to a BINARY, VARBINARY, or BLOB column the same size or larger is never lossy. Lossy conversion is handled by inserting only the first N bytes of the string on the slave, where N is the width of the target column.
Between any 2 BIT columns of any 2 sizes.
When inserting a value from a BIT(M) column into a BIT(M') column, where M' > M, the most significant bits of the BIT(M') columns are cleared (set to zero) and the M bits of the BIT(M) value are set as the least significant bits of the BIT(M') column.
When inserting a value from a source BIT(M) column into a target BIT(M') column, where M' < M, the maximum possible value for the BIT(M') column is assigned; in other words, an “all-set” value is assigned to the target column.
Conversions between types not in the previous list are not permitted.
Replication type conversions in MySQL 5.5.3 and earlier. Prior to MySQL 5.5.3, with row-based binary logging, you could not replicate between different INT subtypes, such as from TINYINT to BIGINT, because changes to columns of these types were represented differently from one another in the binary log when using row-based logging. (However, you could replicate from BLOB to TEXT using row-based replication because changes to BLOB and TEXT columns were represented using the same format in the binary log.)
Supported conversions for attribute promotion when using row-based replication prior to MySQL 5.5.3 are shown in the following table:
From (Master) | To (Slave) |
---|---|
BINARY | CHAR |
BLOB | TEXT |
CHAR | BINARY |
DECIMAL | NUMERIC |
NUMERIC | DECIMAL |
TEXT | BLOB |
VARBINARY | VARCHAR |
VARCHAR | VARBINARY |
Note
In all cases, the size or width of the column on the slave must be equal to or greater than that of the column on the master. For example, you could replicate from a CHAR(10) column on the master to a column that used BINARY(10) or BINARY(25) on the slave, but you could not replicate from a CHAR(10) column on the master to BINARY(5) column on the slave.
Any unique index (including primary keys) having a prefix must use a prefix of the same length on both master and slave; in such cases, differing prefix lengths are disallowed. It is possible to use a nonunique index whose prefix length differs between master and slave, but this can cause serious performance issues, particularly when the prefix used on the master is longer. This is due to the fact that 2 unique prefixes of a given length may no longer be unique at a shorter length; for example, the words catalogue and catamount have the 5-character prefixes catal and catam, respectively, but share the same 4-character prefix (cata). This can lead to queries that use such indexes executing less efficiently on the slave, when a shorter prefix is employed in the slave' definition of the same index than on the master.
For DECIMAL and NUMERIC columns, both the mantissa (M) and the number of decimals (D) must be the same size or larger on the slave as compared with the master. For example, replication from a NUMERIC(5,4) to a DECIMAL(6,4) worked, but not from a NUMERIC(5,4) to a DECIMAL(5,3).
Prior to MySQL 5.5.3, MySQL replication did not support attribute promotion of any of the following data types to or from any other data type when using row-based replication:
INT (including TINYINT, SMALLINT, MEDIUMINT, BIGINT).
Promotion between INT subtypes—for example, from SMALLINT to BIGINT—was also not supported prior to MySQL 5.5.3.
All of the data types relating to dates, times, or both: DATE, TIME, DATETIME, TIMESTAMP, and YEAR.
16.4.1.9. Replication and DIRECTORY Table Options
If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement on the master server, the table option is also used on the slave. This can cause problems if no corresponding directory exists in the slave host file system or if it exists but is not accessible to the slave server. This can be overridden by using the NO_DIR_IN_CREATE server SQL mode on the slave, which causes the slave to ignore the DATA DIRECTORY and INDEX DIRECTORY table options when replicating CREATE TABLE statements. The result is that MyISAM data and index files are created in the table's database directory.
For more information, see Section 5.1.7, “Server SQL Modes”.
16.4.1.10. Replication of Invoked Features
Replication of invoked features such as user-defined functions (UDFs) and stored programs (stored procedures and functions, triggers, and events) provides the following characteristics:
The effects of the feature are always replicated.
The following statements are replicated using statement-based replication:
However, the effects of features created, modified, or dropped using these statements are replicated using row-based replication.
Note
Attempting to replicate invoked features using statement-based replication produces the warning Statement is not safe to log in statement format. For example, trying to replicate a UDF with statement-based replication generates this warning because it currently cannot be determined by the MySQL server whether the UDF is deterministic. If you are absolutely certain that the invoked feature's effects are deterministic, you can safely disregard such warnings.
In the case of CREATE EVENT and ALTER EVENT:
The status of the event is set to SLAVESIDE_DISABLED on the slave regardless of the state specified (this does not apply to DROP EVENT).
The master on which the event was created is identified on the slave by its server ID. The ORIGINATOR column in INFORMATION_SCHEMA.EVENTS and the originator column in mysql.event store this information. See Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”, and Section 13.7.5.19, “SHOW EVENTS Syntax”, for more information.
The feature implementation resides on the slave in a renewable state so that if the master fails, the slave can be used as the master without loss of event processing.
To determine whether there are any scheduled events on a MySQL server that were created on a different server (that was acting as a replication master), query the INFORMATION_SCHEMA.EVENTS table in a manner similar to what is shown here:
SELECT EVENT_SCHEMA, EVENT_NAME
FROM INFORMATION_SCHEMA.EVENTS
WHERE STATUS = 'SLAVESIDE_DISABLED';
Alternatively, you can use the SHOW EVENTS statement, like this:
SHOW EVENTS
WHERE STATUS = 'SLAVESIDE_DISABLED';
When promoting a replication slave having such events to a replication master, you must enable each event using ALTER EVENT event_name ENABLED, where event_name is the name of the event.
If more than one master was involved in creating events on this slave, and you wish to identify events that were created only on a given master having the server ID master_id, modify the previous query on the EVENTS table to include the ORIGINATOR column, as shown here:
SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
FROM INFORMATION_SCHEMA.EVENTS
WHERE STATUS = 'SLAVESIDE_DISABLED'
AND ORIGINATOR = 'master_id'
You can employ ORIGINATOR with the SHOW EVENTS statement in a similar fashion:
SHOW EVENTS
WHERE STATUS = 'SLAVESIDE_DISABLED'
AND ORIGINATOR = 'master_id'
Before enabling events that were replicated from the master, you should disable the MySQL Event Scheduler on the slave (using a statement such as SET GLOBAL event_scheduler = OFF;), run any necessary ALTER EVENT statements, restart the server, then re-enable the Event Scheduler on the slave afterward (using a statement such as SET GLOBAL event_scheduler = ON;)-
If you later demote the new master back to being a replication slave, you must disable manually all events enabled by the ALTER EVENT statements. You can do this by storing in a separate table the event names from the SELECT statement shown previously, or using ALTER EVENT statements to rename the events with a common prefix such as replicated_ to identify them.
If you rename the events, then when demoting this server back to being a replication slave, you can identify the events by querying the EVENTS table, as shown here:
SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS 'Db.Event'
FROM INFORMATION_SCHEMA.EVENTS
WHERE INSTR(EVENT_NAME, 'replicated_') = 1;
16.4.1.11. Replication and Floating-Point Values
With statement-based replication, values are converted from decimal to binary. Because conversions between decimal and binary representations of them may be approximate, comparisons involving floating-point values are inexact. This is true for operations that use floating-point values explicitly, or that use values that are converted to floating-point implicitly. Comparisons of floating-point values might yield different results on master and slave servers due to differences in computer architecture, the compiler used to build MySQL, and so forth. See Section 12.2, “Type Conversion in Expression Evaluation”, and Section C.5.5.8, “Problems with Floating-Point Values”.
16.4.1.12. Replication and Fractional Seconds Support
MySQL 5.6.4 and up permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to microseconds (6 digits) precision. See Section 11.3.6, “Fractional Seconds in Time Values”.
There may be problems replicating from a master server that understands fractional seconds to an older slave that does not:
For CREATE TABLE statements containing columns that have an fsp (fractional seconds precision) value greater than 0, replication will fail due to parser errors.
Statements that use temporal data types with an fsp value of 0 will work for with statement-based logging but not row-based logging. In the latter case, the data types have binary formats and type codes on the master that differ from those on the slave.
Some expression results will differ on master and slave. Examples: On the master, the timestamp system variable returns a value that includes a microseconds fractional part; on the slave, it returns an integer. On the master, functions that return a result that includes the current time (such as CURTIME(), SYSDATE(), or UTC_TIMESTAMP()) interpret an argument as an fsp value and the return value includes a fractional seconds part of that many digits. On the slave, these functions permit an argument but ignore it.
16.4.1.13. Replication and FLUSH
Some forms of the FLUSH statement are not logged because they could cause problems if replicated to a slave: FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ LOCK. For a syntax example, see Section 13.7.6.3, “FLUSH Syntax”. The FLUSH TABLES, ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements are written to the binary log and thus replicated to slaves. This is not normally a problem because these statements do not modify table data.
However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege tables in the mysql database and update those tables directly without using GRANT, you must issue a FLUSH PRIVILEGES on the slaves to put the new privileges into effect. In addition, if you use FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH TABLES manually on the slaves. These statements are written to the binary log unless you specify NO_WRITE_TO_BINLOG or its alias LOCAL.
16.4.1.14. Replication and System Functions
Certain functions do not replicate well under some conditions:
The USER(), CURRENT_USER() (or CURRENT_USER), UUID(), VERSION(), and LOAD_FILE() functions are replicated without change and thus do not work reliably on the slave unless row-based replication is enabled. (See Section 16.1.2, “Replication Formats”.)
USER() and CURRENT_USER() are automatically replicated using row-based replication when using MIXED mode, and generate a warning in STATEMENT mode. (See also Section 16.4.1.6, “Replication of CURRENT_USER()”.) This is also true for VERSION() and RAND().
For NOW(), the binary log includes the timestamp. This means that the value as returned by the call to this function on the master is replicated to the slave. This can lead to a possibly unexpected result when replicating between MySQL servers in different time zones. Suppose that the master is located in New York, the slave is located in Stockholm, and both servers are using local time. Suppose further that, on the master, you create a table mytable, perform an INSERT statement on this table, and then select from the table, as shown here:
mysql> CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec)
mysql> INSERT INTO mytable VALUES (NOW());
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)
Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOW() on the slave at that exact same instant, the value 2009-09-01 18:00:00 is returned. For this reason, if you select from the slave's copy of mytable after the CREATE TABLE and INSERT statements just shown have been replicated, you might expect mycol to contain the value 2009-09-01 18:00:00. However, this is not the case; when you select from the slave's copy of mytable, you obtain exactly the same result as on the master:
mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)
Unlike NOW(), the SYSDATE() function is not replication-safe because it is not affected by SET TIMESTAMP statements in the binary log and is nondeterministic if statement-based logging is used. This is not a problem if row-based logging is used.
An alternative is to use the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW(). This must be done on the master and the slave to work correctly. In such cases, a warning is still issued by this function, but can safely be ignored as long as --sysdate-is-now is used on both the master and the slave.
Beginning with MySQL 5.5.1, SYSDATE() is automatically replicated using row-based replication when using MIXED mode, and generates a warning in STATEMENT mode. (Bug #47995)
The following restriction applies to statement-based replication only, not to row-based replication. The GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that handle user-level locks are replicated without the slave knowing the concurrency context on the master. Therefore, these functions should not be used to insert into a master table because the content on the slave would differ. For example, do not issue a statement such as INSERT INTO mytable VALUES(GET_LOCK(...)).
Beginning with MySQL 5.5.1, these functions are automatically replicated using row-based replication when using MIXED mode, and generate a warning in STATEMENT mode. (Bug #47995)
As a workaround for the preceding limitations when statement-based replication is in effect, you can use the strategy of saving the problematic function result in a user variable and referring to the variable in a later statement. For example, the following single-row INSERT is problematic due to the reference to the UUID() function:
INSERT INTO t VALUES(UUID());
To work around the problem, do this instead:
SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);
That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a user-variable event prior to the INSERT statement and is available for use in the INSERT.
The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert, you can do this:
SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);
However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For example, you cannot convert the following statement to one in which a given individual user variable is associated with each row:
INSERT INTO t2 SELECT UUID(), * FROM t1;
Within a stored function, RAND() replicates correctly as long as it is invoked only once during the execution of the function. (You can consider the function execution timestamp and random number seed as implicit inputs that are identical on the master and slave.)
The FOUND_ROWS() and ROW_COUNT() functions are not replicated reliably using statement-based replication. A workaround is to store the result of the function call in a user variable, and then use that in the INSERT statement. For example, if you wish to store the result in a table named mytable, you might normally do so like this:
SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(FOUND_ROWS());
However, if you are replicating mytable, you should use SELECT ... INTO, and then store the variable in the table, like this:
SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);
In this way, the user variable is replicated as part of the context, and applied on the slave correctly.
These functions are automatically replicated using row-based replication when using MIXED mode, and generate a warning in STATEMENT mode. (Bug #12092, Bug #30244)
16.4.1.15. Replication and LIMIT
Statement-based replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT statements is unsafe since the order of the rows affected is not defined. (Such statements can be replicated correctly with statement-based replication only if they also contain an ORDER BY clause.) When such a statement is encountered:
When using STATEMENT mode, a warning that the statement is not safe for statement-based replication is now issued.
Currently, when using STATEMENT mode, warnings are issued for DML statements containing LIMIT even when they also have an ORDER BY clause (and so are made deterministic). This is a known issue. (Bug #42851)
When using MIXED mode, the statement is now automatically replicated using row-based mode.
16.4.1.16. Replication and LOAD DATA INFILE
The LOAD DATA INFILE statement was not always replicated correctly to a slave running MySQL 5.5.0 or earlier from a master running MySQL 4.0 or earlier. When using statement-based replication, the LOAD DATA INFILE statement CONCURRENT option was not replicated. This issue was fixed in MySQL 5.5.0. This issue does not have any impact on CONCURRENT option handling when using row-based replication in MySQL 5.1 or later. (Bug #34628)
As of MySQL 5.6, LOAD DATA INFILE is considered unsafe (see Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”). It causes a warning when using statement-based logging format, and is logged using row-based format when using mixed-format logging.
16.4.1.17. Replication and REPAIR TABLE
When used on a corrupted or otherwise damaged table, it is possible for the REPAIR TABLE statement to delete rows that cannot be recovered. However, any such modifications of table data performed by this statement are not replicated, which can cause master and slave to lose synchronization. For this reason, in the event that a table on the master becomes damaged and you use REPAIR TABLE to repair it, you should first stop replication (if it is still running) before using REPAIR TABLE, then afterward compare the master's and slave's copies of the table and be prepared to correct any discrepancies manually, before restarting replication.
16.4.1.18. Replication and Master or Slave Shutdowns
It is safe to shut down a master server and restart it later. When a slave loses its connection to the master, the slave tries to reconnect immediately and retries periodically if that fails. The default is to retry every 60 seconds. This may be changed with the CHANGE MASTER TO statement. A slave also is able to deal with network connectivity outages. However, the slave notices the network outage only after receiving no data from the master for slave_net_timeout seconds. If your outages are short, you may want to decrease slave_net_timeout. See Section 5.1.4, “Server System Variables”.
An unclean shutdown (for example, a crash) on the master side can result in the master binary log having a final position less than the most recent position read by the slave, due to the master binary log file not being flushed. This can cause the slave not to be able to replicate when the master comes back up. Setting sync_binlog=1 in the master my.cnf file helps to minimize this problem because it causes the master to flush its binary log more frequently.
Shutting down a slave cleanly is safe because it keeps track of where it left off. However, be careful that the slave does not have temporary tables open; see Section 16.4.1.21, “Replication and Temporary Tables”. Unclean shutdowns might produce problems, especially if the disk cache was not flushed to disk before the problem occurred:
For transactions, the slave commits and then updates relay-log.info. If a crash occurs between these two operations, relay log processing will have proceeded further than the information file indicates and the slave will re-execute the events from the last transaction in the relay log after it has been restarted.
A similar problem can occur if the slave updates relay-log.info but the server host crashes before the write has been flushed to disk. To minimize the chance of this occurring, set sync_relay_log_info=1 in the slave my.cnf file. The default value of sync_relay_log_info is 0, which does not cause writes to be forced to disk; the server relies on the operating system to flush the file from time to time.
The fault tolerance of your system for these types of problems is greatly increased if you have a good uninterruptible power supply.
16.4.1.19. Replication and max_allowed_packet
max_allowed_packet sets an upper limit on the size of any single message between the MySQL server and clients, including replication slaves. If you are replicating large column values (such as might be found in TEXT or BLOB columns) and max_allowed_packet is too small on the master, the master fails with an error, and the slave shuts down the I/O thread. If max_allowed_packet is too small on the slave, this also causes the slave to stop the I/O thread.
Row-based replication currently sends all columns and column values for updated rows from the master to the slave, including values of columns that were not actually changed by the update. This means that, when you are replicating large column values using row-based replication, you must take care to set max_allowed_packet large enough to accommodate the largest row in any table to be replicated, even if you are replicating updates only, or you are inserting only relatively small values.
16.4.1.20. Replication and MEMORY Tables
When a master server shuts down and restarts, its MEMORY tables become empty. To replicate this effect to slaves, the first time that the master uses a given MEMORY table after startup, it logs an event that notifies slaves that the table must to be emptied by writing a DELETE statement for that table to the binary log.
When a slave server shuts down and restarts, its MEMORY tables become empty. This causes the slave to be out of synchrony with the master and may lead to other failures or cause the slave to stop:
Row-format updates and deletes received from the master may fail with Can't find record in 'memory_table'.
Statements such as INSERT INTO ... SELECT FROM memory_table may insert a different set of rows on the master and slave.
The safe way to restart a slave that is replicating MEMORY tables is to first drop or delete all rows from the MEMORY tables on the master and wait until those changes have replicated to the slave. Then it is safe to restart the slave.
An alternative restart method may apply in some cases. When binlog_format=ROW, you can prevent the slave from stopping if you set slave_exec_mode=IDEMPOTENT before you start the slave again. This allows the slave to continue to replicate, but its MEMORY tables will still be different from those on the master. This can be okay if the application logic is such that the contents of MEMORY tables can be safely lost (for example, if the MEMORY tables are used for caching). slave_exec_mode=IDEMPOTENT applies globally to all tables, so it may hide other replication errors in non-MEMORY tables.
The size of MEMORY tables is limited by the value of the max_heap_table_size system variable, which is not replicated (see Section 16.4.1.32, “Replication and Variables”). A change in max_heap_table_size takes effect for MEMORY tables that are created or updated using ALTER TABLE ... ENGINE = MEMORY or TRUNCATE TABLE following the change, or for all MEMORY tables following a server restart. If you increase the value of this variable on the master without doing so on the slave, it becomes possible for a table on the master to grow larger than its counterpart on the slave, leading to inserts that succeed on the master but fail on the slave with Table is full errors. This is a known issue (Bug #48666). In such cases, you must set the global value of max_heap_table_size on the slave as well as on the master, then restart replication. It is also recommended that you restart both the master and slave MySQL servers, to insure that the new value takes complete (global) effect on each of them.
See Section 14.4, “The MEMORY Storage Engine”, for more information about MEMORY tables.
16.4.1.21. Replication and Temporary Tables
This section does not apply when row-based replication is in use because in that case temporary tables are not replicated. It does apply with mixed-format replication for statements involving temporary tables that can be logged safely using statement-based format. For information about row-based replication and temporary tables, see RBL, RBR, and temporary tables.
Safe slave shutdown when using temporary tables. Temporary tables are replicated except in the case where you stop the slave server (not just the slave threads) and you have replicated temporary tables that are open for use in updates that have not yet been executed on the slave. If you stop the slave server, the temporary tables needed by those updates are no longer available when the slave is restarted. To avoid this problem, do not shut down the slave while it has temporary tables open. Instead, use the following procedure:
Issue a STOP SLAVE SQL_THREAD statement.
Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.
If the value is not 0, restart the slave SQL thread with START SLAVE SQL_THREAD and repeat the procedure later.
When the value is 0, issue a mysqladmin shutdown command to stop the slave.
Temporary tables and replication options. By default, all temporary tables are replicated; this happens whether or not there are any matching --replicate-do-db, --replicate-do-table, or --replicate-wild-do-table options in effect. However, the --replicate-ignore-table and --replicate-wild-ignore-table options are honored for temporary tables.
A recommended practice when using statement-based or mixed-format replication is to designate a prefix for exclusive use in naming temporary tables that you do not want replicated, then employ a --replicate-wild-ignore-table option to match that prefix. For example, you might give all such tables names beginning with norep (such as norepmytable, norepyourtable, and so on), then use --replicate-wild-ignore-table=norep% to prevent them from being replicated.
16.4.1.22. Replication of the mysql System Database
Data modification statements made to tables in the mysql database are replicated according to the value of binlog_format; if this value is MIXED, these statements are replicated using row-based format. However, statements that would normally update this information indirectly—such GRANT, REVOKE, and statements manipulating triggers, stored routines, and views—are replicated to slaves using statement-based replication.
16.4.1.23. Replication and the Query Optimizer
It is possible for the data on the master and slave to become different if a statement is written in such a way that the data modification is nondeterministic; that is, left up the query optimizer. (In general, this is not a good practice, even outside of replication.) Examples of nondeterministic statements include DELETE or UPDATE statements that use LIMIT with no ORDER BY clause; see Section 16.4.1.15, “Replication and LIMIT”, for a detailed discussion of these.
16.4.1.24. Replication and Reserved Words
You can encounter problems when you attempt to replicate from an older master to a newer slave and you make use of identifiers on the master that are reserved words in the newer MySQL version running on the slave. An example of this is using a table column named current_user on a 4.0 master that is replicating to a 4.1 or higher slave because CURRENT_USER is a reserved word beginning in MySQL 4.1. Replication can fail in such cases with Error 1064 You have an error in your SQL syntax..., even if a database or table named using the reserved word or a table having a column named using the reserved word is excluded from replication. This is due to the fact that each SQL event must be parsed by the slave prior to execution, so that the slave knows which database object or objects would be affected; only after the event is parsed can the slave apply any filtering rules defined by --replicate-do-db, --replicate-do-table, --replicate-ignore-db, and --replicate-ignore-table.
To work around the problem of database, table, or column names on the master which would be regarded as reserved words by the slave, do one of the following:
Use one or more ALTER TABLE statements on the master to change the names of any database objects where these names would be considered reserved words on the slave, and change any SQL statements that use the old names to use the new names instead.
In any SQL statements using these database object names, write the names as quoted identifiers using backtick characters (`).
For listings of reserved words by MySQL version, see Reserved Words, in the MySQL Server Version Reference. For identifier quoting rules, see Section 9.2, “Schema Object Names”.
16.4.1.25. Slave Errors During Replication
If a statement produces the same error (identical error code) on both the master and the slave, the error is logged, but replication continues.
If a statement produces different errors on the master and the slave, the slave SQL thread terminates, and the slave writes a message to its error log and waits for the database administrator to decide what to do about the error. This includes the case that a statement produces an error on the master or the slave, but not both. To address the issue, connect to the slave manually and determine the cause of the problem. SHOW SLAVE STATUS is useful for this. Then fix the problem and run START SLAVE. For example, you might need to create a nonexistent table before you can start the slave again.
If this error code validation behavior is not desirable, some or all errors can be masked out (ignored) with the --slave-skip-errors option.
For nontransactional storage engines such as MyISAM, it is possible to have a statement that only partially updates a table and returns an error code. This can happen, for example, on a multiple-row insert that has one row violating a key constraint, or if a long update statement is killed after updating some of the rows. If that happens on the master, the slave expects execution of the statement to result in the same error code. If it does not, the slave SQL thread stops as described previously.
If you are replicating between tables that use different storage engines on the master and slave, keep in mind that the same statement might produce a different error when run against one version of the table, but not the other, or might cause an error for one version of the table, but not the other. For example, since MyISAM ignores foreign key constraints, an INSERT or UPDATE statement accessing an InnoDB table on the master might cause a foreign key violation but the same statement performed on a MyISAM version of the same table on the slave would produce no such error, causing replication to stop.
16.4.1.26. Replication and Server SQL Mode
Using different server SQL mode settings on the master and the slave may cause the same INSERT statements to be handled differently on the master and the slave, leading the master and slave to diverge. For best results, you should always use the same server SQL mode on the master and on the slave. This advice applies whether you are using statement-based or row-based replication.
If you are replicating partitioned tables, using different SQL modes on the master and the slave is likely to cause issues. At a minimum, this is likely to cause the distribution of data among partitions to be different in the master's and slave's copies of a given table. It may also cause inserts into partitioned tables that succeed on the master to fail on the slave.
For more information, see Section 5.1.7, “Server SQL Modes”.
16.4.1.27. Replication Retries and Timeouts
The global system variable slave_transaction_retries affects replication as follows: If the slave SQL thread fails to execute a transaction because of an InnoDB deadlock or because it exceeded the InnoDB innodb_lock_wait_timeout value, or the NDB TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout value, the slave automatically retries the transaction slave_transaction_retries times before stopping with an error. The default value is 10. The total retry count can be seen in the output of SHOW STATUS; see Section 5.1.6, “Server Status Variables”.
16.4.1.28. Replication and Time Zones
The same system time zone should be set for both master and slave. Otherwise, statements depending on the local time on the master are not replicated properly, such as statements that use the NOW() or FROM_UNIXTIME() functions. You can set the time zone in which MySQL server runs by using the --timezone=timezone_name option of the mysqld_safe script or by setting the TZ environment variable. See also Section 16.4.1.14, “Replication and System Functions”.
If the master is MySQL 4.1 or earlier, both master and slave should also use the same default connection time zone. That is, the --default-time-zone parameter should have the same value for both master and slave.
CONVERT_TZ(...,...,@@session.time_zone) is properly replicated only if both master and slave are running MySQL 5.0.4 or newer.
16.4.1.29. Replication and Transactions
Mixing transactional and nontransactional statements within the same transaction. In general, you should avoid transactions that update both transactional and nontransactional tables in a replication environment. You should also avoid using any statement that accesses both transactional (or temporary) and nontransactional tables and writes to any of them.
As of MySQL 5.5.2, the server uses these rules for binary logging:
If the initial statements in a transaction are nontransactional, they are written to the binary log immediately. The remaining statements in the transaction are cached and not written to the binary log until the transaction is committed. (If the transaction is rolled back, the cached statements are written to the binary log only if they make nontransactional changes that cannot be rolled back. Otherwise, they are discarded.)
For statement-based logging, logging of nontransactional statements is affected by the binlog_direct_non_transactional_updates system variable. When this variable is OFF (the default), logging is as just described. When this variable is ON, logging occurs immediately for nontransactional statements occurring anywhere in the transaction (not just initial nontransactional statements). Other statements are kept in the transaction cache and logged when the transaction commits. binlog_direct_non_transactional_updates has no effect for row-format or mixed-format binary logging.
Transactional, nontransactional, and mixed statements. To apply those rules, the server considers a statement nontransactional if it changes only nontransactional tables, and transactional if it changes only transactional tables. In MySQL 5.6, a statement that references both nontransactional and transactional tables and updates any of the tables involved, is considered a “mixed” statement. (In previous MySQL release series, a statement that changed both nontransactional and transactional tables was considered mixed.) Mixed statements, like transactional statements, are cached and logged when the transaction commits.
A mixed statement that updates a transactional table is considered unsafe if the statement also performs either of the following actions:
Updates or reads a transactional table
Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ
A mixed statement following the update of a transactional table within a transaction is considered unsafe if it performs either of the following actions:
Updates any table and reads from any temporary table
Updates a nontransactional table and binlog_direct_non_trans_update is OFF
For more information, see Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”.
Note
A mixed statement is unrelated to mixed binary logging format.
In situations where transactions mix updates to transactional and nontransactional tables, the order of statements in the binary log is correct, and all needed statements are written to the binary log even in case of a ROLLBACK. However, when a second connection updates the nontransactional table before the first connection transaction is complete, statements can be logged out of order because the second connection update is written immediately after it is performed, regardless of the state of the transaction being performed by the first connection.
Using different storage engines on master and slave. It is possible to replicate transactional tables on the master using nontransactional tables on the slave. For example, you can replicate an InnoDB master table as a MyISAM slave table. However, if you do this, there are problems if the slave is stopped in the middle of a BEGIN ... COMMIT block because the slave restarts at the beginning of the BEGIN block.
In MySQL 5.6, it is also safe to replicate transactions from MyISAM tables on the master to transactional tables—such as tables that use the InnoDB storage engine—on the slave. In such cases (beginning with MySQL 5.5.0), an AUTOCOMMIT=1 statement issued on the master is replicated, thus enforcing AUTOCOMMIT mode on the slave.
When the storage engine type of the slave is nontransactional, transactions on the master that mix updates of transactional and nontransactional tables should be avoided because they can cause inconsistency of the data between the master transactional table and the slave nontransactional table. That is, such transactions can lead to master storage engine-specific behavior with the possible effect of replication going out of synchrony. MySQL does not issue a warning about this currently, so extra care should be taken when replicating transactional tables from the master to nontransactional tables on the slaves.
Changing the binary logging format within transactions. Beginning with MySQL 5.5.3, the binlog_format system variable is read-only as long as a transaction is in progress. (Bug #47863)
Every transaction (including autocommit transactions) is recorded in the binary log as though it starts with a BEGIN statement, and ends with either a COMMIT or a ROLLBACK statement. In MySQL 5.6, this true is even for statements affecting tables that use a nontransactional storage engine (such as MyISAM).
16.4.1.30. Replication and Triggers
With statement-based replication, triggers executed on the master also execute on the slave. With row-based replication, triggers executed on the master do not execute on the slave. Instead, the row changes on the master resulting from trigger execution are replicated and applied on the slave.
This behavior is by design. If under row-based replication the slave applied the triggers as well as the row changes caused by them, the changes would in effect be applied twice on the slave, leading to different data on the master and the slave.
If you want triggers to execute on both the master and the slave—perhaps because you have different triggers on the master and slave—you must use statement-based replication. However, to enable slave-side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to switch to statement-based replication only for those statements where you want this effect, and to use row-based replication the rest of the time.
A statement invoking a trigger (or function) that causes an update to an AUTO_INCREMENT column is not replicated correctly using statement-based replication. MySQL 5.6 marks such statements as unsafe. (Bug #45677)
16.4.1.31. Replication and TRUNCATE TABLE
TRUNCATE TABLE is normally regarded as a DML statement, and so would be expected to be logged and replicated using row-based format when the binary logging mode is ROW or MIXED. However this caused issues when logging or replicating, in STATEMENT or MIXED mode, tables that used transactional storage engines such as InnoDB when the transaction isolation level was READ COMMITTED or READ UNCOMMITTED, which precludes statement-based logging.
TRUNCATE TABLE is treated for purposes of logging and replication as DDL rather than DML so that it can be logged and replicated as a statement. However, the effects of the statement as applicable to InnoDB and other transactional tables on replication slaves still follow the rules described in Section 13.1.27, “TRUNCATE TABLE Syntax” governing such tables. (Bug #36763)
16.4.1.32. Replication and Variables
System variables are not replicated correctly when using STATEMENT mode, except for the following variables when they are used with session scope:
When MIXED mode is used, the variables in the preceding list, when used with session scope, cause a switch from statement-based to row-based logging. See Section 5.2.4.3, “Mixed Binary Logging Format”.
sql_mode is also replicated except for the NO_DIR_IN_CREATE mode; the slave always preserves its own value for NO_DIR_IN_CREATE, regardless of changes to it on the master. This is true for all replication formats.
However, when mysqlbinlog parses a SET @@sql_mode = mode statement, the full mode value, including NO_DIR_IN_CREATE, is passed to the receiving server. For this reason, replication of such a statement may not be safe when STATEMENT mode is in use.
The default_storage_engine and storage_engine system variables are not replicated, regardless of the logging mode; this is intended to facilitate replication between different storage engines.
The read_only system variable is not replicated. In addition, the enabling this variable has different effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different MySQL versions.
The max_heap_table_size system variable is not replicated. Increasing the value of this variable on the master without doing so on the slave can lead eventually to Table is full errors on the slave when trying to execute INSERT statements on a MEMORY table on the master that is thus permitted to grow larger than its counterpart on the slave. For more information, see Section 16.4.1.20, “Replication and MEMORY Tables”.
In statement-based replication, session variables are not replicated properly when used in statements that update tables. For example, the following sequence of statements will not insert the same data on the master and the slave:
SET max_join_size=1000;
INSERT INTO mytable VALUES(@@max_join_size);
This does not apply to the common sequence:
SET time_zone=...;
INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));
Replication of session variables is not a problem when row-based replication is being used, in which case, session variables are always replicated safely. See Section 16.1.2, “Replication Formats”.
In MySQL 5.6, the following session variables are written to the binary log and honored by the replication slave when parsing the binary log, regardless of the logging format:
Important
Even though session variables relating to character sets and collations are written to the binary log, replication between different character sets is not supported.
To help reduce possible confusion, we recommend that you always use the same setting for the lower_case_table_names system variable on both master and slave, especially when you are running MySQL on platforms with case-sensitive file systems.
Note
In previous versions of MySQL, when a case-sensitive file system was in use, setting this variable to 1 on the slave and to a different value on the master could lead to replication failure. This issue is fixed in MySQL 5.6.1. (Bug #37656)
16.4.1.33. Replication and Views
Views are always replicated to slaves. Views are filtered by their own name, not by the tables they refer to. This means that a view can be replicated to the slave even if the view contains a table that would normally be filtered out by replication-ignore-table rules. Care should therefore be taken to ensure that views do not replicate table data that would normally be filtered for security reasons.
MySQL does not support replication from tables to views; you can alter the target table and still replicate to it in many cases (see Section 16.4.1.8.2, “Replication of Columns Having Different Data Types”, and Section 16.4.1.8, “Replication with Differing Table Definitions on Master and Slave”), but you cannot replace the target table with a view. In MySQL 5.6.11 and later, trying to do so causes an error. (Bug #11752707, Bug #43975)
16.4.2. Replication Compatibility Between MySQL Versions
MySQL supports replication from one major version to the next higher major version. For example, you can replicate from a master running MySQL 4.1 to a slave running MySQL 5.0, from a master running MySQL 5.0 to a slave running MySQL 5.1, and so on.
However, one may encounter difficulties when replicating from an older master to a newer slave if the master uses statements or relies on behavior no longer supported in the version of MySQL used on the slave. For example, in MySQL 5.5, CREATE TABLE ... SELECT statements are permitted to change tables other than the one being created, but are no longer allowed to do so in MySQL 5.6 (see Section 16.4.1.4, “Replication of CREATE TABLE ... SELECT Statements”).
The use of more than 2 MySQL Server versions is not supported in replication setups involving multiple masters, regardless of the number of master or slave MySQL servers. This restriction applies not only to major versions, but to minor versions within the same major version as well. For example, if you are using a chained or circular replication setup, you cannot use MySQL 5.6.1, MySQL 5.6.2, and MySQL 5.6.4 concurrently, although you could use any 2 of these releases together.
In some cases, it is also possible to replicate between a master and a slave that is more than one major version newer than the master. However, there are known issues with trying to replicate from a master running MySQL 4.1 or earlier to a slave running MySQL 5.1 or later. To work around such problems, you can insert a MySQL server running an intermediate version between the two; for example, rather than replicating directly from a MySQL 4.1 master to a MySQL 5.1 slave, it is possible to replicate from a MySQL 4.1 server to a MySQL 5.0 server, and then from the MySQL 5.0 server to a MySQL 5.1 server.
Important
It is strongly recommended to use the most recent release available within a given MySQL major version because replication (and other) capabilities are continually being improved. It is also recommended to upgrade masters and slaves that use early releases of a major version of MySQL to GA (production) releases when the latter become available for that major version.
Replication from newer masters to older slaves may be possible, but is generally not supported. This is due to a number of factors:
Binary log format changes. The binary log format can change between major releases. While we attempt to maintain backward compatibility, this is not always possible. For example, the binary log format implemented in MySQL 5.0 changed considerably from that used in previous versions, especially with regard to handling of character sets, LOAD DATA INFILE, and time zones. This means that replication from a MySQL 5.0 (or later) master to a MySQL 4.1 (or earlier) slave is generally not supported.
This also has significant implications for upgrading replication servers; see Section 16.4.3, “Upgrading a Replication Setup”, for more information.
Use of row-based replication. Row-based replication was implemented in MySQL 5.1.5, so you cannot replicate using row-based replication from any MySQL 5.6 or later master to a slave older than MySQL 5.1.5.
For more information about row-based replication, see Section 16.1.2, “Replication Formats”.
SQL incompatibilities. You cannot replicate from a newer master to an older slave using statement-based replication if the statements to be replicated use SQL features available on the master but not on the slave.
However, if both the master and the slave support row-based replication, and there are no data definition statements to be replicated that depend on SQL features found on the master but not on the slave, you can use row-based replication to replicate the effects of data modification statements even if the DDL run on the master is not supported on the slave.
For more information on potential replication issues, see Section 16.4.1, “Replication Features and Issues”.
16.4.3. Upgrading a Replication Setup
When you upgrade servers that participate in a replication setup, the procedure for upgrading depends on the current server versions and the version to which you are upgrading.
This section applies to upgrading replication from older versions of MySQL to MySQL 5.6. A 4.0 server should be 4.0.3 or newer.
When you upgrade a master to 5.6 from an earlier MySQL release series, you should first ensure that all the slaves of this master are using the same 5.6.x release. If this is not the case, you should first upgrade the slaves. To upgrade each slave, shut it down, upgrade it to the appropriate 5.6.x version, restart it, and restart replication. The 5.6 slave is able to read the old relay logs written prior to the upgrade and to execute the statements they contain. Relay logs created by the slave after the upgrade are in 5.6 format.
After the slaves have been upgraded, shut down the master, upgrade it to the same 5.6.x release as the slaves, and restart it. The 5.6 master is able to read the old binary logs written prior to the upgrade and to send them to the 5.6 slaves. The slaves recognize the old format and handle it properly. Binary logs created by the master subsequent to the upgrade are in 5.6 format. These too are recognized by the 5.6 slaves.
In other words, when upgrading to MySQL 5.6, the slaves must be MySQL 5.6 before you can upgrade the master to 5.6. Note that downgrading from 5.6 to older versions does not work so simply: You must ensure that any 5.6 binary log or relay log has been fully processed, so that you can remove it before proceeding with the downgrade.
Downgrading a replication setup to a previous version cannot be done once you have switched from statement-based to row-based replication, and after the first row-based statement has been written to the binlog. See Section 16.1.2, “Replication Formats”.
Some upgrades may require that you drop and re-create database objects when you move from one MySQL series to the next. For example, collation changes might require that table indexes be rebuilt. Such operations, if necessary, will be detailed at Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”. It is safest to perform these operations separately on the slaves and the master, and to disable replication of these operations from the master to the slave. To achieve this, use the following procedure:
Stop all the slaves and upgrade them. Restart them with the --skip-slave-start option so that they do not connect to the master. Perform any table repair or rebuilding operations needed to re-create database objects, such as use of REPAIR TABLE or ALTER TABLE, or dumping and reloading tables or triggers.
Disable the binary log on the master. To do this without restarting the master, execute a SET sql_log_bin = 0 statement. Alternatively, stop the master and restart it without the --log-bin option. If you restart the master, you might also want to disallow client connections. For example, if all clients connect using TCP/IP, use the --skip-networking option when you restart the master.
With the binary log disabled, perform any table repair or rebuilding operations needed to re-create database objects. The binary log must be disabled during this step to prevent these operations from being logged and sent to the slaves later.
Re-enable the binary log on the master. If you set sql_log_bin to 0 earlier, execute a SET sql_log_bin = 1 statement. If you restarted the master to disable the binary log, restart it with --log-bin, and without --skip-networking so that clients and slaves can connect.
Restart the slaves, this time without the --skip-slave-start option.
Replication with global transaction identifiers was introduced in MySQL 5.6.7. If you are upgrading an existing replication setup from a version of MySQL that does not support GTIDs to a version that does, you should not enable GTIDs on either the master or the slave before making sure that the setup meets all the requirements for GTID-based replication. See Section 16.1.3.2, “Setting Up Replication Using GTIDs”, which contains information about converting existing replication setups to use GTID-based replication.
16.4.4. Troubleshooting Replication
If you have followed the instructions but your replication setup is not working, the first thing to do is check the error log for messages. Many users have lost time by not doing this soon enough after encountering problems.
If you cannot tell from the error log what the problem was, try the following techniques:
Verify that the master has binary logging enabled by issuing a SHOW MASTER STATUS statement. If logging is enabled, Position is nonzero. If binary logging is not enabled, verify that you are running the master with the --log-bin option.
Verify that the master and slave both were started with the --server-id option and that the ID value is unique on each server.
Verify that the slave is running. Use SHOW SLAVE STATUS to check whether the Slave_IO_Running and Slave_SQL_Running values are both Yes. If not, verify the options that were used when starting the slave server. For example, --skip-slave-start prevents the slave threads from starting until you issue a START SLAVE statement.
If the slave is running, check whether it established a connection to the master. Use SHOW PROCESSLIST, find the I/O and SQL threads and check their State column to see what they display. See Section 16.2.1, “Replication Implementation Details”. If the I/O thread state says Connecting to master, check the following:
Verify the privileges for the user being used for replication on the master.
Check that the host name of the master is correct and that you are using the correct port to connect to the master. The port used for replication is the same as used for client network communication (the default is 3306). For the host name, ensure that the name resolves to the correct IP address.
Check that networking has not been disabled on the master or slave. Look for the skip-networking option in the configuration file. If present, comment it out or remove it.
If the master has a firewall or IP filtering configuration, ensure that the network port being used for MySQL is not being filtered.
Check that you can reach the master by using ping or traceroute/tracert to reach the host.
If the slave was running previously but has stopped, the reason usually is that some statement that succeeded on the master failed on the slave. This should never happen if you have taken a proper snapshot of the master, and never modified the data on the slave outside of the slave thread. If the slave stops unexpectedly, it is a bug or you have encountered one of the known replication limitations described in Section 16.4.1, “Replication Features and Issues”. If it is a bug, see Section 16.4.5, “How to Report Replication Bugs or Problems”, for instructions on how to report it.
If a statement that succeeded on the master refuses to run on the slave, try the following procedure if it is not feasible to do a full database resynchronization by deleting the slave's databases and copying a new snapshot from the master:
Determine whether the affected table on the slave is different from the master table. Try to understand how this happened. Then make the slave's table identical to the master's and run START SLAVE.
If the preceding step does not work or does not apply, try to understand whether it would be safe to make the update manually (if needed) and then ignore the next statement from the master.
If you decide that the slave can skip the next statement from the master, issue the following statements:
mysql> SET GLOBAL sql_slave_skip_counter = N;
mysql> START SLAVE;
The value of N should be 1 if the next statement from the master does not use AUTO_INCREMENT or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2 for statements that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two events in the binary log of the master.
See also Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Syntax”.
If you are sure that the slave started out perfectly synchronized with the master, and that no one has updated the tables involved outside of the slave thread, then presumably the discrepancy is the result of a bug. If you are running the most recent version of MySQL, please report the problem. If you are running an older version, try upgrading to the latest production release to determine whether the problem persists.
16.4.5. How to Report Replication Bugs or Problems
When you have determined that there is no user error involved, and replication still either does not work at all or is unstable, it is time to send us a bug report. We need to obtain as much information as possible from you to be able to track down the bug. Please spend some time and effort in preparing a good bug report.
If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database using the instructions given in Section 1.7, “How to Report Bugs or Problems”. If you have a “phantom” problem (one that you cannot duplicate at will), use the following procedure:
Verify that no user error is involved. For example, if you update the slave outside of the slave thread, the data goes out of synchrony, and you can have unique key violations on updates. In this case, the slave thread stops and waits for you to clean up the tables manually to bring them into synchrony. This is not a replication problem. It is a problem of outside interference causing replication to fail.
Run the slave with the --log-slave-updates and --log-bin options. These options cause the slave to log the updates that it receives from the master into its own binary logs.
Save all evidence before resetting the replication state. If we have no information or only sketchy information, it becomes difficult or impossible for us to track down the problem. The evidence you should collect is:
All binary log files from the master
All binary log files from the slave
The output of SHOW MASTER STATUS from the master at the time you discovered the problem
The output of SHOW SLAVE STATUS from the slave at the time you discovered the problem
Error logs from the master and the slave
Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem statement. log_file and log_pos are the Master_Log_File and Read_Master_Log_Pos values from SHOW SLAVE STATUS.
shell> mysqlbinlog --start-position=log_pos log_file | head
After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then enter the problem with as much information as possible into our bugs database using the instructions at Section 1.7, “How to Report Bugs or Problems”.
Chapter 17. Partitioning
Table of Contents
17.1. Overview of Partitioning in MySQL
17.2.1. RANGE Partitioning
17.2.2. LIST Partitioning
17.2.3. COLUMNS Partitioning
17.2.4. HASH Partitioning
17.2.5. KEY Partitioning
17.2.6. Subpartitioning
17.2.7. How MySQL Partitioning Handles NULL
17.3.1. Management of RANGE and LIST Partitions
17.3.2. Management of HASH and KEY Partitions
17.3.3. Exchanging Partitions and Subpartitions with Tables
17.3.4. Maintenance of Partitions
17.3.5. Obtaining Information About Partitions
17.6. Restrictions and Limitations on Partitioning
17.6.1. Partitioning Keys, Primary Keys, and Unique Keys
17.6.2. Partitioning Limitations Relating to Storage Engines
17.6.3. Partitioning Limitations Relating to Functions
17.6.4. Partitioning and Locking
This chapter discusses MySQL's implementation of user-defined partitioning. You can determine whether your MySQL Server supports partitioning by checking the output of the SHOW PLUGINS statement, as shown here:
mysql> SHOW PLUGINS;
+------------+----------+----------------+---------+---------+
| Name | Status | Type | Library | License |
+------------+----------+----------------+---------+---------+
| binlog | ACTIVE | STORAGE ENGINE | NULL | GPL |
| partition | ACTIVE | STORAGE ENGINE | NULL | GPL |
| ARCHIVE | ACTIVE | STORAGE ENGINE | NULL | GPL |
| BLACKHOLE | ACTIVE | STORAGE ENGINE | NULL | GPL |
| CSV | ACTIVE | STORAGE ENGINE | NULL | GPL |
| FEDERATED | DISABLED | STORAGE ENGINE | NULL | GPL |
| MEMORY | ACTIVE | STORAGE ENGINE | NULL | GPL |
| InnoDB | ACTIVE | STORAGE ENGINE | NULL | GPL |
| MRG_MYISAM | ACTIVE | STORAGE ENGINE | NULL | GPL |
| MyISAM | ACTIVE | STORAGE ENGINE | NULL | GPL |
| ndbcluster | DISABLED | STORAGE ENGINE | NULL | GPL |
+------------+----------+----------------+---------+---------+
11 rows in set (0.00 sec)
If you do not see the partition plugin listed with the value ACTIVE for the Status column in the output of SHOW PLUGINS (show in bold text in the example just given), then your version of MySQL was not built with partitioning support.
MySQL 5.6 Community binaries provided by Oracle include partitioning support. For information about partitioning support offered in commercial MySQL Server binaries, see MySQL Enterprise Server 5.1 on the MySQL Web site at http://www.mysql.com/products/enterprise/server.html.
To enable partitioning if you are compiling MySQL 5.6 from source, the build must be configured with the -DWITH_PARTITION_STORAGE_ENGINE option. For more information about building MySQL, see Section 2.9, “Installing MySQL from Source”.
If your MySQL binary is built with partitioning support, nothing further needs to be done to enable it (for example, no special entries are required in your my.cnf file).
If you want to disable partitioning support, you can start the MySQL Server with the --skip-partition option, in which case the value of have_partitioning is DISABLED. When partitioning support is disabled, you can see any existing partitioned tables and drop them (although doing this is not advised), but you cannot otherwise manipulate them or access their data.
An introduction to partitioning and partitioning concepts may be found in Section 17.1, “Overview of Partitioning in MySQL”.
MySQL supports several types of partitioning, which are discussed in Section 17.2, “Partitioning Types”, as well as subpartitioning, which is described in Section 17.2.6, “Subpartitioning”.
Methods of adding, removing, and altering partitions in existing partitioned tables are covered in Section 17.3, “Partition Management”.
Table maintenance commands for use with partitioned tables are discussed in Section 17.3.4, “Maintenance of Partitions”.
The PARTITIONS table in the INFORMATION_SCHEMA database provides information about partitions and partitioned tables. See Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”, for more information; for some examples of queries against this table, see Section 17.2.7, “How MySQL Partitioning Handles NULL”.
For known issues with partitioning in MySQL 5.6, see Section 17.6, “Restrictions and Limitations on Partitioning”.
You may also find the following resources to be useful when working with partitioned tables.
Additional Resources. Other sources of information about user-defined partitioning in MySQL include the following:
This is the official discussion forum for those interested in or experimenting with MySQL Partitioning technology. It features announcements and updates from MySQL developers and others. It is monitored by members of the Partitioning Development and Documentation Teams.
MySQL Partitioning Architect and Lead Developer Mikael Ronström frequently posts articles here concerning his work with MySQL Partitioning and MySQL Cluster.
A MySQL news site featuring MySQL-related blogs, which should be of interest to anyone using my MySQL. We encourage you to check here for links to blogs kept by those working with MySQL Partitioning, or to have your own blog added to those covered.
MySQL 5.6 binaries are available from http://dev.mysql.com/downloads/mysql/5.6.html. However, for the latest partitioning bugfixes and feature additions, you can obtain the source from our Bazaar repository. To enable partitioning, the build must be configured with the -DWITH_PARTITION_STORAGE_ENGINE option. For more information about building MySQL, see Section 2.9, “Installing MySQL from Source”. If you have problems compiling a partitioning-enabled MySQL 5.6 build, check the MySQL Partitioning Forum and ask for assistance there if you do not find a solution to your problem already posted.
17.1. Overview of Partitioning in MySQL
This section provides a conceptual overview of partitioning in MySQL 5.6.
For information on partitioning restrictions and feature limitations, see Section 17.6, “Restrictions and Limitations on Partitioning”.
The SQL standard does not provide much in the way of guidance regarding the physical aspects of data storage. The SQL language itself is intended to work independently of any data structures or media underlying the schemas, tables, rows, or columns with which it works. Nonetheless, most advanced database management systems have evolved some means of determining the physical location to be used for storing specific pieces of data in terms of the file system, hardware or even both. In MySQL, the InnoDB storage engine has long supported the notion of a tablespace, and the MySQL Server, even prior to the introduction of partitioning, could be configured to employ different physical directories for storing different databases (see Section 8.11.3.1, “Using Symbolic Links”, for an explanation of how this is done).
Partitioning takes this notion a step further, by enabling you to distribute portions of individual tables across a file system according to rules which you can set largely as needed. In effect, different portions of a table are stored as separate tables in different locations. The user-selected rule by which the division of data is accomplished is known as a partitioning function, which in MySQL can be the modulus, simple matching against a set of ranges or value lists, an internal hashing function, or a linear hashing function. The function is selected according to the partitioning type specified by the user, and takes as its parameter the value of a user-supplied expression. This expression can be a column value, a function acting on one or more column values, or a set of one or more column values, depending on the type of partitioning that is used.
In the case of RANGE, LIST, and [LINEAR] HASH partitioning, the value of the partitioning column is passed to the partitioning function, which returns an integer value representing the number of the partition in which that particular record should be stored. This function must be nonconstant and nonrandom. It may not contain any queries, but may use an SQL expression that is valid in MySQL, as long as that expression returns either NULL or an integer intval such that
-MAXVALUE <= intval <= MAXVALUE
(MAXVALUE is used to represent the least upper bound for the type of integer in question. -MAXVALUE represents the greatest lower bound.)
For [LINEAR] KEY, RANGE COLUMNS, and LIST COLUMNS partitioning, the partitioning expression consists of a list of one or more columns.
For [LINEAR] KEY partitioning, the partitioning function is supplied by MySQL.
For more information about permitted partitioning column types and partitioning functions, see Section 17.2, “Partitioning Types”, as well as Section 13.1.14, “CREATE TABLE Syntax”, which provides partitioning syntax descriptions and additional examples. For information about restrictions on partitioning functions, see Section 17.6.3, “Partitioning Limitations Relating to Functions”.
This is known as horizontal partitioning—that is, different rows of a table may be assigned to different physical partitions. MySQL 5.6 does not support vertical partitioning, in which different columns of a table are assigned to different physical partitions. There are not at this time any plans to introduce vertical partitioning into MySQL 5.6.
For information about determining whether your MySQL Server binary supports user-defined partitioning, see Chapter 17, Partitioning.
For creating partitioned tables, you can use most storage engines that are supported by your MySQL server; the MySQL partitioning engine runs in a separate layer and can interact with any of these. In MySQL 5.6, all partitions of the same partitioned table must use the same storage engine; for example, you cannot use MyISAM for one partition and InnoDB for another. However, there is nothing preventing you from using different storage engines for different partitioned tables on the same MySQL server or even in the same database.
MySQL partitioning cannot be used with the MERGE, CSV, or FEDERATED storage engines.
To employ a particular storage engine for a partitioned table, it is necessary only to use the [STORAGE] ENGINE option just as you would for a nonpartitioned table. However, you should keep in mind that [STORAGE] ENGINE (and other table options) need to be listed before any partitioning options are used in a CREATE TABLE statement. This example shows how to create a table that is partitioned by hash into 6 partitions and which uses the InnoDB storage engine:
CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)
ENGINE=INNODB
PARTITION BY HASH(MONTH(tr_date))
PARTITIONS 6;
Each PARTITION clause can include a [STORAGE] ENGINE option, but in MySQL 5.6 this has no effect.
Important
Partitioning applies to all data and indexes of a table; you cannot partition only the data and not the indexes, or vice versa, nor can you partition only a portion of the table.
Data and indexes for each partition can be assigned to a specific directory using the DATA DIRECTORY and INDEX DIRECTORY options for the PARTITION clause of the CREATE TABLE statement used to create the partitioned table.
The DATA DIRECTORY and INDEX DIRECTORY options have no effect when defining partitions for tables using the InnoDB storage engine.
DATA DIRECTORY and INDEX DIRECTORY are not supported for individual partitions or subpartitions on Windows. These options are ignored on Windows, except that a warning is generated.
In addition, MAX_ROWS and MIN_ROWS can be used to determine the maximum and minimum numbers of rows, respectively, that can be stored in each partition. See Section 17.3, “Partition Management”, for more information on these options.
Some advantages of partitioning are listed here:
Partitioning makes it possible to store more data in one table than can be held on a single disk or file system partition.
Data that loses its usefulness can often be easily removed from a partitioned table by dropping the partition (or partitions) containing only that data. Conversely, the process of adding new data can in some cases be greatly facilitated by adding one or more new partitions for storing specifically that data.
Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE clause can be stored only on one or more partitions, which automatically excluding any remaining partitions from the search. Because partitions can be altered after a partitioned table has been created, you can reorganize your data to enhance frequent queries that may not have been often used when the partitioning scheme was first set up. This ability to exclude non-matching partitions (and thus any rows they contain) is often referred to as partition pruning. For more information, see Section 17.4, “Partition Pruning”.
In addition, MySQL 5.6 supports explicit partition selection for queries. For example, SELECT * FROM t PARTITION (p0,p1) WHERE c < 5 selects only those rows in partitions p0 and p1 that match the WHERE condition. In this case, MySQL does not check any other partitions of table t; this can greatly speed up queries when you already know which partition or partitions you wish to examine. Partition selection is also supported for the data modification statements DELETE, INSERT, REPLACE, UPDATE, and LOAD DATA, LOAD XML. See the descriptions of these statements for more information and examples.
Other benefits usually associated with partitioning include those in the following list. These features are not currently implemented in MySQL Partitioning, but are high on our list of priorities.
Queries involving aggregate functions such as SUM() and COUNT() can easily be parallelized. A simple example of such a query might be SELECT salesperson_id, COUNT(orders) as order_total FROM sales GROUP BY salesperson_id;. By “parallelized,” we mean that the query can be run simultaneously on each partition, and the final result obtained merely by summing the results obtained for all partitions.
Achieving greater query throughput in virtue of spreading data seeks over multiple disks.
Be sure to check this section and chapter frequently for updates as MySQL Partitioning development continues.
17.2. Partitioning Types
This section discusses the types of partitioning which are available in MySQL 5.6. These include the types listed here:
RANGE partitioning. This type of partitioning assigns rows to partitions based on column values falling within a given range. See Section 17.2.1, “RANGE Partitioning”. For information about an extension to this type, RANGE COLUMNS, see Section 17.2.3.1, “RANGE COLUMNS partitioning”.
LIST partitioning. Similar to partitioning by RANGE, except that the partition is selected based on columns matching one of a set of discrete values. See Section 17.2.2, “LIST Partitioning”. For information about an extension to this type, LIST COLUMNS, see Section 17.2.3.2, “LIST COLUMNS partitioning”.
HASH partitioning. With this type of partitioning, a partition is selected based on the value returned by a user-defined expression that operates on column values in rows to be inserted into the table. The function may consist of any expression valid in MySQL that yields a nonnegative integer value. An extension to this type, LINEAR HASH, is also available. See Section 17.2.4, “HASH Partitioning”.
KEY partitioning. This type of partitioning is similar to partitioning by HASH, except that only one or more columns to be evaluated are supplied, and the MySQL server provides its own hashing function. These columns can contain other than integer values, since the hashing function supplied by MySQL guarantees an integer result regardless of the column data type. An extension to this type, LINEAR KEY, is also available. See Section 17.2.5, “KEY Partitioning”.
A very common use of database partitioning is to segregate data by date. Some database systems support explicit date partitioning, which MySQL does not implement in 5.6. However, it is not difficult in MySQL to create partitioning schemes based on DATE, TIME, or DATETIME columns, or based on expressions making use of such columns.
When partitioning by KEY or LINEAR KEY, you can use a DATE, TIME, or DATETIME column as the partitioning column without performing any modification of the column value. For example, this table creation statement is perfectly valid in MySQL:
CREATE TABLE members (
firstname VARCHAR(25) NOT NULL,
lastname VARCHAR(25) NOT NULL,
username VARCHAR(16) NOT NULL,
email VARCHAR(35),
joined DATE NOT NULL
)
PARTITION BY KEY(joined)
PARTITIONS 6;
In MySQL 5.6, it is also possible to use a DATE or DATETIME column as the partitioning column using RANGE COLUMNS and LIST COLUMNS partitioning.
MySQL's other partitioning types, however, require a partitioning expression that yields an integer value or NULL. If you wish to use date-based partitioning by RANGE, LIST, HASH, or LINEAR HASH, you can simply employ a function that operates on a DATE, TIME, or DATETIME column and returns such a value, as shown here:
CREATE TABLE members (
firstname VARCHAR(25) NOT NULL,
lastname VARCHAR(25) NOT NULL,
username VARCHAR(16) NOT NULL,
email VARCHAR(35),
joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
PARTITION p0 VALUES LESS THAN (1960),
PARTITION p1 VALUES LESS THAN (1970),
PARTITION p2 VALUES LESS THAN (1980),
PARTITION p3 VALUES LESS THAN (1990),
PARTITION p4 VALUES LESS THAN MAXVALUE
);
Additional examples of partitioning using dates may be found in the following sections of this chapter:
For more complex examples of date-based partitioning, see the following sections:
MySQL partitioning is optimized for use with the TO_DAYS(), YEAR(), and TO_SECONDS() functions. However, you can use other date and time functions that return an integer or NULL, such as WEEKDAY(), DAYOFYEAR(), or MONTH(). See Section 12.7, “Date and Time Functions”, for more information about such functions.
It is important to remember—regardless of the type of partitioning that you use—that partitions are always numbered automatically and in sequence when created, starting with 0. When a new row is inserted into a partitioned table, it is these partition numbers that are used in identifying the correct partition. For example, if your table uses 4 partitions, these partitions are numbered 0, 1, 2, and 3. For the RANGE and LIST partitioning types, it is necessary to ensure that there is a partition defined for each partition number. For HASH partitioning, the user function employed must return an integer value greater than 0. For KEY partitioning, this issue is taken care of automatically by the hashing function which the MySQL server employs internally.
Names of partitions generally follow the rules governing other MySQL identifiers, such as those for tables and databases. However, you should note that partition names are not case-sensitive. For example, the following CREATE TABLE statement fails as shown:
mysql> CREATE TABLE t2 (val INT)
-> PARTITION BY LIST(val)(
-> PARTITION mypart VALUES IN (1,3,5),
-> PARTITION MyPart VALUES IN (2,4,6)
->);
ERROR 1488 (HY000): Duplicate partition name mypart
Failure occurs because MySQL sees no difference between the partition names mypart and MyPart.
When you specify the number of partitions for the table, this must be expressed as a positive, nonzero integer literal with no leading zeros, and may not be an expression such as 0.8E+01 or 6-2, even if it evaluates to an integer value. Decimal fractions are not permitted.
In the sections that follow, we do not necessarily provide all possible forms for the syntax that can be used for creating each partition type; this information may be found in Section 13.1.14, “CREATE TABLE Syntax”.
17.2.1. RANGE Partitioning
A table that is partitioned by range is partitioned in such a way that each partition contains rows for which the partitioning expression value lies within a given range. Ranges should be contiguous but not overlapping, and are defined using the VALUES LESS THAN operator. For the next few examples, suppose that you are creating a table such as the following to hold personnel records for a chain of 20 video stores, numbered 1 through 20:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
);
This table can be partitioned by range in a number of ways, depending on your needs. One way would be to use the store_id column. For instance, you might decide to partition the table 4 ways by adding a PARTITION BY RANGE clause as shown here:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
PARTITION p0 VALUES LESS THAN (6),
PARTITION p1 VALUES LESS THAN (11),
PARTITION p2 VALUES LESS THAN (16),
PARTITION p3 VALUES LESS THAN (21)
);
In this partitioning scheme, all rows corresponding to employees working at stores 1 through 5 are stored in partition p0, to those employed at stores 6 through 10 are stored in partition p1, and so on. Note that each partition is defined in order, from lowest to highest. This is a requirement of the PARTITION BY RANGE syntax; you can think of it as being analogous to a series of if ... elseif ... statements in C or Java in this regard.
It is easy to determine that a new row containing the data (72, 'Michael', 'Widenius', '1998-06-25', NULL, 13) is inserted into partition p2, but what happens when your chain adds a 21st store? Under this scheme, there is no rule that covers a row whose store_id is greater than 20, so an error results because the server does not know where to place it. You can keep this from occurring by using a “catchall” VALUES LESS THAN clause in the CREATE TABLE statement that provides for all values greater than the highest value explicitly named:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
PARTITION p0 VALUES LESS THAN (6),
PARTITION p1 VALUES LESS THAN (11),
PARTITION p2 VALUES LESS THAN (16),
PARTITION p3 VALUES LESS THAN MAXVALUE
);
Note
Another way to avoid an error when no matching value is found is to use the IGNORE keyword as part of the INSERT statement. For an example, see Section 17.2.2, “LIST Partitioning”. Also see Section 13.2.5, “INSERT Syntax”, for general information about IGNORE.
MAXVALUE represents an integer value that is always greater than the largest possible integer value (in mathematical language, it serves as a least upper bound). Now, any rows whose store_id column value is greater than or equal to 16 (the highest value defined) are stored in partition p3. At some point in the future—when the number of stores has increased to 25, 30, or more—you can use an ALTER TABLE statement to add new partitions for stores 21-25, 26-30, and so on (see Section 17.3, “Partition Management”, for details of how to do this).
In much the same fashion, you could partition the table based on employee job codes—that is, based on ranges of job_code column values. For example—assuming that two-digit job codes are used for regular (in-store) workers, three-digit codes are used for office and support personnel, and four-digit codes are used for management positions—you could create the partitioned table using the following statement:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
)
PARTITION BY RANGE (job_code) (
PARTITION p0 VALUES LESS THAN (100),
PARTITION p1 VALUES LESS THAN (1000),
PARTITION p2 VALUES LESS THAN (10000)
);
In this instance, all rows relating to in-store workers would be stored in partition p0, those relating to office and support staff in p1, and those relating to managers in partition p2.
It is also possible to use an expression in VALUES LESS THAN clauses. However, MySQL must be able to evaluate the expression's return value as part of a LESS THAN (<) comparison.
Rather than splitting up the table data according to store number, you can use an expression based on one of the two DATE columns instead. For example, let us suppose that you wish to partition based on the year that each employee left the company; that is, the value of YEAR(separated). An example of a CREATE TABLE statement that implements such a partitioning scheme is shown here:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT
)
PARTITION BY RANGE (YEAR(separated)) (
PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1996),
PARTITION p2 VALUES LESS THAN (2001),
PARTITION p3 VALUES LESS THAN MAXVALUE
);
In this scheme, for all employees who left before 1991, the rows are stored in partition p0; for those who left in the years 1991 through 1995, in p1; for those who left in the years 1996 through 2000, in p2; and for any workers who left after the year 2000, in p3.
It is also possible to partition a table by RANGE, based on the value of a TIMESTAMP column, using the UNIX_TIMESTAMP() function, as shown in this example:
CREATE TABLE quarterly_report_status (
report_id INT NOT NULL,
report_status VARCHAR(20) NOT NULL,
report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
PARTITION p9 VALUES LESS THAN (MAXVALUE)
);
Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)
Range partitioning is particularly useful when one or more of the following conditions is true:
You want or need to delete “old” data. If you are using the partitioning scheme shown immediately above, you can simply use ALTER TABLE employees DROP PARTITION p0; to delete all rows relating to employees who stopped working for the firm prior to 1991. (See Section 13.1.6, “ALTER TABLE Syntax”, and Section 17.3, “Partition Management”, for more information.) For a table with a great many rows, this can be much more efficient than running a DELETE query such as DELETE FROM employees WHERE YEAR(separated) <= 1990;.
You want to use a column containing date or time values, or containing values arising from some other series.
You frequently run queries that depend directly on the column used for partitioning the table. For example, when executing a query such as EXPLAIN PARTITIONS SELECT COUNT(*) FROM employees WHERE separated BETWEEN '2000-01-01' AND '2000-12-31' GROUP BY store_id;, MySQL can quickly determine that only partition p2 needs to be scanned because the remaining partitions cannot contain any records satisfying the WHERE clause. See Section 17.4, “Partition Pruning”, for more information about how this is accomplished.
A variant on this type of partitioning is RANGE COLUMNS partitioning. Partitioning by RANGE COLUMNS makes it possible to employ multiple columns for defining partitioning ranges that apply both to placement of rows in partitions and for determining the inclusion or exclusion of specific partitions when performing partition pruning. See Section 17.2.3.1, “RANGE COLUMNS partitioning”, for more information.
Partitioning schemes based on time intervals. If you wish to implement a partitioning scheme based on ranges or intervals of time in MySQL 5.6, you have two options:
Partition the table by RANGE, and for the partitioning expression, employ a function operating on a DATE, TIME, or DATETIME column and returning an integer value, as shown here:
CREATE TABLE members (
firstname VARCHAR(25) NOT NULL,
lastname VARCHAR(25) NOT NULL,
username VARCHAR(16) NOT NULL,
email VARCHAR(35),
joined DATE NOT NULL
)
PARTITION BY RANGE(YEAR(joined)) (
PARTITION p0 VALUES LESS THAN (1960),
PARTITION p1 VALUES LESS THAN (1970),
PARTITION p2 VALUES LESS THAN (1980),
PARTITION p3 VALUES LESS THAN (1990),
PARTITION p4 VALUES LESS THAN MAXVALUE
);
In MySQL 5.6, it is also possible to partition a table by RANGE based on the value of a TIMESTAMP column, using the UNIX_TIMESTAMP() function, as shown in this example:
CREATE TABLE quarterly_report_status (
report_id INT NOT NULL,
report_status VARCHAR(20) NOT NULL,
report_updated TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
PARTITION BY RANGE (UNIX_TIMESTAMP(report_updated)) (
PARTITION p0 VALUES LESS THAN (UNIX_TIMESTAMP('2008-01-01 00:00:00')),
PARTITION p1 VALUES LESS THAN (UNIX_TIMESTAMP('2008-04-01 00:00:00')),
PARTITION p2 VALUES LESS THAN (UNIX_TIMESTAMP('2008-07-01 00:00:00')),
PARTITION p3 VALUES LESS THAN (UNIX_TIMESTAMP('2008-10-01 00:00:00')),
PARTITION p4 VALUES LESS THAN (UNIX_TIMESTAMP('2009-01-01 00:00:00')),
PARTITION p5 VALUES LESS THAN (UNIX_TIMESTAMP('2009-04-01 00:00:00')),
PARTITION p6 VALUES LESS THAN (UNIX_TIMESTAMP('2009-07-01 00:00:00')),
PARTITION p7 VALUES LESS THAN (UNIX_TIMESTAMP('2009-10-01 00:00:00')),
PARTITION p8 VALUES LESS THAN (UNIX_TIMESTAMP('2010-01-01 00:00:00')),
PARTITION p9 VALUES LESS THAN (MAXVALUE)
);
In MySQL 5.6, any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)
Note
It is also possible in MySQL 5.6 to use UNIX_TIMESTAMP(timestamp_column) as a partitioning expression for tables that are partitioned by LIST. However, it is usually not practical to do so.
Partition the table by RANGE COLUMNS, using a DATE or DATETIME column as the partitioning column. For example, the members table could be defined using the joined column directly, as shown here:
CREATE TABLE members (
firstname VARCHAR(25) NOT NULL,
lastname VARCHAR(25) NOT NULL,
username VARCHAR(16) NOT NULL,
email VARCHAR(35),
joined DATE NOT NULL
)
PARTITION BY RANGE COLUMNS(joined) (
PARTITION p0 VALUES LESS THAN ('1960-01-01'),
PARTITION p1 VALUES LESS THAN ('1970-01-01'),
PARTITION p2 VALUES LESS THAN ('1980-01-01'),
PARTITION p3 VALUES LESS THAN ('1990-01-01'),
PARTITION p4 VALUES LESS THAN MAXVALUE
);
Note
The use of partitioning columns employing date or time types other than DATE or DATETIME is not supported with RANGE COLUMNS.
17.2.2. LIST Partitioning
List partitioning in MySQL is similar to range partitioning in many ways. As in partitioning by RANGE, each partition must be explicitly defined. The chief difference between the two types of partitioning is that, in list partitioning, each partition is defined and selected based on the membership of a column value in one of a set of value lists, rather than in one of a set of contiguous ranges of values. This is done by using PARTITION BY LIST(expr) where expr is a column value or an expression based on a column value and returning an integer value, and then defining each partition by means of a VALUES IN (value_list), where value_list is a comma-separated list of integers.
Note
In MySQL 5.6, it is possible to match against only a list of integers (and possibly NULL—see Section 17.2.7, “How MySQL Partitioning Handles NULL”) when partitioning by LIST.
However, other column types may be used in value lists when employing LIST COLUMN partitioning, which is described later in this section.
Unlike the case with partitions defined by range, list partitions do not need to be declared in any particular order. For more detailed syntactical information, see Section 13.1.14, “CREATE TABLE Syntax”.
For the examples that follow, we assume that the basic definition of the table to be partitioned is provided by the CREATE TABLE statement shown here:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT
);
(This is the same table used as a basis for the examples in Section 17.2.1, “RANGE Partitioning”.)
Suppose that there are 20 video stores distributed among 4 franchises as shown in the following table.
Region | Store ID Numbers |
---|---|
North | 3, 5, 6, 9, 17 |
East | 1, 2, 10, 11, 19, 20 |
West | 4, 12, 13, 14, 18 |
Central | 7, 8, 15, 16 |
To partition this table in such a way that rows for stores belonging to the same region are stored in the same partition, you could use the CREATE TABLE statement shown here:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT
)
PARTITION BY LIST(store_id) (
PARTITION pNorth VALUES IN (3,5,6,9,17),
PARTITION pEast VALUES IN (1,2,10,11,19,20),
PARTITION pWest VALUES IN (4,12,13,14,18),
PARTITION pCentral VALUES IN (7,8,15,16)
);
This makes it easy to add or drop employee records relating to specific regions to or from the table. For instance, suppose that all stores in the West region are sold to another company. In MySQL 5.6, all rows relating to employees working at stores in that region can be deleted with the query ALTER TABLE employees TRUNCATE PARTITION pWest, which can be executed much more efficiently than the equivalent DELETE statement DELETE FROM employees WHERE store_id IN (4,12,13,14,18);. (Using ALTER TABLE employees DROP PARTITION pWest would also delete all of these rows, but would also remove the partition pWest from the definition of the table; you would need to use an ALTER TABLE ... ADD PARTITION statement to restore the table's original partitioning scheme.)
As with RANGE partitioning, it is possible to combine LIST partitioning with partitioning by hash or key to produce a composite partitioning (subpartitioning). See Section 17.2.6, “Subpartitioning”.
Unlike the case with RANGE partitioning, there is no “catch-all” such as MAXVALUE; all expected values for the partitioning expression should be covered in PARTITION ... VALUES IN (...) clauses. An INSERT statement containing an unmatched partitioning column value fails with an error, as shown in this example:
mysql> CREATE TABLE h2 (
-> c1 INT,
-> c2 INT
->)
-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (1, 4, 7),
-> PARTITION p1 VALUES IN (2, 5, 8)
->);
Query OK, 0 rows affected (0.11 sec)
mysql> INSERT INTO h2 VALUES (3, 5);
ERROR 1525 (HY000): Table has no partition for value 3
When inserting multiple rows using a single INSERT statement, any rows coming before the row containing the unmatched value are inserted, but any coming after it are not:
mysql> SELECT * FROM h2;
Empty set (0.00 sec)
mysql> INSERT INTO h2 VALUES (4, 7), (3, 5), (6, 0);
ERROR 1525 (HY000): Table has no partition for value 3
mysql> SELECT * FROM h2;
+------+------+
| c1 | c2 |
+------+------+
| 4 | 7 |
+------+------+
1 row in set (0.00 sec)
You can cause this type of error to be ignored by using the IGNORE keyword. If you do so, rows containing unmatched partitioning column values are not inserted, but any rows with matching values are inserted, and no errors are reported:
mysql> TRUNCATE h2;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM h2;
Empty set (0.00 sec)
mysql> INSERT IGNORE INTO h2 VALUES (2, 5), (6, 10), (7, 5), (3, 1), (1, 9);
Query OK, 3 rows affected (0.00 sec)
Records: 5 Duplicates: 2 Warnings: 0
mysql> SELECT * FROM h2;
+------+------+
| c1 | c2 |
+------+------+
| 7 | 5 |
| 1 | 9 |
| 2 | 5 |
+------+------+
3 rows in set (0.00 sec)
MySQL 5.6 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning that enables you to use columns of types other than integer types for partitioning columns, as well as to use multiple columns as partitioning keys. For more information, see Section 17.2.3.2, “LIST COLUMNS partitioning”.
17.2.3. COLUMNS Partitioning
The next two sections discuss COLUMNS partitioning, which are variants on RANGE and LIST partitioning. COLUMNS partitioning enables the use of multiple columns in partitioning keys. All of these columns are taken into account both for the purpose of placing rows in partitions and for the determination of which partitions are to be checked for matching rows in partition pruning.
In addition, both RANGE COLUMNS partitioning and LIST COLUMNS partitioning support the use of non-integer columns for defining value ranges or list members. The permitted data types are shown in the following list:
All integer types: TINYINT, SMALLINT, MEDIUMINT, INT (INTEGER), and BIGINT. (This is the same as with partitioning by RANGE and LIST.)
Other numeric data types (such as DECIMAL or FLOAT) are not supported as partitioning columns.
Columns using other data types relating to dates or times are not supported as partitioning columns.
The following string types: CHAR, VARCHAR, BINARY, and VARBINARY.
TEXT and BLOB columns are not supported as partitioning columns.
The discussions of RANGE COLUMNS and LIST COLUMNS partitioning in the next two sections assume that you are already familiar with partitioning based on ranges and lists as supported in MySQL 5.1 and later; for more information about these, see Section 17.2.1, “RANGE Partitioning”, and Section 17.2.2, “LIST Partitioning”, respectively.
17.2.3.1. RANGE COLUMNS partitioning
Range columns partitioning is similar to range partitioning, but enables you to define partitions using ranges based on multiple column values. In addition, you can define the ranges using columns of types other than integer types.
RANGE COLUMNS partitioning differs significantly from RANGE partitioning in the following ways:
RANGE COLUMNS does not accept expressions, only names of columns.
RANGE COLUMNS accepts a list of one or more columns.
RANGE COLUMNS partitions are based on comparisons between tuples (lists of column values) rather than comparisons between scalar values. Placement of rows in RANGE COLUMNS partitions is also based on comparisons between tuples; this is discussed further later in this section.
RANGE COLUMNS partitioning columns are not restricted to integer columns; string, DATE and DATETIME columns can also be used as partitioning columns. (See Section 17.2.3, “COLUMNS Partitioning”, for details.)
The basic syntax for creating a table partitioned by RANGE COLUMNS is shown here:
CREATE TABLE table_name
PARTITIONED BY RANGE COLUMNS(column_list) (
PARTITION partition_name VALUES LESS THAN (value_list)[,
PARTITION partition_name VALUES LESS THAN (value_list)][,
...]
)
column_list:
column_name[, column_name][, ...]
value_list:
value[, value][, ...]
Note
Not all CREATE TABLE options that can be used when creating partitioned tables are shown here. For complete information, see Section 13.1.14, “CREATE TABLE Syntax”.
In the syntax just shown, column_list is a list of one or more columns (sometimes called a partitioning column list), and value_list is a list of values (that is, it is a partition definition value list). A value_list must be supplied for each partition definition, and each value_list must have the same number of values as the column_list has columns. Generally speaking, if you use N columns in the COLUMNS clause, then each VALUES LESS THAN clause must also be supplied with a list of N values.
The elements in the partitioning column list and in the value list defining each partition must occur in the same order. In addition, each element in the value list must be of the same data type as the corresponding element in the column list. However, the order of the column names in the partitioning column list and the value lists does not have to be the same as the order of the table column definitions in the main part of the CREATE TABLE statement. As with table partitioned by RANGE, you can use MAXVALUE to represent a value such that any legal value inserted into a given column is always less than this value. Here is an example of a CREATE TABLE statement that helps to illustrate all of these points:
mysql> CREATE TABLE rcx (
-> a INT,
-> b INT,
-> c CHAR(3),
-> d INT
->)
-> PARTITION BY RANGE COLUMNS(a,d,c) (
-> PARTITION p0 VALUES LESS THAN (5,10,'ggg'),
-> PARTITION p1 VALUES LESS THAN (10,20,'mmmm'),
-> PARTITION p2 VALUES LESS THAN (15,30,'sss'),
-> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
->);
Query OK, 0 rows affected (0.15 sec)
Table rcx contains the columns a, b, c, d. The partitioning column list supplied to the COLUMNS clause uses 3 of these columns, in the order a, d, c. Each value list used to define a partition contains 3 values in the same order; that is, each value list tuple has the form (INT, INT, CHAR(3)), which corresponds to the data types used by columns a, d, and c (in that order).
Placement of rows into partitions is determined by comparing the tuple from a row to be inserted that matches the column list in the COLUMNS clause with the tuples used in the VALUES LESS THAN clauses to define partitions of the table. Because we are comparing tuples (that is, lists or sets of values) rather than scalar values, the semantics of VALUES LESS THAN as used with RANGE COLUMNS partitions differs somewhat from the case with simple RANGE partitions. In RANGE partitioning, a row generating an expression value that is equal to a limiting value in a VALUES LESS THAN is never placed in the corresponding partition; however, when using RANGE COLUMNS partitioning, it is sometimes possible for a row whose partitioning column list's first element is equal in value to the that of the first element in a VALUES LESS THAN value list to be placed in the corresponding partition.
Consider the RANGE partitioned table created by this statement:
CREATE TABLE r1 (
a INT,
b INT
)
PARTITION BY RANGE (a) (
PARTITION p0 VALUES LESS THAN (5),
PARTITION p1 VALUES LESS THAN (MAXVALUE)
);
If we insert 3 rows into this table such that the column value for a is 5 for each row, all 3 rows are stored in partition p1 because the a column value is in each case not less than 5, as we can see by executing the proper query against the INFORMATION_SCHEMA.PARTITIONS table:
mysql> INSERT INTO r1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT PARTITION_NAME,TABLE_ROWS
-> FROM INFORMATION_SCHEMA.PARTITIONS
-> WHERE TABLE_NAME = 'r1';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 3 |
+----------------+------------+
2 rows in set (0.00 sec)
Now consider a similar table rc1 that uses RANGE COLUMNS partitioning with both columns a and b referenced in the COLUMNS clause, created as shown here:
CREATE TABLE rc1 (
a INT,
b INT
)
PARTITION BY RANGE COLUMNS(a, b) (
PARTITION p0 VALUES LESS THAN (5, 12),
PARTITION p3 VALUES LESS THAN (MAXVALUE, MAXVALUE)
);
If we insert exactly the same rows into rc1 as we just inserted into r1, the distribution of the rows is quite different:
mysql> INSERT INTO rc1 VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT PARTITION_NAME,TABLE_ROWS
-> FROM INFORMATION_SCHEMA.PARTITIONS
-> WHERE TABLE_NAME = 'rc1';
+--------------+----------------+------------+
| TABLE_SCHEMA | PARTITION_NAME | TABLE_ROWS |
+--------------+----------------+------------+
| p | p0 | 2 |
| p | p1 | 1 |
+--------------+----------------+------------+
2 rows in set (0.00 sec)
This is because we are comparing rows rather than scalar values. We can compare the row values inserted with the limiting row value from the VALUES THAN LESS THAN clause used to define partition p0 in table rc1, like this:
mysql> SELECT (5,10) < (5,12), (5,11) < (5,12), (5,12) < (5,12);
+-----------------+-----------------+-----------------+
| (5,10) < (5,12) | (5,11) < (5,12) | (5,12) < (5,12) |
+-----------------+-----------------+-----------------+
| 1 | 1 | 0 |
+-----------------+-----------------+-----------------+
1 row in set (0.00 sec)
The 2 tuples (5,10) and (5,11) evaluate as less than (5,12), so they are stored in partition p0. Since 5 is not less than 5 and 12 is not less than 12, (5,12) is considered not less than (5,12), and is stored in partition p1.
The SELECT statement in the preceding example could also have been written using explicit row constructors, like this:
SELECT ROW(5,10) < ROW(5,12), ROW(5,11) < ROW(5,12), ROW(5,12) < ROW(5,12);
For more information about the use of row constructors in MySQL, see Section 13.2.10.5, “Row Subqueries”.
For a table partitioned by RANGE COLUMNS using only a single partitioning column, the storing of rows in partitions is the same as that of an equivalent table that is partitioned by RANGE. The following CREATE TABLE statement creates a table partitioned by RANGE COLUMNS using 1 partitioning column:
CREATE TABLE rx (
a INT,
b INT
)
PARTITION BY RANGE COLUMNS (a) (
PARTITION p0 VALUES LESS THAN (5),
PARTITION p1 VALUES LESS THAN (MAXVALUE)
);
If we insert the rows (5,10), (5,11), and (5,12) into this table, we can see that their placement is the same as it is for the table r we created and populated earlier:
mysql> INSERT INTO rx VALUES (5,10), (5,11), (5,12);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> SELECT PARTITION_NAME,TABLE_ROWS
-> FROM INFORMATION_SCHEMA.PARTITIONS
-> WHERE TABLE_NAME = 'rx';
+--------------+----------------+------------+
| TABLE_SCHEMA | PARTITION_NAME | TABLE_ROWS |
+--------------+----------------+------------+
| p | p0 | 0 |
| p | p1 | 3 |
+--------------+----------------+------------+
2 rows in set (0.00 sec)
It is also possible to create tables partitioned by RANGE COLUMNS where limiting values for one or more columns are repeated in successive partition definitions. You can do this as long as the tuples of column values used to define the partitions are strictly increasing. For example, each of the following CREATE TABLE statements is valid:
CREATE TABLE rc2 (
a INT,
b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
PARTITION p0 VALUES LESS THAN (0,10),
PARTITION p1 VALUES LESS THAN (10,20),
PARTITION p2 VALUES LESS THAN (10,30),
PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);
CREATE TABLE rc3 (
a INT,
b INT
)
PARTITION BY RANGE COLUMNS(a,b) (
PARTITION p0 VALUES LESS THAN (0,10),
PARTITION p1 VALUES LESS THAN (10,20),
PARTITION p2 VALUES LESS THAN (10,30),
PARTITION p3 VALUES LESS THAN (10,35),
PARTITION p4 VALUES LESS THAN (20,40),
PARTITION p5 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);
The following statement also succeeds, even though it might appear at first glance that it would not, since the limiting value of column b is 25 for partition p0 and 20 for partition p1, and the limiting value of column c is 100 for partition p1 and 50 for partition p2:
CREATE TABLE rc4 (
a INT,
b INT,
c INT
)
PARTITION BY RANGE COLUMNS(a,b,c) (
PARTITION p0 VALUES LESS THAN (0,25,50),
PARTITION p1 VALUES LESS THAN (10,20,100),
PARTITION p2 VALUES LESS THAN (10,30,50)
PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
);
When designing tables partitioned by RANGE COLUMNS, you can always test successive partition definitions by comparing the desired tuples using the mysql client, like this:
mysql> SELECT (0,25,50) < (10,20,100), (10,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (10,20,100) | (10,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 1 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)
If a CREATE TABLE statement contains partition definitions that are not in strictly increasing order, it fails with an error, as shown in this example:
mysql> CREATE TABLE rcf (
-> a INT,
-> b INT,
-> c INT
->)
-> PARTITION BY RANGE COLUMNS(a,b,c) (
-> PARTITION p0 VALUES LESS THAN (0,25,50),
-> PARTITION p1 VALUES LESS THAN (20,20,100),
-> PARTITION p2 VALUES LESS THAN (10,30,50),
-> PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
->);
ERROR 1493 (HY000): VALUES LESS THAN value must be strictly increasing for each partition
When you get such an error, you can deduce which partition definitions are invalid by making “less than” comparisons between their column lists. In this case, the problem is with the definition of partition p2 because the tuple used to define it is not less than the tuple used to define partition p3, as shown here:
mysql> SELECT (0,25,50) < (20,20,100), (20,20,100) < (10,30,50);
+-------------------------+--------------------------+
| (0,25,50) < (20,20,100) | (20,20,100) < (10,30,50) |
+-------------------------+--------------------------+
| 1 | 0 |
+-------------------------+--------------------------+
1 row in set (0.00 sec)
It is also possible for MAXVALUE to appear for the same column in more than one VALUES LESS THAN clause when using RANGE COLUMNS. However, the limiting values for individual columns in successive partition definitions should otherwise be increasing, there should be no more than one partition defined where MAXVALUE is used as the upper limit for all column values, and this partition definition should appear last in the list of PARTITION ... VALUES LESS THAN clauses. In addition, you cannot use MAXVALUE as the limiting value for the first column in more than one partition definition.
As stated previously, it is also possible with RANGE COLUMNS partitioning to use non-integer columns as partitioning columns. (See Section 17.2.3, “COLUMNS Partitioning”, for a complete listing of these.) Consider a table named employees (which is not partitioned), created using the following statement:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
);
Using RANGE COLUMNS partitioning, you can create a version of this table that stores each row in one of four partitions based on the employee's last name, like this:
CREATE TABLE employees_by_lname (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT NOT NULL,
store_id INT NOT NULL
)
PARTITION BY RANGE COLUMNS (lname) (
PARTITION p0 VALUES LESS THAN ('g'),
PARTITION p1 VALUES LESS THAN ('m'),
PARTITION p2 VALUES LESS THAN ('t'),
PARTITION p3 VALUES LESS THAN (MAXVALUE)
);
Alternatively, you could cause the employees table as created previously to be partitioned using this scheme by executing the following ALTER TABLE statement:
ALTER TABLE employees PARTITION BY RANGE COLUMNS (lname) (
PARTITION p0 VALUES LESS THAN ('g'),
PARTITION p1 VALUES LESS THAN ('m'),
PARTITION p2 VALUES LESS THAN ('t'),
PARTITION p3 VALUES LESS THAN (MAXVALUE)
);
Note
Because different character sets and collations have different sort orders, the character sets and collations in use may effect which partition of a table partitioned by RANGE COLUMNS a given row is stored in when using string columns as partitioning columns. In addition, changing the character set or collation for a given database, table, or column after such a table is created may cause changes in how rows are distributed. For example, when using a case-sensitive collation, 'and' sorts before 'Andersen', but when using a collation that is case insensitive, the reverse is true.
For information about how MySQL handles character sets and collations, see Section 10.1, “Character Set Support”.
Similarly, you can cause the employees table to be partitioned in such a way that each row is stored in one of several partitions based on the decade in which the corresponding employee was hired using the ALTER TABLE statement shown here:
ALTER TABLE employees PARTITION BY RANGE COLUMNS (hired) (
PARTITION p0 VALUES LESS THAN ('1970-01-01'),
PARTITION p1 VALUES LESS THAN ('1980-01-01'),
PARTITION p2 VALUES LESS THAN ('1990-01-01'),
PARTITION p3 VALUES LESS THAN ('2000-01-01'),
PARTITION p4 VALUES LESS THAN ('2010-01-01'),
PARTITION p5 VALUES LESS THAN (MAXVALUE)
);
See Section 13.1.14, “CREATE TABLE Syntax”, for additional information about PARTITION BY RANGE COLUMNS syntax.
17.2.3.2. LIST COLUMNS partitioning
MySQL 5.6 provides support for LIST COLUMNS partitioning. This is a variant of LIST partitioning that enables the use of multiple columns as partition keys, and for columns of data types other than integer types to be used as partitioning columns; you can use string types, DATE, and DATETIME columns. (For more information about permitted data types for COLUMNS partitioning columns, see Section 17.2.3, “COLUMNS Partitioning”.)
Suppose that you have a business that has customers in 12 cities which, for sales and marketing purposes, you organize into 4 regions of 3 cities each as shown in the following table:
Region | Cities |
---|---|
1 | Oskarshamn, Högsby, Mönsterås |
2 | Vimmerby, Hultsfred, Västervik |
3 | Nässjö, Eksjö, Vetlanda |
4 | Uppvidinge, Alvesta, Växjo |
With LIST COLUMNS partitioning, you can create a table for customer data that assigns a row to any of 4 partitions corresponding to these regions based on the name of the city where a customer resides, as shown here:
CREATE TABLE customers_1 (
first_name VARCHAR(25),
last_name VARCHAR(25),
street_1 VARCHAR(30),
street_2 VARCHAR(30),
city VARCHAR(15),
renewal DATE
)
PARTITION BY LIST COLUMNS(city) (
PARTITION pRegion_1 VALUES IN('Oskarshamn', 'Högsby', 'Mönsterås'),
PARTITION pRegion_2 VALUES IN('Vimmerby', 'Hultsfred', 'Västervik'),
PARTITION pRegion_3 VALUES IN('Nässjö', 'Eksjö', 'Vetlanda'),
PARTITION pRegion_4 VALUES IN('Uppvidinge', 'Alvesta', 'Växjo')
);
As with partitioning by RANGE COLUMNS, you do not need to use expressions in the COLUMNS() clause to convert column values into integers. (In fact, the use of expressions other than column names is not permitted with COLUMNS().)
It is also possible to use DATE and DATETIME columns, as shown in the following example that uses the same name and columns as the customers_1 table shown previously, but employs LIST COLUMNS partitioning based on the renewal column to store rows in one of 4 partitions depending on the week in February 2010 the customer's account is scheduled to renew:
CREATE TABLE customers_2 (
first_name VARCHAR(25),
last_name VARCHAR(25),
street_1 VARCHAR(30),
street_2 VARCHAR(30),
city VARCHAR(15),
renewal DATE
)
PARTITION BY LIST COLUMNS(renewal) (
PARTITION pWeek_1 VALUES IN('2010-02-01', '2010-02-02', '2010-02-03',
'2010-02-04', '2010-02-05', '2010-02-06', '2010-02-07'),
PARTITION pWeek_2 VALUES IN('2010-02-08', '2010-02-09', '2010-02-10',
'2010-02-11', '2010-02-12', '2010-02-13', '2010-02-14'),
PARTITION pWeek_3 VALUES IN('2010-02-15', '2010-02-16', '2010-02-17',
'2010-02-18', '2010-02-19', '2010-02-20', '2010-02-21'),
PARTITION pWeek_4 VALUES IN('2010-02-22', '2010-02-23', '2010-02-24',
'2010-02-25', '2010-02-26', '2010-02-27', '2010-02-28')
);
This works, but becomes cumbersome to define and maintain if the number of dates involved grows very large; in such cases, it is usually more practical to employ RANGE or RANGE COLUMNS partitioning instead. In this case, since the column we wish to use as the partitioning key is a DATE column, we use RANGE COLUMNS partitioning, as shown here:
CREATE TABLE customers_3 (
first_name VARCHAR(25),
last_name VARCHAR(25),
street_1 VARCHAR(30),
street_2 VARCHAR(30),
city VARCHAR(15),
renewal DATE
)
PARTITION BY RANGE COLUMNS(renewal) (
PARTITION pWeek_1 VALUES LESS THAN('2010-02-09'),
PARTITION pWeek_2 VALUES LESS THAN('2010-02-15'),
PARTITION pWeek_3 VALUES LESS THAN('2010-02-22'),
PARTITION pWeek_4 VALUES LESS THAN('2010-03-01')
);
See Section 17.2.3.1, “RANGE COLUMNS partitioning”, for more information.
In addition (as with RANGE COLUMNS partitioning), you can use multiple columns in the COLUMNS() clause.
See Section 13.1.14, “CREATE TABLE Syntax”, for additional information about PARTITION BY LIST COLUMNS() syntax.
17.2.4. HASH Partitioning
Partitioning by HASH is used primarily to ensure an even distribution of data among a predetermined number of partitions. With range or list partitioning, you must specify explicitly into which partition a given column value or set of column values is to be stored; with hash partitioning, MySQL takes care of this for you, and you need only specify a column value or expression based on a column value to be hashed and the number of partitions into which the partitioned table is to be divided.
To partition a table using HASH partitioning, it is necessary to append to the CREATE TABLE statement a PARTITION BY HASH (expr) clause, where expr is an expression that returns an integer. This can simply be the name of a column whose type is one of MySQL's integer types. In addition, you will most likely want to follow this with a PARTITIONS num clause, where num is a positive integer representing the number of partitions into which the table is to be divided.
For example, the following statement creates a table that uses hashing on the store_id column and is divided into 4 partitions:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT
)
PARTITION BY HASH(store_id)
PARTITIONS 4;
If you do not include a PARTITIONS clause, the number of partitions defaults to 1.
Using the PARTITIONS keyword without a number following it results in a syntax error.
You can also use an SQL expression that returns an integer for expr. For instance, you might want to partition based on the year in which an employee was hired. This can be done as shown here:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT
)
PARTITION BY HASH(YEAR(hired))
PARTITIONS 4;
expr must return a nonconstant, nonrandom integer value (in other words, it should be varying but deterministic), and must not contain any prohibited constructs as described in Section 17.6, “Restrictions and Limitations on Partitioning”. You should also keep in mind that this expression is evaluated each time a row is inserted or updated (or possibly deleted); this means that very complex expressions may give rise to performance issues, particularly when performing operations (such as batch inserts) that affect a great many rows at one time.
The most efficient hashing function is one which operates upon a single table column and whose value increases or decreases consistently with the column value, as this allows for “pruning” on ranges of partitions. That is, the more closely that the expression varies with the value of the column on which it is based, the more efficiently MySQL can use the expression for hash partitioning.
For example, where date_col is a column of type DATE, then the expression TO_DAYS(date_col) is said to vary directly with the value of date_col, because for every change in the value of date_col, the value of the expression changes in a consistent manner. The variance of the expression YEAR(date_col) with respect to date_col is not quite as direct as that of TO_DAYS(date_col), because not every possible change in date_col produces an equivalent change in YEAR(date_col). Even so, YEAR(date_col) is a good candidate for a hashing function, because it varies directly with a portion of date_col and there is no possible change in date_col that produces a disproportionate change in YEAR(date_col).
By way of contrast, suppose that you have a column named int_col whose type is INT. Now consider the expression POW(5-int_col,3) + 6. This would be a poor choice for a hashing function because a change in the value of int_col is not guaranteed to produce a proportional change in the value of the expression. Changing the value of int_col by a given amount can produce by widely different changes in the value of the expression. For example, changing int_col from 5 to 6 produces a change of -1 in the value of the expression, but changing the value of int_col from 6 to 7 produces a change of -7 in the expression value.
In other words, the more closely the graph of the column value versus the value of the expression follows a straight line as traced by the equation y=cx where c is some nonzero constant, the better the expression is suited to hashing. This has to do with the fact that the more nonlinear an expression is, the more uneven the distribution of data among the partitions it tends to produce.
In theory, pruning is also possible for expressions involving more than one column value, but determining which of such expressions are suitable can be quite difficult and time-consuming. For this reason, the use of hashing expressions involving multiple columns is not particularly recommended.
When PARTITION BY HASH is used, MySQL determines which partition of num partitions to use based on the modulus of the result of the user function. In other words, for an expression expr, the partition in which the record is stored is partition number N, where N = MOD(expr, num). Suppose that table t1 is defined as follows, so that it has 4 partitions:
CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY HASH(YEAR(col3))
PARTITIONS 4;
If you insert a record into t1 whose col3 value is '2005-09-15', then the partition in which it is stored is determined as follows:
MOD(YEAR('2005-09-01'),4)
= MOD(2005,4)
= 1
MySQL 5.6 also supports a variant of HASH partitioning known as linear hashing which employs a more complex algorithm for determining the placement of new rows inserted into the partitioned table. See Section 17.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm.
The user function is evaluated each time a record is inserted or updated. It may also—depending on the circumstances—be evaluated when records are deleted.
Note
If a table to be partitioned has a UNIQUE key, then any columns supplied as arguments to the HASH user function or to the KEY's column_list must be part of that key.
17.2.4.1. LINEAR HASH Partitioning
MySQL also supports linear hashing, which differs from regular hashing in that linear hashing utilizes a linear powers-of-two algorithm whereas regular hashing employs the modulus of the hashing function's value.
Syntactically, the only difference between linear-hash partitioning and regular hashing is the addition of the LINEAR keyword in the PARTITION BY clause, as shown here:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT '1970-01-01',
separated DATE NOT NULL DEFAULT '9999-12-31',
job_code INT,
store_id INT
)
PARTITION BY LINEAR HASH(YEAR(hired))
PARTITIONS 4;
Given an expression expr, the partition in which the record is stored when linear hashing is used is partition number N from among num partitions, where N is derived according to the following algorithm:
Find the next power of 2 greater than num. We call this value V; it can be calculated as:
V = POWER(2, CEILING(LOG(2, num)))
(Suppose that num is 13. Then LOG(2,13) is 3.7004397181411. CEILING(3.7004397181411) is 4, and V = POWER(2,4), which is 16.)
Set N = F(column_list) & (V - 1).
While N >= num:
Set V = CEIL(V / 2)
Set N = N & (V - 1)
Suppose that the table t1, using linear hash partitioning and having 6 partitions, is created using this statement:
CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY LINEAR HASH(YEAR(col3))
PARTITIONS 6;
Now assume that you want to insert two records into t1 having the col3 column values '2003-04-14' and '1998-10-19'. The partition number for the first of these is determined as follows:
V = POWER(2, CEILING(LOG(2,6))) = 8
N = YEAR('2003-04-14') & (8 - 1)
= 2003 & 7
= 3
(3 >= 6 is FALSE: record stored in partition #3)
The number of the partition where the second record is stored is calculated as shown here:
V = 8
N = YEAR('1998-10-19') & (8-1)
= 1998 & 7
= 6
(6 >= 6 is TRUE: additional step required)
N = 6 & CEILING(8 / 2)
= 6 & 3
= 2
(2 >= 6 is FALSE: record stored in partition #2)
The advantage in partitioning by linear hash is that the adding, dropping, merging, and splitting of partitions is made much faster, which can be beneficial when dealing with tables containing extremely large amounts (terabytes) of data. The disadvantage is that data is less likely to be evenly distributed between partitions as compared with the distribution obtained using regular hash partitioning.
17.2.5. KEY Partitioning
Partitioning by key is similar to partitioning by hash, except that where hash partitioning employs a user-defined expression, the hashing function for key partitioning is supplied by the MySQL server. This internal hashing function is based on the same algorithm as PASSWORD().
The syntax rules for CREATE TABLE ... PARTITION BY KEY are similar to those for creating a table that is partitioned by hash. The major differences are listed here:
KEY is used rather than HASH.
KEY takes only a list of zero or more column names. Any columns used as the partitioning key must comprise part or all of the table's primary key, if the table has one. Where no column name is specified as the partitioning key, the table's primary key is used, if there is one. For example, the following CREATE TABLE statement is valid in MySQL 5.6:
CREATE TABLE k1 (
id INT NOT NULL PRIMARY KEY,
name VARCHAR(20)
)
PARTITION BY KEY()
PARTITIONS 2;
If there is no primary key but there is a unique key, then the unique key is used for the partitioning key:
CREATE TABLE k1 (
id INT NOT NULL,
name VARCHAR(20),
UNIQUE KEY (id)
)
PARTITION BY KEY()
PARTITIONS 2;
However, if the unique key column were not defined as NOT NULL, then the previous statement would fail.
In both of these cases, the partitioning key is the id column, even though it is not shown in the output of SHOW CREATE TABLE or in the PARTITION_EXPRESSION column of the INFORMATION_SCHEMA.PARTITIONS table.
Unlike the case with other partitioning types, columns used for partitioning by KEY are not restricted to integer or NULL values. For example, the following CREATE TABLE statement is valid:
CREATE TABLE tm1 (
s1 CHAR(32) PRIMARY KEY
)
PARTITION BY KEY(s1)
PARTITIONS 10;
The preceding statement would not be valid, were a different partitioning type to be specified. (In this case, simply using PARTITION BY KEY() would also be valid and have the same effect as PARTITION BY KEY(s1), since s1 is the table's primary key.)
For additional information about this issue, see Section 17.6, “Restrictions and Limitations on Partitioning”.
Important
For a key-partitioned table, you cannot execute an ALTER TABLE DROP PRIMARY KEY, as doing so generates the error ERROR 1466 (HY000): Field in list of fields for partition function not found in table.
It is also possible to partition a table by linear key. Here is a simple example:
CREATE TABLE tk (
col1 INT NOT NULL,
col2 CHAR(5),
col3 DATE
)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;
Using LINEAR has the same effect on KEY partitioning as it does on HASH partitioning, with the partition number being derived using a powers-of-two algorithm rather than modulo arithmetic. See Section 17.2.4.1, “LINEAR HASH Partitioning”, for a description of this algorithm and its implications.
17.2.6. Subpartitioning
Subpartitioning—also known as composite partitioning—is the further division of each partition in a partitioned table. Consider the following CREATE TABLE statement:
CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased))
SUBPARTITIONS 2 (
PARTITION p0 VALUES LESS THAN (1990),
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN MAXVALUE
);
Table ts has 3 RANGE partitions. Each of these partitions—p0, p1, and p2—is further divided into 2 subpartitions. In effect, the entire table is divided into 3 * 2 = 6 partitions. However, due to the action of the PARTITION BY RANGE clause, the first 2 of these store only those records with a value less than 1990 in the purchased column.
In MySQL 5.6, it is possible to subpartition tables that are partitioned by RANGE or LIST. Subpartitions may use either HASH or KEY partitioning. This is also known as composite partitioning.
Note
SUBPARTITION BY HASH and SUBPARTITION BY KEY generally follow the same syntax rules as PARTITION BY HASH and PARTITION BY KEY, respectively. An exception to this is that SUBPARTITION BY KEY (unlike PARTITION BY KEY) does not currently support a default column, so the column used for this purpose must be specified, even if the table has an explicit primary key. This is a known issue which we are working to address; see Issues with subpartitions, for more information and an example.
It is also possible to define subpartitions explicitly using SUBPARTITION clauses to specify options for individual subpartitions. For example, a more verbose fashion of creating the same table ts as shown in the previous example would be:
CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased)) (
PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0,
SUBPARTITION s1
),
PARTITION p1 VALUES LESS THAN (2000) (
SUBPARTITION s2,
SUBPARTITION s3
),
PARTITION p2 VALUES LESS THAN MAXVALUE (
SUBPARTITION s4,
SUBPARTITION s5
)
);
Some syntactical items of note are listed here:
Each partition must have the same number of subpartitions.
If you explicitly define any subpartitions using SUBPARTITION on any partition of a partitioned table, you must define them all. In other words, the following statement will fail:
CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased)) (
PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0,
SUBPARTITION s1
),
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN MAXVALUE (
SUBPARTITION s2,
SUBPARTITION s3
)
);
This statement would still fail even if it included a SUBPARTITIONS 2 clause.
Each SUBPARTITION clause must include (at a minimum) a name for the subpartition. Otherwise, you may set any desired option for the subpartition or allow it to assume its default setting for that option.
Subpartition names must be unique across the entire table. For example, the following CREATE TABLE statement is valid in MySQL 5.6:
CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased)) (
PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0,
SUBPARTITION s1
),
PARTITION p1 VALUES LESS THAN (2000) (
SUBPARTITION s2,
SUBPARTITION s3
),
PARTITION p2 VALUES LESS THAN MAXVALUE (
SUBPARTITION s4,
SUBPARTITION s5
)
);
Subpartitions can be used with especially large tables to distribute data and indexes across many disks. Suppose that you have 6 disks mounted as /disk0, /disk1, /disk2, and so on. Now consider the following example:
CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased)) (
PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0
DATA DIRECTORY = '/disk0/data'
INDEX DIRECTORY = '/disk0/idx',
SUBPARTITION s1
DATA DIRECTORY = '/disk1/data'
INDEX DIRECTORY = '/disk1/idx'
),
PARTITION p1 VALUES LESS THAN (2000) (
SUBPARTITION s2
DATA DIRECTORY = '/disk2/data'
INDEX DIRECTORY = '/disk2/idx',
SUBPARTITION s3
DATA DIRECTORY = '/disk3/data'
INDEX DIRECTORY = '/disk3/idx'
),
PARTITION p2 VALUES LESS THAN MAXVALUE (
SUBPARTITION s4
DATA DIRECTORY = '/disk4/data'
INDEX DIRECTORY = '/disk4/idx',
SUBPARTITION s5
DATA DIRECTORY = '/disk5/data'
INDEX DIRECTORY = '/disk5/idx'
)
);
In this case, a separate disk is used for the data and for the indexes of each RANGE. Many other variations are possible; another example might be:
CREATE TABLE ts (id INT, purchased DATE)
PARTITION BY RANGE(YEAR(purchased))
SUBPARTITION BY HASH(TO_DAYS(purchased)) (
PARTITION p0 VALUES LESS THAN (1990) (
SUBPARTITION s0a
DATA DIRECTORY = '/disk0'
INDEX DIRECTORY = '/disk1',
SUBPARTITION s0b
DATA DIRECTORY = '/disk2'
INDEX DIRECTORY = '/disk3'
),
PARTITION p1 VALUES LESS THAN (2000) (
SUBPARTITION s1a
DATA DIRECTORY = '/disk4/data'
INDEX DIRECTORY = '/disk4/idx',
SUBPARTITION s1b
DATA DIRECTORY = '/disk5/data'
INDEX DIRECTORY = '/disk5/idx'
),
PARTITION p2 VALUES LESS THAN MAXVALUE (
SUBPARTITION s2a,
SUBPARTITION s2b
)
);
Here, the storage is as follows:
Rows with purchased dates from before 1990 take up a vast amount of space, so are split up 4 ways, with a separate disk dedicated to the data and to the indexes for each of the two subpartitions (s0a and s0b) making up partition p0. In other words:
The data for subpartition s0a is stored on /disk0.
The indexes for subpartition s0a are stored on /disk1.
The data for subpartition s0b is stored on /disk2.
The indexes for subpartition s0b are stored on /disk3.
Rows containing dates ranging from 1990 to 1999 (partition p1) do not require as much room as those from before 1990. These are split between 2 disks (/disk4 and /disk5) rather than 4 disks as with the legacy records stored in p0:
Data and indexes belonging to p1's first subpartition (s1a) are stored on /disk4—the data in /disk4/data, and the indexes in /disk4/idx.
Data and indexes belonging to p1's second subpartition (s1b) are stored on /disk5—the data in /disk5/data, and the indexes in /disk5/idx.
Rows reflecting dates from the year 2000 to the present (partition p2) do not take up as much space as required by either of the two previous ranges. Currently, it is sufficient to store all of these in the default location.
In future, when the number of purchases for the decade beginning with the year 2000 grows to a point where the default location no longer provides sufficient space, the corresponding rows can be moved using an ALTER TABLE ... REORGANIZE PARTITION statement. See Section 17.3, “Partition Management”, for an explanation of how this can be done.
The DATA DIRECTORY and INDEX DIRECTORY options are not permitted in partition definitions when the NO_DIR_IN_CREATE server SQL mode is in effect. In MySQL 5.6, these options are also not permitted when defining subpartitions (Bug #42954).
17.2.7. How MySQL Partitioning Handles NULL
Partitioning in MySQL does nothing to disallow NULL as the value of a partitioning expression, whether it is a column value or the value of a user-supplied expression. Even though it is permitted to use NULL as the value of an expression that must otherwise yield an integer, it is important to keep in mind that NULL is not a number. MySQL's partitioning implementation treats NULL as being less than any non-NULL value, just as ORDER BY does.
This means that treatment of NULL varies between partitioning of different types, and may produce behavior which you do not expect if you are not prepared for it. This being the case, we discuss in this section how each MySQL partitioning type handles NULL values when determining the partition in which a row should be stored, and provide examples for each.
Handling of NULL with RANGE partitioning. If you insert a row into a table partitioned by RANGE such that the column value used to determine the partition is NULL, the row is inserted into the lowest partition. Consider these two tables in a database named p, created as follows:
mysql> CREATE TABLE t1 (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY RANGE(c1) (
-> PARTITION p0 VALUES LESS THAN (0),
-> PARTITION p1 VALUES LESS THAN (10),
-> PARTITION p2 VALUES LESS THAN MAXVALUE
->);
Query OK, 0 rows affected (0.09 sec)
mysql> CREATE TABLE t2 (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY RANGE(c1) (
-> PARTITION p0 VALUES LESS THAN (-5),
-> PARTITION p1 VALUES LESS THAN (0),
-> PARTITION p2 VALUES LESS THAN (10),
-> PARTITION p3 VALUES LESS THAN MAXVALUE
->);
Query OK, 0 rows affected (0.09 sec)
You can see the partitions created by these two CREATE TABLE statements using the following query against the PARTITIONS table in the INFORMATION_SCHEMA database:
mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
> FROM INFORMATION_SCHEMA.PARTITIONS
> WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| t1 | p0 | 0 | 0 | 0 |
| t1 | p1 | 0 | 0 | 0 |
| t1 | p2 | 0 | 0 | 0 |
| t2 | p0 | 0 | 0 | 0 |
| t2 | p1 | 0 | 0 | 0 |
| t2 | p2 | 0 | 0 | 0 |
| t2 | p3 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.00 sec)
(For more information about this table, see Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”.) Now let us populate each of these tables with a single row containing a NULL in the column used as the partitioning key, and verify that the rows were inserted using a pair of SELECT statements:
mysql> INSERT INTO t1 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO t2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM t1;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)
mysql> SELECT * FROM t2;
+------+--------+
| id | name |
+------+--------+
| NULL | mothra |
+------+--------+
1 row in set (0.00 sec)
You can see which partitions are used to store the inserted rows by rerunning the previous query against INFORMATION_SCHEMA.PARTITIONS and inspecting the output:
mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
> FROM INFORMATION_SCHEMA.PARTITIONS
> WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 't_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| t1 | p0 | 1 | 20 | 20 |
| t1 | p1 | 0 | 0 | 0 |
| t1 | p2 | 0 | 0 | 0 |
| t2 | p0 | 1 | 20 | 20 |
| t2 | p1 | 0 | 0 | 0 |
| t2 | p2 | 0 | 0 | 0 |
| t2 | p3 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)
You can also demonstrate that these rows were stored in the lowest partition of each table by dropping these partitions, and then re-running the SELECT statements:
mysql> ALTER TABLE t1 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)
mysql> ALTER TABLE t2 DROP PARTITION p0;
Query OK, 0 rows affected (0.16 sec)
mysql> SELECT * FROM t1;
Empty set (0.00 sec)
mysql> SELECT * FROM t2;
Empty set (0.00 sec)
(For more information on ALTER TABLE ... DROP PARTITION, see Section 13.1.6, “ALTER TABLE Syntax”.)
NULL is also treated in this way for partitioning expressions that use SQL functions. Suppose that we define a table using a CREATE TABLE statement such as this one:
CREATE TABLE tndate (
id INT,
dt DATE
)
PARTITION BY RANGE(YEAR(dt)) (
PARTITION p0 VALUES LESS THAN (1990),
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN MAXVALUE
);
As with other MySQL functions, YEAR(NULL) returns NULL. A row with a dt column value of NULL is treated as though the partitioning expression evaluated to a value less than any other value, and so is inserted into partition p0.
Handling of NULL with LIST partitioning. A table that is partitioned by LIST admits NULL values if and only if one of its partitions is defined using that value-list that contains NULL. The converse of this is that a table partitioned by LIST which does not explicitly use NULL in a value list rejects rows resulting in a NULL value for the partitioning expression, as shown in this example:
mysql> CREATE TABLE ts1 (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (0, 3, 6),
-> PARTITION p1 VALUES IN (1, 4, 7),
-> PARTITION p2 VALUES IN (2, 5, 8)
->);
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO ts1 VALUES (9, 'mothra');
ERROR 1504 (HY000): Table has no partition for value 9
mysql> INSERT INTO ts1 VALUES (NULL, 'mothra');
ERROR 1504 (HY000): Table has no partition for value NULL
Only rows having a c1 value between 0 and 8 inclusive can be inserted into ts1. NULL falls outside this range, just like the number 9. We can create tables ts2 and ts3 having value lists containing NULL, as shown here:
mysql> CREATE TABLE ts2 (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (0, 3, 6),
-> PARTITION p1 VALUES IN (1, 4, 7),
-> PARTITION p2 VALUES IN (2, 5, 8),
-> PARTITION p3 VALUES IN (NULL)
->);
Query OK, 0 rows affected (0.01 sec)
mysql> CREATE TABLE ts3 (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY LIST(c1) (
-> PARTITION p0 VALUES IN (0, 3, 6),
-> PARTITION p1 VALUES IN (1, 4, 7, NULL),
-> PARTITION p2 VALUES IN (2, 5, 8)
->);
Query OK, 0 rows affected (0.01 sec)
When defining value lists for partitioning, you can (and should) treat NULL just as you would any other value. For example, both VALUES IN (NULL) and VALUES IN (1, 4, 7, NULL) are valid, as are VALUES IN (1, NULL, 4, 7), VALUES IN (NULL, 1, 4, 7), and so on. You can insert a row having NULL for column c1 into each of the tables ts2 and ts3:
mysql> INSERT INTO ts2 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO ts3 VALUES (NULL, 'mothra');
Query OK, 1 row affected (0.00 sec)
By issuing the appropriate query against INFORMATION_SCHEMA.PARTITIONS, you can determine which partitions were used to store the rows just inserted (we assume, as in the previous examples, that the partitioned tables were created in the p database):
mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
> FROM INFORMATION_SCHEMA.PARTITIONS
> WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME LIKE 'ts_';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| ts2 | p0 | 0 | 0 | 0 |
| ts2 | p1 | 0 | 0 | 0 |
| ts2 | p2 | 0 | 0 | 0 |
| ts2 | p3 | 1 | 20 | 20 |
| ts3 | p0 | 0 | 0 | 0 |
| ts3 | p1 | 1 | 20 | 20 |
| ts3 | p2 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
7 rows in set (0.01 sec)
As shown earlier in this section, you can also verify which partitions were used for storing the rows by deleting these partitions and then performing a SELECT.
Handling of NULL with HASH and KEY partitioning. NULL is handled somewhat differently for tables partitioned by HASH or KEY. In these cases, any partition expression that yields a NULL value is treated as though its return value were zero. We can verify this behavior by examining the effects on the file system of creating a table partitioned by HASH and populating it with a record containing appropriate values. Suppose that you have a table th (also in the p database) created using the following statement:
mysql> CREATE TABLE th (
-> c1 INT,
-> c2 VARCHAR(20)
->)
-> PARTITION BY HASH(c1)
-> PARTITIONS 2;
Query OK, 0 rows affected (0.00 sec)
The partitions belonging to this table can be viewed using the query shown here:
mysql> SELECT TABLE_NAME,PARTITION_NAME,TABLE_ROWS,AVG_ROW_LENGTH,DATA_LENGTH
> FROM INFORMATION_SCHEMA.PARTITIONS
> WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 0 | 0 | 0 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)
Note that TABLE_ROWS for each partition is 0. Now insert two rows into th whose c1 column values are NULL and 0, and verify that these rows were inserted, as shown here:
mysql> INSERT INTO th VALUES (NULL, 'mothra'), (0, 'gigan');
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM th;
+------+---------+
| c1 | c2 |
+------+---------+
| NULL | mothra |
+------+---------+
| 0 | gigan |
+------+---------+
2 rows in set (0.01 sec)
Recall that for any integer N, the value of NULL MOD N is always NULL. For tables that are partitioned by HASH or KEY, this result is treated for determining the correct partition as 0. Checking the INFORMATION_SCHEMA.PARTITIONS table once again, we can see that both rows were inserted into partition p0:
mysql> SELECT TABLE_NAME, PARTITION_NAME, TABLE_ROWS, AVG_ROW_LENGTH, DATA_LENGTH
> FROM INFORMATION_SCHEMA.PARTITIONS
> WHERE TABLE_SCHEMA = 'p' AND TABLE_NAME ='th';
+------------+----------------+------------+----------------+-------------+
| TABLE_NAME | PARTITION_NAME | TABLE_ROWS | AVG_ROW_LENGTH | DATA_LENGTH |
+------------+----------------+------------+----------------+-------------+
| th | p0 | 2 | 20 | 20 |
| th | p1 | 0 | 0 | 0 |
+------------+----------------+------------+----------------+-------------+
2 rows in set (0.00 sec)
If you repeat this example using PARTITION BY KEY in place of PARTITION BY HASH in the definition of the table, you can verify easily that NULL is also treated like 0 for this type of partitioning.
17.3. Partition Management
MySQL 5.6 provides a number of ways to modify partitioned tables. It is possible to add, drop, redefine, merge, or split existing partitions. All of these actions can be carried out using the partitioning extensions to the ALTER TABLE statement. There are also ways to obtain information about partitioned tables and partitions. We discuss these topics in the sections that follow.
For information about partition management in tables partitioned by RANGE or LIST, see Section 17.3.1, “Management of RANGE and LIST Partitions”.
For a discussion of managing HASH and KEY partitions, see Section 17.3.2, “Management of HASH and KEY Partitions”.
See Section 17.3.5, “Obtaining Information About Partitions”, for a discussion of mechanisms provided in MySQL 5.6 for obtaining information about partitioned tables and partitions.
For a discussion of performing maintenance operations on partitions, see Section 17.3.4, “Maintenance of Partitions”.
Note
In MySQL 5.6, all partitions of a partitioned table must have the same number of subpartitions, and it is not possible to change the subpartitioning once the table has been created.
To change a table's partitioning scheme, it is necessary only to use the ALTER TABLE statement with a partition_options clause. This clause has the same syntax as that as used with CREATE TABLE for creating a partitioned table, and always begins with the keywords PARTITION BY. Suppose that you have a table partitioned by range using the following CREATE TABLE statement:
CREATE TABLE trb3 (id INT, name VARCHAR(50), purchased DATE)
PARTITION BY RANGE(YEAR(purchased)) (
PARTITION p0 VALUES LESS THAN (1990),
PARTITION p1 VALUES LESS THAN (1995),
PARTITION p2 VALUES LESS THAN (2000),
PARTITION p3 VALUES LESS THAN (2005)
);
To repartition this table so that it is partitioned by key into two partitions using the id column value as the basis for the key, you can use this statement:
ALTER TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;
This has the same effect on the structure of the table as dropping the table and re-creating it using CREATE TABLE trb3 PARTITION BY KEY(id) PARTITIONS 2;.
ALTER TABLE ... ENGINE = ... changes only the storage engine used by the table, and leaves the table's partitioning scheme intact. Use ALTER TABLE ... REMOVE PARTITIONING to remove a table's partitioning. See Section 13.1.6, “ALTER TABLE Syntax”.
Important
Only a single PARTITION BY, ADD PARTITION, DROP PARTITION, REORGANIZE PARTITION, or COALESCE PARTITION clause can be used in a given ALTER TABLE statement. If you (for example) wish to drop a partition and reorganize a table's remaining partitions, you must do so in two separate ALTER TABLE statements (one using DROP PARTITION and then a second one using REORGANIZE PARTITIONS).
In MySQL 5.6, it is possible to delete all rows from one or more selected partitions using ALTER TABLE ... TRUNCATE PARTITION.
17.3.1. Management of RANGE and LIST Partitions
Range and list partitions are very similar with regard to how the adding and dropping of partitions are handled. For this reason we discuss the management of both sorts of partitioning in this section. For information about working with tables that are partitioned by hash or key, see Section 17.3.2, “Management of HASH and KEY Partitions”. Dropping a RANGE or LIST partition is more straightforward than adding one, so we discuss this first.
Dropping a partition from a table that is partitioned by either RANGE or by LIST can be accomplished using the ALTER TABLE statement with a DROP PARTITION clause. Here is a very basic example, which supposes that you have already created a table which is partitioned by range and then populated with 10 records using the following CREATE TABLE and INSERT statements:
mysql> CREATE TABLE tr (id INT, name VARCHAR(50), purchased DATE)
-> PARTITION BY RANGE(YEAR(purchased)) (
-> PARTITION p0 VALUES LESS THAN (1990),
-> PARTITION p1 VALUES LESS THAN (1995),
-> PARTITION p2 VALUES LESS THAN (2000),
-> PARTITION p3 VALUES LESS THAN (2005)
->);
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO tr VALUES
-> (1, 'desk organiser', '2003-10-15'),
-> (2, 'CD player', '1993-11-05'),
-> (3, 'TV set', '1996-03-10'),
-> (4, 'bookcase', '1982-01-10'),
-> (5, 'exercise bike', '2004-05-09'),
-> (6, 'sofa', '1987-06-05'),
-> (7, 'popcorn maker', '2001-11-22'),
-> (8, 'aquarium', '1992-08-04'),
-> (9, 'study desk', '1984-09-16'),
-> (10, 'lava lamp', '1998-12-25');
Query OK, 10 rows affected (0.01 sec)
You can see which items should have been inserted into partition p2 as shown here:
mysql> SELECT * FROM tr
-> WHERE purchased BETWEEN '1995-01-01' AND '1999-12-31';
+------+-----------+------------+
| id | name | purchased |
+------+-----------+------------+
| 3 | TV set | 1996-03-10 |
| 10 | lava lamp | 1998-12-25 |
+------+-----------+------------+
2 rows in set (0.00 sec)
To drop the partition named p2, execute the following command:
mysql> ALTER TABLE tr DROP PARTITION p2;
Query OK, 0 rows affected (0.03 sec)
It is very important to remember that, when you drop a partition, you also delete all the data that was stored in that partition. You can see that this is the case by re-running the previous SELECT query:
mysql> SELECT * FROM tr WHERE purchased
-> BETWEEN '1995-01-01' AND '1999-12-31';
Empty set (0.00 sec)
Because of this, you must have the DROP privilege for a table before you can execute ALTER TABLE ... DROP PARTITION on that table.
If you wish to drop all data from all partitions while preserving the table definition and its partitioning scheme, use the TRUNCATE TABLE statement. (See Section 13.1.27, “TRUNCATE TABLE Syntax”.)
If you intend to change the partitioning of a table without losing data, use ALTER TABLE ... REORGANIZE PARTITION instead. See below or in Section 13.1.6, “ALTER TABLE Syntax”, for information about REORGANIZE PARTITION.
If you now execute a SHOW CREATE TABLE statement, you can see how the partitioning makeup of the table has been changed:
mysql> SHOW CREATE TABLE tr\G
*************************** 1. row ***************************
Table: tr
Create Table: CREATE TABLE `tr` (
`id` int(11) default NULL,
`name` varchar(50) default NULL,
`purchased` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (
PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM
)
1 row in set (0.01 sec)
When you insert new rows into the changed table with purchased column values between '1995-01-01' and '2004-12-31' inclusive, those rows will be stored in partition p3. You can verify this as follows:
mysql> INSERT INTO tr VALUES (11, 'pencil holder', '1995-07-12');
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM tr WHERE purchased
-> BETWEEN '1995-01-01' AND '2004-12-31';
+------+----------------+------------+
| id | name | purchased |
+------+----------------+------------+
| 11 | pencil holder | 1995-07-12 |
| 1 | desk organiser | 2003-10-15 |
| 5 | exercise bike | 2004-05-09 |
| 7 | popcorn maker | 2001-11-22 |
+------+----------------+------------+
4 rows in set (0.00 sec)
mysql> ALTER TABLE tr DROP PARTITION p3;
Query OK, 0 rows affected (0.03 sec)
mysql> SELECT * FROM tr WHERE purchased
-> BETWEEN '1995-01-01' AND '2004-12-31';
Empty set (0.00 sec)
Note that the number of rows dropped from the table as a result of ALTER TABLE ... DROP PARTITION is not reported by the server as it would be by the equivalent DELETE query.
Dropping LIST partitions uses exactly the same ALTER TABLE ... DROP PARTITION syntax as used for dropping RANGE partitions. However, there is one important difference in the effect this has on your use of the table afterward: You can no longer insert into the table any rows having any of the values that were included in the value list defining the deleted partition. (See Section 17.2.2, “LIST Partitioning”, for an example.)
To add a new range or list partition to a previously partitioned table, use the ALTER TABLE ... ADD PARTITION statement. For tables which are partitioned by RANGE, this can be used to add a new range to the end of the list of existing partitions. Suppose that you have a partitioned table containing membership data for your organization, which is defined as follows:
CREATE TABLE members (
id INT,
fname VARCHAR(25),
lname VARCHAR(25),
dob DATE
)
PARTITION BY RANGE(YEAR(dob)) (
PARTITION p0 VALUES LESS THAN (1970),
PARTITION p1 VALUES LESS THAN (1980),
PARTITION p2 VALUES LESS THAN (1990)
);
Suppose further that the minimum age for members is 16. As the calendar approaches the end of 2005, you realize that you will soon be admitting members who were born in 1990 (and later in years to come). You can modify the members table to accommodate new members born in the years 1990 to 1999 as shown here:
ALTER TABLE members ADD PARTITION (PARTITION p3 VALUES LESS THAN (2000));
With tables that are partitioned by range, you can use ADD PARTITION to add new partitions to the high end of the partitions list only. Trying to add a new partition in this manner between or before existing partitions results in an error as shown here:
mysql> ALTER TABLE members
> ADD PARTITION (
> PARTITION n VALUES LESS THAN (1960));
ERROR 1463 (HY000): VALUES LESS THAN value must be strictly »
increasing for each partition
You can work around this problem by reorganizing the first partition into two new ones that split the range between them, like this:
ALTER TABLE members
REORGANIZE PARTITION p0 INTO (
PARTITION n0 VALUES LESS THAN (1960),
PARTITION n1 VALUES LESS THAN (1970)
);
Using SHOW CREATE TABLE you can see that the ALTER TABLE statement has had the desired effect:
mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
Table: members
Create Table: CREATE TABLE `members` (
`id` int(11) DEFAULT NULL,
`fname` varchar(25) DEFAULT NULL,
`lname` varchar(25) DEFAULT NULL,
`dob` date DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (YEAR(dob))
(PARTITION n0 VALUES LESS THAN (1960) ENGINE = InnoDB,
PARTITION n1 VALUES LESS THAN (1970) ENGINE = InnoDB,
PARTITION p1 VALUES LESS THAN (1980) ENGINE = InnoDB,
PARTITION p2 VALUES LESS THAN (1990) ENGINE = InnoDB,
PARTITION p3 VALUES LESS THAN (2000) ENGINE = InnoDB) */
1 row in set (0.00 sec)
See also Section 13.1.6.1, “ALTER TABLE Partition Operations”.
You can also use ALTER TABLE ... ADD PARTITION to add new partitions to a table that is partitioned by LIST. Suppose a table tt is defined using the following CREATE TABLE statement:
CREATE TABLE tt (
id INT,
data INT
)
PARTITION BY LIST(data) (
PARTITION p0 VALUES IN (5, 10, 15),
PARTITION p1 VALUES IN (6, 12, 18)
);
You can add a new partition in which to store rows having the data column values 7, 14, and 21 as shown:
ALTER TABLE tt ADD PARTITION (PARTITION p2 VALUES IN (7, 14, 21));
Note that you cannot add a new LIST partition encompassing any values that are already included in the value list of an existing partition. If you attempt to do so, an error will result:
mysql> ALTER TABLE tt ADD PARTITION
> (PARTITION np VALUES IN (4, 8, 12));
ERROR 1465 (HY000): Multiple definition of same constant »
in list partitioning
Because any rows with the data column value 12 have already been assigned to partition p1, you cannot create a new partition on table tt that includes 12 in its value list. To accomplish this, you could drop p1, and add np and then a new p1 with a modified definition. However, as discussed earlier, this would result in the loss of all data stored in p1—and it is often the case that this is not what you really want to do. Another solution might appear to be to make a copy of the table with the new partitioning and to copy the data into it using CREATE TABLE ... SELECT ..., then drop the old table and rename the new one, but this could be very time-consuming when dealing with a large amounts of data. This also might not be feasible in situations where high availability is a requirement.
You can add multiple partitions in a single ALTER TABLE ... ADD PARTITION statement as shown here:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
hired DATE NOT NULL
)
PARTITION BY RANGE(YEAR(hired)) (
PARTITION p1 VALUES LESS THAN (1991),
PARTITION p2 VALUES LESS THAN (1996),
PARTITION p3 VALUES LESS THAN (2001),
PARTITION p4 VALUES LESS THAN (2005)
);
ALTER TABLE employees ADD PARTITION (
PARTITION p5 VALUES LESS THAN (2010),
PARTITION p6 VALUES LESS THAN MAXVALUE
);
Fortunately, MySQL's partitioning implementation provides ways to redefine partitions without losing data. Let us look first at a couple of simple examples involving RANGE partitioning. Recall the members table which is now defined as shown here:
mysql> SHOW CREATE TABLE members\G
*************************** 1. row ***************************
Table: members
Create Table: CREATE TABLE `members` (
`id` int(11) default NULL,
`fname` varchar(25) default NULL,
`lname` varchar(25) default NULL,
`dob` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(dob)) (
PARTITION p0 VALUES LESS THAN (1970) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (1980) ENGINE = MyISAM,
PARTITION p2 VALUES LESS THAN (1990) ENGINE = MyISAM.
PARTITION p3 VALUES LESS THAN (2000) ENGINE = MyISAM
)
Suppose that you would like to move all rows representing members born before 1960 into a separate partition. As we have already seen, this cannot be done using ALTER TABLE ... ADD PARTITION. However, you can use another partition-related extension to ALTER TABLE to accomplish this:
ALTER TABLE members REORGANIZE PARTITION p0 INTO (
PARTITION s0 VALUES LESS THAN (1960),
PARTITION s1 VALUES LESS THAN (1970)
);
In effect, this command splits partition p0 into two new partitions s0 and s1. It also moves the data that was stored in p0 into the new partitions according to the rules embodied in the two PARTITION ... VALUES ... clauses, so that s0 contains only those records for which YEAR(dob) is less than 1960 and s1 contains those rows in which YEAR(dob) is greater than or equal to 1960 but less than 1970.
A REORGANIZE PARTITION clause may also be used for merging adjacent partitions. You can return the members table to its previous partitioning as shown here:
ALTER TABLE members REORGANIZE PARTITION s0,s1 INTO (
PARTITION p0 VALUES LESS THAN (1970)
);
No data is lost in splitting or merging partitions using REORGANIZE PARTITION. In executing the above statement, MySQL moves all of the records that were stored in partitions s0 and s1 into partition p0.
The general syntax for REORGANIZE PARTITION is shown here:
ALTER TABLE tbl_name
REORGANIZE PARTITION partition_list
INTO (partition_definitions);
Here, tbl_name is the name of the partitioned table, and partition_list is a comma-separated list of names of one or more existing partitions to be changed. partition_definitions is a comma-separated list of new partition definitions, which follow the same rules as for the partition_definitions list used in CREATE TABLE (see Section 13.1.14, “CREATE TABLE Syntax”). It should be noted that you are not limited to merging several partitions into one, or to splitting one partition into many, when using REORGANIZE PARTITION. For example, you can reorganize all four partitions of the members table into two, as follows:
ALTER TABLE members REORGANIZE PARTITION p0,p1,p2,p3 INTO (
PARTITION m0 VALUES LESS THAN (1980),
PARTITION m1 VALUES LESS THAN (2000)
);
You can also use REORGANIZE PARTITION with tables that are partitioned by LIST. Let us return to the problem of adding a new partition to the list-partitioned tt table and failing because the new partition had a value that was already present in the value-list of one of the existing partitions. We can handle this by adding a partition that contains only nonconflicting values, and then reorganizing the new partition and the existing one so that the value which was stored in the existing one is now moved to the new one:
ALTER TABLE tt ADD PARTITION (PARTITION np VALUES IN (4, 8));
ALTER TABLE tt REORGANIZE PARTITION p1,np INTO (
PARTITION p1 VALUES IN (6, 18),
PARTITION np VALUES in (4, 8, 12)
);
Here are some key points to keep in mind when using ALTER TABLE ... REORGANIZE PARTITION to repartition tables that are partitioned by RANGE or LIST:
The PARTITION clauses used to determine the new partitioning scheme are subject to the same rules as those used with a CREATE TABLE statement.
Most importantly, you should remember that the new partitioning scheme cannot have any overlapping ranges (applies to tables partitioned by RANGE) or sets of values (when reorganizing tables partitioned by LIST).
The combination of partitions in the partition_definitions list should account for the same range or set of values overall as the combined partitions named in the partition_list.
For instance, in the members table used as an example in this section, partitions p1 and p2 together cover the years 1980 through 1999. Therefore, any reorganization of these two partitions should cover the same range of years overall.
For tables partitioned by RANGE, you can reorganize only adjacent partitions; you cannot skip over range partitions.
For instance, you could not reorganize the members table used as an example in this section using a statement beginning with ALTER TABLE members REORGANIZE PARTITION p0,p2 INTO ... because p0 covers the years prior to 1970 and p2 the years from 1990 through 1999 inclusive, and thus the two are not adjacent partitions.
You cannot use REORGANIZE PARTITION to change the table's partitioning type; that is, you cannot (for example) change RANGE partitions to HASH partitions or vice versa. You also cannot use this command to change the partitioning expression or column. To accomplish either of these tasks without dropping and re-creating the table, you can use ALTER TABLE ... PARTITION BY For example:
ALTER TABLE members
PARTITION BY HASH(YEAR(dob))
PARTITIONS 8;
17.3.2. Management of HASH and KEY Partitions
Tables which are partitioned by hash or by key are very similar to one another with regard to making changes in a partitioning setup, and both differ in a number of ways from tables which have been partitioned by range or list. For that reason, this section addresses the modification of tables partitioned by hash or by key only. For a discussion of adding and dropping of partitions of tables that are partitioned by range or list, see Section 17.3.1, “Management of RANGE and LIST Partitions”.
You cannot drop partitions from tables that are partitioned by HASH or KEY in the same way that you can from tables that are partitioned by RANGE or LIST. However, you can merge HASH or KEY partitions using the ALTER TABLE ... COALESCE PARTITION statement. Suppose that you have a table containing data about clients, which is divided into twelve partitions. The clients table is defined as shown here:
CREATE TABLE clients (
id INT,
fname VARCHAR(30),
lname VARCHAR(30),
signed DATE
)
PARTITION BY HASH(MONTH(signed))
PARTITIONS 12;
To reduce the number of partitions from twelve to eight, execute the following ALTER TABLE command:
mysql> ALTER TABLE clients COALESCE PARTITION 4;
Query OK, 0 rows affected (0.02 sec)
COALESCE works equally well with tables that are partitioned by HASH, KEY, LINEAR HASH, or LINEAR KEY. Here is an example similar to the previous one, differing only in that the table is partitioned by LINEAR KEY:
mysql> CREATE TABLE clients_lk (
-> id INT,
-> fname VARCHAR(30),
-> lname VARCHAR(30),
-> signed DATE
->)
-> PARTITION BY LINEAR KEY(signed)
-> PARTITIONS 12;
Query OK, 0 rows affected (0.03 sec)
mysql> ALTER TABLE clients_lk COALESCE PARTITION 4;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0
Note that the number following COALESCE PARTITION is the number of partitions to merge into the remainder—in other words, it is the number of partitions to remove from the table.
If you attempt to remove more partitions than the table has, the result is an error like the one shown:
mysql> ALTER TABLE clients COALESCE PARTITION 18;
ERROR 1478 (HY000): Cannot remove all partitions, use DROP TABLE instead
To increase the number of partitions for the clients table from 12 to 18. use ALTER TABLE ... ADD PARTITION as shown here:
ALTER TABLE clients ADD PARTITION PARTITIONS 6;
17.3.3. Exchanging Partitions and Subpartitions with Tables
In MySQL 5.6, it is possible to exchange a table partition or subpartition with a table using the ALTER TABLE ... EXCHANGE PARTITION statement—that is, to move any existing rows in the partition or subpartition to the nonpartitioned table, and any existing rows in the nonpartitioned table to the table partition or subpartition.
Such operations are subject to the following conditions:
The table to be exchanged must not be partitioned, but must otherwise have the same table structure as the partitioned table.
The table to be exchanged must not be a temporary table.
Any rows existing in the nonpartitioned table prior to the exchange must lie within the range defined for the partition or subpartition.
The table to be exchanged may not have any foreign keys, nor may any other tables have foreign keys which reference this table.
In addition to the ALTER, INSERT, and CREATE privileges usually required for ALTER TABLE statements, you must have the DROP privilege to perform ALTER TABLE ... EXCHANGE PARTITION.
In addition, you should also be aware of the following effects of ALTER TABLE ... EXCHANGE PARTITION:
Executing this statement does not invoke any triggers on either the partitioned table or the exchanged table.
Any AUTO_INCREMENT columns in the exchanged table are reset.
The complete syntax of the the ALTER TABLE ... EXCHANGE PARTITION statement is shown here, where pt is the partitioned table, p is the partition or subpartition to be exchanged, and t is the nonpartitioned table to be exchanged with p:
ALTER TABLE pt
EXCHANGE PARTITION p
WITH TABLE t;
One and only one partition or subpartition may be exchanged with one and only one nonpartitioned table in a single ALTER TABLE EXCHANGE PARTITION statement. To exchange multiple partitions or subpartitions, use multiple ALTER TABLE EXCHANGE PARTITION statements. EXCHANGE PARTITION may not be combined with other ALTER TABLE options. The partitioning and (if applicable) subpartitioning used by the partitioned table may be of any type or types supported in MySQL 5.6.
Suppose that a partitioned table e has been created and populated using the following SQL statements:
CREATE TABLE e (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30)
)
PARTITION BY RANGE (id) (
PARTITION p0 VALUES LESS THAN (50),
PARTITION p1 VALUES LESS THAN (100),
PARTITION p2 VALUES LESS THAN (150),
PARTITION p3 VALUES LESS THAN (MAXVALUE)
);
INSERT INTO e VALUES
(1669, "Jim", "Smith"),
(337, "Mary", "Jones"),
(16, "Frank", "White"),
(2005, "Linda", "Black");
Now we create a nonpartitioned copy of e named e2. This can be done using the mysql client as shown here:
mysql> CREATE TABLE e2 LIKE e;
Query OK, 0 rows affected (1.34 sec)
mysql> ALTER TABLE e2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.90 sec)
Records: 0 Duplicates: 0 Warnings: 0
You can see which partitions in table e contain rows by querying the INFORMATION_SCHEMA.PARTITIONS table, like this:
mysql> SELECT PARTITION_NAME, TABLE_ROWS
-> FROM INFORMATION_SCHEMA.PARTITIONS
-> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 1 |
| p1 | 0 |
| p2 | 0 |
| p3 | 3 |
+----------------+------------+
4 rows in set (0.00 sec)
To exchange partition p0 in table e with table e2, you can use the ALTER TABLE statement shown here:
mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)
More precisely, the statement just issued causes any rows found in the partition to be swapped with those found in the table. You can observe how this has happened by querying the INFORMATION_SCHEMA.PARTITIONS table, as before. The table row that was previously found in partition p0 is no longer present:
mysql> SELECT PARTITION_NAME, TABLE_ROWS
-> FROM INFORMATION_SCHEMA.PARTITIONS
-> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 0 |
| p1 | 0 |
| p2 | 0 |
| p3 | 3 |
+----------------+------------+
4 rows in set (0.00 sec)
If you query table e2, you can see that the “missing” row can now be found there:
mysql> SELECT * FROM e2;
+----+-------+-------+
| id | fname | lname |
+----+-------+-------+
| 16 | Frank | White |
+----+-------+-------+
1 row in set (0.00 sec)
The table to be exchanged with the partition does not necessarily have to be empty. To demonstrate this, we first insert a new row into table e, making sure that this row is stored in partition p0 by choosing an id column value that is less than 50, and verifying this afterwards by querying the PARTITIONS table:
mysql> INSERT INTO e VALUES (41, "Michael", "Green");
Query OK, 1 row affected (0.05 sec)
mysql> SELECT PARTITION_NAME, TABLE_ROWS
-> FROM INFORMATION_SCHEMA.PARTITIONS
-> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 1 |
| p1 | 0 |
| p2 | 0 |
| p3 | 3 |
+----------------+------------+
4 rows in set (0.00 sec)
Now we once again exchange partition p0 with table e2 using the same ALTER TABLE statement as previously:
mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
Query OK, 0 rows affected (0.28 sec)
The output of the following queries shows that the table row that was stored in partition p0 and the table row that was stored in table e2, prior to issuing the ALTER TABLE statement, have now switched places:
mysql> SELECT * FROM e;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
| 16 | Frank | White |
| 1669 | Jim | Smith |
| 337 | Mary | Jones |
| 2005 | Linda | Black |
+------+-------+-------+
4 rows in set (0.00 sec)
mysql> SELECT PARTITION_NAME, TABLE_ROWS
-> FROM INFORMATION_SCHEMA.PARTITIONS
-> WHERE TABLE_NAME = 'e';
+----------------+------------+
| PARTITION_NAME | TABLE_ROWS |
+----------------+------------+
| p0 | 1 |
| p1 | 0 |
| p2 | 0 |
| p3 | 3 |
+----------------+------------+
4 rows in set (0.00 sec)
mysql> SELECT * FROM e2;
+----+---------+-------+
| id | fname | lname |
+----+---------+-------+
| 41 | Michael | Green |
+----+---------+-------+
1 row in set (0.00 sec)
You should keep in mind that any rows found in the nonpartitioned table prior to issuing the ALTER TABLE ... EXCHANGE PARTITION statement must meet any conditions required for them to be stored in the target partition; otherwise, the statement fails. To see how this occurs, first insert a row into e2 that cannot be stored in partition p0 of table e because its id column value is too large; then, try to exchange the table with the partition again:
mysql> INSERT INTO e2 VALUES (51, "Ellen", "McDonald");
Query OK, 1 row affected (0.08 sec)
mysql> ALTER TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
ERROR 1707 (HY000): Found row that does not match the partition
The IGNORE keyword is accepted, but has no effect when used with EXCHANGE PARTITION, as shown here:
mysql> ALTER IGNORE TABLE e EXCHANGE PARTITION p0 WITH TABLE e2;
ERROR 1707 (HY000): Found row that does not match the partition
You can also exchange a subpartition of a subpartitioned table (see Section 17.2.6, “Subpartitioning”) with a nonpartitioned table using an ALTER TABLE ... EXCHANGE PARTITION statement. In the following example, we first create a table es that is partitioned by RANGE and subpartitioned by KEY, populate this table as we did table e, and then create an empty, nonpartitioned copy es2 of the table, as shown here:
mysql> CREATE TABLE es (
-> id INT NOT NULL,
-> fname VARCHAR(30),
-> lname VARCHAR(30)
->)
-> PARTITION BY RANGE (id)
-> SUBPARTITION BY KEY (lname)
-> SUBPARTITIONS 2 (
-> PARTITION p0 VALUES LESS THAN (50),
-> PARTITION p1 VALUES LESS THAN (100),
-> PARTITION p2 VALUES LESS THAN (150),
-> PARTITION p3 VALUES LESS THAN (MAXVALUE)
->);
Query OK, 0 rows affected (2.76 sec)
mysql> INSERT INTO es VALUES
-> (1669, "Jim", "Smith"),
-> (337, "Mary", "Jones"),
-> (16, "Frank", "White"),
-> (2005, "Linda", "Black");
Query OK, 4 rows affected (0.04 sec)
Records: 4 Duplicates: 0 Warnings: 0
mysql> CREATE TABLE es2 LIKE es;
Query OK, 0 rows affected (1.27 sec)
mysql> ALTER TABLE es2 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.70 sec)
Records: 0 Duplicates: 0 Warnings: 0
Although we did not explicitly name any of the subpartitions when creating table es, we can obtain generated names for these by including the SUBPARTITION_NAME of the PARTITIONS table from INFORMATION_SCHEMA when selecting from that table, as shown here:
mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
-> FROM INFORMATION_SCHEMA.PARTITIONS
-> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
| p0 | p0sp0 | 1 |
| p0 | p0sp1 | 0 |
| p1 | p1sp0 | 0 |
| p1 | p1sp1 | 0 |
| p2 | p2sp0 | 0 |
| p2 | p2sp1 | 0 |
| p3 | p3sp0 | 3 |
| p3 | p3sp1 | 0 |
+----------------+-------------------+------------+
8 rows in set (0.00 sec)
The following ALTER TABLE statement exchanges subpartition p3sp0 table es with the nonpartitioned table es2:
mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es2;
Query OK, 0 rows affected (0.29 sec)
You can verify that the rows were exchanged by issuing the following queries:
mysql> SELECT PARTITION_NAME, SUBPARTITION_NAME, TABLE_ROWS
-> FROM INFORMATION_SCHEMA.PARTITIONS
-> WHERE TABLE_NAME = 'es';
+----------------+-------------------+------------+
| PARTITION_NAME | SUBPARTITION_NAME | TABLE_ROWS |
+----------------+-------------------+------------+
| p0 | p0sp0 | 1 |
| p0 | p0sp1 | 0 |
| p1 | p1sp0 | 0 |
| p1 | p1sp1 | 0 |
| p2 | p2sp0 | 0 |
| p2 | p2sp1 | 0 |
| p3 | p3sp0 | 0 |
| p3 | p3sp1 | 0 |
+----------------+-------------------+------------+
8 rows in set (0.00 sec)
mysql> SELECT * FROM es2;
+------+-------+-------+
| id | fname | lname |
+------+-------+-------+
| 1669 | Jim | Smith |
| 337 | Mary | Jones |
| 2005 | Linda | Black |
+------+-------+-------+
3 rows in set (0.00 sec)
If a table is subpartitioned, you can exchange only a subpartition of the table—not an entire partition—with an unpartitioned table, as shown here:
mysql> ALTER TABLE es EXCHANGE PARTITION p3 WITH TABLE es2;
ERROR 1704 (HY000): Subpartitioned table, use subpartition instead of partition
The comparison of table structures used by MySQL is very strict. The number, order, names, and types of columns and indexes of the partitioned table and the nonpartitioned table must match exactly. In addition, both tables must use the same storage engine:
mysql> CREATE TABLE es3 LIKE e;
Query OK, 0 rows affected (1.31 sec)
mysql> ALTER TABLE es3 REMOVE PARTITIONING;
Query OK, 0 rows affected (0.53 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> SHOW CREATE TABLE es3\G
*************************** 1. row ***************************
Table: es3
Create Table: CREATE TABLE `es3` (
`id` int(11) NOT NULL,
`fname` varchar(30) DEFAULT NULL,
`lname` varchar(30) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
mysql> ALTER TABLE es3 ENGINE = MyISAM;
Query OK, 0 rows affected (0.15 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> ALTER TABLE es EXCHANGE PARTITION p3sp0 WITH TABLE es3;
ERROR 1497 (HY000): The mix of handlers in the partitions is not allowed in this version of MySQL
17.3.4. Maintenance of Partitions
A number of table and partition maintenance tasks can be carried out using SQL statements intended for such purposes on partitioned tables in MySQL 5.6.
Table maintenance of partitioned tables can be accomplished using the statements CHECK TABLE, OPTIMIZE TABLE, ANALYZE TABLE, and REPAIR TABLE, which are supported for partitioned tables.
You can use a number of extensions to ALTER TABLE for performing operations of this type on one or more partitions directly, as described in the following list:
Rebuilding partitions. Rebuilds the partition; this has the same effect as dropping all records stored in the partition, then reinserting them. This can be useful for purposes of defragmentation.
Example:
ALTER TABLE t1 REBUILD PARTITION p0, p1;
Optimizing partitions. If you have deleted a large number of rows from a partition or if you have made many changes to a partitioned table with variable-length rows (that is, having VARCHAR, BLOB, or TEXT columns), you can use ALTER TABLE ... OPTIMIZE PARTITION to reclaim any unused space and to defragment the partition data file.
Example:
ALTER TABLE t1 OPTIMIZE PARTITION p0, p1;
Using OPTIMIZE PARTITION on a given partition is equivalent to running CHECK PARTITION, ANALYZE PARTITION, and REPAIR PARTITION on that partition.
Analyzing partitions. This reads and stores the key distributions for partitions.
Example:
ALTER TABLE t1 ANALYZE PARTITION p3;
Repairing partitions. This repairs corrupted partitions.
Example:
ALTER TABLE t1 REPAIR PARTITION p0,p1;
Checking partitions. You can check partitions for errors in much the same way that you can use CHECK TABLE with nonpartitioned tables.
Example:
ALTER TABLE trb3 CHECK PARTITION p1;
This command will tell you if the data or indexes in partition p1 of table t1 are corrupted. If this is the case, use ALTER TABLE ... REPAIR PARTITION to repair the partition.
Each of the statements in the list just shown also supports the keyword ALL in place of the list of partition names. Using ALL causes the statement to act on all partitions in the table.
The use of mysqlcheck and myisamchk is not supported with partitioned tables.
In MySQL 5.6, you can also truncate partitions using ALTER TABLE ... TRUNCATE PARTITION. This statement can be used to delete all rows from one or more partitions in much the same way that TRUNCATE TABLE deletes all rows from a table.
ALTER TABLE ... TRUNCATE PARTITION ALL truncates all partitions in the table.
17.3.5. Obtaining Information About Partitions
This section discusses obtaining information about existing partitions, which can be done in a number of ways. Methods of obtaining such information include the following:
Using the SHOW CREATE TABLE statement to view the partitioning clauses used in creating a partitioned table.
Using the SHOW TABLE STATUS statement to determine whether a table is partitioned.
Querying the INFORMATION_SCHEMA.PARTITIONS table.
Using the statement EXPLAIN PARTITIONS SELECT to see which partitions are used by a given SELECT.
As discussed elsewhere in this chapter, SHOW CREATE TABLE includes in its output the PARTITION BY clause used to create a partitioned table. For example:
mysql> SHOW CREATE TABLE trb3\G
*************************** 1. row ***************************
Table: trb3
Create Table: CREATE TABLE `trb3` (
`id` int(11) default NULL,
`name` varchar(50) default NULL,
`purchased` date default NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(purchased)) (
PARTITION p0 VALUES LESS THAN (1990) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (1995) ENGINE = MyISAM,
PARTITION p2 VALUES LESS THAN (2000) ENGINE = MyISAM,
PARTITION p3 VALUES LESS THAN (2005) ENGINE = MyISAM
)
1 row in set (0.00 sec)
The output from SHOW TABLE STATUS for partitioned tables is the same as that for nonpartitioned tables, except that the Create_options column contains the string partitioned. The Engine column contains the name of the storage engine used by all partitions of the table. (See Section 13.7.5.37, “SHOW TABLE STATUS Syntax”, for more information about this statement.)
You can also obtain information about partitions from INFORMATION_SCHEMA, which contains a PARTITIONS table. See Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”.
It is possible to determine which partitions of a partitioned table are involved in a given SELECT query using EXPLAIN PARTITIONS. The PARTITIONS keyword adds a partitions column to the output of EXPLAIN listing the partitions from which records would be matched by the query.
Suppose that you have a table trb1 created and populated as follows:
CREATE TABLE trb1 (id INT, name VARCHAR(50), purchased DATE)
PARTITION BY RANGE(id)
(
PARTITION p0 VALUES LESS THAN (3),
PARTITION p1 VALUES LESS THAN (7),
PARTITION p2 VALUES LESS THAN (9),
PARTITION p3 VALUES LESS THAN (11)
);
INSERT INTO trb1 VALUES
(1, 'desk organiser', '2003-10-15'),
(2, 'CD player', '1993-11-05'),
(3, 'TV set', '1996-03-10'),
(4, 'bookcase', '1982-01-10'),
(5, 'exercise bike', '2004-05-09'),
(6, 'sofa', '1987-06-05'),
(7, 'popcorn maker', '2001-11-22'),
(8, 'aquarium', '1992-08-04'),
(9, 'study desk', '1984-09-16'),
(10, 'lava lamp', '1998-12-25');
You can see which partitions are used in a query such as SELECT * FROM trb1;, as shown here:
mysql> EXPLAIN PARTITIONS SELECT * FROM trb1\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: trb1
partitions: p0,p1,p2,p3
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 10
Extra: Using filesort
In this case, all four partitions are searched. However, when a limiting condition making use of the partitioning key is added to the query, you can see that only those partitions containing matching values are scanned, as shown here:
mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: trb1
partitions: p0,p1
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 10
Extra: Using where
EXPLAIN PARTITIONS provides information about keys used and possible keys, just as with the standard EXPLAIN SELECT statement:
mysql> ALTER TABLE trb1 ADD PRIMARY KEY (id);
Query OK, 10 rows affected (0.03 sec)
Records: 10 Duplicates: 0 Warnings: 0
mysql> EXPLAIN PARTITIONS SELECT * FROM trb1 WHERE id < 5\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: trb1
partitions: p0,p1
type: range
possible_keys: PRIMARY
key: PRIMARY
key_len: 4
ref: NULL
rows: 7
Extra: Using where
You should take note of the following restrictions and limitations on EXPLAIN PARTITIONS:
You cannot use the PARTITIONS and EXTENDED keywords together in the same EXPLAIN ... SELECT statement. Attempting to do so produces a syntax error.
If EXPLAIN PARTITIONS is used to examine a query against a nonpartitioned table, no error is produced, but the value of the partitions column is always NULL.
The rows column of EXPLAIN PARTITIONS output displays the total number of rows in the table.
See also Section 13.8.2, “EXPLAIN Syntax”.
17.4. Partition Pruning
This section discusses an optimization known as partition pruning. The core concept behind partition pruning is relatively simple, and can be described as “Do not scan partitions where there can be no matching values”. Suppose that you have a partitioned table t1 defined by this statement:
CREATE TABLE t1 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL
)
PARTITION BY RANGE(region_code) (
PARTITION p0 VALUES LESS THAN (64),
PARTITION p1 VALUES LESS THAN (128),
PARTITION p2 VALUES LESS THAN (192),
PARTITION p3 VALUES LESS THAN MAXVALUE
);
Consider the case where you wish to obtain results from a query such as this one:
SELECT fname, lname, region_code, dob
FROM t1
WHERE region_code > 125 AND region_code < 130;
It is easy to see that none of the rows which ought to be returned will be in either of the partitions p0 or p3; that is, we need to search only in partitions p1 and p2 to find matching rows. By doing so, it is possible to expend much less time and effort in finding matching rows than would be required to scan all partitions in the table. This “cutting away” of unneeded partitions is known as pruning. When the optimizer can make use of partition pruning in performing a query, execution of the query can be an order of magnitude faster than the same query against a nonpartitioned table containing the same column definitions and data.
The query optimizer can perform pruning whenever a WHERE condition can be reduced to either one of the following two cases:
partition_column = constant
partition_column IN (constant1, constant2, ..., constantN)
In the first case, the optimizer simply evaluates the partitioning expression for the value given, determines which partition contains that value, and scans only this partition. In many cases, the equal sign can be replaced with another arithmetic comparison, including <, >, <=, >=, and <>. Some queries using BETWEEN in the WHERE clause can also take advantage of partition pruning. See the examples later in this section.
In the second case, the optimizer evaluates the partitioning expression for each value in the list, creates a list of matching partitions, and then scans only the partitions in this partition list.
Pruning can also be applied to short ranges, which the optimizer can convert into equivalent lists of values. For instance, in the previous example, the WHERE clause can be converted to WHERE region_code IN (126, 127, 128, 129). Then the optimizer can determine that the first three values in the list are found in partition p1, the remaining three values in partition p2, and that the other partitions contain no relevant values and so do not need to be searched for matching rows.
In MySQL 5.6, the optimizer can also perform pruning for queries that involve comparisons of the preceding types on multiple columns for tables that use RANGE COLUMNS or LIST COLUMNS partitioning.
This type of optimization can be applied whenever the partitioning expression consists of an equality or a range which can be reduced to a set of equalities, or when the partitioning expression represents an increasing or decreasing relationship. Pruning can also be applied for tables partitioned on a DATE or DATETIME column when the partitioning expression uses the YEAR() or TO_DAYS() function. In addition, in MySQL 5.6, pruning can be applied for such tables when the partitioning expression uses the TO_SECONDS() function.
Suppose that table t2, defined as shown here, is partitioned on a DATE column:
CREATE TABLE t2 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL
)
PARTITION BY RANGE(YEAR(dob)) (
PARTITION d0 VALUES LESS THAN (1970),
PARTITION d1 VALUES LESS THAN (1975),
PARTITION d2 VALUES LESS THAN (1980),
PARTITION d3 VALUES LESS THAN (1985),
PARTITION d4 VALUES LESS THAN (1990),
PARTITION d5 VALUES LESS THAN (2000),
PARTITION d6 VALUES LESS THAN (2005),
PARTITION d7 VALUES LESS THAN MAXVALUE
);
The following queries on t2 can make of use partition pruning:
SELECT * FROM t2 WHERE dob = '1982-06-23';
SELECT * FROM t2 WHERE dob BETWEEN '1991-02-15' AND '1997-04-25';
SELECT * FROM t2 WHERE dob >= '1984-06-21' AND dob <= '1999-06-21'
In the case of the last query, the optimizer can also act as follows:
Find the partition containing the low end of the range.
YEAR('1984-06-21') yields the value 1984, which is found in partition d3.
Find the partition containing the high end of the range.
YEAR('1999-06-21') evaluates to 1999, which is found in partition d5.
Scan only these two partitions and any partitions that may lie between them.
In this case, this means that only partitions d3, d4, and d5 are scanned. The remaining partitions may be safely ignored (and are ignored).
Important
Invalid DATE and DATETIME values referenced in the WHERE clause of a query on a partitioned table are treated as NULL. This means that a query such as SELECT * FROM partitioned_table WHERE date_column < '2008-12-00' does not return any values (see Bug #40972).
So far, we have looked only at examples using RANGE partitioning, but pruning can be applied with other partitioning types as well.
Consider a table that is partitioned by LIST, where the partitioning expression is increasing or decreasing, such as the table t3 shown here. (In this example, we assume for the sake of brevity that the region_code column is limited to values between 1 and 10 inclusive.)
CREATE TABLE t3 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL
)
PARTITION BY LIST(region_code) (
PARTITION r0 VALUES IN (1, 3),
PARTITION r1 VALUES IN (2, 5, 8),
PARTITION r2 VALUES IN (4, 9),
PARTITION r3 VALUES IN (6, 7, 10)
);
For a query such as SELECT * FROM t3 WHERE region_code BETWEEN 1 AND 3, the optimizer determines in which partitions the values 1, 2, and 3 are found (r0 and r1) and skips the remaining ones (r2 and r3).
For tables that are partitioned by HASH or KEY, partition pruning is also possible in cases in which the WHERE clause uses a simple = relation against a column used in the partitioning expression. Consider a table created like this:
CREATE TABLE t4 (
fname VARCHAR(50) NOT NULL,
lname VARCHAR(50) NOT NULL,
region_code TINYINT UNSIGNED NOT NULL,
dob DATE NOT NULL
)
PARTITION BY KEY(region_code)
PARTITIONS 8;
Any query, such as this one, that compares a column value with a constant can be pruned:
SELECT * FROM t4 WHERE region_code = 7;
Pruning can also be employed for short ranges, because the optimizer can turn such conditions into IN relations. For example, using the same table t4 as defined previously, queries such as these can be pruned:
SELECT * FROM t4 WHERE region_code > 2 AND region_code < 6;
SELECT * FROM t4 WHERE region_code BETWEEN 3 AND 5;
In both these cases, the WHERE clause is transformed by the optimizer into WHERE region_code IN (3, 4, 5).
Important
This optimization is used only if the range size is smaller than the number of partitions. Consider this query:
SELECT * FROM t4 WHERE region_code BETWEEN 4 AND 12;
The range in the WHERE clause covers 9 values (4, 5, 6, 7, 8, 9, 10, 11, 12), but t4 has only 8 partitions. This means that the previous query cannot be pruned.
Pruning can be used only on integer columns of tables partitioned by HASH or KEY. For example, this query on table t4 cannot use pruning because dob is a DATE column:
SELECT * FROM t4 WHERE dob >= '2001-04-14' AND dob <= '2005-10-15';
However, if the table stores year values in an INT column, then a query having WHERE year_col >= 2001 AND year_col <= 2005 can be pruned.
In MySQL 5.6.8 and later, partition pruning is disabled for all tables using a storage that provides automatic partitioning, such as the NDB storage engine used by MySQL Cluster (not currently supported in MySQL 5.6). (Bug #14672885) Beginning with MySQL 5.6.10, such tables can be pruned if they are explicitly partitioned. (Bug #14827952)
17.5. Partition Selection
MySQL 5.6 supports explicit selection of partitions and subpartitions that, when executing a statement, should be checked for rows matching a given WHERE condition. Partition selection is similar to partition pruning, in that only specific partitions are checked for matches, but differs in two key respects:
The partitions to be checked are specified by the issuer of the statement, unlike partition pruning, which is automatic.
Whereas partition pruning applies only to queries, explicit selection of partitions is supported for both queries and a number of DML statements.
SQL statements supporting explicit partition selection are listed here:
The remainder of this section discusses explicit partition selection as it applies generally to the statements just listed, and provides some examples.
Explicit partition selection is implemented using a PARTITION option. For all supported statements, this option uses the syntax shown here:
PARTITION (partition_names)
partition_names:
partition_name, ...
This option always follows the name of the table to which the partition or partitions belong. partition_names is a comma-separated list of partitions or subpartitions to be used. Each name in this list must be the name of an existing partition or subpartition of the specified table; if any of the partitions or subpartitions are not found, the statement fails with an error (partition 'partition_name' doesn't exist). Partitions and subpartitions named in partition_names may be listed in any order, and may overlap.
When the PARTITION option is used, only the partitions and subpartitions listed are checked for matching rows. This option can be used in a SELECT statement to determine which rows belong to a given partition. Consider a partitioned table named employees, created and populated using the statements shown here:
SET @@SQL_MODE = '';
CREATE TABLE employees (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
fname VARCHAR(25) NOT NULL,
lname VARCHAR(25) NOT NULL,
store_id INT NOT NULL,
department_id INT NOT NULL
)
PARTITION BY RANGE(id) (
PARTITION p0 VALUES LESS THAN (5),
PARTITION p1 VALUES LESS THAN (10),
PARTITION p2 VALUES LESS THAN (15),
PARTITION p3 VALUES LESS THAN MAXVALUE
);
INSERT INTO employees VALUES
('', 'Bob', 'Taylor', 3, 2), ('', 'Frank', 'Williams', 1, 2),
('', 'Ellen', 'Johnson', 3, 4), ('', 'Jim', 'Smith', 2, 4),
('', 'Mary', 'Jones', 1, 1), ('', 'Linda', 'Black', 2, 3),
('', 'Ed', 'Jones', 2, 1), ('', 'June', 'Wilson', 3, 1),
('', 'Andy', 'Smith', 1, 3), ('', 'Lou', 'Waters', 2, 4),
('', 'Jill', 'Stone', 1, 4), ('', 'Roger', 'White', 3, 2),
('', 'Howard', 'Andrews', 1, 2), ('', 'Fred', 'Goldberg', 3, 3),
('', 'Barbara', 'Brown', 2, 3), ('', 'Alice', 'Rogers', 2, 2),
('', 'Mark', 'Morgan', 3, 3), ('', 'Karen', 'Cole', 3, 2);
You can see which rows are stored in partition p1 like this:
mysql> SELECT * FROM employees PARTITION (p1);
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
| 5 | Mary | Jones | 1 | 1 |
| 6 | Linda | Black | 2 | 3 |
| 7 | Ed | Jones | 2 | 1 |
| 8 | June | Wilson | 3 | 1 |
| 9 | Andy | Smith | 1 | 3 |
+----+-------+--------+----------+---------------+
5 rows in set (0.00 sec)
The result is the same as obtained by the query SELECT * FROM employees WHERE id BETWEEN 5 AND 9.
To obtain rows from multiple partitions, supply their names as a comma-delimited list. For example, SELECT * FROM employees PARTITION (p1, p2) returns all rows from partitions p1 and p2 while excluding rows from the remaining partitions.
Any valid query against a partitioned table can be rewritten with a PARTITION option to restrict the result to one or more desired partitions. You can use WHERE conditions, ORDER BY and LIMIT options, and so on. You can also use aggregate functions with HAVING and GROUP BY options. Each of the following queries produces a valid result when run on the employees table as previously defined:
mysql> SELECT * FROM employees PARTITION (p0, p2)
-> WHERE lname LIKE 'S%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 4 | Jim | Smith | 2 | 4 |
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
2 rows in set (0.00 sec)
mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
-> FROM employees PARTITION (p0) ORDER BY lname;
+----+----------------+
| id | name |
+----+----------------+
| 3 | Ellen Johnson |
| 4 | Jim Smith |
| 1 | Bob Taylor |
| 2 | Frank Williams |
+----+----------------+
4 rows in set (0.06 sec)
mysql> SELECT store_id, COUNT(department_id) AS c
-> FROM employees PARTITION (p1,p2,p3)
-> GROUP BY store_id HAVING c > 4;
+---+----------+
| c | store_id |
+---+----------+
| 5 | 2 |
| 5 | 3 |
+---+----------+
2 rows in set (0.00 sec)
Statements using partition selection can be employed with tables using any of the partitioning types supported in MySQL 5.6. When a table is created using [LINEAR] HASH or [LINEAR] KEY partitioning and the names of the partitions are not specified, MySQL automatically names the partitions p0, p1, p2, ..., pN-1, where N is the number of partitions. For subpartitions not explicitly named, MySQL assigns automatically to the subpartitions in each partition pX the names pXsp0, pXsp1, pXsp2, ..., pXspM-1, where M is the number of subpartitions. When executing against this table a SELECT (or other SQL statement for which explicit partition selection is allowed), you can use these generated names in a PARTITION option, as shown here:
mysql> CREATE TABLE employees_sub (
-> id INT NOT NULL AUTO_INCREMENT,
-> fname VARCHAR(25) NOT NULL,
-> lname VARCHAR(25) NOT NULL,
-> store_id INT NOT NULL,
-> department_id INT NOT NULL,
-> PRIMARY KEY pk (id, lname)
->)
-> PARTITION BY RANGE(id)
-> SUBPARTITION BY KEY (lname)
-> SUBPARTITIONS 2 (
-> PARTITION p0 VALUES LESS THAN (5),
-> PARTITION p1 VALUES LESS THAN (10),
-> PARTITION p2 VALUES LESS THAN (15),
-> PARTITION p3 VALUES LESS THAN MAXVALUE
->);
Query OK, 0 rows affected (1.14 sec)
mysql> INSERT INTO employees_sub # re-use data in employees table
-> SELECT * FROM employees;
Query OK, 18 rows affected (0.09 sec)
Records: 18 Duplicates: 0 Warnings: 0
mysql> SELECT id, CONCAT(fname, ' ', lname) AS name
-> FROM employees_sub PARTITION (p2sp1);
+----+---------------+
| id | name |
+----+---------------+
| 10 | Lou Waters |
| 14 | Fred Goldberg |
+----+---------------+
2 rows in set (0.00 sec)
You may also use a PARTITION option in the SELECT portion of an INSERT ... SELECT statement, as shown here:
mysql> CREATE TABLE employees_copy LIKE employees;
Query OK, 0 rows affected (0.28 sec)
mysql> INSERT INTO employees_copy
-> SELECT * FROM employees PARTITION (p2);
Query OK, 5 rows affected (0.04 sec)
Records: 5 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM employees_copy;
+----+--------+----------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+--------+----------+----------+---------------+
| 10 | Lou | Waters | 2 | 4 |
| 11 | Jill | Stone | 1 | 4 |
| 12 | Roger | White | 3 | 2 |
| 13 | Howard | Andrews | 1 | 2 |
| 14 | Fred | Goldberg | 3 | 3 |
+----+--------+----------+----------+---------------+
5 rows in set (0.00 sec)
Partition selection can also be used with joins. Suppose we create and populate two tables using the statements shown here:
CREATE TABLE stores (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
city VARCHAR(30) NOT NULL
)
PARTITION BY HASH(id)
PARTITIONS 2;
INSERT INTO stores VALUES
('', 'Nambucca'), ('', 'Uranga'),
('', 'Bellingen'), ('', 'Grafton');
CREATE TABLE departments (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(30) NOT NULL
)
PARTITION BY KEY(id)
PARTITIONS 2;
INSERT INTO departments VALUES
('', 'Sales'), ('', 'Customer Service'),
('', 'Delivery'), ('', 'Accounting');
You can explicitly select partitions (or subpartitions, or both) from any or all of the tables in a join. (Note that the PARTITION option used to select partitions from a given table immediately follows the name of the table, before all other options, including any table alias.) For example, the following query gets the name, employee ID, department, and city of all employees who work in the Sales or Delivery department (partition p1 of the departments table) at the stores in either of the cities of Nambucca and Bellingen (partition p0 of the stores table):
mysql> SELECT
-> e.id AS 'Employee ID', CONCAT(e.fname, ' ', e.lname) AS Name,
-> s.city AS City, d.name AS department
-> FROM employees AS e
-> JOIN stores PARTITION (p1) AS s ON e.store_id=s.id
-> JOIN departments PARTITION (p0) AS d ON e.department_id=d.id
-> ORDER BY e.lname;
+-------------+---------------+-----------+------------+
| Employee ID | Name | City | department |
+-------------+---------------+-----------+------------+
| 14 | Fred Goldberg | Bellingen | Delivery |
| 5 | Mary Jones | Nambucca | Sales |
| 17 | Mark Morgan | Bellingen | Delivery |
| 9 | Andy Smith | Nambucca | Delivery |
| 8 | June Wilson | Bellingen | Sales |
+-------------+---------------+-----------+------------+
5 rows in set (0.00 sec)
For general information about joins in MySQL, see Section 13.2.9.2, “JOIN Syntax”.
When the PARTITION option is used with DELETE statements, only those partitions (and subpartitions, if any) listed with the option are checked for rows to be deleted. Any other partitions are ignored, as shown here:
mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+--------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+--------+----------+---------------+
| 4 | Jim | Smith | 2 | 4 |
| 8 | June | Wilson | 3 | 1 |
| 11 | Jill | Stone | 1 | 4 |
+----+-------+--------+----------+---------------+
3 rows in set (0.00 sec)
mysql> DELETE FROM employees PARTITION (p0, p1)
-> WHERE fname LIKE 'j%';
Query OK, 2 rows affected (0.09 sec)
mysql> SELECT * FROM employees WHERE fname LIKE 'j%';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)
Only the two rows in partitions p0 and p1 matching the WHERE condition were deleted. As you can see from the result when the SELECT is run a second time, there remains a row in the table matching the WHERE condition, but residing in a different partition (p2).
UPDATE statements using explicit partition selection behave in the same way; only rows in the partitions referenced by the PARTITION option are considered when determining the rows to be updated, as can be seen by executing the following statements:
mysql> UPDATE employees PARTITION (p0)
-> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0 Changed: 0 Warnings: 0
mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 1 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)
mysql> UPDATE employees PARTITION (p2)
-> SET store_id = 2 WHERE fname = 'Jill';
Query OK, 1 row affected (0.09 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> SELECT * FROM employees WHERE fname = 'Jill';
+----+-------+-------+----------+---------------+
| id | fname | lname | store_id | department_id |
+----+-------+-------+----------+---------------+
| 11 | Jill | Stone | 2 | 4 |
+----+-------+-------+----------+---------------+
1 row in set (0.00 sec)
In the same way, when PARTITION is used with DELETE, only rows in the partition or partitions named in the partition list are checked for deletion.
For statements that insert rows, the behavior differs in that failure to find a suitable partition causes the statement to fail. This is true for both INSERT and REPLACE statements, as shown here:
mysql> INSERT INTO employees PARTITION (p2) VALUES (20, 'Jan', 'Jones', 1, 3);
ERROR 1729 (HY000): Found a row not matching the given partition set
mysql> INSERT INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 1, 3);
Query OK, 1 row affected (0.07 sec)
mysql> REPLACE INTO employees PARTITION (p0) VALUES (20, 'Jan', 'Jones', 3, 2);
ERROR 1729 (HY000): Found a row not matching the given partition set
mysql> REPLACE INTO employees PARTITION (p3) VALUES (20, 'Jan', 'Jones', 3, 2);
Query OK, 2 rows affected (0.09 sec)
For statements that write multiple rows to a partitioned table that uses the InnoDB storage engine: If any row in the list following VALUES cannot be written to one of the partitions specified in the partition_names list, the entire statement fails and no rows are written. This is shown for INSERT statements in the following example, reusing the employees table created previously:
mysql> ALTER TABLE employees
-> REORGANIZE PARTITION p3 INTO (
-> PARTITION p3 VALUES LESS THAN (20),
-> PARTITION p4 VALUES LESS THAN (25),
-> PARTITION p5 VALUES LESS THAN MAXVALUE
->);
Query OK, 6 rows affected (2.09 sec)
Records: 6 Duplicates: 0 Warnings: 0
mysql> SHOW CREATE TABLE employees\G
*************************** 1. row ***************************
Table: employees
Create Table: CREATE TABLE `employees` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`fname` varchar(25) NOT NULL,
`lname` varchar(25) NOT NULL,
`store_id` int(11) NOT NULL,
`department_id` int(11) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=27 DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (id)
(PARTITION p0 VALUES LESS THAN (5) ENGINE = InnoDB,
PARTITION p1 VALUES LESS THAN (10) ENGINE = InnoDB,
PARTITION p2 VALUES LESS THAN (15) ENGINE = InnoDB,
PARTITION p3 VALUES LESS THAN (20) ENGINE = InnoDB,
PARTITION p4 VALUES LESS THAN (25) ENGINE = InnoDB,
PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */
1 row in set (0.00 sec)
mysql> INSERT INTO employees PARTITION (p3, p4) VALUES
-> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
ERROR 1729 (HY000): Found a row not matching the given partition set
mysql> INSERT INTO employees PARTITION (p3, p4. p5) VALUES
-> (24, 'Tim', 'Greene', 3, 1), (26, 'Linda', 'Mills', 2, 1);
Query OK, 2 rows affected (0.06 sec)
Records: 2 Duplicates: 0 Warnings: 0
The preceding is true for both INSERT statements and REPLACE statements that write multiple rows.
In MySQL 5.6.10 and later, partition selection is disabled for tables employing a storage engine that supplies automatic partitioning, such as NDB. (Bug #14827952)
17.6. Restrictions and Limitations on Partitioning
This section discusses current restrictions and limitations on MySQL partitioning support.
Prohibited constructs. The following constructs are not permitted in partitioning expressions:
Stored procedures, stored functions, UDFs, or plugins.
Declared variables or user variables.
For a list of SQL functions which are permitted in partitioning expressions, see Section 17.6.3, “Partitioning Limitations Relating to Functions”.
Arithmetic and logical operators. Use of the arithmetic operators +, -, and * is permitted in partitioning expressions. However, the result must be an integer value or NULL (except in the case of [LINEAR] KEY partitioning, as discussed elsewhere in this chapter; see Section 17.2, “Partitioning Types”, for more information).
The DIV operator is also supported, and the / operator is not permitted. (Bug #30188, Bug #33182)
The bit operators |, &, ^, <<, >>, and ~ are not permitted in partitioning expressions.
Server SQL mode. Tables employing user-defined partitioning do not preserve the SQL mode in effect at the time that they were created. As discussed in Section 5.1.7, “Server SQL Modes”, the results of many MySQL functions and operators may change according to the server SQL mode. Therefore, a change in the SQL mode at any time after the creation of partitioned tables may lead to major changes in the behavior of such tables, and could easily lead to corruption or loss of data. For these reasons, it is strongly recommended that you never change the server SQL mode after creating partitioned tables.
Examples. The following examples illustrate some changes in behavior of partitioned tables due to a change in the server SQL mode:
Error handling. Suppose that you create a partitioned table whose partitioning expression is one such as column DIV 0 or column MOD 0, as shown here:
mysql> CREATE TABLE tn (c1 INT)
-> PARTITION BY LIST(1 DIV c1) (
-> PARTITION p0 VALUES IN (NULL),
-> PARTITION p1 VALUES IN (1)
->);
Query OK, 0 rows affected (0.05 sec)
The default behavior for MySQL is to return NULL for the result of a division by zero, without producing any errors:
mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0.00 sec)
mysql> INSERT INTO tn VALUES (NULL), (0), (1);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
However, changing the server SQL mode to treat division by zero as an error and to enforce strict error handling causes the same INSERT statement to fail, as shown here:
mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO tn VALUES (NULL), (0), (1);
ERROR 1365 (22012): Division by 0
Table accessibility. Sometimes a change in the server SQL mode can make partitioned tables unusable. The following CREATE TABLE statement can be executed successfully only if the NO_UNSIGNED_SUBTRACTION mode is in effect:
mysql> SELECT @@sql_mode;
+------------+
| @@sql_mode |
+------------+
| |
+------------+
1 row in set (0.00 sec)
mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
-> PARTITION BY RANGE(c1 - 10) (
-> PARTITION p0 VALUES LESS THAN (-5),
-> PARTITION p1 VALUES LESS THAN (0),
-> PARTITION p2 VALUES LESS THAN (5),
-> PARTITION p3 VALUES LESS THAN (10),
-> PARTITION p4 VALUES LESS THAN (MAXVALUE)
->);
ERROR 1563 (HY000): Partition constant is out of partition function domain
mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @@sql_mode;
+-------------------------+
| @@sql_mode |
+-------------------------+
| NO_UNSIGNED_SUBTRACTION |
+-------------------------+
1 row in set (0.00 sec)
mysql> CREATE TABLE tu (c1 BIGINT UNSIGNED)
-> PARTITION BY RANGE(c1 - 10) (
-> PARTITION p0 VALUES LESS THAN (-5),
-> PARTITION p1 VALUES LESS THAN (0),
-> PARTITION p2 VALUES LESS THAN (5),
-> PARTITION p3 VALUES LESS THAN (10),
-> PARTITION p4 VALUES LESS THAN (MAXVALUE)
->);
Query OK, 0 rows affected (0.05 sec)
If you remove the NO_UNSIGNED_SUBTRACTION server SQL mode after creating tu, you may no longer be able to access this table:
mysql> SET sql_mode='';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM tu;
ERROR 1563 (HY000): Partition constant is out of partition function domain
mysql> INSERT INTO tu VALUES (20);
ERROR 1563 (HY000): Partition constant is out of partition function domain
Server SQL modes also impact replication of partitioned tables. Differing SQL modes on master and slave can lead to partitioning expressions being evaluated differently; this can cause the distribution of data among partitions to be different in the master's and slave's copies of a given table, and may even cause inserts into partitioned tables that succeed on the master to fail on the slave. For best results, you should always use the same server SQL mode on the master and on the slave.
Performance considerations. Some affects of partitioning operations on performance are given in the following list:
File system operations. Partitioning and repartitioning operations (such as ALTER TABLE with PARTITION BY ..., REORGANIZE PARTITIONS, or REMOVE PARTITIONING) depend on file system operations for their implementation. This means that the speed of these operations is affected by such factors as file system type and characteristics, disk speed, swap space, file handling efficiency of the operating system, and MySQL server options and variables that relate to file handling. In particular, you should make sure that large_files_support is enabled and that open_files_limit is set properly. For partitioned tables using the MyISAM storage engine, increasing myisam_max_sort_file_size may improve performance; partitioning and repartitioning operations involving InnoDB tables may be made more efficient by enabling innodb_file_per_table.
See also Maximum number of partitions.
Table locks. The process executing a partitioning operation on a table takes a write lock on the table. Reads from such tables are relatively unaffected; pending INSERT and UPDATE operations are performed as soon as the partitioning operation has completed.
Storage engine. Partitioning operations, queries, and update operations generally tend to be faster with MyISAM tables than with InnoDB tables.
Use of indexes and partition pruning. As with nonpartitioned tables, proper use of indexes can speed up queries on partitioned tables significantly. In addition, designing partitioned tables and queries on these tables to take advantage of partition pruning can improve performance dramatically. See Section 17.4, “Partition Pruning”, for more information.
Performance with LOAD DATA. In MySQL 5.6, LOAD DATA uses buffering to improve performance. You should be aware that the buffer uses 130 KB memory per partition to achieve this.
Maximum number of partitions. Prior to MySQL 5.6.7, the maximum possible number of partitions for a given table was 1024. Beginning with MySQL 5.6.7, this limit is increased to 8192 partitions. Regardless of the MySQL Server version, this maximum includes subpartitions.
If, when creating tables with a large number of partitions (but less than the maximum), you encounter an error message such as Got error ... from storage engine: Out of resources when opening file, you may be able to address the issue by increasing the value of the open_files_limit system variable. However, this is dependent on the operating system, and may not be possible or advisable on all platforms; see Section C.5.2.18, “'File' Not Found and Similar Errors”, for more information. In some cases, using large numbers (hundreds) of partitions may also not be advisable due to other concerns, so using more partitions does not automatically lead to better results.
See also File system operations.
Query cache not supported. The query cache is not supported for partitioned tables. Beginning with MySQL 5.6.5, the query cache is automatically disabled for queries involving partitioned tables, and cannot be enabled for such queries. (Bug #53775)
Per-partition key caches. In MySQL 5.6, key caches are supported for partitioned MyISAM tables, using the CACHE INDEX and LOAD INDEX INTO CACHE statements. Key caches may be defined for one, several, or all partitions, and indexes for one, several, or all partitions may be preloaded into key caches.
Foreign keys not supported for partitioned InnoDB tables. Partitioned tables using the InnoDB storage engine do not support foreign keys. More specifically, this means that the following two statements are true:
No definition of an InnoDB table employing user-defined partitioning may contain foreign key references; no InnoDB table whose definition contains foreign key references may be partitioned.
No InnoDB table definition may contain a foreign key reference to a user-partitioned table; no InnoDB table with user-defined partitioning may contain columns referenced by foreign keys.
The scope of the restrictions just listed includes all tables that use the InnoDB storage engine. CREATE TABLE and ALTER TABLE statements that would result in tables violating these restrictions are not allowed.
ALTER TABLE ... ORDER BY. An ALTER TABLE ... ORDER BY column statement run against a partitioned table causes ordering of rows only within each partition.
FULLTEXT indexes. Partitioned tables do not support FULLTEXT indexes or searches, even for partitioned tables employing the InnoDB or MyISAM storage engine.
Spatial columns. Columns with spatial data types such as POINT or GEOMETRY cannot be used in partitioned tables.
Temporary tables. Temporary tables cannot be partitioned. (Bug #17497)
Log tables. It is not possible to partition the log tables; an ALTER TABLE ... PARTITION BY ... statement on such a table fails with an error.
Data type of partitioning key. A partitioning key must be either an integer column or an expression that resolves to an integer. The column or expression value may also be NULL. (See Section 17.2.7, “How MySQL Partitioning Handles NULL”.)
There are two exceptions to this restriction:
When partitioning by [LINEAR] KEY, it is possible to use columns of other types as partitioning keys, because MySQL's internal key-hashing functions produce the correct data type from these types. For example, the following CREATE TABLE statement is valid:
CREATE TABLE tkc (c1 CHAR)
PARTITION BY KEY(c1)
PARTITIONS 4;
When partitioning by RANGE COLUMNS or LIST COLUMNS, it is possible to use string, DATE, and DATETIME columns. For example, each of the following CREATE TABLE statements is valid:
CREATE TABLE rc (c1 INT, c2 DATE)
PARTITION BY RANGE COLUMNS(c2) (
PARTITION p0 VALUES LESS THAN('1990-01-01'),
PARTITION p1 VALUES LESS THAN('1995-01-01'),
PARTITION p2 VALUES LESS THAN('2000-01-01'),
PARTITION p3 VALUES LESS THAN('2005-01-01'),
PARTITION p4 VALUES LESS THAN(MAXVALUE)
);
CREATE TABLE lc (c1 INT, c2 CHAR(1))
PARTITION BY LIST COLUMNS(c2) (
PARTITION p0 VALUES IN('a', 'd', 'g', 'j', 'm', 'p', 's', 'v', 'y'),
PARTITION p1 VALUES IN('b', 'e', 'h', 'k', 'n', 'q', 't', 'w', 'z'),
PARTITION p2 VALUES IN('c', 'f', 'i', 'l', 'o', 'r', 'u', 'x', NULL)
);
Neither of the preceding exceptions applies to BLOB or TEXT column types.
Subqueries. A partitioning key may not be a subquery, even if that subquery resolves to an integer value or NULL.
Issues with subpartitions. Subpartitions must use HASH or KEY partitioning. Only RANGE and LIST partitions may be subpartitioned; HASH and KEY partitions cannot be subpartitioned.
Currently, SUBPARTITION BY KEY requires that the subpartitioning column or columns be specified explicitly, unlike the case with PARTITION BY KEY, where it can be omitted (in which case the table's primary key column is used by default). Consider the table created by this statement:
CREATE TABLE ts (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(30)
);
You can create a table having the same columns, partitioned by KEY, using a statement such as this one:
CREATE TABLE ts (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(30)
)
PARTITION BY KEY()
PARTITIONS 4;
The previous statement is treated as though it had been written like this, with the table's primary key column used as the partitioning column:
CREATE TABLE ts (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(30)
)
PARTITION BY KEY(id)
PARTITIONS 4;
However, the following statement that attempts to create a subpartitioned table using the default column as the subpartitioning column fails, and the column must be specified for the statement to succeed, as shown here:
mysql> CREATE TABLE ts (
-> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> name VARCHAR(30)
->)
-> PARTITION BY RANGE(id)
-> SUBPARTITION BY KEY()
-> SUBPARTITIONS 4
-> (
-> PARTITION p0 VALUES LESS THAN (100),
-> PARTITION p1 VALUES LESS THAN (MAXVALUE)
->);
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near ')
mysql> CREATE TABLE ts (
-> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> name VARCHAR(30)
->)
-> PARTITION BY RANGE(id)
-> SUBPARTITION BY KEY(id)
-> SUBPARTITIONS 4
-> (
-> PARTITION p0 VALUES LESS THAN (100),
-> PARTITION p1 VALUES LESS THAN (MAXVALUE)
->);
Query OK, 0 rows affected (0.07 sec)
This is a known issue (see Bug #51470).
DELAYED option not supported. Use of INSERT DELAYED to insert rows into a partitioned table is not supported. Attempting to do so fails with an error.
DATA DIRECTORY and INDEX DIRECTORY options. DATA DIRECTORY and INDEX DIRECTORY are subject to the following restrictions when used with partitioned tables:
Table-level DATA DIRECTORY and INDEX DIRECTORY options are ignored (see Bug #32091).
On Windows, the DATA DIRECTORY and INDEX DIRECTORY options are not supported for individual partitions or subpartitions of MyISAM tables (Bug #30459). However, you can use DATA DIRECTORY for individual partitions or subpartitions of InnoDB tables.
Repairing and rebuilding partitioned tables. The statements CHECK TABLE, OPTIMIZE TABLE, ANALYZE TABLE, and REPAIR TABLE are supported for partitioned tables.
In addition, you can use ALTER TABLE ... REBUILD PARTITION to rebuild one or more partitions of a partitioned table; ALTER TABLE ... REORGANIZE PARTITION also causes partitions to be rebuilt. See Section 13.1.6, “ALTER TABLE Syntax”, for more information about these two statements.
mysqlcheck and myisamchk are not supported with partitioned tables.
17.6.1. Partitioning Keys, Primary Keys, and Unique Keys
This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule governing this relationship can be expressed as follows: All columns used in the partitioning expression for a partitioned table must be part of every unique key that the table may have.
In other words, every unique key on the table must use every column in the table's partitioning expression. (This also includes the table's primary key, since it is by definition a unique key. This particular case is discussed later in this section.) For example, each of the following table creation statements is invalid:
CREATE TABLE t1 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;
CREATE TABLE t2 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1),
UNIQUE KEY (col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;
In each case, the proposed table would have at least one unique key that does not include all columns used in the partitioning expression.
Each of the following statements is valid, and represents one way in which the corresponding invalid table creation statement could be made to work:
CREATE TABLE t1 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col2, col3)
)
PARTITION BY HASH(col3)
PARTITIONS 4;
CREATE TABLE t2 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col3)
)
PARTITION BY HASH(col1 + col3)
PARTITIONS 4;
This example shows the error produced in such cases:
mysql> CREATE TABLE t3 (
-> col1 INT NOT NULL,
-> col2 DATE NOT NULL,
-> col3 INT NOT NULL,
-> col4 INT NOT NULL,
-> UNIQUE KEY (col1, col2),
-> UNIQUE KEY (col3)
->)
-> PARTITION BY HASH(col1 + col3)
-> PARTITIONS 4;
ERROR 1491 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function
The CREATE TABLE statement fails because both col1 and col3 are included in the proposed partitioning key, but neither of these columns is part of both of unique keys on the table. This shows one possible fix for the invalid table definition:
mysql> CREATE TABLE t3 (
-> col1 INT NOT NULL,
-> col2 DATE NOT NULL,
-> col3 INT NOT NULL,
-> col4 INT NOT NULL,
-> UNIQUE KEY (col1, col2, col3),
-> UNIQUE KEY (col3)
->)
-> PARTITION BY HASH(col3)
-> PARTITIONS 4;
Query OK, 0 rows affected (0.05 sec)
In this case, the proposed partitioning key col3 is part of both unique keys, and the table creation statement succeeds.
The following table cannot be partitioned at all, because there is no way to include in a partitioning key any columns that belong to both unique keys:
CREATE TABLE t4 (
col1 INT NOT NULL,
col2 INT NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
UNIQUE KEY (col1, col3),
UNIQUE KEY (col2, col4)
);
Since every primary key is by definition a unique key, this restriction also includes the table's primary key, if it has one. For example, the next two statements are invalid:
CREATE TABLE t5 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col3)
PARTITIONS 4;
CREATE TABLE t6 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col3),
UNIQUE KEY(col2)
)
PARTITION BY HASH(YEAR(col2))
PARTITIONS 4;
In both cases, the primary key does not include all columns referenced in the partitioning expression. However, both of the next two statements are valid:
CREATE TABLE t7 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col2)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;
CREATE TABLE t8 (
col1 INT NOT NULL,
col2 DATE NOT NULL,
col3 INT NOT NULL,
col4 INT NOT NULL,
PRIMARY KEY(col1, col2, col4),
UNIQUE KEY(col2, col1)
)
PARTITION BY HASH(col1 + YEAR(col2))
PARTITIONS 4;
If a table has no unique keys—this includes having no primary key—then this restriction does not apply, and you may use any column or columns in the partitioning expression as long as the column type is compatible with the partitioning type.
For the same reason, you cannot later add a unique key to a partitioned table unless the key includes all columns used by the table's partitioning expression. Consider the partitioned table created as shown here:
mysql> CREATE TABLE t_no_pk (c1 INT, c2 INT)
-> PARTITION BY RANGE(c1) (
-> PARTITION p0 VALUES LESS THAN (10),
-> PARTITION p1 VALUES LESS THAN (20),
-> PARTITION p2 VALUES LESS THAN (30),
-> PARTITION p3 VALUES LESS THAN (40)
->);
Query OK, 0 rows affected (0.12 sec)
It is possible to add a primary key to t_no_pk using either of these ALTER TABLE statements:
possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1);
Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0
drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0
use another possible PK
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c1, c2);
Query OK, 0 rows affected (0.12 sec)
Records: 0 Duplicates: 0 Warnings: 0
drop this PK
mysql> ALTER TABLE t_no_pk DROP PRIMARY KEY;
Query OK, 0 rows affected (0.09 sec)
Records: 0 Duplicates: 0 Warnings: 0
However, the next statement fails, because c1 is part of the partitioning key, but is not part of the proposed primary key:
fails with error 1503
mysql> ALTER TABLE t_no_pk ADD PRIMARY KEY(c2);
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function
Since t_no_pk has only c1 in its partitioning expression, attempting to adding a unique key on c2 alone fails. However, you can add a unique key that uses both c1 and c2.
These rules also apply to existing nonpartitioned tables that you wish to partition using ALTER TABLE ... PARTITION BY. Consider a table np_pk created as shown here:
mysql> CREATE TABLE np_pk (
-> id INT NOT NULL AUTO_INCREMENT,
-> name VARCHAR(50),
-> added DATE,
-> PRIMARY KEY (id)
->);
Query OK, 0 rows affected (0.08 sec)
The following ALTER TABLE statement fails with an error, because the added column is not part of any unique key in the table:
mysql> ALTER TABLE np_pk
-> PARTITION BY HASH(TO_DAYS(added))
-> PARTITIONS 4;
ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function
However, this statement using the id column for the partitioning column is valid, as shown here:
mysql> ALTER TABLE np_pk
-> PARTITION BY HASH(id)
-> PARTITIONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: 0 Duplicates: 0 Warnings: 0
In the case of np_pk, the only column that may be used as part of a partitioning expression is id; if you wish to partition this table using any other column or columns in the partitioning expression, you must first modify the table, either by adding the desired column or columns to the primary key, or by dropping the primary key altogether.
17.6.2. Partitioning Limitations Relating to Storage Engines
The following limitations apply to the use of storage engines with user-defined partitioning of tables.
MERGE storage engine. User-defined partitioning and the MERGE storage engine are not compatible. Tables using the MERGE storage engine cannot be partitioned. Partitioned tables cannot be merged.
FEDERATED storage engine. Partitioning of FEDERATED tables is not supported; it is not possible to create partitioned FEDERATED tables.
CSV storage engine. Partitioned tables using the CSV storage engine are not supported; it is not possible to create partitioned CSV tables.
InnoDB storage engine. InnoDB foreign keys and MySQL partitioning are not compatible. Partitioned InnoDB tables cannot have foreign key references, nor can they have columns referenced by foreign keys. InnoDB tables which have or which are referenced by foreign keys cannot be partitioned.
In addition, ALTER TABLE ... OPTIMIZE PARTITION does not work correctly with partitioned tables that use the InnoDB storage engine. Use ALTER TABLE ... REBUILD PARTITION and ALTER TABLE ... ANALYZE PARTITION, instead, for such tables. For more information, see Section 13.1.6.1, “ALTER TABLE Partition Operations”.
Upgrading partitioned tables. When performing an upgrade, tables which are partitioned by KEY must be dumped and reloaded.
Same storage engine for all partitions. All partitions of a partitioned table must use the same storage engine and it must be the same storage engine used by the table as a whole. In addition, if one does not specify an engine on the table level, then one must do either of the following when creating or altering a partitioned table:
Do not specify any engine for any partition or subpartition
Specify the engine for all partitions or subpartitions
17.6.3. Partitioning Limitations Relating to Functions
This section discusses limitations in MySQL Partitioning relating specifically to functions used in partitioning expressions.
Only the MySQL functions shown in the following table are supported in partitioning expressions.
ABS() | CEILING() (see CEILING() and FLOOR()) | DAY() |
DAYOFMONTH() | DAYOFWEEK() | DAYOFYEAR() |
DATEDIFF() | EXTRACT() (see EXTRACT() function with WEEK specifier) | FLOOR() (see CEILING() and FLOOR()) |
HOUR() | MICROSECOND() | MINUTE() |
MOD() | MONTH() | QUARTER() |
SECOND() | TIME_TO_SEC() | TO_DAYS() |
TO_SECONDS() | UNIX_TIMESTAMP() (permitted beginning with MySQL 5.6.1 and fully supported beginning with MySQL 5.6.3, with TIMESTAMP columns) | WEEKDAY() |
YEAR() | YEARWEEK() |
In MySQL 5.6, partition pruning is supported for the TO_DAYS(), TO_SECONDS(), and YEAR() functions. In addition, beginning with MySQL 5.6.3, UNIX_TIMESTAMP() is treated as monotonic in partitioning expressions. See Section 17.4, “Partition Pruning”, for more information.
CEILING() and FLOOR(). Each of these functions returns an integer only if it is passed an argument of an exact numeric type, such as one of the INT types or DECIMAL. This means, for example, that the following CREATE TABLE statement fails with an error, as shown here:
mysql> CREATE TABLE t (c FLOAT) PARTITION BY LIST(FLOOR(c))(
-> PARTITION p0 VALUES IN (1,3,5),
-> PARTITION p1 VALUES IN (2,4,6)
->);
ERROR 1490 (HY000): The PARTITION function returns the wrong type
EXTRACT() function with WEEK specifier. The value returned by the EXTRACT() function, when used as EXTRACT(WEEK FROM col), depends on the value of the default_week_format system variable. For this reason, beginning with MySQL 5.6.2, EXTRACT() is longer permitted as a partitioning function when it specifies the unit as WEEK. (Bug #54483)
See Section 12.6.2, “Mathematical Functions”, for more information about the return types of these functions, as well as Section 11.2, “Numeric Types”.
17.6.4. Partitioning and Locking
In MySQL 5.6.5 and earlier, for storage engines such as MyISAM that actually execute table-level locks when executing DML or DDL statements, such a statement affecting a partitioned table imposed a lock on the table as a whole; that is, all partitions were locked until the statement was finished. MySQL 5.6.6 implements partition lock pruning, which eliminates unneeded locks in many cases. In MySQL 5.6.6 and later, most statements reading from or updating a partitioned MyISAM table cause only the effected partitions to be locked. For example, prior to MySQL 5.6.6, a SELECT from a partitioned MyISAM table caused a lock on the entire table; in MySQL 5.6.6 and later, only those partitions actually containing rows that satisfy the SELECT statement's WHERE condition are locked. This has the effect of increasing the speed and efficiency of concurrent operations on partitioned MyISAM tables. This improvement becomes particularly noticeable when working with MyISAM tables that have many (32 or more) partitions.
This change in behavior does not have any impact on statements effecting partitioned tables using storage engines such as InnoDB, that employ row-level locking and do not actually perform (or need to perform) the locks prior to partition pruning.
The next few paragraphs discuss the effects of partition lock pruning for various MySQL statements on tables using storage engines that employ table-level locks.
Affects on DML statements
SELECT statements (including those containing unions or joins) now lock only those partitions that actually need to be read. This also applies to SELECT ... PARTITION.
An UPDATE prunes locks only for tables on which no partitioning columns are updated.
REPLACE and INSERT now lock only those partitions having rows to be inserted or replaced. However, if an AUTO_INCREMENT value is generated for any partitioning column then all partitions are locked.
INSERT ... ON DUPLICATE KEY UPDATE is pruned as long as no partitioning column is updated.
INSERT ... SELECT now locks only those partitions in the source table that need to be read, although all partitions in the target table are locked.
Note
INSERT DELAYED is not supported for partitioned tables.
Locks imposed by LOAD DATA statements on partitioned tables cannot be pruned.
The presence of BEFORE INSERT or BEFORE UPDATE triggers using any partitioning column of a partitioned table means that locks on INSERT and UPDATE statements updating this table cannot be pruned, since the trigger can alter its values: A BEFORE INSERT trigger on any of the table's partitioning columns means that locks set by INSERT or REPLACE cannot be pruned, since the BEFORE INSERT trigger may change a row's partitioning columns before the row is inserted, forcing the row into a different partition than it would be otherwise. A BEFORE UPDATE trigger on a partitioning column means that locks imposed by UPDATE or INSERT ... ON DUPLICATE KEY UPDATE cannot be pruned.
Affected DDL statements
CREATE VIEW no longer causes any locks.
ALTER TABLE ... EXCHANGE PARTITION now prunes locks; only the exchanged table and the exchanged partition are locked.
ALTER TABLE ... TRUNCATE PARTITION now prunes locks; only the partitions to be emptied are locked.
ALTER TABLE statements still take metadata locks on the table level.
Other statements
LOCK TABLES cannot prune partition locks.
CALL stored_procedure(expr) supports lock pruning, but evaluating expr does not.
DO and SET statements do not support partitioning lock pruning.
Chapter 18. Stored Programs and Views
Table of Contents
18.1. Defining Stored Programs
18.2. Using Stored Routines (Procedures and Functions)
18.2.1. Stored Routine Syntax
18.2.2. Stored Routines and MySQL Privileges
18.2.3. Stored Routine Metadata
18.2.4. Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
18.3.1. Trigger Syntax
18.3.2. Trigger Metadata
18.4. Using the Event Scheduler
18.4.1. Event Scheduler Overview
18.4.2. Event Scheduler Configuration
18.4.3. Event Syntax
18.4.4. Event Metadata
18.4.5. Event Scheduler Status
18.4.6. The Event Scheduler and MySQL Privileges
18.5.1. View Syntax
18.5.2. View Processing Algorithms
18.5.3. Updatable and Insertable Views
18.5.4. View Metadata
18.6. Access Control for Stored Programs and Views
18.7. Binary Logging of Stored Programs
This chapter discusses stored programs and views, which are database objects defined in terms of SQL code that is stored on the server for later execution.
Stored programs include these objects:
Stored routines, that is, stored procedures and functions. A stored procedure is invoked using the CALL statement. A procedure does not have a return value but can modify its parameters for later inspection by the caller. It can also generate result sets to be returned to the client program. A stored function is used much like a built-in function. you invoke it in an expression and it returns a value during expression evaluation.
Triggers. A trigger is a named database object that is associated with a table and that is activated when a particular event occurs for the table, such as an insert or update.
Events. An event is a task that the server runs according to schedule.
Views are stored queries that when referenced produce a result set. A view acts as a virtual table.
This chapter describes how to use stored programs and views. The following sections provide additional information about SQL syntax for statements related to these objects:
For each object type, there are CREATE, ALTER, and DROP statements that control which objects exist and how they are defined. See Section 13.1, “Data Definition Statements”.
The CALL statement is used to invoke stored procedures. See Section 13.2.1, “CALL Syntax”.
Stored program definitions include a body that may use compound statements, loops, conditionals, and declared variables. See Section 13.6, “MySQL Compound-Statement Syntax”.
As of MySQL 5.6.6, metadata changes to objects referred to by stored programs are detected and cause automatic reparsing of the affected statements when the program is next executed. For more information, see Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.
18.1. Defining Stored Programs
Each stored program contains a body that consists of an SQL statement. This statement may be a compound statement made up of several statements separated by semicolon (;) characters. For example, the following stored procedure has a body made up of a BEGIN ... END block that contains a SET statement and a REPEAT loop that itself contains another SET statement:
CREATE PROCEDURE dorepeat(p1 INT)
BEGIN
SET @x = 0;
REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
END;
If you use the mysql client program to define a stored program containing semicolon characters, a problem arises. By default, mysql itself recognizes the semicolon as a statement delimiter, so you must redefine the delimiter temporarily to cause mysql to pass the entire stored program definition to the server.
To redefine the mysql delimiter, use the delimiter command. The following example shows how to do this for the dorepeat() procedure just shown. The delimiter is changed to // to enable the entire definition to be passed to the server as a single statement, and then restored to ; before invoking the procedure. This enables the ; delimiter used in the procedure body to be passed through to the server rather than being interpreted by mysql itself.
mysql> delimiter //
mysql> CREATE PROCEDURE dorepeat(p1 INT)
-> BEGIN
-> SET @x = 0;
-> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
-> END
-> //
Query OK, 0 rows affected (0.00 sec)
mysql> delimiter ;
mysql> CALL dorepeat(1000);
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @x;
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)
You can redefine the delimiter to a string other than //, and the delimiter can consist of a single character or multiple characters. You should avoid the use of the backslash (“\”) character because that is the escape character for MySQL.
The following is an example of a function that takes a parameter, performs an operation using an SQL function, and returns the result. In this case, it is unnecessary to use delimiter because the function definition contains no internal ; statement delimiters:
mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
-> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)
18.2. Using Stored Routines (Procedures and Functions)
Stored routines (procedures and functions) are supported in MySQL 5.6. A stored routine is a set of SQL statements that can be stored in the server. Once this has been done, clients don't need to keep reissuing the individual statements but can refer to the stored routine instead.
Stored routines require the proc table in the mysql database. This table is created during the MySQL 5.6 installation procedure. If you are upgrading to MySQL 5.6 from an earlier version, be sure to update your grant tables to make sure that the proc table exists. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
Stored routines can be particularly useful in certain situations:
When multiple client applications are written in different languages or work on different platforms, but need to perform the same database operations.
When security is paramount. Banks, for example, use stored procedures and functions for all common operations. This provides a consistent and secure environment, and routines can ensure that each operation is properly logged. In such a setup, applications and users would have no access to the database tables directly, but can only execute specific stored routines.
Stored routines can provide improved performance because less information needs to be sent between the server and the client. The tradeoff is that this does increase the load on the database server because more of the work is done on the server side and less is done on the client (application) side. Consider this if many client machines (such as Web servers) are serviced by only one or a few database servers.
Stored routines also enable you to have libraries of functions in the database server. This is a feature shared by modern application languages that enable such design internally (for example, by using classes). Using these client application language features is beneficial for the programmer even outside the scope of database use.
MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2. All syntax described here is supported and any limitations and extensions are documented where appropriate.
Additional Resources
You may find the Stored Procedures User Forum of use when working with stored procedures and functions.
For answers to some commonly asked questions regarding stored routines in MySQL, see Section B.4, “MySQL 5.6 FAQ: Stored Procedures and Functions”.
There are some restrictions on the use of stored routines. See Section E.1, “Restrictions on Stored Programs”.
Binary logging for stored routines takes place as described in Section 18.7, “Binary Logging of Stored Programs”.
18.2.1. Stored Routine Syntax
A stored routine is either a procedure or a function. Stored routines are created with the CREATE PROCEDURE and CREATE FUNCTION statements (see Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”). A procedure is invoked using a CALL statement (see Section 13.2.1, “CALL Syntax”), and can only pass back values using output variables. A function can be called from inside a statement just like any other function (that is, by invoking the function's name), and can return a scalar value. The body of a stored routine can use compound statements (see Section 13.6, “MySQL Compound-Statement Syntax”).
Stored routines can be dropped with the DROP PROCEDURE and DROP FUNCTION statements (see Section 13.1.21, “DROP PROCEDURE and DROP FUNCTION Syntax”), and altered with the ALTER PROCEDURE and ALTER FUNCTION statements (see Section 13.1.4, “ALTER PROCEDURE Syntax”).
A stored procedure or function is associated with a particular database. This has several implications:
When the routine is invoked, an implicit USE db_name is performed (and undone when the routine terminates). USE statements within stored routines are not permitted.
You can qualify routine names with the database name. This can be used to refer to a routine that is not in the current database. For example, to invoke a stored procedure p or function f that is associated with the test database, you can say CALL test.p() or test.f().
When a database is dropped, all stored routines associated with it are dropped as well.
Stored functions cannot be recursive.
Recursion in stored procedures is permitted but disabled by default. To enable recursion, set the max_sp_recursion_depth server system variable to a value greater than zero. Stored procedure recursion increases the demand on thread stack space. If you increase the value of max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value of thread_stack at server startup. See Section 5.1.4, “Server System Variables”, for more information.
MySQL supports a very useful extension that enables the use of regular SELECT statements (that is, without using cursors or local variables) inside a stored procedure. The result set of such a query is simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so the client must use a MySQL client library that supports multiple result sets. This means the client must use a client library from a version of MySQL at least as recent as 4.1. The client should also specify the CLIENT_MULTI_RESULTS option when it connects. For C programs, this can be done with the mysql_real_connect() C API function. See Section 21.8.6.53, “mysql_real_connect()”, and Section 21.8.16, “C API Support for Multiple Statement Execution”.
18.2.2. Stored Routines and MySQL Privileges
The MySQL grant system takes stored routines into account as follows:
The CREATE ROUTINE privilege is needed to create stored routines.
The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted automatically to the creator of a routine if necessary, and dropped from the creator when the routine is dropped.
The EXECUTE privilege is required to execute stored routines. However, this privilege is granted automatically to the creator of a routine if necessary (and dropped from the creator when the routine is dropped). Also, the default SQL SECURITY characteristic for a routine is DEFINER, which enables users who have access to the database with which the routine is associated to execute the routine.
If the automatic_sp_privileges system variable is 0, the EXECUTE and ALTER ROUTINE privileges are not automatically granted to and dropped from the routine creator.
The creator of a routine is the account used to execute the CREATE statement for it. This might not be the same as the account named as the DEFINER in the routine definition.
The server manipulates the mysql.proc table in response to statements that create, alter, or drop stored routines. It is not supported that the server will notice manual manipulation of this table.
18.2.3. Stored Routine Metadata
Metadata about stored routines can be obtained as follows:
Query the ROUTINES table of the INFORMATION_SCHEMA database. See Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”.
Use the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements to see routine definitions. See Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”.
Use the SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS statements to see routine characteristics. See Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”.
18.2.4. Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID() changes the same way as for statements executed outside the body of these kinds of objects (see Section 12.14, “Information Functions”). The effect of a stored routine or trigger upon the value of LAST_INSERT_ID() that is seen by following statements depends on the kind of routine:
If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the changed value is seen by statements that follow the procedure call.
For stored functions and triggers that change the value, the value is restored when the function or trigger ends, so following statements do not see a changed value.
18.3. Using Triggers
A trigger is a named database object that is associated with a table, and that activates when a particular event occurs for the table. Some uses for triggers are to perform checks of values to be inserted into a table or to perform calculations on values involved in an update.
A trigger is defined to activate when an INSERT, DELETE, or UPDATE statement executes for the associated table. A trigger can be set to activate either before or after the triggering statement. For example, you can have a trigger activate before each row that is inserted into a table or after each row that is updated.
Important
MySQL triggers are activated by SQL statements only. They are not activated by changes in views, nor by changes to tables made by APIs that do not transmit SQL statements to the MySQL Server. This means that triggers are not activated by changes in INFORMATION_SCHEMA or performance_schema tables, because these tables are actually views.
To use triggers if you have upgraded to MySQL 5.6 from an older release that did not support triggers, you should upgrade your grant tables so that they contain the trigger-related privileges. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
The following discussion describes the syntax for creating and dropping triggers, and shows some examples of how to use them.
Additional Resources
You may find the Triggers User Forum of use when working with views.
For answers to some commonly asked questions regarding triggers in MySQL, see Section B.5, “MySQL 5.6 FAQ: Triggers”.
There are some restrictions on the use of triggers; see Section E.1, “Restrictions on Stored Programs”.
Binary logging for triggers takes place as described in Section 18.7, “Binary Logging of Stored Programs”.
18.3.1. Trigger Syntax
To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement. The syntax for these statements is described in Section 13.1.15, “CREATE TRIGGER Syntax”, and Section 13.1.24, “DROP TRIGGER Syntax”.
Here is a simple example that associates a trigger with a table for INSERT statements. The trigger acts as an accumulator, summing the values inserted into one of the columns of the table.
mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)
mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
-> FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.06 sec)
The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the account table. It also includes clauses that specify the trigger activation time, the triggering event, and what to do with the trigger activates:
The keyword BEFORE indicates the trigger action time. In this case, the trigger should activate before each row inserted into the table. The other permissible keyword here is AFTER.
The keyword INSERT indicates the event that activates the trigger. In the example, INSERT statements cause trigger activation. You can also create triggers for DELETE and UPDATE statements.
The statement following FOR EACH ROW defines the statement to execute each time the trigger activates, which occurs once for each row affected by the triggering statement. In the example, the triggered statement is a simple SET that accumulates the values inserted into the amount column. The statement refers to the column as NEW.amount which means “the value of the amount column to be inserted into the new row.”
To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see what value the variable has afterward:
mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+
In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 - 100, or 1852.48.
To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the trigger is not in the default schema:
mysql> DROP TRIGGER test.ins_sum;
Triggers for a table are also dropped if you drop the table.
Trigger names exist in the schema namespace, meaning that all triggers must have unique names within a schema. Triggers in different schemas can have the same name.
In addition to the requirement that trigger names be unique for a schema, there are other limitations on the types of triggers you can create. In particular, you cannot have two triggers for a table that have the same activation time and activation event. For example, you cannot define two BEFORE INSERT triggers or two AFTER UPDATE triggers for a table. This should rarely be a significant limitation, because it is possible to define a trigger that executes multiple statements by using the BEGIN ... END compound statement construct after FOR EACH ROW. (An example appears later in this section.)
The OLD and NEW keywords enable you to access columns in the rows affected by a trigger. (OLD and NEW are not case sensitive.) In an INSERT trigger, only NEW.col_name can be used; there is no old row. In a DELETE trigger, only OLD.col_name can be used; there is no new row. In an UPDATE trigger, you can use OLD.col_name to refer to the columns of a row before it is updated and NEW.col_name to refer to the columns of the row after it is updated.
A column named with OLD is read only. You can refer to it (if you have the SELECT privilege), but not modify it. A column named with NEW can be referred to if you have the SELECT privilege for it. In a BEFORE trigger, you can also change its value with SET NEW.col_name = value if you have the UPDATE privilege for it. This means you can use a trigger to modify the values to be inserted into a new row or that are used to update a row.
In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the automatically generated sequence number that will be generated when the new record actually is inserted.
OLD and NEW are MySQL extensions to triggers.
By using the BEGIN ... END construct, you can define a trigger that executes multiple statements. Within the BEGIN block, you also can use other syntax that is permitted within stored routines such as conditionals and loops. However, just as for stored routines, if you use the mysql program to define a trigger that executes multiple statements, it is necessary to redefine the mysql statement delimiter so that you can use the ; statement delimiter within the trigger definition. The following example illustrates these points. It defines an UPDATE trigger that checks the new value to be used for updating each row, and modifies the value to be within the range from 0 to 100. This must be a BEFORE trigger because the value needs to be checked before it is used to update the row:
mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
-> FOR EACH ROW
-> BEGIN
-> IF NEW.amount < 0 THEN
-> SET NEW.amount = 0;
-> ELSEIF NEW.amount > 100 THEN
-> SET NEW.amount = 100;
-> END IF;
-> END;//
mysql> delimiter ;
It can be easier to define a stored procedure separately and then invoke it from the trigger using a simple CALL statement. This is also advantageous if you want to invoke the same routine from within several triggers.
There are some limitations on what can appear in statements that a trigger executes when activated:
The trigger cannot use the CALL statement to invoke stored procedures that return data to the client or that use dynamic SQL. (Stored procedures are permitted to return data to the trigger through OUT or INOUT parameters.)
The trigger cannot use statements that explicitly or implicitly begin or end a transaction such as START TRANSACTION, COMMIT, or ROLLBACK.
MySQL handles errors during trigger execution as follows:
If a BEFORE trigger fails, the operation on the corresponding row is not performed.
A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the attempt subsequently succeeds.
An AFTER trigger is executed only if the BEFORE trigger (if any) and the row operation both execute successfully.
An error during either a BEFORE or AFTER trigger results in failure of the entire statement that caused trigger invocation.
For transactional tables, failure of a statement should cause rollback of all changes performed by the statement. Failure of a trigger causes the statement to fail, so trigger failure also causes rollback. For nontransactional tables, such rollback cannot be done, so although the statement fails, any changes performed prior to the point of the error remain in effect.
18.3.2. Trigger Metadata
Metadata about triggers can be obtained as follows:
Query the TRIGGERS table of the INFORMATION_SCHEMA database. See Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”.
Use the SHOW TRIGGERS statement. See Section 13.7.5.39, “SHOW TRIGGERS Syntax”.
18.4. Using the Event Scheduler
The MySQL Event Scheduler manages the scheduling and execution of events: Tasks that run according to schedule. The following discussion covers the Event Scheduler and is divided into the following sections:
Section 18.4.1, “Event Scheduler Overview”, provides an introduction to and conceptual overview of MySQL Events.
Section 18.4.3, “Event Syntax”, discusses the SQL statements for creating, altering, and dropping MySQL Events.
Section 18.4.4, “Event Metadata”, shows how to obtain information about events and how this information is stored by the MySQL Server.
Section 18.4.6, “The Event Scheduler and MySQL Privileges”, discusses the privileges required to work with events and the ramifications that events have with regard to privileges when executing.
Stored routines require the event table in the mysql database. This table is created during the MySQL 5.6 installation procedure. If you are upgrading to MySQL 5.6 from an earlier version, be sure to update your grant tables to make sure that the event table exists. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
Additional Resources
You may find the MySQL Event Scheduler User Forum of use when working with scheduled events.
There are some restrictions on the use of events; see Section E.1, “Restrictions on Stored Programs”.
Binary logging for events takes place as described in Section 18.7, “Binary Logging of Stored Programs”.
18.4.1. Event Scheduler Overview
MySQL Events are tasks that run according to a schedule. Therefore, we sometimes refer to them as scheduled events. When you create an event, you are creating a named database object containing one or more SQL statements to be executed at one or more regular intervals, beginning and ending at a specific date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a “cron job”) or the Windows Task Scheduler.
Scheduled tasks of this type are also sometimes known as “temporal triggers”, implying that these are objects that are triggered by the passage of time. While this is essentially correct, we prefer to use the term events to avoid confusion with triggers of the type discussed in Section 18.3, “Using Triggers”. Events should more specifically not be confused with “temporary triggers”. Whereas a trigger is a database object whose statements are executed in response to a specific type of event that occurs on a given table, a (scheduled) event is an object whose statements are executed in response to the passage of a specified time interval.
While there is no provision in the SQL Standard for event scheduling, there are precedents in other database systems, and you may notice some similarities between these implementations and that found in the MySQL Server.
MySQL Events have the following major features and properties:
In MySQL 5.6, an event is uniquely identified by its name and the schema to which it is assigned.
An event performs a specific action according to a schedule. This action consists of an SQL statement, which can be a compound statement in a BEGIN ... END block if desired (see Section 13.6, “MySQL Compound-Statement Syntax”). An event's timing can be either one-time or recurrent. A one-time event executes one time only. A recurrent event repeats its action at a regular interval, and the schedule for a recurring event can be assigned a specific start day and time, end day and time, both, or neither. (By default, a recurring event's schedule begins as soon as it is created, and continues indefinitely, until it is disabled or dropped.)
If a repeating event does not terminate within its scheduling interval, the result may be multiple instances of the event executing simultaneously. If this is undesirable, you should institute a mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK() function, or row or table locking.
Users can create, modify, and drop scheduled events using SQL statements intended for these purposes. Syntactically invalid event creation and modification statements fail with an appropriate error message. A user may include statements in an event's action which require privileges that the user does not actually have. The event creation or modification statement succeeds but the event's action fails. See Section 18.4.6, “The Event Scheduler and MySQL Privileges” for details.
Many of the properties of an event can be set or modified using SQL statements. These properties include the event's name, timing, persistence (that is, whether it is preserved following the expiration of its schedule), status (enabled or disabled), action to be performed, and the schema to which it is assigned. See Section 13.1.2, “ALTER EVENT Syntax”.
The default definer of an event is the user who created the event, unless the event has been altered, in which case the definer is the user who issued the last ALTER EVENT statement affecting that event. An event can be modified by any user having the EVENT privilege on the database for which the event is defined. See Section 18.4.6, “The Event Scheduler and MySQL Privileges”.
An event's action statement may include most SQL statements permitted within stored routines. For restrictions, see Section E.1, “Restrictions on Stored Programs”.
18.4.2. Event Scheduler Configuration
Events are executed by a special event scheduler thread; when we refer to the Event Scheduler, we actually refer to this thread. When running, the event scheduler thread and its current state can be seen by users having the PROCESS privilege in the output of SHOW PROCESSLIST, as shown in the discussion that follows.
The global event_scheduler system variable determines whether the Event Scheduler is enabled and running on the server. It has one of these 3 values, which affect event scheduling as described here:
OFF: The Event Scheduler is stopped. The event scheduler thread does not run, is not shown in the output of SHOW PROCESSLIST, and no scheduled events are executed. OFF is the default value for event_scheduler.
When the Event Scheduler is stopped (event_scheduler is OFF), it can be started by setting the value of event_scheduler to ON. (See next item.)
ON: The Event Scheduler is started; the event scheduler thread runs and executes all scheduled events.
When the Event Scheduler is ON, the event scheduler thread is listed in the output of SHOW PROCESSLIST as a daemon process, and its state is represented as shown here:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
Id: 1
User: root
Host: localhost
db: NULL
Command: Query
Time: 0
State: NULL
Info: show processlist
*************************** 2. row ***************************
Id: 2
User: event_scheduler
Host: localhost
db: NULL
Command: Daemon
Time: 3
State: Waiting for next activation
Info: NULL
2 rows in set (0.00 sec)
Event scheduling can be stopped by setting the value of event_scheduler to OFF.
DISABLED: This value renders the Event Scheduler nonoperational. When the Event Scheduler is DISABLED, the event scheduler thread does not run (and so does not appear in the output of SHOW PROCESSLIST). In addition, the Event Scheduler state cannot be changed at runtime.
If the Event Scheduler status has not been set to DISABLED, event_scheduler can be toggled between ON and OFF (using SET). It is also possible to use 0 for OFF, and 1 for ON when setting this variable. Thus, any of the following 4 statements can be used in the mysql client to turn on the Event Scheduler:
SET GLOBAL event_scheduler = ON;
SET @@global.event_scheduler = ON;
SET GLOBAL event_scheduler = 1;
SET @@global.event_scheduler = 1;
Similarly, any of these 4 statements can be used to turn off the Event Scheduler:
SET GLOBAL event_scheduler = OFF;
SET @@global.event_scheduler = OFF;
SET GLOBAL event_scheduler = 0;
SET @@global.event_scheduler = 0;
Although ON and OFF have numeric equivalents, the value displayed for event_scheduler by SELECT or SHOW VARIABLES is always one of OFF, ON, or DISABLED. DISABLED has no numeric equivalent. For this reason, ON and OFF are usually preferred over 1 and 0 when setting this variable.
Note that attempting to set event_scheduler without specifying it as a global variable causes an error:
mysql< SET @@event_scheduler = OFF;
ERROR 1229 (HY000): Variable 'event_scheduler' is a GLOBAL
variable and should be set with SET GLOBAL
Important
It is possible to set the Event Scheduler to DISABLED only at server startup. If event_scheduler is ON or OFF, you cannot set it to DISABLED at runtime. Also, if the Event Scheduler is set to DISABLED at startup, you cannot change the value of event_scheduler at runtime.
To disable the event scheduler, use one of the following two methods:
As a command-line option when starting the server:
--event-scheduler=DISABLED
In the server configuration file (my.cnf, or my.ini on Windows systems), include the line where it will be read by the server (for example, in a [mysqld] section):
event_scheduler=DISABLED
To enable the Event Scheduler, restart the server without the --event-scheduler=DISABLED command-line option, or after removing or commenting out the line containing event-scheduler=DISABLED in the server configuration file, as appropriate. Alternatively, you can use ON (or 1) or OFF (or 0) in place of the DISABLED value when starting the server.
Note
You can issue event-manipulation statements when event_scheduler is set to DISABLED. No warnings or errors are generated in such cases (provided that the statements are themselves valid). However, scheduled events cannot execute until this variable is set to ON (or 1). Once this has been done, the event scheduler thread executes all events whose scheduling conditions are satisfied.
Starting the MySQL server with the --skip-grant-tables option causes event_scheduler to be set to DISABLED, overriding any other value set either on the command line or in the my.cnf or my.ini file (Bug #26807).
For SQL statements used to create, alter, and drop events, see Section 18.4.3, “Event Syntax”.
MySQL 5.6 provides an EVENTS table in the INFORMATION_SCHEMA database. This table can be queried to obtain information about scheduled events which have been defined on the server. See Section 18.4.4, “Event Metadata”, and Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”, for more information.
For information regarding event scheduling and the MySQL privilege system, see Section 18.4.6, “The Event Scheduler and MySQL Privileges”.
18.4.3. Event Syntax
MySQL 5.6 provides several SQL statements for working with scheduled events:
New events are defined using the CREATE EVENT statement. See Section 13.1.9, “CREATE EVENT Syntax”.
The definition of an existing event can be changed by means of the ALTER EVENT statement. See Section 13.1.2, “ALTER EVENT Syntax”.
When a scheduled event is no longer wanted or needed, it can be deleted from the server by its definer using the DROP EVENT statement. See Section 13.1.18, “DROP EVENT Syntax”. Whether an event persists past the end of its schedule also depends on its ON COMPLETION clause, if it has one. See Section 13.1.9, “CREATE EVENT Syntax”.
An event can be dropped by any user having the EVENT privilege for the database on which the event is defined. See Section 18.4.6, “The Event Scheduler and MySQL Privileges”.
18.4.4. Event Metadata
Metadata about events can be obtained as follows:
Query the event table of the mysql database.
Query the EVENTS table of the INFORMATION_SCHEMA database. See Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”.
Use the SHOW CREATE EVENT statement. See Section 13.7.5.9, “SHOW CREATE EVENT Syntax”.
Use the SHOW EVENTS statement. See Section 13.7.5.19, “SHOW EVENTS Syntax”.
Event Scheduler Time Representation
Each session in MySQL has a session time zone (STZ). This is the session time_zone value that is initialized from the server's global time_zone value when the session begins but may be changed during the session.
The session time zone that is current when a CREATE EVENT or ALTER EVENT statement executes is used to interpret times specified in the event definition. This becomes the event time zone (ETZ); that is, the time zone that is used for event scheduling and is in effect within the event as it executes.
For representation of event information in the mysql.event table, the execute_at, starts, and ends times are converted to UTC and stored along with the event time zone. This enables event execution to proceed as defined regardless of any subsequent changes to the server time zone or daylight saving time effects. The last_executed time is also stored in UTC.
If you select information from mysql.event, the times just mentioned are retrieved as UTC values. These times can also be obtained by selecting from the INFORMATION_SCHEMA.EVENTS table or from SHOW EVENTS, but they are reported as ETZ values. Other times available from these sources indicate when an event was created or last altered; these are displayed as STZ values. The following table summarizes representation of event times.
Value | mysql.event | INFORMATION_SCHEMA.EVENTS | SHOW EVENTS |
---|---|---|---|
Execute at | UTC | ETZ | ETZ |
Starts | UTC | ETZ | ETZ |
Ends | UTC | ETZ | ETZ |
Last executed | UTC | ETZ | n/a |
Created | STZ | STZ | n/a |
Last altered | STZ | STZ | n/a |
18.4.5. Event Scheduler Status
The Event Scheduler writes information about event execution that terminates with an error or warning to the MySQL Server's error log. See Section 18.4.6, “The Event Scheduler and MySQL Privileges” for an example.
To obtain information about the state of the Event Scheduler for debugging and troubleshooting purposes, run mysqladmin debug (see Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”); after running this command, the server's error log contains output relating to the Event Scheduler, similar to what is shown here:
Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked
Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : init_scheduler:313
LUA : init_scheduler:318
WOC : NO
Workers : 0
Executed : 0
Data locked: NO
Event queue status:
Element count : 1
Data locked : NO
Attempting lock : NO
LLA : init_queue:148
LUA : init_queue:168
WOC : NO
Next activation : 0000-00-00 00:00:00
In statements that occur as part of events executed by the Event Scheduler, diagnostics messages (not only errors, but also warnings) are written to the error log, and, on Windows, to the application event log. For frequently executed events, it is possible for this to result in many logged messages. For example, for SELECT ... INTO var_list statements, if the query returns no rows, a warning with error code 1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple rows, error 1172 occurs (Result consisted of more than one row). For either condition, you can avoid having the warnings be logged by declaring a condition handler; see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”. For statements that may retrieve multiple rows, another strategy is to use LIMIT 1 to limit the result set to a single row.
18.4.6. The Event Scheduler and MySQL Privileges
To enable or disable the execution of scheduled events, it is necessary to set the value of the global event_scheduler system variable. This requires the SUPER privilege.
The EVENT privilege governs the creation, modification, and deletion of events. This privilege can be bestowed using GRANT. For example, this GRANT statement confers the EVENT privilege for the schema named myschema on the user jon@ghidora:
GRANT EVENT ON myschema.* TO jon@ghidora;
(We assume that this user account already exists, and that we wish for it to remain unchanged otherwise.)
To grant this same user the EVENT privilege on all schemas, use the following statement:
GRANT EVENT ON *.* TO jon@ghidora;
The EVENT privilege has global or schema-level scope. Therefore, trying to grant it on a single table results in an error as shown:
mysql> GRANT EVENT ON myschema.mytable TO jon@ghidora;
ERROR 1144 (42000): Illegal GRANT/REVOKE command; please
consult the manual to see which privileges can be used
It is important to understand that an event is executed with the privileges of its definer, and that it cannot perform any actions for which its definer does not have the requisite privileges. For example, suppose that jon@ghidora has the EVENT privilege for myschema. Suppose also that this user has the SELECT privilege for myschema, but no other privileges for this schema. It is possible for jon@ghidora to create a new event such as this one:
CREATE EVENT e_store_ts
ON SCHEDULE
EVERY 10 SECOND
DO
INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
The user waits for a minute or so, and then performs a SELECT * FROM mytable; query, expecting to see several new rows in the table. Instead, the table is empty. Since the user does not have the INSERT privilege for the table in question, the event has no effect.
If you inspect the MySQL error log (hostname.err), you can see that the event is executing, but the action it is attempting to perform fails, as indicated by RetCode=0:
060209 22:39:44 [Note] EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:39:44 [Note] EVEX EXECUTED event newdb.e [EXPR:10]. RetCode=0
060209 22:39:54 [Note] EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:39:54 [Note] EVEX EXECUTED event newdb.e [EXPR:10]. RetCode=0
060209 22:40:04 [Note] EVEX EXECUTING event newdb.e [EXPR:10]
060209 22:40:04 [Note] EVEX EXECUTED event newdb.e [EXPR:10]. RetCode=0
Since this user very likely does not have access to the error log, it is possible to verify whether the event's action statement is valid by executing it directly:
mysql> INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
ERROR 1142 (42000): INSERT command denied to user
'jon'@'ghidora' for table 'mytable'
Inspection of the INFORMATION_SCHEMA.EVENTS table shows that e_store_ts exists and is enabled, but its LAST_EXECUTED column is NULL:
mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
> WHERE EVENT_NAME='e_store_ts'
> AND EVENT_SCHEMA='myschema'\G
*************************** 1. row ***************************
EVENT_CATALOG: NULL
EVENT_SCHEMA: myschema
EVENT_NAME: e_store_ts
DEFINER: jon@ghidora
EVENT_BODY: SQL
EVENT_DEFINITION: INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP())
EVENT_TYPE: RECURRING
EXECUTE_AT: NULL
INTERVAL_VALUE: 5
INTERVAL_FIELD: SECOND
SQL_MODE: NULL
STARTS: 0000-00-00 00:00:00
ENDS: 0000-00-00 00:00:00
STATUS: ENABLED
ON_COMPLETION: NOT PRESERVE
CREATED: 2006-02-09 22:36:06
LAST_ALTERED: 2006-02-09 22:36:06
LAST_EXECUTED: NULL
EVENT_COMMENT:
1 row in set (0.00 sec)
To rescind the EVENT privilege, use the REVOKE statement. In this example, the EVENT privilege on the schema myschema is removed from the jon@ghidora user account:
REVOKE EVENT ON myschema.* FROM jon@ghidora;
Important
Revoking the EVENT privilege from a user does not delete or disable any events that may have been created by that user.
An event is not migrated or dropped as a result of renaming or dropping the user who created it.
Suppose that the user jon@ghidora has been granted the EVENT and INSERT privileges on the myschema schema. This user then creates the following event:
CREATE EVENT e_insert
ON SCHEDULE
EVERY 7 SECOND
DO
INSERT INTO myschema.mytable;
After this event has been created, root revokes the EVENT privilege for jon@ghidora. However, e_insert continues to execute, inserting a new row into mytable each seven seconds. The same would be true if root had issued either of these statements:
DROP USER jon@ghidora;
RENAME USER jon@ghidora TO someotherguy@ghidora;
You can verify that this is true by examining the mysql.event table (discussed later in this section) or the INFORMATION_SCHEMA.EVENTS table (see Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”) before and after issuing a DROP USER or RENAME USER statement.
Event definitions are stored in the mysql.event table. To drop an event created by another user account, the MySQL root user (or another user with the necessary privileges) can delete rows from this table. For example, to remove the event e_insert shown previously, root can use the following statement:
DELETE FROM mysql.event
WHERE db = 'myschema'
AND definer = 'jon@ghidora'
AND name = 'e_insert';
It is very important to match the event name, database schema name, and user account when deleting rows from the mysql.event table. This is because the same user can create different events of the same name in different schemas.
Users' EVENT privileges are stored in the Event_priv columns of the mysql.user and mysql.db tables. In both cases, this column holds one of the values 'Y' or 'N'. 'N' is the default. mysql.user.Event_priv is set to 'Y' for a given user only if that user has the global EVENT privilege (that is, if the privilege was bestowed using GRANT EVENT ON *.*). For a schema-level EVENT privilege, GRANT creates a row in mysql.db and sets that row's Db column to the name of the schema, the User column to the name of the user, and the Event_priv column to 'Y'. There should never be any need to manipulate these tables directly, since the GRANT EVENT and REVOKE EVENT statements perform the required operations on them.
Five status variables provide counts of event-related operations (but not of statements executed by events; see Section E.1, “Restrictions on Stored Programs”). These are:
Com_create_event: The number of CREATE EVENT statements executed since the last server restart.
Com_alter_event: The number of ALTER EVENT statements executed since the last server restart.
Com_drop_event: The number of DROP EVENT statements executed since the last server restart.
Com_show_create_event: The number of SHOW CREATE EVENT statements executed since the last server restart.
Com_show_events: The number of SHOW EVENTS statements executed since the last server restart.
You can view current values for all of these at one time by running the statement SHOW STATUS LIKE '%event%';.
18.5. Using Views
Views (including updatable views) are available in MySQL Server 5.6. Views are stored queries that when invoked produce a result set. A view acts as a virtual table.
To use views if you have upgraded to MySQL 5.6 from an older release that did not support views, you should upgrade your grant tables so that they contain the view-related privileges. See Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”.
The following discussion describes the syntax for creating and dropping views, and shows some examples of how to use them.
Additional Resources
You may find the Views User Forum of use when working with views.
For answers to some commonly asked questions regarding views in MySQL, see Section B.6, “MySQL 5.6 FAQ: Views”.
There are some restrictions on the use of views; see Section E.5, “Restrictions on Views”.
18.5.1. View Syntax
The CREATE VIEW statement creates a new view (see Section 13.1.16, “CREATE VIEW Syntax”). To alter the definition of a view or drop a view, use ALTER VIEW (see Section 13.1.7, “ALTER VIEW Syntax”), or DROP VIEW (see Section 13.1.25, “DROP VIEW Syntax”).
A view can be created from many kinds of SELECT statements. It can refer to base tables or other views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The following example defines a view that selects two columns from another table, as well as an expression calculated from those columns:
mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50), (5, 60);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
| 5 | 60 | 300 |
+------+-------+-------+
mysql> SELECT * FROM v WHERE qty = 5;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 5 | 60 | 300 |
+------+-------+-------+
18.5.2. View Processing Algorithms
The optional ALGORITHM clause for CREATE VIEW or ALTER VIEW is a MySQL extension to standard SQL. It affects how MySQL processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED. The default algorithm is UNDEFINED if no ALGORITHM clause is present.
For MERGE, the text of a statement that refers to the view and the view definition are merged such that parts of the view definition replace corresponding parts of the statement.
For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to execute the statement.
For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if possible, because MERGE is usually more efficient and because a view cannot be updatable if a temporary table is used.
A reason to choose TEMPTABLE explicitly is that locks can be released on underlying tables after the temporary table has been created and before it is used to finish processing the statement. This might result in quicker lock release than the MERGE algorithm so that other clients that use the view are not blocked as long.
A view algorithm can be UNDEFINED for three reasons:
No ALGORITHM clause is present in the CREATE VIEW statement.
The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.
ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table. In this case, MySQL generates a warning and sets the algorithm to UNDEFINED.
As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the statement that refers to the view. The following examples briefly illustrate how the MERGE algorithm works. The examples assume that there is a view v_merge that has this definition:
CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS
SELECT c1, c2 FROM t WHERE c3 > 100;
Example 1: Suppose that we issue this statement:
SELECT * FROM v_merge;
MySQL handles the statement as follows:
v_merge becomes t
* becomes vc1, vc2, which corresponds to c1, c2
The view WHERE clause is added
The resulting statement to be executed becomes:
SELECT c1, c2 FROM t WHERE c3 > 100;
Example 2: Suppose that we issue this statement:
SELECT * FROM v_merge WHERE vc1 < 100;
This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100 and the view WHERE clause is added to the statement WHERE clause using an AND connective (and parentheses are added to make sure the parts of the clause are executed with correct precedence). The resulting statement to be executed becomes:
SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);
Effectively, the statement to be executed has a WHERE clause of this form:
WHERE (select WHERE) AND (view WHERE)
If the MERGE algorithm cannot be used, a temporary table must be used instead. MERGE cannot be used if the view contains any of the following constructs:
Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)
DISTINCT
GROUP BY
HAVING
LIMIT
Subquery in the select list
Refers only to literal values (in this case, there is no underlying table)
18.5.3. Updatable and Insertable Views
Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to update the contents of the underlying table. For a view to be updatable, there must be a one-to-one relationship between the rows in the view and the rows in the underlying table. There are also certain other constructs that make a view nonupdatable. To be more specific, a view is not updatable if it contains any of the following:
Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)
DISTINCT
GROUP BY
HAVING
Subquery in the select list
Certain joins (see additional join discussion later in this section)
Nonupdatable view in the FROM clause
A subquery in the WHERE clause that refers to a table in the FROM clause
Refers only to literal values (in this case, there is no underlying table to update)
Uses ALGORITHM = TEMPTABLE (use of a temporary table always makes a view nonupdatable)
Multiple references to any column of a base table.
With respect to insertability (being updatable with INSERT statements), an updatable view is insertable if it also satisfies these additional requirements for the view columns:
There must be no duplicate view column names.
The view must contain all columns in the base table that do not have a default value.
The view columns must be simple column references and not derived columns. A derived column is one that is not a simple column reference but is derived from an expression. These are examples of derived columns:
3.14159
col1 + 3
UPPER(col2)
col3 / col4
(subquery)
A view that has a mix of simple column references and derived columns is not insertable, but it can be updatable if you update only those columns that are not derived. Consider this view:
CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;
This view is not insertable because col2 is derived from an expression. But it is updatable if the update does not try to update col2. This update is permissible:
UPDATE v SET col1 = 0;
This update is not permissible because it attempts to update a derived column:
UPDATE v SET col2 = 0;
It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed with the MERGE algorithm. For this to work, the view must use an inner join (not an outer join or a UNION). Also, only a single table in the view definition can be updated, so the SET clause must name only columns from one of the tables in the view. Views that use UNION ALL are not permitted even though they might be theoretically updatable, because the implementation uses temporary tables to process them.
For a multiple-table updatable view, INSERT can work if it inserts into a single table. DELETE is not supported.
INSERT DELAYED is not supported for views.
If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that does not include the AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(), because the side effects of inserting default values into columns not part of the view should not be visible.
The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to rows except those for which the WHERE clause in the select_statement is true.
In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine the scope of check testing when the view is defined in terms of another view. The LOCAL keyword restricts the CHECK OPTION only to the view being defined. CASCADED causes the checks for underlying views to be evaluated as well. When neither keyword is given, the default is CASCADED. Consider the definitions for the following table and set of views:
mysql> CREATE TABLE t1 (a INT);
mysql> CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2
-> WITH CHECK OPTION;
mysql> CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0
-> WITH LOCAL CHECK OPTION;
mysql> CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0
-> WITH CASCADED CHECK OPTION;
Here the v2 and v3 views are defined in terms of another view, v1. v2 has a LOCAL check option, so inserts are tested only against the v2 check. v3 has a CASCADED check option, so inserts are tested not only against its own check, but against those of underlying views. The following statements illustrate these differences:
mysql> INSERT INTO v2 VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'
MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true) if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO (false). The IS_UPDATABLE column in the INFORMATION_SCHEMA.VIEWS table displays the status of this flag. It means that the server always knows whether a view is updatable. If the view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and will be rejected. (Note that even if a view is updatable, it might not be possible to insert into it, as described elsewhere in this section.)
The updatability of views may be affected by the value of the updatable_views_with_limit system variable. See Section 5.1.4, “Server System Variables”.
18.5.4. View Metadata
Metadata about views can be obtained as follows:
Query the VIEWS table of the INFORMATION_SCHEMA database. See Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”.
Use the SHOW CREATE VIEW statement. See Section 13.7.5.14, “SHOW CREATE VIEW Syntax”.
18.6. Access Control for Stored Programs and Views
Stored programs and views are defined prior to use and, when referenced, execute within a security context that determines their privileges. These privileges are controlled by their DEFINER attribute, and, if there is one, their SQL SECURITY characteristic.
All stored programs (procedures, functions, triggers, and events) and views can have a DEFINER attribute that names a MySQL account. If the DEFINER attribute is omitted from a stored program or view definition, the default account is the user who creates the object.
In addition, stored routines (procedures and functions) and views can have a SQL SECURITY characteristic with a value of DEFINER or INVOKER to specify whether the object executes in definer or invoker context. If the SQL SECURITY characteristic is omitted, the default is definer context.
Triggers and events have no SQL SECURITY characteristic and always execute in definer context. The server invokes these objects automatically as necessary, so there is no invoking user.
Definer and invoker security contexts differ as follows:
A stored program or view that executes in definer security context executes with the privileges of the account named by its DEFINER attribute. These privileges may be entirely different from those of the invoking user. The invoker must have appropriate privileges to reference the object (for example, EXECUTE to call a stored procedure or SELECT to select from a view), but when the object executes, the invoker's privileges are ignored and only the DEFINER account privileges matter. If this account has few privileges, the object is correspondingly limited in the operations it can perform. If the DEFINER account is highly privileged (such as a root account), the object can perform powerful operations no matter who invokes it.
A stored routine or view that executes in invoker security context can perform only operations for which the invoker has privileges. The DEFINER attribute can be specified but has no effect for objects that execute in invoker context.
Consider the following stored procedure:
CREATE DEFINER = 'admin'@'localhost' PROCEDURE p1()
SQL SECURITY DEFINER
BEGIN
UPDATE t1 SET counter = counter + 1;
END;
Any user who has the EXECUTE privilege for p1 can invoke it with a CALL statement. However, when p1 executes, it does so in DEFINER security context and thus executes with the privileges of 'admin'@'localhost', the account named in the DEFINER attribute. This account must have the EXECUTE privilege for p1 as well as the UPDATE privilege for the table t1. Otherwise, the procedure fails.
Now consider this stored procedure, which is identical to p1 except that its SQL SECURITY characteristic is INVOKER:
CREATE DEFINER = 'admin'@'localhost' PROCEDURE p2()
SQL SECURITY INVOKER
BEGIN
UPDATE t1 SET counter = counter + 1;
END;
p2, unlike p1, executes in INVOKER security context. The DEFINER attribute is irrelevant and p2 executes with the privileges of the invoking user. p2 fails if the invoker lacks the EXECUTE privilege for p2 or the UPDATE privilege for the table t1.
MySQL uses the following rules to control which accounts a user can specify in an object DEFINER attribute:
You can specify a DEFINER value other than your own account only if you have the SUPER privilege.
If you do not have the SUPER privilege, the only legal user value is your own account, either specified literally or by using CURRENT_USER. You cannot set the definer to some other account.
To minimize the risk potential for stored program and view creation and use, follow these guidelines:
For a stored routine or view, use SQL SECURITY INVOKER in the object definition when possible so that it can be used only by users with permissions appropriate for the operations performed by the object.
If you create definer-context stored programs or views while using an account that has the SUPER privilege, specify an explicit DEFINER attribute that names an account possessing only the privileges required for the operations performed by the object. Specify a highly privileged DEFINER account only when absolutely necessary.
Administrators can prevent users from specifying highly privileged DEFINER accounts by not granting them the SUPER privilege.
Definer-context objects should be written keeping in mind that they may be able to access data for which the invoking user has no privileges. In some cases, you can prevent reference to these objects by not granting unauthorized users particular privileges:
A stored procedure or function cannot be referenced by a user who does not have the EXECUTE privilege for it.
A view cannot be referenced by a user who does not have the appropriate privilege for it (SELECT to select from it, INSERT to insert into it, and so forth).
However, no such control exists for triggers because users do not reference them directly. A trigger always executes in DEFINER context and is activated by access to the table with which it is associated, even ordinary table accesses by users with no special privileges. If the DEFINER account is highly privileged, the trigger can perform sensitive or dangerous operations. This remains true if the SUPER and TRIGGER privileges needed to create the trigger are revoked from the account of the user who created it. Administrators should be especially careful about granting users that combination of privileges.
18.7. Binary Logging of Stored Programs
The binary log contains information about SQL statements that modify database contents. This information is stored in the form of “events” that describe the modifications. The binary log has two important purposes:
For replication, the binary log is used on master replication servers as a record of the statements to be sent to slave servers. The master server sends the events contained in its binary log to its slaves, which execute those events to make the same data changes that were made on the master. See Section 16.2, “Replication Implementation”.
Certain data recovery operations require use of the binary log. After a backup file has been restored, the events in the binary log that were recorded after the backup was made are re-executed. These events bring databases up to date from the point of the backup. See Section 7.3.2, “Using Backups for Recovery”.
However, there are certain binary logging issues that apply with respect to stored programs (stored procedures and functions, triggers, and events), if logging occurs at the statement level:
In some cases, it is possible that a statement will affect different sets of rows on a master and a slave.
Replicated statements executed on a slave are processed by the slave SQL thread, which has full privileges. It is possible for a procedure to follow different execution paths on master and slave servers, so a user can write a routine containing a dangerous statement that will execute only on the slave where it is processed by a thread that has full privileges.
If a stored program that modifies data is nondeterministic, it is not repeatable. This can result in different data on a master and slave, or cause restored data to differ from the original data.
This section describes how MySQL 5.6 handles binary logging for stored programs. It states the current conditions that the implementation places on the use of stored programs, and what you can do to avoid problems. It also provides additional information about the reasons for these conditions.
In general, the issues described here result when binary logging occurs at the SQL statement level. If you use row-based binary logging, the log contains changes made to individual rows as a result of executing SQL statements. When routines or triggers execute, row changes are logged, not the statements that make the changes. For stored procedures, this means that the CALL statement is not logged. For stored functions, row changes made within the function are logged, not the function invocation. For triggers, row changes made by the trigger are logged. On the slave side, only the row changes are seen, not the stored program invocation. For general information about row-based logging, see Section 16.1.2, “Replication Formats”.
Unless noted otherwise, the remarks here assume that you have enabled binary logging by starting the server with the --log-bin option. (See Section 5.2.4, “The Binary Log”.) If the binary log is not enabled, replication is not possible, nor is the binary log available for data recovery.
The current conditions on the use of stored functions in MySQL 5.6 can be summarized as follows. These conditions do not apply to stored procedures or Event Scheduler events and they do not apply unless binary logging is enabled.
To create or alter a stored function, you must have the SUPER privilege, in addition to the CREATE ROUTINE or ALTER ROUTINE privilege that is normally required. (Depending on the DEFINER value in the function definition, SUPER might be required regardless of whether binary logging is enabled. See Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.)
When you create a stored function, you must declare either that it is deterministic or that it does not modify data. Otherwise, it may be unsafe for data recovery or replication.
By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:
ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)
This function is deterministic (and does not modify data), so it is safe:
CREATE FUNCTION f1(i INT)
RETURNS INT
DETERMINISTIC
READS SQL DATA
BEGIN
RETURN i;
END;
This function uses UUID(), which is not deterministic, so the function also is not deterministic and is not safe:
CREATE FUNCTION f2()
RETURNS CHAR(36) CHARACTER SET utf8
BEGIN
RETURN UUID();
END;
This function modifies data, so it may not be safe:
CREATE FUNCTION f3(p_id INT)
RETURNS INT
BEGIN
UPDATE t SET modtime = NOW() WHERE id = p_id;
RETURN ROW_COUNT();
END;
Assessment of the nature of a function is based on the “honesty” of the creator: MySQL does not check that a function declared DETERMINISTIC is free of statements that produce nondeterministic results.
Although it is possible to create a deterministic stored function without specifying DETERMINISTIC, you cannot execute this function using statement-based binary logging. To execute such a function, you must use row-based or mixed binary logging. Alternatively, if you explicitly specify DETERMINISTIC in the function definition, you can use any kind of logging, including statement-based logging.
To relax the preceding conditions on function creation (that you must have the SUPER privilege and that a function must be declared deterministic or to not modify data), set the global log_bin_trust_function_creators system variable to 1. By default, this variable has a value of 0, but you can change it like this:
mysql> SET GLOBAL log_bin_trust_function_creators = 1;
You can also set this variable by using the --log-bin-trust-function-creators=1 option when starting the server.
If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is not required for function creation unless, as described previously, the DEFINER value in the function definition requires it.
For information about built-in functions that may be unsafe for replication (and thus cause stored functions that use them to be unsafe as well), see Section 16.4.1, “Replication Features and Issues”.
Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to triggers with the following exception: CREATE TRIGGER does not have an optional DETERMINISTIC characteristic, so triggers are assumed to be always deterministic. However, this assumption might in some cases be invalid. For example, the UUID() function is nondeterministic (and does not replicate). You should be careful about using such functions in triggers.
Triggers can update tables, so error messages similar to those for stored functions occur with CREATE TRIGGER if you do not have the required privileges. On the slave side, the slave uses the trigger DEFINER attribute to determine which user is considered to be the creator of the trigger.
The rest of this section provides additional detail about the logging implementation and its implications. You need not read it unless you are interested in the background on the rationale for the current logging-related conditions on stored routine use. This discussion applies only for statement-based logging, and not for row-based logging, with the exception of the first item: CREATE and DROP statements are logged as statements regardless of the logging mode.
The server writes CREATE EVENT, CREATE PROCEDURE, CREATE FUNCTION, ALTER EVENT, ALTER PROCEDURE, ALTER FUNCTION, DROP EVENT, DROP PROCEDURE, and DROP FUNCTION statements to the binary log.
A stored function invocation is logged as a SELECT statement if the function changes data and occurs within a statement that would not otherwise be logged. This prevents nonreplication of data changes that result from use of stored functions in nonlogged statements. For example, SELECT statements are not written to the binary log, but a SELECT might invoke a stored function that makes changes. To handle this, a SELECT func_name() statement is written to the binary log when the given function makes a change. Suppose that the following statements are executed on the master:
CREATE FUNCTION f1(a INT) RETURNS INT
BEGIN
IF (a < 3) THEN
INSERT INTO t2 VALUES (a);
END IF;
RETURN 0;
END;
CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1),(2),(3);
SELECT f1(a) FROM t1;
When the SELECT statement executes, the function f1() is invoked three times. Two of those invocations insert a row, and MySQL logs a SELECT statement for each of them. That is, MySQL writes the following statements to the binary log:
SELECT f1(1);
SELECT f1(2);
The server also logs a SELECT statement for a stored function invocation when the function invokes a stored procedure that causes an error. In this case, the server writes the SELECT statement to the log along with the expected error code. On the slave, if the same error occurs, that is the expected result and replication continues. Otherwise, replication stops.
Logging stored function invocations rather than the statements executed by a function has a security implication for replication, which arises from two factors:
It is possible for a function to follow different execution paths on master and slave servers.
Statements executed on a slave are processed by the slave SQL thread which has full privileges.
The implication is that although a user must have the CREATE ROUTINE privilege to create a function, the user can write a function containing a dangerous statement that will execute only on the slave where it is processed by a thread that has full privileges. For example, if the master and slave servers have server ID values of 1 and 2, respectively, a user on the master server could create and invoke an unsafe function unsafe_func() as follows:
mysql> delimiter //
mysql> CREATE FUNCTION unsafe_func () RETURNS INT
-> BEGIN
-> IF @@server_id=2 THEN dangerous_statement; END IF;
-> RETURN 1;
-> END;
-> //
mysql> delimiter ;
mysql> INSERT INTO t VALUES(unsafe_func());
The CREATE FUNCTION and INSERT statements are written to the binary log, so the slave will execute them. Because the slave SQL thread has full privileges, it will execute the dangerous statement. Thus, the function invocation has different effects on the master and slave and is not replication-safe.
To guard against this danger for servers that have binary logging enabled, stored function creators must have the SUPER privilege, in addition to the usual CREATE ROUTINE privilege that is required. Similarly, to use ALTER FUNCTION, you must have the SUPER privilege in addition to the ALTER ROUTINE privilege. Without the SUPER privilege, an error will occur:
ERROR 1419 (HY000): You do not have the SUPER privilege and
binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)
If you do not want to require function creators to have the SUPER privilege (for example, if all users with the CREATE ROUTINE privilege on your system are experienced application developers), set the global log_bin_trust_function_creators system variable to 1. You can also set this variable by using the --log-bin-trust-function-creators=1 option when starting the server. If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is not required for function creation unless, as described previously, the DEFINER value in the function definition requires it.
If a function that performs updates is nondeterministic, it is not repeatable. This can have two undesirable effects:
It will make a slave different from the master.
Restored data will be different from the original data.
To deal with these problems, MySQL enforces the following requirement: On a master server, creation and alteration of a function is refused unless you declare the function to be deterministic or to not modify data. Two sets of function characteristics apply here:
The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a function always produces the same result for given inputs. The default is NOT DETERMINISTIC if neither characteristic is given. To declare that a function is deterministic, you must specify DETERMINISTIC explicitly.
The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA characteristics provide information about whether the function reads or writes data. Either NO SQL or READS SQL DATA indicates that a function does not change data, but you must specify one of these explicitly because the default is CONTAINS SQL if no characteristic is given.
By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:
ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)
If you set log_bin_trust_function_creators to 1, the requirement that functions be deterministic or not modify data is dropped.
Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the server does not log the CALL statement, it logs those statements within the procedure that actually execute. As a result, the same changes that occur on the master will be observed on slave servers. This prevents problems that could result from a procedure having different execution paths on different machines.
In general, statements executed within a stored procedure are written to the binary log using the same rules that would apply were the statements to be executed in standalone fashion. Some special care is taken when logging procedure statements because statement execution within procedures is not quite the same as in nonprocedure context:
A statement to be logged might contain references to local procedure variables. These variables do not exist outside of stored procedure context, so a statement that refers to such a variable cannot be logged literally. Instead, each reference to a local variable is replaced by this construct for logging purposes:
NAME_CONST(var_name, var_value)
var_name is the local variable name, and var_value is a constant indicating the value that the variable has at the time the statement is logged. NAME_CONST() has a value of var_value, and a “name” of var_name. Thus, if you invoke this function directly, you get a result like this:
mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+
NAME_CONST() enables a logged standalone statement to be executed on a slave with the same effect as the original statement that was executed on the master within a stored procedure.
The use of NAME_CONST() can result in a problem for CREATE TABLE ... SELECT statements when the source column expressions refer to local variables. Converting these references to NAME_CONST() expressions can result in column names that are different on the master and slave servers, or names that are too long to be legal column identifiers. A workaround is to supply aliases for columns that refer to local variables. Consider this statement when myvar has a value of 1:
CREATE TABLE t1 SELECT myvar;
That will be rewritten as follows:
CREATE TABLE t1 SELECT NAME_CONST(myvar, 1);
To ensure that the master and slave tables have the same column names, write the statement like this:
CREATE TABLE t1 SELECT myvar AS myvar;
The rewritten statement becomes:
CREATE TABLE t1 SELECT NAME_CONST(myvar, 1) AS myvar;
A statement to be logged might contain references to user-defined variables. To handle this, MySQL writes a SET statement to the binary log to make sure that the variable exists on the slave with the same value as on the master. For example, if a statement refers to a variable @my_var, that statement will be preceded in the binary log by the following statement, where value is the value of @my_var on the master:
SET @my_var = value;
Procedure calls can occur within a committed or rolled-back transaction. Transactional context is accounted for so that the transactional aspects of procedure execution are replicated correctly. That is, the server logs those statements within the procedure that actually execute and modify data, and also logs BEGIN, COMMIT, and ROLLBACK statements as necessary. For example, if a procedure updates only transactional tables and is executed within a transaction that is rolled back, those updates are not logged. If the procedure occurs within a committed transaction, BEGIN and COMMIT statements are logged with the updates. For a procedure that executes within a rolled-back transaction, its statements are logged using the same rules that would apply if the statements were executed in standalone fashion:
Updates to transactional tables are not logged.
Updates to nontransactional tables are logged because rollback does not cancel them.
Updates to a mix of transactional and nontransactional tables are logged surrounded by BEGIN and ROLLBACK so that slaves will make the same changes and rollbacks as on the master.
A stored procedure call is not written to the binary log at the statement level if the procedure is invoked from within a stored function. In that case, the only thing logged is the statement that invokes the function (if it occurs within a statement that is logged) or a DO statement (if it occurs within a statement that is not logged). For this reason, care should be exercised in the use of stored functions that invoke a procedure, even if the procedure is otherwise safe in itself.
Chapter 19. INFORMATION_SCHEMA Tables
Table of Contents
19.1. The INFORMATION_SCHEMA CHARACTER_SETS Table
19.2. The INFORMATION_SCHEMA COLLATIONS Table
19.3. The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
19.4. The INFORMATION_SCHEMA COLUMNS Table
19.5. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
19.6. The INFORMATION_SCHEMA ENGINES Table
19.7. The INFORMATION_SCHEMA EVENTS Table
19.8. The INFORMATION_SCHEMA FILES Table
19.9. The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
19.10. The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
19.11. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
19.12. The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
19.13. The INFORMATION_SCHEMA PARAMETERS Table
19.14. The INFORMATION_SCHEMA PARTITIONS Table
19.15. The INFORMATION_SCHEMA PLUGINS Table
19.16. The INFORMATION_SCHEMA PROCESSLIST Table
19.17. The INFORMATION_SCHEMA PROFILING Table
19.18. The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
19.19. The INFORMATION_SCHEMA ROUTINES Table
19.20. The INFORMATION_SCHEMA SCHEMATA Table
19.21. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
19.22. The INFORMATION_SCHEMA STATISTICS Table
19.23. The INFORMATION_SCHEMA TABLES Table
19.24. The INFORMATION_SCHEMA TABLESPACES Table
19.25. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
19.26. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
19.27. The INFORMATION_SCHEMA TRIGGERS Table
19.28. The INFORMATION_SCHEMA USER_PRIVILEGES Table
19.29. The INFORMATION_SCHEMA VIEWS Table
19.30. INFORMATION_SCHEMA Tables for InnoDB
19.30.1. The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
19.30.2. The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
19.30.3. The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
19.30.4. The INFORMATION_SCHEMA INNODB_TRX Table
19.30.5. The INFORMATION_SCHEMA INNODB_LOCKS Table
19.30.6. The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table
19.30.7. The INFORMATION_SCHEMA INNODB_SYS_TABLES Table
19.30.8. The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table
19.30.9. The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table
19.30.10. The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table
19.30.11. The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table
19.30.12. The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table
19.30.13. The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View
19.30.14. The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
19.30.15. The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
19.30.16. The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
19.30.17. The INFORMATION_SCHEMA INNODB_METRICS Table
19.30.18. The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
19.30.19. The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
19.30.20. The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table
19.30.21. The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table
19.30.22. The INFORMATION_SCHEMA INNODB_FT_DELETED Table
19.30.23. The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table
19.31. Thread Pool INFORMATION_SCHEMA Tables
19.31.1. The INFORMATION_SCHEMA TP_THREAD_STATE Table
19.31.2. The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table
19.31.3. The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table
19.32. Extensions to SHOW Statements
INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server such as the name of a database or table, the data type of a column, or access privileges. Other terms that are sometimes used for this information are data dictionary and system catalog.
Usage Notes for the INFORMATION_SCHEMA Database
INFORMATION_SCHEMA is a database within each MySQL instance, the place that stores information about all the other databases that the MySQL server maintains. The INFORMATION_SCHEMA database contains several read-only tables. They are actually views, not base tables, so there are no files associated with them, and you cannot set triggers on them. Also, there is no database directory with that name.
Although you can select INFORMATION_SCHEMA as the default database with a USE statement, you can only read the contents of tables, not perform INSERT, UPDATE, or DELETE operations on them.
Example
Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:
mysql> SELECT table_name, table_type, engine
-> FROM information_schema.tables
-> WHERE table_schema = 'db5'
-> ORDER BY table_name;
+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
| fk | BASE TABLE | InnoDB |
| fk2 | BASE TABLE | InnoDB |
| goto | BASE TABLE | MyISAM |
| into | BASE TABLE | MyISAM |
| k | BASE TABLE | MyISAM |
| kurs | BASE TABLE | MyISAM |
| loop | BASE TABLE | MyISAM |
| pk | BASE TABLE | InnoDB |
| t | BASE TABLE | MyISAM |
| t2 | BASE TABLE | MyISAM |
| t3 | BASE TABLE | MyISAM |
| t7 | BASE TABLE | MyISAM |
| tables | BASE TABLE | MyISAM |
| v | VIEW | NULL |
| v2 | VIEW | NULL |
| v3 | VIEW | NULL |
| v56 | VIEW | NULL |
+------------+------------+--------+
17 rows in set (0.01 sec)
Explanation: The statement requests a list of all the tables in database db5, showing just three pieces of information: the name of the table, its type, and its storage engine.
Character Set Considerations
The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N) CHARACTER SET utf8 where N is at least 64. MySQL uses the default collation for this character set (utf8_general_ci) for all searches, sorts, comparisons, and other string operations on such columns.
Because some MySQL objects are represented as files, searches in INFORMATION_SCHEMA string columns can be affected by file system case sensitivity. For more information, see Section 10.1.7.9, “Collation and INFORMATION_SCHEMA Searches”.
INFORMATION_SCHEMA as Alternative to SHOW Statements
The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way to provide access to the information provided by the various SHOW statements that MySQL supports (SHOW DATABASES, SHOW TABLES, and so forth). Using SELECT has these advantages, compared to SHOW:
It conforms to Codd's rules, because all access is done on tables.
You can use the familiar syntax of the SELECT statement, and only need to learn some table and column names.
The implementor need not worry about adding keywords.
You can filter, sort, concatenate, and transform the results from INFORMATION_SCHEMA queries into whatever format your application needs, such as a data structure or a text representation to parse.
This technique is more interoperable with other database systems. For example, Oracle Database users are familiar with querying tables in the Oracle data dictionary.
Because SHOW is familiar and widely used, the SHOW statements remain as an alternative. In fact, along with the implementation of INFORMATION_SCHEMA, there are enhancements to SHOW as described in Section 19.32, “Extensions to SHOW Statements”.
Privileges
Each MySQL user has the right to access these tables, but can see only the rows in the tables that correspond to objects for which the user has the proper access privileges. In some cases (for example, the ROUTINE_DEFINITION column in the INFORMATION_SCHEMA.ROUTINES table), users who have insufficient privileges see NULL. These restrictions do not apply for InnoDB tables; you can see them with only the PROCESS privilege.
The same privileges apply to selecting information from INFORMATION_SCHEMA and viewing the same information through SHOW statements. In either case, you must have some privilege on an object to see information about it.
Performance Considerations
INFORMATION_SCHEMA queries that search for information from more than one database might take a long time and impact performance. To check the efficiency of a query, you can use EXPLAIN. For information about using EXPLAIN output to tune INFORMATION_SCHEMA queries, see Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”.
Standards Considerations
The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO SQL:2003 standard Part 11 Schemata. Our intent is approximate compliance with SQL:2003 core feature F021 Basic information schema.
Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity. However, MySQL has omitted many columns that are not relevant for our implementation, and added columns that are MySQL-specific. One such column is the ENGINE column in the INFORMATION_SCHEMA.TABLES table.
Although other DBMSs use a variety of names, like syscat or system, the standard name is INFORMATION_SCHEMA.
To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we changed the names of some columns marked “MySQL extension”. (For example, we changed COLLATION to TABLE_COLLATION in the TABLES table.) See the list of reserved words near the end of this article: http://web.archive.org/web/20070409075643rn_1/www.dbazine.com/db2/db2-disarticles/gulutzan5.
Conventions in the INFORMATION_SCHEMA Reference Sections
The following sections describe each of the tables and columns in INFORMATION_SCHEMA. For each column, there are three pieces of information:
“INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA table. This corresponds to the standard SQL name unless the “Remarks” field says “MySQL extension.”
“SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.
“Remarks” provides additional information where applicable. If this field is NULL, it means that the value of the column is always NULL. If this field says “MySQL extension,” the column is a MySQL extension to standard SQL.
Many sections indicate what SHOW statement is equivalent to a SELECT that retrieves information from INFORMATION_SCHEMA. For SHOW statements that display information for the default database if you omit a FROM db_name clause, you can often select information for the default database by adding an AND TABLE_SCHEMA = SCHEMA() condition to the WHERE clause of a query that retrieves information from an INFORMATION_SCHEMA table.
For information about INFORMATION_SCHEMA tables specific to the InnoDB storage engine, see Section 19.30, “INFORMATION_SCHEMA Tables for InnoDB”. For information about INFORMATION_SCHEMA tables specific to the thread pool plugin, see Section 19.31, “Thread Pool INFORMATION_SCHEMA Tables”.
For answers to questions that are often asked concerning the INFORMATION_SCHEMA database, see Section B.7, “MySQL 5.6 FAQ: INFORMATION_SCHEMA”.
19.1. The INFORMATION_SCHEMA CHARACTER_SETS Table
The CHARACTER_SETS table provides information about available character sets.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
CHARACTER_SET_NAME | Charset | |
DEFAULT_COLLATE_NAME | Default collation | |
DESCRIPTION | Description | MySQL extension |
MAXLEN | Maxlen | MySQL extension |
The following statements are equivalent:
SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
[WHERE CHARACTER_SET_NAME LIKE 'wild']
SHOW CHARACTER SET
[LIKE 'wild']
19.2. The INFORMATION_SCHEMA COLLATIONS Table
The COLLATIONS table provides information about collations for each character set.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
COLLATION_NAME | Collation | |
CHARACTER_SET_NAME | Charset | MySQL extension |
ID | Id | MySQL extension |
IS_DEFAULT | Default | MySQL extension |
IS_COMPILED | Compiled | MySQL extension |
SORTLEN | Sortlen | MySQL extension |
COLLATION_NAME is the collation name.
CHARACTER_SET_NAME is the name of the character set with which the collation is associated.
ID is the collation ID.
IS_DEFAULT indicates whether the collation is the default for its character set.
IS_COMPILED indicates whether the character set is compiled into the server.
SORTLEN is related to the amount of memory required to sort strings expressed in the character set.
Collation information is also available from the SHOW COLLATION statement. The following statements are equivalent:
SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
[WHERE COLLATION_NAME LIKE 'wild']
SHOW COLLATION
[LIKE 'wild']
19.3. The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable for what collation. The columns are equivalent to the first two display fields that we get from SHOW COLLATION.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
COLLATION_NAME | Collation | |
CHARACTER_SET_NAME | Charset |
19.4. The INFORMATION_SCHEMA COLUMNS Table
The COLUMNS table provides information about columns in tables.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
TABLE_CATALOG | def | |
TABLE_SCHEMA | ||
TABLE_NAME | ||
COLUMN_NAME | Field | |
ORDINAL_POSITION | see notes | |
COLUMN_DEFAULT | Default | |
IS_NULLABLE | Null | |
DATA_TYPE | Type | |
CHARACTER_MAXIMUM_LENGTH | Type | |
CHARACTER_OCTET_LENGTH | ||
NUMERIC_PRECISION | Type | |
NUMERIC_SCALE | Type | |
DATETIME_PRECISION | Type | |
CHARACTER_SET_NAME | ||
COLLATION_NAME | Collation | |
COLUMN_TYPE | Type | MySQL extension |
COLUMN_KEY | Key | MySQL extension |
EXTRA | Extra | MySQL extension |
PRIVILEGES | Privileges | MySQL extension |
COLUMN_COMMENT | Comment | MySQL extension |
Notes:
In SHOW, the Type display includes values from several different COLUMNS columns.
ORDINAL_POSITION is necessary because you might want to say ORDER BY ORDINAL_POSITION. Unlike SHOW, SELECT does not have automatic ordering.
CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for multi-byte character sets.
CHARACTER_SET_NAME can be derived from Collation. For example, if you say SHOW FULL COLUMNS FROM t, and you see in the Collation column a value of latin1_swedish_ci, the character set is what is before the first underscore: latin1.
DATETIME_PRECISION was added in MySQL 5.6.4.
The following statements are nearly equivalent:
SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
FROM INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'tbl_name'
[AND table_schema = 'db_name']
[AND column_name LIKE 'wild']
SHOW COLUMNS
FROM tbl_name
[FROM db_name]
[LIKE 'wild']
19.5. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
The COLUMN_PRIVILEGES table provides information about column privileges. This information comes from the mysql.columns_priv grant table.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
GRANTEE | 'user_name'@'host_name' value | |
TABLE_CATALOG | def | |
TABLE_SCHEMA | ||
TABLE_NAME | ||
COLUMN_NAME | ||
PRIVILEGE_TYPE | ||
IS_GRANTABLE |
Notes:
In the output from SHOW FULL COLUMNS, the privileges are all in one field and in lowercase, for example, select,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege per row, in uppercase.
PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE, REFERENCES.
If the user has GRANT OPTION privilege, IS_GRANTABLE should be YES. Otherwise, IS_GRANTABLE should be NO. The output does not list GRANT OPTION as a separate privilege.
The following statements are not equivalent:
SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES
SHOW GRANTS ...
19.6. The INFORMATION_SCHEMA ENGINES Table
The ENGINES table provides information about storage engines.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
ENGINE | Engine | MySQL extension |
SUPPORT | Support | MySQL extension |
COMMENT | Comment | MySQL extension |
TRANSACTIONS | Transactions | MySQL extension |
XA | XA | MySQL extension |
SAVEPOINTS | Savepoints | MySQL extension |
Notes:
The ENGINES table is a nonstandard table.
See also Section 13.7.5.17, “SHOW ENGINES Syntax”.
19.7. The INFORMATION_SCHEMA EVENTS Table
The EVENTS table provides information about scheduled events, which are discussed in Section 18.4, “Using the Event Scheduler”. The SHOW Name values correspond to column names of the SHOW EVENTS statement.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
EVENT_CATALOG | def, MySQL extension | |
EVENT_SCHEMA | Db | MySQL extension |
EVENT_NAME | Name | MySQL extension |
DEFINER | Definer | MySQL extension |
TIME_ZONE | Time zone | MySQL extension |
EVENT_BODY | MySQL extension | |
EVENT_DEFINITION | MySQL extension | |
EVENT_TYPE | Type | MySQL extension |
EXECUTE_AT | Execute at | MySQL extension |
INTERVAL_VALUE | Interval value | MySQL extension |
INTERVAL_FIELD | Interval field | MySQL extension |
SQL_MODE | MySQL extension | |
STARTS | Starts | MySQL extension |
ENDS | Ends | MySQL extension |
STATUS | Status | MySQL extension |
ON_COMPLETION | MySQL extension | |
CREATED | MySQL extension | |
LAST_ALTERED | MySQL extension | |
LAST_EXECUTED | MySQL extension | |
EVENT_COMMENT | MySQL extension | |
ORIGINATOR | Originator | MySQL extension |
CHARACTER_SET_CLIENT | character_set_client | MySQL extension |
COLLATION_CONNECTION | collation_connection | MySQL extension |
DATABASE_COLLATION | Database Collation | MySQL extension |
Notes:
The EVENTS table is a nonstandard table.
EVENT_CATALOG: The value of this column is always def.
EVENT_SCHEMA: The name of the schema (database) to which this event belongs.
EVENT_NAME: The name of the event.
DEFINER: The account of the user who created the event, in 'user_name'@'host_name' format.
TIME_ZONE: The event time zone, which is the time zone used for scheduling the event and that is in effect within the event as it executes. The default value is SYSTEM.
EVENT_BODY: The language used for the statements in the event's DO clause; in MySQL 5.6, this is always SQL.
This column is not to be confused with the column of the same name (now named EVENT_DEFINITION) that existed in earlier MySQL versions.
EVENT_DEFINITION: The text of the SQL statement making up the event's DO clause; in other words, the statement executed by this event.
EVENT_TYPE: The event repetition type, either ONE TIME (transient) or RECURRING (repeating).
EXECUTE_AT: For a one-time event, this is the DATETIME value specified in the AT clause of the CREATE EVENT statement used to create the event, or of the last ALTER EVENT statement that modified the event. The value shown in this column reflects the addition or subtraction of any INTERVAL value included in the event's AT clause. For example, if an event is created using ON SCHEDULE AT CURRENT_TIMESTAMP + '1:6' DAY_HOUR, and the event was created at 2006-02-09 14:05:30, the value shown in this column would be '2006-02-10 20:05:30'.
If the event's timing is determined by an EVERY clause instead of an AT clause (that is, if the event is recurring), the value of this column is NULL.
INTERVAL_VALUE: For recurring events, this column contains the numeric portion of the event's EVERY clause.
For a one-time event (that is, an event whose timing is determined by an AT clause), this column is NULL.
INTERVAL_FIELD: For recurring events, this column contains the units portion of the EVERY clause governing the timing of the event. Thus, this column contains a value such as 'YEAR', 'QUARTER', 'DAY', and so on.
For a one-time event (that is, an event whose timing is determined by an AT clause), this column is NULL.
SQL_MODE: The SQL mode in effect at the time the event was created or altered.
STARTS: For a recurring event whose definition includes a STARTS clause, this column contains the corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any expressions used.
If there is no STARTS clause affecting the timing of the event, this column is NULL
ENDS: For a recurring event whose definition includes a ENDS clause, this column contains the corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any expressions used.
If there is no ENDS clause affecting the timing of the event, this column is NULL.
STATUS: One of the three values ENABLED, DISABLED, or SLAVESIDE_DISABLED.
SLAVESIDE_DISABLED indicates that the creation of the event occurred on another MySQL server acting as a replication master and was replicated to the current MySQL server which is acting as a slave, but the event is not presently being executed on the slave. See Section 16.4.1.10, “Replication of Invoked Features”, for more information.
ON_COMPLETION: One of the two values PRESERVE or NOT PRESERVE.
CREATED: The date and time when the event was created. This is a DATETIME value.
LAST_ALTERED: The date and time when the event was last modified. This is a DATETIME value. If the event has not been modified since its creation, this column holds the same value as the CREATED column.
LAST_EXECUTED: The date and time when the event last executed. A DATETIME value. If the event has never executed, this column is NULL.
LAST_EXECUTED indicates when the event started. As a result, the ENDS column is never less than LAST_EXECUTED.
EVENT_COMMENT: The text of a comment, if the event has one. If not, the value of this column is an empty string.
ORIGINATOR: The server ID of the MySQL server on which the event was created; used in replication. The default value is 0.
CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the event was created. COLLATION_CONNECTION is the session value of the collation_connection system variable when the event was created. DATABASE_COLLATION is the collation of the database with which the event is associated.
Example: Suppose that the user jon@ghidora creates an event named e_daily, and then modifies it a few minutes later using an ALTER EVENT statement, as shown here:
DELIMITER |
CREATE EVENT e_daily
ON SCHEDULE
EVERY 1 DAY
COMMENT 'Saves total number of sessions then clears the table each day'
DO
BEGIN
INSERT INTO site_activity.totals (time, total)
SELECT CURRENT_TIMESTAMP, COUNT(*)
FROM site_activity.sessions;
DELETE FROM site_activity.sessions;
END |
DELIMITER ;
ALTER EVENT e_daily
ENABLED;
(Note that comments can span multiple lines.)
This user can then run the following SELECT statement, and obtain the output shown:
mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
> WHERE EVENT_NAME = 'e_daily'
> AND EVENT_SCHEMA = 'myschema'\G
*************************** 1. row ***************************
EVENT_CATALOG: def
EVENT_SCHEMA: test
EVENT_NAME: e_daily
DEFINER: paul@localhost
TIME_ZONE: SYSTEM
EVENT_BODY: SQL
EVENT_DEFINITION: BEGIN
INSERT INTO site_activity.totals (time, total)
SELECT CURRENT_TIMESTAMP, COUNT(*)
FROM site_activity.sessions;
DELETE FROM site_activity.sessions;
END
EVENT_TYPE: RECURRING
EXECUTE_AT: NULL
INTERVAL_VALUE: 1
INTERVAL_FIELD: DAY
SQL_MODE:
STARTS: 2008-09-03 12:13:39
ENDS: NULL
STATUS: ENABLED
ON_COMPLETION: NOT PRESERVE
CREATED: 2008-09-03 12:13:39
LAST_ALTERED: 2008-09-03 12:13:39
LAST_EXECUTED: NULL
EVENT_COMMENT: Saves total number of sessions then clears the
table each day
ORIGINATOR: 1
CHARACTER_SET_CLIENT: latin1
COLLATION_CONNECTION: latin1_swedish_ci
DATABASE_COLLATION: latin1_swedish_ci
Times in the EVENTS table are displayed using the event time zone or the current session time zone, as described in Section 18.4.4, “Event Metadata”.
See also Section 13.7.5.19, “SHOW EVENTS Syntax”.
19.8. The INFORMATION_SCHEMA FILES Table
The FILES table provides information about the files in which MySQL tablespace data is stored.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
FILE_ID | MySQL extension | |
FILE_NAME | MySQL extension | |
FILE_TYPE | MySQL extension | |
TABLESPACE_NAME | MySQL extension | |
TABLE_CATALOG | MySQL extension | |
TABLE_SCHEMA | MySQL extension | |
TABLE_NAME | MySQL extension | |
LOGFILE_GROUP_NAME | MySQL extension | |
LOGFILE_GROUP_NUMBER | MySQL extension | |
ENGINE | MySQL extension | |
FULLTEXT_KEYS | MySQL extension | |
DELETED_ROWS | MySQL extension | |
UPDATE_COUNT | MySQL extension | |
FREE_EXTENTS | MySQL extension | |
TOTAL_EXTENTS | MySQL extension | |
EXTENT_SIZE | MySQL extension | |
INITIAL_SIZE | MySQL extension | |
MAXIMUM_SIZE | MySQL extension | |
AUTOEXTEND_SIZE | MySQL extension | |
CREATION_TIME | MySQL extension | |
LAST_UPDATE_TIME | MySQL extension | |
LAST_ACCESS_TIME | MySQL extension | |
RECOVER_TIME | MySQL extension | |
TRANSACTION_COUNTER | MySQL extension | |
VERSION | MySQL extension | |
ROW_FORMAT | MySQL extension | |
TABLE_ROWS | MySQL extension | |
AVG_ROW_LENGTH | MySQL extension | |
DATA_LENGTH | MySQL extension | |
MAX_DATA_LENGTH | MySQL extension | |
INDEX_LENGTH | MySQL extension | |
DATA_FREE | MySQL extension | |
CREATE_TIME | MySQL extension | |
UPDATE_TIME | MySQL extension | |
CHECK_TIME | MySQL extension | |
CHECKSUM | MySQL extension | |
STATUS | MySQL extension | |
EXTRA | MySQL extension |
Notes:
FILE_ID column values are auto-generated.
FILE_NAME is the name of a data file created by CREATE TABLESPACE or ALTER TABLESPACE.
FILE_TYPE is the tablespace file type.
TABLESPACE_NAME is the name of the tablespace with which the file is associated.
Currently, the value of the TABLESPACE_CATALOG column is always NULL.
TABLE_NAME is the name of the table with which the file is associated, if any.
The EXTENT_SIZE is always 0.
There are no SHOW statements associated with the FILES table.
19.9. The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
The GLOBAL_STATUS and SESSION_STATUS tables provide information about server status variables. Their contents correspond to the information produced by the SHOW GLOBAL STATUS and SHOW SESSION STATUS statements (see Section 13.7.5.36, “SHOW STATUS Syntax”).
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
VARIABLE_NAME | Variable_name | |
VARIABLE_VALUE | Value |
Notes:
The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(20480).
19.10. The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
The GLOBAL_VARIABLES and SESSION_VARIABLES tables provide information about server status variables. Their contents correspond to the information produced by the SHOW GLOBAL VARIABLES and SHOW SESSION VARIABLES statements (see Section 13.7.5.40, “SHOW VARIABLES Syntax”).
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
VARIABLE_NAME | Variable_name | |
VARIABLE_VALUE | Value |
Notes:
The VARIABLE_VALUE column for each of these tables is defined as VARCHAR(20480).
19.11. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
The KEY_COLUMN_USAGE table describes which key columns have constraints.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
CONSTRAINT_CATALOG | def | |
CONSTRAINT_SCHEMA | ||
CONSTRAINT_NAME | ||
TABLE_CATALOG | def | |
TABLE_SCHEMA | ||
TABLE_NAME | ||
COLUMN_NAME | ||
ORDINAL_POSITION | ||
POSITION_IN_UNIQUE_CONSTRAINT | ||
REFERENCED_TABLE_SCHEMA | ||
REFERENCED_TABLE_NAME | ||
REFERENCED_COLUMN_NAME |
Notes:
If the constraint is a foreign key, then this is the column of the foreign key, not the column that the foreign key references.
The value of ORDINAL_POSITION is the column's position within the constraint, not the column's position within the table. Column positions are numbered beginning with 1.
The value of POSITION_IN_UNIQUE_CONSTRAINT is NULL for unique and primary-key constraints. For foreign-key constraints, it is the ordinal position in key of the table that is being referenced.
Suppose that there are two tables name t1 and t3 that have the following definitions:
CREATE TABLE t1
(
s1 INT,
s2 INT,
s3 INT,
PRIMARY KEY(s3)
) ENGINE=InnoDB;
CREATE TABLE t3
(
s1 INT,
s2 INT,
s3 INT,
KEY(s1),
CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)
) ENGINE=InnoDB;
For those two tables, the KEY_COLUMN_USAGE table has two rows:
One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3', ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.
One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2', ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = 1.
19.12. The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
The OPTIMIZER_TRACE table provides information produced by the optimizer tracing capability. To enable tracking, use the optimizer_trace system variable. For details, see MySQL Internals: Tracing the Optimizer.
The OPTIMIZER_TRACE table was added in MySQL 5.6.3.
19.13. The INFORMATION_SCHEMA PARAMETERS Table
The PARAMETERS table provides information about stored procedure and function parameters, and about return values for stored functions. Parameter information is similar to the contents of the param_list column in the mysql.proc table.
INFORMATION_SCHEMA Name | mysql.proc Name | Remarks |
---|---|---|
SPECIFIC_CATALOG | def | |
SPECIFIC_SCHEMA | db | routine database |
SPECIFIC_NAME | name | routine name |
ORDINAL_POSITION | 1, 2, 3, ... for parameters, 0 for function RETURNS clause | |
PARAMETER_MODE | IN, OUT, INOUT (NULL for RETURNS) | |
PARAMETER_NAME | parameter name (NULL for RETURNS) | |
DATA_TYPE | same as for COLUMNS table | |
CHARACTER_MAXIMUM_LENGTH | same as for COLUMNS table | |
CHARACTER_OCTET_LENGTH | same as for COLUMNS table | |
NUMERIC_PRECISION | same as for COLUMNS table | |
NUMERIC_SCALE | same as for COLUMNS table | |
DATETIME_PRECISION | same as for COLUMNS table | |
CHARACTER_SET_NAME | same as for COLUMNS table | |
COLLATION_NAME | same as for COLUMNS table | |
DTD_IDENTIFIER | same as for COLUMNS table | |
ROUTINE_TYPE | type | same as for ROUTINES table |
Notes:
For successive parameters of a stored procedure or function, the ORDINAL_POSITION values are 1, 2, 3, and so forth. For a stored function, there is also a row that describes the data type for the RETURNS clause. The return value is not a true parameter, so the row that describes it has these unique characteristics:
The ORDINAL_POSITION value is 0.
The PARAMETER_NAME and PARAMETER_MODE values are NULL because the return value has no name and the mode does not apply.
DATETIME_PRECISION was added in MySQL 5.6.4.
19.14. The INFORMATION_SCHEMA PARTITIONS Table
The PARTITIONS table provides information about table partitions. See Chapter 17, Partitioning, for more information about partitioning tables.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
TABLE_CATALOG | MySQL extension | |
TABLE_SCHEMA | MySQL extension | |
TABLE_NAME | MySQL extension | |
PARTITION_NAME | MySQL extension | |
SUBPARTITION_NAME | MySQL extension | |
PARTITION_ORDINAL_POSITION | MySQL extension | |
SUBPARTITION_ORDINAL_POSITION | MySQL extension | |
PARTITION_METHOD | MySQL extension | |
SUBPARTITION_METHOD | MySQL extension | |
PARTITION_EXPRESSION | MySQL extension | |
SUBPARTITION_EXPRESSION | MySQL extension | |
PARTITION_DESCRIPTION | MySQL extension | |
TABLE_ROWS | MySQL extension | |
AVG_ROW_LENGTH | MySQL extension | |
DATA_LENGTH | MySQL extension | |
MAX_DATA_LENGTH | MySQL extension | |
INDEX_LENGTH | MySQL extension | |
DATA_FREE | MySQL extension | |
CREATE_TIME | MySQL extension | |
UPDATE_TIME | MySQL extension | |
CHECK_TIME | MySQL extension | |
CHECKSUM | MySQL extension | |
PARTITION_COMMENT | MySQL extension | |
NODEGROUP | MySQL extension | |
TABLESPACE_NAME | MySQL extension |
Notes:
The PARTITIONS table is a nonstandard table.
Each record in this table corresponds to an individual partition or subpartition of a partitioned table.
TABLE_CATALOG: This column is always def.
TABLE_SCHEMA: This column contains the name of the database to which the table belongs.
TABLE_NAME: This column contains the name of the table containing the partition.
PARTITION_NAME: The name of the partition.
SUBPARTITION_NAME: If the PARTITIONS table record represents a subpartition, then this column contains the name of subpartition; otherwise it is NULL.
PARTITION_ORDINAL_POSITION: All partitions are indexed in the same order as they are defined, with 1 being the number assigned to the first partition. The indexing can change as partitions are added, dropped, and reorganized; the number shown is this column reflects the current order, taking into account any indexing changes.
SUBPARTITION_ORDINAL_POSITION: Subpartitions within a given partition are also indexed and reindexed in the same manner as partitions are indexed within a table.
PARTITION_METHOD: One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the available partitioning types as discussed in Section 17.2, “Partitioning Types”.
SUBPARTITION_METHOD: One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the available subpartitioning types as discussed in Section 17.2.6, “Subpartitioning”.
PARTITION_EXPRESSION: This is the expression for the partitioning function used in the CREATE TABLE or ALTER TABLE statement that created the table's current partitioning scheme.
For example, consider a partitioned table created in the test database using this statement:
CREATE TABLE tp (
c1 INT,
c2 INT,
c3 VARCHAR(25)
)
PARTITION BY HASH(c1 + c2)
PARTITIONS 4;
The PARTITION_EXPRESSION column in a PARTITIONS table record for a partition from this table displays c1 + c2, as shown here:
mysql> SELECT DISTINCT PARTITION_EXPRESSION
> FROM INFORMATION_SCHEMA.PARTITIONS
> WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';
+----------------------+
| PARTITION_EXPRESSION |
+----------------------+
| c1 + c2 |
+----------------------+
1 row in set (0.09 sec)
SUBPARTITION_EXPRESSION: This works in the same fashion for the subpartitioning expression that defines the subpartitioning for a table as PARTITION_EXPRESSION does for the partitioning expression used to define a table's partitioning.
If the table has no subpartitions, then this column is NULL.
PARTITION_DESCRIPTION: This column is used for RANGE and LIST partitions. For a RANGE partition, it contains the value set in the partition's VALUES LESS THAN clause, which can be either an integer or MAXVALUE. For a LIST partition, this column contains the values defined in the partition's VALUES IN clause, which is a comma-separated list of integer values.
For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always NULL.
TABLE_ROWS: The number of table rows in the partition.
For partitioned InnoDB tables, the row count given in the TABLE_ROWS column is only an estimated value used in SQL optimization, and may not always be exact.
AVG_ROW_LENGTH: The average length of the rows stored in this partition or subpartition, in bytes.
This is the same as DATA_LENGTH divided by TABLE_ROWS.
DATA_LENGTH: The total length of all rows stored in this partition or subpartition, in bytes—that is, the total number of bytes stored in the partition or subpartition.
MAX_DATA_LENGTH: The maximum number of bytes that can be stored in this partition or subpartition.
INDEX_LENGTH: The length of the index file for this partition or subpartition, in bytes.
DATA_FREE: The number of bytes allocated to the partition or subpartition but not used.
CREATE_TIME: The time of the partition's or subpartition's creation.
UPDATE_TIME: The time that the partition or subpartition was last modified.
CHECK_TIME: The last time that the table to which this partition or subpartition belongs was checked.
Note
Some storage engines do not update this time; for tables using these storage engines, this value is always NULL.
CHECKSUM: The checksum value, if any; otherwise, this column is NULL.
PARTITION_COMMENT: This column contains the text of any comment made for the partition.
Prior to MySQL 5.6.6, the display width of this column was 80 characters, and partition comments which exceeded this length were truncated to fit. As of MySQL 5.6.6, the maximum length for a partition comment is defined as 1024 characters, and the display width of the PARTITION_COMMENT column is increased to 1024 characters to match this limit (Bug #11748924, Bug #37728).
The default value for this column is an empty string.
NODEGROUP: This is the nodegroup to which the partition belongs. This is relevant only to MySQL Cluster tables; otherwise the value of this column is always 0.
TABLESPACE_NAME: This column contains the name of the tablespace to which the partition belongs. Currently, the value of this column is always DEFAULT.
A nonpartitioned table has one record in INFORMATION_SCHEMA.PARTITIONS; however, the values of the PARTITION_NAME, SUBPARTITION_NAME, PARTITION_ORDINAL_POSITION, SUBPARTITION_ORDINAL_POSITION, PARTITION_METHOD, SUBPARTITION_METHOD, PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, and PARTITION_DESCRIPTION columns are all NULL. (The PARTITION_COMMENT column in this case is blank.)
19.15. The INFORMATION_SCHEMA PLUGINS Table
The PLUGINS table provides information about server plugins.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
PLUGIN_NAME | Name | MySQL extension |
PLUGIN_VERSION | MySQL extension | |
PLUGIN_STATUS | Status | MySQL extension |
PLUGIN_TYPE | Type | MySQL extension |
PLUGIN_TYPE_VERSION | MySQL extension | |
PLUGIN_LIBRARY | Library | MySQL extension |
PLUGIN_LIBRARY_VERSION | MySQL extension | |
PLUGIN_AUTHOR | MySQL extension | |
PLUGIN_DESCRIPTION | MySQL extension | |
PLUGIN_LICENSE | MySQL extension | |
LOAD_OPTION | MySQL extension |
Notes:
The PLUGINS table is a nonstandard table.
PLUGIN_NAME is the name used to refer to the plugin in statements such as INSTALL PLUGIN and UNINSTALL PLUGIN.
PLUGIN_VERSION is the version from the plugin's general type descriptor.
PLUGIN_STATUS indicates the plugin status, one of ACTIVE, INACTIVE, DISABLED, or DELETED.
PLUGIN_TYPE indicates the type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or AUTHENTICATION.
PLUGIN_TYPE_VERSION is the version from the plugin's type-specific descriptor.
PLUGIN_LIBRARY is the name of the plugin shared object file. This is the name used to refer to the plugin file in statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the directory named by the plugin_dir system variable. If the library name is NULL, the plugin is compiled in and cannot be uninstalled with UNINSTALL PLUGIN.
PLUGIN_LIBRARY_VERSION indicates the plugin API interface version.
PLUGIN_AUTHOR names the plugin author.
PLUGIN_DESCRIPTION provides a short description of the plugin.
PLUGIN_LICENSE indicates how the plugin is licensed; for example, GPL.
LOAD_OPTION indicates how the plugin was loaded. The value is OFF, ON, FORCE, or FORCE_PLUS_PERMANENT. See Section 5.1.8.1, “Installing and Uninstalling Plugins”.
For plugins installed with INSTALL PLUGIN, the PLUGIN_NAME and PLUGIN_LIBRARY values are also registered in the mysql.plugin table.
These statements are equivalent:
SELECT
PLUGIN_NAME, PLUGIN_STATUS, PLUGIN_TYPE,
PLUGIN_LIBRARY, PLUGIN_LICENSE
FROM INFORMATION_SCHEMA.PLUGINS;
SHOW PLUGINS;
For information about plugin data structures that form the basis of the information in the PLUGINS table, see Section 22.2, “The MySQL Plugin API”.
Plugin information is also available using the SHOW PLUGINS statement. See Section 13.7.5.26, “SHOW PLUGINS Syntax”.
19.16. The INFORMATION_SCHEMA PROCESSLIST Table
The PROCESSLIST table provides information about which threads are running.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
ID | Id | MySQL extension |
USER | User | MySQL extension |
HOST | Host | MySQL extension |
DB | db | MySQL extension |
COMMAND | Command | MySQL extension |
TIME | Time | MySQL extension |
STATE | State | MySQL extension |
INFO | Info | MySQL extension |
For an extensive description of the table columns, see Section 13.7.5.30, “SHOW PROCESSLIST Syntax”.
Notes:
The PROCESSLIST table is a nonstandard table.
Like the output from the corresponding SHOW statement, the PROCESSLIST table will only show information about your own threads, unless you have the PROCESS privilege, in which case you will see information about other threads, too. As an anonymous user, you cannot see any rows at all.
If an SQL statement refers to INFORMATION_SCHEMA.PROCESSLIST, then MySQL will populate the entire table once, when statement execution begins, so there is read consistency during the statement. There is no read consistency for a multi-statement transaction, though.
Process information is also available from the performance_schema.threads table. However, access to threads does not require a mutex and has minimal impact on server performance. INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance consequences because they require a mutex. threads also shows information about background threads, which INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST do not. This means that threads can be used to monitor activity the other thread information sources cannot.
The following statements are equivalent:
SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST
SHOW FULL PROCESSLIST
19.17. The INFORMATION_SCHEMA PROFILING Table
The PROFILING table provides statement profiling information. Its contents correspond to the information produced by the SHOW PROFILES and SHOW PROFILE statements (see Section 13.7.5.32, “SHOW PROFILES Syntax”). The table is empty unless the profiling session variable is set to 1.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
QUERY_ID | Query_ID | |
SEQ | ||
STATE | Status | |
DURATION | Duration | |
CPU_USER | CPU_user | |
CPU_SYSTEM | CPU_system | |
CONTEXT_VOLUNTARY | Context_voluntary | |
CONTEXT_INVOLUNTARY | Context_involuntary | |
BLOCK_OPS_IN | Block_ops_in | |
BLOCK_OPS_OUT | Block_ops_out | |
MESSAGES_SENT | Messages_sent | |
MESSAGES_RECEIVED | Messages_received | |
PAGE_FAULTS_MAJOR | Page_faults_major | |
PAGE_FAULTS_MINOR | Page_faults_minor | |
SWAPS | Swaps | |
SOURCE_FUNCTION | Source_function | |
SOURCE_FILE | Source_file | |
SOURCE_LINE | Source_line |
Notes:
QUERY_ID is a numeric statement identifier.
SEQ is a sequence number indicating the display order for rows with the same QUERY_ID value.
STATE is the profiling state to which the row measurements apply.
DURATION indicates how long statement execution remained in the given state, in seconds.
CPU_USER and CPU_SYSTEM indicate user and system CPU use, in seconds.
CONTEXT_VOLUNTARY and CONTEXT_INVOLUNTARY indicate how many voluntary and involuntary context switches occurred.
BLOCK_OPS_IN and BLOCK_OPS_OUT indicate the number of block input and output operations.
MESSAGES_SENT and MESSAGES_RECEIVED indicate the number of communication messages sent and received.
PAGE_FAULTS_MAJOR and PAGE_FAULTS_MINOR indicate the number of major and minor page faults.
SWAPS indicates how many swaps occurred.
SOURCE_FUNCTION, SOURCE_FILE, and SOURCE_LINE provide information indicating where in the source code the profiled state executes.
19.18. The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
The REFERENTIAL_CONSTRAINTS table provides information about foreign keys.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
CONSTRAINT_CATALOG | def | |
CONSTRAINT_SCHEMA | ||
CONSTRAINT_NAME | ||
UNIQUE_CONSTRAINT_CATALOG | def | |
UNIQUE_CONSTRAINT_SCHEMA | ||
UNIQUE_CONSTRAINT_NAME | ||
MATCH_OPTION | ||
UPDATE_RULE | ||
DELETE_RULE | ||
TABLE_NAME | ||
REFERENCED_TABLE_NAME |
Notes:
TABLE_NAME has the same value as TABLE_NAME in INFORMATION_SCHEMA.TABLE_CONSTRAINTS.
CONSTRAINT_SCHEMA and CONSTRAINT_NAME identify the foreign key.
UNIQUE_CONSTRAINT_SCHEMA, UNIQUE_CONSTRAINT_NAME, and REFERENCED_TABLE_NAME identify the referenced key.
The only valid value at this time for MATCH_OPTION is NONE.
The possible values for UPDATE_RULE or DELETE_RULE are CASCADE, SET NULL, SET DEFAULT, RESTRICT, NO ACTION.
19.19. The INFORMATION_SCHEMA ROUTINES Table
The ROUTINES table provides information about stored routines (both procedures and functions). The ROUTINES table does not include user-defined functions (UDFs).
The column named “mysql.proc name” indicates the mysql.proc table column that corresponds to the INFORMATION_SCHEMA.ROUTINES table column, if any.
INFORMATION_SCHEMA Name | mysql.proc Name | Remarks |
---|---|---|
SPECIFIC_NAME | specific_name | |
ROUTINE_CATALOG | def | |
ROUTINE_SCHEMA | db | |
ROUTINE_NAME | name | |
ROUTINE_TYPE | type | {PROCEDURE|FUNCTION} |
DATA_TYPE | same as for COLUMNS table | |
CHARACTER_MAXIMUM_LENGTH | same as for COLUMNS table | |
CHARACTER_OCTET_LENGTH | same as for COLUMNS table | |
NUMERIC_PRECISION | same as for COLUMNS table | |
NUMERIC_SCALE | same as for COLUMNS table | |
DATETIME_PRECISION | same as for COLUMNS table | |
CHARACTER_SET_NAME | same as for COLUMNS table | |
COLLATION_NAME | same as for COLUMNS table | |
DTD_IDENTIFIER | data type descriptor | |
ROUTINE_BODY | SQL | |
ROUTINE_DEFINITION | body_utf8 | |
EXTERNAL_NAME | NULL | |
EXTERNAL_LANGUAGE | language | NULL |
PARAMETER_STYLE | SQL | |
IS_DETERMINISTIC | is_deterministic | |
SQL_DATA_ACCESS | sql_data_access | |
SQL_PATH | NULL | |
SECURITY_TYPE | security_type | |
CREATED | created | |
LAST_ALTERED | modified | |
SQL_MODE | sql_mode | MySQL extension |
ROUTINE_COMMENT | comment | MySQL extension |
DEFINER | definer | MySQL extension |
CHARACTER_SET_CLIENT | MySQL extension | |
COLLATION_CONNECTION | MySQL extension | |
DATABASE_COLLATION | MySQL extension |
Notes:
MySQL calculates EXTERNAL_LANGUAGE thus:
If mysql.proc.language='SQL', EXTERNAL_LANGUAGE is NULL
Otherwise, EXTERNAL_LANGUAGE is what is in mysql.proc.language. However, we do not have external languages yet, so it is always NULL.
CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the routine was created. COLLATION_CONNECTION is the session value of the collation_connection system variable when the routine was created. DATABASE_COLLATION is the collation of the database with which the routine is associated.
The DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH, NUMERIC_PRECISION, NUMERIC_SCALE, DATETIME_PRECISION, CHARACTER_SET_NAME, and COLLATION_NAME columns provide information about the data type for the RETURNS clause of stored functions. If a stored routine is a stored procedure, these columns all are NULL. DATETIME_PRECISION was added in MySQL 5.6.4.
Information about stored function RETURNS data types is also available in the PARAMETERS table. The return value data type row for a function can be identified as the row that has an ORDINAL_POSITION value of 0.
19.20. The INFORMATION_SCHEMA SCHEMATA Table
A schema is a database, so the SCHEMATA table provides information about databases.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
CATALOG_NAME | def | |
SCHEMA_NAME | Database | |
DEFAULT_CHARACTER_SET_NAME | ||
DEFAULT_COLLATION_NAME | ||
SQL_PATH | NULL |
The following statements are equivalent:
SELECT SCHEMA_NAME AS `Database`
FROM INFORMATION_SCHEMA.SCHEMATA
[WHERE SCHEMA_NAME LIKE 'wild']
SHOW DATABASES
[LIKE 'wild']
19.21. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. This information comes from the mysql.db grant table.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
GRANTEE | 'user_name'@'host_name' value, MySQL extension | |
TABLE_CATALOG | def, MySQL extension | |
TABLE_SCHEMA | MySQL extension | |
PRIVILEGE_TYPE | MySQL extension | |
IS_GRANTABLE | MySQL extension |
Notes:
This is a nonstandard table. It takes its values from the mysql.db table.
19.22. The INFORMATION_SCHEMA STATISTICS Table
The STATISTICS table provides information about table indexes.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
TABLE_CATALOG | def | |
TABLE_SCHEMA | = Database | |
TABLE_NAME | Table | |
NON_UNIQUE | Non_unique | |
INDEX_SCHEMA | = Database | |
INDEX_NAME | Key_name | |
SEQ_IN_INDEX | Seq_in_index | |
COLUMN_NAME | Column_name | |
COLLATION | Collation | |
CARDINALITY | Cardinality | |
SUB_PART | Sub_part | MySQL extension |
PACKED | Packed | MySQL extension |
NULLABLE | Null | MySQL extension |
INDEX_TYPE | Index_type | MySQL extension |
COMMENT | Comment | MySQL extension |
Notes:
There is no standard table for indexes. The preceding list is similar to what SQL Server 2000 returns for sp_statistics, except that we replaced the name QUALIFIER with CATALOG and we replaced the name OWNER with SCHEMA.
Clearly, the preceding table and the output from SHOW INDEX are derived from the same parent. So the correlation is already close.
The following statements are equivalent:
SELECT * FROM INFORMATION_SCHEMA.STATISTICS
WHERE table_name = 'tbl_name'
AND table_schema = 'db_name'
SHOW INDEX
FROM tbl_name
FROM db_name
19.23. The INFORMATION_SCHEMA TABLES Table
The TABLES table provides information about tables in databases.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
TABLE_CATALOG | def | |
TABLE_SCHEMA | Table_... | |
TABLE_NAME | Table_... | |
TABLE_TYPE | ||
ENGINE | Engine | MySQL extension |
VERSION | Version | The version number of the table's .frm file, MySQL extension |
ROW_FORMAT | Row_format | MySQL extension |
TABLE_ROWS | Rows | MySQL extension |
AVG_ROW_LENGTH | Avg_row_length | MySQL extension |
DATA_LENGTH | Data_length | MySQL extension |
MAX_DATA_LENGTH | Max_data_length | MySQL extension |
INDEX_LENGTH | Index_length | MySQL extension |
DATA_FREE | Data_free | MySQL extension |
AUTO_INCREMENT | Auto_increment | MySQL extension |
CREATE_TIME | Create_time | MySQL extension |
UPDATE_TIME | Update_time | MySQL extension |
CHECK_TIME | Check_time | MySQL extension |
TABLE_COLLATION | Collation | MySQL extension |
CHECKSUM | Checksum | MySQL extension |
CREATE_OPTIONS | Create_options | MySQL extension |
TABLE_COMMENT | Comment | MySQL extension |
Notes:
TABLE_SCHEMA and TABLE_NAME are a single field in a SHOW display, for example Table_in_db1.
TABLE_TYPE should be BASE TABLE or VIEW. Currently, the TABLES table does not list TEMPORARY tables.
For partitioned tables, the ENGINE column shows the name of the storage engine used by all partitions. (Previously, this column showed PARTITION for such tables.)
The TABLE_ROWS column is NULL if the table is in the INFORMATION_SCHEMA database.
For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also true if the InnoDB table is partitioned.)
The DATA_FREE column shows the free space in bytes for InnoDB tables.
We have nothing for the table's default character set. TABLE_COLLATION is close, because collation names begin with a character set name.
The CREATE_OPTIONS column shows partitioned if the table is partitioned.
The following statements are equivalent:
SELECT table_name FROM INFORMATION_SCHEMA.TABLES
WHERE table_schema = 'db_name'
[AND table_name LIKE 'wild']
SHOW TABLES
FROM db_name
[LIKE 'wild']
19.24. The INFORMATION_SCHEMA TABLESPACES Table
The TABLESPACES table provides information about active tablespaces.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
TABLESPACE_NAME | MySQL extension | |
ENGINE | MySQL extension | |
TABLESPACE_TYPE | MySQL extension | |
LOGFILE_GROUP_NAME | MySQL extension | |
EXTENT_SIZE | MySQL extension | |
AUTOEXTEND_SIZE | MySQL extension | |
MAXIMUM_SIZE | MySQL extension | |
NODEGROUP_ID | MySQL extension | |
TABLESPACE_COMMENT | MySQL extension |
19.25. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
The TABLE_CONSTRAINTS table describes which tables have constraints.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
CONSTRAINT_CATALOG | def | |
CONSTRAINT_SCHEMA | ||
CONSTRAINT_NAME | ||
TABLE_SCHEMA | ||
TABLE_NAME | ||
CONSTRAINT_TYPE |
Notes:
The CONSTRAINT_TYPE value can be UNIQUE, PRIMARY KEY, or FOREIGN KEY.
The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name field in the output from SHOW INDEX when the Non_unique field is 0.
The CONSTRAINT_TYPE column can contain one of these values: UNIQUE, PRIMARY KEY, FOREIGN KEY, CHECK. This is a CHAR (not ENUM) column. The CHECK value is not available until we support CHECK.
19.26. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
The TABLE_PRIVILEGES table provides information about table privileges. This information comes from the mysql.tables_priv grant table.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
GRANTEE | 'user_name'@'host_name' value | |
TABLE_CATALOG | def | |
TABLE_SCHEMA | ||
TABLE_NAME | ||
PRIVILEGE_TYPE | ||
IS_GRANTABLE |
Notes:
PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE, REFERENCES, ALTER, INDEX, DROP, CREATE VIEW.
The following statements are not equivalent:
SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES
SHOW GRANTS ...
19.27. The INFORMATION_SCHEMA TRIGGERS Table
The TRIGGERS table provides information about triggers. You can see results only for databases and tables for which you have the TRIGGER privilege.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
TRIGGER_CATALOG | def | |
TRIGGER_SCHEMA | ||
TRIGGER_NAME | Trigger | |
EVENT_MANIPULATION | Event | |
EVENT_OBJECT_CATALOG | def | |
EVENT_OBJECT_SCHEMA | ||
EVENT_OBJECT_TABLE | Table | |
ACTION_ORDER | 0 | |
ACTION_CONDITION | NULL | |
ACTION_STATEMENT | Statement | |
ACTION_ORIENTATION | ROW | |
ACTION_TIMING | Timing | |
ACTION_REFERENCE_OLD_TABLE | NULL | |
ACTION_REFERENCE_NEW_TABLE | NULL | |
ACTION_REFERENCE_OLD_ROW | OLD | |
ACTION_REFERENCE_NEW_ROW | NEW | |
CREATED | NULL (0) | |
SQL_MODE | MySQL extension | |
DEFINER | MySQL extension | |
CHARACTER_SET_CLIENT | MySQL extension | |
COLLATION_CONNECTION | MySQL extension | |
DATABASE_COLLATION | MySQL extension |
Notes:
The TRIGGER_SCHEMA and TRIGGER_NAME columns contain the name of the database in which the trigger occurs and the trigger name, respectively.
The EVENT_MANIPULATION column contains one of the values 'INSERT', 'DELETE', or 'UPDATE'.
As noted in Section 18.3, “Using Triggers”, every trigger is associated with exactly one table. The EVENT_OBJECT_SCHEMA and EVENT_OBJECT_TABLE columns contain the database in which this table occurs, and the table's name.
The ACTION_ORDER column contains the ordinal position of the trigger's action within the list of all similar triggers on the same table. Currently, this value is always 0, because it is not possible to have more than one trigger with the same EVENT_MANIPULATION and ACTION_TIMING on the same table.
The ACTION_STATEMENT column contains the statement to be executed when the trigger is invoked. This is the same as the text displayed in the Statement column of the output from SHOW TRIGGERS. Note that this text uses UTF-8 encoding.
The ACTION_ORIENTATION column always contains the value 'ROW'.
The ACTION_TIMING column contains one of the two values 'BEFORE' or 'AFTER'.
The columns ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW contain the old and new column identifiers, respectively. This means that ACTION_REFERENCE_OLD_ROW always contains the value 'OLD' and ACTION_REFERENCE_NEW_ROW always contains the value 'NEW'.
The SQL_MODE column shows the server SQL mode that was in effect at the time when the trigger was created (and thus which remains in effect for this trigger whenever it is invoked, regardless of the current server SQL mode). The possible range of values for this column is the same as that of the sql_mode system variable. See Section 5.1.7, “Server SQL Modes”.
The DEFINER column indicates who defined the trigger.
CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the trigger was created. COLLATION_CONNECTION is the session value of the collation_connection system variable when the trigger was created. DATABASE_COLLATION is the collation of the database with which the trigger is associated.
The following columns currently always contain NULL: ACTION_CONDITION, ACTION_REFERENCE_OLD_TABLE, ACTION_REFERENCE_NEW_TABLE, and CREATED.
Example, using the ins_sum trigger defined in Section 18.3, “Using Triggers”:
mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS\G
*************************** 1. row ***************************
TRIGGER_CATALOG: def
TRIGGER_SCHEMA: test
TRIGGER_NAME: ins_sum
EVENT_MANIPULATION: INSERT
EVENT_OBJECT_CATALOG: def
EVENT_OBJECT_SCHEMA: test
EVENT_OBJECT_TABLE: account
ACTION_ORDER: 0
ACTION_CONDITION: NULL
ACTION_STATEMENT: SET @sum = @sum + NEW.amount
ACTION_ORIENTATION: ROW
ACTION_TIMING: BEFORE
ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
ACTION_REFERENCE_OLD_ROW: OLD
ACTION_REFERENCE_NEW_ROW: NEW
CREATED: NULL
SQL_MODE:
DEFINER: me@localhost
See also Section 13.7.5.39, “SHOW TRIGGERS Syntax”.
19.28. The INFORMATION_SCHEMA USER_PRIVILEGES Table
The USER_PRIVILEGES table provides information about global privileges. This information comes from the mysql.user grant table.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
GRANTEE | 'user_name'@'host_name' value, MySQL extension | |
TABLE_CATALOG | def, MySQL extension | |
PRIVILEGE_TYPE | MySQL extension | |
IS_GRANTABLE | MySQL extension |
Notes:
This is a nonstandard table. It takes its values from the mysql.user table.
19.29. The INFORMATION_SCHEMA VIEWS Table
The VIEWS table provides information about views in databases. You must have the SHOW VIEW privilege to access this table.
INFORMATION_SCHEMA Name | SHOW Name | Remarks |
---|---|---|
TABLE_CATALOG | def | |
TABLE_SCHEMA | ||
TABLE_NAME | ||
VIEW_DEFINITION | ||
CHECK_OPTION | ||
IS_UPDATABLE | ||
DEFINER | ||
SECURITY_TYPE | ||
CHARACTER_SET_CLIENT | MySQL extension | |
COLLATION_CONNECTION | MySQL extension |
Notes:
The VIEW_DEFINITION column has most of what you see in the Create Table field that SHOW CREATE VIEW produces. Skip the words before SELECT and skip the words WITH CHECK OPTION. Suppose that the original statement was:
CREATE VIEW v AS
SELECT s2,s1 FROM t
WHERE s1 > 5
ORDER BY s1
WITH CHECK OPTION;
Then the view definition looks like this:
SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1
The CHECK_OPTION column has a value of NONE, CASCADE, or LOCAL.
MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true) if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO (false). The IS_UPDATABLE column in the VIEWS table displays the status of this flag. It means that the server always knows whether a view is updatable. If the view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and will be rejected. (Note that even if a view is updatable, it might not be possible to insert into it; for details, refer to Section 13.1.16, “CREATE VIEW Syntax”.)
The DEFINER column indicates who defined the view. SECURITY_TYPE has a value of DEFINER or INVOKER.
CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the view was created. COLLATION_CONNECTION is the session value of the collation_connection system variable when the view was created.
MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support. For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard SQL concatenation operator, the double bar (||), in your queries. If you then create a view that concatenates items, you might worry that changing the sql_mode setting to a value different from ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a view definition, MySQL always stores it the same way, in a canonical form. Here is an example that shows how the server changes a double bar concatenation operator to a CONCAT() function:
mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT VIEW_DEFINITION FROM INFORMATION_SCHEMA.VIEWS
-> WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v';
+----------------------------------+
| VIEW_DEFINITION |
+----------------------------------+
| select concat('a','b') AS `col1` |
+----------------------------------+
1 row in set (0.00 sec)
The advantage of storing a view definition in canonical form is that changes made later to the value of sql_mode will not affect the results from the view. However an additional consequence is that comments prior to SELECT are stripped from the definition by the server.
19.30. INFORMATION_SCHEMA Tables for InnoDB
The InnoDB tables related to the InnoDB storage engine serve two purposes:
You can monitor ongoing InnoDB activity, to detect inefficiencies before they turn into issues, or to troubleshoot performance and capacity issues that do occur. As your database becomes bigger and busier, running up against the limits of your hardware capacity, you monitor and tune these aspects to keep the database running smoothly. The monitoring information deals with:
InnoDB table compression, a feature whose use depends on a balance between I/O reduction, CPU usage, buffer pool management, and how much compression is possible for your data.
Transactions and locks, features that balance high performance for a single operation, against the ability to run multiple operations concurrently. (Transactions are the high-level, user-visible aspect of concurrency. Locks are the low-level mechanism that transactions use to avoid reading or writing unreliable data.)
You can extract information about schema objects managed by InnoDB, using the INNODB_SYS_* tables. This information comes from the InnoDB data dictionary, which cannot be queried directly like regular InnoDB tables. Traditionally, you would get this type of information using the techniques from Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”, setting up InnoDB monitors and parsing the output from the SHOW ENGINE INNODB STATUS command. The InnoDB interface offers a simpler, familiar technique to access this data.
19.30.1. The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
The INNODB_CMP and INNODB_CMP_RESET tables contain status information on operations related to compressed InnoDB tables.
Table 19.1. Columns of INNODB_CMP and INNODB_CMP_RESET
Column name | Description |
---|---|
PAGE_SIZE | Compressed page size in bytes. |
COMPRESS_OPS | Number of times a B-tree page of the size PAGE_SIZE has been compressed. Pages are compressed whenever an empty page is created or the space for the uncompressed modification log runs out. |
COMPRESS_OPS_OK | Number of times a B-tree page of the size PAGE_SIZE has been successfully compressed. This count should never exceed COMPRESS_OPS. |
COMPRESS_TIME | Total time in seconds spent in attempts to compress B-tree pages of the size PAGE_SIZE. |
UNCOMPRESS_OPS | Number of times a B-tree page of the size PAGE_SIZE has been uncompressed. B-tree pages are uncompressed whenever compression fails or at first access when the uncompressed page does not exist in the buffer pool. |
UNCOMPRESS_TIME | Total time in seconds spent in uncompressing B-tree pages of the size PAGE_SIZE. |
Notes:
Use these tables to measure the effectiveness of InnoDB table compression in your database.
You must have the PROCESS privilege to query this table.
For usage information, see Section 5.4.6.4, “Monitoring Compression at Runtime” and Section 14.2.4.3.1.3, “Using the Compression Information Schema Tables”. For general information about InnoDB table compression, see Section 5.4.6, “Working with InnoDB Compressed Tables”.
19.30.2. The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables contain status information on operations related to compressed InnoDB tables and indexes, with separate statistics for each combination of database, table, and index, to help you evaluate the performance and usefulness of compression for specific tables.
For a compressed InnoDB table, both the table data and all the secondary indexes are compressed. In this context, the table data is treated as just another index, one that happens to contain all the columns: the clustered index.
Table 19.2. Columns of INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET
Column name | Description |
---|---|
DATABASE_NAME | Database containing the applicable table. |
TABLE_NAME | Table to monitor for compression statistics. |
INDEX_NAME | Index to monitor for compression statistics. |
COMPRESS_OPS | Number of compression operations attempted. Pages are compressed whenever an empty page is created or the space for the uncompressed modification log runs out. |
COMPRESS_OPS_OK | Number of successful compression operations. Subtract from the COMPRESS_OPS value to get the number of compression failures. Divide by the COMPRESS_OPS value to get the percentage of compression failures. |
COMPRESS_TIME | Total amount of CPU time, in seconds, used for compressing data in this index. |
UNCOMPRESS_OPS | Number of uncompression operations performed. Compressed InnoDB pages are uncompressed whenever compression fails, or the first time a compressed page is accessed in the buffer pool and the uncompressed page does not exist. |
UNCOMPRESS_TIME | Total amount of CPU time, in seconds, used for uncompressing data in this index. |
Notes:
Use these tables to measure the effectiveness of InnoDB table compression for specific tables, indexes, or both.
You must have the PROCESS privilege to query these tables.
Because collecting separate measurements for every index imposes substantial performance overhead, enable the innodb_cmp_per_index_enabled configuration option before performing the operations on compressed tables that you want to monitor.
For usage information, see Section 5.4.6.4, “Monitoring Compression at Runtime” and Section 14.2.4.3.1.3, “Using the Compression Information Schema Tables”. For general information about InnoDB table compression, see Section 5.4.6, “Working with InnoDB Compressed Tables”.
19.30.3. The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables contain status information on compressed pages within the InnoDB buffer pool.
Table 19.3. Columns of INNODB_CMPMEM and INNODB_CMPMEM_RESET
Column name | Description |
---|---|
PAGE_SIZE | Block size in bytes. Each record of this table describes blocks of this size. |
PAGES_USED | Number of blocks of the size PAGE_SIZE that are currently in use. |
PAGES_FREE | Number of blocks of the size PAGE_SIZE that are currently available for allocation. This column shows the external fragmentation in the memory pool. Ideally, these numbers should be at most 1. |
RELOCATION_OPS | Number of times a block of the size PAGE_SIZE has been relocated. The buddy system can relocate the allocated “buddy neighbor” of a freed block when it tries to form a bigger freed block. Reading from the table INNODB_CMPMEM_RESET resets this count. |
RELOCATION_TIME | Total time in microseconds spent in relocating blocks of the size PAGE_SIZE. Reading from the table INNODB_CMPMEM_RESET resets this count. |
Notes:
Use these tables to measure the effectiveness of InnoDB table compression in your database.
You must have the PROCESS privilege to query this table.
For usage information, see Section 5.4.6.4, “Monitoring Compression at Runtime” and Section 14.2.4.3.1.3, “Using the Compression Information Schema Tables”. For general information about InnoDB table compression, see Section 5.4.6, “Working with InnoDB Compressed Tables”.
19.30.4. The INFORMATION_SCHEMA INNODB_TRX Table
The INNODB_TRX table contains information about every transaction currently executing inside InnoDB, including whether the transaction is waiting for a lock, when the transaction started, and the SQL statement the transaction is executing.
Table 19.4. INNODB_TRX Columns
Column name | Description |
---|---|
TRX_ID | Unique transaction ID number, internal to InnoDB. (Starting in MySQL 5.6, these IDs are not created for transactions that are read-only and non-locking. See Section 14.2.4.2.3, “Optimizations for Read-Only Transactions” for details.) |
TRX_WEIGHT | The weight of a transaction, reflecting (but not necessarily the exact count of) the number of rows altered and the number of rows locked by the transaction. To resolve a deadlock, InnoDB selects the transaction with the smallest weight as the “victim” to rollback. Transactions that have changed non-transactional tables are considered heavier than others, regardless of the number of altered and locked rows. |
TRX_STATE | Transaction execution state. One of RUNNING, LOCK WAIT, ROLLING BACK or COMMITTING. |
TRX_STARTED | Transaction start time. |
TRX_REQUESTED_LOCK_ID | ID of the lock the transaction is currently waiting for (if TRX_STATE is LOCK WAIT, otherwise NULL). Details about the lock can be found by joining with INNODB_LOCKS on LOCK_ID. |
TRX_WAIT_STARTED | Time when the transaction started waiting on the lock (if TRX_STATE is LOCK WAIT, otherwise NULL). |
TRX_MYSQL_THREAD_ID | MySQL thread ID. Can be used for joining with PROCESSLIST on ID. See Section 14.2.4.3.4.3, “Possible Inconsistency with PROCESSLIST”. |
TRX_QUERY | The SQL query that is being executed by the transaction. |
TRX_OPERATION_STATE | The transaction's current operation, or NULL. |
TRX_TABLES_IN_USE | The number of InnoDB tables used while processing the current SQL statement of this transaction. |
TRX_TABLES_LOCKED | Number of InnoDB tables that currently have any locks. (Because these are row locks, not table locks, the tables can usually still be read from and written to by multiple transactions, despite some rows being locked.) |
TRX_LOCK_STRUCTS | The number of locks reserved by the transaction. |
TRX_LOCK_MEMORY_BYTES | Total size taken up by the lock structures of this transaction in memory. |
TRX_ROWS_LOCKED | Approximate number or rows locked by this transaction. The value might include delete-marked rows that are physically present but not visible to the transaction. |
TRX_ROWS_MODIFIED | The number of modified and inserted rows in this transaction. |
TRX_CONCURRENCY_TICKETS | A value indicating how much work the current transaction can do before being swapped out, as specified by the innodb_concurrency_tickets option. |
TRX_ISOLATION_LEVEL | The isolation level of the current transaction. |
TRX_UNIQUE_CHECKS | Whether unique checks are turned on or off for the current transaction. (They might be turned off during a bulk data load, for example.) |
TRX_FOREIGN_KEY_CHECKS | Whether foreign key checks are turned on or off for the current transaction. (They might be turned off during a bulk data load, for example.) |
TRX_LAST_FOREIGN_KEY_ERROR | Detailed error message for last FK error, or NULL. |
TRX_ADAPTIVE_HASH_LATCHED | Whether or not the adaptive hash index is locked by the current transaction. (Only a single transaction at a time can modify the adaptive hash index.) |
TRX_ADAPTIVE_HASH_TIMEOUT | Whether to relinquish the search latch immediately for the adaptive hash index, or reserve it across calls from MySQL. When there is no AHI contention, this value remains zero and statements reserve the latch until they finish. During times of contention, it counts down to zero, and statements release the latch immediately after each row lookup. |
TRX_IS_READ_ONLY | A value of 1 indicates the transaction is read-only. (5.6.4 and up.) |
TRX_AUTOCOMMIT_NON_LOCKING | A value of 1 indicates the transaction is a SELECT statement that does not use the FOR UPDATE or LOCK IN SHARED MODE clauses, and is executing with the autocommit setting turned on so that the transaction will only contain this one statement. (5.6.4 and up.) When this column and TRX_IS_READ_ONLY are both 1, InnoDB optimizes the transaction to reduce the overhead associated with transactions that change table data. |
Notes:
Use this table to help diagnose performance problems that occur during times of heavy concurrent load.
You must have the PROCESS privilege to query this table.
For usage information, see Section 14.2.4.3.2.4, “Using the Transaction Information Schema Tables”.
19.30.5. The INFORMATION_SCHEMA INNODB_LOCKS Table
The INNODB_LOCKS table contains information about each lock that an InnoDB transaction has requested but not yet acquired, and each lock that a transaction holds that is blocking another transaction.
Table 19.5. INNODB_LOCKS Columns
Column name | Description |
---|---|
LOCK_ID | Unique lock ID number, internal to InnoDB. Treat it as an opaque string. Although LOCK_ID currently contains TRX_ID, the format of the data in LOCK_ID is not guaranteed to remain the same in future releases. Do not write programs that parse the LOCK_ID value. |
LOCK_TRX_ID | ID of the transaction holding this lock. Details about the transaction can be found by joining with INNODB_TRX on TRX_ID. |
LOCK_MODE | Mode of the lock. One of S, X, IS, IX, S_GAP, X_GAP, IS_GAP, IX_GAP, or AUTO_INC for shared, exclusive, intention shared, intention exclusive row locks, shared and exclusive gap locks, intention shared and intention exclusive gap locks, and auto-increment table level lock, respectively. Refer to the sections Section 14.2.3.2, “InnoDB Lock Modes” and Section 14.2.3.1, “The InnoDB Transaction Model and Locking” for information on InnoDB locking. |
LOCK_TYPE | Type of the lock. One of RECORD or TABLE for record (row) level or table level locks, respectively. |
LOCK_TABLE | Name of the table that has been locked or contains locked records. |
LOCK_INDEX | Name of the index if LOCK_TYPE='RECORD', otherwise NULL. |
LOCK_SPACE | Tablespace ID of the locked record if LOCK_TYPE='RECORD', otherwise NULL. |
LOCK_PAGE | Page number of the locked record if LOCK_TYPE='RECORD', otherwise NULL. |
LOCK_REC | Heap number of the locked record within the page if LOCK_TYPE='RECORD', otherwise NULL. |
LOCK_DATA | Primary key of the locked record if LOCK_TYPE='RECORD', otherwise NULL. This column contains the value(s) of the primary key column(s) in the locked row, formatted as a valid SQL string (ready to be copied to SQL commands). If there is no primary key then the InnoDB internal unique row ID number is used. When the page containing the locked record is not in the buffer pool (in the case that it was paged out to disk while the lock was held), InnoDB does not fetch the page from disk, to avoid unnecessary disk operations. Instead, LOCK_DATA is set to NULL. |
Notes:
Use this table to help diagnose performance problems that occur during times of heavy concurrent load.
You must have the PROCESS privilege to query this table.
For usage information, see Section 14.2.4.3.2.4, “Using the Transaction Information Schema Tables”.
19.30.6. The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table
The INNODB_LOCK_WAITS table contains one or more rows for each blocked InnoDB transaction, indicating the lock it has requested and any locks that are blocking that request.
Table 19.6. INNODB_LOCK_WAITS Columns
Column name | Description |
---|---|
REQUESTING_TRX_ID | ID of the requesting transaction. |
REQUESTED_LOCK_ID | ID of the lock for which a transaction is waiting. Details about the lock can be found by joining with INNODB_LOCKS on LOCK_ID. |
BLOCKING_TRX_ID | ID of the blocking transaction. |
BLOCKING_LOCK_ID | ID of a lock held by a transaction blocking another transaction from proceeding. Details about the lock can be found by joining with INNODB_LOCKS on LOCK_ID. |
Notes:
Use this table to help diagnose performance problems that occur during times of heavy concurrent load.
You must have the PROCESS privilege to query this table.
For usage information, see Section 14.2.4.3.2.4, “Using the Transaction Information Schema Tables”.
19.30.7. The INFORMATION_SCHEMA INNODB_SYS_TABLES Table
The INNODB_SYS_TABLES table provides status information about InnoDB tables, equivalent to the information from the SYS_TABLES table in the InnoDB data dictionary.
Table 19.7. INNODB_SYS_TABLES Columns
Column name | Description |
---|---|
TABLE_ID | An identifier for each InnoDB table that is unique across all databases in the instance. |
NAME | The name of the table. Preceded by the database name where appropriate, for example test/t1. InnoDB system table names are in all uppercase. Names of databases and user tables are in the same case as they were originally defined, possibly influenced by the lower_case_table_names setting. |
FLAG | 0 = InnoDB system table, 1 = user table. |
N_COLS | The number of columns in the table. |
SPACE | An identifier for the tablespace where the table resides. 0 means the InnoDB system tablespace. Any other number represents a table created in file-per-table mode with a separate .ibd file. This identifier stays the same after a TRUNCATE TABLE statement. Other than the zero value, this identifier is unique for tables across all the databases in the instance. |
Notes:
Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this table rather than the corresponding InnoDB system table for any new monitoring application you develop.
You must have the PROCESS privilege to query this table.
19.30.8. The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table
The INNODB_SYS_INDEXES table provides status information about InnoDB indexes, equivalent to the information from the SYS_INDEXES table in the InnoDB data dictionary.
Table 19.8. INNODB_SYS_INDEXES Columns
Column name | Description |
---|---|
INDEX_ID | An identifier for each index that is unique across all the databases in an instance. |
NAME | The name of the index. User-created indexes have names in all lowercase. Indexes created implicitly by InnoDB have names in all lowercase. The index names are not necessarily unique. Indexes created implicitly by InnoDB have consistent names: PRIMARY for a primary key index, GEN_CLUST_INDEX for the index representing a primary key when one is not specified, ID_IND, FOR_IND for validating a foreign key constraint, and REF_IND. |
TABLE_ID | An identifier representing the table associated with the index; the same value from INNODB_SYS_TABLES.TABLE_ID. |
TYPE | A numeric identifier signifying the kind of index, in the range 0..3. |
N_FIELDS | The number of columns in the index key. For the GEN_CLUST_INDEX indexes, this value is 0 because the index is created using an artificial value rather than a real table column. |
PAGE_NO | |
SPACE | An identifier for the tablespace where the index resides. 0 means the InnoDB system tablespace. Any other number represents a table created in file-per-table mode with a separate .ibd file. This identifier stays the same after a TRUNCATE TABLE statement. Because all indexes for a table reside in the same tablespace as the table, this value is not necessarily unique. |
Notes:
Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this table rather than the corresponding InnoDB system table for any new monitoring application you develop.
You must have the PROCESS privilege to query this table.
19.30.9. The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table
The INNODB_SYS_COLUMNS table provides status information about InnoDB table columns, equivalent to the information from the SYS_COLUMNS table in the InnoDB data dictionary.
Table 19.9. INNODB_SYS_COLUMNS Columns
Column name | Description |
---|---|
TABLE_ID | An identifier representing the table associated with the column; the same value from INNODB_SYS_TABLES.TABLE_ID. |
NAME | The name of each column in each table. These names can be uppercase or lowercase depending on the lower_case_table_names setting. There are no special system-reserved names for columns. |
POS | The ordinal position of the column within the table, starting from 0 and incrementing sequentially. When a column is dropped, the remaining columns are reordered so that the sequence has no gaps. |
MTYPE | A numeric identifier for the column type. 1 = VARCHAR, 2 = CHAR, 3 = FIXBINARY, 4 = BINARY, 5 = BLOB, 6 = INT, 7 = SYS_CHILD, 8 = SYS, 9 = FLOAT, 10 = DOUBLE, 11 = DECIMAL, 12 = VARMYSQL, 13 = MYSQL. |
PRTYPE | The InnoDB “precise type”, a binary value with bits representing MySQL data type, character set code, and nullability. |
LEN | The column length, for example 4 for INT and 8 for BIGINT. For character columns in multi-byte character sets, this length value is the maximum length in bytes needed to represent a definition such as VARCHAR(N); that is, it might be 2*N, 3*N, and so on depending on the character encoding. |
Notes:
Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this table rather than the corresponding InnoDB system table for any new monitoring application you develop.
You must have the PROCESS privilege to query this table.
19.30.10. The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table
The INNODB_SYS_FIELDS table provides status information about the key columns (fields) of InnoDB indexes, equivalent to the information from the SYS_FIELDS table in the InnoDB data dictionary.
Table 19.10. INNODB_SYS_FIELDS Columns
Column name | Description |
---|---|
INDEX_ID | An identifier for the index associated with this key field, using the same value as in INNODB_SYS_INDEXES.INDEX_ID. |
NAME | The name of the original column from the table, using the same value as in INNODB_SYS_COLUMNS.NAME. |
POS | The ordinal position of the key field within the index, starting from 0 and incrementing sequentially. When a column is dropped, the remaining columns are reordered so that the sequence has no gaps. |
Notes:
Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this table rather than the corresponding InnoDB system table for any new monitoring application you develop.
You must have the PROCESS privilege to query this table.
19.30.11. The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table
The INNODB_SYS_FOREIGN table provides status information about InnoDB foreign keys, equivalent to the information from the SYS_FOREIGN table in the InnoDB data dictionary.
Table 19.11. INNODB_SYS_FOREIGN Columns
Column name | Description |
---|---|
ID | The name (not a numeric value) of the foreign key index. Preceded by the database name, for example, test/products_fk. |
FOR_NAME | The name of the child table in this foreign key relationship. |
REF_NAME | The name of the parent table in this foreign key relationship. |
N_COLS | The number of columns in the foreign key index. |
TYPE | A collection of bit flags with information about the foreign key column, ORed together. 1 = ON DELETE CASCADE, 2 = ON UPDATE SET NULL, 4 = ON UPDATE CASCADE, 8 = ON UPDATE SET NULL, 16 = ON DELETE NO ACTION, 32 = ON UPDATE NO ACTION. |
Notes:
Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this table rather than the corresponding InnoDB system table for any new monitoring application you develop.
You must have the PROCESS privilege to query this table.
19.30.12. The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table
The INNODB_SYS_FOREIGN_COLS table provides status information about the columns of InnoDB foreign keys, equivalent to the information from the SYS_FOREIGN_COLS table in the InnoDB data dictionary.
Table 19.12. INNODB_SYS_FOREIGN_COLS Columns
Column name | Description |
---|---|
ID | The foreign key index associated with this index key field, using the same value as INNODB_SYS_FOREIGN.ID. |
FOR_COL_NAME | The name of the associated column in the child table. |
REF_COL_NAME | The name of the associated column in the parent table. |
POS | The ordinal position of this key field within the foreign key index, starting from 0. |
Notes:
Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this table rather than the corresponding InnoDB system table for any new monitoring application you develop.
You must have the PROCESS privilege to query this table.
19.30.13. The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View
The INNODB_SYS_TABLESTATS view provides status information about performance statistics for InnoDB tables. These statistics represent low-level information used by the MySQL optimizer to calculate which index to use when querying an InnoDB table. This information is derived from in-memory data structures rather than corresponding to data stored on disk.
InnoDB tables are represented in this view if they have been opened since the last server restart, and not aged out of the table cache. Tables for which persistent stats are available are always represented in this view.
Table 19.13. INNODB_SYS_TABLESTATS Columns
Column name | Description |
---|---|
TABLE_ID | An identifier representing the table for which statistics are available, using the same value as INNODB_SYS_TABLES.TABLE_ID. |
NAME | The name of the table, using the same value as INNODB_SYS_TABLES.NAME. |
STATS_INITIALIZED | The value is Initialized if the statistics are already collected, Uninitialized if not. |
NUM_ROWS | The current estimated number of rows in the table. Updated after each DML operation. Could be imprecise if uncommitted transactions are inserting into or deleting from the table. |
CLUST_INDEX_SIZE | Number of pages on disk that store the clustered index, which holds the InnoDB table data in primary key order. This value might be null if no statistics are collected yet for the table. |
OTHER_INDEX_SIZE | Number of pages on disk that store all secondary indexes for the table. This value might be null if no statistics are collected yet for the table. |
MODIFIED_COUNTER | The number of rows modified by DML operations, such as INSERT, UPDATE, DELETE, and also cascade operations from foreign keys. |
AUTOINC | |
REF_COUNT | When this counter reaches zero, the table metadata can be evicted from the table cache. |
Notes:
This table is primarily useful for expert-level performance monitoring, or when developing performance-related extensions for MySQL.
Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this table rather than the corresponding InnoDB system table for any new monitoring application you develop.
You must have the PROCESS privilege to query this table.
19.30.14. The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
The INNODB_BUFFER_PAGE table holds information about each page in the InnoDB buffer pool.
Table 19.14. INNODB_BUFFER_PAGE Columns
Column name | Description |
---|---|
POOL_ID | Buffer Pool ID. An identifier to distinguish between multiple buffer pool instances. |
BLOCK_ID | Buffer Pool Block ID. |
SPACE | Tablespace ID. Uses the same value as in INNODB_SYS_TABLES.SPACE. |
PAGE_NUMBER | Page number. |
PAGE_TYPE | Page type string. One of allocated (Freshly allocated page), index (B-tree node), undo_log (Undo log page), inode (Index node), ibuf_free_list (Insert buffer free list), ibuf_bitmap (Insert buffer bitmap), system (System page), trx_system (Transaction system data), file_space_header (File space header), extent_descriptor (Extent descriptor page), blob (Uncompressed BLOB page), compressed_blob (First compressed BLOB page), compressed_blob2 (Subsequent comp BLOB page), unknown (unknown). |
FLUSH_TYPE | Flush type. |
FIX_COUNT | Number of threads using this block within the buffer pool. When zero, the block is eligible to be evicted. |
IS_HASHED | Whether hash index has been built on this page. |
NEWEST_MODIFICATION | Log Sequence Number of the youngest modification. |
OLDEST_MODIFICATION | Log Sequence Number of the oldest modification. |
ACCESS_TIME | Time of first access. |
TABLE_NAME | Name of the table the page belongs to. |
INDEX_NAME | Name of the index the page belongs to. It can be the name of a clustered index or a secondary index. |
NUMBER_RECORDS | Number of records within the page. |
DATA_SIZE | Sum of the sizes of the records. |
COMPRESSED_SIZE | Compressed page size. Null for pages that are not compressed. |
PAGE_STATE | Page state. A page with valid data has one of the following states: FILE_PAGE (buffers a page of data from a file), MEMORY (buffers a page from an in-memory object), Other possible states (managed by InnoDB) are: null, READY_FOR_USE, NOT_USED, REMOVE_HASH. |
IO_FIX | Specifies whether any I/O is pending for this page: IO_NONE = no pending I/O, IO_READ = read pending, IO_WRITE = write pending. |
IS_OLD | bpage->old. |
FREE_PAGE_CLOCK | bpage->freed_page_clock. |
Notes:
This table is primarily useful for expert-level performance monitoring, or when developing performance-related extensions for MySQL.
Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this table rather than the corresponding InnoDB system table for any new monitoring application you develop.
You must have the PROCESS privilege to query this table.
19.30.15. The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
The INNODB_BUFFER_PAGE_LRU table holds information about the pages in the InnoDB buffer pool, in particular how they are ordered in the LRU list that determines which pages to evict from the buffer pool when it becomes full.
The definition for this page is the same as for INNODB_BUFFER_PAGE, except this table has an LRU_POSITION column instead of BLOCK_ID.
Notes:
This table is primarily useful for expert-level performance monitoring, or when developing performance-related extensions for MySQL.
Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this table rather than the corresponding InnoDB system table for any new monitoring application you develop.
Querying this table can require MySQL to allocate a large block of contiguous memory, more than 64 bytes time the number of active pages in the buffer pool. This allocation could potentially cause an out-of-memory error, especially for systems with multi-gigabyte buffer pools.
Querying this table requires MySQL to lock the data structure representing the buffer pool while traversing the LRU list, which can reduce concurrency, especially for systems with multi-gigabyte buffer pools.
19.30.16. The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
The INNODB_BUFFER_POOL_STATS table represents the same kinds of InnoDB buffer pool information as the output from SHOW ENGINE INNODB STATUS.
The idea of making pages in the buffer pool “young” or “not young” refers to transferring them between the sublists at the head and tail of the buffer pool data structure. Pages made “young” take longer to age out of the buffer pool, while pages made “not young” are moved much closer to the point of eviction.
Column meanings in this table are intended to be self-explanatory for developers who formerly parsed the SHOW ENGINE INNODB STATUS to get these values.
Table 19.15. INNODB_BUFFER_POOL_STATS Columns
Column name | Description |
---|---|
POOL_ID | |
POOL_SIZE | |
FREE_BUFFERS | |
DATABASE_PAGES | |
OLD_DATABASE_PAGES | |
MODIFIED_DATABASE_PAGES | |
PENDING_DECOMPRESS | |
PENDING_READS | |
PENDING_FLUSH_LRU | |
PENDING_FLUSH_LIST | |
PAGES_MADE_YOUNG | |
PAGES_NOT_MADE_YOUNG | |
PAGES_MADE_YOUNG_RATE | |
PAGES_MADE_NOT_YOUNG_RATE | |
NUMBER_PAGES_READ | |
NUMBER_PAGES_CREATED | |
NUMBER_PAGES_WRITTEN | |
PAGES_READ_RATE | |
PAGES_CREATE_RATE | |
PAGES_WRITTEN_RATE | |
NUMBER_PAGES_GET | |
HIT_RATE | |
YOUNG_MAKE_PER_THOUSAND_GETS | |
NOT_YOUNG_MAKE_PER_THOUSAND_GETS | |
NUMBER_PAGES_READ_AHEAD | |
NUMBER_READ_AHEAD_EVICTED | |
READ_AHEAD_RATE | |
REAT_AHEAD_EVICTED_RATE | |
LRU_IO_TOTAL | |
LRU_IO_CURRENT | |
UNCOMPRESS_TOTAL | |
UNCOMPRESS_CURRENT |
Notes:
This table is primarily useful for expert-level performance monitoring, or when developing performance-related extensions for MySQL.
Since the INFORMATION_SCHEMA is a general-purpose way to monitor the MySQL server, use this table rather than the corresponding InnoDB system table for any new monitoring application you develop.
You must have the PROCESS privilege to query this table.
19.30.17. The INFORMATION_SCHEMA INNODB_METRICS Table
This INFORMATION_SCHEMA table presents a wide variety of InnoDB performance information, complementing the specific focus areas of the PERFORMANCE_SCHEMA tables for InnoDB. With simple queries, you can check the overall health of the system. With more detailed queries, you can diagnose issues such as performance bottlenecks, resource shortages, and application issues.
Each monitor represents a point within the InnoDB source code that is instrumented to gather counter information. Each counter can be started, stopped, and reset. You can also perform these actions for a group of counters using their common module name.
Table 19.16. INNODB_METRICS Columns
Column name | Description |
---|---|
NAME | Unique name for the counter. |
SUBSYSTEM | The aspect of InnoDB that the metric applies to. See the list following the table for the corresponding module names to use with the SET GLOBAL syntax. |
COUNT | Value since the counter is enabled. |
MAX_COUNT | Maximum value since the counter is enabled. |
MIN_COUNT | Minimum value since the counter is enabled. |
AVG_COUNT | Average value since the counter is enabled. |
COUNT_RESET | Counter value since it was last reset. (The _RESET fields act like the lap counter on a stopwatch: you can measure the activity during some time interval, while the cumulative figures are still available in the COUNT, MAX_COUNT, and so on fields.) |
MAX_COUNT_RESET | Maximum counter value since it was last reset. |
MIN_COUNT_RESET | Minimum counter value since it was last reset. |
AVG_COUNT_RESET | Average counter value since it was last reset. |
TIME_ENABLED | Timestamp of last start. |
TIME_DISABLED | Timestamp of last stop. |
TIME_ELAPSED | Elapsed time in seconds since the counter started. |
TIME_RESET | Timestamp of last stop. |
STATUS | Whether the counter is still running () or stopped (). |
TYPE | Whether the item is a cumulative counter, or measures the current value of some resource. |
COMMENT | Additional description. |
Notes:
You must have the PROCESS privilege to query this table.
By default, relatively little data is collected. To start, stop, and reset counters, you set one of the the configuration options innodb_monitor_enable, innodb_monitor_disable, innodb_monitor_reset, or innodb_monitor_reset_all, using the name of the counter, the name of the module, a wildcard match for such a name using the “%” character, or the special keyword all. For example:
-- Turn on a counter:
set global innodb_monitor_enable = counter_name;
-- Turn off a counter:
set global innodb_monitor_disable = counter_name;
-- Reset a counter:
set global innodb_monitor_reset = counter_name;
-- Reset all the counter values:
set global innodb_monitor_reset_all = counter_name;
-- Turn on a group of counters:
set global innodb_monitor_enable = module_name;
-- Turn off a group of counters:
set global innodb_monitor_enable = module_name;
-- Turn on monitor "dml_num_inserts":
set global innodb_monitor_enable = dml_num_inserts;
-- Reset all values for "dml_num_inserts":
set global innodb_monitor_reset_all = dml_num_inserts;
-- Reset the counters for all dml monitors
set global innodb_monitor_reset = "dml_%";
-- Turn on all monitors for the transaction subsystem
set global innodb_monitor_enable = module_trx;
-- Turn off all monitors
set global innodb_monitor_disable = all;
The module names correspond to, but are not identical to, the values from the SUBSYSTEM column. Here are the values you can use for module_name with the innodb_monitor_enable and related configuration options, along with the corresponding SUBSYSTEM names:
module_metadata (subsystem = metadata)
module_lock (subsystem = lock)
module_buffer (subsystem = buffer)
module_buf_page (subsystem = buffer_page_io)
module_os (subsystem = os)
module_trx (subsystem = transaction)
module_purge (subsystem = purge)
module_compress (subsystem = compression)
module_file (subsystem = file_system)
module_index (subsystem = index)
module_adaptive_hash (subsystem = adaptive_hash_index)
module_ibuf_system (subsystem = change_buffer)
module_srv (subsystem = server)
module_ddl (subsystem = ddl)
module_dml (subsystem = dml)
module_log (subsystem = recovery)
module_icp (subsystem = icp)
Because each counter imposes some degree of runtime overhead on the server, typically you enable more counters on test and development servers during experimentation and benchmarking, and only enable counters on production servers to diagnose known issues or monitor aspects that are likely to be bottlenecks for a particular server and workload.
The items represented in the innodb_metrics table are subject to change, so for the most up-to-date list, query a running MySQL server. As of MySQL 5.6.10, the items include:
mysql: select name, subsystem from information_schema.innodb_metrics order by name;
+--+---------------------+
| name | subsystem |
+--+---------------------+
| adaptive_hash_pages_added | adaptive_hash_index |
| adaptive_hash_pages_removed | adaptive_hash_index |
| adaptive_hash_rows_added | adaptive_hash_index |
| adaptive_hash_rows_deleted_no_hash_entry | adaptive_hash_index |
| adaptive_hash_rows_removed | adaptive_hash_index |
| adaptive_hash_rows_updated | adaptive_hash_index |
| adaptive_hash_searches | adaptive_hash_index |
| adaptive_hash_searches_btree | adaptive_hash_index |
| buffer_data_reads | buffer |
| buffer_data_written | buffer |
| buffer_flush_adaptive | buffer |
| buffer_flush_adaptive_pages | buffer |
| buffer_flush_adaptive_total_pages | buffer |
| buffer_flush_avg_page_rate | buffer |
| buffer_flush_background | buffer |
| buffer_flush_background_pages | buffer |
| buffer_flush_background_total_pages | buffer |
| buffer_flush_batches | buffer |
| buffer_flush_batch_num_scan | buffer |
| buffer_flush_batch_pages | buffer |
| buffer_flush_batch_scanned | buffer |
| buffer_flush_batch_scanned_per_call | buffer |
| buffer_flush_batch_total_pages | buffer |
| buffer_flush_lsn_avg_rate | buffer |
| buffer_flush_neighbor | buffer |
| buffer_flush_neighbor_pages | buffer |
| buffer_flush_neighbor_total_pages | buffer |
| buffer_flush_n_to_flush_requested | buffer |
| buffer_flush_pct_for_dirty | buffer |
| buffer_flush_pct_for_lsn | buffer |
| buffer_flush_sync | buffer |
| buffer_flush_sync_pages | buffer |
| buffer_flush_sync_total_pages | buffer |
| buffer_flush_sync_waits | buffer |
| buffer_LRU_batches | buffer |
| buffer_LRU_batch_num_scan | buffer |
| buffer_LRU_batch_pages | buffer |
| buffer_LRU_batch_scanned | buffer |
| buffer_LRU_batch_scanned_per_call | buffer |
| buffer_LRU_batch_total_pages | buffer |
| buffer_LRU_get_free_search | Buffer |
| buffer_LRU_search_num_scan | buffer |
| buffer_LRU_search_scanned | buffer |
| buffer_LRU_search_scanned_per_call | buffer |
| buffer_LRU_single_flush_failure_count | Buffer |
| buffer_LRU_single_flush_num_scan | buffer |
| buffer_LRU_single_flush_scanned | buffer |
| buffer_LRU_single_flush_scanned_per_call | buffer |
| buffer_LRU_unzip_search_num_scan | buffer |
| buffer_LRU_unzip_search_scanned | buffer |
| buffer_LRU_unzip_search_scanned_per_call | buffer |
| buffer_pages_created | buffer |
| buffer_pages_read | buffer |
| buffer_pages_written | buffer |
| buffer_page_read_blob | buffer_page_io |
| buffer_page_read_fsp_hdr | buffer_page_io |
| buffer_page_read_ibuf_bitmap | buffer_page_io |
| buffer_page_read_ibuf_free_list | buffer_page_io |
| buffer_page_read_index_ibuf_leaf | buffer_page_io |
| buffer_page_read_index_ibuf_non_leaf | buffer_page_io |
| buffer_page_read_index_inode | buffer_page_io |
| buffer_page_read_index_leaf | buffer_page_io |
| buffer_page_read_index_non_leaf | buffer_page_io |
| buffer_page_read_other | buffer_page_io |
| buffer_page_read_system_page | buffer_page_io |
| buffer_page_read_trx_system | buffer_page_io |
| buffer_page_read_undo_log | buffer_page_io |
| buffer_page_read_xdes | buffer_page_io |
| buffer_page_read_zblob | buffer_page_io |
| buffer_page_read_zblob2 | buffer_page_io |
| buffer_page_written_blob | buffer_page_io |
| buffer_page_written_fsp_hdr | buffer_page_io |
| buffer_page_written_ibuf_bitmap | buffer_page_io |
| buffer_page_written_ibuf_free_list | buffer_page_io |
| buffer_page_written_index_ibuf_leaf | buffer_page_io |
| buffer_page_written_index_ibuf_non_leaf | buffer_page_io |
| buffer_page_written_index_inode | buffer_page_io |
| buffer_page_written_index_leaf | buffer_page_io |
| buffer_page_written_index_non_leaf | buffer_page_io |
| buffer_page_written_other | buffer_page_io |
| buffer_page_written_system_page | buffer_page_io |
| buffer_page_written_trx_system | buffer_page_io |
| buffer_page_written_undo_log | buffer_page_io |
| buffer_page_written_xdes | buffer_page_io |
| buffer_page_written_zblob | buffer_page_io |
| buffer_page_written_zblob2 | buffer_page_io |
| buffer_pool_bytes_data | buffer |
| buffer_pool_bytes_dirty | buffer |
| buffer_pool_pages_data | buffer |
| buffer_pool_pages_dirty | buffer |
| buffer_pool_pages_free | buffer |
| buffer_pool_pages_misc | buffer |
| buffer_pool_pages_total | buffer |
| buffer_pool_reads | buffer |
| buffer_pool_read_ahead | buffer |
| buffer_pool_read_ahead_evicted | buffer |
| buffer_pool_read_requests | buffer |
| buffer_pool_size | server |
| buffer_pool_wait_free | buffer |
| buffer_pool_write_requests | buffer |
| compression_pad_decrements | compression |
| compression_pad_increments | compression |
| compress_pages_compressed | compression |
| compress_pages_decompressed | compression |
| ddl_background_drop_indexes | ddl |
| ddl_background_drop_tables | ddl |
| ddl_online_create_index | ddl |
| ddl_pending_alter_table | ddl |
| dml_deletes | dml |
| dml_inserts | dml |
| dml_reads | dml |
| dml_updates | dml |
| file_num_open_files | file_system |
| ibuf_merges | change_buffer |
| ibuf_merges_delete | change_buffer |
| ibuf_merges_delete_mark | change_buffer |
| ibuf_merges_discard_delete | change_buffer |
| ibuf_merges_discard_delete_mark | change_buffer |
| ibuf_merges_discard_insert | change_buffer |
| ibuf_merges_insert | change_buffer |
| ibuf_size | change_buffer |
| icp_attempts | icp |
| icp_match | icp |
| icp_no_match | icp |
| icp_out_of_range | icp |
| index_merges | index |
| index_splits | index |
| innodb_activity_count | server |
| innodb_background_drop_table_usec | server |
| innodb_checkpoint_usec | server |
| innodb_dblwr_pages_written | server |
| innodb_dblwr_writes | server |
| innodb_dict_lru_usec | server |
| innodb_ibuf_merge_usec | server |
| innodb_log_flush_usec | server |
| innodb_master_active_loops | server |
| innodb_master_idle_loops | server |
| innodb_master_purge_usec | server |
| innodb_master_thread_sleeps | server |
| innodb_mem_validate_usec | server |
| innodb_page_size | server |
| innodb_rwlock_s_os_waits | server |
| innodb_rwlock_s_spin_rounds | server |
| innodb_rwlock_s_spin_waits | server |
| innodb_rwlock_x_os_waits | server |
| innodb_rwlock_x_spin_rounds | server |
| innodb_rwlock_x_spin_waits | server |
| lock_deadlocks | lock |
| lock_rec_locks | lock |
| lock_rec_lock_created | lock |
| lock_rec_lock_removed | lock |
| lock_rec_lock_requests | lock |
| lock_rec_lock_waits | lock |
| lock_row_lock_current_waits | lock |
| lock_row_lock_time | lock |
| lock_row_lock_time_avg | lock |
| lock_row_lock_time_max | lock |
| lock_row_lock_waits | lock |
| lock_table_locks | lock |
| lock_table_lock_created | lock |
| lock_table_lock_removed | lock |
| lock_table_lock_waits | lock |
| lock_timeouts | lock |
| log_checkpoints | recovery |
| log_lsn_buf_pool_oldest | recovery |
| log_lsn_checkpoint_age | recovery |
| log_lsn_current | recovery |
| log_lsn_last_checkpoint | recovery |
| log_lsn_last_flush | recovery |
| log_max_modified_age_async | recovery |
| log_max_modified_age_sync | recovery |
| log_num_log_io | recovery |
| log_pending_checkpoint_writes | recovery |
| log_pending_log_writes | recovery |
| log_waits | recovery |
| log_writes | recovery |
| log_write_requests | recovery |
| metadata_mem_pool_size | metadata |
| metadata_table_handles_closed | metadata |
| metadata_table_handles_opened | metadata |
| metadata_table_reference_count | metadata |
| os_data_fsyncs | os |
| os_data_reads | os |
| os_data_writes | os |
| os_log_bytes_written | os |
| os_log_fsyncs | os |
| os_log_pending_fsyncs | os |
| os_log_pending_writes | os |
| os_pending_reads | os |
| os_pending_writes | os |
| purge_del_mark_records | purge |
| purge_dml_delay_usec | purge |
| purge_invoked | purge |
| purge_resume_count | purge |
| purge_stop_count | purge |
| purge_undo_log_pages | purge |
| purge_upd_exist_or_extern_records | purge |
| trx_active_transactions | transaction |
| trx_commits_insert_update | transaction |
| trx_nl_ro_commits | transaction |
| trx_rollbacks | transaction |
| trx_rollbacks_savepoint | transaction |
| trx_rollback_active | transaction |
| trx_ro_commits | transaction |
| trx_rseg_current_size | transaction |
| trx_rseg_history_len | transaction |
| trx_rw_commits | transaction |
| trx_undo_slots_cached | transaction |
| trx_undo_slots_used | transaction |
+--+---------------------+
209 rows in set (0.00 sec)
19.30.18. The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
The INNODB_FT_CONFIG table displays metadata about the FULLTEXT index and associated processing for an InnoDB table.
This table is only accessible to users with the SUPER privilege.
Table 19.17. INNODB_FT_CONFIG Columns
Column name | Description |
---|---|
KEY | The name designating an item of metadata for an InnoDB table containing a FULLTEXT index. |
VALUE | The value associated with the corresponding KEY column, reflecting some limit or current value for an aspect of a FULLTEXT index for an InnoDB table. |
Notes:
This table is only intended for internal configuration. It is not intended for statistical information purposes.
You must have the PROCESS privilege to query this table.
The values for the KEY column might evolve depending on the needs for performance tuning and debugging for InnoDB full-text processing. Currently, the key values include optimize_checkpoint_limit, synced_doc_id, deleted_doc_count, stopword_table_name, and use_stopword.
For more information, see Section 12.9, “Full-Text Search Functions”.
19.30.19. The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
The INNODB_FT_DEFAULT_STOPWORD table holds a list of stopwords that are used by default when creating a FULLTEXT index on an InnoDB table.
Table 19.18. INNODB_FT_DEFAULT_STOPWORD Columns
Column name | Description |
---|---|
value | A word that is used by default as a stopword for FULLTEXT indexes on InnoDB tables. Not used if you override the default stopword processing with either the innodb_ft_server_stopword_table or the innodb_ft_user_stopword_table option. |
Notes:
You must have the PROCESS privilege to query this table.
For more information, see Section 12.9, “Full-Text Search Functions”.
19.30.20. The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table
The INNODB_FT_INDEX_TABLE table displays information about the inverted index used to process text searches against the FULLTEXT index of an InnoDB table.
This table is only accessible to users with the SUPER privilege. Before you query this table, set the configuration variable innodb_ft_aux_table to the name (including the database name) of the table that contains the FULLTEXT index, for example test/articles.
Table 19.19. INNODB_FT_INDEX_TABLE Columns
Column name | Description |
---|---|
WORD | A word extracted from the text of the columns that are part of a FULLTEXT. |
FIRST_DOC_ID | The first document ID that this word appears in in the FULLTEXT index. |
LAST_DOC_ID | The last document ID that this word appears in in the FULLTEXT index. |
DOC_COUNT | The number of rows this word appears in in the FULLTEXT index. The same word can occur several times within the cache table, once for each combination of DOC_ID and POSITION values. |
DOC_ID | The document ID of the row containing the word. This value might reflect the value of an ID column that you defined for the underlying table, or it can be a sequence value generated by InnoDB when the table does not contain a suitable column. |
POSITION | The position of this particular instance of the word within the relevant document identified by the DOC_ID value. |
Notes:
This table initially appears empty, until you set the value of the configuration variable innodb_ft_aux_table.
You must have the PROCESS privilege to query this table.
For more information, see Section 12.9, “Full-Text Search Functions”.
19.30.21. The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table
The INNODB_FT_INDEX_CACHE table displays token information about newly inserted rows in a FULLTEXT index for an InnoDB table. To avoid expensive index reorganization during DML operations for an InnoDB FULLTEXT index, the information about newly indexed words is stored separately, and combined with the main search index only when you issue the OPTIMIZE TABLE statement for the InnoDB table.
This table is only accessible to users with the SUPER privilege. Before you query this table, set the configuration variable innodb_ft_aux_table to the name (including the database name) of the table that contains the FULLTEXT index, for example test/articles.
Table 19.20. INNODB_FT_INDEX_CACHE Columns
Column name | Description |
---|---|
WORD | A word extracted from the text of a newly inserted row. |
FIRST_DOC_ID | The first document ID that this word appears in in the FULLTEXT index. |
LAST_DOC_ID | The last document ID that this word appears in in the FULLTEXT index. |
DOC_COUNT | The number of rows this word appears in in the FULLTEXT index. The same word can occur several times within the cache table, once for each combination of DOC_ID and POSITION values. |
DOC_ID | The document ID of the newly inserted row. This value might reflect the value of an ID column that you defined for the underlying table, or it can be a sequence value generated by InnoDB when the table does not contain a suitable column. |
POSITION | The position of this particular instance of the word within the relevant document identified by the DOC_ID value. The value does not represent an absolute position; it is an offset added to the POSITION of the previous instance of that word. |
Notes:
This table initially appears empty, until you set the value of the configuration variable innodb_ft_aux_table.
You must have the PROCESS privilege to query this table.
For more information, see Section 12.9, “Full-Text Search Functions”.
19.30.22. The INFORMATION_SCHEMA INNODB_FT_DELETED Table
The INNODB_FT_DELETED table records rows that are deleted from the FULLTEXT index for an InnoDB table. To avoid expensive index reorganization during DML operations for an InnoDB FULLTEXT index, the information about newly deleted words is stored separately, filtered out of search results when you do a text search, and removed from the main search index only when you issue the OPTIMIZE TABLE statement for the InnoDB table.
This table is only accessible to users with the SUPER privilege. Before you query this table, set the configuration variable innodb_ft_aux_table to the name (including the database name) of the table that contains the FULLTEXT index, for example test/articles.
Table 19.21. INNODB_FT_DELETED Columns
Column name | Description |
---|---|
DOC_ID | The document ID of the newly deleted row. This value might reflect the value of an ID column that you defined for the underlying table, or it can be a sequence value generated by InnoDB when the table does not contain a suitable column. This value is used to skip rows in the innodb_ft_index_table table, when you do text searches before data for deleted rows is physically removed from the FULLTEXT index by an OPTIMIZE TABLE statement. |
Notes:
This table initially appears empty, until you set the value of the configuration variable innodb_ft_aux_table.
You must have the PROCESS privilege to query this table.
For more information, see Section 12.9, “Full-Text Search Functions”.
19.30.23. The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table
The INNODB_FT_BEING_DELETED table is a temporary work table while document IDs in the INNODB_FT_DELETED table are being removed from an InnoDB FULLTEXT index during an OPTIMIZE TABLE operation. Because its contents typically have a short lifetime, this table has limited utility for monitoring or debugging.
This table is only accessible to users with the SUPER privilege. This table initially appears empty, until you set the value of the configuration variable innodb_ft_aux_table.
Table 19.22. INNODB_FT_BEING_DELETED Columns
Column name | Description |
---|---|
DOC_ID | The document ID of the row that is in the process of being deleted. This value might reflect the value of an ID column that you defined for the underlying table, or it can be a sequence value generated by InnoDB when the table does not contain a suitable column. This value is used to skip rows in the innodb_ft_index_table table, when you do text searches before data for deleted rows is physically removed from the FULLTEXT index by an OPTIMIZE TABLE statement. |
Notes:
This table initially appears empty, until you set the value of the configuration variable innodb_ft_aux_table.
You must have the PROCESS privilege to query this table.
For more information, see Section 12.9, “Full-Text Search Functions”.
19.31. Thread Pool INFORMATION_SCHEMA Tables
The following sections describe the INFORMATION_SCHEMA tables associated with the thread pool plugin. They provide information about thread pool operation:
TP_THREAD_STATE: Information about thread pool thread states
TP_THREAD_GROUP_STATE: Information about thread pool thread group states
TP_THREAD_GROUP_STATS: Thread group statistics
Rows in these tables represent snapshots in time. In the case of TP_THREAD_STATE, all rows for a thread group comprise a snapshot in time. Thus, the MySQL server holds the mutex of the thread group while producing the snapshot. But it does not hold mutexes on all thread groups at the same time, to prevent a statement against TP_THREAD_STATE from blocking the entire MySQL server.
The thread pool INFORMATION_SCHEMA tables are implemented by individual plugins and the decision whether to load one can be made independently of the others (see Section 8.11.6.1, “Thread Pool Components and Installation”). However, the content of all the tables depends on the thread pool plugin being enabled. If a table plugin is enabled but the thread pool plugin is not, the table becomes visible and can be accessed but will be empty.
19.31.1. The INFORMATION_SCHEMA TP_THREAD_STATE Table
This table has one row per thread created by the thread pool to handle connections. The table has these columns:
TP_GROUP_ID
The thread group ID.
TP_THREAD_NUMBER
The ID of the thread within its thread group. TP_GROUP_ID and TP_THREAD_NUMBER together provide a unique key within the table.
PROCESS_COUNT
The 10ms interval in which the statement that uses this thread is currently executing. 0 means no statement is executing, 1 means it is in the first 10ms, and so forth.
WAIT_TYPE
The type of wait for the thread. NULL means the thread is not blocked. Otherwise, the thread is blocked by a call to thd_wait_begin() and the value specifies the type of wait. The xxx_WAIT columns of the TP_THREAD_GROUP_STATS table accumulate counts for each wait type.
The WAIT_TYPE value is a string that describes the type of wait, as shown in the following table.
Table 19.23. WAIT_TYPE Values
Wait Type | Meaning |
---|---|
THD_WAIT_SLEEP | Waiting for sleep |
THD_WAIT_DISKIO | Waiting for Disk IO |
THD_WAIT_ROW_LOCK | Waiting for row lock |
THD_WAIT_GLOBAL_LOCK | Waiting for global lock |
THD_WAIT_META_DATA_LOCK | Waiting for metadata lock |
THD_WAIT_TABLE_LOCK | Waiting for table lock |
THD_WAIT_USER_LOCK | Waiting for user lock |
THD_WAIT_BINLOG | Waiting for binlog |
THD_WAIT_GROUP_COMMIT | Waiting for group commit |
THD_WAIT_SYNC | Waiting for fsync |
19.31.2. The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table
This table has one row per thread group in the thread pool. Each row provides information about the current state of a group. The table has these columns:
TP_GROUP_ID
The thread group ID. This is a unique key within the table.
CONSUMER THREADS
The number of consumer threads. There is at most one thread ready to start executing if the active threads become stalled or blocked.
RESERVE_THREADS
The number of threads in the reserved state. This means that they will not be started until there is a need to wake a new thread and there is no consumer thread. This is where most threads end up when the thread group has created more threads than needed for normal operation. Often a thread group needs additional threads for a short while and then does not need them again for a while. In this case, they go into the reserved state and remain until needed again. They take up some extra memory resources, but no extra computing resources.
CONNECTION_COUNT
The number of connections using this thread group.
QUEUED_QUERIES
The number of statements waiting in the high-priority queue.
QUEUED_TRANSACTIONS
The number of statements waiting in the low-priority queue. These are the initial statements for transactions that have not started, so they also represent queued transactions.
STALL_LIMIT
The value of the thread_pool_stall_limit variable on the thread group. This is the same value for all thread groups.
PRIO_KICKUP_TIMER
The value of the thread_pool_prio_kickup_timer on the thread group. This is the same value for all thread groups.
ALGORITHM
The value of the thread_pool_algorithm on the thread group. This is the same value for all thread groups.
THREAD_COUNT
The number of threads started in the thread pool as part of this thread group.
ACTIVE_THREAD_COUNT
The number of threads active executing statements.
MAX_THREAD_IDS_IN_GROUP
The maximum thread ID of the threads in the group. This is the same as MAX(TP_THREAD_NUMBER) for the threads when selected from the TP_THREAD_GROUP_STATE table. That is, these two queries are equivalent:
SELECT TP_GROUP_ID, MAX_THREAD_IDS_IN_GROUP
FROM TP_THREAD_GROUP_STATE;
SELECT TP_GROUP_ID, MAX(TP_THREAD_NUMBER)
FROM TP_THREAD_STATE GROUP BY TP_GROUP_ID;
STALLED_THREAD_COUNT
The number of stalled statements in the thread group. A stalled statement could be executing, but from a thread pool perspective it is stalled and making no progress. A long-running statement quickly ends up in this category.
WAITING_THREAD_NUMBER
If there is a thread handling the polling of statements in the thread group, this specifies the thread number within this thread group. It is possible that this thread could be executing a statement.
OLDEST_QUEUED
How long in milliseconds the oldest queued statement has been waiting for execution.
19.31.3. The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table
This table reports statistics per thread group. There is one row per group. The table has these columns:
TP_GROUP_ID
The thread group ID. This is a unique key within the table.
CONNECTIONS_STARTED
The number of connections started.
CONNECTIONS_CLOSED
The number of connections closed.
QUERIES_EXECUTED
The number of statements executed. This number is incremented when a statement starts executing, not when it finishes.
QUERIES_QUEUED
The number of statements received that were queued for execution. This does not count statements that the thread group was able to begin executing immediately without queuing, which can happen under the conditions described in Section 8.11.6.2, “Thread Pool Operation”.
THREADS_STARTED
The number of threads started.
PRIO_KICKUPS
The number of statements that have been moved from low-priority queue to high-priority queue based on the value of the thread_pool_prio_kickup_timer system variable. If this number increases quickly, consider increasing the value of that variable. A quickly increasing counter means that the priority system is not keeping transactions from starting too early. For InnoDB, this most likely means deteriorating performance due to too many concurrent transactions..
STALLED_QUERIES_EXECUTED
The number of statements that have become defined as stalled due to executing for a time longer than the value of the thread_pool_stall_limit system variable.
BECOME_CONSUMER_THREAD
The number of times thread have been assigned the consumer thread role.
BECOME_RESERVE_THREAD
The number of times threads have been assigned the reserve thread role.
BECOME_WAITING_THREAD
The number of times threads have been assigned the waiter thread role. When statements are queued, this happens very often, even in normal operation, so rapid increases in this value are normal in the case of a highly loaded system where statements are queued up.
WAKE_THREAD_STALL_CHECKER
The number of times the stall check thread decided to wake or create a thread to possibly handle some statements or take care of the waiter thread role.
SLEEP_WAITS
The number of THD_WAIT_SLEEP waits. These occur when threads go to sleep; for example, by calling the SLEEP() function.
DISK_IO_WAITS
The number of THD_WAIT_DISKIO waits. These occur when threads perform disk I/O that is likely to not hit the file system cache. Such waits occur when the buffer pool reads and writes data to disk, not for normal reads from and writes to files.
ROW_LOCK_WAITS
The number of THD_WAIT_ROW_LOCK waits for release of a row lock by another transaction.
GLOBAL_LOCK_WAITS
The number of THD_WAIT_GLOBAL_LOCK waits for a global lock to be released.
META_DATA_LOCK_WAITS
The number of THD_WAIT_META_DATA_LOCK waits for a metadata lock to be released.
TABLE_LOCK_WAITS
The number of THD_WAIT_TABLE_LOCK waits for a table to be unlocked that the statement needs to access.
USER_LOCK_WAITS
The number of THD_WAIT_USER_LOCK waits for a special lock constructed by the user thread.
BINLOG_WAITS
The number of THD_WAIT_BINLOG_WAITS waits for the binary log to become free.
GROUP_COMMIT_WAITS
The number of THD_WAIT_GROUP_COMMIT waits. These occur when a group commit must wait for the other parties to complete their part of a transaction.
FSYNC_WAITS
The number of THD_WAIT_SYNC waits for a file sync operation.
19.32. Extensions to SHOW Statements
Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:
SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.
Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which rows to display.
INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of its tables:
mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| ENGINES |
| EVENTS |
| FILES |
| GLOBAL_STATUS |
| GLOBAL_VARIABLES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| REFERENTIAL_CONSTRAINTS |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| SESSION_STATUS |
| SESSION_VARIABLES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+
27 rows in set (0.00 sec)
SHOW COLUMNS and DESCRIBE can display information about the columns in individual INFORMATION_SCHEMA tables.
SHOW statements that accept a LIKE clause to limit the rows displayed also permit a WHERE clause that specifies more general conditions that selected rows must satisfy:
SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW TRIGGERS
SHOW VARIABLES
The WHERE clause, if present, is evaluated against the column names displayed by the SHOW statement. For example, the SHOW CHARACTER SET statement produces these output columns:
mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
| dec8 | DEC West European | dec8_swedish_ci | 1 |
| cp850 | DOS West European | cp850_general_ci | 1 |
| hp8 | HP West European | hp8_english_ci | 1 |
| koi8r | KOI8-R Relcom Russian | koi8r_general_ci | 1 |
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
...
To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As an example, the following statement displays information about character sets for which the default collation contains the string 'japanese':
mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
| ujis | EUC-JP Japanese | ujis_japanese_ci | 3 |
| sjis | Shift-JIS Japanese | sjis_japanese_ci | 2 |
| cp932 | SJIS for Windows Japanese | cp932_japanese_ci | 2 |
| eucjpms | UJIS for Windows Japanese | eucjpms_japanese_ci | 3 |
+---------+---------------------------+---------------------+--------+
This statement displays the multi-byte character sets:
mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
| ujis | EUC-JP Japanese | ujis_japanese_ci | 3 |
| sjis | Shift-JIS Japanese | sjis_japanese_ci | 2 |
| euckr | EUC-KR Korean | euckr_korean_ci | 2 |
| gb2312 | GB2312 Simplified Chinese | gb2312_chinese_ci | 2 |
| gbk | GBK Simplified Chinese | gbk_chinese_ci | 2 |
| utf8 | UTF-8 Unicode | utf8_general_ci | 3 |
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
| cp932 | SJIS for Windows Japanese | cp932_japanese_ci | 2 |
| eucjpms | UJIS for Windows Japanese | eucjpms_japanese_ci | 3 |
+---------+---------------------------+---------------------+--------+
Chapter 20. MySQL Performance Schema
Table of Contents
20.1. Performance Schema Quick Start
20.2. Performance Schema Configuration
20.2.1. Performance Schema Build Configuration
20.2.2. Performance Schema Startup Configuration
20.2.3. Performance Schema Runtime Configuration
20.3. Performance Schema Queries
20.4. Performance Schema Instrument Naming Conventions
20.5. Performance Schema Status Monitoring
20.6. Performance Schema Atom and Molecule Events
20.7. Performance Schema Statement Digests
20.8. Performance Schema General Table Characteristics
20.9. Performance Schema Table Descriptions
20.9.1. Performance Schema Setup Tables
20.9.2. Performance Schema Instance Tables
20.9.3. Performance Schema Wait Event Tables
20.9.4. Performance Schema Stage Event Tables
20.9.5. Performance Schema Statement Event Tables
20.9.6. Performance Schema Connection Tables
20.9.7. Performance Schema Connection Attribute Tables
20.9.8. Performance Schema Summary Tables
20.9.9. Performance Schema Miscellaneous Tables
20.10. Performance Schema Option and Variable Reference
20.11. Performance Schema Command Options
20.12. Performance Schema System Variables
20.13. Performance Schema Status Variables
20.14. Performance Schema and Plugins
20.15. Using the Performance Schema to Diagnose Problems
The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level. The Performance Schema has these characteristics:
The Performance Schema provides a way to inspect internal execution of the server at runtime. It is implemented using the PERFORMANCE_SCHEMA storage engine and the performance_schema database. The Performance Schema focuses primarily on performance data. This differs from INFORMATION_SCHEMA, which serves for inspection of metadata.
The Performance Schema monitors server events. An “event” is anything the server does that takes time and has been instrumented so that timing information can be collected. In general, an event could be a function call, a wait for the operating system, a stage of an SQL statement execution such as parsing or sorting, or an entire statement or group of statements. Currently, event collection provides access to information about synchronization calls (such as for mutexes) file and table I/O, table locks, and so forth for the server and for several storage engines.
Performance Schema events are distinct from events written to the server's binary log (which describe data modifications) and Event Scheduler events (which are a type of stored program).
Performance Schema events are specific to a given instance of the MySQL Server. In MySQL 5.6.9 and later, Performance Schema tables are considered local to the server, and changes to them are not replicated or written to the binary log. (Bug #14741537)
Current events are available, as well as event histories and summaries. This enables you to determine how many times instrumented activities were performed and how much time they took. Event information is available to show the activities of specific threads, or activity associated with particular objects such as a mutex or file.
The PERFORMANCE_SCHEMA storage engine collects event data using “instrumentation points” in server source code.
Collected events are stored in tables in the performance_schema database. These tables can be queried using SELECT statements like other tables.
Performance Schema configuration can be modified dynamically by updating tables in the performance_schema database through SQL statements. Configuration changes affect data collection immediately.
Tables in the performance_schema database are views or temporary tables that use no persistent on-disk storage.
Monitoring is available on all platforms supported by MySQL.
Some limitations might apply: The types of timers might vary per platform. Instruments that apply to storage engines might not be implemented for all storage engines. Instrumentation of each third-party engine is the responsibility of the engine maintainer. See also Section E.8, “Restrictions on Performance Schema”.
Data collection is implemented by modifying the server source code to add instrumentation. There are no separate threads associated with the Performance Schema, unlike other features such as replication or the Event Scheduler.
The Performance Schema is intended to provide access to useful information about server execution while having minimal impact on server performance. The implementation follows these design goals:
Activating the Performance Schema causes no changes in server behavior. For example, it does not cause thread scheduling to change, and it does not cause query execution plans (as shown by EXPLAIN) to change.
No memory allocation is done beyond that which occurs during server startup. By using early allocation of structures with a fixed size, it is never necessary to resize or reallocate them, which is critical for achieving good runtime performance.
Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the Performance Schema does not make the server unusable.
The parser is unchanged. There are no new keywords or statements.
Execution of server code proceeds normally even if the Performance Schema fails internally.
When there is a choice between performing processing during event collection initially or during event retrieval later, priority is given to making collection faster. This is because collection is ongoing whereas retrieval is on demand and might never happen at all.
It is easy to add new instrumentation points.
Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented code will continue to work. This benefits developers of third-party plugins because it is not necessary to upgrade each plugin to stay synchronized with the latest Performance Schema changes.
20.1. Performance Schema Quick Start
This section briefly introduces the Performance Schema with examples that show how to use it. For additional examples, see Section 20.15, “Using the Performance Schema to Diagnose Problems”.
For the Performance Schema to be available, support for it must have been configured when MySQL was built. You can verify whether this is the case by checking the server's help output. If the Performance Schema is available, the output will mention several variables with names that begin with performance_schema:
shell> mysqld --verbose --help
...
--performance_schema
Enable the performance schema.
--performance_schema_events_waits_history_long_size=#
Number of rows in events_waits_history_long.
...
If such variables do not appear in the output, your server has not been built to support the Performance Schema. In this case, see Section 20.2, “Performance Schema Configuration”.
Assuming that the Performance Schema is available, it is enabled by default as of MySQL 5.6.6. Before 5.6.6, it is disabled by default. To enable or disable it explicitly, start the server with the performance_schema variable set to an appropriate value. For example, use these lines in your my.cnf file:
[mysqld]
performance_schema=on
When the server starts, it sees performance_schema and attempts to initialize the Performance Schema. To verify successful initialization, use this statement:
mysql> SHOW VARIABLES LIKE 'performance_schema';
+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| performance_schema | ON |
+--------------------+-------+
A value of ON means that the Performance Schema initialized successfully and is ready for use. A value of OFF means that some error occurred. Check the server error log for information about what went wrong.
The Performance Schema is implemented as a storage engine. If this engine is available (which you should already have checked earlier), you should see it listed with a SUPPORT value of YES in the output from the INFORMATION_SCHEMA.ENGINES table or the SHOW ENGINES statement:
mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES
-> WHERE ENGINE='PERFORMANCE_SCHEMA'\G
*************************** 1. row ***************************
ENGINE: PERFORMANCE_SCHEMA
SUPPORT: YES
COMMENT: Performance Schema
TRANSACTIONS: NO
XA: NO
SAVEPOINTS: NO
mysql> SHOW ENGINES\G
...
Engine: PERFORMANCE_SCHEMA
Support: YES
Comment: Performance Schema
Transactions: NO
XA: NO
Savepoints: NO
...
The PERFORMANCE_SCHEMA storage engine operates on tables in the performance_schema database. You can make performance_schema the default database so that references to its tables need not be qualified with the database name:
mysql> USE performance_schema;
Many examples in this chapter assume that performance_schema is the default database.
Performance Schema tables are stored in the performance_schema database. Information about the structure of this database and its tables can be obtained, as for any other database, by selecting from the INFORMATION_SCHEMA database or by using SHOW statements. For example, use either of these statements to see what Performance Schema tables exist:
mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
-> WHERE TABLE_SCHEMA = 'performance_schema';
+--+
| TABLE_NAME |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_thread_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_stages_summary_global_by_event_name |
| events_statements_current |
| events_statements_history |
| events_statements_history_long |
...
| file_instances |
| file_summary_by_event_name |
| file_summary_by_instance |
| host_cache |
| hosts |
| mutex_instances |
| objects_summary_global_by_type |
| performance_timers |
| rwlock_instances |
| session_account_connect_attrs |
| session_connect_attrs |
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
| socket_instances |
| socket_summary_by_event_name |
| socket_summary_by_instance |
| table_io_waits_summary_by_index_usage |
| table_io_waits_summary_by_table |
| table_lock_waits_summary_by_table |
| threads |
| users |
+--+
mysql> SHOW TABLES FROM performance_schema;
+--+
| Tables_in_performance_schema |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
...
The number of Performance Schema tables is expected to increase over time as implementation of additional instrumentation proceeds.
The name of the performance_schema database is lowercase, as are the names of tables within it. Queries should specify the names in lowercase.
To see the structure of individual tables, use SHOW CREATE TABLE:
mysql> SHOW CREATE TABLE setup_timers\G
*************************** 1. row ***************************
Table: setup_timers
Create Table: CREATE TABLE `setup_timers` (
`NAME` varchar(64) NOT NULL,
`TIMER_NAME` enum('CYCLE','NANOSECOND','MICROSECOND','MILLISECOND','TICK')
NOT NULL
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8
Table structure is also available by selecting from tables such as INFORMATION_SCHEMA.COLUMNS or by using statements such as SHOW COLUMNS.
Tables in the performance_schema database can be grouped according to the type of information in them: Current events, event histories and summaries, object instances, and setup (configuration) information. The following examples illustrate a few uses for these tables. For detailed information about the tables in each group, see Section 20.9, “Performance Schema Table Descriptions”.
To see what the server is doing at the moment, examine the events_waits_current table. It contains one row per thread showing each thread's most recent monitored event:
mysql> SELECT * FROM events_waits_current\G
*************************** 1. row ***************************
THREAD_ID: 0
EVENT_ID: 5523
EVENT_NAME: wait/synch/mutex/mysys/THR_LOCK::mutex
SOURCE: thr_lock.c:525
TIMER_START: 201660494489586
TIMER_END: 201660494576112
TIMER_WAIT: 86526
SPINS: NULL
OBJECT_SCHEMA: NULL
OBJECT_NAME: NULL
OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 142270668
NESTING_EVENT_ID: NULL
OPERATION: lock
NUMBER_OF_BYTES: NULL
FLAGS: 0
...
This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on THR_LOCK::mutex, a mutex in the mysys subsystem. The first few columns provide the following information:
The ID columns indicate which thread the event comes from and the event number.
EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the instrumented code.
The timer columns show when the event started and stopped and how long it took. If an event is still in progress, the TIMER_END and TIMER_WAIT values are NULL. Timer values are approximate and expressed in picoseconds. For information about timers and event time collection, see Section 20.2.3.1, “Performance Schema Event Timing”.
The history tables contain the same kind of rows as the current-events table but have more rows and show what the server has been doing “recently” rather than “currently.” The events_waits_history and events_waits_history_long tables contain the most recent 10 events per thread and most recent 10,000 events, respectively. For example, to see information for recent events produced by thread 13, do this:
mysql> SELECT EVENT_ID, EVENT_NAME, TIMER_WAIT
-> FROM events_waits_history WHERE THREAD_ID = 13
-> ORDER BY EVENT_ID;
+----------+---+------------+
| EVENT_ID | EVENT_NAME | TIMER_WAIT |
+----------+---+------------+
| 86 | wait/synch/mutex/mysys/THR_LOCK::mutex | 686322 |
| 87 | wait/synch/mutex/mysys/THR_LOCK_malloc | 320535 |
| 88 | wait/synch/mutex/mysys/THR_LOCK_malloc | 339390 |
| 89 | wait/synch/mutex/mysys/THR_LOCK_malloc | 377100 |
| 90 | wait/synch/mutex/sql/LOCK_plugin | 614673 |
| 91 | wait/synch/mutex/sql/LOCK_open | 659925 |
| 92 | wait/synch/mutex/sql/THD::LOCK_thd_data | 494001 |
| 93 | wait/synch/mutex/mysys/THR_LOCK_malloc | 222489 |
| 94 | wait/synch/mutex/mysys/THR_LOCK_malloc | 214947 |
| 95 | wait/synch/mutex/mysys/LOCK_alarm | 312993 |
+----------+---+------------+
As new events are added to a history table, older events are discarded if the table is full.
Summary tables provide aggregated information for all events over time. The tables in this group summarize event data in different ways. To see which instruments have been executed the most times or have taken the most wait time, sort the events_waits_summary_global_by_event_name table on the COUNT_STAR or SUM_TIMER_WAIT column, which correspond to a COUNT(*) or SUM(TIMER_WAIT) value, respectively, calculated over all events:
mysql> SELECT EVENT_NAME, COUNT_STAR
-> FROM events_waits_summary_global_by_event_name
-> ORDER BY COUNT_STAR DESC LIMIT 10;
+---+------------+
| EVENT_NAME | COUNT_STAR |
+---+------------+
| wait/synch/mutex/mysys/THR_LOCK_malloc | 6419 |
| wait/io/file/sql/FRM | 452 |
| wait/synch/mutex/sql/LOCK_plugin | 337 |
| wait/synch/mutex/mysys/THR_LOCK_open | 187 |
| wait/synch/mutex/mysys/LOCK_alarm | 147 |
| wait/synch/mutex/sql/THD::LOCK_thd_data | 115 |
| wait/io/file/myisam/kfile | 102 |
| wait/synch/mutex/sql/LOCK_global_system_variables | 89 |
| wait/synch/mutex/mysys/THR_LOCK::mutex | 89 |
| wait/synch/mutex/sql/LOCK_open | 88 |
+---+------------+
mysql> SELECT EVENT_NAME, SUM_TIMER_WAIT
-> FROM events_waits_summary_global_by_event_name
-> ORDER BY SUM_TIMER_WAIT DESC LIMIT 10;
+--+----------------+
| EVENT_NAME | SUM_TIMER_WAIT |
+--+----------------+
| wait/io/file/sql/MYSQL_LOG | 1599816582 |
| wait/synch/mutex/mysys/THR_LOCK_malloc | 1530083250 |
| wait/io/file/sql/binlog_index | 1385291934 |
| wait/io/file/sql/FRM | 1292823243 |
| wait/io/file/myisam/kfile | 411193611 |
| wait/io/file/myisam/dfile | 322401645 |
| wait/synch/mutex/mysys/LOCK_alarm | 145126935 |
| wait/io/file/sql/casetest | 104324715 |
| wait/synch/mutex/sql/LOCK_plugin | 86027823 |
| wait/io/file/sql/pid | 72591750 |
+--+----------------+
These results show that the THR_LOCK_malloc mutex is “hot,” both in terms of how often it is used and amount of time that threads wait attempting to acquire it.
Note
The THR_LOCK_malloc mutex is used only in debug builds. In production builds it is not hot because it is nonexistent.
Instance tables document what types of objects are instrumented. An instrumented object, when used by the server, produces an event. These tables provide event names and explanatory notes or status information. For example, the file_instances table lists instances of instruments for file I/O operations and their associated files:
mysql> SELECT * FROM file_instances\G
*************************** 1. row ***************************
FILE_NAME: /opt/mysql-log/60500/binlog.000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
*************************** 2. row ***************************
FILE_NAME: /opt/mysql/60500/data/mysql/tables_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
*************************** 3. row ***************************
FILE_NAME: /opt/mysql/60500/data/mysql/columns_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
...
Setup tables are used to configure and display monitoring characteristics. For example, to see which event timers are selected, query the setup_timers tables:
mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
| idle | MICROSECOND |
| wait | CYCLE |
| stage | NANOSECOND |
| statement | NANOSECOND |
+-----------+-------------+
setup_instruments lists the set of instruments for which events can be collected and shows which of them are enabled:
mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
| wait/synch/mutex/sql/LOCK_global_read_lock | YES | YES |
| wait/synch/mutex/sql/LOCK_global_system_variables | YES | YES |
| wait/synch/mutex/sql/LOCK_lock_db | YES | YES |
| wait/synch/mutex/sql/LOCK_manager | YES | YES |
...
| wait/synch/rwlock/sql/LOCK_grant | YES | YES |
| wait/synch/rwlock/sql/LOGGER::LOCK_logger | YES | YES |
| wait/synch/rwlock/sql/LOCK_sys_init_connect | YES | YES |
| wait/synch/rwlock/sql/LOCK_sys_init_slave | YES | YES |
...
| wait/io/file/sql/binlog | YES | YES |
| wait/io/file/sql/binlog_index | YES | YES |
| wait/io/file/sql/casetest | YES | YES |
| wait/io/file/sql/dbopt | YES | YES |
...
To understand how to interpret instrument names, see Section 20.4, “Performance Schema Instrument Naming Conventions”.
To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For example:
mysql> UPDATE setup_instruments SET ENABLED = 'NO'
-> WHERE NAME = 'wait/synch/mutex/sql/LOCK_mysql_create_db';
The Performance Schema uses collected events to update tables in the performance_schema database, which act as “consumers” of event information. The setup_consumers table lists the available consumers and which are enabled:
mysql> SELECT * FROM setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
| events_stages_current | NO |
| events_stages_history | NO |
| events_stages_history_long | NO |
| events_statements_current | YES |
| events_statements_history | NO |
| events_statements_history_long | NO |
| events_waits_current | NO |
| events_waits_history | NO |
| events_waits_history_long | NO |
| global_instrumentation | YES |
| thread_instrumentation | YES |
| statements_digest | YES |
+--------------------------------+---------+
To control whether the Performance Schema maintains a consumer as a destination for event information, set its ENABLED value.
For more information about the setup tables and how to use them to control event collection, see Section 20.2.3.2, “Performance Schema Event Filtering”.
There are some miscellaneous tables that do not fall into any of the previous groups. For example, performance_timers lists the available event timers and their characteristics. For information about timers, see Section 20.2.3.1, “Performance Schema Event Timing”.
20.2. Performance Schema Configuration
To use the MySQL Performance Schema, these configuration considerations apply:
The Performance Schema must be configured into MySQL Server at build time to make it available. Performance Schema support is included in binary MySQL distributions. If you are building from source, you must ensure that it is configured into the build as described in Section 20.2.1, “Performance Schema Build Configuration”.
The Performance Schema must be enabled at server startup to enable event collection to occur. Specific Performance Schema features can be enabled at server startup or at runtime to control which types of event collection occur. See Section 20.2.2, “Performance Schema Startup Configuration”, Section 20.2.3, “Performance Schema Runtime Configuration”, and Section 20.2.3.2, “Performance Schema Event Filtering”.
20.2.1. Performance Schema Build Configuration
For the Performance Schema to be available, it must be configured into the MySQL server at build time. Binary MySQL distributions provided by Oracle Corporation are configured to support the Performance Schema. If you use a binary MySQL distribution from another provider, check with the provider whether the distribution has been appropriately configured.
If you build MySQL from a source distribution, enable the Performance Schema by running CMake with the WITH_PERFSCHEMA_STORAGE_ENGINE option enabled:
shell> cmake . -DWITH_PERFSCHEMA_STORAGE_ENGINE=1
Configuring MySQL with the -DWITHOUT_PERFSCHEMA_STORAGE_ENGINE=1 option prevents inclusion of the Performance Schema, so if you want it included, do not use this option. See Section 2.9.4, “MySQL Source-Configuration Options”.
If you install MySQL over a previous installation that was configured without the Performance Schema (or with an older version of the Performance Schema that may not have all the current tables), run mysql_upgrade after starting the server to ensure that the performance_schema database exists with all current tables. Then restart the server. One indication that you need to do this is the presence of messages such as the following in the error log:
[ERROR] Native table 'performance_schema'.'events_waits_history'
has the wrong structure
[ERROR] Native table 'performance_schema'.'events_waits_history_long'
has the wrong structure
...
To verify whether a server was built with Performance Schema support, check its help output. If the Performance Schema is available, the output will mention several variables with names that begin with performance_schema:
shell> mysqld --verbose --help
...
--performance_schema
Enable the performance schema.
--performance_schema_events_waits_history_long_size=#
Number of rows in events_waits_history_long.
...
You can also connect to the server and look for a line that names the PERFORMANCE_SCHEMA storage engine in the output from SHOW ENGINES:
mysql> SHOW ENGINES\G
...
Engine: PERFORMANCE_SCHEMA
Support: YES
Comment: Performance Schema
Transactions: NO
XA: NO
Savepoints: NO
...
If the Performance Schema was not configured into the server at build time, no row for PERFORMANCE_SCHEMA will appear in the output from SHOW ENGINES. You might see performance_schema listed in the output from SHOW DATABASES, but it will have no tables and you will not be able to use it.
A line for PERFORMANCE_SCHEMA in the SHOW ENGINES output means that the Performance Schema is available, not that it is enabled. To enable it, you must do so at server startup, as described in the next section.
20.2.2. Performance Schema Startup Configuration
Assuming that the Performance Schema is available, it is enabled by default as of MySQL 5.6.6. Before 5.6.6, it is disabled by default. To enable or disable it explicitly, start the server with the performance_schema variable set to an appropriate value. For example, use these lines in your my.cnf file:
[mysqld]
performance_schema=on
If the server is unable to allocate any internal buffer during Performance Schema initialization, the Performance Schema disables itself and sets performance_schema to OFF, and the server runs without instrumentation.
As of MySQL 5.6.4, the Performance Schema permits instrument and consumer configuration at server startup, which previously was possible only at runtime using UPDATE statements for the setup_instruments and setup_consumers tables. This change was made because configuration at runtime is too late to disable instruments that have already been initialized during server startup. For example, the wait/synch/mutex/sql/LOCK_open mutex is initialized once during server startup, so attempts to disable the corresponding instrument at runtime have no effect.
To control an instrument at server startup, use an option of this form:
--performance-schema-instrument='instrument_name=value'
Here, instrument_name is an instrument name such as wait/synch/mutex/sql/LOCK_open, and value is one of these values:
off, false, or 0: Disable the instrument
on, true, or 1: Enable and time the instrument
counted: Enable and count (rather than time) the instrument
Each --performance-schema-instrument option can specify only one instrument name, but multiple instances of the option can be given to configure multiple instruments. In addition, patterns are permitted in instrument names to configure instruments that match the pattern. To configure all condition synchronization instruments as enabled and counted, use this option:
--performance-schema-instrument='wait/synch/cond/%=counted'
To disable all instruments, use this option:
--performance-schema-instrument='%=off'
Longer instrument name strings take precedence over shorter pattern names, regardless of order. For information about specifying patterns to select instruments, see Section 20.2.3.2.2, “Naming Instruments or Consumers for Filtering Operations”.
An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the instrument, at which time the name is recognized and configured.
To control a consumer at server startup, use an option of this form:
--performance-schema-consumer-consumer_name=value
Here, consumer_name is a consumer name such as events_waits_history, and value is one of these values:
off, false, or 0: Do not collect events for the consumer
on, true, or 1: Collect events for the consumer
For example, to enable the events_waits_history consumer, use this option:
--performance-schema-consumer-events-waits-history=on
The permitted consumer names can be found by examining the setup_consumers table. Patterns are not permitted. Consumer names in the setup_consumers table use underscores, but for consumers set at startup, dashes and underscores within the name are equivalent.
The Performance Schema includes several system variables that provide configuration information:
mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
| performance_schema | ON |
| performance_schema_accounts_size | 100 |
| performance_schema_digests_size | 200 |
| performance_schema_events_stages_history_long_size | 10000 |
| performance_schema_events_stages_history_size | 10 |
| performance_schema_events_statements_history_long_size | 10000 |
| performance_schema_events_statements_history_size | 10 |
| performance_schema_events_waits_history_long_size | 10000 |
| performance_schema_events_waits_history_size | 10 |
| performance_schema_hosts_size | 100 |
| performance_schema_max_cond_classes | 80 |
| performance_schema_max_cond_instances | 1000 |
...
The performance_schema variable is ON or OFF to indicate whether the Performance Schema is enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation values.
Note
With the Performance Schema enabled, the number of Performance Schema instances affects the server memory footprint, perhaps to a large extent. It may be necessary to tune the values of Performance Schema system variables to find the number of instances that balances insufficient instrumentation against excessive memory consumption.
To change the value of Performance Schema system variables, set them at server startup. For example, put the following lines in a my.cnf file to change the sizes of the history tables:
[mysqld]
performance_schema
performance_schema_events_waits_history_size=20
performance_schema_events_waits_history_long_size=15000
As of MySQL 5.6.6, the Performance Schema automatically sizes the values of several of its parameters at server startup if they are not set explicitly. For example, it sizes the parameters that control the sizes of the events waits tables this way. To see which parameters are sized under this policy, use mysqld --verbose --help and look for those with a default value of –1, or see Section 20.12, “Performance Schema System Variables”.
For each autosized parameter that is not set at server startup (or is set to –1), the Performance Schema determines how to set its value based on the value of the following system values, which are considered as “hints” about how you have configured your MySQL server:
max_connections
open_files_limit
table_definition_cache
table_open_cache
To override autosizing for a given parameter, set it a value other than –1 at startup. In this case, the Performance Schema assigns it the specified value.
At runtime, SHOW VARIABLES displays the actual values that autosized parameters were set to.
If the Performance Schema is disabled, its autosized parameters remain set to –1 and SHOW VARIABLES displays –1.
20.2.3. Performance Schema Runtime Configuration
Performance Schema setup tables contain information about monitoring configuration:
mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
-> WHERE TABLE_SCHEMA = 'performance_schema'
-> AND TABLE_NAME LIKE 'setup%';
+-------------------+
| TABLE_NAME |
+-------------------+
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
+-------------------+
You can examine the contents of these tables to obtain information about Performance Schema monitoring characteristics. If you have the UPDATE privilege, you can change Performance Schema operation by modifying setup tables to affect how monitoring occurs. For additional details about these tables, see Section 20.9.1, “Performance Schema Setup Tables”.
To see which event timers are selected, query the setup_timers tables:
mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
| idle | MICROSECOND |
| wait | CYCLE |
| stage | NANOSECOND |
| statement | NANOSECOND |
+-----------+-------------+
The NAME value indicates the type of instrument to which the timer applies, and TIMER_NAME indicates which timer applies to those instruments. The timer applies to instruments where their name begins with a component matching the NAME value.
To change the timer, update the NAME value. For example, to use the NANOSECOND timer for the wait timer:
mysql> UPDATE setup_timers SET TIMER_NAME = 'NANOSECOND'
-> WHERE NAME = 'wait';
mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
| idle | MICROSECOND |
| wait | NANOSECOND |
| stage | NANOSECOND |
| statement | NANOSECOND |
+-----------+-------------+
For discussion of timers, see Section 20.2.3.1, “Performance Schema Event Timing”.
The setup_instruments and setup_consumers tables list the instruments for which events can be collected and the types of consumers for which event information actually is collected, respectively. Other setup tables enable further modification of the monitoring configuration. Section 20.2.3.2, “Performance Schema Event Filtering”, discusses how you can modify these tables to affect event collection.
If there are Performance Schema configuration changes that must be made at runtime using SQL statements and you would like to these changes take effect each time the server starts, put the statements in a file and start the server with the --init-file=file_name option. This strategy can also be useful if you have multiple monitoring configurations, each tailored to produce a different kind of monitoring, such as casual server health monitoring, incident investigation, application behavior troubleshooting, and so forth. Put the statements for each monitoring configuration into their own file and specify the appropriate file as the --init-file argument when you start the server.
20.2.3.1. Performance Schema Event Timing
Events are collected by means of instrumentation added to the server source code. Instruments time events, which is how the Performance Schema provides an idea of how long events take. It is also possible to configure instruments not to collect timing information. This section discusses the available timers and their characteristics, and how timing values are represented in events.
Two tables provide timer information:
performance_timers lists the available timers and their characteristics.
setup_timers indicates which timers are used for which instruments.
Each timer row in setup_timers must refer to one of the timers listed in performance_timers.
Timers vary in precision and the amount of overhead they involve. To see what timers are available and their characteristics, check the performance_timers table:
mysql> SELECT * FROM performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
| CYCLE | 2389029850 | 1 | 72 |
| NANOSECOND | NULL | NULL | NULL |
| MICROSECOND | 1000000 | 1 | 585 |
| MILLISECOND | 1035 | 1 | 738 |
| TICK | 101 | 1 | 630 |
+-------------+-----------------+------------------+----------------+
The TIMER_NAME column shows the names of the available timers. CYCLE refers to the timer that is based on the CPU (processor) cycle counter. If the values associated with a given timer name are NULL, that timer is not supported on your platform. The rows that do not have NULL indicate which timers you can use in setup_timers.
TIMER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz processor. The other timers are based on fixed fractions of seconds. For TICK, the frequency may vary by platform (for example, some use 100 ticks/second, others 1000 ticks/second).
TIMER_RESOLUTION indicates the number of timer units by which timer values increase at a time. If a timer has a resolution of 10, its value increases by 10 each time.
TIMER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given timer. The overhead per event is twice the value displayed because the timer is invoked at the beginning and end of the event.
To see which timer is in effect or to change the timer, access the setup_timers table:
mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
| idle | MICROSECOND |
| wait | NANOSECOND |
| stage | NANOSECOND |
| statement | NANOSECOND |
+-----------+-------------+
mysql> UPDATE setup_timers SET TIMER_NAME = 'MICROSECOND'
-> WHERE NAME = 'wait';
mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
| idle | MICROSECOND |
| wait | MICROSECOND |
| stage | NANOSECOND |
| statement | NANOSECOND |
+-----------+-------------+
By default, the Performance Schema uses the best timer available for each instrument type, but you can select a different one.
To time waits, the most important criterion is to reduce overhead, at the possible expense of the timer accuracy, so using the CYCLE timer is the best.
The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time it takes to execute a single wait. To time statements, the most important criterion is to have an accurate measure, which is not affected by changes in processor frequency, so using a timer which is not based on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared to the cycle timer is not significant, because the overhead caused by calling a timer twice (once when the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.
The precision offered by the cycle counter depends on processor speed. If the processor runs at 1 GHz (one billion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using the cycle counter is much cheaper than getting the actual time of day. For example, the standard gettimeofday() function can take hundreds of cycles, which is an unacceptable overhead for data gathering that may occur thousands or millions of times per second.
Cycle counters also have disadvantages:
End users expect to see timings in wall-clock units, such as fractions of a second. Converting from cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly rough multiplication operation.
Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a CPU slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from cycles to real-time units is subject to error.
Cycle counters might be unreliable or unavailable depending on the processor or the operating system. For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C instruction) and it is theoretically possible for the operating system to prevent user-mode programs from using it.
Some processor details related to out-of-order execution or multiprocessor synchronization might cause the counter to seem fast or slow by up to 1000 cycles.
Currently, MySQL works with cycle counters on x386 (Windows, Mac OS X, Linux, Solaris, and other Unix flavors), PowerPC, and IA-64.
The setup_instruments table has an ENABLED column to indicate the instruments for which to collect events. The table also has a TIMED column to indicate which instruments are timed. If an instrument is not enabled, it produces no events. If an enabled instrument is not timed, events produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer values. This in turn causes those values to be ignored when calculating the sum, minimum, maximum, and average time values in summary tables.
Within events, times are stored in picoseconds (trillionths of a second) to normalize them to a standard unit, regardless of which timer is selected. The timer used for an event is the one in effect when event timing begins. This timer is used to convert start and end values to picoseconds for storage in the event.
Modifications to the setup_timers table affect monitoring immediately. Events already in progress use the original timer for the begin time and the new timer for the end time, which leads to unpredictable results. If you make timer changes, you may want to use TRUNCATE TABLE to reset Performance Schema statistics.
The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup. TIMER_START and TIMER_END values in events represent picoseconds since the baseline. TIMER_WAIT values are durations in picoseconds.
Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error associated with conversion from one unit to another. If the CYCLE timer is used and the processor rate varies, there might be drift. For these reasons, it is not reasonable to look at the TIMER_START value for an event as an accurate measure of time elapsed since server startup. On the other hand, it is reasonable to use TIMER_START or TIMER_WAIT values in ORDER BY clauses to order events by start time or duration.
The choice of picoseconds in events rather than a value such as microseconds has a performance basis. One implementation goal was to show results in a uniform time unit, regardless of the timer. In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary to perform a division for every instrumentation. Division is expensive on many platforms. Multiplication is not expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest possible TIMER_FREQUENCY value, using a multiplier large enough to ensure that there is no major precision loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the decision enables overhead to be minimized.
20.2.3.2. Performance Schema Event Filtering
Events are processed in a producer/consumer fashion:
Instrumented code is the source for events and produces events to be collected. The setup_instruments table lists the instruments for which events can be collected, whether they are enabled, and whether to collect timing information:
mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
| wait/synch/mutex/sql/LOCK_global_read_lock | YES | YES |
| wait/synch/mutex/sql/LOCK_global_system_variables | YES | YES |
| wait/synch/mutex/sql/LOCK_lock_db | YES | YES |
| wait/synch/mutex/sql/LOCK_manager | YES | YES |
...
The setup_instruments table provides the most basic form of control over event production. To further refine event production based on the type of object or thread being monitored, other tables may be used as described in Section 20.2.3.2.1, “Event Pre-Filtering”.
Performance Schema tables are the destinations for events and consume events. The setup_consumers table lists the types of consumers to which event information can be sent and which are enabled:
mysql> SELECT * FROM setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
| events_stages_current | NO |
| events_stages_history | NO |
| events_stages_history_long | NO |
| events_statements_current | YES |
| events_statements_history | NO |
| events_statements_history_long | NO |
| events_waits_current | NO |
| events_waits_history | NO |
| events_waits_history_long | NO |
| global_instrumentation | YES |
| thread_instrumentation | YES |
| statements_digest | YES |
+--------------------------------+---------+
Filtering can be done at different stages of performance monitoring:
Pre-filtering. This is done by modifying Performance Schema configuration so that only certain types of events are collected from producers, and collected events update only certain consumers. This type of filtering is done by the Performance Schema and has a global effect that applies to all users.
Reasons to use pre-filtering:
Pre-filtering reduces overhead. The overhead should be minimal even with all instruments enabled, but perhaps you want to reduce it further. Or you do not care about timing events and want to disable the timing code to eliminate timing overhead.
You can avoid filling the current-events or history tables with events in which you have no interest. Pre-filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If you enable only file instruments with pre-filtering, no rows are collected for nonfile instruments. With post-filtering, nonfile events are collected, leaving fewer rows for file events.
You can avoid maintaining some kinds of event tables. If you disable a consumer, the server does not spend time maintaining it. For example, if you do not care about event histories, you can disable the history table consumers to improve performance.
Post-filtering. This involves the use of WHERE clauses in queries that select information from Performance Schema tables, to specify which of the available events you want to see. This type of filtering is performed on a per-user basis because individual users select which of the available events are of interest.
Reasons to use post-filtering:
To avoid making decisions for individual users about which event information is of interest.
To use the Performance Schema to investigate a performance issue when the restrictions to impose using pre-filtering are not known in advance.
The following sections provide more detail about pre-filtering and provide guidelines for naming instruments or consumers in filtering operations. For information about writing queries to retrieve information (post-filtering), see Section 20.3, “Performance Schema Queries”.
20.2.3.2.1. Event Pre-Filtering
Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-filtering can be applied to either the producer or consumer stage of event processing:
To configure pre-filtering at the producer stage, several tables can be used:
The setup_instruments table indicates which instruments are available. An instrument disabled in this table produces no events regardless of the contents of the other production-related setup tables. An instrument enabled in this table is permitted to produce events, subject to the contents of the other tables.
The setup_objects table determines whether particular objects are monitored. Currently, the Performance Schema uses it to control monitoring of table objects.
The threads table indicates whether monitoring is enabled for each server thread.
The setup_actors table determines the initial monitoring state for new foreground threads.
To configure pre-filtering at the consumer stage, modify the setup_consumers table. This determines the destinations to which events are sent.
The setup_consumers table also implicitly affects event production. If a given event will not be sent to any destination (that is, will not be consumed), the Performance Schema does not produce it.
Modifications to any of these tables affect monitoring immediately, with the exception of setup_actors. Modifications to setup_actors affect only foreground threads created thereafter.
When you change the monitoring configuration, the Performance Schema does not flush the history tables. Events already collected remain in the current-events and history tables until displaced by newer events. If you disable instruments, you might need to wait a while before events for them are displaced by newer events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.
After making instrumentation changes, you might want to truncate the summary tables as well to clear aggregate information for previously collected events. Except for events_statements_summary_by_digest, the effect of TRUNCATE TABLE for summary tables is to reset the summary columns to 0 or NULL, not to remove rows.
The following sections describe how to use specific tables to control how the Performance Schema performs pre-filtering.
20.2.3.2.1.1. Pre-Filtering by Instrument
The setup_instruments table lists the available instruments:
mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
| wait/synch/mutex/sql/LOCK_global_read_lock | YES | YES |
| wait/synch/mutex/sql/LOCK_global_system_variables | YES | YES |
| wait/synch/mutex/sql/LOCK_lock_db | YES | YES |
| wait/synch/mutex/sql/LOCK_manager | YES | YES |
...
| wait/synch/rwlock/sql/LOCK_grant | YES | YES |
| wait/synch/rwlock/sql/LOGGER::LOCK_logger | YES | YES |
| wait/synch/rwlock/sql/LOCK_sys_init_connect | YES | YES |
| wait/synch/rwlock/sql/LOCK_sys_init_slave | YES | YES |
...
| wait/io/file/sql/binlog | YES | YES |
| wait/io/file/sql/binlog_index | YES | YES |
| wait/io/file/sql/casetest | YES | YES |
| wait/io/file/sql/dbopt | YES | YES |
...
To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure whether to collect timing information for an instrument, set its TIMED value to YES or NO. Setting the TIMED column affects Performance Schema table contents as described in Section 20.2.3.1, “Performance Schema Event Timing”.
The following examples demonstrate possible operations on the setup_instruments table. These changes, like other pre-filtering operations, affect all users.
Disable all instruments:
mysql> UPDATE setup_instruments SET ENABLED = 'NO';
Now no events will be collected.
Disable all file instruments, adding them to the current set of disabled instruments:
mysql> UPDATE setup_instruments SET ENABLED = 'NO'
-> WHERE NAME LIKE 'wait/io/file/%';
Disable only file instruments, enable all other instruments:
mysql> UPDATE setup_instruments
-> SET ENABLED = IF(NAME LIKE 'wait/io/file/%', 'NO', 'YES');
The preceding queries use the LIKE operator and the pattern 'wait/io/file/%' to match all instrument names that begin with 'wait/io/file/. For additional information about specifying patterns to select instruments, see Section 20.2.3.2.2, “Naming Instruments or Consumers for Filtering Operations”.
Enable all but those instruments in the mysys library:
mysql> UPDATE setup_instruments
-> SET ENABLED = CASE WHEN NAME LIKE '%/mysys/%' THEN 'YES' ELSE 'NO' END;
Disable a specific instrument:
mysql> UPDATE setup_instruments SET ENABLED = 'NO'
-> WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';
To toggle the state of an instrument, “flip” its ENABLED value:
mysql> UPDATE setup_instruments
-> SET ENABLED = IF(ENABLED = 'YES', 'NO', 'YES')
-> WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';
Disable timing for all events:
mysql> UPDATE setup_instruments SET TIMED = 'NO';
Modifications to the setup_instruments table affect monitoring immediately.
20.2.3.2.1.2. Pre-Filtering by Object
The setup_objects table controls whether particular objects are monitored. Currently, the Performance Schema uses it to control monitoring of table objects. The initial setup_objects contents look like this:
mysql> SELECT * FROM setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
| TABLE | mysql | % | NO | NO |
| TABLE | performance_schema | % | NO | NO |
| TABLE | information_schema | % | NO | NO |
| TABLE | % | % | YES | YES |
+-------------+--------------------+-------------+---------+-------+
The OBJECT_SCHEMA and OBJECT_NAME columns should contain a literal schema or table name, or '%' to match any name.
When the Performance Schema checks for a match in setup_objects, it tries to find more specific matches first. For example, with a table db1.t1, it looks for a match for 'db1' and 't1', then for 'db1' and '%', then for '%' and '%'. The order in which matching occurs matters because different setup_objects rows can have different ENABLED and TIMED values.
The effect of the default object configuration is to instrument all tables except those in the mysql, INFORMATION_SCHEMA, and performance_schema databases. Tables in the INFORMATION_SCHEMA database are not instrumented regardless of the contents of setup_objects; the row for information_schema.% simply makes this default explicit.
For table-related events, the Performance Schema combines the contents of setup_objects with setup_instruments to determine whether to enable instruments and whether to time enabled instruments:
For tables that match a row in setup_objects, table instruments produce events only if they are enabled in both setup_instruments and setup_objects.
The TIMED values in the two tables are combined, so that timing information is collected only with both values are YES.
Suppose that setup_objects contains the following rows:
+-------------+---------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+---------------+-------------+---------+-------+
| TABLE | db1 | t1 | YES | YES |
| TABLE | db1 | t2 | YES | NO |
| TABLE | db2 | % | YES | YES |
| TABLE | db3 | % | YES | NO |
| TABLE | % | % | YES | YES |
+-------------+---------------+-------------+---------+-------+
If a table-related instrument in setup_instruments has a TIMED value of NO, no events for the instrument are timed. If the TIMED value is YES, event timing occurs as follows:
db1.t1 events are timed
db1.t2 events are not timed
db2.t3 events are timed
db3.t4 events are not timed
db4.t5 events are timed
If a persistent table and a temporary table have the same name, matching against setup_objects rows occurs the same way for both. It is not possible to enable monitoring for one table but not the other. However, each table is instrumented separately.
Modifications to the setup_objects table affect object monitoring immediately.
The ENABLED column was added in MySQL 5.6.3. For earlier versions that have no ENABLED column, setup_objects is used only to enable monitoring for objects that match some row in the table. There is no way to explicitly disable instrumentation with the table.
20.2.3.2.1.3. Pre-Filtering by Thread
The threads table contains a row for each server thread. Each row contains information about a thread and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a thread, these things must be true:
The thread_instrumentation consumer in the setup_consumers table must be YES.
The thread.INSTRUMENTED column must be YES.
Monitoring occurs only for those thread events produced from instruments that are enabled, as specified in the setup_instruments table.
The INSTRUMENTED column in the threads table indicates the monitoring state for each thread. For foreground threads (resulting from client connections), the initial INSTRUMENTED value is determined by whether the user account associated with the thread matches any row in the setup_actors table. For background threads, INSTRUMENTED is YES by default. setup_actors is not consulted because there is no associated user for background threads. For any thread, its INSTRUMENTED value can be changed during the life of the thread.
The initial setup_actors contents look like this:
mysql> SELECT * FROM setup_actors;
+------+------+------+
| HOST | USER | ROLE |
+------+------+------+
| % | % | % |
+------+------+------+
The Performance Schema uses the HOST and USER columns to match each new foreground thread. (ROLE is unused.) The INSTRUMENTED value for the thread becomes YES if any row matches. This enables instrumenting to be applied selectively per host, user, or combination of host and user.
The HOST and USER columns should contain a literal host or user name, or '%' to match any name. By default, monitoring is enabled for all new foreground threads because the setup_actors table initially contains a row with '%' for both HOST and USER. To perform more limited matching such as to enable monitoring only for some foreground threads, you must delete this row because it matches any connection.
Suppose that you modify setup_actors as follows:
DELETE FROM setup_actors;
Now setup_actors is empty and there are no rows that could match incoming connections. Consequently, the Performance Schema will set the INSTRUMENTED column for all new foreground threads to NO.
Suppose that you further modify setup_actors:
INSERT INTO setup_actors (HOST,USER,ROLE) VALUES('localhost','joe','%');
INSERT INTO setup_actors (HOST,USER,ROLE) VALUES('%','sam','%');
Now the Performance Schema determines how to set the INSTRUMENTED value for new connection threads as follows:
If joe connects from the local host, the connection matches the first inserted row.
If joe connects from any other host, there is no match.
If sam connects from any host, the connection matches the second inserted row.
For any other connection, there is no match.
Modifications to the setup_actors table do not affect existing threads.
20.2.3.2.1.4. Pre-Filtering by Consumer
The setup_consumers table lists the available consumer types and which are enabled:
mysql> SELECT * FROM setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
| events_stages_current | NO |
| events_stages_history | NO |
| events_stages_history_long | NO |
| events_statements_current | YES |
| events_statements_history | NO |
| events_statements_history_long | NO |
| events_waits_current | NO |
| events_waits_history | NO |
| events_waits_history_long | NO |
| global_instrumentation | YES |
| thread_instrumentation | YES |
| statements_digest | YES |
+--------------------------------+---------+
Modify the setup_consumers table to affect pre-filtering at the consumer stage and determine the destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES or NO.
Modifications to the setup_consumers table affect monitoring immediately.
If you disable a consumer, the server does not spend time maintaining it. For example, you can disable history consumers if you do not care about historical event information:
mysql> UPDATE setup_consumers
-> SET ENABLED = 'NO' WHERE NAME LIKE '%history%';
The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower. The following principles apply:
Destinations associated with a consumer receive no events unless the Performance Schema checks the consumer and the consumer is enabled.
A consumer is checked only if all consumers that it depends on (if any) are enabled.
If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are not checked.
Dependent consumers may have their own dependent consumers.
If an event would not be sent to any destination, the Performance Schema does not produce it.
The following lists describe the available consumer values. For discussion of several representative consumer configurations and their effect on instrumentation, see Section 20.2.3.2.1.5, “Example Consumer Configurations”.
Global and Thread Consumers
global_instrumentation is the highest level consumer. If global_instrumentation is NO, it disables global instrumentation. All other settings are lower level and are not checked; it does not matter what they are set to. No global or per thread information is maintained and no individual events are collected in the current-events or event-history tables. If global_instrumentation is YES, the Performance Schema maintains information for global states and also checks the thread_instrumentation consumer.
thread_instrumentation is checked only if global_instrumentation is YES. Otherwise, if thread_instrumentation is NO, it disables thread-specific instrumentation and all lower-level settings are ignored. No information is maintained per thread and no individual events are collected in the current-events or event-history tables. If thread_instrumentation is YES, the Performance Schema maintains thread-specific information and also checks events_xxx_current consumers.
Statement Digest Consumer
This consumer requires global_instrumentation to be YES or it is not checked. There is no dependency on the Statement Event consumers. This means you can obtain statistics per digest without having to collect statistics in events_statements_current, which is advantageous in terms of overhead.
Wait Event Consumers
These consumers require both global_instrumentation and thread_instrumentation to be YES or they are not checked.
events_waits_current, if NO, disables collection of individual wait events in the events_waits_current table. If YES, it enables wait event collection and the Performance Schema checks the events_waits_history and events_waits_history_long consumers.
events_waits_history is not checked if event_waits_current is NO. Otherwise, a events_waits_history value of NO or YES disables or enables collection of wait events in the events_waits_history table.
events_waits_history_long is not checked if event_waits_current is NO. Otherwise, a events_waits_history_long value of NO or YES disables or enables collection of wait events in the events_waits_history_long table.
Stage Event Consumers
These consumers require both global_instrumentation and thread_instrumentation to be YES or they are not checked.
events_stages_current, if NO, disables collection of individual stage events in the events_stages_current table. If YES, it enables stage event collection and the Performance Schema checks the events_stages_history and events_stages_history_long consumers.
events_stages_history is not checked if event_stages_current is NO. Otherwise, a events_stages_history value of NO or YES disables or enables collection of stage events in the events_stages_history table.
events_stages_history_long is not checked if event_stages_current is NO. Otherwise, a events_stages_history_long value of NO or YES disables or enables collection of stage events in the events_stages_history_long table.
Statement Event Consumers
These consumers require both global_instrumentation and thread_instrumentation to be YES or they are not checked.
events_statements_current, if NO, disables collection of individual statement events in the events_statements_current table. If YES, it enables statement event collection and the Performance Schema checks the events_statements_history and events_statements_history_long consumers.
events_statements_history is not checked if events_statements_current is NO. Otherwise, a events_statements_history value of NO or YES disables or enables collection of statement events in the events_statements_history table.
events_statements_history_long is not checked if events_statements_current is NO. Otherwise, a events_statements_history_long value of NO or YES disables or enables collection of statement events in the events_statements_history_long table.
20.2.3.2.1.5. Example Consumer Configurations
The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower. The following discussion describes how consumers work, showing specific configurations and their effects as consumer settings are enabled progressively from high to low. The consumer values shown are representative. The general principles described here apply to other consumer values that may be available.
The configuration descriptions occur in order of increasing functionality and overhead. If you do not need the information provided by enabling lower-level settings, disable them and the Performance Schema will execute less code on your behalf and you will have less information to sift through.
Suppose that the setup_consumers table contains the following hierarchy of values:
global_instrumentation
thread_instrumentation
events_waits_current
events_waits_history
events_waits_history_long
If a given consumer setting is NO, the Performance Schema disables the instrumentation associated with the consumer and ignores all lower-level settings. If a given setting is YES, the Performance Schema enables the instrumentation associated with it and checks the settings at the next lowest level.
Each configuration description indicates which setup elements the Performance Schema checks and which output tables it maintains (that is, for which tables it collects information).
No Instrumentation
Server configuration state:
mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | NO |
...
+---------------------------+---------+
In this configuration, nothing is instrumented.
Setup elements checked:
Table setup_consumers, consumer global_instrumentation
Output tables maintained:
None
Global Instrumentation Only
Server configuration state:
mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | NO |
...
+---------------------------+---------+
In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is disabled.
Additional setup elements checked, relative to the preceding configuration:
Table setup_consumers, consumer thread_instrumentation
Table setup_instruments
Table setup_objects
Table setup_timers
Additional output tables maintained, relative to the preceding configuration:
table_lock_waits_summary_by_table
table_io_waits_summary_by_index_usage
table_io_waits_summary_by_table
Global and Thread Instrumentation Only
Server configuration state:
mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | YES |
| events_waits_current | NO |
...
+---------------------------+---------+
In this configuration, instrumentation is maintained globally and per thread. No individual wait events are collected in the current-events or event-history tables.
Additional setup elements checked, relative to the preceding configuration:
Table setup_consumers, consumer events_waits_current
Table setup_actors
Column threads.instrumented
Additional output tables maintained, relative to the preceding configuration:
Global, Thread, and Current-Event Instrumentation
Server configuration state:
mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | YES |
| events_waits_current | YES |
| events_waits_history | NO |
| events_waits_history_long | NO |
...
+---------------------------+---------+
In this configuration, instrumentation is maintained globally and per thread. Individual wait events are collected in the current-events table, but not in the event-history tables.
Additional setup elements checked, relative to the preceding configuration:
Consumer events_waits_history
Consumer events_waits_history_long
Additional output tables maintained, relative to the preceding configuration:
Global, Thread, Current-Event, and Event-History instrumentation
The preceding configuration collects no wait event history because the events_waits_history and events_waits_history_long consumers are disabled. Those consumers can be enabled separately or together to collect event history per thread, globally, or both.
This configuration collects event history per thread, but not globally:
mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | YES |
| events_waits_current | YES |
| events_waits_history | YES |
| events_waits_history_long | NO |
...
+---------------------------+---------+
Event-history tables maintained for this configuration:
This configuration collects event history globally, but not per thread:
mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | YES |
| events_waits_current | YES |
| events_waits_history | NO |
| events_waits_history_long | YES |
...
+---------------------------+---------+
Event-history tables maintained for this configuration:
This configuration collects event history per thread and globally:
mysql> SELECT * FROM setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | YES |
| events_waits_current | YES |
| events_waits_history | YES |
| events_waits_history_long | YES |
...
+---------------------------+---------+
Event-history tables maintained for this configuration:
20.2.3.2.2. Naming Instruments or Consumers for Filtering Operations
Names given for filtering operations can be as specific or general as required. To indicate a single instrument or consumer, specify its name in full:
mysql> UPDATE setup_instruments
-> SET ENABLED = 'NO'
-> WHERE NAME = 'wait/synch/mutex/myisammrg/MYRG_INFO::mutex';
mysql> UPDATE setup_consumers
-> SET ENABLED = 'NO' WHERE NAME = 'events_waits_current';
To specify a group of instruments or consumers, use a pattern that matches the group members:
mysql> UPDATE setup_instruments
-> SET ENABLED = 'NO'
-> WHERE NAME LIKE 'wait/synch/mutex/%';
mysql> UPDATE setup_consumers
-> SET ENABLED = 'NO' WHERE NAME LIKE '%history%';
If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For example, to select all file I/O instruments, it is better to use a pattern that includes the entire instrument name prefix:
... WHERE NAME LIKE 'wait/io/file/%';
A pattern of '%/file/%' will match other instruments that have a component of '/file/' anywhere in the name. Even less suitable is the pattern '%file%' because it will match instruments with 'file' anywhere in the name, such as wait/synch/mutex/sql/LOCK_des_key_file.
To check which instrument or consumer names a pattern matches, perform a simple test:
mysql> SELECT NAME FROM setup_instruments WHERE NAME LIKE 'pattern';
mysql> SELECT NAME FROM setup_consumers WHERE NAME LIKE 'pattern';
For information about the types of names that are supported, see Section 20.4, “Performance Schema Instrument Naming Conventions”.
20.2.3.3. Determining What Is Instrumented
It is always possible to determine what instruments the Performance Schema includes by checking the setup_instruments table. For example, to see what file-related events are instrumented for the InnoDB storage engine, use this query:
mysql> SELECT * FROM setup_instruments WHERE NAME LIKE 'wait/io/file/innodb/%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
| wait/io/file/innodb/innodb_data_file | YES | YES |
| wait/io/file/innodb/innodb_log_file | YES | YES |
| wait/io/file/innodb/innodb_temp_file | YES | YES |
+--------------------------------------+---------+-------+
An exhaustive description of precisely what is instrumented is not given in this documentation, for several reasons:
What is instrumented is the server code. Changes to this code occur often, which also affects the set of instruments.
It is not practical to list all the instruments because there are hundreds of them.
As described earlier, it is possible to find out by querying the setup_instruments table. This information is always up to date for your version of MySQL, also includes instrumentation for instrumented plugins you might have installed that are not part of the core server, and can be used by automated tools.
20.3. Performance Schema Queries
Pre-filtering limits which event information is collected and is independent of any particular user. By contrast, post-filtering is performed by individual users through the use of queries with appropriate WHERE clauses that restrict what event information to select from the events available after pre-filtering has been applied.
In Section 20.2.3.2.1, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the event tables contain both file and nonfile information, post-filtering is another way to see information only for file events. Add a WHERE clause to queries to restrict event selection appropriately:
mysql> SELECT THREAD_ID, NUMBER_OF_BYTES
-> FROM events_waits_history
-> WHERE EVENT_NAME LIKE 'wait/io/file/%'
-> AND NUMBER_OF_BYTES IS NOT NULL;
+-----------+-----------------+
| THREAD_ID | NUMBER_OF_BYTES |
+-----------+-----------------+
| 11 | 66 |
| 11 | 47 |
| 11 | 139 |
| 5 | 24 |
| 5 | 834 |
+-----------+-----------------+
20.4. Performance Schema Instrument Naming Conventions
An instrument name consists of a sequence of components separated by '/' characters. Example names:
wait/io/file/myisam/log
wait/io/file/mysys/charset
wait/lock/table/sql/handler
wait/synch/cond/mysys/COND_alarm
wait/synch/cond/sql/BINLOG::update_cond
wait/synch/mutex/mysys/BITMAP_mutex
wait/synch/mutex/sql/LOCK_delete
wait/synch/rwlock/sql/Query_cache_query::lock
stage/sql/closing tables
stage/sql/Sorting result
statement/com/Execute
statement/com/Query
statement/sql/create_table
statement/sql/lock_tables
The instrument name space has a tree-like structure. The components of an instrument name from left to right provide a progression from more general to more specific. The number of components a name has depends on the type of instrument.
The interpretation of a given component in a name depends on the components to the left of it. For example, myisam appears in both of the following names, but myisam in the first name is related to file I/O, whereas in the second it is related to a synchronization instrument:
wait/io/file/myisam/log
wait/synch/cond/myisam/MI_SORT_INFO::cond
Instrument names consist of a prefix with a structure defined by the Performance Schema implementation and a suffix defined by the developer implementing the instrument code. The top-level component of an instrument prefix indicates the type of instrument. This component also determines which event timer in the setup_timers table applies to the instrument. For the prefix part of instrument names, the top level indicates the type of instrument.
The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may include levels such as these:
A name for the major component (a server module such as myisam, innodb, mysys, or sql) or a plugin name.
The name of a variable in the code, in the form XXX (a global variable) or CCC::MMM (a member MMM in class CCC). Examples: COND_thread_cache, THR_LOCK_myisam, BINLOG::LOCK_index.
Top-Level Instrument Components
idle: An instrumented idle event. This instrument has no further components.
stage: An instrumented stage event.
statement: An instrumented statement event.
wait: An instrumented wait event.
Idle Instrument Components
idle
The idle instrument. The Performance Schema generates idle events as discussed in the description of the socket_instances.STATE column in Section 20.9.2.5, “The socket_instances Table”.
Stage Instrument Components
Stage instruments have names of the form stage/code_area/stage_name, where code_area is a value such as sql or myisam, and stage_name indicates the stage of statement processing, such as Sorting result or Sending data. Stages correspond to the thread states displayed by SHOW PROCESSLIST or that are visible in the INFORMATION_SCHEMA.PROCESSLIST table.
Statement Instrument Components
statement/com: An instrumented command operation. These have names corresponding to COM_xxx operations (see the mysql_com.h header file and sql/sql_parse.cc. For example, the statement/com/Connect and statement/com/Fetch instruments correspond to the COM_CONNECT and COM_FETCH commands.
statement/sql: An instrumented SQL statement operation. For example, the statement/sql/create_db and statement/sql/select instruments are used for CREATE DATABASE and SELECT statements.
Wait Instrument Components
wait/io
An instrumented I/O operation.
wait/io/file
An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to complete (for example, a call to fwrite()). Due to caching, the physical file I/O on the disk might not happen within this call.
wait/io/socket
An instrumented socket operation. Socket instruments have names of the form wait/io/socket/sql/socket_type. The server has a listening socket for each network protocol that it supports. The instruments associated with listening sockets for TCP/IP or Unix socket file connections have a socket_type value of server_tcpip_socket or server_unix_socket, respectively. When a listening socket detects a connection, the server transfers the connection to a new socket managed by a separate thread. The instrument for the new connection thread has a socket_type value of client_connection.
wait/io/table
An instrumented table I/O operation. These include row-level accesses to persistent base tables or temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view, waits are associated with base tables referenced by the view.
Unlike most waits, a table I/O wait can include other waits. For example, table I/O might include file I/O or memory operations. Thus, events_waits_current for a table I/O wait usually has two rows. For more information, see Section 20.6, “Performance Schema Atom and Molecule Events”.
Some row operations might cause multiple table I/O waits. For example, an insert might activate a trigger that causes an update.
wait/lock
An instrumented lock operation.
wait/lock/table
An instrumented table lock operation.
wait/synch
An instrumented synchronization object. For synchronization objects, the TIMER_WAIT time includes the amount of time blocked while attempting to acquire a lock on the object, if any.
wait/synch/cond
A condition is used by one thread to signal to other threads that something they were waiting for has happened. If a single thread was waiting for a condition, it can wake up and proceed with its execution. If several threads were waiting, they can all wake up and compete for the resource for which they were waiting.
wait/synch/mutex
A mutual exclusion object used to permit access to a resource (such as a section of executable code) while preventing other threads from accessing the resource.
wait/synch/rwlock
A read/write lock object used to lock a specific variable for access while preventing its use by other threads. A shared read lock can be acquired simultaneously by multiple threads. An exclusive write lock can be acquired by only one thread at a time.
20.5. Performance Schema Status Monitoring
There are several status variables associated with the Performance Schema:
mysql> SHOW STATUS LIKE 'perf%';
+--+-------+
| Variable_name | Value |
+--+-------+
| Performance_schema_cond_classes_lost | 0 |
| Performance_schema_cond_instances_lost | 0 |
| Performance_schema_file_classes_lost | 0 |
| Performance_schema_file_handles_lost | 0 |
| Performance_schema_file_instances_lost | 0 |
| Performance_schema_locker_lost | 0 |
| Performance_schema_mutex_classes_lost | 0 |
| Performance_schema_mutex_instances_lost | 0 |
| Performance_schema_rwlock_classes_lost | 0 |
| Performance_schema_rwlock_instances_lost | 0 |
| Performance_schema_table_handles_lost | 0 |
| Performance_schema_table_instances_lost | 0 |
| Performance_schema_thread_classes_lost | 0 |
| Performance_schema_thread_instances_lost | 0 |
+--+-------+
The Performance Schema status variables provide information about instrumentation that could not be loaded or created due to memory constraints. Names for these variables have several forms:
Performance_schema_xxx_classes_lost indicates how many instruments of type xxx could not be loaded.
Performance_schema_xxx_instances_lost indicates how many instances of object type xxx could not be created.
Performance_schema_xxx_handles_lost indicates how many instances of object type xxx could not be opened.
Performance_schema_locker_lost indicates how many events are “lost” or not recorded.
For example, if a mutex is instrumented in the server source but the server cannot allocate memory for the instrumentation at runtime, it increments Performance_schema_mutex_classes_lost. The mutex still functions as a synchronization object (that is, the server continues to function normally), but performance data for it will not be collected. If the instrument can be allocated, it can be used for initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there will be only one instance. Other mutexes have an instance per connection, or per page in various caches and data buffers, so the number of instances varies over time. Increasing the maximum number of connections or the maximum size of some buffers will increase the maximum number of instances that might be allocated at once. If the server cannot create a given instrumented mutex instance, it increments Performance_schema_mutex_instances_lost.
Suppose that the following conditions hold:
The server was started with the --performance_schema_max_mutex_classes=200 option and thus has room for 200 mutex instruments.
150 mutex instruments have been loaded already.
The plugin named plugin_a contains 40 mutex instruments.
The plugin named plugin_b contains 20 mutex instruments.
The server allocates mutex instruments for the plugins depending on how many they need and how many are available, as illustrated by the following sequence of statements:
INSTALL PLUGIN plugin_a
The server now has 150+40 = 190 mutex instruments.
UNINSTALL PLUGIN plugin_a;
The server still has 190 instruments. All the historical data generated by the plugin code is still available, but new events for the instruments are not collected.
INSTALL PLUGIN plugin_a;
The server detects that the 40 instruments are already defined, so no new instruments are created, and previously assigned internal memory buffers are reused. The server still has 190 instruments.
INSTALL PLUGIN plugin_b;
The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The Performance_schema_mutex_classes_lost indicates the number of instruments (mutex classes) lost:
mysql> SHOW STATUS LIKE "perf%mutex_classes_lost";
+---------------------------------------+-------+
| Variable_name | Value |
+---------------------------------------+-------+
| Performance_schema_mutex_classes_lost | 10 |
+---------------------------------------+-------+
1 row in set (0.10 sec)
The instrumentation still works and collects (partial) data for plugin_b.
When the server cannot create a mutex instrument, these results occur:
No row for the instrument is inserted into the setup_instruments table.
Performance_schema_mutex_classes_lost increases by 1.
Performance_schema_mutex_instances_lost does not change. (When the mutex instrument is not created, it cannot be used to create instrumented mutex instances later.)
The pattern just described applies to all types of instruments, not just mutexes.
A value of Performance_schema_mutex_classes_lost greater than 0 can happen in two cases:
To save a few bytes of memory, you start the server with --performance_schema_max_mutex_classes=N, where N is less than the default value. The default value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but this can be reduced if some plugins are never loaded. For example, you might choose not to load some of the storage engines in the distribution.
You load a third-party plugin that is instrumented for the Performance Schema but do not allow for the plugin's instrumentation memory requirements when you start the server. Because it comes from a third party, the instrument memory consumption of this engine is not accounted for in the default value chosen for performance_schema_max_mutex_classes.
If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate more using --performance_schema_max_mutex_classes=N, loading the plugin leads to starvation of instruments.
If the value chosen for performance_schema_max_mutex_classes is too small, no error is reported in the error log and there is no failure at runtime. However, the content of the tables in the performance_schema database will miss events. The Performance_schema_mutex_classes_lost status variable is the only visible sign to indicate that some events were dropped internally due to failure to create instruments.
If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting instances. For example, wait/synch/mutex/sql/LOCK_delete is the name of a mutex instrument in the setup_instruments table. This single instrument is used when creating a mutex in the code (in THD::LOCK_delete) however many instances of the mutex are needed as the server runs. In this case, LOCK_delete is a mutex that is per connection (THD), so if a server has 1000 connections, there are 1000 threads, and 1000 instrumented LOCK_delete mutex instances (THD::LOCK_delete).
If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes are created with instrumentation, and some are created without instrumentation. If the server can create only 800 instances, 200 instances are lost. The server continues to run, but increments Performance_schema_mutex_instances_lost by 200 to indicate that instances could not be created.
A value of Performance_schema_mutex_instances_lost greater than 0 can happen when the code initializes more mutexes at runtime than were allocated for --performance_schema_max_mutex_instances=N.
The bottom line is that if SHOW STATUS LIKE 'perf%' says that nothing was lost (all values are zero), the Performance Schema data is accurate and can be relied upon. If something was lost, the data is incomplete, and the Performance Schema could not record everything given the insufficient amount of memory it was given to use. In this case, the specific Performance_schema_xxx_lost variable indicates the problem area.
It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you do not care about performance data for file I/O, you can start the server with all Performance Schema parameters related to file I/O set to 0. No memory will be allocated for file-related classes, instances, or handles, and all file events will be lost.
Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the Performance Schema code:
mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
Type: performance_schema
Name: events_waits_history.row_size
Status: 76
*************************** 4. row ***************************
Type: performance_schema
Name: events_waits_history.row_count
Status: 10000
*************************** 5. row ***************************
Type: performance_schema
Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
Type: performance_schema
Name: performance_schema.memory
Status: 26459600
...
This statement is intended to help the DBA understand the effects that different Performance Schema options have on memory requirements. For a description of the field meanings, see Section 13.7.5.16, “SHOW ENGINE Syntax”.
20.6. Performance Schema Atom and Molecule Events
For a table I/O event, there are usually two rows in events_waits_current, not one. For example, a row fetch might result in rows like this:
Row# EVENT_NAME TIMER_START TIMER_END
---- ---------- ----------- ---------
1 wait/io/file/myisam/dfile 10001 10002
2 wait/io/table/sql/handler 10000 NULL
The row fetch causes a file read. In the example, the table I/O fetch event started before the file I/O event but has not finished (its TIMER_END value is NULL). The file I/O event is “nested” within the table I/O event.
This occurs because, unlike other “atomic” wait events such as for mutexes or file I/O, table I/O events are “molecular” and include (overlap with) other events. In events_waits_current, the table I/O event usually has two rows:
One row for the most recent table I/O wait event
One row for the most recent wait event of any kind
Usually, but not always, the “of any kind” wait event differs from the table I/O event. As each subsidiary event completes, it disappears from events_waits_current. At this point, and until the next subsidiary event begins, the table I/O wait is also the most recent wait of any kind.
20.7. Performance Schema Statement Digests
As of MySQL 5.6.5, the Performance Schema maintains statement digest information. Digesting converts a SQL statement to normalized form and computes a hash value for the result. Normalization permits statements that are similar to be grouped and summarized to expose information about the types of statements the server is executing and how often they occur. This section describes how statement normalizing occurs and how it can be useful.
Statement digesting involves these Performance Schema components:
A statement_digest consumer in the setup_consumers table controls whether the Performance Schema maintains digest information.
The statement event tables (events_statements_current, events_statements_history, and events_statements_history_long) have DIGEST and DIGEST_TEXT columns that contain digest MD5 values and the corresponding normalized statement text strings.
A events_statements_summary_by_digest table provides aggregated statement digest information.
Normalizing a statement transforms the statement text to a more standardized string representation that preserves the general statement structure while removing information not essential to the structure. Object identifiers such as database and table names are preserved. Values and comments are removed, and whitespace is adjusted. The Performance Schema does not retain information such as names, passwords, dates, and so forth.
Consider these statements:
SELECT * FROM orders WHERE customer_id=10 AND quantity>20
SELECT * FROM orders WHERE customer_id = 20 AND quantity > 100
To normalize these statements, the Performance Schema replaces data values by ? and adjusts whitespace. Both statements yield the same normalized form and thus are considered “the same”:
SELECT * FROM orders WHERE customer_id = ? AND quantity > ?
The normalized statement contains less information but is still representative of the original statement. Other similar statements that have different comparison values have the same normalized form.
Now consider these statements:
SELECT * FROM customers WHERE customer_id = 1000
SELECT * FROM orders WHERE customer_id = 1000
In this case, the statements are not “the same.” The object identifiers differ, so the statements yield different normalized forms:
SELECT * FROM customers WHERE customer_id = ?
SELECT * FROM orders WHERE customer_id = ?
Normalized statements have a fixed length. The maximum length of a DIGEST_TEXT value is 1024 bytes. There is no option to change this maximum. If normalization produces a statement that exceeds this length, the text ends with “...”. Long statements that differ only in the part that occurs following the “...” are considered to be the same. Consider these statements:
SELECT * FROM mytable WHERE cola = 10 AND colb = 20
SELECT * FROM mytable WHERE cola = 10 AND colc = 20
If the cutoff happened to be right after the AND, both statements would have this normalized form:
SELECT * FROM mytable WHERE cola = ? AND ...
In this case, the difference in the second column name is lost and both statements are considered the same.
For each normalized statement, the Performance Schema computes a hash digest value and stores that value and the statement in the DIGEST and DIGEST_TEXT columns of the statement event tables (events_statements_current, events_statements_history, and events_statements_history_long). In addition, information for statements with the same SCHEMA_NAME and DIGEST values are aggregated in the events_statements_summary_by_digest summary table. The Performance Schema uses MD5 hash values because they are fast to compute and have a favorable statistical distribution that minimizes collisions.
The events_statements_summary_by_digest summary table has a fixed size, so when it becomes full, statements that have SCHEMA_NAME and DIGEST values not matching existing values in the table are grouped in a special row with SCHEMA_NAME and DIGEST set to NULL. This permits all statements to be counted. However, if the special row accounts for a significant percentage of the statements executed, it might be desirable to increase the size of the summary table. To do this, set the performance_schema_digests_size system variable to a larger value at server startup. If no performance_schema_digests_size value is given, the server estimates the value to use at startup. (Before MySQL 5.6.9, there is no SCHEMA_NAME column and the special row has DIGEST set to NULL.)
The statement digest summary table provides a profile of the statements executed by the server. It shows what kinds of statements an application is executing and how often. An application developer can use this information together with other information in the table to assess the application's performance characteristics. For example, table columns that show wait times, lock times, or index use may highlight types of queries that are inefficient. This gives the developer insight into which parts of the application need attention.
20.8. Performance Schema General Table Characteristics
The name of the performance_schema database is lowercase, as are the names of tables within it. Queries should specify the names in lowercase.
Most tables in the performance_schema database are read only and cannot be modified. Some of the setup tables have columns that can be modified to affect Performance Schema operation; some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named with a prefix of events_waits_.
TRUNCATE TABLE can also be used with summary tables, but except for events_statements_summary_by_digest, the effect is to reset the summary columns to 0 or NULL, not to remove rows.
Privileges are as for other databases and tables:
To retrieve from performance_schema tables, you must have the SELECT privilege.
To change those columns that can be modified, you must have the UPDATE privilege.
To truncate tables that can be truncated, you must have the DROP privilege.
20.9. Performance Schema Table Descriptions
Tables in the performance_schema database can be grouped as follows:
Setup tables. These tables are used to configure and display monitoring characteristics.
Current events table. The events_waits_current table contains the most recent event for each thread.
History tables. These tables have the same structure as events_waits_current but contain more rows. The events_waits_history table contains the most recent 10 events per thread. events_waits_history_long contains the most recent 10,000 events.
To change the sizes of these tables, set the performance_schema_events_waits_history_size and performance_schema_events_waits_history_long_size system variables at server startup.
Summary tables. These tables contain information aggregated over groups of events, including those that have been discarded from the history tables.
Instance tables. These tables document what types of objects are instrumented. An instrumented object, when used by the server, produces an event. These tables provide event names and explanatory notes or status information.
Miscellaneous tables. These do not fall into any of the other table groups.
20.9.1. Performance Schema Setup Tables
The setup tables provide information about the current instrumentation and enable the monitoring configuration to be changed. For this reason, some columns in these tables can be changed if you have the UPDATE privilege.
The use of tables rather than individual variables for setup information provides a high degree of flexibility in modifying Performance Schema configuration. For example, you can use a single statement with standard SQL syntax to make multiple simultaneous configuration changes.
These setup tables are available:
setup_actors: How to initialize monitoring for new foreground threads
setup_consumers: The destinations to which event information can be sent and stored
setup_instruments: The classes of instrumented objects for which events can be collected
setup_objects: Which objects should be monitored
setup_timers: The current event timer
20.9.1.1. The setup_actors Table
The setup_actors table contains information that determines whether to enable monitoring for new foreground server threads; that is, threads associated with client connections. This table has a maximum size of 100 rows by default. The size may be changed by modifying the performance_schema_setup_actors_size system variable at server startup.
The setup_actors table has these columns:
HOST
The host name. This should be a literal name, or '%' to mean “any host.”
USER
The user name. This should be a literal name, or '%' to mean “any user.”
ROLE
Unused.
For each new foreground thread, the Performance Schema matches the user and host for the the thread against the rows of the setup_actors table. Based on whether any row matches, the INSTRUMENTED column of the threads table row for the thread is set to YES or NO. This enables instrumenting to be applied selectively per host, user, or combination of host and user.
The initial contents of the setup_actors table match any user and host combination, so monitoring for all foreground threads is enabled by default:
mysql> SELECT * FROM setup_actors;
+------+------+------+
| HOST | USER | ROLE |
+------+------+------+
| % | % | % |
+------+------+------+
Modifications to the setup_actors table do not affect existing threads.
For more information about the role of the setup_actors table in event monitoring, see Section 20.2.3.2.1, “Event Pre-Filtering”.
20.9.1.2. The setup_consumers Table
The setup_consumers table lists the types of consumers for which event information can be stored and which are enabled:
mysql> SELECT * FROM setup_consumers;
+--------------------------------+---------+
| NAME | ENABLED |
+--------------------------------+---------+
| events_stages_current | NO |
| events_stages_history | NO |
| events_stages_history_long | NO |
| events_statements_current | YES |
| events_statements_history | NO |
| events_statements_history_long | NO |
| events_waits_current | NO |
| events_waits_history | NO |
| events_waits_history_long | NO |
| global_instrumentation | YES |
| thread_instrumentation | YES |
+--------------------------------+---------+
The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower. For detailed information about the effect of enabling different consumers, see Section 20.2.3.2.1.4, “Pre-Filtering by Consumer”.
The setup_consumers table has these columns:
NAME
The consumer name.
ENABLED
Whether the consumer is enabled. This column can be modified. If you disable a consumer, the server does not spend time adding event information to it.
Modifications to the setup_consumers table affect monitoring immediately.
20.9.1.3. The setup_instruments Table
The setup_instruments table lists classes of instrumented objects for which events can be collected:
mysql> SELECT * FROM setup_instruments;
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
...
| wait/synch/mutex/sql/LOCK_global_read_lock | YES | YES |
| wait/synch/mutex/sql/LOCK_global_system_variables | YES | YES |
| wait/synch/mutex/sql/LOCK_lock_db | YES | YES |
| wait/synch/mutex/sql/LOCK_manager | YES | YES |
...
| wait/synch/rwlock/sql/LOCK_grant | YES | YES |
| wait/synch/rwlock/sql/LOGGER::LOCK_logger | YES | YES |
| wait/synch/rwlock/sql/LOCK_sys_init_connect | YES | YES |
| wait/synch/rwlock/sql/LOCK_sys_init_slave | YES | YES |
...
| wait/io/file/sql/binlog | YES | YES |
| wait/io/file/sql/binlog_index | YES | YES |
| wait/io/file/sql/casetest | YES | YES |
| wait/io/file/sql/dbopt | YES | YES |
...
Each instrument added to the source code provides a row for this table, even when the instrumented code is not executed. When an instrument is enabled and executed, instrumented instances are created, which are visible in the *_instances tables.
The setup_instruments table has these columns:
NAME
The instrument name. Instrument names have multiple parts and form a hierarchy, as discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”. Events produced from execution of an instrument have an EVENT_NAME value that is taken from the instrument NAME value. (Events do not really have a “name,” but this provides a way to associate events with instruments.)
ENABLED
Whether the instrument is enabled. This column can be modified. A disabled instrument produces no events.
TIMED
Whether the instrument is timed. This column can be modified.
If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer values. This in turn causes those values to be ignored when calculating the sum, minimum, maximum, and average time values in summary tables.
Modifications to the setup_instruments table affect monitoring immediately.
For more information about the role of the setup_instruments table in event filtering, see Section 20.2.3.2.1, “Event Pre-Filtering”.
20.9.1.4. The setup_objects Table
The setup_objects table controls whether particular objects are monitored. This table has a maximum size of 100 rows by default. The size may be changed by modifying the performance_schema_setup_objects_size system variable at server startup.
The initial setup_objects contents look like this:
mysql> SELECT * FROM setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
| TABLE | mysql | % | NO | NO |
| TABLE | performance_schema | % | NO | NO |
| TABLE | information_schema | % | NO | NO |
| TABLE | % | % | YES | YES |
+-------------+--------------------+-------------+---------+-------+
For object types listed in setup_objects, the Performance Schema uses the table to how to monitor them. Object matching is based on the OBJECT_SCHEMA and OBJECT_NAME columns. Objects for which there is no match are not monitored.
When the Performance Schema checks for a match in setup_objects, it tries to find more specific matches first. For example, with a table db1.t1, it looks for a match for 'db1' and 't1', then for 'db1' and '%', then for '%' and '%'. The order in which matching occurs matters because different setup_objects rows can have different ENABLED and TIMED values.
The effect of the default object configuration is to instrument all tables except those in the mysql, INFORMATION_SCHEMA, and performance_schema databases. Tables in the INFORMATION_SCHEMA database are not instrumented regardless of the contents of setup_objects; the row for information_schema.% simply makes this default explicit.
The setup_objects table has these columns:
OBJECT_TYPE
The type of object to instrument. Currently, this is always 'TABLE' (base table).
OBJECT_SCHEMA
The schema that contains the object. This should be a literal name, or '%' to mean “any schema.”
OBJECT_NAME
The name of the instrumented object. This should be a literal name, or '%' to mean “any object.”
ENABLED
Whether events for the object are instrumented. This column can be modified.
This column was added in MySQL 5.6.3. For earlier versions in which it is not present, the Performance Schema enables monitoring only for objects matched by some row in the table; monitoring is implicitly disabled for nonmatching objects.
TIMED
Whether events for the object are timed. This column can be modified.
Rows can be inserted into or deleted from setup_objects by users with the INSERT or DELETE privilege on the table. For existing rows, only the ENABLED and TIMED columns can be modified, by users with the UPDATE privilege on the table.
Modifications to the setup_objects table affect object monitoring immediately.
For more information about the role of the setup_objects table in event filtering, see Section 20.2.3.2.1, “Event Pre-Filtering”.
20.9.1.5. The setup_timers Table
The setup_timers table shows the currently selected event timers:
mysql> SELECT * FROM setup_timers;
+-----------+-------------+
| NAME | TIMER_NAME |
+-----------+-------------+
| idle | MICROSECOND |
| wait | CYCLE |
| stage | NANOSECOND |
| statement | NANOSECOND |
+-----------+-------------+
The setup_timers table has these columns:
NAME
The type of instrument the timer is used for.
TIMER_NAME
The timer that applies to the instrument type. This column can be modified.
The setup_timers.TIMER_NAME value can be changed to select a different timer. The value can be any of the values in the performance_timers.TIMER_NAME column. For an explanation of how event timing occurs, see Section 20.2.3.1, “Performance Schema Event Timing”.
Modifications to the setup_timers table affect monitoring immediately. Events already in progress may use the original timer for the begin time and the new timer for the end time, which may lead to unpredictable results. If you make timer changes, you may want to use TRUNCATE TABLE to reset Performance Schema statistics.
20.9.2. Performance Schema Instance Tables
Instance tables document what types of objects are instrumented. They provide event names and explanatory notes or status information:
cond_instances: Condition synchronization object instances
file_instances: File instances
mutex_instances: Mutex synchronization object instances
rwlock_instances: Lock synchronization object instances
socket_instances: Active connection instances
These tables list instrumented synchronization objects, files, and connections. There are three types of synchronization objects: cond, mutex, and rwlock. Each instance table has an EVENT_NAME or NAME column to indicate the instrument associated with each row. Instrument names have multiple parts and form a hierarchy, as discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”.
The mutex_instances.LOCKED_BY_THREAD_ID and rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for investigating performance bottlenecks or deadlocks. For examples of how to use them for this purpose, see Section 20.15, “Using the Performance Schema to Diagnose Problems”
20.9.2.1. The cond_instances Table
The cond_instances table lists all the conditions seen by the Performance Schema while the server executes. A condition is a synchronization mechanism used in the code to signal that a specific event has happened, so that a thread waiting for this condition can resume work.
When a thread is waiting for something to happen, the condition name is an indication of what the thread is waiting for, but there is no immediate way to tell which other thread, or threads, will cause the condition to happen.
The cond_instances table has these columns:
NAME
The instrument name associated with the condition.
OBJECT_INSTANCE_BEGIN
The address in memory of the condition that was instrumented.
20.9.2.2. The file_instances Table
The file_instances table lists all the files seen by the Performance Schema when executing file I/O instrumentation. If a file on disk has never been opened, it will not be in file_instances. When a file is deleted from the disk, it is also removed from the file_instances table.
The file_instances table has these columns:
FILE_NAME
The file name.
EVENT_NAME
The instrument name associated with the file.
OPEN_COUNT
The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but OPEN_COUNT will be 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT > 0.
20.9.2.3. The mutex_instances Table
The mutex_instances table lists all the mutexes seen by the Performance Schema while the server executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at a given time can have access to some common resource. The resource is said to be “protected” by the mutex.
When two threads executing in the server (for example, two user sessions executing a query simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these two threads will compete against each other, so that the first query to obtain a lock on the mutex will cause the other query to wait until the first is done and unlocks the mutex.
The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do execute this critical section in a serialized way (one at a time), which is a potential bottleneck.
The mutex_instances table has these columns:
NAME
The instrument name associated with the mutex.
OBJECT_INSTANCE_BEGIN
The address in memory of the mutex that was instrumented.
LOCKED_BY_THREAD_ID
When a thread currently has a mutex locked, LOCKED_BY_THREAD_ID is the THREAD_ID of the locking thread, otherwise it is NULL.
For every mutex instrumented in the code, the Performance Schema provides the following information.
The setup_instruments table lists the name of the instrumentation point, with the prefix wait/synch/mutex/.
When some code creates a mutex, a row is added to the mutex_instances table. The OBJECT_INSTANCE_BEGIN column is a property that uniquely identifies the mutex.
When a thread attempts to lock a mutex, the events_waits_current table shows a row for that thread, indicating that it is waiting on a mutex (in the EVENT_NAME column), and indicating which mutex is waited on (in the OBJECT_INSTANCE_BEGIN column).
When a thread succeeds in locking a mutex:
events_waits_current shows that the wait on the mutex is completed (in the TIMER_END and TIMER_WAIT columns)
The completed wait event is added to the events_waits_history and events_waits_history_long tables
mutex_instances shows that the mutex is now owned by the thread (in the THREAD_ID column).
When a thread unlocks a mutex, mutex_instances shows that the mutex now has no owner (the THREAD_ID column is NULL).
When a mutex object is destroyed, the corresponding row is removed from mutex_instances.
By performing queries on both of the following tables, a monitoring application or a DBA can detect bottlenecks or deadlocks between threads that involve mutexes:
events_waits_current, to see what mutex a thread is waiting for
mutex_instances, to see which other thread currently owns a mutex
20.9.2.4. The rwlock_instances Table
The rwlock_instances table lists all the rwlock instances (read write locks) seen by the Performance Schema while the server executes. An rwlock is a synchronization mechanism used in the code to enforce that threads at a given time can have access to some common resource following certain rules. The resource is said to be “protected” by the rwlock. The access is either shared (many threads can have a read lock at the same time) or exclusive (only one thread can have a write lock at a given time).
Depending on how many threads are requesting a lock, and the nature of the locks requested, access can be either granted in shared mode, granted in exclusive mode, or not granted at all, waiting for other threads to finish first.
The rwlock_instances table has these columns:
NAME
The instrument name associated with the lock.
OBJECT_INSTANCE_BEGIN
The address in memory of the lock that was instrumented.
WRITE_LOCKED_BY_THREAD_ID
When a thread currently has an rwlock locked in exclusive (write) mode, WRITE_LOCKED_BY_THREAD_ID is the THREAD_ID of the locking thread, otherwise it is NULL.
READ_LOCKED_BY_COUNT
When a thread currently has an rwlock locked in shared (read) mode, READ_LOCKED_BY_COUNT is incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a read lock, but it can be used to see whether there is a read contention on an rwlock, and see how many readers are currently active.
By performing queries on both of the following tables, a monitoring application or a DBA may detect some bottlenecks or deadlocks between threads that involve locks:
events_waits_current, to see what rwlock a thread is waiting for
rwlock_instances, to see which other thread currently owns an rwlock
There is a limitation: The rwlock_instances can be used only to identify the thread holding a write lock, but not the threads holding a read lock.
20.9.2.5. The socket_instances Table
The socket_instances table provides a real-time snapshot of the active connections to the MySQL server. The table contains one row per TCP/IP or Unix socket file connection. Information available in this table includes network activity such as socket instances, socket operations, and number of bytes transmitted and received.
mysql> SELECT * FROM socket_instances\G
*************************** 1. row ***************************
EVENT_NAME: wait/io/socket/sql/server_unix_socket
OBJECT_INSTANCE_BEGIN: 4316619408
THREAD_ID: 1
SOCKET_ID: 16
IP:
PORT: 0
STATE: ACTIVE
*************************** 2. row ***************************
EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 4316644608
THREAD_ID: 21
SOCKET_ID: 39
IP: 127.0.0.1
PORT: 55233
STATE: ACTIVE
*************************** 3. row ***************************
EVENT_NAME: wait/io/socket/sql/server_tcpip_socket
OBJECT_INSTANCE_BEGIN: 4316699040
THREAD_ID: 1
SOCKET_ID: 14
IP: 0.0.0.0
PORT: 50603
STATE: ACTIVE
Socket instruments have names of the form wait/io/socket/sql/socket_type and are used like this:
The server has a listening socket for each network protocol that it supports. The instruments associated with listening sockets for TCP/IP or Unix socket file connections have a socket_type value of server_tcpip_socket or server_unix_socket, respectively.
When a listening socket detects a connection, the server transfers the connection to a new socket managed by a separate thread. The instrument for the new connection thread has a socket_type value of client_connection.
When a connection terminates, the row in socket_instances corresponding to it is deleted.
The socket_instances table has these columns:
EVENT_NAME
The name of the wait/io/socket/* instrument that produced the event. This is a setup_instruments.NAME value. Instrument names have multiple parts and form a hierarchy, as discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”.
OBJECT_INSTANCE_BEGIN
This column uniquely identifies the socket. The value is the address of an object in memory.
THREAD_ID
The internal thread identifier assigned by the server. Each socket is managed by a single thread, so each socket can be mapped to a thread which can be mapped to a server process.
SOCKET_ID
The internal file handle assigned to the socket.
IP
The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix socket file connection.
PORT
The TCP/IP port number, in the range from 0 to 65535.
STATE
The socket status, either IDLE or ACTIVE. Wait times for active sockets are tracked using the corresponding socket instrument. Wait times for idle sockets are tracked using the idle instrument.
A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event row in socket_instances that is tracking the socket switches from a status of ACTIVE to IDLE. The EVENT_NAME value remains wait/io/socket/*, but timing for the instrument is suspended. Instead, an event is generated in the events_waits_current table with an EVENT_NAME value of idle.
When the next request is received, the idle event terminates, the socket instance switches from IDLE to ACTIVE, and timing of the socket instrument resumes.
The IP:PORT column combination value identifies the connection. This combination value is used in the OBJECT_NAME column of the events_waits_xxx tables, to identify the connection from which socket events come:
For the Unix domain listener socket (server_unix_socket), the port is 0, and the IP is ''.
For client connections via the Unix domain listener (client_connection), the port is 0, and the IP is ''.
For the TCP/IP server listener socket (server_tcpip_socket), the port is always the master port (for example, 3306), and the IP is always 0.0.0.0.
For client connections via the TCP/IP listener (client_connection), the port is whatever the server assigns, but never 0. The IP is the IP of the originating host (127.0.0.1 or ::1 for the local host)
The socket_instances table was added in MySQL 5.6.3.
20.9.3. Performance Schema Wait Event Tables
These tables store wait events:
events_waits_current: Current wait events
events_waits_history: The most recent wait events for each thread
events_waits_history_long: The most recent wait events overall
20.9.3.1. The events_waits_current Table
The events_waits_current table contains current wait events, one row per thread showing the current status of the thread's most recent monitored wait event.
The events_waits_current table can be truncated with TRUNCATE TABLE.
Of the tables that contain wait event rows, events_waits_current is the most fundamental. Other tables that contain wait event rows are logically derived from the current events. For example, the events_waits_history and events_waits_history_long tables are collections of the most recent wait events, up to a fixed number of rows.
The events_waits_current table has these columns:
THREAD_ID
The thread associated with the event. The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the row. No two rows will have the same pair of values.
EVENT_ID
The thread current event number when the event starts.
END_EVENT_ID
This column is set to NULL when the event starts, and updated to the thread current event number when the event ends. This column was added in MySQL 5.6.4.
EVENT_NAME
The name of the instrument that produced the event. This is a setup_instruments.NAME value. Instrument names have multiple parts and form a hierarchy, as discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”.
SOURCE
The name of the source file containing the instrumented code that produced the event and the line number in the file at which the instrumentation occurs. This enables you to check the source to determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can check the context in which this occurs.
TIMER_START, TIMER_END, TIMER_WAIT
Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is the event elapsed time (duration).
If an event has not finished, TIMER_END and TIMER_WAIT are NULL.
If an event is produced from an instrument that has TIMED = NO, timing information is not collected, and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.
For discussion of picoseconds as the unit for event times and factors that affect time values, see Section 20.2.3.1, “Performance Schema Event Timing”.
SPINS
For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or spinning is not instrumented.
OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, OBJECT_INSTANCE_BEGIN
These columns identify the object “being acted on.” What that means depends on the object type.
For a synchronization object (cond, mutex, rwlock):
OBJECT_SCHEMA, OBJECT_NAME, and OBJECT_TYPE are NULL.
OBJECT_INSTANCE_BEGIN is the address of the synchronization object in memory.
For a file I/O object:
OBJECT_SCHEMA is NULL.
OBJECT_NAME is the file name.
OBJECT_TYPE is FILE.
OBJECT_INSTANCE_BEGIN is an address in memory.
For a socket object:
OBJECT_NAME is the IP:PORT value for the socket.
OBJECT_INSTANCE_BEGIN is an address in memory.
For a table I/O object:
OBJECT_SCHEMA is the name of the schema that contains the table.
OBJECT_NAME is the table name.
OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.
OBJECT_INSTANCE_BEGIN is an address in memory.
An OBJECT_INSTANCE_BEGIN value itself has no meaning, except that different values indicate different objects. OBJECT_INSTANCE_BEGIN can be used for debugging. For example, it can be used with GROUP BY OBJECT_INSTANCE_BEGIN to see whether the load on 1,000 mutexes (that protect, say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This can help you correlate with other sources of information if you see the same object address in a log file or another debugging or performance tool.
INDEX_NAME
The name of the index used. PRIMARY indicates the table primary index. NULL means that no index was used.
NESTING_EVENT_ID
The EVENT_ID value of the event within which this event is nested. Before MySQL 5.6.3, this column is always NULL.
NESTING_EVENT_TYPE
The nesting event type. The value is statement, stage, or wait. This column was added in MySQL 5.6.3.
OPERATION
The type of operation performed, such as lock, read, or write.
NUMBER_OF_BYTES
The number of bytes read or written by the operation. For table I/O waits, NUMBER_OF_BYTES is NULL.
FLAGS
Reserved for future use.
20.9.3.2. The events_waits_history Table
The events_waits_history table contains the most recent 10 wait events per thread. The table size may be changed by modifying the performance_schema_events_waits_history_size system variable at server startup. As new events are added to the table, older events are discarded if the table is full. Events are not added to the table until they have ended.
The events_waits_history table has the same structure as events_waits_current. See Section 20.9.3.1, “The events_waits_current Table”.
The events_waits_history table can be truncated with TRUNCATE TABLE.
20.9.3.3. The events_waits_history_long Table
The events_waits_history_long table contains the most recent 10,000 wait events. The table size may be changed by modifying the performance_schema_events_waits_history_long_size system variable at server startup. As new events are added to the table, older events are discarded if the table is full. Events are not added to the table until they have ended.
The events_waits_history_long table has the same structure as events_waits_current. See Section 20.9.3.1, “The events_waits_current Table”.
The events_waits_history_long table can be truncated with TRUNCATE TABLE.
20.9.4. Performance Schema Stage Event Tables
As of MySQL 5.6.3, the Performance Schema instruments stages, which are steps during the statement-execution process, such as parsing a statement, opening a table, or performing a filesort operation. Stages correspond to the thread states displayed by SHOW PROCESSLIST or that are visible in the INFORMATION_SCHEMA.PROCESSLIST table. Stages begin and end when state values change.
Within the event hierarchy, wait events nest within stage events, which nest within statement events.
These tables store stage events:
events_stages_current: Current stage events
events_stages_history: The most recent stage events for each thread
events_stages_history_long: The most recent stage events overall
20.9.4.1. The events_stages_current Table
The events_stages_current table contains current stage events, one row per thread showing the current status of the thread's most recent monitored stage event.
The events_stages_current table can be truncated with TRUNCATE TABLE.
Of the tables that contain stage event rows, events_stages_current is the most fundamental. Other tables that contain stage event rows are logically derived from the current events. For example, the events_stages_history and events_stages_history_long tables are collections of the most recent stage events, up to a fixed number of rows.
The events_stages_current table has these columns:
THREAD_ID
The thread associated with the event. The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the row. No two rows will have the same pair of values.
EVENT_ID
The thread current event number when the event starts.
END_EVENT_ID
This column is set to NULL when the event starts, and updated to the thread current event number when the event ends. This column was added in MySQL 5.6.4.
EVENT_NAME
The name of the instrument that produced the event. This is a setup_instruments.NAME value. Instrument names have multiple parts and form a hierarchy, as discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”.
SOURCE
The name of the source file containing the instrumented code that produced the event and the line number in the file at which the instrumentation occurs. This enables you to check the source to determine exactly what code is involved.
TIMER_START, TIMER_END, TIMER_WAIT
Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is the event elapsed time (duration).
If an event has not finished, TIMER_END and TIMER_WAIT are NULL.
If an event is produced from an instrument that has TIMED = NO, timing information is not collected, and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.
For discussion of picoseconds as the unit for event times and factors that affect time values, see Section 20.2.3.1, “Performance Schema Event Timing”.
NESTING_EVENT_ID
The EVENT_ID value of the event within which this event is nested. The nesting event for a stage event is usually a statement event.
NESTING_EVENT_TYPE
The nesting event type. The value is statement, stage, or wait.
The events_stages_current table was added in MySQL 5.6.3.
20.9.4.2. The events_stages_history Table
The events_stages_history table contains the most recent 10 stage events per thread. The table size may be changed by modifying the performance_schema_events_stages_history_size system variable at server startup. As new events are added to the table, older events are discarded if the table is full. Events are not added to the table until they have ended.
The events_stages_history table has the same structure as events_stages_current. See Section 20.9.4.1, “The events_stages_current Table”.
The events_stages_history table can be truncated with TRUNCATE TABLE.
The events_stages_history table was added in MySQL 5.6.3.
20.9.4.3. The events_stages_history_long Table
The events_stages_history_long table contains the most recent 10,000 stage events. The table size may be changed by modifying the performance_schema_events_stages_history_long_size system variable at server startup. As new events are added to the table, older events are discarded if the table is full. Events are not added to the table until they have ended.
The events_stages_history_long table has the same structure as events_stages_current. See Section 20.9.4.1, “The events_stages_current Table”.
The events_stages_history_long table can be truncated with TRUNCATE TABLE.
The events_stages_history_long table was added in MySQL 5.6.3.
20.9.5. Performance Schema Statement Event Tables
As of MySQL 5.6.3, the Performance Schema instruments statement execution. Statement events occur at a high level of the event hierarchy. Wait events nest within stage events, which nest within statement events.
These tables store statement events:
events_statements_current: Current statement events
events_statements_history: The most recent statement events for each thread
events_statements_history_long: The most recent statement events overall
Statement monitoring begins from the moment when the server sees that activity is requested on a thread, to the moment when all activity has ceased. Typically, this means from the time the server gets the first packet from the client to the time the server has finished sending the response. Monitoring occurs only for top-level statements. Statements within stored programs and subqueries are not seen separately.
A request from a client can be either a command or a SQL statement:
Server commands correspond to the COM_xxx codes defined in the mysql_com.h header file and processed in sql/sql_parse.cc. Examples are COM_PING, COM_QUERY, and COM_QUIT. Instruments for commands have names that begin with statement/com, such as statement/com/Ping, statement/com/Query, and statement/com/Quit.
SQL statements are expressed as text, such as DELETE FROM t1 or SELECT * FROM t2. Instruments for SQL statements have names that begin with statement/sql, such as statement/sql/delete and statement/sql/select.
There are also special error-handling instruments:
statement/com/Error accounts for messages received by the server that are out of band. It can be used to detect commands sent by clients that the server does not understand. This may be helpful for purposes such as identifying clients that are misconfigured or using a version of MySQL more recent than that of the server, or clients that are attempting to attack the server.
statement/sql/error accounts for SQL statements that fail to parse. It can be used to detect malformed queries sent by clients. A query that fails to parse differs from a query that parses but fails due to an error during execution. For example, SELECT * FROM is malformed, and the statement/sql/error instrument is used. By contrast, SELECT * parses but fails with a No tables used error. In this case, statement/sql/select is used and the statement event contains information to indicate the nature of the error.
Details for a request are not initially known. For example, because a SQL statement is sent as text inside a COM_QUERY packet, the proper statement/sql/* instrument is not known at the moment the request is received. The Performance Schema at first instruments such a request using an event with an EVENT_NAME of statement/com/Query. Then it changes the EVENT_NAME value to either a valid statement/sql/* name if the statement parses, or to statement/sql/error if it does not.
20.9.5.1. The events_statements_current Table
The events_statements_current table contains current statement events, one row per thread showing the current status of the thread's most recent monitored statement event.
The events_statements_current table can be truncated with TRUNCATE TABLE.
Of the tables that contain statement event rows, events_statements_current is the most fundamental. Other tables that contain statement event rows are logically derived from the current events. For example, the events_statements_history and events_statements_history_long tables are collections of the most recent statement events, up to a fixed number of rows.
The events_statements_current table has these columns:
THREAD_ID
The thread associated with the event. The THREAD_ID and EVENT_ID values taken together form a primary key that uniquely identifies the row. No two rows will have the same pair of values.
EVENT_ID
The thread current event number when the event starts.
END_EVENT_ID
This column is set to NULL when the event starts, and updated to the thread current event number when the event ends. This column was added in MySQL 5.6.4.
EVENT_NAME
The name of the instrument from which the event was collected. This is a setup_instruments.NAME value. Instrument names have multiple parts and form a hierarchy, as discussed in Section 20.4, “Performance Schema Instrument Naming Conventions”.
For SQL statements, the EVENT_NAME value initially is statement/com/Query until the statement is parsed, then changes to a more appropriate value, as described in Section 20.9.5, “Performance Schema Statement Event Tables”.
SOURCE
The name of the source file containing the instrumented code that produced the event and the line number in the file at which the instrumentation occurs. This enables you to check the source to determine exactly what code is involved.
TIMER_START, TIMER_END, TIMER_WAIT
Timing information for the event. The unit for these values is picoseconds (trillionths of a second). The TIMER_START and TIMER_END values indicate when event timing started and ended. TIMER_WAIT is the event elapsed time (duration).
If an event has not finished, TIMER_END and TIMER_WAIT are NULL.
If an event is produced from an instrument that has TIMED = NO, timing information is not collected, and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.
For discussion of picoseconds as the unit for event times and factors that affect time values, see Section 20.2.3.1, “Performance Schema Event Timing”.
LOCK_TIME
The time spent waiting for table locks. This value is computed in microseconds but normalized to picoseconds for easier comparison with other Performance Schema timers.
SQL_TEXT
The text of the SQL statement. For a command not associated with a SQL statement, the value is NULL.
DIGEST
The statement digest MD5 value as a string of 32 hexadecimal characters, or NULL if the statement_digest consumer is no. For more information about statement digesting, see Section 20.7, “Performance Schema Statement Digests”. This column was added in MySQL 5.6.5.
DIGEST_TEXT
The normalized statement digest text, or NULL if the statement_digest consumer is no. For more information about statement digesting, see Section 20.7, “Performance Schema Statement Digests”. This column was added in MySQL 5.6.5.
CURRENT_SCHEMA
The default database for the statement, NULL if there is none.
OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE
Reserved. Currently NULL.
OBJECT_INSTANCE_BEGIN
This column identifies the statement. The value is the address of an object in memory.
MYSQL_ERRNO
The statement error number, from the statement diagnostics area.
RETURNED_SQLSTATE
The statement SQLSTATE value, from the statement diagnostics area.
MESSAGE_TEXT
The statement error message, from the statement diagnostics area.
ERRORS
Whether an error occurred for the statement. The value is 0 if the SQLSTATE value begins with 00 (completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.
WARNINGS
The number of warnings, from the statement diagnostics area.
ROWS_AFFECTED
The number of rows affected by the statement. For a description of the meaning of “affected,” see Section 21.8.6.1, “mysql_affected_rows()”.
ROWS_SENT
The number of rows returned by the statement.
ROWS_EXAMINED
The number of rows read from storage engines during statement execution.
CREATED_TMP_DISK_TABLES
Like the Created_tmp_disk_tables status variable, but specific to the statement.
CREATED_TMP_TABLES
Like the Created_tmp_tables status variable, but specific to the statement.
SELECT_FULL_JOIN
Like the Select_full_join status variable, but specific to the statement.
SELECT_FULL_RANGE_JOIN
Like the Select_full_range_join status variable, but specific to the statement.
SELECT_RANGE
Like the Select_range status variable, but specific to the statement.
SELECT_RANGE_CHECK
Like the Select_range_check status variable, but specific to the statement.
SELECT_SCAN
Like the Select_scan status variable, but specific to the statement.
SORT_MERGE_PASSES
Like the Sort_merge_passes status variable, but specific to the statement.
SORT_RANGE
Like the Sort_range status variable, but specific to the statement.
SORT_ROWS
Like the Sort_rows status variable, but specific to the statement.
SORT_SCAN
Like the Sort_scan status variable, but specific to the statement.
NO_INDEX_USED
1 if the statement performed a table scan without using an index, 0 otherwise.
NO_GOOD_INDEX_USED
1 if the server found no good index to use for the statement, 0 otherwise. For additional information, see the description of the Extra column from EXPLAIN output for the Range checked for each record value in Section 8.8.2, “EXPLAIN Output Format”.
NESTING_EVENT_ID, NESTING_EVENT_TYPE
Reserved. Currently NULL.
The events_statements_current table was added in MySQL 5.6.3.
20.9.5.2. The events_statements_history Table
The events_statements_history table contains the most recent 10 events per thread. The table size may be changed by modifying the performance_schema_events_statements_history_size system variable at server startup. As new events are added to the table, older events are discarded if the table is full. Events are not added to the table until they have ended.
The events_statements_history table has the same structure as events_statements_current. See Section 20.9.5.1, “The events_statements_current Table”.
The events_statements_history table can be truncated with TRUNCATE TABLE.
The events_statements_history table was added in MySQL 5.6.3.
20.9.5.3. The events_statements_history_long Table
The events_statements_history_long table contains the most recent 10,000 events. The table size may be changed by modifying the performance_schema_events_statements_history_long_size system variable at server startup. As new events are added to the table, older events are discarded if the table is full. Events are not added to the table until they have ended.
The events_statements_history_long table has the same structure as events_statements_current. See Section 20.9.5.1, “The events_statements_current Table”.
The events_statements_history_long table can be truncated with TRUNCATE TABLE.
The events_statements_history_long table was added in MySQL 5.6.3.
20.9.6. Performance Schema Connection Tables
As of MySQL 5.6.3, the Performance Schema provides statistics about connections to the server. When a client connects, it does so under a particular user name and from a particular host. The Performance Schema tracks connections per account (user name plus host name) and separately per user name and per host name, using these tables:
accounts: Connection statistics per client account
hosts: Connection statistics per client host name
users: Connection statistics per client user name
The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables in the mysql database, in the sense that the term refers to a combination of user and host values. Where they differ is that in the grant tables, the host part of an account can be a pattern, whereas in the connection tables the host value is always a specific nonpattern host name.
The connection tables all have CURRENT_CONNECTIONS and TOTAL_CONNECTIONS columns to track the current and total number of connections per “tracking value” on which statistics are based. The tables differ in what they use for the tracking value. The accounts table has USER and HOST columns to track connections per user name plus host name combination. The users and hosts tables have a USER and HOST column, respectively, to track connections per user name and per host name.
Suppose that clients named user1 and user2 each connect one time from hosta and hostb. The Performance Schema tracks the connections as follows:
The accounts table will have four rows, for the user1/hosta, user1/hostb, user2/hosta, and user2/hostb account values, each row counting one connection per account.
The users table will have two rows, for user1 and user2, each row counting two connections per user name.
The hosts table will have two rows, for hosta and hostb, each row counting two connections per host name.
When a client connects, the Performance Schema determines which row in each connection table applies to the connection, using the tracking value appropriate to each table. If there is no such row, one is added. Then the Performance Schema increments by one the CURRENT_CONNECTIONS and TOTAL_CONNECTIONS columns in that row.
When a client disconnects, the Performance Schema decrements by one the CURRENT_CONNECTIONS column in the row and leaves the TOTAL_CONNECTIONS column unchanged.
Each connection table can be truncated with TRUNCATE TABLE, which has this effect:
Rows with CURRENT_CONNECTIONS = 0 are deleted.
For rows with CURRENT_CONNECTIONS > 0, TOTAL_CONNECTIONS is reset to CURRENT_CONNECTIONS.
Connection summary tables that depend on the connection table are truncated implicitly (summary values are set to 0). For more information about implicit truncation, see Section 20.9.8.7, “Connection Summary Tables”.
20.9.6.1. The accounts Table
The accounts table contains a row for each account that has connected to the MySQL server. For each account, the table counts the current and total number of connections. The table size may be changed by modifying the performance_schema_accounts_size system variable at server startup. To disable account statistics, set this variable to 0.
The accounts table has the following columns. For a description of how the Performance Schema maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 20.9.6, “Performance Schema Connection Tables”.
USER
The client user name for the connection.
HOST
The host name from which the client connected.
CURRENT_CONNECTIONS
The current number of connections for the account.
TOTAL_CONNECTIONS
The total number of connections for the account.
The accounts table was added in MySQL 5.6.3.
20.9.6.2. The hosts Table
The hosts table contains a row for each host from which clients have connected to the MySQL server. For each host name, the table counts the current and total number of connections. The table size may be changed by modifying the performance_schema_hosts_size system variable at server startup. To disable host statistics, set this variable to 0.
The hosts table has the following columns. For a description of how the Performance Schema maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 20.9.6, “Performance Schema Connection Tables”.
HOST
The host name from which the client connected.
CURRENT_CONNECTIONS
The current number of connections for the host.
TOTAL_CONNECTIONS
The total number of connections for the host.
The hosts table was added in MySQL 5.6.3.
20.9.6.3. The users Table
The users table contains a row for each user who has connected to the MySQL server. For each user name, the table counts the current and total number of connections. The table size may be changed by modifying the performance_schema_users_size system variable at server startup. To disable user statistics, set this variable to 0.
The users table has the following columns. For a description of how the Performance Schema maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 20.9.6, “Performance Schema Connection Tables”.
USER
The client user name for the connection.
CURRENT_CONNECTIONS
The current number of connections for the user.
TOTAL_CONNECTIONS
The total number of connections for the user.
The users table was added in MySQL 5.6.3.
20.9.7. Performance Schema Connection Attribute Tables
As of MySQL 5.6.6, application programs can provide key/value connection attributes to be passed to the server at connect time, using the mysql_options() and mysql_options4() C API functions. The Performance Schema provides tables that expose this information through SQL statements:
session_account_connect_attrs: Connection attributes per for the current session
session_connect_attrs: Connection attributes for all sessions
Both tables have the same columns. The difference between them is that session_connect_attrs displays connection attributes for all sessions, whereas session_account_connect_attrs displays connections only for your own account.
PROCESSLIST_ID
The connection identifier for the session.
ATTR_NAME
The attribute name.
ATTR_VALUE
The attribute value.
ORDINAL_POSITION
The order in which the attribute was added to the set of connection attributes.
20.9.8. Performance Schema Summary Tables
Summary tables provide aggregated information for terminated events over time. The tables in this group summarize event data in different ways.
Event Wait Summaries:
events_waits_summary_global_by_event_name: Wait events summarized per event name
events_waits_summary_by_instance: Wait events summarized per instance
events_waits_summary_by_thread_by_event_name: Wait events summarized per thread and event name
Stage Summaries:
events_stages_summary_by_thread_by_event_name: Stage waits summarized per thread and event name
events_stages_summary_global_by_event_name: Stage waits summarized per event name
Statement Summaries:
events_statements_summary_by_thread_by_event_name: Statement events summarized per thread and event name
events_statements_summary_global_by_event_name: Statement events summarized per event name
Object Wait Summaries:
objects_summary_global_by_type: Object summaries
File I/O Summaries:
file_summary_by_event_name: File events summarized per event name
file_summary_by_instance: File events summarized per file instance
Table I/O and Lock Wait Summaries:
table_io_waits_summary_by_index_usage: Table I/O waits per index
table_io_waits_summary_by_table: Table I/O waits per table
table_lock_waits_summary_by_table: Table lock waits per table
Connection Summaries:
events_waits_summary_by_account_by_event_name: Wait events summarized per account and event name
events_waits_summary_by_user_by_event_name: Wait events summarized per user name and event name
events_waits_summary_by_host_by_event_name: Wait events summarized per host name and event name
events_stages_summary_by_account_by_event_name: Stage events summarized per account and event name
events_stages_summary_by_user_by_event_name: Stage events summarized per user name and event name
events_stages_summary_by_host_by_event_name: Stage events summarized per host name and event name
events_statements_summary_by_account_by_event_name: Statement events summarized per account and event name
events_statements_summary_by_user_by_event_name: Statement events summarized per user name and event name
events_statements_summary_by_host_by_event_name: Statement events summarized per host name and event name
Socket Summaries:
socket_summary_by_instance: Socket waits and I/O summarized per instance
socket_summary_by_event_name: Socket waits and I/O summarized per event name
Each summary table has grouping columns that determine how to group the data to be aggregated, and summary columns that contain the aggregated values. Tables that summarize events in similar ways often have similar sets of summary columns and differ only in the grouping columns used to determine how events are aggregated.
Summary tables can be truncated with TRUNCATE TABLE. Except for events_statements_summary_by_digest, the effect is to reset the summary columns to 0 or NULL, not to remove rows. This enables you to clear collected values and restart aggregation. That might be useful, for example, after you have made a runtime configuration change.
20.9.8.1. Event Wait Summary Tables
The event waits summary tables aggregate general information about event waits:
events_waits_summary_global_by_event_name: Wait events summarized per event name
events_waits_summary_by_instance: Wait events summarized per instance
events_waits_summary_by_thread_by_event_name: Wait events summarized per thread and event name
For example:
mysql> SELECT * FROM events_waits_summary_global_by_event_name\G
...
*************************** 6. row ***************************
EVENT_NAME: wait/synch/mutex/sql/BINARY_LOG::LOCK_index
COUNT_STAR: 8
SUM_TIMER_WAIT: 2119302
MIN_TIMER_WAIT: 196092
AVG_TIMER_WAIT: 264912
MAX_TIMER_WAIT: 569421
...
*************************** 9. row ***************************
EVENT_NAME: wait/synch/mutex/sql/hash_filo::lock
COUNT_STAR: 69
SUM_TIMER_WAIT: 16848828
MIN_TIMER_WAIT: 0
AVG_TIMER_WAIT: 244185
MAX_TIMER_WAIT: 735345
...
TRUNCATE TABLE is permitted for wait summary tables. It resets the counters to zero rather than removing rows.
The event wait summary tables have these grouping columns to indicate how events are aggregated:
events_waits_summary_global_by_event_name has an EVENT_NAME column. Each row summarizes events for a given instrument. An instrument might be used to create multiple instances of the instrumented object. For example, if there is an instrument for a mutex that is created for each connection, there are as many instances as there are connections. The summary row for the instrument summarizes over all these instances.
events_waits_summary_by_instance has EVENT_NAME and OBJECT_INSTANCE_BEGIN columns. Each row summarizes events for a given instrument instance. If an instrument is used to create multiple instances, each instance has a unique OBJECT_INSTANCE_BEGIN value, so these instances are summarized separately in this table.
events_waits_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME columns. Each row summarizes events for a given thread and instrument.
The event waits summary tables have these summary columns containing aggregated values:
COUNT_STAR
The number of summarized events. This value includes all events, whether timed or not.
SUM_TIMER_WAIT
The total wait time of the summarized timed events. This value is calculated only for timed events because nontimed events have a wait time of NULL. The same is true for the other xxx_TIMER_WAIT values.
MIN_TIMER_WAIT
The minimum wait time of the summarized timed events.
AVG_TIMER_WAIT
The average wait time of the summarized timed events.
MAX_TIMER_WAIT
The maximum wait time of the summarized timed events.
20.9.8.2. Stage Summary Tables
The stage summary tables provide aggregated information about stage events:
events_stages_summary_by_thread_by_event_name: Stage waits summarized per thread and event name
events_stages_summary_global_by_event_name: Stage waits summarized per event name
For example:
mysql> SELECT * FROM events_stages_summary_global_by_event_name\G
...
*************************** 5. row ***************************
EVENT_NAME: stage/sql/checking permissions
COUNT_STAR: 57
SUM_TIMER_WAIT: 26501888880
MIN_TIMER_WAIT: 7317456
AVG_TIMER_WAIT: 464945295
MAX_TIMER_WAIT: 12858936792
...
*************************** 9. row ***************************
EVENT_NAME: stage/sql/closing tables
COUNT_STAR: 37
SUM_TIMER_WAIT: 662606568
MIN_TIMER_WAIT: 1593864
AVG_TIMER_WAIT: 17907891
MAX_TIMER_WAIT: 437977248
...
TRUNCATE TABLE is permitted for stage summary tables. It resets the counters to zero rather than removing rows.
The stage summary tables have these grouping columns to indicate how events are aggregated:
events_stages_summary_global_by_event_name has an EVENT_NAME column. Each row summarizes events for a given instrument.
events_stages_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME columns. Each row summarizes events for a given thread instrument instance.
The stage summary tables have these summary columns containing aggregated values: COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT. These columns are analogous to the columns of the same names in the events_waits_summary_global_by_event_name and events_waits_summary_by_thread_by_event_name tables, except that the stage summary tables aggregate waits from events_stages_current rather than events_waits_current.
These tables were added in MySQL 5.6.3.
20.9.8.3. Statement Summary Tables
The statement summary tables aggregate information about statement events:
events_statements_summary_by_digest: Statement events summarized per schema and digest value
events_statements_summary_by_thread_by_event_name: Statement events summarized per thread and event name
events_statements_summary_global_by_event_name: Statement events summarized per event name
For example:
mysql> SELECT * FROM events_statements_summary_global_by_event_name\G
*************************** 1. row ***************************
EVENT_NAME: statement/sql/select
COUNT_STAR: 25
SUM_TIMER_WAIT: 1535983999000
MIN_TIMER_WAIT: 209823000
AVG_TIMER_WAIT: 61439359000
MAX_TIMER_WAIT: 1363397650000
SUM_LOCK_TIME: 20186000000
SUM_ERRORS: 0
SUM_WARNINGS: 0
SUM_ROWS_AFFECTED: 0
SUM_ROWS_SENT: 388
SUM_ROWS_EXAMINED: 370
SUM_CREATED_TMP_DISK_TABLES: 0
SUM_CREATED_TMP_TABLES: 0
SUM_SELECT_FULL_JOIN: 0
SUM_SELECT_FULL_RANGE_JOIN: 0
SUM_SELECT_RANGE: 0
SUM_SELECT_RANGE_CHECK: 0
SUM_SELECT_SCAN: 6
SUM_SORT_MERGE_PASSES: 0
SUM_SORT_RANGE: 0
SUM_SORT_ROWS: 0
SUM_SORT_SCAN: 0
SUM_NO_INDEX_USED: 6
SUM_NO_GOOD_INDEX_USED: 0
...
TRUNCATE TABLE is permitted for statement summary tables. For events_statements_summary_by_digest, it empties the table. For the other statement summary tables, it resets the counters to zero rather than removing rows.
The statement summary tables have these grouping columns to indicate how events are aggregated:
events_statements_summary_by_digest has SCHEMA_NAME and DIGEST column. Each row summarizes events for given schema/digest values. (The DIGEST_TEXT column contains the corresponding normalized statement digest text, but is neither a grouping nor summary column.)
Before MySQL 5.6.9, there is no SCHEMA_NAME column and grouping is based on DIGEST values only.
events_statements_summary_global_by_event_name has an EVENT_NAME column. Each row summarizes events for a given instrument.
events_statements_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME columns. Each row summarizes events for a given thread instrument instance.
The statement summary tables have these summary columns containing aggregated values:
COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT
These columns are analogous to the columns of the same names in the events_waits_summary_global_by_event_name and events_waits_summary_by_thread_by_event_name tables, except that the statement summary tables aggregate waits from events_statements_current rather than events_waits_current.
SUM_xxx
The aggregate of the corresponding xxx column in the events_statements_current table. For example, the SUM_LOCK_TIME and SUM_ERRORS columns in statement summary tables are the aggregates of the LOCK_TIME and ERRORS columns in events_statements_current table.
The events_statements_summary_by_digest table has these additional summary columns:
FIRST_SEEN_TIMESTAMP, LAST_SEEN_TIMESTAMP
The times at which a statement with the given digest value were first seen and most recently seen.
These tables were added in MySQL 5.6.3, except that events_statements_summary_by_digest was added in 5.6.5.
Statement Digest Aggregation Rules
If the statement_digest consumer is enabled, aggregation into events_statements_summary_by_digest occurs as follows when a statement completes. Aggregation is based on the DIGEST value computed for the statement.
If a events_statements_summary_by_digest row already exists with the digest value for the statement that just completed, statistics for the statement are aggregated to that row. The LAST_SEEN column is updated to the current time.
If no row has the digest value for the statement that just completed, and the table is not full, a new row is created for the statement. The FIRST_SEEN and LAST_SEEN columns are initialized with the current time.
If no row has the statement digest value for the statement that just completed, and the table is full, the statistics for the statement that just completed are added to a special “catch-all” row with DIGEST = NULL, which is created if necessary. If the row is created, the FIRST_SEEN and LAST_SEEN columns are initialized with the current time. Otherwise, the LAST_SEEN column is updated with the current time.
The row with DIGEST = NULL is maintained because Performance Schema tables have a maximum size due to memory constraints. The DIGEST = NULL row permits digests that do not match other rows to be counted even if the summary table is full, using a common “other” bucket. This row helps you estimate whether the digest summary is representative:
A DIGEST = NULL row that has a COUNT_STAR value that represents 5% of all digests shows that the digest summary table is very representative; the other rows cover 95% of the statements seen.
A DIGEST = NULL row that has a COUNT_STAR value that represents 50% of all digests shows that the digest summary table is not very representative; the other rows cover only half the statements seen. Most likely the DBA should increase the maximum table size so that more of the rows counted in the DIGEST = NULL row would be counted using more specific rows instead. To do this, set the performance_schema_digests_size system variable to a larger value at server startup. The default size is 200.
20.9.8.4. Object Wait Summary Table
The objects_summary_global_by_type aggregates object wait events. For example:
mysql> SELECT * FROM objects_summary_global_by_type\G
...
*************************** 3. row ***************************
OBJECT_TYPE: TABLE
OBJECT_SCHEMA: test
OBJECT_NAME: t
COUNT_STAR: 3
SUM_TIMER_WAIT: 263126976
MIN_TIMER_WAIT: 1522272
AVG_TIMER_WAIT: 87708678
MAX_TIMER_WAIT: 258428280
...
*************************** 10. row ***************************
OBJECT_TYPE: TABLE
OBJECT_SCHEMA: mysql
OBJECT_NAME: user
COUNT_STAR: 14
SUM_TIMER_WAIT: 365567592
MIN_TIMER_WAIT: 1141704
AVG_TIMER_WAIT: 26111769
MAX_TIMER_WAIT: 334783032
...
TRUNCATE TABLE is permitted for object summary tables. It resets the counters to zero rather than removing rows.
The objects_summary_global_by_type table has these grouping columns to indicate how events are aggregated: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. Each row summarizes events for the given object.
objects_summary_global_by_type has the same summary columns as the events_waits_summary_by_xxx tables. See Section 20.9.8.1, “Event Wait Summary Tables”.
20.9.8.5. File I/O Summary Tables
The file I/O summary tables aggregate information about I/O operations:
file_summary_by_event_name: File events summarized per event name
file_summary_by_instance: File events summarized per file instance
For example:
mysql> SELECT * FROM file_summary_by_event_name\G
...
*************************** 2. row ***************************
EVENT_NAME: wait/io/file/sql/binlog
COUNT_STAR: 31
SUM_TIMER_WAIT: 8243784888
MIN_TIMER_WAIT: 0
AVG_TIMER_WAIT: 265928484
MAX_TIMER_WAIT: 6490658832
...
mysql> SELECT * FROM file_summary_by_instance\G
...
*************************** 2. row ***************************
FILE_NAME: /var/mysql/share/english/errmsg.sys
EVENT_NAME: wait/io/file/sql/ERRMSG
EVENT_NAME: wait/io/file/sql/ERRMSG
OBJECT_INSTANCE_BEGIN: 4686193384
COUNT_STAR: 5
SUM_TIMER_WAIT: 13990154448
MIN_TIMER_WAIT: 26349624
AVG_TIMER_WAIT: 2798030607
MAX_TIMER_WAIT: 8150662536
...
TRUNCATE TABLE is permitted for file I/O summary tables. It resets the counters to zero rather than removing rows.
The file I/O summary tables have these grouping columns to indicate how events are aggregated:
file_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a given instrument.
file_summary_by_instance has FILE_NAME, EVENT_NAME, and (as of MySQL 5.6.4) OBJECT_INSTANCE_BEGIN columns. Each row summarizes events for a given file instrument instance.
The file I/O summary tables have the following summary columns containing aggregated values. (Before MySQL 5.6.4, the tables contain only the Only COUNT_READ COUNT_WRITE SUM_NUMBER_OF_BYTES_READ, and SUM_NUMBER_OF_BYTES_WRITE aggregation columns.) Some columns are more general and have values that are the same as the sum of the values of more fine-grained columns. In this way, aggregations at higher levels are available directly without the need for user-defined views that sum lower-level columns.
COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT
These columns aggregate all I/O operations.
COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ, SUM_NUMBER_OF_BYTES_READ
These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.
COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE
These columns aggregate all write operations, including FPUTS, FPUTC, FPRINTF, VFPRINTF, FWRITE, and PWRITE.
COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC
These columns aggregate all other I/O operations, including CREATE, DELETE, OPEN, CLOSE, STREAM_OPEN, STREAM_CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSIZE, RENAME, and SYNC. There are no byte counts for these operations.
The MySQL server uses several techniques to avoid I/O operations by caching information read from files, so it is possible that statements you might expect to result in I/O events will not. You may be able to ensure that I/O does occur by flushing caches or restarting the server to reset its state.
20.9.8.6. Table I/O and Lock Wait Summary Tables
The following sections describe the table I/O and lock wait summary tables:
table_io_waits_summary_by_index_usage: Table I/O waits per index
table_io_waits_summary_by_table: Table I/O waits per table
table_lock_waits_summary_by_table: Table lock waits per table
20.9.8.6.1. The table_io_waits_summary_by_table Table
The table_io_waits_summary_by_table table aggregates all table I/O wait events, as generated by the wait/io/table/sql/handler instrument. The grouping is by table.
TRUNCATE TABLE is permitted for table I/O summary tables. It resets the counters to zero rather than removing rows. Truncating this table also truncates the table_io_waits_summary_by_index_usage table.
The table_io_waits_summary_by_table table has these grouping columns to indicate how events are aggregated: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have the same meaning as in the events_waits_current table. They identify the table to which the row applies.
table_io_waits_summary_by_table has the following summary columns containing aggregated values. As indicated in the column descriptions, some columns are more general and have values that are the same as the sum of the values of more fine-grained columns. For example, columns that aggregate all writes hold the sum of the corresponding columns that aggregate inserts, updates, and deletes. In this way, aggregations at higher levels are available directly without the need for user-defined views that sum lower-level columns.
COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT
These columns aggregate all I/O operations. They are the same as the sum of the corresponding xxx_READ and xxx_WRITE columns.
COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ
These columns aggregate all read operations. They are the same as the sum of the corresponding xxx_FETCH columns.
COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE
These columns aggregate all write operations. They are the same as the sum of the corresponding xxx_INSERT, xxx_UPDATE, and xxx_DELETE columns.
COUNT_FETCH, SUM_TIMER_FETCH, MIN_TIMER_FETCH, AVG_TIMER_FETCH, MAX_TIMER_FETCH
These columns aggregate all fetch operations.
COUNT_INSERT, SUM_TIMER_INSERT, MIN_TIMER_INSERT, AVG_TIMER_INSERT, MAX_TIMER_INSERT
These columns aggregate all insert operations.
COUNT_UPDATE, SUM_TIMER_UPDATE, MIN_TIMER_UPDATE, AVG_TIMER_UPDATE, MAX_TIMER_UPDATE
These columns aggregate all update operations.
COUNT_DELETE, SUM_TIMER_DELETE, MIN_TIMER_DELETE, AVG_TIMER_DELETE, MAX_TIMER_DELETE
These columns aggregate all delete operations.
20.9.8.6.2. The table_io_waits_summary_by_index_usage Table
The table_io_waits_summary_by_index_usage table aggregates all table index I/O wait events, as generated by the wait/io/table/sql/handler instrument. The grouping is by table index.
TRUNCATE TABLE is permitted for table I/O summary tables. It resets the counters to zero rather than removing rows. This table is also truncated by truncation of the table_io_waits_summary_by_table table. A DDL operation that changes the index structure of a table may cause the per-index statistics to be reset.
The structure of table_io_waits_summary_by_index_usage is nearly identical to table_io_waits_summary_by_table. The only difference is the additional group column, INDEX_NAME, which corresponds to the name of the index that was used when the table I/O wait event was recorded:
A value of PRIMARY indicates that table I/O used the primary index.
A value of NULL means that table I/O used no index.
Inserts are counted against INDEX_NAME = NULL.
20.9.8.6.3. The table_lock_waits_summary_by_table Table
The table_lock_waits_summary_by_table table aggregates all table lock wait events, as generated by the wait/lock/table/sql/handler instrument. The grouping is by table.
TRUNCATE TABLE is permitted for table lock summary tables. It resets the counters to zero rather than removing rows.
This table contains information about internal and external locks:
An internal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to thr_lock(). In event rows, these locks are distinguished by the OPERATION column, which will have one of these values:
read normal
read with shared locks
read high priority
read no insert
write allow write
write concurrent insert
write delayed
write low priority
write normal
An external lock corresponds to a lock in the storage engine layer. This is currently implemented by a call to handler::external_lock(). In event rows, these locks are distinguished by the OPERATION column, which will have one of these values:
read external
write external
The table_lock_waits_summary_by_table table has these grouping columns to indicate how events are aggregated: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have the same meaning as in the events_waits_current table. They identify the table to which the row applies.
table_lock_waits_summary_by_table has the following summary columns containing aggregated values. As indicated in the column descriptions, some columns are more general and have values that are the same as the sum of the values of more fine-grained columns. For example, columns that aggregate all writes hold the sum of the corresponding columns that aggregate inserts, updates, and deletes. In this way, aggregations at higher levels are available directly without the need for user-defined views that sum lower-level columns.
COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT
These columns aggregate all lock operations. They are the same as the sum of the corresponding xxx_READ and xxx_WRITE columns.
COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ
These columns aggregate all read-lock operations. They are the same as the sum of the corresponding xxx_READ_NORMAL, xxx_READ_WITH_SHARED_LOCKS, xxx_READ_HIGH_PRIORITY, and xxx_READ_NO_INSERT columns.
COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE
These columns aggregate all write-lock operations. They are the same as the sum of the corresponding xxx_WRITE_ALLOW_WRITE, xxx_WRITE_CONCURRENT_INSERT, xxx_WRITE_DELAYED, xxx_WRITE_LOW_PRIORITY, and xxx_WRITE_NORMAL columns.
COUNT_READ_NORMAL, SUM_TIMER_READ_NORMAL, MIN_TIMER_READ_NORMAL, AVG_TIMER_READ_NORMAL, MAX_TIMER_READ_NORMAL
These columns aggregate internal read locks.
COUNT_READ_WITH_SHARED_LOCKS, SUM_TIMER_READ_WITH_SHARED_LOCKS, MIN_TIMER_READ_WITH_SHARED_LOCKS, AVG_TIMER_READ_WITH_SHARED_LOCKS, MAX_TIMER_READ_WITH_SHARED_LOCKS
These columns aggregate internal read locks.
COUNT_READ_HIGH_PRIORITY, SUM_TIMER_READ_HIGH_PRIORITY, MIN_TIMER_READ_HIGH_PRIORITY, AVG_TIMER_READ_HIGH_PRIORITY, MAX_TIMER_READ_HIGH_PRIORITY
These columns aggregate internal read locks.
COUNT_READ_NO_INSERT, SUM_TIMER_READ_NO_INSERT, MIN_TIMER_READ_NO_INSERT, AVG_TIMER_READ_NO_INSERT, MAX_TIMER_READ_NO_INSERT
These columns aggregate internal read locks.
COUNT_READ_EXTERNAL, SUM_TIMER_READ_EXTERNAL, MIN_TIMER_READ_EXTERNAL, AVG_TIMER_READ_EXTERNAL, MAX_TIMER_READ_EXTERNAL
These columns aggregate external read locks.
COUNT_WRITE_ALLOW_WRITE, SUM_TIMER_WRITE_ALLOW_WRITE, MIN_TIMER_WRITE_ALLOW_WRITE, AVG_TIMER_WRITE_ALLOW_WRITE, MAX_TIMER_WRITE_ALLOW_WRITE
These columns aggregate internal write locks.
COUNT_WRITE_CONCURRENT_INSERT, SUM_TIMER_WRITE_CONCURRENT_INSERT, MIN_TIMER_WRITE_CONCURRENT_INSERT, AVG_TIMER_WRITE_CONCURRENT_INSERT, MAX_TIMER_WRITE_CONCURRENT_INSERT
These columns aggregate internal write locks.
COUNT_WRITE_DELAYED, SUM_TIMER_WRITE_DELAYED, MIN_TIMER_WRITE_DELAYED, AVG_TIMER_WRITE_DELAYED, MAX_TIMER_WRITE_DELAYED
These columns aggregate internal write locks.
As of MySQL 5.6.6, DELAYED inserts are deprecated, so these columns will be removed in a future release.
COUNT_WRITE_LOW_PRIORITY, SUM_TIMER_WRITE_LOW_PRIORITY, MIN_TIMER_WRITE_LOW_PRIORITY, AVG_TIMER_WRITE_LOW_PRIORITY, MAX_TIMER_WRITE_LOW_PRIORITY
These columns aggregate internal write locks.
COUNT_WRITE_NORMAL, SUM_TIMER_WRITE_NORMAL, MIN_TIMER_WRITE_NORMAL, AVG_TIMER_WRITE_NORMAL, MAX_TIMER_WRITE_NORMAL
These columns aggregate internal write locks.
COUNT_WRITE_EXTERNAL, SUM_TIMER_WRITE_EXTERNAL, MIN_TIMER_WRITE_EXTERNAL, AVG_TIMER_WRITE_EXTERNAL, MAX_TIMER_WRITE_EXTERNAL
These columns aggregate external write locks.
20.9.8.7. Connection Summary Tables
The connection summary tables are similar to the corresponding events_xxx_summary_by_thread_by_event_name tables, except that aggregation occurs per account, user, or host, rather than by thread.
The Performance Schema maintains summary tables that aggregate connection statistics by event name and account, user, or host. Separate groups of tables are available that aggregate wait, stage, and statement events, which results in this set of connection summary tables:
events_waits_summary_by_account_by_event_name: Wait events summarized per account and event name
events_waits_summary_by_user_by_event_name: Wait events summarized per user name and event name
events_waits_summary_by_host_by_event_name: Wait events summarized per host name and event name
events_stages_summary_by_account_by_event_name: Stage events summarized per account and event name
events_stages_summary_by_user_by_event_name: Stage events summarized per user name and event name
events_stages_summary_by_host_by_event_name: Stage events summarized per host name and event name
events_statements_summary_by_account_by_event_name: Statement events summarized per account and event name
events_statements_summary_by_user_by_event_name: Statement events summarized per user name and event name
events_statements_summary_by_host_by_event_name: Statement events summarized per host name and event name
In other words, the connection summary tables have names of the form events_xxx_summary_yyy_by_event_name, where xxx is waits, stages, or statements, and yyy is account, user, or host.
The connection summary tables provide an intermediate aggregation level:
xxx_summary_by_thread_by_event_name tables are more detailed than connection summary tables
xxx_summary_global_by_event_name tables are less detailed than connection summary tables
TRUNCATE TABLE is permitted for connection summary tables. It resets the counters to zero rather than removing rows. In addition, connection summary tables are implicitly truncated if a connection table on which they depend is truncated. Table 20.1, “Effect of Implicit Table Truncation”, describes the relationship between connection table truncation and implicitly truncated tables.
Table 20.1. Effect of Implicit Table Truncation
Truncated Table | Implicitly Truncated Summary Tables |
---|---|
accounts | Tables with names matching %_by_account%, %_by_thread% |
hosts | Tables with names matching %_by_account%, %_by_host%, %_by_thread% |
users | Tables with names matching %_by_account%, %_by_user%, %_by_thread% |
The connection summary tables have these grouping columns to indicate how events are aggregated:
For tables with _by_account in the name, the USER, HOST, and EVENT_NAME columns group events per account and event name.
For tables with _by_host in the name, the HOST and EVENT_NAME columns group events per host name and event name.
For tables with _by_user in the name, the USER and EVENT_NAME columns group events per user name and event name.
The connection summary tables have these summary columns containing aggregated values: COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT. These are similar to the columns of the same names in the events_waits_summary_by_instance table.
The connection summary tables were added in MySQL 5.6.3.
20.9.8.8. Socket Summary Tables
The socket summary tables aggregate timer and byte count information for socket operations:
socket_summary_by_instance: Aggregate timer and byte count statistics generated by the wait/io/socket/* instruments for all socket I/O operations, per socket instance. When a connection terminates, the row in socket_summary_by_instance corresponding to it is deleted.
socket_summary_by_event_name: Aggregate timer and byte count statistics generated by the wait/io/socket/* instruments for all socket I/O operations, per socket instrument.
The socket summary tables do not aggregate waits generated by idle events while sockets are waiting for the next request from the client. For idle event aggregations, use the wait-event summary tables; see Section 20.9.8.1, “Event Wait Summary Tables”.
TRUNCATE TABLE is permitted for socket summary tables. Except for events_statements_summary_by_digest, tt resets the counters to zero rather than removing rows.
The socket summary tables have these grouping columns to indicate how events are aggregated:
socket_summary_by_instance has an OBJECT_INSTANCE_BEGIN column. Each row summarizes events for a given object.
socket_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a given instrument.
The socket summary tables have these summary columns containing aggregated values:
COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT
These columns aggregate all operations.
COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ, SUM_NUMBER_OF_BYTES_READ
These columns aggregate all receive operations (RECV, RECVFROM, and RECVMSG).
COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE, MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE
These columns aggregate all send operations (SEND, SENDTO, and SENDMSG).
COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC
These columns aggregate all other socket operations, such as CONNECT, LISTEN, ACCEPT, CLOSE, and SHUTDOWN. There are no byte counts for these operations.
The socket_summary_by_instance table also has an EVENT_NAME column that indicates the class of the socket: client_connection, server_tcpip_socket, server_unix_socket. This column can be grouped on to isolate, for example, client activity from that of the server listening sockets.
These tables were added in MySQL 5.6.3.
20.9.9. Performance Schema Miscellaneous Tables
The following sections describe tables that do not fall into the table categories discussed in the preceding sections:
host_cache: Information from the internal host cache.
performance_timers: Which event timers are available.
threads: Information about server threads.
20.9.9.1. The host_cache Table
The host_cache table provides access to the contents of the host cache, which contains client host name and IP address information and is used to avoid DNS lookups. (See Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”.) The host_cache table exposes the contents of the host cache so that it can be examined using SELECT statements. The Performance Schema must be enabled or this table is empty.
FLUSH HOSTS and TRUNCATE TABLE host_cache have the same effect: They clear the host cache. This also empties the host_cache table (because it is the visible representation of the cache) and unblocks any blocked hosts (see Section C.5.2.6, “Host 'host_name' is blocked”.) FLUSH HOSTS requires the RELOAD privilege. TRUNCATE TABLE requires the DROP privilege for the host_cache table.
The host_cache table has these columns:
IP
The IP address of the client that connected to the server, expressed as a string.
HOST
The resolved DNS host name for that client IP, or NULL if the name is unknown.
HOST_VALIDATED
Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP. If HOST_VALIDATED is YES, the HOST column is used as the host name corresponding to the IP so that calls to DNS can be avoided. While HOST_VALIDATED is NO, DNS resolution is attempted again for each connect, until it eventually completes with either a valid result or a permanent error. This information enables the server to avoid caching bad or missing host names during temporary DNS failures, which would affect clients forever.
SUM_CONNECT_ERRORS
The number of connection errors that are deemed “blocking” (assessed against the max_connect_errors system variable). Currently, only protocol handshake errors are counted, and only for hosts that passed validation (HOST_VALIDATED = YES).
COUNT_HOST_BLOCKED_ERRORS
The number of connections that were blocked because SUM_CONNECT_ERRORS exceeded the value of the max_connect_errors system variable.
COUNT_NAMEINFO_TRANSIENT_ERRORS
The number of transient errors during IP-to-host name DNS resolution.
COUNT_NAMEINFO_PERMANENT_ERRORS
The number of permanent errors during IP-to-host name DNS resolution.
COUNT_FORMAT_ERRORS
The number of host name format errors. MySQL does not perform matching of Host column values in the mysql.user table against host names for which one or more of the initial components of the name are entirely numeric, such as 1.2.example.com. The client IP address is used instead. For the rationale why this type of matching does not occur, see Section 6.2.3, “Specifying Account Names”.
COUNT_ADDRINFO_TRANSIENT_ERRORS
The number of transient errors during host name-to-IP reverse DNS resolution.
COUNT_ADDRINFO_PERMANENT_ERRORS
The number of permanent errors during host name-to-IP reverse DNS resolution.
COUNT_FCRDNS_ERRORS
The number of forward-confirmed reverse DNS errors. These errors occur when IP-to-host name-to-IP DNS resolution produces an IP address that does not match the client originating IP address.
COUNT_HOST_ACL_ERRORS
The number of errors that occur because no user from the client host can possibly log in. In such cases, the server returns ER_HOST_NOT_PRIVILEGED and does not even ask for a user name or password.
COUNT_NO_AUTH_PLUGIN_ERRORS
The number of errors due to requests for an unavailable authentication plugin. A plugin can be unavailable if, for example, it was never loaded or a load attempt failed.
COUNT_AUTH_PLUGIN_ERRORS
The number of errors reported by authentication plugins.
An authentication plugin can report different error codes to indicate the root cause of a failure. Depending on the type of error, one of these columns is incremented: COUNT_AUTHENTICATION_ERRORS, COUNT_AUTH_PLUGIN_ERRORS, COUNT_HANDSHAKE_ERRORS. New return codes are an optional extension to the existing plugin API. Unknown or unexpected plugin errors are counted in the COUNT_AUTH_PLUGIN_ERRORS column.
COUNT_HANDSHAKE_ERRORS
The number of errors detected at the wire protocol level.
COUNT_PROXY_USER_ERRORS
The number of errors detected when a proxy user A is proxied to another user B who does not exist.
COUNT_PROXY_USER_ACL_ERRORS
The number of errors detected when a proxy user A is proxied to another user B who does exist but for whom A does not have the PROXY privilege.
COUNT_AUTHENTICATION_ERRORS
The number of errors caused by failed authentication.
COUNT_SSL_ERRORS
The number of errors due to SSL problems.
COUNT_MAX_USER_CONNECTIONS_ERRORS
The number of errors caused by exceeding per-user connection quotas. See Section 6.3.4, “Setting Account Resource Limits”.
COUNT_MAX_USER_CONNECTIONS_PER_HOUR_ERRORS
The number of errors caused by exceeding per-user connections-per-hour quotas. See Section 6.3.4, “Setting Account Resource Limits”.
COUNT_DEFAULT_DATABASE_ERRORS
The number of errors related to the default database. For example, the database did not exist or the user had no privileges for accessing it.
COUNT_INIT_CONNECT_ERRORS
The number of errors caused by execution failures of statements in the init_connect system variable value.
COUNT_LOCAL_ERRORS
The number of errors local to the server implementation and not related to the network, authentication, or authorization. For example, out-of-memory conditions fall into this category.
COUNT_UNKNOWN_ERRORS
The number of other, unknown errors not accounted for by other columns in this table. This column is reserved for future use, in case new error conditions must be reported, and if preserving the backward compatibility and table structure of the host_cache table is required.
FIRST_SEEN
The timestamp of the first connection attempt seen from the client in the IP column.
LAST_SEEN
The timestamp of the last connection attempt seen from the client in the IP column.
FIRST_ERROR_SEEN
The timestamp of the first error seen from the client in the IP column.
LAST_ERROR_SEEN
The timestamp of the last error seen from the client in the IP column.
The host_cache table was added in MySQL 5.6.5.
20.9.9.2. The performance_timers Table
The performance_timers table shows which event timers are available:
mysql> SELECT * FROM performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
| CYCLE | 2389029850 | 1 | 72 |
| NANOSECOND | NULL | NULL | NULL |
| MICROSECOND | 1000000 | 1 | 585 |
| MILLISECOND | 1035 | 1 | 738 |
| TICK | 101 | 1 | 630 |
+-------------+-----------------+------------------+----------------+
If the values associated with a given timer name are NULL, that timer is not supported on your platform. The rows that do not contain NULL indicate which timers you can use in setup_timers.
The performance_timers table has these columns:
TIMER_NAME
The name by which to refer to the timer when configuring the setup_timers table.
TIMER_FREQUENCY
The number of timer units per second. For a cycle timer, the frequency is generally related to the CPU speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to 2400000000.
TIMER_RESOLUTION
Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10, its value increases by 10 each time.
TIMER_OVERHEAD
The minimal number of cycles of overhead to obtain one timing with the given timer. The Performance Schema determines this value by invoking the timer 20 times during initialization and picking the smallest value. The total overhead really is twice this amount because the instrumentation invokes the timer at the start and end of each event. The timer code is called only for timed events, so this overhead does not apply for nontimed events.
20.9.9.3. The threads Table
The threads table contains a row for each server thread. Each row contains information about a thread and indicates whether monitoring is enabled for it:
mysql> SELECT * FROM threads\G
*************************** 1. row ***************************
THREAD_ID: 1
NAME: thread/sql/main
TYPE: BACKGROUND
PROCESSLIST_ID: NULL
PROCESSLIST_USER: NULL
PROCESSLIST_HOST: NULL
PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: NULL
PROCESSLIST_TIME: 80284
PROCESSLIST_STATE: NULL
PROCESSLIST_INFO: NULL
PARENT_THREAD_ID: NULL
ROLE: NULL
INSTRUMENTED: YES
...
*************************** 4. row ***************************
THREAD_ID: 51
NAME: thread/sql/one_connection
TYPE: FOREGROUND
PROCESSLIST_ID: 34
PROCESSLIST_USER: paul
PROCESSLIST_HOST: localhost
PROCESSLIST_DB: performance_schema
PROCESSLIST_COMMAND: Query
PROCESSLIST_TIME: 0
PROCESSLIST_STATE: Sending data
PROCESSLIST_INFO: SELECT * FROM threads
PARENT_THREAD_ID: 1
ROLE: NULL
INSTRUMENTED: YES
...
If you have the PROCESS privilege, you can see all threads. Otherwise, you can see only your own threads (that is, threads associated with the MySQL account that you are using).
The threads table has these columns:
THREAD_ID
A unique thread identifier.
NAME
The name associated with the thread instrumentation code in the server. For example, thread/sql/one_connection corresponds to the thread function in the code responsible for handling a user connection, and thread/sql/main stands for the main() function of the server.
TYPE
The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground threads. Threads associated with internal server activity are background threads. Examples are internal InnoDB threads, “binlog dump” threads sending information to slaves, and slave I/O and SQL threads.
PROCESSLIST_ID
For threads that are displayed in the INFORMATION_SCHEMA.PROCESSLIST table, this is the PROCESSLIST.ID value, which is also the value that CONNECTION_ID() would return within that thread. For background threads (threads not associated with a user connection), PROCESSLIST_ID is 0, so the values are not unique.
PROCESSLIST_USER
The user associated with a foreground thread, NULL for a background thread.
PROCESSLIST_HOST
The host name of the client associated with a foreground thread, NULL for a background thread.
PROCESSLIST_DB
The default database for the thread, or NULL if there is none.
PROCESSLIST_COMMAND
The type of command the thread is executing. For descriptions for thread commands, see Section 8.12.5, “Examining Thread Information”. The value of this column corresponds to the COM_xxx commands of the client/server protocol and Com_xxx status variables. See Section 5.1.6, “Server Status Variables”
PROCESSLIST_TIME
The time in seconds that the thread has been in its current state.
PROCESSLIST_STATE
An action, event, or state that indicates what the thread is doing. For descriptions of PROCESSLIST_STATE values, see Section 8.12.5, “Examining Thread Information”.
Most states correspond to very quick operations. If a thread stays in a given state for many seconds, there might be a problem that needs to be investigated.
PROCESSLIST_INFO
The statement the thread is executing, or NULL if it is not executing any statement. The statement might be the one sent to the server, or an innermost statement if the statement executes other statements. For example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the PROCESSLIST_INFO value shows the SELECT statement.
PARENT_THREAD_ID
If this thread is a subthread (spawned by another thread), this is the THREAD_ID value of the spawning thread. Thread spawning occurs, for example, to handle insertion of rows from INSERT DELAYED statements.
ROLE
Unused.
INSTRUMENTED
Whether the thread is instrumented:
For foreground threads, the initial INSTRUMENTED value is determined by whether the user account associated with the thread matches any row in the setup_actors table. Matching is based on the values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.
If the thread spawns a subthread, matching occurs again for the subthread.
For background threads, INSTRUMENTED is YES by default. setup_actors is not consulted because there is no associated user for background threads.
For any thread, its INSTRUMENTED value can be changed during the lifetime of the thread. This is the only threads table column that can be modified.
For thread monitoring to occur, these things must be true:
The thread_instrumentation consumer in the setup_consumers table must be YES.
The thread.INSTRUMENTED column must be YES.
Monitoring occurs only for those thread events produced from instruments that are enabled, as specified in the setup_instruments table.
The initial contents of the threads table are based on the threads in existence when Performance Schema initialization occurs. Thereafter, a new row is added each time the server creates a thread.
Removal of rows from the threads table occurs when threads end. For a thread associated with a client session, removal occurs when the session ends. If a client has auto-reconnect enabled and the session reconnects after a disconnect, the session will be associated with a new row in the threads table (one that has a different PROCESSLIST_ID value). The initial INSTRUMENTED value for the new thread may be different from that of the original thread: The setup_actors table may have changed in the meantime, and if the INSTRUMENTED value for the original thread was changed after it was initialized, that change does not carry over to the new thread.
The threads table columns with names having a prefix of PROCESS_ provide information similar to that available from the INFORMATION_SCHEMA.PROCESSLIST table or the SHOW PROCESSLIST statement. Thus, all three sources provide thread-monitoring information. Use of threads differs from use of the other two sources in these ways:
Access to threads does not require a mutex and has minimal impact on server performance. INFORMATION_SCHEMA.PROCESSLIST and SHOW PROCESSLIST have negative performance consequences because they require a mutex.
threads provides additional information for each thread, such as whether it is a foreground or background thread, and the location within the server associated with the thread.
threads provides information about background threads, so it can be used to monitor activity the other thread information sources cannot.
You can turn thread monitoring on or off. To control monitoring of existing threads, set the INSTRUMENTED column of the threads table. To control the initial INSTRUMENTED value for new foreground threads, use the setup_actors table.
For these reasons, DBAs who perform server monitoring using INFORMATION_SCHEMA.PROCESSLIST or SHOW PROCESSLIST may wish to monitor using threads instead.
20.10. Performance Schema Option and Variable Reference
Table 20.2. Performance Schema Variable Reference
20.11. Performance Schema Command Options
Performance Schema parameters can be specified at server startup on the command line or in option files to configure Performance Schema instruments and consumers. Runtime configuration is also possible in many cases (see Section 20.2.3, “Performance Schema Runtime Configuration”), but startup configuration must be used when runtime configuration is too late to affect instruments that have already been initialized during the startup process.
Performance Schema consumers and instruments can be configured at startup using the following syntax. For additional details, see Section 20.2.2, “Performance Schema Startup Configuration”.
--performance-schema-consumer-consumer_name=value
Configure a Performance Schema consumer. Consumer names in the setup_consumers table use underscores, but for consumers set at startup, dashes and underscores within the name are equivalent.
--performance-schema-instrument=instrument_name=value
Configure a Performance Schema instrument. The name may be given as a pattern to configure instruments that match the pattern.
20.12. Performance Schema System Variables
The Performance Schema implements several system variables that provide configuration information:
mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
| performance_schema | ON |
| performance_schema_accounts_size | 100 |
| performance_schema_digests_size | 200 |
| performance_schema_events_stages_history_long_size | 10000 |
| performance_schema_events_stages_history_size | 10 |
| performance_schema_events_statements_history_long_size | 10000 |
| performance_schema_events_statements_history_size | 10 |
| performance_schema_events_waits_history_long_size | 10000 |
| performance_schema_events_waits_history_size | 10 |
| performance_schema_hosts_size | 100 |
| performance_schema_max_cond_classes | 80 |
| performance_schema_max_cond_instances | 1000 |
| performance_schema_max_file_classes | 50 |
| performance_schema_max_file_handles | 32768 |
| performance_schema_max_file_instances | 10000 |
| performance_schema_max_mutex_classes | 200 |
| performance_schema_max_mutex_instances | 1000000 |
| performance_schema_max_rwlock_classes | 30 |
| performance_schema_max_rwlock_instances | 1000000 |
| performance_schema_max_socket_classes | 10 |
| performance_schema_max_socket_instances | 1000 |
| performance_schema_max_stage_classes | 150 |
| performance_schema_max_statement_classes | 165 |
| performance_schema_max_table_handles | 10000 |
| performance_schema_max_table_instances | 1000 |
| performance_schema_max_thread_classes | 50 |
| performance_schema_max_thread_instances | 1000 |
| performance_schema_session_connect_attrs_size | 512 |
| performance_schema_setup_actors_size | 100 |
| performance_schema_setup_objects_size | 100 |
| performance_schema_users_size | 100 |
+--+---------+
Performance Schema system variables can be set at server startup on the command line or in option files, and many can be set at runtime. See Section 20.10, “Performance Schema Option and Variable Reference”.
As of MySQL 5.6.6, the Performance Schema automatically sizes the values of several of its parameters at server startup if they are not set explicitly. For more information, see Section 20.2.2, “Performance Schema Startup Configuration”.
Performance Schema variables have the following meanings:
Command-Line Format | --performance_schema=# | ||
Option-File Format | performance_schema=# | ||
Variable Name | performance_schema | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | boolean | ||
Default | OFF | ||
Permitted Values (>= 5.6.6) | |||
Type | boolean | ||
Default | ON |
The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By default, the value is ON by default as of MySQL 5.6.6 and OFF before that. At server startup, you can specify this variable with no value or a value of ON or 1 to enable it, or with a value of OFF or 0 to disable it.
performance_schema_accounts_size
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_accounts_size=# | ||
Option-File Format | performance_schema_accounts_size=# | ||
Variable Name | performance_schema_accounts_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 10 | ||
Range | 0 .. 1048576 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | -1 .. 1048576 |
The number of rows in the accounts table. If this variable is 0, the Performance Schema does not maintain connection statistics in the accounts table. This variable was added in MySQL 5.6.3.
performance_schema_digests_size
The maximum number of rows in the events_statements_summary_by_digest table. This variable was added in MySQL 5.6.5.
performance_schema_events_stages_history_long_size
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_events_stages_history_long_size=# | ||
Option-File Format | performance_schema_events_stages_history_long_size=# | ||
Variable Name | performance_schema_events_stages_history_long_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 10000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The number of rows in the events_stages_history_long table. This variable was added in MySQL 5.6.3.
performance_schema_events_stages_history_size
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_events_stages_history_size=# | ||
Option-File Format | performance_schema_events_stages_history_size=# | ||
Variable Name | performance_schema_events_stages_history_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 10 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The number of rows per thread in the events_stages_history table. This variable was added in MySQL 5.6.3.
performance_schema_events_statements_history_long_size
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_events_statements_history_long_size=# | ||
Option-File Format | performance_schema_events_statements_history_long_size=# | ||
Variable Name | performance_schema_events_statements_history_long_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 10000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The number of rows in the events_statements_history_long table. This variable was added in MySQL 5.6.3.
performance_schema_events_statements_history_size
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_events_statements_history_size=# | ||
Option-File Format | performance_schema_events_statements_history_size=# | ||
Variable Name | performance_schema_events_statements_history_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 10 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The number of rows per thread in the events_statements_history table. This variable was added in MySQL 5.6.3.
performance_schema_events_waits_history_long_size
Command-Line Format | --performance_schema_events_waits_history_long_size=# | ||
Option-File Format | performance_schema_events_waits_history_long_size=# | ||
Variable Name | performance_schema_events_waits_history_long_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 10000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The number of rows in the events_waits_history_long table.
performance_schema_events_waits_history_size
Command-Line Format | --performance_schema_events_waits_history_size=# | ||
Option-File Format | performance_schema_events_waits_history_size=# | ||
Variable Name | performance_schema_events_waits_history_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 10 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The number of rows per thread in the events_waits_history table.
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_hosts_size=# | ||
Option-File Format | performance_schema_hosts_size=# | ||
Variable Name | performance_schema_hosts_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 10 | ||
Range | 0 .. 1048576 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | -1 .. 1048576 |
The number of rows in the hosts table. If this variable is 0, the Performance Schema does not maintain connection statistics in the hosts table. This variable was added in MySQL 5.6.3.
performance_schema_max_cond_classes
Command-Line Format | --performance_schema_max_cond_classes=# | ||
Option-File Format | performance_schema_max_cond_classes=# | ||
Variable Name | performance_schema_max_cond_classes | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 80 |
The maximum number of condition instruments.
performance_schema_max_cond_instances
Command-Line Format | --performance_schema_max_cond_instances=# | ||
Option-File Format | performance_schema_max_cond_instances=# | ||
Variable Name | performance_schema_max_cond_instances | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 1000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The maximum number of instrumented condition objects.
performance_schema_max_file_classes
Command-Line Format | --performance_schema_max_file_classes=# | ||
Option-File Format | performance_schema_max_file_classes=# | ||
Variable Name | performance_schema_max_file_classes | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 50 |
The maximum number of file instruments.
performance_schema_max_file_handles
Command-Line Format | --performance_schema_max_file_handles=# | ||
Option-File Format | performance_schema_max_file_handles=# | ||
Variable Name | performance_schema_max_file_handles | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 32768 |
The maximum number of opened file objects.
The value of performance_schema_max_file_handles should be greater than the value of open_files_limit: open_files_limit affects the maximum number of open file handles the server can support and performance_schema_max_file_handles affects how many of these file handles can be instrumented.
performance_schema_max_file_instances
Command-Line Format | --performance_schema_max_file_instances=# | ||
Option-File Format | performance_schema_max_file_instances=# | ||
Variable Name | performance_schema_max_file_instances | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 10000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The maximum number of instrumented file objects.
performance_schema_max_mutex_classes
Command-Line Format | --performance_schema_max_mutex_classes=# | ||
Option-File Format | performance_schema_max_mutex_classes=# | ||
Variable Name | performance_schema_max_mutex_classes | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 200 |
The maximum number of mutex instruments.
performance_schema_max_mutex_instances
Command-Line Format | --performance_schema_max_mutex_instances=# | ||
Option-File Format | performance_schema_max_mutex_instances=# | ||
Variable Name | performance_schema_max_mutex_instances | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 1000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The maximum number of instrumented mutex objects.
performance_schema_max_rwlock_classes
Command-Line Format | --performance_schema_max_rwlock_classes=# | ||
Option-File Format | performance_schema_max_rwlock_classes=# | ||
Variable Name | performance_schema_max_rwlock_classes | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 20 |
The maximum number of rwlock instruments.
performance_schema_max_rwlock_instances
Command-Line Format | --performance_schema_max_rwlock_instances=# | ||
Option-File Format | performance_schema_max_rwlock_instances=# | ||
Variable Name | performance_schema_max_rwlock_instances | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 1000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The maximum number of instrumented rwlock objects.
performance_schema_max_socket_classes
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_max_socket_classes=# | ||
Option-File Format | performance_schema_max_socket_classes=# | ||
Variable Name | performance_schema_max_socket_classes | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 10 |
The maximum number of socket instruments. This variable was added in MySQL 5.6.3.
performance_schema_max_socket_instances
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_max_socket_instances=# | ||
Option-File Format | performance_schema_max_socket_instances=# | ||
Variable Name | performance_schema_max_socket_instances | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 1000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The maximum number of instrumented socket objects. This variable was added in MySQL 5.6.3.
performance_schema_max_stage_classes
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_max_stage_classes=# | ||
Option-File Format | performance_schema_max_stage_classes=# | ||
Variable Name | performance_schema_max_stage_classes | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 100 |
The maximum number of stage instruments. This variable was added in MySQL 5.6.3.
performance_schema_max_statement_classes
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_max_statement_classes=# | ||
Option-File Format | performance_schema_max_statement_classes=# | ||
Variable Name | performance_schema_max_statement_classes | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | autosized |
The maximum number of statement instruments. The default value is calculated at server build time based on the number of commands in the client/server protocol and the number of SQL statement types supported by the server.
This variable should not be changed, unless to set it to 0 to disable all statement instrumentation and save all memory associated with it. Setting the variable to nonzero values other than the default has no benefit; in particular, values larger than the default cause more memory to be allocated then is needed.
This variable was added in MySQL 5.6.3.
performance_schema_max_table_handles
Command-Line Format | --performance_schema_max_table_handles=# | ||
Option-File Format | performance_schema_max_table_handles=# | ||
Variable Name | performance_schema_max_table_handles | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 100000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The maximum number of opened table objects.
performance_schema_max_table_instances
Command-Line Format | --performance_schema_max_table_instances=# | ||
Option-File Format | performance_schema_max_table_instances=# | ||
Variable Name | performance_schema_max_table_instances | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 50000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The maximum number of instrumented table objects.
performance_schema_max_thread_classes
Command-Line Format | --performance_schema_max_thread_classes=# | ||
Option-File Format | performance_schema_max_thread_classes=# | ||
Variable Name | performance_schema_max_thread_classes | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 50 |
The maximum number of thread instruments.
performance_schema_max_thread_instances
Command-Line Format | --performance_schema_max_thread_instances=# | ||
Option-File Format | performance_schema_max_thread_instances=# | ||
Variable Name | performance_schema_max_thread_instances | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 1000 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) |
The maximum number of instrumented thread objects.
The max_connections and max_delayed_threads system variables affect how many threads are run in the server. performance_schema_max_thread_instances affects how many of these running threads can be instrumented. If you increase max_connections or max_delayed_threads, you should consider increasing performance_schema_max_thread_instances so that performance_schema_max_thread_instances is greater than the sum of max_connections and max_delayed_threads.
performance_schema_session_connect_attrs_size
Version Introduced | 5.6.6 | ||
Command-Line Format | --performance_schema_session_connect_attrs_size=# | ||
Option-File Format | performance_schema_session_connect_attrs_size=# | ||
Variable Name | performance_schema_session_connect_attrs_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | -1 .. 1048576 |
The amount of preallocated memory per thread used to hold connection attribute strings. If the connection attribute strings are larger than the reserved storage, the Performance_schema_session_connect_attrs_lost status variable is incremented. This variable was added in MySQL 5.6.7.
performance_schema_setup_actors_size
Version Introduced | 5.6.1 | ||
Command-Line Format | --performance_schema_setup_actors_size=# | ||
Option-File Format | performance_schema_setup_actors_size=# | ||
Variable Name | performance_schema_setup_actors_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 100 |
The number of rows in the setup_actors table.
performance_schema_setup_objects_size
Version Introduced | 5.6.1 | ||
Command-Line Format | --performance_schema_setup_objects_size=# | ||
Option-File Format | performance_schema_setup_objects_size=# | ||
Variable Name | performance_schema_setup_objects_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values | |||
Type | numeric | ||
Default | 100 |
The number of rows in the setup_objects table.
Version Introduced | 5.6.3 | ||
Command-Line Format | --performance_schema_users_size=# | ||
Option-File Format | performance_schema_users_size=# | ||
Variable Name | performance_schema_users_size | ||
Variable Scope | Global | ||
Dynamic Variable | No | ||
Permitted Values (<= 5.6.5) | |||
Type | numeric | ||
Default | 10 | ||
Range | 0 .. 1048576 | ||
Permitted Values (>= 5.6.6) | |||
Type | numeric | ||
Default | -1 (autosized) | ||
Range | -1 .. 1048576 |
The number of rows in the users table. If this variable is 0, the Performance Schema does not maintain connection statistics in the users table. This variable was added in MySQL 5.6.3.
20.13. Performance Schema Status Variables
The Performance Schema implements several status variables that provide information about instrumentation that could not be loaded or created due to memory constraints:
mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
| Performance_schema_accounts_lost | 0 |
| Performance_schema_cond_classes_lost | 0 |
| Performance_schema_cond_instances_lost | 0 |
| Performance_schema_file_classes_lost | 0 |
| Performance_schema_file_handles_lost | 0 |
| Performance_schema_file_instances_lost | 0 |
| Performance_schema_hosts_lost | 0 |
| Performance_schema_locker_lost | 0 |
| Performance_schema_mutex_classes_lost | 0 |
| Performance_schema_mutex_instances_lost | 0 |
| Performance_schema_rwlock_classes_lost | 0 |
| Performance_schema_rwlock_instances_lost | 0 |
| Performance_schema_socket_classes_lost | 0 |
| Performance_schema_socket_instances_lost | 0 |
| Performance_schema_stage_classes_lost | 0 |
| Performance_schema_statement_classes_lost | 0 |
| Performance_schema_table_handles_lost | 0 |
| Performance_schema_table_instances_lost | 0 |
| Performance_schema_thread_classes_lost | 0 |
| Performance_schema_thread_instances_lost | 0 |
| Performance_schema_users_lost | 0 |
+---+-------+
Names for these variables have several forms:
Performance_schema_accounts_lost
The number of times a row could not be added to the accounts table because it was full. This variable was added in MySQL 5.6.3.
Performance_schema_xxx_classes_lost
How many instruments of type xxx could not be loaded.
Performance_schema_hosts_lost
The number of times a row could not be added to the hosts table because it was full. This variable was added in MySQL 5.6.3.
Performance_schema_xxx_instances_lost
How many instances of object type xxx could not be created.
Performance_schema_xxx_handles_lost
How many instances of object type xxx could not be opened.
Performance_schema_locker_lost
How many events are “lost” or not recorded, due to the following conditions:
Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).
The depth of the nested events stack is greater than the limit imposed by the implementation.
Currently, events recorded by the Performance Schema are not recursive, so this variable should always be 0.
Performance_schema_session_connect_attrs_lost
The number of times a connection attribute string was larger than the reserved storage. This variable was added in MySQL 5.6.7.
Performance_schema_users_lost
The number of times a row could not be added to the users table because it was full. This variable was added in MySQL 5.6.3.
For information on using these variables to check Performance Schema status, see Section 20.5, “Performance Schema Status Monitoring”.
20.14. Performance Schema and Plugins
Removing a plugin with UNINSTALL PLUGIN does not affect information already collected for code in that plugin. Time spent executing the code while the plugin was loaded was still spent even if the plugin is unloaded later. The associated event information, including aggregate information, remains readable in performance_schema database tables. For additional information about the effect of plugin installation and removal, see Section 20.5, “Performance Schema Status Monitoring”.
A plugin implementor who instruments plugin code should document its instrumentation characteristics to enable those who load the plugin to account for its requirements. For example, a third-party storage engine should include in its documentation how much memory the engine needs for mutex and other instruments.
20.15. Using the Performance Schema to Diagnose Problems
The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema for this purpose. The discussion here relies on the use of event filtering, which is described in Section 20.2.3.2, “Performance Schema Event Filtering”.
The following example provides one methodology that you can use to analyze a repeatable problem, such as investigating a performance bottleneck. To begin, you should have a repeatable use case where performance is deemed “too slow” and needs optimization, and you should enable all instrumentation (no pre-filtering at all).
Run the use case.
Using the Performance Schema tables, analyze the root cause of the performance problem. This analysis will rely heavily on post-filtering.
For problem areas that are ruled out, disable the corresponding instruments. For example, if analysis shows that the issue is not related to file I/O in a particular storage engine, disable the file I/O instruments for that engine. Then truncate the history and summary tables to remove previously collected events.
Repeat the process at step 1.
At each iteration, the Performance Schema output, particularly the events_waits_history_long table, will contain less and less “noise” caused by nonsignificant instruments, and given that this table has a fixed size, will contain more and more data relevant to the analysis of the problem at hand.
At each iteration, investigation should lead closer and closer to the root cause of the problem, as the “signal/noise” ratio will improve, making analysis easier.
Once a root cause of performance bottleneck is identified, take the appropriate corrective action, such as:
Tune the server parameters (cache sizes, memory, and so forth).
Tune a query by writing it differently,
Tune the database schema (tables, indexes, and so forth).
Tune the code (this applies to storage engine or server developers only).
Start again at step 1, to see the effects of the changes on performance.
The mutex_instances.LOCKED_BY_THREAD_ID and rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for investigating performance bottlenecks or deadlocks. This is made possible by Performance Schema instrumentation as follows:
Suppose that thread 1 is stuck waiting for a mutex.
You can determine what the thread is waiting for:
SELECT * FROM events_waits_current WHERE THREAD_ID = thread_1;
Say the query result identifies that the thread is waiting for mutex A, found in events_waits_current.OBJECT_INSTANCE_BEGIN.
You can determine which thread is holding mutex A:
SELECT * FROM mutex_instances WHERE OBJECT_INSTANCE_BEGIN = mutex_A;
Say the query result identifies that it is thread 2 holding mutex A, as found in mutex_instances.LOCKED_BY_THREAD_ID.
You can see what thread 2 is doing:
SELECT * FROM events_waits_current WHERE THREAD_ID = thread_2;
Chapter 21. Connectors and APIs
Table of Contents
21.1.1. Connector/ODBC Versions
21.1.2. Connector/ODBC Introduction
21.1.3. Connector/ODBC Installation
21.1.4. Configuring Connector/ODBC
21.1.5. Connector/ODBC Examples
21.1.6. Connector/ODBC Reference
21.1.7. Connector/ODBC Notes and Tips
21.1.8. Connector/ODBC Support
21.2.1. Connector/Net Versions
21.2.2. Connector/Net Installation
21.2.3. Connector/Net Visual Studio Integration
21.2.4. Connector/Net Tutorials
21.2.5. Connector/Net Programming
21.2.6. Connector/Net Connection String Options Reference
21.2.7. Connector/Net API Reference
21.2.8. Connector/Net Support
21.2.9. Connector/Net FAQ
21.3.1. Overview of MySQL Connector/J
21.3.2. Connector/J Versions
21.3.3. Connector/J Installation
21.3.4. Connector/J Examples
21.3.5. Connector/J (JDBC) Reference
21.3.6. JDBC Concepts
21.3.7. Connection Pooling with Connector/J
21.3.8. Load Balancing with Connector/J
21.3.9. Failover with Connector/J
21.3.10. Using the Connector/J Interceptor Classes
21.3.11. Using Connector/J with Tomcat
21.3.12. Using Connector/J with JBoss
21.3.13. Using Connector/J with Spring
21.3.14. Using Connector/J with GlassFish
21.3.15. Troubleshooting Connector/J Applications
21.3.16. Connector/J Support
21.4.1. How to Get MySQL Connector/C++
21.4.2. Installing MySQL Connector/C++ from a Binary Distribution
21.4.3. Installing MySQL Connector/C++ from Source
21.4.4. Building MySQL Connector/C++ Windows Applications with Microsoft Visual Studio
21.4.5. Building MySQL Connector/C++ Linux Applications with NetBeans
21.4.6. MySQL Connector/C++ Getting Started: Usage Examples
21.4.7. MySQL Connector/C++ Tutorials
21.4.8. MySQL Connector/C++ Debug Tracing
21.4.9. MySQL Connector/C++ Usage Notes
21.4.10. MySQL Connector/C++ Known Bugs and Issues
21.4.11. MySQL Connector/C++ Support
21.5.1. MySQL Connector/C Supported Platforms
21.5.2. MySQL Connector/C Distribution Contents
21.5.3. Obtaining MySQL Connector/C
21.5.4. Installing MySQL Connector/C from a Binary Distribution
21.5.5. Installing MySQL Connector/C from Source
21.5.6. Testing MySQL Connector/C
21.5.7. Building MySQL Connector/C Applications
21.6.1. Guidelines for Python Developers
21.6.2. Connector/Python Versions
21.6.3. Connector/Python Installation
21.6.4. Connector/Python Coding Examples
21.6.5. Connector/Python Tutorials
21.6.6. Connector/Python Connection Arguments
21.6.7. Connector/Python API Reference
21.6.8. Connector/Python FAQ
21.7. libmysqld, the Embedded MySQL Server Library
21.7.1. Compiling Programs with libmysqld
21.7.2. Restrictions When Using the Embedded MySQL Server
21.7.3. Options with the Embedded Server
21.7.4. Embedded Server Examples
21.8.1. MySQL C API Implementations
21.8.2. Example C API Client Programs
21.8.3. Building and Running C API Client Programs
21.8.4. C API Data Structures
21.8.5. C API Function Overview
21.8.6. C API Function Descriptions
21.8.7. C API Prepared Statements
21.8.8. C API Prepared Statement Data Structures
21.8.9. C API Prepared Statement Function Overview
21.8.10. C API Prepared Statement Function Descriptions
21.8.11. C API Threaded Function Descriptions
21.8.12. C API Embedded Server Function Descriptions
21.8.13. C API Client Plugin Functions
21.8.14. Common Questions and Problems When Using the C API
21.8.15. Controlling Automatic Reconnection Behavior
21.8.16. C API Support for Multiple Statement Execution
21.8.17. C API Prepared Statement Problems
21.8.18. C API Prepared Statement Handling of Date and Time Values
21.8.19. C API Support for Prepared CALL Statements
21.9.1. Overview of the MySQL PHP drivers
21.9.2. Original MySQL API (Mysql)
21.9.3. MySQL Improved Extension (Mysqli)
21.9.4. MySQL Functions (PDO_MYSQL) (MySQL (PDO))
21.9.5. MySQL Native Driver (Mysqlnd)
21.9.6. Mysqlnd replication and load balancing plugin (mysqlnd_ms)
21.9.7. Mysqlnd query result cache plugin (mysqlnd_qc)
21.9.8. Mysqlnd user handler plugin (mysqlnd_uh)
21.9.9. Mysqlnd connection multiplexing plugin (mysqlnd_mux)
21.9.10. Mysqlnd Memcache plugin (mysqlnd_memcache)
21.9.11. Connector/PHP
21.9.12. Common Problems with MySQL and PHP
21.9.13. Enabling Both mysql and mysqli in PHP
21.12.1. The MySQL/Ruby API
21.12.2. The Ruby/MySQL API
MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide low-level access to the MySQL protocol and MySQL resources. Both Connectors and the APIs enable you to connect and execute MySQL statements from another language or environment, including ODBC, Java (JDBC), Perl, Python, PHP, Ruby, and native C and embedded MySQL instances.
Note
Connector version numbers do not correlate with MySQL Server version numbers. See Table 21.2, “MySQL Connector Versions and MySQL Server Versions”.
MySQL Connectors
Oracle develops a number of connectors:
Connector/ODBC provides driver support for connecting to MySQL using the Open Database Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and Mac OS X platforms.
Connector/Net enables developers to create .NET applications that connect to MySQL. Connector/Net implements a fully functional ADO.NET interface and provides support for use with ADO.NET aware tools. Applications that use Connector/Net can be written in any supported .NET language.
The MySQL Visual Studio Plugin works with Connector/Net and Visual Studio 2005. The plugin is a MySQL DDEX Provider, which means that you can use the schema and data manipulation tools available in Visual Studio to create and edit objects within a MySQL database.
Connector/J provides driver support for connecting to MySQL from Java applications using the standard Java Database Connectivity (JDBC) API.
Connector/Python provides driver support for connecting to MySQL from Python applications using an API that is compliant with the Python DB API version 2.0. No additional Python modules or MySQL client libraries are required.
Connector/C++ enables C++ applications to connect to MySQL.
Connector/C is a standalone replacement for the MySQL Client Library (libmysqlclient), to be used for C applications.
The MySQL C API
For direct access to using MySQL natively within a C application, there are two methods:
The C API provides low-level access to the MySQL client/server protocol through the libmysqlclient client library. This is the primary method used to connect to an instance of the MySQL server, and is used both by MySQL command-line clients and many of the MySQL Connectors and third-party APIs detailed here.
libmysqlclient is included in MySQL distributions and in MySQL Connector/C distributions.
libmysqld is an embedded MySQL server library that enables you to embed an instance of the MySQL server into your C applications.
libmysqld is included in MySQL distributions, but not in MySQL Connector/C distributions.
See also Section 21.8.1, “MySQL C API Implementations”.
To access MySQL from a C application, or to build an interface to MySQL for a language not supported by the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's utilities are available to help with the process; see Section 4.7, “MySQL Program Development Utilities”.
Third-Party MySQL APIs
The remaining APIs described in this chapter provide an interface to MySQL from specific application languages. These third-party solutions are not developed or supported by Oracle. Basic information on their usage and abilities is provided here for reference purposes only.
All the third-party language APIs are developed using one of two methods, using libmysqlclient or by implementing a native driver. The two solutions offer different benefits:
Using libmysqlclient offers complete compatibility with MySQL because it uses the same libraries as the MySQL client applications. However, the feature set is limited to the implementation and interfaces exposed through libmysqlclient and the performance may be lower as data is copied between the native language, and the MySQL API components.
Native drivers are an implementation of the MySQL network protocol entirely within the host language or environment. Native drivers are fast, as there is less copying of data between components, and they can offer advanced functionality not available through the standard MySQL API. Native drivers are also easier for end users to build and deploy because no copy of the MySQL client libraries is needed to build the native driver components.
Table 21.1, “MySQL APIs and Interfaces” lists many of the libraries and interfaces available for MySQL. Table 21.2, “MySQL Connector Versions and MySQL Server Versions” shows which MySQL Server versions each connector supports.
Table 21.1. MySQL APIs and Interfaces
Environment | API | Type | Notes |
---|---|---|---|
Ada | GNU Ada MySQL Bindings | libmysqlclient | See MySQL Bindings for GNU Ada |
C | C API | libmysqlclient | See Section 21.8, “MySQL C API”. |
C | Connector/C | Replacement for libmysqlclient | See Section 21.5, “MySQL Connector/C”. |
C++ | Connector/C++ | libmysqlclient | See Section 21.4, “MySQL Connector/C++”. |
MySQL++ | libmysqlclient | See MySQL++ Web site. | |
MySQL wrapped | libmysqlclient | See MySQL wrapped. | |
Cocoa | MySQL-Cocoa | libmysqlclient | Compatible with the Objective-C Cocoa environment. See http://mysql-cocoa.sourceforge.net/ |
D | MySQL for D | libmysqlclient | See MySQL for D. |
Eiffel | Eiffel MySQL | libmysqlclient | See Section 21.14, “MySQL Eiffel Wrapper”. |
Erlang | erlang-mysql-driver | libmysqlclient | See erlang-mysql-driver. |
Haskell | Haskell MySQL Bindings | Native Driver | See Brian O'Sullivan's pure Haskell MySQL bindings. |
hsql-mysql | libmysqlclient | See MySQL driver for Haskell . | |
Java/JDBC | Connector/J | Native Driver | See Section 21.3, “MySQL Connector/J”. |
Kaya | MyDB | libmysqlclient | See MyDB. |
Lua | LuaSQL | libmysqlclient | See LuaSQL. |
.NET/Mono | Connector/Net | Native Driver | See Section 21.2, “MySQL Connector/Net”. |
Objective Caml | OBjective Caml MySQL Bindings | libmysqlclient | See MySQL Bindings for Objective Caml. |
Octave | Database bindings for GNU Octave | libmysqlclient | See Database bindings for GNU Octave. |
ODBC | Connector/ODBC | libmysqlclient | See Section 21.1, “MySQL Connector/ODBC”. |
Perl | DBI/DBD::mysql | libmysqlclient | See Section 21.10, “MySQL Perl API”. |
Net::MySQL | Native Driver | See Net::MySQL at CPAN | |
PHP | mysql, ext/mysql interface (deprecated) | libmysqlclient | See Section 21.9.2, “Original MySQL API (Mysql)”. |
mysqli, ext/mysqli interface | libmysqlclient | See Section 21.9.3, “MySQL Improved Extension (Mysqli)”. | |
PDO_MYSQL | libmysqlclient | See Section 21.9.4, “MySQL Functions (PDO_MYSQL) (MySQL (PDO))”. | |
PDO mysqlnd | Native Driver | ||
Python | Connector/Python | Native Driver | See Section 21.6, “MySQL Connector/Python”. |
MySQLdb | libmysqlclient | See Section 21.11, “MySQL Python API”. | |
Ruby | MySQL/Ruby | libmysqlclient | Uses libmysqlclient. See Section 21.12.1, “The MySQL/Ruby API”. |
Ruby/MySQL | Native Driver | See Section 21.12.2, “The Ruby/MySQL API”. | |
Scheme | Myscsh | libmysqlclient | See Myscsh. |
SPL | sql_mysql | libmysqlclient | See sql_mysql for SPL. |
Tcl | MySQLtcl | libmysqlclient | See Section 21.13, “MySQL Tcl API”. |
Table 21.2. MySQL Connector Versions and MySQL Server Versions
Connector | Connector version | MySQL Server version |
---|---|---|
Connector/C++ | 1.0.5 GA | 5.6, 5.5, 5.4, 5.1 |
Connector/J | 5.1.8 | 5.6, 5.5, 5.4, 5.1, 5.0, 4.1 |
Connector/Net | 6.5 | 5.6, 5.5, 5.4, 5.1, 5.0 |
Connector/Net | 6.4 | 5.6, 5.5, 5.4, 5.1, 5.0 |
Connector/Net | 6.3 | 5.6, 5.5, 5.4, 5.1, 5.0 |
Connector/Net | 6.2 (No longer supported) | 5.6, 5.5, 5.4, 5.1, 5.0 |
Connector/Net | 6.1 (No longer supported) | 5.6, 5.5, 5.4, 5.1, 5.0 |
Connector/Net | 6.0 (No longer supported) | 5.6, 5.5, 5.4, 5.1, 5.0 |
Connector/Net | 5.2 (No longer supported) | 5.6, 5.5, 5.4, 5.1, 5.0 |
Connector/Net | 1.0 (No longer supported) | 5.0, 4.0 |
Connector/ODBC | 5.1 | 5.6, 5.5, 5.4, 5.1, 5.0, 4.1.1+ |
Connector/ODBC | 3.51 (Unicode not supported) | 5.6, 5.5, 5.4, 5.1, 5.0, 4.1 |
21.1. MySQL Connector/ODBC
The MySQL Connector/ODBC is the name for the family of MySQL ODBC drivers (previously called MyODBC drivers) that provide access to a MySQL database using the industry standard Open Database Connectivity (ODBC) API. This reference covers Connector/ODBC 5.2, which includes the functionality of the Unicode driver and the ANSI driver, which formerly were split between Connector/ODBC 5.1 and Connector/ODBC 3.51.
MySQL Connector/ODBC provides both driver-manager based and native interfaces to the MySQL database, with full support for MySQL functionality, including stored procedures, transactions and, with Connector/ODBC 5.1 and higher, full Unicode compliance.
For more information on the ODBC API standard and how to use it, refer to http://support.microsoft.com/kb/110093.
The application development section of the ODBC API reference assumes a good working knowledge of C, general DBMS, and a familiarity with MySQL. For more information about MySQL functionality and its syntax, refer to http://dev.mysql.com/doc/.
Typically, you need to install Connector/ODBC only on Windows machines. For Unix and Mac OS X, you can use the native MySQL network or named pipes to communicate with your MySQL database. You may need Connector/ODBC for Unix or Mac OS X if you have an application that requires an ODBC interface to communicate with the database. Applications that require ODBC to communicate with MySQL include ColdFusion, Microsoft Office, and Filemaker Pro.
For release notes detailing the changes in each release of Connector/ODBC, see MySQL Connector/ODBC Release Notes.
Key connector/ODBC topics include:
Installing Connector/ODBC: Section 21.1.3, “Connector/ODBC Installation”.
The configuration options: Section 21.1.4.2, “Connector/ODBC Connection Parameters”.
An example that connects to a MySQL database from a Windows host: Section 21.1.5.2, “Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC”.
An example that uses Microsoft Access as an interface to a MySQL database: Section 21.1.5.4, “Using Connector/ODBC with Microsoft Access”.
General tips and notes, including how to obtain the last auto-increment ID: Section 21.1.7.1, “Connector/ODBC General Functionality”.
Application-specific usage tips and notes: Section 21.1.7.2, “Connector/ODBC Application-Specific Tips”.
A FAQ (Frequently Asked Questions) list: Section 21.1.7.3, “Connector/ODBC Errors and Resolutions (FAQ)”.
Additional Connector/ODBC support options: Section 21.1.8, “Connector/ODBC Support”.
21.1.1. Connector/ODBC Versions
These are the versions of Connector/ODBC that are currently available:
Connector/ODBC 5.2, currently in GA status, upgrades the ANSI driver of Connector/ODBC 3.51 to the 5.x code base. It also includes new features, such as enabling server-side prepared statements by default. At installation time, you can choose the Unicode driver for the broadest compatibility with data sources using various character sets, or the ANSI driver for optimal performance with a more limited range of character sets. It works with MySQL versions 4.1.1 and higher.
Connector/ODBC 5.1, now superceded by 5.2, is a partial rewrite of the of the 3.51 code base, and is designed to work with MySQL versions 4.1.1 and newer.
Connector/ODBC 5.1 also includes the following changes and improvements over the 3.51 release:
Improved support on Windows 64-bit platforms.
Full Unicode support at the driver level. This includes support for the SQL_WCHAR data type, and support for Unicode login, password and DSN configurations. For more information, see Microsoft Knowledgebase Article #716246.
Support for the SQL_NUMERIC_STRUCT data type, which provides easier access to the precise definition of numeric values. For more information, see Microsoft Knowledgebase Article #714556
Native Windows setup library. This replaces the Qt library based interface for configuring DSN information within the ODBC Data Sources application.
Support for the ODBC descriptor, which improves the handling and metadata of columns and parameter data. For more information, see Microsoft Knowledgebase Article #716339.
Connector/ODBC 3.51 is the current release of the 32-bit ODBC driver, also known as the MySQL ODBC 3.51 driver. Connector/ODBC 3.51 has support for ODBC 3.5x specification level 1 (complete core API + level 2 features) to continue to provide all functionality of ODBC for accessing MySQL.
With MySQL Connector/ODBC 5.2 now offering both ANSI and Unicode drivers, you should expect to upgrade relatively soon.
The manual for versions of Connector/ODBC older than 5.2 can be located in the corresponding binary or source distribution. Please note that versions of Connector/ODBC earlier than the 3.51 revision were not fully compliant with the ODBC specification.
Note
From this section onward, the primary focus of this guide is the Connector/ODBC 5.2 driver.
Note
Version numbers for MySQL products are formatted as X.X.X. However, Windows tools (Control Panel, properties display) may show the version numbers as XX.XX.XX. For example, the official MySQL formatted version number 5.0.9 may be displayed by Windows tools as 5.00.09. The two versions are the same; only the number display format is different.
21.1.2. Connector/ODBC Introduction
ODBC (Open Database Connectivity) provides a way for client programs to access a wide range of databases or data sources. ODBC is a standardized API that enables connections to SQL database servers. It was developed according to the specifications of the SQL Access Group and defines a set of function calls, error codes, and data types that can be used to develop database-independent applications. ODBC usually is used when database independence or simultaneous access to different data sources is required.
For more information about ODBC, refer to http://support.microsoft.com/kb/110093.
21.1.2.1. General Information About ODBC and Connector/ODBC
Open Database Connectivity (ODBC) is a widely accepted application-programming interface (API) for database access. It is based on the Call-Level Interface (CLI) specifications from X/Open and ISO/IEC for database APIs and uses Structured Query Language (SQL) as its database access language.
A survey of ODBC functions supported by Connector/ODBC is given at Section 21.1.6.1, “Connector/ODBC API Reference”. For general information about ODBC, see http://support.microsoft.com/kb/110093.
21.1.2.1.1. Connector/ODBC Architecture
The Connector/ODBC architecture is based on five components, as shown in the following diagram:
Application:
The Application uses the ODBC API to access the data from the MySQL server. The ODBC API in turn communicates with the Driver Manager. The Application communicates with the Driver Manager using the standard ODBC calls. The Application does not care where the data is stored, how it is stored, or even how the system is configured to access the data. It needs to know only the Data Source Name (DSN).
A number of tasks are common to all applications, no matter how they use ODBC. These tasks are:
Selecting the MySQL server and connecting to it.
Submitting SQL statements for execution.
Retrieving results (if any).
Processing errors.
Committing or rolling back the transaction enclosing the SQL statement.
Disconnecting from the MySQL server.
Because most data access work is done with SQL, the primary tasks for applications that use ODBC are submitting SQL statements and retrieving any results generated by those statements.
Driver manager:
The Driver Manager is a library that manages communication between application and driver or drivers. It performs the following tasks:
Resolves Data Source Names (DSN). The DSN is a configuration string that identifies a given database driver, database, database host and optionally authentication information that enables an ODBC application to connect to a database using a standardized reference.
Because the database connectivity information is identified by the DSN, any ODBC compliant application can connect to the data source using the same DSN reference. This eliminates the need to separately configure each application that needs access to a given database; instead you instruct the application to use a pre-configured DSN.
Loading and unloading of the driver required to access a specific database as defined within the DSN. For example, if you have configured a DSN that connects to a MySQL database then the driver manager will load the Connector/ODBC driver to enable the ODBC API to communicate with the MySQL host.
Processes ODBC function calls or passes them to the driver for processing.
Connector/ODBC Driver:
The Connector/ODBC driver is a library that implements the functions supported by the ODBC API. It processes ODBC function calls, submits SQL requests to MySQL server, and returns results back to the application. If necessary, the driver modifies an application's request so that the request conforms to syntax supported by MySQL.
DSN Configuration:
The ODBC configuration file stores the driver and database information required to connect to the server. It is used by the Driver Manager to determine which driver to be loaded according to the definition in the DSN. The driver uses this to read connection parameters based on the DSN specified. For more information, Section 21.1.4, “Configuring Connector/ODBC”.
MySQL Server:
The MySQL database where the information is stored. The database is used as the source of the data (during queries) and the destination for data (during inserts and updates).
21.1.2.1.2. ODBC Driver Managers
An ODBC Driver Manager is a library that manages communication between the ODBC-aware application and any drivers. Its main functionality includes:
Resolving Data Source Names (DSN).
Driver loading and unloading.
Processing ODBC function calls or passing them to the driver.
Both Windows and Mac OS X include ODBC driver managers with the operating system. Most ODBC Driver Manager implementations also include an administration application that makes the configuration of DSN and drivers easier. Examples and information on these managers, including Unix ODBC driver managers, are listed below:
Microsoft Windows ODBC Driver Manager (odbc32.dll), http://support.microsoft.com/kb/110093.
Mac OS X includes ODBC Administrator, a GUI application that provides a simpler configuration mechanism for the Unix iODBC Driver Manager. You can configure DSN and driver information either through ODBC Administrator or through the iODBC configuration files. This also means that you can test ODBC Administrator configurations using the iodbctest command. http://www.apple.com.
unixODBC Driver Manager for Unix (libodbc.so). See http://www.unixodbc.org, for more information. The unixODBC Driver Manager includes the Connector/ODBC driver 3.51 in the installation package, starting with version unixODBC 2.1.2.
iODBC ODBC Driver Manager for Unix (libiodbc.so), see http://www.iodbc.org, for more information.
21.1.3. Connector/ODBC Installation
This section explains where to download Connector/ODBC, and how to run the installer, copy the files manually, or build from source.
Where to Get Connector/ODBC
You can get a copy of the latest version of Connector/ODBC binaries and sources from our Web site at http://dev.mysql.com/downloads/connector/odbc/.
For more information about Connector/ODBC, visit http://www.mysql.com/products/myodbc/.
For more information about licensing, visit http://www.mysql.com/company/legal/licensing/.
Choosing Unicode or ANSI Driver
Connector/ODBC offers the flexibility to handle data using any character set through its Unicode-enabled driver, or the maximum raw speed for a more limited range of character sets through its ANSI driver. Some users postponed their upgrade to Connector/ODBC 5.1, remaining with the older 3.51 version to keep this performance edge. As of Connector/ODBC 5.2, both kinds of drivers are available based on the 5.x code base: you can choose either a Unicode-enabled driver or an ANSI driver on the download page. The Unicode-enabled driver, recommended for most users, has no special qualifier in the download filename. The ANSI driver includes -ansi- in the download filename.
Note
You can install either the Unicode driver on a Windows system, or the ANSI driver, or both. The drivers are distinguished in the list of installed software and in the names of libraries and directories by a w (for “wide characters”) for the Unicode driver, and a in the ANSI driver.
Choosing Binary or Source Installation Method
You can install the Connector/ODBC drivers using two different methods:
The binary installation is the easiest and most straightforward method of installation. You receive all the necessary libraries and other files pre-built, with an installer program or batch script to perform all necessary copying and configuration.
The source installation method is intended for platforms where a binary installation package is not available, or in situations where you want to customize or modify the installation process or Connector/ODBC drivers before installation.
If a binary distribution is not available for a particular platform, and you build the driver from the original source code, you can contribute the binaries you create to MySQL by sending a mail message to <myodbc@lists.mysql.com>, so that it becomes available for other users.
Supported Platforms
Connector/ODBC can be used on all major platforms supported by MySQL. You can install it on:
Windows 95, 98, Me, NT, 2000, XP, 2003, Vista and 7.
All Unix-like Operating Systems, including: AIX, Amiga, BSDI, DEC, FreeBSD, HP-UX 10/11, Linux, NetBSD, OpenBSD, OS/2, SGI Irix, Solaris, SunOS, SCO OpenServer, SCO UnixWare, Tru64 Unix.
Mac OS X and Mac OS X Server.
Note
On all non-Windows platforms except Mac OS X, the driver is built against unixODBC and is expecting a 2-byte SQLWCHAR, not 4 bytes as iODBC is using. For this reason, the binaries are only compatible with unixODBC; recompile the driver against iODBC to use them together. For further information, see Section 21.1.2.1.2, “ODBC Driver Managers”.
For further instructions, consult the documentation corresponding to the platform where you are installing and whether you are running a binary installer or building from source:
Platform | Binary Installer | Build from Source |
---|---|---|
Windows | Installation Instructions | Build Instructions |
Unix/Linux | Installation Instructions | Build Instructions |
Mac OS X | Installation Instructions |
21.1.3.1. Installing Connector/ODBC on Windows
Before installing the Connector/ODBC drivers on Windows, ensure that your Microsoft Data Access Components (MDAC) are up to date. You can obtain the latest version from the Microsoft Data Access and Storage Web site.
There are different distribution types to use when installing for Windows. The software that is installed is identical in each case, only the installation method is different.
The zipped installer consists of a zipped package containing a standalone installation application. To install from this package, unzip the installer, and then run the installation application.
The MSI installer is an installation file that can be used with the installer included in Windows 2000, Windows XP and Windows Server 2003.
See Section 21.1.3.1.1, “Installing the Windows Connector/ODBC Driver Using an Installer” for the steps to complete the installation with either of these installers.
The zipped DLL package contains DLL files that must be manually installed. See Section 21.1.3.1.2, “Installing the Windows Connector/ODBC Driver using the Zipped DLL Package” for the steps to complete this type of installation.
Note
An OLEDB/ODBC driver for Windows 64-bit is available from Microsoft Downloads.
21.1.3.1.1. Installing the Windows Connector/ODBC Driver Using an Installer
The zipped or MSI installer packages offer a very simple method for installing the Connector/ODBC drivers. If you have downloaded the zipped installer, extract the installer application. The basic installation process is identical for both installers.
Follow these steps to complete the installation:
Double-click the standalone installer that you extracted, or the MSI file you downloaded.
The MySQL Connector/ODBC Setup Wizard starts. Click the Next button to begin the installation process.
Choose the installation type. The Typical installation provides the standard files needed to connect to a MySQL database using ODBC. The Complete option installs all the available files, including debug and utility components. Oracle recommends choosing one of these two options to complete the installation. If you choose one of these methods, click Next, then proceed to step 5.
You can also choose a Custom installation, where you select the individual components to install. If you choose this method, click Next, then proceed to step 4.
If you have chosen a custom installation, use the pop-ups to select which components to install, then click Next to install the necessary files.
Once the files are copied to their final locations, the installation is complete. Click Finish to exit the installer.
Now that the installation is complete, configure your ODBC connections using Section 21.1.4, “Configuring Connector/ODBC”.
21.1.3.1.2. Installing the Windows Connector/ODBC Driver using the Zipped DLL Package
If you have downloaded the zipped DLL package:
Unzip the installation files.
Run the included batch file to perform an installation to the default locations.
Alternatively, install the individual files required for Connector/ODBC operation manually.
Note
The following instructions only work for 32-bit Windows systems. If you have a 64-bit Windows system, use the MSI installer, which installs both the 32-bit and 64-bit drivers to the correct locations.
To install using the batch file:
Unzip the Connector/ODBC zipped DLL package.
Open a command prompt.
Change to the directory created when you unzipped the Connector/ODBC zipped DLL package.
Run Install.bat:
C:\> Install.bat
This copies the necessary files into the default location, and then registers the Connector/ODBC driver with the Windows ODBC manager.
Note
Changing or adding a new DSN (data source name) may be accomplished using either the GUI, or from the command-line using myodbc-installer.exe with Connector/ODBC 5.x, or myodbc3i.exe with Connector/ODBC 3.51,
Although Oracle recommends installing these files in the standard location, you can also copy the files by hand to an alternative location - for example, to run or test different versions of the Connector/ODBC driver on the same machine. To copy the files to a location of your choice, use the following steps:
Unzip the Connector/ODBC zipped DLL package.
Open a command prompt.
Change to the directory created when you unzipped the Connector/ODBC zipped DLL package.
Copy the library files to a suitable directory. The default location is the default Windows system directory \Windows\System32:
C:\> copy lib\myodbc5S.dll \Windows\System32
C:\> copy lib\myodbc5S.lib \Windows\System32
If installing the Unicode-enabled driver:
C:\> copy lib\myodbc5w.dll \Windows\System32
C:\> copy lib\myodbc5w.lib \Windows\System32
If installing the ANSI driver:
C:\> copy lib\myodbc5a.dll \Windows\System32
C:\> copy lib\myodbc5a.lib \Windows\System32
Copy the Connector/ODBC tools. These must be placed in a directory that is in the system %PATH%. The default is to install these into the Windows system directory \Windows\System32:
C:\> copy bin\myodbc3i.exe \Windows\System32
C:\> copy bin\myodbc3m.exe \Windows\System32
C:\> copy bin\myodbc3c.exe \Windows\System32
Optionally, copy the help files. For these files to be accessible through the help system, they must be installed in the Windows system directory:
C:\> copy doc*.hlp \Windows\System32
Finally, register the Connector/ODBC driver with the ODBC manager:
For Unicode-enabled driver:
C:\> myodbc3i -a -d -t"MySQL ODBC 5.2 Driver;\
DRIVER=myodbc5w.dll;SETUP=myodbc5S.dll"
For ANSI driver:
C:\> myodbc3i -a -d -t"MySQL ODBC 5.2 Driver;\
DRIVER=myodbc5a.dll;SETUP=myodbc5S.dll"
If you installed these files into a non-default location, change the references to the DLL files and command location in the above statement
21.1.3.2. Installing Connector/ODBC on Unix
There are two methods available for installing Connector/ODBC on Unix from a binary distribution. For most Unix environments, you will use the tarball distribution. For Linux systems, there is also an RPM distribution available.
Note
To install Connector/ODBC 5.x on Unix requires unixODBC 2.2.12 or later to be installed.
21.1.3.2.1. Installing Connector/ODBC from a Binary Tarball Distribution
To install the driver from a tarball distribution (.tar.gz file), download the latest version of the driver for your operating system and follow these steps that demonstrate the process using the Linux version of the tarball, substituting the appropriate file and directory names based on the package you download:
shell> su root
shell> gunzip mysql-connector-odbc-5.2.2-i686-pc-linux.tar.gz
shell> tar xvf mysql-connector-odbc-5.2.2-i686-pc-linux.tar
shell> cd mysql-connector-odbc-5.2.2-i686-pc-linux
Read the installation instructions in the INSTALL file and execute these commands.
Then see Section 21.1.4.5, “Configuring a Connector/ODBC DSN on Unix” to configure the DSN for Connector/ODBC. For more information, refer to the INSTALL file that comes with your distribution.
21.1.3.2.2. Installing Connector/ODBC from an RPM Distribution
To install or upgrade Connector/ODBC from an RPM distribution on Linux, simply download the RPM distribution of the latest version of Connector/ODBC and follow the instructions below. Use su root to become root, then install the RPM file.
If you are installing for the first time:
shell> su root
shell> rpm -ivh mysql-connector-odbc-5.2.2.i386.rpm
If the driver exists, upgrade it like this:
shell> su root
shell> rpm -Uvh mysql-connector-odbc-5.2.2.i386.rpm
If there is any dependency error for MySQL client library, libmysqlclient, simply ignore it by supplying the --nodeps option, and then make sure the MySQL client shared library is in the path or set through LD_LIBRARY_PATH.
This installs the driver libraries and related documents to /usr/local/lib and /usr/share/doc/MyODBC, respectively. See Section 21.1.4.5, “Configuring a Connector/ODBC DSN on Unix” for the post-installation configuration steps.
To uninstall the driver, become root and execute an rpm command:
shell> su root
shell> rpm -e mysql-connector-odbc
21.1.3.3. Installing Connector/ODBC on Mac OS X
Mac OS X is based on the FreeBSD operating system, and you can normally use the MySQL network port for connecting to MySQL servers on other hosts. Installing the Connector/ODBC driver lets you connect to MySQL databases on any platform through the ODBC interface. If your application requires an ODBC interface, install the Connector/ODBC driver. Applications that require or can use ODBC (and therefore the Connector/ODBC driver) include ColdFusion, Filemaker Pro, 4th Dimension and many other applications.
Mac OS X includes its own ODBC manager, based on the iODBC manager. Mac OS X includes an administration tool that provides easier administration of ODBC drivers and configuration, updating the underlying iODBC configuration files.
For Connector/ODBC 5.x, the package is provided as a compressed tar archive that you manually install.
In either case, the driver is designed to work with the iODBC driver manager included with Mac OS X.
To install Connector/ODBC 5.x:
Download the installation file for the appropriate level of Mac OS X (10.5 or higher).
Extract the archive:
shell> tar xvzf mysql-connector-odbc-5.x.y-osx10.z-x86-(32|64)bit.tar.gz
The directory created contains the subdirectories, lib, bin, and test. Copy the contents of lib and bin to a suitable location such as /usr/local:
shell> sudo cp bin/* /usr/local/bin
shell> sudo cp lib/* /usr/local/lib
Finally, register the driver with iODBC using the myodbc3i tool you just installed:
shell> myodbc3i -a -d -t"MySQL ODBC 3.51 Driver;Driver=/usr/local/lib/libmyodbc3.so;Setup=/usr/local/lib/libmyodbc3S.so"
To verify the installed drivers, either use the ODBC Administrator application or the myodbc3i utility:
shell> myodbc3i -q -d
21.1.3.4. Building Connector/ODBC from a Source Distribution on Windows
You only need to build Connector/ODBC from source on Windows to modify the source or installation location. If you are unsure whether to install from source, please use the binary installation detailed in Section 21.1.3.1, “Installing Connector/ODBC on Windows”.
Building Connector/ODBC from source on Windows requires a number of different tools and packages:
MDAC, Microsoft Data Access SDK from http://support.microsoft.com/kb/110093.
Suitable C compiler, such as Microsoft Visual C++ or the C compiler included with Microsoft Visual Studio.
Microsoft Visual Studio 7 and 8 are preferred, and well-tested.
Connector/ODBC 5.2: cmake.
MySQL client libraries and include files from MySQL 4.0.0 or higher. (Preferably MySQL 4.0.16 or higher). This is required because Connector/ODBC uses calls and structures that exist only starting from this version of the library. To get the client libraries and include files, visit http://dev.mysql.com/downloads/.
Build Steps
Set the environment variables for the Visual Studio toolchain. Visual Studio includes a batch file to set these for you, and installs a Start menu shortcut that opens a command prompt with these variables set.
Set MYSQL_DIR to the MySQL server installation path, while using the short-style file names. For example:
C:\> set MYSQL_DIR=C:\PROGRA~1\MySQL\MYSQLS~1.0
Build Connector/ODBC using the cmake command-line tool by executing the following from the source root directory (in a command prompt window):
C:\> cmake -G "Visual Studio 8 2005"
This produces a project file that you can open with Visual Studio, or build from the command line with either of the following commands:
C:\> devenv.com MySQL_Connector_ODBC.sln /build Release
C:\> devenv.com MySQL_Connector_ODBC.sln /build RelWithDebInfo
To compile a debug build, set the cmake build type so that the correct versions of the MySQL client libraries are used:
C:\> cmake -G "Visual Studio 8 2005" -DCMAKE_BUILD_TYPE=Debug
C:\> devenv.com MySQL_Connector_ODBC.sln /build Debug
Upon completion, the executables are in the bin/ and lib/ subdirectories.
See Section 21.1.3.1.2, “Installing the Windows Connector/ODBC Driver using the Zipped DLL Package” for the copy commands to complete the installation.
21.1.3.5. Building Connector/ODBC from a Source Distribution on Unix
Note
Connector/5.2 uses cmake for build, rather than autoconf and its configure command.
You need the following tools to build MySQL from source on Unix:
A working ANSI C++ compiler. GCC 4.2.1 or later, Sun Studio 10 or later, Visual Studio 2008 or later, and many current vendor-supplied compilers are known to work.
cmake.
MySQL client libraries and include files from MySQL 4.0.0 or higher. (Preferably MySQL 4.0.16 or higher). This is required because Connector/ODBC uses calls and structures that exist only starting from this version of the library. To get the client libraries and include files, visit http://dev.mysql.com/downloads/.
If you have built your own MySQL server or client libraries from source using the GNU autotools, use the --enable-thread-safe-client option to configure when the libraries were built. No special option is needed if you configure with cmake.
Also, ensure that the libmysqlclient library was built and installed as a shared library.
A compatible ODBC manager must be installed. Connector/ODBC is known to work with the iODBC and unixODBC managers. See Section 21.1.2.1.2, “ODBC Driver Managers” for more information.
If you are using a character set that is not compiled into the MySQL client library, install the MySQL character definitions from the charsets directory into SHAREDIR (by default, /usr/local/mysql/share/mysql/charsets). These should be in place if you have installed the MySQL server on the same machine. See Section 10.1, “Character Set Support” for more information on character set support.
Once you have all the required files, unpack the source files to a separate directory, then run configure and build the library using make.
Typical cmake Options
iODBC is the default ODBC library used by Connector/ODBC. Alternatively, unixODBC may be used by passing in the appropriate option to cmake. For example:
shell> cmake -G "Unix Makefiles" -DWITH_UNIXODBC=1
When you run cmake, you might add options to the command line. Here are some examples:
-DODBC_INCLUDES=dir_name: Used when the ODBC include directory is not found within the system $PATH.
-DODBC_LIB_DIR=dir_name: Used when the ODBC library directory is not found within the system $PATH.
-DWITH_UNIXODBC=1: Enables unixODBC support.
Additional configure Options
There are a number of other options that you need, or want, to set when configuring the Connector/ODBC driver before it is built.
To link the driver with MySQL thread safe client libraries libmysqlclient_r.so or libmysqlclient_r.a, specify the following configure option:
--enable-thread-safe
and can be disabled (default) using
--disable-thread-safe
This option enables the building of the driver thread-safe library libmyodbc3_r.so from by linking with MySQL thread-safe client library libmysqlclient_r.so. (The extensions are OS-dependent.)
If the compilation with the thread-safe option fails, it may be because the correct thread-libraries on the system could not be located. Set the value of LIBS to point to the correct thread library for your system.
LIBS="-lpthread" ./configure ..
You can enable or disable the shared and static versions of Connector/ODBC using these options:
--enable-shared[=yes|no]
--disable-shared
--enable-static[=yes|no]
--disable-static
By default, all the binary distributions are built as non-debug versions (configured with --without-debug).
To enable debugging information, build the driver from a source distribution with the proper configuration option to enable debugging support. See Section 2.9.4, “MySQL Source-Configuration Options”.
This option is available only for source trees that have been obtained from the Subversion repository. This option does not apply to the packaged source distributions.
By default, the driver is built with the --without-docs option. If you would like the documentation to be built, then execute configure with:
--with-docs
Build Steps for Unix
To build the driver libraries, execute make:
shell> make
If any errors occur, correct them and continue the build process. If you are not able to build, then send a detailed email to <myodbc@lists.mysql.com> for further assistance.
Building Shared Libraries
On most platforms, MySQL does not build or support .so (shared) client libraries by default. This is based on our experience of problems when building shared libraries.
In cases like this, you have to download the MySQL distribution and configure it with these options:
--without-server --enable-shared
To build shared driver libraries, specify the --enable-shared option for configure. By default, configure does not enable this option.
If you have configured with the --disable-shared option, you can build the .so file from the static libraries using the following commands:
shell> cd mysql-connector-odbc-3.51.01
shell> make
shell> cd driver
shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error \
-o .libs/libmyodbc3-3.51.01.so \
catalog.o connect.o cursor.o dll.o error.o execute.o \
handle.o info.o misc.o myodbc3.o options.o prepare.o \
results.o transact.o utility.o \
-L/usr/local/mysql/lib/mysql/ \
-L/usr/local/iodbc/lib/ \
-lz -lc -lmysqlclient -liodbcinst
Make sure to change -liodbcinst to -lodbcinst if you are using unixODBC instead of iODBC, and configure the library paths accordingly.
This builds and places the libmyodbc3-3.51.01.so file in the .libs directory. Copy this file to the Connector/ODBC library installation directory (/usr/local/lib, or the lib directory under the installation directory that you supplied with the --prefix option).
shell> cd .libs
shell> cp libmyodbc3-3.51.01.so /usr/local/lib
shell> cd /usr/local/lib
shell> ln -s libmyodbc3-3.51.01.so libmyodbc3.so
To build the thread-safe driver library:
shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3_r-3.51.01.so
catalog.o connect.o cursor.o dll.o error.o execute.o
handle.o info.o misc.o myodbc3.o options.o prepare.o
results.o transact.o utility.o
-L/usr/local/mysql/lib/mysql/
-L/usr/local/iodbc/lib/
-lz -lc -lmysqlclient_r -liodbcinst
Installing Driver Libraries
To install the driver libraries, execute the following command:
shell> make install
That command installs one of the following sets of libraries:
For Connector/ODBC 3.51:
libmyodbc3.so
libmyodbc3-3.51.01.so, where 3.51.01 is the version of the driver
libmyodbc3.a
For thread-safe Connector/ODBC 3.51:
libmyodbc3_r.so
libmyodbc3-3_r.51.01.so
libmyodbc3_r.a
For more information on build process, refer to the INSTALL file that comes with the source distribution. Note that if you are trying to use the make from Sun, you may end up with errors. On the other hand, GNU gmake should work fine on all platforms.
Testing Connector/ODBC on Unix
To run the basic samples provided in the distribution with the libraries that you built, use the following command:
shell> make test
Before running the tests, create the DSN 'myodbc3' in odbc.ini and set the environment variable ODBCINI to the correct odbc.ini file; and MySQL server is running. You can find a sample odbc.ini with the driver distribution.
You can even modify the samples/run-samples script to pass the desired DSN, UID, and PASSWORD values as the command-line arguments to each sample.
21.1.3.6. Building Connector/ODBC from a Source Distribution on Mac OS X
To build the driver on Mac OS X (Darwin), make use of the following configure example:
shell> ./configure --prefix=/usr/local
--with-unixODBC=/usr/local
--with-mysql-path=/usr/local/mysql
--disable-shared
--enable-gui=no
--host=powerpc-apple
The command assumes that the unixODBC and MySQL are installed in the default locations. If not, configure accordingly.
On Mac OS X, --enable-shared builds .dylib files by default. You can build .so files like this:
shell> make
shell> cd driver
shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3-3.51.01.so *.o
-L/usr/local/mysql/lib/
-L/usr/local/iodbc/lib
-liodbcinst -lmysqlclient -lz -lc
To build the thread-safe driver library:
shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3-3.51.01.so *.o
-L/usr/local/mysql/lib/
-L/usr/local/iodbc/lib
-liodbcinst -lmysqlclienti_r -lz -lc -lpthread
Make sure to change the -liodbcinst to -lodbcinst in case of using unixODBC instead of iODBC and configure the libraries path accordingly.
In Apple's version of GCC, both cc and gcc are actually symbolic links to gcc3.
Copy this library to the $prefix/lib directory and symlink to libmyodbc3.so.
You can cross-check the output shared-library properties using this command:
shell> otool -LD .libs/libmyodbc3-3.51.01.so
21.1.3.7. Installing Connector/ODBC from the Development Source Tree
Caution
Read this section only if you are interested in helping us test our new code. To just get MySQL Connector/ODBC up and running on your system, use a standard release distribution.
To obtain the most recent development source tree, first download and install Bazaar from the Bazaar VCS Web site. Bazaar is supported by any platform that supports Python, and is therefore compatible with any Linux, Unix, Windows or Mac OS X host. Instructions for downloading and installing Bazaar on the different platforms are available on the Bazaar Web site.
Building from the source trees requires the following tools:
autoconf 2.52 (or newer).
automake 1.4 (or newer).
libtool 1.4 (or newer).
m4.
The most recent development source tree is available from our public Subversion trees at http://dev.mysql.com/tech-resources/sources.html.
To check out out the Connector/ODBC sources, change to the directory where you want the copy of the Connector/ODBC tree to be stored, then use the following command:
shell> bzr branch lp:myodbc
You should now have a copy of the entire Connector/ODBC source tree in the directory connector-odbc3. To build from this source tree on Unix or Linux, follow these steps:
shell> cd myodbc
shell> aclocal
shell> autoheader
shell> libtoolize -c -f
shell> autoconf
shell> automake;
shell> ./configure # Add your favorite options here
shell> make
When the build is done, run make install to install the Connector/ODBC driver on your system.
If you have gotten to the make stage and the distribution does not compile, please report it to <myodbc@lists.mysql.com>.
On Windows, make use of Windows Makefiles WIN-Makefile and WIN-Makefile_debug in building the driver. For more information, see Section 21.1.3.4, “Building Connector/ODBC from a Source Distribution on Windows”.
After the initial checkout operation to get the source tree, run bzr pull periodically to update your source according to the latest version.
21.1.4. Configuring Connector/ODBC
Before you connect to a MySQL database using the Connector/ODBC driver, you configure an ODBC Data Source Name (DSN). The DSN associates the various configuration parameters required to communicate with a database to a specific name. You use the DSN in an application to communicate with the database, rather than specifying individual parameters within the application itself. DSN information can be user-specific, system-specific, or provided in a special file. ODBC data source names are configured in different ways, depending on your platform and ODBC driver.
21.1.4.1. Overview of Connector/ODBC Data Source Names
A Data Source Name associates the configuration parameters for communicating with a specific database. Generally, a DSN consists of the following parameters:
In addition, different ODBC drivers, including Connector/ODBC, may accept additional driver-specific options and parameters.
There are three types of DSN:
A System DSN is a global DSN definition that is available to any user and application on a particular system. A System DSN can normally only be configured by a systems administrator, or by a user who has specific permissions that let them create System DSNs.
A User DSN is specific to an individual user, and can be used to store database connectivity information that the user regularly uses.
A File DSN uses a simple file to define the DSN configuration. File DSNs can be shared between users and machines and are therefore more practical when installing or deploying DSN information as part of an application across many machines.
DSN information is stored in different locations depending on your platform and environment.
21.1.4.2. Connector/ODBC Connection Parameters
You can specify the parameters in the following tables for Connector/ODBC when configuring a DSN:
Users on Windows can use the Options and Advanced panels when configuring a DSN to set these parameters; see the table for information on which options relate to which fields and check boxes. On Unix and Mac OS X, use the parameter name and value as the keyword/value pair in the DSN configuration. Alternatively, you can set these parameters within the InConnectionString argument in the SQLDriverConnect() call.
Table 21.3. Connector/ODBC DSN Configuration Options
Parameter | Default Value | Comment |
---|---|---|
user | ODBC | The user name used to connect to MySQL. |
uid | ODBC | Synonymous with user. Added in 3.51.16. |
server | localhost | The host name of the MySQL server. |
database | The default database. | |
option | 0 | Options that specify how Connector/ODBC works. See Table 21.4, “Connector/ODBC Option Flags” and Table 21.5, “Recommended Connector/ODBC option Values for Different Configurations”. |
port | 3306 | The TCP/IP port to use if server is not localhost. |
initstmt | Initial statement. A statement to execute when connecting to MySQL. In version 3.51 the parameter is called stmt. Note, the driver supports the initial statement being executed only at the time of the initial connection. | |
password | The password for the user account on server. | |
pwd | Synonymous with password. Added in 3.51.16. | |
socket | The Unix socket file or Windows named pipe to connect to if server is localhost. | |
sslca | The path to a file with a list of trust SSL CAs. Added in 3.51.16. | |
sslcapath | The path to a directory that contains trusted SSL CA certificates in PEM format. Added in 3.51.16. | |
sslcert | The name of the SSL certificate file to use for establishing a secure connection. Added in 3.51.16. | |
sslcipher | A list of permissible ciphers to use for SSL encryption. The cipher list has the same format as the openssl ciphers command. Added in 3.51.16. | |
sslkey | The name of the SSL key file to use for establishing a secure connection. Added in 3.51.16. | |
charset | The character set to use for the connection. Added in 3.51.17. | |
sslverify | If set to 1, the SSL certificate will be verified when used with the MySQL connection. If not set, then the default behavior is to ignore SSL certificate verification. | |
readtimeout | The timeout in seconds for attempts to read from the server. Each attempt uses this timeout value and there are retries if necessary, so the total effective timeout value is three times the option value. You can set the value so that a lost connection can be detected earlier than the TCP/IP Close_Wait_Timeout value of 10 minutes. This option works only for TCP/IP connections, and only for Windows prior to MySQL 5.1.12. Corresponds to the MYSQL_OPT_READ_TIMEOUT option of the MySQL Client Library. Added in 3.51.27. | |
writetimeout | The timeout in seconds for attempts to write to the server. Each attempt uses this timeout value and there are net_retry_count retries if necessary, so the total effective timeout value is net_retry_count times the option value. This option works only for TCP/IP connections, and only for Windows prior to MySQL 5.1.12. Corresponds to the MYSQL_OPT_WRITE_TIMEOUT option of the MySQL Client Library. Added in 3.51.27. | |
interactive | Enables the CLIENT_INTERACTIVE connection option of mysql_real_connect. | |
prefetch | 0 | When set to a non-zero value N, causes all queries in the connection to return N rows at a time rather than the entire result set. Useful for queries against very large tables where it is not practical to retrieve the whole result set at once. You can scroll through the result set, N records at a time. This option works only with forward-only cursors. It does not work when the FLAG_MULTI_STATEMENTS flag is set. It can be used in combination with the FLAG_NO_CACHE option. Its behavior in ADO applications is undefined: the prefetching might or might not occur. |
no_ssps | 0 | In Connector/ODBC 5.2, by default, server-side prepared statements are used. When this option is set to a non-zero value, prepared statements are emulated on the client side, which is the same behavior as in 5.1 and 3.51. Added in 5.2. |
can_handle_exp_pwd | 0 | Indicates that the application can deal with an expired password, which is signalled by an SQL state of 08004 (“Server rejected the connection”) and a native error code ER_MUST_CHANGE_PASSWORD_LOGIN (1862). The connection is “sandboxed”, and can do nothing other than issue a SET PASSWORD statement. To establish a connection in this case, your application must either use the initstmt connection option to set a new password at the start, or issue a SET PASSWORD statement immediately after connecting. Once the expired password is reset, the restrictions on the connection are lifted. See Section 13.7.1.1, “ALTER USER Syntax” for details about password expiration for MySQL server accounts. Added in 5.2.4. |
Note
The SSL configuration parameters can also be automatically loaded from a my.ini or my.cnf file. See Section 4.2.3.3, “Using Option Files”.
The option argument is used to tell Connector/ODBC that the client is not 100% ODBC-compliant. On Windows, you normally select options by toggling the check boxes in the connection screen, but you can also select them in the option argument. The following options are listed in the order in which they appear in the Connector/ODBC connect screen.
Table 21.4. Connector/ODBC Option Flags
Flag Name | GUI Option | Constant Value | Description |
---|---|---|---|
FLAG_FIELD_LENGTH | Do not Optimize Column Width | The client cannot handle that Connector/ODBC returns the real width of a column. This option was removed in 3.51.18. | |
FLAG_FOUND_ROWS | Return Matching Rows | 2 | The client cannot handle that MySQL returns the true value of affected rows. If this flag is set, MySQL returns “found rows” instead. You must have MySQL 3.21.14 or newer for this to work. |
FLAG_DEBUG | Trace Driver Calls To myodbc.log | Make a debug log in C:\myodbc.log on Windows, or /tmp/myodbc.log on Unix variants. This option was removed in Connector/ODBC 3.51.18. | |
FLAG_BIG_PACKETS | Allow Big Results | 8 | Do not set any packet limit for results and bind parameters. Without this option, parameter binding will be truncated to 255 characters. |
FLAG_NO_PROMPT | Do not Prompt Upon Connect | 16 | Do not prompt for questions even if driver would like to prompt. |
FLAG_DYNAMIC_CURSOR | Enable Dynamic Cursor | 32 | Enable or disable the dynamic cursor support. |
FLAG_NO_SCHEMA | Ignore # in Table Name | 64 | Ignore use of database name in db_name.tbl_name.col_name. |
FLAG_NO_DEFAULT_CURSOR | User Manager Cursors | 128 | Force use of ODBC manager cursors (experimental). |
FLAG_NO_LOCALE | Do not Use Set Locale | 256 | Disable the use of extended fetch (experimental). |
FLAG_PAD_SPACE | Pad Char To Full Length | 512 | Pad CHAR columns to full column length. |
FLAG_FULL_COLUMN_NAMES | Return Table Names for SQLDescribeCol | 1024 | SQLDescribeCol() returns fully qualified column names. |
FLAG_COMPRESSED_PROTO | Use Compressed Protocol | 2048 | Use the compressed client/server protocol. |
FLAG_IGNORE_SPACE | Ignore Space After Function Names | 4096 | Tell server to ignore space after function name and before “(” (needed by PowerBuilder). This makes all function names keywords. |
FLAG_NAMED_PIPE | Force Use of Named Pipes | 8192 | Connect with named pipes to a mysqld server running on NT. |
FLAG_NO_BIGINT | Change BIGINT Columns to Int | 16384 | Change BIGINT columns to INT columns (some applications cannot handle BIGINT). |
FLAG_NO_CATALOG | No Catalog | 32768 | Forces results from the catalog functions, such as SQLTables, to always return NULL and the driver to report that catalogs are not supported. |
FLAG_USE_MYCNF | Read Options From my.cnf | 65536 | Read parameters from the [client] and [odbc] groups from my.cnf. |
FLAG_SAFE | Safe | 131072 | Add some extra safety checks. |
FLAG_NO_TRANSACTIONS | Disable transactions | 262144 | Disable transactions. |
FLAG_LOG_QUERY | Save queries to myodbc.sql | 524288 | Enable query logging to c:\myodbc.sql(/tmp/myodbc.sql) file. (Enabled only in debug mode.) |
FLAG_NO_CACHE | Do not Cache Result (forward only cursors) | 1048576 | Do not cache the results locally in the driver, instead read from server (mysql_use_result()). This works only for forward-only cursors. This option is very important in dealing with large tables when you do not want the driver to cache the entire result set. |
FLAG_FORWARD_CURSOR | Force Use Of Forward Only Cursors | 2097152 | Force the use of Forward-only cursor type. In case of applications setting the default static/dynamic cursor type, and one wants the driver to use noncache result sets, then this option ensures the forward-only cursor behavior. |
FLAG_AUTO_RECONNECT | Enable auto-reconnect. | 4194304 | Enables auto-reconnection functionality. Do not use this option with transactions, since an auto-reconnection during a incomplete transaction may cause corruption. Note that an auto-reconnected connection will not inherit the same settings and environment as the original. Added in 3.51.13. |
FLAG_AUTO_IS_NULL | Flag Auto Is Null | 8388608 | When FLAG_AUTO_IS_NULL is set, the driver does not change the default value of sql_auto_is_null, leaving it at 1, so you get the MySQL default, not the SQL standard behavior. When FLAG_AUTO_IS_NULL is not set, the driver changes the default value of SQL_AUTO_IS_NULL to 0 after connecting, so you get the SQL standard, not the MySQL default behavior. Thus, omitting the flag disables the compatibility option and forces SQL standard behavior. See IS NULL. Added in 3.51.13. |
FLAG_ZERO_DATE_TO_MIN | Return SQL_NULL_DATA for zero date | 16777216 | Translates zero dates (XXXX-00-00) into the minimum date values supported by ODBC, XXXX-01-01. This resolves an issue where some statements will not work because the date returned and the minimum ODBC date value are incompatible. Added in 3.51.17. |
FLAG_MIN_DATE_TO_ZERO | Bind minimal date as zero date | 33554432 | Translates the minimum ODBC date value (XXXX-01-01) to the zero date format supported by MySQL (XXXX-00-00). This resolves an issue where some statements will not work because the date returned and the minimum ODBC date value are incompatible. Added in 3.51.17. |
FLAG_MULTI_STATEMENTS | Allow multiple statements | 67108864 | Enables support for batched statements. Added in 3.51.18. |
FLAG_COLUMN_SIZE_S32 | Limit column size to 32-bit value | 134217728 | Limits the column size to a signed 32-bit value to prevent problems with larger column sizes in applications that do not support them. This option is automatically enabled when working with ADO applications. Added in 3.51.22. |
FLAG_NO_BINARY_RESULT | Always handle binary function results as character data | 268435456 | When set this option disables charset 63 for columns with an empty org_table. Added in 3.51.26. |
FLAG_DFLT_BIGINT_BIND_STR | 536870912 | Causes BIGINT parameters to be bound as strings. Microsoft Access treats BIGINT as a string on linked tables. The value is read correctly, but bound as a string. This option is used automatically if the driver is used by Microsoft Access. | |
FLAG_NO_INFORMATION_SCHEMA | 1073741824 | Tells catalog functions not to use INFORMATION_SCHEMA, but rather use legacy algorithms. The trade-off here is usually speed for information quality. Using INFORMATION_SCHEMA is often slow, but the information obtained is more complete. |
To select multiple options, add together their values, using the numbers from the Constant Value column in the table.
Note
In MySQL Connector/ODBC 5.2, you can use the flag name directly as a parameter in the connection string, by specifying the flag name without the FLAG_ prefix. So, in addition to using the options parameter with various flags set, you can use the flags directly as parameters. For example, FIELD_LENGTH, FOUND_ROWS and DEBUG could all be used as parameters.
The following table shows some recommended option values for various configurations:
Table 21.5. Recommended Connector/ODBC option Values for Different Configurations
Configuration | Option Value |
---|---|
Microsoft Access, Visual Basic | 3 |
Driver trace generation (Debug mode) | 4 |
Microsoft Access (with improved DELETE queries) | 35 |
Large tables with too many rows | 2049 |
Sybase PowerBuilder | 135168 |
Query log generation (Debug mode) | 524288 |
Generate driver trace as well as query log (Debug mode) | 524292 |
Large tables with no-cache results | 3145731 |
21.1.4.3. Configuring a Connector/ODBC DSN on Windows
The ODBC Data Source Administrator within Windows lets you create DSNs, check driver installation and configure ODBC systems such as tracing (used for debugging) and connection pooling.
Different editions and versions of Windows store the ODBC Data Source Administrator in different locations depending on the version of Windows that you are using.
To open the ODBC Data Source Administrator in Windows Server 2003:
Tip
To identify whether a DSN was created using the 32-bit or the 64-bit driver, include the driver being used within the DSN identifier. This will help you to identify the right DSN to use with applications such as Excel that are only compatible with the 32-bit driver. For example, you might add Using32bitCODBC to the DSN identifier for the 32-bit interface and Using64bitCODBC for those using the 64-bit Connector/ODBC driver.
On the Start menu, choose Administrative Tools, and then click Data Sources (ODBC).
To open the ODBC Data Source Administrator in Windows 2000 Server or Windows 2000 Professional:
On the Start menu, choose Settings, and then click Control Panel.
In Control Panel, click Administrative Tools.
In Administrative Tools, click Data Sources (ODBC).
To open the ODBC Data Source Administrator on Windows XP:
On the Start menu, click Control Panel.
In the Control Panel when in Category View click Performance and Maintenance and then click Administrative Tools.. If you are viewing the Control Panel in Classic View, click Administrative Tools.
In Administrative Tools, click Data Sources (ODBC).
Irrespective of your Windows version, you should be presented the ODBC Data Source Administrator window:
Within Windows XP, you can add the Administrative Tools folder to your Start menu to make it easier to locate the ODBC Data Source Administrator. To do this:
Right-click the Start menu.
Select Properties.
Click Customize....
Select the Advanced tab.
Within Start menu items, within the System Administrative Tools section, select Display on the All Programs menu.
Within both Windows Server 2003 and Windows XP, consider permanently adding the ODBC Data Source Administrator to your Start menu. To do this, locate the Data Sources (ODBC) icon using the methods shown, then right-click on the icon and then choose Pin to Start Menu.
The interfaces for the 3.51 and 5.x versions of the Connector/ODBC driver are different, although the fields and information that you need to enter remain the same.
To configure a DSN using Connector/ODBC 5.2, see Section 21.1.4.3.1, “Configuring a Connector/ODBC 5.x DSN on Windows”.
21.1.4.3.1. Configuring a Connector/ODBC 5.x DSN on Windows
Due to the native Unicode support within Connector/ODBC, you do not need to specify the initial character set to be used with your connection.
To add or configure a Connector/ODBC 5.x DSN on Windows, use either the command-line, or the ODBC Data Source Administrator GUI.
Open the ODBC Data Source Administrator.
To create a System DSN (which will be available to all users), select the System DSN tab. To create a User DSN, which will be unique only to the current user, click the Add... button.
Select the ODBC driver for this DSN.
Select MySQL ODBC 5.x Driver for the appropriate level of Connector/ODBC, then click Finish.
You now need to configure the specific fields for the DSN you are creating through the Connection Parameters dialog.
In the Data Source Name box, enter the name of the data source to access. It can be any valid name that you choose.
In the Description box, enter some text to help identify the connection.
In the Server field, enter the name of the MySQL server host to access. By default, it is localhost.
In the User field, enter the user name to use for this connection.
In the Password field, enter the corresponding password for this connection.
The Database pop-up should automatically populate with the list of databases that the user has permissions to access.
To communicate over a different TCP/IP port than the default (3306), change the value of the Port.
Click OK to save the DSN.
To verify the connection using the parameters you have entered, click the Test button. If the connection could be made successfully, you will be notified with a Success; connection was made! dialog.
You can configure a number of options for a specific DSN by using the Details button.
The Details button opens a tabbed display where you set additional options:
Flags 1, Flags 2, and Flags 3 enable you to select the additional flags for the DSN connection. For more information on these flags, see Section 21.1.4.2, “Connector/ODBC Connection Parameters”.
Debug lets you turn on ODBC debugging to record the queries you execute through the DSN to the myodbc.sql file. For more information, see Section 21.1.4.8, “Getting an ODBC Trace File”.
SSL Settings configures the additional options required for using the Secure Sockets Layer (SSL) when communicating with MySQL server. Note that you must also enable SSL and configure the MySQL server with suitable certificates to communicate over SSL.
The Advanced tab lets you configure Connector/ODBC connection parameters. Refer to Section 21.1.4.2, “Connector/ODBC Connection Parameters”, for information about the meaning of these options.
21.1.4.3.2. Configuring a Connector/ODBC 5.x DSN on Windows, Using the Command Line
Use myodbc-installer.exe when configuring Connector/ODBC 5.1 or later from the command-line.
Execute myodbc-installer.exe without arguments to view a list of available options.
21.1.4.3.3. Troubleshooting ODBC Connection Problems
This section answers Connector/ODBC connection-related questions.
While configuring a Connector/ODBC DSN, a Could Not Load Translator or Setup Library error occurs
For more information, refer to MS KnowledgeBase Article(Q260558). Also, make sure you have the latest valid ctl3d32.dll in your system directory.
On Windows, the default myodbc5w.dll (Unicode) or myodbc5a.dll (ANSI) is compiled for optimal performance. To debug Connector/ODBC (for example, to enable tracing), instead use myodbc5d.dll. To install this file, copy myodbc5d.dll over the installed myodbc5w.dll or myodbc5a.dll file. Make sure to revert back to the release version of the driver DLL once you are done with the debugging, because the debug version may cause performance issues.
21.1.4.4. Configuring a Connector/ODBC DSN on Mac OS X
To configure a DSN on Mac OS X, you can either use the command-line utility (myodbc-installer with connector/ODBC 5.1, or myodbc3i with connector/OCBC 3.51), edit the odbc.ini file within the Library/ODBC directory of the user, or use the ODBC Administrator GUI. If you have Mac OS X 10.2 or earlier, refer to Section 21.1.4.5, “Configuring a Connector/ODBC DSN on Unix”. Select whether to create a User DSN or a System DSN. When adding a System DSN, you might need to authenticate with the system. Click the padlock and enter a user and password with administrator privileges.
For correct operation of ODBC Administrator, ensure that the /Library/ODBC/odbc.ini file used to set up ODBC connectivity and DSNs are writable by the admin group. If this file is not writable by this group, then the ODBC Administrator may fail, or may appear to work but not generate the correct entry.
Warning
There are known issues with the Mac OS X ODBC Administrator and Connector/ODBC that may prevent you from creating a DSN using this method. In this case, use the command line or edit the odbc.ini file directly. Note that existing DSNs or those that you create using the myodbc3i or myodbc-installer tool can still be checked and edited using ODBC Administrator.
To create a DSN using the myodbc3i utility, you need only specify the DSN type and the DSN connection string. For example:
shell> myodbc3i -a -s -t"DSN=mydb;DRIVER=MySQL ODBC 3.51 Driver;SERVER=mysql;USER=username;PASSWORD=pass"
To use ODBC Administrator:
Open the ODBC Administrator from the Utilities folder in the Applications folder.
On the User DSN or System DSN panel, click Add.
Select the Connector/ODBC driver and click OK.
You will be presented with the Data Source Name dialog. Enter the Data Source Name and an optional Description for the DSN.
Click Add to add a new keyword/value pair to the panel. Configure at least four pairs to specify the server, username, password and database connection parameters. See Section 21.1.4.2, “Connector/ODBC Connection Parameters”.
Click OK to add the DSN to the list of configured data source names.
A completed DSN configuration may look like this:
You can configure other ODBC options in your DSN by adding further keyword/value pairs and setting the corresponding values. See Section 21.1.4.2, “Connector/ODBC Connection Parameters”.
21.1.4.5. Configuring a Connector/ODBC DSN on Unix
On Unix, you configure DSN entries directly in the odbc.ini file. Here is a typical odbc.ini file that configures myodbc3 as the DSN name for Connector/ODBC 3.51:
;
; odbc.ini configuration for Connector/ODBC and Connector/ODBC 3.51 drivers
;
[ODBC Data Sources]
myodbc3 = MyODBC 3.51 Driver DSN
[myodbc3]
Driver = /usr/local/lib/libmyodbc3.so
Description = Connector/ODBC 3.51 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =
[Default]
Driver = /usr/local/lib/libmyodbc3.so
Description = Connector/ODBC 3.51 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =
Refer to the Section 21.1.4.2, “Connector/ODBC Connection Parameters”, for the list of connection parameters that can be supplied.
Note
If you are using unixODBC, you can use the following tools to set up the DSN:
ODBCConfig GUI tool (HOWTO: ODBCConfig)
odbcinst
In some cases when using unixODBC, you might get this error:
Data source name not found and no default driver specified
If this happens, make sure the ODBCINI and ODBCSYSINI environment variables are pointing to the right odbc.ini file. For example, if your odbc.ini file is located in /usr/local/etc, set the environment variables like this:
export ODBCINI=/usr/local/etc/odbc.ini
export ODBCSYSINI=/usr/local/etc
21.1.4.6. Connecting Without a Predefined DSN
You can connect to the MySQL server using SQLDriverConnect, by specifying the DRIVER name field. Here are the connection strings for Connector/ODBC using DSN-Less connections:
For Connector/ODBC 3.51:
ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};\
SERVER=localhost;\
DATABASE=test;\
USER=venu;\
PASSWORD=venu;\
OPTION=3;"
If your programming language converts backslash followed by whitespace to a space, it is preferable to specify the connection string as a single long string, or to use a concatenation of multiple strings that does not add spaces in between. For example:
ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"
"SERVER=localhost;"
"DATABASE=test;"
"USER=venu;"
"PASSWORD=venu;"
"OPTION=3;"
Note. On Mac OS X, you might need to specify the full path to the Connector/ODBC driver library.
Refer to Section 21.1.4.2, “Connector/ODBC Connection Parameters” for the list of connection parameters that can be supplied.
21.1.4.7. ODBC Connection Pooling
Connection pooling enables the ODBC driver to re-use existing connections to a given database from a pool of connections, instead of opening a new connection each time the database is accessed. By enabling connection pooling you can improve the overall performance of your application by lowering the time taken to open a connection to a database in the connection pool.
For more information about connection pooling: http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470.
21.1.4.8. Getting an ODBC Trace File
If you encounter difficulties or problems with Connector/ODBC, start by making a log file from the ODBC Manager and Connector/ODBC. This is called tracing, and is enabled through the ODBC Manager. The procedure for this differs for Windows, Mac OS X and Unix.
21.1.4.8.1. Enabling ODBC Tracing on Windows
To enable the trace option on Windows:
The Tracing tab of the ODBC Data Source Administrator dialog box lets you configure the way ODBC function calls are traced.
When you activate tracing from the Tracing tab, the Driver Manager logs all ODBC function calls for all subsequently run applications.
ODBC function calls from applications running before tracing is activated are not logged. ODBC function calls are recorded in a log file you specify.
Tracing ceases only after you click Stop Tracing Now. Remember that while tracing is on, the log file continues to increase in size and that tracing affects the performance of all your ODBC applications.
21.1.4.8.2. Enabling ODBC Tracing on Mac OS X
To enable the trace option on Mac OS X 10.3 or later, use the Tracing tab within ODBC Administrator .
Open the ODBC Administrator.
Select the Tracing tab.
Select the Enable Tracing check box.
Enter the location to save the Tracing log. To append information to an existing log file, click the Choose... button.
21.1.4.8.3. Enabling ODBC Tracing on Unix
To enable the trace option on Mac OS X 10.2 (or earlier) or Unix, add the trace option to the ODBC configuration:
On Unix, explicitly set the Trace option in the ODBC.INI file.
Set the tracing ON or OFF by using TraceFile and Trace parameters in odbc.ini as shown below:
TraceFile = /tmp/odbc.trace
Trace = 1
TraceFile specifies the name and full path of the trace file and Trace is set to ON or OFF. You can also use 1 or YES for ON and 0 or NO for OFF. If you are using ODBCConfig from unixODBC, then follow the instructions for tracing unixODBC calls at HOWTO-ODBCConfig.
21.1.4.8.4. Enabling a Connector/ODBC Log
To generate a Connector/ODBC log, do the following:
Within Windows, enable the Trace Connector/ODBC option flag in the Connector/ODBC connect/configure screen. The log is written to file C:\myodbc.log. If the trace option is not remembered when you are going back to the above screen, it means that you are not using the myodbcd.dll driver, see Section 21.1.4.3.3, “Troubleshooting ODBC Connection Problems”.
On Mac OS X, Unix, or if you are using a DSN-less connection, either supply OPTION=4 in the connection string, or set the corresponding keyword/value pair in the DSN.
Start your application and try to get it to fail. Then check the Connector/ODBC trace file to find out what could be wrong.
If you need help determining what is wrong, see Section 21.1.8.1, “Connector/ODBC Community Support”.
21.1.5. Connector/ODBC Examples
Once you have configured a DSN to provide access to a database, how you access and use that connection is dependent on the application or programming language. As ODBC is a standardized interface, any application or language that supports ODBC can use the DSN and connect to the configured database.
21.1.5.1. Basic Connector/ODBC Application Steps
Interacting with a MySQL server from an applications using the Connector/ODBC typically involves the following operations:
Configure the Connector/ODBC DSN.
Connect to MySQL server.
Initialization operations.
Execute SQL statements.
Retrieve results.
Perform transactions.
Disconnect from the server.
Most applications use some variation of these steps. The basic application steps are shown in the following diagram:
21.1.5.2. Step-by-step Guide to Connecting to a MySQL Database through Connector/ODBC
A typical situation where you would install Connector/ODBC is to access a database on a Linux or Unix host from a Windows machine.
As an example of the process required to set up access between two machines, the steps below take you through the basic steps. These instructions assume that you connect to system ALPHA from system BETA with a user name and password of myuser and mypassword.
On system ALPHA (the MySQL server) follow these steps:
Start the MySQL server.
Use GRANT to set up an account with a user name of myuser that can connect from system BETA using a password of myuser to the database test:
GRANT ALL ON test.* to 'myuser'@'BETA' IDENTIFIED BY 'mypassword';
For more information about MySQL privileges, refer to Section 6.3, “MySQL User Account Management”.
On system BETA (the Connector/ODBC client), follow these steps:
Configure a Connector/ODBC DSN using parameters that match the server, database and authentication information that you have just configured on system ALPHA.
Parameter | Value | Comment |
---|---|---|
DSN | remote_test | A name to identify the connection. |
SERVER | ALPHA | The address of the remote server. |
DATABASE | test | The name of the default database. |
USER | myuser | The user name configured for access to this database. |
PASSWORD | mypassword | The password for myuser. |
Using an ODBC-capable application, such as Microsoft Office, connect to the MySQL server using the DSN you have just created. If the connection fails, use tracing to examine the connection process. See Section 21.1.4.8, “Getting an ODBC Trace File”, for more information.
21.1.5.3. Connector/ODBC and Third-Party ODBC Tools
Once you have configured your Connector/ODBC DSN, you can access your MySQL database through any application that supports the ODBC interface, including programming languages and third-party applications. This section contains guides and help on using Connector/ODBC with various ODBC-compatible tools and applications, including Microsoft Word, Microsoft Excel and Adobe/Macromedia ColdFusion.
Connector/ODBC has been tested with the following applications:
Publisher | Application | Notes |
---|---|---|
Adobe | ColdFusion | Formerly Macromedia ColdFusion |
Borland | C++ Builder | |
Builder 4 | ||
Delphi | ||
Business Objects | Crystal Reports | |
Claris | Filemaker Pro | |
Corel | Paradox | |
Computer Associates | Visual Objects | Also known as CAVO |
AllFusion ERwin Data Modeler | ||
Gupta | Team Developer | Previously known as Centura Team Developer; Gupta SQL/Windows |
Gensym | G2-ODBC Bridge | |
Inline | iHTML | |
Lotus | Notes | Versions 4.5 and 4.6 |
Microsoft | Access | |
Excel | ||
Visio Enterprise | ||
Visual C++ | ||
Visual Basic | ||
ODBC.NET | Using C#, Visual Basic, C++ | |
FoxPro | ||
Visual Interdev | ||
OpenOffice.org | OpenOffice.org | |
Perl | DBD::ODBC | |
Pervasive Software | DataJunction | |
Sambar Technologies | Sambar Server | |
SPSS | SPSS | |
SoftVelocity | Clarion | |
SQLExpress | SQLExpress for Xbase++ | |
Sun | StarOffice | |
SunSystems | Vision | |
Sybase | PowerBuilder | |
PowerDesigner | ||
theKompany.com | Data Architect |
If you know of any other applications that work with Connector/ODBC, please send mail to <myodbc@lists.mysql.com> about them.
21.1.5.4. Using Connector/ODBC with Microsoft Access
You can use MySQL database with Microsoft Access using Connector/ODBC. The MySQL database can be used as an import source, an export source, or as a linked table for direct use within an Access application, so you can use Access as the front-end interface to a MySQL database.
21.1.5.4.1. Exporting Access Data to MySQL
To export a table of data from an Access database to MySQL, follow these instructions:
When you open an Access database or an Access project, a Database window appears. It displays shortcuts for creating new database objects and opening existing objects.
Click the name of the table or query to export, and then in the File menu, select Export.
In the Export Object Type Object name To dialog box, in the Save As Type box, select ODBC Databases () as shown here:
In the Export dialog box, enter a name for the file (or use the suggested name), and then select OK.
The Select Data Source dialog box is displayed; it lists the defined data sources for any ODBC drivers installed on your computer. Click either the File Data Source or Machine Data Source tab, and then double-click the Connector/ODBC or Connector/ODBC 3.51 data source to export to. To define a new data source for Connector/ODBC, please Section 21.1.4.3, “Configuring a Connector/ODBC DSN on Windows”.
Note
Ensure that the information that you are exporting to the MySQL table is valid for the corresponding MySQL data types. Values that are outside of the supported range of the MySQL data type but valid within Access may trigger an “overflow” error during the export.
Microsoft Access connects to the MySQL Server through this data source and exports new tables and or data.
21.1.5.4.2. Importing MySQL Data to Access
To import a table or tables from MySQL to Access, follow these instructions:
Open a database, or switch to the Database window for the open database.
To import tables, on the File menu, point to Get External Data, and then click Import.
In the Import dialog box, in the Files Of Type box, select ODBC Databases (). The Select Data Source dialog box lists the defined data sources The Select Data Source dialog box is displayed; it lists the defined data source names.
If the ODBC data source that you selected requires you to log on, enter your login ID and password (additional information might also be required), and then click OK.
Microsoft Access connects to the MySQL server through ODBC data source and displays the list of tables that you can import.
Click each table to import, and then click OK.
21.1.5.4.3. Using Microsoft Access as a Front-end to MySQL
You can use Microsoft Access as a front end to a MySQL database by linking tables within your Microsoft Access database to tables that exist within your MySQL database. When a query is requested on a table within Access, ODBC is used to execute the queries on the MySQL database instead.
To create a linked table:
Open the Access database that you want to link to MySQL.
From the File, choose Get External Data->Link Tables.
From the browser, choose ODBC Databases () from the Files of type pop-up.
In the Select Data Source window, choose an existing DSN, either from a File Data Source or Machine Data Source.You can also create a new DSN using the New... button. For more information on creating a DSN see Section 21.1.4.3, “Configuring a Connector/ODBC DSN on Windows”.
In the Link Tables dialog, select one or more tables from the MySQL database. A link will be created to each table that you select from this list.
If Microsoft Access is unable to determine the unique record identifier for a table automatically then it may ask you to confirm the column, or combination of columns, to be used to uniquely identify each row from the source table. Select the columns to use and click OK.
Once the process has been completed, you can now build interfaces and queries to the linked tables just as you would for any Access database.
Use the following procedure to view or to refresh links when the structure or location of a linked table has changed. The Linked Table Manager lists the paths to all currently linked tables.
To view or refresh links:
Open the database that contains links to MySQL tables.
On the Tools menu, point to Add-ins (Database Utilities in Access 2000 or newer), and then click Linked Table Manager.
Select the check box for the tables whose links you want to refresh.
Click OK to refresh the links.
Microsoft Access confirms a successful refresh or, if the table wasn't found, displays the Select New Location of <table name> dialog box in which you can specify its the table's new location. If several selected tables have moved to the new location that you specify, the Linked Table Manager searches that location for all selected tables, and updates all links in one step.
To change the path for a set of linked tables:
Open the database that contains links to tables.
On the Tools menu, point to Add-ins (Database Utilities in Access 2000 or newer), and then click Linked Table Manager.
Select the Always Prompt For A New Location check box.
Select the check box for the tables whose links you want to change, and then click OK.
In the Select New Location of <table name> dialog box, specify the new location, click Open, and then click OK.
21.1.5.5. Using Connector/ODBC with Microsoft Word or Excel
You can use Microsoft Word and Microsoft Excel to access information from a MySQL database using Connector/ODBC. Within Microsoft Word, this facility is most useful when importing data for mailmerge, or for tables and data to be included in reports. Within Microsoft Excel, you can execute queries on your MySQL server and import the data directly into an Excel Worksheet, presenting the data as a series of rows and columns.
With both applications, data is accessed and imported into the application using Microsoft Query, which lets you execute a query though an ODBC source. You use Microsoft Query to build the SQL statement to be executed, selecting the tables, fields, selection criteria and sort order. For example, to insert information from a table in the World test database into an Excel spreadsheet, using the DSN samples shown in Section 21.1.4, “Configuring Connector/ODBC”:
Create a new Worksheet.
From the Data menu, choose Import External Data, and then select New Database Query.
Microsoft Query will start. First, you need to choose the data source, by selecting an existing Data Source Name.
Within the Query Wizard, choose the columns to import. The list of tables available to the user configured through the DSN is shown on the left, the columns that will be added to your query are shown on the right. The columns you choose are equivalent to those in the first section of a SELECT query. Click Next to continue.
You can filter rows from the query (the equivalent of a WHERE clause) using the Filter Data dialog. Click Next to continue.
Select an (optional) sort order for the data. This is equivalent to using a ORDER BY clause in your SQL query. You can select up to three fields for sorting the information returned by the query. Click Next to continue.
Select the destination for your query. You can select to return the data Microsoft Excel, where you can choose a worksheet and cell where the data will be inserted; you can continue to view the query and results within Microsoft Query, where you can edit the SQL query and further filter and sort the information returned; or you can create an OLAP Cube from the query, which can then be used directly within Microsoft Excel. Click Finish.
The same process can be used to import data into a Word document, where the data will be inserted as a table. This can be used for mail merge purposes (where the field data is read from a Word table), or where you want to include data and reports within a report or other document.
21.1.5.6. Using Connector/ODBC with Crystal Reports
Crystal Reports can use an ODBC DSN to connect to a database from which you to extract data and information for reporting purposes.
Note
There is a known issue with certain versions of Crystal Reports where the application is unable to open and browse tables and fields through an ODBC connection. Before using Crystal Reports with MySQL, please ensure that you have update to the latest version, including any outstanding service packs and hotfixes. For more information on this issue, see the Business) Objects Knowledgebase for more information.
For example, to create a simple crosstab report within Crystal Reports XI, follow these steps:
Create a DSN using the Data Sources (ODBC) tool. You can either specify a complete database, including user name and password, or you can build a basic DSN and use Crystal Reports to set the user name and password.
For the purposes of this example, a DSN that provides a connection to an instance of the MySQL Sakila sample database has been created.
Open Crystal Reports and create a new project, or an open an existing reporting project into which you want to insert data from your MySQL data source.
Start the Cross-Tab Report Wizard, either by clicking the option on the Start Page. Expand the Create New Connection folder, then expand the ODBC (RDO) folder to obtain a list of ODBC data sources.
You will be asked to select a data source.
When you first expand the ODBC (RDO) folder you will be presented the Data Source Selection screen. From here you can select either a pre-configured DSN, open a file-based DSN or enter and manual connection string. For this example, the Sakila DSN will be used.
If the DSN contains a user name/password combination, or you want to use different authentication credentials, click Next to enter the user name and password that you want to use. Otherwise, click Finish to continue the data source selection wizard.
You will be returned the Cross-Tab Report Creation Wizard. You now need to select the database and tables that you want to include in your report. For our example, we will expand the selected Sakila database. Click the city table and use the > button to add the table to the report. Then repeat the action with the country table. Alternatively you can select multiple tables and add them to the report.
Finally, you can select the parent Sakila resource and add of the tables to the report.
Once you have selected the tables you want to include, click Next to continue.
Crystal Reports will now read the table definitions and automatically identify the links between the tables. The identification of links between tables enables Crystal Reports to automatically lookup and summarize information based on all the tables in the database according to your query. If Crystal Reports is unable to perform the linking itself, you can manually create the links between fields in the tables you have selected.
Click Next to continue the process.
You can now select the columns and rows that to include within the Cross-Tab report. Drag and drop or use the > buttons to add fields to each area of the report. In the example shown, we will report on cities, organized by country, incorporating a count of the number of cities within each country. If you want to browse the data, select a field and click the Browse Data... button.
Click Next to create a graph of the results. Since we are not creating a graph from this data, click Finish to generate the report.
The finished report will be shown, a sample of the output from the Sakila sample database is shown below.
Once the ODBC connection has been opened within Crystal Reports, you can browse and add any fields within the available tables into your reports.
21.1.5.7. Connector/ODBC Programming
With a suitable ODBC Manager and the Connector/ODBC driver installed, any programming language or environment that can support ODBC can connect to a MySQL database through Connector/ODBC.
This includes, but is not limited to, Microsoft support languages (including Visual Basic, C# and interfaces such as ODBC.NET), Perl (through the DBI module, and the DBD::ODBC driver).
21.1.5.7.1. Using Connector/ODBC with Visual Basic Using ADO, DAO and RDO
This section contains simple examples of the use of Connector/ODBC with ADO, DAO and RDO.
21.1.5.7.1.1. ADO: rs.addNew, rs.delete, and rs.update
The following ADO (ActiveX Data Objects) example creates a table my_ado and demonstrates the use of rs.addNew, rs.delete, and rs.update.
Private Sub myodbc_ado_Click()
Dim conn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim fld As ADODB.Field
Dim sql As String
'connect to MySQL server using Connector/ODBC
Set conn = New ADODB.Connection
conn.ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
conn.Open
'create table
conn.Execute "DROP TABLE IF EXISTS my_ado"
conn.Execute "CREATE TABLE my_ado(id int not null primary key, name varchar(20)," _
& "txt text, dt date, tm time, ts timestamp)"
'direct insert
conn.Execute "INSERT INTO my_ado(id,name,txt) values(1,100,'venu')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(2,200,'MySQL')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(3,300,'Delete')"
Set rs = New ADODB.Recordset
rs.CursorLocation = adUseServer
'fetch the initial table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Initial my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print
Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print
Loop
rs.Close
'rs insert
rs.Open "select * from my_ado", conn, adOpenDynamic, adLockOptimistic
rs.AddNew
rs!Name = "Monty"
rs!txt = "Insert row"
rs.Update
rs.Close
'rs update
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-row"
rs.Update
rs.Close
'rs update second time..
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-second-time"
rs.Update
rs.Close
'rs delete
rs.Open "SELECT * FROM my_ado"
rs.MoveNext
rs.MoveNext
rs.Delete
rs.Close
'fetch the updated table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Updated my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print
Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print
Loop
rs.Close
conn.Close
End Sub
21.1.5.7.1.2. DAO: rs.addNew, rs.update, and Scrolling
The following DAO (Data Access Objects) example creates a table my_dao and demonstrates the use of rs.addNew, rs.update, and result set scrolling.
Private Sub myodbc_dao_Click()
Dim ws As Workspace
Dim conn As Connection
Dim queryDef As queryDef
Dim str As String
'connect to MySQL using MySQL ODBC 3.51 Driver
Set ws = DBEngine.CreateWorkspace("", "venu", "venu", dbUseODBC)
str = "odbc;DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
Set conn = ws.OpenConnection("test", dbDriverNoPrompt, False, str)
'Create table my_dao
Set queryDef = conn.CreateQueryDef("", "drop table if exists my_dao")
queryDef.Execute
Set queryDef = conn.CreateQueryDef("", "create table my_dao(Id INT AUTO_INCREMENT PRIMARY KEY, " _
& "Ts TIMESTAMP(14) NOT NULL, Name varchar(20), Id2 INT)")
queryDef.Execute
'Insert new records using rs.addNew
Set rs = conn.OpenRecordset("my_dao")
Dim i As Integer
For i = 10 To 15
rs.AddNew
rs!Name = "insert record" & i
rs!Id2 = i
rs.Update
Next i
rs.Close
'rs update..
Set rs = conn.OpenRecordset("my_dao")
rs.Edit
rs!Name = "updated-string"
rs.Update
rs.Close
'fetch the table back...
Set rs = conn.OpenRecordset("my_dao", dbOpenDynamic)
str = "Results:"
rs.MoveFirst
While Not rs.EOF
str = " " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print "DATA:" & str
rs.MoveNext
Wend
'rs Scrolling
rs.MoveFirst
str = " FIRST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
rs.MoveLast
str = " LAST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
rs.MovePrevious
str = " LAST-1 ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str
'free all resources
rs.Close
queryDef.Close
conn.Close
ws.Close
End Sub
21.1.5.7.1.3. RDO: rs.addNew and rs.update
The following RDO (Remote Data Objects) example creates a table my_rdo and demonstrates the use of rs.addNew and rs.update.
Dim rs As rdoResultset
Dim cn As New rdoConnection
Dim cl As rdoColumn
Dim SQL As String
'cn.Connect = "DSN=test;"
cn.Connect = "DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverPrompt
'drop table my_rdo
SQL = "drop table if exists my_rdo"
cn.Execute SQL, rdExecDirect
'create table my_rdo
SQL = "create table my_rdo(id int, name varchar(20))"
cn.Execute SQL, rdExecDirect
'insert - direct
SQL = "insert into my_rdo values (100,'venu')"
cn.Execute SQL, rdExecDirect
SQL = "insert into my_rdo values (200,'MySQL')"
cn.Execute SQL, rdExecDirect
'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 300
rs!Name = "Insert1"
rs.Update
rs.Close
'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 400
rs!Name = "Insert 2"
rs.Update
rs.Close
'rs update
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.Edit
rs!id = 999
rs!Name = "updated"
rs.Update
rs.Close
'fetch back...
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
Do Until rs.EOF
For Each cl In rs.rdoColumns
Debug.Print cl.Value,
Next
rs.MoveNext
Debug.Print
Loop
Debug.Print "Row count="; rs.RowCount
'close
rs.Close
cn.Close
End Sub
21.1.5.7.2. Using Connector/ODBC with .NET
This section contains simple examples that demonstrate the use of Connector/ODBC drivers with ODBC.NET.
21.1.5.7.2.1. Using Connector/ODBC with ODBC.NET and C# (C sharp)
The following sample creates a table my_odbc_net and demonstrates its use in C#.
/**
* @sample : mycon.cs
* @purpose : Demo sample for ODBC.NET using Connector/ODBC
* @author : Venu, <myodbc@lists.mysql.com>
*
* (C) Copyright MySQL AB, 1995-2006
*
**/
/* build command
*
* csc /t:exe
* /out:mycon.exe mycon.cs
* /r:Microsoft.Data.Odbc.dll
*/
using Console = System.Console;
using Microsoft.Data.Odbc;
namespace myodbc3
{
class mycon
{
static void Main(string[] args)
{
try
{
//Connection string for Connector/ODBC 3.51
string MyConString = "DRIVER={MySQL ODBC 3.51 Driver};" +
"SERVER=localhost;" +
"DATABASE=test;" +
"UID=venu;" +
"PASSWORD=venu;" +
"OPTION=3";
//Connect to MySQL using Connector/ODBC
OdbcConnection MyConnection = new OdbcConnection(MyConString);
MyConnection.Open();
Console.WriteLine("\n !!! success, connected successfully !!!\n");
//Display connection information
Console.WriteLine("Connection Information:");
Console.WriteLine("\tConnection String:" +
MyConnection.ConnectionString);
Console.WriteLine("\tConnection Timeout:" +
MyConnection.ConnectionTimeout);
Console.WriteLine("\tDatabase:" +
MyConnection.Database);
Console.WriteLine("\tDataSource:" +
MyConnection.DataSource);
Console.WriteLine("\tDriver:" +
MyConnection.Driver);
Console.WriteLine("\tServerVersion:" +
MyConnection.ServerVersion);
//Create a sample table
OdbcCommand MyCommand =
new OdbcCommand("DROP TABLE IF EXISTS my_odbc_net",
MyConnection);
MyCommand.ExecuteNonQuery();
MyCommand.CommandText =
"CREATE TABLE my_odbc_net(id int, name varchar(20), idb bigint)";
MyCommand.ExecuteNonQuery();
//Insert
MyCommand.CommandText =
"INSERT INTO my_odbc_net VALUES(10,'venu', 300)";
Console.WriteLine("INSERT, Total rows affected:" +
MyCommand.ExecuteNonQuery());;
//Insert
MyCommand.CommandText =
"INSERT INTO my_odbc_net VALUES(20,'mysql',400)";
Console.WriteLine("INSERT, Total rows affected:" +
MyCommand.ExecuteNonQuery());
//Insert
MyCommand.CommandText =
"INSERT INTO my_odbc_net VALUES(20,'mysql',500)";
Console.WriteLine("INSERT, Total rows affected:" +
MyCommand.ExecuteNonQuery());
//Update
MyCommand.CommandText =
"UPDATE my_odbc_net SET id=999 WHERE id=20";
Console.WriteLine("Update, Total rows affected:" +
MyCommand.ExecuteNonQuery());
//COUNT(*)
MyCommand.CommandText =
"SELECT COUNT(*) as TRows FROM my_odbc_net";
Console.WriteLine("Total Rows:" +
MyCommand.ExecuteScalar());
//Fetch
MyCommand.CommandText = "SELECT * FROM my_odbc_net";
OdbcDataReader MyDataReader;
MyDataReader = MyCommand.ExecuteReader();
while (MyDataReader.Read())
{
if(string.Compare(MyConnection.Driver,"myodbc3.dll") == 0) {
//Supported only by Connector/ODBC 3.51
Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +
MyDataReader.GetString(1) + " " +
MyDataReader.GetInt64(2));
}
else {
//BIGINTs not supported by Connector/ODBC
Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +
MyDataReader.GetString(1) + " " +
MyDataReader.GetInt32(2));
}
}
//Close all resources
MyDataReader.Close();
MyConnection.Close();
}
catch (OdbcException MyOdbcException) //Catch any ODBC exception ..
{
for (int i=0; i < MyOdbcException.Errors.Count; i++)
{
Console.Write("ERROR #" + i + "\n" +
"Message: " +
MyOdbcException.Errors[i].Message + "\n" +
"Native: " +
MyOdbcException.Errors[i].NativeError.ToString() + "\n" +
"Source: " +
MyOdbcException.Errors[i].Source + "\n" +
"SQL: " +
MyOdbcException.Errors[i].SQLState + "\n");
}
}
}
}
}
21.1.5.7.2.2. Using Connector/ODBC with ODBC.NET and Visual Basic
The following sample creates a table my_vb_net and demonstrates the use in VB.
' @sample : myvb.vb
' @purpose : Demo sample for ODBC.NET using Connector/ODBC
' @author : Venu, <myodbc@lists.mysql.com>
'
' (C) Copyright MySQL AB, 1995-2006
'
'
'
' build command
'
' vbc /target:exe
' /out:myvb.exe
' /r:Microsoft.Data.Odbc.dll
' /r:System.dll
' /r:System.Data.dll
'
Imports Microsoft.Data.Odbc
Imports System
Module myvb
Sub Main()
Try
'Connector/ODBC 3.51 connection string
Dim MyConString As String = "DRIVER={MySQL ODBC 3.51 Driver};" & _
"SERVER=localhost;" & _
"DATABASE=test;" & _
"UID=venu;" & _
"PASSWORD=venu;" & _
"OPTION=3;"
'Connection
Dim MyConnection As New OdbcConnection(MyConString)
MyConnection.Open()
Console.WriteLine("Connection State::" & MyConnection.State.ToString)
'Drop
Console.WriteLine("Dropping table")
Dim MyCommand As New OdbcCommand()
MyCommand.Connection = MyConnection
MyCommand.CommandText = "DROP TABLE IF EXISTS my_vb_net"
MyCommand.ExecuteNonQuery()
'Create
Console.WriteLine("Creating....")
MyCommand.CommandText = "CREATE TABLE my_vb_net(id int, name varchar(30))"
MyCommand.ExecuteNonQuery()
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(10,'venu')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())
'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net(id) VALUES(30)"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())
'Update
MyCommand.CommandText = "UPDATE my_vb_net SET id=999 WHERE id=20"
Console.WriteLine("Update, Total rows affected:" & _
MyCommand.ExecuteNonQuery())
'COUNT(*)
MyCommand.CommandText = "SELECT COUNT(*) as TRows FROM my_vb_net"
Console.WriteLine("Total Rows:" & MyCommand.ExecuteScalar())
'Select
Console.WriteLine("Select * FROM my_vb_net")
MyCommand.CommandText = "SELECT * FROM my_vb_net"
Dim MyDataReader As OdbcDataReader
MyDataReader = MyCommand.ExecuteReader
While MyDataReader.Read
If MyDataReader("name") Is DBNull.Value Then
Console.WriteLine("id = " & _
CStr(MyDataReader("id")) & " name = " & _
"NULL")
Else
Console.WriteLine("id = " & _
CStr(MyDataReader("id")) & " name = " & _
CStr(MyDataReader("name")))
End If
End While
'Catch ODBC Exception
Catch MyOdbcException As OdbcException
Dim i As Integer
Console.WriteLine(MyOdbcException.ToString)
'Catch program exception
Catch MyException As Exception
Console.WriteLine(MyException.ToString)
End Try
End Sub
21.1.6. Connector/ODBC Reference
This section provides reference material for the Connector/ODBC API, showing supported functions and methods, supported MySQL column types and the corresponding native type in Connector/ODBC, and the error codes returned by Connector/ODBC when a fault occurs.
21.1.6.1. Connector/ODBC API Reference
This section summarizes ODBC routines, categorized by functionality.
For the complete ODBC API reference, please refer to the ODBC Programmer's Reference at http://msdn.microsoft.com/en-us/library/ms714177.aspx.
An application can call SQLGetInfo function to obtain conformance information about Connector/ODBC. To obtain information about support for a specific function in the driver, an application can call SQLGetFunctions.
Note
For backward compatibility, the Connector/ODBC driver supports all deprecated functions.
The following tables list Connector/ODBC API calls grouped by task:
Table 21.6. ODBC API Calls for Connecting to a Data Source
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLAllocHandle | Yes | ISO 92 | Obtains an environment, connection, statement, or descriptor handle. |
SQLConnect | Yes | ISO 92 | Connects to a specific driver by data source name, user ID, and password. |
SQLDriverConnect | Yes | ODBC | Connects to a specific driver by connection string or requests that the Driver Manager and driver display connection dialog boxes for the user. |
SQLAllocEnv | Yes | Deprecated | Obtains an environment handle allocated from driver. |
SQLAllocConnect | Yes | Deprecated | Obtains a connection handle |
Table 21.7. ODBC API Calls for Obtaining Information about a Driver and Data Source
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLDataSources | No | ISO 92 | Returns the list of available data sources, handled by the Driver Manager |
SQLDrivers | No | ODBC | Returns the list of installed drivers and their attributes, handles by Driver Manager |
SQLGetInfo | Yes | ISO 92 | Returns information about a specific driver and data source. |
SQLGetFunctions | Yes | ISO 92 | Returns supported driver functions. |
SQLGetTypeInfo | Yes | ISO 92 | Returns information about supported data types. |
Table 21.8. ODBC API Calls for Setting and Retrieving Driver Attributes
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLSetConnectAttr | Yes | ISO 92 | Sets a connection attribute. |
SQLGetConnectAttr | Yes | ISO 92 | Returns the value of a connection attribute. |
SQLSetConnectOption | Yes | Deprecated | Sets a connection option |
SQLGetConnectOption | Yes | Deprecated | Returns the value of a connection option |
SQLSetEnvAttr | Yes | ISO 92 | Sets an environment attribute. |
SQLGetEnvAttr | Yes | ISO 92 | Returns the value of an environment attribute. |
SQLSetStmtAttr | Yes | ISO 92 | Sets a statement attribute. |
SQLGetStmtAttr | Yes | ISO 92 | Returns the value of a statement attribute. |
SQLSetStmtOption | Yes | Deprecated | Sets a statement option |
SQLGetStmtOption | Yes | Deprecated | Returns the value of a statement option |
Table 21.9. ODBC API Calls for Preparing SQL Requests
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLAllocStmt | Yes | Deprecated | Allocates a statement handle |
SQLPrepare | Yes | ISO 92 | Prepares an SQL statement for later execution. |
SQLBindParameter | Yes | ODBC | Assigns storage for a parameter in an SQL statement. Connector/ODBC 5.2 adds support for “out” and “inout” parameters, through the SQL_PARAM_OUTPUT or SQL_PARAM_INPUT_OUTPUT type specifiers. (“Out” and “inout” parameters are not supported for LONGTEXT and LONGBLOB columns.) |
SQLGetCursorName | Yes | ISO 92 | Returns the cursor name associated with a statement handle. |
SQLSetCursorName | Yes | ISO 92 | Specifies a cursor name. |
SQLSetScrollOptions | Yes | ODBC | Sets options that control cursor behavior. |
Table 21.10. ODBC API Calls for Submitting Requests
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLExecute | Yes | ISO 92 | Executes a prepared statement. |
SQLExecDirect | Yes | ISO 92 | Executes a statement |
SQLNativeSql | Yes | ODBC | Returns the text of an SQL statement as translated by the driver. |
SQLDescribeParam | Yes | ODBC | Returns the description for a specific parameter in a statement. |
SQLNumParams | Yes | ISO 92 | Returns the number of parameters in a statement. |
SQLParamData | Yes | ISO 92 | Used in conjunction with SQLPutData to supply parameter data at execution time. (Useful for long data values.) |
SQLPutData | Yes | ISO 92 | Sends part or all of a data value for a parameter. (Useful for long data values.) |
Table 21.11. ODBC API Calls for Retrieving Results and Information about Results
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLRowCount | Yes | ISO 92 | Returns the number of rows affected by an insert, update, or delete request. |
SQLNumResultCols | Yes | ISO 92 | Returns the number of columns in the result set. |
SQLDescribeCol | Yes | ISO 92 | Describes a column in the result set. |
SQLColAttribute | Yes | ISO 92 | Describes attributes of a column in the result set. |
SQLColAttributes | Yes | Deprecated | Describes attributes of a column in the result set. |
SQLFetch | Yes | ISO 92 | Returns multiple result rows. |
SQLFetchScroll | Yes | ISO 92 | Returns scrollable result rows. |
SQLExtendedFetch | Yes | Deprecated | Returns scrollable result rows. |
SQLSetPos | Yes | ODBC | Positions a cursor within a fetched block of data and enables an application to refresh data in the rowset or to update or delete data in the result set. |
SQLBulkOperations | Yes | ODBC | Performs bulk insertions and bulk bookmark operations, including update, delete, and fetch by bookmark. |
Table 21.12. ODBC API Calls for Retrieving Error or Diagnostic Information
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLError | Yes | Deprecated | Returns additional error or status information |
SQLGetDiagField | Yes | ISO 92 | Returns additional diagnostic information (a single field of the diagnostic data structure). |
SQLGetDiagRec | Yes | ISO 92 | Returns additional diagnostic information (multiple fields of the diagnostic data structure). |
Table 21.13. ODBC API Calls for Obtaining Information about the Data Source's System Tables (Catalog Functions) Item
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLColumnPrivileges | Yes | ODBC | Returns a list of columns and associated privileges for one or more tables. |
SQLColumns | Yes | X/Open | Returns the list of column names in specified tables. |
SQLForeignKeys | Yes | ODBC | Returns a list of column names that make up foreign keys, if they exist for a specified table. |
SQLPrimaryKeys | Yes | ODBC | Returns the list of column names that make up the primary key for a table. |
SQLSpecialColumns | Yes | X/Open | Returns information about the optimal set of columns that uniquely identifies a row in a specified table, or the columns that are automatically updated when any value in the row is updated by a transaction. |
SQLStatistics | Yes | ISO 92 | Returns statistics about a single table and the list of indexes associated with the table. |
SQLTablePrivileges | Yes | ODBC | Returns a list of tables and the privileges associated with each table. |
SQLTables | Yes | X/Open | Returns the list of table names stored in a specific data source. |
Table 21.14. ODBC API Calls for Performing Transactions
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLTransact | Yes | Deprecated | Commits or rolls back a transaction |
SQLEndTran | Yes | ISO 92 | Commits or rolls back a transaction. |
Table 21.15. ODBC API Calls for Terminating a Statement
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLFreeStmt | Yes | ISO 92 | Ends statement processing, discards pending results, and, optionally, frees all resources associated with the statement handle. |
SQLCloseCursor | Yes | ISO 92 | Closes a cursor that has been opened on a statement handle. |
SQLCancel | Yes | ISO 92 | Cancels an SQL statement. |
Table 21.16. ODBC API Calls for Terminating a Connection
Function Name | Connector/ODBC Supports? | Standard | Purpose |
---|---|---|---|
SQLDisconnect | Yes | ISO 92 | Closes the connection. |
SQLFreeHandle | Yes | ISO 92 | Releases an environment, connection, statement, or descriptor handle. |
SQLFreeConnect | Yes | Deprecated | Releases connection handle. |
SQLFreeEnv | Yes | Deprecated | Releases an environment handle. |
21.1.6.2. Connector/ODBC Data Types
The following table illustrates how Connector/ODBC maps the server data types to default SQL and C data types.
Table 21.17. How Connector/ODBC Maps MySQL Data Types to SQL and C Data Types
Native Value | SQL Type | C Type |
---|---|---|
bigint unsigned | SQL_BIGINT | SQL_C_UBIGINT |
bigint | SQL_BIGINT | SQL_C_SBIGINT |
bit | SQL_BIT | SQL_C_BIT |
bit | SQL_CHAR | SQL_C_CHAR |
blob | SQL_LONGVARBINARY | SQL_C_BINARY |
bool | SQL_CHAR | SQL_C_CHAR |
char | SQL_CHAR | SQL_C_CHAR |
date | SQL_DATE | SQL_C_DATE |
datetime | SQL_TIMESTAMP | SQL_C_TIMESTAMP |
decimal | SQL_DECIMAL | SQL_C_CHAR |
double precision | SQL_DOUBLE | SQL_C_DOUBLE |
double | SQL_FLOAT | SQL_C_DOUBLE |
enum | SQL_VARCHAR | SQL_C_CHAR |
float | SQL_REAL | SQL_C_FLOAT |
int unsigned | SQL_INTEGER | SQL_C_ULONG |
int | SQL_INTEGER | SQL_C_SLONG |
integer unsigned | SQL_INTEGER | SQL_C_ULONG |
integer | SQL_INTEGER | SQL_C_SLONG |
long varbinary | SQL_LONGVARBINARY | SQL_C_BINARY |
long varchar | SQL_LONGVARCHAR | SQL_C_CHAR |
longblob | SQL_LONGVARBINARY | SQL_C_BINARY |
longtext | SQL_LONGVARCHAR | SQL_C_CHAR |
mediumblob | SQL_LONGVARBINARY | SQL_C_BINARY |
mediumint unsigned | SQL_INTEGER | SQL_C_ULONG |
mediumint | SQL_INTEGER | SQL_C_SLONG |
mediumtext | SQL_LONGVARCHAR | SQL_C_CHAR |
numeric | SQL_NUMERIC | SQL_C_CHAR |
real | SQL_FLOAT | SQL_C_DOUBLE |
set | SQL_VARCHAR | SQL_C_CHAR |
smallint unsigned | SQL_SMALLINT | SQL_C_USHORT |
smallint | SQL_SMALLINT | SQL_C_SSHORT |
text | SQL_LONGVARCHAR | SQL_C_CHAR |
time | SQL_TIME | SQL_C_TIME |
timestamp | SQL_TIMESTAMP | SQL_C_TIMESTAMP |
tinyblob | SQL_LONGVARBINARY | SQL_C_BINARY |
tinyint unsigned | SQL_TINYINT | SQL_C_UTINYINT |
tinyint | SQL_TINYINT | SQL_C_STINYINT |
tinytext | SQL_LONGVARCHAR | SQL_C_CHAR |
varchar | SQL_VARCHAR | SQL_C_CHAR |
year | SQL_SMALLINT | SQL_C_SHORT |
21.1.6.3. Connector/ODBC Error Codes
The following tables lists the error codes returned by Connector/ODBC apart from the server errors.
Table 21.18. Special Error Codes Returned by Connector/ODBC
Native Code | SQLSTATE 2 | SQLSTATE 3 | Error Message |
---|---|---|---|
500 | 01000 | 01000 | General warning |
501 | 01004 | 01004 | String data, right truncated |
502 | 01S02 | 01S02 | Option value changed |
503 | 01S03 | 01S03 | No rows updated/deleted |
504 | 01S04 | 01S04 | More than one row updated/deleted |
505 | 01S06 | 01S06 | Attempt to fetch before the result set returned the first row set |
506 | 07001 | 07002 | SQLBindParameter not used for all parameters |
507 | 07005 | 07005 | Prepared statement not a cursor-specification |
508 | 07009 | 07009 | Invalid descriptor index |
509 | 08002 | 08002 | Connection name in use |
510 | 08003 | 08003 | Connection does not exist |
511 | 24000 | 24000 | Invalid cursor state |
512 | 25000 | 25000 | Invalid transaction state |
513 | 25S01 | 25S01 | Transaction state unknown |
514 | 34000 | 34000 | Invalid cursor name |
515 | S1000 | HY000 | General driver defined error |
516 | S1001 | HY001 | Memory allocation error |
517 | S1002 | HY002 | Invalid column number |
518 | S1003 | HY003 | Invalid application buffer type |
519 | S1004 | HY004 | Invalid SQL data type |
520 | S1009 | HY009 | Invalid use of null pointer |
521 | S1010 | HY010 | Function sequence error |
522 | S1011 | HY011 | Attribute can not be set now |
523 | S1012 | HY012 | Invalid transaction operation code |
524 | S1013 | HY013 | Memory management error |
525 | S1015 | HY015 | No cursor name available |
526 | S1024 | HY024 | Invalid attribute value |
527 | S1090 | HY090 | Invalid string or buffer length |
528 | S1091 | HY091 | Invalid descriptor field identifier |
529 | S1092 | HY092 | Invalid attribute/option identifier |
530 | S1093 | HY093 | Invalid parameter number |
531 | S1095 | HY095 | Function type out of range |
532 | S1106 | HY106 | Fetch type out of range |
533 | S1117 | HY117 | Row value out of range |
534 | S1109 | HY109 | Invalid cursor position |
535 | S1C00 | HYC00 | Optional feature not implemented |
0 | 21S01 | 21S01 | Column count does not match value count |
0 | 23000 | 23000 | Integrity constraint violation |
0 | 42000 | 42000 | Syntax error or access violation |
0 | 42S02 | 42S02 | Base table or view not found |
0 | 42S12 | 42S12 | Index not found |
0 | 42S21 | 42S21 | Column already exists |
0 | 42S22 | 42S22 | Column not found |
0 | 08S01 | 08S01 | Communication link failure |
21.1.7. Connector/ODBC Notes and Tips
Here are some common notes and tips for using Connector/ODBC within different environments, applications and tools. The notes provided here are based on the experiences of Connector/ODBC developers and users.
21.1.7.1. Connector/ODBC General Functionality
This section provides help with common queries and areas of functionality in MySQL and how to use them with Connector/ODBC.
21.1.7.1.1. Obtaining Auto-Increment Values
Obtaining the value of column that uses AUTO_INCREMENT after an INSERT statement can be achieved in a number of different ways. To obtain the value immediately after an INSERT, use a SELECT query with the LAST_INSERT_ID() function.
For example, using Connector/ODBC you would execute two separate statements, the INSERT statement and the SELECT query to obtain the auto-increment value.
INSERT INTO tbl (auto,text) VALUES(NULL,'text');
SELECT LAST_INSERT_ID();
If you do not require the value within your application, but do require the value as part of another INSERT, the entire process can be handled by executing the following statements:
INSERT INTO tbl (auto,text) VALUES(NULL,'text');
INSERT INTO tbl2 (id,text) VALUES(LAST_INSERT_ID(),'text');
Certain ODBC applications (including Delphi and Access) may have trouble obtaining the auto-increment value using the previous examples. In this case, try the following statement as an alternative:
SELECT * FROM tbl WHERE auto IS NULL;
This alternative method requires that sql_auto_is_null variable is not set to 0. See Section 5.1.4, “Server System Variables”.
See also Section 21.8.14.3, “How to Get the Unique ID for the Last Inserted Row”.
21.1.7.1.2. Dynamic Cursor Support
Support for the dynamic cursor is provided in Connector/ODBC 3.51, but dynamic cursors are not enabled by default. You can enable this function within Windows by selecting the Enable Dynamic Cursor check box within the ODBC Data Source Administrator.
On other platforms, you can enable the dynamic cursor by adding 32 to the OPTION value when creating the DSN.
21.1.7.1.3. Connector/ODBC Performance
The Connector/ODBC driver has been optimized to provide very fast performance. If you experience problems with the performance of Connector/ODBC, or notice a large amount of disk activity for simple queries, there are a number of aspects to check:
Ensure that ODBC Tracing is not enabled. With tracing enabled, a lot of information is recorded in the tracing file by the ODBC Manager. You can check, and disable, tracing within Windows using the Tracing panel of the ODBC Data Source Administrator. Within Mac OS X, check the Tracing panel of ODBC Administrator. See Section 21.1.4.8, “Getting an ODBC Trace File”.
Make sure you are using the standard version of the driver, and not the debug version. The debug version includes additional checks and reporting measures.
Disable the Connector/ODBC driver trace and query logs. These options are enabled for each DSN, so make sure to examine only the DSN that you are using in your application. Within Windows, you can disable the Connector/ODBC and query logs by modifying the DSN configuration. Within Mac OS X and Unix, ensure that the driver trace (option value 4) and query logging (option value 524288) are not enabled.
21.1.7.1.4. Setting ODBC Query Timeout in Windows
For more information on how to set the query timeout on Microsoft Windows when executing queries through an ODBC connection, read the Microsoft knowledgebase document at http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756.
21.1.7.2. Connector/ODBC Application-Specific Tips
Most programs should work with Connector/ODBC, but for each of those listed here, there are specific notes and tips to improve or enhance the way you work with Connector/ODBC and these applications.
With all applications, ensure that you are using the latest Connector/ODBC drivers, ODBC Manager and any supporting libraries and interfaces used by your application. For example, on Windows, using the latest version of Microsoft Data Access Components (MDAC) will improve the compatibility with ODBC in general, and with the Connector/ODBC driver.
21.1.7.2.1. Using Connector/ODBC with Microsoft Applications
The majority of Microsoft applications have been tested with Connector/ODBC, including Microsoft Office, Microsoft Access and the various programming languages supported within ASP and Microsoft Visual Studio.
21.1.7.2.1.1. Microsoft Access
To improve the integration between Microsoft Access and MySQL through Connector/ODBC:
For all versions of Access, enable the Connector/ODBC Return matching rows option. For Access 2.0, also enable the Simulate ODBC 1.0 option.
Include a TIMESTAMP column in all tables that you want to be able to update. For maximum portability, do not use a length specification in the column declaration (which is unsupported within MySQL in versions earlier than 4.1).
Include a primary key in each MySQL table you want to use with Access. If not, new or updated rows may show up as #DELETED#.
Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symptom usually is that new or updated rows may show up as #DELETED# or that you cannot find or update rows.
If you are using Connector/ODBC to link to a table that has a BIGINT column, the results are displayed as #DELETED#. The work around solution is:
Have one more dummy column with TIMESTAMP as the data type.
Select the Change BIGINT columns to INT option in the connection dialog in ODBC DSN Administrator.
Delete the table link from Access and re-create it.
Old records may still display as #DELETED#, but newly added/updated records are displayed properly.
If you still get the error Another user has changed your data after adding a TIMESTAMP column, the following trick may help you:
Do not use a table data sheet view. Instead, create a form with the fields you want, and use that form data sheet view. Set the DefaultValue property for the TIMESTAMP column to NOW(). Consider hiding the TIMESTAMP column from view so your users are not confused.
In some cases, Access may generate SQL statements that MySQL cannot understand. You can fix this by selecting "Query|SQLSpecific|Pass-Through" from the Access menu.
On Windows NT, Access reports BLOB columns as OLE OBJECTS. If you want to have MEMO columns instead, change BLOB columns to TEXT with ALTER TABLE.
Access cannot always handle the MySQL DATE column properly. If you have a problem with these, change the columns to DATETIME.
If you have in Access a column defined as BYTE, Access tries to export this as TINYINT instead of TINYINT UNSIGNED. This gives you problems if you have values larger than 127 in the column.
If you have very large (long) tables in Access, it might take a very long time to open them. Or you might run low on virtual memory and eventually get an ODBC Query Failed error and the table cannot open. To deal with this, select the following options:
Return Matching Rows (2)
Allow BIG Results (8).
These add up to a value of 10 (OPTION=10).
Some external articles and tips that may be useful when using Access, ODBC and Connector/ODBC:
Optimizing Access ODBC Applications
For a list of tools that can be used with Access and ODBC data sources, refer to http://www.mysql.com/portal/software/convertors/ section for list of available tools.
21.1.7.2.1.2. Microsoft Excel and Column Types
If you have problems importing data into Microsoft Excel, particularly numeric, date, and time values, this is probably because of a bug in Excel, where the column type of the source data is used to determine the data type when that data is inserted into a cell within the worksheet. The result is that Excel incorrectly identifies the content and this affects both the display format and the data when it is used within calculations.
To address this issue, use the CONCAT() function in your queries. The use of CONCAT() forces Excel to treat the value as a string, which Excel will then parse and usually correctly identify the embedded information.
However, even with this option, some data may be incorrectly formatted, even though the source data remains unchanged. Use the Format Cells option within Excel to change the format of the displayed information.
21.1.7.2.1.3. Microsoft Visual Basic
To be able to update a table, you must define a primary key for the table.
Visual Basic with ADO cannot handle big integers. This means that some queries like SHOW PROCESSLIST do not work properly. The fix is to use OPTION=16384 in the ODBC connect string or to select the Change BIGINT columns to INT option in the Connector/ODBC connect screen. You may also want to select the Return matching rows option.
21.1.7.2.1.4. Microsoft Visual InterDev
If you have a BIGINT in your result, you may get the error [Microsoft][ODBC Driver Manager] Driver does not support this parameter. Try selecting the Change BIGINT columns to INT option in the Connector/ODBC connect screen.
21.1.7.2.1.5. Visual Objects
Select the Don't optimize column widths option.
21.1.7.2.1.6. Microsoft ADO
When you are coding with the ADO API and Connector/ODBC, you need to pay attention to some default properties that aren't supported by the MySQL server. For example, using the CursorLocation Property as adUseServer returns a result of –1 for the RecordCount Property. To have the right value, you need to set this property to adUseClient, as shown in the VB code here:
Dim myconn As New ADODB.Connection
Dim myrs As New Recordset
Dim mySQL As String
Dim myrows As Long
myconn.Open "DSN=MyODBCsample"
mySQL = "SELECT * from user"
myrs.Source = mySQL
Set myrs.ActiveConnection = myconn
myrs.CursorLocation = adUseClient
myrs.Open
myrows = myrs.RecordCount
myrs.Close
myconn.Close
Another workaround is to use a SELECT COUNT(*) statement for a similar query to get the correct row count.
To find the number of rows affected by a specific SQL statement in ADO, use the RecordsAffected property in the ADO execute method. For more information on the usage of execute method, refer to http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp.
For information, see ActiveX Data Objects(ADO) Frequently Asked Questions.
21.1.7.2.1.7. Using Connector/ODBC with Active Server Pages (ASP)
Select the Return matching rows option in the DSN.
For more information about how to access MySQL through ASP using Connector/ODBC, refer to the following articles:
A Frequently Asked Questions list for ASP can be found at http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp.
21.1.7.2.1.8. Using Connector/ODBC with Visual Basic (ADO, DAO and RDO) and ASP
Some articles that may help with Visual Basic and ASP:
MySQL BLOB columns and Visual Basic 6 by Mike Hillyer (<mike@openwin.org>).
How to map Visual basic data type to MySQL types by Mike Hillyer (<mike@openwin.org>).
21.1.7.2.2. Using Connector/ODBC with Borland Applications
With all Borland applications where the Borland Database Engine (BDE) is used, follow these steps to improve compatibility:
Update to BDE 3.2 or newer.
Enable the Don't optimize column widths option in the DSN.
Enabled the Return matching rows option in the DSN.
21.1.7.2.2.1. Using Connector/ODBC with Borland Builder 4
When you start a query, you can use the Active property or the Open method. Note that Active starts by automatically issuing a SELECT * FROM ... query. That may not be a good thing if your tables are large.
21.1.7.2.2.2. Using Connector/ODBC with Delphi
Also, here is some potentially useful Delphi code that sets up both an ODBC entry and a BDE entry for Connector/ODBC. The BDE entry requires a BDE Alias Editor that is free at a Delphi Super Page near you. (Thanks to Bryan Brunton <bryan@flesherfab.com> for this):
fReg:= TRegistry.Create;
fReg.OpenKey('\Software\ODBC\ODBC.INI\DocumentsFab', True);
fReg.WriteString('Database', 'Documents');
fReg.WriteString('Description', ' ');
fReg.WriteString('Driver', 'C:\WINNT\System32\myodbc.dll');
fReg.WriteString('Flag', '1');
fReg.WriteString('Password', '');
fReg.WriteString('Port', ' ');
fReg.WriteString('Server', 'xmark');
fReg.WriteString('User', 'winuser');
fReg.OpenKey('\Software\ODBC\ODBC.INI\ODBC Data Sources', True);
fReg.WriteString('DocumentsFab', 'MySQL');
fReg.CloseKey;
fReg.Free;
Memo1.Lines.Add('DATABASE NAME=');
Memo1.Lines.Add('USER NAME=');
Memo1.Lines.Add('ODBC DSN=DocumentsFab');
Memo1.Lines.Add('OPEN MODE=READ/WRITE');
Memo1.Lines.Add('BATCH COUNT=200');
Memo1.Lines.Add('LANGDRIVER=');
Memo1.Lines.Add('MAX ROWS=-1');
Memo1.Lines.Add('SCHEMA CACHE DIR=');
Memo1.Lines.Add('SCHEMA CACHE SIZE=8');
Memo1.Lines.Add('SCHEMA CACHE TIME=-1');
Memo1.Lines.Add('SQLPASSTHRU MODE=SHARED AUTOCOMMIT');
Memo1.Lines.Add('SQLQRYMODE=');
Memo1.Lines.Add('ENABLE SCHEMA CACHE=FALSE');
Memo1.Lines.Add('ENABLE BCD=FALSE');
Memo1.Lines.Add('ROWSET SIZE=20');
Memo1.Lines.Add('BLOBS TO CACHE=64');
Memo1.Lines.Add('BLOB SIZE=32');
AliasEditor.Add('DocumentsFab','MySQL',Memo1.Lines);
21.1.7.2.2.3. Using Connector/ODBC with C++ Builder
Tested with BDE 3.0. The only known problem is that when the table schema changes, query fields are not updated. BDE, however, does not seem to recognize primary keys, only the index named PRIMARY, although this has not been a problem.
21.1.7.2.3. Using Connector/ODBC with ColdFusion
The following information is taken from the ColdFusion documentation:
Use the following information to configure ColdFusion Server for Linux to use the unixODBC driver with Connector/ODBC for MySQL data sources. You can download Connector/ODBC at http://dev.mysql.com/downloads/connector/odbc/.
ColdFusion version 4.5.1 lets you use the ColdFusion Administrator to add the MySQL data source. However, the driver is not included with ColdFusion version 4.5.1. Before the MySQL driver appears in the ODBC data sources drop-down list, build and copy the Connector/ODBC driver to /opt/coldfusion/lib/libmyodbc.so.
The Contrib directory contains the program mydsn-xxx.zip which lets you build and remove the DSN registry file for the Connector/ODBC driver on ColdFusion applications.
For more information and guides on using ColdFusion and Connector/ODBC, see the following external sites:
21.1.7.2.4. Using Connector/ODBC with OpenOffice.org
Open Office (http://www.openoffice.org) How-to: MySQL + OpenOffice. How-to: OpenOffice + MyODBC + unixODBC.
21.1.7.2.5. Using Connector/ODBC with Sambar Server
Sambar Server (http://www.sambarserver.info) How-to: MyODBC + SambarServer + MySQL.
21.1.7.2.6. Using Connector/ODBC with Pervasive Software DataJunction
You have to change it to output VARCHAR rather than ENUM, as it exports the latter in a manner that causes MySQL problems.
21.1.7.2.7. Using Connector/ODBC with SunSystems Vision
Select the Return matching rows option.
21.1.7.3. Connector/ODBC Errors and Resolutions (FAQ)
The following section details some common errors and their suggested fix or alternative solution. If you are still experiencing problems, use the Connector/ODBC mailing list; see Section 21.1.8.1, “Connector/ODBC Community Support”.
Many problems can be resolved by upgrading your Connector/ODBC drivers to the latest available release. On Windows, make sure that you have the latest versions of the Microsoft Data Access Components (MDAC) installed.
64-Bit Windows and ODBC Data Source Administrator
I have installed Connector/ODBC on Windows XP x64 Edition or Windows Server 2003 R2 x64. The installation completed successfully, but the Connector/ODBC driver does not appear in ODBC Data Source Administrator.
This is not a bug, but is related to the way Windows x64 editions operate with the ODBC driver. On Windows x64 editions, the Connector/ODBC driver is installed in the %SystemRoot%\SysWOW64 folder. However, the default ODBC Data Source Administrator that is available through the Administrative Tools or Control Panel in Windows x64 Editions is located in the %SystemRoot%\system32 folder, and only searches this folder for ODBC drivers.
On Windows x64 editions, use the ODBC administration tool located at %SystemRoot%\SysWOW64\odbcad32.exe, this will correctly locate the installed Connector/ODBC drivers and enable you to create a Connector/ODBC DSN.
This issue was originally reported as Bug #20301.
Error 10061 (Cannot connect to server)
When connecting or using the Test button in ODBC Data Source Administrator I get error 10061 (Cannot connect to server)
This error can be raised by a number of different issues, including server problems, network problems, and firewall and port blocking problems. For more information, see Section C.5.2.2, “Can't connect to [local] MySQL server”.
"Transactions are not enabled" Error
The following error is reported when using transactions: Transactions are not enabled
This error indicates that you are trying to use transactions with a MySQL table that does not support transactions. Transactions are supported within MySQL when using the InnoDB database engine, which is the default storage engine in MySQL 5.5 and higher. In versions of MySQL before MySQL 5.1, you may also use the BDB engine.
Check the following before continuing:
Verify that your MySQL server supports a transactional database engine. Use SHOW ENGINES to obtain a list of the available engine types.
Verify that the tables you are updating use a transactional database engine.
Ensure that you have not enabled the disable transactions option in your DSN.
#DELETED# Records Reported by Access
Access reports records as #DELETED# when inserting or updating records in linked tables.
If the inserted or updated records are shown as #DELETED# in Access, then:
If you are using Access 2000, get and install the newest (version 2.6 or higher) Microsoft MDAC (Microsoft Data Access Components) from http://support.microsoft.com/kb/110093. This fixes a bug in Access that when you export data to MySQL, the table and column names aren't specified.
Also, get and apply the Microsoft Jet 4.0 Service Pack 5 (SP5), which can be found at http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114. This fixes some cases where columns are marked as #DELETED# in Access.
For all versions of Access, enable the Connector/ODBC Return matching rows option. For Access 2.0, also enable the Simulate ODBC 1.0 option.
Include a TIMESTAMP in all tables that you want to be able to update.
Include a primary key in the table. If not, new or updated rows may show up as #DELETED#.
Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symptom usually is that new or updated rows may show up as #DELETED# or that you cannot find or update rows.
If you are using Connector/ODBC to link to a table that has a BIGINT column, the results are displayed as #DELETED. The work around solution is:
Have one more dummy column with TIMESTAMP as the data type.
Select the Change BIGINT columns to INT option in the connection dialog in ODBC DSN Administrator.
Delete the table link from Access and re-create it.
Old records still display as #DELETED#, but newly added/updated records are displayed properly.
Write Conflicts or Row Location Errors
How do I handle Write Conflicts or Row Location errors?
If you see the following errors, select the Return Matching Rows option in the DSN configuration dialog, or specify OPTION=2, as the connection parameter:
Write Conflict. Another user has changed your data.
Row cannot be located for updating. Some values may have been changed
since it was last read.
Importing from Access 97
Exporting data from Access 97 to MySQL reports a Syntax Error.
This error is specific to Access 97 and versions of Connector/ODBC earlier than 3.51.02. Update to the latest version of the Connector/ODBC driver to resolve this problem.
Importing from Microsoft DTS
Exporting data from Microsoft DTS to MySQL reports a Syntax Error.
This error occurs only with MySQL tables using the TEXT or VARCHAR data types. You can fix this error by upgrading your Connector/ODBC driver to version 3.51.02 or higher.
SQL_NO_DATA Exception from ODBC.NET
Using ODBC.NET with Connector/ODBC, while fetching empty string (0 length), it starts giving the SQL_NO_DATA exception.
You can get the patch that addresses this problem from http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243.
Error with SELECT COUNT(*)
Using SELECT COUNT(*) FROM tbl_name within Visual Basic and ASP returns an error.
This error occurs because the COUNT(*) expression is returning a BIGINT, and ADO cannot make sense of a number this big. Select the Change BIGINT columns to INT option (option value 16384).
Multiple-Step Operation Error
Using the AppendChunk() or GetChunk() ADO methods, the Multiple-step operation generated errors. Check each status value error is returned.
The GetChunk() and AppendChunk() methods from ADO do not work as expected when the cursor location is specified as adUseServer. On the other hand, you can overcome this error by using adUseClient.
A simple example can be found from http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm
Modified Record Error
Access returns Another user had modified the record that you have modified while editing records on a Linked Table.
In most cases, this can be solved by doing one of the following things:
Add a primary key for the table if one doesn't exist.
Add a timestamp column if one doesn't exist.
Only use double-precision float fields. Some programs may fail when they compare single-precision floats.
If these strategies do not help, start by making a log file from the ODBC manager (the log you get when requesting logs from ODBCADMIN) and a Connector/ODBC log to help you figure out why things go wrong. For instructions, see Section 21.1.4.8, “Getting an ODBC Trace File”.
Direct Application Linking Under Unix or Linux
When linking an application directly to the Connector/ODBC library under Unix or Linux, the application crashes.
Connector/ODBC under Unix or Linux is not compatible with direct application linking. To connect to an ODBC source, use a driver manager, such as iODBC or unixODBC.
Microsoft Office and DATE or TIMESTAMP Columns
Applications in the Microsoft Office suite cannot update tables that have DATE or TIMESTAMP columns.
This is a known issue with Connector/ODBC. Ensure that the field has a default value (rather than NULL) and that the default value is nonzero (that is, something other than 0000-00-00 00:00:00).
INFORMATION_SCHEMA Database
When connecting Connector/ODBC 5.x to a MySQL 4.x server, the error 1044 Access denied for user 'xxx'@'%' to database 'information_schema' is returned.
Connector/ODBC 5.x is designed to work with MySQL 5.0 or later, taking advantage of the INFORMATION_SCHEMA database to determine data definition information. Support for MySQL 4.1 is planned for the final release.
S1T00 Error
When calling SQLTables, the error S1T00 is returned, but I cannot find this in the list of error numbers for Connector/ODBC.
The S1T00 error indicates that a general timeout has occurred within the ODBC system and is not a MySQL error. Typically it indicates that the connection you are using is stale, the server is too busy to accept your request or that the server has gone away.
"Table does not exist" Error in Access 2000
When linking to tables in Access 2000 and generating links to tables programmatically, rather than through the table designer interface, you may get errors about tables not existing.
There is a known issue with a specific version of the msjet40.dll that exhibits this issue. The version affected is 4.0.9025.0. Reverting to an older version will enable you to create the links. If you have recently updated your version, check your WINDOWS directory for the older version of the file and copy it to the drivers directory.
Batched Statements
When I try to use batched statements, the execution of the batched statements fails.
Batched statement support was added in 3.51.18. Support for batched statements is not enabled by default. Enable option FLAG_MULTI_STATEMENTS, value 67108864, or select the Allow multiple statements flag within a GUI configuration.
Packet Errors with ADODB and Excel
When connecting to a MySQL server using ADODB and Excel, occasionally the application fails to communicate with the server and the error Got an error reading communication packets appears in the error log.
This error may be related to Keyboard Logger 1.1 from PanteraSoft.com, which is known to interfere with the network communication between MySQL Connector/ODBC and MySQL.
Outer Join Error
When using some applications to access a MySQL server using Connector/ODBC and outer joins, an error is reported regarding the Outer Join Escape Sequence.
This is a known issue with MySQL Connector/ODBC which is not correctly parsing the "Outer Join Escape Sequence", as per the specs at Microsoft ODBC Specs. Currently, Connector/ODBC will return a value > 0 when asked for SQL_OJ_CAPABILITIES even though no parsing takes place in the driver to handle the outer join escape sequence.
Hebrew/CJK Characters
I can correctly store extended characters in the database (Hebrew/CJK) using Connector/ODBC 5.1, but when I retrieve the data, the text is not formatted correctly and I get garbled characters.
When using ASP and UTF8 characters, add the following to your ASP files to ensure that the data returned is correctly encoded:
Response.CodePage = 65001
Response.CharSet = "utf-8"
Duplicate Entry in Installed Programs List
I have a duplicate MySQL Connector/ODBC entry within my Installed Programs list, but I cannot delete one of them.
This problem can occur when you upgrade an existing Connector/ODBC installation, rather than removing and then installing the updated version.
Warning
To fix the problem, use any working uninstallers to remove existing installations; then may have to edit the contents of the registry. Make sure you have a backup of your registry information before attempting any editing of the registry contents.
Values Truncated to 255 Characters
When submitting queries with parameter binding using UPDATE, my field values are being truncated to 255 characters.
Ensure that the FLAG_BIG_PACKETS option is set for your connection. This removes the 255 character limitation on bound parameters.
Disabling Data-At-Execution
Is it possible to disable data-at-execution using a flag?
If you do not want to use data-at-execution, remove the corresponding calls. For example:
SQLLEN ylen = SQL_LEN_DATA_AT_EXEC(10);
SQLBindCol(hstmt,2,SQL_C_BINARY, buf, 10, &ylen);
Would become:
SQLBindCol(hstmt,2,SQL_C_BINARY, buf, 10, NULL);
Note that in the call to SQLBindCol(), &ylen has been replaced by NULL.
For further information, refer to the MSDN documentation for SQLBindCol().
NULLABLE Attribute for AUTO_INCREMENT Columns
When you call SQLColumns() for a table column that is AUTO_INCREMENT, the NULLABLE column of the result set is always SQL_NULLABLE (1).
This is because MySQL reports the DEFAULT value for such a column as NULL. It means, if you insert a NULL value into the column, you will get the next integer value for the table's auto_increment counter.
21.1.8. Connector/ODBC Support
There are many different places where you can get support for using Connector/ODBC. Always try the Connector/ODBC Mailing List or Connector/ODBC Forum. See Section 21.1.8.1, “Connector/ODBC Community Support”, for help before reporting a specific bug or issue to MySQL.
21.1.8.1. Connector/ODBC Community Support
Oracle provides assistance to the user community by means of its mailing lists. For Connector/ODBC-related issues, you can get help from experienced users by using the <myodbc@lists.mysql.com> mailing list. Archives are available online at http://lists.mysql.com/myodbc.
For information about subscribing to MySQL mailing lists or to browse list archives, visit http://lists.mysql.com/. See Section 1.6.1, “MySQL Mailing Lists”.
Community support from experienced users is also available through the ODBC Forum. You may also find help from other users in the other MySQL Forums, located at http://forums.mysql.com. See Section 1.6.2, “MySQL Community Support at the MySQL Forums”.
21.1.8.2. How to Report Connector/ODBC Problems or Bugs
If you encounter difficulties or problems with Connector/ODBC, start by making a log file from the ODBC Manager (the log you get when requesting logs from ODBC ADMIN) and Connector/ODBC. The procedure for doing this is described in Section 21.1.4.8, “Getting an ODBC Trace File”.
Check the Connector/ODBC trace file to find out what could be wrong. Determine what statements were issued by searching for the string >mysql_real_query in the myodbc.log file.
Also, try issuing the statements from the mysql client program or from admndemo. This helps you determine whether the error is in Connector/ODBC or MySQL.
If you find out something is wrong, please only send the relevant rows (maximum 40 rows) to the myodbc mailing list. See Section 1.6.1, “MySQL Mailing Lists”. Please never send the whole Connector/ODBC or ODBC log file!
Ideally, include the following information with the email:
Operating system and version
Connector/ODBC version
ODBC Driver Manager type and version
MySQL server version
ODBC trace from Driver Manager
Connector/ODBC log file from Connector/ODBC driver
Simple reproducible sample
Remember that the more information you can supply to us, the more likely it is that we can fix the problem!
Also, before posting the bug, check the MyODBC mailing list archive at http://lists.mysql.com/myodbc.
If you are unable to find out what is wrong, the last option is to create an archive in tar or zip format that contains a Connector/ODBC trace file, the ODBC log file, and a README file that explains the problem. Initiate a bug report for our bugs database at http://bugs.mysql.com/, then click the Files tab in the bug report for instructions on uploading the archive to the bugs database. Only MySQL engineers have access to the files you upload, and we are very discreet with the data.
If you can create a program that also demonstrates the problem, please include it in the archive as well.
If the program works with another SQL server, include an ODBC log file where you perform exactly the same SQL statements so that we can compare the results between the two systems.
Remember that the more information you can supply to us, the more likely it is that we can fix the problem.
21.1.8.3. How to Submit a Connector/ODBC Patch
You can send a patch or suggest a better solution for any existing code or problems by sending a mail message to <myodbc@lists.mysql.com>.
21.2. MySQL Connector/Net
Connector/Net lets you easily develop .NET applications that require secure, high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and integrates into ADO.NET-aware tools. Developers can build applications using their choice of .NET languages. Connector/Net is a fully managed ADO.NET driver written in 100% pure C#.
For release notes detailing the changes in each release of Connector/Net, see MySQL Connector/Net Release Notes.
Connector/Net includes full support for:
Features provided by MySQL Server up to and including MySQL Server version 5.5.
Large-packet support for sending and receiving rows and BLOBs up to 2 gigabytes in size.
Protocol compression, which enables compressing the data stream between the client and server.
Connections using TCP/IP sockets, named pipes, or shared memory on Windows.
Connections using TCP/IP sockets or Unix sockets on Unix.
The Open Source Mono framework developed by Novell.
Fully managed, does not utilize the MySQL client library.
This document is intended as a user's guide to Connector/Net and includes a full syntax reference. Syntax information is also included within the Documentation.chm file included with the Connector/Net distribution.
If you are using MySQL 5.0 or later, and Visual Studio as your development environment, you can also use the MySQL Visual Studio Plugin. The plugin acts as a DDEX (Data Designer Extensibility) provider: you can use the data design tools within Visual Studio to manipulate the schema and objects within a MySQL database. For more information, see Section 21.2.3, “Connector/Net Visual Studio Integration”.
Note
Connector/Net 5.1.2 and later include the Visual Studio Plugin by default.
MySQL Connector/Net supports full versions of Visual Studio 2005, 2008, and 2010, although certain features are only available in Visual Studio 2010 when using MySQL Connector/Net version 6.3.2 and later. Note that MySQL Connector/Net does not currently support Express versions of Microsoft products, including Microsoft Visual Web Developer.
Key topics:
For connection string properties when using the MySqlConnection class, see Section 21.2.6, “Connector/Net Connection String Options Reference”.
As of Connector/Net 5.1.2, the Visual Studio Plugin is part of the main Connector/Net package. However, even for versions of Connector/Net older than 5.1.2, the Visual Studio Plugin release notes can be found at MySQL Connector/Net Release Notes.
21.2.1. Connector/Net Versions
There are several versions of Connector/Net available:
Connector/Net 6.6 includes support for MySQL Server 5.6, 5.5, 5.1, and 5.0. Important new features include stored procedure debugging in Microsoft Visual Studio, support for pluggable authentication including the ability to write you own authentication plugin, Entity Framework 4.3 Code First support, and enhancements to partial trust support to allow hosting services to deploy applications without installing the Connector/Net library in the GAC.
Connector/Net 6.5 includes support for MySQL Server 5.6, 5.5, 5.1, and 5.0. Important new features include interceptor classes for exceptions and commands, support for the MySQL 5.6 fractional seconds feature, better partial-trust support, and better IntelliSense, including auto-completion when editing stored procedures or .mysql files.
Connector/Net 6.4 includes support for MySQL Server 5.5, 5.1, and 5.0. Important new features include support for Windows authentication (when connecting to MySQL Server 5.5+), table caching on the client side, simple connection fail-over support, and improved SQL generation from the Entity Framework provider.
Connector/Net 6.3 includes support for MySQL Server 5.5, 5.1, and 5.0. Important new features include integration with Visual Studio 2010, such as availability of DDL T4 template for Entity Framework, and a custom MySQL SQL Editor. Other features include refactored transaction scope: Connector/Net now supports nested transactions in a scope where they use the same connection string.
Connector/Net 6.2 includes support for MySQL Server 5.5, 5.1, 5.0, and 4.1. Important new features include a new logging system and client SSL certificates.
Connector/Net 6.1 includes support for MySQL Server 5.5, 5.1, 5.0, and 4.1. Important new features include the MySQL Website Configuration Tool and a Session State Provider.
Connector/Net 6.0 includes support for MySQL Server 5.5, 5.1, 5.0, and 4.1.
This version of Connector/Net is no longer supported.
Connector/Net 5.2 includes support for MySQL Server 5.5, 5.1, 5.0, and 4.1 features. Connector/Net 5.2 also includes support for a new membership/role provider, Compact Framework 2.0, a new stored procedure parser and improvements to GetSchema. Connector/Net 5.2 also includes the Visual Studio Plugin as a standard installable component.
This version of Connector/Net is no longer supported.
Connector/Net 5.1 includes support for MySQL Server 5.5, 5.1, 5.0, 4.1, and 4.0 features. Connector/Net 5.1 also includes support for a new membership/role provider, Compact Framework 2.0, a new stored procedure parser and improvements to GetSchema. Connector/Net 5.1 also includes the Visual Studio Plugin as a standard installable component.
This version of Connector/Net is no longer supported.
Connector/Net 5.0 includes support for MySQL Server 5.1, 5.0, 4.1 and 4.0 features. Connector/Net 5.0 also includes full support for the ADO.Net 2.0 interfaces and subclasses, includes support for the usage advisor and performance monitor (PerfMon) hooks.
This version of Connector/Net is no longer supported.
Connector/Net 1.0 includes support for MySQL Server 5.0, 4.1, and 4.0 features, and full compatibility with the ADO.NET driver interface.
This version of Connector/Net is no longer supported.
The latest source code for Connector/Net can be downloaded from the MySQL public Subversion server. For further details, see Section 21.2.2.3, “Installing Connector/Net from the Source Code”.
The following table shows the .NET Framework version required, and the MySQL Server version supported by Connector/Net:
Table 21.19. Connector/Net Requirements for Related Products
Connector/Net version | ADO.NET version supported | .NET Framework version required | MySQL Server version supported | Currently supported |
---|---|---|---|---|
6.6 | 2.x+ | 2.x+, 4.x+ for VS 2010 support | 5.6, 5.5, 5.1, 5.0 | Yes |
6.5 | 2.x+ | 2.x+, 4.x+ for VS 2010 support | 5.6, 5.5, 5.1, 5.0 | Yes |
6.4 | 2.x+ | 2.x+, 4.x+ for VS 2010 support | 5.6, 5.5, 5.1, 5.0 | Yes |
6.3 | 2.x+ | 2.x+, 4.x+ for VS 2010 support | 5.6, 5.5, 5.1, 5.0 | Yes |
6.2 | 2.x+ | 2.x+ | 5.6, 5.5, 5.1, 5.0, 4.1 | Yes |
6.1 | 2.x+ | 2.x+ | 5.6, 5.5, 5.1, 5.0, 4.1 | Yes |
6.0 | 2.x+ | 2.x+ | 5.5, 5.1, 5.0, 4.1 | Critical issues only |
5.2 | 2.x+ | 2.x+ | 5.5, 5.1, 5.0, 4.1 | No |
5.1 | 2.x+ | 2.x+ | 5.5, 5.1, 5.0, 4.1, 4.0 | No |
5.0 | 2.x+ | 2.x+ | 5.0, 4.1, 4.0 | No |
1.0 | 1.x | 1.x | 5.0, 4.1, 4.0 | No |
Note
Version numbers for MySQL products are formatted as X.Y.Z, where Z=0 indicates alpha, Z=1 indicates beta, and Z>=2 indicates GA. However, Windows tools (Control Panel, properties display) may show the version numbers as XX.YY.ZZ. For example, the official MySQL formatted version number 5.0.9 may be displayed by Windows tools as 5.00.09. The two versions are the same; only the number display format is different.
21.2.2. Connector/Net Installation
Connector/Net runs on any platform that supports the .NET framework. The .NET framework is primarily supported on recent versions of Microsoft Windows, and is supported on Linux through the Open Source Mono framework (see http://www.mono-project.com).
Connector/Net is available for download from http://dev.mysql.com/downloads/connector/net/.
21.2.2.1. Installing Connector/Net on Windows
On Windows, you can install either through a binary installation process or by downloading a zip file with the Connector/Net components.
Before installing, ensure that your system is up to date, including installing the latest version of the .NET Framework.
21.2.2.1.1. Installing Connector/Net using the Installer
Using the installer is the most straightforward method of installing Connector/Net on Windows and the installed components include the source code, test code and full reference documentation.
You install Connector/Net through a Windows Installer (.msi) installation package, which can install Connector/Net on all Windows operating systems. The MSI package is contained within a zip archive named mysql-connector-net-version.zip, where version indicates the Connector/Net version.
To install Connector/Net:
Double-click the MSI installer file extracted from the zip you downloaded. Click Next to start the installation.
You must choose the type of installation to perform.
For most situations, the Typical installation is suitable. Click the Typical button and proceed to Step 5. A Complete installation installs all the available files. To conduct a Complete installation, click the Complete button and proceed to step 5. To customize your installation, including choosing the components to install and some installation options, click the Custom button and proceed to Step 3.
The Connector/Net installer will register the connector within the Global Assembly Cache (GAC) - this will make the Connector/Net component available to all applications, not just those where you explicitly reference the Connector/Net component. The installer will also create the necessary links in the Start menu to the documentation and release notes.
If you have chosen a custom installation, you can select the individual components to install, including the core interface component, supporting documentation (a CHM file) samples and examples, and the source code. Select the items, and their installation level, and then click Next to continue the installation.
Note
For Connector/Net 1.0.8 or lower and Connector 5.0.4 and lower the installer will attempt to install binaries for both 1.x and 2.x of the .NET Framework. If you only have one version of the framework installed, the connector installation may fail. If this happens, you can choose the framework version to be installed through the custom installation step.
You will be given a final opportunity to confirm the installation. Click Install to copy and install the files onto your machine.
Once the installation has been completed, click Finish to exit the installer.
Unless you choose otherwise, Connector/Net is installed in C:\Program Files\MySQL\MySQL Connector Net X.X.X, where X.X.X is replaced with the version of Connector/Net you are installing. New installations do not overwrite existing versions of Connector/Net.
Depending on your installation type, the installed components will include some or all of the following components:
bin: Connector/Net MySQL libraries for different versions of the .NET environment.
docs: Connector/Net documentation in CHM format.
samples: Sample code and applications that use the Connector/Net component.
src: The source code for the Connector/Net component.
You may also use the /quiet or /q command-line option with the msiexec tool to install the Connector/Net package automatically (using the default options) with no notification to the user. Using this method the user cannot select options. Additionally, no prompts, messages or dialog boxes will be displayed.
C:\> msiexec /package connector-net.msi /quiet
To provide a progress bar to the user during automatic installation, use the /passive option.
21.2.2.1.2. Installing Connector/Net Using the Zip Packages
If you have problems running the installer, you can download a zip file without an installer as an alternative. That file is called mysql-connector-net-version-noinstall.zip. After downloading the zip archive, extract the files to a location of your choice.
The file contains the following directories:
bin: Connector/Net MySQL libraries for different versions of the .NET environment.
Docs: Connector/Net documentation in CHM format.
Samples: Sample code and applications that use the Connector/Net component.
Connector/Net 6.0.x has a different directory structure:
Assemblies: A collection of DLLs that make up the connector functionality.
Documentation: Connector/Net documentation in CHM format.
Samples: sample code and applications that use the Connector/Net component.
Another zip file available for download contains the source code distribution. This file is named mysql-connector-net-version-src.zip.
The file contains the following directories:
Documentation: Source files to build the documentation into the compiled HTML (CHM) format.
Installer: Source files to build the Connector/Net installer program.
MySql.Data: Source files for the core data provider.
MySql.VisualStudio: Source files for the Microsoft Visual Studio extensions.
MySql.Web: Source files for the web providers. This includes code for the membership provider, role provider and profile provider. These are used in ASP.NET web sites.
Samples: Source files for several example applications.
Tests: A spreadsheet listing test cases.
VisualStudio: Resources used by the Visual Studio plugin.
Finally, ensure that MySql.Data.dll is accessible to your program at build time (and runtime). If using Microsoft Visual Studio, add MySql.Data as a Reference to your project.
Note
If using MySQL Connector/Net 6.3.5 and above, the MySql.Data.dll file provided will work with both .NET Framework 2.x and 4.x.
21.2.2.2. Installing Connector/Net on Unix with Mono
There is no installer available for installing the Connector/Net component on your Unix installation. Before installing, ensure that you have a working Mono project installation. To test whether your system has Mono installed, enter:
shell> mono --version
The version of the Mono JIT compiler is displayed.
To compile C# source code, make sure a Mono C# compiler is installed. Note that there are two Mono C# compilers available, mcs, which accesses the 1.0-profile libraries, and gmcs, which accesses the 2.0-profile libraries.
To install Connector/Net on Unix/Mono:
Download the mysql-connector-net-version-noinstall.zip and extract the contents to a directory of your choice, for example: ~/connector-net/.
In the directory where you unzipped the connector to, change into the bin subdirectory. Ensure the file MySql.Data.dll is present. This filename is case-sensitive.
You must register the Connector/Net component, MySql.Data, in the Global Assembly Cache (GAC). In the current directory enter the gacutil command:
root-shell> gacutil /i MySql.Data.dll
This will register MySql.Data into the GAC. You can check this by listing the contents of /usr/lib/mono/gac, where you will find MySql.Data if the registration has been successful.
You are now ready to compile your application. You must ensure that when you compile your application you include the Connector/Net component using the -r: command-line option. For example:
shell> gmcs -r:System.dll -r:System.Data.dll -r:MySql.Data.dll HelloWorld.cs
Note, the assemblies that are referenced depend on the requirements of the application, but applications using Connector/Net must provide -r:MySql.Data as a minimum.
You can further check your installation by running the compiled program, for example:
shell> mono HelloWorld.exe
21.2.2.3. Installing Connector/Net from the Source Code
Caution
Read this section only if you are interested in helping us test our new code. If you just want to get Connector/Net up and running on your system, use a standard release distribution.
Obtaining the Source Code
To obtain the most recent development source tree, first download and install Bazaar. You can obtain Bazaar from the Bazaar VCS Website. Bazaar is supported by any platform that supports Python, and is therefore compatible with any Linux, Unix, Windows or Mac OS X host. Instructions for downloading and installing Bazaar on the different platforms are available on the Bazaar Web site.
The most recent development source tree is available from our public Subversion trees at http://dev.mysql.com/tech-resources/sources.html.
To check out out the Connector/Net sources, change to the directory where you want the copy of the Connector/Net tree to be stored, then use the following command:
shell> bzr branch lp:connectornet/trunk
To download a specific version of Connector/Net, specify the version number instead of trunk. For example, to obtain a copy of the 6.0 version of the source tree:
shell> bzr branch lp:connectornet/6.0
Source packages are also available on the downloads page.
Building the Source Code on Windows
The following procedure can be used to build the connector on Microsoft Windows.
Obtain the source code, either from the Subversion server, or through one of the prepared source code packages.
Navigate to the root of the source code tree.
A Microsoft Visual Studio 2005 solution file is available to build the connector, this is called MySQL-VS2005.sln. Click this file to load the solution into Visual Studio.
Select Build, Build Solution from the main menu to build the solution.
Building the Source Code on Unix
Support for building Connector/Net on Mono/Unix is currently not available.
21.2.3. Connector/Net Visual Studio Integration
When MySQL Connector/Net is installed on Microsoft Windows, Visual Studio integration components are also installed and initialized. This enables the developer to work seamlessly with MySQL Connector/Net in the familiar Visual Studio environment, as described in the following sections of the manual.
MySQL Connector/Net supports Visual Studio versions 2005, 2008, and 2010. However, only MySQL Connector/Net version 6.3 and higher fully integrate with Visual Studio 2010, although applications using earlier versions of the connector can be built with the Visual Studio 2010 environment using .NET 2.x frameworks.
Visual Studio 2010 support was introduced with MySQL Connector/Net 6.3.2. From version 6.3.2 the connector ships with both .NET 2.x and .NET 4.x versions of the entity framework support files, mysql.data.ef.dll and mysql.visualstudio.dll. The .NET 4.x versions are required to enable new integration features supported in Visual Studio 2010, including:
New DDL T4 template for the Entity Framework (EF) - This enables developers to design an EF model from scratch and use the native Visual Studio 2010 facility to generate MySQL DDL from that model. This is done by creating the model, and with the model open, choosing the SSDLToMySQL template in the properties window. The correct DDL is then generated. The developer can then save this code as a .mysql file in their project and execute it against the MySQL server.
New SQL Editor - A new SQL editor lets you connect to a MySQL server to execute SQL. This is activated by creating a new file with a .mysql extension. A new template lets you create files with this file type using the Visual Studio 2010 main menu item File, New. Note that the MySQL SQL Editor is also available in Visual Studio 2005 and 2008.
As of Connector/Net 5.1.2, the Visual Studio Plugin is part of the main Connector/Net package. However, even for versions of Connector/Net older than 5.1.2, the Visual Studio Plugin release notes can be found at MySQL Connector/Net Release Notes.
21.2.3.1. Making a Connection
Once the connector is installed, you can use it to create, modify, and delete connections to MySQL databases. To create a connection with a MySQL database, perform the following steps:
Start Visual Studio, and open the Server Explorer window (View, Server Explorer option in the main Visual Studio menu, or Control+W, L keyboard shortcuts).
Right-click the Data Connections node, and choose the Add Connection... menu item.
Add Connection dialog opens. Press the Change button to choose MySQL Database as a data source.
Figure 21.1. Add Connection Context Menu
Change Data Source dialog opens. Choose MySQL Database in the list of data sources (or the <other> option, if MySQL Database is absent), and then choose .NET Framework Data Provider for MySQL in the combo box of data providers.
Figure 21.2. Choose Data Source
Input the connection settings: the server host name (for example, localhost if the MySQL server is installed on the local machine), the user name, the password, and the default schema name. Note that you must specify the default schema name to open the connection.
Figure 21.3. Add Connection Dialog
You can also set the port to connect with the MySQL server by pressing the Advanced button. To test connection with the MySQL server, set the server host name, the user name, and the password, and press the Test Connection button. If the test succeeds, the success confirmation dialog opens.
After you set all settings and test the connection, press OK. The newly created connection is displayed in Server Explorer. Now you can work with the MySQL server through standard Server Explorer GUI.
Figure 21.4. New Data Connection
After the connection is successfully established, all settings are saved for future use. When you start Visual Studio for the next time, open the connection node in Server Explorer to establish a connection to the MySQL server again.
To modify and delete a connection, use the Server Explorer context menu for the corresponding node. You can modify any of the settings by overwriting the existing values with new ones. Note that the connection may be modified or deleted only if no active editor for its objects is opened: otherwise, you may lose your data.
21.2.3.2. Using IntelliSense in the SQL Editor
IntelliSense support is available starting in Connector/Net 6.5. Once you have established a connection, for example, using the Connect to MySql toolbar button, you can get autocompletion as you type, or by pressing Control+J. Depending on the context, the autocompletion dialog can show the list of available tables, table columns, or stored procedures (with the routine's signature as a tooltip). Typing some characters before pressing Control+J filters the choices to those items starting with that prefix.
21.2.3.3. Editing Tables
Connector/Net contains a table editor, which enables the visual creation and modification of tables.
The Table Designer can be accessed through a mouse action on table-type node of Server Explorer. To create a new table, right-click the Tables node (under the connection node) and choose the Create Table command from the context menu.
To modify an existing table, double-click the node of the table to modify, or right-click this node and choose the Design item from the context menu. Either of the commands opens the Table Designer.
The table editor is implemented in the manner of the well-known Query Browser Table Editor, but with minor differences.
Figure 21.5. Editing New Table
Table Designer consists of the following parts:
Columns Editor - a data grid on top of the Table Designer. Use the Columns grid for column creation, modification, and deletion.
Indexes tab - a tab on bottom of the Table Designer. Use the Indexes tab for indexes management.
Foreign Keys tab - a tab on bottom of the Table Designer. Use the Foreign Keys tab for foreign keys management.
Column Details tab - a tab on bottom of the Table Designer. Use the Column Details tab to set advanced column options.
Properties window - a standard Visual Studio Properties window, where the properties of the edited table are displayed. Use the Properties window to set the table properties.
Each of these areas is discussed in more detail in subsequent sections.
To save changes you have made in the Table Designer, use either Save or Save All button of the Visual Studio main toolbar, or press Control+S. If you have not already named the table, you will be prompted to do so.
Figure 21.6. Choose Table Name
Once the table is created, you can view it in the Server Explorer.
Figure 21.7. Newly Created Table
The Table Designer main menu lets you set a primary key column, edit relationships such as foreign keys, and create indexes.
Figure 21.8. Table Designer Main Menu
21.2.3.3.1. Column Editor
You can use the Column Editor to set or change the name, data type, default value, and other properties of a table column. To set the focus to a needed cell of a grid, use the mouse click. Also you can move through the grid using Tab and Shift+Tab keys.
To set or change the name, data type, default value and comment of a column, activate the appropriate cell and type the desired value.
To set or unset flag-type column properties (NOT NULL, auto incremented, flags), check or uncheck the corresponding check boxes. Note that the set of column flags depends on its data type.
To reorder columns, index columns or foreign key columns in the Column Editor, select the whole column to reorder by clicking the selector column on the left of the column grid. Then move the column by using Control+Up (to move the column up) or Control+Down (to move the column down) keys.
To delete a column, select it by clicking the selector column on the left of the column grid, then press the Delete button on a keyboard.
21.2.3.3.2. Editing Indexes
Indexes management is performed using the Indexes/Keys dialog.
To add an index, select Table Designer, Indexes/Keys... from the main menu, and click Add to add a new index. You can then set the index name, index kind, index type, and a set of index columns.
Figure 21.9. Indexes Dialog
To remove an index, select it in the list box on the left, and click the Delete button.
To change index settings, select the needed index in the list box on the left. The detailed information about the index is displayed in the panel on the right hand side. Change the desired values.
21.2.3.3.3. Editing Foreign Keys
You manage foreign keys for InnoDB tables using the Foreign Key Relationships dialog.
To add a foreign key, select Table Designer, Relationships... from the main menu. This displays the Foreign Key Relationship dialog. Click Add. You can then set the foreign key name, referenced table name, foreign key columns, and actions upon update and delete.
To remove a foreign key, select it in the list box on the left, and click the Delete button.
To change foreign key settings, select the required foreign key in the list box on the left. The detailed information about the foreign key is displayed in the right hand panel. Change the desired values.
Figure 21.10. Foreign Key Relationships Dialog
21.2.3.3.4. Column Properties
The Column Properties tab can be used to set column options. In addition to the general column properties presented in the Column Editor, in the Column Properties tab you can set additional properties such as Character Set, Collation and Precision.
21.2.3.3.5. Table Properties
To bring up Table Properties select the table and right-click to activate the context menu. Select Properties. The Table Properties dockable window will be displayed.
Figure 21.11. Table Properties Menu Item
The following table properties can be set:
Auto Increment.
Average Row Length.
Character Set.
Collation.
Comment.
Data Directory.
Index Directory.
Maximum Rows.
Minimum Rows.
Name.
Row Format.
Schema.
Storage Engine. Note that in MySQL 5.5 and higher, the default storage engine for new tables is InnoDB. See Section 14.2.1.1, “InnoDB as the Default MySQL Storage Engine” for more information about the choice of storage engine, and considerations if you convert existing tables to InnoDB.
The property Schema is read-only.
Figure 21.12. Table Properties
21.2.3.4. Editing Views
To create a new view, right-click the Views node under the connection node in Server Explorer. From the node's context menu, choose the Create View command. This command opens the SQL Editor.
Figure 21.13. Editing View SQL
You can then enter the SQL for your view.
Figure 21.14. View SQL Added
To modify an existing view, double-click a node of the view to modify, or right-click this node and choose the Alter View command from a context menu. Either of the commands opens the SQL Editor.
All other view properties can be set in the Properties window. These properties are:
Catalog
Check Option
Definer
Definition
Definer
Is Updatable
Name
Schema
Security Type
Some of these properties can have arbitrary text values, others accept values from a predefined set. In the latter case, set the desired value with an embedded combobox.
The properties Is Updatable and Schema are readonly.
To save changes you have made, use either Save or Save All buttons of the Visual Studio main toolbar, or press Control+S.
Figure 21.15. View SQL Saved
21.2.3.5. Editing Stored Procedures and Functions
To create a new stored procedure, right-click the Stored Procedures node under the connection node in Server Explorer. From the node's context menu, choose the Create Routine command. This command opens the SQL Editor.
Figure 21.16. Edit Stored Procedure SQL
To create a new stored function, right-click the Functions node under the connection node in Server Explorer. From the node's context menu, choose the Create Routine command.
To modify an existing stored routine (procedure or function), double-click the node of the routine to modify, or right-click this node and choose the Alter Routine command from the context menu. Either of the commands opens the SQL Editor.
To create or alter the routine definition using SQL Editor, type this definition in the SQL Editor using standard SQL. All other routine properties can be set in the Properties window. These properties are:
Body
Catalog
Comment
Creation Time
Data Access
Definer
Definition
External Name
External Language
Is Deterministic
Last Modified
Name
Parameter Style
Returns
Schema
Security Type
Specific Name
SQL Mode
SQL Path
Type
Some of these properties can have arbitrary text values, others accept values from a predefined set. In the latter case, set the desired value using the embedded combo box.
You can also set all the options directly in the SQL Editor, using the standard CREATE PROCEDURE or CREATE FUNCTION statement. However, it is recommended to use the Properties window instead.
To save changes you have made, use either Save or Save All buttons of the Visual Studio main toolbar, or press Control+S.
Figure 21.17. Stored Procedure SQL Saved
To observe the runtime behavior of a stored routine and debug any problems, use the Stored Procedure Debugger (available in Connector/Net 6.6 and higher). See Section 21.2.3.8, “Debugging Stored Procedures and Functions” for details.
21.2.3.6. Editing Triggers
To create a new trigger, right-click the node of the table in which to add the trigger. From the node's context menu, choose the Create Trigger command. This command opens the SQL Editor.
To modify an existing trigger, double-click the node of the trigger to modify, or right-click this node and choose the Alter Trigger command from the context menu. Either of the commands opens the SQL Editor.
To create or alter the trigger definition using SQL Editor, type the trigger statement in the SQL Editor using standard SQL.
Note
Enter only the trigger statement, that is, the part of the CREATE TRIGGER query that is placed after the FOR EACH ROW clause.
All other trigger properties are set in the Properties window. These properties are:
Definer
Event Manipulation
Name
Timing
Some of these properties can have arbitrary text values, others accept values from a predefined set. In the latter case, set the desired value using the embedded combo box.
The properties Event Table, Schema, and Server in the Properties window are read-only.
To save changes you have made, use either Save or Save All buttons of the Visual Studio main toolbar, or press Control+S. Before changes are saved, you will be asked to confirm the execution of the corresponding SQL query in a confirmation dialog.
To observe the runtime behavior of a stored routine and debug any problems, use the Stored Procedure Debugger (available in Connector/Net 6.6 and higher). See Section 21.2.3.8, “Debugging Stored Procedures and Functions” for details.
21.2.3.7. Editing User Defined Functions (UDF)
To create a new User Defined Function (UDF), right-click the UDFs node under the connection node in Server Explorer. From the node's context menu, choose the Create UDF command. This command opens the UDF Editor.
To modify an existing UDF, double-click the node of the UDF to modify, or right-click this node and choose the Alter UDF command from the context menu. Either of these commands opens the UDF Editor.
The UDF editor enables you to set the following properties:
Name
So-name (DLL name)
Return type
Is Aggregate
There are text fields for both names, a combo box for the return type, and a check box to indicate if the UDF is aggregate. All these options are also accessible using the Properties window.
The property Server in the Properties window is read-only.
To save changes you have made, use either Save or Save All buttons of the Visual Studio main toolbar, or press Control+S. Before changes are saved, you will be asked to confirm the execution of the corresponding SQL query in a confirmation dialog.
To observe the runtime behavior of a stored routine and debug any problems, use the Stored Procedure Debugger (available in Connector/Net 6.6 and higher). See Section 21.2.3.8, “Debugging Stored Procedures and Functions” for details.
21.2.3.8. Debugging Stored Procedures and Functions
The stored procedure debugger, new in Connector/Net 6.6, provides facilities for setting breakpoints, stepping into individual statements (Step Into, Step Out, Step Over), evaluating and changing local variable values, evaluating breakpoints, and other typical debugging tasks.
Installing the Debugger
To enable the stored procedure debugger, install Connector/Net 6.6 or higher and choose the Complete option.
Privileges
The debugger recreates at the start of each debug session a serversidedebugger database in your server. This database helps to track the instrumented code and implement observability logic in the debugged routine. Your current connection needs to have privileges to create that database, and its associated stored routines, functions, and tables.
The debugger makes changes behind the scenes to temporarily add instrumentation code to the stored routines that you debug. You must have the ALTER ROUTINE privilege for each stored procedure, function, or trigger that you debug. (Including procedures and functions that are called, and triggers that are fired, by a procedure that you are debugging.)
Starting the Debugger
To start the debugger, follow these steps:
Choose a connection in the Visual Studio Server Explorer.
Figure 21.18. Connection Dialog
Expand the Stored Procedures folder. Only stored procedures can be debugged directly. To debug a user-defined function, create a stored procedure that calls the function.
Click on a stored procedure node, then right-click and from the context menu choose Debug Routine.
Figure 21.19. Choose a Stored Routine to Debug
At this point, Visual Studio switches to debug mode, opening the source code of the routine being debugged in step mode, positioned on the first statement.
If the initial routine you debug has one or more arguments, a popup will show up with a grid (a row per each argument and three columns: one for the argument, one for the argument value (this is editable) and one for nullifying that argument value (a checkbox)). After setting up all the argument values, you can press OK to start the debug session, or Cancel to cancel the debug session.
Figure 21.20. Setting Arguments (1 of 2)
Figure 21.21. Setting Arguments (2 of 2)
How the Debugger Works
To have visibility into the internal workings of a stored routine, the debugger prepares a special version of the procedure, function, or trigger being debugged, instrumented with extra code to keep track of the current line being stepped into and the values of all the local variables. Any other stored procedures, functions, or triggers called from the routine being debugged are instrumented the same way. The debug versions of the routines are prepared for you automatically, and when the debug session ends (by either pressing F5 or Shift+F5), the original versions of the routines are automatically restored.
A copy of the original version of each instrumented routine (the version without instrumentation) is stored in the AppData\Roaming\MySqlDebuggerCache folder for the current Windows user (the path returned by calling System.Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData) in .NET, plus appending MySqlDebuggerCache. There is one file for each instrumented routine, named routine_name.mysql. For example, in Windows 7, for a user named fergs, the path is C:\Users\fergs\AppData\Roaming\MySqlDebuggerCache.
Two threads are used, one for the debugger and one for the routine being debugged. The threads run in strict alternation, switching between the debugger and the routine as each statement is executed in the stored routine.
Basic Debugging Operations
The debugger has the same look and feel as the standard Visual Studio debuggers for C#, VB.NET or C++. In particular, the following are true:
Locals and Watches
To show the Locals tab, choose the menu item Debug -> Windows -> Locals.
The Locals tab lists all the variables available in the current scope: variables defined with DECLARE at any point in the routine, argument parameters, and session variables that are referenced.
If the last step operation changes the value of a local, its value will be highlighted in red (until another statement is executed or stepped.
You can change the value of any local.
To show the Watch tab, choose the menu item Debug -> Windows -> Watch.
To define a watch, type any valid MySQL expression, optionally including function calls. If the watch evaluation makes sense in the current context (current stack frame), it will show its value, otherwise it will show an error message in the same row the watch was defined.
When debugging a trigger, in addition to any locals declared or session variables referenced, the new and old object (when applicable) will be listed. For example in a trigger for INSERT, for a table defined like:
create table t1(id int, myname varchar(50));
Figure 21.22. Debugging a Trigger
Call Stack
To show the Call Stack tab, choose the menu item Debug -> Windows -> Call Stack.
The stack trace (in the Call Stack tab) will list all the stack traces, one for each routine invocation. The one with a yellow mark is the current stepping point. Clicking in another will activate in the editor the tab for that routine source, highlighting in green the last statement stepped.
Figure 21.23. Call Stack
Stepping
Stepping of a new routine starts in the first executable instruction (excluding declares, handlers, cursor declarations, and so on).
Figure 21.24. Debug Stepping
Figure 21.25. Function Stepping (1 of 2)
Figure 21.26. Function Stepping (2 of 2)
To step into the code of a condition handler, the condition must be triggered in the rest of the MySQL routine.
The next statement to be executed is highlighted in yellow.
To continue stepping, you can choose between Step Into (by pressing F11), Step Out (by pressing F10) or Step Over (by pressing Shift+F11).
You can step out of any of functions, triggers or stored procedures. If you step from the main routine, it will run that routine to completion and finish the debug session.
You can step over stored procedure calls, stored functions, and triggers. (To step over a trigger, step over the statement that would cause the trigger to fire.)
When stepping into a single statement, the debugger will step into each individual function invoked by that statement and each trigger fired by that statement. The order in which they are debugged is the same order in which the MySQL server executes them.
You can step into triggers triggered from INSERT, DELETE, UPDATE, and REPLACE statements.
Also, the number of times you enter into a stored function or trigger depends on how many rows are evaluated by the function or affected by the trigger. For example, if you press F11 (Step Into) into an UPDATE statement that modifies three rows (calling a function for a column in the SET clause, thus invoking the function for each of the three rows), you will step into into that function three times in succession, once for each of the rows. You can accelerate this debug session by disabling any breakpoints defined in the given stored function and pressing Shift+F11 to step out. In this example, the order in which the different instances of the stored function are debugged is server-specific: the same order used by the current MySQL server instance to evaluate the three function invocations.
Breakpoints
To show the Breakpoints tab, choose the menu item Debug -> Windows -> Breakpoints.
The Breakpoints tab will show all the breakpoints defined. From here, you can enable and disable breakpoints one by one or all at once (using the toolbar on top of the Breakpoints tab).
You can define new breakpoints only in the middle of a debug session. Click in the left gray border of any MySQL editor, or click anywhere in a MySQL editor and press F9. In the familiar Visual Studio way, you press F9 once to create a breakpoint in that line, and press it again to remove that breakpoint.
Once a breakpoint is defined, it will appear enabled (as filled red circle left to the current row if that line is a valid statement to put a breakpoint) or disabled (as a non-filled red circle left to the current row if that row is not valid to put a breakpoint).
To define conditional breakpoints, after creating the breakpoint, right click in the red dot and choose Condition.... There you can put any valid MySQL expression and state if the condition is Is True or Has changed. The former will trigger the breakpoint every time the condition is true, the latter every time the condition value has changed. (If you define a conditional breakpoint, it is not enough to step into the line with the breakpoint defined to trigger such a breakpoint.)
Figure 21.27. Conditional Breakpoints
Figure 21.28. Expressions and Breakpoints
To define pass count breakpoints, after creating the breakpoint, right click in the red dot and choose Hit Count.... In the popup dialog, define the specific condition to set. For example, break when the hit count is equal to and a value 3 will trigger the breakpoint the third time it is hit.
Other Features
To abort the debug session (and the execution of the current call stack of routines), press Shift+F5.
To run the routine to completion (or until next breakpoint hit), press F5.
For all functionality you can use (in addition to the shortcuts documented), see the options in the Debug menu of Visual Studio.
Limitations
Code being debugged must not use get_lock or release_lock MySQL functions, since they are used internally by the debugger infrastructure to synchronize the debugger and the debugged routine.
Code being debugged must avoid using any transaction code (START TRANSACTION, COMMIT, ROLLBACK) due to the possibility of wiping out the contents of the debugger tables. (This limitation may be removed in the future).
You cannot debug the routines in the serversidedebugger database.
The MySQL server running the routine being debugged can be any version between 5.0 and 5.6, running on Windows, Linux, or any other supported platform.
We recommend always running debug sessions on test and development servers, rather than against a MySQL production server, because debugging can cause temporary performance issues or even deadlocks. The instrumented versions of the routines being debugged use locks, that the rest of the production code may not be aware of.
Keyboard Shortcuts
The following list summarizes the keyboard shortcuts for debugging:
F9 Toggles breakpoints
F11: Step into once
F10: Step over once
Shift+F11: Step out once
F5: Run
Shift+F5: Abort current debug session
21.2.3.9. Cloning Database Objects
Tables, views, stored procedures, and functions can be cloned using the appropriate Clone command from the context menu: Clone Table, Clone View, Clone Routine. The clone commands open the corresponding editor for a new object: the Table Editor for cloning a table, and the SQL Editor for cloning a view or a routine.
The editor is filled with values of the original object. You can modify these values in the usual manner.
To save the cloned object, use either Save or Save All buttons of the Visual Studio main toolbar, or press Control+S. Before changes are saved, you will be asked to confirm the execution of the corresponding SQL query in a confirmation dialog.
21.2.3.10. Dropping Database Objects
Tables, views, stored routines, triggers, and UDFs can be dropped with the appropriate Drop command selected from its context menu: Drop Table, Drop View, Drop Routine, Drop Trigger, Drop UDF.
You will be asked to confirm the execution of the corresponding drop query in a confirmation dialog.
You can only drop a single object at a time.
21.2.3.11. Using the ADO.NET Entity Framework
Connector/Net 6.0 introduced support for the ADO.NET Entity Framework. ADO.NET Entity Framework was included with .NET Framework 3.5 Service Pack 1, and Visual Studio 2008 Service Pack 1. ADO.NET Entity Framework was released on 11th August 2008.
ADO.NET Entity Framework provides an Object Relational Mapping (ORM) service, mapping the relational database schema to objects. The ADO.NET Entity Framework defines several layers, these can be summarized as:
Logical - this layer defines the relational data and is defined by the Store Schema Definition Language (SSDL).
Conceptual - this layer defines the .NET classes and is defined by the Conceptual Schema Definition Language (CSDL)
Mapping - this layer defines the mapping from .NET classes to relational tables and associations, and is defined by Mapping Specification Language (MSL).
Connector/Net integrates with Visual Studio 2008 to provide a range of helpful tools to assist the developer.
A full treatment of ADO.NET Entity Framework is beyond the scope of this manual. If you are unfamiliar with ADO.NET, review the Microsoft ADO.NET Entity Framework documentation.
Tutorials on getting started with ADO.NET Entity Framework are available. See Section 21.2.4.5, “Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source” and Section 21.2.4.6, “Tutorial: Databinding in ASP.NET using LINQ on Entities”.
21.2.3.12. MySQL Website Configuration Tool
MySQL Connector/Net 6.1 introduced the MySQL Website Configuration Tool. This is a facility available in Visual Studio that enables you to configure the Membership, Role, Session State and Profile Provider, without editing configuration files. You set your configuration options within the tool, and the tool modifies your web.config file accordingly.
The MySQL Website Configuration Tool appears as a small icon on the Solution Explorer toolbar in Visual Studio, as show by the following screenshot:
Figure 21.29. MySQL Website Configuration Tool
Clicking the Website Configuration Tool icon launches the wizard and displays the first screen:
Figure 21.30. MySQL Website Configuration Tool - Membership
This allows you to enable use of the MySQL Membership Provider. Click the check box to enable this. You can now enter the name of the application that you are creating the configuration for. You can also enter a description for the application.
You can then click the Edit... button to launch the Connection String Editor:
Figure 21.31. MySQL Website Configuration Tool - Connection String Editor
Note that if you have already defined a connection string for the providers manually in web.config, or previously using the tool, this will be automatically loaded and displayed, and can then be modified in this dialog.
You can also ensure that the necessary schemas are created automatically for you by selecting the Autogenerate Schema check box. These schemas are used to store membership information. The database used to storage is the one specified in the connection string.
You can also ensure that exceptions generated by the application will be written to the Windows event log by selecting the Write exceptions to event log check box.
Clicking the Advanced... button launches a dialog that enables you to set Membership Options. These options dictate such variables as password length required when a user signs up, whether the password is encrypted and whether the user can reset their password or not.
Figure 21.32. MySQL Website Configuration Tool - Advanced Options
Once information has been set up as required for configuration of the Membership Provider, the Next button can be clicked to display the Roles Provider screen:
Figure 21.33. MySQL Website Configuration Tool - Roles
Again the connection string can be edited, a description added and Autogenerate Schema can be enabled before clicking Next to go to the Profiles Provider screen:
Figure 21.34. MySQL Website Configuration Tool - Profiles
This screen display similar options to the previous screens.
Click Next to proceed to the Session State configuration page:
Figure 21.35. MySQL Website Configuration Tool - Session State
Once you have set up the Session State Provider as required, click Finish to exit the wizard.
At this point, select the Authentication Type to From Internet. Launch the ASP.NET Configuration Tool and select the Security tab. Click the Select authentication type link and ensure that the From the internet radio button is selected. You can now examine the database you created to store membership information. All the necessary tables will have been created for you:
Figure 21.36. MySQL Website Configuration Tool - Tables
21.2.3.13. MySQL SQL Editor
MySQL Connector/Net 6.3.2 introduced a new MySQL SQL Editor. The easiest way to invoke the editor is by selecting the New, File menu item from the Visual Studio main menu. This displays the New File dialog:
Figure 21.37. MySQL SQL Editor - New File
From the New File dialog, select the MySQL template, and then double-click the MySQL SQL Script document, or click the Open button.
The MySQL SQL Editor will be displayed. You can now enter SQL code as required, or connect to a MySQL server. Click the Connect to MySQL button in the MySQL SQL Editor toolbar. You can enter the connection details into the Connect to MySQL dialog that is displayed. You can enter the server name, user ID, password and database to connect to, or click the Advanced button to select other connection string options. Click the Connect button to connect to the MySQL server. To execute your SQL code against the server, click the Run SQL button on the toolbar.
Figure 21.38. MySQL SQL Editor - Query
The results from any queries are displayed on the Results tab. Any errors are displayed on the Messages tab.
21.2.3.14. DDL T4 Template Macro
MySQL Connector/Net 6.3 introduced the ability to convert an Entity Framework model to MySQL DDL code. Starting with a blank model, you can develop an entity model in Visual Studio's designer. Once the model is created, you can select the model's properties, and in the Database Script Generation category of the model's properties, the property DDL Generation can be found. Select the value SSDLToMySQL.tt(VS) from the drop-down listbox.
Figure 21.39. DDL T4 Template Macro - Model Properties
Right-clicking the model design area displays a context-sensitive menu. Selecting Generate Database from Model from the menu displays the Generate Database Wizard. The wizard can then be used to generate MySQL DDL code.
Figure 21.40. DDL T4 Template Macro - Generate Database Wizard
21.2.4. Connector/Net Tutorials
The following tutorials illustrate how to develop MySQL programs using technologies such as Visual Studio, C#, ASP.NET, and the .NET and Mono frameworks. Work through the first tutorial to verify that you have the right software components installed and configured, then choose other tutorials to try depending on the features you intend to use in your applications.
21.2.4.1. Tutorial: An Introduction to Connector/Net Programming
This section provides a gentle introduction to programming with Connector/Net. The example code is written in C#, and is designed to work on both Microsoft .NET Framework and Mono.
This tutorial is designed to get you up and running with Connector/Net as quickly as possible, it does not go into detail on any particular topic. However, the following sections of this manual describe each of the topics introduced in this tutorial in more detail. In this tutorial you are encouraged to type in and run the code, modifying it as required for your setup.
This tutorial assumes you have MySQL and Connector/Net already installed. It also assumes that you have installed the World example database, which can be downloaded from the MySQL Documentation page. You can also find details on how to install the database on the same page.
Note
Before compiling the example code, make sure that you have added References to your project as required. The References required are System, System.Data and MySql.Data.
21.2.4.1.1. The MySqlConnection Object
For your Connector/Net application to connect to a MySQL database, it must establish a connection by using a MySqlConnection object.
The MySqlConnection constructor takes a connection string as one of its parameters. The connection string provides necessary information to make the connection to the MySQL database. The connection string is discussed more fully in Section 21.2.5.1, “Connecting to MySQL Using Connector/Net”. For a list of supported connection string options, see Section 21.2.6, “Connector/Net Connection String Options Reference”.
The following code shows how to create a connection object:
using System;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
public class Tutorial1
{
public static void Main()
{
string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
// Perform database operations
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
conn.Close();
Console.WriteLine("Done.");
}
}
When the MySqlConnection constructor is invoked, it returns a connection object, which is used for subsequent database operations. Open the connection before any other operations take place. Before the application exits, close the connection to the database by calling Close on the connection object.
Sometimes an attempt to perform an Open on a connection object can fail, generating an exception that can be handled using standard exception handling code.
In this section you have learned how to create a connection to a MySQL database, and open and close the corresponding connection object.
21.2.4.1.2. The MySqlCommand Object
Once a connection has been established with the MySQL database, the next step is do carry out the desired database operations. This can be achieved through the use of the MySqlCommand object.
You will see how to create a MySqlCommand object. Once it has been created, there are three main methods of interest that you can call:
ExecuteReader - used to query the database. Results are usually returned in a MySqlDataReader object, created by ExecuteReader.
ExecuteNonQuery - used to insert and delete data.
ExecuteScalar - used to return a single value.
Once a MySqlCommand object has been created, you will call one of the above methods on it to carry out a database operation, such as perform a query. The results are usually returned into a MySqlDataReader object, and then processed, for example the results might be displayed. The following code demonstrates how this could be done.
using System;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
public class Tutorial2
{
public static void Main()
{
string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent='Oceania'";
MySqlCommand cmd = new MySqlCommand(sql, conn);
MySqlDataReader rdr = cmd.ExecuteReader();
while (rdr.Read())
{
Console.WriteLine(rdr[0]+" -- "+rdr[1]);
}
rdr.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
conn.Close();
Console.WriteLine("Done.");
}
}
When a connection has been created and opened, the code then creates a MySqlCommand object. Note that the SQL query to be executed is passed to the MySqlCommand constructor. The ExecuteReader method is then used to generate a MySqlReader object. The MySqlReader object contains the results generated by the SQL executed on the command object. Once the results have been obtained in a MySqlReader object, the results can be processed. In this case, the information is printed out by a while loop. Finally, the MySqlReader object is disposed of by running its Close method on it.
In the next example, you will see how to use the ExecuteNonQuery method.
The procedure for performing an ExecuteNonQuery method call is simpler, as there is no need to create an object to store results. This is because ExecuteNonQuery is only used for inserting, updating and deleting data. The following example illustrates a simple update to the Country table:
using System;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
public class Tutorial3
{
public static void Main()
{
string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
string sql = "INSERT INTO Country (Name, HeadOfState, Continent) VALUES ('Disneyland','Mickey Mouse', 'North America')";
MySqlCommand cmd = new MySqlCommand(sql, conn);
cmd.ExecuteNonQuery();
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
conn.Close();
Console.WriteLine("Done.");
}
}
The query is constructed, the command object created and the ExecuteNonQuery method called on the command object. You can access your MySQL database with the mysql command interpreter and verify that the update was carried out correctly.
Finally, you will see how the ExecuteScalar method can be used to return a single value. Again, this is straightforward, as a MySqlDataReader object is not required to store results, a simple variable will do. The following code illustrates how to use ExecuteScalar:
using System;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
public class Tutorial4
{
public static void Main()
{
string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
string sql = "SELECT COUNT(*) FROM Country";
MySqlCommand cmd = new MySqlCommand(sql, conn);
object result = cmd.ExecuteScalar();
if (result != null)
{
int r = Convert.ToInt32(result);
Console.WriteLine("Number of countries in the World database is: " + r);
}
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
conn.Close();
Console.WriteLine("Done.");
}
}
This example uses a simple query to count the rows in the Country table. The result is obtained by calling ExecuteScalar on the command object.
21.2.4.1.3. Working with Decoupled Data
Previously, when using MySqlDataReader, the connection to the database was continually maintained, unless explicitly closed. It is also possible to work in a manner where a connection is only established when needed. For example, in this mode, a connection could be established to read a chunk of data, the data could then be modified by the application as required. A connection could then be reestablished only if and when the application writes data back to the database. This decouples the working data set from the database.
This decoupled mode of working with data is supported by Connector/Net. There are several parts involved in allowing this method to work:
Data Set - The Data Set is the area in which data is loaded to read or modify it. A DataSet object is instantiated, which can store multiple tables of data.
Data Adapter - The Data Adapter is the interface between the Data Set and the database itself. The Data Adapter is responsible for efficiently managing connections to the database, opening and closing them as required. The Data Adapter is created by instantiating an object of the MySqlDataAdapter class. The MySqlDataAdapter object has two main methods: Fill which reads data into the Data Set, and Update, which writes data from the Data Set to the database.
Command Builder - The Command Builder is a support object. The Command Builder works in conjunction with the Data Adapter. When a MySqlDataAdapter object is created, it is typically given an initial SELECT statement. From this SELECT statement the Command Builder can work out the corresponding INSERT, UPDATE and DELETE statements that would be required to update the database. To create the Command Builder, an object of the class MySqlCommandBuilder is created.
Each of these classes will now be discussed in more detail.
Instantiating a DataSet object
A DataSet object can be created simply, as shown in the following example code snippet:
DataSet dsCountry;
...
dsCountry = new DataSet();
Although this creates the DataSet object, it has not yet filled it with data. For that, a Data Adapter is required.
Instantiating a MySqlDataAdapter object
The MySqlDataAdapter can be created as illustrated by the following example:
MySqlDataAdapter daCountry;
...
string sql = "SELECT Code, Name, HeadOfState FROM Country WHERE Continent='North America'";
daCountry = new MySqlDataAdapter (sql, conn);
Note, the MySqlDataAdapter is given the SQL specifying the data to work with.
Instantiating a MySqlCommandBuilder object
Once the MySqlDataAdapter has been created, it is necessary to generate the additional statements required for inserting, updating and deleting data. There are several ways to do this, but in this tutorial you will see how this can most easily be done with MySqlCommandBuilder. The following code snippet illustrates how this is done:
MySqlCommandBuilder cb = new MySqlCommandBuilder(daCountry);
Note that the MySqlDataAdapter object is passed as a parameter to the command builder.
Filling the Data Set
To do anything useful with the data from your database, you need to load it into a Data Set. This is one of the jobs of the MySqlDataAdapter object, and is carried out with its Fill method. The following example code illustrates this:
DataSet dsCountry;
...
dsCountry = new DataSet();
...
daCountry.Fill(dsCountry, "Country");
Note the Fill method is a MySqlDataAdapter method, the Data Adapter knows how to establish a connection with the database and retrieve the required data, and then populates the Data Set when the Fill method is called. The second parameter “Country” is the table in the Data Set to update.
Updating the Data Set
The data in the Data Set can now be manipulated by the application as required. At some point, changes to data will need to be written back to the database. This is achieved through a MySqlDataAdapter method, the Update method.
daCountry.Update(dsCountry, "Country");
Again, the Data Set and the table within the Data Set to update are specified.
Working Example
The interactions between the DataSet, MySqlDataAdapter and MySqlCommandBuilder classes can be a little confusing, so their operation can perhaps be best illustrated by working code.
In this example, data from the World database is read into a Data Grid View control. Here, the data can be viewed and changed before clicking an update button. The update button then activates code to write changes back to the database. The code uses the principles explained above. The application was built using the Microsoft Visual Studio to place and create the user interface controls, but the main code that uses the key classes described above is shown below, and is portable.
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace WindowsFormsApplication5
{
public partial class Form1 : Form
{
MySqlDataAdapter daCountry;
DataSet dsCountry;
public Form1()
{
InitializeComponent();
}
private void Form1_Load(object sender, EventArgs e)
{
string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
label2.Text = "Connecting to MySQL...";
string sql = "SELECT Code, Name, HeadOfState FROM Country WHERE Continent='North America'";
daCountry = new MySqlDataAdapter (sql, conn);
MySqlCommandBuilder cb = new MySqlCommandBuilder(daCountry);
dsCountry = new DataSet();
daCountry.Fill(dsCountry, "Country");
dataGridView1.DataSource = dsCountry;
dataGridView1.DataMember = "Country";
}
catch (Exception ex)
{
label2.Text = ex.ToString();
}
}
private void button1_Click(object sender, EventArgs e)
{
daCountry.Update(dsCountry, "Country");
label2.Text = "MySQL Database Updated!";
}
}
}
The application running is shown below:
Figure 21.41. World Database Application
21.2.4.1.4. Working with Parameters
This part of the tutorial shows you how to use parameters in your Connector/Net application.
Although it is possible to build SQL query strings directly from user input, this is not advisable as it does not prevent erroneous or malicious information being entered. It is safer to use parameters as they will be processed as field data only. For example, imagine the following query was constructed from user input:
string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent = "+user_continent;
If the string user_continent came from a Text Box control, there would potentially be no control over the string entered by the user. The user could enter a string that generates a runtime error, or in the worst case actually harms the system. When using parameters it is not possible to do this because a parameter is only ever treated as a field parameter, rather than an arbitrary piece of SQL code.
The same query written user a parameter for user input would be:
string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent = @Continent";
Note that the parameter is preceded by an '@' symbol to indicate it is to be treated as a parameter.
As well as marking the position of the parameter in the query string, it is necessary to add a parameter to the Command object. This is illustrated by the following code snippet:
cmd.Parameters.AddWithValue("@Continent", "North America");
In this example the string "North America" is supplied as the parameter value statically, but in a more practical example it would come from a user input control.
A further example illustrates the complete process:
using System;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
public class Tutorial5
{
public static void Main()
{
string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent=@Continent";
MySqlCommand cmd = new MySqlCommand(sql, conn);
Console.WriteLine("Enter a continent e.g. 'North America', 'Europe': ");
string user_input = Console.ReadLine();
cmd.Parameters.AddWithValue("@Continent", user_input);
MySqlDataReader rdr = cmd.ExecuteReader();
while (rdr.Read())
{
Console.WriteLine(rdr["Name"]+" --- "+rdr["HeadOfState"]);
}
rdr.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
conn.Close();
Console.WriteLine("Done.");
}
}
In this part of the tutorial you have see how to use parameters to make your code more secure.
21.2.4.1.5. Working with Stored Procedures
This section illustrates how to work with stored procedures. Putting database-intensive operations into stored procedures lets you define an API for your database application. You can reuse this API across multiple applications and multiple programming languages. This technique avoids duplicating database code, saving time and effort when you make updates due to schema changes, tune the performance of queries, or add new database operations for logging, security, and so on. Before working through this tutorial, familiarize yourself with the CREATE PROCEDURE and CREATE FUNCTION statements that create different kinds of stored routines.
For the purposes of this tutorial, you will create a simple stored procedure to see how it can be called from Connector/Net. In the MySQL Client program, connect to the World database and enter the following stored procedure:
DELIMITER //
CREATE PROCEDURE country_hos
(IN con CHAR(20))
BEGIN
SELECT Name, HeadOfState FROM Country
WHERE Continent = con;
END //
DELIMITER ;
Test that the stored procedure works as expected by typing the following into the mysql command interpreter:
CALL country_hos('Europe');
Note that The stored routine takes a single parameter, which is the continent to restrict your search to.
Having confirmed that the stored procedure is present and correct, you can see how to access it from Connector/Net.
Calling a stored procedure from your Connector/Net application is similar to techniques you have seen earlier in this tutorial. A MySqlCommand object is created, but rather than taking an SQL query as a parameter, it takes the name of the stored procedure to call. Set the MySqlCommand object to the type of stored procedure, as shown by the following code snippet:
string rtn = "country_hos";
MySqlCommand cmd = new MySqlCommand(rtn, conn);
cmd.CommandType = CommandType.StoredProcedure;
In this case, the stored procedure requires you to pass a parameter. This can be achieved using the techniques seen in the previous section on parameters, Section 21.2.4.1.4, “Working with Parameters”, as shown in the following code snippet:
cmd.Parameters.AddWithValue("@con", "Europe");
The value of the parameter @con could more realistically have come from a user input control, but for simplicity it is set as a static string in this example.
At this point, everything is set up and you can call the routine using techniques also learned in earlier sections. In this case, the ExecuteReader method of the MySqlCommand object is used.
Complete working code for the stored procedure example is shown below:
using System;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
public class Tutorial6
{
public static void Main()
{
string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
string rtn = "country_hos";
MySqlCommand cmd = new MySqlCommand(rtn, conn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.AddWithValue("@con", "Europe");
MySqlDataReader rdr = cmd.ExecuteReader();
while (rdr.Read())
{
Console.WriteLine(rdr[0] + " --- " + rdr[1]);
}
rdr.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
conn.Close();
Console.WriteLine("Done.");
}
}
In this section, you have seen how to call a stored procedure from Connector/Net. For the moment, this concludes our introductory tutorial on programming with Connector/Net.
21.2.4.2. Tutorial: MySQL Connector/Net ASP.NET Membership and Role Provider
Many web sites feature the facility for the user to create a user account. They can then log into the web site and enjoy a personalized experience. This requires that the developer creates database tables to store user information, along with code to gather and process this data. This represents a burden on the developer, and there is the possibility for security issues to creep into the developed code. However, ASP.NET 2.0 introduced the Membership system. This system is designed around the concept of Membership, Profile and Role Providers, which together provide all of the functionality to implement a user system, that previously would have to have been created by the developer from scratch.
Currently, MySQL Connector/Net provides Membership, Role, Profile and Session State Providers.
This tutorial shows you how to set up your ASP.NET web application to use the MySQL Connector/Net Membership and Role Providers. It assumes that you have MySQL Server installed, along with MySQL Connector/Net and Microsoft Visual Studio. This tutorial was tested with MySQL Connector/Net 6.0.4 and Microsoft Visual Studio 2008 Professional Edition. It is recommended you use 6.0.4 or above for this tutorial.
Create a new database in the MySQL Server using the MySQL Command-Line Client program (mysql), or other suitable tool. It does not matter what name is used for the database, but record it. You specify it in the connection string constructed later in this tutorial. This database contains the tables, automatically created for you later, used to store data about users and roles.
Create a new ASP.NET Web Site in Visual Studio. If you are not sure how to do this, refer to Section 21.2.4.6, “Tutorial: Databinding in ASP.NET using LINQ on Entities”, which demonstrates how to create a simple ASP.NET web site.
Add References to MySql.Data and MySql.Web to the web site project.
Locate the machine.config file on your system, which is the configuration file for the .NET Framework.
Search the machine.config file to find the membership provider MySQLMembershipProvider.
Add the attribute autogenerateschema="true". The appropriate section should now resemble the following (note: for the sake of brevity some information has been excluded):
<membership>
<providers>
<add name="AspNetSqlMembershipProvider"
type="System.Web.Security.SqlMembershipProvider"
...
connectionStringName="LocalSqlServer"
... />
<add name="MySQLMembershipProvider"
autogenerateschema="true"
type="MySql.Web.Security.MySQLMembershipProvider, MySql.Web, Version=6.0.4.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d"
connectionStringName="LocalMySqlServer"
... />
</providers>
</membership>
Note that the name for the connection string to be used to connect to the server that contains the membership database is LocalMySqlServer.
The autogenerateschema="true" attribute will cause MySQL Connector/Net to silently create, or upgrade, the schema on the database server, to contain the required tables for storing membership information.
It is now necessary to create the connection string referenced in the previous step. Load the web site's web.config file into Visual Studio.
Locate the section marked <connectionStrings>. Add the following connection string information:
<connectionStrings>
<remove name="LocalMySqlServer"/>
<add name="LocalMySqlServer"
connectionString="Datasource=localhost;Database=users;uid=root;pwd=password;"
providerName="MySql.Data.MySqlClient"/>
</connectionStrings>
The database specified is the one created in the first step. You could alternatively have used an existing database.
At this point build the solution to ensure no errors are present. This can be done by selecting Build, Build Solution from the main menu, or pressing F6.
ASP.NET supports the concept of locally and remotely authenticated users. With local authentication the user is validated using their Windows credentials when they attempt to access the web site. This can be useful in an Intranet environment. With remote authentication, a user is prompted for their login details when accessing the web site, and these credentials are checked against the membership information stored in a database server such as MySQL Server. You will now see how to choose this form of authentication.
Start the ASP.NET Web Site Administration Tool. This can be done quickly by clicking the small hammer/Earth icon in the Solution Explorer. You can also launch this tool by selecting Website, ASP.NET Configuration from the main menu.
In the ASP.NET Web Site Administration Tool click the Security tab.
Now click the User Authentication Type link.
Select the From the internet radio button. The web site will now need to provide a form to allow the user to enter their login details. These will be checked against membership information stored in the MySQL database.
Figure 21.42. Authentication Type
You now need to specify the Role and Membership Provider to be used. Click the Provider tab.
Click the Select a different provider for each feature (advanced) link.
Now select the MySQLMembershipProvider and the MySQLRoleProvider radio buttons.
Figure 21.43. Select Membership and Role Provider
In Visual Studio, rebuild the solution by selecting Build, Rebuild Solution from the main menu.
Check that the necessary schema has been created. This can be achieved using the mysql command interpreter.
Figure 21.44. Membership and Role Provider Tables
Assuming all is present and correct, you can now create users and roles for your web application. The easiest way to do this is with the ASP.NET Web Site Administration Tool. However, many web applications contain their own modules for creating roles and users. For simplicity, the ASP.NET Web Site Administration Tool will be used in this tutorial.
In the ASP.NET Web Site Administration Tool, click the Security tab. Now that both the Membership and Role Provider are enabled, you will see links for creating roles and users. Click the Create or Manage Roles link.
Figure 21.45. Security Tab
You can now enter the name of a new Role and click Add Role to create the new Role. Create new Roles as required.
Click the Back button.
Click the Create User link. You can now fill in information about the user to be created, and also allocate that user to one or more Roles.
Figure 21.46. Create User
Using the mysql command interpreter, you can check that your database has been correctly populated with the Membership and Role data.
Figure 21.47. Membership and Roles Table Contents
In this tutorial, you have seen how to set up the MySQL Connector/Net Membership and Role Providers for use in your ASP.NET web application.
21.2.4.3. Tutorial: MySQL Connector/Net ASP.NET Session State Provider
MySQL Connector/Net from version 6.1 has included a MySQL Session State Provider. This provider enables you to store session state in a MySQL database. The following tutorial shows you how to prepare to use the MySQL Session State Provider, and then store session data into the MySQL database. This tutorial uses Microsoft Visual Studio 2008 Professional Edition, MySQL Connector/Net 6.1.1 and MySQL Server 5.1. This tutorial also assumes you have created an empty database, for example test, where you will store session data. You could do this using the mysql command interpreter.
In Visual Studio, create a new ASP.NET web site. If you are not sure how to do this, refer to the tutorial Section 21.2.4.6, “Tutorial: Databinding in ASP.NET using LINQ on Entities”, which demonstrates how to do this.
Launch the MySQL MySQL Website Configuration tool. Due to a bug in 6.1.1, this may not appear unless you are connected to a server in the Server Explorer. If you are unfamiliar with the MySQL Website Configuration tool, consider first working through the tutorial in Section 21.2.3.12, “MySQL Website Configuration Tool”.
Navigate through the wizard to the Session State page. Make sure the check box Use MySQL to manage my ASP.NET session data is selected.
On the same page, configure the connection string to the database that will contain your session data. If this database is empty, MySQL Connector/Net will create the schema required to store session data.
Ensure that the check box Autogenerate Schema is selected so that MySQL Connector/Net will create the schema in your database to store the session data correctly.
Enter the name of your application.
Click Finish. The MySQL Website Configuration tool will now update your application's web.config file with information about the connection string and default providers to be used. In this case, we have selected the MySQL Session State Provider.
At this point, you are ready to use the MySQL database to store session data. To test that the set up has worked, you can write a simple program that uses session variables.
Open Default.aspx.cs. In the Page_Load method, add the following code:
Session["SessionVariable1"] = "Test string";
Build your solution.
Run the solution (without debugging). When the application runs, the provider will autogenerate tables required in the database you chose when setting up the application.
Check that the schema was in fact created. Using the MySQL Command-Line Client use the target database and then type SHOW TABLES;. You will see that MySQL Connector/Net has created the required schema automatically, as we selected this to happen in the MySQL Website Configuration tool.
Now view the contents of these tables by typing SELECT * FROM my_aspnet_sessions; in the mysql command interpreter. This will display the session data our application used. Note that this is stored in binary format so some data may not display as expected.
At this point, you have installed the Session State Provider and carried out a preliminary test of the installation. You will now work a bit more with the Session State Provider.
In this part of the tutorial, you will set and retrieve a session variable. You can work with your existing project.
Select the Default.aspx and switch to Design View. Add a text box and three buttons. Change the text property for the buttons to “Store Session Variable”, “Clear Textbox”, and “Show Session Variable”. These will be Button1, Button2 and Button3 respectively. Build your solution to ensure that no errors have been introduced.
Still in the Design View, double-click Button1. Now to the Button1_Click event handler add code some the handler resembles the following:
protected void Button1_Click(object sender, EventArgs e)
{
Session["SessionString"] = TextBox1.Text;
}
You have created a new Session variable accessed using the key “SessionString”. This will be set to the text that was entered into the text box when Button1 is clicked.
In Design View, double-click Button2 to add its click event handler. This button needs to clear text from the text box. The code to do this is as follows:
protected void Button2_Click(object sender, EventArgs e)
{
TextBox1.Text = "";
}
The code simply assigns an empty string to the Text property of the text box.
In the Design View double-click Button3 and modify the click handler as follows:
protected void Button3_Click(object sender, EventArgs e)
{
TextBox1.Text = (String)Session["SessionString"];
}
This will retrieve the session string and display it in the text box.
Now modify the Page_Load method as follows:
protected void Page_Load(object sender, EventArgs e)
{
if (!IsPostBack)
{
TextBox1.Text = "Enter some text";
}
}
This ensures that when the page loads the text box Text property is reset.
Ensure that the solution is saved and then rebuild the solution.
Run the solution without debugging.
The form will be displayed. Enter some text into the text box. Now click Store Session Variable. At this point you have stored the string in a session variable.
Now click Clear Text to clear the text box.
Now click Show Session Variable to retrieve and display the session variable.
Refresh the page to destroy the form and display a new form.
Click Show Session Variable the text box will display the stored session variable, demonstrating that the refreshing the page does not destroy the session variable.
This illustrates that the session state data is not destroyed when a page is reloaded.
21.2.4.4. Tutorial: MySQL Connector/Net ASP.NET Profile Provider
This tutorial shows you how to use the MySQL Profile Provider to store user profile information in a MySQL database. The tutorial uses MySQL Connector/Net 6.1.1, MySQL Server 5.1 and Microsoft Visual Studio 2008 Professional Edition.
Many modern web sites allow the user to create a personal profile. This requires a significant amount of code, but ASP.NET reduces this considerable by including the functionality in its Profile classes. The Profile Provider provides an abstraction between these classes and a data source. The MySQL Profile Provider enables profile data to be stored in a MySQL database. This enables the profile properties to be written to a persistent store, and be retrieved when required. The Profile Provider also enables profile data to be managed effectively, for example it enables profiles that have not been accessed since a specific date to be deleted.
The following steps show you how you can select the MySQL Profile Provider.
Create a new ASP.NET web project.
Select the MySQL Website Configuration tool. Due to a bug in 6.1.1 you may have to first connect to a server in Server Explorer before the tool's icon will display in the toolbar of the Solution Explorer.
In the MySQL Website Configuration tool navigate through the tool to the Profiles page.
Select the Use MySQL to manage my profiles check box.
Select the Autogenerate Schema check box.
Click the Edit... button and configure a connection string for the database that will be used to store user profile information.
Navigate to the last page of the tool and click Finish to save your changes and exit the tool.
At this point you are now ready to start using the MySQL Profile Provider. With the following steps you can carry out a preliminary test of your installation.
Open your web.config file.
Add a simple profile such as the following:
<system.web>
<anonymousIdentification enabled="true"/>
<profile defaultProvider="MySQLProfileProvider">
...
<properties>
<add name="Name" allowAnonymous="true"/>
<add name="Age" allowAnonymous="true" type="System.UInt16"/>
<group name="UI">
<add name="Color" allowAnonymous="true" defaultValue="Blue"/>
<add name="Style" allowAnonymous="true" defaultValue="Plain"/>
</group>
</properties>
</profile>
...
Note that anonymousIdentification has been set to true. This enables users who have not been authenticated to use profiles. They are identified by a GUID in a cookie rather than by user name.
Now that the simple profile has been defined in web.config, the next step is to write some code to test the profile.
In Design View design a simple page with the following controls:
Figure 21.48. Simple Profile Application
These will allow the user to enter some profile information. The user can also use the buttons to save their profile, clear the page, and restore their profile data.
In the Code View add code as follows:
...
protected void Page_Load(object sender, EventArgs e)
{
if (!IsPostBack)
{
TextBox1.Text = Profile.Name;
TextBox2.Text = Profile.Age.ToString();
Label1.Text = Profile.UI.Color;
}
}
// Store Profile
protected void Button1_Click(object sender, EventArgs e)
{
Profile.Name = TextBox1.Text;
Profile.Age = UInt16.Parse(TextBox2.Text);
}
// Clear Form
protected void Button2_Click(object sender, EventArgs e)
{
TextBox1.Text = "";
TextBox2.Text = "";
Label1.Text = "";
}
// Retrieve Profile
protected void Button3_Click(object sender, EventArgs e)
{
TextBox1.Text = Profile.Name;
TextBox2.Text = Profile.Age.ToString();
Label1.Text = Profile.UI.Color;
}
protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{
Profile.UI.Color = DropDownList1.SelectedValue;
}
...
Save all files and build the solution to check that no errors have been introduced.
Run the application.
Enter your name, age and select a color from the listbox. Now store this information in your profile by clicking Store Profile. Note that if you do not select a color from the listbox your profile will use the default color Blue that was specified in the web.config file.
Click Clear Form to clear text from the textboxes and the label that displays your chosen color.
Now click Retrieve Profile to restore your profile data from the MySQL database.
Now exit the browser to terminate the application.
Run the application again. Note that when the page loads your profile information is restored from the MySQL database.
In this tutorial you have seen how to using the MySQL Profile Provider with MySQL Connector/Net.
21.2.4.5. Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source
In this tutorial you will learn how to create a Windows Forms Data Source from an Entity in an Entity Data Model. This tutorial assumes that you have installed the World example database, which can be downloaded from the MySQL Documentation page. You can also find details on how to install the database on the same page. It will also be convenient for you to create a connection to the World database after it is installed. For instructions on how to do this see Section 21.2.3.1, “Making a Connection”.
Creating a new Windows Forms application
The first step is to create a new Windows Forms application.
In Visual Studio, select File, New, Project from the main menu.
Choose the Windows Forms Application installed template. Click OK. The solution is created.
Adding an Entity Data Model
You will now add an Entity Data Model to your solution.
In the Solution Explorer, right-click your application and select Add, New Item.... From Visual Studio installed templates select ADO.NET Entity Data Model. Click Add.
Figure 21.49. Add Entity Data Model
You will now see the Entity Data Model Wizard. You will use the wizard to generate the Entity Data Model from the world example database. Select the icon Generate from database. Click Next.
Figure 21.50. Entity Data Model Wizard Screen 1
You can now select the connection you made earlier to the World database. If you have not already done so, you can create the new connection at this time by clicking New Connection.... For further instructions on creating a connection to a database see Section 21.2.3.1, “Making a Connection”.
Figure 21.51. Entity Data Model Wizard Screen 2
Make a note of the entity connection settings to be used in App.Config, as these will be used later to write the necessary control code.
Click Next.
The Entity Data Model Wizard connects to the database. You are then presented with a tree structure of the database. From this you can select the object you would like to include in your model. If you had created Views and Stored Routines these will be displayed along with any tables. In this example you just need to select the tables. Click Finish to create the model and exit the wizard.
Figure 21.52. Entity Data Model Wizard Screen 3
Visual Studio will generate the model and then display it.
Figure 21.53. Entity Data Model Diagram
From the Visual Studio main menu select Build, Build Solution, to ensure that everything compiles correctly so far.
Adding a new Data Source
You will now add a new Data Source to your project and see how it can be used to read and write to the database.
From the Visual Studio main menu select Data, Add New Data Source.... You will be presented with the Data Source Configuration Wizard.
Figure 21.54. Entity Data Source Configuration Wizard Screen 1
Select the Object icon. Click Next.
You will now select the Object to bind to. Expand the tree. In this tutorial, you will select the city table. Once the city table has been selected click Next.
Figure 21.55. Entity Data Source Configuration Wizard Screen 2
The wizard will confirm that the city object is to be added. Click Finish.
Figure 21.56. Entity Data Source Configuration Wizard Screen 3
The city object will be display in the Data Sources panel. If the Data Sources panel is not displayed, select Data, Show Data Sources from the Visual Studio main menu. The docked panel will then be displayed.
Figure 21.57. Data Sources
Using the Data Source in a Windows Form
You will now learn how to use the Data Source in a Windows Form.
In the Data Sources panel select the Data Source you just created and drag and drop it onto the Form Designer. By default the Data Source object will be added as a Data Grid View control. Note that the Data Grid View control is bound to the cityBindingSource and the Navigator control is bound to cityBindingNavigator.
Figure 21.58. Data Form Designer
Save and rebuild the solution before continuing.
Adding Code to Populate the Data Grid View
You are now ready to add code to ensure that the Data Grid View control will be populated with data from the City database table.
Double-click the form to access its code.
Add code to instantiate the Entity Data Model's EntityContainer object and retrieve data from the database to populate the control.
Figure 21.59. Adding Code to the Form
Save and rebuild the solution.
Run the solution. Ensure the grid is populated and you can navigate the database.
Figure 21.60. The Populated Grid Control
Adding Code to Save Changes to the Database
You will now add code to enable you to save changes to the database.
The Binding source component ensures that changes made in the Data Grid View control are also made to the Entity classes bound to it. However, that data needs to be saved back from the entities to the database itself. This can be achieved by the enabling of the Save button in the Navigator control, and the addition of some code.
In the Form Designer, click the Save icon in the Form toolbar and ensure that its Enabled property is set to True.
Figure 21.61. Save Button Enabled
Double-click the Save icon in the Form toolbar to display its code.
You now need to add code to ensure that data is saved to the database when the save button is clicked in the application.
Figure 21.62. Adding Save Code to the Form
Once the code has been added, save the solution and rebuild it. Run the application and verify that changes made in the grid are saved.
21.2.4.6. Tutorial: Databinding in ASP.NET using LINQ on Entities
In this tutorial you create an ASP.NET web page that binds LINQ queries to entities using the Entity Framework mapping.
If you have not already done so, install the World example database prior to attempting this tutorial. See the tutorial Section 21.2.4.5, “Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source” for instructions on downloading and installing this database.
Creating an ASP.NET web site
In this part of the tutorial, you create an ASP.NET web site. The web site uses the World database. The main web page features a drop down list from which you can select a country. Data about that country's cities is then displayed in a grid view control.
From the Visual Studio main menu select File, New, Web Site....
From the Visual Studio installed templates select ASP.NET Web Site. Click OK. You will be presented with the Source view of your web page by default.
Click the Design view tab situated underneath the Source view panel.
Figure 21.63. The Design Tab
In the Design view panel, enter some text to decorate the blank web page.
Click Toolbox. From the list of controls select DropDownList. Drag and drop the control to a location beneath the text on your web page.
Figure 21.64. Drop Down List
From the DropDownList control's context menu, ensure that the Enable AutoPostBack check box is enabled. This will ensure the control's event handler is called when an item is selected. The user's choice will in turn be used to populate the GridView control.
Figure 21.65. Enable AutoPostBack
From the Toolbox select the GridView control.
Figure 21.66. Grid View Control
Drag and drop the Grid Vew control to a location just below the Drop Down List you already placed.
Figure 21.67. Placed Grid Vew Control
At this point it is recommended that you save your solution, and build the solution to ensure that there are no errors.
If you run the solution you will see that the text and drop down list are displayed, but the list is empty. Also, the grid view does not appear at all. Adding this functionality is described in the following sections.
At this stage you have a web site that will build, but further functionality is required. The next step will be to use the Entity Framework to create a mapping from the World database into entities that you can control programmatically.
Creating an ADO.NET Entity Data Model
In this stage of the tutorial you will add an ADO.NET Entity Data Model to your project, using the World database at the storage level. The procedure for doing this is described in the tutorial Section 21.2.4.5, “Tutorial: Using an Entity Framework Entity as a Windows Forms Data Source”, and so will not be repeated here.
Populating a Drop Data List Box with using the results of a entity LINQ query
In this part of the tutorial you will write code to populate the DropDownList control. When the web page loads the data to populate the list will be achieved by using the results of a LINQ query on the model created previously.
In the Design view panel, double-click any blank area. This brings up the Page_Load method.
Modify the relevant section of code according to the following listing:
...
public partial class _Default : System.Web.UI.Page
{
worldModel.worldEntities we;
protected void Page_Load(object sender, EventArgs e)
{
we = new worldModel.worldEntities();
if (!IsPostBack)
{
var countryQuery = from c in we.country
orderby c.Name
select new { c.Code, c.Name };
DropDownList1.DataValueField = "Code";
DropDownList1.DataTextField = "Name";
DropDownList1.DataSource = countryQuery;
DataBind();
}
}
...
Note that the list control only needs to be populated when the page first loads. The conditional code ensures that if the page is subsequently reloaded, the list control is not repopulated, which would cause the user selection to be lost.
Save the solution, build it and run it. You should see the list control has been populated. You can select an item, but as yet the grid view control does not appear.
At this point you have a working Drop Down List control, populated by a LINQ query on your entity data model.
Populating a Grid View control using an entity LINQ query
In the last part of this tutorial you will populate the Grid View Control using a LINQ query on your entity data model.
In the Design view, double-click the DropDownList control. This causes its SelectedIndexChanged code to be displayed. This method is called when a user selects an item in the list control and thus fires an AutoPostBack event.
Modify the relevant section of code accordingly to the following listing:
...
protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{
var cityQuery = from c in we.city
where c.CountryCode == DropDownList1.SelectedValue
orderby c.Name
select new { c.Name, c.Population, c.CountryCode };
GridView1.DataSource = cityQuery;
DataBind();
}
...
The grid view control is populated from the result of the LINQ query on the entity data model.
As a check compare your code to that shown in the following screenshot:
Figure 21.68. Source Code
Save, build and run the solution. As you select a country you will see its cities are displayed in the grid view control.
Figure 21.69. The Working Web Site
In this tutorial you have seen how to create an ASP.NET web site, you have also seen how you can access a MySQL database using LINQ queries on an entity data model.
21.2.4.7. Tutorial: Using SSL with MySQL Connector/Net
In this tutorial you will learn how you can use MySQL Connector/Net to connect to a MySQL server configured to use SSL. Support for SSL client certificates was added with MySQL Connector/Net 6.2.
MySQL Server uses the PEM format for certificates and private keys. This tutorial will use the test certificates from the server test suite by way of example. You can obtain the MySQL Server source code from MySQL Downloads. The certificates can be found in the directory ./mysql-test/std_data.
To carry out the steps in this tutorial, you must have Open SSL installed. This can be downloaded for Microsoft Windows at no charge from Shining Light Productions.
Further details on the connection string options used in this tutorial can be found at Section 21.2.6, “Connector/Net Connection String Options Reference”.
Configuring the MySQL Server to use SSL
In the MySQL Server configuration file, set the SSL parameters as follows:
ssl-ca=path/to/repo/mysql-test/std_data/cacert.pem
ssl-cert=path/to/repo/mysql-test/std_data/server-cert.pem
ssl-key=path/to/repo/mysql-test/std_data/server-key.pem
Adjust the directories according to the location in which you installed the MySQL source code.
In this step you create a test user and set the user to require SSL.
Using the MySQL Command-Line Client, connect as root and create the user sslclient.
To set privileges and requirements, issue the following command:
GRANT ALL PRIVILEGES ON *.* TO sslclient@'%' REQUIRE SSL;
Creating a certificate file to use with the .NET client
The .NET client does not use the PEM file format, as .NET does not support this format natively. You will be using test client certificates from the same server repository, for the purposes of this example. Convert these to PFX format first. This format is also known as PKCS#12. An article describing this procedure can be found at the Citrix website. From the directory server-repository-root/mysql-test/std_data, issue the following command:
openssl pkcs12 -export -in client-cert.pem -inkey client-key.pem -certfile cacert.pem -out client.pfx
When asked for an export password, enter the password “pass”. The file client.pfx will be generated. This file is used in the remainder of the tutorial.
Connecting to the server using a file-based certificate
You will use PFX file, client.pfx you created in the previous step to authenticate the client. The following example demonstrates how to connect using the SSL Mode, CertificateFile and CertificatePassword connection string options:
using (MySqlConnection connection = new MySqlConnection(
"database=test;user=sslclient;" +
"CertificateFile=H:\\bzr\\mysql-trunk\\mysql-test\\std_data\\client.pfx" +
"CertificatePassword=pass;" +
"SSL Mode=Required "))
{
connection.Open();
}
The path to the certificate file will need to be changed to reflect your individual installation.
Connecting to the server using a store-based certificate
The first step is to import the PFX file, client.pfx, into the Personal Store. Double-click the file in Windows explorer. This launches the Certificate Import Wizard.
Follow the steps dictated by the wizard, and when prompted for the password for the PFX file, enter “pass”.
Click Finish to close the wizard and import the certificate into the personal store.
Examine certificates in the Personal Store
Start the Microsoft Management Console by entering mmc.exe at a command prompt.
Select File, Add/Remove snap-in. Click Add. Select Certificates from the list of available snap-ins in the dialog.
Click Add button in the dialog, and select the My user account radio button. This is used for personal certificates.
Click the Finish button.
Click OK to close the Add/Remove Snap-in dialog.
You will now have Certificates – Current User displayed in the left panel of the Microsoft Management Console. Expand the Certificates - Current User tree item and select Personal, Certificates. The right-hand panel will display a certificate issued to MySQL. This is the certificate that was previously imported. Double-click the certificate to display its details.
After you have imported the certificate to the Personal Store, you can use a more succint connection string to connect to the database, as illustrated by the following code:
using (MySqlConnection connection = new MySqlConnection(
"database=test;user=sslclient;" +
"Certificate Store Location=CurrentUser;" +
"SSL Mode=Required"))
{
connection.Open();
}
Certificate Thumbprint Parameter
If you have a large number of certificates in your store, and many have the same Issuer, this can be a source of confusion and result in the wrong certificate being used. To alleviate this situation, there is an optional Certificate Thumbprint parameter that can additionally be specified as part of the connection string. As mentioned before, you can double-click a certificate in the Microsoft Management Console to display the certificate's details. When the Certificate dialog is displayed click the Details tab and scroll down to see the thumbprint. The thumbprint will typically be a number such as 47 94 36 00 9a 40 f3 01 7a 14 5c f8 47 9e 76 94 d7 aa de f0. This thumbprint can be used in the connection string, as the following code illustrates:
using (MySqlConnection connection = new MySqlConnection(
"database=test;user=sslclient;" +
"Certificate Store Location=CurrentUser;" +
"Certificate Thumbprint=479436009a40f3017a145cf8479e7694d7aadef0;"+
"SSL Mode=Required"))
{
connection.Open();
}
Spaces in the thumbprint parameter are optional and the value is case-insensitive.
21.2.4.8. Tutorial: Using MySqlScript
This tutorial teaches you how to use the MySqlScript class. This class enables you to execute a series of statements. Depending on the circumstances, this can be more convenient than using the MySqlCommand approach.
Further details of the MySqlScript class can be found in the reference documentation supplied with MySQL Connector/Net.
To run the example programs in this tutorial, set up a simple test database and table using the mysql Command-Line Client or MySQL Workbench. Commands for the mysql Command-Line Client are given here:
CREATE DATABASE TestDB;
USE TestDB;
CREATE TABLE TestTable (id INT NOT NULL PRIMARY KEY
AUTO_INCREMENT, name VARCHAR(100));
The main method of the MySqlScript class is the Execute method. This method causes the script (sequence of statements) assigned to the Query property of the MySqlScript object to be executed. Note the Query property can be set through the MySqlScript constructor or using the Query property. Execute returns the number of statements executed.
The MySqlScript object will execute the specified script on the connection set using the Connection property. Again, this property can be set directly or through the MySqlScript constructor. The following code snippets illustrate this:
string sql = "SELECT * FROM TestTable";
...
MySqlScript script = new MySqlScript(conn, sql);
...
MySqlScript script = new MySqlScript();
script.Query = sql;
script.Connection = conn;
...
script.Execute();
The MySqlScript class has several events associated with it. There are:
Error - generated if an error occurs.
ScriptCompleted - generated when the script successfully completes execution.
StatementExecuted - generated after each statement is executed.
It is possible to assign event handlers to each of these events. These user-provided routines are called back when the connected event occurs. The following code shows how the event handlers are set up.
script.Error += new MySqlScriptErrorEventHandler(script_Error);
script.ScriptCompleted += new EventHandler(script_ScriptCompleted);
script.StatementExecuted += new MySqlStatementExecutedEventHandler(script_StatementExecuted);
In VisualStudio, you can save typing by using tab completion to fill out stub routines. Start by typing, for example, “script.Error +=”. Then press TAB, and then press TAB again. The assignment is completed, and a stub event handler created. A complete working example is shown below:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace MySqlScriptTest
{
class Program
{
static void Main(string[] args)
{
string connStr = "server=localhost;user=root;database=TestDB;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
string sql = "INSERT INTO TestTable(name) VALUES ('Superman');" +
"INSERT INTO TestTable(name) VALUES ('Batman');" +
"INSERT INTO TestTable(name) VALUES ('Wolverine');" +
"INSERT INTO TestTable(name) VALUES ('Storm');";
MySqlScript script = new MySqlScript(conn, sql);
script.Error += new MySqlScriptErrorEventHandler(script_Error);
script.ScriptCompleted += new EventHandler(script_ScriptCompleted);
script.StatementExecuted += new MySqlStatementExecutedEventHandler(script_StatementExecuted);
int count = script.Execute();
Console.WriteLine("Executed " + count + " statement(s).");
Console.WriteLine("Delimiter: " + script.Delimiter);
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
conn.Close();
Console.WriteLine("Done.");
}
static void script_StatementExecuted(object sender, MySqlScriptEventArgs args)
{
Console.WriteLine("script_StatementExecuted");
}
static void script_ScriptCompleted(object sender, EventArgs e)
{
/// EventArgs e will be EventArgs.Empty for this method
Console.WriteLine("script_ScriptCompleted!");
}
static void script_Error(Object sender, MySqlScriptErrorEventArgs args)
{
Console.WriteLine("script_Error: " + args.Exception.ToString());
}
}
}
Note that in the script_ScriptCompleted event handler, the EventArgs parameter e will be EventArgs.Empty. In the case of the ScriptCompleted event there is no additional data to be obtained, which is why the event object is EventArgs.Empty.
21.2.4.8.1. Using Delimiters with MySqlScript
Depending on the nature of the script, you may need control of the delimiter used to separate the statements that will make up a script. The most common example of this is where you have a multi-statement stored routine as part of your script. In this case if the default delimiter of “;” is used you will get an error when you attempt to execute the script. For example, consider the following stored routine:
CREATE PROCEDURE test_routine()
BEGIN
SELECT name FROM TestTable ORDER BY name;
SELECT COUNT(name) FROM TestTable;
END
This routine actually needs to be executed on the MySQL Server as a single statement. However, with the default delimiter of “;”, the MySqlScript class would interpret the above as two statements, the first being:
CREATE PROCEDURE test_routine()
BEGIN
SELECT name FROM TestTable ORDER BY name;
Executing this as a statement would generate an error. To solve this problem MySqlScript supports the ability to set a different delimiter. This is achieved through the Delimiter property. For example, you could set the delimiter to “??”, in which case the above stored routine would no longer generate an error when executed. Multiple statements can be delimited in the script, so for example, you could have a three statement script such as:
string sql = "DROP PROCEDURE IF EXISTS test_routine??" +
"CREATE PROCEDURE test_routine() " +
"BEGIN " +
"SELECT name FROM TestTable ORDER BY name;" +
"SELECT COUNT(name) FROM TestTable;" +
"END??" +
"CALL test_routine()";
You can change the delimiter back at any point by setting the Delimiter property. The following code shows a complete working example:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace ConsoleApplication8
{
class Program
{
static void Main(string[] args)
{
string connStr = "server=localhost;user=root;database=TestDB;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
string sql = "DROP PROCEDURE IF EXISTS test_routine??" +
"CREATE PROCEDURE test_routine() " +
"BEGIN " +
"SELECT name FROM TestTable ORDER BY name;" +
"SELECT COUNT(name) FROM TestTable;" +
"END??" +
"CALL test_routine()";
MySqlScript script = new MySqlScript(conn);
script.Query = sql;
script.Delimiter = "??";
int count = script.Execute();
Console.WriteLine("Executed " + count + " statement(s)");
script.Delimiter = ";";
Console.WriteLine("Delimiter: " + script.Delimiter);
Console.WriteLine("Query: " + script.Query);
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
conn.Close();
Console.WriteLine("Done.");
}
}
}
21.2.4.9. Tutorial: Generating MySQL DDL from an Entity Framework Model
In this tutorial, you will learn how to create MySQL DDL from an Entity Framework model. Use Visual Studio 2010 and MySQL Connector/Net 6.3 to carry out this tutorial.
Create a new console application in Visual Studio 2010.
Using the Solution Explorer, add a reference to MySql.Data.Entity.
From the Solution Explorer select Add, New Item. In the Add New Item dialog select Online Templates. Select ADO.NET Entity Data Model and click Add. The Entity Data Model dialog will be displayed.
In the Entity Data Model dialog select Empty Model. Click Finish. A blank model will be created.
Create a simple model. A single Entity will do for the purposes of this tutorial.
In the Properties panel select ConceptualEntityModel from the drop-down listbox.
In the Properties panel, locate the DDL Generation Template in the category Database Script Generation.
For the DDL Generation property select SSDLToMySQL.tt(VS) from the drop-down listbox.
Save the solution.
Right-click an empty space in the model design area. The context-sensitive menu will be displayed.
From the context-sensitive menu select Generate Database from Model. The Generate Database Wizard dialog will be displayed.
In the Generate Database Wizard dialog select an existing connection, or create a new connection to a server. Select an appropriate radio button to show or hide sensitive data. For the purposes of this tutorial you can select Yes (although you might skip this for commercial applications).
Click Next. MySQL compatible DDL code will be generated. Click Finish to exit the wizard.
You have seen how to create MySQL DDL code from an Entity Framework model.
21.2.5. Connector/Net Programming
Connector/Net comprises several classes that are used to connect to the database, execute queries and statements, and manage query results.
The following are the major classes of Connector/Net:
MySqlCommand: Represents an SQL statement to execute against a MySQL database.
MySqlCommandBuilder: Automatically generates single-table commands used to reconcile changes made to a DataSet with the associated MySQL database.
MySqlConnection: Represents an open connection to a MySQL Server database.
MySqlDataAdapter: Represents a set of data commands and a database connection that are used to fill a data set and update a MySQL database.
MySqlDataReader: Provides a means of reading a forward-only stream of rows from a MySQL database.
MySqlException: The exception that is thrown when MySQL returns an error.
MySqlHelper: Helper class that makes it easier to work with the provider.
MySqlTransaction: Represents an SQL transaction to be made in a MySQL database.
In the following sections, you will learn about some common use cases for Connector/Net, including BLOB handling, date handling, and using Connector/Net with common tools such as Crystal Reports.
21.2.5.1. Connecting to MySQL Using Connector/Net
All interaction between a .NET application and the MySQL server is routed through a MySqlConnection object. Before your application can interact with the server, it must instantiate, configure, and open a MySqlConnection object.
Even when using the MySqlHelper class, a MySqlConnection object is created by the helper class.
This section describes how to connect to MySQL using the MySqlConnection object.
21.2.5.2. Creating a Connector/Net Connection String
The MySqlConnection object is configured using a connection string. A connection string contains several key/value pairs, separated by semicolons. In each key/value pair, the option name and its corresponding value are joined by an equal sign. For the list of option names to use in the connection string, see Section 21.2.6, “Connector/Net Connection String Options Reference”.
The following is a sample connection string:
Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;
In this example, the MySqlConnection object is configured to connect to a MySQL server at 127.0.0.1, with a user name of root and a password of 12345. The default database for all statements will be the test database.
Note
Using the '@' symbol for parameters is now the preferred approach, although the old pattern of using '?' is still supported. To avoid conflicts when using the '@' symbol in combination with user variables, see the Allow User Variables connection string option in Section 21.2.6, “Connector/Net Connection String Options Reference”. The Old Syntax connection string option has now been deprecated.
21.2.5.2.1. Opening a Connection
Once you have created a connection string it can be used to open a connection to the MySQL server.
The following code is used to create a MySqlConnection object, assign the connection string, and open the connection.
Connector/Net can also connect using the native Windows authentication plugin. See Section 21.2.5.5, “Using the Windows Native Authentication Plugin” for details.
You can further extend the authentication mechanism by writing your own authentication plugin. See Section 21.2.5.6, “Writing a Custom Authentication Plugin” for details.
Visual Basic Example
Dim conn As New MySql.Data.MySqlClient.MySqlConnection
Dim myConnectionString as String
myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"
Try
conn.ConnectionString = myConnectionString
conn.Open()
Catch ex As MySql.Data.MySqlClient.MySqlException
MessageBox.Show(ex.Message)
End Try
C# Example
MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;
myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";
try
{
conn = new MySql.Data.MySqlClient.MySqlConnection();
conn.ConnectionString = myConnectionString;
conn.Open();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show(ex.Message);
}
You can also pass the connection string to the constructor of the MySqlConnection class:
Visual Basic Example
Dim myConnectionString as String
myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"
Try
Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
conn.Open()
Catch ex As MySql.Data.MySqlClient.MySqlException
MessageBox.Show(ex.Message)
End Try
C# Example
MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;
myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";
try
{
conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
conn.Open();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show(ex.Message);
}
Once the connection is open it can be used by the other Connector/Net classes to communicate with the MySQL server.
21.2.5.2.2. Handling Connection Errors
Because connecting to an external server is unpredictable, it is important to add error handling to your .NET application. When there is an error connecting, the MySqlConnection class will return a MySqlException object. This object has two properties that are of interest when handling errors:
Message: A message that describes the current exception.
Number: The MySQL error number.
When handling errors, you can your application's response based on the error number. The two most common error numbers when connecting are as follows:
0: Cannot connect to server.
1045: Invalid user name and/or password.
The following code shows how to adapt the application's response based on the actual error:
Visual Basic Example
Dim myConnectionString as String
myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"
Try
Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
conn.Open()
Catch ex As MySql.Data.MySqlClient.MySqlException
Select Case ex.Number
Case 0
MessageBox.Show("Cannot connect to server. Contact administrator")
Case 1045
MessageBox.Show("Invalid username/password, please try again")
End Select
End Try
C# Example
MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;
myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";
try
{
conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
conn.Open();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
switch (ex.Number)
{
case 0:
MessageBox.Show("Cannot connect to server. Contact administrator");
case 1045:
MessageBox.Show("Invalid username/password, please try again");
}
}
Important
Note that if you are using multilanguage databases you must specify the character set in the connection string. If you do not specify the character set, the connection defaults to the latin1 charset. You can specify the character set as part of the connection string, for example:
MySqlConnection myConnection = new MySqlConnection("server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;Charset=latin1;");
21.2.5.2.3. Using GetSchema on a Connection
The GetSchema() method of the connection object can be used to retrieve schema information about the database currently connected to. The schema information is returned in the form of a DataTable. The schema information is organized into a number of collections. Different forms of the GetSchema() method can be used depending on the information required. There are three forms of the GetSchema() method:
GetSchema() - This call will return a list of available collections.
GetSchema(String) - This call returns information about the collection named in the string parameter. If the string “MetaDataCollections” is used then a list of all available collections is returned. This is the same as calling GetSchema() without any parameters.
GetSchema(String, String[]) - In this call the first string parameter represents the collection name, and the second parameter represents a string array of restriction values. Restriction values limit the amount of data that will be returned. Restriction values are explained in more detail in the Microsoft .NET documentation.
21.2.5.2.3.1. Collections
The collections can be broadly grouped into two types: collections that are common to all data providers, and collections specific to a particular provider.
Common
The following collections are common to all data providers:
MetaDataCollections
DataSourceInformation
DataTypes
Restrictions
ReservedWords
Provider-specific
The following are the collections currently provided by MySQL Connector/Net, in addition to the common collections above:
Databases
Tables
Columns
Users
Foreign Keys
IndexColumns
Indexes
Foreign Key Columns
UDF
Views
ViewColumns
Procedure Parameters
Procedures
Triggers
Example Code
A list of available collections can be obtained using the following code:
using System;
using System.Data;
using System.Text;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace ConsoleApplication2
{
class Program
{
private static void DisplayData(System.Data.DataTable table)
{
foreach (System.Data.DataRow row in table.Rows)
{
foreach (System.Data.DataColumn col in table.Columns)
{
Console.WriteLine("{0} = {1}", col.ColumnName, row[col]);
}
Console.WriteLine("============================");
}
}
static void Main(string[] args)
{
string connStr = "server=localhost;user=root;database=world;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
DataTable table = conn.GetSchema("MetaDataCollections");
//DataTable table = conn.GetSchema("UDF");
DisplayData(table);
conn.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
Console.WriteLine("Done.");
}
}
}
Further information on the GetSchema() method and schema collections can be found in the Microsoft .NET documentation.
21.2.5.3. Using MySqlCommand
A MySqlCommand has the CommandText and CommandType properties associated with it. The CommandText will be handled differently depending on the setting of CommandType. CommandType can be one of:
Text - A SQL text command (default)
StoredProcedure - The name of a Stored Procedure
TableDirect - The name of a table (new in Connector/Net 6.2)
The default CommandType, Text, is used for executing queries and other SQL commands. Some example of this can be found in the following section Section 21.2.4.1.2, “The MySqlCommand Object”.
If CommandType is set to StoredProcedure, set CommandText to the name of the Stored Procedure to access.
If CommandType is set to TableDirect, all rows and columns of the named table will be returned when you call one of the Execute methods. In effect, this command performs a SELECT * on the table specified. The CommandText property is set to the name of the table to query. This is illustrated by the following code snippet:
...
MySqlCommand cmd = new MySqlCommand();
cmd.CommandText = "mytable";
cmd.Connection = someConnection;
cmd.CommandType = CommandType.TableDirect;
MySqlDataReader reader = cmd.ExecuteReader();
while (reader.Read())
{
Console.WriteLn(reader[0], reader[1]...);
}
...
Examples of using the CommandType of StoredProcedure can be found in the section Section 21.2.5.9, “Accessing Stored Procedures with Connector/Net”.
Commands can have a timeout associated with them. This is useful as you may not want a situation were a command takes up an excessive amount of time. A timeout can be set using the CommandTimeout property. The following code snippet sets a timeout of one minute:
MySqlCommand cmd = new MySqlCommand();
cmd.CommandTimeout = 60;
The default value is 30 seconds. Avoid a value of 0, which indicates an indefinite wait. To change the default command timeout, use the connection string option Default Command Timeout.
Prior to MySQL Connector/Net 6.2, MySqlCommand.CommandTimeout included user processing time, that is processing time not related to direct use of the connector. Timeout was implemented through a .NET Timer, that triggered after CommandTimeout seconds. This timer consumed a thread.
MySQL Connector/Net 6.2 introduced timeouts that are aligned with how Microsoft handles SqlCommand.CommandTimeout. This property is the cumulative timeout for all network reads and writes during command execution or processing of the results. A timeout can still occur in the MySqlReader.Read method after the first row is returned, and does not include user processing time, only IO operations. The 6.2 implementation uses the underlying stream timeout facility, so is more efficient in that it does not require the additional timer thread as was the case with the previous implementation.
Further details on this can be found in the relevant Microsoft documentation.
21.2.5.4. Using Connector/Net with Connection Pooling
The Connector/Net supports connection pooling for better performance and scalability with database-intensive applications. This is enabled by default. You can turn it off or adjust its performance characteristics using the connection string options Pooling, Connection Reset, Connection Lifetime, Cache Server Properties, Max Pool Size and Min Pool Size. See Section 21.2.5.2, “Creating a Connector/Net Connection String” for further information.
Connection pooling works by keeping the native connection to the server live when the client disposes of a MySqlConnection. Subsequently, if a new MySqlConnection object is opened, it will be created from the connection pool, rather than creating a new native connection. This improves performance.
Guidelines
To work as designed, it is best to let the connection pooling system manage all connections. Do not create a globally accessible instance of MySqlConnection and then manually open and close it. This interferes with the way the pooling works and can lead to unpredictable results or even exceptions.
One approach that simplifies things is to avoid manually creating a MySqlConnection object. Instead use the overloaded methods that take a connection string as an argument. Using this approach, Connector/Net will automatically create, open, close and destroy connections, using the connection pooling system for best performance.
Typed Datasets and the MembershipProvider and RoleProvider classes use this approach. Most classes that have methods that take a MySqlConnection as an argument, also have methods that take a connection string as an argument. This includes MySqlDataAdapter.
Instead of manually creating MySqlCommand objects, you can use the static methods of the MySqlHelper class. These take a connection string as an argument, and they fully support connection pooling.
Resource Usage
Starting with MySQL Connector/Net 6.2, there is a background job that runs every three minutes and removes connections from pool that have been idle (unused) for more than three minutes. The pool cleanup frees resources on both client and server side. This is because on the client side every connection uses a socket, and on the server side every connection uses a socket and a thread.
Prior to this change, connections were never removed from the pool, and the pool always contained the peak number of open connections. For example, a web application that peaked at 1000 concurrent database connections would consume 1000 threads and 1000 open sockets at the server, without ever freeing up those resources from the connection pool. Note, connections, no matter how old, will not be closed if the number of connections in the pool is less than or equal to the value set by the Min Pool Size connection string parameter.
21.2.5.5. Using the Windows Native Authentication Plugin
Connector/Net applications can authenticate to a MySQL server using the Windows Native Authentication Plugin as of Connector/Net 6.4.4 and MySQL 5.5.16/5.6.10. Users who have logged in to Windows can connect from MySQL client programs to the server based on the information in their environment without specifying an additional password. For background and usage information about the authentication plugin, see, Section 6.3.7.4, “The Windows Native Authentication Plugin”.
The interface matches the MySql.Data.MySqlClient object. To enable, pass in Integrated Security to the connection string with a value of yes or sspi.
Passing in a user ID is optional. When Windows authentication is set up, a MySQL user is created and configured to be used by Windows authentication. By default, this user ID is named auth_windows, but can be defined using a different name. If the default name is used, then passing the user ID to the connection string from Connector/Net is optional, because it will use the auth_windows user. Otherwise, the name must be passed to the connection string using the standard user ID element.
21.2.5.6. Writing a Custom Authentication Plugin
Advanced users with special security requirements can create their own authentication plugins for Connector/Net applications. You can extend the handshake protocol, adding custom logic. This capability requires Connector/Net 6.6.3 or higher, and MySQL 5.5.16 or higher. For background and usage information about MySQL authentication plugins, see, Section 22.2.3.7, “Authentication Plugins” and Section 22.2.4.9, “Writing Authentication Plugins”.
To write a custom authentication plugin, you will need a reference to the assembly MySql.Data.dll. The classes relevant for writing authentication plugins are available at the namespace MySql.Data.MySqlClient.Authentication.
How the Custom Authentication Plugin Works
At some point during handshake, the internal method
void Authenticate(bool reset)
Creating the Authentication Plugin Class
You put the authentication plugin logic inside a new class derived from MySql.Data.MySqlClient.Authentication.MySqlAuthenticationPlugin. The following methods are available to be overridden:
protected virtual void CheckConstraints()
protected virtual void AuthenticationFailed(Exception ex)
protected virtual void AuthenticationSuccessful()
protected virtual byte[] MoreData(byte[] data)
protected virtual void AuthenticationChange()
public abstract string PluginName { get; }
public virtual string GetUsername()
public virtual object GetPassword()
protected byte[] AuthData;
The following is a brief explanation of each one:
/// <summary>
/// This method must check authentication method specific constraints in the
environment and throw an Exception
/// if the conditions are not met. The default implementation does nothing.
/// </summary>
protected virtual void CheckConstraints()
/// <summary>
/// This method, called when the authentication failed, provides a chance to
plugins to manage the error
/// the way they consider decide (either showing a message, logging it, etc.).
/// The default implementation wraps the original exception in a MySqlException
with an standard message and rethrows it.
/// </summary>
/// <param name="ex">The exception with extra information on the error.</param>
protected virtual void AuthenticationFailed(Exception ex)
/// <summary>
/// This method is invoked when the authentication phase was successful accepted
by the server.
/// Derived classes must override this if they want to be notified of such
condition.
/// </summary>
/// <remarks>The default implementation does nothing.</remarks>
protected virtual void AuthenticationSuccessful()
/// <summary>
/// This method provides a chance for the plugin to send more data when the
server requests so during the
/// authentication phase. This method will be called at least once, and more
than one depending upon whether the
/// server response packets have the 0x01 prefix.
/// </summary>
/// <param name="data">The response data from the server, during the
authentication phase the first time is called is null, in
subsequent calls contains the server response.</param>
/// <returns>The data generated by the plugin for server consumption.</returns>
/// <remarks>The default implementation always returns null.</remarks>
protected virtual byte[] MoreData(byte[] data)
/// <summary>
/// The plugin name.
/// </summary>
public abstract string PluginName { get; }
/// <summary>
/// Gets the user name to send to the server in the authentication phase.
/// </summary>
/// <returns>An string with the user name</returns>
/// <remarks>Default implementation returns the UserId passed from the
connection string.</remarks>
public virtual string GetUsername()
/// <summary>
/// Gets the password to send to the server in the authentication phase. This
can can be an string or a
/// </summary>
/// <returns>An object, can be byte[], string or null, with the password.
</returns>
/// <remarks>Default implementation returns null.</remarks>
public virtual object GetPassword()
/// <summary>
/// The authentication data passed when creating the plugin.
/// For example in mysql_native_password this is the seed to encrypt the
password.
/// </summary>
protected byte[] AuthData;
Sample Authentication Plugin
Here is an example showing how to create the authentication plugin, then enable it by means of a configuration file. Follow these steps:
Create a console app, adding a reference to MySql.Data.dll.
Design the main program as follows:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MySql.Data.MySqlClient;
namespace AuthPluginTest
{
class Program
{
static void Main(string[] args)
{
// Customize the connection string as necessary.
MySqlConnection con = new MySqlConnection("server=localhost;
database=test; user id=myuser; password=mypass");
con.Open();
con.Close();
}
}
}
Create your plugin class. In this example, we add an “alternative” implementation of the Native password plugin by just using the same code from the original plugin. We name our class MySqlNativePasswordPlugin2:
using System.IO;
using System;
using System.Text;
using System.Security.Cryptography;
using MySql.Data.MySqlClient.Authentication;
using System.Diagnostics;
namespace AuthPluginTest
{
public class MySqlNativePasswordPlugin2 : MySqlAuthenticationPlugin
{
public override string PluginName
{
get { return "mysql_native_password"; }
}
public override object GetPassword()
{
Debug.WriteLine("Calling MySqlNativePasswordPlugin2.GetPassword");
return Get411Password(Settings.Password, AuthData);
}
/// <summary>
/// Returns a byte array containing the proper encryption of the
/// given password/seed according to the new 4.1.1 authentication scheme.
/// </summary>
/// <param name="password"></param>
/// <param name="seed"></param>
/// <returns></returns>
private byte[] Get411Password(string password, byte[] seedBytes)
{
// if we have no password, then we just return 1 zero byte
if (password.Length == 0) return new byte[1];
SHA1 sha = new SHA1CryptoServiceProvider();
byte[] firstHash = sha.ComputeHash(Encoding.Default.GetBytes(password));
byte[] secondHash = sha.ComputeHash(firstHash);
byte[] input = new byte[seedBytes.Length + secondHash.Length];
Array.Copy(seedBytes, 0, input, 0, seedBytes.Length);
Array.Copy(secondHash, 0, input, seedBytes.Length, secondHash.Length);
byte[] thirdHash = sha.ComputeHash(input);
byte[] finalHash = new byte[thirdHash.Length + 1];
finalHash[0] = 0x14;
Array.Copy(thirdHash, 0, finalHash, 1, thirdHash.Length);
for (int i = 1; i < finalHash.Length; i++)
finalHash[i] = (byte)(finalHash[i] ^ firstHash[i - 1]);
return finalHash;
}
}
}
Notice that the plugin implementation just overrides GetPassword, and provides an implementation to encrypt the password using the 4.1 protocol. We also put the following line in the GetPassword body:
Debug.WriteLine("Calling MySqlNativePasswordPlugin2.GetPassword");
Enable the new plugin in the configuration file:
<?xml version="1.0"?>
<configuration>
<configSections>
<section name="MySQL" type="MySql.Data.MySqlClient.MySqlConfiguration,
MySql.Data"/>
</configSections>
<MySQL>
<AuthenticationPlugins>
<add name="mysql_native_password"
type="AuthPluginTest.MySqlNativePasswordPlugin2, AuthPluginTest"></add>
</AuthenticationPlugins>
</MySQL>
<startup><supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
</startup></configuration>
Run the application. In Visual Studio, you will see the message Calling MySqlNativePasswordPlugin2.GetPassword in the debug window.
Continue enhancing the authentication logic, overriding more methods if you required.
21.2.5.7. Using Connector/Net with Table Caching
This feature exists with Connector/Net versions 6.4 and above.
Table caching is a feature that can be used to cache slow-changing datasets on the client side. This is useful for applications that are designed to use readers, but still want to minimize trips to the server for slow-changing tables.
This feature is transparent to the application, and is disabled by default.
Configuration
To enable table caching, add 'table cache = true' to the connection string.
Optionally, specify the 'Default Table Cache Age' connection string option, which represents the number of seconds a table is cached before the cached data is discarded. The default value is 60.
You can turn caching on and off and set caching options at runtime, on a per-command basis.
21.2.5.8. Using the Connector/Net with Prepared Statements
As of MySQL 4.1, it is possible to use prepared statements with Connector/Net. Use of prepared statements can provide significant performance improvements on queries that are executed more than once.
Prepared execution is faster than direct execution for statements executed more than once, primarily because the query is parsed only once. In the case of direct execution, the query is parsed every time it is executed. Prepared execution also can provide a reduction of network traffic because for each execution of the prepared statement, it is necessary only to send the data for the parameters.
Another advantage of prepared statements is that it uses a binary protocol that makes data transfer between client and server more efficient.
21.2.5.8.1. Preparing Statements in Connector/Net
To prepare a statement, create a command object and set the .CommandText property to your query.
After entering your statement, call the .Prepare method of the MySqlCommand object. After the statement is prepared, add parameters for each of the dynamic elements in the query.
After you enter your query and enter parameters, execute the statement using the .ExecuteNonQuery(), .ExecuteScalar(), or .ExecuteReader methods.
For subsequent executions, you need only modify the values of the parameters and call the execute method again, there is no need to set the .CommandText property or redefine the parameters.
Visual Basic Example
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
conn.ConnectionString = strConnection
Try
conn.Open()
cmd.Connection = conn
cmd.CommandText = "INSERT INTO myTable VALUES(NULL, @number, @text)"
cmd.Prepare()
cmd.Parameters.AddWithValue("@number", 1)
cmd.Parameters.AddWithValue("@text", "One")
For i = 1 To 1000
cmd.Parameters("@number").Value = i
cmd.Parameters("@text").Value = "A string value"
cmd.ExecuteNonQuery()
Next
Catch ex As MySqlException
MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
C# Example
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
conn.ConnectionString = strConnection;
try
{
conn.Open();
cmd.Connection = conn;
cmd.CommandText = "INSERT INTO myTable VALUES(NULL, @number, @text)";
cmd.Prepare();
cmd.Parameters.AddWithValue("@number", 1);
cmd.Parameters.AddWithValue("@text", "One");
for (int i=1; i <= 1000; i++)
{
cmd.Parameters["@number"].Value = i;
cmd.Parameters["@text"].Value = "A string value";
cmd.ExecuteNonQuery();
}
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}
21.2.5.9. Accessing Stored Procedures with Connector/Net
MySQL server version 5 and up supports stored procedures with the SQL 2003 stored procedure syntax.
A stored procedure is a set of SQL statements that is stored in the server. Clients make a single call to the stored procedure, passing parameters that can influence the procedure logic and query conditions, rather than issuing individual hardcoded SQL statements.
Stored procedures can be particularly useful in situations such as the following:
Stored procedures can act as an API or abstraction layer, allowing multiple client applications to perform the same database operations. The applications can be written in different languages and run on different platforms. The applications do not need to hardcode table and column names, complicated queries, and so on. When you extend and optimize the queries in a stored procedure, all the applications that call the procedure automatically receive the benefits.
When security is paramount, stored procedures keep applications from directly manipulating tables, or even knowing details such as table and column names. Banks, for example, use stored procedures for all common operations. This provides a consistent and secure environment, and procedures can ensure that each operation is properly logged. In such a setup, applications and users would not get any access to the database tables directly, but can only execute specific stored procedures.
Connector/Net supports the calling of stored procedures through the MySqlCommand object. Data can be passed in and out of a MySQL stored procedure through use of the MySqlCommand.Parameters collection.
Note
When you call a stored procedure, the command object makes an additional SELECT call to determine the parameters of the stored procedure. You must ensure that the user calling the procedure has the SELECT privilege on the mysql.proc table to enable them to verify the parameters. Failure to do this will result in an error when calling the procedure.
This section will not provide in-depth information on creating Stored Procedures. For such information, please refer to http://dev.mysql.com/doc/mysql/en/stored-routines.html.
A sample application demonstrating how to use stored procedures with Connector/Net can be found in the Samples directory of your Connector/Net installation.
21.2.5.9.1. Using Stored Routines from Connector/Net
Stored procedures in MySQL can be created using a variety of tools. First, stored procedures can be created using the mysql command-line client. Second, stored procedures can be created using MySQL Workbench. Finally, stored procedures can be created using the .ExecuteNonQuery method of the MySqlCommand object.
Unlike the command-line and GUI clients, you are not required to specify a special delimiter when creating stored procedures in Connector/Net.
To call a stored procedure using Connector/Net, you create a MySqlCommand object and pass the stored procedure name as the .CommandText property. You then set the .CommandType property to CommandType.StoredProcedure.
After the stored procedure is named, you create one MySqlCommand parameter for every parameter in the stored procedure. IN parameters are defined with the parameter name and the object containing the value, OUT parameters are defined with the parameter name and the data type that is expected to be returned. All parameters need the parameter direction defined.
After defining the parameters, you call the stored procedure by using the MySqlCommand.ExecuteNonQuery() method.
Once the stored procedure is called, the values of the output parameters can be retrieved by using the .Value property of the MySqlConnector.Parameters collection.
Note
When a stored procedure is called using MySqlCommand.ExecuteReader, and the stored procedure has output parameters, the output parameters are only set after the MySqlDataReader returned by ExecuteReader is closed.
The following C# example code demonstrates the use of stored procedures. It assumes the database 'employees' has already been created:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace UsingStoredRoutines
{
class Program
{
static void Main(string[] args)
{
MySqlConnection conn = new MySqlConnection();
conn.ConnectionString = "server=localhost;user=root;database=employees;port=3306;password=******;";
MySqlCommand cmd = new MySqlCommand();
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
cmd.Connection = conn;
cmd.CommandText = "DROP PROCEDURE IF EXISTS add_emp";
cmd.ExecuteNonQuery();
cmd.CommandText = "DROP TABLE IF EXISTS emp";
cmd.ExecuteNonQuery();
cmd.CommandText = "CREATE TABLE emp (empno INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, first_name VARCHAR(20), last_name VARCHAR(20), birthdate DATE)";
cmd.ExecuteNonQuery();
cmd.CommandText = "CREATE PROCEDURE add_emp(" +
"IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT)" +
"BEGIN INSERT INTO emp(first_name, last_name, birthdate) " +
"VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END";
cmd.ExecuteNonQuery();
}
catch (MySqlException ex)
{
Console.WriteLine ("Error " + ex.Number + " has occurred: " + ex.Message);
}
conn.Close();
Console.WriteLine("Connection closed.");
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
cmd.Connection = conn;
cmd.CommandText = "add_emp";
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters.AddWithValue("@lname", "Jones");
cmd.Parameters["@lname"].Direction = ParameterDirection.Input;
cmd.Parameters.AddWithValue("@fname", "Tom");
cmd.Parameters["@fname"].Direction = ParameterDirection.Input;
cmd.Parameters.AddWithValue("@bday", "1940-06-07");
cmd.Parameters["@bday"].Direction = ParameterDirection.Input;
cmd.Parameters.AddWithValue("@empno", MySqlDbType.Int32);
cmd.Parameters["@empno"].Direction = ParameterDirection.Output;
cmd.ExecuteNonQuery();
Console.WriteLine("Employee number: "+cmd.Parameters["@empno"].Value);
Console.WriteLine("Birthday: " + cmd.Parameters["@bday"].Value);
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
Console.WriteLine("Error " + ex.Number + " has occurred: " + ex.Message);
}
conn.Close();
Console.WriteLine("Done.");
}
}
}
The following code shows the same application in Visual Basic:
Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports System.Data
Imports MySql.Data
Imports MySql.Data.MySqlClient
Module Module1
Sub Main()
Dim conn As New MySqlConnection()
conn.ConnectionString = "server=localhost;user=root;database=world;port=3306;password=******;"
Dim cmd As New MySqlCommand()
Try
Console.WriteLine("Connecting to MySQL...")
conn.Open()
cmd.Connection = conn
cmd.CommandText = "DROP PROCEDURE IF EXISTS add_emp"
cmd.ExecuteNonQuery()
cmd.CommandText = "DROP TABLE IF EXISTS emp"
cmd.ExecuteNonQuery()
cmd.CommandText = "CREATE TABLE emp (empno INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY, first_name VARCHAR(20), last_name VARCHAR(20), birthdate DATE)"
cmd.ExecuteNonQuery()
cmd.CommandText = "CREATE PROCEDURE add_emp(" & "IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT)" & "BEGIN INSERT INTO emp(first_name, last_name, birthdate) " & "VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END"
cmd.ExecuteNonQuery()
Catch ex As MySqlException
Console.WriteLine(("Error " & ex.Number & " has occurred: ") + ex.Message)
End Try
conn.Close()
Console.WriteLine("Connection closed.")
Try
Console.WriteLine("Connecting to MySQL...")
conn.Open()
cmd.Connection = conn
cmd.CommandText = "add_emp"
cmd.CommandType = CommandType.StoredProcedure
cmd.Parameters.AddWithValue("@lname", "Jones")
cmd.Parameters("@lname").Direction = ParameterDirection.Input
cmd.Parameters.AddWithValue("@fname", "Tom")
cmd.Parameters("@fname").Direction = ParameterDirection.Input
cmd.Parameters.AddWithValue("@bday", "1940-06-07")
cmd.Parameters("@bday").Direction = ParameterDirection.Input
cmd.Parameters.AddWithValue("@empno", MySqlDbType.Int32)
cmd.Parameters("@empno").Direction = ParameterDirection.Output
cmd.ExecuteNonQuery()
Console.WriteLine("Employee number: " & cmd.Parameters("@empno").Value)
Console.WriteLine("Birthday: " & cmd.Parameters("@bday").Value)
Catch ex As MySql.Data.MySqlClient.MySqlException
Console.WriteLine(("Error " & ex.Number & " has occurred: ") + ex.Message)
End Try
conn.Close()
Console.WriteLine("Done.")
End Sub
End Module
21.2.5.10. Handling BLOB Data With Connector/Net
One common use for MySQL is the storage of binary data in BLOB columns. MySQL supports four different BLOB data types: TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB, all described in Section 11.4.3, “The BLOB and TEXT Types” and Section 11.6, “Data Type Storage Requirements”.
Data stored in a BLOB column can be accessed using Connector/Net and manipulated using client-side code. There are no special requirements for using Connector/Net with BLOB data.
Simple code examples will be presented within this section, and a full sample application can be found in the Samples directory of the Connector/Net installation.
21.2.5.10.1. Preparing the MySQL Server
The first step is using MySQL with BLOB data is to configure the server. Let's start by creating a table to be accessed. In my file tables, I usually have four columns: an AUTO_INCREMENT column of appropriate size (UNSIGNED SMALLINT) to serve as a primary key to identify the file, a VARCHAR column that stores the file name, an UNSIGNED MEDIUMINT column that stores the size of the file, and a MEDIUMBLOB column that stores the file itself. For this example, I will use the following table definition:
CREATE TABLE file(
file_id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
file_name VARCHAR(64) NOT NULL,
file_size MEDIUMINT UNSIGNED NOT NULL,
file MEDIUMBLOB NOT NULL);
After creating a table, you might need to modify the max_allowed_packet system variable. This variable determines how large of a packet (that is, a single row) can be sent to the MySQL server. By default, the server only accepts a maximum size of 1MB from the client application. If you intend to exceed 1MB in your file transfers, increase this number.
The max_allowed_packet option can be modified using the MySQL Workbench Server Administration screen. Adjust the Maximum permitted option in the Data / Memory size section of the Networking tab to an appropriate setting. After adjusting the value, click the Apply button and restart the server using the Startup / Shutdown screen of MySQL Workbench. You can also adjust this value directly in the my.cnf file (add a line that reads max_allowed_packet=xxM), or use the SET max_allowed_packet=xxM; syntax from within MySQL.
Try to be conservative when setting max_allowed_packet, as transfers of BLOB data can take some time to complete. Try to set a value that will be adequate for your intended use and increase the value if necessary.
21.2.5.10.2. Writing a File to the Database
To write a file to a database, we need to convert the file to a byte array, then use the byte array as a parameter to an INSERT query.
The following code opens a file using a FileStream object, reads it into a byte array, and inserts it into the file table:
Visual Basic Example
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim SQL As String
Dim FileSize As UInt32
Dim rawData() As Byte
Dim fs As FileStream
conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"
Try
fs = New FileStream("c:\image.png", FileMode.Open, FileAccess.Read)
FileSize = fs.Length
rawData = New Byte(FileSize) {}
fs.Read(rawData, 0, FileSize)
fs.Close()
conn.Open()
SQL = "INSERT INTO file VALUES(NULL, @FileName, @FileSize, @File)"
cmd.Connection = conn
cmd.CommandText = SQL
cmd.Parameters.AddWithValue("@FileName", strFileName)
cmd.Parameters.AddWithValue("@FileSize", FileSize)
cmd.Parameters.AddWithValue("@File", rawData)
cmd.ExecuteNonQuery()
MessageBox.Show("File Inserted into database successfully!", _
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)
conn.Close()
Catch ex As Exception
MessageBox.Show("There was an error: " & ex.Message, "Error", _
MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
C# Example
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";
try
{
fs = new FileStream(@"c:\image.png", FileMode.Open, FileAccess.Read);
FileSize = fs.Length;
rawData = new byte[FileSize];
fs.Read(rawData, 0, FileSize);
fs.Close();
conn.Open();
SQL = "INSERT INTO file VALUES(NULL, @FileName, @FileSize, @File)";
cmd.Connection = conn;
cmd.CommandText = SQL;
cmd.Parameters.AddWithValue("@FileName", strFileName);
cmd.Parameters.AddWithValue("@FileSize", FileSize);
cmd.Parameters.AddWithValue("@File", rawData);
cmd.ExecuteNonQuery();
MessageBox.Show("File Inserted into database successfully!",
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);
conn.Close();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}
The Read method of the FileStream object is used to load the file into a byte array which is sized according to the Length property of the FileStream object.
After assigning the byte array as a parameter of the MySqlCommand object, the ExecuteNonQuery method is called and the BLOB is inserted into the file table.
21.2.5.10.3. Reading a BLOB from the Database to a File on Disk
Once a file is loaded into the file table, we can use the MySqlDataReader class to retrieve it.
The following code retrieves a row from the file table, then loads the data into a FileStream object to be written to disk:
Visual Basic Example
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myData As MySqlDataReader
Dim SQL As String
Dim rawData() As Byte
Dim FileSize As UInt32
Dim fs As FileStream
conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"
SQL = "SELECT file_name, file_size, file FROM file"
Try
conn.Open()
cmd.Connection = conn
cmd.CommandText = SQL
myData = cmd.ExecuteReader
If Not myData.HasRows Then Throw New Exception("There are no BLOBs to save")
myData.Read()
FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"))
rawData = New Byte(FileSize) {}
myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, FileSize)
fs = New FileStream("C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write)
fs.Write(rawData, 0, FileSize)
fs.Close()
MessageBox.Show("File successfully written to disk!", "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)
myData.Close()
conn.Close()
Catch ex As Exception
MessageBox.Show("There was an error: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
C# Example
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataReader myData;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";
SQL = "SELECT file_name, file_size, file FROM file";
try
{
conn.Open();
cmd.Connection = conn;
cmd.CommandText = SQL;
myData = cmd.ExecuteReader();
if (! myData.HasRows)
throw new Exception("There are no BLOBs to save");
myData.Read();
FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"));
rawData = new byte[FileSize];
myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, (int)FileSize);
fs = new FileStream(@"C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write);
fs.Write(rawData, 0, (int)FileSize);
fs.Close();
MessageBox.Show("File successfully written to disk!",
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);
myData.Close();
conn.Close();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}
After connecting, the contents of the file table are loaded into a MySqlDataReader object. The GetBytes method of the MySqlDataReader is used to load the BLOB into a byte array, which is then written to disk using a FileStream object.
The GetOrdinal method of the MySqlDataReader can be used to determine the integer index of a named column. Use of the GetOrdinal method prevents errors if the column order of the SELECT query is changed.
21.2.5.11. Using the Connector/Net Interceptor Classes
An interceptor is a software design pattern that provides a transparent way to extend or modify some aspect of a program, similar to a user exit. No recompiling is required. With Connector/Net, the interceptors are enabled and disabled by updating the connection string to refer to different sets of interceptor classes that you instantiate.
Connector/Net includes the following interceptor classes:
The BaseCommandInterceptor lets you perform additional operations when a program issues a SQL command. For example, you can examine the SQL statement for logging or debugging purposes, substitute your own result set to implement a caching mechanism, and so on. Depending on the use case, your code can supplement the SQL command or replace it entirely.
The BaseCommandInterceptor class has these methods that you can override:
public virtual bool ExecuteScalar(string sql, ref object returnValue);
public virtual bool ExecuteNonQuery(string sql, ref int returnValue);
public virtual bool ExecuteReader(string sql, CommandBehavior behavior, ref MySqlDataReader returnValue);
public virtual void Init(MySqlConnection connection);
If your interceptor overrides one of the Execute... methods, set the returnValue output parameter and return true if you handled the event, or false if you did not handle the event. The SQL command is processed normally only when all command interceptors return false.
The connection passed to the Init method is the connection that is attached to this interceptor.
The BaseExceptionInterceptor lets you perform additional operations when a program encounters a SQL exception. The exception interception mechanism is modeled after the Connector/J model. You can code an interceptor class and connect it to an existing program without recompiling, and intercept exceptions when they are created. You can then change the exception type and optionally attach information to it. This capability lets you turn on and off logging and debugging code without hardcoding anything in the application. This technique applies to exceptions raised at the SQL level, not to lower-level system or I/O errors.
You develop an exception interceptor first by creating a subclass of the BaseExceptionInterceptor class. You must override the InterceptException() method. You can also override the Init() method to do some one-time initialization.
Each exception interceptor has 2 methods:
public abstract Exception InterceptException(Exception exception,
MySqlConnection connection);
public virtual void Init(MySqlConnection connection);
The connection passed to Init() is the connection that is attached to this interceptor.
Each interceptor is required to override InterceptException and return an exception. It can return the exception it is given, or it can wrap it in a new exception. We currently do not offer the ability to suppress the exception.
Here are examples of using the FQN (fully qualified name) on the connection string:
MySqlConnection c1 = new MySqlConnection(@"server=localhost;pooling=false;
commandinterceptors=CommandApp.MyCommandInterceptor,CommandApp");
MySqlConnection c2 = new MySqlConnection(@"server=localhost;pooling=false;
exceptioninterceptors=ExceptionStackTraceTest.MyExceptionInterceptor,ExceptionStackTraceTest");
In this example, the command interceptor is called CommandApp.MyCommandInterceptor and exists in the CommandApp assembly. The exception interceptor is called ExceptionStackTraceTest.MyExceptionInterceptor and exists in the ExceptionStackTraceTest assembly.
To shorten the connection string, you can register your exception interceptors in your app.config or web.config file like this:
<configSections>
<section name="MySQL" type="MySql.Data.MySqlClient.MySqlConfiguration,
MySql.Data"/>
</configSections>
<MySQL>
<CommandInterceptors>
<add name="myC" type="CommandApp.MyCommandInterceptor,CommandApp" />
</CommandInterceptors>
</MySQL>
<configSections>
<section name="MySQL" type="MySql.Data.MySqlClient.MySqlConfiguration,
MySql.Data"/>
</configSections>
<MySQL>
<ExceptionInterceptors>
<add name="myE"
type="ExceptionStackTraceTest.MyExceptionInterceptor,ExceptionStackTraceTest" />
</ExceptionInterceptors>
</MySQL>
Once you have done that, your connection strings can look like these:
MySqlConnection c1 = new MySqlConnection(@"server=localhost;pooling=false;
commandinterceptors=myC");
MySqlConnection c2 = new MySqlConnection(@"server=localhost;pooling=false;
exceptioninterceptors=myE");
21.2.5.12. Handling Date and Time Information in Connector/Net
MySQL and the .NET languages handle date and time information differently, with MySQL allowing dates that cannot be represented by a .NET data type, such as '0000-00-00 00:00:00'. These differences can cause problems if not properly handled.
The following sections demonstrate how to properly handle date and time information when using Connector/Net.
21.2.5.12.1. Fractional Seconds
Connector/Net 6.5 and higher support the fractional seconds feature introduced in MySQL 5.6.4. Fractional seconds could always be specified in a date literal or passed back and forth as parameters and return values, but the fractional part was always stripped off when stored in a table column. In MySQL 5.6.4 and higher, the fractional part is now preserved in data stored and retrieved through SQL. For fractional second handling in MySQL 5.6.4 and higher, see Section 11.3.6, “Fractional Seconds in Time Values”. For the behavior of fractional seconds prior to MySQL 5.6.4, see Fractional Seconds in Time Values.
To use the more precise date and time types, specify a value from 1 to 6 when creating the table column, for example TIME(3) or DATETIME(6), representing the number of digits of precision after the decimal point. Specifying a precision of 0 leaves the fractional part out entirely. In your C# or Visual Basic code, refer to the Millisecond member to retrieve the fractional second value from the MySqlDateTime object returned by the GetMySqlDateTime function. The DateTime object returned by the GetDateTime function also contains the fractional value, but only the first 3 digits.
For related code examples, see the following blog post: https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support_on_datetime
21.2.5.12.2. Problems when Using Invalid Dates
The differences in date handling can cause problems for developers who use invalid dates. Invalid MySQL dates cannot be loaded into native .NET DateTime objects, including NULL dates.
Because of this issue, .NET DataSet objects cannot be populated by the Fill method of the MySqlDataAdapter class as invalid dates will cause a System.ArgumentOutOfRangeException exception to occur.
21.2.5.12.3. Restricting Invalid Dates
The best solution to the date problem is to restrict users from entering invalid dates. This can be done on either the client or the server side.
Restricting invalid dates on the client side is as simple as always using the .NET DateTime class to handle dates. The DateTime class will only allow valid dates, ensuring that the values in your database are also valid. The disadvantage of this is that it is not useful in a mixed environment where .NET and non .NET code are used to manipulate the database, as each application must perform its own date validation.
Users of MySQL 5.0.2 and higher can use the new traditional SQL mode to restrict invalid date values. For information on using the traditional SQL mode, see Section 5.1.7, “Server SQL Modes”.
21.2.5.12.4. Handling Invalid Dates
Although it is strongly recommended that you avoid the use of invalid dates within your .NET application, it is possible to use invalid dates by means of the MySqlDateTime data type.
The MySqlDateTime data type supports the same date values that are supported by the MySQL server. The default behavior of Connector/Net is to return a .NET DateTime object for valid date values, and return an error for invalid dates. This default can be modified to cause Connector/Net to return MySqlDateTime objects for invalid dates.
To instruct Connector/Net to return a MySqlDateTime object for invalid dates, add the following line to your connection string:
Allow Zero Datetime=True
Please note that the use of the MySqlDateTime class can still be problematic. The following are some known issues:
Data binding for invalid dates can still cause errors (zero dates like 0000-00-00 do not seem to have this problem).
The ToString method return a date formatted in the standard MySQL format (for example, 2005-02-23 08:50:25). This differs from the ToString behavior of the .NET DateTime class.
The MySqlDateTime class supports NULL dates, while the .NET DateTime class does not. This can cause errors when trying to convert a MySQLDateTime to a DateTime if you do not check for NULL first.
Because of the known issues, the best recommendation is still to use only valid dates in your application.
21.2.5.12.5. Handling NULL Dates
The .NET DateTime data type cannot handle NULL values. As such, when assigning values from a query to a DateTime variable, you must first check whether the value is in fact NULL.
When using a MySqlDataReader, use the .IsDBNull method to check whether a value is NULL before making the assignment:
Visual Basic Example
If Not myReader.IsDBNull(myReader.GetOrdinal("mytime")) Then
myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"))
Else
myTime = DateTime.MinValue
End If
C# Example
if (! myReader.IsDBNull(myReader.GetOrdinal("mytime")))
myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"));
else
myTime = DateTime.MinValue;
NULL values will work in a data set and can be bound to form controls without special handling.
21.2.5.13. Using the MySqlBulkLoader Class
MySQL Connector/Net features a bulk loader class that wraps the MySQL statement LOAD DATA INFILE. This gives MySQL Connector/Net the ability to load a data file from a local or remote host to the server. The class concerned is MySqlBulkLoader. This class has various methods, the main one being load to cause the specified file to be loaded to the server. Various parameters can be set to control how the data file is processed. This is achieved through setting various properties of the class. For example, the field separator used, such as comma or tab, can be specified, along with the record terminator, such as newline.
The following code shows a simple example of using the MySqlBulkLoader class. First an empty table needs to be created, in this case in the test database:
CREATE TABLE Career (
Name VARCHAR(100) NOT NULL,
Age INTEGER,
Profession VARCHAR(200)
);
A simple tab-delimited data file is also created (it could use any other field delimiter such as comma):
Table Career in Test Database
Name Age Profession
Tony 47 Technical Writer
Ana 43 Nurse
Fred 21 IT Specialist
Simon 45 Hairy Biker
Note that with this test file the first three lines will need to be ignored, as they do not contain table data. This can be achieved using the NumberOfLinesToSkip property. This file can then be loaded and used to populate the Career table in the test database:
using System;
using System.Text;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
string connStr = "server=localhost;user=root;database=test;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
MySqlBulkLoader bl = new MySqlBulkLoader(conn);
bl.TableName = "Career";
bl.FieldTerminator = "\t";
bl.LineTerminator = "\n";
bl.FileName = "c:/career_data.txt";
bl.NumberOfLinesToSkip = 3;
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
// Upload data from file
int count = bl.Load();
Console.WriteLine(count + " lines uploaded.");
string sql = "SELECT Name, Age, Profession FROM Career";
MySqlCommand cmd = new MySqlCommand(sql, conn);
MySqlDataReader rdr = cmd.ExecuteReader();
while (rdr.Read())
{
Console.WriteLine(rdr[0] + " -- " + rdr[1] + " -- " + rdr[2]);
}
rdr.Close();
conn.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
Console.WriteLine("Done.");
}
}
}
Further information on LOAD DATA INFILE can be found in Section 13.2.6, “LOAD DATA INFILE Syntax”. Further information on MySqlBulkLoader can be found in the reference documentation that was included with your connector.
21.2.5.14. Using the MySQL Connector/Net Trace Source Object
MySQL Connector/Net 6.2 introduced support for .NET 2.0 compatible tracing, using TraceSource objects.
The .NET 2.0 tracing architecture consists of four main parts:
Source - This is the originator of the trace information. The source is used to send trace messages. The name of the source provided by MySQL Connector/Net is mysql.
Switch - This defines the level of trace information to emit. Typically, this is specified in the app.config file, so that it is not necessary to recompile an application to change the trace level.
Listener - Trace listeners define where the trace information will be written to. Supported listeners include, for example, the Visual Studio Output window, the Windows Event Log, and the console.
Filter - Filters can be attached to listeners. Filters determine the level of trace information that will be written. While a switch defines the level of information that will be written to all listeners, a filter can be applied on a per-listener basis, giving finer grained control of trace information.
To use tracing a TraceSource object first needs to be created. To create a TraceSource object in MySQL Connector/Net you would use code similar to the following:
TraceSource ts = new TraceSource("mysql");
To enable trace messages, configure a trace switch. There are three main switch classes, BooleanSwitch, SourceSwitch, and TraceSwitch. Trace switches also have associated with them a trace level enumeration, these are Off, Error, Warning, Info, and Verbose. The following code snippet illustrates creating a switch:
ts.Switch = new SourceSwitch("MySwitch", "Verbose");
This creates a SourceSwitch, called MySwitch, and sets the trace level to Verbose, meaning that all trace messages will be written.
It is convenient to be able to change the trace level without having to recompile the code. This is achieved by specifying the trace level in application configuration file, app.config. You then simply need to specify the desired trace level in the configuration file and restart the application. The trace source is configured within the system.diagnostics section of the file. The following XML snippet illustrates this:
<configuration>
...
<system.diagnostics>
<sources>
<source name="mysql" switchName="MySwitch"
switchType="System.Diagnostics.SourceSwitch" />
...
</sources>
<switches>
<add name="MySwitch" value="Verbose"/>
...
</switches>
</system.diagnostics>
...
</configuration>
By default, trace information is written to the Output window of Microsoft Visual Studio. There are a wide range of listeners that can be attached to the trace source, so that trace messages can be written out to various destinations. You can also create custom listeners to allow trace messages to be written to other destinations as mobile devices and web services. A commonly used example of a listener is ConsoleTraceListener, which writes trace messages to the console.
To add a listener at runtime, use code such as the following:
ts.Listeners.Add(new ConsoleTraceListener());
Then, call methods on the trace source object to generate trace information. For example, the TraceInformation(), TraceEvent(), or TraceData() methods can be used.
The TraceInformation() method simply prints a string passed as a parameter. The TraceEvent() method, as well as the optional informational string, requires a TraceEventType value to be passed to indicate the trace message type, and also an application specific ID. The TraceEventType can have a value of Verbose, Information, Warning, Error, and Critical. Using the TraceData() method you can pass any object, for example an exception object, instead of a message.
To ensure than these generated trace messages gets flushed from the trace source buffers to listeners, invoke the Flush() method. When you are finished using a trace source, call the Close() method. The Close() method first calls Flush(), to ensure any remaining data is written out. It then frees up resources, and closes the listeners associated with the trace source.
ts.TraceInformation("Informational message");
ts.TraceEvent(TraceEventType.Error, 3, "Optional error message");
ts.TraceData(TraceEventType.Error, 3, ex); // pass exception object
ts.Flush();
...
ts.Close();
21.2.5.14.1. Viewing MySQL Trace Information
This section describes how to set up your application to view MySQL trace information.
The first thing you need to do is create a suitable app.config file for your application. An example is shown in the following code:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.diagnostics>
<sources>
<source name="mysql" switchName="SourceSwitch"
switchType="System.Diagnostics.SourceSwitch" >
<listeners>
<add name="console" />
<remove name ="Default" />
</listeners>
</source>
</sources>
<switches>
<!-- You can set the level at which tracing is to occur -->
<add name="SourceSwitch" value="Verbose" />
<!-- You can turn tracing off -->
<!--add name="SourceSwitch" value="Off" -->
</switches>
<sharedListeners>
<add name="console"
type="System.Diagnostics.ConsoleTraceListener"
initializeData="false"/>
</sharedListeners>
</system.diagnostics>
</configuration>
This ensures a suitable trace source is created, along with a switch. The switch level in this case is set to Verbose to display the maximum amount of information.
In the application the only other step required is to add logging=true to the connection string. An example application could be:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
using MySql.Data;
using MySql.Data.MySqlClient;
using MySql.Web;
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
string connStr = "server=localhost;user=root;database=world;port=3306;password=******;logging=true;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
string sql = "SELECT Name, HeadOfState FROM Country WHERE Continent='Oceania'";
MySqlCommand cmd = new MySqlCommand(sql, conn);
MySqlDataReader rdr = cmd.ExecuteReader();
while (rdr.Read())
{
Console.WriteLine(rdr[0] + " -- " + rdr[1]);
}
rdr.Close();
conn.Close();
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
Console.WriteLine("Done.");
}
}
}
This simple application will then generate the following output:
Connecting to MySQL...
mysql Information: 1 : 1: Connection Opened: connection string = 'server=localhost;User Id=root;database=world;port=3306
;password=******;logging=True'
mysql Information: 3 : 1: Query Opened: SHOW VARIABLES
mysql Information: 4 : 1: Resultset Opened: field(s) = 2, affected rows = -1, inserted id = -1
mysql Information: 5 : 1: Resultset Closed. Total rows=272, skipped rows=0, size (bytes)=7058
mysql Information: 6 : 1: Query Closed
mysql Information: 3 : 1: Query Opened: SHOW COLLATION
mysql Information: 4 : 1: Resultset Opened: field(s) = 6, affected rows = -1, inserted id = -1
mysql Information: 5 : 1: Resultset Closed. Total rows=127, skipped rows=0, size (bytes)=4102
mysql Information: 6 : 1: Query Closed
mysql Information: 3 : 1: Query Opened: SET character_set_results=NULL
mysql Information: 4 : 1: Resultset Opened: field(s) = 0, affected rows = 0, inserted id = 0
mysql Information: 5 : 1: Resultset Closed. Total rows=0, skipped rows=0, size (bytes)=0
mysql Information: 6 : 1: Query Closed
mysql Information: 10 : 1: Set Database: world
mysql Information: 3 : 1: Query Opened: SELECT Name, HeadOfState FROM Country WHERE Continent='Oceania'
mysql Information: 4 : 1: Resultset Opened: field(s) = 2, affected rows = -1, inserted id = -1
American Samoa -- George W. Bush
Australia -- Elisabeth II
...
Wallis and Futuna -- Jacques Chirac
Vanuatu -- John Bani
United States Minor Outlying Islands -- George W. Bush
mysql Information: 5 : 1: Resultset Closed. Total rows=28, skipped rows=0, size (bytes)=788
mysql Information: 6 : 1: Query Closed
Done.
mysql Information: 2 : 1: Connection Closed
The first number displayed in the trace message corresponds to the MySQL event type:
Event | Description |
---|---|
1 | ConnectionOpened: connection string |
2 | ConnectionClosed: |
3 | QueryOpened: mysql server thread id, query text |
4 | ResultOpened: field count, affected rows (-1 if select), inserted id (-1 if select) |
5 | ResultClosed: total rows read, rows skipped, size of resultset in bytes |
6 | QueryClosed: |
7 | StatementPrepared: prepared sql, statement id |
8 | StatementExecuted: statement id, mysql server thread id |
9 | StatementClosed: statement id |
10 | NonQuery: [varies] |
11 | UsageAdvisorWarning: usage advisor flag. NoIndex = 1, BadIndex = 2, SkippedRows = 3, SkippedColumns = 4, FieldConversion = 5. |
12 | Warning: level, code, message |
13 | Error: error number, error message |
The second number displayed in the trace message is the connection count.
Although this example uses the ConsoleTraceListener, any of the other standard listeners could have been used. Another possibility is to create a custom listener that uses the information passed using the TraceEvent method. For example, a custom trace listener could be created to perform active monitoring of the MySQL event messages, rather than simply writing these to an output device.
It is also possible to add listeners to the MySQL Trace Source at runtime. This can be done with the following code:
MySqlTrace.Listeners.Add(new ConsoleTraceListener());
MySQL Connector/Net 6.3.2 introduced the ability to switch tracing on and off at runtime. This can be achieved using the calls MySqlTrace.EnableQueryAnalyzer(string host, int postInterval) and MySqlTrace.DisableQueryAnalyzer(). The parameter host is the URL of the MySQL Enterprise Monitor server to monitor. The parameter postInterval is how often to post the data to MySQL Enterprise Monitor, in seconds.
21.2.5.14.2. Building Custom Listeners
To build custom listeners that work with the MySQL Connector/Net Trace Source, it is necessary to understand the key methods used, and the event data formats used.
The main method involved in passing trace messages is the TraceSource.TraceEvent method. This has the prototype:
public void TraceEvent(
TraceEventType eventType,
int id,
string format,
params Object[] args
)
This trace source method will process the list of attached listeners and call the listener's TraceListener.TraceEvent method. The prototype for the TraceListener.TraceEvent method is as follows:
public virtual void TraceEvent(
TraceEventCache eventCache,
string source,
TraceEventType eventType,
int id,
string format,
params Object[] args
)
The first three parameters are used in the standard as defined by Microsoft. The last three parameters contain MySQL-specific trace information. Each of these parameters is now discussed in more detail.
int id
This is a MySQL-specific identifier. It identifies the MySQL event type that has occurred, resulting in a trace message being generated. This value is defined by the MySqlTraceEventType public enum contained in the MySQL Connector/Net code:
public enum MySqlTraceEventType : int
{
ConnectionOpened = 1,
ConnectionClosed,
QueryOpened,
ResultOpened,
ResultClosed,
QueryClosed,
StatementPrepared,
StatementExecuted,
StatementClosed,
NonQuery,
UsageAdvisorWarning,
Warning,
Error
}
The MySQL event type also determines the contents passed using the parameter params Object[] args. The nature of the args parameters are described in further detail in the following material.
string format
This is the format string that contains zero or more format items, which correspond to objects in the args array. This would be used by a listener such as ConsoleTraceListener to write a message to the output device.
params Object[] args
This is a list of objects that depends on the MySQL event type, id. However, the first parameter passed using this list is always the driver id. The driver id is a unique number that is incremented each time the connector is opened. This enables groups of queries on the same connection to be identified. The parameters that follow driver id depend on the MySQL event id, and are as follows:
MySQL-specific event type | Arguments (params Object[] args) |
---|---|
ConnectionOpened | Connection string |
ConnectionClosed | No additional parameters |
QueryOpened | mysql server thread id, query text |
ResultOpened | field count, affected rows (-1 if select), inserted id (-1 if select) |
ResultClosed | total rows read, rows skipped, size of resultset in bytes |
QueryClosed | No additional parameters |
StatementPrepared | prepared sql, statement id |
StatementExecuted | statement id, mysql server thread id |
StatementClosed | statement id |
NonQuery | Varies |
UsageAdvisorWarning | usage advisor flag. NoIndex = 1, BadIndex = 2, SkippedRows = 3, SkippedColumns = 4, FieldConversion = 5. |
Warning | level, code, message |
Error | error number, error message |
This information will allow you to create custom trace listeners that can actively monitor the MySQL-specific events.
21.2.5.15. Binary/Nonbinary Issues
There are certain situations where MySQL will return incorrect metadata about one or more columns. More specifically, the server will sometimes report that a column is binary when it is not and vice versa. In these situations, it becomes practically impossible for the connector to be able to correctly identify the correct metadata.
Some examples of situations that may return incorrect metadata are:
Execution of SHOW PROCESSLIST. Some of the columns will be returned as binary even though they only hold string data.
When a temporary table is used to process a resultset, some columns may be returned with incorrect binary flags.
Some server functions such DATE_FORMAT will incorrectly return the column as binary.
With the availability of BINARY and VARBINARY data types, it is important that we respect the metadata returned by the server. However, we are aware that some existing applications may break with this change, so we are creating a connection string option to enable or disable it. By default, Connector/Net 5.1 respects the binary flags returned by the server. You might need to make small changes to your application to accommodate this change.
In the event that the changes required to your application would be too large, adding 'respect binary flags=false' to your connection string causes the connector to use the prior behavior: any column that is marked as string, regardless of binary flags, will be returned as string. Only columns that are specifically marked as a BLOB will be returned as BLOB.
21.2.5.16. Character Set Considerations for Connector/Net
Treating Binary Blobs As UTF8
MySQL doesn't currently support 4-byte UTF8 sequences. This makes it difficult to represent some multi-byte languages such as Japanese. To try and alleviate this, Connector/Net now supports a mode where binary blobs can be treated as strings.
To do this, you set the 'Treat Blobs As UTF8' connection string keyword to yes. This is all that needs to be done to enable conversion of all binary blobs to UTF8 strings. To convert only some of your BLOB columns, you can make use of the 'BlobAsUTF8IncludePattern' and'BlobAsUTF8ExcludePattern' keywords. Set these to a regular expression pattern that matches the column names to include or exclude respectively.
When the regular expression patterns both match a single column, the include pattern is applied before the exclude pattern. The result, in this case, would be that the column would be excluded. Also, be aware that this mode does not apply to columns of type BINARY or VARBINARY and also do not apply to nonbinary BLOB columns.
Currently, this mode only applies to reading strings out of MySQL. To insert 4-byte UTF8 strings into blob columns, use the .NET Encoding.GetBytes function to convert your string to a series of bytes. You can then set this byte array as a parameter for a BLOB column.
21.2.5.17. Using Connector/Net with Crystal Reports
Crystal Reports is a common tool used by Windows application developers to perform reporting and document generation. In this section we will show how to use Crystal Reports XI with MySQL and Connector/Net.
21.2.5.17.1. Creating a Data Source
When creating a report in Crystal Reports there are two options for accessing the MySQL data while designing your report.
The first option is to use Connector/ODBC as an ADO data source when designing your report. You will be able to browse your database and choose tables and fields using drag and drop to build your report. The disadvantage of this approach is that additional work must be performed within your application to produce a data set that matches the one expected by your report.
The second option is to create a data set in VB.NET and save it as XML. This XML file can then be used to design a report. This works quite well when displaying the report in your application, but is less versatile at design time because you must choose all relevant columns when creating the data set. If you forget a column you must re-create the data set before the column can be added to the report.
The following code can be used to create a data set from a query and write it to disk:
Visual Basic Example
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter
conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=world"
Try
conn.Open()
cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _
& "country.name, country.population, country.continent " _
& "FROM country, city ORDER BY country.continent, country.name"
cmd.Connection = conn
myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)
myData.WriteXml("C:\dataset.xml", XmlWriteMode.WriteSchema)
Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
C# Example
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";
try
{
cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
"country.name, country.population, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";
cmd.Connection = conn;
myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);
myData.WriteXml(@"C:\dataset.xml", XmlWriteMode.WriteSchema);
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}
The resulting XML file can be used as an ADO.NET XML datasource when designing your report.
If you choose to design your reports using Connector/ODBC, it can be downloaded from dev.mysql.com.
21.2.5.17.2. Creating the Report
For most purposes, the Standard Report wizard helps with the initial creation of a report. To start the wizard, open Crystal Reports and choose the New > Standard Report option from the File menu.
The wizard first prompts you for a data source. If you use Connector/ODBC as your data source, use the OLEDB provider for ODBC option from the OLE DB (ADO) tree instead of the ODBC (RDO) tree when choosing a data source. If using a saved data set, choose the ADO.NET (XML) option and browse to your saved data set.
The remainder of the report creation process is done automatically by the wizard.
After the report is created, choose the Report Options... entry of the File menu. Un-check the Save Data With Report option. This prevents saved data from interfering with the loading of data within our application.
21.2.5.17.3. Displaying the Report
To display a report we first populate a data set with the data needed for the report, then load the report and bind it to the data set. Finally we pass the report to the crViewer control for display to the user.
The following references are needed in a project that displays a report:
CrystalDecisions.CrystalReports.Engine
CrystalDecisions.ReportSource
CrystalDecisions.Shared
CrystalDecisions.Windows.Forms
The following code assumes that you created your report using a data set saved using the code shown in Section 21.2.5.17.1, “Creating a Data Source”, and have a crViewer control on your form named myViewer.
Visual Basic Example
Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient
Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter
conn.ConnectionString = _
"server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"
Try
conn.Open()
cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _
& "country.name, country.population, country.continent " _
& "FROM country, city ORDER BY country.continent, country.name"
cmd.Connection = conn
myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)
myReport.Load(".\world_report.rpt")
myReport.SetDataSource(myData)
myViewer.ReportSource = myReport
Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
C# Example
using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;
ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";
try
{
cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
"country.name, country.population, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";
cmd.Connection = conn;
myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);
myReport.Load(@".\world_report.rpt");
myReport.SetDataSource(myData);
myViewer.ReportSource = myReport;
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}
A new data set it generated using the same query used to generate the previously saved data set. Once the data set is filled, a ReportDocument is used to load the report file and bind it to the data set. The ReportDocument is the passed as the ReportSource of the crViewer.
This same approach is taken when a report is created from a single table using Connector/ODBC. The data set replaces the table used in the report and the report is displayed properly.
When a report is created from multiple tables using Connector/ODBC, a data set with multiple tables must be created in our application. This enables each table in the report data source to be replaced with a report in the data set.
We populate a data set with multiple tables by providing multiple SELECT statements in our MySqlCommand object. These SELECT statements are based on the SQL query shown in Crystal Reports in the Database menu's Show SQL Query option. Assume the following query:
SELECT `country`.`Name`, `country`.`Continent`, `country`.`Population`, `city`.`Name`, `city`.`Population`
FROM `world`.`country` `country` LEFT OUTER JOIN `world`.`city` `city` ON `country`.`Code`=`city`.`CountryCode`
ORDER BY `country`.`Continent`, `country`.`Name`, `city`.`Name`
This query is converted to two SELECT queries and displayed with the following code:
Visual Basic Example
Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient
Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter
conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=world"
Try
conn.Open()
cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER BY countrycode, name; " _
& "SELECT name, population, code, continent FROM country ORDER BY continent, name"
cmd.Connection = conn
myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)
myReport.Load(".\world_report.rpt")
myReport.Database.Tables(0).SetDataSource(myData.Tables(0))
myReport.Database.Tables(1).SetDataSource(myData.Tables(1))
myViewer.ReportSource = myReport
Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
C# Example
using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;
ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;
conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();
conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";
try
{
cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER " +
"BY countrycode, name; SELECT name, population, code, continent FROM " +
"country ORDER BY continent, name";
cmd.Connection = conn;
myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);
myReport.Load(@".\world_report.rpt");
myReport.Database.Tables(0).SetDataSource(myData.Tables(0));
myReport.Database.Tables(1).SetDataSource(myData.Tables(1));
myViewer.ReportSource = myReport;
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}
It is important to order the SELECT queries in alphabetic order, as this is the order the report will expect its source tables to be in. One SetDataSource statement is needed for each table in the report.
This approach can cause performance problems because Crystal Reports must bind the tables together on the client-side, which will be slower than using a pre-saved data set.
21.2.5.18. ASP.NET Provider Model
MySQL Connector/Net provides support for the ASP.NET 2.0 provider model. This model enables application developers to focus on the business logic of their application instead of having to recreate such boilerplate items as membership and roles support.
MySQL Connector/Net supplies the following providers:
Membership Provider
Role Provider
Profile Provider
Session State Provider (MySQL Connector/Net 6.1 and later)
The following tables show the supported providers, their default provider and the corresponding MySQL provider.
Membership Provider
Default Provider | MySQL Provider |
---|---|
System.Web.Security.SqlMembershipProvider | MySql.Web.Security.MySQLMembershipProvider |
Role Provider
Default Provider | MySQL Provider |
---|---|
System.Web.Security.SqlRoleProvider | MySql.Web.Security.MySQLRoleProvider |
Profile Provider
Default Provider | MySQL Provider |
---|---|
System.Web.Profile.SqlProfileProvider | MySql.Web.Profile.MySQLProfileProvider |
SessionState Provider
Default Provider | MySQL Provider |
---|---|
System.Web.SessionState.InProcSessionStateStore | MySql.Web.SessionState.MySqlSessionStateStore |
Note
The MySQL Session State provider uses slightly different capitalization on the class name compared to the other MySQL providers.
Installing The Providers
The installation of Connector/Net 5.1 or later will install the providers and register them in your machine's .NET configuration file, machine.config. The additional entries created will result in the system.web section appearing similar to the following code:
<system.web>
<processModel autoConfig="true" />
<httpHandlers />
<membership>
<providers>
<add name="AspNetSqlMembershipProvider" type="System.Web.Security.SqlMembershipProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" connectionStringName="LocalSqlServer" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="true" applicationName="/" requiresUniqueEmail="false" passwordFormat="Hashed" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="7" minRequiredNonalphanumericCharacters="1" passwordAttemptWindow="10" passwordStrengthRegularExpression="" />
<add name="MySQLMembershipProvider" type="MySql.Web.Security.MySQLMembershipProvider, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="true" applicationName="/" requiresUniqueEmail="false" passwordFormat="Clear" maxInvalidPasswordAttempts="5" minRequiredPasswordLength="7" minRequiredNonalphanumericCharacters="1" passwordAttemptWindow="10" passwordStrengthRegularExpression="" />
</providers>
</membership>
<profile>
<providers>
<add name="AspNetSqlProfileProvider" connectionStringName="LocalSqlServer" applicationName="/" type="System.Web.Profile.SqlProfileProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
<add name="MySQLProfileProvider" type="MySql.Web.Profile.MySQLProfileProvider, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" applicationName="/" />
</providers>
</profile>
<roleManager>
<providers>
<add name="AspNetSqlRoleProvider" connectionStringName="LocalSqlServer" applicationName="/" type="System.Web.Security.SqlRoleProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
<add name="AspNetWindowsTokenRoleProvider" applicationName="/" type="System.Web.Security.WindowsTokenRoleProvider, System.Web, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
<add name="MySQLRoleProvider" type="MySql.Web.Security.MySQLRoleProvider, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" applicationName="/" />
</providers>
</roleManager>
</system.web>
Each provider type can have multiple provider implementations. The default provider can also be set here using the defaultProvider attribute, but usually this is set in the web.config file either manually or by using the ASP.NET configuration tool.
At time of writing, the MySqlSessionStateStore is not added to machine.config at install time, and so add the following:
<sessionState>
<providers>
<add name="MySqlSessionStateStore" type="MySql.Web.SessionState.MySqlSessionStateStore, MySql.Web, Version=6.1.1.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" connectionStringName="LocalMySqlServer" applicationName="/" />
</providers>
</sessionState>
The SessionState Provider uses the customProvider attribute, rather than defaultProvider, to set the provider as the default. A typical web.config file might contain:
<system.web>
<membership defaultProvider="MySQLMembershipProvider" />
<roleManager defaultProvider="MySQLRoleProvider" />
<profile defaultProvider="MySQLProfileProvider" />
<sessionState customProvider="MySqlSessionStateStore" />
<compilation debug="false">
...
This sets the MySQL Providers as the defaults to be used in this web application.
The providers are implemented in the file mysql.web.dll and this file can be found in your MySQL Connector/Net installation folder. There is no need to run any type of SQL script to set up the database schema, as the providers create and maintain the proper schema automatically.
Using The Providers
The easiest way to start using the providers is to use the ASP.NET configuration tool that is available on the Solution Explorer toolbar when you have a website project loaded.
In the web pages that open, you can select the MySQL membership and roles providers by picking a custom provider for each area.
When the provider is installed, it creates a dummy connection string named LocalMySqlServer. Although this has to be done so that the provider will work in the ASP.NET configuration tool, you override this connection string in your web.config file. You do this by first removing the dummy connection string and then adding in the proper one, as shown in the following example:
<connectionStrings>
<remove name="LocalMySqlServer"/>
<add name="LocalMySqlServer" connectionString="server=xxx;uid=xxx;pwd=xxx;database=xxx;"/>
</connectionStrings>
Note the database to connect to must be specified.
Rather than manually editing configuration files, consider using the MySQL Website Configuration tool to configure your desired provider setup. From MySQL Connector/Net 6.1.1 onwards, all providers can be selected and configured from this wizard. The tool modifies your website.config file to the desired configuration. A tutorial on doing this is available in the following section Section 21.2.3.12, “MySQL Website Configuration Tool”.
A tutorial demonstrating how to use the Membership and Role Providers can be found in the following section Section 21.2.4.2, “Tutorial: MySQL Connector/Net ASP.NET Membership and Role Provider”.
Deployment
To use the providers on a production server, distribute the MySql.Data and the MySql.Web assemblies, and either register them in the remote systems Global Assembly Cache or keep them in your application's bin/ directory.
21.2.5.19. Working with Partial Trust / Medium Trust
.NET applications operate under a given trust level. Normal desktop applications operate under full trust, while web applications that are hosted in shared environments are normally run under the partial trust level (also known as “medium trust”). Some hosting providers host shared applications in their own app pools and allow the application to run under full trust, but this configuration is relatively rare. The Connector/Net support for partial trust has improved over time to simplify the configuration and deployment process for hosting providers.
21.2.5.19.1. Evolution of Partial Trust Support Across Connector/Net Versions
The partial trust support for Connector/Net has improved rapidly throughout the 6.5.x and 6.6.x versions. The latest enhancements do require some configuration changes in existing deployments. Here is a summary of the changes for each version.
6.6.4 and Above: Library Can Be Inside or Outside GAC
Now you can install the MySql.Data.dll library in the Global Assembly Cache (GAC) as explained in Section 21.2.5.19.2, “Configuring Partial Trust with Connector/Net Library Installed in GAC”, or in a bin or lib folder inside the project or solution as explained in Section 21.2.5.19.3, “Configuring Partial Trust with Connector/Net Library Not Installed in GAC”. If the library is not in the GAC, the only protocol supported is TCP/IP.
6.5.1 and Above: Partial Trust Requires Library in the GAC
Connector/Net 6.5 fully enables our provider to run in a partial trust environment when the library is installed in the Global Assembly Cache (GAC). The new MySqlClientPermission class, derived from the .NET DBDataPermission class, helps to simplify the permission setup.
5.0.8 / 5.1.3 and Above: Partial Trust Requires Socket Permissions
Starting with these versions, Connector/Net can be used under partial trust hosting that has been modified to allow the use of sockets for communication. By default, partial trust does not include SocketPermission. Connector/Net uses sockets to talk with the MySQL server, so the hosting provider must create a new trust level that is an exact clone of partial trust but that has the following permissions added:
System.Net.SocketPermission
System.Security.Permissions.ReflectionPermission
System.Net.DnsPermission
System.Security.Permissions.SecurityPermission
Prior to 5.0.8 / 5.1.3: Partial Trust Not Supported
Connector/Net versions prior to 5.0.8 and 5.1.3 were not compatible with partial trust hosting.
21.2.5.19.2. Configuring Partial Trust with Connector/Net Library Installed in GAC
If the library is installed in the GAC, you must include the connection option includesecurityasserts=true in your connection string. This is a new requirement as of Connector/Net 6.6.4.
The following list shows steps and code fragments needed to run a Connector/Net application in a partial trust environment. For illustration purposes, we use the Pipe Connections protocol in this example.
Install Connector/Net: version 6.6.1 or higher, or 6.5.4 or higher.
After installing the library, make the following configuration changes:
In the SecurityClasses section, add a definition for the MySqlClientPermission class, including the version to use.
<configuration>
<mscorlib>
<security>
<policy>
<PolicyLevel version="1">
<SecurityClasses>
....
<SecurityClass Name="MySqlClientPermission" Description="MySql.Data.MySqlClient.MySqlClientPermission, MySql.Data, Version=6.6.4.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d" />
Scroll down to the ASP.Net section:
<PermissionSet class="NamedPermissionSet" version="1" Name="ASP.Net">
Add a new entry for the detailed configuration of the MySqlClientPermission class:
<IPermission class="MySqlClientPermission" version="1" Unrestricted="true"/>
Note: This configuration is the most generalized way that includes all keywords.
Configure the MySQL server to accept pipe connections, by adding the --enable-named-pipe option on the command line. If you need more information about this, see Section 2.3, “Installing MySQL on Microsoft Windows”.
Confirm that the hosting provider has installed the Connector/Net library (MySql.Data.dll) in the GAC.
Optionally, the hosting provider can avoid granting permissions globally by using the new MySqlClientPermission class in the trust policies. (The alternative is to globally enable the permissions System.Net.SocketPermission, System.Security.Permissions.ReflectionPermission, System.Net.DnsPermission, and System.Security.Permissions.SecurityPermission.)
Create a simple web application using Visual Studio 2010.
Add the reference in your application for the MySql.Data.MySqlClient library.
Edit your web.config file so that your application runs using a Medium trust level:
<system.web>
<trust level="Medium"/>
</system.web>
Add the MySql.Data.MySqlClient namespace to your server-code page.
Define the connection string, in slightly different ways depending on the Connector/Net version.
Only for 6.6.4 or later: To use the connections inside any web application that will run in Medium trust, add the new includesecurityasserts option to the connection string. includesecurityasserts=true that makes the library request the following permissions when required: SocketPermissions, ReflectionPermissions, DnsPermissions, SecurityPermissions among others that are not granted in Medium trust levels.
For Connector/Net 6.6.3 or earlier: No special setting for security is needed within the connection string.
MySqlConnectionStringBuilder myconnString = new MySqlConnectionStringBuilder("server=localhost;User Id=root;database=test;");
myconnString.PipeName = "MySQL55";
myconnString.ConnectionProtocol = MySqlConnectionProtocol.Pipe;
// Following attribute is a new requirement when the library is in the GAC.
// Could also be done by adding includesecurityasserts=true; to the string literal
// in the constructor above.
// Not needed with Connector/Net 6.6.3 and earlier.myconnString.IncludeSecurityAsserts = true;
Define the MySqlConnection to use:
MySqlConnection myconn = new MySqlConnection(myconnString.ConnectionString);
myconn.Open();
Retrieve some data from your tables:
MySqlCommand cmd = new MySqlCommand("Select * from products", myconn);
MySqlDataAdapter da = new MySqlDataAdapter(cmd);
DataSet1 tds = new DataSet1();
da.Fill(tds, tds.Tables[0].TableName);
GridView1.DataSource = tds;
GridView1.DataBind();
myconn.Close()
Run the program. It should execute successfully, without requiring any special code or encountering any security problems.
21.2.5.19.3. Configuring Partial Trust with Connector/Net Library Not Installed in GAC
When deploying a web application to a Shared Hosted environment, where this environment is configured to run all their .NET applications under a partial or medium trust level, you might not be able to install the Connector/Net library in the GAC. Instead, you put a reference to the library in the bin or lib folder inside the project or solution. In this case, you configure the security in a different way than when the library is in the GAC.
Connector/Net is commonly used by applications that run in Windows environments where the default communication for the protocol is used via sockets or by TCP/IP. For this protocol to operate is necessary have the required socket permissions in the web configuration file as follows:
Open the medium trust policy web configuration file, which should be under this folder:
%windir%\Microsoft.NET\Framework\{version}\CONFIG\web_mediumtrust.config
Use Framework64 in the path instead of Framework if you are using a 64-bit installation of the framework.
Locate the SecurityClasses tag:
<SecurityClass Name="SocketPermission"
Description="System.Net.SocketPermission, System, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"/>
Scroll down and look for the following PermissionSet:
<PermissionSet version="1" Name="ASP.Net">
Add the following inside this PermissionSet:
<IPermission class="SocketPermission" version="1" Unrestricted="true" />
This configuration lets you use the driver with the default Windows protocol TCP/IP without having any security issues. This approach only supports the TCP/IP protocol, so you cannot use any other type of connection.
Also, since the MySQLClientPermissions class is not added to the medium trust policy, you cannot use it. This configuration is the minimum required in order to work with Connector/Net without the GAC.
21.2.6. Connector/Net Connection String Options Reference
For usage information about connection strings, see Section 21.2.5.2, “Creating a Connector/Net Connection String”. The first table list options that apply generally to all server configurations. The options related to systems using a connection pool are split into a separate table.
General Options
Table 21.20. Connector/Net Connection String Options - General
Name | Default | Description |
---|---|---|
Allow Batch, AllowBatch | true | When true, multiple SQL statements can be sent with one command execution. Note: starting with MySQL 4.1.1, batch statements should be separated by the server-defined separator character. Statements sent to earlier versions of MySQL should be separated by ';'. |
Allow User Variables, AllowUserVariables | false | Setting this to true indicates that the provider expects user variables in the SQL. This option was added in Connector/Net version 5.2.2. |
Allow Zero Datetime, AllowZeroDateTime | false | If set to True, MySqlDataReader.GetValue() returns a MySqlDateTime object for date or datetime columns that have disallowed values, such as zero datetime values, and a System.DateTime object for valid values. If set to False (the default setting) it causes a System.DateTime object to be returned for all valid values and an exception to be thrown for disallowed values, such as zero datetime values. |
Auto Enlist, AutoEnlist | true | If AutoEnlist is set to true, which is the default, a connection opened using TransactionScope participates in this scope, it commits when the scope commits and rolls back if TransactionScope does not commit. However, this feature is considered security sensitive and therefore cannot be used in a medium trust environment. |
BlobAsUTF8ExcludePattern | null | A POSIX-style regular expression that matches the names of BLOB columns that do not contain UTF-8 character data. See Section 21.2.5.16, “Character Set Considerations for Connector/Net” for usage details. |
BlobAsUTF8IncludePattern | null | A POSIX-style regular expression that matches the names of BLOB columns containing UTF-8 character data. See Section 21.2.5.16, “Character Set Considerations for Connector/Net” for usage details. |
Certificate File, CertificateFile | null | This option specifies the path to a certificate file in PKCS #12 format (.pfx). For an example of usage, see Section 21.2.4.7, “Tutorial: Using SSL with MySQL Connector/Net”. Was introduced with 6.2.1. |
Certificate Password, CertificatePassword | null | Specifies a password that is used in conjunction with a certificate specified using the option CertificateFile. For an example of usage, see Section 21.2.4.7, “Tutorial: Using SSL with MySQL Connector/Net”. Was introduced with 6.2.1. |
Certificate Store Location, CertificateStoreLocation | null | Enables you to access a certificate held in a personal store, rather than use a certificate file and password combination. For an example of usage, see Section 21.2.4.7, “Tutorial: Using SSL with MySQL Connector/Net”. Was introduced with 6.2.1. |
Certificate Thumbprint, CertificateThumbprint | null | Specifies a certificate thumbprint to ensure correct identification of a certificate contained within a personal store. For an example of usage, see Section 21.2.4.7, “Tutorial: Using SSL with MySQL Connector/Net”. Was introduced with 6.2.1. |
CharSet, Character Set, CharacterSet | Specifies the character set that should be used to encode all queries sent to the server. Resultsets are still returned in the character set of the result data. | |
Check Parameters, CheckParameters | true | Indicates if stored routine parameters should be checked against the server. |
Command Interceptors, CommandInterceptors | The list of interceptors that can intercept SQL command operations. | |
Connect Timeout, Connection Timeout, ConnectionTimeout | 15 | The length of time (in seconds) to wait for a connection to the server before terminating the attempt and generating an error. |
Connect_Attrs | Passes a predefined set of key/value pairs containing connection-specific data items to the server, for application-defined purposes. connector/Net automatically transmits the following attributes: _pid, _client_version, _platform, _program_name, _os, _os_details, and _thread. See Section 20.9.7, “Performance Schema Connection Attribute Tables” for the Performance Schema tables to query on the server side to make use of these attributes. | |
Convert Zero Datetime, ConvertZeroDateTime | false | True to have MySqlDataReader.GetValue() and MySqlDataReader.GetDateTime() return DateTime.MinValue for date or datetime columns that have disallowed values. |
Default Command Timeout, DefaultCommandTimeout | 30 | Sets the default value of the command timeout to be used. This does not supercede the individual command timeout property on an individual command object. If you set the command timeout property, that will be used. This option was added in Connector/Net 5.1.4 |
Default Table Cache Age, DefaultTableCacheAge | 60 | Specifies how long a TableDirect result should be cached, in seconds. For usage information about table caching, see Section 21.2.5.7, “Using Connector/Net with Table Caching”. This option was added in Connector/Net 6.4. |
enableSessionExpireCallback | false | When set to true, causes the session-expiry scanner to raise the session_end event before deleting the session data stored in the my_aspnet_sessions table, when a session times out. Enable this option to write additional application-specific cleanup code to handle the session_end event of the global.asax class, before the stored data of the session gets deleted. Within the session_end method, any other required cleanup can be done. This option was added in Connector/Net 6.4.5; it is not yet available in Connector/Net 6.5.x releases. |
Encrypt, UseSSL | false | For Connector/Net 5.0.3 and later, when true, SSL encryption is used for all data sent between the client and server if the server has a certificate installed. Recognized values are true, false, yes, and no. In versions before 5.0.3, this option had no effect. From version 6.2.1, this option is deprecated and is replaced by SSL Mode. The option still works if used. If this option is set to true, it is equivalent to SSL Mode = Preferred. |
Exception Interceptors, ExceptionInterceptors | The list of interceptors that can triage thrown MySqlException exceptions. | |
Functions Return String, FunctionsReturnString | false | Causes the connector to return binary/varbinary values as strings, if they do not have a tablename in the metadata. |
Host, Server, Data Source, DataSource, Address, Addr, Network Address | localhost | The name or network address of the instance of MySQL to which to connect. Multiple hosts can be specified separated by commas. This can be useful where multiple MySQL servers are configured for replication and you are not concerned about the precise server you are connecting to. No attempt is made by the provider to synchronize writes to the database, so take care when using this option. In Unix environment with Mono, this can be a fully qualified path to a MySQL socket file. With this configuration, the Unix socket is used instead of the TCP/IP socket. Currently, only a single socket name can be given, so accessing MySQL in a replicated environment using Unix sockets is not currently supported. |
Ignore Prepare, IgnorePrepare | true | When true, instructs the provider to ignore any calls to MySqlCommand.Prepare(). This option is provided to prevent issues with corruption of the statements when used with server-side prepared statements. If you use server-side prepare statements, set this option to false. This option was added in Connector/Net 5.0.3 and Connector/Net 1.0.9. |
includesecurityasserts, include security asserts | false | Must be set to true when using the MySQLClientPermissions class in a partial trust environment, with the library installed in the GAC of the hosting environment. This requirement is new for partial-trust applications in Connector/Net 6.6.4 and higher. See Section 21.2.5.19, “Working with Partial Trust / Medium Trust” for details. |
Initial Catalog, Database | mysql | The case-sensitive name of the database to use initially. |
Interactive, Interactive Session, InteractiveSession | false | If set to true, the client is interactive. An interactive client is one where the server variable CLIENT_INTERACTIVE is set. If an interactive client is set, the wait_timeout variable is set to the value of interactive_timeout. The client will then time out after this period of inactivity. For more details, see Section 5.1.4, “Server System Variables” in the MySQL Reference Manual. |
Integrated Security, IntegratedSecurity | no | Use Windows authentication when connecting to server. By default, it is turned off. To enable, specify a value of yes. (You can also use the value sspi as an alternative to yes.) For details, see Section 21.2.5.5, “Using the Windows Native Authentication Plugin”. This option was introduced in Connector/Net 6.4.4. |
Keep Alive, Keepalive | 0 | For TCP connections, idle connection time measured in seconds, before the first keepalive packet is sent. A value of 0 indicates that keepalive is not used. |
Logging | false | When true, various pieces of information is output to any configured TraceListeners. See Section 21.2.5.14, “Using the MySQL Connector/Net Trace Source Object” for further details. |
Old Guids, OldGuids | false | This option was introduced in Connector/Net 6.1.1. The backend representation of a GUID type was changed from BINARY(16) to CHAR(36). This was done to allow developers to use the server function UUID() to populate a GUID table - UUID() generates a 36-character string. Developers of older applications can add 'Old Guids=true' to the connection string to use a GUID of data type BINARY(16). |
Old Syntax, OldSyntax, Use Old Syntax, UseOldSyntax | false | This option was deprecated in Connector/Net 5.2.2. All code should now be written using the '@' symbol as the parameter marker. |
Password, pwd | The password for the MySQL account being used. | |
Persist Security Info, PersistSecurityInfo | false | When set to false or no (strongly recommended), security-sensitive information, such as the password, is not returned as part of the connection if the connection is open or has ever been in an open state. Resetting the connection string resets all connection string values, including the password. Recognized values are true, false, yes, and no. |
Pipe Name, Pipe, PipeName | mysql | When set to the name of a named pipe, the MySqlConnection attempts to connect to MySQL on that named pipe. This setting only applies to the Windows platform. |
Port | 3306 | The port MySQL is using to listen for connections. This value is ignored if Unix socket is used. |
Procedure Cache Size, ProcedureCacheSize, procedure cache, procedurecache | 25 | Sets the size of the stored procedure cache. By default, Connector/Net stores the metadata (input/output data types) about the last 25 stored procedures used. To disable the stored procedure cache, set the value to zero (0). This option was added in Connector/Net 5.0.2 and Connector/Net 1.0.9. |
Protocol, Connection Protocol, ConnectionProtocol | socket | Specifies the type of connection to make to the server. Values can be: socket or tcp for a socket connection, pipe for a named pipe connection, unix for a Unix socket connection, memory to use MySQL shared memory. |
Replication | false | Indicates if this connection is to use replicated servers. |
Respect Binary Flags, RespectBinaryFlags | true | Setting this option to false means that Connector/Net ignores a column's binary flags as set by the server. This option was added in Connector/Net version 5.1.3. |
Shared Memory Name, SharedMemoryName | MYSQL | The name of the shared memory object to use for communication if the connection protocol is set to memory. |
Sql Server Mode, sqlservermode | false | Allow SQL Server syntax. When set to true, enables Connector/Net to support square brackets around symbols instead of backticks. This enables Visual Studio wizards that bracket symbols with [] to work with Connector/Net. This option incurs a performance hit, so should only be used if necessary. This option was added in version 6.3.1. |
SSL Mode, SslMode | None | This option has the following values:
This option was introduced in MySQL Connector/Net 6.2.1. |
Table Cache, tablecache, tablecaching | false | Enables or disables caching of TableDirect commands. A value of true enables the cache while false disables it. For usage information about table caching, see Section 21.2.5.7, “Using Connector/Net with Table Caching”. This option was added in Connector/Net 6.4. |
Treat BLOBs as UTF8, TreatBlobsAsUTF8 | false | |
Treat Tiny As Boolean, TreatTinyAsBoolean | true | Setting this value to false causes TINYINT(1) to be treated as an INT. See Section 11.1.1, “Numeric Type Overview” for a further explanation of the TINYINT and BOOL data types. |
Use Affected Rows, UseAffectedRows | false | When true, the connection reports changed rows instead of found rows. This option was added in Connector/Net version 5.2.6. |
Use Procedure Bodies, UseProcedureBodies, procedure bodies | true | When set to true, the default value, MySQL Connector/Net expects the body of the procedure to be viewable. This enables it to determine the parameter types and order. Set the option to false when the user connecting to the database does not have the SELECT privileges for the mysql.proc (stored procedures) table, or cannot view INFORMATION_SCHEMA.ROUTINES. In this case, MySQL Connector/Net cannot determine the types and order of the parameters, and must be alerted to this fact by setting this option to false. When set to false, MySQL Connector/Net does not rely on this information being available when the procedure is called. Because MySQL Connector/Net will not be able to determine this information, explicitly set the types of all the parameters before the call and add the parameters to the command in the same order as they appear in the procedure definition. This option was added in MySQL Connector/Net 5.0.4 and MySQL Connector/Net 1.0.10. |
User Id, UserID, Username, Uid, User name, User | The MySQL login account being used. | |
Compress, Use Compression, UseCompression | false | Setting this option to true enables compression of packets exchanged between the client and the server. This exchange is defined by the MySQL client/server protocol. Compression is used if both client and server support ZLIB compression, and the client has requested compression using this option. A compressed packet header is: packet length (3 bytes), packet number (1 byte), and Uncompressed Packet Length (3 bytes). The Uncompressed Packet Length is the number of bytes in the original, uncompressed packet. If this is zero, the data in this packet has not been compressed. When the compression protocol is in use, either the client or the server may compress packets. However, compression will not occur if the compressed length is greater than the original length. Thus, some packets will contain compressed data while other packets will not. |
Use Usage Advisor, Usage Advisor, UseUsageAdvisor | false | Logs inefficient database operations. |
Use Performance Monitor, UsePerformanceMonitor, userperfmon, perfmon | false | Indicates that performance counters should be updated during execution. |
Connection Pooling Options
The following table lists the valid names for options related to connection pooling within the ConnectionString. For more information about connection pooling, see Section 21.2.5.4, “Using Connector/Net with Connection Pooling”.
Table 21.21. Connector/Net Connection String Options - Connection Pooling
Name | Default | Description |
---|---|---|
Cache Server Properties, CacheServerProperties | false | Specifies whether server variable settings are updated by a SHOW VARIABLES command each time a pooled connection is returned. Enabling this setting speeds up connections in a connection pool environment. Your application is not informed of any changes to configuration variables made by other connections. This option was added in Connector/Net 6.3. |
Connection Lifetime, ConnectionLifeTime | 0 | When a connection is returned to the pool, its creation time is compared with the current time, and the connection is destroyed if that time span (in seconds) exceeds the value specified by Connection Lifetime. This is useful in clustered configurations to force load balancing between a running server and a server just brought online. A value of zero (0) causes pooled connections to have the maximum connection timeout. |
Connection Reset, ConnectionReset | false | If true, the connection state is reset when it is retrieved from the pool. The default value of false avoids making an additional server round trip when obtaining a connection, but the connection state is not reset. |
Maximum Pool Size, Max Pool Size, maximumpoolsize | 100 | The maximum number of connections allowed in the pool. |
Minimum Pool Size, Min Pool Size, MinimumPoolSize | 0 | The minimum number of connections allowed in the pool. |
Pooling | true | When true, the MySqlConnection object is drawn from the appropriate pool, or if necessary, is created and added to the appropriate pool. Recognized values are true, false, yes, and no. |
21.2.7. Connector/Net API Reference
This section of the manual contains a complete reference to the Connector/Net ADO.NET component, automatically generated from the embedded documentation.
21.2.7.1. MySql.Data.MySqlClient Namespace
Classes
Class | Description |
---|---|
BaseCommandInterceptor | Provides a means of enhancing or replacing SQL commands through the connection string rather than recompiling. |
BaseExceptionInterceptor | Provides a means of enabling and disabling exception handling through the connection string rather than recompiling. |
MySqlClientPermission | Derived from the .NET DBDataPermission class. For usage information, see Section 21.2.5.19, “Working with Partial Trust / Medium Trust”. |
MySqlCommand | |
MySqlCommandBuilder | |
MySqlConnection | |
MySqlDataAdapter | |
MySqlDataReader | Provides a means of reading a forward-only stream of rows from a MySQL database. This class cannot be inherited. |
MySqlError | Collection of error codes that can be returned by the server |
MySqlException | The exception that is thrown when MySQL returns an error. This class cannot be inherited. |
MySqlHelper | Helper class that makes it easier to work with the provider. |
MySqlInfoMessageEventArgs | Provides data for the InfoMessage event. This class cannot be inherited. |
MySqlParameter | Represents a parameter to a MySqlCommand, and optionally, its mapping to DataSetcolumns. This class cannot be inherited. |
MySqlParameterCollection | Represents a collection of parameters relevant to a MySqlCommand as well as their respective mappings to columns in a DataSet. This class cannot be inherited. |
MySqlRowUpdatedEventArgs | Provides data for the RowUpdated event. This class cannot be inherited. |
MySqlRowUpdatingEventArgs | Provides data for the RowUpdating event. This class cannot be inherited. |
MySqlTransaction |
Delegates
Delegate | Description |
---|---|
MySqlInfoMessageEventHandler | Represents the method that will handle the InfoMessage event of a MySqlConnection. |
MySqlRowUpdatedEventHandler | Represents the method that will handle the RowUpdatedevent of a MySqlDataAdapter. |
MySqlRowUpdatingEventHandler | Represents the method that will handle the RowUpdatingevent of a MySqlDataAdapter. |
Enumerations
Enumeration | Description |
---|---|
MySqlDbType | Specifies MySQL-specific data type of a field, property, for use in a MySqlParameter. |
MySqlErrorCode |
21.2.7.1.1. MySql.Data.MySqlClientHierarchy
See Also
MySql.Data.MySqlClient Namespace
21.2.7.1.2. BaseCommandInterceptor
The BaseCommandInterceptor class has these methods that you can override:
public virtual bool ExecuteScalar(string sql, ref object returnValue);
public virtual bool ExecuteNonQuery(string sql, ref int returnValue);
public virtual bool ExecuteReader(string sql, CommandBehavior behavior, ref MySqlDataReader returnValue);
public virtual void Init(MySqlConnection connection);
If your interceptor overrides one of the Execute... methods, set the returnValue output parameter and return true if you handled the event, or false if you did not handle the event. The SQL command is processed normally only when all command interceptors return false.
The connection passed to the Init method is the connection that is attached to this interceptor.
For full usage and examples, see Section 21.2.5.11, “Using the Connector/Net Interceptor Classes”.
21.2.7.1.3. BaseExceptionInterceptor
You develop an exception interceptor first by creating a subclass of the BaseExceptionInterceptor class. You must override the InterceptException() method. You can also override the Init() method to do some one-time initialization.
Each exception interceptor has 2 methods:
public abstract Exception InterceptException(Exception exception,
MySqlConnection connection);
public virtual void Init(MySqlConnection connection);
The connection passed to Init() is the connection that is attached to this interceptor.
Each interceptor is required to override InterceptException and return an exception. It can return the exception it is given, or it can wrap it in a new exception. We currently do not offer the ability to suppress the exception.
For full usage and examples, see Section 21.2.5.11, “Using the Connector/Net Interceptor Classes”.
21.2.7.1.4. MySqlCommand Class
For a list of all members of this type, see MySqlCommand Members.
Syntax: Visual Basic
NotInheritable Public Class MySqlCommand_
Inherits Component_
Implements IDbCommand, ICloneable
Syntax: C#
public sealed class MySqlCommand : Component, IDbCommand, ICloneable
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlCommand Members, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1. MySqlCommand Members
Public Instance Constructors
MySqlCommand | Overloaded. Initializes a new instance of the MySqlCommand class. |
Public Instance Properties
CommandText | |
CommandTimeout | |
CommandType | |
Connection | |
Container (inherited from Component) | Gets the IContainer that contains the Component. |
IsPrepared | |
Parameters | |
Site (inherited from Component) | Gets or sets the ISite of the Component. |
Transaction | |
UpdatedRowSource |
Public Instance Methods
Cancel | Attempts to cancel the execution of a MySqlCommand. This operation is not supported. |
CreateObjRef (inherited from MarshalByRefObject) | Creates an object that contains all the relevant information required to generate a proxy used to communicate with a remote object. |
CreateParameter | Creates a new instance of a MySqlParameter object. |
Dispose (inherited from Component) | Releases all resources used by the Component. |
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
ExecuteNonQuery | |
ExecuteReader | Overloaded. |
ExecuteScalar | |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetLifetimeService (inherited from MarshalByRefObject) | Retrieves the current lifetime service object that controls the lifetime policy for this instance. |
GetType (inherited from Object) | Gets the Type of the current instance. |
InitializeLifetimeService (inherited from MarshalByRefObject) | Obtains a lifetime service object to control the lifetime policy for this instance. |
Prepare | |
ToString (inherited from Component) | Returns a String containing the name of the Component, if any. This method should not be overridden. |
Public Instance Events
Disposed (inherited from Component) | Adds an event handler to listen to the Disposed event on the component. |
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1. MySqlCommand Constructor
Initializes a new instance of the MySqlCommand class.
Overload List
Initializes a new instance of the MySqlCommand class.
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.1. MySqlCommand Constructor ()
Initializes a new instance of the MySqlCommand class.
Syntax: Visual Basic
Overloads Public Sub New()
Syntax: C#
public MySqlCommand();
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand Constructor Overload List
21.2.7.1.4.1.1.2. MySqlCommand Constructor (String)
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal cmdText As String _
)
Syntax: C#
public MySqlCommand(
stringcmdText
);
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand Constructor Overload List
21.2.7.1.4.1.1.3. MySqlCommand Constructor
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal cmdText As String, _
ByVal connection As MySqlConnection _
)
Syntax: C#
public MySqlCommand(
stringcmdText,
MySqlConnectionconnection
);
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand Constructor Overload List
21.2.7.1.4.1.1.3.1. MySqlConnection Class
For a list of all members of this type, see MySqlConnection Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlConnection_
Inherits Component_
Implements IDbConnection, ICloneable
Syntax: C#
public sealed class MySqlConnection : Component, IDbConnection, ICloneable
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlConnection Members, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1. MySqlConnection Members
Public Instance Constructors
MySqlConnection | Overloaded. Initializes a new instance of the MySqlConnection class. |
Public Instance Properties
ConnectionString | |
ConnectionTimeout | |
Container (inherited from Component) | Gets the IContainer that contains the Component. |
Database | |
DataSource | Gets the name of the MySQL server to which to connect. |
ServerThread | Returns the ID of the server thread this connection is executing on. |
ServerVersion | |
Site (inherited from Component) | Gets or sets the ISite of the Component. |
State | |
UseCompression | Indicates if this connection should use compression when communicating with the server. |
Public Instance Methods
BeginTransaction | Overloaded. |
ChangeDatabase | |
Close | |
CreateCommand | |
CreateObjRef (inherited from MarshalByRefObject) | Creates an object that contains all the relevant information required to generate a proxy used to communicate with a remote object. |
Dispose (inherited from Component) | Releases all resources used by the Component. |
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetLifetimeService (inherited from MarshalByRefObject) | Retrieves the current lifetime service object that controls the lifetime policy for this instance. |
GetType (inherited from Object) | Gets the Type of the current instance. |
InitializeLifetimeService (inherited from MarshalByRefObject) | Obtains a lifetime service object to control the lifetime policy for this instance. |
Open | |
Ping | Ping |
ToString (inherited from Component) | Returns a String containing the name of the Component, if any. This method should not be overridden. |
Public Instance Events
Disposed (inherited from Component) | Adds an event handler to listen to the Disposed event on the component. |
InfoMessage | |
StateChange |
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.1. MySqlConnection Constructor
Initializes a new instance of the MySqlConnection class.
Overload List
Initializes a new instance of the MySqlConnection class.
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.1.1. MySqlConnection Constructor
Initializes a new instance of the MySqlConnection class.
Syntax: Visual Basic
Overloads Public Sub New()
Syntax: C#
public MySqlConnection();
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace, MySqlConnection Constructor Overload List
21.2.7.1.4.1.1.3.1.1.1.2. MySqlConnection Constructor
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal connectionString As String _
)
Syntax: C#
public MySqlConnection(
stringconnectionString
);
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace, MySqlConnection Constructor Overload List
21.2.7.1.4.1.1.3.1.1.2. ConnectionString Property
Syntax: Visual Basic
NotOverridable Public Property ConnectionString As String _
_
Implements IDbConnection.ConnectionString
Syntax: C#
public string ConnectionString {get; set;}
Implements
IDbConnection.ConnectionString
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.3. ConnectionTimeout Property
Syntax: Visual Basic
NotOverridable Public ReadOnly Property ConnectionTimeout As Integer _
_
Implements IDbConnection.ConnectionTimeout
Syntax: C#
public int ConnectionTimeout {get;}
Implements
IDbConnection.ConnectionTimeout
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.4. Database Property
Syntax: Visual Basic
NotOverridable Public ReadOnly Property Database As String _
_
Implements IDbConnection.Database
Syntax: C#
public string Database {get;}
Implements
IDbConnection.Database
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.5. DataSource Property
Gets the name of the MySQL server to which to connect.
Syntax: Visual Basic
Public ReadOnly Property DataSource As String
Syntax: C#
public string DataSource {get;}
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.6. ServerThread Property
Returns the ID of the server thread this connection is executing on
Syntax: Visual Basic
Public ReadOnly Property ServerThread As Integer
Syntax: C#
public int ServerThread {get;}
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.7. ServerVersion Property
Syntax: Visual Basic
Public ReadOnly Property ServerVersion As String
Syntax: C#
public string ServerVersion {get;}
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.8. State Property
Syntax: Visual Basic
NotOverridable Public ReadOnly Property State As ConnectionState _
_
Implements IDbConnection.State
Syntax: C#
public System.Data.ConnectionState State {get;}
Implements
IDbConnection.State
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.9. UseCompression Property
Indicates if this connection should use compression when communicating with the server.
Syntax: Visual Basic
Public ReadOnly Property UseCompression As Boolean
Syntax: C#
public bool UseCompression {get;}
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.10. BeginTransaction Method
Overload List
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.10.1. MySqlConnection.BeginTransaction Method
Syntax: Visual Basic
Overloads Public Function BeginTransaction() As MySqlTransaction
Syntax: C#
public MySqlTransaction BeginTransaction();
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace, MySqlConnection.BeginTransaction Overload List
21.2.7.1.4.1.1.3.1.1.10.1.1. MySqlTransaction Class
For a list of all members of this type, see MySqlTransaction Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlTransaction_
Implements IDbTransaction, IDisposable
Syntax: C#
public sealed class MySqlTransaction : IDbTransaction, IDisposable
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlTransaction Members, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.10.1.1.1. MySqlTransaction Members
Public Instance Properties
Connection | Gets the MySqlConnection object associated with the transaction, or a null reference (Nothing in Visual Basic) if the transaction is no longer valid. |
IsolationLevel | Specifies the IsolationLevel for this transaction. |
Public Instance Methods
Commit | |
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetType (inherited from Object) | Gets the Type of the current instance. |
Rollback | |
ToString (inherited from Object) | Returns a String that represents the current Object. |
See Also
MySqlTransaction Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.10.1.1.1.1. Connection Property
Gets the MySqlConnection object associated with the transaction, or a null reference (Nothing in Visual Basic) if the transaction is no longer valid.
Syntax: Visual Basic
Public ReadOnly Property Connection As MySqlConnection
Syntax: C#
public MySqlConnection Connection {get;}
Property Value
The MySqlConnection object associated with this transaction.
Remarks
A single application may have multiple database connections, each with zero or more transactions. This property enables you to determine the connection object associated with a particular transaction created by BeginTransaction.
See Also
MySqlTransaction Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.10.1.1.1.2. IsolationLevel Property
Specifies the IsolationLevel for this transaction.
Syntax: Visual Basic
NotOverridable Public ReadOnly Property IsolationLevel As IsolationLevel _
_
Implements IDbTransaction.IsolationLevel
Syntax: C#
public System.Data.IsolationLevel IsolationLevel {get;}
Property Value
The IsolationLevel for this transaction. The default is ReadCommitted.
Implements
IDbTransaction.IsolationLevel
Remarks
Parallel transactions are not supported. Therefore, the IsolationLevel applies to the entire transaction.
See Also
MySqlTransaction Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.10.1.1.1.3. MySqlTransaction.Commit Method
Syntax: Visual Basic
NotOverridable Public Sub Commit() _
_
Implements IDbTransaction.Commit
Syntax: C#
public void Commit();
Implements
IDbTransaction.Commit
See Also
MySqlTransaction Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.10.1.1.1.4. MySqlTransaction.Rollback Method
Syntax: Visual Basic
NotOverridable Public Sub Rollback() _
_
Implements IDbTransaction.Rollback
Syntax: C#
public void Rollback();
Implements
IDbTransaction.Rollback
See Also
MySqlTransaction Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.10.2. MySqlConnection.BeginTransaction Method
Syntax: Visual Basic
Overloads Public Function BeginTransaction(_
ByVal iso As IsolationLevel _
) As MySqlTransaction
Syntax: C#
public MySqlTransaction BeginTransaction(
IsolationLeveliso
);
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace, MySqlConnection.BeginTransaction Overload List
21.2.7.1.4.1.1.3.1.1.11. MySqlConnection.ChangeDatabase Method
Syntax: Visual Basic
NotOverridable Public Sub ChangeDatabase(_
ByVal databaseName As String _
) _
_
Implements IDbConnection.ChangeDatabase
Syntax: C#
public void ChangeDatabase(
stringdatabaseName
);
Implements
IDbConnection.ChangeDatabase
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.12. MySqlConnection.Close Method
Syntax: Visual Basic
NotOverridable Public Sub Close() _
_
Implements IDbConnection.Close
Syntax: C#
public void Close();
Implements
IDbConnection.Close
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.13. MySqlConnection.CreateCommand Method
Syntax: Visual Basic
Public Function CreateCommand() As MySqlCommand
Syntax: C#
public MySqlCommand CreateCommand();
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.14. MySqlConnection.Open Method
Syntax: Visual Basic
NotOverridable Public Sub Open() _
_
Implements IDbConnection.Open
Syntax: C#
public void Open();
Implements
IDbConnection.Open
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.15. MySqlConnection.Ping Method
Ping
Syntax: Visual Basic
Public Function Ping() As Boolean
Syntax: C#
public bool Ping();
Return Value
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16. MySqlConnection.InfoMessage Event
Syntax: Visual Basic
Public Event InfoMessage As MySqlInfoMessageEventHandler
Syntax: C#
public event MySqlInfoMessageEventHandler InfoMessage;
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1. MySqlInfoMessageEventHandler Delegate
Represents the method that will handle the InfoMessage event of a MySqlConnection.
Syntax: Visual Basic
Public Delegate Sub MySqlInfoMessageEventHandler(_
ByVal sender As Object, _
ByVal args As MySqlInfoMessageEventArgs _
)
Syntax: C#
public delegate void MySqlInfoMessageEventHandler(
objectsender,
MySqlInfoMessageEventArgsargs
);
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1.1. MySqlInfoMessageEventArgs Class
Provides data for the InfoMessage event. This class cannot be inherited.
For a list of all members of this type, see MySqlInfoMessageEventArgs Members .
Syntax: Visual Basic
Public Class MySqlInfoMessageEventArgs_
Inherits EventArgs
Syntax: C#
public class MySqlInfoMessageEventArgs : EventArgs
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlInfoMessageEventArgs Members, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1.1.1. MySqlInfoMessageEventArgs Members
MySqlInfoMessageEventArgs overview
Public Instance Constructors
MySqlInfoMessageEventArgs Constructor | Initializes a new instance of the MySqlInfoMessageEventArgs class. |
Public Instance Fields
errors |
Public Instance Methods
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetType (inherited from Object) | Gets the Type of the current instance. |
ToString (inherited from Object) | Returns a String that represents the current Object. |
Protected Instance Methods
Finalize (inherited from Object) | Allows an Object to attempt to free resources and perform other cleanup operations before the Object is reclaimed by garbage collection. |
MemberwiseClone (inherited from Object) | Creates a shallow copy of the current Object. |
See Also
MySqlInfoMessageEventArgs Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1.1.1.1. MySqlInfoMessageEventArgs Constructor
Initializes a new instance of the MySqlInfoMessageEventArgs class.
Syntax: Visual Basic
Public Sub New()
Syntax: C#
public MySqlInfoMessageEventArgs();
See Also
MySqlInfoMessageEventArgs Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1.1.1.2. MySqlInfoMessageEventArgs.errors Field
Syntax: Visual Basic
Public errors As MySqlError()
Syntax: C#
public MySqlError[] errors;
See Also
MySqlInfoMessageEventArgs Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1.1.1.2.1. MySqlError Class
Collection of error codes that can be returned by the server
For a list of all members of this type, see MySqlError Members .
Syntax: Visual Basic
Public Class MySqlError
Syntax: C#
public class MySqlError
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlError Members, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1.1.1.2.1.1. MySqlError Members
Public Instance Constructors
MySqlError Constructor |
Public Instance Properties
Code | Error code |
Level | Error level |
Message | Error message |
Public Instance Methods
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetType (inherited from Object) | Gets the Type of the current instance. |
ToString (inherited from Object) | Returns a String that represents the current Object. |
Protected Instance Methods
Finalize (inherited from Object) | Allows an Object to attempt to free resources and perform other cleanup operations before the Object is reclaimed by garbage collection. |
MemberwiseClone (inherited from Object) | Creates a shallow copy of the current Object. |
See Also
MySqlError Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1.1.1.2.1.1.1. MySqlError Constructor
Syntax: Visual Basic
Public Sub New(_
ByVal level As String, _
ByVal code As Integer, _
ByVal message As String _
)
Syntax: C#
public MySqlError(
stringlevel,
intcode,
stringmessage
);
Parameters
level:
code:
message:
See Also
MySqlError Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1.1.1.2.1.1.2. Code Property
Error code
Syntax: Visual Basic
Public ReadOnly Property Code As Integer
Syntax: C#
public int Code {get;}
See Also
MySqlError Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1.1.1.2.1.1.3. Level Property
Error level
Syntax: Visual Basic
Public ReadOnly Property Level As String
Syntax: C#
public string Level {get;}
See Also
MySqlError Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.16.1.1.1.2.1.1.4. Message Property
Error message
Syntax: Visual Basic
Public ReadOnly Property Message As String
Syntax: C#
public string Message {get;}
See Also
MySqlError Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.3.1.1.17. MySqlConnection.StateChange Event
Syntax: Visual Basic
Public Event StateChange As StateChangeEventHandler
Syntax: C#
public event StateChangeEventHandler StateChange;
See Also
MySqlConnection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.1.4. MySqlCommand Constructor
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal cmdText As String, _
ByVal connection As MySqlConnection, _
ByVal transaction As MySqlTransaction _
)
Syntax: C#
public MySqlCommand(
stringcmdText,
MySqlConnectionconnection,
MySqlTransactiontransaction
);
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand Constructor Overload List
21.2.7.1.4.1.2. CommandText Property
Syntax: Visual Basic
NotOverridable Public Property CommandText As String _
_
Implements IDbCommand.CommandText
Syntax: C#
public string CommandText {get; set;}
Implements
IDbCommand.CommandText
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.3. CommandTimeout Property
Syntax: Visual Basic
NotOverridable Public Property CommandTimeout As Integer _
_
Implements IDbCommand.CommandTimeout
Syntax: C#
public int CommandTimeout {get; set;}
Implements
IDbCommand.CommandTimeout
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.4. CommandType Property
Syntax: Visual Basic
NotOverridable Public Property CommandType As CommandType _
_
Implements IDbCommand.CommandType
Syntax: C#
public System.Data.CommandType CommandType {get; set;}
Implements
IDbCommand.CommandType
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.5. Connection Property
Syntax: Visual Basic
Public Property Connection As MySqlConnection
Syntax: C#
public MySqlConnection Connection {get; set;}
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.6. IsPrepared Property
Syntax: Visual Basic
Public ReadOnly Property IsPrepared As Boolean
Syntax: C#
public bool IsPrepared {get;}
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7. Parameters Property
Syntax: Visual Basic
Public ReadOnly Property Parameters As MySqlParameterCollection
Syntax: C#
public MySqlParameterCollection Parameters {get;}
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1. MySqlParameterCollection Class
Represents a collection of parameters relevant to a MySqlCommand as well as their respective mappings to columns in a DataSet. This class cannot be inherited.
For a list of all members of this type, see MySqlParameterCollection Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlParameterCollection_
Inherits MarshalByRefObject_
Implements IDataParameterCollection, IList, ICollection, IEnumerable
Syntax: C#
public sealed class MySqlParameterCollection : MarshalByRefObject, IDataParameterCollection, IList, ICollection, IEnumerable
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlParameterCollection Members, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1. MySqlParameterCollection Members
MySqlParameterCollection overview
Public Instance Constructors
MySqlParameterCollection Constructor | Initializes a new instance of the MySqlParameterCollection class. |
Public Instance Properties
Count | Gets the number of MySqlParameter objects in the collection. |
Item | Overloaded. Gets the MySqlParameter with a specified attribute. In C#, this property is the indexer for the MySqlParameterCollection class. |
Public Instance Methods
Add | Overloaded. Adds the specified MySqlParameter object to the MySqlParameterCollection. |
Clear | Removes all items from the collection. |
Contains | Overloaded. Gets a value indicating whether a MySqlParameter exists in the collection. |
CopyTo | Copies MySqlParameter objects from the MySqlParameterCollection to the specified array. |
CreateObjRef (inherited from MarshalByRefObject) | Creates an object that contains all the relevant information required to generate a proxy used to communicate with a remote object. |
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetLifetimeService (inherited from MarshalByRefObject) | Retrieves the current lifetime service object that controls the lifetime policy for this instance. |
GetType (inherited from Object) | Gets the Type of the current instance. |
IndexOf | Overloaded. Gets the location of a MySqlParameter in the collection. |
InitializeLifetimeService (inherited from MarshalByRefObject) | Obtains a lifetime service object to control the lifetime policy for this instance. |
Insert | Inserts a MySqlParameter into the collection at the specified index. |
Remove | Removes the specified MySqlParameter from the collection. |
RemoveAt | Overloaded. Removes the specified MySqlParameter from the collection. |
ToString (inherited from Object) | Returns a String that represents the current Object. |
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.1. MySqlParameterCollection Constructor
Initializes a new instance of the MySqlParameterCollection class.
Syntax: Visual Basic
Public Sub New()
Syntax: C#
public MySqlParameterCollection();
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.2. Count Property
Gets the number of MySqlParameter objects in the collection.
Syntax: Visual Basic
NotOverridable Public ReadOnly Property Count As Integer _
_
Implements ICollection.Count
Syntax: C#
public int Count {get;}
Implements
ICollection.Count
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3. Item Property
Gets the MySqlParameter with a specified attribute. In C#, this property is the indexer for the MySqlParameterCollection class.
Overload List
Gets the MySqlParameter at the specified index.
Gets the MySqlParameter with the specified name.
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1. MySqlParameter Class
Represents a parameter to a MySqlCommand, and optionally, its mapping to DataSetcolumns. This class cannot be inherited.
For a list of all members of this type, see MySqlParameter Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlParameter_
Inherits MarshalByRefObject_
Implements IDataParameter, IDbDataParameter, ICloneable
Syntax: C#
public sealed class MySqlParameter : MarshalByRefObject, IDataParameter, IDbDataParameter, ICloneable
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlParameter Members, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1. MySqlParameter Members
Public Instance Constructors
MySqlParameter | Overloaded. Initializes a new instance of the MySqlParameter class. |
Public Instance Properties
DbType | Gets or sets the DbType of the parameter. |
Direction | Gets or sets a value indicating whether the parameter is input-only, output-only, bidirectional, or a stored procedure return value parameter. As of MySQL version 4.1 and earlier, input-only is the only valid choice. |
IsNullable | Gets or sets a value indicating whether the parameter accepts null values. |
IsUnsigned | |
MySqlDbType | Gets or sets the MySqlDbType of the parameter. |
ParameterName | Gets or sets the name of the MySqlParameter. |
Precision | Gets or sets the maximum number of digits used to represent the Value property. |
Scale | Gets or sets the number of decimal places to which Value is resolved. |
Size | Gets or sets the maximum size, in bytes, of the data within the column. |
SourceColumn | Gets or sets the name of the source column that is mapped to the DataSetand used for loading or returning the Value. |
SourceVersion | Gets or sets the DataRowVersion to use when loading Value. |
Value | Gets or sets the value of the parameter. |
Public Instance Methods
CreateObjRef (inherited from MarshalByRefObject) | Creates an object that contains all the relevant information required to generate a proxy used to communicate with a remote object. |
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetLifetimeService (inherited from MarshalByRefObject) | Retrieves the current lifetime service object that controls the lifetime policy for this instance. |
GetType (inherited from Object) | Gets the Type of the current instance. |
InitializeLifetimeService (inherited from MarshalByRefObject) | Obtains a lifetime service object to control the lifetime policy for this instance. |
ToString | Overridden. Gets a string containing the ParameterName. |
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.1. MySqlParameter Constructor
Initializes a new instance of the MySqlParameter class.
Overload List
Initializes a new instance of the MySqlParameter class.
Initializes a new instance of the MySqlParameter class with the parameter name and the data type.
Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType, and the size.
Initializes a new instance of the MySqlParameter class with the parameter name, the type of the parameter, the size of the parameter, a ParameterDirection, the precision of the parameter, the scale of the parameter, the source column, a DataRowVersion to use, and the value of the parameter.
Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType, the size, and the source column name.
Initializes a new instance of the MySqlParameter class with the parameter name and a value of the new MySqlParameter.
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.1.1. MySqlParameter Constructor ()
Initializes a new instance of the MySqlParameter class.
Syntax: Visual Basic
Overloads Public Sub New()
Syntax: C#
public MySqlParameter();
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload List
21.2.7.1.4.1.7.1.1.3.1.1.1.2. MySqlParameter Constructor
Initializes a new instance of the MySqlParameter class with the parameter name and the data type.
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType _
)
Syntax: C#
public MySqlParameter(
stringparameterName,
MySqlDbTypedbType
);
Parameters
parameterName: The name of the parameter to map.
dbType: One of the MySqlDbType values.
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload List
21.2.7.1.4.1.7.1.1.3.1.1.1.2.1. MySqlDbType Enumeration
Specifies MySQL-specific data type of a field, property, for use in a MySqlParameter.
Syntax: Visual Basic
Public Enum MySqlDbType
Syntax: C#
public enum MySqlDbType
Members
Member Name | Description |
Newdate | Obsolete. Use Datetime or Date type. |
Timestamp | A timestamp. The range is '1970-01-01 00:00:01.000000' to '2038-01-19 03:14:07.999999'. (Fractional seconds can only be stored with a MySQL 5.6.4 or higher database server.) |
Time | The range is '-838:59:59.000000' to '838:59:59.000000'. (Fractional seconds can only be stored with a MySQL 5.6.4 or higher database server.) |
Date | The supported range is '1000-01-01' to '9999-12-31'. |
Datetime | The supported range is '1000-01-01 00:00:00.000000' to '9999-12-31 23:59:59.999999'. (Fractional seconds can only be stored with a MySQL 5.6.4 or higher database server.) |
Year | A year in 2- or 4-digit format (default is 4-digit). The allowable values are 1901 to 2155, 0000 in the 4-digit year format, and 1970-2069 if you use the 2-digit format (70-69). |
TinyBlob | A BLOB column with a maximum length of 255 (2^8 - 1) characters. |
Blob | A BLOB column with a maximum length of 65535 (2^16 - 1) characters. |
MediumBlob | A BLOB column with a maximum length of 16777215 (2^24 - 1) characters. |
LongBlob | A BLOB column with a maximum length of 4294967295 or 4G (2^32 - 1) characters. |
Int16 | A 16-bit signed integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535. |
Int24 | Specifies a 24 (3 byte) signed or unsigned value. |
Int32 | A 32-bit signed integer. |
Int64 | A 64-bit signed integer. |
Byte | The signed range is -128 to 127. The unsigned range is 0 to 255. |
Float | A small (single-precision) floating-point number. Allowable values are -3.402823466E+38 to -1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. |
Double | A normal-size (double-precision) floating-point number. Allowable values are -1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and 2.2250738585072014E-308 to 1.7976931348623157E+308. |
UByte | An 8-bit unsigned value. |
UInt16 | A 16-bit unsigned value. |
UInt24 | A 24-bit unsigned value. |
UInt32 | A 32-bit unsigned value. |
UInt64 | A 64-bit unsigned value. |
Decimal | A fixed precision and scale numeric value between -10^38-1 and 10^38-1. |
NewDecimal | New Decimal |
Set | A set. A string object that can have zero or more values, each of which must be chosen from the list of values 'value1', 'value2', ... A SET can have a maximum of 64 members. |
String | Obsolete. Use VarChar type. |
VarChar | A variable-length string containing 0 to 255 characters. |
VarString | A variable-length string containing 0 to 65535 characters. |
Enum | An enumeration. A string object that can have only one value, chosen from the list of values 'value1', 'value2', ..., NULL or the special "" error value. An ENUM can have a maximum of 65535 distinct values. |
Geometry | |
Bit | Bit-field data type. |
TinyText | A nonbinary string column supporting a maximum length of 255 (2^8 - 1) characters. |
Text | A nonbinary string column supporting a maximum length of 65535 (2^16 - 1) characters. |
MediumText | A nonbinary string column supporting a maximum length of 16777215 (2^24 - 1) characters. |
LongText | A nonbinary string column supporting a maximum length of 4294967295 (2^32 - 1) characters. |
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.1.3. MySqlParameter Constructor (String, MySqlDbType, Int32)
Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType, and the size.
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer _
)
Syntax: C#
public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize
);
Parameters
parameterName: The name of the parameter to map.
dbType: One of the MySqlDbType values.
size: The length of the parameter.
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload List
21.2.7.1.4.1.7.1.1.3.1.1.1.4. MySqlParameter Constructor
Initializes a new instance of the MySqlParameter class with the parameter name, the type of the parameter, the size of the parameter, a ParameterDirection, the precision of the parameter, the scale of the parameter, the source column, a DataRowVersion to use, and the value of the parameter.
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer, _
ByVal direction As ParameterDirection, _
ByVal isNullable As Boolean, _
ByVal precision As Byte, _
ByVal scale As Byte, _
ByVal sourceColumn As String, _
ByVal sourceVersion As DataRowVersion, _
ByVal value As Object _
)
Syntax: C#
public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize,
ParameterDirectiondirection,
boolisNullable,
byteprecision,
bytescale,
stringsourceColumn,
DataRowVersionsourceVersion,
objectvalue
);
Parameters
parameterName: The name of the parameter to map.
dbType: One of the MySqlDbType values.
size: The length of the parameter.
direction: One of the ParameterDirectionvalues.
isNullable: true if the value of the field can be null, otherwise false.
precision: The total number of digits to the left and right of the decimal point to which Value is resolved.
scale: The total number of decimal places to which Value is resolved.
sourceColumn: The name of the source column.
sourceVersion: One of the DataRowVersionvalues.
value: An Object that is the value of the MySqlParameter.
Exceptions
Exception Type | Condition |
ArgumentException |
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload List
21.2.7.1.4.1.7.1.1.3.1.1.1.4.1. Value Property
Gets or sets the value of the parameter.
Syntax: Visual Basic
NotOverridable Public Property Value As Object _
_
Implements IDataParameter.Value
Syntax: C#
public object Value {get; set;}
Implements
IDataParameter.Value
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.1.5. MySqlParameter Constructor
Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType, the size, and the source column name.
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer, _
ByVal sourceColumn As String _
)
Syntax: C#
public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize,
stringsourceColumn
);
Parameters
parameterName: The name of the parameter to map.
dbType: One of the MySqlDbType values.
size: The length of the parameter.
sourceColumn: The name of the source column.
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload List
21.2.7.1.4.1.7.1.1.3.1.1.1.6. MySqlParameter Constructor
Initializes a new instance of the MySqlParameter class with the parameter name and a value of the new MySqlParameter.
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal parameterName As String, _
ByVal value As Object _
)
Syntax: C#
public MySqlParameter(
stringparameterName,
objectvalue
);
Parameters
parameterName: The name of the parameter to map.
value: An Object that is the value of the MySqlParameter.
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace, MySqlParameter Constructor Overload List
21.2.7.1.4.1.7.1.1.3.1.1.2. DbType Property
Gets or sets the DbType of the parameter.
Syntax: Visual Basic
NotOverridable Public Property DbType As DbType _
_
Implements IDataParameter.DbType
Syntax: C#
public System.Data.DbType DbType {get; set;}
Implements
IDataParameter.DbType
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.3. Direction Property
Gets or sets a value indicating whether the parameter is input-only, output-only, bidirectional, or a stored procedure return value parameter. As of MySQL version 4.1 and earlier, input-only is the only valid choice.
Syntax: Visual Basic
NotOverridable Public Property Direction As ParameterDirection _
_
Implements IDataParameter.Direction
Syntax: C#
public System.Data.ParameterDirection Direction {get; set;}
Implements
IDataParameter.Direction
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.4. IsNullable Property
Gets or sets a value indicating whether the parameter accepts null values.
Syntax: Visual Basic
NotOverridable Public Property IsNullable As Boolean _
_
Implements IDataParameter.IsNullable
Syntax: C#
public bool IsNullable {get; set;}
Implements
IDataParameter.IsNullable
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.5. IsUnsigned Property
Syntax: Visual Basic
Public Property IsUnsigned As Boolean
Syntax: C#
public bool IsUnsigned {get; set;}
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.6. MySqlDbType Property
Gets or sets the MySqlDbType of the parameter.
Syntax: Visual Basic
Public Property MySqlDbType As MySqlDbType
Syntax: C#
public MySqlDbType MySqlDbType {get; set;}
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.7. ParameterName Property
Gets or sets the name of the MySqlParameter.
Syntax: Visual Basic
NotOverridable Public Property ParameterName As String _
_
Implements IDataParameter.ParameterName
Syntax: C#
public string ParameterName {get; set;}
Implements
IDataParameter.ParameterName
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.8. Precision Property
Gets or sets the maximum number of digits used to represent the Value property.
Syntax: Visual Basic
NotOverridable Public Property Precision As Byte _
_
Implements IDbDataParameter.Precision
Syntax: C#
public byte Precision {get; set;}
Implements
IDbDataParameter.Precision
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.9. Scale Property
Gets or sets the number of decimal places to which Value is resolved.
Syntax: Visual Basic
NotOverridable Public Property Scale As Byte _
_
Implements IDbDataParameter.Scale
Syntax: C#
public byte Scale {get; set;}
Implements
IDbDataParameter.Scale
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.10. Size Property
Gets or sets the maximum size, in bytes, of the data within the column.
Syntax: Visual Basic
NotOverridable Public Property Size As Integer _
_
Implements IDbDataParameter.Size
Syntax: C#
public int Size {get; set;}
Implements
IDbDataParameter.Size
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.11. SourceColumn Property
Gets or sets the name of the source column that is mapped to the DataSetand used for loading or returning the Value.
Syntax: Visual Basic
NotOverridable Public Property SourceColumn As String _
_
Implements IDataParameter.SourceColumn
Syntax: C#
public string SourceColumn {get; set;}
Implements
IDataParameter.SourceColumn
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.12. SourceVersion Property
Gets or sets the DataRowVersion to use when loading Value.
Syntax: Visual Basic
NotOverridable Public Property SourceVersion As DataRowVersion _
_
Implements IDataParameter.SourceVersion
Syntax: C#
public System.Data.DataRowVersion SourceVersion {get; set;}
Implements
IDataParameter.SourceVersion
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.1.1.13. MySqlParameter.ToString Method
Overridden. Gets a string containing the ParameterName.
Syntax: Visual Basic
Overrides Public Function ToString() As String
Syntax: C#
public override string ToString();
Return Value
See Also
MySqlParameter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.3.2. Item Property (Int32)
Gets the MySqlParameter at the specified index.
Syntax: Visual Basic
Overloads Public Default Property Item(_
ByVal index As Integer _
) As MySqlParameter
Syntax: C#
public MySqlParameter this[
intindex
] {get; set;}
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.Item Overload List
21.2.7.1.4.1.7.1.1.3.3. Item Property (String)
Gets the MySqlParameter with the specified name.
Syntax: Visual Basic
Overloads Public Default Property Item(_
ByVal name As String _
) As MySqlParameter
Syntax: C#
public MySqlParameter this[
stringname
] {get; set;}
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.Item Overload List
21.2.7.1.4.1.7.1.1.4. Add Method
Adds the specified MySqlParameter object to the MySqlParameterCollection.
Overload List
Adds the specified MySqlParameter object to the MySqlParameterCollection.
Adds the specified MySqlParameter object to the MySqlParameterCollection.
Adds a MySqlParameter to the MySqlParameterCollection given the parameter name and the data type.
Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, and the column length.
Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, the column length, and the source column name.
Adds a MySqlParameter to the MySqlParameterCollection given the specified parameter name and value.
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.4.1. MySqlParameterCollection.Add Method
Adds the specified MySqlParameter object to the MySqlParameterCollection.
Syntax: Visual Basic
Overloads Public Function Add(_
ByVal value As MySqlParameter _
) As MySqlParameter
Syntax: C#
public MySqlParameter Add(
MySqlParametervalue
);
Parameters
value: The MySqlParameter to add to the collection.
Return Value
The newly added MySqlParameter object.
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.Add Overload List
21.2.7.1.4.1.7.1.1.4.2. MySqlParameterCollection.Add Method
Adds the specified MySqlParameter object to the MySqlParameterCollection.
Syntax: Visual Basic
NotOverridable Overloads Public Function Add(_
ByVal value As Object _
) As Integer _
_
Implements IList.Add
Syntax: C#
public int Add(
objectvalue
);
Parameters
value: The MySqlParameter to add to the collection.
Return Value
The index of the new MySqlParameter object.
Implements
IList.Add
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.Add Overload List
21.2.7.1.4.1.7.1.1.4.3. MySqlParameterCollection.Add Method
Adds a MySqlParameter to the MySqlParameterCollection given the parameter name and the data type.
Syntax: Visual Basic
Overloads Public Function Add(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType _
) As MySqlParameter
Syntax: C#
public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType
);
Parameters
parameterName: The name of the parameter.
dbType: One of the MySqlDbType values.
Return Value
The newly added MySqlParameter object.
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.Add Overload List
21.2.7.1.4.1.7.1.1.4.4. MySqlParameterCollection.Add Method
Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, and the column length.
Syntax: Visual Basic
Overloads Public Function Add(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer _
) As MySqlParameter
Syntax: C#
public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType,
intsize
);
Parameters
parameterName: The name of the parameter.
dbType: One of the MySqlDbType values.
size: The length of the column.
Return Value
The newly added MySqlParameter object.
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.Add Overload List
21.2.7.1.4.1.7.1.1.4.5. MySqlParameterCollection.Add Method
Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, the column length, and the source column name.
Syntax: Visual Basic
Overloads Public Function Add(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer, _
ByVal sourceColumn As String _
) As MySqlParameter
Syntax: C#
public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType,
intsize,
stringsourceColumn
);
Parameters
parameterName: The name of the parameter.
dbType: One of the MySqlDbType values.
size: The length of the column.
sourceColumn: The name of the source column.
Return Value
The newly added MySqlParameter object.
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.Add Overload List
21.2.7.1.4.1.7.1.1.4.6. MySqlParameterCollection.Add Method
Adds a MySqlParameter to the MySqlParameterCollection given the specified parameter name and value.
Syntax: Visual Basic
Overloads Public Function Add(_
ByVal parameterName As String, _
ByVal value As Object _
) As MySqlParameter
Syntax: C#
public MySqlParameter Add(
stringparameterName,
objectvalue
);
Parameters
parameterName: The name of the parameter.
value: The Value of the MySqlParameter to add to the collection.
Return Value
The newly added MySqlParameter object.
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.Add Overload List
21.2.7.1.4.1.7.1.1.5. MySqlParameterCollection.Clear Method
Removes all items from the collection.
Syntax: Visual Basic
NotOverridable Public Sub Clear() _
_
Implements IList.Clear
Syntax: C#
public void Clear();
Implements
IList.Clear
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.6. Contains Method
Gets a value indicating whether a MySqlParameter exists in the collection.
Overload List
Gets a value indicating whether a MySqlParameter exists in the collection.
Gets a value indicating whether a MySqlParameter with the specified parameter name exists in the collection.
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.6.1. MySqlParameterCollection.Contains Method
Gets a value indicating whether a MySqlParameter exists in the collection.
Syntax: Visual Basic
NotOverridable Overloads Public Function Contains(_
ByVal value As Object _
) As Boolean _
_
Implements IList.Contains
Syntax: C#
public bool Contains(
objectvalue
);
Parameters
value: The value of the MySqlParameter object to find.
Return Value
true if the collection contains the MySqlParameter object; otherwise, false.
Implements
IList.Contains
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.Contains Overload List
21.2.7.1.4.1.7.1.1.6.2. MySqlParameterCollection.Contains Method
Gets a value indicating whether a MySqlParameter with the specified parameter name exists in the collection.
Syntax: Visual Basic
NotOverridable Overloads Public Function Contains(_
ByVal name As String _
) As Boolean _
_
Implements IDataParameterCollection.Contains
Syntax: C#
public bool Contains(
stringname
);
Parameters
name: The name of the MySqlParameter object to find.
Return Value
true if the collection contains the parameter; otherwise, false.
Implements
IDataParameterCollection.Contains
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.Contains Overload List
21.2.7.1.4.1.7.1.1.7. MySqlParameterCollection.CopyTo Method
Copies MySqlParameter objects from the MySqlParameterCollection to the specified array.
Syntax: Visual Basic
NotOverridable Public Sub CopyTo(_
ByVal array As Array, _
ByVal index As Integer _
) _
_
Implements ICollection.CopyTo
Syntax: C#
public void CopyTo(
Arrayarray,
intindex
);
Parameters
array:
Implements
ICollection.CopyTo
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.8. IndexOf Method
Gets the location of a MySqlParameter in the collection.
Overload List
Gets the location of a MySqlParameter in the collection.
Gets the location of the MySqlParameter in the collection with a specific parameter name.
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.8.1. MySqlParameterCollection.IndexOf Method
Gets the location of a MySqlParameter in the collection.
Syntax: Visual Basic
NotOverridable Overloads Public Function IndexOf(_
ByVal value As Object _
) As Integer _
_
Implements IList.IndexOf
Syntax: C#
public int IndexOf(
objectvalue
);
Parameters
value: The MySqlParameter object to locate.
Return Value
The zero-based location of the MySqlParameter in the collection.
Implements
IList.IndexOf
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.IndexOf Overload List
21.2.7.1.4.1.7.1.1.8.2. MySqlParameterCollection.IndexOf Method
Gets the location of the MySqlParameter in the collection with a specific parameter name.
Syntax: Visual Basic
NotOverridable Overloads Public Function IndexOf(_
ByVal parameterName As String _
) As Integer _
_
Implements IDataParameterCollection.IndexOf
Syntax: C#
public int IndexOf(
stringparameterName
);
Parameters
parameterName: The name of the MySqlParameter object to retrieve.
Return Value
The zero-based location of the MySqlParameter in the collection.
Implements
IDataParameterCollection.IndexOf
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.IndexOf Overload List
21.2.7.1.4.1.7.1.1.9. MySqlParameterCollection.Insert Method
Inserts a MySqlParameter into the collection at the specified index.
Syntax: Visual Basic
NotOverridable Public Sub Insert(_
ByVal index As Integer, _
ByVal value As Object _
) _
_
Implements IList.Insert
Syntax: C#
public void Insert(
intindex,
objectvalue
);
Parameters
value:
Implements
IList.Insert
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.10. MySqlParameterCollection.Remove Method
Removes the specified MySqlParameter from the collection.
Syntax: Visual Basic
NotOverridable Public Sub Remove(_
ByVal value As Object _
) _
_
Implements IList.Remove
Syntax: C#
public void Remove(
objectvalue
);
Parameters
value:
Implements
IList.Remove
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.11. RemoveAt Method
Removes the specified MySqlParameter from the collection.
Overload List
Removes the specified MySqlParameter from the collection using a specific index.
Removes the specified MySqlParameter from the collection using the parameter name.
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.7.1.1.11.1. MySqlParameterCollection.RemoveAt Method
Removes the specified MySqlParameter from the collection using a specific index.
Syntax: Visual Basic
NotOverridable Overloads Public Sub RemoveAt(_
ByVal index As Integer _
) _
_
Implements IList.RemoveAt
Syntax: C#
public void RemoveAt(
intindex
);
Parameters
index: The zero-based index of the parameter.
Implements
IList.RemoveAt
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.RemoveAt Overload List
21.2.7.1.4.1.7.1.1.11.2. MySqlParameterCollection.RemoveAt Method
Removes the specified MySqlParameter from the collection using the parameter name.
Syntax: Visual Basic
NotOverridable Overloads Public Sub RemoveAt(_
ByVal name As String _
) _
_
Implements IDataParameterCollection.RemoveAt
Syntax: C#
public void RemoveAt(
stringname
);
Parameters
name: The name of the MySqlParameter object to retrieve.
Implements
IDataParameterCollection.RemoveAt
See Also
MySqlParameterCollection Class, MySql.Data.MySqlClient Namespace, MySqlParameterCollection.RemoveAt Overload List
21.2.7.1.4.1.8. Transaction Property
Syntax: Visual Basic
Public Property Transaction As MySqlTransaction
Syntax: C#
public MySqlTransaction Transaction {get; set;}
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.9. UpdatedRowSource Property
Syntax: Visual Basic
NotOverridable Public Property UpdatedRowSource As UpdateRowSource _
_
Implements IDbCommand.UpdatedRowSource
Syntax: C#
public System.Data.UpdateRowSource UpdatedRowSource {get; set;}
Implements
IDbCommand.UpdatedRowSource
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.10. MySqlCommand.Cancel Method
Attempts to cancel the execution of a MySqlCommand. This operation is not supported.
Syntax: Visual Basic
NotOverridable Public Sub Cancel() _
_
Implements IDbCommand.Cancel
Syntax: C#
public void Cancel();
Implements
IDbCommand.Cancel
Remarks
Cancelling an executing command is currently not supported on any version of MySQL.
Exceptions
Exception Type | Condition |
NotSupportedException | This operation is not supported. |
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.11. MySqlCommand.CreateParameter Method
Creates a new instance of a MySqlParameter object.
Syntax: Visual Basic
Public Function CreateParameter() As MySqlParameter
Syntax: C#
public MySqlParameter CreateParameter();
Return Value
A MySqlParameter object.
Remarks
This method is a strongly-typed version of CreateParameter.
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.12. MySqlCommand.ExecuteNonQuery Method
Syntax: Visual Basic
NotOverridable Public Function ExecuteNonQuery() As Integer _
_
Implements IDbCommand.ExecuteNonQuery
Syntax: C#
public int ExecuteNonQuery();
Implements
IDbCommand.ExecuteNonQuery
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13. ExecuteReader Method
Overload List
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1. MySqlCommand.ExecuteReader Method
Syntax: Visual Basic
Overloads Public Function ExecuteReader() As MySqlDataReader
Syntax: C#
public MySqlDataReader ExecuteReader();
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand.ExecuteReader Overload List
21.2.7.1.4.1.13.1.1. MySqlDataReader Class
Provides a means of reading a forward-only stream of rows from a MySQL database. This class cannot be inherited.
For a list of all members of this type, see MySqlDataReader Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlDataReader_
Inherits MarshalByRefObject_
Implements IEnumerable, IDataReader, IDisposable, IDataRecord
Syntax: C#
public sealed class MySqlDataReader : MarshalByRefObject, IEnumerable, IDataReader, IDisposable, IDataRecord
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlDataReader Members, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1. MySqlDataReader Members
Public Instance Properties
Depth | Gets a value indicating the depth of nesting for the current row. This method is not supported currently and always returns 0. |
FieldCount | Gets the number of columns in the current row. |
HasRows | Gets a value indicating whether the MySqlDataReader contains one or more rows. |
IsClosed | Gets a value indicating whether the data reader is closed. |
Item | Overloaded. Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class. |
RecordsAffected | Gets the number of rows changed, inserted, or deleted by execution of the SQL statement. |
Public Instance Methods
Close | Closes the MySqlDataReader object. |
CreateObjRef (inherited from MarshalByRefObject) | Creates an object that contains all the relevant information required to generate a proxy used to communicate with a remote object. |
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetBoolean | Gets the value of the specified column as a Boolean. |
GetByte | Gets the value of the specified column as a byte. |
GetBytes | Reads a stream of bytes from the specified column offset into the buffer an array starting at the given buffer offset. |
GetChar | Gets the value of the specified column as a single character. |
GetChars | Reads a stream of characters from the specified column offset into the buffer as an array starting at the given buffer offset. |
GetDataTypeName | Gets the name of the source data type. |
GetDateTime | |
GetDecimal | |
GetDouble | |
GetFieldType | Gets the Type that is the data type of the object. |
GetFloat | |
GetGuid | |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetInt16 | |
GetInt32 | |
GetInt64 | |
GetLifetimeService (inherited from MarshalByRefObject) | Retrieves the current lifetime service object that controls the lifetime policy for this instance. |
GetMySqlDateTime | |
GetName | Gets the name of the specified column. |
GetOrdinal | Gets the column ordinal, given the name of the column. |
GetSchemaTable | Returns a DataTable that describes the column metadata of the MySqlDataReader. |
GetString | |
GetTimeSpan | |
GetType (inherited from Object) | Gets the Type of the current instance. |
GetUInt16 | |
GetUInt32 | |
GetUInt64 | |
GetValue | Gets the value of the specified column in its native format. |
GetValues | Gets all attribute columns in the collection for the current row. |
InitializeLifetimeService (inherited from MarshalByRefObject) | Obtains a lifetime service object to control the lifetime policy for this instance. |
IsDBNull | Gets a value indicating whether the column contains non-existent or missing values. |
NextResult | Advances the data reader to the next result, when reading the results of batch SQL statements. |
Read | Advances the MySqlDataReader to the next record. |
ToString (inherited from Object) | Returns a String that represents the current Object. |
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.1. Depth Property
Gets a value indicating the depth of nesting for the current row. This method is not supported currently and always returns 0.
Syntax: Visual Basic
NotOverridable Public ReadOnly Property Depth As Integer _
_
Implements IDataReader.Depth
Syntax: C#
public int Depth {get;}
Implements
IDataReader.Depth
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.2. FieldCount Property
Gets the number of columns in the current row.
Syntax: Visual Basic
NotOverridable Public ReadOnly Property FieldCount As Integer _
_
Implements IDataRecord.FieldCount
Syntax: C#
public int FieldCount {get;}
Implements
IDataRecord.FieldCount
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.3. HasRows Property
Gets a value indicating whether the MySqlDataReader contains one or more rows.
Syntax: Visual Basic
Public ReadOnly Property HasRows As Boolean
Syntax: C#
public bool HasRows {get;}
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.4. IsClosed Property
Gets a value indicating whether the data reader is closed.
Syntax: Visual Basic
NotOverridable Public ReadOnly Property IsClosed As Boolean _
_
Implements IDataReader.IsClosed
Syntax: C#
public bool IsClosed {get;}
Implements
IDataReader.IsClosed
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.5. Item Property
Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class.
Overload List
Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class.
Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class.
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.5.1. Item Property (Int32)
Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class.
Syntax: Visual Basic
NotOverridable Overloads Public Default ReadOnly Property Item(_
ByVal i As Integer _
) _
_
Implements IDataRecord.Item As Object _
_
Implements IDataRecord.Item
Syntax: C#
public object this[
inti
] {get;}
Implements
IDataRecord.Item
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace, MySqlDataReader.Item Overload List
21.2.7.1.4.1.13.1.1.1.5.2. Item Property (String)
Gets the value of a column in its native format. In C#, this property is the indexer for the MySqlDataReader class.
Syntax: Visual Basic
NotOverridable Overloads Public Default ReadOnly Property Item(_
ByVal name As String _
) _
_
Implements IDataRecord.Item As Object _
_
Implements IDataRecord.Item
Syntax: C#
public object this[
stringname
] {get;}
Implements
IDataRecord.Item
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace, MySqlDataReader.Item Overload List
21.2.7.1.4.1.13.1.1.1.6. RecordsAffected Property
Gets the number of rows changed, inserted, or deleted by execution of the SQL statement.
Syntax: Visual Basic
NotOverridable Public ReadOnly Property RecordsAffected As Integer _
_
Implements IDataReader.RecordsAffected
Syntax: C#
public int RecordsAffected {get;}
Implements
IDataReader.RecordsAffected
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.7. MySqlDataReader.Close Method
Closes the MySqlDataReader object.
Syntax: Visual Basic
NotOverridable Public Sub Close() _
_
Implements IDataReader.Close
Syntax: C#
public void Close();
Implements
IDataReader.Close
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.8. MySqlDataReader.GetBoolean Method
Gets the value of the specified column as a Boolean.
Syntax: Visual Basic
NotOverridable Public Function GetBoolean(_
ByVal i As Integer _
) As Boolean _
_
Implements IDataRecord.GetBoolean
Syntax: C#
public bool GetBoolean(
inti
);
Parameters
i:
Return Value
Implements
IDataRecord.GetBoolean
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.9. MySqlDataReader.GetByte Method
Gets the value of the specified column as a byte.
Syntax: Visual Basic
NotOverridable Public Function GetByte(_
ByVal i As Integer _
) As Byte _
_
Implements IDataRecord.GetByte
Syntax: C#
public byte GetByte(
inti
);
Parameters
i:
Return Value
Implements
IDataRecord.GetByte
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.10. MySqlDataReader.GetBytes Method
Reads a stream of bytes from the specified column offset into the buffer an array starting at the given buffer offset.
Syntax: Visual Basic
NotOverridable Public Function GetBytes(_
ByVal i As Integer, _
ByVal dataIndex As Long, _
ByVal buffer As Byte(), _
ByVal bufferIndex As Integer, _
ByVal length As Integer _
) As Long _
_
Implements IDataRecord.GetBytes
Syntax: C#
public long GetBytes(
inti,
longdataIndex,
byte[]buffer,
intbufferIndex,
intlength
);
Parameters
i: The zero-based column ordinal.
dataIndex: The index within the field from which to begin the read operation.
buffer: The buffer into which to read the stream of bytes.
bufferIndex: The index for buffer to begin the read operation.
length: The maximum length to copy into the buffer.
Return Value
The actual number of bytes read.
Implements
IDataRecord.GetBytes
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.11. MySqlDataReader.GetChar Method
Gets the value of the specified column as a single character.
Syntax: Visual Basic
NotOverridable Public Function GetChar(_
ByVal i As Integer _
) As Char _
_
Implements IDataRecord.GetChar
Syntax: C#
public char GetChar(
inti
);
Parameters
i:
Return Value
Implements
IDataRecord.GetChar
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.12. MySqlDataReader.GetChars Method
Reads a stream of characters from the specified column offset into the buffer as an array starting at the given buffer offset.
Syntax: Visual Basic
NotOverridable Public Function GetChars(_
ByVal i As Integer, _
ByVal fieldOffset As Long, _
ByVal buffer As Char(), _
ByVal bufferoffset As Integer, _
ByVal length As Integer _
) As Long _
_
Implements IDataRecord.GetChars
Syntax: C#
public long GetChars(
inti,
longfieldOffset,
char[]buffer,
intbufferoffset,
intlength
);
Parameters
i:
fieldOffset:
buffer:
bufferoffset:
length:
Return Value
Implements
IDataRecord.GetChars
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.13. MySqlDataReader.GetDataTypeName Method
Gets the name of the source data type.
Syntax: Visual Basic
NotOverridable Public Function GetDataTypeName(_
ByVal i As Integer _
) As String _
_
Implements IDataRecord.GetDataTypeName
Syntax: C#
public string GetDataTypeName(
inti
);
Parameters
i:
Return Value
Implements
IDataRecord.GetDataTypeName
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.14. MySqlDataReader.GetDateTime Method
Syntax: Visual Basic
NotOverridable Public Function GetDateTime(_
ByVal index As Integer _
) As Date _
_
Implements IDataRecord.GetDateTime
Syntax: C#
public DateTime GetDateTime(
intindex
);
Implements
IDataRecord.GetDateTime
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.15. MySqlDataReader.GetDecimal Method
Syntax: Visual Basic
NotOverridable Public Function GetDecimal(_
ByVal index As Integer _
) As Decimal _
_
Implements IDataRecord.GetDecimal
Syntax: C#
public decimal GetDecimal(
intindex
);
Implements
IDataRecord.GetDecimal
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.16. MySqlDataReader.GetDouble Method
Syntax: Visual Basic
NotOverridable Public Function GetDouble(_
ByVal index As Integer _
) As Double _
_
Implements IDataRecord.GetDouble
Syntax: C#
public double GetDouble(
intindex
);
Implements
IDataRecord.GetDouble
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.17. MySqlDataReader.GetFieldType Method
Gets the Type that is the data type of the object.
Syntax: Visual Basic
NotOverridable Public Function GetFieldType(_
ByVal i As Integer _
) As Type _
_
Implements IDataRecord.GetFieldType
Syntax: C#
public Type GetFieldType(
inti
);
Parameters
i:
Return Value
Implements
IDataRecord.GetFieldType
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.18. MySqlDataReader.GetFloat Method
Syntax: Visual Basic
NotOverridable Public Function GetFloat(_
ByVal index As Integer _
) As Single _
_
Implements IDataRecord.GetFloat
Syntax: C#
public float GetFloat(
intindex
);
Implements
IDataRecord.GetFloat
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.19. MySqlDataReader.GetGuid Method
Syntax: Visual Basic
NotOverridable Public Function GetGuid(_
ByVal index As Integer _
) As Guid _
_
Implements IDataRecord.GetGuid
Syntax: C#
public Guid GetGuid(
intindex
);
Implements
IDataRecord.GetGuid
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.20. MySqlDataReader.GetInt16 Method
Syntax: Visual Basic
NotOverridable Public Function GetInt16(_
ByVal index As Integer _
) As Short _
_
Implements IDataRecord.GetInt16
Syntax: C#
public short GetInt16(
intindex
);
Implements
IDataRecord.GetInt16
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.21. MySqlDataReader.GetInt32 Method
Syntax: Visual Basic
NotOverridable Public Function GetInt32(_
ByVal index As Integer _
) As Integer _
_
Implements IDataRecord.GetInt32
Syntax: C#
public int GetInt32(
intindex
);
Implements
IDataRecord.GetInt32
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.22. MySqlDataReader.GetInt64 Method
Syntax: Visual Basic
NotOverridable Public Function GetInt64(_
ByVal index As Integer _
) As Long _
_
Implements IDataRecord.GetInt64
Syntax: C#
public long GetInt64(
intindex
);
Implements
IDataRecord.GetInt64
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.23. MySqlDataReader.GetMySqlDateTime Method
Syntax: Visual Basic
Public Function GetMySqlDateTime(_
ByVal index As Integer _
) As MySqlDateTime
Syntax: C#
public MySqlDateTime GetMySqlDateTime(
intindex
);
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.24. MySqlDataReader.GetName Method
Gets the name of the specified column.
Syntax: Visual Basic
NotOverridable Public Function GetName(_
ByVal i As Integer _
) As String _
_
Implements IDataRecord.GetName
Syntax: C#
public string GetName(
inti
);
Parameters
i:
Return Value
Implements
IDataRecord.GetName
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.25. MySqlDataReader.GetOrdinal Method
Gets the column ordinal, given the name of the column.
Syntax: Visual Basic
NotOverridable Public Function GetOrdinal(_
ByVal name As String _
) As Integer _
_
Implements IDataRecord.GetOrdinal
Syntax: C#
public int GetOrdinal(
stringname
);
Parameters
name:
Return Value
Implements
IDataRecord.GetOrdinal
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.26. MySqlDataReader.GetSchemaTable Method
Returns a DataTable that describes the column metadata of the MySqlDataReader.
Syntax: Visual Basic
NotOverridable Public Function GetSchemaTable() As DataTable _
_
Implements IDataReader.GetSchemaTable
Syntax: C#
public DataTable GetSchemaTable();
Return Value
Implements
IDataReader.GetSchemaTable
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.27. MySqlDataReader.GetString Method
Syntax: Visual Basic
NotOverridable Public Function GetString(_
ByVal index As Integer _
) As String _
_
Implements IDataRecord.GetString
Syntax: C#
public string GetString(
intindex
);
Implements
IDataRecord.GetString
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.28. MySqlDataReader.GetTimeSpan Method
Syntax: Visual Basic
Public Function GetTimeSpan(_
ByVal index As Integer _
) As TimeSpan
Syntax: C#
public TimeSpan GetTimeSpan(
intindex
);
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.29. MySqlDataReader.GetUInt16 Method
Syntax: Visual Basic
Public Function GetUInt16(_
ByVal index As Integer _
) As UInt16
Syntax: C#
public ushort GetUInt16(
intindex
);
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.30. MySqlDataReader.GetUInt32 Method
Syntax: Visual Basic
Public Function GetUInt32(_
ByVal index As Integer _
) As UInt32
Syntax: C#
public uint GetUInt32(
intindex
);
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.31. MySqlDataReader.GetUInt64 Method
Syntax: Visual Basic
Public Function GetUInt64(_
ByVal index As Integer _
) As UInt64
Syntax: C#
public ulong GetUInt64(
intindex
);
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.32. MySqlDataReader.GetValue Method
Gets the value of the specified column in its native format.
Syntax: Visual Basic
NotOverridable Public Function GetValue(_
ByVal i As Integer _
) As Object _
_
Implements IDataRecord.GetValue
Syntax: C#
public object GetValue(
inti
);
Parameters
i:
Return Value
Implements
IDataRecord.GetValue
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.33. MySqlDataReader.GetValues Method
Gets all attribute columns in the collection for the current row.
Syntax: Visual Basic
NotOverridable Public Function GetValues(_
ByVal values As Object() _
) As Integer _
_
Implements IDataRecord.GetValues
Syntax: C#
public int GetValues(
object[]values
);
Parameters
values:
Return Value
Implements
IDataRecord.GetValues
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.34. MySqlDataReader.IsDBNull Method
Gets a value indicating whether the column contains non-existent or missing values.
Syntax: Visual Basic
NotOverridable Public Function IsDBNull(_
ByVal i As Integer _
) As Boolean _
_
Implements IDataRecord.IsDBNull
Syntax: C#
public bool IsDBNull(
inti
);
Parameters
i:
Return Value
Implements
IDataRecord.IsDBNull
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.35. MySqlDataReader.NextResult Method
Advances the data reader to the next result, when reading the results of batch SQL statements.
Syntax: Visual Basic
NotOverridable Public Function NextResult() As Boolean _
_
Implements IDataReader.NextResult
Syntax: C#
public bool NextResult();
Return Value
Implements
IDataReader.NextResult
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.1.1.1.36. MySqlDataReader.Read Method
Advances the MySqlDataReader to the next record.
Syntax: Visual Basic
NotOverridable Public Function Read() As Boolean _
_
Implements IDataReader.Read
Syntax: C#
public bool Read();
Return Value
Implements
IDataReader.Read
See Also
MySqlDataReader Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.13.2. MySqlCommand.ExecuteReader Method
Syntax: Visual Basic
Overloads Public Function ExecuteReader(_
ByVal behavior As CommandBehavior _
) As MySqlDataReader
Syntax: C#
public MySqlDataReader ExecuteReader(
CommandBehaviorbehavior
);
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace, MySqlCommand.ExecuteReader Overload List
21.2.7.1.4.1.14. MySqlCommand.ExecuteScalar Method
Syntax: Visual Basic
NotOverridable Public Function ExecuteScalar() As Object _
_
Implements IDbCommand.ExecuteScalar
Syntax: C#
public object ExecuteScalar();
Implements
IDbCommand.ExecuteScalar
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.4.1.15. MySqlCommand.Prepare Method
Syntax: Visual Basic
NotOverridable Public Sub Prepare() _
_
Implements IDbCommand.Prepare
Syntax: C#
public void Prepare();
Implements
IDbCommand.Prepare
See Also
MySqlCommand Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5. MySqlCommandBuilder Class
For a list of all members of this type, see MySqlCommandBuilder Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlCommandBuilder_
Inherits Component
Syntax: C#
public sealed class MySqlCommandBuilder : Component
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlCommandBuilder Members, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1. MySqlCommandBuilder Members
Public Static (Shared) Methods
DeriveParameters | Overloaded. Retrieves parameter information from the stored procedure specified in the MySqlCommand and populates the Parameters collection of the specified MySqlCommand object. This method is not currently supported since stored procedures are not available in MySql. |
Public Instance Constructors
MySqlCommandBuilder | Overloaded. Initializes a new instance of the MySqlCommandBuilder class. |
Public Instance Properties
Container (inherited from Component) | Gets the IContainer that contains the Component. |
DataAdapter | |
QuotePrefix | |
QuoteSuffix | |
Site (inherited from Component) | Gets or sets the ISite of the Component. |
Public Instance Methods
CreateObjRef (inherited from MarshalByRefObject) | Creates an object that contains all the relevant information required to generate a proxy used to communicate with a remote object. |
Dispose (inherited from Component) | Releases all resources used by the Component. |
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetDeleteCommand | |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetInsertCommand | |
GetLifetimeService (inherited from MarshalByRefObject) | Retrieves the current lifetime service object that controls the lifetime policy for this instance. |
GetType (inherited from Object) | Gets the Type of the current instance. |
GetUpdateCommand | |
InitializeLifetimeService (inherited from MarshalByRefObject) | Obtains a lifetime service object to control the lifetime policy for this instance. |
RefreshSchema | |
ToString (inherited from Component) | Returns a String containing the name of the Component, if any. This method should not be overridden. |
Public Instance Events
Disposed (inherited from Component) | Adds an event handler to listen to the Disposed event on the component. |
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.1. DeriveParameters Method
Retrieves parameter information from the stored procedure specified in the MySqlCommand and populates the Parameters collection of the specified MySqlCommand object. This method is not currently supported since stored procedures are not available in MySql.
Overload List
Retrieves parameter information from the stored procedure specified in the MySqlCommand and populates the Parameters collection of the specified MySqlCommand object. This method is not currently supported since stored procedures are not available in MySql.
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.1.1. MySqlCommandBuilder.DeriveParameters Method
Retrieves parameter information from the stored procedure specified in the MySqlCommand and populates the Parameters collection of the specified MySqlCommand object. This method is not currently supported since stored procedures are not available in MySql.
Syntax: Visual Basic
Overloads Public Shared Sub DeriveParameters(_
ByVal command As MySqlCommand _
)
Syntax: C#
public static void DeriveParameters(
MySqlCommandcommand
);
Parameters
command: The MySqlCommand referencing the stored procedure from which the parameter information is to be derived. The derived parameters are added to the Parameters collection of the MySqlCommand.
Exceptions
Exception Type | Condition |
InvalidOperationException | The command text is not a valid stored procedure name. |
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace, MySqlCommandBuilder.DeriveParameters Overload List
21.2.7.1.5.1.1.2. MySqlCommandBuilder.DeriveParameters Method
Syntax: Visual Basic
Overloads Public Shared Sub DeriveParameters(_
ByVal command As MySqlCommand, _
ByVal useProc As Boolean _
)
Syntax: C#
public static void DeriveParameters(
MySqlCommandcommand,
booluseProc
);
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace, MySqlCommandBuilder.DeriveParameters Overload List
21.2.7.1.5.1.2. MySqlCommandBuilder Constructor
Initializes a new instance of the MySqlCommandBuilder class.
Overload List
Initializes a new instance of the MySqlCommandBuilder class.
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.1. MySqlCommandBuilder Constructor
Initializes a new instance of the MySqlCommandBuilder class.
Syntax: Visual Basic
Overloads Public Sub New()
Syntax: C#
public MySqlCommandBuilder();
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace, MySqlCommandBuilder Constructor Overload List
21.2.7.1.5.1.2.2. MySqlCommandBuilder Constructor
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal adapter As MySqlDataAdapter _
)
Syntax: C#
public MySqlCommandBuilder(
MySqlDataAdapteradapter
);
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace, MySqlCommandBuilder Constructor Overload List
21.2.7.1.5.1.2.2.1. MySqlDataAdapter Class
For a list of all members of this type, see MySqlDataAdapter Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlDataAdapter_
Inherits DbDataAdapter
Syntax: C#
public sealed class MySqlDataAdapter : DbDataAdapter
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlDataAdapter Members, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1. MySqlDataAdapter Members
Public Instance Constructors
MySqlDataAdapter | Overloaded. Initializes a new instance of the MySqlDataAdapter class. |
Public Instance Properties
AcceptChangesDuringFill (inherited from DataAdapter) | Gets or sets a value indicating whether AcceptChangesis called on a DataRowafter it is added to the DataTableduring any of the Fill operations. |
AcceptChangesDuringUpdate (inherited from DataAdapter) | Gets or sets whether AcceptChangesis called during a Update. |
Container (inherited from Component) | Gets the IContainer that contains the Component. |
ContinueUpdateOnError (inherited from DataAdapter) | Gets or sets a value that specifies whether to generate an exception when an error is encountered during a row update. |
DeleteCommand | Overloaded. |
FillLoadOption (inherited from DataAdapter) | Gets or sets the LoadOption that determines how the adapter fills the DataTablefrom the DbDataReader. |
InsertCommand | Overloaded. |
MissingMappingAction (inherited from DataAdapter) | Determines the action to take when incoming data does not have a matching table or column. |
MissingSchemaAction (inherited from DataAdapter) | Determines the action to take when existing DataSetschema does not match incoming data. |
ReturnProviderSpecificTypes (inherited from DataAdapter) | Gets or sets whether the Fillmethod should return provider-specific values or common CLS-compliant values. |
SelectCommand | Overloaded. |
Site (inherited from Component) | Gets or sets the ISite of the Component. |
TableMappings (inherited from DataAdapter) | Gets a collection that provides the master mapping between a source table and a DataTable. |
UpdateBatchSize (inherited from DbDataAdapter) | Gets or sets a value that enables or disables batch processing support, and specifies the number of commands that can be executed in a batch. |
UpdateCommand | Overloaded. |
Public Instance Methods
CreateObjRef (inherited from MarshalByRefObject) | Creates an object that contains all the relevant information required to generate a proxy used to communicate with a remote object. |
Dispose (inherited from Component) | Releases all resources used by the Component. |
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
Fill (inherited from DbDataAdapter) | Overloaded. Adds or refreshes rows in the DataSetto match those in the data source using the DataSetname, and creates a DataTablenamed "Table." |
FillSchema (inherited from DbDataAdapter) | Overloaded. Configures the schema of the specified DataTablebased on the specified SchemaType. |
GetFillParameters (inherited from DbDataAdapter) | Gets the parameters set by the user when executing an SQL SELECT statement. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetLifetimeService (inherited from MarshalByRefObject) | Retrieves the current lifetime service object that controls the lifetime policy for this instance. |
GetType (inherited from Object) | Gets the Type of the current instance. |
InitializeLifetimeService (inherited from MarshalByRefObject) | Obtains a lifetime service object to control the lifetime policy for this instance. |
ResetFillLoadOption (inherited from DataAdapter) | Resets FillLoadOptionto its default state and causes Fillto honor AcceptChangesDuringFill. |
ShouldSerializeAcceptChangesDuringFill (inherited from DataAdapter) | Determines whether the AcceptChangesDuringFillproperty should be persisted. |
ShouldSerializeFillLoadOption (inherited from DataAdapter) | Determines whether the FillLoadOptionproperty should be persisted. |
ToString (inherited from Component) | Returns a String containing the name of the Component, if any. This method should not be overridden. |
Update (inherited from DbDataAdapter) | Overloaded. Calls the respective INSERT, UPDATE, or DELETE statements for each inserted, updated, or deleted row in the specified DataSet. |
Public Instance Events
Disposed (inherited from Component) | Adds an event handler to listen to the Disposed event on the component. |
FillError (inherited from DataAdapter) | Returned when an error occurs during a fill operation. |
RowUpdated | Occurs during Update after a command is executed against the data source. The attempt to update is made, so the event fires. |
RowUpdating | Occurs during Update before a command is executed against the data source. The attempt to update is made, so the event fires. |
Protected Internal Instance Properties
FillCommandBehavior (inherited from DbDataAdapter) | Gets or sets the behavior of the command used to fill the data adapter. |
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.1. MySqlDataAdapter Constructor
Initializes a new instance of the MySqlDataAdapter class.
Overload List
Initializes a new instance of the MySqlDataAdapter class.
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.1.1. MySqlDataAdapter Constructor
Initializes a new instance of the MySqlDataAdapter class.
Syntax: Visual Basic
Overloads Public Sub New()
Syntax: C#
public MySqlDataAdapter();
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace, MySqlDataAdapter Constructor Overload List
21.2.7.1.5.1.2.2.1.1.1.2. MySqlDataAdapter Constructor
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal selectCommand As MySqlCommand _
)
Syntax: C#
public MySqlDataAdapter(
MySqlCommandselectCommand
);
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace, MySqlDataAdapter Constructor Overload List
21.2.7.1.5.1.2.2.1.1.1.3. MySqlDataAdapter Constructor
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal selectCommandText As String, _
ByVal connection As MySqlConnection _
)
Syntax: C#
public MySqlDataAdapter(
stringselectCommandText,
MySqlConnectionconnection
);
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace, MySqlDataAdapter Constructor Overload List
21.2.7.1.5.1.2.2.1.1.1.4. MySqlDataAdapter Constructor
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal selectCommandText As String, _
ByVal selectConnString As String _
)
Syntax: C#
public MySqlDataAdapter(
stringselectCommandText,
stringselectConnString
);
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace, MySqlDataAdapter Constructor Overload List
21.2.7.1.5.1.2.2.1.1.2. DeleteCommand Property
Syntax: Visual Basic
Overloads Public Property DeleteCommand As MySqlCommand
Syntax: C#
new public MySqlCommand DeleteCommand {get; set;}
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.3. InsertCommand Property
Syntax: Visual Basic
Overloads Public Property InsertCommand As MySqlCommand
Syntax: C#
new public MySqlCommand InsertCommand {get; set;}
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.4. SelectCommand Property
Syntax: Visual Basic
Overloads Public Property SelectCommand As MySqlCommand
Syntax: C#
new public MySqlCommand SelectCommand {get; set;}
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.5. UpdateCommand Property
Syntax: Visual Basic
Overloads Public Property UpdateCommand As MySqlCommand
Syntax: C#
new public MySqlCommand UpdateCommand {get; set;}
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.6. MySqlDataAdapter.RowUpdated Event
Occurs during Update after a command is executed against the data source. The attempt to update is made, so the event fires.
Syntax: Visual Basic
Public Event RowUpdated As MySqlRowUpdatedEventHandler
Syntax: C#
public event MySqlRowUpdatedEventHandler RowUpdated;
Event Data
The event handler receives an argument of type MySqlRowUpdatedEventArgs containing data related to this event. The following MySqlRowUpdatedEventArgsproperties provide information specific to this event.
Property | Description |
Command | Gets or sets the MySqlCommand executed when Update is called. |
Errors | Gets any errors generated by the .NET Framework data provider when the Commandwas executed. |
RecordsAffected | Gets the number of rows changed, inserted, or deleted by execution of the SQL statement. |
Row | Gets the DataRowsent through an Update. |
RowCount | Gets the number of rows processed in a batch of updated records. |
StatementType | Gets the type of SQL statement executed. |
Status | Gets the UpdateStatus of the Commandproperty. |
TableMapping | Gets the DataTableMappingsent through an Update. |
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.6.1. MySqlRowUpdatedEventHandler Delegate
Represents the method that will handle the RowUpdatedevent of a MySqlDataAdapter.
Syntax: Visual Basic
Public Delegate Sub MySqlRowUpdatedEventHandler(_
ByVal sender As Object, _
ByVal e As MySqlRowUpdatedEventArgs _
)
Syntax: C#
public delegate void MySqlRowUpdatedEventHandler(
objectsender,
MySqlRowUpdatedEventArgs
);
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.6.1.1. MySqlRowUpdatedEventArgs Class
Provides data for the RowUpdated event. This class cannot be inherited.
For a list of all members of this type, see MySqlRowUpdatedEventArgs Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlRowUpdatedEventArgs_
Inherits RowUpdatedEventArgs
Syntax: C#
public sealed class MySqlRowUpdatedEventArgs : RowUpdatedEventArgs
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlRowUpdatedEventArgs Members, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.6.1.1.1. MySqlRowUpdatedEventArgs Members
MySqlRowUpdatedEventArgs overview
Public Instance Constructors
MySqlRowUpdatedEventArgs Constructor | Initializes a new instance of the MySqlRowUpdatedEventArgs class. |
Public Instance Properties
Command | Overloaded. Gets or sets the MySqlCommand executed when Update is called. |
Errors (inherited from RowUpdatedEventArgs) | Gets any errors generated by the .NET Framework data provider when the Commandwas executed. |
RecordsAffected (inherited from RowUpdatedEventArgs) | Gets the number of rows changed, inserted, or deleted by execution of the SQL statement. |
Row (inherited from RowUpdatedEventArgs) | Gets the DataRowsent through an Update. |
RowCount (inherited from RowUpdatedEventArgs) | Gets the number of rows processed in a batch of updated records. |
StatementType (inherited from RowUpdatedEventArgs) | Gets the type of SQL statement executed. |
Status (inherited from RowUpdatedEventArgs) | Gets the UpdateStatus of the Commandproperty. |
TableMapping (inherited from RowUpdatedEventArgs) | Gets the DataTableMappingsent through an Update. |
Public Instance Methods
CopyToRows (inherited from RowUpdatedEventArgs) | Overloaded. Copies references to the modified rows into the provided array. |
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetType (inherited from Object) | Gets the Type of the current instance. |
ToString (inherited from Object) | Returns a String that represents the current Object. |
See Also
MySqlRowUpdatedEventArgs Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.6.1.1.1.1. MySqlRowUpdatedEventArgs Constructor
Initializes a new instance of the MySqlRowUpdatedEventArgs class.
Syntax: Visual Basic
Public Sub New(_
ByVal row As DataRow, _
ByVal command As IDbCommand, _
ByVal statementType As StatementType, _
ByVal tableMapping As DataTableMapping _
)
Syntax: C#
public MySqlRowUpdatedEventArgs(
DataRowrow,
IDbCommandcommand,
StatementTypestatementType,
DataTableMappingtableMapping
);
Parameters
row: The DataRowsent through an Update.
command: The IDbCommand executed when Update is called.
statementType: One of the StatementTypevalues that specifies the type of query executed.
tableMapping: The DataTableMapping sent through an Update.
See Also
MySqlRowUpdatedEventArgs Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.6.1.1.1.2. Command Property
Gets or sets the MySqlCommand executed when Update is called.
Syntax: Visual Basic
Overloads Public ReadOnly Property Command As MySqlCommand
Syntax: C#
new public MySqlCommand Command {get;}
See Also
MySqlRowUpdatedEventArgs Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.7. MySqlDataAdapter.RowUpdating Event
Occurs during Update before a command is executed against the data source. The attempt to update is made, so the event fires.
Syntax: Visual Basic
Public Event RowUpdating As MySqlRowUpdatingEventHandler
Syntax: C#
public event MySqlRowUpdatingEventHandler RowUpdating;
Event Data
The event handler receives an argument of type MySqlRowUpdatingEventArgs containing data related to this event. The following MySqlRowUpdatingEventArgsproperties provide information specific to this event.
Property | Description |
Command | Gets or sets the MySqlCommand to execute when performing the Update. |
Errors | Gets any errors generated by the .NET Framework data provider when the Command executes. |
Row | Gets the DataRow that will be sent to the server as part of an insert, update, or delete operation. |
StatementType | Gets the type of SQL statement to execute. |
Status | Gets or sets the UpdateStatus of the Commandproperty. |
TableMapping | Gets the DataTableMapping to send through the Update. |
See Also
MySqlDataAdapter Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.7.1. MySqlRowUpdatingEventHandler Delegate
Represents the method that will handle the RowUpdatingevent of a MySqlDataAdapter.
Syntax: Visual Basic
Public Delegate Sub MySqlRowUpdatingEventHandler(_
ByVal sender As Object, _
ByVal e As MySqlRowUpdatingEventArgs _
)
Syntax: C#
public delegate void MySqlRowUpdatingEventHandler(
objectsender,
MySqlRowUpdatingEventArgs
);
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.7.1.1. MySqlRowUpdatingEventArgs Class
Provides data for the RowUpdating event. This class cannot be inherited.
For a list of all members of this type, see MySqlRowUpdatingEventArgs Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlRowUpdatingEventArgs_
Inherits RowUpdatingEventArgs
Syntax: C#
public sealed class MySqlRowUpdatingEventArgs : RowUpdatingEventArgs
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlRowUpdatingEventArgs Members, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.7.1.1.1. MySqlRowUpdatingEventArgs Members
MySqlRowUpdatingEventArgs overview
Public Instance Constructors
MySqlRowUpdatingEventArgs Constructor | Initializes a new instance of the MySqlRowUpdatingEventArgs class. |
Public Instance Properties
Command | Overloaded. Gets or sets the MySqlCommand to execute when performing the Update. |
Errors (inherited from RowUpdatingEventArgs) | Gets any errors generated by the .NET Framework data provider when the Command executes. |
Row (inherited from RowUpdatingEventArgs) | Gets the DataRow that will be sent to the server as part of an insert, update, or delete operation. |
StatementType (inherited from RowUpdatingEventArgs) | Gets the type of SQL statement to execute. |
Status (inherited from RowUpdatingEventArgs) | Gets or sets the UpdateStatus of the Commandproperty. |
TableMapping (inherited from RowUpdatingEventArgs) | Gets the DataTableMapping to send through the Update. |
Public Instance Methods
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetType (inherited from Object) | Gets the Type of the current instance. |
ToString (inherited from Object) | Returns a String that represents the current Object. |
See Also
MySqlRowUpdatingEventArgs Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.7.1.1.1.1. MySqlRowUpdatingEventArgs Constructor
Initializes a new instance of the MySqlRowUpdatingEventArgs class.
Syntax: Visual Basic
Public Sub New(_
ByVal row As DataRow, _
ByVal command As IDbCommand, _
ByVal statementType As StatementType, _
ByVal tableMapping As DataTableMapping _
)
Syntax: C#
public MySqlRowUpdatingEventArgs(
DataRowrow,
IDbCommandcommand,
StatementTypestatementType,
DataTableMappingtableMapping
);
Parameters
row: The DataRowto Update.
command: The IDbCommandto execute during Update.
statementType: One of the StatementTypevalues that specifies the type of query executed.
tableMapping: The DataTableMappingsent through an Update.
See Also
MySqlRowUpdatingEventArgs Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.2.1.1.7.1.1.1.2. Command Property
Gets or sets the MySqlCommand to execute when performing the Update.
Syntax: Visual Basic
Overloads Public Property Command As MySqlCommand
Syntax: C#
new public MySqlCommand Command {get; set;}
See Also
MySqlRowUpdatingEventArgs Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.2.3. MySqlCommandBuilder Constructor
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal adapter As MySqlDataAdapter, _
ByVal lastOneWins As Boolean _
)
Syntax: C#
public MySqlCommandBuilder(
MySqlDataAdapteradapter,
boollastOneWins
);
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace, MySqlCommandBuilder Constructor Overload List
21.2.7.1.5.1.2.4. MySqlCommandBuilder Constructor
Syntax: Visual Basic
Overloads Public Sub New(_
ByVal lastOneWins As Boolean _
)
Syntax: C#
public MySqlCommandBuilder(
boollastOneWins
);
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace, MySqlCommandBuilder Constructor Overload List
21.2.7.1.5.1.3. DataAdapter Property
Syntax: Visual Basic
Public Property DataAdapter As MySqlDataAdapter
Syntax: C#
public MySqlDataAdapter DataAdapter {get; set;}
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.4. QuotePrefix Property
Syntax: Visual Basic
Public Property QuotePrefix As String
Syntax: C#
public string QuotePrefix {get; set;}
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.5. QuoteSuffix Property
Syntax: Visual Basic
Public Property QuoteSuffix As String
Syntax: C#
public string QuoteSuffix {get; set;}
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.6. MySqlCommandBuilder.GetDeleteCommand Method
Syntax: Visual Basic
Public Function GetDeleteCommand() As MySqlCommand
Syntax: C#
public MySqlCommand GetDeleteCommand();
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.7. MySqlCommandBuilder.GetInsertCommand Method
Syntax: Visual Basic
Public Function GetInsertCommand() As MySqlCommand
Syntax: C#
public MySqlCommand GetInsertCommand();
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.8. MySqlCommandBuilder.GetUpdateCommand Method
Syntax: Visual Basic
Public Function GetUpdateCommand() As MySqlCommand
Syntax: C#
public MySqlCommand GetUpdateCommand();
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace
21.2.7.1.5.1.9. MySqlCommandBuilder.RefreshSchema Method
Syntax: Visual Basic
Public Sub RefreshSchema()
Syntax: C#
public void RefreshSchema();
See Also
MySqlCommandBuilder Class, MySql.Data.MySqlClient Namespace
21.2.7.1.6. MySqlException Class
The exception that is thrown when MySQL returns an error. This class cannot be inherited.
For a list of all members of this type, see MySqlException Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlException_
Inherits SystemException
Syntax: C#
public sealed class MySqlException : SystemException
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlException Members, MySql.Data.MySqlClient Namespace
21.2.7.1.6.1. MySqlException Members
Public Instance Properties
Data (inherited from Exception) | Gets a collection of key/value pairs that provide additional, user-defined information about the exception. |
HelpLink (inherited from Exception) | Gets or sets a link to the help file associated with this exception. |
InnerException (inherited from Exception) | Gets the Exceptioninstance that caused the current exception. |
Message (inherited from Exception) | Gets a message that describes the current exception. |
Number | Gets a number that identifies the type of error. This number corresponds to the error numbers given in Section C.3, “Server Error Codes and Messages”. |
Source (inherited from Exception) | Gets or sets the name of the application or the object that causes the error. |
StackTrace (inherited from Exception) | Gets a string representation of the frames on the call stack at the time the current exception was thrown. |
TargetSite (inherited from Exception) | Gets the method that throws the current exception. |
Public Instance Methods
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetBaseException (inherited from Exception) | When overridden in a derived class, returns the Exception that is the root cause of one or more subsequent exceptions. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetObjectData (inherited from Exception) | When overridden in a derived class, sets the SerializationInfo with information about the exception. |
GetType (inherited from Exception) | Gets the runtime type of the current instance. |
ToString (inherited from Exception) | Creates and returns a string representation of the current exception. |
See Also
MySqlException Class, MySql.Data.MySqlClient Namespace
21.2.7.1.6.1.1. Number Property
Gets a number that identifies the type of error.
Syntax: Visual Basic
Public ReadOnly Property Number As Integer
Syntax: C#
public int Number {get;}
See Also
MySqlException Class, MySql.Data.MySqlClient Namespace
21.2.7.1.7. MySqlHelper Class
Helper class that makes it easier to work with the provider.
For a list of all members of this type, see MySqlHelper Members .
Syntax: Visual Basic
NotInheritable Public Class MySqlHelper
Syntax: C#
public sealed class MySqlHelper
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlHelper Members, MySql.Data.MySqlClient Namespace
21.2.7.1.7.1. MySqlHelper Members
Public Static (Shared) Methods
ExecuteDataRow | Executes a single SQL statement and returns the first row of the resultset. A new MySqlConnection object is created, opened, and closed during this method. |
ExecuteDataset | Overloaded. Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection object is created, opened, and closed during this method. |
ExecuteNonQuery | Overloaded. Executes a single command against a MySQL database. The MySqlConnection is assumed to be open when the method is called and remains open after the method completes. |
ExecuteReader | Overloaded. Executes a single command against a MySQL database. |
ExecuteScalar | Overloaded. Execute a single command against a MySQL database. |
UpdateDataSet | Updates the given table with data from the given DataSet |
Public Instance Methods
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetType (inherited from Object) | Gets the Type of the current instance. |
ToString (inherited from Object) | Returns a String that represents the current Object. |
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace
21.2.7.1.7.1.1. MySqlHelper.ExecuteDataRow Method
Executes a single SQL statement and returns the first row of the resultset. A new MySqlConnection object is created, opened, and closed during this method.
Syntax: Visual Basic
Public Shared Function ExecuteDataRow(_
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray parms As MySqlParameter() _
) As DataRow
Syntax: C#
public static DataRow ExecuteDataRow(
stringconnectionString,
stringcommandText,
params MySqlParameter[]parms
);
Parameters
connectionString: Settings to be used for the connection
commandText: Command to execute
parms: Parameters to use for the command
Return Value
DataRow containing the first row of the resultset
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace
21.2.7.1.7.1.2. ExecuteDataset Method
Executes a single SQL statement and returns the resultset in a DataSet. The state of the MySqlConnection object remains unchanged after execution of this method.
Overload List
Executes a single SQL statement and returns the resultset in a DataSet. The state of the MySqlConnection object remains unchanged after execution of this method.
Executes a single SQL statement and returns the resultset in a DataSet. The state of the MySqlConnection object remains unchanged after execution of this method.
Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection object is created, opened, and closed during this method.
Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection object is created, opened, and closed during this method.
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace
21.2.7.1.7.1.2.1. MySqlHelper.ExecuteDataset Method
Executes a single SQL statement and returns the resultset in a DataSet. The state of the MySqlConnection object remains unchanged after execution of this method.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteDataset(_
ByVal connection As MySqlConnection, _
ByVal commandText As String _
) As DataSet
Syntax: C#
public static DataSet ExecuteDataset(
MySqlConnectionconnection,
stringcommandText
);
Parameters
connection: MySqlConnection object to use
commandText: Command to execute
Return Value
DataSetcontaining the resultset
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteDataset Overload List
21.2.7.1.7.1.2.2. MySqlHelper.ExecuteDataset Method
Executes a single SQL statement and returns the resultset in a DataSet. The state of the MySqlConnection object remains unchanged after execution of this method.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteDataset(_
ByVal connection As MySqlConnection, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _
) As DataSet
Syntax: C#
public static DataSet ExecuteDataset(
MySqlConnectionconnection,
stringcommandText,
params MySqlParameter[]commandParameters
);
Parameters
connection: MySqlConnection object to use
commandText: Command to execute
commandParameters: Parameters to use for the command
Return Value
DataSetcontaining the resultset
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteDataset Overload List
21.2.7.1.7.1.2.3. MySqlHelper.ExecuteDataset Method
Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection object is created, opened, and closed during this method.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteDataset(_
ByVal connectionString As String, _
ByVal commandText As String _
) As DataSet
Syntax: C#
public static DataSet ExecuteDataset(
stringconnectionString,
stringcommandText
);
Parameters
connectionString: Settings to be used for the connection
commandText: Command to execute
Return Value
DataSetcontaining the resultset
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteDataset Overload List
21.2.7.1.7.1.2.4. MySqlHelper.ExecuteDataset Method
Executes a single SQL statement and returns the resultset in a DataSet. A new MySqlConnection object is created, opened, and closed during this method.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteDataset(_
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _
) As DataSet
Syntax: C#
public static DataSet ExecuteDataset(
stringconnectionString,
stringcommandText,
params MySqlParameter[]commandParameters
);
Parameters
connectionString: Settings to be used for the connection
commandText: Command to execute
commandParameters: Parameters to use for the command
Return Value
DataSetcontaining the resultset
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteDataset Overload List
21.2.7.1.7.1.3. ExecuteNonQuery Method
Executes a single command against a MySQL database. The MySqlConnection is assumed to be open when the method is called and remains open after the method completes.
Overload List
Executes a single command against a MySQL database. The MySqlConnection is assumed to be open when the method is called and remains open after the method completes.
Executes a single command against a MySQL database. A new MySqlConnection is created using the ConnectionString given.
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace
21.2.7.1.7.1.3.1. MySqlHelper.ExecuteNonQuery Method
Executes a single command against a MySQL database. The MySqlConnection is assumed to be open when the method is called and remains open after the method completes.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteNonQuery(_
ByVal connection As MySqlConnection, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _
) As Integer
Syntax: C#
public static int ExecuteNonQuery(
MySqlConnectionconnection,
stringcommandText,
params MySqlParameter[]commandParameters
);
Parameters
connection: MySqlConnection object to use
commandText: SQL statement to be executed
commandParameters: Array of MySqlParameter objects to use with the command.
Return Value
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteNonQuery Overload List
21.2.7.1.7.1.3.2. MySqlHelper.ExecuteNonQuery Method
Executes a single command against a MySQL database. A new MySqlConnection is created using the ConnectionString given.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteNonQuery(_
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray parms As MySqlParameter() _
) As Integer
Syntax: C#
public static int ExecuteNonQuery(
stringconnectionString,
stringcommandText,
params MySqlParameter[]parms
);
Parameters
connectionString: ConnectionString to use
commandText: SQL statement to be executed
parms: Array of MySqlParameter objects to use with the command.
Return Value
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteNonQuery Overload List
21.2.7.1.7.1.4. ExecuteReader Method
Executes a single command against a MySQL database.
Overload List
Executes a single command against a MySQL database.
Executes a single command against a MySQL database.
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace
21.2.7.1.7.1.4.1. MySqlHelper.ExecuteReader Method
Executes a single command against a MySQL database.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteReader(_
ByVal connectionString As String, _
ByVal commandText As String _
) As MySqlDataReader
Syntax: C#
public static MySqlDataReader ExecuteReader(
stringconnectionString,
stringcommandText
);
Parameters
connectionString: Settings to use for this command
commandText: Command text to use
Return Value
MySqlDataReader object ready to read the results of the command
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteReader Overload List
21.2.7.1.7.1.4.2. MySqlHelper.ExecuteReader Method
Executes a single command against a MySQL database.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteReader(_
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _
) As MySqlDataReader
Syntax: C#
public static MySqlDataReader ExecuteReader(
stringconnectionString,
stringcommandText,
params MySqlParameter[]commandParameters
);
Parameters
connectionString: Settings to use for this command
commandText: Command text to use
commandParameters: Array of MySqlParameter objects to use with the command
Return Value
MySqlDataReader object ready to read the results of the command
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteReader Overload List
21.2.7.1.7.1.5. ExecuteScalar Method
Execute a single command against a MySQL database.
Overload List
Execute a single command against a MySQL database.
Execute a single command against a MySQL database.
Execute a single command against a MySQL database.
Execute a single command against a MySQL database.
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace
21.2.7.1.7.1.5.1. MySqlHelper.ExecuteScalar Method
Execute a single command against a MySQL database.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteScalar(_
ByVal connection As MySqlConnection, _
ByVal commandText As String _
) As Object
Syntax: C#
public static object ExecuteScalar(
MySqlConnectionconnection,
stringcommandText
);
Parameters
connection: MySqlConnection object to use
commandText: Command text to use for the command
Return Value
The first column of the first row in the result set, or a null reference if the result set is empty.
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteScalar Overload List
21.2.7.1.7.1.5.2. MySqlHelper.ExecuteScalar Method
Execute a single command against a MySQL database.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteScalar(_
ByVal connection As MySqlConnection, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _
) As Object
Syntax: C#
public static object ExecuteScalar(
MySqlConnectionconnection,
stringcommandText,
params MySqlParameter[]commandParameters
);
Parameters
connection: MySqlConnection object to use
commandText: Command text to use for the command
commandParameters: Parameters to use for the command
Return Value
The first column of the first row in the result set, or a null reference if the result set is empty.
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteScalar Overload List
21.2.7.1.7.1.5.3. MySqlHelper.ExecuteScalar Method
Execute a single command against a MySQL database.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteScalar(_
ByVal connectionString As String, _
ByVal commandText As String _
) As Object
Syntax: C#
public static object ExecuteScalar(
stringconnectionString,
stringcommandText
);
Parameters
connectionString: Settings to use for the update
commandText: Command text to use for the update
Return Value
The first column of the first row in the result set, or a null reference if the result set is empty.
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteScalar Overload List
21.2.7.1.7.1.5.4. MySqlHelper.ExecuteScalar Method
Execute a single command against a MySQL database.
Syntax: Visual Basic
Overloads Public Shared Function ExecuteScalar(_
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _
) As Object
Syntax: C#
public static object ExecuteScalar(
stringconnectionString,
stringcommandText,
params MySqlParameter[]commandParameters
);
Parameters
connectionString: Settings to use for the command
commandText: Command text to use for the command
commandParameters: Parameters to use for the command
Return Value
The first column of the first row in the result set, or a null reference if the result set is empty.
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace, MySqlHelper.ExecuteScalar Overload List
21.2.7.1.7.1.6. MySqlHelper.UpdateDataSet Method
Updates the given table with data from the given DataSet
Syntax: Visual Basic
Public Shared Sub UpdateDataSet(_
ByVal connectionString As String, _
ByVal commandText As String, _
ByVal ds As DataSet, _
ByVal tablename As String _
)
Syntax: C#
public static void UpdateDataSet(
stringconnectionString,
stringcommandText,
DataSetds,
stringtablename
);
Parameters
connectionString: Settings to use for the update
commandText: Command text to use for the update
ds: DataSetcontaining the new data to use in the update
tablename: Tablename in the data set to update
See Also
MySqlHelper Class, MySql.Data.MySqlClient Namespace
21.2.7.1.8. MySqlErrorCode Enumeration
Syntax: Visual Basic
Public Enum MySqlErrorCode
Syntax: C#
public enum MySqlErrorCode
Members
Member Name | Description |
PacketTooLarge | |
PasswordNotAllowed | |
DuplicateKeyEntry | |
HostNotPrivileged | |
PasswordNoMatch | |
AnonymousUser | |
DuplicateKey | |
KeyNotFound | |
DuplicateKeyName |
Requirements
Namespace: MySql.Data.MySqlClient
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySql.Data.MySqlClient Namespace
21.2.7.2. MySql.Data.Types Namespace
Classes
Class | Description |
MySqlConversionException | Summary description for MySqlConversionException. |
MySqlDateTime | Summary description for MySqlDateTime. |
MySqlValue |
21.2.7.2.1. MySql.Data.TypesHierarchy
See Also
21.2.7.2.2. MySqlConversionException Class
Summary description for MySqlConversionException.
For a list of all members of this type, see MySqlConversionException Members .
Syntax: Visual Basic
Public Class MySqlConversionException_
Inherits ApplicationException
Syntax: C#
public class MySqlConversionException : ApplicationException
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.Types
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlConversionException Members, MySql.Data.Types Namespace
21.2.7.2.2.1. MySqlConversionException Members
MySqlConversionException overview
Public Instance Constructors
MySqlConversionException Constructor | Ctor |
Public Instance Properties
Data (inherited from Exception) | Gets a collection of key/value pairs that provide additional, user-defined information about the exception. |
HelpLink (inherited from Exception) | Gets or sets a link to the help file associated with this exception. |
InnerException (inherited from Exception) | Gets the Exceptioninstance that caused the current exception. |
Message (inherited from Exception) | Gets a message that describes the current exception. |
Source (inherited from Exception) | Gets or sets the name of the application or the object that causes the error. |
StackTrace (inherited from Exception) | Gets a string representation of the frames on the call stack at the time the current exception was thrown. |
TargetSite (inherited from Exception) | Gets the method that throws the current exception. |
Public Instance Methods
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetBaseException (inherited from Exception) | When overridden in a derived class, returns the Exception that is the root cause of one or more subsequent exceptions. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetObjectData (inherited from Exception) | When overridden in a derived class, sets the SerializationInfo with information about the exception. |
GetType (inherited from Exception) | Gets the runtime type of the current instance. |
ToString (inherited from Exception) | Creates and returns a string representation of the current exception. |
Protected Instance Properties
HResult (inherited from Exception) | Gets or sets HRESULT, a coded numeric value that is assigned to a specific exception. |
Protected Instance Methods
Finalize (inherited from Object) | Allows an Object to attempt to free resources and perform other cleanup operations before the Object is reclaimed by garbage collection. |
MemberwiseClone (inherited from Object) | Creates a shallow copy of the current Object. |
See Also
MySqlConversionException Class, MySql.Data.Types Namespace
21.2.7.2.2.1.1. MySqlConversionException Constructor
Syntax: Visual Basic
Public Sub New(_
ByVal msg As String _
)
Syntax: C#
public MySqlConversionException(
stringmsg
);
See Also
MySqlConversionException Class, MySql.Data.Types Namespace
21.2.7.2.3. MySqlDateTime Class
Summary description for MySqlDateTime.
For a list of all members of this type, see MySqlDateTime Members .
Syntax: Visual Basic
Public Class MySqlDateTime_
Inherits MySqlValue_
Implements IConvertible, IComparable
Syntax: C#
public class MySqlDateTime : MySqlValue, IConvertible, IComparable
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.Types
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlDateTime Members, MySql.Data.Types Namespace
21.2.7.2.3.1. MySqlDateTime Members
Public Static (Shared) Type Conversions
Explicit MySqlDateTime to DateTime Conversion |
Public Instance Properties
Day | Returns the day portion of this datetime |
Hour | Returns the hour portion of this datetime |
IsNull (inherited from MySqlValue) | |
IsValidDateTime | Indicates if this object contains a value that can be represented as a DateTime |
Minute | Returns the minute portion of this datetime |
Month | Returns the month portion of this datetime |
Second | Returns the second portion of this datetime |
Millisecond | Returns the millisecond portion of this datetime |
ValueAsObject (inherited from MySqlValue) | Returns the value of this field as an object |
Year | Returns the year portion of this datetime |
Public Instance Methods
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetDateTime | Returns this value as a DateTime |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetType (inherited from Object) | Gets the Type of the current instance. |
ToString | Returns a MySQL-specific string representation of this value |
Protected Instance Fields
classType (inherited from MySqlValue) | The system type represented by this value |
dbType (inherited from MySqlValue) | The generic dbtype of this value |
isNull (inherited from MySqlValue) | Is this value null |
mySqlDbType (inherited from MySqlValue) | The specific MySQL db type |
mySqlTypeName (inherited from MySqlValue) | The MySQL-specific typename of this value |
objectValue (inherited from MySqlValue) |
Protected Instance Methods
Finalize (inherited from Object) | Allows an Object to attempt to free resources and perform other cleanup operations before the Object is reclaimed by garbage collection. |
MemberwiseClone (inherited from Object) | Creates a shallow copy of the current Object. |
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.1. MySqlDateTime Explicit MySqlDateTime to DateTime Conversion
Syntax: Visual Basic
MySqlDateTime.op_Explicit(val)
Syntax: C#
public static explicit operator DateTime(
MySqlDateTimeval
);
Parameters
val:
Return Value
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.2. Day Property
Returns the day portion of this datetime
Syntax: Visual Basic
Public Property Day As Integer
Syntax: C#
public int Day {get; set;}
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.3. Hour Property
Returns the hour portion of this datetime
Syntax: Visual Basic
Public Property Hour As Integer
Syntax: C#
public int Hour {get; set;}
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4. IsNull Property
Syntax: Visual Basic
Public Property IsNull As Boolean
Syntax: C#
public bool IsNull {get; set;}
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1. MySqlValue Class
For a list of all members of this type, see MySqlValue Members .
Syntax: Visual Basic
MustInherit Public Class MySqlValue
Syntax: C#
public abstract class MySqlValue
Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance members are not guaranteed to be thread-safe.
Requirements
Namespace: MySql.Data.Types
Assembly: MySql.Data (in MySql.Data.dll)
See Also
MySqlValue Members, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1.1. MySqlValue Members
Protected Static (Shared) Fields
numberFormat |
Public Instance Constructors
MySqlValue Constructor | Initializes a new instance of the MySqlValue class. |
Public Instance Properties
IsNull | |
ValueAsObject | Returns the value of this field as an object |
Public Instance Methods
Equals (inherited from Object) | Determines whether the specified Object is equal to the current Object. |
GetHashCode (inherited from Object) | Serves as a hash function for a particular type. GetHashCode is suitable for use in hashing algorithms and data structures like a hash table. |
GetType (inherited from Object) | Gets the Type of the current instance. |
ToString | Returns a string representation of this value |
Protected Instance Fields
classType | The system type represented by this value |
dbType | The generic dbtype of this value |
isNull | Is this value null |
mySqlDbType | The specific MySQL db type |
mySqlTypeName | The MySQL-specific typename of this value |
objectValue |
Protected Instance Methods
Finalize (inherited from Object) | Allows an Object to attempt to free resources and perform other cleanup operations before the Object is reclaimed by garbage collection. |
MemberwiseClone (inherited from Object) | Creates a shallow copy of the current Object. |
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1.1.1. MySqlValue.numberFormat Field
Syntax: Visual Basic
Protected Shared numberFormat As NumberFormatInfo
Syntax: C#
protected static NumberFormatInfo numberFormat;
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1.1.2. MySqlValue Constructor
Initializes a new instance of the MySqlValue class.
Syntax: Visual Basic
Public Sub New()
Syntax: C#
public MySqlValue();
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1.1.3. ValueAsObject Property
Returns the value of this field as an object
Syntax: Visual Basic
Public ReadOnly Property ValueAsObject As Object
Syntax: C#
public object ValueAsObject {get;}
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1.1.4. MySqlValue.ToString Method
Returns a string representation of this value
Syntax: Visual Basic
Overrides Public Function ToString() As String
Syntax: C#
public override string ToString();
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1.1.5. MySqlValue.classType Field
The system type represented by this value
Syntax: Visual Basic
Protected classType As Type
Syntax: C#
protected Type classType;
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1.1.6. MySqlValue.dbType Field
The generic dbtype of this value
Syntax: Visual Basic
Protected dbType As DbType
Syntax: C#
protected DbType dbType;
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1.1.7. MySqlValue.mySqlDbType Field
The specific MySQL db type
Syntax: Visual Basic
Protected mySqlDbType As MySqlDbType
Syntax: C#
protected MySqlDbType mySqlDbType;
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1.1.8. MySqlValue.mySqlTypeName Field
The MySQL-specific typename of this value
Syntax: Visual Basic
Protected mySqlTypeName As String
Syntax: C#
protected string mySqlTypeName;
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.4.1.1.9. MySqlValue.objectValue Field
Syntax: Visual Basic
Protected objectValue As Object
Syntax: C#
protected object objectValue;
See Also
MySqlValue Class, MySql.Data.Types Namespace
21.2.7.2.3.1.5. IsValidDateTime Property
Indicates if this object contains a value that can be represented as a DateTime
Syntax: Visual Basic
Public ReadOnly Property IsValidDateTime As Boolean
Syntax: C#
public bool IsValidDateTime {get;}
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.6. Millisecond Property
Returns the millisecond portion of this datetime
Syntax: Visual Basic
Public Property Millisecond As Integer
Syntax: C#
public int Millisecond {get; set;}
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.7. Minute Property
Returns the minute portion of this datetime
Syntax: Visual Basic
Public Property Minute As Integer
Syntax: C#
public int Minute {get; set;}
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.8. Month Property
Returns the month portion of this datetime
Syntax: Visual Basic
Public Property Month As Integer
Syntax: C#
public int Month {get; set;}
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.9. Second Property
Returns the second portion of this datetime
Syntax: Visual Basic
Public Property Second As Integer
Syntax: C#
public int Second {get; set;}
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.10. Year Property
Returns the year portion of this datetime
Syntax: Visual Basic
Public Property Year As Integer
Syntax: C#
public int Year {get; set;}
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.11. MySqlDateTime.GetDateTime Method
Returns this value as a DateTime
Syntax: Visual Basic
Public Function GetDateTime() As Date
Syntax: C#
public DateTime GetDateTime();
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.7.2.3.1.12. MySqlDateTime.ToString Method
Returns a MySQL-specific string representation of this value
Syntax: Visual Basic
Overrides Public Function ToString() As String
Syntax: C#
public override string ToString();
See Also
MySqlDateTime Class, MySql.Data.Types Namespace
21.2.8. Connector/Net Support
The developers of Connector/Net greatly value the input of our users in the software development process. If you find Connector/Net lacking some feature important to you, or if you discover a bug and need to file a bug report, please use the instructions in Section 1.7, “How to Report Bugs or Problems”.
21.2.8.1. Connector/Net Community Support
Community support for Connector/Net can be found through the forums at http://forums.mysql.com.
Community support for Connector/Net can also be found through the mailing lists at http://lists.mysql.com.
Paid support is available from Oracle. Additional information is available at http://dev.mysql.com/support/.
21.2.8.2. How to Report Connector/Net Problems or Bugs
If you encounter difficulties or problems with Connector/Net, contact the Connector/Net community, as explained in Section 21.2.8.1, “Connector/Net Community Support”.
First try to execute the same SQL statements and commands from the mysql client program or from admndemo. This helps you determine whether the error is in Connector/Net or MySQL.
If reporting a problem, ideally include the following information with the email:
Operating system and version.
Connector/Net version.
MySQL server version.
Copies of error messages or other unexpected output.
Simple reproducible sample.
Remember that the more information you can supply to us, the more likely it is that we can fix the problem.
If you believe the problem to be a bug, then you must report the bug through http://bugs.mysql.com/.
21.2.9. Connector/Net FAQ
Questions
22.2.9.1: How do I obtain the value of an auto-incremented column?
Questions and Answers
22.2.9.1: How do I obtain the value of an auto-incremented column?
When using CommandBuilder, setting ReturnGeneratedIdentifiers property to true no longer works, as CommandBuilder does not add last_insert_id() by default.
CommandBuilder hooks up to the DataAdapter.RowUpdating event handler, which means it will get called for every row. It examines the command object and, if it is the same referenced object, it essentially rebuilds the object, thereby destroying your command text changes.
One approach to solving this problem is to clone the command object so you have a different actual reference:
dataAdapter.InsertCommand = cb.GetInsertCommand().Clone()
This will work, but since the CommandBuilder is still connected to the DataAdapter, the RowUpdating event will still fire and performance will be hit. To stop that, once all your commands have been added you need to disconnect the CommandBuilder from the DataAdapter:
cb.DataAdapter = null;
The last requirement is to make sure the id that is returned by last_insert_id() has the correct name. For example:
SELECT last_insert_id() AS id
A complete working example is shown here:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;
namespace GetAutoIncId
{
class Program
{
static void Main(string[] args)
{
string connStr = "server=localhost;user=root;database=TestDB;port=3306;password=******;";
MySqlConnection conn = new MySqlConnection(connStr);
try
{
Console.WriteLine("Connecting to MySQL...");
conn.Open();
string sql = "SELECT * FROM TestTable";
MySqlDataAdapter da = new MySqlDataAdapter(sql, conn);
MySqlCommandBuilder cb = new MySqlCommandBuilder(da);
MySqlCommand cmd = new MySqlCommand();
cmd.Connection = conn;
cmd.CommandText = sql;
// use Cloned object to avoid .NET rebuilding the object, and
// thereby throwing away our command text additions.
MySqlCommand insertCmd = cb.GetInsertCommand().Clone();
insertCmd.CommandText = insertCmd.CommandText + ";SELECT last_insert_id() AS id";
insertCmd.UpdatedRowSource = UpdateRowSource.FirstReturnedRecord;
da.InsertCommand = insertCmd;
cb.DataAdapter = null; // Unhook RowUpdating event handler
DataTable dt = new DataTable();
da.Fill(dt);
DataRow row = dt.NewRow();
row["name"] = "Joe Smith";
dt.Rows.Add(row);
da.Update(dt);
System.Console.WriteLine("ID after update: " + row["id"]);
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
conn.Close();
Console.WriteLine("Done.");
}
}
}
21.3. MySQL Connector/J
This section explains how to configure and develop Java applications with MySQL Connector/J, the JDBC driver that is integrated with MySQL.
For release notes detailing the changes in each release of Connector/J, see MySQL Connector/J Release Notes.
21.3.1. Overview of MySQL Connector/J
MySQL provides connectivity for client applications developed in the Java programming language through a JDBC driver, which is called MySQL Connector/J.
MySQL Connector/J is a JDBC Type 4 driver. Different versions are available that are compatible with the JDBC 3.0 and JDBC 4.0 specifications. The Type 4 designation means that the driver is a pure Java implementation of the MySQL protocol and does not rely on the MySQL client libraries.
For large-scale programs that use common design patterns of data access, consider using one of the popular persistence frameworks such as Hibernate, Spring's JDBC templates or Ibatis SQL Maps to reduce the amount of JDBC code for you to debug, tune, secure, and maintain.
Key Topics
For help with connection strings, connection options, and setting up your connection through JDBC, see Section 21.3.5.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J”.
21.3.2. Connector/J Versions
There are currently four versions of MySQL Connector/J available:
Connector/J 5.1 is the Type 4 pure Java JDBC driver, which conforms to the JDBC 3.0 and JDBC 4.0 specifications. It provides compatibility with all the functionality of MySQL, including 4.1, 5.0, 5.1, 5.4 and 5.5. Connector/J 5.1 provides ease of development features, including auto-registration with the Driver Manager, standardized validity checks, categorized SQLExceptions, support for the JDBC-4.0 XML processing, per connection client information, NCHAR, NVARCHAR and NCLOB types. This release also includes all bug fixes up to and including Connector/J 5.0.6.
Connector/J 5.0 provides support for all the functionality offered by Connector/J 3.1 and includes distributed transaction (XA) support.
Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides support for all the functionality in MySQL 5.0 except distributed transaction (XA) support.
Connector/J 3.0 provides core functionality and was designed for connectivity to MySQL 3.x or MySQL 4.1 servers, although it provides basic compatibility with later versions of MySQL. Connector/J 3.0 does not support server-side prepared statements, and does not support any of the features in versions of MySQL later than 4.1.
The following table summarizes the Connector/J versions available, along with the details of JDBC driver type, what version of the JDBC API it supports, what versions of MySQL Server it works with, and whether it is currently supported or not:
Table 21.22. Summary of Connector/J Versions
Connector/J version | Driver Type | JDBC version | MySQL Server version | Status |
---|---|---|---|---|
5.1 | 4 | 3.0, 4.0 | 4.1, 5.0, 5.1, 5.4, 5.5 | Recommended version |
5.0 | 4 | 3.0 | 4.1, 5.0 | Released version |
3.1 | 4 | 3.0 | 4.1, 5.0 | Obsolete |
3.0 | 4 | 3.0 | 3.x, 4.1 | Obsolete |
The current recommended version for Connector/J is 5.1. This guide covers all four connector versions, with specific notes given where a setting applies to a specific option.
21.3.2.1. Connector/J Release Notes and Change History
For details of new features and bug fixes in each Connector/J release, see the MySQL Connector/J Release Notes.
21.3.2.2. Java Versions Supported
The following table summarizes what version of Java RTE is required to use Connector/J with Java applications, and what version of JDK is required to build Connector/J source code:
Table 21.23. Summary of Java Versions Required by Connector/J
Connector/J version | Java RTE required | JDK required (to build source code) |
---|---|---|
5.1 | 1.5.x, 1.6.x, 1.7.x | 1.6.x and 1.5.x |
5.0 | 1.3.x, 1.4.x, 1.5.x, 1.6.x | 1.4.2, 1.5.x, 1.6.x |
3.1 | 1.2.x, 1.3.x, 1.4.x, 1.5.x, 1.6.x | 1.4.2, 1.5.x, 1.6.x |
3.0 | 1.2.x, 1.3.x, 1.4.x, 1.5.x, 1.6.x | 1.4.2, 1.5.x, 1.6.x |
If you are building Connector/J from source code using the source distribution (see Section 21.3.3.4, “Installing from the Development Source Tree”), you must use JDK 1.4.2 or newer to compile the Connector package. For Connector/J 5.1, you must have both JDK-1.6.x and JDK-1.5.x installed to be able to build the source code.
Java 1.7 support requires Connector/J 5.1.21 and higher. Several JDBC 4.1 methods were implemented for the first time in Connector/J 5.1.21.
Because of the implementation of java.sql.Savepoint, Connector/J 3.1.0 and newer will not run on a Java runtime older than 1.4 unless the class verifier is turned off (by setting the -Xverify:none option to the Java runtime). This is because the class verifier will try to load the class definition for java.sql.Savepoint even though it is not accessed by the driver unless you actually use savepoint functionality.
Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than 1.4.x, as it relies on java.util.LinkedHashMap which was first available in JDK-1.4.0.
MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x.
21.3.3. Connector/J Installation
You can install the Connector/J package using either the binary or source distribution. The binary distribution provides the easiest method for installation; the source distribution lets you customize your installation further. With either solution, you manually add the Connector/J location to your Java CLASSPATH.
If you are upgrading from a previous version, read the upgrade information in Section 21.3.3.3, “Upgrading from an Older Version” before continuing.
Connector/J is also available as part of the Maven project. For more information, and to download the Connector/J JAR files, see the Maven repository.
21.3.3.1. Installing Connector/J from a Binary Distribution
For the easiest method of installation, use the binary distribution of the Connector/J package. The binary distribution is available either as a tar/gzip or zip file. Extract it to a suitable location, then optionally make the information about the package available by changing your CLASSPATH (see Section 21.3.3.2, “Installing the Driver and Configuring the CLASSPATH”).
MySQL Connector/J is distributed as a .zip or .tar.gz archive containing the sources, the class files, and the JAR archive named mysql-connector-java-version-bin.jar.
Starting with Connector/J 3.1.9, the .class files that constitute the JAR files are only included as part of the driver JAR file.
Starting with Connector/J 3.1.8, the archive also includes a debug build of the driver in a file named mysql-connector-java-version-bin-g.jar. Do not use the debug build of the driver unless instructed to do so when reporting a problem or a bug, as it is not designed to be run in production environments, and will have adverse performance impact when used. The debug binary also depends on the Aspect/J runtime library, which is located in the src/lib/aspectjrt.jar file that comes with the Connector/J distribution.
Use the appropriate graphical or command-line utility to extract the distribution (for example, WinZip for the .zip archive, and tar for the .tar.gz archive). Because there are potentially long file names in the distribution, we use the GNU tar archive format. Use GNU tar (or an application that understands the GNU tar archive format) to unpack the .tar.gz variant of the distribution.
21.3.3.2. Installing the Driver and Configuring the CLASSPATH
Once you have extracted the distribution archive, you can install the driver by placing mysql-connector-java-version-bin.jar in your classpath, either by adding the full path to it to your CLASSPATH environment variable, or by directly specifying it with the command line switch -cp when starting the JVM.
To use the driver with the JDBC DriverManager, use com.mysql.jdbc.Driver as the class that implements java.sql.Driver.
You can set the CLASSPATH environment variable under UNIX, Linux or Mac OS X either locally for a user within their .profile, .login or other login file. You can also set it globally by editing the global /etc/profile file.
For example, add the Connector/J driver to your CLASSPATH using one of the following forms, depending on your command shell:
Bourne-compatible shell (sh, ksh, bash, zsh):
shell> export CLASSPATH=/path/mysql-connector-java-ver-bin.jar:$CLASSPATH
C shell (csh, tcsh):
shell> setenv CLASSPATH /path/mysql-connector-java-ver-bin.jar:$CLASSPATH
Within Windows 2000, Windows XP, Windows Server 2003 and Windows Vista, you set the environment variable through the System Control Panel.
To use MySQL Connector/J with an application server such as GlassFish, Tomcat or JBoss, read your vendor's documentation for more information on how to configure third-party class libraries, as most application servers ignore the CLASSPATH environment variable. For configuration examples for some J2EE application servers, see Section 21.3.7, “Connection Pooling with Connector/J” Section 21.3.8, “Load Balancing with Connector/J”, and Section 21.3.9, “Failover with Connector/J”. However, the authoritative source for JDBC connection pool configuration information for your particular application server is the documentation for that application server.
If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the driver's .jar file in the WEB-INF/lib subdirectory of your webapp, as this is a standard location for third party class libraries in J2EE web applications.
You can also use the MysqlDataSource or MysqlConnectionPoolDataSource classes in the com.mysql.jdbc.jdbc2.optional package, if your J2EE application server supports or requires them. Starting with Connector/J 5.0.0, the javax.sql.XADataSource interface is implemented using the com.mysql.jdbc.jdbc2.optional.MysqlXADataSource class, which supports XA distributed transactions when used in combination with MySQL server version 5.0.
The various MysqlDataSource classes support the following parameters (through standard set mutators):
user
password
serverName (see the previous section about fail-over hosts)
databaseName
port
21.3.3.3. Upgrading from an Older Version
This section has information for users who are upgrading from one version of Connector/J to another, or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of Connector/J might include changes to support new features, improve existing functionality, or comply with new standards.
21.3.3.3.1. Upgrading to MySQL Connector/J 5.1.x
In Connector/J 5.0.x and earlier, the alias for a table in a SELECT statement is returned when accessing the result set metadata using ResultSetMetaData.getColumnName(). This behavior however is not JDBC compliant, and in Connector/J 5.1 this behavior was changed so that the original table name, rather than the alias, is returned.
The JDBC-compliant behavior is designed to let API users reconstruct the DML statement based on the metadata within ResultSet and ResultSetMetaData.
You can get the alias for a column in a result set by calling ResultSetMetaData.getColumnLabel(). To use the old noncompliant behavior with ResultSetMetaData.getColumnName(), use the useOldAliasMetadataBehavior option and set the value to true.
In Connector/J 5.0.x, the default value of useOldAliasMetadataBehavior was true, but in Connector/J 5.1 this was changed to a default value of false.
21.3.3.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer
Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character encoding was not supported by the server, however the JDBC driver could use it, allowing storage of multiple character sets in latin1 tables on the server.
Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this functionality, and can not upgrade them to use the official Unicode character support in MySQL server version 4.1 or newer, add the following property to your connection URL:
useOldUTF8Behavior=true
Server-side Prepared Statements - Connector/J 3.1 will automatically detect and use server-side prepared statements when they are available (MySQL server version 4.1.0 and newer). If your application encounters issues with server-side prepared statements, you can revert to the older client-side emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0 with the following connection property:
useServerPrepStmts=false
21.3.3.3.3. Upgrading from MySQL Connector/J 3.0 to 3.1
Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Major changes are isolated to new functionality exposed in MySQL-4.1 and newer, which includes Unicode character sets, server-side prepared statements, SQLState codes returned in error messages by the server and various performance enhancements that can be enabled or disabled using configuration properties.
Unicode Character Sets: See the next section, as well as Section 10.1, “Character Set Support”, for information on this MySQL feature. If you have something misconfigured, it will usually show up as an error with a message similar to Illegal mix of collations.
Server-side Prepared Statements: Connector/J 3.1 will automatically detect and use server-side prepared statements when they are available (MySQL server version 4.1.0 and newer).
Starting with version 3.1.7, the driver scans SQL you are preparing using all variants of Connection.prepareStatement() to determine if it is a supported type of statement to prepare on the server side, and if it is not supported by the server, it instead prepares it as a client-side emulated prepared statement. You can disable this feature by passing emulateUnsupportedPstmts=false in your JDBC URL.
If your application encounters issues with server-side prepared statements, you can revert to the older client-side emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0 with the connection property useServerPrepStmts=false.
Datetimes with all-zero components (0000-00-00 ...): These values cannot be represented reliably in Java. Connector/J 3.0.x always converted them to NULL when being read from a ResultSet.
Connector/J 3.1 throws an exception by default when these values are encountered, as this is the most correct behavior according to the JDBC and SQL standards. This behavior can be modified using the zeroDateTimeBehavior configuration property. The permissible values are:
exception (the default), which throws an SQLException with an SQLState of S1009.
convertToNull, which returns NULL instead of the date.
round, which rounds the date to the nearest closest value which is 0001-01-01.
Starting with Connector/J 3.1.7, ResultSet.getString() can be decoupled from this behavior using noDatetimeStringSync=true (the default value is false) so that you can retrieve the unaltered all-zero value as a String. Note that this also precludes using any time zone conversions, therefore the driver will not allow you to enable noDatetimeStringSync and useTimezone at the same time.
New SQLState Codes: Connector/J 3.1 uses SQL:1999 SQLState codes returned by the MySQL server (if supported), which are different from the legacy X/Open state codes that Connector/J 3.0 uses. If connected to a MySQL server older than MySQL-4.1.0 (the oldest version to return SQLStates as part of the error code), the driver will use a built-in mapping. You can revert to the old mapping by using the configuration property useSqlStateCodes=false.
ResultSet.getString(): Calling ResultSet.getString() on a BLOB column will now return the address of the byte[] array that represents it, instead of a String representation of the BLOB. BLOB values have no character set, so they cannot be converted to java.lang.Strings without data loss or corruption.
To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will treat as a java.sql.Clob.
Debug builds: Starting with Connector/J 3.1.8 a debug build of the driver in a file named mysql-connector-java-version-bin-g.jar is shipped alongside the normal binary jar file that is named mysql-connector-java-version-bin.jar.
Starting with Connector/J 3.1.9, we do not ship the .class files unbundled, they are only available in the JAR archives that ship with the driver.
Do not use the debug build of the driver unless instructed to do so when reporting a problem or bug, as it is not designed to be run in production environments, and will have adverse performance impact when used. The debug binary also depends on the Aspect/J runtime library, which is located in the src/lib/aspectjrt.jar file that comes with the Connector/J distribution.
21.3.3.4. Installing from the Development Source Tree
Caution
Read this section only if you are interested in helping us test our new code. To just get MySQL Connector/J up and running on your system, use a standard binary release distribution.
To install MySQL Connector/J from the development source tree, make sure that you have the following prerequisites:
A Bazaar client, to check out the sources from our Launchpad repository (available from http://bazaar-vcs.org/).
Apache Ant version 1.7 or newer (available from http://ant.apache.org/).
JDK 1.4.2 or later. Although MySQL Connector/J can be be used with older JDKs, compiling it from source requires at least JDK 1.4.2. To build Connector/J 5.1 requires JDK 1.6.x and an older JDK such as JDK 1.5.x; point your JAVA_HOME environment variable at the older installation.
To check out and compile a specific branch of MySQL Connector/J, follow these steps:
Check out the latest code from the branch that you want with one of the following commands.
The source code repository for MySQL Connector/J is located on Launchpad at https://code.launchpad.net/connectorj. To check out the latest development branch, use:
shell> bzr branch lp:connectorji
This creates a connectorj subdirectory in the current directory that contains the latest sources for the requested branch.
To check out the latest 5.1 code, use:
shell> bzr branch lp:connectorj/5.1
This creates a 5.1 subdirectory in the current directory containing the latest 5.1 code.
To build Connector/J 5.1, make sure that you have both JDK 1.6.x installed and an older JDK such as JDK 1.5.x. This is because Connector/J supports both JDBC 3.0 (which was prior to JDK 1.6.x) and JDBC 4.0. Set your JAVA_HOME environment variable to the path of the older JDK installation.
Change your current working directory to either the connectorj or 5.1 directory, depending on which branch you intend to build.
To build Connector/J 5.1, edit the build.xml to reflect the location of your JDK 1.6.x installation. The lines to change are:
<property name="com.mysql.jdbc.java6.javac" value="C:\jvms\jdk1.6.0\bin\javac.exe" />
<property name="com.mysql.jdbc.java6.rtjar" value="C:\jvms\jdk1.6.0\jre\lib\rt.jar" />
Alternatively, you can set the value of these property names through the Ant -D option.
Issue the following command to compile the driver and create a .jar file suitable for installation:
shell> ant dist
This creates a build directory in the current directory, where all build output will go. A directory is created in the build directory that includes the version number of the sources you are building from. This directory contains the sources, compiled .class files, and a .jar file suitable for deployment. For other possible targets, including ones that will create a fully packaged distribution, issue the following command:
shell> ant -projecthelp
A newly created .jar file containing the JDBC driver will be placed in the directory build/mysql-connector-java-version.
Install the newly created JDBC driver as you would a binary .jar file that you download from MySQL, by following the instructions in Section 21.3.3.2, “Installing the Driver and Configuring the CLASSPATH”.
A package containing both the binary and source code for Connector/J 5.1 can also be found at the following location: Connector/J 5.1 Download
21.3.4. Connector/J Examples
Examples of using Connector/J are located throughout this document. This section provides a summary and links to these examples.
Example 21.1, “Connector/J: Obtaining a connection from the DriverManager”
Example 21.2, “Connector/J: Using java.sql.Statement to execute a SELECT query”
Example 21.6, “Connector/J: Setting CallableStatement input parameters”
Example 21.7, “Connector/J: Retrieving results and output parameter values”
Example 21.9, “Connector/J: Retrieving AUTO_INCREMENT column values using SELECT LAST_INSERT_ID()”
Example 21.10, “Connector/J: Retrieving AUTO_INCREMENT column values in Updatable ResultSets”
Example 21.11, “Connector/J: Using a connection pool with a J2EE application server”
Example 21.12, “Connector/J: Example of transaction with retry logic”
21.3.5. Connector/J (JDBC) Reference
This section of the manual contains reference material for MySQL Connector/J.
21.3.5.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
The name of the class that implements java.sql.Driver in MySQL Connector/J is com.mysql.jdbc.Driver. The org.gjt.mm.mysql.Driver class name is also usable for backward compatibility with MM.MySQL, the predecessor of Connector/J. Use this class name when registering the driver, or when otherwise configuring software to use MySQL Connector/J.
JDBC URL Format
The JDBC URL format for MySQL Connector/J is as follows, with items in square brackets ([,]) being optional:
jdbc:mysql://[host][,failoverhost...][:port]/[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...
If the host name is not specified, it defaults to 127.0.0.1. If the port is not specified, it defaults to 3306, the default port number for MySQL servers.
jdbc:mysql://[host:port],[host:port].../[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...
Here is a sample connection URL:
jdbc:mysql://localhost:3306/sakila?profileSQL=true
IPv6 Connections
For IPv6 connections, use this alternative syntax to specify hosts in the URL, address=(key=value). Supported keys are:
(protocol=tcp), or (protocol=pipe) for named pipes on Windows.
(path=path_to_pipe) for named pipes.
(host=hostname) for TCP connections.
(port=port_number) for TCP connections.
For example:
jdbc:mysql://address=(protocol=tcp)(host=localhost)(port=3306)(user=test)/db
Any other parameters are treated as host-specific properties that follow the conventions of the JDBC URL properties. This now allows per-host overrides of any configuration property for multi-host connections (that is, when using failover, load balancing, or replication). Limit the overrides to user, password, network timeouts and statement and metadata cache sizes; the results of other per-host overrides are not defined.
Initial Database for Connection
If the database is not specified, the connection is made with no default database. In this case, either call the setCatalog() method on the Connection instance, or fully specify table names using the database name (that is, SELECT dbname.tablename.colname FROM dbname.tablename...) in your SQL. Opening a connection without specifying the database to use is generally only useful when building tools that work with multiple databases, such as GUI database managers.
Note
Always use the Connection.setCatalog() method to specify the desired database in JDBC applications, rather than the USE database statement.
Failover Support
MySQL Connector/J has failover support. This enables the driver to fail over to any number of slave hosts and still perform read-only queries. Failover only happens when the connection is in an autoCommit(true) state, because failover cannot happen reliably when a transaction is in progress. Most application servers and connection pools set autoCommit to true at the end of every transaction/connection use.
The failover functionality has the following behavior:
If the URL property autoReconnect is false: Failover only happens at connection initialization, and failback occurs when the driver determines that the first host has become available again.
If the URL property autoReconnect is true: Failover happens when the driver determines that the connection has failed (checked before every query), and falls back to the first host when it determines that the host has become available again (after queriesBeforeRetryMaster queries have been issued).
In either case, whenever you are connected to a “failed-over” server, the connection is set to read-only state, so queries that attempt to modify data will throw exceptions (the query will never be processed by the MySQL server).
Setting Configuration Properties
Configuration properties define how Connector/J will make a connection to a MySQL server. Unless otherwise noted, properties can be set for a DataSource object or for a Connection object.
Configuration properties can be set in one of the following ways:
Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the preferred method when using implementations of java.sql.DataSource):
com.mysql.jdbc.jdbc2.optional.MysqlDataSource
com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource
As a key/value pair in the java.util.Properties instance passed to DriverManager.getConnection() or Driver.connect()
As a JDBC URL parameter in the URL given to java.sql.DriverManager.getConnection(), java.sql.Driver.connect() or the MySQL implementations of the javax.sql.DataSource setURL() method.
Note
If the mechanism you use to configure a JDBC URL is XML-based, use the XML character literal & to separate configuration parameters, as the ampersand is a reserved character for XML.
The properties are listed in the following tables.
Connection/Authentication.
Property Name | Definition | Default Value | Since Version |
user | The user to connect as | all versions | |
password | The password to use when connecting | all versions | |
socketFactory | The name of the class that the driver should use for creating socket connections to the server. This class must implement the interface 'com.mysql.jdbc.SocketFactory' and have public no-args constructor. | com.mysql.jdbc.StandardSocketFactory | 3.0.3 |
connectTimeout | Timeout for socket connect (in milliseconds), with 0 being no timeout. Only works on JDK-1.4 or newer. Defaults to '0'. | 0 | 3.0.1 |
socketTimeout | Timeout on network socket operations (0, the default means no timeout). | 0 | 3.0.1 |
connectionLifecycleInterceptors | A comma-delimited list of classes that implement "com.mysql.jdbc.ConnectionLifecycleInterceptor" that should notified of connection lifecycle events (creation, destruction, commit, rollback, setCatalog and setAutoCommit) and potentially alter the execution of these commands. ConnectionLifecycleInterceptors are "stackable", more than one interceptor may be specified via the configuration property as a comma-delimited list, with the interceptors executed in order from left to right. | 5.1.4 | |
useConfigs | Load the comma-delimited list of configuration properties before parsing the URL or applying user-specified properties. These configurations are explained in the 'Configurations' of the documentation. | 3.1.5 | |
authenticationPlugins | Comma-delimited list of classes that implement com.mysql.jdbc.AuthenticationPlugin and which will be used for authentication unless disabled by "disabledAuthenticationPlugins" property. | 5.1.19 | |
defaultAuthenticationPlugin | Name of a class implementing com.mysql.jdbc.AuthenticationPlugin which will be used as the default authentication plugin (see below). It is an error to use a class which is not listed in "authenticationPlugins" nor it is one of the built-in plugins. It is an error to set as default a plugin which was disabled with "disabledAuthenticationPlugins" property. It is an error to set this value to null or the empty string (i.e. there must be at least a valid default authentication plugin specified for the connection, meeting all constraints listed above). | com.mysql.jdbc.authentication.MysqlNativePasswordPlugin | 5.1.19 |
disabledAuthenticationPlugins | Comma-delimited list of classes implementing com.mysql.jdbc.AuthenticationPlugin or mechanisms, i.e. "mysql_native_password". The authentication plugins or mechanisms listed will not be used for authentication which will fail if it requires one of them. It is an error to disable the default authentication plugin (either the one named by "defaultAuthenticationPlugin" property or the hard-coded one if "defaultAuthenticationPlugin" property is not set). | 5.1.19 | |
disconnectOnExpiredPasswords | If "disconnectOnExpiredPasswords" is set to "false" and password is expired then server enters "sandbox" mode and sends ERR(08001, ER_MUST_CHANGE_PASSWORD) for all commands that are not needed to set a new password until a new password is set. | true | 5.1.23 |
interactiveClient | Set the CLIENT_INTERACTIVE flag, which tells MySQL to timeout connections based on INTERACTIVE_TIMEOUT instead of WAIT_TIMEOUT | false | 3.1.0 |
localSocketAddress | Hostname or IP address given to explicitly configure the interface that the driver will bind the client side of the TCP/IP connection to when connecting. | 5.0.5 | |
propertiesTransform | An implementation of com.mysql.jdbc.ConnectionPropertiesTransform that the driver will use to modify URL properties passed to the driver before attempting a connection | 3.1.4 | |
useCompression | Use zlib compression when communicating with the server (true/false)? Defaults to 'false'. | false | 3.0.17 |
Networking.
Property Name | Definition | Default Value | Since Version |
maxAllowedPacket | Maximum allowed packet size to send to server. If not set, the value of system variable 'max_allowed_packet' will be used to initialize this upon connecting. This value will not take effect if set larger than the value of 'max_allowed_packet'. | -1 | 5.1.8 |
tcpKeepAlive | If connecting using TCP/IP, should the driver set SO_KEEPALIVE? | true | 5.0.7 |
tcpNoDelay | If connecting using TCP/IP, should the driver set SO_TCP_NODELAY (disabling the Nagle Algorithm)? | true | 5.0.7 |
tcpRcvBuf | If connecting using TCP/IP, should the driver set SO_RCV_BUF to the given value? The default value of '0', means use the platform default value for this property) | 0 | 5.0.7 |
tcpSndBuf | If connecting using TCP/IP, should the driver set SO_SND_BUF to the given value? The default value of '0', means use the platform default value for this property) | 0 | 5.0.7 |
tcpTrafficClass | If connecting using TCP/IP, should the driver set traffic class or type-of-service fields ?See the documentation for java.net.Socket.setTrafficClass() for more information. | 0 | 5.0.7 |
High Availability and Clustering.
Property Name | Definition | Default Value | Since Version |
autoReconnect | Should the driver try to re-establish stale and/or dead connections? If enabled the driver will throw an exception for a queries issued on a stale or dead connection, which belong to the current transaction, but will attempt reconnect before the next query issued on the connection in a new transaction. The use of this feature is not recommended, because it has side effects related to session state and data consistency when applications don't handle SQLExceptions properly, and is only designed to be used when you are unable to configure your application to handle SQLExceptions resulting from dead and stale connections properly. Alternatively, as a last option, investigate setting the MySQL server variable "wait_timeout" to a high value, rather than the default of 8 hours. | false | 1.1 |
autoReconnectForPools | Use a reconnection strategy appropriate for connection pools (defaults to 'false') | false | 3.1.3 |
failOverReadOnly | When failing over in autoReconnect mode, should the connection be set to 'read-only'? | true | 3.0.12 |
maxReconnects | Maximum number of reconnects to attempt if autoReconnect is true, default is '3'. | 3 | 1.1 |
reconnectAtTxEnd | If autoReconnect is set to true, should the driver attempt reconnections at the end of every transaction? | false | 3.0.10 |
retriesAllDown | When using loadbalancing, the number of times the driver should cycle through available hosts, attempting to connect. Between cycles, the driver will pause for 250ms if no servers are available. | 120 | 5.1.6 |
initialTimeout | If autoReconnect is enabled, the initial time to wait between re-connect attempts (in seconds, defaults to '2'). | 2 | 1.1 |
roundRobinLoadBalance | When autoReconnect is enabled, and failoverReadonly is false, should we pick hosts to connect to on a round-robin basis? | false | 3.1.2 |
queriesBeforeRetryMaster | Number of queries to issue before falling back to master when failed over (when using multi-host failover). Whichever condition is met first, 'queriesBeforeRetryMaster' or 'secondsBeforeRetryMaster' will cause an attempt to be made to reconnect to the master. Defaults to 50. | 50 | 3.0.2 |
secondsBeforeRetryMaster | How long should the driver wait, when failed over, before attempting | 30 | 3.0.2 |
selfDestructOnPingMaxOperations | =If set to a non-zero value, the driver will report close the connection and report failure when Connection.ping() or Connection.isValid(int) is called if the connection's count of commands sent to the server exceeds this value. | 0 | 5.1.6 |
selfDestructOnPingSecondsLifetime | If set to a non-zero value, the driver will report close the connection and report failure when Connection.ping() or Connection.isValid(int) is called if the connection's lifetime exceeds this value. | 0 | 5.1.6 |
resourceId | A globally unique name that identifies the resource that this datasource or connection is connected to, used for XAResource.isSameRM() when the driver can't determine this value based on hostnames used in the URL | 5.0.1 |
Security.
Property Name | Definition | Default Value | Since Version |
allowMultiQueries | Allow the use of ';' to delimit multiple queries during one statement (true/false), defaults to 'false', and does not affect the addBatch() and executeBatch() methods, which instead rely on rewriteBatchStatements. | false | 3.1.1 |
useSSL | Use SSL when communicating with the server (true/false), defaults to 'false' | false | 3.0.2 |
requireSSL | Require SSL connection if useSSL=true? (defaults to 'false'). | false | 3.1.0 |
verifyServerCertificate | If "useSSL" is set to "true", should the driver verify the server's certificate? When using this feature, the keystore parameters should be specified by the "clientCertificateKeyStore*" properties, rather than system properties. | true | 5.1.6 |
clientCertificateKeyStoreUrl | URL to the client certificate KeyStore (if not specified, use defaults) | 5.1.0 | |
clientCertificateKeyStoreType | KeyStore type for client certificates (NULL or empty means use the default, which is "JKS". Standard keystore types supported by the JVM are "JKS" and "PKCS12", your environment may have more available depending on what security products are installed and available to the JVM. | JKS | 5.1.0 |
clientCertificateKeyStorePassword | Password for the client certificates KeyStore | 5.1.0 | |
trustCertificateKeyStoreUrl | URL to the trusted root certificate KeyStore (if not specified, use defaults) | 5.1.0 | |
trustCertificateKeyStoreType | KeyStore type for trusted root certificates (NULL or empty means use the default, which is "JKS". Standard keystore types supported by the JVM are "JKS" and "PKCS12", your environment may have more available depending on what security products are installed and available to the JVM. | JKS | 5.1.0 |
trustCertificateKeyStorePassword | Password for the trusted root certificates KeyStore | 5.1.0 | |
allowLoadLocalInfile | Should the driver allow use of 'LOAD DATA LOCAL INFILE...' (defaults to 'true'). | true | 3.0.3 |
allowUrlInLocalInfile | Should the driver allow URLs in 'LOAD DATA LOCAL INFILE' statements? | false | 3.1.4 |
paranoid | Take measures to prevent exposure sensitive information in error messages and clear data structures holding sensitive data when possible? (defaults to 'false') | false | 3.0.1 |
passwordCharacterEncoding | What character encoding is used for passwords? Leaving this set to the default value (null), uses the platform character set, which works for ISO8859_1 (i.e. "latin1") passwords. For passwords in other character encodings, the encoding will have to be specified with this property, as it's not possible for the driver to auto-detect this. | 5.1.7 |
Performance Extensions.
Property Name | Definition | Default Value | Since Version |
callableStmtCacheSize | If 'cacheCallableStmts' is enabled, how many callable statements should be cached? | 100 | 3.1.2 |
metadataCacheSize | The number of queries to cache ResultSetMetadata for if cacheResultSetMetaData is set to 'true' (default 50) | 50 | 3.1.1 |
useLocalSessionState | Should the driver refer to the internal values of autocommit and transaction isolation that are set by Connection.setAutoCommit() and Connection.setTransactionIsolation() and transaction state as maintained by the protocol, rather than querying the database or blindly sending commands to the database for commit() or rollback() method calls? | false | 3.1.7 |
useLocalTransactionState | Should the driver use the in-transaction state provided by the MySQL protocol to determine if a commit() or rollback() should actually be sent to the database? | false | 5.1.7 |
prepStmtCacheSize | If prepared statement caching is enabled, how many prepared statements should be cached? | 25 | 3.0.10 |
prepStmtCacheSqlLimit | If prepared statement caching is enabled, what's the largest SQL the driver will cache the parsing for? | 256 | 3.0.10 |
parseInfoCacheFactory | Name of a class implementing com.mysql.jdbc.CacheAdapterFactory, which will be used to create caches for the parsed representation of client-side prepared statements. | com.mysql.jdbc.PerConnectionLRUFactory | 5.1.1 |
serverConfigCacheFactory | Name of a class implementing com.mysql.jdbc.CacheAdapterFactory<String, Map<String, String>>, which will be used to create caches for MySQL server configuration values | com.mysql.jdbc.PerVmServerConfigCacheFactory | 5.1.1 |
alwaysSendSetIsolation | Should the driver always communicate with the database when Connection.setTransactionIsolation() is called? If set to false, the driver will only communicate with the database when the requested transaction isolation is different than the whichever is newer, the last value that was set via Connection.setTransactionIsolation(), or the value that was read from the server when the connection was established. Note that useLocalSessionState=true will force the same behavior as alwaysSendSetIsolation=false, regardless of how alwaysSendSetIsolation is set. | true | 3.1.7 |
maintainTimeStats | Should the driver maintain various internal timers to enable idle time calculations as well as more verbose error messages when the connection to the server fails? Setting this property to false removes at least two calls to System.getCurrentTimeMillis() per query. | true | 3.1.9 |
useCursorFetch | If connected to MySQL > 5.0.2, and setFetchSize() > 0 on a statement, should that statement use cursor-based fetching to retrieve rows? | false | 5.0.0 |
blobSendChunkSize | Chunk to use when sending BLOB/CLOBs via ServerPreparedStatements | 1048576 | 3.1.9 |
cacheCallableStmts | Should the driver cache the parsing stage of CallableStatements | false | 3.1.2 |
cachePrepStmts | Should the driver cache the parsing stage of PreparedStatements of client-side prepared statements, the "check" for suitability of server-side prepared and server-side prepared statements themselves? | false | 3.0.10 |
cacheResultSetMetadata | Should the driver cache ResultSetMetaData for Statements and PreparedStatements? (Req. JDK-1.4+, true/false, default 'false') | false | 3.1.1 |
cacheServerConfiguration | Should the driver cache the results of 'SHOW VARIABLES' and 'SHOW COLLATION' on a per-URL basis? | false | 3.1.5 |
defaultFetchSize | The driver will call setFetchSize(n) with this value on all newly-created Statements | 0 | 3.1.9 |
dontTrackOpenResources | The JDBC specification requires the driver to automatically track and close resources, however if your application doesn't do a good job of explicitly calling close() on statements or result sets, this can cause memory leakage. Setting this property to true relaxes this constraint, and can be more memory efficient for some applications. | false | 3.1.7 |
dynamicCalendars | Should the driver retrieve the default calendar when required, or cache it per connection/session? | false | 3.1.5 |
elideSetAutoCommits | If using MySQL-4.1 or newer, should the driver only issue 'set autocommit=n' queries when the server's state doesn't match the requested state by Connection.setAutoCommit(boolean)? | false | 3.1.3 |
enableQueryTimeouts | When enabled, query timeouts set via Statement.setQueryTimeout() use a shared java.util.Timer instance for scheduling. Even if the timeout doesn't expire before the query is processed, there will be memory used by the TimerTask for the given timeout which won't be reclaimed until the time the timeout would have expired if it hadn't been cancelled by the driver. High-load environments might want to consider disabling this functionality. | true | 5.0.6 |
holdResultsOpenOverStatementClose | Should the driver close result sets on Statement.close() as required by the JDBC specification? | false | 3.1.7 |
largeRowSizeThreshold | What size result set row should the JDBC driver consider "large", and thus use a more memory-efficient way of representing the row internally? | 2048 | 5.1.1 |
loadBalanceStrategy | If using a load-balanced connection to connect to SQL nodes in a MySQL Cluster/NDB configuration (by using the URL prefix "jdbc:mysql:loadbalance://"), which load balancing algorithm should the driver use: (1) "random" - the driver will pick a random host for each request. This tends to work better than round-robin, as the randomness will somewhat account for spreading loads where requests vary in response time, while round-robin can sometimes lead to overloaded nodes if there are variations in response times across the workload. (2) "bestResponseTime" - the driver will route the request to the host that had the best response time for the previous transaction. | random | 5.0.6 |
locatorFetchBufferSize | If 'emulateLocators' is configured to 'true', what size buffer should be used when fetching BLOB data for getBinaryInputStream? | 1048576 | 3.2.1 |
rewriteBatchedStatements | Should the driver use multiqueries (irregardless of the setting of "allowMultiQueries") as well as rewriting of prepared statements for INSERT into multi-value inserts when executeBatch() is called? Notice that this has the potential for SQL injection if using plain java.sql.Statements and your code doesn't sanitize input correctly. Notice that for prepared statements, server-side prepared statements can not currently take advantage of this rewrite option, and that if you don't specify stream lengths when using PreparedStatement.set*Stream(), the driver won't be able to determine the optimum number of parameters per batch and you might receive an error from the driver that the resultant packet is too large. Statement.getGeneratedKeys() for these rewritten statements only works when the entire batch includes INSERT statements. | false | 3.1.13 |
useDirectRowUnpack | Use newer result set row unpacking code that skips a copy from network buffers to a MySQL packet instance and instead reads directly into the result set row data buffers. | true | 5.1.1 |
useDynamicCharsetInfo | Should the driver use a per-connection cache of character set information queried from the server when necessary, or use a built-in static mapping that is more efficient, but isn't aware of custom character sets or character sets implemented after the release of the JDBC driver? | true | 5.0.6 |
useFastDateParsing | Use internal String->Date/Time/Timestamp conversion routines to avoid excessive object creation? | true | 5.0.5 |
useFastIntParsing | Use internal String->Integer conversion routines to avoid excessive object creation? | true | 3.1.4 |
useJvmCharsetConverters | Always use the character encoding routines built into the JVM, rather than using lookup tables for single-byte character sets? | false | 5.0.1 |
useReadAheadInput | Use newer, optimized non-blocking, buffered input stream when reading from the server? | true | 3.1.5 |
Debugging/Profiling.
Property Name | Definition | Default Value | Since Version |
logger | The name of a class that implements "com.mysql.jdbc.log.Log" that will be used to log messages to. (default is "com.mysql.jdbc.log.StandardLogger", which logs to STDERR) | com.mysql.jdbc.log.StandardLogger | 3.1.1 |
gatherPerfMetrics | Should the driver gather performance metrics, and report them via the configured logger every 'reportMetricsIntervalMillis' milliseconds? | false | 3.1.2 |
profileSQL | Trace queries and their execution/fetch times to the configured logger (true/false) defaults to 'false' | false | 3.1.0 |
profileSql | Deprecated, use 'profileSQL' instead. Trace queries and their execution/fetch times on STDERR (true/false) defaults to 'false' | 2.0.14 | |
reportMetricsIntervalMillis | If 'gatherPerfMetrics' is enabled, how often should they be logged (in ms)? | 30000 | 3.1.2 |
maxQuerySizeToLog | Controls the maximum length/size of a query that will get logged when profiling or tracing | 2048 | 3.1.3 |
packetDebugBufferSize | The maximum number of packets to retain when 'enablePacketDebug' is true | 20 | 3.1.3 |
slowQueryThresholdMillis | If 'logSlowQueries' is enabled, how long should a query (in ms) before it is logged as 'slow'? | 2000 | 3.1.2 |
slowQueryThresholdNanos | If 'useNanosForElapsedTime' is set to true, and this property is set to a non-zero value, the driver will use this threshold (in nanosecond units) to determine if a query was slow. | 0 | 5.0.7 |
useUsageAdvisor | Should the driver issue 'usage' warnings advising proper and efficient usage of JDBC and MySQL Connector/J to the log (true/false, defaults to 'false')? | false | 3.1.1 |
autoGenerateTestcaseScript | Should the driver dump the SQL it is executing, including server-side prepared statements to STDERR? | false | 3.1.9 |
autoSlowLog | Instead of using slowQueryThreshold* to determine if a query is slow enough to be logged, maintain statistics that allow the driver to determine queries that are outside the 99th percentile? | true | 5.1.4 |
clientInfoProvider | The name of a class that implements the com.mysql.jdbc.JDBC4ClientInfoProvider interface in order to support JDBC-4.0's Connection.get/setClientInfo() methods | com.mysql.jdbc.JDBC4CommentClientInfoProvider | 5.1.0 |
dumpMetadataOnColumnNotFound | Should the driver dump the field-level metadata of a result set into the exception message when ResultSet.findColumn() fails? | false | 3.1.13 |
dumpQueriesOnException | Should the driver dump the contents of the query sent to the server in the message for SQLExceptions? | false | 3.1.3 |
enablePacketDebug | When enabled, a ring-buffer of 'packetDebugBufferSize' packets will be kept, and dumped when exceptions are thrown in key areas in the driver's code | false | 3.1.3 |
explainSlowQueries | If 'logSlowQueries' is enabled, should the driver automatically issue an 'EXPLAIN' on the server and send the results to the configured log at a WARN level? | false | 3.1.2 |
includeInnodbStatusInDeadlockExceptions | Include the output of "SHOW ENGINE INNODB STATUS" in exception messages when deadlock exceptions are detected? | false | 5.0.7 |
includeThreadDumpInDeadlockExceptions | Include a current Java thread dump in exception messages when deadlock exceptions are detected? | false | 5.1.15 |
includeThreadNamesAsStatementComment | Include the name of the current thread as a comment visible in "SHOW PROCESSLIST", or in Innodb deadlock dumps, useful in correlation with "includeInnodbStatusInDeadlockExceptions=true" and "includeThreadDumpInDeadlockExceptions=true". | false | 5.1.15 |
logSlowQueries | Should queries that take longer than 'slowQueryThresholdMillis' be logged? | false | 3.1.2 |
logXaCommands | Should the driver log XA commands sent by MysqlXaConnection to the server, at the DEBUG level of logging? | false | 5.0.5 |
profilerEventHandler | Name of a class that implements the interface com.mysql.jdbc.profiler.ProfilerEventHandler that will be used to handle profiling/tracing events. | com.mysql.jdbc.profiler.LoggingProfilerEventHandler | 5.1.6 |
resultSetSizeThreshold | If the usage advisor is enabled, how many rows should a result set contain before the driver warns that it is suspiciously large? | 100 | 5.0.5 |
traceProtocol | Should trace-level network protocol be logged? | false | 3.1.2 |
useNanosForElapsedTime | For profiling/debugging functionality that measures elapsed time, should the driver try to use nanoseconds resolution if available (JDK >= 1.5)? | false | 5.0.7 |
Miscellaneous.
Property Name | Definition | Default Value | Since Version |
useUnicode | Should the driver use Unicode character encodings when handling strings? Should only be used when the driver can't determine the character set mapping, or you are trying to 'force' the driver to use a character set that MySQL either doesn't natively support (such as UTF-8), true/false, defaults to 'true' | true | 1.1g |
characterEncoding | If 'useUnicode' is set to true, what character encoding should the driver use when dealing with strings? (defaults is to 'autodetect') | 1.1g | |
characterSetResults | Character set to tell the server to return results as. | 3.0.13 | |
connectionAttributes | A comma-delimited list of user-defined key:value pairs (in addition to standard MySQL-defined key:value pairs) to be passed to MySQL Server for display as connection attributes in the PERFORMANCE_SCHEMA.SESSION_CONNECT_ATTRS table. Example usage: connectionAttributes=key1:value1,key2:value2 This functionality is available for use with MySQL Server version 5.6 or later only. Earlier versions of MySQL Server do not support connection attributes, causing this configuration option will be ignored. Setting connectionAttributes=none will cause connection attribute processing to be bypassed, for situations where Connection creation/initialization speed is critical. | 5.1.25 | |
connectionCollation | If set, tells the server to use this collation via 'set collation_connection' | 3.0.13 | |
useBlobToStoreUTF8OutsideBMP | Tells the driver to treat [MEDIUM/LONG]BLOB columns as [LONG]VARCHAR columns holding text encoded in UTF-8 that has characters outside the BMP (4-byte encodings), which MySQL server can't handle natively. | false | 5.1.3 |
utf8OutsideBmpExcludedColumnNamePattern | When "useBlobToStoreUTF8OutsideBMP" is set to "true", column names matching the given regex will still be treated as BLOBs unless they match the regex specified for "utf8OutsideBmpIncludedColumnNamePattern". The regex must follow the patterns used for the java.util.regex package. | 5.1.3 | |
utf8OutsideBmpIncludedColumnNamePattern | Used to specify exclusion rules to "utf8OutsideBmpExcludedColumnNamePattern". The regex must follow the patterns used for the java.util.regex package. | 5.1.3 | |
loadBalanceEnableJMX | Enables JMX-based management of load-balanced connection groups, including live addition/removal of hosts from load-balancing pool. | false | 5.1.13 |
sessionVariables | A comma-separated list of name/value pairs to be sent as SET SESSION ... to the server when the driver connects. | 3.1.8 | |
useColumnNamesInFindColumn | Prior to JDBC-4.0, the JDBC specification had a bug related to what could be given as a "column name" to ResultSet methods like findColumn(), or getters that took a String property. JDBC-4.0 clarified "column name" to mean the label, as given in an "AS" clause and returned by ResultSetMetaData.getColumnLabel(), and if no AS clause, the column name. Setting this property to "true" will give behavior that is congruent to JDBC-3.0 and earlier versions of the JDBC specification, but which because of the specification bug could give unexpected results. This property is preferred over "useOldAliasMetadataBehavior" unless you need the specific behavior that it provides with respect to ResultSetMetadata. | false | 5.1.7 |
allowNanAndInf | Should the driver allow NaN or +/- INF values in PreparedStatement.setDouble()? | false | 3.1.5 |
autoClosePStmtStreams | Should the driver automatically call .close() on streams/readers passed as arguments via set*() methods? | false | 3.1.12 |
autoDeserialize | Should the driver automatically detect and de-serialize objects stored in BLOB fields? | false | 3.1.5 |
blobsAreStrings | Should the driver always treat BLOBs as Strings - specifically to work around dubious metadata returned by the server for GROUP BY clauses? | false | 5.0.8 |
capitalizeTypeNames | Capitalize type names in DatabaseMetaData? (usually only useful when using WebObjects, true/false, defaults to 'false') | true | 2.0.7 |
clobCharacterEncoding | The character encoding to use for sending and retrieving TEXT, MEDIUMTEXT and LONGTEXT values instead of the configured connection characterEncoding | 5.0.0 | |
clobberStreamingResults | This will cause a 'streaming' ResultSet to be automatically closed, and any outstanding data still streaming from the server to be discarded if another query is executed before all the data has been read from the server. | false | 3.0.9 |
compensateOnDuplicateKeyUpdateCounts | Should the driver compensate for the update counts of "ON DUPLICATE KEY" INSERT statements (2 = 1, 0 = 1) when using prepared statements? | false | 5.1.7 |
continueBatchOnError | Should the driver continue processing batch commands if one statement fails. The JDBC spec allows either way (defaults to 'true'). | true | 3.0.3 |
createDatabaseIfNotExist | Creates the database given in the URL if it doesn't yet exist. Assumes the configured user has permissions to create databases. | false | 3.1.9 |
emptyStringsConvertToZero | Should the driver allow conversions from empty string fields to numeric values of '0'? | true | 3.1.8 |
emulateLocators | Should the driver emulate java.sql.Blobs with locators? With this feature enabled, the driver will delay loading the actual Blob data until the one of the retrieval methods (getInputStream(), getBytes(), and so forth) on the blob data stream has been accessed. For this to work, you must use a column alias with the value of the column to the actual name of the Blob. The feature also has the following restrictions: The SELECT that created the result set must reference only one table, the table must have a primary key; the SELECT must alias the original blob column name, specified as a string, to an alternate name; the SELECT must cover all columns that make up the primary key. | false | 3.1.0 |
emulateUnsupportedPstmts | Should the driver detect prepared statements that are not supported by the server, and replace them with client-side emulated versions? | true | 3.1.7 |
exceptionInterceptors | Comma-delimited list of classes that implement com.mysql.jdbc.ExceptionInterceptor. These classes will be instantiated one per Connection instance, and all SQLExceptions thrown by the driver will be allowed to be intercepted by these interceptors, in a chained fashion, with the first class listed as the head of the chain. | 5.1.8 | |
functionsNeverReturnBlobs | Should the driver always treat data from functions returning BLOBs as Strings - specifically to work around dubious metadata returned by the server for GROUP BY clauses? | false | 5.0.8 |
generateSimpleParameterMetadata | Should the driver generate simplified parameter metadata for PreparedStatements when no metadata is available either because the server couldn't support preparing the statement, or server-side prepared statements are disabled? | false | 5.0.5 |
ignoreNonTxTables | Ignore non-transactional table warning for rollback? (defaults to 'false'). | false | 3.0.9 |
jdbcCompliantTruncation | Should the driver throw java.sql.DataTruncation exceptions when data is truncated as is required by the JDBC specification when connected to a server that supports warnings (MySQL 4.1.0 and newer)? This property has no effect if the server sql-mode includes STRICT_TRANS_TABLES. | true | 3.1.2 |
loadBalanceAutoCommitStatementRegex | When load-balancing is enabled for auto-commit statements (via loadBalanceAutoCommitStatementThreshold), the statement counter will only increment when the SQL matches the regular expression. By default, every statement issued matches. | 5.1.15 | |
loadBalanceAutoCommitStatementThreshold | When auto-commit is enabled, the number of statements which should be executed before triggering load-balancing to rebalance. Default value of 0 causes load-balanced connections to only rebalance when exceptions are encountered, or auto-commit is disabled and transactions are explicitly committed or rolled back. | 0 | 5.1.15 |
loadBalanceBlacklistTimeout | Time in milliseconds between checks of servers which are unavailable, by controlling how long a server lives in the global blacklist. | 0 | 5.1.0 |
loadBalanceConnectionGroup | Logical group of load-balanced connections within a classloader, used to manage different groups independently. If not specified, live management of load-balanced connections is disabled. | 5.1.13 | |
loadBalanceExceptionChecker | Fully-qualified class name of custom exception checker. The class must implement com.mysql.jdbc.LoadBalanceExceptionChecker interface, and is used to inspect SQLExceptions and determine whether they should trigger fail-over to another host in a load-balanced deployment. | com.mysql.jdbc.StandardLoadBalanceExceptionChecker | 5.1.13 |
loadBalancePingTimeout | Time in milliseconds to wait for ping response from each of load-balanced physical connections when using load-balanced Connection. | 0 | 5.1.13 |
loadBalanceSQLExceptionSubclassFailover | Comma-delimited list of classes/interfaces used by default load-balanced exception checker to determine whether a given SQLException should trigger failover. The comparison is done using Class.isInstance(SQLException) using the thrown SQLException. | 5.1.13 | |
loadBalanceSQLStateFailover | Comma-delimited list of SQLState codes used by default load-balanced exception checker to determine whether a given SQLException should trigger failover. The SQLState of a given SQLException is evaluated to determine whether it begins with any value in the comma-delimited list. | 5.1.13 | |
loadBalanceValidateConnectionOnSwapServer | Should the load-balanced Connection explicitly check whether the connection is live when swapping to a new physical connection at commit/rollback? | false | 5.1.13 |
maxRows | The maximum number of rows to return (0, the default means return all rows). | -1 | all versions |
netTimeoutForStreamingResults | What value should the driver automatically set the server setting 'net_write_timeout' to when the streaming result sets feature is in use? (value has unit of seconds, the value '0' means the driver will not try and adjust this value) | 600 | 5.1.0 |
noAccessToProcedureBodies | When determining procedure parameter types for CallableStatements, and the connected user can't access procedure bodies through "SHOW CREATE PROCEDURE" or select on mysql.proc should the driver instead create basic metadata (all parameters reported as IN VARCHARs, but allowing registerOutParameter() to be called on them anyway) instead of throwing an exception? | false | 5.0.3 |
noDatetimeStringSync | Don't ensure that ResultSet.getDatetimeType().toString().equals(ResultSet.getString()) | false | 3.1.7 |
noTimezoneConversionForTimeType | Don't convert TIME values using the server timezone if 'useTimezone'='true' | false | 5.0.0 |
nullCatalogMeansCurrent | When DatabaseMetadataMethods ask for a 'catalog' parameter, does the value null mean use the current catalog? (this is not JDBC-compliant, but follows legacy behavior from earlier versions of the driver) | true | 3.1.8 |
nullNamePatternMatchesAll | Should DatabaseMetaData methods that accept *pattern parameters treat null the same as '%' (this is not JDBC-compliant, however older versions of the driver accepted this departure from the specification) | true | 3.1.8 |
overrideSupportsIntegrityEnhancementFacility | Should the driver return "true" for DatabaseMetaData.supportsIntegrityEnhancementFacility() even if the database doesn't support it to workaround applications that require this method to return "true" to signal support of foreign keys, even though the SQL specification states that this facility contains much more than just foreign key support (one such application being OpenOffice)? | false | 3.1.12 |
padCharsWithSpace | If a result set column has the CHAR type and the value does not fill the amount of characters specified in the DDL for the column, should the driver pad the remaining characters with space (for ANSI compliance)? | false | 5.0.6 |
pedantic | Follow the JDBC spec to the letter. | false | 3.0.0 |
pinGlobalTxToPhysicalConnection | When using XAConnections, should the driver ensure that operations on a given XID are always routed to the same physical connection? This allows the XAConnection to support "XA START ... JOIN" after "XA END" has been called | false | 5.0.1 |
populateInsertRowWithDefaultValues | When using ResultSets that are CONCUR_UPDATABLE, should the driver pre-populate the "insert" row with default values from the DDL for the table used in the query so those values are immediately available for ResultSet accessors? This functionality requires a call to the database for metadata each time a result set of this type is created. If disabled (the default), the default values will be populated by the an internal call to refreshRow() which pulls back default values and/or values changed by triggers. | false | 5.0.5 |
processEscapeCodesForPrepStmts | Should the driver process escape codes in queries that are prepared? | true | 3.1.12 |
queryTimeoutKillsConnection | If the timeout given in Statement.setQueryTimeout() expires, should the driver forcibly abort the Connection instead of attempting to abort the query? | false | 5.1.9 |
relaxAutoCommit | If the version of MySQL the driver connects to does not support transactions, still allow calls to commit(), rollback() and setAutoCommit() (true/false, defaults to 'false')? | false | 2.0.13 |
retainStatementAfterResultSetClose | Should the driver retain the Statement reference in a ResultSet after ResultSet.close() has been called. This is not JDBC-compliant after JDBC-4.0. | false | 3.1.11 |
rollbackOnPooledClose | Should the driver issue a rollback() when the logical connection in a pool is closed? | true | 3.0.15 |
runningCTS13 | Enables workarounds for bugs in Sun's JDBC compliance testsuite version 1.3 | false | 3.1.7 |
serverTimezone | Override detection/mapping of timezone. Used when timezone from server doesn't map to Java timezone | 3.0.2 | |
statementInterceptors | A comma-delimited list of classes that implement "com.mysql.jdbc.StatementInterceptor" that should be placed "in between" query execution to influence the results. StatementInterceptors are "chainable", the results returned by the "current" interceptor will be passed on to the next in in the chain, from left-to-right order, as specified in this property. | 5.1.1 | |
strictFloatingPoint | Used only in older versions of compliance test | false | 3.0.0 |
strictUpdates | Should the driver do strict checking (all primary keys selected) of updatable result sets (true, false, defaults to 'true')? | true | 3.0.4 |
tinyInt1isBit | Should the driver treat the datatype TINYINT(1) as the BIT type (because the server silently converts BIT -> TINYINT(1) when creating tables)? | true | 3.0.16 |
transformedBitIsBoolean | If the driver converts TINYINT(1) to a different type, should it use BOOLEAN instead of BIT for future compatibility with MySQL-5.0, as MySQL-5.0 has a BIT type? | false | 3.1.9 |
treatUtilDateAsTimestamp | Should the driver treat java.util.Date as a TIMESTAMP for the purposes of PreparedStatement.setObject()? | true | 5.0.5 |
ultraDevHack | Create PreparedStatements for prepareCall() when required, because UltraDev is broken and issues a prepareCall() for _all_ statements? (true/false, defaults to 'false') | false | 2.0.3 |
useAffectedRows | Don't set the CLIENT_FOUND_ROWS flag when connecting to the server (not JDBC-compliant, will break most applications that rely on "found" rows vs. "affected rows" for DML statements), but does cause "correct" update counts from "INSERT ... ON DUPLICATE KEY UPDATE" statements to be returned by the server. | false | 5.1.7 |
useGmtMillisForDatetimes | Convert between session timezone and GMT before creating Date and Timestamp instances (value of "false" is legacy behavior, "true" leads to more JDBC-compliant behavior. | false | 3.1.12 |
useHostsInPrivileges | Add '@hostname' to users in DatabaseMetaData.getColumn/TablePrivileges() (true/false), defaults to 'true'. | true | 3.0.2 |
useInformationSchema | When connected to MySQL-5.0.7 or newer, should the driver use the INFORMATION_SCHEMA to derive information used by DatabaseMetaData? | false | 5.0.0 |
useJDBCCompliantTimezoneShift | Should the driver use JDBC-compliant rules when converting TIME/TIMESTAMP/DATETIME values' timezone information for those JDBC arguments which take a java.util.Calendar argument? (Notice that this option is exclusive of the "useTimezone=true" configuration option.) | false | 5.0.0 |
useLegacyDatetimeCode | Use code for DATE/TIME/DATETIME/TIMESTAMP handling in result sets and statements that consistently handles timezone conversions from client to server and back again, or use the legacy code for these datatypes that has been in the driver for backwards-compatibility? | true | 5.1.6 |
useOldAliasMetadataBehavior | Should the driver use the legacy behavior for "AS" clauses on columns and tables, and only return aliases (if any) for ResultSetMetaData.getColumnName() or ResultSetMetaData.getTableName() rather than the original column/table name? In 5.0.x, the default value was true. | false | 5.0.4 |
useOldUTF8Behavior | Use the UTF-8 behavior the driver did when communicating with 4.0 and older servers | false | 3.1.6 |
useOnlyServerErrorMessages | Don't prepend 'standard' SQLState error messages to error messages returned by the server. | true | 3.0.15 |
useSSPSCompatibleTimezoneShift | If migrating from an environment that was using server-side prepared statements, and the configuration property "useJDBCCompliantTimeZoneShift" set to "true", use compatible behavior when not using server-side prepared statements when sending TIMESTAMP values to the MySQL server. | false | 5.0.5 |
useServerPrepStmts | Use server-side prepared statements if the server supports them? | false | 3.1.0 |
useSqlStateCodes | Use SQL Standard state codes instead of 'legacy' X/Open/SQL state codes (true/false), default is 'true' | true | 3.1.3 |
useStreamLengthsInPrepStmts | Honor stream length parameter in PreparedStatement/ResultSet.setXXXStream() method calls (true/false, defaults to 'true')? | true | 3.0.2 |
useTimezone | Convert time/date types between client and server timezones (true/false, defaults to 'false')? | false | 3.0.2 |
useUnbufferedInput | Don't use BufferedInputStream for reading data from the server | true | 3.0.11 |
yearIsDateType | Should the JDBC driver treat the MySQL type "YEAR" as a java.sql.Date, or as a SHORT? | true | 3.1.9 |
zeroDateTimeBehavior | What should happen when the driver encounters DATETIME values that are composed entirely of zeros (used by MySQL to represent invalid dates)? Valid values are "exception", "round" and "convertToNull". | exception | 3.1.4 |
Connector/J also supports access to MySQL using named pipes on Windows NT, Windows 2000, or Windows XP using the NamedPipeSocketFactory as a plugin-socket factory using the socketFactory property. If you do not use a namedPipePath property, the default of '\\.\pipe\MySQL' is used. If you use the NamedPipeSocketFactory, the host name and port number values in the JDBC url are ignored. To enable this feature, use:
socketFactory=com.mysql.jdbc.NamedPipeSocketFactory
Named pipes only work when connecting to a MySQL server on the same physical machine where the JDBC driver is running. In simple performance tests, named pipe access is between 30%-50% faster than the standard TCP/IP access. However, this varies per system, and named pipes are slower than TCP/IP in many Windows configurations.
To create your own socket factories, follow the example code in com.mysql.jdbc.NamedPipeSocketFactory, or com.mysql.jdbc.StandardSocketFactory.
21.3.5.1.1. Properties Files for the useConfigs Option
The useConfigs connection option is a convenient shorthand for specifying combinations of options for particular scenarios. The argument values you can use with this option correspond to the names of .properties files within the Connector/J mysql-connector-java-version-bin.jar JAR file. For example, the Connector/J 5.1.9 driver includes the following configuration properties files:
$ unzip mysql-connector-java-5.1.19-bin.jar '*/configs/*'
Archive: mysql-connector-java-5.1.19-bin.jar
creating: com/mysql/jdbc/configs/
inflating: com/mysql/jdbc/configs/3-0-Compat.properties
inflating: com/mysql/jdbc/configs/5-0-Compat.properties
inflating: com/mysql/jdbc/configs/clusterBase.properties
inflating: com/mysql/jdbc/configs/coldFusion.properties
inflating: com/mysql/jdbc/configs/fullDebug.properties
inflating: com/mysql/jdbc/configs/maxPerformance.properties
inflating: com/mysql/jdbc/configs/solarisMaxPerformance.properties
To specify one of these combinations of options, specify useConfigs=3-0-Compat, useConfigs=maxPerformance, and so on. The following sections show the options that are part of each useConfigs setting. For the details of why each one is included, see the comments in the .properties files.
3-0-Compat
emptyStringsConvertToZero=true
jdbcCompliantTruncation=false
noDatetimeStringSync=true
nullCatalogMeansCurrent=true
nullNamePatternMatchesAll=true
transformedBitIsBoolean=false
dontTrackOpenResources=true
zeroDateTimeBehavior=convertToNull
useServerPrepStmts=false
autoClosePStmtStreams=true
processEscapeCodesForPrepStmts=false
useFastDateParsing=false
populateInsertRowWithDefaultValues=false
useDirectRowUnpack=false
5-0-Compat
useDirectRowUnpack=false
clusterBase
autoReconnect=true
failOverReadOnly=false
roundRobinLoadBalance=true
coldFusion
useDynamicCharsetInfo=false
alwaysSendSetIsolation=false
useLocalSessionState=true
autoReconnect=true
fullDebug
profileSQL=true
gatherPerMetrics=true
useUsageAdvisor=true
logSlowQueries=true
explainSlowQueries=true
maxPerformance
cachePrepStmts=true
cacheCallableStmts=true
cacheServerConfiguration=true
useLocalSessionState=true
elideSetAutoCommits=true
alwaysSendSetIsolation=false
enableQueryTimeouts=false
solarisMaxPerformance
useUnbufferedInput=false
useReadAheadInput=false
maintainTimeStats=false
21.3.5.2. JDBC API Implementation Notes
MySQL Connector/J passes all of the tests in the publicly available version of Sun's JDBC compliance test suite. This section gives details on a interface-by-interface level about implementation decisions that might affect how you code applications with MySQL Connector/J. The JDBC specification is vague about how certain functionality should be implemented, or the specification enables leeway in implementation.
BLOB
Starting with Connector/J version 3.1.0, you can emulate BLOBs with locators by adding the property emulateLocators=true to your JDBC URL. Using this method, the driver will delay loading the actual BLOB data until you retrieve the other data and then use retrieval methods (getInputStream(), getBytes(), and so forth) on the BLOB data stream.
You must use a column alias with the value of the column to the actual name of the BLOB, for example:
SELECT id, 'data' as blob_data from blobtable
You must also follow these rules:
The SELECT must reference only one table. The table must have a primary key.
The SELECT must alias the original BLOB column name, specified as a string, to an alternate name.
The SELECT must cover all columns that make up the primary key.
The BLOB implementation does not allow in-place modification (they are copies, as reported by the DatabaseMetaData.locatorsUpdateCopies() method). Because of this, use the corresponding PreparedStatement.setBlob() or ResultSet.updateBlob() (in the case of updatable result sets) methods to save changes back to the database.
CallableStatement
Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL version 5.0 or newer using the CallableStatement interface. Currently, the getParameterMetaData() method of CallableStatement is not supported.
CLOB
The CLOB implementation does not allow in-place modification (they are copies, as reported by the DatabaseMetaData.locatorsUpdateCopies() method). Because of this, use the PreparedStatement.setClob() method to save changes back to the database. The JDBC API does not have a ResultSet.updateClob() method.
Connection
Unlike the pre-Connector/J JDBC driver (MM.MySQL), the isClosed() method does not ping the server to determine if it is available. In accordance with the JDBC specification, it only returns true if closed() has been called on the connection. If you need to determine if the connection is still valid, issue a simple query, such as SELECT 1. The driver will throw an exception if the connection is no longer valid.
DatabaseMetaData
Foreign key information (getImportedKeys()/getExportedKeys() and getCrossReference()) is only available from InnoDB tables. The driver uses SHOW CREATE TABLE to retrieve this information, so if any other storage engines add support for foreign keys, the driver would transparently support them as well.
PreparedStatement
PreparedStatements are implemented by the driver, as MySQL does not have a prepared statement feature. Because of this, the driver does not implement getParameterMetaData() or getMetaData() as it would require the driver to have a complete SQL parser in the client.
Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-encoded result sets are used when the server supports them.
Take care when using a server-side prepared statement with large parameters that are set using setBinaryStream(), setAsciiStream(), setUnicodeStream(), setBlob(), or setClob(). To re-execute the statement with any large parameter changed to a nonlarge parameter, call clearParameters() and set all parameters again. The reason for this is as follows:
During both server-side prepared statements and client-side emulation, large data is exchanged only when PreparedStatement.execute() is called.
Once that has been done, the stream used to read the data on the client side is closed (as per the JDBC spec), and cannot be read from again.
If a parameter changes from large to nonlarge, the driver must reset the server-side state of the prepared statement to allow the parameter that is being changed to take the place of the prior large value. This removes all of the large data that has already been sent to the server, thus requiring the data to be re-sent, using the setBinaryStream(), setAsciiStream(), setUnicodeStream(), setBlob() or setClob() method.
Consequently, to change the type of a parameter to a nonlarge one, you must call clearParameters() and set all parameters of the prepared statement again before it can be re-executed.
ResultSet
By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most efficient way to operate, and due to the design of the MySQL network protocol is easier to implement. If you are working with ResultSets that have a large number of rows or large values, and cannot allocate heap space in your JVM for the memory required, you can tell the driver to stream the results back one row at a time.
To enable this functionality, create a Statement instance in the following manner:
stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);
stmt.setFetchSize(Integer.MIN_VALUE);
The combination of a forward-only, read-only result set, with a fetch size of Integer.MIN_VALUE serves as a signal to the driver to stream result sets row-by-row. After this, any result sets created with the statement will be retrieved row-by-row.
There are some caveats with this approach. You must read all of the rows in the result set (or close it) before you can issue any other queries on the connection, or an exception will be thrown.
The earliest the locks these statements hold can be released (whether they be MyISAM table-level locks or row-level locks in some other storage engine such as InnoDB) is when the statement completes.
If the statement is within scope of a transaction, then locks are released when the transaction completes (which implies that the statement needs to complete first). As with most other databases, statements are not complete until all the results pending on the statement are read or the active result set for the statement is closed.
Therefore, if using streaming results, process them as quickly as possible if you want to maintain concurrent access to the tables referenced by the statement producing the result set.
ResultSetMetaData
The isAutoIncrement() method only works when using MySQL servers 4.0 and newer.
Statement
When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier than 5.0.3, the setFetchSize() method has no effect, other than to toggle result set streaming as described above.
Connector/J 5.0.0 and later include support for both Statement.cancel() and Statement.setQueryTimeout(). Both require MySQL 5.0.0 or newer server, and require a separate connection to issue the KILL QUERY statement. In the case of setQueryTimeout(), the implementation creates an additional thread to handle the timeout functionality.
Note
Failures to cancel the statement for setQueryTimeout() may manifest themselves as RuntimeException rather than failing silently, as there is currently no way to unblock the thread that is executing the query being cancelled due to timeout expiration and have it throw the exception instead.
Note
The MySQL statement KILL QUERY (which is what the driver uses to implement Statement.cancel()) is non-deterministic; thus, avoid the use of Statement.cancel() if possible. If no query is in process, the next query issued will be killed by the server. This race condition is guarded against as of Connector/J 5.1.18.
MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so setCursorName() has no effect.
Connector/J 5.1.3 and later include two additional methods:
setLocalInfileInputStream() sets an InputStream instance that will be used to send data to the MySQL server for a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or URLInputStream that represents the path given as an argument to the statement.
This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement, and will automatically be closed by the driver, so it needs to be reset before each call to execute*() that would cause the MySQL server to request data to fulfill the request for LOAD DATA LOCAL INFILE.
If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream as required.
getLocalInfileInputStream() returns the InputStream instance that will be used to send data in response to a LOAD DATA LOCAL INFILE statement.
This method returns NULL if no such stream has been set using setLocalInfileInputStream().
21.3.5.3. Java, JDBC and MySQL Types
MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java data types.
In general, any MySQL data type can be converted to a java.lang.String, and any numeric type can be converted to any of the Java numeric types, although round-off, overflow, or loss of precision may occur.
Note
All TEXT types return Types.LONGVARCHAR with different getPrecision() values (65535, 255, 16777215, and 2147483647 respectively) with getColumnType() returning -1. This behavior is intentional even though TINYTEXT does not fall, regarding to its size, within the LONGVARCHAR category. This is to avoid different handling inside the same base type. And getColumnType() returns -1 because the internal server handling is of type TEXT, which is similar to BLOB.
Also note that getColumnTypeName() will return VARCHAR even though getColumnType() returns Types.LONGVARCHAR, because VARCHAR is the designated column database-specific name for this type.
Starting with Connector/J 3.1.0, the JDBC driver issues warnings or throws DataTruncation exceptions as is required by the JDBC specification unless the connection was configured not to do so by using the property jdbcCompliantTruncation and setting it to false.
The conversions that are always guaranteed to work are listed in the following table. The first column lists one or more MySQL data types, and the second column lists one or more Java types to which the MySQL types can be converted.
Table 21.24. Connection Properties - Miscellaneous
These MySQL Data Types | Can always be converted to these Java types |
---|---|
CHAR, VARCHAR, BLOB, TEXT, ENUM, and SET | java.lang.String, java.io.InputStream, java.io.Reader, java.sql.Blob, java.sql.Clob |
FLOAT, REAL, DOUBLE PRECISION, NUMERIC, DECIMAL, TINYINT, SMALLINT, MEDIUMINT, INTEGER, BIGINT | java.lang.String, java.lang.Short, java.lang.Integer, java.lang.Long, java.lang.Double, java.math.BigDecimal |
DATE, TIME, DATETIME, TIMESTAMP | java.lang.String, java.sql.Date, java.sql.Timestamp |
Note
Round-off, overflow or loss of precision may occur if you choose a Java numeric data type that has less precision or capacity than the MySQL data type you are converting to/from.
The ResultSet.getObject() method uses the type conversions between MySQL and Java types, following the JDBC specification where appropriate. The value returned by ResultSetMetaData.GetColumnClassName() is also shown below. For more information on the java.sql.Types classes see Java 2 Platform Types.
Table 21.25. MySQL Types to Java Types for ResultSet.getObject()
MySQL Type Name | Return value of GetColumnClassName | Returned as Java Class |
---|---|---|
BIT(1) (new in MySQL-5.0) | BIT | java.lang.Boolean |
BIT(> 1) (new in MySQL-5.0) | BIT | byte[] |
TINYINT | TINYINT | java.lang.Boolean if the configuration property tinyInt1isBit is set to true (the default) and the storage size is 1, or java.lang.Integer if not. |
BOOL, BOOLEAN | TINYINT | See TINYINT, above as these are aliases for TINYINT(1), currently. |
SMALLINT[(M)] [UNSIGNED] | SMALLINT [UNSIGNED] | java.lang.Integer (regardless if UNSIGNED or not) |
MEDIUMINT[(M)] [UNSIGNED] | MEDIUMINT [UNSIGNED] | java.lang.Integer, if UNSIGNED java.lang.Long (C/J 3.1 and earlier), or java.lang.Integer for C/J 5.0 and later |
INT,INTEGER[(M)] [UNSIGNED] | INTEGER [UNSIGNED] | java.lang.Integer, if UNSIGNED java.lang.Long |
BIGINT[(M)] [UNSIGNED] | BIGINT [UNSIGNED] | java.lang.Long, if UNSIGNED java.math.BigInteger |
FLOAT[(M,D)] | FLOAT | java.lang.Float |
DOUBLE[(M,B)] | DOUBLE | java.lang.Double |
DECIMAL[(M[,D])] | DECIMAL | java.math.BigDecimal |
DATE | DATE | java.sql.Date |
DATETIME | DATETIME | java.sql.Timestamp |
TIMESTAMP[(M)] | TIMESTAMP | java.sql.Timestamp |
TIME | TIME | java.sql.Time |
YEAR[(2|4)] | YEAR | If yearIsDateType configuration property is set to false, then the returned object type is java.sql.Short. If set to true (the default), then the returned object is of type java.sql.Date with the date set to January 1st, at midnight. |
CHAR(M) | CHAR | java.lang.String (unless the character set for the column is BINARY, then byte[] is returned. |
VARCHAR(M) [BINARY] | VARCHAR | java.lang.String (unless the character set for the column is BINARY, then byte[] is returned. |
BINARY(M) | BINARY | byte[] |
VARBINARY(M) | VARBINARY | byte[] |
TINYBLOB | TINYBLOB | byte[] |
TINYTEXT | VARCHAR | java.lang.String |
BLOB | BLOB | byte[] |
TEXT | VARCHAR | java.lang.String |
MEDIUMBLOB | MEDIUMBLOB | byte[] |
MEDIUMTEXT | VARCHAR | java.lang.String |
LONGBLOB | LONGBLOB | byte[] |
LONGTEXT | VARCHAR | java.lang.String |
ENUM('value1','value2',...) | CHAR | java.lang.String |
SET('value1','value2',...) | CHAR | java.lang.String |
21.3.5.4. Using Character Sets and Unicode
All strings sent from the JDBC driver to the server are converted automatically from native Java Unicode form to the client character encoding, including all queries sent using Statement.execute(), Statement.executeUpdate(), Statement.executeQuery() as well as all PreparedStatement and CallableStatement parameters with the exclusion of parameters set using setBytes(), setBinaryStream(), setAsciiStream(), setUnicodeStream() and setBlob().
Number of Encodings Per Connection
In MySQL Server 4.1 and higher, Connector/J supports a single character encoding between client and server, and any number of character encodings for data returned by the server to the client in ResultSets.
Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which could either be automatically detected from the server configuration, or could be configured by the user through the useUnicode and characterEncoding properties.
Setting the Character Encoding
The character encoding between client and server is automatically detected upon connection. You specify the encoding on the server using the character_set_server for server versions 4.1.0 and newer, and character_set system variable for server versions older than 4.1.0. The driver automatically uses the encoding specified by the server. For more information, see Section 10.1.3.1, “Server Character Set and Collation”.
For example, to use 4-byte UTF-8 character sets with Connector/J, configure the MySQL server with character_set_server=utf8mb4, and leave characterEncoding out of the Connector/J connection string. Connector/J will then autodetect the UTF-8 setting.
To override the automatically detected encoding on the client side, use the characterEncoding property in the URL used to connect to the server.
To allow multiple character sets to be sent from the client, use the UTF-8 encoding, either by configuring utf8 as the default server character set, or by configuring the JDBC driver to use UTF-8 through the characterEncoding property.
When specifying character encodings on the client side, use Java-style names. The following table lists MySQL character set names and the corresponding Java-style names:
Table 21.26. MySQL to Java Encoding Name Translations
MySQL Character Set Name | Java-Style Character Encoding Name |
---|---|
ascii | US-ASCII |
big5 | Big5 |
gbk | GBK |
sjis | SJIS (or Cp932 or MS932 for MySQL Server < 4.1.11) |
cp932 | Cp932 or MS932 (MySQL Server > 4.1.11) |
gb2312 | EUC_CN |
ujis | EUC_JP |
euckr | EUC_KR |
latin1 | Cp1252 |
latin2 | ISO8859_2 |
greek | ISO8859_7 |
hebrew | ISO8859_8 |
cp866 | Cp866 |
tis620 | TIS620 |
cp1250 | Cp1250 |
cp1251 | Cp1251 |
cp1257 | Cp1257 |
macroman | MacRoman |
macce | MacCentralEurope |
utf8 | UTF-8 |
ucs2 | UnicodeBig |
Warning
Do not issue the query set names with Connector/J, as the driver will not detect that the character set has changed, and will continue to use the character set detected during the initial connection setup.
21.3.5.5. Connecting Securely Using SSL
SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC driver and the server. The performance penalty for enabling SSL is an increase in query processing time between 35% and 50%, depending on the size of the query, and the amount of data it returns.
For SSL support to work, you must have the following:
A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not currently work with a JDK that you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the following JSSE bug: http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
A MySQL server that supports SSL and has been compiled and configured to do so, which is MySQL 4.0.4 or later. For more information, see Section 6.3.9.2, “Configuring MySQL for SSL”.
A client certificate (covered later in this section)
The system works through two Java truststore files, one file contains the certificate information for the server (truststore in the examples below). The other file contains the certificate for the client (keystore in the examples below). All Java truststore files are password protected by supplying a suitable password to the keytool when you create the files. You need the file names and associated passwords to create an SSL connection.
You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL server CA Certificate is located in the SSL subdirectory of the MySQL source distribution. This is what SSL will use to determine if you are communicating with a secure MySQL server. Alternatively, use the CA Certificate that you have generated or been provided with by your SSL provider.
To use Java's keytool to create a truststore in the current directory , and import the server's CA certificate (cacert.pem), you can do the following (assuming that keytool is in your path. The keytool is typically located in the bin subdirectory of your JDK or JRE):
shell> keytool -import -alias mysqlServerCACert \
-file cacert.pem -keystore truststore
Enter the password when prompted for the keystore file. Interaction with keytool looks like this:
Enter keystore password: *********
Owner: EMAILADDRESS=walrus@example.com, CN=Walrus,
O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Issuer: EMAILADDRESS=walrus@example.com, CN=Walrus,
O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Serial number: 0
Valid from:
Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:
MD5: 61:91:A0:F2:03:07:61:7A:81:38:66:DA:19:C4:8D:AB
SHA1: 25:77:41:05:D5:AD:99:8C:14:8C:CA:68:9C:2F:B8:89:C3:34:4D:6C
Trust this certificate? [no]: yes
Certificate was added to keystore
You then have two options: either import the client certificate that matches the CA certificate you just imported, or create a new client certificate.
Importing an existing certificate requires the certificate to be in DER format. You can use openssl to convert an existing certificate into the new format. For example:
shell> openssl x509 -outform DER -in client-cert.pem -out client.cert
Now import the converted certificate into your keystore using keytool:
shell> keytool -import -file client.cert -keystore keystore -alias mysqlClientCertificate
To generate your own client certificate, use keytool to create a suitable certificate and add it to the keystore file:
shell> keytool -genkey -keyalg rsa \
-alias mysqlClientCertificate -keystore keystore
Keytool will prompt you for the following information, and create a keystore named keystore in the current directory.
Respond with information that is appropriate for your situation:
Enter keystore password: *********
What is your first and last name?
[Unknown]: Matthews
What is the name of your organizational unit?
[Unknown]: Software Development
What is the name of your organization?
[Unknown]: MySQL AB
What is the name of your City or Locality?
[Unknown]: Flossmoor
What is the name of your State or Province?
[Unknown]: IL
What is the two-letter country code for this unit?
[Unknown]: US
Is <CN=Matthews, OU=Software Development, O=MySQL AB,
L=Flossmoor, ST=IL, C=US> correct?
[no]: y
Enter key password for <mysqlClientCertificate>
(RETURN if same as keystore password):
Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the following system properties when you start your JVM, replacing path_to_keystore_file with the full path to the keystore file you created, path_to_truststore_file with the path to the truststore file you created, and using the appropriate password values for each property. You can do this either on the command line:
-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=password
Or you can set the values directly within the application:
System.setProperty("javax.net.ssl.keyStore","path_to_keystore_file");
System.setProperty("javax.net.ssl.keyStorePassword","password");
System.setProperty("javax.net.ssl.trustStore","path_to_truststore_file");
System.setProperty("javax.net.ssl.trustStorePassword","password");
You will also need to set useSSL to true in your connection parameters for MySQL Connector/J, either by adding useSSL=true to your URL, or by setting the property useSSL to true in the java.util.Properties instance you pass to DriverManager.getConnection().
You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the following key events:
...
*** ClientHello, v3.1
RandomCookie: GMT: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, »
54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, »
217, 219, 239, 202, 19, 121, 78 }
Session ID: {}
Cipher Suites: { 0, 5, 0, 4, 0, 9, 0, 10, 0, 18, 0, 19, 0, 3, 0, 17 }
Compression Methods: { 0 }

[write] MD5 and SHA1 hashes: len = 59
0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A 0C ...7..=.......J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...7g.@........
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00yN..........
0030: 0A 00 12 00 13 00 03 00 11 01 00
main, WRITE: SSL v3.1 Handshake, length = 59
main, READ: SSL v3.1 Handshake, length = 74
*** ServerHello, v3.1
RandomCookie: GMT: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, »
202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, »
132, 110, 82, 148, 160, 92 }
Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, »
182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, »
219, 158, 177, 187, 143}
Cipher Suite: { 0, 5 }
Compression Method: 0

%% Created: [Session-1, SSL_RSA_WITH_RC4_128_SHA]
** SSL_RSA_WITH_RC4_128_SHA
[read] MD5 and SHA1 hashes: len = 74
0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.C.t2.g.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA 03 :.O..d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2 .nR..\ ..T5Q....
0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C 0F E2 18 .D?.....O.L.\...
0040: 11 B1 DB 9E B1 BB 8F 00 05 00
main, READ: SSL v3.1 Handshake, length = 1712
...
JSSE provides debugging (to stdout) when you set the following system property: -Djavax.net.debug=all This will tell you what keystores and truststores are being used, as well as what is going on during the SSL handshake and certificate exchange. It will be helpful when trying to determine what is not working when trying to get an SSL connection to happen.
21.3.5.6. Connecting Using PAM Authentication
Java applications using Connector/J 5.1.21 and higher can can connect to MySQL servers that use the pluggable authentication module (PAM) authentication scheme.
For PAM authentication to work, you must have the following:
A MySQL server that supports PAM authentication: a commercial distribution of MySQL 5.5.16 or higher. See Section 6.3.7.3, “The PAM Authentication Plugin” for more information. Connector/J implements the same cleartext authentication method as in Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”.
SSL capability, as explained in Section 21.3.5.5, “Connecting Securely Using SSL”. Because the PAM authentication scheme sends the original password to the server, the connection to the server must be encrypted.
PAM authentication support is enabled by default in Connector/J 5.1.21 and up, so no extra configuration is needed.
To disable the PAM authentication feature, specify mysql_clear_password (the method) or com.mysql.jdbc.authentication.MysqlClearPasswordPlugin (the class name) in the comma-separated list of arguments for the disabledAuthenticationPlugins connection option. See Section 21.3.5.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J” for details about that connection option.
21.3.5.7. Using Master/Slave Replication with ReplicationConnection
Connector/J 3.1.7 and higher includes a variant of the driver that will automatically send queries to a read/write master, or a failover or round-robin loadbalanced set of slaves based on the state of Connection.getReadOnly().
An application signals that it wants a transaction to be read-only by calling Connection.setReadOnly(true), this replication-aware connection will use one of the slave connections, which are load-balanced per-vm using a round-robin scheme (a given connection is sticky to a slave unless that slave is removed from service). If you have a write transaction, or if you have a read that is time-sensitive (remember, replication in MySQL is asynchronous), set the connection to be not read-only, by calling Connection.setReadOnly(false) and the driver will ensure that further calls are sent to the master MySQL server. The driver takes care of propagating the current state of autocommit, isolation level, and catalog between all of the connections that it uses to accomplish this load balancing functionality.
To enable this functionality, use the com.mysql.jdbc.ReplicationDriver class when configuring your application server's connection pool or when creating an instance of a JDBC driver for your standalone application. Because it accepts the same URL format as the standard MySQL JDBC driver, ReplicationDriver does not currently work with java.sql.DriverManager-based connection creation unless it is the only MySQL JDBC driver registered with the DriverManager .
Here is a short example of how ReplicationDriver might be used in a standalone application:
import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;
import com.mysql.jdbc.ReplicationDriver;
public class ReplicationDriverDemo {
public static void main(String[] args) throws Exception {
ReplicationDriver driver = new ReplicationDriver();
Properties props = new Properties();
// We want this for failover on the slaves
props.put("autoReconnect", "true");
// We want to load balance between the slaves
props.put("roundRobinLoadBalance", "true");
props.put("user", "foo");
props.put("password", "bar");
//
// Looks like a normal MySQL JDBC url, with a
// comma-separated list of hosts, the first
// being the 'master', the rest being any number
// of slaves that the driver will load balance against
//
Connection conn =
driver.connect("jdbc:mysql:replication://master,slave1,slave2,slave3/test",
props);
//
// Perform read/write work on the master
// by setting the read-only flag to "false"
//
conn.setReadOnly(false);
conn.setAutoCommit(false);
conn.createStatement().executeUpdate("UPDATE some_table");
conn.commit();
//
// Now, do a query from a slave, the driver automatically picks one
// from the list
//
conn.setReadOnly(true);
ResultSet rs =
conn.createStatement().executeQuery("SELECT a,b FROM alt_table");
.......
}
}
Consider investigating the Load Balancing JDBC Pool (lbpool) tool, which provides a wrapper around the standard JDBC driver and enables you to use DB connection pools that includes checks for system failures and uneven load distribution. For more information, see Load Balancing JDBC Pool (lbpool).
21.3.5.8. Mapping MySQL Error Numbers to JDBC SQLState Codes
The table below provides a mapping of the MySQL error numbers to JDBC SQLState values.
Table 21.27. Mapping of MySQL Error Numbers to SQLStates
MySQL Error Number | MySQL Error Name | Legacy (X/Open) SQLState | SQL Standard SQLState |
---|---|---|---|
1022 | ER_DUP_KEY | S1000 | 23000 |
1037 | ER_OUTOFMEMORY | S1001 | HY001 |
1038 | ER_OUT_OF_SORTMEMORY | S1001 | HY001 |
1040 | ER_CON_COUNT_ERROR | 08004 | 08004 |
1042 | ER_BAD_HOST_ERROR | 08004 | 08S01 |
1043 | ER_HANDSHAKE_ERROR | 08004 | 08S01 |
1044 | ER_DBACCESS_DENIED_ERROR | S1000 | 42000 |
1045 | ER_ACCESS_DENIED_ERROR | 28000 | 28000 |
1047 | ER_UNKNOWN_COM_ERROR | 08S01 | HY000 |
1050 | ER_TABLE_EXISTS_ERROR | S1000 | 42S01 |
1051 | ER_BAD_TABLE_ERROR | 42S02 | 42S02 |
1052 | ER_NON_UNIQ_ERROR | S1000 | 23000 |
1053 | ER_SERVER_SHUTDOWN | S1000 | 08S01 |
1054 | ER_BAD_FIELD_ERROR | S0022 | 42S22 |
1055 | ER_WRONG_FIELD_WITH_GROUP | S1009 | 42000 |
1056 | ER_WRONG_GROUP_FIELD | S1009 | 42000 |
1057 | ER_WRONG_SUM_SELECT | S1009 | 42000 |
1058 | ER_WRONG_VALUE_COUNT | 21S01 | 21S01 |
1059 | ER_TOO_LONG_IDENT | S1009 | 42000 |
1060 | ER_DUP_FIELDNAME | S1009 | 42S21 |
1061 | ER_DUP_KEYNAME | S1009 | 42000 |
1062 | ER_DUP_ENTRY | S1009 | 23000 |
1063 | ER_WRONG_FIELD_SPEC | S1009 | 42000 |
1064 | ER_PARSE_ERROR | 42000 | 42000 |
1065 | ER_EMPTY_QUERY | 42000 | 42000 |
1066 | ER_NONUNIQ_TABLE | S1009 | 42000 |
1067 | ER_INVALID_DEFAULT | S1009 | 42000 |
1068 | ER_MULTIPLE_PRI_KEY | S1009 | 42000 |
1069 | ER_TOO_MANY_KEYS | S1009 | 42000 |
1070 | ER_TOO_MANY_KEY_PARTS | S1009 | 42000 |
1071 | ER_TOO_LONG_KEY | S1009 | 42000 |
1072 | ER_KEY_COLUMN_DOES_NOT_EXITS | S1009 | 42000 |
1073 | ER_BLOB_USED_AS_KEY | S1009 | 42000 |
1074 | ER_TOO_BIG_FIELDLENGTH | S1009 | 42000 |
1075 | ER_WRONG_AUTO_KEY | S1009 | 42000 |
1080 | ER_FORCING_CLOSE | S1000 | 08S01 |
1081 | ER_IPSOCK_ERROR | 08S01 | 08S01 |
1082 | ER_NO_SUCH_INDEX | S1009 | 42S12 |
1083 | ER_WRONG_FIELD_TERMINATORS | S1009 | 42000 |
1084 | ER_BLOBS_AND_NO_TERMINATED | S1009 | 42000 |
1090 | ER_CANT_REMOVE_ALL_FIELDS | S1000 | 42000 |
1091 | ER_CANT_DROP_FIELD_OR_KEY | S1000 | 42000 |
1101 | ER_BLOB_CANT_HAVE_DEFAULT | S1000 | 42000 |
1102 | ER_WRONG_DB_NAME | S1000 | 42000 |
1103 | ER_WRONG_TABLE_NAME | S1000 | 42000 |
1104 | ER_TOO_BIG_SELECT | S1000 | 42000 |
1106 | ER_UNKNOWN_PROCEDURE | S1000 | 42000 |
1107 | ER_WRONG_PARAMCOUNT_TO_PROCEDURE | S1000 | 42000 |
1109 | ER_UNKNOWN_TABLE | S1000 | 42S02 |
1110 | ER_FIELD_SPECIFIED_TWICE | S1000 | 42000 |
1112 | ER_UNSUPPORTED_EXTENSION | S1000 | 42000 |
1113 | ER_TABLE_MUST_HAVE_COLUMNS | S1000 | 42000 |
1115 | ER_UNKNOWN_CHARACTER_SET | S1000 | 42000 |
1118 | ER_TOO_BIG_ROWSIZE | S1000 | 42000 |
1120 | ER_WRONG_OUTER_JOIN | S1000 | 42000 |
1121 | ER_NULL_COLUMN_IN_INDEX | S1000 | 42000 |
1129 | ER_HOST_IS_BLOCKED | 08004 | HY000 |
1130 | ER_HOST_NOT_PRIVILEGED | 08004 | HY000 |
1131 | ER_PASSWORD_ANONYMOUS_USER | S1000 | 42000 |
1132 | ER_PASSWORD_NOT_ALLOWED | S1000 | 42000 |
1133 | ER_PASSWORD_NO_MATCH | S1000 | 42000 |
1136 | ER_WRONG_VALUE_COUNT_ON_ROW | S1000 | 21S01 |
1138 | ER_INVALID_USE_OF_NULL | S1000 | 42000 |
1139 | ER_REGEXP_ERROR | S1000 | 42000 |
1140 | ER_MIX_OF_GROUP_FUNC_AND_FIELDS | S1000 | 42000 |
1141 | ER_NONEXISTING_GRANT | S1000 | 42000 |
1142 | ER_TABLEACCESS_DENIED_ERROR | S1000 | 42000 |
1143 | ER_COLUMNACCESS_DENIED_ERROR | S1000 | 42000 |
1144 | ER_ILLEGAL_GRANT_FOR_TABLE | S1000 | 42000 |
1145 | ER_GRANT_WRONG_HOST_OR_USER | S1000 | 42000 |
1146 | ER_NO_SUCH_TABLE | S1000 | 42S02 |
1147 | ER_NONEXISTING_TABLE_GRANT | S1000 | 42000 |
1148 | ER_NOT_ALLOWED_COMMAND | S1000 | 42000 |
1149 | ER_SYNTAX_ERROR | S1000 | 42000 |
1152 | ER_ABORTING_CONNECTION | S1000 | 08S01 |
1153 | ER_NET_PACKET_TOO_LARGE | S1000 | 08S01 |
1154 | ER_NET_READ_ERROR_FROM_PIPE | S1000 | 08S01 |
1155 | ER_NET_FCNTL_ERROR | S1000 | 08S01 |
1156 | ER_NET_PACKETS_OUT_OF_ORDER | S1000 | 08S01 |
1157 | ER_NET_UNCOMPRESS_ERROR | S1000 | 08S01 |
1158 | ER_NET_READ_ERROR | S1000 | 08S01 |
1159 | ER_NET_READ_INTERRUPTED | S1000 | 08S01 |
1160 | ER_NET_ERROR_ON_WRITE | S1000 | 08S01 |
1161 | ER_NET_WRITE_INTERRUPTED | S1000 | 08S01 |
1162 | ER_TOO_LONG_STRING | S1000 | 42000 |
1163 | ER_TABLE_CANT_HANDLE_BLOB | S1000 | 42000 |
1164 | ER_TABLE_CANT_HANDLE_AUTO_INCREMENT | S1000 | 42000 |
1166 | ER_WRONG_COLUMN_NAME | S1000 | 42000 |
1167 | ER_WRONG_KEY_COLUMN | S1000 | 42000 |
1169 | ER_DUP_UNIQUE | S1000 | 23000 |
1170 | ER_BLOB_KEY_WITHOUT_LENGTH | S1000 | 42000 |
1171 | ER_PRIMARY_CANT_HAVE_NULL | S1000 | 42000 |
1172 | ER_TOO_MANY_ROWS | S1000 | 42000 |
1173 | ER_REQUIRES_PRIMARY_KEY | S1000 | 42000 |
1177 | ER_CHECK_NO_SUCH_TABLE | S1000 | 42000 |
1178 | ER_CHECK_NOT_IMPLEMENTED | S1000 | 42000 |
1179 | ER_CANT_DO_THIS_DURING_AN_TRANSACTION | S1000 | 25000 |
1184 | ER_NEW_ABORTING_CONNECTION | S1000 | 08S01 |
1189 | ER_MASTER_NET_READ | S1000 | 08S01 |
1190 | ER_MASTER_NET_WRITE | S1000 | 08S01 |
1203 | ER_TOO_MANY_USER_CONNECTIONS | S1000 | 42000 |
1205 | ER_LOCK_WAIT_TIMEOUT | 41000 | 41000 |
1207 | ER_READ_ONLY_TRANSACTION | S1000 | 25000 |
1211 | ER_NO_PERMISSION_TO_CREATE_USER | S1000 | 42000 |
1213 | ER_LOCK_DEADLOCK | 41000 | 40001 |
1216 | ER_NO_REFERENCED_ROW | S1000 | 23000 |
1217 | ER_ROW_IS_REFERENCED | S1000 | 23000 |
1218 | ER_CONNECT_TO_MASTER | S1000 | 08S01 |
1222 | ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT | S1000 | 21000 |
1226 | ER_USER_LIMIT_REACHED | S1000 | 42000 |
1230 | ER_NO_DEFAULT | S1000 | 42000 |
1231 | ER_WRONG_VALUE_FOR_VAR | S1000 | 42000 |
1232 | ER_WRONG_TYPE_FOR_VAR | S1000 | 42000 |
1234 | ER_CANT_USE_OPTION_HERE | S1000 | 42000 |
1235 | ER_NOT_SUPPORTED_YET | S1000 | 42000 |
1239 | ER_WRONG_FK_DEF | S1000 | 42000 |
1241 | ER_OPERAND_COLUMNS | S1000 | 21000 |
1242 | ER_SUBQUERY_NO_1_ROW | S1000 | 21000 |
1247 | ER_ILLEGAL_REFERENCE | S1000 | 42S22 |
1248 | ER_DERIVED_MUST_HAVE_ALIAS | S1000 | 42000 |
1249 | ER_SELECT_REDUCED | S1000 | 01000 |
1250 | ER_TABLENAME_NOT_ALLOWED_HERE | S1000 | 42000 |
1251 | ER_NOT_SUPPORTED_AUTH_MODE | S1000 | 08004 |
1252 | ER_SPATIAL_CANT_HAVE_NULL | S1000 | 42000 |
1253 | ER_COLLATION_CHARSET_MISMATCH | S1000 | 42000 |
1261 | ER_WARN_TOO_FEW_RECORDS | S1000 | 01000 |
1262 | ER_WARN_TOO_MANY_RECORDS | S1000 | 01000 |
1263 | ER_WARN_NULL_TO_NOTNULL | S1000 | 01000 |
1264 | ER_WARN_DATA_OUT_OF_RANGE | S1000 | 01000 |
1265 | ER_WARN_DATA_TRUNCATED | S1000 | 01000 |
1280 | ER_WRONG_NAME_FOR_INDEX | S1000 | 42000 |
1281 | ER_WRONG_NAME_FOR_CATALOG | S1000 | 42000 |
1286 | ER_UNKNOWN_STORAGE_ENGINE | S1000 | 42000 |
21.3.6. JDBC Concepts
This section provides some general JDBC background.
21.3.6.1. Connecting to MySQL Using the JDBC DriverManager Interface
When you are using JDBC outside of an application server, the DriverManager class manages the establishment of Connections.
Specify to the DriverManager which JDBC drivers to try to make Connections with. The easiest way to do this is to use Class.forName() on the class that implements the java.sql.Driver interface. With MySQL Connector/J, the name of this class is com.mysql.jdbc.Driver. With this method, you could use an external configuration file to supply the driver class name and driver parameters to use when connecting to a database.
The following section of Java code shows how you might register MySQL Connector/J from the main() method of your application. If testing this code, first read the installation section at Section 21.3.3, “Connector/J Installation”, to make sure you have connector installed correctly and the CLASSPATH set up. Also, ensure that MySQL is configured to accept external TCP/IP connections.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
// Notice, do not import com.mysql.jdbc.*
// or you will have problems!
public class LoadDriver {
public static void main(String[] args) {
try {
// The newInstance() call is a work around for some
// broken Java implementations
Class.forName("com.mysql.jdbc.Driver").newInstance();
} catch (Exception ex) {
// handle the error
}
}
}
After the driver has been registered with the DriverManager, you can obtain a Connection instance that is connected to a particular database by calling DriverManager.getConnection():
Example 21.1. Connector/J: Obtaining a connection from the DriverManager
If you have not already done so, please review the section Section 21.3.6.1, “Connecting to MySQL Using the JDBC DriverManager Interface” before working with these examples.
This example shows how you can obtain a Connection instance from the DriverManager. There are a few different signatures for the getConnection() method. Consult the API documentation that comes with your JDK for more specific information on how to use them.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
Connection conn = null;
...
try {
conn =
DriverManager.getConnection("jdbc:mysql://localhost/test?" +
"user=monty&password=greatsqldb");
// Do something with the Connection
...
} catch (SQLException ex) {
// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());
}
Once a Connection is established, it can be used to create Statement and PreparedStatement objects, as well as retrieve metadata about the database. This is explained in the following sections.
21.3.6.2. Using JDBC Statement Objects to Execute SQL
Statement objects allow you to execute basic SQL queries and retrieve the results through the ResultSet class, which is described later.
To create a Statement instance, you call the createStatement() method on the Connection object you have retrieved using one of the DriverManager.getConnection() or DataSource.getConnection() methods described earlier.
Once you have a Statement instance, you can execute a SELECT query by calling the executeQuery(String) method with the SQL you want to use.
To update data in the database, use the executeUpdate(String SQL) method. This method returns the number of rows matched by the update statement, not the number of rows that were modified.
If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT, then you can use the execute(String SQL) method. This method will return true if the SQL query was a SELECT, or false if it was an UPDATE, INSERT, or DELETE statement. If the statement was a SELECT query, you can retrieve the results by calling the getResultSet() method. If the statement was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by calling getUpdateCount() on the Statement instance.
Example 21.2. Connector/J: Using java.sql.Statement to execute a SELECT query
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.ResultSet;
// assume that conn is an already created JDBC connection (see previous examples)
Statement stmt = null;
ResultSet rs = null;
try {
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT foo FROM bar");
// or alternatively, if you don't know ahead of time that
// the query will be a SELECT...
if (stmt.execute("SELECT foo FROM bar")) {
rs = stmt.getResultSet();
}
// Now do something with the ResultSet
}
catch (SQLException ex){
// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());
}
finally {
// it is a good idea to release
// resources in a finally{} block
// in reverse-order of their creation
// if they are no-longer needed
if (rs != null) {
try {
rs.close();
} catch (SQLException sqlEx) { } // ignore
rs = null;
}
if (stmt != null) {
try {
stmt.close();
} catch (SQLException sqlEx) { } // ignore
stmt = null;
}
}
21.3.6.3. Using JDBC CallableStatements to Execute Stored Procedures
Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, the java.sql.CallableStatement interface is fully implemented with the exception of the getParameterMetaData() method.
For more information on MySQL stored procedures, please refer to http://dev.mysql.com/doc/mysql/en/stored-routines.html.
Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.
Note
Current versions of MySQL server do not return enough information for the JDBC driver to provide result set metadata for callable statements. This means that when using CallableStatement, ResultSetMetaData may return NULL.
The following example shows a stored procedure that returns the value of inOutParam incremented by 1, and the string passed in using inputParam as a ResultSet:
Example 21.3. Connector/J: Calling Stored Procedures
CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), \
INOUT inOutParam INT)
BEGIN
DECLARE z INT;
SET z = inOutParam + 1;
SET inOutParam = z;
SELECT inputParam;
SELECT CONCAT('zyxw', inputParam);
END
To use the demoSp procedure with Connector/J, follow these steps:
Prepare the callable statement by using Connection.prepareCall().
Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter placeholders are not optional:
Example 21.4. Connector/J: Using Connection.prepareCall()
import java.sql.CallableStatement;
...
//
// Prepare a call to the stored procedure 'demoSp'
// with two parameters
//
// Notice the use of JDBC-escape syntax ({call ...})
//
CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");
cStmt.setString(1, "abcdefg");
Note
Connection.prepareCall() is an expensive method, due to the metadata retrieval that the driver performs to support output parameters. For performance reasons, minimize unnecessary calls to Connection.prepareCall() by reusing CallableStatement instances in your code.
Register the output parameters (if any exist)
To retrieve the values of output parameters (parameters specified as OUT or INOUT when you created the stored procedure), JDBC requires that they be specified before statement execution using the various registerOutputParameter() methods in the CallableStatement interface:
Example 21.5. Connector/J: Registering output parameters
import java.sql.Types;
...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//
//
// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//
cStmt.registerOutParameter(2, Types.INTEGER);
//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//
cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...
Set the input parameters (if any exist)
Input and in/out parameters are set as for PreparedStatement objects. However, CallableStatement also supports setting parameters by name:
Example 21.6. Connector/J: Setting CallableStatement input parameters
...
//
// Set a parameter by index
//
cStmt.setString(1, "abcdefg");
//
// Alternatively, set a parameter using
// the parameter name
//
cStmt.setString("inputParameter", "abcdefg");
//
// Set the 'in/out' parameter using an index
//
cStmt.setInt(2, 1);
//
// Alternatively, set the 'in/out' parameter
// by name
//
cStmt.setInt("inOutParam", 1);
...
Execute the CallableStatement, and retrieve any result sets or output parameters.
Although CallableStatement supports calling any of the Statement execute methods (executeUpdate(), executeQuery() or execute()), the most flexible method to call is execute(), as you do not need to know ahead of time if the stored procedure returns result sets:
Example 21.7. Connector/J: Retrieving results and output parameter values
...
boolean hadResults = cStmt.execute();
//
// Process all returned result sets
//
while (hadResults) {
ResultSet rs = cStmt.getResultSet();
// process result set
...
hadResults = cStmt.getMoreResults();
}
//
// Retrieve output parameters
//
// Connector/J supports both index-based and
// name-based retrieval
//
int outputValue = cStmt.getInt(2); // index-based
outputValue = cStmt.getInt("inOutParam"); // name-based
...
21.3.6.4. Retrieving AUTO_INCREMENT Column Values through JDBC
Before version 3.0 of the JDBC API, there was no standard way of retrieving key values from databases that supported auto increment or identity columns. With older JDBC drivers for MySQL, you could always use a MySQL-specific method on the Statement interface, or issue the query SELECT LAST_INSERT_ID() after issuing an INSERT to a table that had an AUTO_INCREMENT key. Using the MySQL-specific method call isn't portable, and issuing a SELECT to get the AUTO_INCREMENT key's value requires another round-trip to the database, which isn't as efficient as possible. The following code snippets demonstrate the three different ways to retrieve AUTO_INCREMENT values. First, we demonstrate the use of the new JDBC 3.0 method getGeneratedKeys() which is now the preferred method to use if you need to retrieve AUTO_INCREMENT keys and have access to JDBC 3.0. The second example shows how you can retrieve the same value using a standard SELECT LAST_INSERT_ID() query. The final example shows how updatable result sets can retrieve the AUTO_INCREMENT value when using the insertRow() method.
Example 21.8. Connector/J: Retrieving AUTO_INCREMENT column values using Statement.getGeneratedKeys()
Statement stmt = null;
ResultSet rs = null;
try {
//
// Create a Statement instance that we can use for
// 'normal' result sets assuming you have a
// Connection 'conn' to a MySQL database already
// available
stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_UPDATABLE);
//
// Issue the DDL queries for the table for this example
//
stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(
"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");
//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//
stmt.executeUpdate(
"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')",
Statement.RETURN_GENERATED_KEYS);
//
// Example of using Statement.getGeneratedKeys()
// to retrieve the value of an auto-increment
// value
//
int autoIncKeyFromApi = -1;
rs = stmt.getGeneratedKeys();
if (rs.next()) {
autoIncKeyFromApi = rs.getInt(1);
} else {
// throw an exception from here
}
rs.close();
rs = null;
System.out.println("Key returned from getGeneratedKeys():"
+ autoIncKeyFromApi);
} finally {
if (rs != null) {
try {
rs.close();
} catch (SQLException ex) {
// ignore
}
}
if (stmt != null) {
try {
stmt.close();
} catch (SQLException ex) {
// ignore
}
}
}
Example 21.9. Connector/J: Retrieving AUTO_INCREMENT column values using SELECT LAST_INSERT_ID()
Statement stmt = null;
ResultSet rs = null;
try {
//
// Create a Statement instance that we can use for
// 'normal' result sets.
stmt = conn.createStatement();
//
// Issue the DDL queries for the table for this example
//
stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(
"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");
//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//
stmt.executeUpdate(
"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')");
//
// Use the MySQL LAST_INSERT_ID()
// function to do the same thing as getGeneratedKeys()
//
int autoIncKeyFromFunc = -1;
rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");
if (rs.next()) {
autoIncKeyFromFunc = rs.getInt(1);
} else {
// throw an exception from here
}
rs.close();
System.out.println("Key returned from " +
"'SELECT LAST_INSERT_ID()': " +
autoIncKeyFromFunc);
} finally {
if (rs != null) {
try {
rs.close();
} catch (SQLException ex) {
// ignore
}
}
if (stmt != null) {
try {
stmt.close();
} catch (SQLException ex) {
// ignore
}
}
}
Example 21.10. Connector/J: Retrieving AUTO_INCREMENT column values in Updatable ResultSets
Statement stmt = null;
ResultSet rs = null;
try {
//
// Create a Statement instance that we can use for
// 'normal' result sets as well as an 'updatable'
// one, assuming you have a Connection 'conn' to
// a MySQL database already available
//
stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_UPDATABLE);
//
// Issue the DDL queries for the table for this example
//
stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(
"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");
//
// Example of retrieving an AUTO INCREMENT key
// from an updatable result set
//
rs = stmt.executeQuery("SELECT priKey, dataField "
+ "FROM autoIncTutorial");
rs.moveToInsertRow();
rs.updateString("dataField", "AUTO INCREMENT here?");
rs.insertRow();
//
// the driver adds rows at the end
//
rs.last();
//
// We should now be on the row we just inserted
//
int autoIncKeyFromRS = rs.getInt("priKey");
rs.close();
rs = null;
System.out.println("Key returned for inserted row: "
+ autoIncKeyFromRS);
} finally {
if (rs != null) {
try {
rs.close();
} catch (SQLException ex) {
// ignore
}
}
if (stmt != null) {
try {
stmt.close();
} catch (SQLException ex) {
// ignore
}
}
}
Running the preceding example code should produce the following output:
Key returned from getGeneratedKeys(): 1
Key returned from SELECT LAST_INSERT_ID(): 1
Key returned for inserted row: 2
At times, it can be tricky to use the SELECT LAST_INSERT_ID() query, as that function's value is scoped to a connection. So, if some other query happens on the same connection, the value is overwritten. On the other hand, the getGeneratedKeys() method is scoped by the Statement instance, so it can be used even if other queries happen on the same connection, but not on the same Statement instance.
21.3.7. Connection Pooling with Connector/J
Connection pooling is a technique of creating and managing a pool of connections that are ready for use by any thread that needs them. Connection pooling can greatly increase the performance of your Java application, while reducing overall resource usage.
How Connection Pooling Works
Most applications only need a thread to have access to a JDBC connection when they are actively processing a transaction, which often takes only milliseconds to complete. When not processing a transaction, the connection sits idle. Connection pooling enables the idle connection to be used by some other thread to do useful work.
In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a connection from the pool. When the thread is finished using the connection, it returns it to the pool, so that it can be used by any other threads.
When the connection is loaned out from the pool, it is used exclusively by the thread that requested it. From a programming point of view, it is the same as if your thread called DriverManager.getConnection() every time it needed a JDBC connection. With connection pooling, your thread may end up using either a new connection or an already-existing connection.
Benefits of Connection Pooling
The main benefits to connection pooling are:
Reduced connection creation time.
Although this is not usually an issue with the quick connection setup that MySQL offers compared to other databases, creating new JDBC connections still incurs networking and JDBC driver overhead that will be avoided if connections are recycled.
Simplified programming model.
When using connection pooling, each individual thread can act as though it has created its own JDBC connection, allowing you to use straightforward JDBC programming techniques.
Controlled resource usage.
If you create a new connection every time a thread needs one, rather than using connection pooling, your application's resource usage can be wasteful and lead to unpredictable behavior under load.
Using Connection Pooling with Connector/J
Sun has standardized the concept of connection pooling in JDBC through the JDBC 2.0 Optional interfaces, and all major application servers have implementations of these APIs that work with MySQL Connector/J.
Generally, you configure a connection pool in your application server configuration files, and access it through the Java Naming and Directory Interface (JNDI). The following code shows how you might use a connection pool from an application deployed in a J2EE application server:
Example 21.11. Connector/J: Using a connection pool with a J2EE application server
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import javax.naming.InitialContext;
import javax.sql.DataSource;
public class MyServletJspOrEjb {
public void doSomething() throws Exception {
/*
* Create a JNDI Initial context to be able to
* lookup the DataSource
*
* In production-level code, this should be cached as
* an instance or static variable, as it can
* be quite expensive to create a JNDI context.
*
* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are
* using connection pooling in standalone Java code, you
* will have to create/configure datasources using whatever
* mechanisms your particular connection pooling library
* provides.
*/
InitialContext ctx = new InitialContext();
/*
* Lookup the DataSource, which will be backed by a pool
* that the application server provides. DataSource instances
* are also a good candidate for caching as an instance
* variable, as JNDI lookups can be expensive as well.
*/
DataSource ds =
(DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");
/*
* The following code is what would actually be in your
* Servlet, JSP or EJB 'service' method...where you need
* to work with a JDBC connection.
*/
Connection conn = null;
Statement stmt = null;
try {
conn = ds.getConnection();
/*
* Now, use normal JDBC programming to work with
* MySQL, making sure to close each resource when you're
* finished with it, which permits the connection pool
* resources to be recovered as quickly as possible
*/
stmt = conn.createStatement();
stmt.execute("SOME SQL QUERY");
stmt.close();
stmt = null;
conn.close();
conn = null;
} finally {
/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so
* that we don't 'leak' resources...
*/
if (stmt != null) {
try {
stmt.close();
} catch (sqlexception sqlex) {
// ignore, as we can't do anything about it here
}
stmt = null;
}
if (conn != null) {
try {
conn.close();
} catch (sqlexception sqlex) {
// ignore, as we can't do anything about it here
}
conn = null;
}
}
}
}
When using connection pooling, always make sure that connections, and anything created by them (such as statements or result sets) are closed. This rule applies no matter what happens in your code (exceptions, flow-of-control, and so forth). When these objects are closed, they can be re-used; otherwise, they will be stranded, which means that the MySQL server resources they represent (such as buffers, locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.
Sizing the Connection Pool
Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client and server side. Every connection limits how many resources there are available to your application as well as the MySQL server. Many of these resources will be used whether or not the connection is actually doing any useful work! Connection pools can be tuned to maximize performance, while keeping resource utilization below the point where your application will start to fail rather than just run slower.
The optimal size for the connection pool depends on anticipated load and average database transaction time. In practice, the optimal connection pool size can be smaller than you might expect. If you take Sun's Java Petstore blueprint application for example, a connection pool of 15-20 connections can serve a relatively moderate load (600 concurrent users) using MySQL and Tomcat with acceptable response times.
To correctly size a connection pool for your application, create load test scripts with tools such as Apache JMeter or The Grinder, and load test your application.
An easy way to determine a starting point is to configure your connection pool's maximum number of connections to be unbounded, run a load test, and measure the largest amount of concurrently used connections. You can then work backward from there to determine what values of minimum and maximum pooled connections give the best performance for your particular application.
Validating Connections
MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In the case of load-balanced connections, this is performed against all active pooled internal connections that are retained. This is beneficial to Java applications using connection pools, as the pool can use this feature to validate connections. Depending on your connection pool and configuration, this validation can be carried out at different times:
Before the pool returns a connection to the application.
When the application returns a connection to the pool.
During periodic checks of idle connections.
To use this feature, specify a validation query in your connection pool that starts with /* ping */. Note that the syntax must be exactly as specified. This will cause the driver send a ping to the server and return a dummy lightweight result set. When using a ReplicationConnection or LoadBalancedConnection, the ping will be sent across all active connections.
It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of efficiency, as this test is done for every statement that is executed:
protected static final String PING_MARKER = "/* ping */";
...
if (sql.charAt(0) == '/') {
if (sql.startsWith(PING_MARKER)) {
doPingInstead();
...
None of the following snippets will work, because the ping syntax is sensitive to whitespace, capitalization, and placement:
sql = "/* PING */ SELECT 1";
sql = "SELECT 1 /* ping*/";
sql = "/*ping*/ SELECT 1";
sql = " /* ping */ SELECT 1";
sql = "/*to ping or not to ping*/ SELECT 1";
All of the previous statements will issue a normal SELECT statement and will not be transformed into the lightweight ping. Further, for load-balanced connections, the statement will be executed against one connection in the internal pool, rather than validating each underlying physical connection. This results in the non-active physical connections assuming a stale state, and they may die. If Connector/J then re-balances, it might select a dead connection, resulting in an exception being passed to the application. To help prevent this, you can use loadBalanceValidateConnectionOnSwapServer to validate the connection before use.
If your Connector/J deployment uses a connection pool that allows you to specify a validation query, take advantage of it, but ensure that the query starts exactly with /* ping */. This is particularly important if you are using the load-balancing or replication-aware features of Connector/J, as it will help keep alive connections which otherwise will go stale and die, causing problems later.
21.3.8. Load Balancing with Connector/J
Connector/J has long provided an effective means to distribute read/write load across multiple MySQL server instances for Cluster or master-master replication deployments. Starting with Connector/J 5.1.3, you can now dynamically configure load-balanced connections, with no service outage. In-process transactions are not lost, and no application exceptions are generated if any application is trying to use that particular server instance.
There are two connection string options associated with this functionality:
loadBalanceConnectionGroup – This provides the ability to group connections from different sources. This allows you to manage these JDBC sources within a single class loader in any combination you choose. If they use the same configuration, and you want to manage them as a logical single group, give them the same name. This is the key property for management: if you do not define a name (string) for loadBalanceConnectionGroup, you cannot manage the connections. All load-balanced connections sharing the same loadBalanceConnectionGroup value, regardless of how the application creates them, will be managed together.
loadBalanceEnableJMX – The ability to manage the connections is exposed when you define a loadBalanceConnectionGroup, but if you want to manage this externally, enable JMX by setting this property to true. This enables a JMX implementation, which exposes the management and monitoring operations of a connection group. Further, start your application with the -Dcom.sun.management.jmxremote JVM flag. You can then perform connect and perform operations using a JMX client such as jconsole.
Once a connection has been made using the correct connection string options, a number of monitoring properties are available:
Current active host count.
Current active physical connection count.
Current active logical connection count.
Total logical connections created.
Total transaction count.
The following management operations can also be performed:
Add host.
Remove host.
The JMX interface, com.mysql.jdbc.jmx.LoadBalanceConnectionGroupManagerMBean, has the following methods:
int getActiveHostCount(String group);
int getTotalHostCount(String group);
long getTotalLogicalConnectionCount(String group);
long getActiveLogicalConnectionCount(String group);
long getActivePhysicalConnectionCount(String group);
long getTotalPhysicalConnectionCount(String group);
long getTotalTransactionCount(String group);
void removeHost(String group, String host) throws SQLException;
void stopNewConnectionsToHost(String group, String host) throws SQLException;
void addHost(String group, String host, boolean forExisting);
String getActiveHostsList(String group);
String getRegisteredConnectionGroups();
The getRegisteredConnectionGroups() method returns the names of all connection groups defined in that class loader.
You can test this setup with the following code:
public class Test {
private static String URL = "jdbc:mysql:loadbalance://" +
"localhost:3306,localhost:3310/test?" +
"loadBalanceConnectionGroup=first&loadBalanceEnableJMX=true";
public static void main(String[] args) throws Exception {
new Thread(new Repeater()).start();
new Thread(new Repeater()).start();
new Thread(new Repeater()).start();
}
static Connection getNewConnection() throws SQLException, ClassNotFoundException {
Class.forName("com.mysql.jdbc.Driver");
return DriverManager.getConnection(URL, "root", "");
}
static void executeSimpleTransaction(Connection c, int conn, int trans){
try {
c.setAutoCommit(false);
Statement s = c.createStatement();
s.executeQuery("SELECT SLEEP(1) /* Connection: " + conn + ", transaction: " + trans + " */");
c.commit();
} catch (SQLException e) {
e.printStackTrace();
}
}
public static class Repeater implements Runnable {
public void run() {
for(int i=0; i < 100; i++){
try {
Connection c = getNewConnection();
for(int j=0; j < 10; j++){
executeSimpleTransaction(c, i, j);
Thread.sleep(Math.round(100 * Math.random()));
}
c.close();
Thread.sleep(100);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
}
After compiling, the application can be started with the -Dcom.sun.management.jmxremote flag, to enable remote management. jconsole can then be started. The Test main class will be listed by jconsole. Select this and click Connect. You can then navigate to the com.mysql.jdbc.jmx.LoadBalanceConnectionGroupManager bean. At this point, you can click on various operations and examine the returned result.
If you now had an additional instance of MySQL running on port 3309, you could ensure that Connector/J starts using it by using the addHost(), which is exposed in jconsole. Note that these operations can be performed dynamically without having to stop the application running.
For further information on the combination of load balancing and failover, see Section 21.3.9, “Failover with Connector/J”.
21.3.9. Failover with Connector/J
Connector/J provides a useful load-balancing implementation for Cluster or multi-master deployments, as explained in Section 21.3.8, “Load Balancing with Connector/J”. As of Connector/J 5.1.12, this same implementation is used for balancing load between read-only slaves with ReplicationDriver. When trying to balance workload between multiple servers, the driver has to determine when it is safe to swap servers, doing so in the middle of a transaction, for example, could cause problems. It is important not to lose state information. For this reason, Connector/J will only try to pick a new server when one of the following happens:
At transaction boundaries (transactions are explicitly committed or rolled back).
A communication exception (SQL State starting with "08") is encountered.
When a SQLException matches conditions defined by user, using the extension points defined by the loadBalanceSQLStateFailover, loadBalanceSQLExceptionSubclassFailover or loadBalanceExceptionChecker properties.
The third condition revolves around three new properties introduced with Connector/J 5.1.13. It allows you to control which SQLExceptions trigger failover.
loadBalanceExceptionChecker - The loadBalanceExceptionChecker property is really the key. This takes a fully-qualified class name which implements the new com.mysql.jdbc.LoadBalanceExceptionChecker interface. This interface is very simple, and you only need to implement the following method:
public boolean shouldExceptionTriggerFailover(SQLException ex)
A SQLException is passed in, and a boolean returned. A value of true triggers a failover, false does not.
You can use this to implement your own custom logic. An example where this might be useful is when dealing with transient errors when using MySQL Cluster, where certain buffers may become overloaded. The following code snippet illustrates this:
public class NdbLoadBalanceExceptionChecker
extends StandardLoadBalanceExceptionChecker {
public boolean shouldExceptionTriggerFailover(SQLException ex) {
return super.shouldExceptionTriggerFailover(ex)
|| checkNdbException(ex);
}
private boolean checkNdbException(SQLException ex){
// Have to parse the message since most NDB errors
// are mapped to the same DEMC.
return (ex.getMessage().startsWith("Lock wait timeout exceeded") ||
(ex.getMessage().startsWith("Got temporary error")
&& ex.getMessage().endsWith("from NDB")));
}
}
The code above extends com.mysql.jdbc.StandardLoadBalanceExceptionChecker, which is the default implementation. There are a few convenient shortcuts built into this, for those who want to have some level of control using properties, without writing Java code. This default implementation uses the two remaining properties: loadBalanceSQLStateFailover and loadBalanceSQLExceptionSubclassFailover.
loadBalanceSQLStateFailover - allows you to define a comma-delimited list of SQLState code prefixes, against which a SQLException is compared. If the prefix matches, failover is triggered. So, for example, the following would trigger a failover if a given SQLException starts with "00", or is "12345":
loadBalanceSQLStateFailover=00,12345
loadBalanceSQLExceptionSubclassFailover - can be used in conjunction with loadBalanceSQLStateFailover or on its own. If you want certain subclasses of SQLException to trigger failover, simply provide a comma-delimited list of fully-qualified class or interface names to check against. For example, if you want all SQLTransientConnectionExceptions to trigger failover, you would specify:
loadBalanceSQLExceptionSubclassFailover=java.sql.SQLTransientConnectionException
While the three fail-over conditions enumerated earlier suit most situations, if autocommit is enabled, Connector/J never re-balances, and continues using the same physical connection. This can be problematic, particularly when load-balancing is being used to distribute read-only load across multiple slaves. However, Connector/J can be configured to re-balance after a certain number of statements are executed, when autocommit is enabled. This functionality is dependent upon the following properties:
loadBalanceAutoCommitStatementThreshold – defines the number of matching statements which will trigger the driver to potentially swap physical server connections. The default value, 0, retains the behavior that connections with autocommit enabled are never balanced.
loadBalanceAutoCommitStatementRegex – the regular expression against which statements must match. The default value, blank, matches all statements. So, for example, using the following properties will cause Connector/J to re-balance after every third statement that contains the string “test”:
loadBalanceAutoCommitStatementThreshold=3
loadBalanceAutoCommitStatementRegex=.*test.*
loadBalanceAutoCommitStatementRegex can prove useful in a number of situations. Your application may use temporary tables, server-side session state variables, or connection state, where letting the driver arbitrarily swap physical connections before processing is complete could cause data loss or other problems. This allows you to identify a trigger statement that is only executed when it is safe to swap physical connections.
21.3.10. Using the Connector/J Interceptor Classes
An interceptor is a software design pattern that provides a transparent way to extend or modify some aspect of a program, similar to a user exit. No recompiling is required. With Connector/J, the interceptors are enabled and disabled by updating the connection string to refer to different sets of interceptor classes that you instantiate.
The connection properties that control the interceptors are explained in Section 21.3.5.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J”:
connectionLifecycleInterceptors, where you specify the fully qualified names of classes that implement the com.mysql.jdbc.ConnectionLifecycleInterceptor interface. In these kinds of interceptor classes, you might log events such as rollbacks, measure the time between transaction start and end, or count events such as calls to setAutoCommit().
exceptionInterceptors, where you specify the fully qualified names of classes that implement the com.mysql.jdbc.ExceptionInterceptor interface. In these kinds of interceptor classes, you might add extra diagnostic information to exceptions that can have multiple causes or indicate a problem with server settings. Because exceptionInterceptors classes are only called when handling a SQLException thrown from Connector/J code, they can be used even in production deployments without substantial performance overhead.
statementInterceptors, where you specify the fully qualified names of classes that implement the com.mysql.jdbc.StatementInterceptorV2 interface. In these kinds of interceptor classes, you might change or augment the processing done by certain kinds of statements, such as automatically checking for queried data in a memcached server, rewriting slow queries, logging information about statement execution, or route requests to remote servers.
21.3.11. Using Connector/J with Tomcat
The following instructions are based on the instructions for Tomcat-5.x, available at http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time this document was written.
First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is available to all applications installed in the container.
Next, configure the JNDI DataSource by adding a declaration resource to $CATALINA_HOME/conf/server.xml in the context that defines your web application:
<Context>
...
<Resource name="jdbc/MySQLDB"
auth="Container"
type="javax.sql.DataSource"/>
<ResourceParams name="jdbc/MySQLDB">
<parameter>
<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
</parameter>
<parameter>
<name>maxActive</name>
<value>10</value>
</parameter>
<parameter>
<name>maxIdle</name>
<value>5</value>
</parameter>
<parameter>
<name>validationQuery</name>
<value>SELECT 1</value>
</parameter>
<parameter>
<name>testOnBorrow</name>
<value>true</value>
</parameter>
<parameter>
<name>testWhileIdle</name>
<value>true</value>
</parameter>
<parameter>
<name>timeBetweenEvictionRunsMillis</name>
<value>10000</value>
</parameter>
<parameter>
<name>minEvictableIdleTimeMillis</name>
<value>60000</value>
</parameter>
<parameter>
<name>username</name>
<value>someuser</value>
</parameter>
<parameter>
<name>password</name>
<value>somepass</value>
</parameter>
<parameter>
<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>
</parameter>
<parameter>
<name>url</name>
<value>jdbc:mysql://localhost:3306/test</value>
</parameter>
</ResourceParams>
</Context>
Note that Connector/J 5.1.3 introduced a facility whereby, rather than use a validationQuery value of SELECT 1, it is possible to use validationQuery with a value set to /* ping */. This sends a ping to the server which then returns a fake result set. This is a lighter weight solution. It also has the advantage that if using ReplicationConnection or LoadBalancedConnection type connections, the ping will be sent across all active connections. The following XML snippet illustrates how to select this option:
<parameter>
<name>validationQuery</name>
<value>/* ping */</value>
</parameter>
Note that /* ping */ has to be specified exactly.
In general, follow the installation instructions that come with your version of Tomcat, as the way you configure datasources in Tomcat changes from time to time, and if you use the wrong syntax in your XML file, you will most likely end up with an exception similar to the following:
Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null
Note that the auto-loading of drivers having the META-INF/service/java.sql.Driver class in JDBC 4.0 causes an improper undeployment of the Connector/J driver in Tomcat on Windows. Namely, the Connector/J jar remains locked. This is an initialization problem that is not related to the driver. The possible workarounds, if viable, are as follows: use "antiResourceLocking=true" as a Tomcat Context attribute, or remove the META-INF/ directory.
21.3.12. Using Connector/J with JBoss
These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server, copy the .jar file that comes with Connector/J to the lib directory for your server configuration (which is usually called default). Then, in the same configuration directory, in the subdirectory named deploy, create a datasource configuration file that ends with -ds.xml, which tells JBoss to deploy this file as a JDBC Datasource. The file should have the following contents:
<datasources>
<local-tx-datasource>
<jndi-name>MySQLDB</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/dbname</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>user</user-name>
<password>pass</password>
<min-pool-size>5</min-pool-size>
<max-pool-size>20</max-pool-size>
<idle-timeout-minutes>5</idle-timeout-minutes>
<exception-sorter-class-name>
com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter
</exception-sorter-class-name>
<valid-connection-checker-class-name>
com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker
</valid-connection-checker-class-name>
</local-tx-datasource>
</datasources>
21.3.13. Using Connector/J with Spring
The Spring Framework is a Java-based application framework designed for assisting in application design by providing a way to configure components. The technique used by Spring is a well known design pattern called Dependency Injection (see Inversion of Control Containers and the Dependency Injection pattern). This article will focus on Java-oriented access to MySQL databases with Spring 2.0. For those wondering, there is a .NET port of Spring appropriately named Spring.NET.
Spring is not only a system for configuring components, but also includes support for aspect oriented programming (AOP). This is one of the main benefits and the foundation for Spring's resource and transaction management. Spring also provides utilities for integrating resource management with JDBC and Hibernate.
For the examples in this section the MySQL world sample database will be used. The first task is to set up a MySQL data source through Spring. Components within Spring use the “bean” terminology. For example, to configure a connection to a MySQL server supporting the world sample database, you might use:
<util:map id="dbProps">
<entry key="db.driver" value="com.mysql.jdbc.Driver"/>
<entry key="db.jdbcurl" value="jdbc:mysql://localhost/world"/>
<entry key="db.username" value="myuser"/>
<entry key="db.password" value="mypass"/>
</util:map>
In the above example, we are assigning values to properties that will be used in the configuration. For the datasource configuration:
<bean id="dataSource"
class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="driverClassName" value="${db.driver}"/>
<property name="url" value="${db.jdbcurl}"/>
<property name="username" value="${db.username}"/>
<property name="password" value="${db.password}"/>
</bean>
The placeholders are used to provide values for properties of this bean. This means that you can specify all the properties of the configuration in one place instead of entering the values for each property on each bean. We do, however, need one more bean to pull this all together. The last bean is responsible for actually replacing the placeholders with the property values.
<bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="properties" ref="dbProps"/>
</bean>
Now that we have our MySQL data source configured and ready to go, we write some Java code to access it. The example below will retrieve three random cities and their corresponding country using the data source we configured with Spring.
// Create a new application context. this processes the Spring config
ApplicationContext ctx =
new ClassPathXmlApplicationContext("ex1appContext.xml");
// Retrieve the data source from the application context
DataSource ds = (DataSource) ctx.getBean("dataSource");
// Open a database connection using Spring's DataSourceUtils
Connection c = DataSourceUtils.getConnection(ds);
try {
// retrieve a list of three random cities
PreparedStatement ps = c.prepareStatement(
"select City.Name as 'City', Country.Name as 'Country' " +
"from City inner join Country on City.CountryCode = Country.Code " +
"order by rand() limit 3");
ResultSet rs = ps.executeQuery();
while(rs.next()) {
String city = rs.getString("City");
String country = rs.getString("Country");
System.out.printf("The city %s is in %s%n", city, country);
}
} catch (SQLException ex) {
// something has failed and we print a stack trace to analyse the error
ex.printStackTrace();
// ignore failure closing connection
try { c.close(); } catch (SQLException e) { }
} finally {
// properly release our connection
DataSourceUtils.releaseConnection(c, ds);
}
This is very similar to normal JDBC access to MySQL with the main difference being that we are using DataSourceUtils instead of the DriverManager to create the connection.
While it may seem like a small difference, the implications are somewhat far reaching. Spring manages this resource in a way similar to a container managed data source in a J2EE application server. When a connection is opened, it can be subsequently accessed in other parts of the code if it is synchronized with a transaction. This makes it possible to treat different parts of your application as transactional instead of passing around a database connection.
21.3.13.1. Using JdbcTemplate
Spring makes extensive use of the Template method design pattern (see Template Method Pattern). Our immediate focus will be on the JdbcTemplate and related classes, specifically NamedParameterJdbcTemplate. The template classes handle obtaining and releasing a connection for data access when one is needed.
The next example shows how to use NamedParameterJdbcTemplate inside of a DAO (Data Access Object) class to retrieve a random city given a country code.
public class Ex2JdbcDao {
/**
* Data source reference which will be provided by Spring.
*/
private DataSource dataSource;
/**
* Our query to find a random city given a country code. Notice
* the ":country" parameter toward the end. This is called a
* named parameter.
*/
private String queryString = "select Name from City " +
"where CountryCode = :country order by rand() limit 1";
/**
* Retrieve a random city using Spring JDBC access classes.
*/
public String getRandomCityByCountryCode(String cntryCode) {
// A template that permits using queries with named parameters
NamedParameterJdbcTemplate template =
new NamedParameterJdbcTemplate(dataSource);
// A java.util.Map is used to provide values for the parameters
Map params = new HashMap();
params.put("country", cntryCode);
// We query for an Object and specify what class we are expecting
return (String)template.queryForObject(queryString, params, String.class);
}
/**
* A JavaBean setter-style method to allow Spring to inject the data source.
* @param dataSource
*/
public void setDataSource(DataSource dataSource) {
this.dataSource = dataSource;
}
}
The focus in the above code is on the getRandomCityByCountryCode() method. We pass a country code and use the NamedParameterJdbcTemplate to query for a city. The country code is placed in a Map with the key "country", which is the parameter is named in the SQL query.
To access this code, you need to configure it with Spring by providing a reference to the data source.
<bean id="dao" class="code.Ex2JdbcDao">
<property name="dataSource" ref="dataSource"/>
</bean>
At this point, we can just grab a reference to the DAO from Spring and call getRandomCityByCountryCode().
// Create the application context
ApplicationContext ctx =
new ClassPathXmlApplicationContext("ex2appContext.xml");
// Obtain a reference to our DAO
Ex2JdbcDao dao = (Ex2JdbcDao) ctx.getBean("dao");
String countryCode = "USA";
// Find a few random cities in the US
for(int i = 0; i < 4; ++i)
System.out.printf("A random city in %s is %s%n", countryCode,
dao.getRandomCityByCountryCode(countryCode));
This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional JDBC classes including Connection and PreparedStatement.
21.3.13.2. Transactional JDBC Access
You might be wondering how we can add transactions into our code if we do not deal directly with the JDBC classes. Spring provides a transaction management package that not only replaces JDBC transaction management, but also enables declarative transaction management (configuration instead of code).
To use transactional database access, we will need to change the storage engine of the tables in the world database. The downloaded script explicitly creates MyISAM tables which do not support transactional semantics. The InnoDB storage engine does support transactions and this is what we will be using. We can change the storage engine with the following statements.
ALTER TABLE City ENGINE=InnoDB;
ALTER TABLE Country ENGINE=InnoDB;
ALTER TABLE CountryLanguage ENGINE=InnoDB;
A good programming practice emphasized by Spring is separating interfaces and implementations. What this means is that we can create a Java interface and only use the operations on this interface without any internal knowledge of what the actual implementation is. We will let Spring manage the implementation and with this it will manage the transactions for our implementation.
First you create a simple interface:
public interface Ex3Dao {
Integer createCity(String name, String countryCode,
String district, Integer population);
}
This interface contains one method that will create a new city record in the database and return the id of the new record. Next you need to create an implementation of this interface.
public class Ex3DaoImpl implements Ex3Dao {
protected DataSource dataSource;
protected SqlUpdate updateQuery;
protected SqlFunction idQuery;
public Integer createCity(String name, String countryCode,
String district, Integer population) {
updateQuery.update(new Object[] { name, countryCode,
district, population });
return getLastId();
}
protected Integer getLastId() {
return idQuery.run();
}
}
You can see that we only operate on abstract query objects here and do not deal directly with the JDBC API. Also, this is the complete implementation. All of our transaction management will be dealt with in the configuration. To get the configuration started, we need to create the DAO.
<bean id="dao" class="code.Ex3DaoImpl">
<property name="dataSource" ref="dataSource"/>
<property name="updateQuery">...</property>
<property name="idQuery">...</property>
</bean>
Now you need to set up the transaction configuration. The first thing you must do is create transaction manager to manage the data source and a specification of what transaction properties are required for the dao methods.
<bean id="transactionManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="dataSource"/>
</bean>
<tx:advice id="txAdvice" transaction-manager="transactionManager">
<tx:attributes>
<tx:method name="*"/>
</tx:attributes>
</tx:advice>
The preceding code creates a transaction manager that handles transactions for the data source provided to it. The txAdvice uses this transaction manager and the attributes specify to create a transaction for all methods. Finally you need to apply this advice with an AOP pointcut.
<aop:config>
<aop:pointcut id="daoMethods"
expression="execution(* code.Ex3Dao.*(..))"/>
<aop:advisor advice-ref="txAdvice" pointcut-ref="daoMethods"/>
</aop:config>
This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To make use of this, you only have to retrieve the dao from the application context and call a method on the dao instance.
Ex3Dao dao = (Ex3Dao) ctx.getBean("dao");
Integer id = dao.createCity(name, countryCode, district, pop);
We can verify from this that there is no transaction management happening in our Java code and it is all configured with Spring. This is a very powerful notion and regarded as one of the most beneficial features of Spring.
21.3.13.3. Connection Pooling with Spring
In many situations, such as web applications, there will be a large number of small database transactions. When this is the case, it usually makes sense to create a pool of database connections available for web requests as needed. Although MySQL does not spawn an extra process when a connection is made, there is still a small amount of overhead to create and set up the connection. Pooling of connections also alleviates problems such as collecting large amounts of sockets in the TIME_WAIT state.
Setting up pooling of MySQL connections with Spring is as simple as changing the data source configuration in the application context. There are a number of configurations that we can use. The first example is based on the Jakarta Commons DBCP library. The example below replaces the source configuration that was based on DriverManagerDataSource with DBCP's BasicDataSource.
<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="${db.driver}"/>
<property name="url" value="${db.jdbcurl}"/>
<property name="username" value="${db.username}"/>
<property name="password" value="${db.password}"/>
<property name="initialSize" value="3"/>
</bean>
The configuration of the two solutions is very similar. The difference is that DBCP will pool connections to the database instead of creating a new connection every time one is requested. We have also set a parameter here called initialSize. This tells DBCP that we want three connections in the pool when it is created.
Another way to configure connection pooling is to configure a data source in our J2EE application server. Using JBoss as an example, you can set up the MySQL connection pool by creating a file called mysql-local-ds.xml and placing it in the server/default/deploy directory in JBoss. Once we have this setup, we can use JNDI to look it up. With Spring, this lookup is very simple. The data source configuration looks like this.
<jee:jndi-lookup id="dataSource" jndi-name="java:MySQL_DS"/>
21.3.14. Using Connector/J with GlassFish
This section explains how to use MySQL Connector/J with Glassfish ™ Server Open Source Edition 3.0.1. Glassfish can be downloaded from the Glassfish website.
Once Glassfish is installed you will need to make sure it can access MySQL Connector/J. To do this copy the MySQL Connector/J JAR file to the directory GLASSFISH_INSTALL/glassfish/lib. For example, copy mysql-connector-java-5.1.12-bin.jar to C:\glassfishv3\glassfish\lib. Restart the Glassfish Application Server.
You are now ready to create JDBC Connection Pools and JDBC Resources.
Creating a Connection Pool
In the Glassfish Administration Console, using the navigation tree navigate to Resources, JDBC, Connection Pools.
In the JDBC Connection Pools frame click New. You will enter a two step wizard.
In the Name field under General Settings enter the name for the connection pool, for example enter MySQLConnPool.
In the Resource Type field, select javax.sql.DataSource from the drop-down listbox.
In the Database Vendor field, select MySQL from the drop-down listbox. Click Next to go to the next page of the wizard.
You can accept the default settings for General Settings, Pool Settings and Transactions for this example. Scroll down to Additional Properties.
In Additional Properties you will need to ensure the following properties are set:
ServerName - The server to connect to. For local testing this will be localhost.
User - The user name with which to connect to MySQL.
Password - The corresponding password for the user.
DatabaseName - The database to connect to, for example the sample MySQL database World.
Click Finish to exit the wizard. You will be taken to the JDBC Connection Pools page where all current connection pools, including the one you just created, will be displayed.
In the JDBC Connection Pools frame click on the connection pool you just created. Here you can review and edit information about the connection pool.
To test your connection pool click the Ping button at the top of the frame. A message will be displayed confirming correct operation or otherwise. If an error message is received recheck the previous steps, and ensure that MySQL Connector/J has been correctly copied into the previously specified location.
Now that you have created a connection pool you will also need to create a JDBC Resource (data source) for use by your application.
Creating a JDBC Resource
Your Java application will usually reference a data source object to establish a connection with the database. This needs to be created first using the following procedure.
Using the navigation tree in the Glassfish Administration Console, navigate to Resources, JDBC, JDBC Resources. A list of resources will be displayed in the JDBC Resources frame.
Click New. The New JDBC Resource frame will be displayed.
In the JNDI Name field, enter the JNDI name that will be used to access this resource, for example enter jdbc/MySQLDataSource.
In the Pool Name field, select a connection pool you want this resource to use from the drop-down listbox.
Optionally, you can enter a description into the Description field.
Additional properties can be added if required.
Click OK to create the new JDBC resource. The JDBC Resources frame will list all available JDBC Resources.
21.3.14.1. A Simple JSP Application with Glassfish, Connector/J and MySQL
This section shows how to deploy a simple JSP application on Glassfish, that connects to a MySQL database.
This example assumes you have already set up a suitable Connection Pool and JDBC Resource, as explained in the preceding sections. It is also assumed you have a sample database installed, such as world.
The main application code, index.jsp is presented here:
<%@ page import="java.sql.*, javax.sql.*, java.io.*, javax.naming.*" %>
<html>
<head><title>Hello world from JSP</title></head>
<body>
<%
InitialContext ctx;
DataSource ds;
Connection conn;
Statement stmt;
ResultSet rs;
try {
ctx = new InitialContext();
ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MySQLDataSource");
//ds = (DataSource) ctx.lookup("jdbc/MySQLDataSource");
conn = ds.getConnection();
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT * FROM Country");
while(rs.next()) {
%>
<h3>Name: <%= rs.getString("Name") %></h3>
<h3>Population: <%= rs.getString("Population") %></h3>
<%
}
}
catch (SQLException se) {
%>
<%= se.getMessage() %>
<%
}
catch (NamingException ne) {
%>
<%= ne.getMessage() %>
<%
}
%>
</body>
</html>
In addition two XML files are required: web.xml, and sun-web.xml. There may be other files present, such as classes and images. These files are organized into the directory structure as follows:
index.jsp
WEB-INF
|
- web.xml
- sun-web.xml
The code for web.xml is:
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
<display-name>HelloWebApp</display-name>
<distributable/>
<resource-ref>
<res-ref-name>jdbc/MySQLDataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
</web-app>
The code for sun-web.xml is:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Application Server 8.1 Servlet 2.4//EN" "http://www.sun.com/software/appserver/dtds/sun-web-app_2_4-1.dtd">
<sun-web-app>
<context-root>HelloWebApp</context-root>
<resource-ref>
<res-ref-name>jdbc/MySQLDataSource</res-ref-name>
<jndi-name>jdbc/MySQLDataSource</jndi-name>
</resource-ref>
</sun-web-app>
These XML files illustrate a very important aspect of running JDBC applications on Glassfish. On Glassfish it is important to map the string specified for a JDBC resource to its JNDI name, as set up in the Glassfish administration console. In this example, the JNDI name for the JDBC resource, as specified in the Glassfish Administration console when creating the JDBC Resource, was jdbc/MySQLDataSource. This must be mapped to the name given in the application. In this example the name specified in the application, jdbc/MySQLDataSource, and the JNDI name, happen to be the same, but this does not necessarily have to be the case. Note that the XML element <res-ref-name> is used to specify the name as used in the application source code, and this is mapped to the JNDI name specified using the <jndi-name> element, in the file sun-web.xml. The resource also has to be created in the web.xml file, although the mapping of the resource to a JNDI name takes place in the sun-web.xml file.
If you do not have this mapping set up correctly in the XML files you will not be able to lookup the data source using a JNDI lookup string such as:
ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MySQLDataSource");
You will still be able to access the data source directly using:
ds = (DataSource) ctx.lookup("jdbc/MySQLDataSource");
With the source files in place, in the correct directory structure, you are ready to deploy the application:
In the navigation tree, navigate to Applications - the Applications frame will be displayed. Click Deploy.
You can now deploy an application packaged into a single WAR file from a remote client, or you can choose a packaged file or directory that is locally accessible to the server. If you are simply testing an application locally you can simply point Glassfish at the directory that contains your application, without needing to package the application into a WAR file.
Now select the application type from the Type drop-down listbox, which in this example is Web application.
Click OK.
Now, when you navigate to the Applications frame, you will have the option to Launch, Redeploy, or Restart your application. You can test your application by clicking Launch. The application will connection to the MySQL database and display the Name and Population of countries in the Country table.
21.3.14.2. A Simple Servlet with Glassfish, Connector/J and MySQL
This section describes a simple servlet that can be used in the Glassfish environment to access a MySQL database. As with the previous section, this example assumes the sample database world is installed.
The project is set up with the following directory structure:
index.html
WEB-INF
|
- web.xml
- sun-web.xml
- classes
|
- HelloWebServlet.java
- HelloWebServlet.class
The code for the servlet, located in HelloWebServlet.java, is as follows:
import javax.servlet.http.*;
import javax.servlet.*;
import java.io.*;
import java.sql.*;
import javax.sql.*;
import javax.naming.*;
public class HelloWebServlet extends HttpServlet {
InitialContext ctx = null;
DataSource ds = null;
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;
String sql = "SELECT Name, Population FROM Country WHERE Name=?";
public void init () throws ServletException {
try {
ctx = new InitialContext();
ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MySQLDataSource");
conn = ds.getConnection();
ps = conn.prepareStatement(sql);
}
catch (SQLException se) {
System.out.println("SQLException: "+se.getMessage());
}
catch (NamingException ne) {
System.out.println("NamingException: "+ne.getMessage());
}
}
public void destroy () {
try {
if (rs != null)
rs.close();
if (ps != null)
ps.close();
if (conn != null)
conn.close();
if (ctx != null)
ctx.close();
}
catch (SQLException se) {
System.out.println("SQLException: "+se.getMessage());
}
catch (NamingException ne) {
System.out.println("NamingException: "+ne.getMessage());
}
}
public void doPost(HttpServletRequest req, HttpServletResponse resp){
try {
String country_name = req.getParameter("country_name");
resp.setContentType("text/html");
PrintWriter writer = resp.getWriter();
writer.println("<html><body>");
writer.println("<p>Country: "+country_name+"</p>");
ps.setString(1, country_name);
rs = ps.executeQuery();
if (!rs.next()){
writer.println("<p>Country does not exist!</p>");
}
else {
rs.beforeFirst();
while(rs.next()) {
writer.println("<p>Name: "+rs.getString("Name")+"</p>");
writer.println("<p>Population: "+rs.getString("Population")+"</p>");
}
}
writer.println("</body></html>");
writer.close();
}
catch (Exception e) {
e.printStackTrace();
}
}
public void doGet(HttpServletRequest req, HttpServletResponse resp){
try {
resp.setContentType("text/html");
PrintWriter writer = resp.getWriter();
writer.println("<html><body>");
writer.println("<p>Hello from servlet doGet()</p>");
writer.println("</body></html>");
writer.close();
}
catch (Exception e) {
e.printStackTrace();
}
}
}
In the preceding code a basic doGet() method is implemented, but is not used in the example. The code to establish the connection with the database is as shown in the previous example, Section 21.3.14.1, “A Simple JSP Application with Glassfish, Connector/J and MySQL”, and is most conveniently located in the servlet init() method. The corresponding freeing of resources is located in the destroy method. The main functionality of the servlet is located in the doPost() method. If the user enters nto the input form a country name that can be located in the database, the population of the country is returned. The code is invoked using a POST action associated with the input form. The form is defined in the file index.html:
<html>
<head><title>HelloWebServlet</title></head>
<body>
<h1>HelloWebServlet</h1>
<p>Please enter country name:</p>
<form action="HelloWebServlet" method="POST">
<input type="text" name="country_name" length="50" />
<input type="submit" value="Submit" />
</form>
</body>
</html>
The XML files web.xml and sun-web.xml are as for the example in the preceding section, Section 21.3.14.1, “A Simple JSP Application with Glassfish, Connector/J and MySQL”, no additional changes are required.
Whe compiling the Java source code, you will need to specify the path to the file javaee.jar. On Windows, this can be done as follows:
shell> javac -classpath c:\glassfishv3\glassfish\lib\javaee.jar HelloWebServlet.java
Once the code is correctly located within its directory structure, and compiled, the application can be deployed in Glassfish. This is done in exactly the same way as described in the preceding section, Section 21.3.14.1, “A Simple JSP Application with Glassfish, Connector/J and MySQL”.
Once deployed the application can be launched from within the Glassfish Administration Console. Enter a country name such as “England”, and the application will return “Country does not exist!”. Enter “France”, and the application will return a population of 59225700.
21.3.15. Troubleshooting Connector/J Applications
This section explains the symptoms and resolutions for the most commonly encountered issues with applications using MySQL Connector/J.
Questions
22.3.15.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:
SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0
22.3.15.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?
22.3.15.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:
SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?
(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0
22.3.15.4: I have a servlet/application that works fine for a day, and then stops working overnight
22.3.15.5: I'm trying to use JDBC 2.0 updatable result sets, and I get an exception saying my result set is not updatable.
22.3.15.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection parameters are correct.
22.3.15.7: I am trying to connect to my MySQL server within my application, but I get the following error and stack trace:
java.net.SocketException
MESSAGE: Software caused connection abort: recv failed
STACKTRACE:
java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)
22.3.15.8: My application is deployed through JBoss and I am using transactions to handle the statements on the MySQL database. Under heavy loads, I am getting an error and stack trace, but these only occur after a fixed period of heavy activity.
22.3.15.9: When using gcj, a java.io.CharConversionException exception is raised when working with certain character sequences.
22.3.15.10: Updating a table that contains a primary key that is either FLOAT or compound primary key that uses FLOAT fails to update the table and raises an exception.
22.3.15.11: You get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size you want to insert using JDBC is safely below the max_allowed_packet size.
22.3.15.12: What should you do if you receive error messages similar to the following: “Communications link failure – Last packet sent to the server was X ms ago”?
22.3.15.13: Why does Connector/J not reconnect to MySQL and re-issue the statement after a communication failure, instead of throwing an Exception, even though I use the autoReconnect connection string option?
22.3.15.14: How can I use 3-byte UTF8 with Connector/J?
22.3.15.15: How can I use 4-byte UTF8, utf8mb4 with Connector/J?
22.3.15.16: Using useServerPrepStmts=false and certain character encodings can lead to corruption when inserting BLOBs. How can this be avoided?
Questions and Answers
22.3.15.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:
SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0
MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix Domain Sockets. Therefore, when MySQL Connector/J connects to MySQL, the security manager in MySQL server will use its grant tables to determine whether the connection is permitted.
You must add the necessary security credentials to the MySQL server for this to happen, using the GRANT statement to your MySQL Server. See Section 13.7.1.4, “GRANT Syntax”, for more information.
Note
Testing your connectivity with the mysql command-line client will not work unless you add the "host" flag, and use something other than localhost for the host. The mysql command-line client will use Unix domain sockets if you use the special host name localhost. If you are testing connectivity to localhost, use 127.0.0.1 as the host name instead.
Warning
Changing privileges and permissions improperly in MySQL can potentially cause your server installation to not have optimal security properties.
22.3.15.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?
There are three possible causes for this error:
The Connector/J driver is not in your CLASSPATH, see Section 21.3.3, “Connector/J Installation”.
The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.
When using DriverManager, the jdbc.drivers system property has not been populated with the location of the Connector/J driver.
22.3.15.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar to:
SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?
(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0
Either you're running an Applet, your MySQL server has been installed with the "skip-networking" option set, or your MySQL server has a firewall sitting in front of it.
Applets can only make network connections back to the machine that runs the web server that served the .class files for the applet. This means that MySQL must run on the same machine (or you must have some sort of port re-direction) for this to work. This also means that you will not be able to test applets from your local file system, you must always deploy them to a web server.
MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix domain sockets. TCP/IP communication with MySQL might be affected if MySQL was started with the "skip-networking" flag, or if it is firewalled.
If MySQL has been started with the "skip-networking" option set (the Debian Linux package of MySQL server does this for example), you need to comment it out in the file /etc/mysql/my.cnf or /etc/my.cnf. Of course your my.cnf file might also exist in the data directory of your MySQL server, or anywhere else (depending on how MySQL was compiled for your system). Binaries created by us always look in /etc/my.cnf and datadir/my.cnf. If your MySQL server has been firewalled, you will need to have the firewall configured to allow TCP/IP connections from the host where your Java code is running to the MySQL server on the port that MySQL is listening to (by default, 3306).
22.3.15.4: I have a servlet/application that works fine for a day, and then stops working overnight
MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that handles stale connections or use the autoReconnect parameter (see Section 21.3.5.1, “Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J”).
Also, catch SQLExceptions in your application and deal with them, rather than propagating them all the way until your application exits. This is just good programming practice. MySQL Connector/J will set the SQLState (see java.sql.SQLException.getSQLState() in your API docs) to 08S01 when it encounters network-connectivity issues during the processing of a query. Attempt to reconnect to MySQL at this point.
The following (simplistic) example shows what code that can handle these exceptions might look like:
Example 21.12. Connector/J: Example of transaction with retry logic
public void doBusinessOp() throws SQLException {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;
//
// How many times do you want to retry the transaction
// (or at least _getting_ a connection)?
//
int retryCount = 5;
boolean transactionCompleted = false;
do {
try {
conn = getConnection(); // assume getting this from a
// javax.sql.DataSource, or the
// java.sql.DriverManager
conn.setAutoCommit(false);
//
// Okay, at this point, the 'retry-ability' of the
// transaction really depends on your application logic,
// whether or not you're using autocommit (in this case
// not), and whether you're using transactional storage
// engines
//
// For this example, we'll assume that it's _not_ safe
// to retry the entire transaction, so we set retry
// count to 0 at this point
//
// If you were using exclusively transaction-safe tables,
// or your application could recover from a connection going
// bad in the middle of an operation, then you would not
// touch 'retryCount' here, and just let the loop repeat
// until retryCount == 0.
//
retryCount = 0;
stmt = conn.createStatement();
String query = "SELECT foo FROM bar ORDER BY baz";
rs = stmt.executeQuery(query);
while (rs.next()) {
}
rs.close();
rs = null;
stmt.close();
stmt = null;
conn.commit();
conn.close();
conn = null;
transactionCompleted = true;
} catch (SQLException sqlEx) {
//
// The two SQL states that are 'retry-able' are 08S01
// for a communications error, and 40001 for deadlock.
//
// Only retry if the error was due to a stale connection,
// communications problem or deadlock
//
String sqlState = sqlEx.getSQLState();
if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {
retryCount -= 1;
} else {
retryCount = 0;
}
} finally {
if (rs != null) {
try {
rs.close();
} catch (SQLException sqlEx) {
// You'd probably want to log this...
}
}
if (stmt != null) {
try {
stmt.close();
} catch (SQLException sqlEx) {
// You'd probably want to log this as well...
}
}
if (conn != null) {
try {
//
// If we got here, and conn is not null, the
// transaction should be rolled back, as not
// all work has been done
try {
conn.rollback();
} finally {
conn.close();
}
} catch (SQLException sqlEx) {
//
// If we got an exception here, something
// pretty serious is going on, so we better
// pass it up the stack, rather than just
// logging it...
throw sqlEx;
}
}
}
} while (!transactionCompleted && (retryCount > 0));
}
Note
Use of the autoReconnect option is not recommended because there is no safe method of reconnecting to the MySQL server without risking some corruption of the connection state or database state information. Instead, use a connection pool, which will enable your application to connect to the MySQL server using an available connection from the pool. The autoReconnect facility is deprecated, and may be removed in a future release.
22.3.15.5: I'm trying to use JDBC 2.0 updatable result sets, and I get an exception saying my result set is not updatable.
Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that have come from queries on tables that have at least one primary key, the query must select every primary key column, and the query can only span one table (that is, no joins). This is outlined in the JDBC specification.
Note that this issue only occurs when using updatable result sets, and is caused because Connector/J is unable to guarantee that it can identify the correct rows within the result set to be updated without having a unique reference to each row. There is no requirement to have a unique field on a table if you are using UPDATE or DELETE statements on a table where you can individually specify the criteria to be matched using a WHERE clause.
22.3.15.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection parameters are correct.
Make sure that the skip-networking option has not been enabled on your server. Connector/J must be able to communicate with your server over TCP/IP; named sockets are not supported. Also ensure that you are not filtering connections through a firewall or other network security system. For more information, see Section C.5.2.2, “Can't connect to [local] MySQL server”.
22.3.15.7: I am trying to connect to my MySQL server within my application, but I get the following error and stack trace:
java.net.SocketException
MESSAGE: Software caused connection abort: recv failed
STACKTRACE:
java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)
The error probably indicates that you are using a older version of the Connector/J JDBC driver (2.0.14 or 3.0.x) and you are trying to connect to a MySQL server with version 4.1x or newer. The older drivers are not compatible with 4.1 or newer of MySQL as they do not support the newer authentication mechanisms.
It is likely that the older version of the Connector/J driver exists within your application directory or your CLASSPATH includes the older Connector/J package.
22.3.15.8: My application is deployed through JBoss and I am using transactions to handle the statements on the MySQL database. Under heavy loads, I am getting an error and stack trace, but these only occur after a fixed period of heavy activity.
This is a JBoss, not Connector/J, issue and is connected to the use of transactions. Under heavy loads the time taken for transactions to complete can increase, and the error is caused because you have exceeded the predefined timeout.
You can increase the timeout value by setting the TransactionTimeout attribute to the TransactionManagerService within the /conf/jboss-service.xml file (pre-4.0.3) or /deploy/jta-service.xml for JBoss 4.0.3 or later. See TransactionTimeout within the JBoss wiki for more information.
22.3.15.9: When using gcj, a java.io.CharConversionException exception is raised when working with certain character sequences.
This is a known issue with gcj which raises an exception when it reaches an unknown character or one it cannot convert. Add useJvmCharsetConverters=true to your connection string to force character conversion outside of the gcj libraries, or try a different JDK.
22.3.15.10: Updating a table that contains a primary key that is either FLOAT or compound primary key that uses FLOAT fails to update the table and raises an exception.
Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the primary key. If there is no match, then Connector/J considers this a failure condition and raises an exception.
The problem is that rounding differences between supplied values and the values stored in the database may mean that the values never match, and hence the update fails. The issue will affect all queries, not just those from Connector/J.
To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point column in your primary key, use DOUBLE or DECIMAL types in place of FLOAT.
22.3.15.11: You get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size you want to insert using JDBC is safely below the max_allowed_packet size.
This is because the hexEscapeBlock() method in com.mysql.jdbc.PreparedStatement.streamToBytes() may almost double the size of your data.
22.3.15.12: What should you do if you receive error messages similar to the following: “Communications link failure – Last packet sent to the server was X ms ago”?
Generally speaking, this error suggests that the network connection has been closed. There can be several root causes:
Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not ping).
The MySQL Server may be closing idle connections that exceed the wait_timeout or interactive_timeout threshold.
To help troubleshoot these issues, the following tips can be used. If a recent (5.1.13+) version of Connector/J is used, you will see an improved level of information compared to earlier versions. Older versions simply display the last time a packet was sent to the server, which is frequently 0 ms ago. This is of limited use, as it may be that a packet was just sent, while a packet from the server has not been received for several hours. Knowing the period of time since Connector/J last received a packet from the server is useful information, so if this is not displayed in your exception message, it is recommended that you update Connector/J.
Further, if the time a packet was last sent/received exceeds the wait_timeout or interactive_timeout threshold, this is noted in the exception message.
Although network connections can be volatile, the following can be helpful in avoiding problems:
Ensure connections are valid when used from the connection pool. Use a query that starts with /* ping */ to execute a lightweight ping instead of full query. Note, the syntax of the ping needs to be exactly as specified here.
Minimize the duration a connection object is left idle while other application logic is executed.
Explicitly validate the connection before using it if the connection has been left idle for an extended period of time.
Ensure that wait_timeout and interactive_timeout are set sufficiently high.
Ensure that tcpKeepalive is enabled.
Ensure that any configurable firewall or router timeout settings allow for the maximum expected connection idle time.
Note
Do not expect to be able to reuse a connection without problems, if it has being lying idle for a period. If a connection is to be reused after being idle for any length of time, ensure that you explicitly test it before reusing it.
22.3.15.13: Why does Connector/J not reconnect to MySQL and re-issue the statement after a communication failure, instead of throwing an Exception, even though I use the autoReconnect connection string option?
There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual states that “there is no safe method of reconnecting to the MySQL server without risking some corruption of the connection state or database state information”. Consider the following series of statements for example:
conn.createStatement().execute(
"UPDATE checking_account SET balance = balance - 1000.00 WHERE customer='Smith'");
conn.createStatement().execute(
"UPDATE savings_account SET balance = balance + 1000.00 WHERE customer='Smith'");
conn.commit();
Consider the case where the connection to the server fails after the UPDATE to checking_account. If no exception is thrown, and the application never learns about the problem, it will continue executing. However, the server did not commit the first transaction in this case, so that will get rolled back. But execution continues with the next transaction, and increases the savings_account balance by 1000. The application did not receive an exception, so it continued regardless, eventually committing the second transaction, as the commit only applies to the changes made in the new connection. Rather than a transfer taking place, a deposit was made in this example.
Note that running with autocommit enabled does not solve this problem. When Connector/J encounters a communication problem, there is no means to determine whether the server processed the currently executing statement or not. The following theoretical states are equally possible:
The server never received the statement, and therefore no related processing occurred on the server.
The server received the statement, executed it in full, but the response was not received by the client.
If you are running with autocommit enabled, it is not possible to guarantee the state of data on the server when a communication exception is encountered. The statement may have reached the server, or it may not. All you know is that communication failed at some point, before the client received confirmation (or data) from the server. This does not only affect autocommit statements though. If the communication problem occurred during Connection.commit(), the question arises of whether the transaction was committed on the server before the communication failed, or whether the server received the commit request at all.
The second reason for the generation of exceptions is that transaction-scoped contextual data may be vulnerable, for example:
Temporary tables.
User-defined variables.
Server-side prepared statements.
These items are lost when a connection fails, and if the connection silently reconnects without generating an exception, this could be detrimental to the correct execution of your application.
In summary, communication errors generate conditions that may well be unsafe for Connector/J to simply ignore by silently reconnecting. It is necessary for the application to be notified. It is then for the application developer to decide how to proceed in the event of connection errors and failures.
22.3.15.14: How can I use 3-byte UTF8 with Connector/J?
To use 3-byte UTF8 with Connector/J set characterEncoding=utf8 and set useUnicode=true in the connection string.
22.3.15.15: How can I use 4-byte UTF8, utf8mb4 with Connector/J?
To use 4-byte UTF8 with Connector/J configure the MySQL server with character_set_server=utf8mb4. Connector/J will then use that setting as long as characterEncoding has not been set in the connection string. This is equivalent to autodetection of the character set.
22.3.15.16: Using useServerPrepStmts=false and certain character encodings can lead to corruption when inserting BLOBs. How can this be avoided?
When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB data contains characters that can be interpreted as control characters, for example, backslash, '\'. This can lead to corrupted data when inserting BLOBs into the database. There are two things that need to be done to avoid this:
Set the connection string option useServerPrepStmts to true.
Set SQL_MODE to NO_BACKSLASH_ESCAPES.
21.3.16. Connector/J Support
21.3.16.1. Connector/J Community Support
Oracle provides assistance to the user community by means of its mailing lists. For Connector/J related issues, you can get help from experienced users by using the MySQL and Java mailing list. Archives and subscription information is available online at http://lists.mysql.com/java.
For information about subscribing to MySQL mailing lists or to browse list archives, visit http://lists.mysql.com/. See Section 1.6.1, “MySQL Mailing Lists”.
Community support from experienced users is also available through the JDBC Forum. You may also find help from other users in the other MySQL Forums, located at http://forums.mysql.com. See Section 1.6.2, “MySQL Community Support at the MySQL Forums”.
21.3.16.2. How to Report Connector/J Bugs or Problems
The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database. This database is public, and can be browsed and searched by anyone. If you log in to the system, you will also be able to enter new reports.
If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an email message to <secalert_us@oracle.com>. Exception: Support customers should report all problems, including security bugs, to Oracle Support at http://support.oracle.com/.
Writing a good bug report takes patience, but doing it right the first time saves time both for us and for yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix the bug in the next release.
This section will help you write your report correctly so that you do not waste your time doing things that may not help us much or at all.
If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.
To report other problems, you can use one of the MySQL mailing lists.
Remember that it is possible for us to respond to a message containing too much information, but not to one containing too little. People often omit facts because they think they know the cause of a problem and assume that some details do not matter.
A good principle is this: If you are in doubt about stating something, state it. It is faster and less troublesome to write a couple more lines in your report than to wait longer for the answer if we must ask you to provide information that was missing from the initial report.
The most common errors made in bug reports are (a) not including the version number of Connector/J or MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including the JVM version, and the platform type and version number that MySQL itself is installed on).
This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version, or that a bug described in a report has already been fixed in newer MySQL versions.
Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything without knowing the operating system and the version number of the platform.
If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.
To streamline this process, we ship a base class for testcases with Connector/J, named 'com.mysql.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class, create your own class that inherits from com.mysql.jdbc.util.BaseBugReport and override the methods setUp(), tearDown() and runTest().
In the setUp() method, create code that creates your tables, and populates them with any data needed to demonstrate the bug.
In the runTest() method, create code that demonstrates the bug using the tables and data you created in the setUp method.
In the tearDown() method, drop any tables you created in the setUp() method.
In any of the above three methods, use one of the variants of the getConnection() method to create a JDBC connection to MySQL:
getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a connection already exists, that connection is returned, otherwise a new connection is created.
getNewConnection() - Use this if you need to get a new connection for your bug report (that is, there is more than one connection involved).
getConnection(String url) - Returns a connection using the given URL.
getConnection(String url, Properties props) - Returns a connection using the given URL and properties.
If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method getUrl() as well.
Use the assertTrue(boolean expression) and assertTrue(String failureMessage, boolean expression) methods to create conditions that must be met in your testcase demonstrating the behavior you are expecting (vs. the behavior you are observing, which is why you are most likely filing a bug report).
Finally, create a main() method that creates a new instance of your testcase, and calls the run method:
public static void main(String[] args) throws Exception {
new MyBugReport().run();
}
Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting, upload it with your bug report to http://bugs.mysql.com/.
21.4. MySQL Connector/C++
MySQL Connector/C++ is a MySQL database connector for C++. It lets you develop C++ applications that connect to the MySQL Server.
For release notes detailing the changes in each release of MySQL Connector/C++, see MySQL Connector/C++ Release Notes.
MySQL Connector/C++ Benefits
MySQL Connector/C++ offers the following benefits for C++ users compared to the MySQL C API (MySQL client library):
Convenience of pure C++; no C function calls required
Supports JDBC 4.0, an industry standard API
Supports the object-oriented programming paradigm
Reduces development time
Licensed under the GPL with the FLOSS License Exception
Available under a commercial license upon request
JDBC Compatibility
MySQL Connector/C++ is compatible with the JDBC 4.0 API. MySQL Connector/C++ does not implement the entire JDBC 4.0 API, but does feature the following classes:
Connection
DatabaseMetaData
Driver
PreparedStatement
ResultSet
ResultSetMetaData
Savepoint
Statement
The JDBC 4.0 API defines approximately 450 methods for the classes just mentioned. MySQL Connector/C++ implements approximately 80% of these.
Platform Support and Prerequisites
MySQL Connector/C++ requires:
MySQL 5.1 or later
Microsoft Visual Studio 2003 or later on Windows
The release has been successfully compiled and tested on the following platforms:
AIX
5.2 (PPC32, PPC64)
5.3 (PPC32, PPC64)
FreeBSD
6.0 (x86, x86_64)
HPUX
11.11 (PA-RISC 32bit, PA-RISC 64bit)
Linux
Debian 3.1 (PPC32, x86)
FC4 (x86)
RHEL 3 (ia64, x86, x86_64)
RHEL 4 (ia64, x86, x86_64)
RHEL 5 (ia64, x86, x86_64)
SLES 9 (ia64, x86, x86_64)
SLES 10 (ia64, x86_64)
SuSE 10.3, (x86_64)
Ubuntu 8.04 (x86)
Ubuntu 8.10 (x86_64)
Mac OS X
Mac OS X 10.3 (PPC32, PPC64)
Mac OS X 10.4 (PPC32, PPC64, x86)
Mac OS X 10.5 (PPC32, PPC64, x86, x86_64)
SunOS
Solaris 8 (SPARC32, SPARC64, x86)
Solaris 9 (SPARC32, SPARC64, x86)
Solaris 10 (SPARC32, SPARC64, x86, x86_64)
Windows
XP Professional (32bit)
2003 (64bit)
Release Status
MySQL Connector/C++ is available as a Generally Available (GA) version. We ask users and developers to try it out and provide feedback.
Note that MySQL Workbench is successfully using MySQL Connector/C++.
If you have any queries, please contact us.
Licensing
MySQL Connector/C++ is licensed under the terms of the GPL, like most MySQL Connectors. There are special exceptions to the terms and conditions of the GPL as applied to this software; see FLOSS License Exception. If you need a non-GPL license for commercial distribution, please contact us.
21.4.1. How to Get MySQL Connector/C++
Binary and source packages can be obtained from MySQL Connector/C++ downloads.
MySQL Connector/C++ Binary Distributions
Binary distributions are available for these platforms:
Microsoft Windows:
MSI installer package
Without installer (a Zip file)
Other platforms:
Compressed GNU TAR archive (tar.gz)
MySQL Connector/C++ Source Distributions
Source packages use compressed GNU TAR file (tar.gz) format and can be used on any supported platform.
MySQL Connector/C++ Source Repository
The latest development sources are available through Launchpad.
The MySQL Connector/C++ code repository uses Bazaar. To check out the latest source code, use the bzr command-line tool:
shell> bzr branch lp:~mysql/mysql-connector-cpp/trunk .
21.4.2. Installing MySQL Connector/C++ from a Binary Distribution
Caution
One problem that can occur is when the tools you use to build your application are not compatible with the tools used to build the binary versions of MySQL Connector/C++. Ideally, build your application with the same tools that were used to build the MySQL Connector/C++ binaries. To help with this, the following resources are provided.
All distributions include a README file that contains platform-specific notes. At the end of the README file contained in the binary distribution, you will find the settings used to build the binaries. If you experience build-related issues on a platform, it may help to check the settings used on the platform to build the binary.
Developers using Microsoft Windows must satisfy the following requirements:
Use a supported version of Visual Studio, either Visual Studio 2005 or Visual Studio 2008.
Ensure that your application uses the same runtime library as that used to build MySQL Connector/C++. Visual Studio 2005 builds use Microsoft.VC80.CRT (8.0.50727.762), and Visual Studio 2008 builds use Microsoft.VC90.CRT (9.0.21022.8).
Your application should use the same linker configuration as MySQL Connector/C++. For example, use one of /MD, /MDd, /MT, or /MTd.
To use a variation of the requirements previously listed, such as a different compiler version, release configuration, or runtime library, compile MySQL Connector/C++ from source using your desired settings and ensure that your application is built using these same settings. To avoid issues, ensure that the three variables of compiler version, runtime library, and runtime linker configuration settings are the same for both application and MySQL Connector/C++ itself.
A better solution that ensures compatibility is to build your MySQL Connector/C++ libraries from the source code using the same tools that you use to build your application.
Downloading MySQL Connector/C++
Binary packages can be obtained from MySQL Connector/C++ downloads.
Archive Package
Unpack the distribution archive into an appropriate directory. If you plan to use a dynamically linked version of MySQL Connector/C++, make sure that your system can reference the MySQL client library (MySQL Connector/C++ is linked against and thus requires the MySQL client library). Consult your operating system documentation on how to modify and expand the search path for libraries. If you cannot modify the library search path, it may help to copy your application, the MySQL Connector/C++ library and the MySQL client library into the same directory. Most systems search for libraries in the current directory.
Windows users can choose between two binary packaging formats:
Windows MSI Installer (.msi file): To use the MSI Installer, launch it and follow the prompts in the screens it presents to install MySQL Connector/C in the location of your choosing.
Zip archive without installer (.zip file): To use a Zip archive, unpack it in the directory where you intend to install it using WinZip or another tool that can read .zip files.
Windows MSI Installer
Using the MSI Installer may be the easiest solution. The MSI Installer does not require any administrative permissions as it simply copies files.
The MSI Installer begins by presenting a welcome screen.
Figure 21.70. MSI Installer Welcome Screen
The MSI Installer overview screen enables you to select the type of installation you want to perform. The “Typical” installation consists of all required header files and the Release libraries. The “Custom” installation enables you to install additional Debug versions of the connector libraries.
Figure 21.71. MSI Installer Overview Screen
If you select a “Custom” installation, the MSI Installer presents a Custom Setup screen that enables you to select which features to install and where to install them.
Figure 21.72. MSI Installer Custom Setup Screen
21.4.3. Installing MySQL Connector/C++ from Source
MySQL Connector/C++ is based on the MySQL client library (MySQL C API) and is linked against it. Thus, to compile MySQL Connector/C++, the MySQL Client Library must be installed.
You also need the cross-platform build tool CMake 2.4, or newer, and GLib 2.2.3 or newer. Check the README file included with the distribution for platform-specific notes on building for Windows and SunOS.
Typically, the MySQL client library is installed when the MySQL Server is installed. However, check your operating system documentation for other installation options.
As of MySQL Connector/C++ 1.1.0, the Boost C++ libraries 1.34.0 or newer must be installed. Boost is required only to build the connector, required to use the connector. You can obtain Boost and its installation instructions from the official site. Once Boost is installed, tell the build system where the Boost files are by defining the BOOST_ROOT:STRING option. This can be done when you invoke CMake. For example:
shell> cmake . -DBOOST_ROOT:STRING=/usr/local/boost_1_40_0
Change /usr/local/boost_1_40_0/ as necessary to match your installation. For further details, see Section 21.4.3.1, “Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS X” and Section 21.4.3.2, “Building MySQL Connector/C++ from Source on Windows”.
21.4.3.1. Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS X
Change location to the top-level directory of the source distribution:
shell> cd /path/to/mysql-connector-cpp
Run CMake to build a Makefile:
shell> cmake .
-- Check for working C compiler: /usr/local/bin/gcc
-- Check for working C compiler: /usr/local/bin/gcc -- works
[...]
-- Generating done
-- Build files have been written to: /path/to/mysql-connector-cpp/
On non-Windows systems, CMake first checks to see if the CMake variable MYSQL_CONFIG_EXECUTABLE is set. If it is not found, CMake tries to locate mysql_config in the default locations.
If you have any problems with the configuration process, check the troubleshooting instructions given later.
Use make to build the libraries. First make sure you have a clean build:
shell> make clean
Then build the connector:
shell> make
[1%] Building CXX object »
driver/CMakeFiles/mysqlcppconn.dir/mysql_connection.o
[3%] Building CXX object »
driver/CMakeFiles/mysqlcppconn.dir/mysql_constructed_resultset.o
[...]
[100%] Building CXX object examples/CMakeFiles/statement.dir/statement.o
Linking CXX executable statement
If all goes well, you will find the MySQL Connector/C++ library in the driver directory.
Install the header and library files:
shell> make install
Unless you have changed the location in the configuration step, make install copies the header files to the directory /usr/local/include. The header files copied are mysql_connection.h and mysql_driver.h.
Again, unless you have specified otherwise, make install copies the library files to /usr/local/lib. The files copied are the dynamic library libmysqlcppconn.so, and the static library libmysqlcppconn-static.a. The extension of the dynamic library might be different on your system (for example, .dylib on Mac OS X).
If you encounter any errors, please first carry out these checks:
CMake options: MySQL installation path, debug version and more
In case of configuration or compilation problems, check the list of CMake options:
shell> cmake -L
[...]
CMAKE_BACKWARDS_COMPATIBILITY:STRING=2.4
CMAKE_BUILD_TYPE:STRING=
CMAKE_INSTALL_PREFIX:PATH=/usr/local
EXECUTABLE_OUTPUT_PATH:PATH=
LIBRARY_OUTPUT_PATH:PATH=
MYSQLCPPCONN_GCOV_ENABLE:BOOL=0
MYSQLCPPCONN_TRACE_ENABLE:BOOL=0
MYSQL_CONFIG_EXECUTABLE:FILEPATH=/usr/bin/mysql_config
For example, if your MySQL Server installation path is not /usr/local/mysql and you want to build a debug version of the MySQL Connector/C++, use this command:
shell> cmake \
-D CMAKE_BUILD_TYPE:STRING=Debug \
-D MYSQL_CONFIG_EXECUTABLE=/path/to/my/mysql/server/bin/mysql_config .
Verify your settings with cmake -L:
shell> cmake -L
[...]
CMAKE_BACKWARDS_COMPATIBILITY:STRING=2.4
CMAKE_BUILD_TYPE:STRING=
CMAKE_INSTALL_PREFIX:PATH=/usr/local
EXECUTABLE_OUTPUT_PATH:PATH=
LIBRARY_OUTPUT_PATH:PATH=
MYSQLCPPCONN_GCOV_ENABLE:BOOL=0
MYSQLCPPCONN_TRACE_ENABLE:BOOL=0
MYSQL_CONFIG_EXECUTABLE=/path/to/my/mysql/server/bin/mysql_config
Proceed by executing a make clean command followed by a make command, as described previously.
Once you have installed MySQL Connector/C++, you can carry out a quick test to check the installation. To do this, compile and run one of the example programs, such as examples/standalone_example.cpp. This example is discussed in more detail later, but for now, you can use it to test whether the connector has been correctly installed. This procedure assumes that you have a working MySQL Server to which you can connect. It also assumes header and library locations of /usrlocal/include and /usr/local/lib, respectively; adjust these as necessary for your system.
Compile the example program. To do this, change location to the examples directory and enter this command:
shell> g++ -o test_install \
-I/usr/local/include -I/usr/local/include/cppconn \
-Wl,-Bdynamic -lmysqlcppconn standalone_example.cpp
Make sure the dynamic library which is used in this case can be found at runtime:
shell> export LD_LIBRARY_PATH=/usr/local/lib
Now run the program to test your installation, substituting the appropriate host, user, password, and database names for your system:
shell> ./test_install localhost root password database
You should see output similar to the following:
Connector/C++ standalone program example...
... running 'SELECT 'Welcome to Connector/C++' AS _message'
... MySQL replies: Welcome to Connector/C++
... say it again, MySQL
....MySQL replies: Welcome to Connector/C++
... find more at http://www.mysql.com
If you see any errors, take note of them and go through the troubleshooting procedures discussed earlier.
21.4.3.2. Building MySQL Connector/C++ from Source on Windows
Note
The only compiler formally supported for Windows is Microsoft Visual Studio 2003 and above.
The basic steps for building the connector on Windows are the same as for Unix. It is important to use CMake 2.6.2 or newer to generate build files for your compiler and to invoke the compiler.
Note
On Windows, mysql_config is not present, so CMake attempts to retrieve the location of MySQL from the environment variable $ENV{MYSQL_DIR}. If MYSQL_DIR is not set, CMake then proceeds to check for MySQL in the following locations: $ENV{ProgramFiles}/MySQL/*/include, and $ENV{SystemDrive}/MySQL/*/include.
CMake makes it easy for you to try other compilers. However, you may experience compile warnings, compile errors or linking issues not detected by Visual Studio. Patches are gratefully accepted to fix issues with other compilers.
Consult the CMake manual or check cmake --help to find out which build systems are supported by your CMake version:
C:\>cmake --help
cmake version 2.6-patch 2
Usage
[...]
Generators
The following generators are available on this platform:
Borland Makefiles = Generates Borland makefiles.
MSYS Makefiles = Generates MSYS makefiles.
MinGW Makefiles = Generates a make file for use with
mingw32-make.
NMake Makefiles = Generates NMake makefiles.
Unix Makefiles = Generates standard UNIX makefiles.
Visual Studio 6 = Generates Visual Studio 6 project files.
Visual Studio 7 = Generates Visual Studio .NET 2002 project
files.
Visual Studio 7 .NET 2003 = Generates Visual Studio .NET 2003 project
files.
Visual Studio 8 2005 = Generates Visual Studio .NET 2005 project
files.
Visual Studio 8 2005 Win64 = Generates Visual Studio .NET 2005 Win64
project files.
Visual Studio 9 2008 = Generates Visual Studio 9 2008 project fil
Visual Studio 9 2008 Win64 = Generates Visual Studio 9 2008 Win64 proje
files.
[...]
It is likely that your CMake binary supports more compilers, known by CMake as generators, than can actually be used to build MySQL Connector/C++. We have built the connector using the following generators:
Microsoft Visual Studio 8 (Visual Studio 2005)
Microsoft Visual Studio 9 (Visual Studio 2008, Visual Studio 2008 Express)
NMake
Please see the building instructions for Unix, Solaris and Mac OS X for troubleshooting and configuration hints.
Use these steps to build the connector:
Change location to the top-level directory of the source distribution:
shell> cd C:\path_to_mysql_cpp
Run CMake to generate build files for your generator:
Visual Studio
C:\>cmake -G "Visual Studio 9 2008"
-- Check for working C compiler: cl
-- Check for working C compiler: cl -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: cl
-- Check for working CXX compiler: cl -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- ENV{MYSQL_DIR} =
-- MySQL Include dir: C:/Programme/MySQL/MySQL Server 5.5/include
-- MySQL Library : C:/Programs/MySQL/MySQL Server 5.5/lib/opt/mysqlclient.lib
-- MySQL Library dir: C:/Programs/MySQL/MySQL Server 5.5/lib/opt
-- MySQL CFLAGS:
-- MySQL Link flags:
-- MySQL Include dir: C:/Programs/MySQL/MySQL Server 5.5/include
-- MySQL Library dir: C:/Programs/MySQL/MySQL Server 5.5/lib/opt
-- MySQL CFLAGS:
-- MySQL Link flags:
-- Configuring cppconn
-- Configuring test cases
-- Looking for isinf
-- Looking for isinf - not found
-- Looking for isinf
-- Looking for isinf - not found.
-- Looking for finite
-- Looking for finite - not found.
-- Configuring C/J junit tests port
-- Configuring examples
-- Configuring done
-- Generating done
-- Build files have been written to: C:\path_to_mysql_cpp
C:\>dir *.sln *.vcproj
[...]
19.11.2008 12:16 23.332 MYSQLCPPCONN.sln
[...]
19.11.2008 12:16 27.564 ALL_BUILD.vcproj
19.11.2008 12:16 27.869 INSTALL.vcproj
19.11.2008 12:16 28.073 PACKAGE.vcproj
19.11.2008 12:16 27.495 ZERO_CHECK.vcproj
NMake
C:\>cmake -G "NMake Makefiles"
-- The C compiler identification is MSVC
-- The CXX compiler identification is MSVC
[...]
-- Build files have been written to: C:\path_to_mysql_cpp
Use your compiler to build MySQL Connector/C++.
Visual Studio - GUI
Open the newly generated project files in the Visual Studio GUI or use a Visual Studio command line to build the driver. The project files contain a variety of different configurations, debug and nondebug versions among them.
Visual Studio - NMake
C:\>nmake
Microsoft (R) Program Maintenance Utility Version 9.00.30729.01
Copyright (C) Microsoft Corporation. All rights reserved.
Scanning dependencies of target mysqlcppconn
[2%] Building CXX object driver/CMakeFiles/mysqlcppconn.dir/mysql_connection.obj
mysql_connection.cpp
[...]
Linking CXX executable statement.exe
[100%] Built target statement
21.4.3.3. Dynamically Linking MySQL Connector/C++ Against the MySQL Client Library
Note
This section refers to dynamic linking of MySQL Connector/C++ with the client library, not dynamic linking of the application to MySQL Connector/C++.
Precompiled binaries of MySQL Connector/C++ use static binding with the client library by default.
An application that uses MySQL Connector/C++ can be either statically or dynamically linked to the MySQL Connector/C++ libraries. MySQL Connector/C++ is usually statically linked to the underlying MySQL client library (or Connector/C). Note that, unless otherwise stated, reference to the MySQL client library is also taken to include Connector/C, which is a separately packaged, standalone version of the MySQL client library. From MySQL Connector/C++ 1.1.0 on, it is possible to also dynamically link to the underlying MySQL client library. The ability of MySQL Connector/C++ to dynamically link to MySQL client library is not enabled by default. Enabling this feature is done through a compile-time option when compiling the MySQL Connector/C++ source code.
To use the ability to dynamically link the client library to MySQL Connector/C++, define the MYSQLCLIENT_STATIC_BINDING:BOOL when building the MySQL Connector/C++ source code:
shell> rm CMakeCache.txt
shell> cmake -DMYSQLCLIENT_STATIC_BINDING:BOOL=1 .
shell> make clean
shell> make
shell> make install
Now, in your application, when creating a connection, MySQL Connector/C++ will select and load a client library at runtime. It will choose the client library by searching defined locations and environment variables depending on the host operating system. It is also possible when creating a connection in an application to define an absolute path to the client library to be loaded at runtime. This can be convenient if you have defined a standard location from which you want the client library to be loaded. This is sometimes done to circumvent possible conflicts with other versions of the client library that may be located on the system.
21.4.4. Building MySQL Connector/C++ Windows Applications with Microsoft Visual Studio
MySQL Connector/C++ is available as a static or dynamic library to use with your application. This section describes how to link the library to your application.
Note
To avoid potential crashes, the build configuration of MySQL Connector/C++ should match the build configuration of the application using it. For example, do not use the release build of MySQL Connector/C++ with a debug build of the client application.
Static Library
The MySQL Connector/C++ static library file is mysqlcppconn-static.lib. You link this library statically with your application. Also link against the files libmysql.dll and libmysql.lib. At runtime, the application will require access to libmysql.dll.
Dynamic Library
The MySQL Connector/C++ dynamic library file is mysqlcppconn.dll. To build your client application, link it with the file mysqlcppconn.lib. At runtime, the application will require access to the files mysqlcppconn.dll and libmysql.dll.
Building a MySQL Connector/C++ Application with Microsoft Visual Studio
The initial steps for building an application to use either the static or dynamic library are the same. Some additional steps vary, depend on whether you are building your application to use the static or dynamic library.
Select File, New, Project from the main menu.
Figure 21.73. Creating a New Project
In the wizard, select Visual C++, Win32. From Visual Studio Installed Templates, select the application type Win32 Console Application. Enter a name for the application, then click OK, to move to the Win32 Application Wizard.
Figure 21.74. The New Project Dialog Box
In the Win32 Application Wizard, click Application Settings and ensure the defaults are selected. The radio button Console application and the check box Precompiled headers are selected. Click Finish to close the wizard.
Figure 21.75. The Win32 Application Wizard
From the drop down list box on the toolbar, change from the default Debug build to the Release build.
Figure 21.76. Selecting the Release Build
From the main menu select Project, Properties. This can also be accessed using the hot key ALT + F7.
Figure 21.77. Selecting Project Properties from the Main Menu
Under Configuration Properties, open the tree view.
Select C++, General in the tree view.
Figure 21.78. Setting Properties
Ensure that Visual Studio can find the MySQL include directory. This directory includes header files that can optionally be installed when installing MySQL Server.
Figure 21.79. MySQL Include Directory
In the Additional Include Directories text field, add the MySQL include/ directory.
Figure 21.80. Select Directory Dialog
Also set the location of additional libraries that Visual Studio needs to build the application. These are located in the MySQL lib/opt directory, a subdirectory of the MySQL Server installation directory.
Figure 21.81. Typical Contents of MySQL lib/opt Directory
In the tree view, open Linker, General, Additional Library Directories.
Figure 21.82. Additional Library Directories
Add the lib/opt directory into the Additional Library Directories text field. This enables the library file libmysql.lib to be found.
Figure 21.83. Additional Library Directories Dialog
The remaining steps depend on whether you are building an application to use the MySQL Connector/C++ static or dynamic library. If you are building your application to use the dynamic library, see Section 21.4.4, “Building MySQL Connector/C++ Windows Applications with Microsoft Visual Studio”. If you are building your application to use the static library, carry out the following steps:
Open Linker, Input, Additional Dependencies.
Figure 21.84. Additional Dependencies
Enter mysqlcppconn-static.lib and libmysql.lib.
Figure 21.85. Adding Additional Dependencies
By default CPPCONN_PUBLIC_FUNC is defined to declare functions to be compatible with an application that calls a DLL. If you are building an application to call the static library, ensure that function prototypes are compatible with this. In this case, define CPPCONN_PUBLIC_FUNC to be an empty string, so that functions are declared with the correct prototype.
In the Project, Properties tree view, under C++, Preprocessor, enter CPPCONN_PUBLIC_FUNC= into the Preprocessor Definitions text field.
Figure 21.86. Setting the CPPCONN_PUBLIC_FUNC Define
Note
Make sure you enter CPPCONN_PUBLIC_FUNC= and not CPPCONN_PUBLIC_FUNC, so that it is defined as an empty string.
If you are building an application to use the MySQL Connector/C++ dynamically linked library, carry out these steps:
Under Linker, Input, add mysqlcppconn.lib into the Additional Dependencies text field.
mysqlcppconn.dll must be in the same directory as the application executable, or somewhere on the system's path, so that the application can access the MySQL Connector/C++ Dynamic Linked Library at runtime.
Copy mysqlcppconn.dll to the same directory as the application. Alternatively, extend the PATH environment variable using SET PATH=%PATH%;C:\path\to\cpp. Alternatively, you can copy mysqlcppconn.dll to the Windows installation Directory, typically c:\windows.
21.4.5. Building MySQL Connector/C++ Linux Applications with NetBeans
This section describes how to build MySQL Connector/C++ applications for Linux using the NetBeans IDE.
Figure 21.87. The NetBeans IDE
Note
To avoid potential crashes, the build configuration of MySQL Connector/C++ should match the build configuration of the application using it. For example, do not use the release build of MySQL Connector/C++ with a debug build of the client application.
Create a new project. Select File, New Project. Choose a C/C++ Application and click Next.
Give the project a name and click Finish. A new project is created.
In the Projects tab, right-click Source Files and select New, then Main C++ File....
Change the filename, or simply select the defaults and click Finish to add the new file to the project.
Now add some working code to your main source file. Explore your MySQL Connector/C++ installation and navigate to the examples directory.
Select a suitable example, such as standalone_example_docs1.cpp. Copy all the code in this file, and use it to replace the code in your existing main source file. Amend the code to reflect the connection properties required for your test database. You now have a working example that will access a MySQL database using MySQL Connector/C++.
At this point, NetBeans shows some errors in the source code. Direct NetBeans to the necessary header files to include. Select File, Project Properties from the main menu.
In the Categories: tree view panel, navigate to Build, C++ Compiler.
In the General panel, select Include Directories.
Click the ... button.
Click Add, then navigate to the directory where the MySQL Connector/C++ header files are located. This is /usr/local/include unless you have installed the files to a different location. Click Select. Click OK.
Figure 21.88. Setting the Header Include Directory
Click OK again to close the Project Properties dialog.
At this point, you have created a NetBeans project containing a single C++ source file. You have also ensured that the necessary include files are accessible. Before continuing, decide whether your project is to use the MySQL Connector/C++ static or dynamic library. The project settings are slightly different in each case, because you link against a different library.
Using the Static Library
To use the static MySQL Connector/C++ library, link against two library files, libmysqlcppconn-static.a and libmysqlclient.a. The locations of the files depend on your setup, but typically the former are in /usr/local/lib and the latter in /usr/lib. The file libmysqlclient.a is not part of MySQL Connector/C++, but is the MySQL client library file distributed with MySQL Server. (Remember, the MySQL client library is an optional component as part of the MySQL Server installation process.) The MySQL Client Library is also available as part of the MySQL Connector/C distribution.
Set the project to link the necessary library files. Select File, Project Properties from the main menu.
In the Categories: tree view, navigate to Linker.
In the General panel, select Additional Library Directories. Click the ... button.
Select and add the /usr/lib and /usr/local/lib directories.
In the same panel, add the two library files required for static linking as discussed earlier. The properties panel should then look similar to the following screenshot.
Figure 21.89. Setting the Static Library Directories and File Names
Click OK to close the Project Properties dialog.
Using the Dynamic Library
To use the MySQL Connector/C++ dynamic library, link your project with a single library file, libmysqlcppconn.so. The location of this file depends on how you configured your installation of MySQL Connector/C++, but typically is /usr/local/lib.
Set the project to link the necessary library file. Select File, Project Properties from the main menu.
In the Categories: tree view, navigate to Linker.
In the General panel, select Additional Library Directories. Click the ... button.
Select and add the /usr/local/lib directories.
In the same panel, add the library file required for static linking as discussed earlier. The properties panel should look similar to the following screenshot.
Figure 21.90. Setting the Dynamic Library Directory and File Name
Click OK to close the Project Properties dialog.
After configuring your project, build it by selecting Run, Build Main Project from the main menu. You then run the project using Run, Run Main Project.
On running the application, you should see a screen similar to the following (this is actually the static version of the application shown):
Figure 21.91. The Example Application Running
Note
The preceding settings and procedures were carried out for the default Debug configuration. To create a Release configuration, select that configuration before setting the Project Properties.
21.4.6. MySQL Connector/C++ Getting Started: Usage Examples
The download package contains usage examples in the directory examples/. These examples explain how to use the following classes:
Connection
Driver
PreparedStatement
ResultSet
ResultSetMetaData
Statement
The examples cover:
Using the Driver class to connect to MySQL
Creating tables, inserting rows, fetching rows using (simple) statements
Creating tables, inserting rows, fetching rows using prepared statements
Hints for working around prepared statement limitations
Accessing result set metadata
The examples in this document are only code snippets, not complete programs. The code snippets provide a brief overview on the API. For complete programs, check the examples/ directory of your MySQL Connector/C++ installation Please also read the README file in that directory. To test the example code, edit the examples.h file in the examples/ directory to add your connection information, then rebuild the code by issuing a make command.
The examples in the examples/ directory include:
examples/connect.cpp:
How to create a connection, insert data into MySQL and handle exceptions.
examples/connection_meta_schemaobj.cpp:
How to obtain metadata associated with a connection object, for example, a list of tables, databases, MySQL version, connector version.
examples/debug_output.cpp:
How to activate and deactivate the MySQL Connector/C++ debug protocol.
examples/exceptions.cpp:
A closer look at the exceptions thrown by the connector and how to fetch error information.
examples/prepared_statements.cpp:
How to run Prepared Statements including an example how to handle SQL statements that cannot be prepared by the MySQL Server.
examples/resultset.cpp:
How to use a cursor to fetch data and iterate over a result set.
examples/resultset_meta.cpp:
How to obtain metadata associated with a result set, for example, number of columns and column types.
examples/resultset_types.cpp:
Result sets returned from metadata methods. (This is more a test than an example.)
examples/standalone_example.cpp:
Simple standalone program not integrated into regular CMake builds.
examples/statements.cpp:
How to execute SQL statements without using Prepared Statements.
examples/cpp_trace_analyzer.cpp:
This example shows how to filter the output of the debug trace. Please see the inline comments for further documentation. This script is unsupported.
21.4.6.1. MySQL Connector/C++ Connecting to MySQL
To establish a connection to MySQL Server, retrieve an instance of sql::Connection from a sql::mysql::MySQL_Driver object. A sql::mysql::MySQL_Driver object is returned by sql::mysql::MySQL_Driver::get_mysql_driver_instance().
sql::mysql::MySQL_Driver *driver;
sql::Connection *con;
driver = sql::mysql::MySQL_Driver::get_mysql_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "user", "password");
delete con;
Make sure that you free, con, the sql::Connection object as soon as you do not need it any more. But do not explicitly free driver, the connector object! The connector will take care of freeing that.
21.4.6.2. MySQL Connector/C++ Running a Simple Query
For running simple queries, you can use the methods sql::Statement::execute(), sql::Statement::executeQuery() and sql::Statement::executeUpdate(). Use the method sql::Statement::execute() if your query does not return a result set or if your query returns more than one result set. See the examples/ directory for more information.
sql::mysql::MySQL_Driver *driver;
sql::Connection *con;
sql::Statement *stmt;
driver = sql::mysql::get_mysql_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "user", "password");
stmt = con->createStatement();
stmt->execute("USE " EXAMPLE_DB);
stmt->execute("DROP TABLE IF EXISTS test");
stmt->execute("CREATE TABLE test(id INT, label CHAR(1))");
stmt->execute("INSERT INTO test(id, label) VALUES (1, 'a')");
delete stmt;
delete con;
Note that you must free sql::Statement and sql::Connection objects explicitly using delete.
21.4.6.3. MySQL Connector/C++ Fetching Results
The API for fetching result sets is identical for (simple) statements and prepared statements. If your query returns one result set, use sql::Statement::executeQuery() or sql::PreparedStatement::executeQuery() to run your query. Both methods return sql::ResultSet objects. The preview version does buffer all result sets on the client to support cursors.
// ...
sql::Connection *con;
sql::Statement *stmt;
sql::ResultSet *res;
// ...
stmt = con->createStatement();
// ...
res = stmt->executeQuery("SELECT id, label FROM test ORDER BY id ASC");
while (res->next()) {
// You can use either numeric offsets...
cout << "id = " << res->getInt(1); // getInt(1) returns the first column
// ... or column names for accessing results.
// The latter is recommended.
cout << ", label = '" << res->getString("label") << "'" << endl;
}
delete res;
delete stmt;
delete con;
Note
In the preceding code snippet, column indexing starts from 1.
Note that you must free sql::Statement, sql::Connection and sql::ResultSet objects explicitly using delete.
Cursor usage is demonstrated in the examples contained in the download package.
21.4.6.4. MySQL Connector/C++ Using Prepared Statements
If you are not familiar with Prepared Statements on MySQL, take a look at the source code comments and explanations in the file examples/prepared_statement.cpp.
sql::PreparedStatement is created by passing an SQL query to sql::Connection::prepareStatement(). As sql::PreparedStatement is derived from sql::Statement, you will feel familiar with the API once you have learned how to use (simple) statements (sql::Statement). For example, the syntax for fetching results is identical.
// ...
sql::Connection *con;
sql::PreparedStatement *prep_stmt
// ...
prep_stmt = con->prepareStatement("INSERT INTO test(id, label) VALUES (?, ?)");
prep_stmt->setInt(1, 1);
prep_stmt->setString(2, "a");
prep_stmt->execute();
prep_stmt->setInt(1, 2);
prep_stmt->setString(2, "b");
prep_stmt->execute();
delete prep_stmt;
delete con;
As usual, you must free sql::PreparedStatement and sql::Connection objects explicitly.
21.4.6.5. MySQL Connector/C++ Complete Example 1
The following code shows a complete example of how to use MySQL Connector/C++:
/* Copyright 2008, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
There are special exceptions to the terms and conditions of the GPL
as it is applied to this software. View the full text of the
exception in file EXCEPTIONS-CONNECTOR-C++ in the directory of this
software distribution.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* Standard C++ includes */
#include <stdlib.h>
#include <iostream>
/*
Include directly the different
headers from cppconn/ and mysql_driver.h + mysql_util.h
(and mysql_connection.h). This will reduce your build time!
*/
#include "mysql_connection.h"
#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>
using namespace std;
int main(void)
{
cout << endl;
cout << "Running 'SELECT 'Hello World!' »
AS _message'..." << endl;
try {
sql::Driver *driver;
sql::Connection *con;
sql::Statement *stmt;
sql::ResultSet *res;
/* Create a connection */
driver = get_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "root", "root");
/* Connect to the MySQL test database */
con->setSchema("test");
stmt = con->createStatement();
res = stmt->executeQuery("SELECT 'Hello World!' AS _message");
while (res->next()) {
cout << "\t... MySQL replies: ";
/* Access column data by alias or column name */
cout << res->getString("_message") << endl;
cout << "\t... MySQL says it again: ";
/* Access column fata by numeric offset, 1 is the first column */
cout << res->getString(1) << endl;
}
delete res;
delete stmt;
delete con;
} catch (sql::SQLException &e) {
cout << "# ERR: SQLException in " << __FILE__;
cout << "(" << __FUNCTION__ << ") on line " »
<< __LINE__ << endl;
cout << "# ERR: " << e.what();
cout << " (MySQL error code: " << e.getErrorCode();
cout << ", SQLState: " << e.getSQLState() << ")" << endl;
}
cout << endl;
return EXIT_SUCCESS;
}
21.4.6.6. MySQL Connector/C++ Complete Example 2
The following code shows a complete example of how to use MySQL Connector/C++:
/* Copyright 2008, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
There are special exceptions to the terms and conditions of the GPL
as it is applied to this software. View the full text of the
exception in file EXCEPTIONS-CONNECTOR-C++ in the directory of this
software distribution.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* Standard C++ includes */
#include <stdlib.h>
#include <iostream>
/*
Include directly the different
headers from cppconn/ and mysql_driver.h + mysql_util.h
(and mysql_connection.h). This will reduce your build time!
*/
#include "mysql_connection.h"
#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>
#include <cppconn/prepared_statement.h>
using namespace std;
int main(void)
{
cout << endl;
cout << "Let's have MySQL count from 10 to 1..." << endl;
try {
sql::Driver *driver;
sql::Connection *con;
sql::Statement *stmt;
sql::ResultSet *res;
sql::PreparedStatement *pstmt;
/* Create a connection */
driver = get_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "root", "root");
/* Connect to the MySQL test database */
con->setSchema("test");
stmt = con->createStatement();
stmt->execute("DROP TABLE IF EXISTS test");
stmt->execute("CREATE TABLE test(id INT)");
delete stmt;
/* '?' is the supported placeholder syntax */
pstmt = con->prepareStatement("INSERT INTO test(id) VALUES (?)");
for (int i = 1; i <= 10; i++) {
pstmt->setInt(1, i);
pstmt->executeUpdate();
}
delete pstmt;
/* Select in ascending order */
pstmt = con->prepareStatement("SELECT id FROM test ORDER BY id ASC");
res = pstmt->executeQuery();
/* Fetch in reverse = descending order! */
res->afterLast();
while (res->previous())
cout << "\t... MySQL counts: " << res->getInt("id") << endl;
delete res;
delete pstmt;
delete con;
} catch (sql::SQLException &e) {
cout << "# ERR: SQLException in " << __FILE__;
cout << "(" << __FUNCTION__ << ") on line " »
<< __LINE__ << endl;
cout << "# ERR: " << e.what();
cout << " (MySQL error code: " << e.getErrorCode();
cout << ", SQLState: " << e.getSQLState() << »
")" << endl;
}
cout << endl;
return EXIT_SUCCESS;
}
21.4.7. MySQL Connector/C++ Tutorials
The following tutorials illustrate various aspects of using MySQL Connector/C++. Also consult the examples in Section 21.4.6, “MySQL Connector/C++ Getting Started: Usage Examples”.
21.4.7.1. Prerequisites and Background Information
This section describes the prerequisites that must be satisifed before you work through the remaining tutorial sections, and shows how to set up the framework code that serves as the basis for the tutorial applications.
These tutorials refer to tables and sample data from the world database, which you can download from the “Example Databases” section of the MySQL Documentation page.
Each tutorial application uses a framework consisting of the following code. The examples vary at the line that says /* INSERT TUTORIAL CODE HERE! */ within the try block, which is replaced for each application with the application-specific code.
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <stdexcept>
/* uncomment for applications that use vectors */
/*#include <vector>*/
#include "mysql_connection.h"
#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>
#include <cppconn/prepared_statement.h>
#define EXAMPLE_HOST "localhost"
#define EXAMPLE_USER "worlduser"
#define EXAMPLE_PASS "worldpass"
#define EXAMPLE_DB "world"
using namespace std;
int main(int argc, const char **argv)
{
string url(argc >= 2 ? argv[1] : EXAMPLE_HOST);
const string user(argc >= 3 ? argv[2] : EXAMPLE_USER);
const string pass(argc >= 4 ? argv[3] : EXAMPLE_PASS);
const string database(argc >= 5 ? argv[4] : EXAMPLE_DB);
cout << "Connector/C++ tutorial framework..." << endl;
cout << endl;
try {
/* INSERT TUTORIAL CODE HERE! */
} catch (sql::SQLException &e) {
/*
MySQL Connector/C++ throws three different exceptions:
- sql::MethodNotImplementedException (derived from sql::SQLException)
- sql::InvalidArgumentException (derived from sql::SQLException)
- sql::SQLException (derived from std::runtime_error)
*/
cout << "# ERR: SQLException in " << __FILE__;
cout << "(" << __FUNCTION__ << ") on line " << __LINE__ << endl;
/* what() (derived from std::runtime_error) fetches error message */
cout << "# ERR: " << e.what();
cout << " (MySQL error code: " << e.getErrorCode();
cout << ", SQLState: " << e.getSQLState() << ")" << endl;
return EXIT_FAILURE;
}
cout << "Done." << endl;
return EXIT_SUCCESS;
}
Try the framework code as a standalone program using this procedure:
Copy and paste the framework code to a file such as framework.cpp. Edit the #define statements to reflect your connection parameters (server, user, password, database). Also, because the file contains those parameters, set its access mode to be readable only to yourself.
Compile the framework. For example, on Mac OS X, the command might look like this (enter the command on one line):
shell> g++ -o framework
-I/usr/local/include -I/usr/local/include/cppconn
-lmysqlcppconn framework.cpp
Adapt the command as necessary for your system. A similar command is needed for the tutorial applications that follow.
To run the framework, enter the following:
shell> ./framework
You will see a simple message:
Connector/C++ tutorial framework...
Done.
You are now ready to continue to the tutorials.
21.4.7.2. Calling Stored Procedures with Statement Objects
A stored procedure can be called using a Statement or PreparedStatement object. This section shows how to call stored procedures using Statement objects. To see how to use PreparedStatement objects, see Section 21.4.7.3, “Calling Stored Procedures with PreparedStatement Objects”.
You can construct and call different types of stored procedures:
A stored procedure that returns no result. For example, such a stored procedure can log non-critical information, or change database data in a straightforward way.
A stored procedure that returns one or more values using output parameters. For example, such a procedure can indicate success or failure, or retrieve and return data items.
A stored procedure that returns one or more result sets. The procedure can execute one or more queries, each of which returns an arbitrary number of rows. Your application loops through each result set to display, transform, or otherwise process each row in it.
The following stored procedures illustrate each of these scenarios.
The following procedure adds a country to the world database, but does not return a result. This corresponds to Scenario 1 described earlier.
CREATE PROCEDURE add_country (IN country_code CHAR(3),
IN country_name CHAR(52),
IN continent_name CHAR(30))
BEGIN
INSERT INTO Country(Code, Name, Continent)
VALUES (country_code, country_name, continent_name);
END;
The next procedures use an output parameter to return the population of a specified country or continent, or the entire world. These correspond to Scenario 2 described earlier.
CREATE PROCEDURE get_pop (IN country_name CHAR(52),
OUT country_pop BIGINT)
BEGIN
SELECT Population INTO country_pop FROM Country
WHERE Name = country_name;
END;
CREATE PROCEDURE get_pop_continent (IN continent_name CHAR(30),
OUT continent_pop BIGINT)
BEGIN
SELECT SUM(Population) INTO continent_pop FROM Country
WHERE Continent = continent_name;
END;
CREATE PROCEDURE get_pop_world (OUT world_pop BIGINT)
BEGIN
SELECT SUM(Population) INTO world_pop FROM Country;
END;
The next procedure returns several result sets. This corresponds to Scenario 3 described earlier.
CREATE PROCEDURE get_data ()
BEGIN
SELECT Code, Name, Population, Continent FROM Country
WHERE Continent = 'Oceania' AND Population < 10000;
SELECT Code, Name, Population, Continent FROM Country
WHERE Continent = 'Europe' AND Population < 10000;
SELECT Code, Name, Population, Continent FROM Country
WHERE Continent = 'North America' AND Population < 10000;
END;
Enter and test the stored procedures manually to ensure that they will be available to your C++ applications. (Select world as the default database before you create them.) You are now ready to start writing applications using Connector/C++ that call stored procedures.
Scenario 1: Using a Statement for a Stored Procedure That Returns No Result
This example shows how to call a stored procedure that returns no result set.
Make a copy of the tutorial framework code:
shell> cp framework.cpp sp_scenario1.cpp
Add the following code to the try block of the tutorial framework:
sql::Driver* driver = get_driver_instance();
std::auto_ptr<sql::Connection> con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr<sql::Statement> stmt(con->createStatement());
// We need not check the return value explicitly. If it indicates
// an error, Connector/C++ generates an exception.
stmt->execute("CALL add_country('ATL', 'Atlantis', 'North America')");
Compile the program as described in Section 21.4.7.1, “Prerequisites and Background Information”.
Run the program:
shell> ./sp_scenario1
Using the mysql command-line client or other suitable program, check the world database to determine that it has been updated correctly. You can use this query:
mysql> SELECT Code, Name, Continent FROM Country WHERE Code='ATL';
+------+----------+---------------+
| Code | Name | Continent |
+------+----------+---------------+
| ATL | Atlantis | North America |
+------+----------+---------------+
The code in this application simply invokes the execute method, passing to it a statement that calls the stored procedure. The procedure itself returns no value, although it is important to note there is always a return value from the CALL statement; this is the execute status. MySQL Connector/C++ handles this status for you, so you need not handle it explicitly. If the execute call fails for some reason, it raises an exception that the catch block handles.
Scenario 2: Using a Statement for a Stored Procedure That Returns an Output Parameter
This example shows how to handle a stored procedure that returns an output parameter.
Make a copy of the tutorial framework code:
shell> cp framework.cpp sp_scenario2.cpp
Add the following code to the try block of the tutorial framework:
sql::Driver* driver = get_driver_instance();
std::auto_ptr<sql::Connection> con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr<sql::Statement> stmt(con->createStatement());
stmt->execute("CALL get_pop('Uganda', @pop)");
std::auto_ptr<sql::ResultSet> res(stmt->executeQuery("SELECT @pop AS _reply"));
while (res->next())
cout << "Population of Uganda: " << res->getString("_reply") << endl;
stmt->execute("CALL get_pop_continent('Asia', @pop)");
res.reset(stmt->executeQuery("SELECT @pop AS _reply"));
while (res->next())
cout << "Population of Asia: " << res->getString("_reply") << endl;
stmt->execute("CALL get_pop_world(@pop)");
res.reset(stmt->executeQuery("SELECT @pop AS _reply"));
while (res->next())
cout << "Population of World: " << res->getString("_reply") << endl;
Compile the program as described in Section 21.4.7.1, “Prerequisites and Background Information”.
Run the program:
shell> ./sp_scenario2
Connector/C++ tutorial framework...
Population of Uganda: 21778000
Population of Asia: 3705025700
Population of World: 6078749450
Done.
In this scenario, each stored procedure sets the value of an output parameter. This is not returned directly to the execute method, but needs to be obtained using a subsequent query. If you were executing the SQL statements directly, you might use statements similar to these:
CALL get_pop('Uganda', @pop);
SELECT @pop;
CALL get_pop_continent('Asia', @pop);
SELECT @pop;
CALL get_pop_world(@pop);
SELECT @pop;
In the C++ code, a similar sequence is carried out for each procedure call:
Execute the CALL statement.
Obtain the output parameter by executing an additional query. The query produces a ResultSet object.
Retrieve the data using a while loop. The simplest way to do this is to use a getString method on the ResultSet, passing the name of the variable to access. In this example _reply is used as a placeholder for the variable and therefore is used as the key to access the correct element of the result dictionary.
Although the query used to obtain the output parameter returns only a single row, it is important to use the while loop to catch more than one row, to avoid the possibility of the connection becoming unstable.
Scenario 3: Using a Statement for a Stored Procedure That Returns a Result Set
This example shows how to handle result sets produced by a stored procedure.
Note
This scenario requires MySQL 5.5.3 or higher. The client/server protocol does not support fetching multiple result sets from stored procedures prior to 5.5.3.
Make a copy of the tutorial framework code:
shell> cp framework.cpp sp_scenario3.cpp
Add the following code to the try block of the tutorial framework:
sql::Driver* driver = get_driver_instance();
std::auto_ptr<sql::Connection> con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr<sql::Statement> stmt(con->createStatement());
stmt->execute("CALL get_data()");
std::auto_ptr< sql::ResultSet > res;
do {
res.reset(stmt->getResultSet());
while (res->next()) {
cout << "Name: " << res->getString("Name")
<< " Population: " << res->getInt("Population")
<< endl;
}
} while (stmt->getMoreResults());
Compile the program as described in Section 21.4.7.1, “Prerequisites and Background Information”.
Run the program:
shell> ./sp_scenario3
Connector/C++ tutorial framework...
Name: Cocos (Keeling) Islands Population: 600
Name: Christmas Island Population: 2500
Name: Norfolk Island Population: 2000
Name: Niue Population: 2000
Name: Pitcairn Population: 50
Name: Tokelau Population: 2000
Name: United States Minor Outlying Islands Population: 0
Name: Svalbard and Jan Mayen Population: 3200
Name: Holy See (Vatican City State) Population: 1000
Name: Anguilla Population: 8000
Name: Atlantis Population: 0
Name: Saint Pierre and Miquelon Population: 7000
Done.
The code is similar to the examples shown previously. The code of particular interest here is:
do {
res.reset(stmt->getResultSet());
while (res->next()) {
cout << "Name: " << res->getString("Name")
<< " Population: " << res->getInt("Population")
<< endl;
}
} while (stmt->getMoreResults());
The CALL is executed as before, but this time the results are returned into multiple ResultSet objects because the stored procedure executes multiple SELECT statements. In this example, the output shows that three result sets are processed, because there are three SELECT statements in the stored procedure. Each result set returns more than one row.
The results are processed using this code pattern:
do {
Get Result Set
while (Get Result) {
Process Result
}
} while (Get More Result Sets);
Note
Use this pattern even if the stored procedure executes only a single SELECT and produces only one result set. This is a requirement of the underlying protocol.
21.4.7.3. Calling Stored Procedures with PreparedStatement Objects
This section shows how to call stored procedures using prepared statements. It is recommended that, before working through it, you first work through the previous tutorial Section 21.4.7.2, “Calling Stored Procedures with Statement Objects”. That section shows the stored procedures required by the applications in this section.
Scenario 1: Using a PreparedStatement for a Stored Procedure That Returns No Result
This example shows how to call a stored procedure that returns no result set.
Make a copy of the tutorial framework code:
shell> cp framework.cpp ps_scenario1.cpp
Add the following code to the try block of the tutorial framework:
vector<string> code_vector;
code_vector.push_back("SLD");
code_vector.push_back("DSN");
code_vector.push_back("ATL");
vector<string> name_vector;
name_vector.push_back("Sealand");
name_vector.push_back("Disneyland");
name_vector.push_back("Atlantis");
vector<string> cont_vector;
cont_vector.push_back("Europe");
cont_vector.push_back("North America");
cont_vector.push_back("Oceania");
sql::Driver * driver = get_driver_instance();
std::auto_ptr< sql::Connection > con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr< sql::PreparedStatement > pstmt;
pstmt.reset(con->prepareStatement("CALL add_country(?,?,?)"));
for (int i=0; i<3; i++)
{
pstmt->setString(1,code_vector[i]);
pstmt->setString(2,name_vector[i]);
pstmt->setString(3,cont_vector[i]);
pstmt->execute();
}
Also, uncomment #include <vector> near the top of the code, because vectors are used to store sample data.
Compile the program as described in Section 21.4.7.1, “Prerequisites and Background Information”.
Run the program:
shell> ./ps_scenario1
You can check whether the database has been updated correctly by using this query:
mysql> SELECT Code, Name, Continent FROM Country
-> WHERE Code IN('DSN','ATL','SLD');
+------+------------+---------------+
| Code | Name | Continent |
+------+------------+---------------+
| ATL | Atlantis | Oceania |
| DSN | Disneyland | North America |
| SLD | Sealand | Europe |
+------+------------+---------------+
The code is relatively simple, as no processing is required to handle result sets. The procedure call, CALL add_country(?,?,?), is made using placeholders for input parameters denoted by '?'. These placeholders are replaced by the appropriate data values using the PreparedStatement object's setString method. The for loop is set up to iterate 3 times, as there are three data sets in this example. The same PreparedStatement is executed three times, each time with different input parameters.
Scenario 2: Using a PreparedStatement for a Stored Procedure That Returns an Output Parameter
This example shows how to handle a stored procedure that returns an output parameter.
Make a copy of the tutorial framework code:
shell> cp framework.cpp ps_scenario2.cpp
Add the following code to the try block of the tutorial framework:
vector<string> cont_vector;
cont_vector.push_back("Europe");
cont_vector.push_back("North America");
cont_vector.push_back("Oceania");
sql::Driver * driver = get_driver_instance();
std::auto_ptr< sql::Connection > con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr< sql::Statement > stmt(con->createStatement());
std::auto_ptr< sql::PreparedStatement > pstmt;
std::auto_ptr< sql::ResultSet > res;
pstmt.reset(con->prepareStatement("CALL get_pop_continent(?,@pop)"));
for (int i=0; i<3; i++)
{
pstmt->setString(1,cont_vector[i]);
pstmt->execute();
res.reset(stmt->executeQuery("SELECT @pop AS _population"));
while (res->next())
cout << "Population of "
<< cont_vector[i]
<< " is "
<< res->getString("_population") << endl;
}
Also, uncomment #include <vector> near the top of the code, because vectors are used to store sample data.
Compile the program as described in Section 21.4.7.1, “Prerequisites and Background Information”.
Run the program:
shell> ./ps_scenario2
Connector/C++ tutorial framework...
Population of Europe is 730074600
Population of North America is 482993000
Population of Oceania is 30401150
Done.
In this scenario a PreparedStatement object is created that calls the get_pop_continent stored procedure. This procedure takes an input parameter, and also returns an output parameter. The approach used is to create another statement that can be used to fetch the output parameter using a SELECT query. Note that when the PreparedStatement is created, the input parameter to the stored procedure is denoted by '?'. Prior to execution of the prepared statement, it is necessary to replace this placeholder by an actual value. This is done using the setString method:
pstmt->setString(1,cont_vector[i]);
Although the query used to obtain the output parameter returns only a single row, it is important to use the while loop to catch more than one row, to avoid the possibility of the connection becoming unstable.
Scenario 3: Using a PreparedStatement for a Stored Procedure That Returns a Result Set
This example shows how to handle result sets produced by a stored procedure.
Note
This scenario requires MySQL 5.5.3 or higher. The client/server protocol does not support fetching multiple result sets from stored procedures prior to 5.5.3.
Make a copy of the tutorial framework code:
shell> cp framework.cpp ps_scenario3.cpp
Add the following code to the try block of the tutorial framework:
sql::Driver * driver = get_driver_instance();
std::auto_ptr< sql::Connection > con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr< sql::PreparedStatement > pstmt;
std::auto_ptr< sql::ResultSet > res;
pstmt.reset(con->prepareStatement("CALL get_data()"));
res.reset(pstmt->executeQuery());
do {
res.reset(pstmt->getResultSet());
while (res->next()) {
cout << "Name: " << res->getString("Name")
<< " Population: " << res->getInt("Population")
<< endl;
}
} while (pstmt->getMoreResults());
Compile the program as described in Section 21.4.7.1, “Prerequisites and Background Information”.
Run the program:
shell> ./ps_scenario3
Make a note of the output generated.
The code executes the stored procedure using a PreparedStatement object. The standard do/while construct is used to ensure that all result sets are fetched. The returned values are fetched from the result sets using the getInt and getString methods.
21.4.8. MySQL Connector/C++ Debug Tracing
Although a debugger can be used to debug your application, you may find it beneficial to turn on the debug traces of the connector. Some problems happen randomly which makes them difficult to debug using a debugger. In such cases, debug traces and protocol files are more useful because they allow you to trace the activities of all instances of your program.
DTrace is a very powerful technology to trace any application without having to develop an extra trace module for your application. Unfortunately, DTrace is currently only available on Solaris, Mac OS X 10.5, and FreeBSD.
MySQL Connector/C++ can write two trace files:
Trace file generated by the MySQL client library
Trace file generated internally by MySQL Connector/C++
The first trace file can be generated by the underlying MySQL client library (libmysqlclient). To enable this trace, the connector will call the mysql_debug() C API function internally. Because only debug versions of the MySQL client library are capable of writing a trace file, compile MySQL Connector/C++ against a debug version of the library to use this trace. The trace shows the internal function calls and the addresses of internal objects as shown here:
>mysql_stmt_init
| >_mymalloc
| | enter: Size: 816
| | exit: ptr: 0x68e7b8
| <_mymalloc | >init_alloc_root
| | enter: root: 0x68e7b8
| | >_mymalloc
| | | enter: Size: 2064
| | | exit: ptr: 0x68eb28
[...]
The second trace is the MySQL Connector/C++ internal trace. It is available with debug and nondebug builds of the connector as long as you have enabled the tracing module at compile time using cmake -DMYSQLCPPCONN_TRACE_ENABLE:BOOL=1. By default, tracing functionality is not available and calls to trace functions are removed by the preprocessor.
Compiling the connector with tracing functionality enabled causes two additional tracing function calls per each connector function call. For example:
| INF: Tracing enabled
<MySQL_Connection::setClientOption
>MySQL_Prepared_Statement::setInt
| INF: this=0x69a2e0
| >MySQL_Prepared_Statement::checkClosed
| <MySQL_Prepared_Statement::checkClosed
| <MySQL_Prepared_Statement::setInt
[...]
Run your own benchmark to find out how much this will impact the performance of your application.
A simple test using a loop running 30,000 INSERT SQL statements showed no significant real-time impact. The two variants of this application using a trace enabled and trace disabled version of the connector performed equally well. The runtime measured in real time was not significantly impacted as long as writing a debug trace was not enabled. However, there will be a difference in the time spent in the application. When writing a debug trace, the I/O subsystem may become a bottleneck.
In summary, use connector builds with tracing enabled carefully. Trace-enabled versions may cause higher CPU usage even if the overall runtime of your application is not impacted significantly.
The example from examples/debug_output.cpp demonstrates how to activate the debug traces in your program. Currently they can only be activated through API calls. The traces are controlled on a per-connection basis. You can use the setClientOptions() method of a connection object to activate and deactivate trace generation. The MySQL client library trace is always written to a file, whereas the connector's protocol messages are printed to the standard output.
sql::Driver *driver;
int on_off = 1;
/* Using the Driver to create a connection */
driver = get_driver_instance();
std::auto_ptr< sql::Connection > con(driver->connect(host, user, pass));
/*
Activate debug trace of the MySQL client library (C API)
Only available with a debug build of the MySQL client library!
*/
con->setClientOption("libmysql_debug", "d:t:O,client.trace");
/*
Connector/C++ tracing is available if you have compiled the
driver using cmake -DMYSQLCPPCONN_TRACE_ENABLE:BOOL=1
*/
con->setClientOption("client_trace", &on_off);
21.4.9. MySQL Connector/C++ Usage Notes
MySQL Connector/C++ is compatible with the JDBC 4.0 API. See the JDBC overview for information on JDBC 4.0. Please also check the examples/ directory of the download package.
The MySQL Connector/C++ sql::DataType class defines the following JDBC standard data types: UNKNOWN, BIT, TINYINT, SMALLINT, MEDIUMINT, INTEGER, BIGINT, REAL, DOUBLE, DECIMAL, NUMERIC, CHAR, BINARY, VARCHAR, VARBINARY, LONGVARCHAR, LONGVARBINARY, TIMESTAMP, DATE, TIME, GEOMETRY, ENUM, SET, SQLNULL.
MySQL Connector/C++ does not support the following JDBC standard data types: ARRAY, BLOB, CLOB, DISTINCT, FLOAT, OTHER, REF, STRUCT.
DatabaseMetaData::supportsBatchUpdates() returns true because MySQL supports batch updates in general. However, the MySQL Connector/C++ API provides no API calls for batch updates.
Two non-JDBC methods let you fetch and set unsigned integers: getUInt64() and getUInt(). These are available for ResultSet and Prepared_Statement:
ResultSet::getUInt64()
ResultSet::getUInt()
Prepared_Statement::setUInt64()
Prepared_Statement::setUInt()
The corresponding getLong() and setLong() methods have been removed.
The DatabaseMetaData::getColumns() method has 23 columns in its result set, rather than the 22 columns defined by JDBC. The first 22 columns are as described in the JDBC documentation, but column 23 is new:
23. IS_AUTOINCREMENT: A string which is “YES” if the column is an auto-increment column, “NO” otherwise.
MySQL Connector/C++ may return different metadata for the same column, depending on the method you call.
Suppose that you have a column that accepts a character set and a collation in its specification and you specify a binary collation, such as:
VARCHAR(20) CHARACTER SET utf8 COLLATE utf8_bin
The server sets the BINARY flag in the result set metadata of this column. The ResultSetMetadata::getColumnTypeName() method uses the metadata and will report, due to the BINARY flag, that the column type name is BINARY. This is illustrated here:
mysql> CREATE TABLE varbin (a VARCHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);
Query OK, 0 rows affected (0.00 sec)
mysql> select * from varbin;
Field 1: `a`
Catalog: `def`
Database: `test`
Table: `varbin`
Org_table: `varbin`
Type: VAR_STRING
Collation: latin1_swedish_ci (8)
Length: 20
Max_length: 0
Decimals: 0
Flags: BINARY
0 rows in set (0.00 sec)
mysql> SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME='varbin'\G
*************************** 1. row ***************************
TABLE_CATALOG: NULL
TABLE_SCHEMA: test
TABLE_NAME: varbin
COLUMN_NAME: a
ORDINAL_POSITION: 1
COLUMN_DEFAULT: NULL
IS_NULLABLE: YES
DATA_TYPE: varchar
CHARACTER_MAXIMUM_LENGTH: 20
CHARACTER_OCTET_LENGTH: 60
NUMERIC_PRECISION: NULL
NUMERIC_SCALE: NULL
CHARACTER_SET_NAME: utf8
COLLATION_NAME: utf8_bin
COLUMN_TYPE: varchar(20)
COLUMN_KEY:
EXTRA:
PRIVILEGES: select,insert,update,references
COLUMN_COMMENT:
1 row in set (0.01 sec)
However, INFORMATION_SCHEMA gives no hint in its COLUMNS table that metadata will contain the BINARY flag. DatabaseMetaData::getColumns() uses INFORMATION_SCHEMA and will report the type name VARCHAR for the same column. It also returns a different type code.
When inserting or updating BLOB or TEXT columns, MySQL Connector/C++ developers are advised not to use setString(). Instead, use the dedicated setBlob() API function.
The use of setString() can cause a Packet too large error message. The error occurs if the length of the string passed to the connector using setString() exceeds max_allowed_packet (minus a few bytes reserved in the protocol for control purposes). This situation is not handled in MySQL Connector/C++, because it could lead to security issues, such as extremely large memory allocation requests due to malevolently long strings.
If setBlob() is used, this problem does not arise because setBlob() takes a streaming approach based on std::istream. When sending the data from the stream to MySQL Server, MySQL Connector/C++ splits the stream into chunks appropriate for MySQL Server using the current max_allowed_packet setting.
Caution
When using setString(), it is not possible to set max_allowed_packet to a value large enough for the string prior to passing it to MySQL Connector/C++. That configuration option cannot be changed within a session.
This difference from the JDBC specification ensures that MySQL Connector/C++ is not vulnerable to memory flooding attacks.
In general, MySQL Connector/C++ works with MySQL 5.0, but it is not completely supported. Some methods may not be available when connecting to MySQL 5.0. This is because the Information Schema is used to obtain the requested information. There are no plans to improve the support for 5.0 because the current GA version of MySQL Server is 5.6. MySQL Connector/C++ is primarily targeted at the MySQL Server GA version that is available on its release.
The following methods throw a sql::MethodNotImplemented exception when you connect to a MySQL server earlier than 5.1:
DatabaseMetadata::getCrossReference()
DatabaseMetadata::getExportedKeys()
MySQL Connector/C++ includes a Connection::getClientOption() method that is not included in the JDBC API specification. The prototype is:
void getClientOption(const std::string & optionName, void * optionValue)
The method can be used to check the value of connection properties set when establishing a database connection. The values are returned through the optionValue argument passed to the method with the type void *.
Currently, getClientOption() supports fetching the optionValue of the following options:
metadataUseInfoSchema
defaultStatementResultType
defaultPreparedStatementResultType
For metadataUseInfoSchema, interpret the optionValue argument as a boolean upon return.
For defaultStatementResultType and defaultPreparedStatementResultType, interpret the optionValue argument as an integer upon return.
The connection property can be set either when establishing the connection through the connection property map, or using void Connection::setClientOption(const std::string & optionName, const void * optionValue) where optionName is assigned the value metadataUseInfoSchema.
Some examples:
bool isInfoSchemaUsed;
conn->getClientOption("metadataUseInfoSchema", (void *) &isInfoSchemaUsed);
int defaultStmtResType;
int defaultPStmtResType;
conn->getClientOption("defaultStatementResultType", (void *) &defaultStmtResType);
conn->getClientOption("defaultPreparedStatementResultType", (void *) &defaultPStmtResType);
MySQL Connector/C++ supports the following methods not found in the JDBC API standard:
std::string MySQL_Connection::getSessionVariable(const std::string & varname)
void MySQL_Connection::setSessionVariable(const std::string & varname, const std::string & value)
These methods get and set MySQL session variables. Both are members of the MySQL_Connection class.
getSessionVariable() is equivalent to executing the following and fetching the first return value:
SHOW SESSION VARIABLES LIKE "<varname>"
You can use the “%” and “_” SQL pattern characters in <varname>.
setSessionVariable() is equivalent to executing:
SET SESSION <varname> = <value>
Fetching the value of a column can sometimes return different values depending on whether the call is made from a Statement or Prepared Statement. This is because the protocol used to communicate with the server differs depending on whether a Statement or Prepared Statement is used.
To illustrate this, consider the case where a column has been defined as type BIGINT. The most negative BIGINT value is then inserted into the column. If a Statement and Prepared Statement are created that perform a GetUInt64() call, then the results will be different in each case. The Statement returns the maximum positive value for BIGINT. The Prepared Statement returns 0.
The difference results from the fact that Statements use a text protocol, and Prepared Statements use a binary protocol. With the binary protocol in this case, a binary value is returned from the server that can be interpreted as an int64. In the preceding scenario, a very large negative value is fetched with GetUInt64(), which fetches unsigned integers. Because the large negative value cannot be sensibly converted to an unsigned value, 0 is returned.
In the case of the Statement, which uses the text protocol, values are returned from the server as strings, and then converted as required. When a string value is returned from the server in the preceding scenario, the large negative value must be converted by the runtime library function strtoul(), which GetUInt64() calls. The behavior of strtoul() is dependent upon the specific runtime and host operating system, so the results can be platform dependent. In the case, given a large positive value was actually returned.
Although it is very rare, there are some cases where Statements and Prepared Statements can return different values unexpectedly, but this usually only happens in extreme cases such as the one mentioned.
The JDBC documentation lists many fields for the DatabaseMetaData class. JDBC also appears to define certain values for those fields. However, MySQL Connector/C++ does not define certain values for those fields. Internally enumerations are used and the compiler determines the values to assign to a field.
To compare a value with the field, use code such as the following, rather than making assumptions about specific values for the attribute:
// dbmeta is an instance of DatabaseMetaData
if (myvalue == dbmeta->attributeNoNulls) {
...
}
Usually myvalue will be a column from a result set holding metadata information. MySQL Connector/C++ does not guarantee that attributeNoNulls is 0. It can be any value.
When programming stored procedures, JDBC has available an extra class, an extra abstraction layer for callable statements, the CallableStatement class. As this class is not present in MySQL Connector/C++, use the methods from the Statement and PreparedStatement classes to execute a stored procedure using CALL.
21.4.10. MySQL Connector/C++ Known Bugs and Issues
Please report bugs through the MySQL Bug System. See Section 1.7, “How to Report Bugs or Problems”.
For release notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release Notes.
When linking against a static library for 1.0.3 on Windows, define CPPDBC_PUBLIC_FUNC either in the compiler options (preferable) or with /D "CPPCONN_PUBLIC_FUNC=". You can also explicitly define it in your code by placing #define CPPCONN_PUBLIC_FUNC before the header inclusions.
Generally speaking, C++ library binaries are less portable than C library binaries. Issues can be caused by name mangling, different Standard Template Library (STL) versions, and using different compilers and linkers for linking against the libraries than were used for building the library itself.
Even a small change in the compiler version can cause problems. If you obtain error messages that you suspect are related to binary incompatibilities, build MySQL Connector/C++ from source, using the same compiler and linker that you will use to build and link your application.
Due to the variations between Linux distributions, compiler and linker versions and STL versions, it is not possible to provide binaries for each and every possible configuration. However, the MySQL Connector/C++ binary distributions contain a README file that describes the environment and settings used to build the binary versions of the libraries.
To avoid potential crashes, the build configuration of MySQL Connector/C++ should match the build configuration of the application using it. For example, do not use the release build of MySQL Connector/C++ with a debug build of the client application.
21.4.11. MySQL Connector/C++ Support
For general discussion of the MySQL Connector/C++ please use the C/C++ community forum or join the MySQL Connector/C++ mailing list.
Bugs can be reported at the MySQL bug Web site.
For release notes detailing the changes in each release of MySQL Connector/C++, see MySQL Connector/C++ Release Notes.
For Licensing questions, and to purchase MySQL Products and Services, please see http://www.mysql.com/buy-mysql/
21.5. MySQL Connector/C
MySQL Connector/C is a client library that implements the C API for client/server communication. It is a standalone replacement for the MySQL client library shipped with MySQL Server distributions. See Section 21.8.1, “MySQL C API Implementations”.
Reasons to use MySQL Connector/C:
If you need only the client library, MySQL Connector/C provides everything required. There is no need to compile or install the MySQL Server package, which is much larger.
MySQL Connector/C does not rely on the MySQL Server release cycle, so bug fixes and new features can be distributed independently of MySQL Server releases.
For documentation of the C API implemented by MySQL Connector/C, see Section 21.8, “MySQL C API”.
For release notes detailing the changes in each release of MySQL Connector/C, see MySQL Connector/C Release Notes.
The following discussion covers these topics:
MySQL Connector/C supported platforms
MySQL Connector/C distribution contents
Obtaining and installing MySQL Connector/C
Building client programs that use MySQL Connector/C
21.5.1. MySQL Connector/C Supported Platforms
The following table indicates the platforms on which MySQL Connector/C has been tested.
Table 21.28. Supported Platforms for MySQL Connector/C 6.0.2
Platform | Versions |
---|---|
Windows | Windows 2000, XP, Vista, Server 2003, Server 2008 |
Linux | RHEL 4, 5; SuSE LES 9, 10; generic glibc 2-based Linux systems |
Solaris | 8, 9, 10 |
Mac OS X | 10.4, 10.5 |
FreeBSD | 6, 7 |
HP-UX | 11.11, 11.23, 11.31 |
IBM AIX | 5.3 |
21.5.2. MySQL Connector/C Distribution Contents
A MySQL Connector/C distribution contains the header, library, and utility files necessary to build MySQL client applications that communicate with MySQL Server using the C API.
Distributions are available in binary and source formats. A binary distribution contains the header, library, and utility components discussed following, compiled and ready for use in writing client programs. A source distribution contains the source files required to produce the same headers, libraries, and utilities included in a binary distribution, but you compile them yourself.
MySQL Connector/C distributions include these components:
A set of .h header files that C applications include at compile time. These files are located in the include directory.
Static and dynamic libraries that C applications link to at link time. These libraries are located in the lib directory. The library names depend on the library type and platform for which a distribution is built:
On Unix (and Unix-like) sytems, the static library is libmysqlclient.a. The dynamic library is libmysqlclient.so on most Unix systems and libmysqlclient.dylib on Mac OS X.
On Windows, the static library is mysqlclient.lib and the dynamic library is libmysql.dll. Windows distributions also include libmysql.lib, a static import library needed for using the dynamic library.
Utilities. MySQL Connector/C includes the mysql_config utility, located in the bin directory.
21.5.3. Obtaining MySQL Connector/C
To obtain a distribution, visit MySQL Connector/C downloads. For a list of supported platforms, see Section 21.5.1, “MySQL Connector/C Supported Platforms”.
21.5.4. Installing MySQL Connector/C from a Binary Distribution
On Unix and Unix-like systems, a MySQL Connector/C binary distribution is packaged as a compressed tar file, denoted here as PACKAGE.tar.gz. Download the distribution file and unpack it in the intended installation directory using this command:
shell> tar zxvf PACKAGE.tar.gz
Windows users can choose between two binary packaging formats:
Windows MSI Installer (.msi file): To use the MSI Installer, launch it and follow the prompts in the screens it presents to install MySQL Connector/C in the location of your choosing.
Zip archive without installer (.zip file): To use a Zip archive, unpack it in the intended installation directory using WinZip or another tool that can read .zip files.
.tar.gz and .zip packages unpack into a directory named PACKAGE, which is a value such as mysql-connector-c-6.0.2-linux-rhel5-x86-64bit. If you want a simpler name to work with, rename the directory. On Unix, an alternative is to create a symbolic link with a simpler name:
shell> ln -s mysql-connector-c-6.0.2-linux-rhel5-x86-64bit connector-c
21.5.5. Installing MySQL Connector/C from Source
A MySQL Connector/C source distribution is packaged as a compressed tar file or Zip archive, denoted here as PACKAGE.tar.gz or PACKAGE.zip. A source distribution can be used on any supported platform listed in Section 21.5.1, “MySQL Connector/C Supported Platforms”.
Download the distribution file and unpack it in the intended installation directory. To unpack a compressed tar file, use this command:
shell> tar zxvf PACKAGE.tar.gz
To unpack a Zip archive, use WinZip or another tool that can read .zip files.
After unpacking the distribution, build it using the following instructions appropriate for your platform.
21.5.5.1. Building MySQL Connector/C from Source on Unix
If the native compiler toolset for the target platform is available (for example, SunStudio for Solaris), you can use that for compilation. Alternatively, the GNU toolset can be used on all platforms.
You also need CMake 2.6 or newer, which is available from cmake.org.
To build and install the source distribution, use the following procedure:
Change location to the top-level directory of the source distribution.
Generate the Makefile:
shell> cmake -G "Unix Makefiles"
Or, for a Debug build:
shell> cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Debug
By default, the installation location for MySQL Connector/C is /usr/local/mysql. To change this location, use the CMAKE_INSTALL_PREFIX option to specify a different directory when generating the Makefile. For example:
shell> cmake -G "Unix Makefiles" -DCMAKE_INSTALL_PREFIX=/opt/local/mysql
For other CMake options that you might find useful, see Section 21.5.5.3, “Other Build Options”.
Build the project:
shell> make
As root, install the MySQL Connector/C headers, libraries, and utilities:
root-shell> make install
21.5.5.2. Building MySQL Connector/C from Source on Microsoft Windows
MySQL Connector/C can be built on several versions of Microsoft Windows, listed in Section 21.5.1, “MySQL Connector/C Supported Platforms”.
Microsoft Visual Studio 8 or 9 is recommended. The Express Edition of Visual Studio and other compilers might work, but are untested.
You also need CMake 2.6 or newer, which is available from cmake.org.
To build and install the source distribution, use the following procedure:
Set the environment variables for the Visual Studio toolchain. Visual Studio includes a batch file to set these for you, and installs a shortcut in the Start menu to open a command prompt with these variables set.
Change location to the top-level directory of the source distribution.
Generate the Makefile by entering the following command in a command-prompt window:
shell> cmake -G "Visual Studio 9 2008"
For other CMake options that you might find useful, see Section 21.5.5.3, “Other Build Options”.
The result of the cmake command is a project (solution) file, libmysql.sln, that you can open with Visual Studio. Alternatively, build from the command line with either of these commands:
shell> devenv.com libmysql.sln /build Release
shell> devenv.com libmysql.sln /build RelWithDebInfo
For other versions of Visual Studio or for an nmake-based build, use the following command to check which generators can be specified with the -G option:
shell> cmake --help
To compile a Debug build, you must set the CMake build type so the correct external library versions are used, then compile using the Debug solution configuration:
shell> cmake -G "Visual Studio 9 2008" -DCMAKE_BUILD_TYPE=Debug
shell> devenv.com libmysql.sln /build Debug
A normal build builds the C API libraries for the lib directory. A Debug build additionally builds debug libraries for the lib/debug directory. You must use the debug libraries when compiling clients built using the debug C runtime.
Use the install operation provided by your development environment to install the MySQL Connector/C headers, libraries, and utilities. You can also use this CMake command:
shell> cmake --build . --target INSTALL --config RelWithDebInfo
21.5.5.3. Other Build Options
The following table shows other options that can be used when building MySQL Connector/C from source.
Table 21.29. Build Options for MySQL Connector/C
Build Option | Description |
---|---|
-DWITH_OPENSSL=1 | Enable dynamic linking to the system OpenSSL library. |
-DWITH_EXTERNAL_ZLIB=1 | Enable dynamic linking to the system Zlib library. |
21.5.6. Testing MySQL Connector/C
To test MySQL Connector/C, a running MySQL server instance must be available. Before you run the test suite, specify the following environment variables:
MYSQL_TEST_HOST: The host where the MySQL server is running (default localhost)
MYSQL_TEST_USER: The user name of the MySQL account to use
MYSQL_TEST_PASSWD: The password of the MySQL account to use
MYSQL_TEST_PORT: The TCP/IP port to connect to
MYSQL_TEST_SOCKET: The socket file to connect to
MYSQL_TEST_DB: The default database to use (default test)
To run the test suite, execute ctest from the command line:
shell> ctest
21.5.7. Building MySQL Connector/C Applications
For instructions on building C applications to use MySQL Connector/C, see Section 21.8.3.1, “Building C API Client Programs”. To enable your compiler to find the header and library files under the directory where you installed MySQL Connector/C, specify the appropriate compile-time options, as indicated in that section.
21.6. MySQL Connector/Python
MySQL Connector/Python allows Python programs to access MySQL databases, using an API that is compliant with the Python DB API version 2.0. It is written in pure Python and does not have any dependencies except for the Python Standard Library.
For release notes detailing the changes in each release of Connector/Python, see MySQL Connector/Python Release Notes.
MySQL Connector/Python includes support for:
Almost all features provided by MySQL Server up to and including MySQL Server version 5.5.
Converting parameter values back and forth between Python and MySQL data types, for example Python datetime and MySQL DATETIME. You can turn automatic conversion on for convenience, or off for optimal performance.
All MySQL extensions to standard SQL syntax.
Protocol compression, which enables compressing the data stream between the client and server.
Connections using TCP/IP sockets and on Unix using Unix sockets.
Secure TCP/IP connections using SSL.
Self-contained driver. Connector/Python does not require the MySQL client library or any Python modules outside the standard library.
MySQL Connector/Python supports from Python version 2.4 through 2.7, and Python 3.1 and later. Note that Connector/Python does not support the old MySQL Server authentication methods, which means that MySQL versions prior to 4.1 will not work.
21.6.1. Guidelines for Python Developers
The following guidelines cover aspects of developing MySQL applications that might not be immediately obvious to developers coming from a Python background:
For security, do not hardcode the values needed to connect and log into the database in your main script. Python has the convention of a config.py module, where you can keep such values separate from the rest of your code.
Python scripts often build up and tear down large data structures in memory, up to the limits of available RAM. Because MySQL often deals with data sets that are many times larger than available memory, techniques that optimize storage space and disk I/O are especially important. For example, in MySQL tables, you typically use numeric IDs rather than string-based dictionary keys, so that the key values are compact and have a predictable length. This is especially important for columns that make up the primary key for an InnoDB table, because those column values are duplicated within each secondary index.
Any application that accepts input must expect to handle bad data.
The bad data might be accidental, such as out-of-range values or misformatted strings. The application can use server-side checks such as unique constraints and NOT NULL constraints, to keep the bad data from ever reaching the database. On the client side, use techniques such as exception handlers to report any problems and take corrective action.
The bad data might also be deliberate, representing a “SQL injection” attack. For example, input values might contain quotation marks, semicolons, % and _ wildcard characters and other characters significant in SQL statements. Validate input values to make sure they have only the expected characters. Escape any special characters that could change the intended behavior when substituted into a SQL statement. Never concatenate a user input value into a SQL statement without doing validation and escaping first. Even when accepting input generated by some other program, expect that the other program could also be hacked and be sending you incorrect or malicious data.
Because the result sets from SQL queries can be very large, use the appropriate method to retrieve items from the result set as you loop through them. fetchone() retrieves a single item, when you know the result set contains a single row. fetchall() retrieves all the items, when you know the result set contains a limited number of rows that can fit comfortably into memory. fetchmany() is the general-purpose method when you cannot predict the size of the result set: you keep calling it and looping through the returned items, until there are no more results to process.
Since Python already has convenient modules such as pickle and cPickle to read and write data structures on disk, the data that you choose store in MySQL instead is likely to have special characteristics:
Too large to all fit in memory at one time. You use SELECT statements to query only the precise items you need, and aggregate functions to perform calculations across multiple items. You configure the innodb_buffer_pool_size option within the MySQL server to dedicate a certain amount of RAM for caching query results.
Too complex to be represented by a single data structure. You divide the data between different SQL tables. You can recombine data from multiple tables by using a join query. You make sure that related data is kept in sync between different tables by setting up foreign key relationships.
Updated frequently, perhaps by multiple users simultaneously. The updates might only affect a small portion of the data, making it wasteful to write the whole structure each time. You use the SQL INSERT, UPDATE, and DELETE statements to update different items concurrently, writing only the changed values to disk. You use InnoDB tables and transactions to keep write operations from conflicting with each other, and to return consistent query results even as the underlying data is being updated.
Building in MySQL best practices for performance can help your application to scale without requiring major rewrites and architectural changes. See Chapter 8, Optimization for best practices for MySQL performance. It offers guidelines and tips for SQL tuning, database design, and server configuration.
You can avoid reinventing the wheel by learning the MySQL SQL statements for common operations: operators to use in queries, techniques for bulk loading data, and so on. Some statements and clauses are extensions to the basic ones defined by the SQL standard. See Section 13.2, “Data Manipulation Statements”, Section 13.1, “Data Definition Statements”, and Section 13.2.9, “SELECT Syntax” for the main classes of statements.
Issuing SQL statements from Python typically involves declaring very long, possibly multi-line string literals. Because string literals within the SQL statements could be enclosed by single quotation, double quotation marks, or contain either of those characters, for simplicity you can use Python's triple-quoting mechanism to enclose the entire statement. For example:
'''It doesn't matter if this string contains 'single'
or "double" quotes, as long as there aren't 3 in a
row.'''
You can use either of the ' or " characters for triple-quoting multi-line string literals.
Many of the secrets to a fast, scalable MySQL application involve using the right syntax at the very start of your setup procedure, in the CREATE TABLE statements. For example, Oracle recommends the ENGINE=INNODB clause for most tables, and makes it the default in MySQL 5.5 and up. Using InnoDB tables enables transactional behavior that helps scalability of read-write workloads and offers automatic crash recovery. A follow-on recommendation is to declare a numeric primary key for each table, which offers the fastest way to look up values and can act as a pointer to associated values in other tables (a foreign key). Also within the CREATE TABLE statement, using the most compact column data types that meet your application requirements helps performance and scalability, as the database server moves large amounts of data back and forth between memory and disk.
21.6.2. Connector/Python Versions
MySQL Connector/Python v1.0.x series went going through a series of beta releases, leading to the first generally available (GA) version 1.0.7. Any development releases prior to general availability are not supported now that the GA version is released.
The following table summarizes the available Connector/Python versions:
Table 21.30. Connector/Python Version Reference
Connector/Python Version | MySQL Server Versions | Python Versions | Support Status for Connector |
---|---|---|---|
1.0 | 5.6, 5.5 (5.1, 5.0, 4.1) | 2.7, 2.6 (2.5, 2.4); 3.1 and later | Recommended version |
Note
MySQL server and Python versions within brackets are known to work with Connector/Python, but are not officially supported. Bugs might not get fixed for those versions.
21.6.3. Connector/Python Installation
Connector/Python runs on any platform where Python is installed. Python comes pre-installed on almost any Linux distribution or UNIX-like system such as Apple Mac OS X and FreeBSD. On Microsoft Windows systems, you can install Python using the installer found on the Python Download website.
Connector/Python is a pure Python implementation of the MySQL Client/Server protocol, meaning it does not require any other MySQL client libraries or other components. It also has no third-party dependencies. If you need SSL support, verify that your Python installation has been compiled using the OpenSSL libraries.
The installation of Connector/Python is similar on every platform and follows the standard Python Distribution Utilities or Distutils. Some platforms have specific packaging, for example RPM, and, when made available, the installation of these will be covered in this manual.
Python terminology regarding distributions:
Source Distribution is a distribution that contains only source files and is generally platform independent.
Built Distribution can be regarded as a binary package. It contains both sources and platform-independent bytecode.
21.6.3.1. Installing Connector/Python Source Distribution on Linux, UNIX, or Mac OS X
On UNIX-like systems such as Linux distributions, Solaris, Apple Mac OS X, and FreeBSD, you can download Connector/Python as a tar archive from http://dev.mysql.com/downloads/connector/python/.
To install Connector/Python from the .tar.gz file, download the latest version and follow these steps:
shell> gunzip mysql-connector-python-1.0.6b1.tar.gz
shell> tar xf mysql-connector-python-1.0.6b1.tar
shell> cd mysql-connector-python-1.0.6b1
shell> sudo python setup.py install
On UNIX-like systems, Connector/Python gets installed in the default location /prefix/lib/pythonX.Y/site-packages/, where prefix is the location where Python was installed and X.Y is the version of Python. See How installation works in the Python manual.
If you are not sure where Connector/Python was installed, do the following to retrieve the location:
shell> python
>>> from distutils.sysconfig import get_python_lib
>>> print get_python_lib() # Python v2.x
/Library/Python/2.7/site-packages
>>> print(get_python_lib()) # Python v3.x
/Library/Frameworks/Python.framework/Versions/3.1/lib/python3.1/site-packages
Note
The above example shows the default installation location on Mac OS X 10.7.
21.6.3.2. Installing Connector/Python Source Distribution on Microsoft Windows
On Microsoft Windows systems, you can download Connector/Python as a zip archive from http://dev.mysql.com/downloads/connector/python/.
Make sure that the Python executable is available in the Windows %PATH% setting. For more information about installation and configuration of Python on Windows, see the section Using Python on Windows in the Python documentation.
To install Connector/Python from the .zip file, download the latest version and follow these steps:
Unpack the downloaded zip archive into a directory of your choice. For example, into the folder C:\mysql-connector\. Use the appropriate unzip command for your system, for example, unzip, pkunzip, and so on.
Start a console window (or a DOS window) and change to the folder where you unpacked the Connector/Python zip archive.
shell> cd C:\mysql-connector\
Once inside the Connector/Python folder, do the following:
shell> python setup.py install
On Windows, Connector/Python gets installed in the default location C:\PythonX.Y\Lib\site-packages\ where X.Y is the Python version you used to install the connector.
If you are not sure where Connector/Python ended up, do the following to retrieve the location where packages get installed:
shell> python
>>> from distutils.sysconfig import get_python_lib
>>> print get_python_lib() # Python v2.x
>>> print(get_python_lib()) # Python v3.x
21.6.3.3. Verifying Your Connector/Python Installation
To test that your Connector/Python installation is working and is able to connect to a MySQL database server, you can run a very simple program where you substitute the login credentials and host information of the MySQL server. See Section 21.6.4.1, “Connecting to MySQL Using Connector/Python” for an example.
21.6.4. Connector/Python Coding Examples
These coding examples illustrate how to develop Python applications and scripts which connect to a MySQL Server using MySQL Connector/Python.
21.6.4.1. Connecting to MySQL Using Connector/Python
The connect() constructor is used for creating a connection to the MySQL server and returns a MySQLConnection object.
The following example shows how to connect to the MySQL server:
import mysql.connector
cnx = mysql.connector.connect(user='scott', password='tiger',
host='127.0.0.1',
database='employees')
cnx.close()
See Section 21.6.6, “Connector/Python Connection Arguments” for all possible connection arguments.
It is also possible to create connection objects using the connection.MySQLConnection() class. Both methods, using the connect() constructor, or the class directly, are valid and functionally equal, but using connector() is preferred and will be used in most examples in this manual.
To handle connection errors, use the try statement and catch all errors using the errors.Error exception:
import mysql.connector
from mysql.connector import errorcode
try:
cnx = mysql.connector.connect(user='scott',
database='testt')
except mysql.connector.Error as err:
if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
print("Something is wrong your username or password")
elif err.errno == errorcode.ER_BAD_DB_ERROR:
print("Database does not exists")
else:
print(err)
else:
cnx.close()
If you have lots of connection arguments, it's best to keep them in a dictionary and use the **-operator. Here is an example:
import mysql.connector
config = {
'user': 'scott',
'password': 'tiger',
'host': '127.0.0.1',
'database': 'employees',
'raise_on_warnings': True,
}
cnx = mysql.connector.connect(**config)
cnx.close()
21.6.4.2. Creating Tables Using Connector/Python
All DDL (Data Definition Language) statements are executed using a handle structure known as a cursor. The following examples show how to create the tables of the employees database. You will need them for the other examples.
In a MySQL server, tables are very long-lived objects, and are often accessed by multiple applications written in different languages. You might typically work with tables that are already set up, rather than creating them within your own application. Avoid setting up and dropping tables over and over again, as that is an expensive operation. The exception is temporary tables, which can be created and dropped quickly within an application.
from __future__ import print_function
import mysql.connector
from mysql.connector import errorcode
DB_NAME = 'employees'
TABLES = {}
TABLES['employees'] = (
"CREATE TABLE `employees` ("
" `emp_no` int(11) NOT NULL AUTO_INCREMENT,"
" `birth_date` date NOT NULL,"
" `first_name` varchar(14) NOT NULL,"
" `last_name` varchar(16) NOT NULL,"
" `gender` enum('M','F') NOT NULL,"
" `hire_date` date NOT NULL,"
" PRIMARY KEY (`emp_no`)"
") ENGINE=InnoDB")
TABLES['departments'] = (
"CREATE TABLE `departments` ("
" `dept_no` char(4) NOT NULL,"
" `dept_name` varchar(40) NOT NULL,"
" PRIMARY KEY (`dept_no`), UNIQUE KEY `dept_name` (`dept_name`)"
") ENGINE=InnoDB")
TABLES['salaries'] = (
"CREATE TABLE `salaries` ("
" `emp_no` int(11) NOT NULL,"
" `salary` int(11) NOT NULL,"
" `from_date` date NOT NULL,"
" `to_date` date NOT NULL,"
" PRIMARY KEY (`emp_no`,`from_date`), KEY `emp_no` (`emp_no`),"
" CONSTRAINT `salaries_ibfk_1` FOREIGN KEY (`emp_no`) "
" REFERENCES `employees` (`emp_no`) ON DELETE CASCADE"
") ENGINE=InnoDB")
TABLES['dept_emp'] = (
"CREATE TABLE `dept_emp` ("
" `emp_no` int(11) NOT NULL,"
" `dept_no` char(4) NOT NULL,"
" `from_date` date NOT NULL,"
" `to_date` date NOT NULL,"
" PRIMARY KEY (`emp_no`,`dept_no`), KEY `emp_no` (`emp_no`),"
" KEY `dept_no` (`dept_no`),"
" CONSTRAINT `dept_emp_ibfk_1` FOREIGN KEY (`emp_no`) "
" REFERENCES `employees` (`emp_no`) ON DELETE CASCADE,"
" CONSTRAINT `dept_emp_ibfk_2` FOREIGN KEY (`dept_no`) "
" REFERENCES `departments` (`dept_no`) ON DELETE CASCADE"
") ENGINE=InnoDB")
TABLES['dept_manager'] = (
" CREATE TABLE `dept_manager` ("
" `dept_no` char(4) NOT NULL,"
" `emp_no` int(11) NOT NULL,"
" `from_date` date NOT NULL,"
" `to_date` date NOT NULL,"
" PRIMARY KEY (`emp_no`,`dept_no`),"
" KEY `emp_no` (`emp_no`),"
" KEY `dept_no` (`dept_no`),"
" CONSTRAINT `dept_manager_ibfk_1` FOREIGN KEY (`emp_no`) "
" REFERENCES `employees` (`emp_no`) ON DELETE CASCADE,"
" CONSTRAINT `dept_manager_ibfk_2` FOREIGN KEY (`dept_no`) "
" REFERENCES `departments` (`dept_no`) ON DELETE CASCADE"
") ENGINE=InnoDB")
TABLES['titles'] = (
"CREATE TABLE `titles` ("
" `emp_no` int(11) NOT NULL,"
" `title` varchar(50) NOT NULL,"
" `from_date` date NOT NULL,"
" `to_date` date DEFAULT NULL,"
" PRIMARY KEY (`emp_no`,`title`,`from_date`), KEY `emp_no` (`emp_no`),"
" CONSTRAINT `titles_ibfk_1` FOREIGN KEY (`emp_no`)"
" REFERENCES `employees` (`emp_no`) ON DELETE CASCADE"
") ENGINE=InnoDB")
The above code shows how we are storing the CREATE statements in a Python dictionary called TABLES. We also define the database in a global variable called DB_NAME, which allows you to easily use a different schema.
cnx = mysql.connector.connect(user='scott')
cursor = cnx.cursor()
A single MySQL server can contain multiple databases. Typically, you specify the database to switch to when connecting to the MySQL server. This example does not connect to the database upon connection, so that it can make sure the database exists, and create it if not.
def create_database(cursor):
try:
cursor.execute(
"CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format(DB_NAME))
except mysql.connector.Error as err:
print("Failed creating database: {}".format(err))
exit(1)
try:
cnx.database = DB_NAME
except mysql.connector.Error as err:
if err.errno == errorcode.ER_BAD_DB_ERROR:
create_database(cursor)
cnx.database = DB_NAME
else:
print(err)
exit(1)
We first try to change to a particular database using the database property of the connection object cnx. If there is an error, we examine the error number to check if the database does not exist. If so, we call the create_database function to create it for us.
On any other error, the application exits and displays the error message.
for name, ddl in TABLES.iteritems():
try:
print("Creating table {}: ".format(name), end='')
cursor.execute(ddl)
except mysql.connector.Error as err:
if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:
print("already exists.")
else:
print(err.errmsg)
else:
print("OK")
cursor.close()
cnx.close()
After we successfully created or changed to the target database, we create the tables by iterating over the items of the TABLES dictionary.
We handle the error when the table already exists by simply notifying the user that it was already there. Other errors are printed, but we simply continue creating tables. (We show how to handle the “table already exists” condition for illustration purposes. In a real application, we would typically avoid the error condition entirely by using the IF NOT EXISTS clause of the CREATE TABLE statement.)
The output would be something like this:
Creating table employees: already exists.
Creating table salaries: already exists.
Creating table titles: OK
Creating table departments: already exists.
Creating table dept_manager: already exists.
Creating table dept_emp: already exists.
To populate the employees tables, use the dump files of the Employee Sample Database. Note that you only need the data dump files that you will find in an archive named like employees_db-dump-files-1.0.5.tar.bz2. After downloading the dump files, do the following from the command line, adding connection options to the mysql commands if necessary:
shell> tar xzf employees_db-dump-files-1.0.5.tar.bz2
shell> cd employees_db
shell> mysql employees < load_employees.dump
shell> mysql employees < load_titles.dump
shell> mysql employees < load_departments.dump
shell> mysql employees < load_salaries.dump
shell> mysql employees < load_dept_emp.dump
shell> mysql employees < load_dept_manager.dump
21.6.4.3. Inserting Data Using Connector/Python
Inserting or updating data is also done using the handler structure known as a cursor. When you use a transactional storage engine such as InnoDB (which is the default in MySQL 5.5 and later), you must commit the data after a sequence of INSERT, DELETE, and UPDATE statements.
In this example we show how to insert new data. The second INSERT depends on the value of the newly created primary key of the first. We are also demonstrating how to use extended formats. The task is to add a new employee starting to work tomorrow with a salary set to 50000.
Note
The following example uses tables created in the example Section 21.6.4.2, “Creating Tables Using Connector/Python”. The AUTO_INCREMENT column option for the primary key of the employees table is important to ensure reliable, easily searchable data.
from __future__ import print_function
from datetime import date, datetime, timedelta
import mysql.connector
cnx = mysql.connector.connect(user='scott', database='employees')
cursor = cnx.cursor()
tomorrow = datetime.now().date() + timedelta(days=1)
add_employee = ("INSERT INTO employees "
"(first_name, last_name, hire_date, gender, birth_date) "
"VALUES (%s, %s, %s, %s, %s)")
add_salary = ("INSERT INTO salaries "
"(emp_no, salary, from_date, to_date) "
"VALUES (%(emp_no)s, %(salary)s, %(from_date)s, %(to_date)s)")
data_employee = ('Geert', 'Vanderkelen', tomorrow, 'M', date(1977, 6, 14))
Insert new employee
cursor.execute(add_employee, data_employee)
emp_no = cursor.lastrowid
Insert salary information
data_salary = {
'emp_no': emp_no,
'salary': 50000,
'from_date': tomorrow,
'to_date': date(9999, 1, 1),
}
cursor.execute(add_salary, data_salary)
Make sure data is committed to the database
cnx.commit()
cursor.close()
cnx.close()
We first open a connection to the MySQL server and store the connection object in the variable cnx. We then create a new cursor, by default a MySQLCursor object, using the connection's cursor() method.
We could calculate tomorrow by calling a database function, but for clarity we do it in Python using the datetime module.
Both INSERT statements are stored in the variables called add_employee and add_salary. Note that the second INSERT statement uses extended Python format codes.
The information of the new employee is stored in the tuple data_employee. The query to insert the new employee is executed and we retrieve the newly inserted value for the column emp_no using the lastrowid property of the cursor object.
Next, we insert the new salary for the new employee. We are using the emp_no variable in the directory holding the data. This directory is passed to the execute() method of the cursor object.
Since by default Connector/Python turns autocommit off, and MySQL 5.5 and later uses transactional InnoDB tables by default, it is necessary to commit your changes using the connection's commit() method. You could also roll back using the rollback() method.
21.6.4.4. Querying Data Using Connector/Python
The following example shows how to query data using a cursor created using the connection's cursor() method. The data returned is formatted and printed on the console.
The task is to select all employees hired in the year 1999 and print their names with their hire date to the console.
import datetime
import mysql.connector
cnx = mysql.connector.connect(user='scott', database='employees')
cursor = cnx.cursor()
query = ("SELECT first_name, last_name, hire_date FROM employees "
"WHERE hire_date BETWEEN %s AND %s")
hire_start = datetime.date(1999, 1, 1)
hire_end = datetime.date(1999, 12, 31)
cursor.execute(query, (hire_start, hire_end))
for (first_name, last_name, hire_date) in cursor:
print("{}, {} was hired on {:%d %b %Y}".format(
last_name, first_name, hire_date))
cursor.close()
cnx.close()
We first open a connection to the MySQL server and store the connection object in the variable cnx. We then create a new cursor, by default a MySQLCursor object, using the connection's cursor() method.
In the preceding example, we store the SELECT statement in the variable query. Note that we are using unquoted %s-markers where dates should have been. Connector/Python converts hire_start and hire_end from Python types to a data type that MySQL understands and adds the required quotes. In this case, it replaces the first %s with '1999-01-01', and the second with '1999-12-31'.
We then execute the operation stored in the query variable using the execute() method. The data used to replace the %s-markers in the query is passed as a tuple: (hire_start, hire_end).
After executing the query, the MySQL server is ready to send the data. The result set could be zero rows, one row, or 100 million rows. Depending on the expected volume, you can use different techniques to process this result set. In this example, we use the cursor object as an iterator. The first column in the row will be stored in the variable first_name, the second in last_name, and the third in hire_date.
We print the result, formatting the output using Python's built-in format() function. Note that hire_date was converted automatically by Connector/Python to a Python datetime.date object. This means that we can easily format the date in a more human-readable form.
The output should be something like this:
..
Wilharm, LiMin was hired on 16 Dec 1999
Wielonsky, Lalit was hired on 16 Dec 1999
Kamble, Dannz was hired on 18 Dec 1999
DuBourdieux, Zhongwei was hired on 19 Dec 1999
Fujisawa, Rosita was hired on 20 Dec 1999
..
21.6.5. Connector/Python Tutorials
These tutorials illustrate how to develop Python applications and scripts that connect to a MySQL database server using MySQL Connector/Python.
21.6.5.1. Tutorial: Raise employee's salary using a buffering cursor
The following example script will give a long-overdue raise effective tomorrow to all employees who joined in the year 2000 and are still with the company.
We are using buffered cursors to iterate through the selected employees. This way we do not have to fetch the rows in a new variables, but can instead use the cursor as an iterator.
Note that the script is an example; there are other ways of doing this simple task.
from __future__ import print_function
from decimal import Decimal
from datetime import datetime, date, timedelta
import mysql.connector
Connect with the MySQL Server
cnx = mysql.connector.connect(user='scott', database='employees')
Get two buffered cursors
curA = cnx.cursor(buffered=True)
curB = cnx.cursor(buffered=True)
Query to get employees who joined in a period defined by two dates
query = (
"SELECT s.emp_no, salary, from_date, to_date FROM employees AS e "
"LEFT JOIN salaries AS s USING (emp_no) "
"WHERE to_date = DATE('9999-01-01')"
"AND e.hire_date BETWEEN DATE(%s) AND DATE(%s)")
UPDATE and INSERT statements for the old and new salary
update_old_salary = (
"UPDATE salaries SET to_date = %s "
"WHERE emp_no = %s AND from_date = %s")
insert_new_salary = (
"INSERT INTO salaries (emp_no, from_date, to_date, salary) "
"VALUES (%s, %s, %s, %s)")
Select the employees getting a raise
curA.execute(query, (date(2000, 1, 1), date(2001, 1, 1)))
Iterate through the result of curA
for (emp_no, salary, from_date, to_date) in curA:
Update the old and insert the new salary
new_salary = int(round(salary * Decimal('1.15')))
curB.execute(update_old_salary, (tomorrow, emp_no, from_date))
curB.execute(insert_new_salary,
(emp_no, tomorrow, date(9999, 1, 1,), new_salary))
Commit the changes
cnx.commit()
cnx.close()
21.6.6. Connector/Python Connection Arguments
The following lists the arguments that can be used to initiate a connection with the MySQL server using either:
Function mysql.connector.connect()
Class mysql.connector.MySQLConnection()
Table 21.31. Connection Arguments for Connector/Python
Argument Name | Default | Description |
---|---|---|
user (username*) | The username used to authenticate with the MySQL Server. | |
password (passwd*) | The password to authenticate the user with the MySQL Server. | |
database (db*) | Database name to use when connecting with the MySQL Server. | |
host | 127.0.0.1 | Hostname or IP address of the MySQL Server. |
port | 3306 | TCP/IP port of the MySQL Server. Must be an integer. |
unix_socket | The location of the Unix socket file. | |
use_unicode | True | Whether to use Unicode or not. |
charset | utf8 | Which MySQL character set to use. |
collation | utf8_general_ci | Which MySQL collation to use. |
autocommit | False | Whether to autocommit transactions. |
time_zone | Set the time_zone session variable at connection. | |
sql_mode | Set the sql_mode session variable at connection. | |
get_warnings | False | Whether to fetch warnings. |
raise_on_warnings | False | Whether to raise an exception on warnings. |
connection_timeout (connect_timeout*) | Timeout for the TCP and Unix socket connections. | |
client_flags | MySQL client flags. | |
buffered | False | Whether cursor object fetches the result immediately after executing query. |
raw | False | Whether MySQL results are returned as-is, rather than converted to Python types. |
ssl_ca | File containing the SSL certificate authority. | |
ssl_cert | File containing the SSL certificate file. | |
ssl_key | File containing the SSL key. | |
ssl_verify_cert | False | When set to True, checks the server certificate against the certificate file specified by the ssl_ca option. Any mismatch causes a ValueError exception. |
force_ipv6 | False | When set to True, uses IPv6 when an address resolves to both IPv4 and IPv6. By default, IPv4 is used in such cases. |
dsn | Not supported (raises NotSupportedError when used). |
* Synonymous argument name, available only for compatibility with other Python MySQL drivers. Oracle recommends not to use these alternative names.
MySQL Authentication
Authentication with MySQL will use username and password. Note that MySQL Connector/Python does not support the old, insecure password protocols of MySQL versions prior to 4.1.
When the database parameter is given, the current database is set to the given value. To later change the database, execute the MySQL USE command or set the database property of the MySQLConnection instance.
By default, Connector/Python tries to connect to a MySQL server running on localhost using TCP/IP. The host argument defaults to IP address 127.0.0.1 and port to 3306. Unix sockets are supported by setting unix_socket. Named pipes on the Windows platform are not supported.
Character Encoding
Strings coming from MySQL are by default returned as Python Unicode literals. To change this behavior, set use_unicode to False. You can change the character setting for the client connection through the charset argument. To change the character set after connecting to MySQL, set the charset property of the MySQLConnection instance. This technique is preferred over using the MySQL SET NAMES statement directly. Similar to the charset property, you can set the collation for the current MySQL session.
Transactions
Transactions are not automatically committed; call the commit() method of the MySQLConnection instance within your application after doing a set of related insert, update, and delete operations. For data consistency and high throughput for write operations, it is best to leave the autocommit configuration option turned off when using InnoDB or other transactional tables.
Time Zones
The time zone can be set per connection using the time_zone argument. This is useful if the MySQL server is set, for example, to UTC and TIMESTAMP values should be returned by MySQL converted to the PST time zone.
SQL Modes
MySQL supports so called SQL Modes. which will change the behavior of the server globally or per connection. For example, to have warnings raised as errors, set sql_mode to TRADITIONAL. For more information, see Section 5.1.7, “Server SQL Modes”.
Troubleshooting and Error Handling
Warnings generated by queries are fetched automatically when get_warnings is set to True. You can also immediately raise an exception by setting raise_on_warnings to True. Consider using the MySQL sql_mode setting for turning warnings into errors.
To set a timeout value for connections, use connection_timeout.
Enabling and Disabling Features through Client Flags
MySQL uses client flags to enable or disable features. Using the client_flags argument, you have control of what is set. To find out what flags are available, use the following:
from mysql.connector.constants import ClientFlag
print '\n'.join(ClientFlag.get_full_info())
If client_flags is not specified (that is, it is zero), defaults are used for MySQL v4.1 and later. If you specify an integer greater than 0, make sure all flags are set. A better way to set and unset flags is to use a list. For example, to set FOUND_ROWS, but disable the default LONG_FLAG:
flags = [ClientFlag.FOUND_ROWS, -ClientFlag.LONG_FLAG]
mysql.connector.connect(client_flags=flags)
Buffering for Result Sets
By default, MySQL Connector/Python does not buffer or pre-fetch results. This means that after a query is executed, your program is responsible of fetching the data. This avoids using excessive memory when queries return large result sets. If you know that the result set is small enough to handle all at once, fetching the results immediately by setting buffered to True. It is also possible to set this per cursor (see cursor manual).
Type Conversions
MySQL types will be converted automatically to Python types. For example, a DATETIME column becomes a datetime.datetime object. When conversion should be done differently, for example to get better performance, set raw to True.
Connecting through SSL
Using SSL connections is possible when your Python installation supports SSL, that is, when it is compiled against the OpenSSL libraries. When you provide the arguments ssl_ca, ssl_key and ssl_cert, the connection switches to SSL, and the client_flags option includes the ClientFlag.SSL value automatically. You can use this in combination with the compressed argument set to True.
Note (Example is valid for Python v2 and v3)
from __future__ import print_function
import sys
#sys.path.insert(0, 'python{0}/'.format(sys.version_info[0]))
import mysql.connector
from mysql.connector.constants import ClientFlag
config = {
'user': 'ssluser',
'password': 'asecret',
'host': '127.0.0.1',
'client_flags': [ClientFlag.SSL],
'ssl_ca': '/opt/mysql/ssl/ca-cert.pem',
'ssl_cert': '/opt/mysql/ssl/client-cert.pem',
'ssl_key': '/opt/mysql/ssl/client-key.pem',
}
cnx = mysql.connector.connect(**config)
cur = cnx.cursor(buffered=True)
cur.execute("SHOW STATUS LIKE 'Ssl_cipher'")
print(cur.fetchone())
cur.close()
cnx.close()
Compatibitility with Other Connection Interfaces
passwd, db and connect_timeout are valid for compatibility with other MySQL interfaces and are respectively the same as password, database and connection_timeout. The latter take precedence. Data source name syntax or dsn is not used; if specified, it raises a NotSupportedError exception.
21.6.7. Connector/Python API Reference
This section contains the public API reference of Connector/Python. Although valid for both Python 2 and Python 3, examples should be considered working for Python 2.7, and Python 3.1 and greater.
The following overview shows the mysql.connector package with its modules. Currently, only the most useful modules, classes and functions for end users are documented.
mysql.connector
errorcode
errors
connection
constants
conversion
cursor
dbapi
locales
eng
client_error
protocol
utils
21.6.7.1. Errors and Exceptions
The mysql.connector.errors module defines exception classes for errors and warnings raised by MySQL Connector/Python. Most classes defined in this module are available when you import mysql.connector.
The exception classes defined in this module follow mostly the Python Database Specification v2.0 (PEP-249). For some MySQL client or server errors it is not always clear which exception to raise. It is good to discuss whether an error should be reclassified by opening a bug report.
MySQL Server errors are mapped with Python exception based on their SQLState (see Section C.3, “Server Error Codes and Messages”). The following list shows the SQLState classes and the exception Connector/Python will raise. It is, however, possible to redefine which exception is raised for each server error. Note that the default exception is DatabaseError.
02: DataError
07: DatabaseError
08: OperationalError
0A: NotSupportedError
21: DataError
22: DataError
23: IntegrityError
24: ProgrammingError
25: ProgrammingError
26: ProgrammingError
27: ProgrammingError
28: ProgrammingError
2A: ProgrammingError
2B: DatabaseError
2C: ProgrammingError
2D: DatabaseError
2E: DatabaseError
33: DatabaseError
34: ProgrammingError
35: ProgrammingError
37: ProgrammingError
3C: ProgrammingError
3D: ProgrammingError
3F: ProgrammingError
40: InternalError
42: ProgrammingError
44: InternalError
HZ: OperationalError
XA: IntegrityError
0K: OperationalError
HY: DatabaseError
21.6.7.1.1. Module errorcode
This module contains both MySQL server and client error codes defined as module attributes with the error number as value. Using error codes instead of error numbers could make reading the source code a bit easier.
>>> from mysql.connector import errorcode
>>> errorcode.ER_BAD_TABLE_ERROR
1051
See Section C.3, “Server Error Codes and Messages” and Section C.4, “Client Error Codes and Messages”.
21.6.7.1.2. Exception errors.Error
This exception is the base class for all other exceptions in the errors module. It can be used to catch all errors in a single except statement.
The following example shows how we could catch syntax errors:
import mysql.connector
try:
cnx = mysql.connector.connect(user='scott', database='employees')
cursor = cnx.cursor()
cursor.execute("SELECT * FORM employees") # Syntax error in query
cnx.close()
except mysql.connector.Error as err:
print("Something went wrong: {}".format(err))
Initializing the exception supports a few optional arguments, namely msg, errno, values and sqlstate. All of them are optional and default to None. errors.Error isinternally used by Connector/Python to raise MySQL client and server errors and should not be used by your application to raise exceptions.
The following examples show the result when using no or a combination of the arguments:
>>> from mysql.connector.errors import Error
>>> str(Error())
'Unknown error'
>>> str(Error("Oops! There was an error."))
'Oops! There was an error.'
>>> str(Error(errno=2006))
'2006: MySQL server has gone away'
>>> str(Error(errno=2002, values=('/tmp/mysql.sock', 2)))
"2002: Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2)"
>>> str(Error(errno=1146, sqlstate='42S02', msg="Table 'test.spam' doesn't exist"))
"1146 (42S02): Table 'test.spam' doesn't exist"
The example which uses error number 1146 is used when Connector/Python receives an error packet from the MySQL Server. The information is parsed and passed to the Error exception as shown.
Each exception subclassing from Error can be initialized using the above mentioned arguments. Additionally, each instance has the attributes errno, msg and sqlstate which can be used in your code.
The following example shows how to handle errors when dropping a table which does not exists (when you do not want to use the IF EXISTS clause):
import mysql.connector
from mysql.connector import errorcode
cnx = mysql.connector.connect(user='scott', database='test')
try:
cur.execute("DROP TABLE spam")
except mysql.connector.Error as err:
if err.errno == errorcode.ER_BAD_TABLE_ERROR:
print("Creating table spam")
else:
raise
errors.Error is a subclass of the Python StandardError.
21.6.7.1.3. Exception errors.Warning
This exception is used for reporting important warnings, however, Connector/Python does not use it. It is included to be compliant with the Python Database Specification v2.0 (PEP-249).
Consider using either more strict Server SQL Modes or the raise_on_warnings connection argument to make Connector/Python raise errors when your queries produce warnings.
errors.Warning is a subclass of the Python StandardError.
21.6.7.1.4. Exception errors.InterfaceError
This exception is raised for errors originating from Connector/Python itself, not related to the MySQL server.
errors.InterfaceError is a subclass of errors.Error.
21.6.7.1.5. Exception errors.DatabaseError
This exception is the default for any MySQL error which does not fit the other exceptions.
errors.DatabaseError is a subclass of errors.Error.
21.6.7.1.6. Exception errors.InternalError
This exception is raised when the MySQL server encounters an internal error, for example, when a deadlock occurred.
errors.InternalError is a subclass of errors.DatabaseError.
21.6.7.1.7. Exception errors.OperationalError
This exception is raised for errors which are related to MySQL's operations. For example, to many connections, a hostname could not be resolved, bad handshake, server is shutting down, communication errors, and so on.
errors.OperationalError is a subclass of errors.DatabaseError.
21.6.7.1.8. Exception errors.ProgrammingError
This exception is raised on programming errors, for example when you have a syntax error in your SQL or a table was not found.
The following example shows how to handle syntax errors:
try:
cursor.execute("CREATE DESK t1 (id int, PRIMARY KEY (id))")
except mysql.connector.ProgrammingError as err:
if err.errno == errorcode.ER_SYNTAX_ERROR:
print("Check your syntax!")
else:
print("Error: {}".format(err))
errors.ProgrammingError is a subclass of errors.DatabaseError.
21.6.7.1.9. Exception errors.IntegrityError
This exception is raised when the relational integrity of the data is affected. For example, a duplicate key was inserted or a foreign key constraint would fail.
The following example shows a duplicate key error raised as IntegrityError:
cursor.execute("CREATE TABLE t1 (id int, PRIMARY KEY (id))")
try:
cursor.execute("INSERT INTO t1 (id) VALUES (1)")
cursor.execute("INSERT INTO t1 (id) VALUES (1)")
except mysql.connector.IntegrityError as err:
print("Error: {}".format(err))
errors.IntegrityError is a subclass of errors.DatabaseError.
21.6.7.1.10. Exception errors.DataError
This exception is raised when there were problems with the data. Examples are a column set to NULL when it can not, out of range values for a column, division by zero, column count does not match value count, and so on.
errors.DataError is a subclass of errors.DatabaseError.
21.6.7.1.11. Exception errors.NotSupportedError
This exception is raised is case some feature was used but not supported by the version of MySQL which returned the error. It is also raised when using functions or statements which are not supported by stored routines.
errors.NotSupportedError is a subclass of errors.DatabaseError.
21.6.7.1.12. Function errors.custom_error_exception(error=None, exception=None)
This function defines custom exceptions for MySQL server errors and returns current customizations.
If error is a MySQL Server error number, then you have to pass also the exception class. The error argument can also be a dictionary in which case the key is the server error number, and value the class of the exception to be raised.
To reset the customizations, simply supply an empty dictionary.
import mysql.connector
from mysql.connector import errorcode
Server error 1028 should raise a DatabaseError
mysql.connector.custom_error_exception(1028, mysql.connector.DatabaseError)
Or using a dictionary:
mysql.connector.custom_error_exception({
1028: mysql.connector.DatabaseError,
1029: mysql.connector.OperationalError,
})
To reset, pass an empty dictionary:
mysql.connector.custom_error_exception({})
21.6.7.2. Class connection.MySQLConnection
The MySQLConnection class is used to open and manage a connection to a MySQL server. It also used to send commands and SQL queries and read result.
21.6.7.2.1. Constructor connection.MySQLConnection(**kwargs)
The MySQLConnection constructor initializes the attributes and when at least one argument is passed, it tries to connect with the MySQL server.
For a complete list or arguments, see Section 21.6.6, “Connector/Python Connection Arguments”.
21.6.7.2.2. Method MySQLConnection.close()
See disconnect().
Returns a tuple.
21.6.7.2.3. Method MySQLConnection.config(**kwargs)
Allows to configure a MySQLConnection instance after it was instantiated. See Section 21.6.6, “Connector/Python Connection Arguments” for a complete list of possible arguments.
You could use the config() method to change, for example, the username and call reconnect().
cnx = MySQLConnection(user='joe', database='test')
Connected as 'joe'
cnx.config(user='jane')
cnx.reconnect()
Now connected as 'jane'
21.6.7.2.4. Method MySQLConnection.connect(**kwargs)
This method sets up the connection to the MySQL server. If no arguments are given, it uses the already configured or default values. See Section 21.6.6, “Connector/Python Connection Arguments” for a complete list of possible arguments.
21.6.7.2.5. Method MySQLConnection.commit()
This method sends the COMMIT command to the MySQL server, committing the current transaction. Since by default, Connector/Python does not auto commit, it is important to call this method after every transaction which updates data for tables using transactional storage engines.
See the rollback() method for rolling back transactions.
>>> cursor.execute("INSERT INTO employees (first_name) VALUES (%s)", ('Jane'))
>>> cnx.commit()
21.6.7.2.6. Method MySQLConnection.cursor(buffered=None, raw=None, cursor_class=None)
This method returns a MySQLCursor() object, or a subclass of it depending the passed arguments.
When buffered is True, the cursor will fetch all rows after the operation is executed. This is useful when queries return small result sets. Setting raw will skip the conversion from MySQL data types to Python types when fetching rows. Raw is usually used when you want to have more performance and/or you want to do the conversion yourself.
The cursor_class argument can be used to pass a class to use for instantiating a new cursor. It has to be a subclass of cursor.CursorBase.
The returned object depends on the combination of the buffered and raw arguments.
If not buffered and not raw: cursor.MySQLCursor
If buffered and not raw: cursor.MySQLCursorBuffered
If buffered and raw: cursor.MySQLCursorBufferedRaw
If not buffered and raw: cursor.MySQLCursorRaw
Returns a CursorBase instance.
21.6.7.2.7. Method MySQLConnection.cmd_change_user(username='', password='', database='', charset=33)
Changes the user using username and password. It also causes the specified database to become the default (current) database. It is also possible to change the character set using the charset argument.
Returns a dictionary containing the OK packet information.
21.6.7.2.8. Method MySQLConnection.cmd_debug()
Instructs the server to write some debug information to the log. For this to work, the connected user must have the SUPER privilege.
Returns a dictionary containing the OK packet information.
21.6.7.2.9. Method MySQLConnection.cmd_init_db(database)
This method makes specified database the default (current) database. In subsequent queries, this database is the default for table references that do not include an explicit database specifier.
Returns a dictionary containing the OK packet information.
21.6.7.2.10. Method MySQLConnection.cmd_ping()
Checks whether the connection to the server is working.
This method is not to be used directly. Use ping() or is_connected() instead.
Returns a dictionary containing the OK packet information.
21.6.7.2.11. Method MySQLConnection.cmd_process_info()
This method raises the NotSupportedError exception. Instead, use the SHOW PROCESSLIST statement or query the tables found in the database INFORMATION_SCHEMA.
21.6.7.2.12. Method MySQLConnection.cmd_process_kill(mysql_pid)
Asks the server to kill the thread specified by mysql_pid. Although still available, it's better to use the SQL KILL command.
Returns a dictionary containing the OK packet information.
The following two lines do the same:
>>> cnx.cmd_process_kill(123)
>>> cnx.cmd_query('KILL 123')
21.6.7.2.13. Method MySQLConnection.cmd_quit()
This method sends the QUIT command to the MySQL server, closing the current connection. Since there is no response from the MySQL, the packet that was sent is returned.
21.6.7.2.14. Method MySQLConnection.cmd_query(statement)
This method sends the given statement to the MySQL server and returns a result. If you need to send multiple statements, you have to use the cmd_query_iter() method.
The returned dictionary contains information depending on what kind of query was executed. If the query is a SELECT statement, the result contains information about columns. Other statements return a dictionary containing OK or EOF packet information.
Errors received from the MySQL server are raised as exceptions. An InterfaceError is raised when multiple results are found.
Returns a dictionary.
21.6.7.2.15. Method MySQLConnection.cmd_query_iter(statement)
Similar to the cmd_query() method, but returns a generator object to iterate through results. Use cmd_query_iter() when sending multiple statements, and separate the statements with semicolons.
The following example shows how to iterate through the results after sending multiple statements:
statement = 'SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cnx.cmd_query(statement, iterate=True):
if 'columns' in result:
columns = result['columns']
rows = cnx.get_rows()
else:
do something useful with INSERT result
Returns a generator object.
21.6.7.2.16. Method MySQLConnection.cmd_refresh(options)
This method flushes tables or caches, or resets replication server information. The connected user must have the RELOAD privilege.
The options argument should be a bitwise value using constants from the class constants.RefreshOption.
See Section 21.6.7.9, “Class constants.RefreshOption” for a list of options.
Example:
>>> from mysql.connector import RefreshOption
>>> refresh = RefreshOption.LOG | RefreshOption.THREADS
>>> cnx.cmd_refresh(refresh)
21.6.7.2.17. Method MySQLConnection.cmd_shutdown()
Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.
Returns a dictionary containing the OK packet information.
21.6.7.2.18. Method MySQLConnection.cmd_statistics()
Returns a dictionary containing information about the MySQL server including uptime in seconds and the number of running threads, questions, reloads, and open tables.
21.6.7.2.19. Method MySQLConnection.disconnect()
This method tries to send the QUIT command and close the socket. It does not raise any exceptions.
MySQLConnection.close() is a synonymous method name and more commonly used.
21.6.7.2.20. Method MySQLConnection.get_rows(count=None)
This method retrieves all or remaining rows of a query result set, returning a tuple containing the rows as sequence and the EOF packet information. The count argument can be used to get a given amount of rows. If count is not specified or is None, all rows are retrieved.
The tuple returned by get_rows() consists of:
A list of tuples containing the row data as byte objects, or an empty list when no rows are available.
EOF packet information as a dictionary containing status_flag and warning_count.
An InterfaceError is raised when all rows have been retrieved.
The get_rows() method is used by MySQLCursor to fetch rows.
Returns a tuple.
21.6.7.2.21. Method MySQLConnection.get_row()
This method retrieves the next row of a query result set, returning a tuple.
The tuple returned by get_row() consists of:
The row as a tuple containing byte objects, or None when no more rows are available.
EOF packet information as a dictionary containing status_flag and warning_count, or None when the row returned is not the last row.
The get_row() method is used by MySQLCursor to fetch rows.
21.6.7.2.22. Method MySQLConnection.get_server_info()
This method returns the MySQL server information verbatim, for example '5.5.24-log', or None when not connected.
Returns a string or None.
21.6.7.2.23. Method MySQLConnection.get_server_version()
This method returns the MySQL server version as a tuple, or None when not connected.
Returns a tuple or None.
21.6.7.2.24. Method MySQLConnection.is_connected()
Reports whether the connection to MySQL Server is available.
This method checks whether the connection to MySQL is available using the ping() method, but unlike ping(), is_connected() returns True when the connection is available, False otherwise.
Returns True or False.
21.6.7.2.25. Method MySQLConnection.isset_client_flag(flag)
This method returns True if the client flag was set, False otherwise.
Returns True or False.
21.6.7.2.26. Method MySQLConnection.ping(attempts=1, delay=0)
Check whether the connection to the MySQL server is still available.
When reconnect is set to True, one or more attempts are made to try to reconnect to the MySQL server using the reconnect() method. Use the delay argument (seconds) if you want to wait between each retry.
When the connection is not available, an InterfaceError is raised. Use the is_connected() method to check the connection without raising an error.
Raises InterfaceError on errors.
21.6.7.2.27. Method MySQLConnection.reconnect(attempts=1, delay=0)
Attempt to reconnect with the MySQL server.
The argument attempts specifies the number of times a reconnect is tried. The delay argument is the number of seconds to wait between each retry.
You might set the number of attempts higher and use a longer delay when you expect the MySQL server to be down for maintenance, or when you expect the network to be temporarily unavailable.
21.6.7.2.28. Method MySQLConnection.rollback()
This method sends the ROLLBACK command to the MySQL server, undoing all data changes from the current transaction. Since by default, Connector/Python does not auto commit, it is possible to cancel transactions when using transactional storage engines such as InnoDB.
See the commit() method for committing transactions.
>>> cursor.execute("INSERT INTO employees (first_name) VALUES (%s)", ('Jane'))
>>> cnx.rollback()
21.6.7.2.29. Method MySQLConnection.set_charset_collation(charset=None, collation=None)
This method sets the character set and collation to be used for the current connection. The charset argument can be either the name of a character set, or the numerical equivalent as defined in constants.CharacterSet.
When collation is None, the default will be looked up and used.
The charset argument then be either:
In the following example, we set the character set to latin1 and the collation will be set to the default latin1_swedish_ci:
>>> cnx = mysql.connector.connect(user='scott')
>>> cnx.set_charset('latin1')
Specify a specific collation as follows:
>>> cnx = mysql.connector.connect(user='scott')
>>> cnx.set_charset('latin1', 'latin1_general_ci')
21.6.7.2.30. Method MySQLConnection.set_client_flags(flags)
This method sets the client flags which are used when connecting with the MySQL server and returns the new value. The flags argument can be either an integer or a sequence of valid client flag values (see Section 21.6.7.5, “Class constants.ClientFlag”).
If flags is a sequence, each item in the sequence will set the flag when the value is positive or unset it when negative. For example, to unset LONG_FLAG and set the FOUND_ROWS flags:
>>> from mysql.connector.constants import ClientFlag
>>> cnx.set_client_flags([ClientFlag.FOUND_ROWS, -ClientFlag.LONG_FLAG])
>>> cnx.reconnect()
Note that client flags are only set or used when connecting with the MySQL server. It is therefore necessary to reconnect after making changes.
Returns an integer.
21.6.7.2.31. Property MySQLConnection.autocommit
This property is used to toggle the auto commit feature of MySQL and retrieve the current state. When the value evaluates to True, auto commit will be turned, otherwise it is turned off.
Note that auto commit is disabled by default when connecting through Connector/Python. This can be toggled using the connection parameter autocommit.
When the auto commit is turned off, you have to commit transactions when using transactional storage engines such as InnoDB or NDBCluster.
>>> cnx.autocommit
False
>>> cnx.autocommit = True
>>> cnx.autocommit
True
Returns True or False.
21.6.7.2.32. Property MySQLConnection.charset_name
This property returns which character set is used for the connection whether it is connected or not.
Returns a string.
21.6.7.2.33. Property MySQLConnection.collation_name
This property returns which collation is used for the connection whether it is connected or not.
Returns a string.
21.6.7.2.34. Property MySQLConnection.connection_id
This property returns the connection ID (thread ID or session ID) for the current connection or None when not connected.
Returns a integer or None.
21.6.7.2.35. Property MySQLConnection.database
This property is used to set current (active) database executing the USE command. The property can also be used to retrieve the current database name.
>>> cnx.database = 'test'
>>> cnx.database = 'mysql'
>>> cnx.database
u'mysql'
Returns a string.
21.6.7.2.36. Property MySQLConnection.get_warnings
This property is used to toggle whether warnings should be fetched automatically or not. It accepts True or False (default).
Fetching warnings automatically could be useful when debugging queries. Cursors will make warnings available through the method MySQLCursor.fetchwarnings().
>>> cnx.get_warnings = True
>>> cursor.execute('SELECT "a"+1')
>>> cursor.fetchall()
[(1.0,)]
>>> cursor.fetchwarnings()
[(u'Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]
Returns True or False.
21.6.7.2.37. Property MySQLConnection.raise_on_warnings
This property is used to toggle whether warnings should raise exceptions or not. It accepts True or False (default).
Toggling raise_on_warnings will also toggle get_warnings since warnings need to be fetched so they can be raised as exceptions.
Note that you might always want to check setting SQL Mode if you would like to have the MySQL server directly report warnings as errors. It is also good to use transactional engines so transactions can be rolled back when catching the exception.
Result sets needs to be fetched completely before any exception can be raised. The following example shows the execution of a query which produces a warning
>>> cnx.raise_on_warnings = True
>>> cursor.execute('SELECT "a"+1')
>>> cursor.fetchall()
..
mysql.connector.errors.DataError: 1292: Truncated incorrect DOUBLE value: 'a'
Returns True or False.
21.6.7.2.38. Property MySQLConnection.server_host
This read-only property returns the hostname or IP address used for connecting with the MySQL server.
Returns a string.
21.6.7.2.39. Property MySQLConnection.server_port
This read-only property returns the TCP/IP port used for connecting with the MySQL server.
Returns a integer.
21.6.7.2.40. Property MySQLConnection.sql_mode
This property is used to retrieve and set the SQL Modes for the current. The value should be list of different modes separated by comma (","), or a sequence of modes, preferably using the constants.SQLMode class.
To unset all modes, pass an empty string or an empty sequence.
>>> cnx.sql_mode = 'TRADITIONAL,NO_ENGINE_SUBSTITUTION'
>>> cnx.sql_mode.split(',')
[u'STRICT_TRANS_TABLES', u'STRICT_ALL_TABLES', u'NO_ZERO_IN_DATE',
u'NO_ZERO_DATE', u'ERROR_FOR_DIVISION_BY_ZERO', u'TRADITIONAL',
u'NO_AUTO_CREATE_USER', u'NO_ENGINE_SUBSTITUTION']
>>> from mysql.connector.constants import SQLMode
>>> cnx.sql_mode = [SQLMode.NO_ZERO_DATE, SQLMode.REAL_AS_FLOAT]
>>> cnx.sql_mode
u'REAL_AS_FLOAT,NO_ZERO_DATE'
Returns a string.
21.6.7.2.41. Property MySQLConnection.time_zone
This property is used to set the time zone session variable for the current connection and retrieve it.
>>> cnx.time_zone = '+00:00'
>>> cur.execute('SELECT NOW()') ; cur.fetchone()
(datetime.datetime(2012, 6, 15, 11, 24, 36),)
>>> cnx.time_zone = '-09:00'
>>> cur.execute('SELECT NOW()') ; cur.fetchone()
(datetime.datetime(2012, 6, 15, 2, 24, 44),)
>>> cnx.time_zone
u'-09:00'
Returns a string.
21.6.7.2.42. Property MySQLConnection.unix_socket
This read-only property returns the UNIX socket user for connecting with the MySQL server.
Returns a string.
21.6.7.2.43. Property MySQLConnection.user
This read-only property returns the username used for connecting with the MySQL server.
Returns a string.
21.6.7.3. Class cursor.MySQLCursor
The MySQLCursor class is used to instantiate object which can execute operation such as SQL queries. They interact with the MySQL server using a MySQLConnection object.
21.6.7.3.1. Constructor cursor.MySQLCursor
The constructor initializes the instance with the optional connection, which should be an instance of MySQLConnection.
In most cases, the MySQLConnection method cursor() is used to instantiate a MySQLCursor object.
21.6.7.3.2. Method MySQLCursor.callproc(procname, args=())
This method calls a stored procedure with the given name. The args sequence of parameters must contain one entry for each argument that the routine expects. The result is returned as modified copy of the input sequence. Input parameters are left untouched, output and input/output parameters replaced with possibly new values.
Result set provided by the stored procedure are automatically fetched and stored as MySQLBufferedCursor instances. See stored_results() for more information.
The following example shows how to execute a stored procedure which takes two parameters, multiplies the values and returns the product:
Definition of the multiply stored procedure:
CREATE PROCEDURE multiply(IN pFac1 INT, IN pFac2 INT, OUT pProd INT)
BEGIN
SET pProd := pFac1 * pFac2;
END
>>> args = (5, 5, 0) # 0 is to hold value of the OUT parameter pProd
>>> cursor.callproc('multiply', args)
('5', '5', 25L)
21.6.7.3.3. Method MySQLCursor.close()
This method will close the MySQL cursor, resetting all results and removing the connection.
Use close() every time you are done using the cursor.
21.6.7.3.4. Method MySQLCursor.execute(operation, params=None, multi=False)
This method prepare the given database operation (query or command). The parameters found in the tuple or dictionary params will be bound to the variables in the operation. Variables are specified using %s markers or named markers %(name)s.
For example, insert information about a new employee and selecting again the data of this person:
insert = (
"INSERT INTO employees (emp_no, first_name, last_name, hire_date) "
"VALUES (%s, %s, %s, %s)")
data = (2, 'Jane', 'Doe', datetime.date(2012, 3, 23))
cursor.execute(insert, data)
select = "SELECT * FROM employees WHERE emp_no = %(emp_no)s"
cursor.execute(select, { 'emp_no': 2 })
Note that the data is converted from Python object to something MySQL understand. In the above example, the datetime.date() instance is converted to '2012-03-23' in the above example.
When multi is set to True, execute() will be able to execute multiple statements. It will return an iterator which makes it possible to go through all results for each statement. Note that using parameters is not working well in this case, and it's usually a good idea to execute each statement on its own.
In the following example we select and insert data in one operation and display the result:
operation = 'SELECT 1; INSERT INTO t1 VALUES (); SELECT 2'
for result in cursor.execute(operation):
if result.with_rows:
print("Statement '{}' has following rows:".format(
result.statement))
print(result.fetchall())
else:
print("Affected row(s) by query '{}' was {}".format(
result.statement, result.rowcount))
If the connection was configured to fetch warnings, warnings generated by the operation will be available through the method MySQLCursor.fetchwarnings().
Returns an iterator when multi is True.
21.6.7.3.5. Method MySQLCursor.executemany(operation, seq_params)
This method prepares a database operation (query or command) and then execute it against all parameter sequences or mappings found in the sequence seq_of_params.
The executemany() is simply iterating through the sequence of parameters calling the execute() method. Inserting data, however, is optimized by batching them using the multiple rows syntax.
In the following example we are inserting 3 records:
data = [
('Jane', date(2005, 2, 12)),
('Joe', date(2006, 5, 23)),
('John', date(2010, 10, 3)),
]
stmt = "INSERT INTO employees (first_name, hire_date) VALUES (%s, %s)"
cursor.executemany(stmt, data)
In the above example, the INSERT statement sent to MySQL would be as follows: INSERT INTO employees (first_name, hire_date) VALUES ('Jane', '2005-02-12'), ('Joe', '2006-05-23'), ('John', '2010-10-03').
Note that it is not possible to execute multiple statements using the executemany() method. Doing so will raise an InternalError exception.
21.6.7.3.6. Method MySQLCursor.fetchall()
The method fetches all or remaining rows of a query result set, returning a list of tuples. An empty list is returned when no rows are (anymore) available.
The following examples shows how to retrieve the first 2 rows of a result set, and then retrieve the remaining rows:
>>> cursor.execute("SELECT * FROM employees ORDER BY emp_no")
>>> head_rows = cursor.fetchmany(size=2)
>>> remaining_rows = cursor.fetchall()
Note that you have to fetch all rows before being able to execute new queries using the same connection.
Returns a list of tuples or empty list when no rows available.
21.6.7.3.7. Method MySQLCursor.fetchmany(size=1)
This method fetches the next set of rows of a query results, returning a list of tuples. An empty list is returned when no more rows are available.
The number of rows returned can be specified using the size argument, which defaults to one. Fewer rows might be returned, when there are not more rows available than specified by the argument.
Note that you have to fetch all rows before being able to execute new queries using the same connection.
Returns a list of tuples or empty list when no rows available.
21.6.7.3.8. Method MySQLCursor.fetchone()
This method retrieves the next row of a query result set, returning a single sequence, or None when no more data is available.The returned tuple consists of data returned by the MySQL server converted to Python objects.
The fetchone() method is used by fetchmany() and fetchall(). It is also used when using the MySQLCursor instance as an iterator.
The following examples show how to iterate through the result of a query using fetchone():
Using a while-loop
cursor.execute("SELECT * FROM employees")
row = cursor.fetchone()
while row is not None:
print(row)
row = cursor.fetchone()
Using the cursor as iterator
cursor.execute("SELECT * FROM employees")
for row in cursor:
print(row)
Note that you have to fetch all rows before being able to execute new queries using the same connection.
Returns a tuple or None.
21.6.7.3.9. Method MySQLCursor.fetchwarnings()
This method returns a list of tuples containing warnings generated by previously executed statement. Use the connection's get_warnings property to toggle whether warnings has to be fetched.
The following example shows a SELECT statement which generated a warning:
>>> cnx.get_warnings = True
>>> cursor.execute('SELECT "a"+1')
>>> cursor.fetchall()
[(1.0,)]
>>> cursor.fetchwarnings()
[(u'Warning', 1292, u"Truncated incorrect DOUBLE value: 'a'")]
It is also possible to raise errors when warnings are found. See the MySQLConnection property raise_on_warnings.
Returns a list of tuples.
21.6.7.3.10. Method MySQLCursor.stored_results()
This method returns an list iterator object which can be used to go through result sets provided by stored procedures after calling them using the callproc() method.
In the following example we execute a stored procedure which will provide two result sets. We use stored_results() to retrieve them:
>>> cursor.callproc('sp1')
()
>>> for result in cursor.stored_results():
... print result.fetchall()
...
[(1,)]
[(2,)]
Note that the result sets stay available until you executed another operation or call another stored procedure.
Returns a listiterator.
21.6.7.3.11. Property MySQLCursor.column_names
This read-only property returns the column names of a result set as sequence of (unicode) strings.
The following example shows how you can create a dictionary out of a tuple containing data with keys using column_names:
cursor.execute("SELECT last_name, first_name, hire_date "
"FROM employees WHERE emp_no = %s", (123,))
row = dict(zip(cursor.column_names, cursor.fetchone())
print("{last_name}, {first_name}: {hire_date}".format(row))
Returns a tuple.
21.6.7.3.12. Property MySQLCursor.statement
This read-only property returns the last executed statement. In case multiple statements where executed, it will show the actual statement.
The statement property might be useful for debugging and showing what was send to the MySQL server.
Returns a string.
21.6.7.3.13. Property MySQLCursor.with_rows
This read-only property will return True when the result of the executed operation provides rows.
The with_rows property is useful when executing multiple statements and you need to fetch rows. In the following example we only report the affected rows by the UPDATE statement:
import mysql.connector
cnx = mysql.connector.connect(user='scott', database='test')
cursor = cnx.cursor()
operation = 'SELECT 1; UPDATE t1 SET c1 = 2; SELECT 2'
for result in cursor.execute(operation, multi=True):
if result.with_rows:
result.fetchall()
else:
print("Updated row(s): {}".format(result.rowcount))
21.6.7.4. Class cursor.MySQLCursorBuffered
This class is inheriting from cursor.MySQLCursor and if needed automatically retrieves rows after an operation has been executed.
MySQLCursorBuffered can be useful in situations where two queries, with small result sets, need to be combined or computed with each other.
You can either use the buffered argument when using the connection's cursor() method, or you can use the buffered connection option to make all created cursors by default buffering.
import mysql.connector
cnx = mysql.connector.connect()
Only this particular cursor will be buffering results
cursor.cursor(buffered=True)
All cursors by default buffering
cnx = mysql.connector.connect(buffered=True)
See Section 21.6.5.1, “Tutorial: Raise employee's salary using a buffering cursor” for a practical use case.
21.6.7.5. Class constants.ClientFlag
This class provides constants defining MySQL client flags which can be used upon connection to configure the session. The ClientFlag class is available when importing mysql.connector.
>>> import mysql.connector
>>> mysql.connector.ClientFlag.FOUND_ROWS
2
See Section 21.6.7.2.30, “Method MySQLConnection.set_client_flags(flags)” and the connection argument client_flag.
Note that the ClientFlag class can not be instantiated.
21.6.7.6. Class constants.FieldType
This class provides all supported MySQL field or data types. They can be useful when dealing with raw data or defining your own converters. The field type is stored with every cursor in the description for each column.
The following example shows how you can print the name of the data types for each of the columns in the result set.
from __future__ import print_function
import mysql.connector
from mysql.connector import FieldType
cnx = mysql.connector.connect(user='scott', database='test')
cursor = cnx.cursor()
cursor.execute(
"SELECT DATE(NOW()) AS `c1`, TIME(NOW()) AS `c2`, "
"NOW() AS `c3`, 'a string' AS `c4`, 42 AS `c5`")
rows = cursor.fetchall()
for desc in cursor.description:
colname = desc[0]
coltype = desc[1]
print("Column {} has type {}".format(
colname, FieldType.get_info(coltype)))
cursor.close()
cnx.close()
Note that the FieldType class can not be instantiated.
21.6.7.7. Class constants.SQLMode
This class provides all known MySQL Server SQL Modes. It is mostly used when setting the SQL modes at connection time using the connection's property sql_mode. See Section 21.6.7.2.40, “Property MySQLConnection.sql_mode”.
Note that the SQLMode class can not be instantiated.
21.6.7.8. Class constants.CharacterSet
This class provides all known MySQL characters sets and their default collations. See Section 21.6.7.2.29, “Method MySQLConnection.set_charset_collation(charset=None, collation=None)” for examples.
Note that the CharacterSet class can not be instantiated.
21.6.7.9. Class constants.RefreshOption
RefreshOption.GRANT
Refresh the grant tables, like FLUSH PRIVILEGES.
RefreshOption.LOG
Flush the logs, like FLUSH LOGS.
RefreshOption.TABLES
Flush the table cache, like FLUSH TABLES.
RefreshOption.HOSTS
Flush the host cache, like FLUSH HOSTS.
RefreshOption.STATUS
Reset status variables, like FLUSH STATUS.
RefreshOption.THREADS
Flush the thread cache.
RefreshOption.SLAVE
On a slave replication server, reset the master server information and restart the slave, like RESET SLAVE.
RefreshOption.MASTER
On a master replication server, remove the binary log files listed in the binary log index and truncate the index file, like RESET MASTER.
21.6.8. Connector/Python FAQ
Frequently asked questions.
21.7. libmysqld, the Embedded MySQL Server Library
The embedded MySQL server library makes it possible to run a full-featured MySQL server inside a client application. The main benefits are increased speed and more simple management for embedded applications.
The embedded server library is based on the client/server version of MySQL, which is written in C/C++. Consequently, the embedded server also is written in C/C++. There is no embedded server available in other languages.
The API is identical for the embedded MySQL version and the client/server version. To change a threaded application to use the embedded library, you normally only have to add calls to the following functions.
Table 21.32. MySQL Embedded Server Library Functions
Function | When to Call |
---|---|
Call it before any other MySQL function is called, preferably early in the main() function. | |
Call it before your program exits. | |
Call it in each thread you create that accesses MySQL. | |
mysql_thread_end() | Call it before calling pthread_exit(). |
Then, link your code with libmysqld.a instead of libmysqlclient.a. To ensure binary compatibility between your application and the server library, always compile your application against headers for the same series of MySQL that was used to compile the server library. For example, if libmysqld was compiled against MySQL 5.1 headers, do not compile your application against MySQL 5.5 headers, or vice versa.
Because the mysql_library_xxx() functions are also included in libmysqlclient.a, you can change between the embedded and the client/server version by just linking your application with the right library. See Section 21.8.6.40, “mysql_library_init()”.
One difference between the embedded server and the standalone server is that for the embedded server, authentication for connections is disabled by default. To use authentication for the embedded server, define the HAVE_EMBEDDED_PRIVILEGE_CONTROL compiler flag when you invoke CMake to configure your MySQL distribution. See Section 2.9.4, “MySQL Source-Configuration Options”.
21.7.1. Compiling Programs with libmysqld
In precompiled binary MySQL distributions that include libmysqld, the embedded server library, MySQL builds the library using the appropriate vendor compiler if there is one.
To get a libmysqld library if you build MySQL from source yourself, you should configure MySQL with the -DWITH_EMBEDDED_SERVER=1 option. See Section 2.9.4, “MySQL Source-Configuration Options”.
When you link your program with libmysqld, you must also include the system-specific pthread libraries and some libraries that the MySQL server uses. You can get the full list of libraries by executing mysql_config --libmysqld-libs.
The correct flags for compiling and linking a threaded program must be used, even if you do not directly call any thread functions in your code.
To compile a C program to include the necessary files to embed the MySQL server library into an executable version of a program, the compiler will need to know where to find various files and need instructions on how to compile the program. The following example shows how a program could be compiled from the command line, assuming that you are using gcc, use the GNU C compiler:
gcc mysql_test.c -o mysql_test \
`/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`
Immediately following the gcc command is the name of the C program source file. After it, the -o option is given to indicate that the file name that follows is the name that the compiler is to give to the output file, the compiled program. The next line of code tells the compiler to obtain the location of the include files and libraries and other settings for the system on which it is compiled. The mysql_config command is contained in backticks, not single quotation marks.
On some non-gcc platforms, the embedded library depends on C++ runtime libraries and linking against the embedded library might result in missing-symbol errors. To solve this, link using a C++ compiler or explicitly list the required libraries on the link command line.
21.7.2. Restrictions When Using the Embedded MySQL Server
The embedded server has the following limitations:
No user-defined functions (UDFs).
No stack trace on core dump.
You cannot set this up as a master or a slave (no replication).
Very large result sets may be unusable on low memory systems.
You cannot connect to an embedded server from an outside process with sockets or TCP/IP. However, you can connect to an intermediate application, which in turn can connect to an embedded server on the behalf of a remote client or outside process.
InnoDB is not reentrant in the embedded server and cannot be used for multiple connections, either successively or simultaneously.
The Event Scheduler is not available. Because of this, the event_scheduler system variable is disabled.
Some of these limitations can be changed by editing the mysql_embed.h include file and recompiling MySQL.
21.7.3. Options with the Embedded Server
Any options that may be given with the mysqld server daemon, may be used with an embedded server library. Server options may be given in an array as an argument to the mysql_library_init(), which initializes the server. They also may be given in an option file like my.cnf. To specify an option file for a C program, use the --defaults-file option as one of the elements of the second argument of the mysql_library_init() function. See Section 21.8.6.40, “mysql_library_init()”, for more information on the mysql_library_init() function.
Using option files can make it easier to switch between a client/server application and one where MySQL is embedded. Put common options under the [server] group. These are read by both MySQL versions. Client/server-specific options should go under the [mysqld] section. Put options specific to the embedded MySQL server library in the [embedded] section. Options specific to applications go under section labeled [ApplicationName_SERVER]. See Section 4.2.3.3, “Using Option Files”.
21.7.4. Embedded Server Examples
These two example programs should work without any changes on a Linux or FreeBSD system. For other operating systems, minor changes are needed, mostly with file paths. These examples are designed to give enough details for you to understand the problem, without the clutter that is a necessary part of a real application. The first example is very straightforward. The second example is a little more advanced with some error checking. The first is followed by a command-line entry for compiling the program. The second is followed by a GNUmake file that may be used for compiling instead.
Example 1
test1_libmysqld.c
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include "mysql.h"
MYSQL *mysql;
MYSQL_RES *results;
MYSQL_ROW record;
static char *server_options[] = \
{ "mysql_test", "--defaults-file=my.cnf", NULL };
int num_elements = (sizeof(server_options) / sizeof(char *)) - 1;
static char *server_groups[] = { "libmysqld_server",
"libmysqld_client", NULL };
int main(void)
{
mysql_library_init(num_elements, server_options, server_groups);
mysql = mysql_init(NULL);
mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);
mysql_real_connect(mysql, NULL,NULL,NULL, "database1", 0,NULL,0);
mysql_query(mysql, "SELECT column1, column2 FROM table1");
results = mysql_store_result(mysql);
while((record = mysql_fetch_row(results))) {
printf("%s - %s \n", record[0], record[1]);
}
mysql_free_result(results);
mysql_close(mysql);
mysql_library_end();
return 0;
}
Here is the command line for compiling the above program:
gcc test1_libmysqld.c -o test1_libmysqld \
`/usr/local/mysql/bin/mysql_config --include --libmysqld-libs`
Example 2
To try the example, create an test2_libmysqld directory at the same level as the MySQL source directory. Save the test2_libmysqld.c source and the GNUmakefile in the directory, and run GNU make from inside the test2_libmysqld directory.
test2_libmysqld.c
/*
* A simple example client, using the embedded MySQL server library
*/
#include <mysql.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
MYSQL *db_connect(const char *dbname);
void db_disconnect(MYSQL *db);
void db_do_query(MYSQL *db, const char *query);
const char *server_groups[] = {
"test2_libmysqld_SERVER", "embedded", "server", NULL
};
int
main(int argc, char **argv)
{
MYSQL *one, *two;
/* mysql_library_init() must be called before any other mysql
* functions.
*
* You can use mysql_library_init(0, NULL, NULL), and it
* initializes the server using groups = {
* "server", "embedded", NULL
* }.
*
* In your $HOME/.my.cnf file, you probably want to put:
[test2_libmysqld_SERVER]
language = /path/to/source/of/mysql/sql/share/english
* You could, of course, modify argc and argv before passing
* them to this function. Or you could create new ones in any
* way you like. But all of the arguments in argv (except for
* argv[0], which is the program name) should be valid options
* for the MySQL server.
*
* If you link this client against the normal mysqlclient
* library, this function is just a stub that does nothing.
*/
mysql_library_init(argc, argv, (char **)server_groups);
one = db_connect("test");
two = db_connect(NULL);
db_do_query(one, "SHOW TABLE STATUS");
db_do_query(two, "SHOW DATABASES");
mysql_close(two);
mysql_close(one);
/* This must be called after all other mysql functions */
mysql_library_end();
exit(EXIT_SUCCESS);
}
static void
die(MYSQL *db, char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
(void)putc('\n', stderr);
if (db)
db_disconnect(db);
exit(EXIT_FAILURE);
}
MYSQL *
db_connect(const char *dbname)
{
MYSQL *db = mysql_init(NULL);
if (!db)
die(db, "mysql_init failed: no memory");
/*
* Notice that the client and server use separate group names.
* This is critical, because the server does not accept the
* client's options, and vice versa.
*/
mysql_options(db, MYSQL_READ_DEFAULT_GROUP, "test2_libmysqld_CLIENT");
if (!mysql_real_connect(db, NULL, NULL, NULL, dbname, 0, NULL, 0))
die(db, "mysql_real_connect failed: %s", mysql_error(db));
return db;
}
void
db_disconnect(MYSQL *db)
{
mysql_close(db);
}
void
db_do_query(MYSQL *db, const char *query)
{
if (mysql_query(db, query) != 0)
goto err;
if (mysql_field_count(db) > 0)
{
MYSQL_RES *res;
MYSQL_ROW row, end_row;
int num_fields;
if (!(res = mysql_store_result(db)))
goto err;
num_fields = mysql_num_fields(res);
while ((row = mysql_fetch_row(res)))
{
(void)fputs(">> ", stdout);
for (end_row = row + num_fields; row < end_row; ++row)
(void)printf("%s\t", row ? (char*)*row : "NULL");
(void)fputc('\n', stdout);
}
(void)fputc('\n', stdout);
mysql_free_result(res);
}
else
(void)printf("Affected rows: %lld\n", mysql_affected_rows(db));
return;
err:
die(db, "db_do_query failed: %s [%s]", mysql_error(db), query);
}
GNUmakefile
This assumes the MySQL software is installed in /usr/local/mysql
inc := /usr/local/mysql/include/mysql
lib := /usr/local/mysql/lib
If you have not installed the MySQL software yet, try this instead
#inc := $(HOME)/mysql-5.6/include
#lib := $(HOME)/mysql-5.6/libmysqld
CC := gcc
CPPFLAGS := -I$(inc) -D_THREAD_SAFE -D_REENTRANT
CFLAGS := -g -W -Wall
LDFLAGS := -static
You can change -lmysqld to -lmysqlclient to use the
client/server library
LDLIBS = -L$(lib) -lmysqld -lm -ldl -lcrypt
ifneq (,$(shell grep FreeBSD /COPYRIGHT 2>/dev/null))
FreeBSD
LDFLAGS += -pthread
else
Assume Linux
LDLIBS += -lpthread
endif
This works for simple one-file test programs
sources := $(wildcard *.c)
objects := $(patsubst %c,%o,$(sources))
targets := $(basename $(sources))
all: $(targets)
clean:
rm -f $(targets) $(objects) *.core
21.8. MySQL C API
The C API provides low-level access to the MySQL client/server protocol and enables C programs to access database contents. The C API code is distributed with MySQL and implemented in the libmysqlclient library See Section 21.8.1, “MySQL C API Implementations”.
Most other client APIs use the libmysqlclient library to communicate with the MySQL server. (Exceptions are except Connector/J and Connector/Net.) This means that, for example, you can take advantage of many of the same environment variables that are used by other client programs because they are referenced from the library. For a list of these variables, see Section 4.1, “Overview of MySQL Programs”.
For instructions on building client programs using the C API, see Section 21.8.3.1, “Building C API Client Programs”. For programming with threads, see Section 21.8.3.2, “Writing C API Threaded Client Programs”. To create a standalone application which includes the "server" and "client" in the same program (and does not communicate with an external MySQL server), see Section 21.7, “libmysqld, the Embedded MySQL Server Library”.
Note
If, after an upgrade, you experience problems with compiled client programs, such as Commands out of sync or unexpected core dumps, the programs were probably compiled using old header or library files. In this case, check the date of the mysql.h file and libmysqlclient.a library used for compilation to verify that they are from the new MySQL distribution. If not, recompile he programs with the new headers and libraries. Recompilation might also be necessary for programs compiled against the shared client library if the library major version number has changed (for example, from libmysqlclient.so.15 to libmysqlclient.so.16).
Clients have a maximum communication buffer size. The size of the buffer that is allocated initially (16KB) is automatically increased up to the maximum size (16MB by default). Because buffer sizes are increased only as demand warrants, simply increasing the maximum limit does not in itself cause more resources to be used. This size check is mostly a precaution against erroneous statements and communication packets.
The communication buffer must be large enough to contain a single SQL statement (for client-to-server traffic) and one row of returned data (for server-to-client traffic). Each session's communication buffer is dynamically enlarged to handle any query or row up to the maximum limit. For example, if you have BLOB values that contain up to 16MB of data, you must have a communication buffer limit of at least 16MB (in both server and client). The client's default maximum is 16MB, but the default maximum in the server is 1MB. You can increase this by changing the value of the max_allowed_packet parameter at server startup. See Section 8.11.2, “Tuning Server Parameters”.
The MySQL server shrinks each communication buffer to net_buffer_length bytes after each query. For clients, the size of the buffer associated with a connection is not decreased until the connection is closed, at which time client memory is reclaimed.
21.8.1. MySQL C API Implementations
The MySQL C API is a C-based API that client applications written in C can use to communicate with MySQL Server. Client programs refer to C API header files at compile time and link to a C API library file at link time. The library comes in two versions, depending on how the application is intended to communicate with the server:
libmysqlclient: The client version of the library, used for applications that communicate over a network connection as a client of a standalone server process.
libmysqld: The embedded server version of the library, used for applications intended to include an embedded MySQL server within the application itself. The application communicates with its own private server instance.
Both libraries have the same interface. In terms of C API calls, an application communicates with a standalone server the same way it communicates with an embedded server. A given client can be built to communicate with a standalone or embedded server, depending on whether it is linked against libmysqlclient or libmysqld at build time.
There are two ways to obtain the C API header and library files required to build C API client programs:
Install a MySQL Server distribution. Server distributions include both libmysqlclient and libmysqld.
Install a MySQL Connector/C distribution. Connector/C distributions include only libmysqlclient. They do not include libmysqld.
For both MySQL Server and MySQL Connector/C, you can install a binary distribution that contains the C API files pre-built, or you can use a source distribution and build the C API files yourself.
Normally, you install either a MySQL Server distribution or a MySQL Connector/C distribution, but not both. It is possible that installing both can cause problems.
The names of the library files to use when linking C API client applications depend on the library type and platform for which a distribution is built:
On Unix (and Unix-like) sytems, the static library is libmysqlclient.a. The dynamic library is libmysqlclient.so on most Unix systems and libmysqlclient.dylib on Mac OS X.
For distributions that include embedded server libraries, the corresponding library names begin with libmysqld rather than libmysqlclient.
On Windows, the static library is mysqlclient.lib and the dynamic library is libmysql.dll. Windows distributions also include libmysql.lib, a static import library needed for using the dynamic library.
For distributions that include embedded server libraries, the corresponding library names are mysqlserver.lib, libmysqld.dll, and libmysqld.lib.
Windows distributions also include a set of debug libraries. These have the same names as the nondebug libraries, but are located in the lib/debug library. You must use the debug libraries when compiling clients built using the debug C runtime.
On Unix, you may also see libraries that include _r in the names. Before MySQL 5.5, these were built as thread-safe (re-entrant) libraries separately from the non-_r libraries. As of 5.5, both libraries are the same and the _r names are symbolic links to the corresponding non-_r names. There is no need to use the _r libraries. For example, if you use mysql_config to obtain linker flags, you can use mysql_config --libs in all cases, even for threaded clients. There is no need to use mysql_config --libs_r.
21.8.2. Example C API Client Programs
Many of the clients in MySQL source distributions are written in C, such as mysql, mysqladmin, and mysqlshow. If you are looking for examples that demonstrate how to use the C API, take a look at these clients: Obtain a source distribution and look in its client directory. See Section 2.1.3, “How to Get MySQL”.
21.8.3. Building and Running C API Client Programs
The following sections provide information on building client programs that use the C API. Topics include compiling and linking clients, writing threaded clients, and troubleshooting runtime problems.
21.8.3.1. Building C API Client Programs
This section provides guidelines for compiling C programs that use the MySQL C API.
Compiling MySQL Clients on Unix
You may need to specify an -I option when you compile client programs that use MySQL header files, so that the compiler can find them. For example, if the header files are installed in /usr/local/mysql/include, use this option in the compile command:
-I/usr/local/mysql/include
MySQL clients must be linked using the -lmysqlclient option in the link command. You may also need to specify a -L option to tell the linker where to find the library. For example, if the library is installed in /usr/local/mysql/lib, use these options in the link command:
-L/usr/local/mysql/lib -lmysqlclient
The path names may differ on your system. Adjust the -I and -L options as necessary.
To make it simpler to compile MySQL programs on Unix, use the mysql_config script. See Section 4.7.2, “mysql_config — Display Options for Compiling Clients”.
mysql_config displays the options needed for compiling or linking:
shell> mysql_config --cflags
shell> mysql_config --libs
You can run those commands to get the proper options and add them manually to compilation or link commands. Alternatively, include the output from mysql_config directly within command lines using backticks:
shell> gcc -c `mysql_config --cflags` progname.c
shell> gcc -o progname progname.o `mysql_config --libs`
Compiling MySQL Clients on Microsoft Windows
To specify the header and library file locations, use the facilities provided by your development environment.
On Windows, you can link your code with either the dynamic or static client library. The static library is named mysqlclient.lib and the dynamic library is named libmysql.dll. In addition, the libmysql.lib static import library is needed for using the dynamic library.
If you link with the static library, failure can occur unless these conditions are satisfied:
The client application must be compiled with the same version of Visual Studio used to compile the library.
The client application should link the C runtime statically by using the /MT compiler option.
If the client application is built in in debug mode and uses the static debug C runtime (/MTd compiler option), it can link to the mysqlclient.lib static library if that library was built using the same option. If the client application uses the dynamic C runtime (/MD option, or /MDd option in debug mode), it must must be linked to the libmysql.dll dynamic library. It cannot link to the static client library.
The MSDN page describing the link options can be found here: http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx
Troubleshooting Problems Linking to the MySQL Client Library
If the linker cannot find the MySQL client library, you might get undefined-reference errors for symbols that start with mysql_, such as those shown here:
/tmp/ccFKsdPa.o: In function `main':
/tmp/ccFKsdPa.o(.text+0xb): undefined reference to `mysql_init'
/tmp/ccFKsdPa.o(.text+0x31): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x69): undefined reference to `mysql_error'
/tmp/ccFKsdPa.o(.text+0x9a): undefined reference to `mysql_close'
You should be able to solve this problem by adding -Ldir_path -lmysqlclient at the end of your link command, where dir_path represents the path name of the directory where the client library is located. To determine the correct directory, try this command:
shell> mysql_config --libs
The output from mysql_config might indicate other libraries that should be specified on the link command as well. You can include mysql_config output directly in your compile or link command using backticks. For example:
shell> gcc -o progname progname.o `mysql_config --libs`
If an error occurs at link time that the floor symbol is undefined, link to the math library by adding -lm to the end of the compile/link line. Similarly, if you get undefined-reference errors for other functions that should exist on your system, such as connect(), check the manual page for the function in question to determine which libraries you should add to the link command.
If you get undefined-reference errors such as the following for functions that don't exist on your system, it usually means that your MySQL client library was compiled on a system that is not 100% compatible with yours:
mf_format.o(.text+0x201): undefined reference to `__lxstat'
In this case, you should download the latest MySQL or MySQL Connector/C source distribution and compile the MySQL client library yourself. See Section 2.9, “Installing MySQL from Source”, and Section 21.5, “MySQL Connector/C”.
21.8.3.2. Writing C API Threaded Client Programs
The client library is almost thread-safe. The biggest problem is that the subroutines in net.c that read from sockets are not interrupt-safe. This was done with the thought that you might want to have your own alarm that can break a long read to a server. If you install interrupt handlers for the SIGPIPE interrupt, socket handling should be thread-safe.
To avoid aborting the program when a connection terminates, MySQL blocks SIGPIPE on the first call to mysql_library_init(), mysql_init(), or mysql_connect(). To use your own SIGPIPE handler, first call mysql_library_init(), then install your handler.
If “undefined symbol” errors occur when linking against the libmysqlclient client library, in most cases this is because you have not included the thread libraries on the link/compile command.
The client library is thread-safe per connection. You can let two threads share the same connection with the following caveats:
Multiple threads cannot send a query to the MySQL server at the same time on the same connection. In particular, you must ensure that between calls to mysql_query() and mysql_store_result() in one thread, no other thread uses the same connection. You must have a mutex lock around your pair of mysql_query() and mysql_store_result() calls. After mysql_store_result() returns, the lock can be released and other threads may query the same connection.
If you use POSIX threads, you can use pthread_mutex_lock() and pthread_mutex_unlock() to establish and release a mutex lock.
Many threads can access different result sets that are retrieved with mysql_store_result().
To use mysql_use_result(), you must ensure that no other thread is using the same connection until the result set is closed. However, it really is best for threaded clients that share the same connection to use mysql_store_result().
You need to know the following if you have a thread that did not create the connection to the MySQL database but is calling MySQL functions:
When you call mysql_init(), MySQL creates a thread-specific variable for the thread that is used by the debug library (among other things). If you call a MySQL function before the thread has called mysql_init(), the thread does not have the necessary thread-specific variables in place and you are likely to end up with a core dump sooner or later. To avoid problems, you must do the following:
Call mysql_library_init() before any other MySQL functions. It is not thread-safe, so call it before threads are created, or protect the call with a mutex.
Arrange for mysql_thread_init() to be called early in the thread handler before calling any MySQL function. If you call mysql_init(), it will call mysql_thread_init() for you.
In the thread, call mysql_thread_end() before calling pthread_exit(). This frees the memory used by MySQL thread-specific variables.
The preceding notes regarding mysql_init() also apply to mysql_connect(), which calls mysql_init().
21.8.3.3. Running C API Clients
Undefined-reference errors might occur at runtime when you try to execute a MySQL program. If these errors specify symbols that start with mysql_ or indicate that the libmysqlclient library cannot be found, it means that your system cannot find the shared libmysqlclient.so library. The solution to this problem is to tell your system to search for shared libraries in the directory where that library is located. Use whichever of the following methods is appropriate for your system:
Add the path of the directory where libmysqlclient.so is located to the LD_LIBRARY_PATH or LD_LIBRARY environment variable.
On Mac OS X, add the path of the directory where libmysqlclient.dylib is located to the DYLD_LIBRARY_PATH environment variable.
Copy the shared-library files (such as libmysqlclient.so) to some directory that is searched by your system, such as /lib, and update the shared library information by executing ldconfig. Be sure to copy all related files. A shared library might exist under several names, using symlinks to provide the alternate names.
If the application is linked to the embedded server library, runtime error messages will indictae the libmysqld rather than libmysqlclient library, but the solution to the problem is the same as just described.
21.8.4. C API Data Structures
This section describes C API data structures other than those used for prepared statements. For information about the latter, see Section 21.8.8, “C API Prepared Statement Data Structures”.
MYSQL
This structure represents a handle to one database connection. It is used for almost all MySQL functions. Do not try to make a copy of a MYSQL structure. There is no guarantee that such a copy will be usable.
MYSQL_RES
This structure represents the result of a query that returns rows (SELECT, SHOW, DESCRIBE, EXPLAIN). The information returned from a query is called the result set in the remainder of this section.
MYSQL_ROW
This is a type-safe representation of one row of data. It is currently implemented as an array of counted byte strings. (You cannot treat these as null-terminated strings if field values may contain binary data, because such values may contain null bytes internally.) Rows are obtained by calling mysql_fetch_row().
MYSQL_FIELD
This structure contains metadata: information about a field, such as the field's name, type, and size. Its members are described in more detail later in this section. You may obtain the MYSQL_FIELD structures for each field by calling mysql_fetch_field() repeatedly. Field values are not part of this structure; they are contained in a MYSQL_ROW structure.
MYSQL_FIELD_OFFSET
This is a type-safe representation of an offset into a MySQL field list. (Used by mysql_field_seek().) Offsets are field numbers within a row, beginning at zero.
my_ulonglong
The type used for the number of rows and for mysql_affected_rows(), mysql_num_rows(), and mysql_insert_id(). This type provides a range of 0 to 1.84e19.
On some systems, attempting to print a value of type my_ulonglong does not work. To print such a value, convert it to unsigned long and use a %lu print format. Example:
printf ("Number of rows: %lu\n",
(unsigned long) mysql_num_rows(result));
my_bool
A boolean type, for values that are true (nonzero) or false (zero).
The MYSQL_FIELD structure contains the members described in the following list. The definitions apply primarily for columns of result sets such as those produced by SELECT statements. In MySQL 5.6, MYSQL_FIELD structures are also used to provide metadata for OUT and INOUT parameters returned from stored procedures executed using prepared CALL statements. For such parameters, some of the structure members have a meaning different from the meaning for column values.
char * name
The name of the field, as a null-terminated string. If the field was given an alias with an AS clause, the value of name is the alias. For a procedure parameter, the parameter name.
char * org_name
The name of the field, as a null-terminated string. Aliases are ignored. For expressions, the value is an empty string. For a procedure parameter, the parameter name.
char * table
The name of the table containing this field, if it isn't a calculated field. For calculated fields, the table value is an empty string. If the column is selected from a view, table names the view. If the table or view was given an alias with an AS clause, the value of table is the alias. For a UNION, the value is the empty string. For a procedure parameter, the procedure name.
char * org_table
The name of the table, as a null-terminated string. Aliases are ignored. If the column is selected from a view, org_table names the underlying table. For a UNION, the value is the empty string. For a procedure parameter, the procedure name.
char * db
The name of the database that the field comes from, as a null-terminated string. If the field is a calculated field, db is an empty string. For a UNION, the value is the empty string. For a procedure parameter, the name of the database containing the procedure.
char * catalog
The catalog name. This value is always "def".
char * def
The default value of this field, as a null-terminated string. This is set only if you use mysql_list_fields().
unsigned long length
The width of the field. This corresponds to the display length, in bytes.
The server determines the length value before it generates the result set, so this is the minimum length required for a data type capable of holding the largest possible value from the result column, without knowing in advance the actual values that will be produced by the query for the result set.
unsigned long max_length
The maximum width of the field for the result set (the length in bytes of the longest field value for the rows actually in the result set). If you use mysql_store_result() or mysql_list_fields(), this contains the maximum length for the field. If you use mysql_use_result(), the value of this variable is zero.
The value of max_length is the length of the string representation of the values in the result set. For example, if you retrieve a FLOAT column and the “widest” value is -12.345, max_length is 7 (the length of '-12.345').
If you are using prepared statements, max_length is not set by default because for the binary protocol the lengths of the values depend on the types of the values in the result set. (See Section 21.8.8, “C API Prepared Statement Data Structures”.) If you want the max_length values anyway, enable the STMT_ATTR_UPDATE_MAX_LENGTH option with mysql_stmt_attr_set() and the lengths will be set when you call mysql_stmt_store_result(). (See Section 21.8.10.3, “mysql_stmt_attr_set()”, and Section 21.8.10.28, “mysql_stmt_store_result()”.)
unsigned int name_length
The length of name.
unsigned int org_name_length
The length of org_name.
unsigned int table_length
The length of table.
unsigned int org_table_length
The length of org_table.
unsigned int db_length
The length of db.
unsigned int catalog_length
The length of catalog.
unsigned int def_length
The length of def.
unsigned int flags
Bit-flags that describe the field. The flags value may have zero or more of the bits set that are shown in the following table.
Flag Value | Flag Description |
---|---|
NOT_NULL_FLAG | Field can't be NULL |
PRI_KEY_FLAG | Field is part of a primary key |
UNIQUE_KEY_FLAG | Field is part of a unique key |
MULTIPLE_KEY_FLAG | Field is part of a nonunique key |
UNSIGNED_FLAG | Field has the UNSIGNED attribute |
ZEROFILL_FLAG | Field has the ZEROFILL attribute |
BINARY_FLAG | Field has the BINARY attribute |
AUTO_INCREMENT_FLAG | Field has the AUTO_INCREMENT attribute |
ENUM_FLAG | Field is an ENUM (deprecated) |
SET_FLAG | Field is a SET (deprecated) |
BLOB_FLAG | Field is a BLOB or TEXT (deprecated) |
TIMESTAMP_FLAG | Field is a TIMESTAMP (deprecated) |
NUM_FLAG | Field is numeric; see additional notes following table |
NO_DEFAULT_VALUE_FLAG | Field has no default value; see additional notes following table |
Some of these flags indicate data type information and are superseded by or used in conjunction with the MYSQL_TYPE_xxx value in the field->type member described later:
To check for BLOB or TIMESTAMP values, check whether type is MYSQL_TYPE_BLOB or MYSQL_TYPE_TIMESTAMP. (The BLOB_FLAG and TIMESTAMP_FLAG flags are unneeded.)
ENUM and SET values are returned as strings. For these, check that the type value is MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.
NUM_FLAG indicates that a column is numeric. This includes columns with a type of MYSQL_TYPE_DECIMAL, MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_TINY, MYSQL_TYPE_SHORT, MYSQL_TYPE_LONG, MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, MYSQL_TYPE_NULL, MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, and MYSQL_TYPE_YEAR.
NO_DEFAULT_VALUE_FLAG indicates that a column has no DEFAULT clause in its definition. This does not apply to NULL columns (because such columns have a default of NULL), or to AUTO_INCREMENT columns (which have an implied default value).
The following example illustrates a typical use of the flags value:
if (field->flags & NOT_NULL_FLAG)
printf("Field can't be null\n");
You may use the convenience macros shown in the following table to determine the boolean status of the flags value.
Flag Status | Description |
---|---|
IS_NOT_NULL(flags) | True if this field is defined as NOT NULL |
IS_PRI_KEY(flags) | True if this field is a primary key |
IS_BLOB(flags) | True if this field is a BLOB or TEXT (deprecated; test field->type instead) |
unsigned int decimals
The number of decimals for numeric fields, and (as of MySQL 5.6.4) the fractional seconds precision for temporal fields.
unsigned int charsetnr
An ID number that indicates the character set/collation pair for the field.
To distinguish between binary and nonbinary data for string data types, check whether the charsetnr value is 63. If so, the character set is binary, which indicates binary rather than nonbinary data. This enables you to distinguish BINARY from CHAR, VARBINARY from VARCHAR, and the BLOB types from the TEXT types.
charsetnr values are the same as those displayed in the Id column of the SHOW COLLATION statement or the ID column of the INFORMATION_SCHEMA COLLATIONS table. You can use those information sources to see which character set and collation specific charsetnr values indicate:
mysql> SHOW COLLATION WHERE Id = 63;
+-----------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-----------+---------+----+---------+----------+---------+
| binary | binary | 63 | Yes | Yes | 1 |
+-----------+---------+----+---------+----------+---------+
mysql> SELECT COLLATION_NAME, CHARACTER_SET_NAME
-> FROM INFORMATION_SCHEMA.COLLATIONS WHERE ID = 33;
+-----------------+--------------------+
| COLLATION_NAME | CHARACTER_SET_NAME |
+-----------------+--------------------+
| utf8_general_ci | utf8 |
+-----------------+--------------------+
enum enum_field_types type
The type of the field. The type value may be one of the MYSQL_TYPE_ symbols shown in the following table.
Type Value | Type Description |
---|---|
MYSQL_TYPE_TINY | TINYINT field |
MYSQL_TYPE_SHORT | SMALLINT field |
MYSQL_TYPE_LONG | INTEGER field |
MYSQL_TYPE_INT24 | MEDIUMINT field |
MYSQL_TYPE_LONGLONG | BIGINT field |
MYSQL_TYPE_DECIMAL | DECIMAL or NUMERIC field |
MYSQL_TYPE_NEWDECIMAL | Precision math DECIMAL or NUMERIC |
MYSQL_TYPE_FLOAT | FLOAT field |
MYSQL_TYPE_DOUBLE | DOUBLE or REAL field |
MYSQL_TYPE_BIT | BIT field |
MYSQL_TYPE_TIMESTAMP | TIMESTAMP field |
MYSQL_TYPE_DATE | DATE field |
MYSQL_TYPE_TIME | TIME field |
MYSQL_TYPE_DATETIME | DATETIME field |
MYSQL_TYPE_YEAR | YEAR field |
MYSQL_TYPE_STRING | CHAR or BINARY field |
MYSQL_TYPE_VAR_STRING | VARCHAR or VARBINARY field |
MYSQL_TYPE_BLOB | BLOB or TEXT field (use max_length to determine the maximum length) |
MYSQL_TYPE_SET | SET field |
MYSQL_TYPE_ENUM | ENUM field |
MYSQL_TYPE_GEOMETRY | Spatial field |
MYSQL_TYPE_NULL | NULL-type field |
The MYSQL_TYPE_TIME2, MYSQL_TYPE_DATETIME2, and MYSQL_TYPE_TIMESTAMP2) type codes are used only on the server side. Clients see the MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, and MYSQL_TYPE_TIMESTAMP codes.
You can use the IS_NUM() macro to test whether a field has a numeric type. Pass the type value to IS_NUM() and it evaluates to TRUE if the field is numeric:
if (IS_NUM(field->type))
printf("Field is numeric\n");
ENUM and SET values are returned as strings. For these, check that the type value is MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.
21.8.5. C API Function Overview
The functions available in the C API are summarized here and described in greater detail in a later section. See Section 21.8.6, “C API Function Descriptions”.
Table 21.33. C API Function Names and Descriptions
Function | Description |
---|---|
my_init() | Initialize global variables, and thread handler in thread-safe programs |
mysql_affected_rows() | Returns the number of rows changed/deleted/inserted by the last UPDATE, DELETE, or INSERT query |
mysql_autocommit() | Toggles autocommit mode on/off |
mysql_change_user() | Changes user and database on an open connection |
mysql_character_set_name() | Return default character set name for current connection |
mysql_client_find_plugin() | Return pointer to plugin |
mysql_client_register_plugin() | Register a plugin |
mysql_close() | Closes a server connection |
mysql_commit() | Commits the transaction |
mysql_connect() | Connects to a MySQL server (this function is deprecated; use mysql_real_connect() instead) |
mysql_create_db() | Creates a database (this function is deprecated; use the SQL statement CREATE DATABASE instead) |
mysql_data_seek() | Seeks to an arbitrary row number in a query result set |
mysql_debug() | Does a DBUG_PUSH with the given string |
mysql_drop_db() | Drops a database (this function is deprecated; use the SQL statement DROP DATABASE instead) |
mysql_dump_debug_info() | Makes the server write debug information to the log |
mysql_eof() | Determines whether the last row of a result set has been read (this function is deprecated; mysql_errno() or mysql_error() may be used instead) |
mysql_errno() | Returns the error number for the most recently invoked MySQL function |
mysql_error() | Returns the error message for the most recently invoked MySQL function |
mysql_escape_string() | Escapes special characters in a string for use in an SQL statement |
mysql_fetch_field() | Returns the type of the next table field |
mysql_fetch_field_direct() | Returns the type of a table field, given a field number |
mysql_fetch_fields() | Returns an array of all field structures |
mysql_fetch_lengths() | Returns the lengths of all columns in the current row |
mysql_fetch_row() | Fetches the next row from the result set |
mysql_field_count() | Returns the number of result columns for the most recent statement |
mysql_field_seek() | Puts the column cursor on a specified column |
mysql_field_tell() | Returns the position of the field cursor used for the last mysql_fetch_field() |
mysql_free_result() | Frees memory used by a result set |
mysql_get_character_set_info() | Return information about default character set |
mysql_get_client_info() | Returns client version information as a string |
mysql_get_client_version() | Returns client version information as an integer |
mysql_get_host_info() | Returns a string describing the connection |
mysql_get_proto_info() | Returns the protocol version used by the connection |
mysql_get_server_info() | Returns the server version number |
mysql_get_server_version() | Returns version number of server as an integer |
mysql_get_ssl_cipher() | Return current SSL cipher |
mysql_hex_string() | Encode string in hexadecimal format |
mysql_info() | Returns information about the most recently executed query |
mysql_init() | Gets or initializes a MYSQL structure |
mysql_insert_id() | Returns the ID generated for an AUTO_INCREMENT column by the previous query |
mysql_kill() | Kills a given thread |
mysql_library_end() | Finalize the MySQL C API library |
mysql_library_init() | Initialize the MySQL C API library |
mysql_list_dbs() | Returns database names matching a simple regular expression |
mysql_list_fields() | Returns field names matching a simple regular expression |
mysql_list_processes() | Returns a list of the current server threads |
mysql_list_tables() | Returns table names matching a simple regular expression |
mysql_load_plugin() | Load a plugin |
mysql_load_plugin_v() | Load a plugin |
mysql_more_results() | Checks whether any more results exist |
mysql_next_result() | Returns/initiates the next result in multiple-result executions |
mysql_num_fields() | Returns the number of columns in a result set |
mysql_num_rows() | Returns the number of rows in a result set |
mysql_options() | Sets connect options for mysql_real_connect() |
mysql_options4() | Sets connect options for mysql_real_connect() |
mysql_ping() | Checks whether the connection to the server is working, reconnecting as necessary |
mysql_plugin_options() | Set a plugin option |
mysql_query() | Executes an SQL query specified as a null-terminated string |
mysql_real_connect() | Connects to a MySQL server |
mysql_real_escape_string() | Escapes special characters in a string for use in an SQL statement, taking into account the current character set of the connection |
mysql_real_query() | Executes an SQL query specified as a counted string |
mysql_refresh() | Flush or reset tables and caches |
mysql_reload() | Tells the server to reload the grant tables |
mysql_rollback() | Rolls back the transaction |
mysql_row_seek() | Seeks to a row offset in a result set, using value returned from mysql_row_tell() |
mysql_row_tell() | Returns the row cursor position |
mysql_select_db() | Selects a database |
mysql_server_end() | Finalize the MySQL C API library |
mysql_server_init() | Initialize the MySQL C API library |
mysql_set_character_set() | Set default character set for current connection |
mysql_set_local_infile_default() | Set the LOAD DATA LOCAL INFILE handler callbacks to their default values |
mysql_set_local_infile_handler() | Install application-specific LOAD DATA LOCAL INFILE handler callbacks |
mysql_set_server_option() | Sets an option for the connection (like multi-statements) |
mysql_sqlstate() | Returns the SQLSTATE error code for the last error |
mysql_shutdown() | Shuts down the database server |
mysql_ssl_set() | Prepare to establish SSL connection to server |
mysql_stat() | Returns the server status as a string |
mysql_store_result() | Retrieves a complete result set to the client |
mysql_thread_end() | Finalize thread handler |
mysql_thread_id() | Returns the current thread ID |
mysql_thread_init() | Initialize thread handler |
mysql_thread_safe() | Returns 1 if the clients are compiled as thread-safe |
mysql_use_result() | Initiates a row-by-row result set retrieval |
mysql_warning_count() | Returns the warning count for the previous SQL statement |
Application programs should use this general outline for interacting with MySQL:
Initialize the MySQL library by calling mysql_library_init(). This function exists in both the libmysqlclient C client library and the libmysqld embedded server library, so it is used whether you build a regular client program by linking with the -libmysqlclient flag, or an embedded server application by linking with the -libmysqld flag.
Initialize a connection handler by calling mysql_init() and connect to the server by calling mysql_real_connect().
Issue SQL statements and process their results. (The following discussion provides more information about how to do this.)
Close the connection to the MySQL server by calling mysql_close().
End use of the MySQL library by calling mysql_library_end().
The purpose of calling mysql_library_init() and mysql_library_end() is to provide proper initialization and finalization of the MySQL library. For applications that are linked with the client library, they provide improved memory management. If you don't call mysql_library_end(), a block of memory remains allocated. (This does not increase the amount of memory used by the application, but some memory leak detectors will complain about it.) For applications that are linked with the embedded server, these calls start and stop the server.
In a nonmulti-threaded environment, the call to mysql_library_init() may be omitted, because mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is not thread-safe in a multi-threaded environment, and thus neither is mysql_init(), which calls mysql_library_init(). You must either call mysql_library_init() prior to spawning any threads, or else use a mutex to protect the call, whether you invoke mysql_library_init() or indirectly through mysql_init(). This should be done prior to any other client library call.
To connect to the server, call mysql_init() to initialize a connection handler, then call mysql_real_connect() with that handler (along with other information such as the host name, user name, and password). Upon connection, mysql_real_connect() sets the reconnect flag (part of the MYSQL structure) to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions. A value of 1 for this flag indicates that if a statement cannot be performed because of a lost connection, to try reconnecting to the server before giving up. You can use the MYSQL_OPT_RECONNECT option to mysql_options() to control reconnection behavior. When you are done with the connection, call mysql_close() to terminate it.
While a connection is active, the client may send SQL statements to the server using mysql_query() or mysql_real_query(). The difference between the two is that mysql_query() expects the query to be specified as a null-terminated string whereas mysql_real_query() expects a counted string. If the string contains binary data (which may include null bytes), you must use mysql_real_query().
For each non-SELECT query (for example, INSERT, UPDATE, DELETE), you can find out how many rows were changed (affected) by calling mysql_affected_rows().
For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are SELECT-like in that they return rows. These include SHOW, DESCRIBE, and EXPLAIN. Treat these statements the same way as SELECT statements.)
There are two ways for a client to process result sets. One way is to retrieve the entire result set all at once by calling mysql_store_result(). This function acquires from the server all the rows returned by the query and stores them in the client. The second way is for the client to initiate a row-by-row result set retrieval by calling mysql_use_result(). This function initializes the retrieval, but does not actually get any rows from the server.
In both cases, you access rows by calling mysql_fetch_row(). With mysql_store_result(), mysql_fetch_row() accesses rows that have previously been fetched from the server. With mysql_use_result(), mysql_fetch_row() actually retrieves the row from the server. Information about the size of the data in each row is available by calling mysql_fetch_lengths().
After you are done with a result set, call mysql_free_result() to free the memory used for it.
The two retrieval mechanisms are complementary. Choose the approach that is most appropriate for each client application. In practice, clients tend to use mysql_store_result() more commonly.
An advantage of mysql_store_result() is that because the rows have all been fetched to the client, you not only can access rows sequentially, you can move back and forth in the result set using mysql_data_seek() or mysql_row_seek() to change the current row position within the result set. You can also find out how many rows there are by calling mysql_num_rows(). On the other hand, the memory requirements for mysql_store_result() may be very high for large result sets and you are more likely to encounter out-of-memory conditions.
An advantage of mysql_use_result() is that the client requires less memory for the result set because it maintains only one row at a time (and because there is less allocation overhead, mysql_use_result() can be faster). Disadvantages are that you must process each row quickly to avoid tying up the server, you don't have random access to rows within the result set (you can only access rows sequentially), and you don't know how many rows are in the result set until you have retrieved them all. Furthermore, you must retrieve all the rows even if you determine in mid-retrieval that you've found the information you were looking for.
The API makes it possible for clients to respond appropriately to statements (retrieving rows only as necessary) without knowing whether the statement is a SELECT. You can do this by calling mysql_store_result() after each mysql_query() (or mysql_real_query()). If the result set call succeeds, the statement was a SELECT and you can read the rows. If the result set call fails, call mysql_field_count() to determine whether a result was actually to be expected. If mysql_field_count() returns zero, the statement returned no data (indicating that it was an INSERT, UPDATE, DELETE, and so forth), and was not expected to return rows. If mysql_field_count() is nonzero, the statement should have returned rows, but didn't. This indicates that the statement was a SELECT that failed. See the description for mysql_field_count() for an example of how this can be done.
Both mysql_store_result() and mysql_use_result() enable you to obtain information about the fields that make up the result set (the number of fields, their names and types, and so forth). You can access field information sequentially within the row by calling mysql_fetch_field() repeatedly, or by field number within the row by calling mysql_fetch_field_direct(). The current field cursor position may be changed by calling mysql_field_seek(). Setting the field cursor affects subsequent calls to mysql_fetch_field(). You can also get information for fields all at once by calling mysql_fetch_fields().
For detecting and reporting errors, MySQL provides access to error information by means of the mysql_errno() and mysql_error() functions. These return the error code or error message for the most recently invoked function that can succeed or fail, enabling you to determine when an error occurred and what it was.
21.8.6. C API Function Descriptions
In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C programming language, not a MySQL NULL value.
Functions that return a value generally return a pointer or an integer. Unless specified otherwise, functions returning a pointer return a non-NULL value to indicate success or a NULL value to indicate an error, and functions returning an integer return zero to indicate success or nonzero to indicate an error. Note that “nonzero” means just that. Unless the function description says otherwise, do not test against a value other than zero:
if (result) /* correct */
... error ...
if (result < 0) /* incorrect */
... error ...
if (result == -1) /* incorrect */
... error ...
When a function returns an error, the Errors subsection of the function description lists the possible types of errors. You can find out which of these occurred by calling mysql_errno(). A string representation of the error may be obtained by calling mysql_error().
21.8.6.1. mysql_affected_rows()
my_ulonglong mysql_affected_rows(MYSQL *mysql)
Description
mysql_affected_rows() may be called immediately after executing a statement with mysql_query() or mysql_real_query(). It returns the number of rows changed, deleted, or inserted by the last statement if it was an UPDATE, DELETE, or INSERT. For SELECT statements, mysql_affected_rows() works like mysql_num_rows().
For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld, the affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.
For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in this case, one row was inserted after the duplicate was deleted.
For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value is 1 if the row is inserted as a new row and 2 if an existing row is updated.
Following a CALL statement for a stored procedure, mysql_affected_rows() returns the value that it would return for the last statement executed within the procedure, or 0 if that statement would return -1. Within the procedure, you can use ROW_COUNT() at the SQL level to obtain the affected-rows value for individual statements.
In MySQL 5.6, mysql_affected_rows() returns a meaningful value for a wider range of statements. For details, see the description for ROW_COUNT() in Section 12.14, “Information Functions”.
Return Values
An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no records were updated for an UPDATE statement, no rows matched the WHERE clause in the query or that no query has yet been executed. -1 indicates that the query returned an error or that, for a SELECT query, mysql_affected_rows() was called prior to calling mysql_store_result().
Because mysql_affected_rows() returns an unsigned value, you can check for -1 by comparing the return value to (my_ulonglong)-1 (or to (my_ulonglong)~0, which is equivalent).
Errors
None.
Example
char *stmt = "UPDATE products SET cost=cost*1.25
WHERE group=10";
mysql_query(&mysql,stmt);
printf("%ld products updated",
(long) mysql_affected_rows(&mysql));
21.8.6.2. mysql_autocommit()
my_bool mysql_autocommit(MYSQL *mysql, my_bool mode)
Description
Sets autocommit mode on if mode is 1, off if mode is 0.
Return Values
Zero if successful. Nonzero if an error occurred.
Errors
None.
21.8.6.3. mysql_change_user()
my_bool mysql_change_user(MYSQL *mysql, const char *user, const char *password, const char *db)
Description
Changes the user and causes the database specified by db to become the default (current) database on the connection specified by mysql. In subsequent queries, this database is the default for table references that do not include an explicit database specifier.
mysql_change_user() fails if the connected user cannot be authenticated or doesn't have permission to use the database. In this case, the user and database are not changed.
The db parameter may be set to NULL if you don't want to have a default database.
This command resets the state as if one had done a new connect. (See Section 21.8.15, “Controlling Automatic Reconnection Behavior”.) It always performs a ROLLBACK of any active transactions, closes and drops all temporary tables, and unlocks all locked tables. Session system variables are reset to the values of the corresponding global system variables. Prepared statements are released and HANDLER variables are closed. Locks acquired with GET_LOCK() are released. These effects occur even if the user didn't change.
Return Values
Zero for success. Nonzero if an error occurred.
Errors
The same that you can get from mysql_real_connect().
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
The MySQL server doesn't implement this command (probably an old server).
The user or password was wrong.
The database didn't exist.
The user did not have access rights to the database.
The database name was too long.
Example
if (mysql_change_user(&mysql, "user", "password", "new_database"))
{
fprintf(stderr, "Failed to change user. Error: %s\n",
mysql_error(&mysql));
}
21.8.6.4. mysql_character_set_name()
const char *mysql_character_set_name(MYSQL *mysql)
Description
Returns the default character set name for the current connection.
Return Values
The default character set name
Errors
None.
21.8.6.5. mysql_close()
void mysql_close(MYSQL *mysql)
Description
Closes a previously opened connection. mysql_close() also deallocates the connection handle pointed to by mysql if the handle was allocated automatically by mysql_init() or mysql_connect().
Return Values
None.
Errors
None.
21.8.6.6. mysql_commit()
my_bool mysql_commit(MYSQL *mysql)
Description
Commits the current transaction.
The action of this function is subject to the value of the completion_type system variable. In particular, if the value of completion_type is RELEASE (or 2), the server performs a release after terminating a transaction and closes the client connection. Call mysql_close() from the client program to close the connection from the client side.
Return Values
Zero if successful. Nonzero if an error occurred.
Errors
None.
21.8.6.7. mysql_connect()
MYSQL *mysql_connect(MYSQL *mysql, const char *host, const char *user, const char *passwd)
Description
This function is deprecated. Use mysql_real_connect() instead.
mysql_connect() attempts to establish a connection to a MySQL database engine running on host. mysql_connect() must complete successfully before you can execute any of the other API functions, with the exception of mysql_get_client_info().
The meanings of the parameters are the same as for the corresponding parameters for mysql_real_connect() with the difference that the connection parameter may be NULL. In this case, the C API allocates memory for the connection structure automatically and frees it when you call mysql_close(). The disadvantage of this approach is that you can't retrieve an error message if the connection fails. (To get error information from mysql_errno() or mysql_error(), you must provide a valid MYSQL pointer.)
Return Values
Same as for mysql_real_connect().
Errors
Same as for mysql_real_connect().
21.8.6.8. mysql_create_db()
int mysql_create_db(MYSQL *mysql, const char *db)
Description
Creates the database named by the db parameter.
This function is deprecated. It is preferable to use mysql_query() to issue an SQL CREATE DATABASE statement instead.
Return Values
Zero if the database was created successfully. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
Example
if(mysql_create_db(&mysql, "my_database"))
{
fprintf(stderr, "Failed to create new database. Error: %s\n",
mysql_error(&mysql));
}
21.8.6.9. mysql_data_seek()
void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset)
Description
Seeks to an arbitrary row in a query result set. The offset value is a row number. Specify a value in the range from 0 to mysql_num_rows(result)-1.
This function requires that the result set structure contains the entire result of the query, so mysql_data_seek() may be used only in conjunction with mysql_store_result(), not with mysql_use_result().
Return Values
None.
Errors
None.
21.8.6.10. mysql_debug()
void mysql_debug(const char *debug)
Description
Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug library. To use this function, you must compile the client library to support debugging. See MySQL Internals: Porting to Other Systems.
Return Values
None.
Errors
None.
Example
The call shown here causes the client library to generate a trace file in /tmp/client.trace on the client machine:
mysql_debug("d:t:O,/tmp/client.trace");
21.8.6.11. mysql_drop_db()
int mysql_drop_db(MYSQL *mysql, const char *db)
Description
Drops the database named by the db parameter.
This function is deprecated. It is preferable to use mysql_query() to issue an SQL DROP DATABASE statement instead.
Return Values
Zero if the database was dropped successfully. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
Example
if(mysql_drop_db(&mysql, "my_database"))
fprintf(stderr, "Failed to drop the database: Error: %s\n",
mysql_error(&mysql));
21.8.6.12. mysql_dump_debug_info()
int mysql_dump_debug_info(MYSQL *mysql)
Description
Instructs the server to write some debug information to the log. For this to work, the connected user must have the SUPER privilege.
Return Values
Zero if the command was successful. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.13. mysql_eof()
my_bool mysql_eof(MYSQL_RES *result)
Description
This function is deprecated. mysql_errno() or mysql_error() may be used instead.
mysql_eof() determines whether the last row of a result set has been read.
If you acquire a result set from a successful call to mysql_store_result(), the client receives the entire set in one operation. In this case, a NULL return from mysql_fetch_row() always means the end of the result set has been reached and it is unnecessary to call mysql_eof(). When used with mysql_store_result(), mysql_eof() always returns true.
On the other hand, if you use mysql_use_result() to initiate a result set retrieval, the rows of the set are obtained from the server one by one as you call mysql_fetch_row() repeatedly. Because an error may occur on the connection during this process, a NULL return value from mysql_fetch_row() does not necessarily mean the end of the result set was reached normally. In this case, you can use mysql_eof() to determine what happened. mysql_eof() returns a nonzero value if the end of the result set was reached and zero if an error occurred.
Historically, mysql_eof() predates the standard MySQL error functions mysql_errno() and mysql_error(). Because those error functions provide the same information, their use is preferred over mysql_eof(), which is deprecated. (In fact, they provide more information, because mysql_eof() returns only a boolean value whereas the error functions indicate a reason for the error when one occurs.)
Return Values
Zero if no error occurred. Nonzero if the end of the result set has been reached.
Errors
None.
Example
The following example shows how you might use mysql_eof():
mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
// do something with data
}
if(!mysql_eof(result)) // mysql_fetch_row() failed due to an error
{
fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}
However, you can achieve the same effect with the standard MySQL error functions:
mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
// do something with data
}
if(mysql_errno(&mysql)) // mysql_fetch_row() failed due to an error
{
fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}
21.8.6.14. mysql_errno()
unsigned int mysql_errno(MYSQL *mysql)
Description
For the connection specified by mysql, mysql_errno() returns the error code for the most recently invoked API function that can succeed or fail. A return value of zero means that no error occurred. Client error message numbers are listed in the MySQL errmsg.h header file. Server error message numbers are listed in mysqld_error.h. Errors also are listed at Appendix C, Errors, Error Codes, and Common Problems.
Note that some functions like mysql_fetch_row() don't set mysql_errno() if they succeed.
A rule of thumb is that all functions that have to ask the server for information reset mysql_errno() if they succeed.
MySQL-specific error numbers returned by mysql_errno() differ from SQLSTATE values returned by mysql_sqlstate(). For example, the mysql client program displays errors using the following format, where 1146 is the mysql_errno() value and '42S02' is the corresponding mysql_sqlstate() value:
shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist
Return Values
An error code value for the last mysql_xxx() call, if it failed. zero means no error occurred.
Errors
None.
21.8.6.15. mysql_error()
const char *mysql_error(MYSQL *mysql)
Description
For the connection specified by mysql, mysql_error() returns a null-terminated string containing the error message for the most recently invoked API function that failed. If a function didn't fail, the return value of mysql_error() may be the previous error or an empty string to indicate no error.
A rule of thumb is that all functions that have to ask the server for information reset mysql_error() if they succeed.
For functions that reset mysql_error(), the following two tests are equivalent:
if(*mysql_error(&mysql))
{
// an error occurred
}
if(mysql_error(&mysql)[0])
{
// an error occurred
}
The language of the client error messages may be changed by recompiling the MySQL client library. Currently, you can choose error messages in several different languages. See Section 10.2, “Setting the Error Message Language”.
Return Values
A null-terminated character string that describes the error. An empty string if no error occurred.
Errors
None.
21.8.6.16. mysql_escape_string()
Use mysql_real_escape_string() instead!
This function is identical to mysql_real_escape_string() except that mysql_real_escape_string() takes a connection handler as its first argument and escapes the string according to the current character set. mysql_escape_string() does not take a connection argument and does not respect the current character set.
21.8.6.17. mysql_fetch_field()
MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)
Description
Returns the definition of one column of a result set as a MYSQL_FIELD structure. Call this function repeatedly to retrieve information about all columns in the result set. mysql_fetch_field() returns NULL when no more fields are left.
mysql_fetch_field() is reset to return information about the first field each time you execute a new SELECT query. The field returned by mysql_fetch_field() is also affected by calls to mysql_field_seek().
If you've called mysql_query() to perform a SELECT on a table but have not called mysql_store_result(), MySQL returns the default blob length (8KB) if you call mysql_fetch_field() to ask for the length of a BLOB field. (The 8KB size is chosen because MySQL doesn't know the maximum length for the BLOB. This should be made configurable sometime.) Once you've retrieved the result set, field->max_length contains the length of the largest value for this column in the specific query.
Return Values
The MYSQL_FIELD structure for the current column. NULL if no columns are left.
Errors
None.
Example
MYSQL_FIELD *field;
while((field = mysql_fetch_field(result)))
{
printf("field name %s\n", field->name);
}
21.8.6.18. mysql_fetch_field_direct()
MYSQL_FIELD *mysql_fetch_field_direct(MYSQL_RES *result, unsigned int fieldnr)
Description
Given a field number fieldnr for a column within a result set, returns that column's field definition as a MYSQL_FIELD structure. Use this function to retrieve the definition for an arbitrary column. Specify a value for fieldnr in the range from 0 to mysql_num_fields(result)-1.
Return Values
The MYSQL_FIELD structure for the specified column.
Errors
None.
Example
unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *field;
num_fields = mysql_num_fields(result);
for(i = 0; i < num_fields; i++)
{
field = mysql_fetch_field_direct(result, i);
printf("Field %u is %s\n", i, field->name);
}
21.8.6.19. mysql_fetch_fields()
MYSQL_FIELD *mysql_fetch_fields(MYSQL_RES *result)
Description
Returns an array of all MYSQL_FIELD structures for a result set. Each structure provides the field definition for one column of the result set.
Return Values
An array of MYSQL_FIELD structures for all columns of a result set.
Errors
None.
Example
unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *fields;
num_fields = mysql_num_fields(result);
fields = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
{
printf("Field %u is %s\n", i, fields[i].name);
}
21.8.6.20. mysql_fetch_lengths()
unsigned long *mysql_fetch_lengths(MYSQL_RES *result)
Description
Returns the lengths of the columns of the current row within a result set. If you plan to copy field values, this length information is also useful for optimization, because you can avoid calling strlen(). In addition, if the result set contains binary data, you must use this function to determine the size of the data, because strlen() returns incorrect results for any field containing null characters.
The length for empty columns and for columns containing NULL values is zero. To see how to distinguish these two cases, see the description for mysql_fetch_row().
Return Values
An array of unsigned long integers representing the size of each column (not including any terminating null characters). NULL if an error occurred.
Errors
mysql_fetch_lengths() is valid only for the current row of the result set. It returns NULL if you call it before calling mysql_fetch_row() or after retrieving all rows in the result.
Example
MYSQL_ROW row;
unsigned long *lengths;
unsigned int num_fields;
unsigned int i;
row = mysql_fetch_row(result);
if (row)
{
num_fields = mysql_num_fields(result);
lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
{
printf("Column %u is %lu bytes in length.\n",
i, lengths[i]);
}
}
21.8.6.21. mysql_fetch_row()
MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)
Description
Retrieves the next row of a result set. When used after mysql_store_result(), mysql_fetch_row() returns NULL when there are no more rows to retrieve. When used after mysql_use_result(), mysql_fetch_row() returns NULL when there are no more rows to retrieve or if an error occurred.
The number of values in the row is given by mysql_num_fields(result). If row holds the return value from a call to mysql_fetch_row(), pointers to the values are accessed as row[0] to row[mysql_num_fields(result)-1]. NULL values in the row are indicated by NULL pointers.
The lengths of the field values in the row may be obtained by calling mysql_fetch_lengths(). Empty fields and fields containing NULL both have length 0; you can distinguish these by checking the pointer for the field value. If the pointer is NULL, the field is NULL; otherwise, the field is empty.
Return Values
A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve or if an error occurred.
Errors
Note that error is not reset between calls to mysql_fetch_row()
The connection to the server was lost during the query.
An unknown error occurred.
Example
MYSQL_ROW row;
unsigned int num_fields;
unsigned int i;
num_fields = mysql_num_fields(result);
while ((row = mysql_fetch_row(result)))
{
unsigned long *lengths;
lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
{
printf("[%.*s] ", (int) lengths[i],
row[i] ? row[i] : "NULL");
}
printf("\n");
}
21.8.6.22. mysql_field_count()
unsigned int mysql_field_count(MYSQL *mysql)
Description
Returns the number of columns for the most recent query on the connection.
The normal use of this function is when mysql_store_result() returned NULL (and thus you have no result set pointer). In this case, you can call mysql_field_count() to determine whether mysql_store_result() should have produced a nonempty result. This enables the client program to take proper action without knowing whether the query was a SELECT (or SELECT-like) statement. The example shown here illustrates how this may be done.
Return Values
An unsigned integer representing the number of columns in a result set.
Errors
None.
Example
MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;
if (mysql_query(&mysql,query_string))
{
// error
}
else // query succeeded, process any data returned by it
{
result = mysql_store_result(&mysql);
if (result) // there are rows
{
num_fields = mysql_num_fields(result);
// retrieve rows, then call mysql_free_result(result)
}
else // mysql_store_result() returned nothing; should it have?
{
if(mysql_field_count(&mysql) == 0)
{
// query does not return data
// (it was not a SELECT)
num_rows = mysql_affected_rows(&mysql);
}
else // mysql_store_result() should have returned data
{
fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}
}
}
An alternative is to replace the mysql_field_count(&mysql) call with mysql_errno(&mysql). In this case, you are checking directly for an error from mysql_store_result() rather than inferring from the value of mysql_field_count() whether the statement was a SELECT.
21.8.6.23. mysql_field_seek()
MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result, MYSQL_FIELD_OFFSET offset)
Description
Sets the field cursor to the given offset. The next call to mysql_fetch_field() retrieves the field definition of the column associated with that offset.
To seek to the beginning of a row, pass an offset value of zero.
Return Values
The previous value of the field cursor.
Errors
None.
21.8.6.24. mysql_field_tell()
MYSQL_FIELD_OFFSET mysql_field_tell(MYSQL_RES *result)
Description
Returns the position of the field cursor used for the last mysql_fetch_field(). This value can be used as an argument to mysql_field_seek().
Return Values
The current offset of the field cursor.
Errors
None.
21.8.6.25. mysql_free_result()
void mysql_free_result(MYSQL_RES *result)
Description
Frees the memory allocated for a result set by mysql_store_result(), mysql_use_result(), mysql_list_dbs(), and so forth. When you are done with a result set, you must free the memory it uses by calling mysql_free_result().
Do not attempt to access a result set after freeing it.
Return Values
None.
Errors
None.
21.8.6.26. mysql_get_character_set_info()
void mysql_get_character_set_info(MYSQL *mysql, MY_CHARSET_INFO *cs)
Description
This function provides information about the default client character set. The default character set may be changed with the mysql_set_character_set() function.
Example
This example shows the fields that are available in the MY_CHARSET_INFO structure:
if (!mysql_set_character_set(&mysql, "utf8"))
{
MY_CHARSET_INFO cs;
mysql_get_character_set_info(&mysql, &cs);
printf("character set information:\n");
printf("character set+collation number: %d\n", cs.number);
printf("character set name: %s\n", cs.name);
printf("collation name: %s\n", cs.csname);
printf("comment: %s\n", cs.comment);
printf("directory: %s\n", cs.dir);
printf("multi byte character min. length: %d\n", cs.mbminlen);
printf("multi byte character max. length: %d\n", cs.mbmaxlen);
}
21.8.6.27. mysql_get_client_info()
const char *mysql_get_client_info(void)
Description
Returns a string that represents the client library version.
Return Values
A character string that represents the MySQL client library version.
Errors
None.
21.8.6.28. mysql_get_client_version()
unsigned long mysql_get_client_version(void)
Description
Returns an integer that represents the client library version. The value has the format XYYZZ where X is the major version, YY is the release level, and ZZ is the version number within the release level. For example, a value of 40102 represents a client library version of 4.1.2.
Return Values
An integer that represents the MySQL client library version.
Errors
None.
21.8.6.29. mysql_get_host_info()
const char *mysql_get_host_info(MYSQL *mysql)
Description
Returns a string describing the type of connection in use, including the server host name.
Return Values
A character string representing the server host name and the connection type.
Errors
None.
21.8.6.30. mysql_get_proto_info()
unsigned int mysql_get_proto_info(MYSQL *mysql)
Description
Returns the protocol version used by current connection.
Return Values
An unsigned integer representing the protocol version used by the current connection.
Errors
None.
21.8.6.31. mysql_get_server_info()
const char *mysql_get_server_info(MYSQL *mysql)
Description
Returns a string that represents the server version number.
Return Values
A character string that represents the server version number.
Errors
None.
21.8.6.32. mysql_get_server_version()
unsigned long mysql_get_server_version(MYSQL *mysql)
Description
Returns the version number of the server as an integer.
Return Values
A number that represents the MySQL server version in this format:
major_version*10000 + minor_version *100 + sub_version
For example, 5.1.5 is returned as 50105.
This function is useful in client programs for quickly determining whether some version-specific server capability exists.
Errors
None.
21.8.6.33. mysql_get_ssl_cipher()
const char *mysql_get_ssl_cipher(MYSQL *mysql)
Description
mysql_get_ssl_cipher() returns the SSL cipher used for the given connection to the server. mysql is the connection handler returned from mysql_init().
Return Values
A string naming the SSL cipher used for the connection, or NULL if no cipher is being used.
21.8.6.34. mysql_hex_string()
unsigned long mysql_hex_string(char *to, const char *from, unsigned long length)
Description
This function is used to create a legal SQL string that you can use in an SQL statement. See Section 9.1.1, “String Literals”.
The string in from is encoded to hexadecimal format, with each character encoded as two hexadecimal digits. The result is placed in to and a terminating null byte is appended.
The string pointed to by from must be length bytes long. You must allocate the to buffer to be at least length*2+1 bytes long. When mysql_hex_string() returns, the contents of to is a null-terminated string. The return value is the length of the encoded string, not including the terminating null character.
The return value can be placed into an SQL statement using either 0xvalue or X'value' format. However, the return value does not include the 0x or X'...'. The caller must supply whichever of those is desired.
Example
char query[1000],*end;
end = strmov(query,"INSERT INTO test_table values(");
end = strmov(end,"0x");
end += mysql_hex_string(end,"What is this",12);
end = strmov(end,",0x");
end += mysql_hex_string(end,"binary data: \0\r\n",16);
*end++ = ')';
if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
fprintf(stderr, "Failed to insert row, Error: %s\n",
mysql_error(&mysql));
}
The strmov() function used in the example is included in the libmysqlclient library and works like strcpy() but returns a pointer to the terminating null of the first parameter.
Return Values
The length of the value placed into to, not including the terminating null character.
Errors
None.
21.8.6.35. mysql_info()
const char *mysql_info(MYSQL *mysql)
Description
Retrieves a string providing information about the most recently executed statement, but only for the statements listed here. For other statements, mysql_info() returns NULL. The format of the string varies depending on the type of statement, as described here. The numbers are illustrative only; the string contains values appropriate for the statement.
String format: Records: 100 Duplicates: 0 Warnings: 0
INSERT INTO ... VALUES (...),(...),(...)...
String format: Records: 3 Duplicates: 0 Warnings: 0
String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: 0
String format: Records: 3 Duplicates: 0 Warnings: 0
String format: Rows matched: 40 Changed: 40 Warnings: 0
Note that mysql_info() returns a non-NULL value for INSERT ... VALUES only for the multiple-row form of the statement (that is, only if multiple value lists are specified).
Return Values
A character string representing additional information about the most recently executed statement. NULL if no information is available for the statement.
Errors
None.
21.8.6.36. mysql_init()
MYSQL *mysql_init(MYSQL *mysql)
Description
Allocates or initializes a MYSQL object suitable for mysql_real_connect(). If mysql is a NULL pointer, the function allocates, initializes, and returns a new object. Otherwise, the object is initialized and the address of the object is returned. If mysql_init() allocates a new object, it is freed when mysql_close() is called to close the connection.
Return Values
An initialized MYSQL* handle. NULL if there was insufficient memory to allocate a new object.
Errors
In case of insufficient memory, NULL is returned.
21.8.6.37. mysql_insert_id()
my_ulonglong mysql_insert_id(MYSQL *mysql)
Description
Returns the value generated for an AUTO_INCREMENT column by the previous INSERT or UPDATE statement. Use this function after you have performed an INSERT statement into a table that contains an AUTO_INCREMENT field, or have used INSERT or UPDATE to set a column value with LAST_INSERT_ID(expr).
The return value of mysql_insert_id() is always zero unless explicitly updated under one of the following conditions:
INSERT statements that store a value into an AUTO_INCREMENT column. This is true whether the value is automatically generated by storing the special values NULL or 0 into the column, or is an explicit nonspecial value.
In the case of a multiple-row INSERT statement, mysql_insert_id() returns the first automatically generated AUTO_INCREMENT value that was successfully inserted.
If no rows are successfully inserted, mysql_insert_id() returns 0.
If an INSERT ... SELECT statement is executed, and no automatically generated value is successfully inserted, mysql_insert_id() returns the ID of the last inserted row.
If an INSERT ... SELECT statement uses LAST_INSERT_ID(expr), mysql_insert_id() returns expr.
INSERT statements that generate an AUTO_INCREMENT value by inserting LAST_INSERT_ID(expr) into any column or by updating any column to LAST_INSERT_ID(expr).
If the previous statement returned an error, the value of mysql_insert_id() is undefined.
The return value of mysql_insert_id() can be simplified to the following sequence:
If there is an AUTO_INCREMENT column, and an automatically generated value was successfully inserted, return the first such value.
If LAST_INSERT_ID(expr) occurred in the statement, return expr, even if there was an AUTO_INCREMENT column in the affected table.
The return value varies depending on the statement used. When called after an INSERT statement:
If there is an AUTO_INCREMENT column in the table, and there were some explicit values for this column that were successfully inserted into the table, return the last of the explicit values.
When called after an INSERT ... ON DUPLICATE KEY UPDATE statement:
If there is an AUTO_INCREMENT column in the table and there were some explicit successfully inserted values or some updated values, return the last of the inserted or updated values.
mysql_insert_id() returns 0 if the previous statement does not use an AUTO_INCREMENT value. If you need to save the value for later, be sure to call mysql_insert_id() immediately after the statement that generates the value.
The value of mysql_insert_id() is affected only by statements issued within the current client connection. It is not affected by statements issued by other clients.
The LAST_INSERT_ID() SQL function will contain the value of the first automatically generated value that was successfully inserted. LAST_INSERT_ID() is not reset between statements because the value of that function is maintained in the server. Another difference from mysql_insert_id() is that LAST_INSERT_ID() is not updated if you set an AUTO_INCREMENT column to a specific nonspecial value. See Section 12.14, “Information Functions”.
mysql_insert_id() returns 0 following a CALL statement for a stored procedure that generates an AUTO_INCREMENT value because in this case mysql_insert_id() applies to CALL and not the statement within the procedure. Within the procedure, you can use LAST_INSERT_ID() at the SQL level to obtain the AUTO_INCREMENT value.
The reason for the differences between LAST_INSERT_ID() and mysql_insert_id() is that LAST_INSERT_ID() is made easy to use in scripts while mysql_insert_id() tries to provide more exact information about what happens to the AUTO_INCREMENT column.
Return Values
Described in the preceding discussion.
Errors
None.
21.8.6.38. mysql_kill()
int mysql_kill(MYSQL *mysql, unsigned long pid)
Description
Asks the server to kill the thread specified by pid.
This function is deprecated. It is preferable to use mysql_query() to issue an SQL KILL statement instead.
mysql_kill() cannot handle values larger than 32 bits, but as of MySQL 5.6.9 to guard against killing the wrong thread returns an error in these cases:
If given an ID larger than 32 bits, mysql_kill() returns a CR_INVALID_CONN_HANDLE error.
After the server's internal thread ID counter reaches a value larger than 32 bits, it returns an ER_DATA_OUT_OF_RANGE error for any mysql_kill() invocation and mysql_kill() fails.
Return Values
Zero for success. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The pid was larger than 32 bits.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
The server's internal thread ID counter has reached a value larger than 32 bits, at which point it rejects all mysql_kill() invocations.
21.8.6.39. mysql_library_end()
void mysql_library_end(void)
Description
This function finalizes the MySQL library. Call it when you are done using the library (for example, after disconnecting from the server). The action taken by the call depends on whether your application is linked to the MySQL client library or the MySQL embedded server library. For a client program linked against the libmysqlclient library by using the -lmysqlclient flag, mysql_library_end() performs some memory management to clean up. For an embedded server application linked against the libmysqld library by using the -lmysqld flag, mysql_library_end() shuts down the embedded server and then cleans up.
For usage information, see Section 21.8.5, “C API Function Overview”, and Section 21.8.6.40, “mysql_library_init()”.
21.8.6.40. mysql_library_init()
int mysql_library_init(int argc, char **argv, char **groups)
Description
Call this function to initialize the MySQL library before you call any other MySQL function, whether your application is a regular client program or uses the embedded server. If the application uses the embedded server, this call starts the server and initializes any subsystems (mysys, InnoDB, and so forth) that the server uses.
After your application is done using the MySQL library, call mysql_library_end() to clean up. See Section 21.8.6.39, “mysql_library_end()”.
The choice of whether the application operates as a regular client or uses the embedded server depends on whether you use the libmysqlclient or libmysqld library at link time to produce the final executable. For additional information, see Section 21.8.5, “C API Function Overview”.
In a nonmulti-threaded environment, the call to mysql_library_init() may be omitted, because mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is not thread-safe in a multi-threaded environment, and thus neither is mysql_init(), which calls mysql_library_init(). You must either call mysql_library_init() prior to spawning any threads, or else use a mutex to protect the call, whether you invoke mysql_library_init() or indirectly through mysql_init(). Do this prior to any other client library call.
The argc and argv arguments are analogous to the arguments to main(), and enable passing of options to the embedded server. For convenience, argc may be 0 (zero) if there are no command-line arguments for the server. This is the usual case for applications intended for use only as regular (nonembedded) clients, and the call typically is written as mysql_library_init(0, NULL, NULL).
#include <mysql.h>
#include <stdlib.h>
int main(void) {
if (mysql_library_init(0, NULL, NULL)) {
fprintf(stderr, "could not initialize MySQL library\n");
exit(1);
}
/* Use any MySQL API functions here */
mysql_library_end();
return EXIT_SUCCESS;
}
When arguments are to be passed (argc is greater than 0), the first element of argv is ignored (it typically contains the program name). mysql_library_init() makes a copy of the arguments so it is safe to destroy argv or groups after the call.
For embedded applications, if you want to connect to an external server without starting the embedded server, you have to specify a negative value for argc.
The groups argument is an array of strings that indicate the groups in option files from which to read options. See Section 4.2.3.3, “Using Option Files”. Make the final entry in the array NULL. For convenience, if the groups argument itself is NULL, the [server] and [embedded] groups are used by default.
#include <mysql.h>
#include <stdlib.h>
static char *server_args[] = {
"this_program", /* this string is not used */
"--datadir=.",
"--key_buffer_size=32M"
};
static char *server_groups[] = {
"embedded",
"server",
"this_program_SERVER",
(char *)NULL
};
int main(void) {
if (mysql_library_init(sizeof(server_args) / sizeof(char *),
server_args, server_groups)) {
fprintf(stderr, "could not initialize MySQL library\n");
exit(1);
}
/* Use any MySQL API functions here */
mysql_library_end();
return EXIT_SUCCESS;
}
Return Values
Zero if successful. Nonzero if an error occurred.
21.8.6.41. mysql_list_dbs()
MYSQL_RES *mysql_list_dbs(MYSQL *mysql, const char *wild)
Description
Returns a result set consisting of database names on the server that match the simple regular expression specified by the wild parameter. wild may contain the wildcard characters “%” or “_”, or may be a NULL pointer to match all databases. Calling mysql_list_dbs() is similar to executing the query SHOW DATABASES [LIKE wild].
You must free the result set with mysql_free_result().
Return Values
A MYSQL_RES result set for success. NULL if an error occurred.
Errors
Commands were executed in an improper order.
Out of memory.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.42. mysql_list_fields()
MYSQL_RES *mysql_list_fields(MYSQL *mysql, const char *table, const char *wild)
Description
Returns a result set consisting of field names in the given table that match the simple regular expression specified by the wild parameter. wild may contain the wildcard characters “%” or “_”, or may be a NULL pointer to match all fields. Calling mysql_list_fields() is similar to executing the query SHOW COLUMNS FROM tbl_name [LIKE wild].
It is preferable to use SHOW COLUMNS FROM tbl_name instead of mysql_list_fields().
You must free the result set with mysql_free_result().
Return Values
A MYSQL_RES result set for success. NULL if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.43. mysql_list_processes()
MYSQL_RES *mysql_list_processes(MYSQL *mysql)
Description
Returns a result set describing the current server threads. This is the same kind of information as that reported by mysqladmin processlist or a SHOW PROCESSLIST query.
You must free the result set with mysql_free_result().
Return Values
A MYSQL_RES result set for success. NULL if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.44. mysql_list_tables()
MYSQL_RES *mysql_list_tables(MYSQL *mysql, const char *wild)
Description
Returns a result set consisting of table names in the current database that match the simple regular expression specified by the wild parameter. wild may contain the wildcard characters “%” or “_”, or may be a NULL pointer to match all tables. Calling mysql_list_tables() is similar to executing the query SHOW TABLES [LIKE wild].
You must free the result set with mysql_free_result().
Return Values
A MYSQL_RES result set for success. NULL if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.45. mysql_more_results()
my_bool mysql_more_results(MYSQL *mysql)
Description
This function is used when you execute multiple statements specified as a single statement string, or when you execute CALL statements, which can return multiple result sets.
mysql_more_results() true if more results exist from the currently executed statement, in which case the application must call mysql_next_result() to fetch the results.
Return Values
TRUE (1) if more results exist. FALSE (0) if no more results exist.
In most cases, you can call mysql_next_result() instead to test whether more results exist and initiate retrieval if so.
See Section 21.8.16, “C API Support for Multiple Statement Execution”, and Section 21.8.6.46, “mysql_next_result()”.
Errors
None.
21.8.6.46. mysql_next_result()
int mysql_next_result(MYSQL *mysql)
Description
This function is used when you execute multiple statements specified as a single statement string, or when you use CALL statements to execute stored procedures, which can return multiple result sets.
mysql_next_result() reads the next statement result and returns a status to indicate whether more results exist. If mysql_next_result() returns an error, there are no more results.
Before each call to mysql_next_result(), you must call mysql_free_result() for the current statement if it is a statement that returned a result set (rather than just a result status).
After calling mysql_next_result() the state of the connection is as if you had called mysql_real_query() or mysql_query() for the next statement. This means that you can call mysql_store_result(), mysql_warning_count(), mysql_affected_rows(), and so forth.
If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition to any result sets that might be returned by statements executed within the procedure. Because CALL can return multiple results, process them using a loop that calls mysql_next_result() to determine whether there are more results.
CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). In MySQL 5.6, CLIENT_MULTI_RESULTS is enabled by default.
It is also possible to test whether there are more results by calling mysql_more_results(). However, this function does not change the connection state, so if it returns true, you must still call mysql_next_result() to advance to the next result.
For an example that shows how to use mysql_next_result(), see Section 21.8.16, “C API Support for Multiple Statement Execution”.
Return Values
Return Value | Description |
---|---|
0 | Successful and there are more results |
-1 | Successful and there are no more results |
>0 | An error occurred |
Errors
Commands were executed in an improper order. For example, if you didn't call mysql_use_result() for a previous result set.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.47. mysql_num_fields()
unsigned int mysql_num_fields(MYSQL_RES *result)
To pass a MYSQL* argument instead, use unsigned int mysql_field_count(MYSQL *mysql).
Description
Returns the number of columns in a result set.
Note that you can get the number of columns either from a pointer to a result set or to a connection handle. You would use the connection handle if mysql_store_result() or mysql_use_result() returned NULL (and thus you have no result set pointer). In this case, you can call mysql_field_count() to determine whether mysql_store_result() should have produced a nonempty result. This enables the client program to take proper action without knowing whether the query was a SELECT (or SELECT-like) statement. The example shown here illustrates how this may be done.
Return Values
An unsigned integer representing the number of columns in a result set.
Errors
None.
Example
MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;
if (mysql_query(&mysql,query_string))
{
// error
}
else // query succeeded, process any data returned by it
{
result = mysql_store_result(&mysql);
if (result) // there are rows
{
num_fields = mysql_num_fields(result);
// retrieve rows, then call mysql_free_result(result)
}
else // mysql_store_result() returned nothing; should it have?
{
if (mysql_errno(&mysql))
{
fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}
else if (mysql_field_count(&mysql) == 0)
{
// query does not return data
// (it was not a SELECT)
num_rows = mysql_affected_rows(&mysql);
}
}
}
An alternative (if you know that your query should have returned a result set) is to replace the mysql_errno(&mysql) call with a check whether mysql_field_count(&mysql) returns 0. This happens only if something went wrong.
21.8.6.48. mysql_num_rows()
my_ulonglong mysql_num_rows(MYSQL_RES *result)
Description
Returns the number of rows in the result set.
The use of mysql_num_rows() depends on whether you use mysql_store_result() or mysql_use_result() to return the result set. If you use mysql_store_result(), mysql_num_rows() may be called immediately. If you use mysql_use_result(), mysql_num_rows() does not return the correct value until all the rows in the result set have been retrieved.
mysql_num_rows() is intended for use with statements that return a result set, such as SELECT. For statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be obtained with mysql_affected_rows().
Return Values
The number of rows in the result set.
Errors
None.
21.8.6.49. mysql_options()
int mysql_options(MYSQL *mysql, enum mysql_option option, const void *arg)
Description
Can be used to set extra connect options and affect behavior for a connection. This function may be called multiple times to set several options.
Call mysql_options() after mysql_init() and before mysql_connect() or mysql_real_connect().
The option argument is the option that you want to set; the arg argument is the value for the option. If the option is an integer, specify a pointer to the value of the integer as the arg argument.
The following list describes the possible options, their effect, and how arg is used for each option. Several of the options apply only when the application is linked against the libmysqld embedded server library and are unused for applications linked against the libmysqlclient client library. For option descriptions that indicate arg is unused, its value is irrelevant; it is conventional to pass 0.
MYSQL_DEFAULT_AUTH (argument type: char *)
The name of the authentication plugin to use.
MYSQL_ENABLE_CLEARTEXT_PLUGIN (argument type: my_bool *)
Enable the mysql_clear_password cleartext authentication plugin. (See Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”.) This option was added in MySQL 5.6.7.
MYSQL_INIT_COMMAND (argument type: char *)
SQL statement to execute when connecting to the MySQL server. Automatically re-executed if reconnection occurs.
MYSQL_OPT_BIND (argument: char *)
The network interface from which to connect to the server. This is used when the client host has multiple network interfaces. The argument is a host name or IP address (specified as a string). This option was added in MySQL 5.6.1.
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS (argument type: my_bool *)
Indicate whether the client can handle expired passwords. For more information, see Section 6.3.6, “Password Expiration and Sandbox Mode”. This option was added in MySQL 5.6.10.
MYSQL_OPT_COMPRESS (argument: not used)
Use the compressed client/server protocol.
MYSQL_OPT_CONNECT_ATTR_DELETE (argument types: char *)
Given a key name, this option deletes a key/value pair from the current set of connection attributes to be passed to the server at connect time. The argument is a pointer to a null-terminated string naming the key. Comparison of the key name with existing keys is case sensitive.
See also the description for the MYSQL_OPT_CONNECT_ATTR_RESET option, as well as the description for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the mysql_options4() function. That function description also includes a usage example. These options were added in MySQL 5.6.6.
Connection attributes are exposed through the session_connect_attrs and session_account_connect_attrs Performance Schema tables. See Section 20.9.7, “Performance Schema Connection Attribute Tables”.
MYSQL_OPT_CONNECT_ATTR_RESET (argument not used)
This option resets (clears) the current set of connection attributes to be passed to the server at connect time.
See also the description for the MYSQL_OPT_CONNECT_ATTR_DELETE option, as well as the description for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the mysql_options4() function. That function description also includes a usage example. These options were added in MySQL 5.6.6.
Connection attributes are exposed through the session_connect_attrs and session_account_connect_attrs Performance Schema tables. See Section 20.9.7, “Performance Schema Connection Attribute Tables”.
MYSQL_OPT_CONNECT_TIMEOUT (argument type: unsigned int *)
Connect timeout in seconds.
MYSQL_OPT_GUESS_CONNECTION (argument: not used)
For an application linked against the libmysqld embedded server library, this enables the library to guess whether to use the embedded server or a remote server. “Guess” means that if the host name is set and is not localhost, it uses a remote server. This behavior is the default. MYSQL_OPT_USE_EMBEDDED_CONNECTION and MYSQL_OPT_USE_REMOTE_CONNECTION can be used to override it. This option is ignored for applications linked against the libmysqlclient client library.
MYSQL_OPT_LOCAL_INFILE (argument type: optional pointer to unsigned int)
If no pointer is given or if pointer points to an unsigned int that has a nonzero value, the LOAD LOCAL INFILE statement is enabled.
MYSQL_OPT_NAMED_PIPE (argument: not used)
Use named pipes to connect to a MySQL server on Windows, if the server permits named-pipe connections.
MYSQL_OPT_PROTOCOL (argument type: unsigned int *)
Type of protocol to use. Specify one of the enum values of mysql_protocol_type defined in mysql.h.
MYSQL_OPT_READ_TIMEOUT (argument type: unsigned int *)
The timeout in seconds for attempts to read from the server. Each attempt uses this timeout value and there are retries if necessary, so the total effective timeout value is three times the option value. You can set the value so that a lost connection can be detected earlier than the TCP/IP Close_Wait_Timeout value of 10 minutes.
Implementation of this timeout uses mechanisms that may not be available on all platforms. On such a platform, a client that issues a read call might under certain circumstances wait without timing out. For example, a client might not time out if the server is not responding because it is waiting for a “disk full” condition to clear.
MYSQL_OPT_RECONNECT (argument type: my_bool *)
Enable or disable automatic reconnection to the server if the connection is found to have been lost. Reconnect is off by default; this option provides a way to set reconnection behavior explicitly.
MYSQL_OPT_SSL_CA (argument type: char *)
The path to a file that contains a list of trusted SSL CAs. This option was added in MySQL 5.6.3.
MYSQL_OPT_SSL_CAPATH (argument type: char *)
The path to a directory that contains trusted SSL CA certificates in PEM format. This option was added in MySQL 5.6.3.
MYSQL_OPT_SSL_CERT (argument type: char *)
The name of the SSL certificate file to use for establishing a secure connection. This option was added in MySQL 5.6.3.
MYSQL_OPT_SSL_CIPHER (argument type: char *)
A list of permissible ciphers to use for SSL encryption. This option was added in MySQL 5.6.3.
MYSQL_OPT_SSL_CRL (argument type: char *)
The path to a file containing certificate revocation lists in PEM format. This option was added in MySQL 5.6.3.
MYSQL_OPT_SSL_CRLPATH (argument type: char *)
The path to a directory that contains files containing certificate revocation lists in PEM format. This option was added in MySQL 5.6.3.
MYSQL_OPT_SSL_KEY (argument type: char *)
The name of the SSL key file to use for establishing a secure connection. This option was added in MySQL 5.6.3.
MYSQL_OPT_SSL_VERIFY_SERVER_CERT (argument type: my_bool *)
Enable or disable verification of the server's Common Name value in its certificate against the host name used when connecting to the server. The connection is rejected if there is a mismatch. This feature can be used to prevent man-in-the-middle attacks. Verification is disabled by default.
MYSQL_OPT_USE_EMBEDDED_CONNECTION (argument: not used)
For an application linked against the libmysqld embedded server library, this forces the use of the embedded server for the connection. This option is ignored for applications linked against the libmysqlclient client library.
MYSQL_OPT_USE_REMOTE_CONNECTION (argument: not used)
For an application linked against the libmysqld embedded server library, this forces the use of a remote server for the connection. This option is ignored for applications linked against the libmysqlclient client library.
MYSQL_OPT_USE_RESULT (argument: not used)
This option is unused.
MYSQL_OPT_WRITE_TIMEOUT (argument type: unsigned int *)
The timeout in seconds for attempts to write to the server. Each attempt uses this timeout value and there are net_retry_count retries if necessary, so the total effective timeout value is net_retry_count times the option value.
MYSQL_PLUGIN_DIR (argument type: char *)
The directory in which to look for client plugins.
MYSQL_READ_DEFAULT_FILE (argument type: char *)
Read options from the named option file instead of from my.cnf.
MYSQL_READ_DEFAULT_GROUP (argument type: char *)
Read options from the named group from my.cnf or the file specified with MYSQL_READ_DEFAULT_FILE.
MYSQL_REPORT_DATA_TRUNCATION (argument type: my_bool *)
Enable or disable reporting of data truncation errors for prepared statements using the error member of MYSQL_BIND structures. (Default: enabled.)
MYSQL_SECURE_AUTH (argument type: my_bool *)
Whether to connect to a server that does not support the password hashing used in MySQL 4.1.1 and later. As of MySQL 5.6.7, this option is enabled by default.
MYSQL_SERVER_PUBLIC_KEY (argument type: char *)
The path name to a file containing the server RSA public key. The file must be in PEM format. The public key is used for RSA encryption of the client password for connections to the server made using accounts that authenticate with the sha256_password plugin. This option is ignored for client accounts that do not authenticate with that plugin. It is also ignored if password encryption is not needed, as is the case when the client connects to the server using an SSL connection.
The server sends the public key to the client as needed, so it is not necessary to use this option for RSA password encryption to occur. It is more efficient to do so because then the server need not send the key.
For additional discussion regarding use of the sha256_password plugin, including how to get the RSA public key, see Section 6.3.7.2, “The SHA-256 Authentication Plugin”.
This option was added in MySQL 5.6.6.
MYSQL_SET_CHARSET_DIR (argument type: char *)
The path name to the directory that contains character set definition files.
MYSQL_SET_CHARSET_NAME (argument type: char *)
The name of the character set to use as the default character set. The argument can be MYSQL_AUTODETECT_CHARSET_NAME to cause the character set to be autodetected based on the operating system setting (see Section 10.1.4, “Connection Character Sets and Collations”).
MYSQL_SET_CLIENT_IP (argument type: char *)
For an application linked against the libmysqld embedded server library (when libmysqld is compiled with authentication support), this means that the user is considered to have connected from the specified IP address (specified as a string) for authentication purposes. This option is ignored for applications linked against the libmysqlclient client library.
MYSQL_SHARED_MEMORY_BASE_NAME (argument type: char *)
The name of the shared-memory object for communication to the server on Windows, if the server supports shared-memory connections. Specify the same value as the --shared-memory-base-name option used for the mysqld server you want to connect to.
The client group is always read if you use MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP.
The specified group in the option file may contain the following options.
Option | Description |
---|---|
character-sets-dir=path | The directory where character sets are installed. |
compress | Use the compressed client/server protocol. |
connect-timeout=seconds | Connect timeout in seconds. On Linux this timeout is also used for waiting for the first answer from the server. |
database=db_name | Connect to this database if no database was specified in the connect command. |
debug | Debug options. |
default-character-set=charset_name | The default character set to use. |
disable-local-infile | Disable use of LOAD DATA LOCAL. |
enable-cleartext-plugin | Enable the mysql_clear_password cleartext authentication plugin. Added in MySQL 5.6.7. |
host=host_name | Default host name. |
init-command=stmt | Statement to execute when connecting to MySQL server. Automatically re-executed if reconnection occurs. |
interactive-timeout=seconds | Same as specifying CLIENT_INTERACTIVE to mysql_real_connect(). See Section 21.8.6.53, “mysql_real_connect()”. |
local-infile[={0|1}] | If no argument or nonzero argument, enable use of LOAD DATA LOCAL; otherwise disable. |
max_allowed_packet=bytes | Maximum size of packet that client can read from server. |
multi-queries, multi-results | Enable multiple result sets from multiple-statement executions or stored procedures. |
multi-statements | Enable the client to send multiple statements in a single string (separated by “;”). |
password=password | Default password. |
pipe | Use named pipes to connect to a MySQL server on Windows. |
port=port_num | Default port number. |
protocol={TCP|SOCKET|PIPE|MEMORY} | The protocol to use when connecting to the server. |
return-found-rows | Tell mysql_info() to return found rows instead of updated rows when using UPDATE. |
shared-memory-base-name=name | Shared-memory name to use to connect to server. |
socket=path | Default socket file. |
ssl-ca=file_name | Certificate Authority file. |
ssl-capath=path | Certificate Authority directory. |
ssl-cert=file_name | Certificate file. |
ssl-cipher=cipher_list | Permissible SSL ciphers. |
ssl-key=file_name | Key file. |
timeout=seconds | Like connect-timeout. |
user | Default user. |
timeout has been replaced by connect-timeout, but timeout is still supported in MySQL 5.6 for backward compatibility.
For more information about option files, see Section 4.2.3.3, “Using Option Files”.
Return Values
Zero for success. Nonzero if you specify an unknown option.
Example
The following mysql_options() calls request the use of compression in the client/server protocol, cause options to be read from the [odbc] group of option files, and disable transaction autocommit mode:
MYSQL mysql;
mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");
mysql_options(&mysql,MYSQL_INIT_COMMAND,"SET autocommit=0");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));
}
This code requests that the client use the compressed client/server protocol and read the additional options from the odbc section in the my.cnf file.
21.8.6.50. mysql_options4()
int mysql_options4(MYSQL *mysql, enum mysql_option option, const void *arg1, const void *arg2)
Description
mysql_options4() is similar to mysql_options() but has an extra fourth argument so that two values can be passed for the option specified in the second argument. This function was added in MySQL 5.6.6.
The following list describes the permitted options, their effect, and how arg1 and arg2 are used.
MYSQL_OPT_CONNECT_ATTR_ADD (argument types: char *, char *)
This option adds a key/value pair to the current set of connection attributes to be passed to the server at connect time. Both arguments are pointers to null-terminated strings. The first and second strings indicate the key and value, respectively. If the key already exists in the current set of connection attributes, the new value replaces the existing one. Comparison of the key name with existing keys is case sensitive.
Key names that begin with an underscore (_) are reserved for internal use and should not be used by application programs.
See also the descriptions for the MYSQL_OPT_CONNECT_ATTR_RESET MYSQL_OPT_CONNECT_ATTR_DELETE options in the description of the mysql_options() function.
Connection attributes are exposed through the session_connect_attrs and session_account_connect_attrs Performance Schema tables. See Section 20.9.7, “Performance Schema Connection Attribute Tables”.
Return Values
Zero for success. Nonzero if you specify an unknown option.
Example
This example demonstrates the calls that specify connection attributes:
MYSQL mysql;
mysql_init(&mysql);
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_RESET, 0);
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key1", "value1");
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key2", "value2");
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key3", "value3");
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_DELETE, "key1");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));
}
mysql_options(&mysql,MYSQL_OPT_CONNECT_ATTR_RESET, 0);
21.8.6.51. mysql_ping()
int mysql_ping(MYSQL *mysql)
Description
Checks whether the connection to the server is working. If the connection has gone down and auto-reconnect is enabled an attempt to reconnect is made. If the connection is down and auto-reconnect is disabled, mysql_ping() returns an error.
Auto-reconnect is disabled by default. To enable it, call mysql_options() with the MYSQL_OPT_RECONNECT option. For details, see Section 21.8.6.49, “mysql_options()”.
mysql_ping() can be used by clients that remain idle for a long while, to check whether the server has closed the connection and reconnect if necessary.
If mysql_ping()) does cause a reconnect, there is no explicit indication of it. To determine whether a reconnect occurs, call mysql_thread_id() to get the original connection identifier before calling mysql_ping(), then call mysql_thread_id() again to see whether the identifier has changed.
If reconnect occurs, some characteristics of the connection will have been reset. For details about these characteristics, see Section 21.8.15, “Controlling Automatic Reconnection Behavior”.
Return Values
Zero if the connection to the server is active. Nonzero if an error occurred. A nonzero return does not indicate whether the MySQL server itself is down; the connection might be broken for other reasons such as network problems.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
An unknown error occurred.
21.8.6.52. mysql_query()
int mysql_query(MYSQL *mysql, const char *stmt_str)
Description
Executes the SQL statement pointed to by the null-terminated string stmt_str. Normally, the string must consist of a single SQL statement without a terminating semicolon (“;”) or \g. If multiple-statement execution has been enabled, the string can contain several statements separated by semicolons. See Section 21.8.16, “C API Support for Multiple Statement Execution”.
mysql_query() cannot be used for statements that contain binary data; you must use mysql_real_query() instead. (Binary data may contain the “\0” character, which mysql_query() interprets as the end of the statement string.)
If you want to know whether the statement returns a result set, you can use mysql_field_count() to check for this. See Section 21.8.6.22, “mysql_field_count()”.
Return Values
Zero if the statement was successful. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.53. mysql_real_connect()
MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, const char *user, const char *passwd, const char *db, unsigned int port, const char *unix_socket, unsigned long client_flag)
Description
mysql_real_connect() attempts to establish a connection to a MySQL database engine running on host. mysql_real_connect() must complete successfully before you can execute any other API functions that require a valid MYSQL connection handle structure.
The parameters are specified as follows:
For the first parameter, specify the address of an existing MYSQL structure. Before calling mysql_real_connect(), call mysql_init() to initialize the MYSQL structure. You can change a lot of connect options with the mysql_options() call. See Section 21.8.6.49, “mysql_options()”.
The value of host may be either a host name or an IP address. If host is NULL or the string "localhost", a connection to the local host is assumed. For Windows, the client connects using a shared-memory connection, if the server has shared-memory connections enabled. Otherwise, TCP/IP is used. For Unix, the client connects using a Unix socket file. For local connections, you can also influence the type of connection to use with the MYSQL_OPT_PROTOCOL or MYSQL_OPT_NAMED_PIPE options to mysql_options(). The type of connection must be supported by the server. For a host value of "." on Windows, the client connects using a named pipe, if the server has named-pipe connections enabled. If named-pipe connections are not enabled, an error occurs.
The user parameter contains the user's MySQL login ID. If user is NULL or the empty string "", the current user is assumed. Under Unix, this is the current login name. Under Windows ODBC, the current user name must be specified explicitly. See the Connector/ODBC section of Chapter 21, Connectors and APIs.
The passwd parameter contains the password for user. If passwd is NULL, only entries in the user table for the user that have a blank (empty) password field are checked for a match. This enables the database administrator to set up the MySQL privilege system in such a way that users get different privileges depending on whether they have specified a password.
Note
Do not attempt to encrypt the password before calling mysql_real_connect(); password encryption is handled automatically by the client API.
The user and passwd parameters use whatever character set has been configured for the MYSQL object. By default, this is latin1, but can be changed by calling mysql_options(mysql, MYSQL_SET_CHARSET_NAME, "charset_name") prior to connecting.
db is the database name. If db is not NULL, the connection sets the default database to this value.
If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host parameter determines the type of the connection.
If unix_socket is not NULL, the string specifies the socket or named pipe to use. Note that the host parameter determines the type of the connection.
The value of client_flag is usually 0, but can be set to a combination of the following flags to enable certain features.
Flag Name | Flag Description |
---|---|
CAN_HANDLE_EXPIRED_PASSWORDS | The client can handle expired passwords. For more information, see Section 6.3.6, “Password Expiration and Sandbox Mode”. This option was added in MySQL 5.6.10. |
CLIENT_COMPRESS | Use compression protocol. |
CLIENT_FOUND_ROWS | Return the number of found (matched) rows, not the number of changed rows. |
CLIENT_IGNORE_SIGPIPE | Prevents the client library from installing a SIGPIPE signal handler. This can be used to avoid conflicts with a handler that the application has already installed. |
CLIENT_IGNORE_SPACE | Permit spaces after function names. Makes all functions names reserved words. |
CLIENT_INTERACTIVE | Permit interactive_timeout seconds (instead of wait_timeout seconds) of inactivity before closing the connection. The client's session wait_timeout variable is set to the value of the session interactive_timeout variable. |
CLIENT_LOCAL_FILES | Enable LOAD DATA LOCAL handling. |
CLIENT_MULTI_RESULTS | Tell the server that the client can handle multiple result sets from multiple-statement executions or stored procedures. This flag is automatically enabled if CLIENT_MULTI_STATEMENTS is enabled. See the note following this table for more information about this flag. |
CLIENT_MULTI_STATEMENTS | Tell the server that the client may send multiple statements in a single string (separated by “;”). If this flag is not set, multiple-statement execution is disabled. See the note following this table for more information about this flag. |
CLIENT_NO_SCHEMA | Do not permit the db_name.tbl_name.col_name syntax. This is for ODBC. It causes the parser to generate an error if you use that syntax, which is useful for trapping bugs in some ODBC programs. |
CLIENT_ODBC | Unused. |
CLIENT_SSL | Use SSL (encrypted protocol). Do not set this option within an application program; it is set internally in the client library. Instead, use mysql_ssl_set() before calling mysql_real_connect(). |
CLIENT_REMEMBER_OPTIONS | Remember options specified by calls to mysql_options(). Without this option, if mysql_real_connect() fails, you must repeat the mysql_options() calls before trying to connect again. With this option, the mysql_options() calls need not be repeated. |
If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns a result to indicate the call status, in addition to any result sets that might be returned by statements executed within the procedure. Because CALL can return multiple results, process them using a loop that calls mysql_next_result() to determine whether there are more results.
CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS (which also enables CLIENT_MULTI_RESULTS). In MySQL 5.6, CLIENT_MULTI_RESULTS is enabled by default.
If you enable CLIENT_MULTI_STATEMENTS or CLIENT_MULTI_RESULTS, process the result for every call to mysql_query() or mysql_real_query() by using a loop that calls mysql_next_result() to determine whether there are more results. For an example, see Section 21.8.16, “C API Support for Multiple Statement Execution”.
For some parameters, it is possible to have the value taken from an option file rather than from an explicit value in the mysql_real_connect() call. To do this, call mysql_options() with the MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP option before calling mysql_real_connect(). Then, in the mysql_real_connect() call, specify the “no-value” value for each parameter to be read from an option file:
For host, specify a value of NULL or the empty string ("").
For user, specify a value of NULL or the empty string.
For passwd, specify a value of NULL. (For the password, a value of the empty string in the mysql_real_connect() call cannot be overridden in an option file, because the empty string indicates explicitly that the MySQL account must have an empty password.)
For db, specify a value of NULL or the empty string.
For port, specify a value of 0.
For unix_socket, specify a value of NULL.
If no value is found in an option file for a parameter, its default value is used as indicated in the descriptions given earlier in this section.
Return Values
A MYSQL* connection handle if the connection was successful, NULL if the connection was unsuccessful. For a successful connection, the return value is the same as the value of the first parameter.
Errors
Failed to connect to the MySQL server.
Failed to connect to the local MySQL server.
Failed to create an IP socket.
Out of memory.
Failed to create a Unix socket.
Failed to find the IP address for the host name.
A protocol mismatch resulted from attempting to connect to a server with a client library that uses a different protocol version.
Failed to create a named pipe on Windows.
Failed to wait for a named pipe on Windows.
Failed to get a pipe handler on Windows.
If connect_timeout > 0 and it took longer than connect_timeout seconds to connect to the server or if the server died while executing the init-command.
The MYSQL connection handle is already connected.
Example
MYSQL mysql;
mysql_init(&mysql);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));
}
By using mysql_options() the MySQL library reads the [client] and [your_prog_name] sections in the my.cnf file which ensures that your program works, even if someone has set up MySQL in some nonstandard way.
Note that upon connection, mysql_real_connect() sets the reconnect flag (part of the MYSQL structure) to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions. A value of 1 for this flag indicates that if a statement cannot be performed because of a lost connection, to try reconnecting to the server before giving up. You can use the MYSQL_OPT_RECONNECT option to mysql_options() to control reconnection behavior.
21.8.6.54. mysql_real_escape_string()
unsigned long mysql_real_escape_string(MYSQL *mysql, char *to, const char *from, unsigned long length)
Note that mysql must be a valid, open connection. This is needed because the escaping depends on the character set in use by the server.
Description
This function is used to create a legal SQL string that you can use in an SQL statement. See Section 9.1.1, “String Literals”.
The string in from is encoded to an escaped SQL string, taking into account the current character set of the connection. The result is placed in to and a terminating null byte is appended. Characters encoded are “\”, “'”, “"”, NUL (ASCII 0), “\n”, “\r”, and Control+Z. Strictly speaking, MySQL requires only that backslash and the quote character used to quote the string in the query be escaped. mysql_real_escape_string() quotes the other characters to make them easier to read in log files. For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in Section 9.1.1, “String Literals”, and Section 12.5, “String Functions”.
The string pointed to by from must be length bytes long. You must allocate the to buffer to be at least length*2+1 bytes long. (In the worst case, each character may need to be encoded as using two bytes, and you need room for the terminating null byte.) When mysql_real_escape_string() returns, the contents of to is a null-terminated string. The return value is the length of the encoded string, not including the terminating null character.
If you need to change the character set of the connection, use the mysql_set_character_set() function rather than executing a SET NAMES (or SET CHARACTER SET) statement. mysql_set_character_set() works like SET NAMES but also affects the character set used by mysql_real_escape_string(), which SET NAMES does not.
Example
char query[1000],*end;
end = strmov(query,"INSERT INTO test_table values(");
*end++ = '\'';
end += mysql_real_escape_string(&mysql, end,"What is this",12);
*end++ = '\'';
*end++ = ',';
*end++ = '\'';
end += mysql_real_escape_string(&mysql, end,"binary data: \0\r\n",16);
*end++ = '\'';
*end++ = ')';
if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
fprintf(stderr, "Failed to insert row, Error: %s\n",
mysql_error(&mysql));
}
The strmov() function used in the example is included in the libmysqlclient library and works like strcpy() but returns a pointer to the terminating null of the first parameter.
Return Values
The length of the value placed into to, not including the terminating null character.
Errors
None.
21.8.6.55. mysql_real_query()
int mysql_real_query(MYSQL *mysql, const char *stmt_str, unsigned long length)
Description
Executes the SQL statement pointed to by stmt_str, a string length bytes long. Normally, the string must consist of a single SQL statement without a terminating semicolon (“;”) or \g. If multiple-statement execution has been enabled, the string can contain several statements separated by semicolons. See Section 21.8.16, “C API Support for Multiple Statement Execution”.
mysql_query() cannot be used for statements that contain binary data; you must use mysql_real_query() instead. (Binary data may contain the “\0” character, which mysql_query() interprets as the end of the statement string.) In addition, mysql_real_query() is faster than mysql_query() because it does not call strlen() on the statement string.
If you want to know whether the statement returns a result set, you can use mysql_field_count() to check for this. See Section 21.8.6.22, “mysql_field_count()”.
Return Values
Zero if the statement was successful. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.56. mysql_refresh()
int mysql_refresh(MYSQL *mysql, unsigned int options)
Description
This function flushes tables or caches, or resets replication server information. The connected user must have the RELOAD privilege.
The options argument is a bit mask composed from any combination of the following values. Multiple values can be OR'ed together to perform multiple operations with a single call.
REFRESH_GRANT
Refresh the grant tables, like FLUSH PRIVILEGES.
REFRESH_LOG
Flush the logs, like FLUSH LOGS.
REFRESH_TABLES
Flush the table cache, like FLUSH TABLES.
REFRESH_HOSTS
Flush the host cache, like FLUSH HOSTS.
REFRESH_STATUS
Reset status variables, like FLUSH STATUS.
REFRESH_THREADS
Flush the thread cache.
REFRESH_SLAVE
On a slave replication server, reset the master server information and restart the slave, like RESET SLAVE.
REFRESH_MASTER
On a master replication server, remove the binary log files listed in the binary log index and truncate the index file, like RESET MASTER.
Return Values
Zero for success. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.57. mysql_reload()
int mysql_reload(MYSQL *mysql)
Description
Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD privilege.
This function is deprecated. It is preferable to use mysql_query() to issue an SQL FLUSH PRIVILEGES statement instead.
Return Values
Zero for success. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.58. mysql_rollback()
my_bool mysql_rollback(MYSQL *mysql)
Description
Rolls back the current transaction.
The action of this function is subject to the value of the completion_type system variable. In particular, if the value of completion_type is RELEASE (or 2), the server performs a release after terminating a transaction and closes the client connection. Call mysql_close() from the client program to close the connection from the client side.
Return Values
Zero if successful. Nonzero if an error occurred.
Errors
None.
21.8.6.59. mysql_row_seek()
MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET offset)
Description
Sets the row cursor to an arbitrary row in a query result set. The offset value is a row offset, typically a value returned from mysql_row_tell() or from mysql_row_seek(). This value is not a row number; to seek to a row within a result set by number, use mysql_data_seek() instead.
This function requires that the result set structure contains the entire result of the query, so mysql_row_seek() may be used only in conjunction with mysql_store_result(), not with mysql_use_result().
Return Values
The previous value of the row cursor. This value may be passed to a subsequent call to mysql_row_seek().
Errors
None.
21.8.6.60. mysql_row_tell()
MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result)
Description
Returns the current position of the row cursor for the last mysql_fetch_row(). This value can be used as an argument to mysql_row_seek().
Use mysql_row_tell() only after mysql_store_result(), not after mysql_use_result().
Return Values
The current offset of the row cursor.
Errors
None.
21.8.6.61. mysql_select_db()
int mysql_select_db(MYSQL *mysql, const char *db)
Description
Causes the database specified by db to become the default (current) database on the connection specified by mysql. In subsequent queries, this database is the default for table references that do not include an explicit database specifier.
mysql_select_db() fails unless the connected user can be authenticated as having permission to use the database.
Return Values
Zero for success. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.62. mysql_set_character_set()
int mysql_set_character_set(MYSQL *mysql, const char *csname)
Description
This function is used to set the default character set for the current connection. The string csname specifies a valid character set name. The connection collation becomes the default collation of the character set. This function works like the SET NAMES statement, but also sets the value of mysql->charset, and thus affects the character set used by mysql_real_escape_string()
Return Values
Zero for success. Nonzero if an error occurred.
Example
MYSQL mysql;
mysql_init(&mysql);
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));
}
if (!mysql_set_character_set(&mysql, "utf8"))
{
printf("New client character set: %s\n",
mysql_character_set_name(&mysql));
}
21.8.6.63. mysql_set_local_infile_default()
void mysql_set_local_infile_default(MYSQL *mysql);
Description
Sets the LOAD LOCAL DATA INFILE handler callback functions to the defaults used internally by the C client library. The library calls this function automatically if mysql_set_local_infile_handler() has not been called or does not supply valid functions for each of its callbacks.
Return Values
None.
Errors
None.
21.8.6.64. mysql_set_local_infile_handler()
void mysql_set_local_infile_handler(MYSQL *mysql, int (*local_infile_init)(void **, const char *, void *), int (*local_infile_read)(void *, char *, unsigned int), void (*local_infile_end)(void *), int (*local_infile_error)(void *, char*, unsigned int), void *userdata);
Description
This function installs callbacks to be used during the execution of LOAD DATA LOCAL INFILE statements. It enables application programs to exert control over local (client-side) data file reading. The arguments are the connection handler, a set of pointers to callback functions, and a pointer to a data area that the callbacks can use to share information.
To use mysql_set_local_infile_handler(), you must write the following callback functions:
int
local_infile_init(void **ptr, const char *filename, void *userdata);
The initialization function. This is called once to do any setup necessary, open the data file, allocate data structures, and so forth. The first void** argument is a pointer to a pointer. You can set the pointer (that is, *ptr) to a value that will be passed to each of the other callbacks (as a void*). The callbacks can use this pointed-to value to maintain state information. The userdata argument is the same value that is passed to mysql_set_local_infile_handler().
Make the initialization function return zero for success, nonzero for an error.
int
local_infile_read(void *ptr, char *buf, unsigned int buf_len);
The data-reading function. This is called repeatedly to read the data file. buf points to the buffer where the read data is stored, and buf_len is the maximum number of bytes that the callback can read and store in the buffer. (It can read fewer bytes, but should not read more.)
The return value is the number of bytes read, or zero when no more data could be read (this indicates EOF). Return a value less than zero if an error occurs.
void
local_infile_end(void *ptr)
The termination function. This is called once after local_infile_read() has returned zero (EOF) or an error. Within this function, deallocate any memory allocated by local_infile_init() and perform any other cleanup necessary. It is invoked even if the initialization function returns an error.
int
local_infile_error(void *ptr,
char *error_msg,
unsigned int error_msg_len);
The error-handling function. This is called to get a textual error message to return to the user in case any of your other functions returns an error. error_msg points to the buffer into which the message is written, and error_msg_len is the length of the buffer. Write the message as a null-terminated string, at most error_msg_len–1 bytes long.
The return value is the error number.
Typically, the other callbacks store the error message in the data structure pointed to by ptr, so that local_infile_error() can copy the message from there into error_msg.
After calling mysql_set_local_infile_handler() in your C code and passing pointers to your callback functions, you can then issue a LOAD DATA LOCAL INFILE statement (for example, by using mysql_query()). The client library automatically invokes your callbacks. The file name specified in LOAD DATA LOCAL INFILE will be passed as the second parameter to the local_infile_init() callback.
Return Values
None.
Errors
None.
21.8.6.65. mysql_set_server_option()
int mysql_set_server_option(MYSQL *mysql, enum enum_mysql_set_option option)
Description
Enables or disables an option for the connection. option can have one of the following values.
Option | Description |
---|---|
MYSQL_OPTION_MULTI_STATEMENTS_ON | Enable multiple-statement support |
MYSQL_OPTION_MULTI_STATEMENTS_OFF | Disable multiple-statement support |
If you enable multiple-statement support, you should retrieve results from calls to mysql_query() or mysql_real_query() by using a loop that calls mysql_next_result() to determine whether there are more results. For an example, see Section 21.8.16, “C API Support for Multiple Statement Execution”.
Enabling multiple-statement support with MYSQL_OPTION_MULTI_STATEMENTS_ON does not have quite the same effect as enabling it by passing the CLIENT_MULTI_STATEMENTS flag to mysql_real_connect(): CLIENT_MULTI_STATEMENTS also enables CLIENT_MULTI_RESULTS. If you are using the CALL SQL statement in your programs, multiple-result support must be enabled; this means that MYSQL_OPTION_MULTI_STATEMENTS_ON by itself is insufficient to permit the use of CALL.
Return Values
Zero for success. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
The server didn't support mysql_set_server_option() (which is the case that the server is older than 4.1.1) or the server didn't support the option one tried to set.
21.8.6.66. mysql_shutdown()
int mysql_shutdown(MYSQL *mysql, enum mysql_enum_shutdown_level shutdown_level)
Description
Asks the database server to shut down. The connected user must have the SHUTDOWN privilege. MySQL 5.6 servers support only one type of shutdown; shutdown_level must be equal to SHUTDOWN_DEFAULT. Additional shutdown levels are planned to make it possible to choose the desired level. Dynamically linked executables which have been compiled with older versions of the libmysqlclient headers and call mysql_shutdown() need to be used with the old libmysqlclient dynamic library.
The shutdown process is described in Section 5.1.12, “The Shutdown Process”.
Return Values
Zero for success. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.67. mysql_sqlstate()
const char *mysql_sqlstate(MYSQL *mysql)
Description
Returns a null-terminated string containing the SQLSTATE error code for the most recently executed SQL statement. The error code consists of five characters. '00000' means “no error.” The values are specified by ANSI SQL and ODBC. For a list of possible values, see Appendix C, Errors, Error Codes, and Common Problems.
SQLSTATE values returned by mysql_sqlstate() differ from MySQL-specific error numbers returned by mysql_errno(). For example, the mysql client program displays errors using the following format, where 1146 is the mysql_errno() value and '42S02' is the corresponding mysql_sqlstate() value:
shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist
Not all MySQL error numbers are mapped to SQLSTATE error codes. The value 'HY000' (general error) is used for unmapped error numbers.
If you call mysql_sqlstate() after mysql_real_connect() fails, mysql_sqlstate() might not return a useful value. For example, this happens if a host is blocked by the server and the connection is closed without any SQLSTATE value being sent to the client.
Return Values
A null-terminated character string containing the SQLSTATE error code.
See Also
See Section 21.8.6.14, “mysql_errno()”, Section 21.8.6.15, “mysql_error()”, and Section 21.8.10.27, “mysql_stmt_sqlstate()”.
21.8.6.68. mysql_ssl_set()
my_bool mysql_ssl_set(MYSQL *mysql, const char *key, const char *cert, const char *ca, const char *capath, const char *cipher)
Description
mysql_ssl_set() is used for establishing secure connections using SSL. It must be called before mysql_real_connect().
mysql_ssl_set() does nothing unless SSL support is enabled in the client library.
mysql is the connection handler returned from mysql_init(). The other parameters are specified as follows:
key is the path name to the key file.
cert is the path name to the certificate file.
ca is the path name to the certificate authority file.
capath is the path name to a directory that contains trusted SSL CA certificates in PEM format.
cipher is a list of permissible ciphers to use for SSL encryption.
Any unused SSL parameters may be given as NULL.
Return Values
This function always returns 0. If SSL setup is incorrect, mysql_real_connect() returns an error when you attempt to connect.
21.8.6.69. mysql_stat()
const char *mysql_stat(MYSQL *mysql)
Description
Returns a character string containing information similar to that provided by the mysqladmin status command. This includes uptime in seconds and the number of running threads, questions, reloads, and open tables.
Return Values
A character string describing the server status. NULL if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.70. mysql_store_result()
MYSQL_RES *mysql_store_result(MYSQL *mysql)
Description
After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result() or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW, DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after you are done with the result set.
You don't have to call mysql_store_result() or mysql_use_result() for other statements, but it does not do any harm or cause any notable performance degradation if you call mysql_store_result() in all cases. You can detect whether the statement has a result set by checking whether mysql_store_result() returns a nonzero value (more about this later).
If you enable multiple-statement support, you should retrieve results from calls to mysql_query() or mysql_real_query() by using a loop that calls mysql_next_result() to determine whether there are more results. For an example, see Section 21.8.16, “C API Support for Multiple Statement Execution”.
If you want to know whether a statement should return a result set, you can use mysql_field_count() to check for this. See Section 21.8.6.22, “mysql_field_count()”.
mysql_store_result() reads the entire result of a query to the client, allocates a MYSQL_RES structure, and places the result into this structure.
mysql_store_result() returns a null pointer if the statement didn't return a result set (for example, if it was an INSERT statement).
mysql_store_result() also returns a null pointer if reading of the result set failed. You can check whether an error occurred by checking whether mysql_error() returns a nonempty string, mysql_errno() returns nonzero, or mysql_field_count() returns zero.
An empty result set is returned if there are no rows returned. (An empty result set differs from a null pointer as a return value.)
After you have called mysql_store_result() and gotten back a result that isn't a null pointer, you can call mysql_num_rows() to find out how many rows are in the result set.
You can call mysql_fetch_row() to fetch rows from the result set, or mysql_row_seek() and mysql_row_tell() to obtain or set the current row position within the result set.
Return Values
A MYSQL_RES result structure with the results. NULL (0) if an error occurred.
Errors
mysql_store_result() resets mysql_error() and mysql_errno() if it succeeds.
Commands were executed in an improper order.
Out of memory.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.71. mysql_thread_id()
unsigned long mysql_thread_id(MYSQL *mysql)
Description
Returns the thread ID of the current connection. This value can be used as an argument to mysql_kill() to kill the thread.
If the connection is lost and you reconnect with mysql_ping(), the thread ID changes. This means you should not get the thread ID and store it for later. You should get it when you need it.
Note
This function does not work correctly if thread IDs become larger than 32 bits, which can occur on some systems. To avoid problems with mysql_thread_id(), do not use it. To get the connection ID, execute a SELECT CONNECTION_ID() query and retrieve the result.
Return Values
The thread ID of the current connection.
Errors
None.
21.8.6.72. mysql_use_result()
MYSQL_RES *mysql_use_result(MYSQL *mysql)
Description
After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result() or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW, DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after you are done with the result set.
mysql_use_result() initiates a result set retrieval but does not actually read the result set into the client like mysql_store_result() does. Instead, each row must be retrieved individually by making calls to mysql_fetch_row(). This reads the result of a query directly from the server without storing it in a temporary table or local buffer, which is somewhat faster and uses much less memory than mysql_store_result(). The client allocates memory only for the current row and a communication buffer that may grow up to max_allowed_packet bytes.
On the other hand, you shouldn't use mysql_use_result() if you are doing a lot of processing for each row on the client side, or if the output is sent to a screen on which the user may type a ^S (stop scroll). This ties up the server and prevent other threads from updating any tables from which the data is being fetched.
When using mysql_use_result(), you must execute mysql_fetch_row() until a NULL value is returned, otherwise, the unfetched rows are returned as part of the result set for your next query. The C API gives the error Commands out of sync; you can't run this command now if you forget to do this!
You may not use mysql_data_seek(), mysql_row_seek(), mysql_row_tell(), mysql_num_rows(), or mysql_affected_rows() with a result returned from mysql_use_result(), nor may you issue other queries until mysql_use_result() has finished. (However, after you have fetched all the rows, mysql_num_rows() accurately returns the number of rows fetched.)
You must call mysql_free_result() once you are done with the result set.
When using the libmysqld embedded server, the memory benefits are essentially lost because memory usage incrementally increases with each row retrieved until mysql_free_result() is called.
Return Values
A MYSQL_RES result structure. NULL if an error occurred.
Errors
mysql_use_result() resets mysql_error() and mysql_errno() if it succeeds.
Commands were executed in an improper order.
Out of memory.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.6.73. mysql_warning_count()
unsigned int mysql_warning_count(MYSQL *mysql)
Description
Returns the number of errors, warnings, and notes generated during execution of the previous SQL statement.
Return Values
The warning count.
Errors
None.
21.8.7. C API Prepared Statements
The MySQL client/server protocol provides for the use of prepared statements. This capability uses the MYSQL_STMT statement handler data structure returned by the mysql_stmt_init() initialization function. Prepared execution is an efficient way to execute a statement more than once. The statement is first parsed to prepare it for execution. Then it is executed one or more times at a later time, using the statement handle returned by the initialization function.
Prepared execution is faster than direct execution for statements executed more than once, primarily because the query is parsed only once. In the case of direct execution, the query is parsed every time it is executed. Prepared execution also can provide a reduction of network traffic because for each execution of the prepared statement, it is necessary only to send the data for the parameters.
Prepared statements might not provide a performance increase in some situations. For best results, test your application both with prepared and nonprepared statements and choose whichever yields best performance.
Another advantage of prepared statements is that it uses a binary protocol that makes data transfer between client and server more efficient.
For a list of SQL statements that can be used as prepared statements, see Section 13.5, “SQL Syntax for Prepared Statements”.
Metadata changes to tables or views referred to by prepared statements are detected and cause automatic repreparation of the statement when it is next executed. For more information, see Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.
21.8.8. C API Prepared Statement Data Structures
Prepared statements use several data structures:
To obtain a statement handle, pass a MYSQL connection handler to mysql_stmt_init(), which returns a pointer to a MYSQL_STMT data structure. This structure is used for further operations with the statement. To specify the statement to prepare, pass the MYSQL_STMT pointer and the statement string to mysql_stmt_prepare().
To provide input parameters for a prepared statement, set up MYSQL_BIND structures and pass them to mysql_stmt_bind_param(). To receive output column values, set up MYSQL_BIND structures and pass them to mysql_stmt_bind_result().
The MYSQL_TIME structure is used to transfer temporal data in both directions.
The following discussion describes the prepared statement data types in detail. For examples that show how to use them, see Section 21.8.10.10, “mysql_stmt_execute()”, and Section 21.8.10.11, “mysql_stmt_fetch()”.
MYSQL_STMT
This structure is a handle for a prepared statement. A handle is created by calling mysql_stmt_init(), which returns a pointer to a MYSQL_STMT. The handle is used for all subsequent operations with the statement until you close it with mysql_stmt_close(), at which point the handle becomes invalid.
The MYSQL_STMT structure has no members intended for application use. Applications should not try to copy a MYSQL_STMT structure. There is no guarantee that such a copy will be usable.
Multiple statement handles can be associated with a single connection. The limit on the number of handles depends on the available system resources.
MYSQL_BIND
This structure is used both for statement input (data values sent to the server) and output (result values returned from the server):
For input, use MYSQL_BIND structures with mysql_stmt_bind_param() to bind parameter data values to buffers for use by mysql_stmt_execute().
For output, use MYSQL_BIND structures with mysql_stmt_bind_result() to bind buffers to result set columns, for use in fetching rows with mysql_stmt_fetch().
To use a MYSQL_BIND structure, zero its contents to initialize it, then set its members appropriately. For example, to declare and initialize an array of three MYSQL_BIND structures, use this code:
MYSQL_BIND bind[3];
memset(bind, 0, sizeof(bind));
The MYSQL_BIND structure contains the following members for use by application programs. For several of the members, the manner of use depends on whether the structure is used for input or output.
enum enum_field_types buffer_type
The type of the buffer. This member indicates the data type of the C language variable bound to a statement parameter or result set column. For input, buffer_type indicates the type of the variable containing the value to be sent to the server. For output, it indicates the type of the variable into which a value received from the server should be stored. For permissible buffer_type values, see Section 21.8.8.1, “C API Prepared Statement Type Codes”.
void *buffer
A pointer to the buffer to be used for data transfer. This is the address of a C language variable.
For input, buffer is a pointer to the variable in which you store the data value for a statement parameter. When you call mysql_stmt_execute(), MySQL use the value stored in the variable in place of the corresponding parameter marker in the statement (specified with ? in the statement string).
For output, buffer is a pointer to the variable in which to return a result set column value. When you call mysql_stmt_fetch(), MySQL stores a column value from the current row of the result set in this variable. You can access the value when the call returns.
To minimize the need for MySQL to perform type conversions between C language values on the client side and SQL values on the server side, use C variables that have types similar to those of the corresponding SQL values:
For numeric data types, buffer should point to a variable of the proper numeric C type. For integer variables (which can be char for single-byte values or an integer type for larger values), you should also indicate whether the variable has the unsigned attribute by setting the is_unsigned member, described later.
For character (nonbinary) and binary string data types, buffer should point to a character buffer.
For date and time data types, buffer should point to a MYSQL_TIME structure.
For guidelines about mapping between C types and SQL types and notes about type conversions, see Section 21.8.8.1, “C API Prepared Statement Type Codes”, and Section 21.8.8.2, “C API Prepared Statement Type Conversions”.
unsigned long buffer_length
The actual size of *buffer in bytes. This indicates the maximum amount of data that can be stored in the buffer. For character and binary C data, the buffer_length value specifies the length of *buffer when used with mysql_stmt_bind_param() to specify input values, or the maximum number of output data bytes that can be fetched into the buffer when used with mysql_stmt_bind_result().
unsigned long *length
A pointer to an unsigned long variable that indicates the actual number of bytes of data stored in *buffer. length is used for character or binary C data.
For input parameter data binding, set *length to indicate the actual length of the parameter value stored in *buffer. This is used by mysql_stmt_execute().
For output value binding, MySQL sets *length when you call mysql_stmt_fetch(). The mysql_stmt_fetch() return value determines how to interpret the length:
If the return value is 0, *length indicates the actual length of the parameter value.
If the return value is MYSQL_DATA_TRUNCATED, *length indicates the nontruncated length of the parameter value. In this case, the minimum of *length and buffer_length indicates the actual length of the value.
length is ignored for numeric and temporal data types because the buffer_type value determines the length of the data value.
If you must determine the length of a returned value before fetching it, see Section 21.8.10.11, “mysql_stmt_fetch()”, for some strategies.
my_bool *is_null
This member points to a my_bool variable that is true if a value is NULL, false if it is not NULL. For input, set *is_null to true to indicate that you are passing a NULL value as a statement parameter.
is_null is a pointer to a boolean scalar, not a boolean scalar, to provide flexibility in how you specify NULL values:
If your data values are always NULL, use MYSQL_TYPE_NULL as the buffer_type value when you bind the column. The other MYSQL_BIND members, including is_null, do not matter.
If your data values are always NOT NULL, set is_null = (my_bool*) 0, and set the other members appropriately for the variable you are binding.
In all other cases, set the other members appropriately and set is_null to the address of a my_bool variable. Set that variable's value to true or false appropriately between executions to indicate whether the corresponding data value is NULL or NOT NULL, respectively.
For output, when you fetch a row, MySQL sets the value pointed to by is_null to true or false according to whether the result set column value returned from the statement is or is not NULL.
my_bool is_unsigned
This member applies for C variables with data types that can be unsigned (char, short int, int, long long int). Set is_unsigned to true if the variable pointed to by buffer is unsigned and false otherwise. For example, if you bind a signed char variable to buffer, specify a type code of MYSQL_TYPE_TINY and set is_unsigned to false. If you bind an unsigned char instead, the type code is the same but is_unsigned should be true. (For char, it is not defined whether it is signed or unsigned, so it is best to be explicit about signedness by using signed char or unsigned char.)
is_unsigned applies only to the C language variable on the client side. It indicates nothing about the signedness of the corresponding SQL value on the server side. For example, if you use an int variable to supply a value for a BIGINT UNSIGNED column, is_unsigned should be false because int is a signed type. If you use an unsigned int variable to supply a value for a BIGINT column, is_unsigned should be true because unsigned int is an unsigned type. MySQL performs the proper conversion between signed and unsigned values in both directions, although a warning occurs if truncation results.
my_bool *error
For output, set this member to point to a my_bool variable to have truncation information for the parameter stored there after a row fetching operation. When truncation reporting is enabled, mysql_stmt_fetch() returns MYSQL_DATA_TRUNCATED and *error is true in the MYSQL_BIND structures for parameters in which truncation occurred. Truncation indicates loss of sign or significant digits, or that a string was too long to fit in a column. Truncation reporting is enabled by default, but can be controlled by calling mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION option.
MYSQL_TIME
This structure is used to send and receive DATE, TIME, DATETIME, and TIMESTAMP data directly to and from the server. Set the buffer member to point to a MYSQL_TIME structure, and set the buffer_type member of a MYSQL_BIND structure to one of the temporal types (MYSQL_TYPE_TIME, MYSQL_TYPE_DATE, MYSQL_TYPE_DATETIME, MYSQL_TYPE_TIMESTAMP).
The MYSQL_TIME structure contains the members listed in the following table.
Member | Description |
---|---|
unsigned int year | The year |
unsigned int month | The month of the year |
unsigned int day | The day of the month |
unsigned int hour | The hour of the day |
unsigned int minute | The minute of the hour |
unsigned int second | The second of the minute |
my_bool neg | A boolean flag indicating whether the time is negative |
unsigned long second_part | The fractional part of the second in microseconds (unused before MySQL 5.6.4) |
Only those parts of a MYSQL_TIME structure that apply to a given type of temporal value are used. The year, month, and day elements are used for DATE, DATETIME, and TIMESTAMP values. The hour, minute, and second elements are used for TIME, DATETIME, and TIMESTAMP values. See Section 21.8.18, “C API Prepared Statement Handling of Date and Time Values”.
21.8.8.1. C API Prepared Statement Type Codes
The buffer_type member of MYSQL_BIND structures indicates the data type of the C language variable bound to a statement parameter or result set column. For input, buffer_type indicates the type of the variable containing the value to be sent to the server. For output, it indicates the type of the variable into which a value received from the server should be stored.
The following table shows the permissible values for the buffer_type member of MYSQL_BIND structures for input values sent to the server. The table shows the C variable types that you can use, the corresponding type codes, and the SQL data types for which the supplied value can be used without conversion. Choose the buffer_type value according to the data type of the C language variable that you are binding. For the integer types, you should also set the is_unsigned member to indicate whether the variable is signed or unsigned.
Input Variable C Type | buffer_type Value | SQL Type of Destination Value |
---|---|---|
signed char | MYSQL_TYPE_TINY | TINYINT |
short int | MYSQL_TYPE_SHORT | SMALLINT |
int | MYSQL_TYPE_LONG | INT |
long long int | MYSQL_TYPE_LONGLONG | BIGINT |
float | MYSQL_TYPE_FLOAT | FLOAT |
double | MYSQL_TYPE_DOUBLE | DOUBLE |
MYSQL_TIME | MYSQL_TYPE_TIME | TIME |
MYSQL_TIME | MYSQL_TYPE_DATE | DATE |
MYSQL_TIME | MYSQL_TYPE_DATETIME | DATETIME |
MYSQL_TIME | MYSQL_TYPE_TIMESTAMP | TIMESTAMP |
char[] | MYSQL_TYPE_STRING | TEXT, CHAR, VARCHAR |
char[] | MYSQL_TYPE_BLOB | BLOB, BINARY, VARBINARY |
MYSQL_TYPE_NULL | NULL |
Use MYSQL_TYPE_NULL as indicated in the description for the is_null member in Section 21.8.8, “C API Prepared Statement Data Structures”.
For input string data, use MYSQL_TYPE_STRING or MYSQL_TYPE_BLOB depending on whether the value is a character (nonbinary) or binary string:
MYSQL_TYPE_STRING indicates character input string data. The value is assumed to be in the character set indicated by the character_set_client system variable. If the server stores the value into a column with a different character set, it converts the value to that character set.
MYSQL_TYPE_BLOB indicates binary input string data. The value is treated as having the binary character set. That is, it is treated as a byte string and no conversion occurs.
The following table shows the permissible values for the buffer_type member of MYSQL_BIND structures for output values received from the server. The table shows the SQL types of received values, the corresponding type codes that such values have in result set metadata, and the recommended C language data types to bind to the MYSQL_BIND structure to receive the SQL values without conversion. Choose the buffer_type value according to the data type of the C language variable that you are binding. For the integer types, you should also set the is_unsigned member to indicate whether the variable is signed or unsigned.
SQL Type of Received Value | buffer_type Value | Output Variable C Type |
---|---|---|
TINYINT | MYSQL_TYPE_TINY | signed char |
SMALLINT | MYSQL_TYPE_SHORT | short int |
MEDIUMINT | MYSQL_TYPE_INT24 | int |
INT | MYSQL_TYPE_LONG | int |
BIGINT | MYSQL_TYPE_LONGLONG | long long int |
FLOAT | MYSQL_TYPE_FLOAT | float |
DOUBLE | MYSQL_TYPE_DOUBLE | double |
DECIMAL | MYSQL_TYPE_NEWDECIMAL | char[] |
YEAR | MYSQL_TYPE_SHORT | short int |
TIME | MYSQL_TYPE_TIME | MYSQL_TIME |
DATE | MYSQL_TYPE_DATE | MYSQL_TIME |
DATETIME | MYSQL_TYPE_DATETIME | MYSQL_TIME |
TIMESTAMP | MYSQL_TYPE_TIMESTAMP | MYSQL_TIME |
CHAR, BINARY | MYSQL_TYPE_STRING | char[] |
VARCHAR, VARBINARY | MYSQL_TYPE_VAR_STRING | char[] |
TINYBLOB, TINYTEXT | MYSQL_TYPE_TINY_BLOB | char[] |
BLOB, TEXT | MYSQL_TYPE_BLOB | char[] |
MEDIUMBLOB, MEDIUMTEXT | MYSQL_TYPE_MEDIUM_BLOB | char[] |
LONGBLOB, LONGTEXT | MYSQL_TYPE_LONG_BLOB | char[] |
BIT | MYSQL_TYPE_BIT | char[] |
21.8.8.2. C API Prepared Statement Type Conversions
Prepared statements transmit data between the client and server using C language variables on the client side that correspond to SQL values on the server side. If there is a mismatch between the C variable type on the client side and the corresponding SQL value type on the server side, MySQL performs implicit type conversions in both directions.
MySQL knows the type code for the SQL value on the server side. The buffer_type value in the MYSQL_BIND structure indicates the type code of the C variable that holds the value on the client side. The two codes together tell MySQL what conversion must be performed, if any. Here are some examples:
If you use MYSQL_TYPE_LONG with an int variable to pass an integer value to the server that is to be stored into a FLOAT column, MySQL converts the value to floating-point format before storing it.
If you fetch an SQL MEDIUMINT column value, but specify a buffer_type value of MYSQL_TYPE_LONGLONG and use a C variable of type long long int as the destination buffer, MySQL converts the MEDIUMINT value (which requires less than 8 bytes) for storage into the long long int (an 8-byte variable).
If you fetch a numeric column with a value of 255 into a char[4] character array and specify a buffer_type value of MYSQL_TYPE_STRING, the resulting value in the array is a 4-byte string '255\0'.
MySQL returns DECIMAL values as the string representation of the original server-side value, which is why the corresponding C type is char[]. For example, 12.345 is returned to the client as '12.345'. If you specify MYSQL_TYPE_NEWDECIMAL and bind a string buffer to the MYSQL_BIND structure, mysql_stmt_fetch() stores the value in the buffer as a string without conversion. If instead you specify a numeric variable and type code, mysql_stmt_fetch() converts the string-format DECIMAL value to numeric form.
For the MYSQL_TYPE_BIT type code, BIT values are returned into a string buffer, which is why the corresponding C type is char[]. The value represents a bit string that requires interpretation on the client side. To return the value as a type that is easier to deal with, you can cause the value to be cast to integer using either of the following types of expressions:
SELECT bit_col + 0 FROM t
SELECT CAST(bit_col AS UNSIGNED) FROM t
To retrieve the value, bind an integer variable large enough to hold the value and specify the appropriate corresponding integer type code.
Before binding variables to the MYSQL_BIND structures that are to be used for fetching column values, you can check the type codes for each column of the result set. This might be desirable if you want to determine which variable types would be best to use to avoid type conversions. To get the type codes, call mysql_stmt_result_metadata() after executing the prepared statement with mysql_stmt_execute(). The metadata provides access to the type codes for the result set as described in Section 21.8.10.23, “mysql_stmt_result_metadata()”, and Section 21.8.4, “C API Data Structures”.
To determine whether output string values in a result set returned from the server contain binary or nonbinary data, check whether the charsetnr value of the result set metadata is 63 (see Section 21.8.4, “C API Data Structures”). If so, the character set is binary, which indicates binary rather than nonbinary data. This enables you to distinguish BINARY from CHAR, VARBINARY from VARCHAR, and the BLOB types from the TEXT types.
If you cause the max_length member of the MYSQL_FIELD column metadata structures to be set (by calling mysql_stmt_attr_set()), be aware that the max_length values for the result set indicate the lengths of the longest string representation of the result values, not the lengths of the binary representation. That is, max_length does not necessarily correspond to the size of the buffers needed to fetch the values with the binary protocol used for prepared statements. Choose the size of the buffers according to the types of the variables into which you fetch the values. For example, a TINYINT column containing the value -128 might have a max_length value of 4. But the binary representation of any TINYINT value requires only 1 byte for storage, so you can supply a signed char variable in which to store the value and set is_unsigned to indicate that values are signed.
Metadata changes to tables or views referred to by prepared statements are detected and cause automatic repreparation of the statement when it is next executed. For more information, see Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.
21.8.9. C API Prepared Statement Function Overview
The functions available for prepared statement processing are summarized here and described in greater detail in a later section. See Section 21.8.10, “C API Prepared Statement Function Descriptions”.
Function | Description |
---|---|
mysql_stmt_affected_rows() | Returns the number of rows changed, deleted, or inserted by prepared UPDATE, DELETE, or INSERT statement |
mysql_stmt_attr_get() | Gets value of an attribute for a prepared statement |
mysql_stmt_attr_set() | Sets an attribute for a prepared statement |
mysql_stmt_bind_param() | Associates application data buffers with the parameter markers in a prepared SQL statement |
mysql_stmt_bind_result() | Associates application data buffers with columns in a result set |
mysql_stmt_close() | Frees memory used by a prepared statement |
mysql_stmt_data_seek() | Seeks to an arbitrary row number in a statement result set |
mysql_stmt_errno() | Returns the error number for the last statement execution |
mysql_stmt_error() | Returns the error message for the last statement execution |
mysql_stmt_execute() | Executes a prepared statement |
mysql_stmt_fetch() | Fetches the next row of data from a result set and returns data for all bound columns |
mysql_stmt_fetch_column() | Fetch data for one column of the current row of a result set |
mysql_stmt_field_count() | Returns the number of result columns for the most recent statement |
mysql_stmt_free_result() | Free the resources allocated to a statement handle |
mysql_stmt_init() | Allocates memory for a MYSQL_STMT structure and initializes it |
mysql_stmt_insert_id() | Returns the ID generated for an AUTO_INCREMENT column by a prepared statement |
mysql_stmt_next_result() | Returns/initiates the next result in a multiple-result execution |
mysql_stmt_num_rows() | Returns the row count from a buffered statement result set |
mysql_stmt_param_count() | Returns the number of parameters in a prepared statement |
mysql_stmt_param_metadata() | (Return parameter metadata in the form of a result set) Currently, this function does nothing |
mysql_stmt_prepare() | Prepares an SQL statement string for execution |
mysql_stmt_reset() | Resets the statement buffers in the server |
mysql_stmt_result_metadata() | Returns prepared statement metadata in the form of a result set |
mysql_stmt_row_seek() | Seeks to a row offset in a statement result set, using value returned from mysql_stmt_row_tell() |
mysql_stmt_row_tell() | Returns the statement row cursor position |
mysql_stmt_send_long_data() | Sends long data in chunks to server |
mysql_stmt_sqlstate() | Returns the SQLSTATE error code for the last statement execution |
mysql_stmt_store_result() | Retrieves a complete result set to the client |
Call mysql_stmt_init() to create a statement handle, then mysql_stmt_prepare() to prepare the statement string, mysql_stmt_bind_param() to supply the parameter data, and mysql_stmt_execute() to execute the statement. You can repeat the mysql_stmt_execute() by changing parameter values in the respective buffers supplied through mysql_stmt_bind_param().
You can send text or binary data in chunks to server using mysql_stmt_send_long_data(). See Section 21.8.10.26, “mysql_stmt_send_long_data()”.
If the statement is a SELECT or any other statement that produces a result set, mysql_stmt_prepare() also returns the result set metadata information in the form of a MYSQL_RES result set through mysql_stmt_result_metadata().
You can supply the result buffers using mysql_stmt_bind_result(), so that the mysql_stmt_fetch() automatically returns data to these buffers. This is row-by-row fetching.
When statement execution has been completed, close the statement handle using mysql_stmt_close() so that all resources associated with it can be freed.
If you obtained a SELECT statement's result set metadata by calling mysql_stmt_result_metadata(), you should also free the metadata using mysql_free_result().
Execution Steps
To prepare and execute a statement, an application follows these steps:
Create a prepared statement handle with mysql_stmt_init(). To prepare the statement on the server, call mysql_stmt_prepare() and pass it a string containing the SQL statement.
If the statement will produce a result set, call mysql_stmt_result_metadata() to obtain the result set metadata. This metadata is itself in the form of result set, albeit a separate one from the one that contains the rows returned by the query. The metadata result set indicates how many columns are in the result and contains information about each column.
Set the values of any parameters using mysql_stmt_bind_param(). All parameters must be set. Otherwise, statement execution returns an error or produces unexpected results.
Call mysql_stmt_execute() to execute the statement.
If the statement produces a result set, bind the data buffers to use for retrieving the row values by calling mysql_stmt_bind_result().
Fetch the data into the buffers row by row by calling mysql_stmt_fetch() repeatedly until no more rows are found.
Repeat steps 3 through 6 as necessary, by changing the parameter values and re-executing the statement.
When mysql_stmt_prepare() is called, the MySQL client/server protocol performs these actions:
The server parses the statement and sends the okay status back to the client by assigning a statement ID. It also sends total number of parameters, a column count, and its metadata if it is a result set oriented statement. All syntax and semantics of the statement are checked by the server during this call.
The client uses this statement ID for the further operations, so that the server can identify the statement from among its pool of statements.
When mysql_stmt_execute() is called, the MySQL client/server protocol performs these actions:
The client uses the statement handle and sends the parameter data to the server.
The server identifies the statement using the ID provided by the client, replaces the parameter markers with the newly supplied data, and executes the statement. If the statement produces a result set, the server sends the data back to the client. Otherwise, it sends an okay status and the number of rows changed, deleted, or inserted.
When mysql_stmt_fetch() is called, the MySQL client/server protocol performs these actions:
The client reads the data from the current row of the result set and places it into the application data buffers by doing the necessary conversions. If the application buffer type is same as that of the field type returned from the server, the conversions are straightforward.
If an error occurs, you can get the statement error number, error message, and SQLSTATE code using mysql_stmt_errno(), mysql_stmt_error(), and mysql_stmt_sqlstate(), respectively.
Prepared Statement Logging
For prepared statements that are executed with the mysql_stmt_prepare() and mysql_stmt_execute() C API functions, the server writes Prepare and Execute lines to the general query log so that you can tell when statements are prepared and executed.
Suppose that you prepare and execute a statement as follows:
Call mysql_stmt_prepare() to prepare the statement string "SELECT ?".
Call mysql_stmt_bind_param() to bind the value 3 to the parameter in the prepared statement.
Call mysql_stmt_execute() to execute the prepared statement.
As a result of the preceding calls, the server writes the following lines to the general query log:
Prepare [1] SELECT ?
Execute [1] SELECT 3
Each Prepare and Execute line in the log is tagged with a [N] statement identifier so that you can keep track of which prepared statement is being logged. N is a positive integer. If there are multiple prepared statements active simultaneously for the client, N may be greater than 1. Each Execute lines shows a prepared statement after substitution of data values for ? parameters.
21.8.10. C API Prepared Statement Function Descriptions
To prepare and execute queries, use the functions described in detail in the following sections.
All functions that operate with a MYSQL_STMT structure begin with the prefix mysql_stmt_.
To create a MYSQL_STMT handle, use the mysql_stmt_init() function.
21.8.10.1. mysql_stmt_affected_rows()
my_ulonglong mysql_stmt_affected_rows(MYSQL_STMT *stmt)
Description
mysql_stmt_affected_rows() may be called immediately after executing a statement with mysql_stmt_execute(). It is like mysql_affected_rows() but for prepared statements. For a description of what the affected-rows value returned by this function means, See Section 21.8.6.1, “mysql_affected_rows()”.
Errors
None.
Example
See the Example in Section 21.8.10.10, “mysql_stmt_execute()”.
21.8.10.2. mysql_stmt_attr_get()
my_bool mysql_stmt_attr_get(MYSQL_STMT *stmt, enum enum_stmt_attr_type option, void *arg)
Description
Can be used to get the current value for a statement attribute.
The option argument is the option that you want to get; the arg should point to a variable that should contain the option value. If the option is an integer, arg should point to the value of the integer.
See Section 21.8.10.3, “mysql_stmt_attr_set()”, for a list of options and option types.
Return Values
Zero if successful. Nonzero if option is unknown.
Errors
None.
21.8.10.3. mysql_stmt_attr_set()
my_bool mysql_stmt_attr_set(MYSQL_STMT *stmt, enum enum_stmt_attr_type option, const void *arg)
Description
Can be used to affect behavior for a prepared statement. This function may be called multiple times to set several options.
The option argument is the option that you want to set. The arg argument is the value for the option. arg should point to a variable that is set to the desired attribute value. The variable type is as indicated in the following table.
The following table shows the possible option values.
Option | Argument Type | Function |
---|---|---|
STMT_ATTR_UPDATE_MAX_LENGTH | my_bool * | If set to 1, causes mysql_stmt_store_result() to update the metadata MYSQL_FIELD->max_length value. |
STMT_ATTR_CURSOR_TYPE | unsigned long * | Type of cursor to open for statement when mysql_stmt_execute() is invoked. *arg can be CURSOR_TYPE_NO_CURSOR (the default) or CURSOR_TYPE_READ_ONLY. |
STMT_ATTR_PREFETCH_ROWS | unsigned long * | Number of rows to fetch from server at a time when using a cursor. *arg can be in the range from 1 to the maximum value of unsigned long. The default is 1. |
If you use the STMT_ATTR_CURSOR_TYPE option with CURSOR_TYPE_READ_ONLY, a cursor is opened for the statement when you invoke mysql_stmt_execute(). If there is already an open cursor from a previous mysql_stmt_execute() call, it closes the cursor before opening a new one. mysql_stmt_reset() also closes any open cursor before preparing the statement for re-execution. mysql_stmt_free_result() closes any open cursor.
If you open a cursor for a prepared statement, mysql_stmt_store_result() is unnecessary, because that function causes the result set to be buffered on the client side.
Return Values
Zero if successful. Nonzero if option is unknown.
Errors
None.
Example
The following example opens a cursor for a prepared statement and sets the number of rows to fetch at a time to 5:
MYSQL_STMT *stmt;
int rc;
unsigned long type;
unsigned long prefetch_rows = 5;
stmt = mysql_stmt_init(mysql);
type = (unsigned long) CURSOR_TYPE_READ_ONLY;
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_CURSOR_TYPE, (void*) &type);
/* ... check return value ... */
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_PREFETCH_ROWS,
(void*) &prefetch_rows);
/* ... check return value ... */
21.8.10.4. mysql_stmt_bind_param()
my_bool mysql_stmt_bind_param(MYSQL_STMT *stmt, MYSQL_BIND *bind)
Description
mysql_stmt_bind_param() is used to bind input data for the parameter markers in the SQL statement that was passed to mysql_stmt_prepare(). It uses MYSQL_BIND structures to supply the data. bind is the address of an array of MYSQL_BIND structures. The client library expects the array to contain one element for each ? parameter marker that is present in the query.
Suppose that you prepare the following statement:
INSERT INTO mytbl VALUES(?,?,?)
When you bind the parameters, the array of MYSQL_BIND structures must contain three elements, and can be declared like this:
MYSQL_BIND bind[3];
Section 21.8.8, “C API Prepared Statement Data Structures”, describes the members of each MYSQL_BIND element and how they should be set to provide input values.
Return Values
Zero if the bind operation was successful. Nonzero if an error occurred.
Errors
The conversion is not supported. Possibly the buffer_type value is invalid or is not one of the supported types.
Out of memory.
An unknown error occurred.
Example
See the Example in Section 21.8.10.10, “mysql_stmt_execute()”.
21.8.10.5. mysql_stmt_bind_result()
my_bool mysql_stmt_bind_result(MYSQL_STMT *stmt, MYSQL_BIND *bind)
Description
mysql_stmt_bind_result() is used to associate (that is, bind) output columns in the result set to data buffers and length buffers. When mysql_stmt_fetch() is called to fetch data, the MySQL client/server protocol places the data for the bound columns into the specified buffers.
All columns must be bound to buffers prior to calling mysql_stmt_fetch(). bind is the address of an array of MYSQL_BIND structures. The client library expects the array to contain one element for each column of the result set. If you do not bind columns to MYSQL_BIND structures, mysql_stmt_fetch() simply ignores the data fetch. The buffers should be large enough to hold the data values, because the protocol doesn't return data values in chunks.
A column can be bound or rebound at any time, even after a result set has been partially retrieved. The new binding takes effect the next time mysql_stmt_fetch() is called. Suppose that an application binds the columns in a result set and calls mysql_stmt_fetch(). The client/server protocol returns data in the bound buffers. Then suppose that the application binds the columns to a different set of buffers. The protocol places data into the newly bound buffers when the next call to mysql_stmt_fetch() occurs.
To bind a column, an application calls mysql_stmt_bind_result() and passes the type, address, and length of the output buffer into which the value should be stored. Section 21.8.8, “C API Prepared Statement Data Structures”, describes the members of each MYSQL_BIND element and how they should be set to receive output values.
Return Values
Zero if the bind operation was successful. Nonzero if an error occurred.
Errors
The conversion is not supported. Possibly the buffer_type value is invalid or is not one of the supported types.
Out of memory.
An unknown error occurred.
Example
See the Example in Section 21.8.10.11, “mysql_stmt_fetch()”.
21.8.10.6. mysql_stmt_close()
my_bool mysql_stmt_close(MYSQL_STMT *)
Description
Closes the prepared statement. mysql_stmt_close() also deallocates the statement handle pointed to by stmt.
If the current statement has pending or unread results, this function cancels them so that the next query can be executed.
Return Values
Zero if the statement was freed successfully. Nonzero if an error occurred.
Errors
The MySQL server has gone away.
An unknown error occurred.
Example
See the Example in Section 21.8.10.10, “mysql_stmt_execute()”.
21.8.10.7. mysql_stmt_data_seek()
void mysql_stmt_data_seek(MYSQL_STMT *stmt, my_ulonglong offset)
Description
Seeks to an arbitrary row in a statement result set. The offset value is a row number and should be in the range from 0 to mysql_stmt_num_rows(stmt)-1.
This function requires that the statement result set structure contains the entire result of the last executed query, so mysql_stmt_data_seek() may be used only in conjunction with mysql_stmt_store_result().
Return Values
None.
Errors
None.
21.8.10.8. mysql_stmt_errno()
unsigned int mysql_stmt_errno(MYSQL_STMT *stmt)
Description
For the statement specified by stmt, mysql_stmt_errno() returns the error code for the most recently invoked statement API function that can succeed or fail. A return value of zero means that no error occurred. Client error message numbers are listed in the MySQL errmsg.h header file. Server error message numbers are listed in mysqld_error.h. Errors also are listed at Appendix C, Errors, Error Codes, and Common Problems.
Return Values
An error code value. Zero if no error occurred.
Errors
None.
21.8.10.9. mysql_stmt_error()
const char *mysql_stmt_error(MYSQL_STMT *stmt)
Description
For the statement specified by stmt, mysql_stmt_error() returns a null-terminated string containing the error message for the most recently invoked statement API function that can succeed or fail. An empty string ("") is returned if no error occurred. This means the following two tests are equivalent:
if(*mysql_stmt_errno(stmt))
{
// an error occurred
}
if (mysql_stmt_error(stmt)[0])
{
// an error occurred
}
The language of the client error messages may be changed by recompiling the MySQL client library. Currently, you can choose error messages in several different languages.
Return Values
A character string that describes the error. An empty string if no error occurred.
Errors
None.
21.8.10.10. mysql_stmt_execute()
int mysql_stmt_execute(MYSQL_STMT *stmt)
Description
mysql_stmt_execute() executes the prepared query associated with the statement handle. The currently bound parameter marker values are sent to server during this call, and the server replaces the markers with this newly supplied data.
Statement processing following mysql_stmt_execute() depends on the type of statement:
For an UPDATE, DELETE, or INSERT, the number of changed, deleted, or inserted rows can be found by calling mysql_stmt_affected_rows().
For a statement such as SELECT that generates a result set, you must call mysql_stmt_fetch() to fetch the data prior to calling any other functions that result in query processing. For more information on how to fetch the results, refer to Section 21.8.10.11, “mysql_stmt_fetch()”.
Do not following invocation of mysql_stmt_execute() with a call to mysql_store_result() or mysql_use_result(). Those functions are not intended for processing results from prepared statements.
For statements that generate a result set, you can request that mysql_stmt_execute() open a cursor for the statement by calling mysql_stmt_attr_set() before executing the statement. If you execute a statement multiple times, mysql_stmt_execute() closes any open cursor before opening a new one.
Metadata changes to tables or views referred to by prepared statements are detected and cause automatic repreparation of the statement when it is next executed. For more information, see Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.
Return Values
Zero if execution was successful. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
Out of memory.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
Example
The following example demonstrates how to create and populate a table using mysql_stmt_init(), mysql_stmt_prepare(), mysql_stmt_param_count(), mysql_stmt_bind_param(), mysql_stmt_execute(), and mysql_stmt_affected_rows(). The mysql variable is assumed to be a valid connection handle. For an example that shows how to retrieve data, see Section 21.8.10.11, “mysql_stmt_fetch()”.
#define STRING_SIZE 50
#define DROP_SAMPLE_TABLE "DROP TABLE IF EXISTS test_table"
#define CREATE_SAMPLE_TABLE "CREATE TABLE test_table(col1 INT,\
col2 VARCHAR(40),\
col3 SMALLINT,\
col4 TIMESTAMP)"
#define INSERT_SAMPLE "INSERT INTO \
test_table(col1,col2,col3) \
VALUES(?,?,?)"
MYSQL_STMT *stmt;
MYSQL_BIND bind[3];
my_ulonglong affected_rows;
int param_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
unsigned long str_length;
my_bool is_null;
if (mysql_query(mysql, DROP_SAMPLE_TABLE))
{
fprintf(stderr, " DROP TABLE failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);
}
if (mysql_query(mysql, CREATE_SAMPLE_TABLE))
{
fprintf(stderr, " CREATE TABLE failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);
}
/* Prepare an INSERT query with 3 parameters */
/* (the TIMESTAMP column is not named; the server */
/* sets it to the current date and time) */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_SAMPLE, strlen(INSERT_SAMPLE)))
{
fprintf(stderr, " mysql_stmt_prepare(), INSERT failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
fprintf(stdout, " prepare, INSERT successful\n");
/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in INSERT: %d\n", param_count);
if (param_count != 3) /* validate parameter count */
{
fprintf(stderr, " invalid parameter count returned by MySQL\n");
exit(0);
}
/* Bind the data for all 3 parameters */
memset(bind, 0, sizeof(bind));
/* INTEGER PARAM */
/* This is a number type, so there is no need
to specify buffer_length */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= 0;
bind[0].length= 0;
/* STRING PARAM */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= 0;
bind[1].length= &str_length;
/* SMALLINT PARAM */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null;
bind[2].length= 0;
/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
fprintf(stderr, " mysql_stmt_bind_param() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
/* Specify the data values for the first row */
int_data= 10; /* integer */
strncpy(str_data, "MySQL", STRING_SIZE); /* string */
str_length= strlen(str_data);
/* INSERT SMALLINT data as NULL */
is_null= 1;
/* Execute the INSERT statement - 1*/
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, " mysql_stmt_execute(), 1 failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
/* Get the number of affected rows */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 1): %lu\n",
(unsigned long) affected_rows);
if (affected_rows != 1) /* validate affected rows */
{
fprintf(stderr, " invalid affected rows by MySQL\n");
exit(0);
}
/* Specify data values for second row,
then re-execute the statement */
int_data= 1000;
strncpy(str_data, "
The most popular Open Source database",
STRING_SIZE);
str_length= strlen(str_data);
small_data= 1000; /* smallint */
is_null= 0; /* reset */
/* Execute the INSERT statement - 2*/
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, " mysql_stmt_execute, 2 failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
/* Get the total rows affected */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 2): %lu\n",
(unsigned long) affected_rows);
if (affected_rows != 1) /* validate affected rows */
{
fprintf(stderr, " invalid affected rows by MySQL\n");
exit(0);
}
/* Close the statement */
if (mysql_stmt_close(stmt))
{
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
Note
For complete examples on the use of prepared statement functions, refer to the file tests/mysql_client_test.c. This file can be obtained from a MySQL source distribution or from the Bazaar source repository.
21.8.10.11. mysql_stmt_fetch()
int mysql_stmt_fetch(MYSQL_STMT *stmt)
Description
mysql_stmt_fetch() returns the next row in the result set. It can be called only while the result set exists; that is, after a call to mysql_stmt_execute() for a statement such as SELECT that produces a result set.
mysql_stmt_fetch() returns row data using the buffers bound by mysql_stmt_bind_result(). It returns the data in those buffers for all the columns in the current row set and the lengths are returned to the length pointer. All columns must be bound by the application before it calls mysql_stmt_fetch().
By default, result sets are fetched unbuffered a row at a time from the server. To buffer the entire result set on the client, call mysql_stmt_store_result() after binding the data buffers and before calling mysql_stmt_fetch().
If a fetched data value is a NULL value, the *is_null value of the corresponding MYSQL_BIND structure contains TRUE (1). Otherwise, the data and its length are returned in the *buffer and *length elements based on the buffer type specified by the application. Each numeric and temporal type has a fixed length, as listed in the following table. The length of the string types depends on the length of the actual data value, as indicated by data_length.
Type | Length |
---|---|
MYSQL_TYPE_TINY | 1 |
MYSQL_TYPE_SHORT | 2 |
MYSQL_TYPE_LONG | 4 |
MYSQL_TYPE_LONGLONG | 8 |
MYSQL_TYPE_FLOAT | 4 |
MYSQL_TYPE_DOUBLE | 8 |
MYSQL_TYPE_TIME | sizeof(MYSQL_TIME) |
MYSQL_TYPE_DATE | sizeof(MYSQL_TIME) |
MYSQL_TYPE_DATETIME | sizeof(MYSQL_TIME) |
MYSQL_TYPE_STRING | data length |
MYSQL_TYPE_BLOB | data_length |
In some cases you might want to determine the length of a column value before fetching it with mysql_stmt_fetch(). For example, the value might be a long string or BLOB value for which you want to know how much space must be allocated. To accomplish this, you can use these strategies:
Before invoking mysql_stmt_fetch() to retrieve individual rows, pass STMT_ATTR_UPDATE_MAX_LENGTH to mysql_stmt_attr_set(), then invoke mysql_stmt_store_result() to buffer the entire result on the client side. Setting the STMT_ATTR_UPDATE_MAX_LENGTH attribute causes the maximal length of column values to be indicated by the max_length member of the result set metadata returned by mysql_stmt_result_metadata().
Invoke mysql_stmt_fetch() with a zero-length buffer for the column in question and a pointer in which the real length can be stored. Then use the real length with mysql_stmt_fetch_column().
real_length= 0;
bind[0].buffer= 0;
bind[0].buffer_length= 0;
bind[0].length= &real_length
mysql_stmt_bind_result(stmt, bind);
mysql_stmt_fetch(stmt);
if (real_length > 0)
{
data= malloc(real_length);
bind[0].buffer= data;
bind[0].buffer_length= real_length;
mysql_stmt_fetch_column(stmt, bind, 0, 0);
}
Return Values
Return Value | Description |
---|---|
0 | Successful, the data has been fetched to application data buffers. |
1 | Error occurred. Error code and message can be obtained by calling mysql_stmt_errno() and mysql_stmt_error(). |
MYSQL_NO_DATA | No more rows/data exists |
MYSQL_DATA_TRUNCATED | Data truncation occurred |
MYSQL_DATA_TRUNCATED is returned when truncation reporting is enabled. To determine which column values were truncated when this value is returned, check the error members of the MYSQL_BIND structures used for fetching values. Truncation reporting is enabled by default, but can be controlled by calling mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION option.
Errors
Commands were executed in an improper order.
Out of memory.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, but the data type is not DATE, TIME, DATETIME, or TIMESTAMP.
All other unsupported conversion errors are returned from mysql_stmt_bind_result().
Example
The following example demonstrates how to fetch data from a table using mysql_stmt_result_metadata(), mysql_stmt_bind_result(), and mysql_stmt_fetch(). (This example expects to retrieve the two rows inserted by the example shown in Section 21.8.10.10, “mysql_stmt_execute()”.) The mysql variable is assumed to be a valid connection handle.
#define STRING_SIZE 50
#define SELECT_SAMPLE "SELECT col1, col2, col3, col4 \
FROM test_table"
MYSQL_STMT *stmt;
MYSQL_BIND bind[4];
MYSQL_RES *prepare_meta_result;
MYSQL_TIME ts;
unsigned long length[4];
int param_count, column_count, row_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
my_bool is_null[4];
my_bool error[4];
/* Prepare a SELECT query to fetch data from test_table */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);
}
if (mysql_stmt_prepare(stmt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))
{
fprintf(stderr, " mysql_stmt_prepare(), SELECT failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
fprintf(stdout, " prepare, SELECT successful\n");
/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in SELECT: %d\n", param_count);
if (param_count != 0) /* validate parameter count */
{
fprintf(stderr, " invalid parameter count returned by MySQL\n");
exit(0);
}
/* Fetch result set meta information */
prepare_meta_result = mysql_stmt_result_metadata(stmt);
if (!prepare_meta_result)
{
fprintf(stderr,
" mysql_stmt_result_metadata(), \
returned no meta information\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
/* Get total columns in the query */
column_count= mysql_num_fields(prepare_meta_result);
fprintf(stdout,
" total columns in SELECT statement: %d\n",
column_count);
if (column_count != 4) /* validate column count */
{
fprintf(stderr, " invalid column count returned by MySQL\n");
exit(0);
}
/* Execute the SELECT query */
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, " mysql_stmt_execute(), failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
/* Bind the result buffers for all 4 columns before fetching them */
memset(bind, 0, sizeof(bind));
/* INTEGER COLUMN */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= &is_null[0];
bind[0].length= &length[0];
bind[0].error= &error[0];
/* STRING COLUMN */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= &is_null[1];
bind[1].length= &length[1];
bind[1].error= &error[1];
/* SMALLINT COLUMN */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null[2];
bind[2].length= &length[2];
bind[2].error= &error[2];
/* TIMESTAMP COLUMN */
bind[3].buffer_type= MYSQL_TYPE_TIMESTAMP;
bind[3].buffer= (char *)&ts;
bind[3].is_null= &is_null[3];
bind[3].length= &length[3];
bind[3].error= &error[3];
/* Bind the result buffers */
if (mysql_stmt_bind_result(stmt, bind))
{
fprintf(stderr, " mysql_stmt_bind_result() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
/* Now buffer all results to client (optional step) */
if (mysql_stmt_store_result(stmt))
{
fprintf(stderr, " mysql_stmt_store_result() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
/* Fetch all rows */
row_count= 0;
fprintf(stdout, "Fetching results ...\n");
while (!mysql_stmt_fetch(stmt))
{
row_count++;
fprintf(stdout, " row %d\n", row_count);
/* column 1 */
fprintf(stdout, " column1 (integer) : ");
if (is_null[0])
fprintf(stdout, " NULL\n");
else
fprintf(stdout, " %d(%ld)\n", int_data, length[0]);
/* column 2 */
fprintf(stdout, " column2 (string) : ");
if (is_null[1])
fprintf(stdout, " NULL\n");
else
fprintf(stdout, " %s(%ld)\n", str_data, length[1]);
/* column 3 */
fprintf(stdout, " column3 (smallint) : ");
if (is_null[2])
fprintf(stdout, " NULL\n");
else
fprintf(stdout, " %d(%ld)\n", small_data, length[2]);
/* column 4 */
fprintf(stdout, " column4 (timestamp): ");
if (is_null[3])
fprintf(stdout, " NULL\n");
else
fprintf(stdout, " %04d-%02d-%02d %02d:%02d:%02d (%ld)\n",
ts.year, ts.month, ts.day,
ts.hour, ts.minute, ts.second,
length[3]);
fprintf(stdout, "\n");
}
/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %d\n", row_count);
if (row_count != 2)
{
fprintf(stderr, " MySQL failed to return all rows\n");
exit(0);
}
/* Free the prepared result metadata */
mysql_free_result(prepare_meta_result);
/* Close the statement */
if (mysql_stmt_close(stmt))
{
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);
}
21.8.10.12. mysql_stmt_fetch_column()
int mysql_stmt_fetch_column(MYSQL_STMT *stmt, MYSQL_BIND *bind, unsigned int column, unsigned long offset)
Description
Fetch one column from the current result set row. bind provides the buffer where data should be placed. It should be set up the same way as for mysql_stmt_bind_result(). column indicates which column to fetch. The first column is numbered 0. offset is the offset within the data value at which to begin retrieving data. This can be used for fetching the data value in pieces. The beginning of the value is offset 0.
Return Values
Zero if the value was fetched successfully. Nonzero if an error occurred.
Errors
Invalid column number.
The end of the result set has already been reached.
21.8.10.13. mysql_stmt_field_count()
unsigned int mysql_stmt_field_count(MYSQL_STMT *stmt)
Description
Returns the number of columns for the most recent statement for the statement handler. This value is zero for statements such as INSERT or DELETE that do not produce result sets.
mysql_stmt_field_count() can be called after you have prepared a statement by invoking mysql_stmt_prepare().
Return Values
An unsigned integer representing the number of columns in a result set.
Errors
None.
21.8.10.14. mysql_stmt_free_result()
my_bool mysql_stmt_free_result(MYSQL_STMT *stmt)
Description
Releases memory associated with the result set produced by execution of the prepared statement. If there is a cursor open for the statement, mysql_stmt_free_result() closes it.
Return Values
Zero if the result set was freed successfully. Nonzero if an error occurred.
Errors
21.8.10.15. mysql_stmt_init()
MYSQL_STMT *mysql_stmt_init(MYSQL *mysql)
Description
Create a MYSQL_STMT handle. The handle should be freed with mysql_stmt_close(MYSQL_STMT *).
See also Section 21.8.8, “C API Prepared Statement Data Structures”, for more information.
Return Values
A pointer to a MYSQL_STMT structure in case of success. NULL if out of memory.
Errors
Out of memory.
21.8.10.16. mysql_stmt_insert_id()
my_ulonglong mysql_stmt_insert_id(MYSQL_STMT *stmt)
Description
Returns the value generated for an AUTO_INCREMENT column by the prepared INSERT or UPDATE statement. Use this function after you have executed a prepared INSERT statement on a table which contains an AUTO_INCREMENT field.
See Section 21.8.6.37, “mysql_insert_id()”, for more information.
Return Values
Value for AUTO_INCREMENT column which was automatically generated or explicitly set during execution of prepared statement, or value generated by LAST_INSERT_ID(expr) function. Return value is undefined if statement does not set AUTO_INCREMENT value.
Errors
None.
21.8.10.17. mysql_stmt_next_result()
int mysql_stmt_next_result(MYSQL_STMT *mysql)
Description
This function is used when you use prepared CALL statements to execute stored procedures, which can return multiple result sets. Use a loop that calls mysql_stmt_next_result() to determine whether there are more results. If a procedure has OUT or INOUT parameters, their values will be returned as a single-row result set following any other result sets. The values will appear in the order in which they are declared in the procedure parameter list.
mysql_stmt_next_result() returns a status to indicate whether more results exist. If mysql_stmt_next_result() returns an error, there are no more results.
Before each call to mysql_stmt_next_result(), you must call mysql_stmt_free_result() for the current result if it produced a result set (rather than just a result status).
After calling mysql_stmt_next_result() the state of the connection is as if you had called mysql_stmt_execute(). This means that you can call mysql_stmt_bind_result(), mysql_stmt_affected_rows(), and so forth.
It is also possible to test whether there are more results by calling mysql_more_results(). However, this function does not change the connection state, so if it returns true, you must still call mysql_stmt_next_result() to advance to the next result.
For an example that shows how to use mysql_stmt_next_result(), see Section 21.8.19, “C API Support for Prepared CALL Statements”.
Return Values
Return Value | Description |
---|---|
0 | Successful and there are more results |
-1 | Successful and there are no more results |
>0 | An error occurred |
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.10.18. mysql_stmt_num_rows()
my_ulonglong mysql_stmt_num_rows(MYSQL_STMT *stmt)
Description
Returns the number of rows in the result set.
The use of mysql_stmt_num_rows() depends on whether you used mysql_stmt_store_result() to buffer the entire result set in the statement handle. If you use mysql_stmt_store_result(), mysql_stmt_num_rows() may be called immediately. Otherwise, the row count is unavailable unless you count the rows as you fetch them.
mysql_stmt_num_rows() is intended for use with statements that return a result set, such as SELECT. For statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be obtained with mysql_stmt_affected_rows().
Return Values
The number of rows in the result set.
Errors
None.
21.8.10.19. mysql_stmt_param_count()
unsigned long mysql_stmt_param_count(MYSQL_STMT *stmt)
Description
Returns the number of parameter markers present in the prepared statement.
Return Values
An unsigned long integer representing the number of parameters in a statement.
Errors
None.
Example
See the Example in Section 21.8.10.10, “mysql_stmt_execute()”.
21.8.10.20. mysql_stmt_param_metadata()
MYSQL_RES *mysql_stmt_param_metadata(MYSQL_STMT *stmt)
This function currently does nothing.
Description
Return Values
Errors
21.8.10.21. mysql_stmt_prepare()
int mysql_stmt_prepare(MYSQL_STMT *stmt, const char *stmt_str, unsigned long length)
Description
Given the statement handle returned by mysql_stmt_init(), prepares the SQL statement pointed to by the string stmt_str and returns a status value. The string length should be given by the length argument. The string must consist of a single SQL statement. You should not add a terminating semicolon (“;”) or \g to the statement.
The application can include one or more parameter markers in the SQL statement by embedding question mark (?) characters into the SQL string at the appropriate positions.
The markers are legal only in certain places in SQL statements. For example, they are permitted in the VALUES() list of an INSERT statement (to specify column values for a row), or in a comparison with a column in a WHERE clause to specify a comparison value. However, they are not permitted for identifiers (such as table or column names), or to specify both operands of a binary operator such as the = equal sign. The latter restriction is necessary because it would be impossible to determine the parameter type. In general, parameters are legal only in Data Manipulation Language (DML) statements, and not in Data Definition Language (DDL) statements.
The parameter markers must be bound to application variables using mysql_stmt_bind_param() before executing the statement.
Metadata changes to tables or views referred to by prepared statements are detected and cause automatic repreparation of the statement when it is next executed. For more information, see Section 8.9.4, “Caching of Prepared Statements and Stored Programs”.
Return Values
Zero if the statement was prepared successfully. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
Out of memory.
The MySQL server has gone away.
The connection to the server was lost during the query
An unknown error occurred.
If the prepare operation was unsuccessful (that is, mysql_stmt_prepare() returns nonzero), the error message can be obtained by calling mysql_stmt_error().
Example
See the Example in Section 21.8.10.10, “mysql_stmt_execute()”.
21.8.10.22. mysql_stmt_reset()
my_bool mysql_stmt_reset(MYSQL_STMT *stmt)
Description
Resets a prepared statement on client and server to state after prepare. It resets the statement on the server, data sent using mysql_stmt_send_long_data(), unbuffered result sets and current errors. It does not clear bindings or stored result sets. Stored result sets will be cleared when executing the prepared statement (or closing it).
To re-prepare the statement with another query, use mysql_stmt_prepare().
Return Values
Zero if the statement was reset successfully. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
The MySQL server has gone away.
The connection to the server was lost during the query
An unknown error occurred.
21.8.10.23. mysql_stmt_result_metadata()
MYSQL_RES *mysql_stmt_result_metadata(MYSQL_STMT *stmt)
Description
If a statement passed to mysql_stmt_prepare() is one that produces a result set, mysql_stmt_result_metadata() returns the result set metadata in the form of a pointer to a MYSQL_RES structure that can be used to process the meta information such as number of fields and individual field information. This result set pointer can be passed as an argument to any of the field-based API functions that process result set metadata, such as:
The result set structure should be freed when you are done with it, which you can do by passing it to mysql_free_result(). This is similar to the way you free a result set obtained from a call to mysql_store_result().
The result set returned by mysql_stmt_result_metadata() contains only metadata. It does not contain any row results. The rows are obtained by using the statement handle with mysql_stmt_fetch().
Return Values
A MYSQL_RES result structure. NULL if no meta information exists for the prepared query.
Errors
Out of memory.
An unknown error occurred.
Example
See the Example in Section 21.8.10.11, “mysql_stmt_fetch()”.
21.8.10.24. mysql_stmt_row_seek()
MYSQL_ROW_OFFSET mysql_stmt_row_seek(MYSQL_STMT *stmt, MYSQL_ROW_OFFSET offset)
Description
Sets the row cursor to an arbitrary row in a statement result set. The offset value is a row offset that should be a value returned from mysql_stmt_row_tell() or from mysql_stmt_row_seek(). This value is not a row number; if you want to seek to a row within a result set by number, use mysql_stmt_data_seek() instead.
This function requires that the result set structure contains the entire result of the query, so mysql_stmt_row_seek() may be used only in conjunction with mysql_stmt_store_result().
Return Values
The previous value of the row cursor. This value may be passed to a subsequent call to mysql_stmt_row_seek().
Errors
None.
21.8.10.25. mysql_stmt_row_tell()
MYSQL_ROW_OFFSET mysql_stmt_row_tell(MYSQL_STMT *stmt)
Description
Returns the current position of the row cursor for the last mysql_stmt_fetch(). This value can be used as an argument to mysql_stmt_row_seek().
You should use mysql_stmt_row_tell() only after mysql_stmt_store_result().
Return Values
The current offset of the row cursor.
Errors
None.
21.8.10.26. mysql_stmt_send_long_data()
my_bool mysql_stmt_send_long_data(MYSQL_STMT *stmt, unsigned int parameter_number, const char *data, unsigned long length)
Description
Enables an application to send parameter data to the server in pieces (or “chunks”). Call this function after mysql_stmt_bind_param() and before mysql_stmt_execute(). It can be called multiple times to send the parts of a character or binary data value for a column, which must be one of the TEXT or BLOB data types.
parameter_number indicates which parameter to associate the data with. Parameters are numbered beginning with 0. data is a pointer to a buffer containing data to be sent, and length indicates the number of bytes in the buffer.
Note
The next mysql_stmt_execute() call ignores the bind buffer for all parameters that have been used with mysql_stmt_send_long_data() since last mysql_stmt_execute() or mysql_stmt_reset().
If you want to reset/forget the sent data, you can do it with mysql_stmt_reset(). See Section 21.8.10.22, “mysql_stmt_reset()”.
As of MySQL 5.6.3, the max_allowed_packet system variable controls the maximum size of parameter values that can be sent with mysql_stmt_send_long_data().
Return Values
Zero if the data is sent successfully to server. Nonzero if an error occurred.
Errors
The parameter does not have a string or binary type.
Commands were executed in an improper order.
The MySQL server has gone away.
Out of memory.
An unknown error occurred.
Example
The following example demonstrates how to send the data for a TEXT column in chunks. It inserts the data value 'MySQL - The most popular Open Source database' into the text_column column. The mysql variable is assumed to be a valid connection handle.
#define INSERT_QUERY "INSERT INTO \
test_long_data(text_column) VALUES(?)"
MYSQL_BIND bind[1];
long length;
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_QUERY, strlen(INSERT_QUERY)))
{
fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);
}
memset(bind, 0, sizeof(bind));
bind[0].buffer_type= MYSQL_TYPE_STRING;
bind[0].length= &length;
bind[0].is_null= 0;
/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
fprintf(stderr, "\n param bind failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);
}
/* Supply data in chunks to server */
if (mysql_stmt_send_long_data(stmt,0,"MySQL",5))
{
fprintf(stderr, "\n send_long_data failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);
}
/* Supply the next piece of data */
if (mysql_stmt_send_long_data(stmt,0,
" - The most popular Open Source database",40))
{
fprintf(stderr, "\n send_long_data failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);
}
/* Now, execute the query */
if (mysql_stmt_execute(stmt))
{
fprintf(stderr, "\n mysql_stmt_execute failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);
}
21.8.10.27. mysql_stmt_sqlstate()
const char *mysql_stmt_sqlstate(MYSQL_STMT *stmt)
Description
For the statement specified by stmt, mysql_stmt_sqlstate() returns a null-terminated string containing the SQLSTATE error code for the most recently invoked prepared statement API function that can succeed or fail. The error code consists of five characters. "00000" means “no error.” The values are specified by ANSI SQL and ODBC. For a list of possible values, see Appendix C, Errors, Error Codes, and Common Problems.
Note that not all MySQL errors are yet mapped to SQLSTATE codes. The value "HY000" (general error) is used for unmapped errors.
Return Values
A null-terminated character string containing the SQLSTATE error code.
21.8.10.28. mysql_stmt_store_result()
int mysql_stmt_store_result(MYSQL_STMT *stmt)
Description
Result sets are produced by calling mysql_stmt_execute() to executed prepared statements for SQL statements such as SELECT, SHOW, DESCRIBE, and EXPLAIN. By default, result sets for successfully executed prepared statements are not buffered on the client and mysql_stmt_fetch() fetches them one at a time from the server. To cause the complete result set to be buffered on the client, call mysql_stmt_store_result() after binding data buffers with mysql_stmt_bind_result() and before calling mysql_stmt_fetch() to fetch rows. (For an example, see Section 21.8.10.11, “mysql_stmt_fetch()”.)
mysql_stmt_store_result() is optional for result set processing, unless you will call mysql_stmt_data_seek(), mysql_stmt_row_seek(), or mysql_stmt_row_tell(). Those functions require a seekable result set.
It is unnecessary to call mysql_stmt_store_result() after executing an SQL statement that does not produce a result set, but if you do, it does not harm or cause any notable performance problem. You can detect whether the statement produced a result set by checking if mysql_stmt_result_metadata() returns NULL. For more information, refer to Section 21.8.10.23, “mysql_stmt_result_metadata()”.
Note
MySQL doesn't by default calculate MYSQL_FIELD->max_length for all columns in mysql_stmt_store_result() because calculating this would slow down mysql_stmt_store_result() considerably and most applications don't need max_length. If you want max_length to be updated, you can call mysql_stmt_attr_set(MYSQL_STMT, STMT_ATTR_UPDATE_MAX_LENGTH, &flag) to enable this. See Section 21.8.10.3, “mysql_stmt_attr_set()”.
Return Values
Zero if the results are buffered successfully. Nonzero if an error occurred.
Errors
Commands were executed in an improper order.
Out of memory.
The MySQL server has gone away.
The connection to the server was lost during the query.
An unknown error occurred.
21.8.11. C API Threaded Function Descriptions
To create a threaded client, use the functions described in the following sections. See also Section 21.8.3.2, “Writing C API Threaded Client Programs”.
21.8.11.1. my_init()
void my_init(void)
Description
my_init() initializes some global variables that MySQL needs. It also calls mysql_thread_init() for this thread.
It is necessary for my_init() to be called early in the initialization phase of a program's use of the MySQL library. However, my_init() is automatically called by mysql_init(), mysql_library_init(), mysql_server_init(), and mysql_connect(). If you ensure that your program invokes one of those functions before any other MySQL calls, there is no need to invoke my_init() explicitly.
To access the prototype for my_init(), your program should include these header files:
#include <my_global.h>
#include <my_sys.h>
Return Values
None.
21.8.11.2. mysql_thread_end()
void mysql_thread_end(void)
Description
This function needs to be called before calling pthread_exit() to free memory allocated by mysql_thread_init().
mysql_thread_end() is not invoked automatically by the client library. It must be called explicitly to avoid a memory leak.
Return Values
None.
21.8.11.3. mysql_thread_init()
my_bool mysql_thread_init(void)
Description
This function must be called early within each created thread to initialize thread-specific variables. However, you may not necessarily need to invoke it explicitly: mysql_thread_init() is automatically called by my_init(), which itself is automatically called by mysql_init(), mysql_library_init(), mysql_server_init(), and mysql_connect(). If you invoke any of those functions, mysql_thread_init() will be called for you.
Return Values
Zero if successful. Nonzero if an error occurred.
21.8.11.4. mysql_thread_safe()
unsigned int mysql_thread_safe(void)
Description
This function indicates whether the client library is compiled as thread-safe.
Return Values
1 if the client library is thread-safe, 0 otherwise.
21.8.12. C API Embedded Server Function Descriptions
MySQL applications can be written to use an embedded server. See Section 21.7, “libmysqld, the Embedded MySQL Server Library”. To write such an application, you must link it against the libmysqld library by using the -lmysqld flag rather than linking it against the libmysqlclient client library by using the -lmysqlclient flag. However, the calls to initialize and finalize the library are the same whether you write a client application or one that uses the embedded server: Call mysql_library_init() to initialize the library and mysql_library_end() when you are done with it. See Section 21.8.5, “C API Function Overview”.
21.8.12.1. mysql_server_init()
int mysql_server_init(int argc, char **argv, char **groups)
Description
This function initializes the MySQL library, which must be done before you call any other MySQL function. However, mysql_server_init() is deprecated and you should call mysql_library_init() instead. See Section 21.8.6.40, “mysql_library_init()”.
Return Values
Zero if successful. Nonzero if an error occurred.
21.8.12.2. mysql_server_end()
void mysql_server_end(void)
Description
This function finalizes the MySQL library, which should be done when you are done using the library. However, mysql_server_end() is deprecated and mysql_library_end() should be used instead. See Section 21.8.6.39, “mysql_library_end()”.
Return Values
None.
21.8.13. C API Client Plugin Functions
This section describes functions used for the client-side plugin API. They enable management of client plugins. For a description of the st_mysql_client_plugin structure used by these functions, see Section 22.2.4.2.3, “Client Plugin Descriptors”.
It is unlikely that a client program needs to call the functions in this section. For example, a client that supports the use of authentication plugins normally causes a plugin to be loaded by calling mysql_options() to set the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:
char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";
/* ... process command-line options ... */
mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);
Typically, the program will also accept --plugin-dir and --default-auth options that enable users to override the default values.
21.8.13.1. mysql_client_find_plugin()
struct st_mysql_client_plugin *mysql_client_find_plugin(MYSQL *mysql, const char *name, int type)
Description
Returns a pointer to a loaded plugin, loading the plugin first if necessary. An error occurs if the type is invalid or the plugin cannot be found or loaded.
Specify the parameters as follows:
mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL server, but this structure must be properly initialized. The structure is used to obtain connection-related information.
name: The plugin name.
type: The plugin type.
Return Values
A pointer to the plugin for success. NULL if an error occurred.
Errors
To check for errors, call the mysql_error() or mysql_errno() function. See Section 21.8.6.15, “mysql_error()”, and Section 21.8.6.14, “mysql_errno()”.
Example
MYSQL mysql;
struct st_mysql_client_plugin *p;
if ((p = mysql_client_find_plugin(&mysql, "myplugin",
MYSQL_CLIENT_AUTHENTICATION_PLUGIN, 0)))
{
printf("Plugin version: %d.%d.%d\n", p->version[0], p->version[1], p->version[2]);
}
21.8.13.2. mysql_client_register_plugin()
struct st_mysql_client_plugin *mysql_client_register_plugin(MYSQL *mysql, struct st_mysql_client_plugin *plugin)
Description
Adds a plugin structure to the list of loaded plugins. An error occurs if the plugin is already loaded.
Specify the parameters as follows:
mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL server, but this structure must be properly initialized. The structure is used to obtain connection-related information.
plugin: A pointer to the plugin structure.
Return Values
A pointer to the plugin for success. NULL if an error occurred.
Errors
To check for errors, call the mysql_error() or mysql_errno() function. See Section 21.8.6.15, “mysql_error()”, and Section 21.8.6.14, “mysql_errno()”.
21.8.13.3. mysql_load_plugin()
struct st_mysql_client_plugin *mysql_load_plugin(MYSQL *mysql, const char *name, int type, int argc, ...)
Description
Loads a MySQL client plugin, specified by name and type. An error occurs if the type is invalid or the plugin cannot be loaded.
It is not possible to load multiple plugins of the same type. An error occurs if you try to load a plugin of a type already loaded.
Specify the parameters as follows:
mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL server, but this structure must be properly initialized. The structure is used to obtain connection-related information.
name: The name of the plugin to load.
type: The type of plugin to load, or –1 to disable type checking. If type is not –1, only plugins matching the type are considered for loading.
argc: The number of following arguments (0 if there are none). Interpretation of any following arguments depends on the plugin type.
Another way to cause plugins to be loaded is to set the LIBMYSQL_PLUGINS environment variable to a semicolon-separated list of plugin names. For example:
shell> export LIBMYSQL_PLUGINS="myplugin1;myplugin2"
Plugins named by LIBMYSQL_PLUGINS are loaded when the client program calls mysql_library_init(). No error is reported if problems occur loading these plugins.
As of MySQL 5.6.10, the LIBMYSQL_PLUGIN_DIR environment variable can be set to the path name of the directory in which to look for client plugins. This variable is used in two ways:
During client plugin preloading, the value of the --plugin-dir option is not available, so client plugin loading fails unless the plugins are located in the hardwired default directory. If the plugins are located elsewhere, LIBMYSQL_PLUGIN_DIR environment variable can be set to the proper directory to enable plugin preloading to succeed.
For explicit client plugin loading, the mysql_load_plugin() and mysql_load_plugin_v() C API functions use the LIBMYSQL_PLUGIN_DIR value if it exists and the --plugin-dir option was not given. If --plugin-dir is given, mysql_load_plugin() and mysql_load_plugin_v() ignore LIBMYSQL_PLUGIN_DIR.
Return Values
A pointer to the plugin if it was loaded successfully. NULL if an error occurred.
Errors
To check for errors, call the mysql_error() or mysql_errno() function. See Section 21.8.6.15, “mysql_error()”, and Section 21.8.6.14, “mysql_errno()”.
Example
MYSQL mysql;
if(!mysql_load_plugin(&mysql, "myplugin",
MYSQL_CLIENT_AUTHENTICATION_PLUGIN, 0))
{
fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
exit(-1);
}
See Also
See also Section 21.8.13.3, “mysql_load_plugin()”, Section 21.8.6.15, “mysql_error()”, Section 21.8.6.14, “mysql_errno()”.
21.8.13.4. mysql_load_plugin_v()
struct st_mysql_client_plugin *mysql_load_plugin_v(MYSQL *mysql, const char *name, int type, int argc, va_list args)
Description
This function is equivalent to mysql_load_plugin(), but it accepts a va_list instead of a variable list of parameters.
See Also
See also Section 21.8.13.3, “mysql_load_plugin()”.
21.8.13.5. mysql_plugin_options()
int mysql_plugin_options(struct st_mysql_client_plugin *plugin, const char *option, const void *value)
Description
Passes an option type and value to a plugin. This function can be called multiple times to set several options. If the plugin does not have an option handler, an error occurs.
Specify the parameters as follows:
plugin: A pointer to the plugin structure.
option: The option to be set.
value: A pointer to the option value.
Return Values
Zero for success, 1 if an error occurred. If the plugin has an option handler, that handler should also return zero for success and 1 if an error occurred.
21.8.14. Common Questions and Problems When Using the C API
21.8.14.1. Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success
It is possible for mysql_store_result() to return NULL following a successful call to mysql_query(). When this happens, it means one of the following conditions occurred:
There was a malloc() failure (for example, if the result set was too large).
The data could not be read (an error occurred on the connection).
The query returned no data (for example, it was an INSERT, UPDATE, or DELETE).
You can always check whether the statement should have produced a nonempty result by calling mysql_field_count(). If mysql_field_count() returns zero, the result is empty and the last query was a statement that does not return values (for example, an INSERT or a DELETE). If mysql_field_count() returns a nonzero value, the statement should have produced a nonempty result. See the description of the mysql_field_count() function for an example.
You can test for an error by calling mysql_error() or mysql_errno().
21.8.14.2. What Results You Can Get from a Query
In addition to the result set returned by a query, you can also get the following information:
mysql_affected_rows() returns the number of rows affected by the last query when doing an INSERT, UPDATE, or DELETE.
For a fast re-create, use TRUNCATE TABLE.
mysql_num_rows() returns the number of rows in a result set. With mysql_store_result(), mysql_num_rows() may be called as soon as mysql_store_result() returns. With mysql_use_result(), mysql_num_rows() may be called only after you have fetched all the rows with mysql_fetch_row().
mysql_insert_id() returns the ID generated by the last query that inserted a row into a table with an AUTO_INCREMENT index. See Section 21.8.6.37, “mysql_insert_id()”.
Some queries (LOAD DATA INFILE ..., INSERT INTO ... SELECT ..., UPDATE) return additional information. The result is returned by mysql_info(). See the description for mysql_info() for the format of the string that it returns. mysql_info() returns a NULL pointer if there is no additional information.
21.8.14.3. How to Get the Unique ID for the Last Inserted Row
If you insert a record into a table that contains an AUTO_INCREMENT column, you can obtain the value stored into that column by calling the mysql_insert_id() function.
You can check from your C applications whether a value was stored in an AUTO_INCREMENT column by executing the following code (which assumes that you've checked that the statement succeeded). It determines whether the query was an INSERT with an AUTO_INCREMENT index:
if ((result = mysql_store_result(&mysql)) == 0 &&
mysql_field_count(&mysql) == 0 &&
mysql_insert_id(&mysql) != 0)
{
used_id = mysql_insert_id(&mysql);
}
When a new AUTO_INCREMENT value has been generated, you can also obtain it by executing a SELECT LAST_INSERT_ID() statement with mysql_query() and retrieving the value from the result set returned by the statement.
When inserting multiple values, the last automatically incremented value is returned.
For LAST_INSERT_ID(), the most recently generated ID is maintained in the server on a per-connection basis. It is not changed by another client. It is not even changed if you update another AUTO_INCREMENT column with a nonmagic value (that is, a value that is not NULL and not 0). Using LAST_INSERT_ID() and AUTO_INCREMENT columns simultaneously from multiple clients is perfectly valid. Each client will receive the last inserted ID for the last statement that client executed.
If you want to use the ID that was generated for one table and insert it into a second table, you can use SQL statements like this:
INSERT INTO foo (auto,text)
VALUES(NULL,'text'); # generate ID by inserting NULL
INSERT INTO foo2 (id,text)
VALUES(LAST_INSERT_ID(),'text'); # use ID in second table
Note that mysql_insert_id() returns the value stored into an AUTO_INCREMENT column, whether that value is automatically generated by storing NULL or 0 or was specified as an explicit value. LAST_INSERT_ID() returns only automatically generated AUTO_INCREMENT values. If you store an explicit value other than NULL or 0, it does not affect the value returned by LAST_INSERT_ID().
For more information on obtaining the last ID in an AUTO_INCREMENT column:
For information on LAST_INSERT_ID(), which can be used within an SQL statement, see Section 12.14, “Information Functions”.
For information on mysql_insert_id(), the function you use from within the C API, see Section 21.8.6.37, “mysql_insert_id()”.
For information on obtaining the auto-incremented value when using Connector/J, see Section 21.3.6.4, “Retrieving AUTO_INCREMENT Column Values through JDBC”.
For information on obtaining the auto-incremented value when using Connector/ODBC, see Section 21.1.7.1.1, “Obtaining Auto-Increment Values”.
21.8.15. Controlling Automatic Reconnection Behavior
The MySQL client library can perform an automatic reconnection to the server if it finds that the connection is down when you attempt to send a statement to the server to be executed. In this case, the library tries once to reconnect to the server and send the statement again.
In MySQL 5.6, auto-reconnect is disabled by default.
If it is important for your application to know that the connection has been dropped (so that is can exit or take action to adjust for the loss of state information), be sure that auto-reconnect is disabled. To ensure this, call mysql_options() with the MYSQL_OPT_RECONNECT option:
my_bool reconnect = 0;
mysql_options(&mysql, MYSQL_OPT_RECONNECT, &reconnect);
If the connection has gone down, the effect of mysql_ping() depends on the auto-reconnect state. If auto-reconnect is enabled, mysql_ping() performs a reconnect. Otherwise, it returns an error.
Some client programs might provide the capability of controlling automatic reconnection. For example, mysql reconnects by default, but the --skip-reconnect option can be used to suppress this behavior.
If an automatic reconnection does occur (for example, as a result of calling mysql_ping()), there is no explicit indication of it. To check for reconnection, call mysql_thread_id() to get the original connection identifier before calling mysql_ping(), then call mysql_thread_id() again to see whether the identifier has changed.
Automatic reconnection can be convenient because you need not implement your own reconnect code, but if a reconnection does occur, several aspects of the connection state are reset on the server side and your application will not know about it. The connection-related state is affected as follows:
Any active transactions are rolled back and autocommit mode is reset.
All table locks are released.
All TEMPORARY tables are closed (and dropped).
Session variables are reinitialized to the values of the corresponding variables. This also affects variables that are set implicitly by statements such as SET NAMES.
User variable settings are lost.
Prepared statements are released.
HANDLER variables are closed.
The value of LAST_INSERT_ID() is reset to 0.
Locks acquired with GET_LOCK() are released.
The association of the client with the Performance Schema threads table row that determines connection thread instrumentation is lost. If the client reconnects after a disconnect, the session will be associated with a new row in the threads table and the thread monitoring state may be different. See Section 20.9.9.3, “The threads Table”.
If the connection drops, it is possible that the session associated with the connection on the server side will still be running if the server has not yet detected that the client is no longer connected. In this case, any locks held by the original connection still belong to that session, so you may want to kill it by calling mysql_kill().
21.8.16. C API Support for Multiple Statement Execution
By default, mysql_query() and mysql_real_query() interpret their statement string argument as a single statement to be executed, and you process the result according to whether the statement produces a result set (a set of rows, as for SELECT) or an affected-rows count (as for INSERT, UPDATE, and so forth).
MySQL 5.6 also supports the execution of a string containing multiple statements separated by semicolon (“;”) characters. This capability is enabled by special options that are specified either when you connect to the server with mysql_real_connect() or after connecting by calling` mysql_set_server_option().
Executing a multiple-statement string can produce multiple result sets or row-count indicators. Processing these results involves a different approach than for the single-statement case: After handling the result from the first statement, it is necessary to check whether more results exist and process them in turn if so. To support multiple-result processing, the C API includes the mysql_more_results() and mysql_next_result() functions. These functions are used at the end of a loop that iterates as long as more results are available. Failure to process the result this way may result in a dropped connection to the server.
Multiple-result processing also is required if you execute CALL statements for stored procedures. Results from a stored procedure have these characteristics:
Statements within the procedure may produce result sets (for example, if it executes SELECT statements). These result sets are returned in the order that they are produced as the procedure executes.
In general, the caller cannot know how many result sets a procedure will return. Procedure execution may depend on loops or conditional statements that cause the execution path to differ from one call to the next. Therefore, you must be prepared to retrieve multiple results.
The final result from the procedure is a status result that includes no result set. The status indicates whether the procedure succeeded or an error occurred.
The multiple statement and result capabilities can be used only with mysql_query() or mysql_real_query(). They cannot be used with the prepared statement interface. Prepared statement handles are defined to work only with strings that contain a single statement. See Section 21.8.7, “C API Prepared Statements”.
To enable multiple-statement execution and result processing, the following options may be used:
The mysql_real_connect() function has a flags argument for which two option values are relevant:
CLIENT_MULTI_RESULTS enables the client program to process multiple results. This option must be enabled if you execute CALL statements for stored procedures that produce result sets. Otherwise, such procedures result in an error Error 1312 (0A000): PROCEDURE proc_name can't return a result set in the given context. In MySQL 5.6, CLIENT_MULTI_RESULTS is enabled by default.
CLIENT_MULTI_STATEMENTS enables mysql_query() and mysql_real_query() to execute statement strings containing multiple statements separated by semicolons. This option also enables CLIENT_MULTI_RESULTS implicitly, so a flags argument of CLIENT_MULTI_STATEMENTS to mysql_real_connect() is equivalent to an argument of CLIENT_MULTI_STATEMENTS | CLIENT_MULTI_RESULTS. That is, CLIENT_MULTI_STATEMENTS is sufficient to enable multiple-statement execution and all multiple-result processing.
After the connection to the server has been established, you can use the mysql_set_server_option() function to enable or disable multiple-statement execution by passing it an argument of MYSQL_OPTION_MULTI_STATEMENTS_ON or MYSQL_OPTION_MULTI_STATEMENTS_OFF. Enabling multiple-statement execution with this function also enables processing of “simple” results for a multiple-statement string where each statement produces a single result, but is not sufficient to permit processing of stored procedures that produce result sets.
The following procedure outlines a suggested strategy for handling multiple statements:
Pass CLIENT_MULTI_STATEMENTS to mysql_real_connect(), to fully enable multiple-statement execution and multiple-result processing.
After calling mysql_query() or mysql_real_query() and verifying that it succeeds, enter a loop within which you process statement results.
For each iteration of the loop, handle the current statement result, retrieving either a result set or an affected-rows count. If an error occurs, exit the loop.
At the end of the loop, call mysql_next_result() to check whether another result exists and initiate retrieval for it if so. If no more results are available, exit the loop.
One possible implementation of the preceding strategy is shown following. The final part of the loop can be reduced to a simple test of whether mysql_next_result() returns nonzero. The code as written distinguishes between no more results and an error, which enables a message to be printed for the latter occurrence.
/* connect to server with the CLIENT_MULTI_STATEMENTS option */
if (mysql_real_connect (mysql, host_name, user_name, password,
db_name, port_num, socket_name, CLIENT_MULTI_STATEMENTS) == NULL)
{
printf("mysql_real_connect() failed\n");
mysql_close(mysql);
exit(1);
}
/* execute multiple statements */
status = mysql_query(mysql,
"DROP TABLE IF EXISTS test_table;\
CREATE TABLE test_table(id INT);\
INSERT INTO test_table VALUES(10);\
UPDATE test_table SET id=20 WHERE id=10;\
SELECT * FROM test_table;\
DROP TABLE test_table");
if (status)
{
printf("Could not execute statement(s)");
mysql_close(mysql);
exit(0);
}
/* process each statement result */
do {
/* did current statement return data? */
result = mysql_store_result(mysql);
if (result)
{
/* yes; process rows and free the result set */
process_result_set(mysql, result);
mysql_free_result(result);
}
else /* no result set or error */
{
if (mysql_field_count(mysql) == 0)
{
printf("%lld rows affected\n",
mysql_affected_rows(mysql));
}
else /* some error occurred */
{
printf("Could not retrieve result set\n");
break;
}
}
/* more results? -1 = no, >0 = error, 0 = yes (keep looping) */
if ((status = mysql_next_result(mysql)) > 0)
printf("Could not execute statement\n");
} while (status == 0);
mysql_close(mysql);
21.8.17. C API Prepared Statement Problems
Here follows a list of the currently known problems with prepared statements:
TIME, TIMESTAMP, and DATETIME do not support parts of seconds (for example, from DATE_FORMAT()).
When converting an integer to string, ZEROFILL is honored with prepared statements in some cases where the MySQL server doesn't print the leading zeros. (For example, with MIN(number-with-zerofill)).
When converting a floating-point number to a string in the client, the rightmost digits of the converted value may differ slightly from those of the original value.
Prepared statements use the query cache under the conditions described in Section 8.9.3.1, “How the Query Cache Operates”.
Prepared statements do not support multi-statements (that is, multiple statements within a single string separated by “;” characters).
The capabilities of prepared CALL statements are described in Section 21.8.19, “C API Support for Prepared CALL Statements”.
21.8.18. C API Prepared Statement Handling of Date and Time Values
The binary (prepared statement) protocol enables you to send and receive date and time values (DATE, TIME, DATETIME, and TIMESTAMP), using the MYSQL_TIME structure. The members of this structure are described in Section 21.8.8, “C API Prepared Statement Data Structures”.
To send temporal data values, create a prepared statement using mysql_stmt_prepare(). Then, before calling mysql_stmt_execute() to execute the statement, use the following procedure to set up each temporal parameter:
In the MYSQL_BIND structure associated with the data value, set the buffer_type member to the type that indicates what kind of temporal value you're sending. For DATE, TIME, DATETIME, or TIMESTAMP values, set buffer_type to MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, respectively.
Set the buffer member of the MYSQL_BIND structure to the address of the MYSQL_TIME structure in which you pass the temporal value.
Fill in the members of the MYSQL_TIME structure that are appropriate for the type of temporal value to be passed.
Use mysql_stmt_bind_param() to bind the parameter data to the statement. Then you can call mysql_stmt_execute().
To retrieve temporal values, the procedure is similar, except that you set the buffer_type member to the type of value you expect to receive, and the buffer member to the address of a MYSQL_TIME structure into which the returned value should be placed. Use mysql_stmt_bind_result() to bind the buffers to the statement after calling mysql_stmt_execute() and before fetching the results.
Here is a simple example that inserts DATE, TIME, and TIMESTAMP data. The mysql variable is assumed to be a valid connection handle.
MYSQL_TIME ts;
MYSQL_BIND bind[3];
MYSQL_STMT *stmt;
strmov(query, "INSERT INTO test_table(date_field, time_field, \
timestamp_field) VALUES(?,?,?");
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);
}
if (mysql_stmt_prepare(mysql, query, strlen(query)))
{
fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);
}
/* set up input buffers for all 3 parameters */
bind[0].buffer_type= MYSQL_TYPE_DATE;
bind[0].buffer= (char *)&ts;
bind[0].is_null= 0;
bind[0].length= 0;
...
bind[1]= bind[2]= bind[0];
...
mysql_stmt_bind_param(stmt, bind);
/* supply the data to be sent in the ts structure */
ts.year= 2002;
ts.month= 02;
ts.day= 03;
ts.hour= 10;
ts.minute= 45;
ts.second= 20;
mysql_stmt_execute(stmt);
..
21.8.19. C API Support for Prepared CALL Statements
This section describes prepared-statement support in the C API for stored procedures executed using CALL statements:
In MySQL 5.6, stored procedures executed using prepared CALL statements can be used in the following ways:
A stored procedure can produce any number of result sets. The number of columns and the data types of the columns need not be the same for all result sets.
The final values of OUT and INOUT parameters are available to the calling application after the procedure returns. These parameters are returned as an extra single-row result set following any result sets produced by the procedure itself. The row contains the values of the OUT and INOUT parameters in the order in which they are declared in the procedure parameter list.
The following discussion shows how to use these capabilities through the C API for prepared statements. To use prepared CALL statements through the PREPARE and EXECUTE statements, see Section 13.2.1, “CALL Syntax”.
If an application might be compiled or executed in a context where a version of MySQL older than 5.5.3 is used, prepared CALL capabilities for multiple result sets and OUT or INOUT parameters might not be available:
For the client side, the application will not compile unless the libraries are from MySQL 5.5.3 or higher (the API function and symbols introduced in that version will not be present).
To verify at runtime that the server is recent enough, a client can use this test:
if (mysql_get_server_version(mysql) < 50503)
{
fprintf(stderr,
"Server does not support required CALL capabilities\n");
mysql_close(mysql);
exit (1);
}
An application that executes a prepared CALL statement should use a loop that fetches a result and then invokes mysql_stmt_next_result() to determine whether there are more results. The results consist of any result sets produced by the stored procedure followed by a final status value that indicates whether the procedure terminated successfully.
If the procedure has OUT or INOUT parameters, the result set preceding the final status value contains their values. To determine whether a result set contains parameter values, test whether the SERVER_PS_OUT_PARAMS bit is set in the server_status member of the MYSQL connection handler:
mysql->server_status & SERVER_PS_OUT_PARAMS
The following example uses a prepared CALL statement to execute a stored procedure that produces multiple result sets and that provides parameter values back to the caller by means of OUT and INOUT parameters. The procedure takes parameters of all three types (IN, OUT, INOUT), displays their initial values, assigns new values, displays the updated values, and returns. The expected return information from the procedure therefore consists of multiple result sets and a final status:
One result set from a SELECT that displays the initial parameter values: 10, NULL, 30. (The OUT parameter is assigned a value by the caller, but this assignment is expected to be ineffective: OUT parameters are seen as NULL within a procedure until assigned a value within the procedure.)
One result set from a SELECT that displays the modified parameter values: 100, 200, 300.
One result set containing the final OUT and INOUT parameter values: 200, 300.
A final status packet.
The code to execute the procedure:
MYSQL_STMT *stmt;
MYSQL_BIND ps_params[3]; /* input parameter buffers */
int int_data[3]; /* input/output values */
my_bool is_null[3]; /* output value nullability */
int status;
/* set up stored procedure */
status = mysql_query(mysql, "DROP PROCEDURE IF EXISTS p1");
test_error(mysql, status);
status = mysql_query(mysql,
"CREATE PROCEDURE p1("
" IN p_in INT, "
" OUT p_out INT, "
" INOUT p_inout INT) "
"BEGIN "
" SELECT p_in, p_out, p_inout; "
" SET p_in = 100, p_out = 200, p_inout = 300; "
" SELECT p_in, p_out, p_inout; "
"END");
test_error(mysql, status);
/* initialize and prepare CALL statement with parameter placeholders */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
printf("Could not initialize statement\n");
exit(1);
}
status = mysql_stmt_prepare(stmt, "CALL p1(?, ?, ?)", 16);
test_stmt_error(stmt, status);
/* initialize parameters: p_in, p_out, p_inout (all INT) */
memset(ps_params, 0, sizeof (ps_params));
ps_params[0].buffer_type = MYSQL_TYPE_LONG;
ps_params[0].buffer = (char *) &int_data[0];
ps_params[0].length = 0;
ps_params[0].is_null = 0;
ps_params[1].buffer_type = MYSQL_TYPE_LONG;
ps_params[1].buffer = (char *) &int_data[1];
ps_params[1].length = 0;
ps_params[1].is_null = 0;
ps_params[2].buffer_type = MYSQL_TYPE_LONG;
ps_params[2].buffer = (char *) &int_data[2];
ps_params[2].length = 0;
ps_params[2].is_null = 0;
/* bind parameters */
status = mysql_stmt_bind_param(stmt, ps_params);
test_stmt_error(stmt, status);
/* assign values to parameters and execute statement */
int_data[0]= 10; /* p_in */
int_data[1]= 20; /* p_out */
int_data[2]= 30; /* p_inout */
status = mysql_stmt_execute(stmt);
test_stmt_error(stmt, status);
/* process results until there are no more */
do {
int i;
int num_fields; /* number of columns in result */
MYSQL_FIELD *fields; /* for result set metadata */
MYSQL_BIND *rs_bind; /* for output buffers */
/* the column count is > 0 if there is a result set */
/* 0 if the result is only the final status packet */
num_fields = mysql_stmt_field_count(stmt);
if (num_fields > 0)
{
/* there is a result set to fetch */
printf("Number of columns in result: %d\n", (int) num_fields);
/* what kind of result set is this? */
printf("Data: ");
if(mysql->server_status & SERVER_PS_OUT_PARAMS)
printf("this result set contains OUT/INOUT parameters\n");
else
printf("this result set is produced by the procedure\n");
MYSQL_RES *rs_metadata = mysql_stmt_result_metadata(stmt);
test_stmt_error(stmt, rs_metadata == NULL);
fields = mysql_fetch_fields(rs_metadata);
rs_bind = (MYSQL_BIND *) malloc(sizeof (MYSQL_BIND) * num_fields);
if (!rs_bind)
{
printf("Cannot allocate output buffers\n");
exit(1);
}
memset(rs_bind, 0, sizeof (MYSQL_BIND) * num_fields);
/* set up and bind result set output buffers */
for (i = 0; i < num_fields; ++i)
{
rs_bind[i].buffer_type = fields[i].type;
rs_bind[i].is_null = &is_null[i];
switch (fields[i].type)
{
case MYSQL_TYPE_LONG:
rs_bind[i].buffer = (char *) &(int_data[i]);
rs_bind[i].buffer_length = sizeof (int_data);
break;
default:
fprintf(stderr, "ERROR: unexpected type: %d.\n", fields[i].type);
exit(1);
}
}
status = mysql_stmt_bind_result(stmt, rs_bind);
test_stmt_error(stmt, status);
/* fetch and display result set rows */
while (1)
{
status = mysql_stmt_fetch(stmt);
if (status == 1 || status == MYSQL_NO_DATA)
break;
for (i = 0; i < num_fields; ++i)
{
switch (rs_bind[i].buffer_type)
{
case MYSQL_TYPE_LONG:
if (*rs_bind[i].is_null)
printf(" val[%d] = NULL;", i);
else
printf(" val[%d] = %ld;",
i, (long) *((int *) rs_bind[i].buffer));
break;
default:
printf(" unexpected type (%d)\n",
rs_bind[i].buffer_type);
}
}
printf("\n");
}
mysql_free_result(rs_metadata); /* free metadata */
free(rs_bind); /* free output buffers */
}
else
{
/* no columns = final status packet */
printf("End of procedure output\n");
}
/* more results? -1 = no, >0 = error, 0 = yes (keep looking) */
status = mysql_stmt_next_result(stmt);
if (status > 0)
test_stmt_error(stmt, status);
} while (status == 0);
mysql_stmt_close(stmt);
Execution of the procedure should produce the following output:
Number of columns in result: 3
Data: this result set is produced by the procedure
val[0] = 10; val[1] = NULL; val[2] = 30;
Number of columns in result: 3
Data: this result set is produced by the procedure
val[0] = 100; val[1] = 200; val[2] = 300;
Number of columns in result: 2
Data: this result set contains OUT/INOUT parameters
val[0] = 200; val[1] = 300;
End of procedure output
The code uses two utility routines, test_error() and test_stmt_error(), to check for errors and terminate after printing diagnostic information if an error occurred:
static void test_error(MYSQL *mysql, int status)
{
if (status)
{
fprintf(stderr, "Error: %s (errno: %d)\n",
mysql_error(mysql), mysql_errno(mysql));
exit(1);
}
}
static void test_stmt_error(MYSQL_STMT *stmt, int status)
{
if (status)
{
fprintf(stderr, "Error: %s (errno: %d)\n",
mysql_stmt_error(stmt), mysql_stmt_errno(stmt));
exit(1);
}
}
21.9. MySQL PHP API
PHP is a server-side, HTML-embedded scripting language that may be used to create dynamic Web pages. It is available for most operating systems and Web servers, and can access most common databases, including MySQL. PHP may be run as a separate program or compiled as a module for use with a Web server.
PHP provides three different MySQL API extensions:
Section 21.9.3, “MySQL Improved Extension (Mysqli)”: Stands for “MySQL, Improved”; this extension is available as of PHP 5.0.0. It is intended for use with MySQL 4.1.1 and later. This extension fully supports the authentication protocol used in MySQL 5.0, as well as the Prepared Statements and Multiple Statements APIs. In addition, this extension provides an advanced, object-oriented programming interface.
Section 21.9.4, “MySQL Functions (PDO_MYSQL) (MySQL (PDO))”: Not its own API, but instead it's a MySQL driver for the PHP database abstraction layer PDO (PHP Data Objects). The PDO MySQL driver sits in the layer below PDO itself, and provides MySQL-specific functionality. This extension is available as of PHP 5.1.0.
Section 21.9.2, “Original MySQL API (Mysql)”: Available for PHP versions 4 and 5, this extension is intended for use with MySQL versions prior to MySQL 4.1. This extension does not support the improved authentication protocol used in MySQL 4.1, nor does it support prepared statements or multiple statements. To use this extension with MySQL 4.1, you will likely configure the MySQL server to set the old_passwords system variable to 1 (see Section C.5.2.4, “Client does not support authentication protocol”).
This extension is deprecated as of PHP 5.5.0, and its use is highly discouraged. All users are encouraged to migrate to either mysqli or PDO_MySQL. For further information, see Section 21.9.1.3, “Choosing an API”.
The PHP distribution and documentation are available from the PHP Web site.
Portions of this section are Copyright (c) 1997-2012 the PHP Documentation Group This material may be distributed only subject to the terms and conditions set forth in the Creative Commons Attribution 3.0 License or later. A copy of the Creative Commons Attribution 3.0 license is distributed with this manual. The latest version is presently available at http://creativecommons.org/licenses/by/3.0/.
21.9.1. Overview of the MySQL PHP drivers
Copyright 1997-2012 the PHP Documentation Group.
21.9.1.1. Introduction
There are three PHP APIs for accessing the MySQL database. This guide explains the terminology used to describe each API, information about choosing which API to use, and also information to help choose which MySQL library to use with the API.
21.9.1.2. Terminology overview
Copyright 1997-2012 the PHP Documentation Group.
This section provides an introduction to the options available to you when developing a PHP application that needs to interact with a MySQL database.
What is an API?
An Application Programming Interface, or API, defines the classes, methods, functions and variables that your application will need to call in order to carry out its desired task. In the case of PHP applications that need to communicate with databases the necessary APIs are usually exposed via PHP extensions.
APIs can be procedural or object-oriented. With a procedural API you call functions to carry out tasks, with the object-oriented API you instantiate classes and then call methods on the resulting objects. Of the two the latter is usually the preferred interface, as it is more modern and leads to better organized code.
When writing PHP applications that need to connect to the MySQL server there are several API options available. This document discusses what is available and how to select the best solution for your application.
What is a Connector?
In the MySQL documentation, the term connector refers to a piece of software that allows your application to connect to the MySQL database server. MySQL provides connectors for a variety of languages, including PHP.
If your PHP application needs to communicate with a database server you will need to write PHP code to perform such activities as connecting to the database server, querying the database and other database-related functions. Software is required to provide the API that your PHP application will use, and also handle the communication between your application and the database server, possibly using other intermediate libraries where necessary. This software is known generically as a connector, as it allows your application to connect to a database server.
What is a Driver?
A driver is a piece of software designed to communicate with a specific type of database server. The driver may also call a library, such as the MySQL Client Library or the MySQL Native Driver. These libraries implement the low-level protocol used to communicate with the MySQL database server.
By way of an example, the PHP Data Objects (PDO) database abstraction layer may use one of several database-specific drivers. One of the drivers it has available is the PDO MYSQL driver, which allows it to interface with the MySQL server.
Sometimes people use the terms connector and driver interchangeably, this can be confusing. In the MySQL-related documentation the term “driver” is reserved for software that provides the database-specific part of a connector package.
What is an Extension?
In the PHP documentation you will come across another term - extension. The PHP code consists of a core, with optional extensions to the core functionality. PHP's MySQL-related extensions, such as the mysqli extension, and the mysql extension, are implemented using the PHP extension framework.
An extension typically exposes an API to the PHP programmer, to allow its facilities to be used programmatically. However, some extensions which use the PHP extension framework do not expose an API to the PHP programmer.
The PDO MySQL driver extension, for example, does not expose an API to the PHP programmer, but provides an interface to the PDO layer above it.
The terms API and extension should not be taken to mean the same thing, as an extension may not necessarily expose an API to the programmer.
21.9.1.3. Choosing an API
Copyright 1997-2012 the PHP Documentation Group.
PHP offers three different APIs to connect to MySQL. Below we show the APIs provided by the mysql, mysqli, and PDO extensions. Each code snippet creates a connection to a MySQL server running on "example.com" using the username "user" and the password "password". And a query is run to greet the user.
Example 21.13. Comparing the three MySQL APIs
<?php
// mysqli
$mysqli = new mysqli("example.com", "user", "password", "database");
$result = $mysqli->query("SELECT 'Hello, dear MySQL user!' AS _message FROM DUAL");
$row = $result->fetch_assoc();
echo htmlentities($row['_message']);
// PDO
$pdo = new PDO('mysql:host=example.com;dbname=database', 'user', 'password');
$statement = $pdo->query("SELECT 'Hello, dear MySQL user!' AS _message FROM DUAL");
$row = $statement->fetch(PDO::FETCH_ASSOC);
echo htmlentities($row['_message']);
// mysql
$c = mysql_connect("example.com", "user", "password");
mysql_select_db("database");
$result = mysql_query("SELECT 'Hello, dear MySQL user!' AS _message FROM DUAL");
$row = mysql_fetch_assoc($result);
echo htmlentities($row['_message']);
?>
Recommended API
It is recommended to use either the mysqli or PDO_MySQL extensions. It is not recommended to use the old mysql extension for new development, as it has been deprecated as of PHP 5.5.0 and will be removed in the future. A detailed feature comparison matrix is provided below. The overall performance of all three extensions is considered to be about the same. Although the performance of the extension contributes only a fraction of the total run time of a PHP web request. Often, the impact is as low as 0.1%.
Feature comparison
ext/mysqli | PDO_MySQL | ext/mysql | |
---|---|---|---|
PHP version introduced | 5.0 | 5.1 | 2.0 |
Included with PHP 5.x | Yes | Yes | Yes |
Development status | Active | Active | Maintenance only |
Lifecycle | Active | Active | Deprecated |
Recommended for new projects | Yes | Yes | No |
OOP Interface | Yes | Yes | No |
Procedural Interface | Yes | No | Yes |
API supports non-blocking, asynchronous queries with mysqlnd | Yes | No | No |
Persistent Connections | Yes | Yes | Yes |
API supports Charsets | Yes | Yes | Yes |
API supports server-side Prepared Statements | Yes | Yes | No |
API supports client-side Prepared Statements | No | Yes | No |
API supports Stored Procedures | Yes | Yes | No |
API supports Multiple Statements | Yes | Most | No |
API supports Transactions | Yes | Yes | No |
Transactions can be controlled with SQL | Yes | Yes | Yes |
Supports all MySQL 5.1+ functionality | Yes | Most | No |
21.9.1.4. Choosing a library
Copyright 1997-2012 the PHP Documentation Group.
The mysqli, PDO_MySQL and mysql PHP extensions are lightweight wrappers on top of a C client library. The extensions can either use the mysqlnd library or the libmysqlclient library. Choosing a library is a compile time decision.
The mysqlnd library is part of the PHP distribution since 5.3.0. It offers features like lazy connections and query caching, features that are not available with libmysqlclient, so using the built-in mysqlnd library is highly recommended. See the mysqlnd documentation for additional details, and a listing of features and functionality that it offers.
Example 21.14. Configure commands for using mysqlnd or libmysqlclient
// Recommended, compiles with mysqlnd
$./configure --with-mysqli=mysqlnd --with-pdo-mysql=mysqlnd --with-mysql=mysqlnd
// Not recommended, compiles with libmysqlclient
$./configure --with-mysqli=/path/to/mysql_config --with-pdo-mysql=/path/to/mysql_config --with-mysql=/path/to/mysql_config
Library feature comparison
It is recommended to use the mysqlnd library instead of the MySQL Client Server library (libmysqlclient). Both libraries are supported and constantly being improved.
MySQL native driver (mysqlnd) | MySQL client server library (libmysqlclient) | |
---|---|---|
Part of the PHP distribution | Yes | No |
PHP version introduced | 5.3.0 | N/A |
License | PHP License 3.01 | Dual-License |
Development status | Active | Active |
Lifecycle | No end announced | No end announced |
PHP 5.4 compile default (for all MySQL extensions) | Yes | No |
PHP 5.3 compile default (for all MySQL extensions) | No | Yes |
Compression protocol support | Yes (5.3.1+) | Yes |
SSL support | Yes (5.3.3+) | Yes |
Named pipe support | Yes (5.3.4+) | Yes |
Non-blocking, asynchronous queries | Yes | No |
Performance statistics | Yes | No |
LOAD LOCAL INFILE respects the open_basedir directive | Yes | No |
Uses PHP's native memory management system (e.g., follows PHP memory limits) | Yes | No |
Return numeric column as double (COM_QUERY) | Yes | No |
Return numeric column as string (COM_QUERY) | Yes | Yes |
Plugin API | Yes | Limited |
Read/Write splitting for MySQL Replication | Yes, with plugin | No |
Load Balancing | Yes, with plugin | No |
Fail over | Yes, with plugin | No |
Lazy connections | Yes, with plugin | No |
Query caching | Yes, with plugin | No |
Transparent query manipulations (E.g., auto-EXPLAIN or monitoring) | Yes, with plugin | No |
21.9.1.5. Concepts
Copyright 1997-2012 the PHP Documentation Group.
These concepts are specific to the MySQL drivers for PHP.
21.9.1.5.1. Buffered and Unbuffered queries
Copyright 1997-2012 the PHP Documentation Group.
Queries are using the buffered mode by default. This means that query results are immediately transferred from the MySQL Server to PHP in is then kept in the memory of the PHP process. This allows additional operations like counting the number of rows, and moving (seeking) the current result pointer. It also allows issuing further queries on the same connection while working on the result set. The downside of the buffered mode is that larger result sets might require quite a lot memory. The memory will be kept occupied till all references to the result set are unset or the result set was explicitly freed, which will automatically happen during request end the latest. The terminology "store result" is also used for buffered mode, as the whole result set is stored at once.
Note
When using libmysqlclient as library PHP's memory limit won't count the memory used for result sets unless the data is fetched into PHP variables. With mysqlnd the memory accounted for will include the full result set.
Unbuffered MySQL queries execute the query and then return a resource while the data is still waiting on the MySQL server for being fetched. This uses less memory on the PHP-side, but can increase the load on the server. Unless the full result set was fetched from the server no further queries can be sent over the same connection. Unbuffered queries can also be referred to as "use result".
Following these characteristics buffered queries should be used in cases where you expect only a limited result set or need to know the amount of returned rows before reading all rows. Unbuffered mode should be used when you expect larger results.
Because buffered queries are the default, the examples below will demonstrate how to execute unbuffered queries with each API.
Example 21.15. Unbuffered query example: mysqli
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
$uresult = $mysqli->query("SELECT Name FROM City", MYSQLI_USE_RESULT);
if ($uresult) {
while ($row = $uresult->fetch_assoc()) {
echo $row['Name'] . PHP_EOL;
}
}
$uresult->close();
?>
Example 21.16. Unbuffered query example: pdo_mysql
<?php
$pdo = new PDO("mysql:host=localhost;dbname=world", 'my_user', 'my_pass');
$pdo->setAttribute(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, false);
$uresult = $pdo->query("SELECT Name FROM City");
if ($uresult) {
while ($row = $uresult->fetch(PDO::FETCH_ASSOC)) {
echo $row['Name'] . PHP_EOL;
}
}
?>
Example 21.17. Unbuffered query example: mysql
<?php
$conn = mysql_connect("localhost", "my_user", "my_pass");
$db = mysql_select_db("world");
$uresult = mysql_unbuffered_query("SELECT Name FROM City");
if ($uresult) {
while ($row = mysql_fetch_assoc($uresult)) {
echo $row['Name'] . PHP_EOL;
}
}
?>
21.9.1.5.2. Character sets
Copyright 1997-2012 the PHP Documentation Group.
Ideally a proper character set will be set at the server level, and doing this is described within the Character Set Configuration section of the MySQL Server manual. Alternatively, each MySQL API offers a method to set the character set at runtime.
The character set and character escaping
The character set should be understood and defined, as it has an affect on every action, and includes security implications. For example, the escaping mechanism (e.g., mysqli_real_escape_string for mysqli, mysql_real_escape_string for mysql, and PDO::quote for PDO_MySQL) will adhere to this setting. It is important to realize that these functions will not use the character set that is defined with a query, so for example the following will not have an effect on them:
Example 21.18. Problems with setting the character set with SQL
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
// Will not affect $mysqli->real_escape_string();
$mysqli->query("SET NAMES utf8");
// Will not affect $mysqli->real_escape_string();
$mysqli->query("SET CHARACTER SET utf8");
// But, this will affect $mysqli->real_escape_string();
$mysqli->set_charset('utf8');
?>
Below are examples that demonstrate how to properly alter the character set at runtime using each each API.
Example 21.19. Setting the character set example: mysqli
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
if (!$mysqli->set_charset('utf8')) {
printf("Error loading character set utf8: %s\n", $mysqli->error);
} else {
printf("Current character set: %s\n", $mysqli->character_set_name());
}
print_r($mysqli->get_charset());
?>
Example 21.20. Setting the character set example: pdo_mysql
Note: This only works as of PHP 5.3.6.
<?php
$pdo = new PDO("mysql:host=localhost;dbname=world;charset=utf8", 'my_user', 'my_pass');
?>
Example 21.21. Setting the character set example: mysql
<?php
$conn = mysql_connect("localhost", "my_user", "my_pass");
$db = mysql_select_db("world");
if (!mysql_set_charset('utf8', $conn)) {
echo "Error: Unable to set the character set.\n";
exit;
}
echo 'Your current character set is: ' . mysql_client_encoding($conn);
?>
21.9.2. Original MySQL API (Mysql)
Copyright 1997-2012 the PHP Documentation Group.
This extension is deprecated as of PHP 5.5.0, and is not recommended for writing new code as it will be removed in the future. Instead, either the mysqli or PDO_MySQL extension should be used. See also the MySQL API Overview for further help while choosing a MySQL API.
These functions allow you to access MySQL database servers. More information about MySQL can be found at http://www.mysql.com/.
Documentation for MySQL can be found at http://dev.mysql.com/doc/.
21.9.2.1. Installing/Configuring
Copyright 1997-2012 the PHP Documentation Group.
21.9.2.1.1. Requirements
Copyright 1997-2012 the PHP Documentation Group.
In order to have these functions available, you must compile PHP with MySQL support.
21.9.2.1.2. Installation
Copyright 1997-2012 the PHP Documentation Group.
For compiling, simply use the --with-mysql[=DIR] configuration option where the optional [DIR] points to the MySQL installation directory.
Although this MySQL extension is compatible with MySQL 4.1.0 and greater, it doesn't support the extra functionality that these versions provide. For that, use the MySQLi extension.
If you would like to install the mysql extension along with the mysqli extension you have to use the same client library to avoid any conflicts.
21.9.2.1.2.1. Installation on Linux Systems
Copyright 1997-2012 the PHP Documentation Group.
Note: [DIR] is the path to the MySQL client library files (headers and libraries), which can be downloaded from MySQL.
Table 21.34. ext/mysql compile time support matrix
PHP Version | Default | Configure Options: mysqlnd | Configure Options: libmysqlclient | Changelog |
---|---|---|---|---|
4.x.x | libmysqlclient | Not Available | --without-mysql to disable | MySQL enabled by default, MySQL client libraries are bundled |
5.0.x, 5.1.x, 5.2.x | libmysqlclient | Not Available | --with-mysql=[DIR] | MySQL is no longer enabled by default, and the MySQL client libraries are no longer bundled |
5.3.x | libmysqlclient | --with-mysql=mysqlnd | --with-mysql=[DIR] | mysqlnd is now available |
5.4.x | mysqlnd | --with-mysql | --with-mysql=[DIR] | mysqlnd is now the default |
21.9.2.1.2.2. Installation on Windows Systems
Copyright 1997-2012 the PHP Documentation Group.
21.9.2.1.2.2.1. PHP 4
Copyright 1997-2012 the PHP Documentation Group.
The PHP MySQL extension is compiled into PHP.
21.9.2.1.2.2.2. PHP 5.0.x, 5.1.x, 5.2.x
Copyright 1997-2012 the PHP Documentation Group.
MySQL is no longer enabled by default, so the php_mysql.dll DLL must be enabled inside of php.ini. Also, PHP needs access to the MySQL client library. A file named libmysql.dll is included in the Windows PHP distribution and in order for PHP to talk to MySQL this file needs to be available to the Windows systems PATH. See the FAQ titled "How do I add my PHP directory to the PATH on Windows" for information on how to do this. Although copying libmysql.dll to the Windows system directory also works (because the system directory is by default in the system's PATH), it's not recommended.
As with enabling any PHP extension (such as php_mysql.dll), the PHP directive extension_dir should be set to the directory where the PHP extensions are located. See also the Manual Windows Installation Instructions. An example extension_dir value for PHP 5 is c:\php\ext
Note
If when starting the web server an error similar to the following occurs: "Unable to load dynamic library './php_mysql.dll'", this is because php_mysql.dll and/or libmysql.dll cannot be found by the system.
21.9.2.1.2.2.3. PHP 5.3.0+
Copyright 1997-2012 the PHP Documentation Group.
The MySQL Native Driver is enabled by default. Include php_mysql.dll, but libmysql.dll is no longer required or used.
21.9.2.1.2.3. MySQL Installation Notes
Copyright 1997-2012 the PHP Documentation Group.
Warning
Crashes and startup problems of PHP may be encountered when loading this extension in conjunction with the recode extension. See the recode extension for more information.
Note
If you need charsets other than latin (default), you have to install external (not bundled) libmysqlclient with compiled charset support.
21.9.2.1.3. Runtime Configuration
Copyright 1997-2012 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php.ini.
Table 21.35. MySQL Configuration Options
Name | Default | Changeable | Changelog |
---|---|---|---|
mysql.allow_local_infile | "1" | PHP_INI_SYSTEM | |
mysql.allow_persistent | "1" | PHP_INI_SYSTEM | |
mysql.max_persistent | "-1" | PHP_INI_SYSTEM | |
mysql.max_links | "-1" | PHP_INI_SYSTEM | |
mysql.trace_mode | "0" | PHP_INI_ALL | Available since PHP 4.3.0. |
mysql.default_port | NULL | PHP_INI_ALL | |
mysql.default_socket | NULL | PHP_INI_ALL | Available since PHP 4.0.1. |
mysql.default_host | NULL | PHP_INI_ALL | |
mysql.default_user | NULL | PHP_INI_ALL | |
mysql.default_password | NULL | PHP_INI_ALL | |
mysql.connect_timeout | "60" | PHP_INI_ALL | PHP_INI_SYSTEM in PHP <= 4.3.2. Available since PHP 4.3.0. |
Here's a short explanation of the configuration directives.
mysql.allow_local_infile integer
Allow accessing, from PHP's perspective, local files with LOAD DATA statements
mysql.allow_persistent boolean
Whether to allow persistent connections to MySQL.
mysql.max_persistent integer
The maximum number of persistent MySQL connections per process.
mysql.max_links integer
The maximum number of MySQL connections per process, including persistent connections.
mysql.trace_mode boolean
Trace mode. When mysql.trace_mode is enabled, warnings for table/index scans, non free result sets, and SQL-Errors will be displayed. (Introduced in PHP 4.3.0)
mysql.default_port string
The default TCP port number to use when connecting to the database server if no other port is specified. If no default is specified, the port will be obtained from the MYSQL_TCP_PORT environment variable, the mysql-tcp entry in /etc/services or the compile-time MYSQL_PORT constant, in that order. Win32 will only use the MYSQL_PORT constant.
mysql.default_socket string
The default socket name to use when connecting to a local database server if no other socket name is specified.
mysql.default_host string
The default server host to use when connecting to the database server if no other host is specified. Doesn't apply in SQL safe mode.
mysql.default_user string
The default user name to use when connecting to the database server if no other name is specified. Doesn't apply in SQL safe mode.
mysql.default_password string
The default password to use when connecting to the database server if no other password is specified. Doesn't apply in SQL safe mode.
mysql.connect_timeout integer
Connect timeout in seconds. On Linux this timeout is also used for waiting for the first answer from the server.
21.9.2.1.4. Resource Types
Copyright 1997-2012 the PHP Documentation Group.
There are two resource types used in the MySQL module. The first one is the link identifier for a database connection, the second a resource which holds the result of a query.
21.9.2.2. Changelog
Copyright 1997-2012 the PHP Documentation Group.
The following changes have been made to classes/functions/methods of this extension.
General Changelog for the ext/mysql extension
This changelog references the ext/mysql extension.
Changes to existing functions
The following list is a compilation of changelog entries from the ext/mysql functions.
Global ext/mysql changes
The following is a list of changes to the entire ext/mysql extension.
Version | Description |
---|---|
5.5.0 | This extension has been deprecated. Connecting to a MySQL database via mysql_connect, mysql_pconnect or an implicit connection via any other mysql_* function will generate an E_DEPRECATED error. |
5.5.0 | All of the old deprecated functions and aliases now emit E_DEPRECATED errors. These functions are: mysql(), mysql_fieldname(), mysql_fieldtable(), mysql_fieldlen(), mysql_fieldtype(), mysql_fieldflags(), mysql_selectdb(), mysql_createdb(), mysql_dropdb(), mysql_freeresult(), mysql_numfields(), mysql_numrows(), mysql_listdbs(), mysql_listtables(), mysql_listfields(), mysql_db_name(), mysql_dbname(), mysql_tablename(), and mysql_table_name(). |
21.9.2.3. Predefined Constants
Copyright 1997-2012 the PHP Documentation Group.
The constants below are defined by this extension, and will only be available when the extension has either been compiled into PHP or dynamically loaded at runtime.
Since PHP 4.3.0 it is possible to specify additional client flags for the mysql_connect and mysql_pconnect functions. The following constants are defined:
Table 21.36. MySQL client constants
Constant | Description |
---|---|
MYSQL_CLIENT_COMPRESS | Use compression protocol |
MYSQL_CLIENT_IGNORE_SPACE | Allow space after function names |
MYSQL_CLIENT_INTERACTIVE | Allow interactive_timeout seconds (instead of wait_timeout) of inactivity before closing the connection. |
MYSQL_CLIENT_SSL | Use SSL encryption. This flag is only available with version 4.x of the MySQL client library or newer. Version 3.23.x is bundled both with PHP 4 and Windows binaries of PHP 5. |
The function mysql_fetch_array uses a constant for the different types of result arrays. The following constants are defined:
Table 21.37. MySQL fetch constants
Constant | Description |
---|---|
MYSQL_ASSOC | Columns are returned into the array having the fieldname as the array index. |
MYSQL_BOTH | Columns are returned into the array having both a numerical index and the fieldname as the array index. |
MYSQL_NUM | Columns are returned into the array having a numerical index to the fields. This index starts with 0, the first field in the result. |
21.9.2.4. Examples
Copyright 1997-2012 the PHP Documentation Group.
21.9.2.4.1. MySQL extension overview example
Copyright 1997-2012 the PHP Documentation Group.
This simple example shows how to connect, execute a query, print resulting rows and disconnect from a MySQL database.
Example 21.22. MySQL extension overview example
<?php
// Connecting, selecting database
$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')
or die('Could not connect: ' . mysql_error());
echo 'Connected successfully';
mysql_select_db('my_database') or die('Could not select database');
// Performing SQL query
$query = 'SELECT * FROM my_table';
$result = mysql_query($query) or die('Query failed: ' . mysql_error());
// Printing results in HTML
echo "<table>\n";
while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {
echo "\t<tr>\n";
foreach ($line as $col_value) {
echo "\t\t<td>$col_value</td>\n";
}
echo "\t</tr>\n";
}
echo "</table>\n";
// Free resultset
mysql_free_result($result);
// Closing connection
mysql_close($link);
?>
21.9.2.5. MySQL Functions
Copyright 1997-2012 the PHP Documentation Group.
Note
Most MySQL functions accept link_identifier as the last optional parameter. If it is not provided, last opened connection is used. If it doesn't exist, connection is tried to establish with default parameters defined in php.ini. If it is not successful, functions return FALSE .
21.9.2.5.1. mysql_affected_rows
Copyright 1997-2012 the PHP Documentation Group.
mysql_affected_rows
Get number of affected rows in previous MySQL operation
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_affected_rows |
PDOStatement::rowCount |
Description
int mysql_affected_rows(resource link_identifier= =NULL);
Get the number of affected rows by the last INSERT, UPDATE, REPLACE or DELETE query associated with link_identifier.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns the number of affected rows on success, and -1 if the last query failed.
If the last query was a DELETE query with no WHERE clause, all of the records will have been deleted from the table but this function will return zero with MySQL versions prior to 4.1.2.
When using UPDATE, MySQL will not update columns where the new value is the same as the old value. This creates the possibility that mysql_affected_rows may not actually equal the number of rows matched, only the number of rows that were literally affected by the query.
The REPLACE statement first deletes the record with the same primary key and then inserts the new record. This function returns the number of deleted records plus the number of inserted records.
In the case of "INSERT ... ON DUPLICATE KEY UPDATE" queries, the return value will be 1 if an insert was performed, or 2 for an update of an existing row.
Examples
Example 21.23. mysql_affected_rows example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');
/* this should return the correct numbers of deleted records */
mysql_query('DELETE FROM mytable WHERE id < 10');
printf("Records deleted: %d\n", mysql_affected_rows());
/* with a where clause that is never true, it should return 0 */
mysql_query('DELETE FROM mytable WHERE 0');
printf("Records deleted: %d\n", mysql_affected_rows());
?>
The above example will output something similar to:
Records deleted: 10
Records deleted: 0
Example 21.24. mysql_affected_rows example using transactions
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');
/* Update records */
mysql_query("UPDATE mytable SET used=1 WHERE id < 10");
printf ("Updated records: %d\n", mysql_affected_rows());
mysql_query("COMMIT");
?>
The above example will output something similar to:
Updated Records: 10
Notes
Transactions
If you are using transactions, you need to call mysql_affected_rows after your INSERT, UPDATE, or DELETE query, not after the COMMIT.
SELECT Statements
To retrieve the number of rows returned by a SELECT, it is possible to use mysql_num_rows.
Cascaded Foreign Keys
mysql_affected_rows does not count rows affected implicitly through the use of ON DELETE CASCADE and/or ON UPDATE CASCADE in foreign key constraints.
See Also
mysql_num_rows |
mysql_info |
21.9.2.5.2. mysql_client_encoding
Copyright 1997-2012 the PHP Documentation Group.
mysql_client_encoding
Returns the name of the character set
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_character_set_name |
Description
string mysql_client_encoding(resource link_identifier= =NULL);
Retrieves the character_set variable from MySQL.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns the default character set name for the current connection.
Examples
Example 21.25. mysql_client_encoding example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$charset = mysql_client_encoding($link);
echo "The current character set is: $charset\n";
?>
The above example will output something similar to:
The current character set is: latin1
See Also
mysql_set_charset |
mysql_real_escape_string |
21.9.2.5.3. mysql_close
Copyright 1997-2012 the PHP Documentation Group.
mysql_close
Close MySQL connection
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_close |
PDO: Assign the value of NULL to the PDO object |
Description
bool mysql_close(resource link_identifier= =NULL);
mysql_close closes the non-persistent connection to the MySQL server that's associated with the specified link identifier. If link_identifier isn't specified, the last opened link is used.
Using mysql_close isn't usually necessary, as non-persistent open links are automatically closed at the end of the script's execution. See also freeing resources.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.26. mysql_close example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>
The above example will output:
Connected successfully
Notes
Note
mysql_close will not close persistent links created by mysql_pconnect.
See Also
mysql_connect |
mysql_free_result |
21.9.2.5.4. mysql_connect
Copyright 1997-2012 the PHP Documentation Group.
mysql_connect
Open a connection to a MySQL Server
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_connect |
PDO::__construct |
Description
resource mysql_connect(string server= =ini_get("mysql.default_host"),
string username= =ini_get("mysql.default_user"),
string password= =ini_get("mysql.default_password"),
bool new_link= =false,
int client_flags= =0);
Opens or reuses a connection to a MySQL server.
Parameters
server
The MySQL server. It can also include a port number. e.g. "hostname:port" or a path to a local socket e.g. ":/path/to/socket" for the localhost.
If the PHP directive mysql.default_host is undefined (default), then the default value is 'localhost:3306'. In SQL safe mode, this parameter is ignored and value 'localhost:3306' is always used.
username
The username. Default value is defined by mysql.default_user. In SQL safe mode, this parameter is ignored and the name of the user that owns the server process is used.
password
The password. Default value is defined by mysql.default_password. In SQL safe mode, this parameter is ignored and empty password is used.
new_link
If a second call is made to mysql_connect with the same arguments, no new link will be established, but instead, the link identifier of the already opened link will be returned. The new_link parameter modifies this behavior and makes mysql_connect always open a new link, even if mysql_connect was called before with the same parameters. In SQL safe mode, this parameter is ignored.
client_flags
The client_flags parameter can be a combination of the following constants: 128 (enable LOAD DATA LOCAL handling), MYSQL_CLIENT_SSL , MYSQL_CLIENT_COMPRESS , MYSQL_CLIENT_IGNORE_SPACE or MYSQL_CLIENT_INTERACTIVE . Read the section about Table 21.36, “MySQL client constants” for further information. In SQL safe mode, this parameter is ignored.
Return Values
Returns a MySQL link identifier on success or FALSE on failure.
Changelog
Version | Description |
---|---|
5.5.0 | This function will generate an E_DEPRECATED error. |
4.3.0 | Added the client_flags parameter. |
4.2.0 | Added the new_link parameter. |
Examples
Example 21.27. mysql_connect example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>
Example 21.28. mysql_connect example using hostname:port syntax
<?php
// we connect to example.com and port 3307
$link = mysql_connect('example.com:3307', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
// we connect to localhost at port 3307
$link = mysql_connect('127.0.0.1:3307', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>
Example 21.29. mysql_connect example using ":/path/to/socket" syntax
<?php
// we connect to localhost and socket e.g. /tmp/mysql.sock
// variant 1: omit localhost
$link = mysql_connect(':/tmp/mysql', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
// variant 2: with localhost
$link = mysql_connect('localhost:/tmp/mysql.sock', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>
Notes
Note
Whenever you specify "localhost" or "localhost:port" as server, the MySQL client library will override this and try to connect to a local socket (named pipe on Windows). If you want to use TCP/IP, use "127.0.0.1" instead of "localhost". If the MySQL client library tries to connect to the wrong local socket, you should set the correct path as mysql.default_host string in your PHP configuration and leave the server field blank.
Note
The link to the server will be closed as soon as the execution of the script ends, unless it's closed earlier by explicitly calling mysql_close.
Note
You can suppress the error message on failure by prepending a @ to the function name.
Note
Error "Can't create TCP/IP socket (10106)" usually means that the variables_order configure directive doesn't contain character E. On Windows, if the environment is not copied the SYSTEMROOT environment variable won't be available and PHP will have problems loading Winsock.
See Also
mysql_pconnect |
mysql_close |
21.9.2.5.5. mysql_create_db
Copyright 1997-2012 the PHP Documentation Group.
mysql_create_db
Create a MySQL database
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_query |
PDO::query |
Description
bool mysql_create_db(string database_name,
resource link_identifier= =NULL);
mysql_create_db attempts to create a new database on the server associated with the specified link identifier.
Parameters
database_name
The name of the database being created.
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.30. mysql_create_db alternative example
The function mysql_create_db is deprecated. It is preferable to use mysql_query to issue an sql CREATE DATABASE statement instead.
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
$sql = 'CREATE DATABASE my_db';
if (mysql_query($sql, $link)) {
echo "Database my_db created successfully\n";
} else {
echo 'Error creating database: ' . mysql_error() . "\n";
}
?>
The above example will output something similar to:
Database my_db created successfully
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_createdb
Note
This function will not be available if the MySQL extension was built against a MySQL 4.x client library.
See Also
mysql_query |
mysql_select_db |
21.9.2.5.6. mysql_data_seek
Copyright 1997-2012 the PHP Documentation Group.
mysql_data_seek
Move internal result pointer
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_data_seek |
PDO::FETCH_ORI_ABS |
Description
bool mysql_data_seek(resource result,
int row_number);
mysql_data_seek moves the internal row pointer of the MySQL result associated with the specified result identifier to point to the specified row number. The next call to a MySQL fetch function, such as mysql_fetch_assoc, would return that row.
row_number starts at 0. The row_number should be a value in the range from 0 to mysql_num_rows - 1. However if the result set is empty (mysql_num_rows == 0), a seek to 0 will fail with a E_WARNING and mysql_data_seek will return FALSE .
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
row_number
The desired row number of the new result pointer.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.31. mysql_data_seek example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
$db_selected = mysql_select_db('sample_db');
if (!$db_selected) {
die('Could not select database: ' . mysql_error());
}
$query = 'SELECT last_name, first_name FROM friends';
$result = mysql_query($query);
if (!$result) {
die('Query failed: ' . mysql_error());
}
/* fetch rows in reverse order */
for ($i = mysql_num_rows($result) - 1; $i >= 0; $i--) {
if (!mysql_data_seek($result, $i)) {
echo "Cannot seek to row $i: " . mysql_error() . "\n";
continue;
}
if (!($row = mysql_fetch_assoc($result))) {
continue;
}
echo $row['last_name'] . ' ' . $row['first_name'] . "
\n";
}
mysql_free_result($result);
?>
Notes
Note
The function mysql_data_seek can be used in conjunction only with mysql_query, not with mysql_unbuffered_query.
See Also
mysql_query |
mysql_num_rows |
mysql_fetch_row |
mysql_fetch_assoc |
mysql_fetch_array |
mysql_fetch_object |
21.9.2.5.7. mysql_db_name
Copyright 1997-2012 the PHP Documentation Group.
mysql_db_name
Retrieves database name from the call to mysql_list_dbs
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
Query: SELECT DATABASE() |
Description
string mysql_db_name(resource result,
int row,
mixed field= =NULL);
Retrieve the database name from a call to mysql_list_dbs.
Parameters
result
The result pointer from a call to mysql_list_dbs.
row
The index into the result set.
field
The field name.
Return Values
Returns the database name on success, and FALSE on failure. If FALSE is returned, use mysql_error to determine the nature of the error.
Changelog
Version | Description |
---|---|
5.5.0 | The mysql_list_dbs function is deprecated, and emits an E_DEPRECATED level error. |
Examples
Example 21.32. mysql_db_name example
<?php
error_reporting(E_ALL);
$link = mysql_connect('dbhost', 'username', 'password');
$db_list = mysql_list_dbs($link);
$i = 0;
$cnt = mysql_num_rows($db_list);
while ($i < $cnt) {
echo mysql_db_name($db_list, $i) . "\n";
$i++;
}
?>
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_dbname
See Also
mysql_list_dbs |
mysql_tablename |
21.9.2.5.8. mysql_db_query
Copyright 1997-2012 the PHP Documentation Group.
mysql_db_query
Selects a database and executes a query on it
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_select_db then the query |
PDO::__construct |
Description
resource mysql_db_query(string database,
string query,
resource link_identifier= =NULL);
mysql_db_query selects a database, and executes a query on it.
Warning
This function has been DEPRECATED as of PHP 5.3.0. Relying on this feature is highly discouraged.
Parameters
database
The name of the database that will be selected.
query
The MySQL query.
Data inside the query should be properly escaped.
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns a positive MySQL result resource to the query result, or FALSE on error. The function also returns TRUE / FALSE for INSERT/UPDATE/DELETE queries to indicate success/failure.
Changelog
Version | Description |
---|---|
5.3.0 | This function now throws an E_DEPRECATED notice. |
4.0.6 | This function is deprecated, do not use this function. Use mysql_select_db and mysql_query instead. |
Examples
Example 21.33. mysql_db_query alternative example
<?php
if (!$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')) {
echo 'Could not connect to mysql';
exit;
}
if (!mysql_select_db('mysql_dbname', $link)) {
echo 'Could not select database';
exit;
}
$sql = 'SELECT foo FROM bar WHERE id = 42';
$result = mysql_query($sql, $link);
if (!$result) {
echo "DB Error, could not query the database\n";
echo 'MySQL Error: ' . mysql_error();
exit;
}
while ($row = mysql_fetch_assoc($result)) {
echo $row['foo'];
}
mysql_free_result($result);
?>
Notes
Note
Be aware that this function does NOT switch back to the database you were connected before. In other words, you can't use this function to temporarily run a sql query on another database, you would have to manually switch back. Users are strongly encouraged to use the database.table syntax in their sql queries or mysql_select_db instead of this function.
See Also
mysql_query |
mysql_select_db |
21.9.2.5.9. mysql_drop_db
Copyright 1997-2012 the PHP Documentation Group.
mysql_drop_db
Drop (delete) a MySQL database
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
Execute a DROP DATABASE query |
Description
bool mysql_drop_db(string database_name,
resource link_identifier= =NULL);
mysql_drop_db attempts to drop (remove) an entire database from the server associated with the specified link identifier. This function is deprecated, it is preferable to use mysql_query to issue an sql DROP DATABASE statement instead.
Parameters
database_name
The name of the database that will be deleted.
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.34. mysql_drop_db alternative example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
$sql = 'DROP DATABASE my_db';
if (mysql_query($sql, $link)) {
echo "Database my_db was successfully dropped\n";
} else {
echo 'Error dropping database: ' . mysql_error() . "\n";
}
?>
Notes
Warning
This function will not be available if the MySQL extension was built against a MySQL 4.x client library.
Note
For backward compatibility, the following deprecated alias may be used: mysql_dropdb
See Also
mysql_query |
21.9.2.5.10. mysql_errno
Copyright 1997-2012 the PHP Documentation Group.
mysql_errno
Returns the numerical value of the error message from previous MySQL operation
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_errno |
PDO::errorCode |
Description
int mysql_errno(resource link_identifier= =NULL);
Returns the error number from the last MySQL function.
Errors coming back from the MySQL database backend no longer issue warnings. Instead, use mysql_errno to retrieve the error code. Note that this function only returns the error code from the most recently executed MySQL function (not including mysql_error and mysql_errno), so if you want to use it, make sure you check the value before calling another MySQL function.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns the error number from the last MySQL function, or 0 (zero) if no error occurred.
Examples
Example 21.35. mysql_errno example
<?php
$link = mysql_connect("localhost", "mysql_user", "mysql_password");
if (!mysql_select_db("nonexistentdb", $link)) {
echo mysql_errno($link) . ": " . mysql_error($link). "\n";
}
mysql_select_db("kossu", $link);
if (!mysql_query("SELECT * FROM nonexistenttable", $link)) {
echo mysql_errno($link) . ": " . mysql_error($link) . "\n";
}
?>
The above example will output something similar to:
1049: Unknown database 'nonexistentdb'
1146: Table 'kossu.nonexistenttable' doesn't exist
See Also
mysql_error |
MySQL error codes |
21.9.2.5.11. mysql_error
Copyright 1997-2012 the PHP Documentation Group.
mysql_error
Returns the text of the error message from previous MySQL operation
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_error |
PDO::errorInfo |
Description
string mysql_error(resource link_identifier= =NULL);
Returns the error text from the last MySQL function. Errors coming back from the MySQL database backend no longer issue warnings. Instead, use mysql_error to retrieve the error text. Note that this function only returns the error text from the most recently executed MySQL function (not including mysql_error and mysql_errno), so if you want to use it, make sure you check the value before calling another MySQL function.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns the error text from the last MySQL function, or '' (empty string) if no error occurred.
Examples
Example 21.36. mysql_error example
<?php
$link = mysql_connect("localhost", "mysql_user", "mysql_password");
mysql_select_db("nonexistentdb", $link);
echo mysql_errno($link) . ": " . mysql_error($link). "\n";
mysql_select_db("kossu", $link);
mysql_query("SELECT * FROM nonexistenttable", $link);
echo mysql_errno($link) . ": " . mysql_error($link) . "\n";
?>
The above example will output something similar to:
1049: Unknown database 'nonexistentdb'
1146: Table 'kossu.nonexistenttable' doesn't exist
See Also
mysql_errno |
MySQL error codes |
21.9.2.5.12. mysql_escape_string
Copyright 1997-2012 the PHP Documentation Group.
mysql_escape_string
Escapes a string for use in a mysql_query
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_escape_string |
PDO::quote |
Description
string mysql_escape_string(string unescaped_string);
This function will escape the unescaped_string, so that it is safe to place it in a mysql_query. This function is deprecated.
This function is identical to mysql_real_escape_string except that mysql_real_escape_string takes a connection handler and escapes the string according to the current character set. mysql_escape_string does not take a connection argument and does not respect the current charset setting.
Warning
This function has been DEPRECATED as of PHP 5.3.0. Relying on this feature is highly discouraged.
Parameters
unescaped_string
The string that is to be escaped.
Return Values
Returns the escaped string.
Changelog
Version | Description |
---|---|
5.3.0 | This function now throws an E_DEPRECATED notice. |
4.3.0 | This function became deprecated, do not use this function. Instead, use mysql_real_escape_string. |
Examples
Example 21.37. mysql_escape_string example
<?php
$item = "Zak's Laptop";
$escaped_item = mysql_escape_string($item);
printf("Escaped string: %s\n", $escaped_item);
?>
The above example will output:
Escaped string: Zak\'s Laptop
Notes
Note
mysql_escape_string does not escape % and _.
See Also
mysql_real_escape_string |
addslashes |
The magic_quotes_gpc directive. |
21.9.2.5.13. mysql_fetch_array
Copyright 1997-2012 the PHP Documentation Group.
mysql_fetch_array
Fetch a result row as an associative array, a numeric array, or both
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_array |
PDOStatement::fetch |
Description
array mysql_fetch_array(resource result,
int result_type= =MYSQL_BOTH);
Returns an array that corresponds to the fetched row and moves the internal data pointer ahead.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
result_type
The type of array that is to be fetched. It's a constant and can take the following values: MYSQL_ASSOC , MYSQL_NUM , and MYSQL_BOTH .
Return Values
Returns an array of strings that corresponds to the fetched row, or FALSE if there are no more rows. The type of returned array depends on how result_type is defined. By using MYSQL_BOTH (default), you'll get an array with both associative and number indices. Using MYSQL_ASSOC , you only get associative indices (as mysql_fetch_assoc works), using MYSQL_NUM , you only get number indices (as mysql_fetch_row works).
If two or more columns of the result have the same field names, the last column will take precedence. To access the other column(s) of the same name, you must use the numeric index of the column or make an alias for the column. For aliased columns, you cannot access the contents with the original column name.
Examples
Example 21.38. Query with aliased duplicate field names
SELECT table1.field AS foo, table2.field AS bar FROM table1, table2
Example 21.39. mysql_fetch_array with MYSQL_NUM
<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or
die("Could not connect: " . mysql_error());
mysql_select_db("mydb");
$result = mysql_query("SELECT id, name FROM mytable");
while ($row = mysql_fetch_array($result, MYSQL_NUM)) {
printf("ID: %s Name: %s", $row[0], $row[1]);
}
mysql_free_result($result);
?>
Example 21.40. mysql_fetch_array with MYSQL_ASSOC
<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or
die("Could not connect: " . mysql_error());
mysql_select_db("mydb");
$result = mysql_query("SELECT id, name FROM mytable");
while ($row = mysql_fetch_array($result, MYSQL_ASSOC)) {
printf("ID: %s Name: %s", $row["id"], $row["name"]);
}
mysql_free_result($result);
?>
Example 21.41. mysql_fetch_array with MYSQL_BOTH
<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or
die("Could not connect: " . mysql_error());
mysql_select_db("mydb");
$result = mysql_query("SELECT id, name FROM mytable");
while ($row = mysql_fetch_array($result, MYSQL_BOTH)) {
printf ("ID: %s Name: %s", $row[0], $row["name"]);
}
mysql_free_result($result);
?>
Notes
Performance
An important thing to note is that using mysql_fetch_array is not significantly slower than using mysql_fetch_row, while it provides a significant added value.
Note
Field names returned by this function are case-sensitive.
Note
This function sets NULL fields to the PHP NULL value.
See Also
mysql_fetch_row |
mysql_fetch_assoc |
mysql_data_seek |
mysql_query |
21.9.2.5.14. mysql_fetch_assoc
Copyright 1997-2012 the PHP Documentation Group.
mysql_fetch_assoc
Fetch a result row as an associative array
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_assoc |
PDOStatement::fetch(PDO::FETCH_ASSOC) |
Description
array mysql_fetch_assoc(resource result);
Returns an associative array that corresponds to the fetched row and moves the internal data pointer ahead. mysql_fetch_assoc is equivalent to calling mysql_fetch_array with MYSQL_ASSOC for the optional second parameter. It only returns an associative array.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
Return Values
Returns an associative array of strings that corresponds to the fetched row, or FALSE if there are no more rows.
If two or more columns of the result have the same field names, the last column will take precedence. To access the other column(s) of the same name, you either need to access the result with numeric indices by using mysql_fetch_row or add alias names. See the example at the mysql_fetch_array description about aliases.
Examples
Example 21.42. An expanded mysql_fetch_assoc example
<?php
$conn = mysql_connect("localhost", "mysql_user", "mysql_password");
if (!$conn) {
echo "Unable to connect to DB: " . mysql_error();
exit;
}
if (!mysql_select_db("mydbname")) {
echo "Unable to select mydbname: " . mysql_error();
exit;
}
$sql = "SELECT id as userid, fullname, userstatus
FROM sometable
WHERE userstatus = 1";
$result = mysql_query($sql);
if (!$result) {
echo "Could not successfully run query ($sql) from DB: " . mysql_error();
exit;
}
if (mysql_num_rows($result) == 0) {
echo "No rows found, nothing to print so am exiting";
exit;
}
// While a row of data exists, put that row in $row as an associative array
// Note: If you're expecting just one row, no need to use a loop
// Note: If you put extract($row); inside the following loop, you'll
// then create $userid, $fullname, and $userstatus
while ($row = mysql_fetch_assoc($result)) {
echo $row["userid"];
echo $row["fullname"];
echo $row["userstatus"];
}
mysql_free_result($result);
?>
Notes
Performance
An important thing to note is that using mysql_fetch_assoc is not significantly slower than using mysql_fetch_row, while it provides a significant added value.
Note
Field names returned by this function are case-sensitive.
Note
This function sets NULL fields to the PHP NULL value.
See Also
mysql_fetch_row |
mysql_fetch_array |
mysql_data_seek |
mysql_query |
mysql_error |
21.9.2.5.15. mysql_fetch_field
Copyright 1997-2012 the PHP Documentation Group.
mysql_fetch_field
Get column information from a result and return as an object
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_field |
PDOStatement::getColumnMeta |
Description
object mysql_fetch_field(resource result,
int field_offset= =0);
Returns an object containing field information. This function can be used to obtain information about fields in the provided query result.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
field_offset
The numerical field offset. If the field offset is not specified, the next field that was not yet retrieved by this function is retrieved. The field_offset starts at 0.
Return Values
Returns an object containing field information. The properties of the object are:
Examples
Example 21.43. mysql_fetch_field example
<?php
$conn = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$conn) {
die('Could not connect: ' . mysql_error());
}
mysql_select_db('database');
$result = mysql_query('select * from table');
if (!$result) {
die('Query failed: ' . mysql_error());
}
/* get column metadata */
$i = 0;
while ($i < mysql_num_fields($result)) {
echo "Information for column $i:
\n";
$meta = mysql_fetch_field($result, $i);
if (!$meta) {
echo "No information available
\n";
}
echo "<pre>
blob: $meta->blob
max_length: $meta->max_length
multiple_key: $meta->multiple_key
name: $meta->name
not_null: $meta->not_null
numeric: $meta->numeric
primary_key: $meta->primary_key
table: $meta->table
type: $meta->type
unique_key: $meta->unique_key
unsigned: $meta->unsigned
zerofill: $meta->zerofill
</pre>";
$i++;
}
mysql_free_result($result);
?>
Notes
Note
Field names returned by this function are case-sensitive.
Note
If field or tablenames are aliased in the SQL query the aliased name will be returned. The original name can be retrieved for instance by using mysqli_result::fetch_field.
See Also
mysql_field_seek |
21.9.2.5.16. mysql_fetch_lengths
Copyright 1997-2012 the PHP Documentation Group.
mysql_fetch_lengths
Get the length of each output in a result
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_lengths |
PDOStatement::getColumnMeta |
Description
array mysql_fetch_lengths(resource result);
Returns an array that corresponds to the lengths of each field in the last row fetched by MySQL.
mysql_fetch_lengths stores the lengths of each result column in the last row returned by mysql_fetch_row, mysql_fetch_assoc, mysql_fetch_array, and mysql_fetch_object in an array, starting at offset 0.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
Return Values
An array of lengths on success or FALSE on failure.
Examples
Example 21.44. A mysql_fetch_lengths example
<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
echo 'Could not run query: ' . mysql_error();
exit;
}
$row = mysql_fetch_assoc($result);
$lengths = mysql_fetch_lengths($result);
print_r($row);
print_r($lengths);
?>
The above example will output something similar to:
Array
(
[id] => 42
[email] => user@example.com
)
Array
(
[0] => 2
[1] => 16
)
See Also
mysql_field_len |
mysql_fetch_row |
strlen |
21.9.2.5.17. mysql_fetch_object
Copyright 1997-2012 the PHP Documentation Group.
mysql_fetch_object
Fetch a result row as an object
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_object |
PDOStatement::fetch(PDO::FETCH_OBJ) |
Description
object mysql_fetch_object(resource result,
string class_name,
array params);
Returns an object with properties that correspond to the fetched row and moves the internal data pointer ahead.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
class_name
The name of the class to instantiate, set the properties of and return. If not specified, a stdClass object is returned.
params
An optional array of parameters to pass to the constructor for class_name objects.
Return Values
Returns an object with string properties that correspond to the fetched row, or FALSE if there are no more rows.
Changelog
Version | Description |
---|---|
5.0.0 | Added the ability to return as a different object. |
Examples
Example 21.45. mysql_fetch_object example
<?php
mysql_connect("hostname", "user", "password");
mysql_select_db("mydb");
$result = mysql_query("select * from mytable");
while ($row = mysql_fetch_object($result)) {
echo $row->user_id;
echo $row->fullname;
}
mysql_free_result($result);
?>
Example 21.46. mysql_fetch_object example
<?php
class foo {
public $name;
}
mysql_connect("hostname", "user", "password");
mysql_select_db("mydb");
$result = mysql_query("select name from mytable limit 1");
$obj = mysql_fetch_object($result, 'foo');
var_dump($obj);
?>
Notes
Performance
Speed-wise, the function is identical to mysql_fetch_array, and almost as quick as mysql_fetch_row (the difference is insignificant).
Note
mysql_fetch_object is similar to mysql_fetch_array, with one difference - an object is returned, instead of an array. Indirectly, that means that you can only access the data by the field names, and not by their offsets (numbers are illegal property names).
Note
Field names returned by this function are case-sensitive.
Note
This function sets NULL fields to the PHP NULL value.
See Also
mysql_fetch_array |
mysql_fetch_assoc |
mysql_fetch_row |
mysql_data_seek |
mysql_query |
21.9.2.5.18. mysql_fetch_row
Copyright 1997-2012 the PHP Documentation Group.
mysql_fetch_row
Get a result row as an enumerated array
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_row |
PDOStatement::fetch(PDO::FETCH_NUM) |
Description
array mysql_fetch_row(resource result);
Returns a numerical array that corresponds to the fetched row and moves the internal data pointer ahead.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
Return Values
Returns an numerical array of strings that corresponds to the fetched row, or FALSE if there are no more rows.
mysql_fetch_row fetches one row of data from the result associated with the specified result identifier. The row is returned as an array. Each result column is stored in an array offset, starting at offset 0.
Examples
Example 21.47. Fetching one row with mysql_fetch_row
<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
echo 'Could not run query: ' . mysql_error();
exit;
}
$row = mysql_fetch_row($result);
echo $row[0]; // 42
echo $row[1]; // the email value
?>
Notes
Note
This function sets NULL fields to the PHP NULL value.
See Also
mysql_fetch_array |
mysql_fetch_assoc |
mysql_fetch_object |
mysql_data_seek |
mysql_fetch_lengths |
mysql_result |
21.9.2.5.19. mysql_field_flags
Copyright 1997-2012 the PHP Documentation Group.
mysql_field_flags
Get the flags associated with the specified field in a result
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_fields [flags] |
PDOStatement::getColumnMeta [flags] |
Description
string mysql_field_flags(resource result,
int field_offset);
mysql_field_flags returns the field flags of the specified field. The flags are reported as a single word per flag separated by a single space, so that you can split the returned value using explode.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
field_offset
The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error of level E_WARNING is also issued.
Return Values
Returns a string of flags associated with the result or FALSE on failure.
The following flags are reported, if your version of MySQL is current enough to support them: "not_null", "primary_key", "unique_key", "multiple_key", "blob", "unsigned", "zerofill", "binary", "enum", "auto_increment" and "timestamp".
Examples
Example 21.48. A mysql_field_flags example
<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
echo 'Could not run query: ' . mysql_error();
exit;
}
$flags = mysql_field_flags($result, 0);
echo $flags;
print_r(explode(' ', $flags));
?>
The above example will output something similar to:
not_null primary_key auto_increment
Array
(
[0] => not_null
[1] => primary_key
[2] => auto_increment
)
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_fieldflags
See Also
mysql_field_type |
mysql_field_len |
21.9.2.5.20. mysql_field_len
Copyright 1997-2012 the PHP Documentation Group.
mysql_field_len
Returns the length of the specified field
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_field_direct [length] |
PDOStatement::getColumnMeta [len] |
Description
int mysql_field_len(resource result,
int field_offset);
mysql_field_len returns the length of the specified field.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
field_offset
The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error of level E_WARNING is also issued.
Return Values
The length of the specified field index on success or FALSE on failure.
Examples
Example 21.49. mysql_field_len example
<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
echo 'Could not run query: ' . mysql_error();
exit;
}
// Will get the length of the id field as specified in the database
// schema.
$length = mysql_field_len($result, 0);
echo $length;
?>
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_fieldlen
See Also
mysql_fetch_lengths |
strlen |
21.9.2.5.21. mysql_field_name
Copyright 1997-2012 the PHP Documentation Group.
mysql_field_name
Get the name of the specified field in a result
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_field_direct [name] or [orgname] |
PDOStatement::getColumnMeta [name] |
Description
string mysql_field_name(resource result,
int field_offset);
mysql_field_name returns the name of the specified field index.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
field_offset
The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error of level E_WARNING is also issued.
Return Values
The name of the specified field index on success or FALSE on failure.
Examples
Example 21.50. mysql_field_name example
<?php
/* The users table consists of three fields:
* user_id
* username
* password.
*/
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect to MySQL server: ' . mysql_error());
}
$dbname = 'mydb';
$db_selected = mysql_select_db($dbname, $link);
if (!$db_selected) {
die("Could not set $dbname: " . mysql_error());
}
$res = mysql_query('select * from users', $link);
echo mysql_field_name($res, 0) . "\n";
echo mysql_field_name($res, 2);
?>
The above example will output:
user_id
password
Notes
Note
Field names returned by this function are case-sensitive.
Note
For backward compatibility, the following deprecated alias may be used: mysql_fieldname
See Also
mysql_field_type |
mysql_field_len |
21.9.2.5.22. mysql_field_seek
Copyright 1997-2012 the PHP Documentation Group.
mysql_field_seek
Set result pointer to a specified field offset
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_field_seek |
PDOStatement::fetch using optional parameters |
Description
bool mysql_field_seek(resource result,
int field_offset);
Seeks to the specified field offset. If the next call to mysql_fetch_field doesn't include a field offset, the field offset specified in mysql_field_seek will be returned.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
field_offset
The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error of level E_WARNING is also issued.
Return Values
Returns TRUE on success or FALSE on failure.
See Also
mysql_fetch_field |
21.9.2.5.23. mysql_field_table
Copyright 1997-2012 the PHP Documentation Group.
mysql_field_table
Get name of the table the specified field is in
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_field_direct [table] or [orgtable] |
PDOStatement::getColumnMeta [table] |
Description
string mysql_field_table(resource result,
int field_offset);
Returns the name of the table that the specified field is in.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
field_offset
The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error of level E_WARNING is also issued.
Return Values
The name of the table on success.
Examples
Example 21.51. A mysql_field_table example
<?php
$query = "SELECT account.*, country.* FROM account, country WHERE country.name = 'Portugal' AND account.country_id = country.id";
// get the result from the DB
$result = mysql_query($query);
// Lists the table name and then the field name
for ($i = 0; $i < mysql_num_fields($result); ++$i) {
$table = mysql_field_table($result, $i);
$field = mysql_field_name($result, $i);
echo "$table: $field\n";
}
?>
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_fieldtable
See Also
mysql_list_tables |
21.9.2.5.24. mysql_field_type
Copyright 1997-2012 the PHP Documentation Group.
mysql_field_type
Get the type of the specified field in a result
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_fetch_field_direct [type] |
PDOStatement::getColumnMeta [driver:decl_type] or [pdo_type] |
Description
string mysql_field_type(resource result,
int field_offset);
mysql_field_type is similar to the mysql_field_name function. The arguments are identical, but the field type is returned instead.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
field_offset
The numerical field offset. The field_offset starts at 0. If field_offset does not exist, an error of level E_WARNING is also issued.
Return Values
The returned field type will be one of "int", "real", "string", "blob", and others as detailed in the MySQL documentation.
Examples
Example 21.52. mysql_field_type example
<?php
mysql_connect("localhost", "mysql_username", "mysql_password");
mysql_select_db("mysql");
$result = mysql_query("SELECT * FROM func");
$fields = mysql_num_fields($result);
$rows = mysql_num_rows($result);
$table = mysql_field_table($result, 0);
echo "Your '" . $table . "' table has " . $fields . " fields and " . $rows . " record(s)\n";
echo "The table has the following fields:\n";
for ($i=0; $i < $fields; $i++) {
$type = mysql_field_type($result, $i);
$name = mysql_field_name($result, $i);
$len = mysql_field_len($result, $i);
$flags = mysql_field_flags($result, $i);
echo $type . " " . $name . " " . $len . " " . $flags . "\n";
}
mysql_free_result($result);
mysql_close();
?>
The above example will output something similar to:
Your 'func' table has 4 fields and 1 record(s)
The table has the following fields:
string name 64 not_null primary_key binary
int ret 1 not_null
string dl 128 not_null
string type 9 not_null enum
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_fieldtype
See Also
mysql_field_name |
mysql_field_len |
21.9.2.5.25. mysql_free_result
Copyright 1997-2012 the PHP Documentation Group.
mysql_free_result
Free result memory
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_free_result |
Assign the value of NULL to the PDO object, or PDOStatement::closeCursor |
Description
bool mysql_free_result(resource result);
mysql_free_result will free all memory associated with the result identifier result.
mysql_free_result only needs to be called if you are concerned about how much memory is being used for queries that return large result sets. All associated result memory is automatically freed at the end of the script's execution.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
Return Values
Returns TRUE on success or FALSE on failure.
If a non-resource is used for the result, an error of level E_WARNING will be emitted. It's worth noting that mysql_query only returns a resource for SELECT, SHOW, EXPLAIN, and DESCRIBE queries.
Examples
Example 21.53. A mysql_free_result example
<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
echo 'Could not run query: ' . mysql_error();
exit;
}
/* Use the result, assuming we're done with it afterwards */
$row = mysql_fetch_assoc($result);
/* Now we free up the result and continue on with our script */
mysql_free_result($result);
echo $row['id'];
echo $row['email'];
?>
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_freeresult
See Also
mysql_query |
is_resource |
21.9.2.5.26. mysql_get_client_info
Copyright 1997-2012 the PHP Documentation Group.
mysql_get_client_info
Get MySQL client info
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_get_client_info |
PDO::getAttribute(PDO::ATTR_CLIENT_VERSION) |
Description
string mysql_get_client_info();
mysql_get_client_info returns a string that represents the client library version.
Return Values
The MySQL client version.
Examples
Example 21.54. mysql_get_client_info example
<?php
printf("MySQL client info: %s\n", mysql_get_client_info());
?>
The above example will output something similar to:
MySQL client info: 3.23.39
See Also
mysql_get_host_info |
mysql_get_proto_info |
mysql_get_server_info |
21.9.2.5.27. mysql_get_host_info
Copyright 1997-2012 the PHP Documentation Group.
mysql_get_host_info
Get MySQL host info
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_get_host_info |
PDO::getAttribute(PDO::ATTR_CONNECTION_STATUS) |
Description
string mysql_get_host_info(resource link_identifier= =NULL);
Describes the type of connection in use for the connection, including the server host name.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns a string describing the type of MySQL connection in use for the connection or FALSE on failure.
Examples
Example 21.55. mysql_get_host_info example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
printf("MySQL host info: %s\n", mysql_get_host_info());
?>
The above example will output something similar to:
MySQL host info: Localhost via UNIX socket
See Also
mysql_get_client_info |
mysql_get_proto_info |
mysql_get_server_info |
21.9.2.5.28. mysql_get_proto_info
Copyright 1997-2012 the PHP Documentation Group.
mysql_get_proto_info
Get MySQL protocol info
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_get_proto_info |
Description
int mysql_get_proto_info(resource link_identifier= =NULL);
Retrieves the MySQL protocol.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns the MySQL protocol on success or FALSE on failure.
Examples
Example 21.56. mysql_get_proto_info example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
printf("MySQL protocol version: %s\n", mysql_get_proto_info());
?>
The above example will output something similar to:
MySQL protocol version: 10
See Also
mysql_get_client_info |
mysql_get_host_info |
mysql_get_server_info |
21.9.2.5.29. mysql_get_server_info
Copyright 1997-2012 the PHP Documentation Group.
mysql_get_server_info
Get MySQL server info
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_get_server_info |
PDO::getAttribute(PDO::ATTR_SERVER_VERSION) |
Description
string mysql_get_server_info(resource link_identifier= =NULL);
Retrieves the MySQL server version.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns the MySQL server version on success or FALSE on failure.
Examples
Example 21.57. mysql_get_server_info example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
printf("MySQL server version: %s\n", mysql_get_server_info());
?>
The above example will output something similar to:
MySQL server version: 4.0.1-alpha
See Also
mysql_get_client_info |
mysql_get_host_info |
mysql_get_proto_info |
phpversion |
21.9.2.5.30. mysql_info
Copyright 1997-2012 the PHP Documentation Group.
mysql_info
Get information about the most recent query
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_info |
Description
string mysql_info(resource link_identifier= =NULL);
Returns detailed information about the last query.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns information about the statement on success, or FALSE on failure. See the example below for which statements provide information, and what the returned value may look like. Statements that are not listed will return FALSE .
Examples
Example 21.58. Relevant MySQL Statements
Statements that return string values. The numbers are only for illustrating purpose; their values will correspond to the query.
INSERT INTO ... SELECT ...
String format: Records: 23 Duplicates: 0 Warnings: 0
INSERT INTO ... VALUES (...),(...),(...)...
String format: Records: 37 Duplicates: 0 Warnings: 0
LOAD DATA INFILE ...
String format: Records: 42 Deleted: 0 Skipped: 0 Warnings: 0
ALTER TABLE
String format: Records: 60 Duplicates: 0 Warnings: 0
UPDATE
String format: Rows matched: 65 Changed: 65 Warnings: 0
Notes
Note
mysql_info returns a non- FALSE value for the INSERT ... VALUES statement only if multiple value lists are specified in the statement.
See Also
mysql_affected_rows |
mysql_insert_id |
mysql_stat |
21.9.2.5.31. mysql_insert_id
Copyright 1997-2012 the PHP Documentation Group.
mysql_insert_id
Get the ID generated in the last query
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_insert_id |
PDO::lastInsertId |
Description
int mysql_insert_id(resource link_identifier= =NULL);
Retrieves the ID generated for an AUTO_INCREMENT column by the previous query (usually INSERT).
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
The ID generated for an AUTO_INCREMENT column by the previous query on success, 0 if the previous query does not generate an AUTO_INCREMENT value, or FALSE if no MySQL connection was established.
Examples
Example 21.59. mysql_insert_id example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');
mysql_query("INSERT INTO mytable (product) values ('kossu')");
printf("Last inserted record has id %d\n", mysql_insert_id());
?>
Notes
Caution
mysql_insert_id will convert the return type of the native MySQL C API function mysql_insert_id() to a type of long (named int in PHP). If your AUTO_INCREMENT column has a column type of BIGINT (64 bits) the conversion may result in an incorrect value. Instead, use the internal MySQL SQL function LAST_INSERT_ID() in an SQL query. For more information about PHP's maximum integer values, please see the integer documentation.
Note
Because mysql_insert_id acts on the last performed query, be sure to call mysql_insert_id immediately after the query that generates the value.
Note
The value of the MySQL SQL function LAST_INSERT_ID() always contains the most recently generated AUTO_INCREMENT value, and is not reset between queries.
See Also
mysql_query |
mysql_info |
21.9.2.5.32. mysql_list_dbs
Copyright 1997-2012 the PHP Documentation Group.
mysql_list_dbs
List databases available on a MySQL server
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
SQL Query: SHOW DATABASES |
Description
resource mysql_list_dbs(resource link_identifier= =NULL);
Returns a result pointer containing the databases available from the current mysql daemon.
Warning
This function has been DEPRECATED as of PHP 5.4.0. Relying on this function is highly discouraged.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns a result pointer resource on success, or FALSE on failure. Use the mysql_tablename function to traverse this result pointer, or any function for result tables, such as mysql_fetch_array.
Examples
Example 21.60. mysql_list_dbs example
<?php
// Usage without mysql_list_dbs()
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$res = mysql_query("SHOW DATABASES");
while ($row = mysql_fetch_assoc($res)) {
echo $row['Database'] . "\n";
}
// Deprecated as of PHP 5.4.0
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$db_list = mysql_list_dbs($link);
while ($row = mysql_fetch_object($db_list)) {
echo $row->Database . "\n";
}
?>
The above example will output something similar to:
database1
database2
database3
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_listdbs
See Also
mysql_db_name |
mysql_select_db |
21.9.2.5.33. mysql_list_fields
Copyright 1997-2012 the PHP Documentation Group.
mysql_list_fields
List MySQL table fields
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
SQL Query: SHOW COLUMNS FROM sometable |
Description
resource mysql_list_fields(string database_name,
string table_name,
resource link_identifier= =NULL);
Retrieves information about the given table name.
This function is deprecated. It is preferable to use mysql_query to issue an SQL SHOW COLUMNS FROM table [LIKE 'name'] statement instead.
Parameters
database_name
The name of the database that's being queried.
table_name
The name of the table that's being queried.
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
A result pointer resource on success, or FALSE on failure.
The returned result can be used with mysql_field_flags, mysql_field_len, mysql_field_name and mysql_field_type.
Examples
Example 21.61. Alternate to deprecated mysql_list_fields
<?php
$result = mysql_query("SHOW COLUMNS FROM sometable");
if (!$result) {
echo 'Could not run query: ' . mysql_error();
exit;
}
if (mysql_num_rows($result) > 0) {
while ($row = mysql_fetch_assoc($result)) {
print_r($row);
}
}
?>
The above example will output something similar to:
Array
(
[Field] => id
[Type] => int(7)
[Null] =>
[Key] => PRI
[Default] =>
[Extra] => auto_increment
)
Array
(
[Field] => email
[Type] => varchar(100)
[Null] =>
[Key] =>
[Default] =>
[Extra] =>
)
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_listfields
See Also
mysql_field_flags |
mysql_info |
21.9.2.5.34. mysql_list_processes
Copyright 1997-2012 the PHP Documentation Group.
mysql_list_processes
List MySQL processes
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_thread_id |
Description
resource mysql_list_processes(resource link_identifier= =NULL);
Retrieves the current MySQL server threads.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
A result pointer resource on success or FALSE on failure.
Examples
Example 21.62. mysql_list_processes example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$result = mysql_list_processes($link);
while ($row = mysql_fetch_assoc($result)){
printf("%s %s %s %s %s\n", $row["Id"], $row["Host"], $row["db"],
$row["Command"], $row["Time"]);
}
mysql_free_result($result);
?>
The above example will output something similar to:
1 localhost test Processlist 0
4 localhost mysql sleep 5
See Also
mysql_thread_id |
mysql_stat |
21.9.2.5.35. mysql_list_tables
Copyright 1997-2012 the PHP Documentation Group.
mysql_list_tables
List tables in a MySQL database
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
SQL Query: SHOW TABLES FROM sometable |
Description
resource mysql_list_tables(string database,
resource link_identifier= =NULL);
Retrieves a list of table names from a MySQL database.
This function is deprecated. It is preferable to use mysql_query to issue an SQL SHOW TABLES [FROM db_name] [LIKE 'pattern'] statement instead.
Parameters
database
The name of the database
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
A result pointer resource on success or FALSE on failure.
Use the mysql_tablename function to traverse this result pointer, or any function for result tables, such as mysql_fetch_array.
Changelog
Version | Description |
---|---|
4.3.7 | This function became deprecated. |
Examples
Example 21.63. mysql_list_tables alternative example
<?php
$dbname = 'mysql_dbname';
if (!mysql_connect('mysql_host', 'mysql_user', 'mysql_password')) {
echo 'Could not connect to mysql';
exit;
}
$sql = "SHOW TABLES FROM $dbname";
$result = mysql_query($sql);
if (!$result) {
echo "DB Error, could not list tables\n";
echo 'MySQL Error: ' . mysql_error();
exit;
}
while ($row = mysql_fetch_row($result)) {
echo "Table: {$row[0]}\n";
}
mysql_free_result($result);
?>
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_listtables
See Also
mysql_list_dbs |
mysql_tablename |
21.9.2.5.36. mysql_num_fields
Copyright 1997-2012 the PHP Documentation Group.
mysql_num_fields
Get number of fields in result
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_field_count |
PDOStatement::columnCount |
Description
int mysql_num_fields(resource result);
Retrieves the number of fields from a query.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
Return Values
Returns the number of fields in the result set resource on success or FALSE on failure.
Examples
Example 21.64. A mysql_num_fields example
<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
echo 'Could not run query: ' . mysql_error();
exit;
}
/* returns 2 because id,email === two fields */
echo mysql_num_fields($result);
?>
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_numfields
See Also
mysql_select_db |
mysql_query |
mysql_fetch_field |
mysql_num_rows |
21.9.2.5.37. mysql_num_rows
Copyright 1997-2012 the PHP Documentation Group.
mysql_num_rows
Get number of rows in result
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_stmt_num_rows |
PDOStatement::rowCount |
Description
int mysql_num_rows(resource result);
Retrieves the number of rows from a result set. This command is only valid for statements like SELECT or SHOW that return an actual result set. To retrieve the number of rows affected by a INSERT, UPDATE, REPLACE or DELETE query, use mysql_affected_rows.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
Return Values
The number of rows in a result set on success or FALSE on failure.
Examples
Example 21.65. mysql_num_rows example
<?php
$link = mysql_connect("localhost", "mysql_user", "mysql_password");
mysql_select_db("database", $link);
$result = mysql_query("SELECT * FROM table1", $link);
$num_rows = mysql_num_rows($result);
echo "$num_rows Rows\n";
?>
Notes
Note
If you use mysql_unbuffered_query, mysql_num_rows will not return the correct value until all the rows in the result set have been retrieved.
Note
For backward compatibility, the following deprecated alias may be used: mysql_numrows
See Also
mysql_affected_rows |
mysql_connect |
mysql_data_seek |
mysql_select_db |
mysql_query |
21.9.2.5.38. mysql_pconnect
Copyright 1997-2012 the PHP Documentation Group.
mysql_pconnect
Open a persistent connection to a MySQL server
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_connect with p: host prefix |
PDO::__construct with PDO::ATTR_PERSISTENT as a driver option |
Description
resource mysql_pconnect(string server= =ini_get("mysql.default_host"),
string username= =ini_get("mysql.default_user"),
string password= =ini_get("mysql.default_password"),
int client_flags= =0);
Establishes a persistent connection to a MySQL server.
mysql_pconnect acts very much like mysql_connect with two major differences.
First, when connecting, the function would first try to find a (persistent) link that's already open with the same host, username and password. If one is found, an identifier for it will be returned instead of opening a new connection.
Second, the connection to the SQL server will not be closed when the execution of the script ends. Instead, the link will remain open for future use (mysql_close will not close links established by mysql_pconnect).
This type of link is therefore called 'persistent'.
Parameters
server
The MySQL server. It can also include a port number. e.g. "hostname:port" or a path to a local socket e.g. ":/path/to/socket" for the localhost.
If the PHP directive mysql.default_host is undefined (default), then the default value is 'localhost:3306'
username
The username. Default value is the name of the user that owns the server process.
password
The password. Default value is an empty password.
client_flags
The client_flags parameter can be a combination of the following constants: 128 (enable LOAD DATA LOCAL handling), MYSQL_CLIENT_SSL , MYSQL_CLIENT_COMPRESS , MYSQL_CLIENT_IGNORE_SPACE or MYSQL_CLIENT_INTERACTIVE .
Return Values
Returns a MySQL persistent link identifier on success, or FALSE on failure.
Changelog
Version | Description |
---|---|
5.5.0 | This function will generate an E_DEPRECATED error. |
4.3.0 | Added the client_flags parameter. |
Notes
Note
Note, that these kind of links only work if you are using a module version of PHP. See the Persistent Database Connections section for more information.
Warning
Using persistent connections can require a bit of tuning of your Apache and MySQL configurations to ensure that you do not exceed the number of connections allowed by MySQL.
Note
You can suppress the error message on failure by prepending a @ to the function name.
See Also
mysql_connect |
Persistent Database Connections |
21.9.2.5.39. mysql_ping
Copyright 1997-2012 the PHP Documentation Group.
mysql_ping
Ping a server connection or reconnect if there is no connection
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_ping |
Description
bool mysql_ping(resource link_identifier= =NULL);
Checks whether or not the connection to the server is working. If it has gone down, an automatic reconnection is attempted. This function can be used by scripts that remain idle for a long while, to check whether or not the server has closed the connection and reconnect if necessary.
Note
Automatic reconnection is disabled by default in versions of MySQL >= 5.0.3.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns TRUE if the connection to the server MySQL server is working, otherwise FALSE .
Examples
Example 21.66. A mysql_ping example
<?php
set_time_limit(0);
$conn = mysql_connect('localhost', 'mysqluser', 'mypass');
$db = mysql_select_db('mydb');
/* Assuming this query will take a long time */
$result = mysql_query($sql);
if (!$result) {
echo 'Query #1 failed, exiting.';
exit;
}
/* Make sure the connection is still alive, if not, try to reconnect */
if (!mysql_ping($conn)) {
echo 'Lost connection, exiting after query #1';
exit;
}
mysql_free_result($result);
/* So the connection is still alive, let's run another query */
$result2 = mysql_query($sql2);
?>
See Also
mysql_thread_id |
mysql_list_processes |
21.9.2.5.40. mysql_query
Copyright 1997-2012 the PHP Documentation Group.
mysql_query
Send a MySQL query
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_query |
PDO::query |
Description
resource mysql_query(string query,
resource link_identifier= =NULL);
mysql_query sends a unique query (multiple queries are not supported) to the currently active database on the server that's associated with the specified link_identifier.
Parameters
query
An SQL query
The query string should not end with a semicolon. Data inside the query should be properly escaped.
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
For SELECT, SHOW, DESCRIBE, EXPLAIN and other statements returning resultset, mysql_query returns a resource on success, or FALSE on error.
For other type of SQL statements, INSERT, UPDATE, DELETE, DROP, etc, mysql_query returns TRUE on success or FALSE on error.
The returned result resource should be passed to mysql_fetch_array, and other functions for dealing with result tables, to access the returned data.
Use mysql_num_rows to find out how many rows were returned for a SELECT statement or mysql_affected_rows to find out how many rows were affected by a DELETE, INSERT, REPLACE, or UPDATE statement.
mysql_query will also fail and return FALSE if the user does not have permission to access the table(s) referenced by the query.
Examples
Example 21.67. Invalid Query
The following query is syntactically invalid, so mysql_query fails and returns FALSE .
<?php
$result = mysql_query('SELECT * WHERE 1=1');
if (!$result) {
die('Invalid query: ' . mysql_error());
}
?>
Example 21.68. Valid Query
The following query is valid, so mysql_query returns a resource.
<?php
// This could be supplied by a user, for example
$firstname = 'fred';
$lastname = 'fox';
// Formulate Query
// This is the best way to perform an SQL query
// For more examples, see mysql_real_escape_string()
$query = sprintf("SELECT firstname, lastname, address, age FROM friends
WHERE firstname='%s' AND lastname='%s'",
mysql_real_escape_string($firstname),
mysql_real_escape_string($lastname));
// Perform Query
$result = mysql_query($query);
// Check result
// This shows the actual query sent to MySQL, and the error. Useful for debugging.
if (!$result) {
$message = 'Invalid query: ' . mysql_error() . "\n";
$message .= 'Whole query: ' . $query;
die($message);
}
// Use result
// Attempting to print $result won't allow access to information in the resource
// One of the mysql result functions must be used
// See also mysql_result(), mysql_fetch_array(), mysql_fetch_row(), etc.
while ($row = mysql_fetch_assoc($result)) {
echo $row['firstname'];
echo $row['lastname'];
echo $row['address'];
echo $row['age'];
}
// Free the resources associated with the result set
// This is done automatically at the end of the script
mysql_free_result($result);
?>
See Also
mysql_connect |
mysql_error |
mysql_real_escape_string |
mysql_result |
mysql_fetch_assoc |
mysql_unbuffered_query |
21.9.2.5.41. mysql_real_escape_string
Copyright 1997-2012 the PHP Documentation Group.
mysql_real_escape_string
Escapes special characters in a string for use in an SQL statement
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_real_escape_string |
PDO::quote |
Description
string mysql_real_escape_string(string unescaped_string,
resource link_identifier= =NULL);
Escapes special characters in the unescaped_string, taking into account the current character set of the connection so that it is safe to place it in a mysql_query. If binary data is to be inserted, this function must be used.
mysql_real_escape_string calls MySQL's library function mysql_real_escape_string, which prepends backslashes to the following characters: \x00, \n, \r, \, ', " and \x1a.
This function must always (with few exceptions) be used to make data safe before sending a query to MySQL.
Security: the default character set
The character set must be set either at the server level, or with the API function mysql_set_charset for it to affect mysql_real_escape_string. See the concepts section on character sets for more information.
Parameters
unescaped_string
The string that is to be escaped.
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns the escaped string, or FALSE on error.
Examples
Example 21.69. Simple mysql_real_escape_string example
<?php
// Connect
$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')
OR die(mysql_error());
// Query
$query = sprintf("SELECT * FROM users WHERE user='%s' AND password='%s'",
mysql_real_escape_string($user),
mysql_real_escape_string($password));
?>
Example 21.70. An example SQL Injection Attack
<?php
// We didn't check $_POST['password'], it could be anything the user wanted! For example:
$_POST['username'] = 'aidan';
$_POST['password'] = "' OR ''='";
// Query database to check if there are any matching users
$query = "SELECT * FROM users WHERE user='{$_POST['username']}' AND password='{$_POST['password']}'";
mysql_query($query);
// This means the query sent to MySQL would be:
echo $query;
?>
The query sent to MySQL:
SELECT * FROM users WHERE user='aidan' AND password='' OR ''=''
This would allow anyone to log in without a valid password.
Notes
Note
A MySQL connection is required before using mysql_real_escape_string otherwise an error of level E_WARNING is generated, and FALSE is returned. If link_identifier isn't defined, the last MySQL connection is used.
Note
If magic_quotes_gpc is enabled, first apply stripslashes to the data. Using this function on data which has already been escaped will escape the data twice.
Note
If this function is not used to escape data, the query is vulnerable to SQL Injection Attacks.
Note
mysql_real_escape_string does not escape % and _. These are wildcards in MySQL if combined with LIKE, GRANT, or REVOKE.
See Also
mysql_set_charset |
mysql_client_encoding |
addslashes |
stripslashes |
The magic_quotes_gpc directive |
The magic_quotes_runtime directive |
21.9.2.5.42. mysql_result
Copyright 1997-2012 the PHP Documentation Group.
mysql_result
Get result data
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_data_seek in conjunction with mysqli_field_seek and mysqli_fetch_field |
PDOStatement::fetchColumn |
Description
string mysql_result(resource result,
int row,
mixed field= =0);
Retrieves the contents of one cell from a MySQL result set.
When working on large result sets, you should consider using one of the functions that fetch an entire row (specified below). As these functions return the contents of multiple cells in one function call, they're MUCH quicker than mysql_result. Also, note that specifying a numeric offset for the field argument is much quicker than specifying a fieldname or tablename.fieldname argument.
Parameters
result
The result resource that is being evaluated. This result comes from a call to mysql_query.
row
The row number from the result that's being retrieved. Row numbers start at 0.
field
The name or offset of the field being retrieved.
It can be the field's offset, the field's name, or the field's table dot field name (tablename.fieldname). If the column name has been aliased ('select foo as bar from...'), use the alias instead of the column name. If undefined, the first field is retrieved.
Return Values
The contents of one cell from a MySQL result set on success, or FALSE on failure.
Examples
Example 21.71. mysql_result example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Could not connect: ' . mysql_error());
}
if (!mysql_select_db('database_name')) {
die('Could not select database: ' . mysql_error());
}
$result = mysql_query('SELECT name FROM work.employee');
if (!$result) {
die('Could not query:' . mysql_error());
}
echo mysql_result($result, 2); // outputs third employee's name
mysql_close($link);
?>
Notes
Note
Calls to mysql_result should not be mixed with calls to other functions that deal with the result set.
See Also
mysql_fetch_row |
mysql_fetch_array |
mysql_fetch_assoc |
mysql_fetch_object |
21.9.2.5.43. mysql_select_db
Copyright 1997-2012 the PHP Documentation Group.
mysql_select_db
Select a MySQL database
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_select_db |
PDO::__construct (part of dsn) |
Description
bool mysql_select_db(string database_name,
resource link_identifier= =NULL);
Sets the current active database on the server that's associated with the specified link identifier. Every subsequent call to mysql_query will be made on the active database.
Parameters
database_name
The name of the database that is to be selected.
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.72. mysql_select_db example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
die('Not connected : ' . mysql_error());
}
// make foo the current db
$db_selected = mysql_select_db('foo', $link);
if (!$db_selected) {
die ('Can\'t use foo : ' . mysql_error());
}
?>
Notes
Note
For backward compatibility, the following deprecated alias may be used: mysql_selectdb
See Also
mysql_connect |
mysql_pconnect |
mysql_query |
21.9.2.5.44. mysql_set_charset
Copyright 1997-2012 the PHP Documentation Group.
mysql_set_charset
Sets the client character set
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_character_set_name |
PDO: Add charset to the connection string, such as charset=utf8 |
Description
bool mysql_set_charset(string charset,
resource link_identifier= =NULL);
Sets the default character set for the current connection.
Parameters
charset
A valid character set name.
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns TRUE on success or FALSE on failure.
Notes
Note
This function requires MySQL 5.0.7 or later.
Note
This is the preferred way to change the charset. Using mysql_query to set it (such as SET NAMES utf8) is not recommended. See the MySQL character set concepts section for more information.
See Also
mysql_client_encoding |
Setting character sets in MySQL |
List of character sets that MySQL supports |
21.9.2.5.45. mysql_stat
Copyright 1997-2012 the PHP Documentation Group.
mysql_stat
Get current system status
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_stat |
PDO::getAttribute(PDO::ATTR_SERVER_INFO) |
Description
string mysql_stat(resource link_identifier= =NULL);
mysql_stat returns the current server status.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
Returns a string with the status for uptime, threads, queries, open tables, flush tables and queries per second. For a complete list of other status variables, you have to use the SHOW STATUS SQL command. If link_identifier is invalid, NULL is returned.
Examples
Example 21.73. mysql_stat example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$status = explode(' ', mysql_stat($link));
print_r($status);
?>
The above example will output something similar to:
Array
(
[0] => Uptime: 5380
[1] => Threads: 2
[2] => Questions: 1321299
[3] => Slow queries: 0
[4] => Opens: 26
[5] => Flush tables: 1
[6] => Open tables: 17
[7] => Queries per second avg: 245.595
)
Example 21.74. Alternative mysql_stat example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$result = mysql_query('SHOW STATUS', $link);
while ($row = mysql_fetch_assoc($result)) {
echo $row['Variable_name'] . ' = ' . $row['Value'] . "\n";
}
?>
The above example will output something similar to:
back_log = 50
basedir = /usr/local/
bdb_cache_size = 8388600
bdb_log_buffer_size = 32768
bdb_home = /var/db/mysql/
bdb_max_lock = 10000
bdb_logdir =
bdb_shared_data = OFF
bdb_tmpdir = /var/tmp/
...
See Also
mysql_get_server_info |
mysql_list_processes |
21.9.2.5.46. mysql_tablename
Copyright 1997-2012 the PHP Documentation Group.
mysql_tablename
Get table name of field
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
SQL Query: SHOW TABLES |
Description
string mysql_tablename(resource result,
int i);
Retrieves the table name from a result.
This function is deprecated. It is preferable to use mysql_query to issue an SQL SHOW TABLES [FROM db_name] [LIKE 'pattern'] statement instead.
Parameters
result
A result pointer resource that's returned from mysql_list_tables.
i
The integer index (row/table number)
Return Values
The name of the table on success or FALSE on failure.
Use the mysql_tablename function to traverse this result pointer, or any function for result tables, such as mysql_fetch_array.
Changelog
Version | Description |
---|---|
5.5.0 | The mysql_tablename function is deprecated, and emits an E_DEPRECATED level error. |
Examples
Example 21.75. mysql_tablename example
<?php
mysql_connect("localhost", "mysql_user", "mysql_password");
$result = mysql_list_tables("mydb");
$num_rows = mysql_num_rows($result);
for ($i = 0; $i < $num_rows; $i++) {
echo "Table: ", mysql_tablename($result, $i), "\n";
}
mysql_free_result($result);
?>
Notes
Note
The mysql_num_rows function may be used to determine the number of tables in the result pointer.
See Also
mysql_list_tables |
mysql_field_table |
mysql_db_name |
21.9.2.5.47. mysql_thread_id
Copyright 1997-2012 the PHP Documentation Group.
mysql_thread_id
Return the current thread ID
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
mysqli_thread_id |
Description
int mysql_thread_id(resource link_identifier= =NULL);
Retrieves the current thread ID. If the connection is lost, and a reconnect with mysql_ping is executed, the thread ID will change. This means only retrieve the thread ID when needed.
Parameters
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
The thread ID on success or FALSE on failure.
Examples
Example 21.76. mysql_thread_id example
<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$thread_id = mysql_thread_id($link);
if ($thread_id){
printf("current thread id is %d\n", $thread_id);
}
?>
The above example will output something similar to:
current thread id is 73
See Also
mysql_ping |
mysql_list_processes |
21.9.2.5.48. mysql_unbuffered_query
Copyright 1997-2012 the PHP Documentation Group.
mysql_unbuffered_query
Send an SQL query to MySQL without fetching and buffering the result rows.
Warning
This extension is deprecated as of PHP 5.5.0, and will be removed in the future. Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL: choosing an API guide and related FAQ for more information. Alternatives to this function include:
See: Buffered and Unbuffered queries |
Description
resource mysql_unbuffered_query(string query,
resource link_identifier= =NULL);
mysql_unbuffered_query sends the SQL query query to MySQL without automatically fetching and buffering the result rows as mysql_query does. This saves a considerable amount of memory with SQL queries that produce large result sets, and you can start working on the result set immediately after the first row has been retrieved as you don't have to wait until the complete SQL query has been performed. To use mysql_unbuffered_query while multiple database connections are open, you must specify the optional parameter link_identifier to identify which connection you want to use.
Parameters
query
The SQL query to execute.
Data inside the query should be properly escaped.
link_identifier
The MySQL connection. If the link identifier is not specified, the last link opened by mysql_connect is assumed. If no such link is found, it will try to create one as if mysql_connect was called with no arguments. If no connection is found or established, an E_WARNING level error is generated.
Return Values
For SELECT, SHOW, DESCRIBE or EXPLAIN statements, mysql_unbuffered_query returns a resource on success, or FALSE on error.
For other type of SQL statements, UPDATE, DELETE, DROP, etc, mysql_unbuffered_query returns TRUE on success or FALSE on error.
Notes
Note
The benefits of mysql_unbuffered_query come at a cost: you cannot use mysql_num_rows and mysql_data_seek on a result set returned from mysql_unbuffered_query, until all rows are fetched. You also have to fetch all result rows from an unbuffered SQL query before you can send a new SQL query to MySQL, using the same link_identifier.
See Also
mysql_query |
21.9.3. MySQL Improved Extension (Mysqli)
Copyright 1997-2012 the PHP Documentation Group.
The mysqli extension allows you to access the functionality provided by MySQL 4.1 and above. More information about the MySQL Database server can be found at http://www.mysql.com/
An overview of software available for using MySQL from PHP can be found at Section 21.9.3.2, “Overview”
Documentation for MySQL can be found at http://dev.mysql.com/doc/.
Parts of this documentation included from MySQL manual with permissions of Oracle Corporation.
21.9.3.1. Examples
Copyright 1997-2012 the PHP Documentation Group.
All examples in the mysqli documentation use the world database. The world database can be found at http://downloads.mysql.com/docs/world.sql.gz
21.9.3.2. Overview
Copyright 1997-2012 the PHP Documentation Group.
This section provides an introduction to the options available to you when developing a PHP application that needs to interact with a MySQL database.
What is an API?
An Application Programming Interface, or API, defines the classes, methods, functions and variables that your application will need to call in order to carry out its desired task. In the case of PHP applications that need to communicate with databases the necessary APIs are usually exposed via PHP extensions.
APIs can be procedural or object-oriented. With a procedural API you call functions to carry out tasks, with the object-oriented API you instantiate classes and then call methods on the resulting objects. Of the two the latter is usually the preferred interface, as it is more modern and leads to better organized code.
When writing PHP applications that need to connect to the MySQL server there are several API options available. This document discusses what is available and how to select the best solution for your application.
What is a Connector?
In the MySQL documentation, the term connector refers to a piece of software that allows your application to connect to the MySQL database server. MySQL provides connectors for a variety of languages, including PHP.
If your PHP application needs to communicate with a database server you will need to write PHP code to perform such activities as connecting to the database server, querying the database and other database-related functions. Software is required to provide the API that your PHP application will use, and also handle the communication between your application and the database server, possibly using other intermediate libraries where necessary. This software is known generically as a connector, as it allows your application to connect to a database server.
What is a Driver?
A driver is a piece of software designed to communicate with a specific type of database server. The driver may also call a library, such as the MySQL Client Library or the MySQL Native Driver. These libraries implement the low-level protocol used to communicate with the MySQL database server.
By way of an example, the PHP Data Objects (PDO) database abstraction layer may use one of several database-specific drivers. One of the drivers it has available is the PDO MYSQL driver, which allows it to interface with the MySQL server.
Sometimes people use the terms connector and driver interchangeably, this can be confusing. In the MySQL-related documentation the term “driver” is reserved for software that provides the database-specific part of a connector package.
What is an Extension?
In the PHP documentation you will come across another term - extension. The PHP code consists of a core, with optional extensions to the core functionality. PHP's MySQL-related extensions, such as the mysqli extension, and the mysql extension, are implemented using the PHP extension framework.
An extension typically exposes an API to the PHP programmer, to allow its facilities to be used programmatically. However, some extensions which use the PHP extension framework do not expose an API to the PHP programmer.
The PDO MySQL driver extension, for example, does not expose an API to the PHP programmer, but provides an interface to the PDO layer above it.
The terms API and extension should not be taken to mean the same thing, as an extension may not necessarily expose an API to the programmer.
What are the main PHP API offerings for using MySQL?
There are three main API options when considering connecting to a MySQL database server:
PHP's MySQL Extension
PHP's mysqli Extension
PHP Data Objects (PDO)
Each has its own advantages and disadvantages. The following discussion aims to give a brief introduction to the key aspects of each API.
What is PHP's MySQL Extension?
This is the original extension designed to allow you to develop PHP applications that interact with a MySQL database. The mysql extension provides a procedural interface and is intended for use only with MySQL versions older than 4.1.3. This extension can be used with versions of MySQL 4.1.3 or newer, but not all of the latest MySQL server features will be available.
Note
If you are using MySQL versions 4.1.3 or later it is strongly recommended that you use the mysqli extension instead.
The mysql extension source code is located in the PHP extension directory ext/mysql.
For further information on the mysql extension, see Section 21.9.2, “Original MySQL API (Mysql)”.
What is PHP's mysqli Extension?
The mysqli extension, or as it is sometimes known, the MySQL improved extension, was developed to take advantage of new features found in MySQL systems versions 4.1.3 and newer. The mysqli extension is included with PHP versions 5 and later.
The mysqli extension has a number of benefits, the key enhancements over the mysql extension being:
Object-oriented interface
Support for Prepared Statements
Support for Multiple Statements
Support for Transactions
Enhanced debugging capabilities
Embedded server support
Note
If you are using MySQL versions 4.1.3 or later it is strongly recommended that you use this extension.
As well as the object-oriented interface the extension also provides a procedural interface.
The mysqli extension is built using the PHP extension framework, its source code is located in the directory ext/mysqli.
For further information on the mysqli extension, see Section 21.9.3, “MySQL Improved Extension (Mysqli)”.
What is PDO?
PHP Data Objects, or PDO, is a database abstraction layer specifically for PHP applications. PDO provides a consistent API for your PHP application regardless of the type of database server your application will connect to. In theory, if you are using the PDO API, you could switch the database server you used, from say Firebird to MySQL, and only need to make minor changes to your PHP code.
Other examples of database abstraction layers include JDBC for Java applications and DBI for Perl.
While PDO has its advantages, such as a clean, simple, portable API, its main disadvantage is that it doesn't allow you to use all of the advanced features that are available in the latest versions of MySQL server. For example, PDO does not allow you to use MySQL's support for Multiple Statements.
PDO is implemented using the PHP extension framework, its source code is located in the directory ext/pdo.
For further information on PDO, see the http://www.php.net/book.pdo.
What is the PDO MYSQL driver?
The PDO MYSQL driver is not an API as such, at least from the PHP programmer's perspective. In fact the PDO MYSQL driver sits in the layer below PDO itself and provides MySQL-specific functionality. The programmer still calls the PDO API, but PDO uses the PDO MYSQL driver to carry out communication with the MySQL server.
The PDO MYSQL driver is one of several available PDO drivers. Other PDO drivers available include those for the Firebird and PostgreSQL database servers.
The PDO MYSQL driver is implemented using the PHP extension framework. Its source code is located in the directory ext/pdo_mysql. It does not expose an API to the PHP programmer.
For further information on the PDO MYSQL driver, see Section 21.9.4, “MySQL Functions (PDO_MYSQL) (MySQL (PDO))”.
What is PHP's MySQL Native Driver?
In order to communicate with the MySQL database server the mysql extension, mysqli and the PDO MYSQL driver each use a low-level library that implements the required protocol. In the past, the only available library was the MySQL Client Library, otherwise known as libmysqlclient.
However, the interface presented by libmysqlclient was not optimized for communication with PHP applications, as libmysqlclient was originally designed with C applications in mind. For this reason the MySQL Native Driver, mysqlnd, was developed as an alternative to libmysqlclient for PHP applications.
The mysql extension, the mysqli extension and the PDO MySQL driver can each be individually configured to use either libmysqlclient or mysqlnd. As mysqlnd is designed specifically to be utilised in the PHP system it has numerous memory and speed enhancements over libmysqlclient. You are strongly encouraged to take advantage of these improvements.
Note
The MySQL Native Driver can only be used with MySQL server versions 4.1.3 and later.
The MySQL Native Driver is implemented using the PHP extension framework. The source code is located in ext/mysqlnd. It does not expose an API to the PHP programmer.
Comparison of Features
The following table compares the functionality of the three main methods of connecting to MySQL from PHP:
Table 21.38. Comparison of MySQL API options for PHP
PHP's mysqli Extension | PDO (Using PDO MySQL Driver and MySQL Native Driver) | PHP's MySQL Extension | |
---|---|---|---|
PHP version introduced | 5.0 | 5.0 | Prior to 3.0 |
Included with PHP 5.x | yes | yes | Yes |
MySQL development status | Active development | Active development as of PHP 5.3 | Maintenance only |
Recommended by MySQL for new projects | Yes - preferred option | Yes | No |
API supports Charsets | Yes | Yes | No |
API supports server-side Prepared Statements | Yes | Yes | No |
API supports client-side Prepared Statements | No | Yes | No |
API supports Stored Procedures | Yes | Yes | No |
API supports Multiple Statements | Yes | Most | No |
Supports all MySQL 4.1+ functionality | Yes | Most | No |
21.9.3.3. Quick start guide
Copyright 1997-2012 the PHP Documentation Group.
This quick start guide will help with choosing and gaining familiarity with the PHP MySQL API.
This quick start gives an overview on the mysqli extension. Code examples are provided for all major aspects of the API. Database concepts are explained to the degree needed for presenting concepts specific to MySQL.
Required: A familiarity with the PHP programming language, the SQL language, and basic knowledge of the MySQL server.
21.9.3.3.1. Dual procedural and object-oriented interface
Copyright 1997-2012 the PHP Documentation Group.
The mysqli extension features a dual interface. It supports the procedural and object-oriented programming paradigm.
Users migrating from the old mysql extension may prefer the procedural interface. The procedural interface is similar to that of the old mysql extension. In many cases, the function names differ only by prefix. Some mysqli functions take a connection handle as their first argument, whereas matching functions in the old mysql interface take it as an optional last argument.
Example 21.77. Easy migration from the old mysql extension
<?php
$mysqli = mysqli_connect("example.com", "user", "password", "database");
$res = mysqli_query($mysqli, "SELECT 'Please, do not use ' AS _msg FROM DUAL");
$row = mysqli_fetch_assoc($res);
echo $row['_msg'];
$mysql = mysql_connect("localhost", "root", "");
mysql_select_db("test");
$res = mysql_query("SELECT 'the mysql extension for new developments.' AS _msg FROM DUAL", $mysql);
$row = mysql_fetch_assoc($res);
echo $row['_msg'];
?>
The above example will output:
Please, do not use the mysql extension for new developments.
The object-oriented interface
In addition to the classical procedural interface, users can choose to use the object-oriented interface. The documentation is organized using the object-oriented interface. The object-oriented interface shows functions grouped by their purpose, making it easier to get started. The reference section gives examples for both syntax variants.
There are no significant performance differences between the two interfaces. Users can base their choice on personal preference.
Example 21.78. Object-oriented and procedural interface
<?php
$mysqli = mysqli_connect("example.com", "user", "password", "database");
if (mysqli_connect_errno($mysqli)) {
echo "Failed to connect to MySQL: " . mysqli_connect_error();
}
$res = mysqli_query($mysqli, "SELECT 'A world full of ' AS _msg FROM DUAL");
$row = mysqli_fetch_assoc($res);
echo $row['_msg'];
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: " . $mysqli->connect_error;
}
$res = $mysqli->query("SELECT 'choices to please everybody.' AS _msg FROM DUAL");
$row = $res->fetch_assoc();
echo $row['_msg'];
?>
The above example will output:
A world full of choices to please everybody.
The object oriented interface is used for the quickstart because the reference section is organized that way.
Mixing styles
It is possible to switch between styles at any time. Mixing both styles is not recommended for code clarity and coding style reasons.
Example 21.79. Bad coding style
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: " . $mysqli->connect_error;
}
$res = mysqli_query($mysqli, "SELECT 'Possible but bad style.' AS _msg FROM DUAL");
if (!$res) {
echo "Failed to run query: (" . $mysqli->errno . ") " . $mysqli->error;
}
if ($row = $res->fetch_assoc()) {
echo $row['_msg'];
}
?>
The above example will output:
Possible but bad style.
See also
mysqli::__construct |
mysqli::query |
mysqli_result::fetch_assoc |
$mysqli::connect_errno |
$mysqli::connect_error |
$mysqli::errno |
$mysqli::error |
The MySQLi Extension Function Summary |
21.9.3.3.2. Connections
Copyright 1997-2012 the PHP Documentation Group.
The MySQL server supports the use of different transport layers for connections. Connections use TCP/IP, Unix domain sockets or Windows named pipes.
The hostname localhost has a special meaning. It is bound to the use of Unix domain sockets. It is not possible to open a TCP/IP connection using the hostname localhost you must use 127.0.0.1 instead.
Example 21.80. Special meaning of localhost
<?php
$mysqli = new mysqli("localhost", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
echo $mysqli->host_info . "\n";
$mysqli = new mysqli("127.0.0.1", "user", "password", "database", 3306);
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
echo $mysqli->host_info . "\n";
?>
The above example will output:
Localhost via UNIX socket
127.0.0.1 via TCP/IP
Connection parameter defaults
Depending on the connection function used, assorted parameters can be omitted. If a parameter is not provided, then the extension attempts to use the default values that are set in the PHP configuration file.
Example 21.81. Setting defaults
mysqli.default_host=192.168.2.27
mysqli.default_user=root
mysqli.default_pw=""
mysqli.default_port=3306
mysqli.default_socket=/tmp/mysql.sock
The resulting parameter values are then passed to the client library that is used by the extension. If the client library detects empty or unset parameters, then it may default to the library built-in values.
Built-in connection library defaults
If the host value is unset or empty, then the client library will default to a Unix socket connection on localhost. If socket is unset or empty, and a Unix socket connection is requested, then a connection to the default socket on /tmp/mysql.sock is attempted.
On Windows systems, the host name . is interpreted by the client library as an attempt to open a Windows named pipe based connection. In this case the socket parameter is interpreted as the pipe name. If not given or empty, then the socket (pipe name) defaults to \\.\pipe\MySQL.
If neither a Unix domain socket based not a Windows named pipe based connection is to be be established and the port parameter value is unset, the library will default to port 3306.
The mysqlnd library and the MySQL Client Library (libmysqlclient) implement the same logic for determining defaults.
Connection options
Connection options are available to, for example, set init commands which are executed upon connect, or for requesting use of a certain charset. Connection options must be set before a network connection is established.
For setting a connection option, the connect operation has to be performed in three steps: creating a connection handle with mysqli_init, setting the requested options using mysqli_options, and establishing the network connection with mysqli_real_connect.
Connection pooling
The mysqli extension supports persistent database connections, which are a special kind of pooled connections. By default, every database connection opened by a script is either explicitly closed by the user during runtime or released automatically at the end of the script. A persistent connection is not. Instead it is put into a pool for later reuse, if a connection to the same server using the same username, password, socket, port and default database is opened. Reuse saves connection overhead.
Every PHP process is using its own mysqli connection pool. Depending on the web server deployment model, a PHP process may serve one or multiple requests. Therefore, a pooled connection may be used by one or more scripts subsequently.
Persistent connection
If a unused persistent connection for a given combination of host, username, password, socket, port and default database can not be found in the connection pool, then mysqli opens a new connection. The use of persistent connections can be enabled and disabled using the PHP directive mysqli.allow_persistent. The total number of connections opened by a script can be limited with mysqli.max_links. The maximum number of persistent connections per PHP process can be restricted with mysqli.max_persistent. Please note, that the web server may spawn many PHP processes.
A common complain about persistent connections is that their state is not reset before reuse. For example, open and unfinished transactions are not automatically rolled back. But also, authorization changes which happened in the time between putting the connection into the pool and reusing it are not reflected. This may be seen as an unwanted side-effect. On the contrary, the name persistent may be understood as a promise that the state is persisted.
The mysqli extension supports both interpretations of a persistent connection: state persisted, and state reset before reuse. The default is reset. Before a persistent connection is reused, the mysqli extension implicitly calls mysqli_change_user to reset the state. The persistent connection appears to the user as if it was just opened. No artifacts from previous usages are visible.
The mysqli_change_user function is an expensive operation. For best performance, users may want to recompile the extension with the compile flag MYSQLI_NO_CHANGE_USER_ON_PCONNECT being set.
It is left to the user to choose between safe behavior and best performance. Both are valid optimization goals. For ease of use, the safe behavior has been made the default at the expense of maximum performance.
See also
mysqli::__construct |
mysqli::init |
mysqli::options |
mysqli::real_connect |
mysqli::change_user |
$mysqli::host_info |
MySQLi Configuration Options |
Persistent Database Connections |
21.9.3.3.3. Executing statements
Copyright 1997-2012 the PHP Documentation Group.
Statements can be executed with the mysqli_query, mysqli_real_query and mysqli_multi_query functions. The mysqli_query function is the most common, and combines the executing statement with a buffered fetch of its result set, if any, in one call. Calling mysqli_query is identical to calling mysqli_real_query followed by mysqli_store_result.
Example 21.82. Connecting to MySQL
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT)") ||
!$mysqli->query("INSERT INTO test(id) VALUES (1)")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>
Buffered result sets
After statement execution results can be retrieved at once to be buffered by the client or by read row by row. Client-side result set buffering allows the server to free resources associated with the statement results as early as possible. Generally speaking, clients are slow consuming result sets. Therefore, it is recommended to use buffered result sets. mysqli_query combines statement execution and result set buffering.
PHP applications can navigate freely through buffered results. Navigation is fast because the result sets are held in client memory. Please, keep in mind that it is often easier to scale by client than it is to scale the server.
Example 21.83. Navigation through buffered results
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT)") ||
!$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
$res = $mysqli->query("SELECT id FROM test ORDER BY id ASC");
echo "Reverse order...\n";
for ($row_no = $res->num_rows - 1; $row_no >= 0; $row_no--) {
$res->data_seek($row_no);
$row = $res->fetch_assoc();
echo " id = " . $row['id'] . "\n";
}
echo "Result set order...\n";
$res->data_seek(0);
while ($row = $res->fetch_assoc()) {
echo " id = " . $row['id'] . "\n";
}
?>
The above example will output:
Reverse order...
id = 3
id = 2
id = 1
Result set order...
id = 1
id = 2
id = 3
Unbuffered result sets
If client memory is a short resource and freeing server resources as early as possible to keep server load low is not needed, unbuffered results can be used. Scrolling through unbuffered results is not possible before all rows have been read.
Example 21.84. Navigation through unbuffered results
<?php
$mysqli->real_query("SELECT id FROM test ORDER BY id ASC");
$res = $mysqli->use_result();
echo "Result set order...\n";
while ($row = $res->fetch_assoc()) {
echo " id = " . $row['id'] . "\n";
}
?>
Result set values data types
The mysqli_query, mysqli_real_query and mysqli_multi_query functions are used to execute non-prepared statements. At the level of the MySQL Client Server Protocol, the command COM_QUERY and the text protocol are used for statement execution. With the text protocol, the MySQL server converts all data of a result sets into strings before sending. This conversion is done regardless of the SQL result set column data type. The mysql client libraries receive all column values as strings. No further client-side casting is done to convert columns back to their native types. Instead, all values are provided as PHP strings.
Example 21.85. Text protocol returns strings by default
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
!$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
$res = $mysqli->query("SELECT id, label FROM test WHERE id = 1");
$row = $res->fetch_assoc();
printf("id = %s (%s)\n", $row['id'], gettype($row['id']));
printf("label = %s (%s)\n", $row['label'], gettype($row['label']));
?>
The above example will output:
id = 1 (string)
label = a (string)
It is possible to convert integer and float columns back to PHP numbers by setting the MYSQLI_OPT_INT_AND_FLOAT_NATIVE connection option, if using the mysqlnd library. If set, the mysqlnd library will check the result set meta data column types and convert numeric SQL columns to PHP numbers, if the PHP data type value range allows for it. This way, for example, SQL INT columns are returned as integers.
Example 21.86. Native data types with mysqlnd and connection option
<?php
$mysqli = mysqli_init();
$mysqli->options(MYSQLI_OPT_INT_AND_FLOAT_NATIVE, 1);
$mysqli->real_connect("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
!$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
$res = $mysqli->query("SELECT id, label FROM test WHERE id = 1");
$row = $res->fetch_assoc();
printf("id = %s (%s)\n", $row['id'], gettype($row['id']));
printf("label = %s (%s)\n", $row['label'], gettype($row['label']));
?>
The above example will output:
id = 1 (integer)
label = a (string)
See also
mysqli::__construct |
mysqli::init |
mysqli::options |
mysqli::real_connect |
mysqli::query |
mysqli::multi_query |
mysqli::use_result |
mysqli::store_result |
mysqli_result::free |
21.9.3.3.4. Prepared Statements
Copyright 1997-2012 the PHP Documentation Group.
The MySQL database supports prepared statements. A prepared statement or a parameterized statement is used to execute the same statement repeatedly with high efficiency.
Basic workflow
The prepared statement execution consists of two stages: prepare and execute. At the prepare stage a statement template is send to the database server. The server performs a syntax check and initializes server internal resources for later use.
The MySQL server supports using anonymous, positional placeholder with ?.
Example 21.87. First stage: prepare
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
/* Non-prepared statement */
if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
/* Prepared statement, stage 1: prepare */
if (!($stmt = $mysqli->prepare("INSERT INTO test(id) VALUES (?)"))) {
echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>
Prepare is followed by execute. During execute the client binds parameter values and sends them to the server. The server creates a statement from the statement template and the bound values to execute it using the previously created internal resources.
Example 21.88. Second stage: bind and execute
<?php
/* Prepared statement, stage 2: bind and execute */
$id = 1;
if (!$stmt->bind_param("i", $id)) {
echo "Binding parameters failed: (" . $stmt->errno . ") " . $stmt->error;
}
if (!$stmt->execute()) {
echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}
?>
Repeated execution
A prepared statement can be executed repeatedly. Upon every execution the current value of the bound variable is evaluated and send to the server. The statement is not parsed again. The statement template is not transferred to the server again.
Example 21.89. INSERT prepared once, executed multiple times
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
/* Non-prepared statement */
if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
/* Prepared statement, stage 1: prepare */
if (!($stmt = $mysqli->prepare("INSERT INTO test(id) VALUES (?)"))) {
echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
/* Prepared statement, stage 2: bind and execute */
$id = 1;
if (!$stmt->bind_param("i", $id)) {
echo "Binding parameters failed: (" . $stmt->errno . ") " . $stmt->error;
}
if (!$stmt->execute()) {
echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}
/* Prepared statement: repeated execution, only data transferred from client to server */
for ($id = 2; $id < 5; $id++) {
if (!$stmt->execute()) {
echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}
}
/* explicit close recommended */
$stmt->close();
/* Non-prepared statement */
$res = $mysqli->query("SELECT id FROM test");
var_dump($res->fetch_all());
?>
The above example will output:
array(4) {
[0]=>
array(1) {
[0]=>
string(1) "1"
}
[1]=>
array(1) {
[0]=>
string(1) "2"
}
[2]=>
array(1) {
[0]=>
string(1) "3"
}
[3]=>
array(1) {
[0]=>
string(1) "4"
}
}
Every prepared statement occupies server resources. Statements should be closed explicitly immediately after use. If not done explicitly, the statement will be closed when the statement handle is freed by PHP.
Using a prepared statement is not always the most efficient way of executing a statement. A prepared statement executed only once causes more client-server round-trips than a non-prepared statement. This is why the SELECT is not run as a prepared statement above.
Also, consider the use of the MySQL multi-INSERT SQL syntax for INSERTs. For the example, multi-INSERT requires less round-trips between the server and client than the prepared statement shown above.
Example 21.90. Less round trips using multi-INSERT SQL
<?php
if (!$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3), (4)")) {
echo "Multi-INSERT failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>
Result set values data types
The MySQL Client Server Protocol defines a different data transfer protocol for prepared statements and non-prepared statements. Prepared statements are using the so called binary protocol. The MySQL server sends result set data "as is" in binary format. Results are not serialized into strings before sending. The client libraries do not receive strings only. Instead, they will receive binary data and try to convert the values into appropriate PHP data types. For example, results from an SQL INT column will be provided as PHP integer variables.
Example 21.91. Native datatypes
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
!$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
$stmt = $mysqli->prepare("SELECT id, label FROM test WHERE id = 1");
$stmt->execute();
$res = $stmt->get_result();
$row = $res->fetch_assoc();
printf("id = %s (%s)\n", $row['id'], gettype($row['id']));
printf("label = %s (%s)\n", $row['label'], gettype($row['label']));
?>
The above example will output:
id = 1 (integer)
label = a (string)
This behavior differs from non-prepared statements. By default, non-prepared statements return all results as strings. This default can be changed using a connection option. If the connection option is used, there are no differences.
Fetching results using bound variables
Results from prepared statements can either be retrieved by binding output variables, or by requesting a mysqli_result object.
Output variables must be bound after statement execution. One variable must be bound for every column of the statements result set.
Example 21.92. Output variable binding
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
!$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!($stmt = $mysqli->prepare("SELECT id, label FROM test"))) {
echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$stmt->execute()) {
echo "Execute failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
$out_id = NULL;
$out_label = NULL;
if (!$stmt->bind_result($out_id, $out_label)) {
echo "Binding output parameters failed: (" . $stmt->errno . ") " . $stmt->error;
}
while ($stmt->fetch()) {
printf("id = %s (%s), label = %s (%s)\n", $out_id, gettype($out_id), $out_label, gettype($out_label));
}
?>
The above example will output:
id = 1 (integer), label = a (string)
Prepared statements return unbuffered result sets by default. The results of the statement are not implicitly fetched and transferred from the server to the client for client-side buffering. The result set takes server resources until all results have been fetched by the client. Thus it is recommended to consume results timely. If a client fails to fetch all results or the client closes the statement before having fetched all data, the data has to be fetched implicitly by mysqli.
It is also possible to buffer the results of a prepared statement using mysqli_stmt_store_result.
Fetching results using mysqli_result interface
Instead of using bound results, results can also be retrieved through the mysqli_result interface. mysqli_stmt_get_result returns a buffered result set.
Example 21.93. Using mysqli_result to fetch results
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
!$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!($stmt = $mysqli->prepare("SELECT id, label FROM test ORDER BY id ASC"))) {
echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$stmt->execute()) {
echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}
if (!($res = $stmt->get_result())) {
echo "Getting result set failed: (" . $stmt->errno . ") " . $stmt->error;
}
var_dump($res->fetch_all());
?>
The above example will output:
array(1) {
[0]=>
array(2) {
[0]=>
int(1)
[1]=>
string(1) "a"
}
}
Using the mysqli_result interface offers the additional benefit of flexible client-side result set navigation.
Example 21.94. Buffered result set for flexible read out
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
!$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a'), (2, 'b'), (3, 'c')")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!($stmt = $mysqli->prepare("SELECT id, label FROM test"))) {
echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$stmt->execute()) {
echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}
if (!($res = $stmt->get_result())) {
echo "Getting result set failed: (" . $stmt->errno . ") " . $stmt->error;
}
for ($row_no = ($res->num_rows - 1); $row_no >= 0; $row_no--) {
$res->data_seek($row_no);
var_dump($res->fetch_assoc());
}
$res->close();
?>
The above example will output:
array(2) {
["id"]=>
int(3)
["label"]=>
string(1) "c"
}
array(2) {
["id"]=>
int(2)
["label"]=>
string(1) "b"
}
array(2) {
["id"]=>
int(1)
["label"]=>
string(1) "a"
}
Escaping and SQL injection
Bound variables will be escaped automatically by the server. The server inserts their escaped values at the appropriate places into the statement template before execution. A hint must be provided to the server for the type of bound variable, to create an appropriate conversion. See the mysqli_stmt_bind_param function for more information.
The automatic escaping of values within the server is sometimes considered a security feature to prevent SQL injection. The same degree of security can be achieved with non-prepared statements, if input values are escaped correctly.
Client-side prepared statement emulation
The API does not include emulation for client-side prepared statement emulation.
Quick prepared - non-prepared statement comparison
The table below compares server-side prepared and non-prepared statements.
Table 21.39. Comparison of prepared and non-prepared statements
Prepared Statement | Non-prepared statement | |
---|---|---|
Client-server round trips, SELECT, single execution | 2 | 1 |
Statement string transferred from client to server | 1 | 1 |
Client-server round trips, SELECT, repeated (n) execution | 1 + n | n |
Statement string transferred from client to server | 1 template, n times bound parameter, if any | n times together with parameter, if any |
Input parameter binding API | Yes, automatic input escaping | No, manual input escaping |
Output variable binding API | Yes | No |
Supports use of mysqli_result API | Yes, use mysqli_stmt_get_result | Yes |
Buffered result sets | Yes, use mysqli_stmt_get_result or binding with mysqli_stmt_store_result | Yes, default of mysqli_query |
Unbuffered result sets | Yes, use output binding API | Yes, use mysqli_real_query with mysqli_use_result |
MySQL Client Server protocol data transfer flavor | Binary protocol | Text protocol |
Result set values SQL data types | Preserved when fetching | Converted to string or preserved when fetching |
Supports all SQL statements | Recent MySQL versions support most but not all | Yes |
See also
mysqli::__construct |
mysqli::query |
mysqli::prepare |
mysqli_stmt::prepare |
mysqli_stmt::execute |
mysqli_stmt::bind_param |
mysqli_stmt::bind_result |
21.9.3.3.5. Stored Procedures
Copyright 1997-2012 the PHP Documentation Group.
The MySQL database supports stored procedures. A stored procedure is a subroutine stored in the database catalog. Applications can call and execute the stored procedure. The CALL SQL statement is used to execute a stored procedure.
Parameter
Stored procedures can have IN, INOUT and OUT parameters, depending on the MySQL version. The mysqli interface has no special notion for the different kinds of parameters.
IN parameter
Input parameters are provided with the CALL statement. Please, make sure values are escaped correctly.
Example 21.95. Calling a stored procedure
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
!$mysqli->query("CREATE PROCEDURE p(IN id_val INT) BEGIN INSERT INTO test(id) VALUES(id_val); END;")) {
echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$mysqli->query("CALL p(1)")) {
echo "CALL failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!($res = $mysqli->query("SELECT id FROM test"))) {
echo "SELECT failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
var_dump($res->fetch_assoc());
?>
The above example will output:
array(1) {
["id"]=>
string(1) "1"
}
INOUT/OUT parameter
The values of INOUT/OUT parameters are accessed using session variables.
Example 21.96. Using session variables
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
!$mysqli->query('CREATE PROCEDURE p(OUT msg VARCHAR(50)) BEGIN SELECT "Hi!" INTO msg; END;')) {
echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$mysqli->query("SET @msg = ''") || !$mysqli->query("CALL p(@msg)")) {
echo "CALL failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!($res = $mysqli->query("SELECT @msg as _p_out"))) {
echo "Fetch failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
$row = $res->fetch_assoc();
echo $row['_p_out'];
?>
The above example will output:
Hi!
Application and framework developers may be able to provide a more convenient API using a mix of session variables and databased catalog inspection. However, please note the possible performance impact of a custom solution based on catalog inspection.
Handling result sets
Stored procedures can return result sets. Result sets returned from a stored procedure cannot be fetched correctly using mysqli_query. The mysqli_query function combines statement execution and fetching the first result set into a buffered result set, if any. However, there are additional stored procedure result sets hidden from the user which cause mysqli_query to fail returning the user expected result sets.
Result sets returned from a stored procedure are fetched using mysqli_real_query or mysqli_multi_query. Both functions allow fetching any number of result sets returned by a statement, such as CALL. Failing to fetch all result sets returned by a stored procedure causes an error.
Example 21.97. Fetching results from stored procedures
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT)") ||
!$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
!$mysqli->query('CREATE PROCEDURE p() READS SQL DATA BEGIN SELECT id FROM test; SELECT id + 1 FROM test; END;')) {
echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$mysqli->multi_query("CALL p()")) {
echo "CALL failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
do {
if ($res = $mysqli->store_result()) {
printf("---\n");
var_dump($res->fetch_all());
$res->free();
} else {
if ($mysqli->errno) {
echo "Store failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
}
} while ($mysqli->more_results() && $mysqli->next_result());
?>
The above example will output:

array(3) {
[0]=>
array(1) {
[0]=>
string(1) "1"
}
[1]=>
array(1) {
[0]=>
string(1) "2"
}
[2]=>
array(1) {
[0]=>
string(1) "3"
}
}

array(3) {
[0]=>
array(1) {
[0]=>
string(1) "2"
}
[1]=>
array(1) {
[0]=>
string(1) "3"
}
[2]=>
array(1) {
[0]=>
string(1) "4"
}
}
Use of prepared statements
No special handling is required when using the prepared statement interface for fetching results from the same stored procedure as above. The prepared statement and non-prepared statement interfaces are similar. Please note, that not every MYSQL server version may support preparing the CALL SQL statement.
Example 21.98. Stored Procedures and Prepared Statements
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT)") ||
!$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
!$mysqli->query('CREATE PROCEDURE p() READS SQL DATA BEGIN SELECT id FROM test; SELECT id + 1 FROM test; END;')) {
echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!($stmt = $mysqli->prepare("CALL p()"))) {
echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$stmt->execute()) {
echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}
do {
if ($res = $stmt->get_result()) {
printf("---\n");
var_dump(mysqli_fetch_all($res));
mysqli_free_result($res);
} else {
if ($stmt->errno) {
echo "Store failed: (" . $stmt->errno . ") " . $stmt->error;
}
}
} while ($stmt->more_results() && $stmt->next_result());
?>
Of course, use of the bind API for fetching is supported as well.
Example 21.99. Stored Procedures and Prepared Statements using bind API
<?php
if (!($stmt = $mysqli->prepare("CALL p()"))) {
echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
if (!$stmt->execute()) {
echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}
do {
$id_out = NULL;
if (!$stmt->bind_result($id_out)) {
echo "Bind failed: (" . $stmt->errno . ") " . $stmt->error;
}
while ($stmt->fetch()) {
echo "id = $id_out\n";
}
} while ($stmt->more_results() && $stmt->next_result());
?>
See also
mysqli::query |
mysqli::multi_query |
mysqli_result::next-result |
mysqli_result::more-results |
21.9.3.3.6. Multiple Statements
Copyright 1997-2012 the PHP Documentation Group.
MySQL optionally allows having multiple statements in one statement string. Sending multiple statements at once reduces client-server round trips but requires special handling.
Multiple statements or multi queries must be executed with mysqli_multi_query. The individual statements of the statement string are separated by semicolon. Then, all result sets returned by the executed statements must be fetched.
The MySQL server allows having statements that do return result sets and statements that do not return result sets in one multiple statement.
Example 21.100. Multiple Statements
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
$sql = "SELECT COUNT(*) AS _num FROM test; ";
$sql.= "INSERT INTO test(id) VALUES (1); ";
$sql.= "SELECT COUNT(*) AS _num FROM test; ";
if (!$mysqli->multi_query($sql)) {
echo "Multi query failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
do {
if ($res = $mysqli->store_result()) {
var_dump($res->fetch_all(MYSQLI_ASSOC));
$res->free();
}
} while ($mysqli->more_results() && $mysqli->next_result());
?>
The above example will output:
array(1) {
[0]=>
array(1) {
["_num"]=>
string(1) "0"
}
}
array(1) {
[0]=>
array(1) {
["_num"]=>
string(1) "1"
}
}
Security considerations
The API functions mysqli_query and mysqli_real_query do not set a connection flag necessary for activating multi queries in the server. An extra API call is used for multiple statements to reduce the likeliness of accidental SQL injection attacks. An attacker may try to add statements such as ; DROP DATABASE mysql or ; SELECT SLEEP(999). If the attacker succeeds in adding SQL to the statement string but mysqli_multi_query is not used, the server will not execute the second, injected and malicious SQL statement.
Example 21.101. SQL Injection
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
$res = $mysqli->query("SELECT 1; DROP TABLE mysql.user");
if (!$res) {
echo "Error executing query: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>
The above example will output:
Error executing query: (1064) You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server version for the right syntax
to use near 'DROP TABLE mysql.user' at line 1
Prepared statements
Use of the multiple statement with prepared statements is not supported.
See also
mysqli::query |
mysqli::multi_query |
mysqli_result::next-result |
mysqli_result::more-results |
21.9.3.3.7. API support for transactions
Copyright 1997-2012 the PHP Documentation Group.
The MySQL server supports transactions depending on the storage engine used. Since MySQL 5.5, the default storage engine is InnoDB. InnoDB has full ACID transaction support.
Transactions can either be controlled using SQL or API calls. It is recommended to use API calls for enabling and disabling the auto commit mode and for committing and rolling back transactions.
Example 21.102. Setting auto commit mode with SQL and through the API
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
/* Recommended: using API to control transactional settings */
$mysqli->autocommit(false);
/* Won't be monitored and recognized by the replication and the load balancing plugin */
if (!$mysqli->query('SET AUTOCOMMIT = 0')) {
echo "Query failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>
Optional feature packages, such as the replication and load balancing plugin, can easily monitor API calls. The replication plugin offers transaction aware load balancing, if transactions are controlled with API calls. Transaction aware load balancing is not available if SQL statements are used for setting auto commit mode, committing or rolling back a transaction.
Example 21.103. Commit and rollback
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
$mysqli->autocommit(false);
$mysqli->query("INSERT INTO test(id) VALUES (1)");
$mysqli->rollback();
$mysqli->query("INSERT INTO test(id) VALUES (2)");
$mysqli->commit();
?>
Please note, that the MySQL server cannot roll back all statements. Some statements cause am implicit commit.
See also
mysqli::autocommit |
mysqli_result::commit |
mysqli_result::rollback |
21.9.3.3.8. Metadata
Copyright 1997-2012 the PHP Documentation Group.
A MySQL result set contains metadata. The metadata describes the columns found in the result set. All metadata send by MySQL is accessible through the mysqli interface. The extension performs no or negligible changes to the information it receives. Differences between MySQL server versions are not aligned.
Meta data is access through the mysqli_result interface.
Example 21.104. Accessing result set meta data
<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
$res = $mysqli->query("SELECT 1 AS _one, 'Hello' AS _two FROM DUAL");
var_dump($res->fetch_fields());
?>
The above example will output:
array(2) {
[0]=>
object(stdClass)#3 (13) {
["name"]=>
string(4) "_one"
["orgname"]=>
string(0) ""
["table"]=>
string(0) ""
["orgtable"]=>
string(0) ""
["def"]=>
string(0) ""
["db"]=>
string(0) ""
["catalog"]=>
string(3) "def"
["max_length"]=>
int(1)
["length"]=>
int(1)
["charsetnr"]=>
int(63)
["flags"]=>
int(32897)
["type"]=>
int(8)
["decimals"]=>
int(0)
}
[1]=>
object(stdClass)#4 (13) {
["name"]=>
string(4) "_two"
["orgname"]=>
string(0) ""
["table"]=>
string(0) ""
["orgtable"]=>
string(0) ""
["def"]=>
string(0) ""
["db"]=>
string(0) ""
["catalog"]=>
string(3) "def"
["max_length"]=>
int(5)
["length"]=>
int(5)
["charsetnr"]=>
int(8)
["flags"]=>
int(1)
["type"]=>
int(253)
["decimals"]=>
int(31)
}
}
Prepared statements
Meta data of result sets created using prepared statements are accessed the same way. A suitable mysqli_result handle is returned by mysqli_stmt_result_metadata.
Example 21.105. Prepared statements metadata
<?php
$stmt = $mysqli->prepare("SELECT 1 AS _one, 'Hello' AS _two FROM DUAL");
$stmt->execute();
$res = $stmt->result_metadata();
var_dump($res->fetch_fields());
?>
See also
mysqli::query |
mysqli_result::fetch_fields |
21.9.3.4. Installing/Configuring
Copyright 1997-2012 the PHP Documentation Group.
21.9.3.4.1. Requirements
Copyright 1997-2012 the PHP Documentation Group.
In order to have these functions available, you must compile PHP with support for the mysqli extension.
Note
The mysqli extension is designed to work with MySQL version 4.1.13 or newer, or 5.0.7 or newer. For previous versions, please see the MySQL extension documentation.
21.9.3.4.2. Installation
Copyright 1997-2012 the PHP Documentation Group.
The mysqli extension was introduced with PHP version 5.0.0. The MySQL Native Driver was included in PHP version 5.3.0.
21.9.3.4.2.1. Installation on Linux
Copyright 1997-2012 the PHP Documentation Group.
The common Unix distributions include binary versions of PHP that can be installed. Although these binary versions are typically built with support for MySQL extensions enabled, the extension libraries themselves may need to be installed using an additional package. Check the package manager than comes with your chosen distribution for availability.
Unless your Unix distribution comes with a binary package of PHP with the mysqli extension available, you will need to build PHP from source code. Building PHP from source allows you to specify the MySQL extensions you want to use, as well as your choice of client library for each extension.
The MySQL Native Driver is the recommended option, as it results in improved performance and gives access to features not available when using the MySQL Client Library. Refer to What is PHP's MySQL Native Driver? for a brief overview of the advantages of MySQL Native Driver.
The /path/to/mysql_config represents the location of the mysql_config program that comes with MySQL Server.
Table 21.40. mysqli compile time support matrix
PHP Version | Default | Configure Options: mysqlnd | Configure Options: libmysqlclient | Changelog |
---|---|---|---|---|
5.0.x, 5.1.x, 5.2.x | libmysqlclient | Not Available | --with-mysqli=/path/to/mysql_config | |
5.3.x | libmysqlclient | --with-mysqli=mysqlnd | --with-mysqli=/path/to/mysql_config | mysqlnd is now supported |
5.4.x | mysqlnd | --with-mysqli | --with-mysqli=/path/to/mysql_config | mysqlnd is now the default |
Note that it is possible to freely mix MySQL extensions and client libraries. For example, it is possible to enable the MySQL extension to use the MySQL Client Library (libmysqlclient), while configuring the mysqli extension to use the MySQL Native Driver. However, all permutations of extension and client library are possible.
The following example builds the MySQL extension to use the MySQL Client Library, and the mysqli and PDO MYSQL extensions to use the MySQL Native Driver:
./configure --with-mysql=/usr/bin/mysql_config \
--with-mysqli=mysqlnd \
--with-pdo-mysql=mysqlnd
[other options]
21.9.3.4.2.2. Installation on Windows Systems
Copyright 1997-2012 the PHP Documentation Group.
On Windows, PHP is most commonly installed using the binary installer.
21.9.3.4.2.2.1. PHP 5.0, 5.1, 5.2
Copyright 1997-2012 the PHP Documentation Group.
Once PHP has been installed, some configuration is required to enable mysqli and specify the client library you want it to use.
The mysqli extension is not enabled by default, so the php_mysqli.dll DLL must be enabled inside of php.ini. In order to do this you need to find the php.ini file (typically located in c:\php), and make sure you remove the comment (semi-colon) from the start of the line extension=php_mysqli.dll, in the section marked [PHP_MYSQLI].
Also, if you want to use the MySQL Client Library with mysqli, you need to make sure PHP can access the client library file. The MySQL Client Library is included as a file named libmysql.dll in the Windows PHP distribution. This file needs to be available in the Windows system's PATH environment variable, so that it can be successfully loaded. See the FAQ titled "How do I add my PHP directory to the PATH on Windows" for information on how to do this. Copying libmysql.dll to the Windows system directory (typically c:\Windows\system) also works, as the system directory is by default in the system's PATH. However, this practice is strongly discouraged.
As with enabling any PHP extension (such as php_mysqli.dll), the PHP directive extension_dir should be set to the directory where the PHP extensions are located. See also the Manual Windows Installation Instructions. An example extension_dir value for PHP 5 is c:\php\ext.
Note
If when starting the web server an error similar to the following occurs: "Unable to load dynamic library './php_mysqli.dll'", this is because php_mysqli.dll and/or libmysql.dll cannot be found by the system.
21.9.3.4.2.2.2. PHP 5.3.0+
Copyright 1997-2012 the PHP Documentation Group.
On Windows, for PHP versions 5.3 and newer, the mysqli extension is enabled and uses the MySQL Native Driver by default. This means you don't need to worry about configuring access to libmysql.dll.
21.9.3.4.3. Runtime Configuration
Copyright 1997-2012 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php.ini.
Table 21.41. MySQLi Configuration Options
Name | Default | Changeable | Changelog |
---|---|---|---|
mysqli.allow_local_infile | "1" | PHP_INI_SYSTEM | Available since PHP 5.2.4. |
mysqli.allow_persistent | "1" | PHP_INI_SYSTEM | Available since PHP 5.3.0. |
mysqli.max_persistent | "-1" | PHP_INI_SYSTEM | Available since PHP 5.3.0. |
mysqli.max_links | "-1" | PHP_INI_SYSTEM | Available since PHP 5.0.0. |
mysqli.default_port | "3306" | PHP_INI_ALL | Available since PHP 5.0.0. |
mysqli.default_socket | NULL | PHP_INI_ALL | Available since PHP 5.0.0. |
mysqli.default_host | NULL | PHP_INI_ALL | Available since PHP 5.0.0. |
mysqli.default_user | NULL | PHP_INI_ALL | Available since PHP 5.0.0. |
mysqli.default_pw | NULL | PHP_INI_ALL | Available since PHP 5.0.0. |
mysqli.reconnect | "0" | PHP_INI_SYSTEM | Available since PHP 4.3.5. |
mysqli.cache_size | "2000" | PHP_INI_SYSTEM | Available since PHP 5.3.0. |
For further details and definitions of the preceding PHP_INI_* constants, see the chapter on configuration changes.
Here's a short explanation of the configuration directives.
mysqli.allow_local_infile integer
Allow accessing, from PHP's perspective, local files with LOAD DATA statements
mysqli.allow_persistent integer
Enable the ability to create persistent connections using mysqli_connect.
mysqli.max_persistent integer
Maximum of persistent connections that can be made. Set to 0 for unlimited.
mysqli.max_links integer
The maximum number of MySQL connections per process.
mysqli.default_port integer
The default TCP port number to use when connecting to the database server if no other port is specified. If no default is specified, the port will be obtained from the MYSQL_TCP_PORT environment variable, the mysql-tcp entry in /etc/services or the compile-time MYSQL_PORT constant, in that order. Win32 will only use the MYSQL_PORT constant.
mysqli.default_socket string
The default socket name to use when connecting to a local database server if no other socket name is specified.
mysqli.default_host string
The default server host to use when connecting to the database server if no other host is specified. Doesn't apply in safe mode.
mysqli.default_user string
The default user name to use when connecting to the database server if no other name is specified. Doesn't apply in safe mode.
mysqli.default_pw string
The default password to use when connecting to the database server if no other password is specified. Doesn't apply in safe mode.
mysqli.reconnect integer
Automatically reconnect if the connection was lost.
mysqli.cache_size integer
Available only with mysqlnd.
Users cannot set MYSQL_OPT_READ_TIMEOUT through an API call or runtime configuration setting. Note that if it were possible there would be differences between how libmysqlclient and streams would interpret the value of MYSQL_OPT_READ_TIMEOUT.
21.9.3.4.4. Resource Types
Copyright 1997-2012 the PHP Documentation Group.
This extension has no resource types defined.
21.9.3.5. The mysqli Extension and Persistent Connections
Copyright 1997-2012 the PHP Documentation Group.
Persistent connection support was introduced in PHP 5.3 for the mysqli extension. Support was already present in PDO MYSQL and ext/mysql. The idea behind persistent connections is that a connection between a client process and a database can be reused by a client process, rather than being created and destroyed multiple times. This reduces the overhead of creating fresh connections every time one is required, as unused connections are cached and ready to be reused.
Unlike the mysql extension, mysqli does not provide a separate function for opening persistent connections. To open a persistent connection you must prepend p: to the hostname when connecting.
The problem with persistent connections is that they can be left in unpredictable states by clients. For example, a table lock might be activated before a client terminates unexpectedly. A new client process reusing this persistent connection will get the connection “as is”. Any cleanup would need to be done by the new client process before it could make good use of the persistent connection, increasing the burden on the programmer.
The persistent connection of the mysqli extension however provides built-in cleanup handling code. The cleanup carried out by mysqli includes:
Rollback active transactions
Close and drop temporary tables
Unlock tables
Reset session variables
Close prepared statements (always happens with PHP)
Close handler
Release locks acquired with GET_LOCK
This ensures that persistent connections are in a clean state on return from the connection pool, before the client process uses them.
The mysqli extension does this cleanup by automatically calling the C-API function mysql_change_user().
The automatic cleanup feature has advantages and disadvantages though. The advantage is that the programmer no longer needs to worry about adding cleanup code, as it is called automatically. However, the disadvantage is that the code could potentially be a little slower, as the code to perform the cleanup needs to run each time a connection is returned from the connection pool.
It is possible to switch off the automatic cleanup code, by compiling PHP with MYSQLI_NO_CHANGE_USER_ON_PCONNECT defined.
Note
The mysqli extension supports persistent connections when using either MySQL Native Driver or MySQL Client Library.
21.9.3.6. Predefined Constants
Copyright 1997-2012 the PHP Documentation Group.
The constants below are defined by this extension, and will only be available when the extension has either been compiled into PHP or dynamically loaded at runtime.
MYSQLI_READ_DEFAULT_GROUP
Read options from the named group from my.cnf or the file specified with MYSQLI_READ_DEFAULT_FILE
MYSQLI_READ_DEFAULT_FILE
Read options from the named option file instead of from my.cnf
MYSQLI_OPT_CONNECT_TIMEOUT
Connect timeout in seconds
MYSQLI_OPT_LOCAL_INFILE
Enables command LOAD LOCAL INFILE
MYSQLI_INIT_COMMAND
Command to execute when connecting to MySQL server. Will automatically be re-executed when reconnecting.
MYSQLI_CLIENT_SSL
Use SSL (encrypted protocol). This option should not be set by application programs; it is set internally in the MySQL client library
MYSQLI_CLIENT_COMPRESS
Use compression protocol
MYSQLI_CLIENT_INTERACTIVE
Allow interactive_timeout seconds (instead of wait_timeout seconds) of inactivity before closing the connection. The client's session wait_timeout variable will be set to the value of the session interactive_timeout variable.
MYSQLI_CLIENT_IGNORE_SPACE
Allow spaces after function names. Makes all functions names reserved words.
MYSQLI_CLIENT_NO_SCHEMA
Don't allow the db_name.tbl_name.col_name syntax.
MYSQLI_CLIENT_MULTI_QUERIES
Allows multiple semicolon-delimited queries in a single mysqli_query call.
MYSQLI_STORE_RESULT
For using buffered resultsets
MYSQLI_USE_RESULT
For using unbuffered resultsets
MYSQLI_ASSOC
Columns are returned into the array having the fieldname as the array index.
MYSQLI_NUM
Columns are returned into the array having an enumerated index.
MYSQLI_BOTH
Columns are returned into the array having both a numerical index and the fieldname as the associative index.
MYSQLI_NOT_NULL_FLAG
Indicates that a field is defined as NOT NULL
MYSQLI_PRI_KEY_FLAG
Field is part of a primary index
MYSQLI_UNIQUE_KEY_FLAG
Field is part of a unique index.
MYSQLI_MULTIPLE_KEY_FLAG
Field is part of an index.
MYSQLI_BLOB_FLAG
Field is defined as BLOB
MYSQLI_UNSIGNED_FLAG
Field is defined as UNSIGNED
MYSQLI_ZEROFILL_FLAG
Field is defined as ZEROFILL
MYSQLI_AUTO_INCREMENT_FLAG
Field is defined as AUTO_INCREMENT
MYSQLI_TIMESTAMP_FLAG
Field is defined as TIMESTAMP
MYSQLI_SET_FLAG
Field is defined as SET
MYSQLI_NUM_FLAG
Field is defined as NUMERIC
MYSQLI_PART_KEY_FLAG
Field is part of an multi-index
MYSQLI_GROUP_FLAG
Field is part of GROUP BY
MYSQLI_TYPE_DECIMAL
Field is defined as DECIMAL
MYSQLI_TYPE_NEWDECIMAL
Precision math DECIMAL or NUMERIC field (MySQL 5.0.3 and up)
MYSQLI_TYPE_BIT
Field is defined as BIT (MySQL 5.0.3 and up)
MYSQLI_TYPE_TINY
Field is defined as TINYINT
MYSQLI_TYPE_SHORT
Field is defined as SMALLINT
MYSQLI_TYPE_LONG
Field is defined as INT
MYSQLI_TYPE_FLOAT
Field is defined as FLOAT
MYSQLI_TYPE_DOUBLE
Field is defined as DOUBLE
MYSQLI_TYPE_NULL
Field is defined as DEFAULT NULL
MYSQLI_TYPE_TIMESTAMP
Field is defined as TIMESTAMP
MYSQLI_TYPE_LONGLONG
Field is defined as BIGINT
MYSQLI_TYPE_INT24
Field is defined as MEDIUMINT
MYSQLI_TYPE_DATE
Field is defined as DATE
MYSQLI_TYPE_TIME
Field is defined as TIME
MYSQLI_TYPE_DATETIME
Field is defined as DATETIME
MYSQLI_TYPE_YEAR
Field is defined as YEAR
MYSQLI_TYPE_NEWDATE
Field is defined as DATE
MYSQLI_TYPE_INTERVAL
Field is defined as INTERVAL
MYSQLI_TYPE_ENUM
Field is defined as ENUM
MYSQLI_TYPE_SET
Field is defined as SET
MYSQLI_TYPE_TINY_BLOB
Field is defined as TINYBLOB
MYSQLI_TYPE_MEDIUM_BLOB
Field is defined as MEDIUMBLOB
MYSQLI_TYPE_LONG_BLOB
Field is defined as LONGBLOB
MYSQLI_TYPE_BLOB
Field is defined as BLOB
MYSQLI_TYPE_VAR_STRING
Field is defined as VARCHAR
MYSQLI_TYPE_STRING
Field is defined as CHAR or BINARY
MYSQLI_TYPE_CHAR
Field is defined as TINYINT. For CHAR, see MYSQLI_TYPE_STRING
MYSQLI_TYPE_GEOMETRY
Field is defined as GEOMETRY
MYSQLI_NEED_DATA
More data available for bind variable
MYSQLI_NO_DATA
No more data available for bind variable
MYSQLI_DATA_TRUNCATED
Data truncation occurred. Available since PHP 5.1.0 and MySQL 5.0.5.
MYSQLI_ENUM_FLAG
Field is defined as ENUM. Available since PHP 5.3.0.
MYSQLI_CURSOR_TYPE_FOR_UPDATE
MYSQLI_CURSOR_TYPE_NO_CURSOR
MYSQLI_CURSOR_TYPE_READ_ONLY
MYSQLI_CURSOR_TYPE_SCROLLABLE
MYSQLI_STMT_ATTR_CURSOR_TYPE
MYSQLI_STMT_ATTR_PREFETCH_ROWS
MYSQLI_STMT_ATTR_UPDATE_MAX_LENGTH
MYSQLI_SET_CHARSET_NAME
MYSQLI_REPORT_INDEX
Report if no index or bad index was used in a query.
MYSQLI_REPORT_ERROR
Report errors from mysqli function calls.
MYSQLI_REPORT_STRICT
Throw a mysqli_sql_exception for errors instead of warnings.
MYSQLI_REPORT_ALL
Set all options on (report all).
MYSQLI_REPORT_OFF
Turns reporting off.
MYSQLI_DEBUG_TRACE_ENABLED
Is set to 1 if mysqli_debug functionality is enabled.
MYSQLI_SERVER_QUERY_NO_GOOD_INDEX_USED
MYSQLI_SERVER_QUERY_NO_INDEX_USED
MYSQLI_REFRESH_GRANT
Refreshes the grant tables.
MYSQLI_REFRESH_LOG
Flushes the logs, like executing the FLUSH LOGS SQL statement.
MYSQLI_REFRESH_TABLES
Flushes the table cache, like executing the FLUSH TABLES SQL statement.
MYSQLI_REFRESH_HOSTS
Flushes the host cache, like executing the FLUSH HOSTS SQL statement.
MYSQLI_REFRESH_STATUS
Reset the status variables, like executing the FLUSH STATUS SQL statement.
MYSQLI_REFRESH_THREADS
Flushes the thread cache.
MYSQLI_REFRESH_SLAVE
On a slave replication server: resets the master server information, and restarts the slave. Like executing the RESET SLAVE SQL statement.
MYSQLI_REFRESH_MASTER
On a master replication server: removes the binary log files listed in the binary log index, and truncates the index file. Like executing the RESET MASTER SQL statement.
21.9.3.7. Notes
Copyright 1997-2012 the PHP Documentation Group.
Some implementation notes:
Support was added for MYSQL_TYPE_GEOMETRY to the MySQLi extension in PHP 5.3.
Note there are different internal implementations within libmysqlclient and mysqlnd for handling columns of type MYSQL_TYPE_GEOMETRY. Generally speaking, mysqlnd will allocate significantly less memory. For example, if there is a POINT column in a result set, libmysqlclient may pre-allocate up to 4GB of RAM although less than 50 bytes are needed for holding a POINT column in memory. Memory allocation is much lower, less than 50 bytes, if using mysqlnd.
21.9.3.8. The MySQLi Extension Function Summary
Copyright 1997-2012 the PHP Documentation Group.
Table 21.42. Summary of mysqli methods
mysqli Class | |||
---|---|---|---|
OOP Interface | Procedural Interface | Alias (Do not use) | Description |
Properties | |||
$mysqli::affected_rows | mysqli_affected_rows | N/A | Gets the number of affected rows in a previous MySQL operation |
$mysqli::client_info | mysqli_get_client_info | N/A | Returns the MySQL client version as a string |
$mysqli::client_version | mysqli_get_client_version | N/A | Returns MySQL client version info as an integer |
$mysqli::connect_errno | mysqli_connect_errno | N/A | Returns the error code from last connect call |
$mysqli::connect_error | mysqli_connect_error | N/A | Returns a string description of the last connect error |
$mysqli::errno | mysqli_errno | N/A | Returns the error code for the most recent function call |
$mysqli::error | mysqli_error | N/A | Returns a string description of the last error |
$mysqli::field_count | mysqli_field_count | N/A | Returns the number of columns for the most recent query |
$mysqli::host_info | mysqli_get_host_info | N/A | Returns a string representing the type of connection used |
$mysqli::protocol_version | mysqli_get_proto_info | N/A | Returns the version of the MySQL protocol used |
$mysqli::server_info | mysqli_get_server_info | N/A | Returns the version of the MySQL server |
$mysqli::server_version | mysqli_get_server_version | N/A | Returns the version of the MySQL server as an integer |
$mysqli::info | mysqli_info | N/A | Retrieves information about the most recently executed query |
$mysqli::insert_id | mysqli_insert_id | N/A | Returns the auto generated id used in the last query |
$mysqli::sqlstate | mysqli_sqlstate | N/A | Returns the SQLSTATE error from previous MySQL operation |
$mysqli::warning_count | mysqli_warning_count | N/A | Returns the number of warnings from the last query for the given link |
Methods | |||
mysqli::autocommit | mysqli_autocommit | N/A | Turns on or off auto-committing database modifications |
mysqli::change_user | mysqli_change_user | N/A | Changes the user of the specified database connection |
mysqli::character_set_name, mysqli::client_encoding | mysqli_character_set_name | mysqli_client_encoding | Returns the default character set for the database connection |
mysqli::close | mysqli_close | N/A | Closes a previously opened database connection |
mysqli::commit | mysqli_commit | N/A | Commits the current transaction |
mysqli::__construct | mysqli_connect | N/A | Open a new connection to the MySQL server [Note: static (i.e. class) method] |
mysqli::debug | mysqli_debug | N/A | Performs debugging operations |
mysqli::dump_debug_info | mysqli_dump_debug_info | N/A | Dump debugging information into the log |
mysqli::get_charset | mysqli_get_charset | N/A | Returns a character set object |
mysqli::get_connection_stats | mysqli_get_connection_stats | N/A | Returns client connection statistics. Available only with mysqlnd. |
mysqli::get_client_info | mysqli_get_client_info | N/A | Returns the MySQL client version as a string |
mysqli::get_client_stats | mysqli_get_client_stats | N/A | Returns client per-process statistics. Available only with mysqlnd. |
mysqli::get_cache_stats | mysqli_get_cache_stats | N/A | Returns client Zval cache statistics. Available only with mysqlnd. |
mysqli::get_server_info | mysqli_get_server_info | N/A | NOT DOCUMENTED |
mysqli::get_warnings | mysqli_get_warnings | N/A | NOT DOCUMENTED |
mysqli::init | mysqli_init | N/A | Initializes MySQLi and returns a resource for use with mysqli_real_connect. [Not called on an object, as it returns a $mysqli object.] |
mysqli::kill | mysqli_kill | N/A | Asks the server to kill a MySQL thread |
mysqli::more_results | mysqli_more_results | N/A | Check if there are any more query results from a multi query |
mysqli::multi_query | mysqli_multi_query | N/A | Performs a query on the database |
mysqli::next_result | mysqli_next_result | N/A | Prepare next result from multi_query |
mysqli::options | mysqli_options | mysqli_set_opt | Set options |
mysqli::ping | mysqli_ping | N/A | Pings a server connection, or tries to reconnect if the connection has gone down |
mysqli::prepare | mysqli_prepare | N/A | Prepare an SQL statement for execution |
mysqli::query | mysqli_query | N/A | Performs a query on the database |
mysqli::real_connect | mysqli_real_connect | N/A | Opens a connection to a mysql server |
mysqli::real_escape_string, mysqli::escape_string | mysqli_real_escape_string | mysqli_escape_string | Escapes special characters in a string for use in an SQL statement, taking into account the current charset of the connection |
mysqli::real_query | mysqli_real_query | N/A | Execute an SQL query |
mysqli::refresh | mysqli_refresh | N/A | Flushes tables or caches, or resets the replication server information |
mysqli::rollback | mysqli_rollback | N/A | Rolls back current transaction |
mysqli::select_db | mysqli_select_db | N/A | Selects the default database for database queries |
mysqli::set_charset | mysqli_set_charset | N/A | Sets the default client character set |
mysqli::set_local_infile_default | mysqli_set_local_infile_default | N/A | Unsets user defined handler for load local infile command |
mysqli::set_local_infile_handler | mysqli_set_local_infile_handler | N/A | Set callback function for LOAD DATA LOCAL INFILE command |
mysqli::ssl_set | mysqli_ssl_set | N/A | Used for establishing secure connections using SSL |
mysqli::stat | mysqli_stat | N/A | Gets the current system status |
mysqli::stmt_init | mysqli_stmt_init | N/A | Initializes a statement and returns an object for use with mysqli_stmt_prepare |
mysqli::store_result | mysqli_store_result | N/A | Transfers a result set from the last query |
mysqli::thread_id | mysqli_thread_id | N/A | Returns the thread ID for the current connection |
mysqli::thread_safe | mysqli_thread_safe | N/A | Returns whether thread safety is given or not |
mysqli::use_result | mysqli_use_result | N/A | Initiate a result set retrieval |
Table 21.43. Summary of mysqli_stmt methods
MySQL_STMT | |||
---|---|---|---|
OOP Interface | Procedural Interface | Alias (Do not use) | Description |
Properties | |||
$mysqli_stmt::affected_rows | mysqli_stmt_affected_rows | N/A | Returns the total number of rows changed, deleted, or inserted by the last executed statement |
$mysqli_stmt::errno | mysqli_stmt_errno | N/A | Returns the error code for the most recent statement call |
$mysqli_stmt::error | mysqli_stmt_error | N/A | Returns a string description for last statement error |
$mysqli_stmt::field_count | mysqli_stmt_field_count | N/A | Returns the number of field in the given statement - not documented |
$mysqli_stmt::insert_id | mysqli_stmt_insert_id | N/A | Get the ID generated from the previous INSERT operation |
$mysqli_stmt::num_rows | mysqli_stmt_num_rows | N/A | Return the number of rows in statements result set |
$mysqli_stmt::param_count | mysqli_stmt_param_count | mysqli_param_count | Returns the number of parameter for the given statement |
$mysqli_stmt::sqlstate | mysqli_stmt_sqlstate | N/A | Returns SQLSTATE error from previous statement operation |
Methods | |||
mysqli_stmt::attr_get | mysqli_stmt_attr_get | N/A | Used to get the current value of a statement attribute |
mysqli_stmt::attr_set | mysqli_stmt_attr_set | N/A | Used to modify the behavior of a prepared statement |
mysqli_stmt::bind_param | mysqli_stmt_bind_param | mysqli_bind_param | Binds variables to a prepared statement as parameters |
mysqli_stmt::bind_result | mysqli_stmt_bind_result | mysqli_bind_result | Binds variables to a prepared statement for result storage |
mysqli_stmt::close | mysqli_stmt_close | N/A | Closes a prepared statement |
mysqli_stmt::data_seek | mysqli_stmt_data_seek | N/A | Seeks to an arbitrary row in statement result set |
mysqli_stmt::execute | mysqli_stmt_execute | mysqli_execute | Executes a prepared Query |
mysqli_stmt::fetch | mysqli_stmt_fetch | mysqli_fetch | Fetch results from a prepared statement into the bound variables |
mysqli_stmt::free_result | mysqli_stmt_free_result | N/A | Frees stored result memory for the given statement handle |
mysqli_stmt::get_result | mysqli_stmt_get_result | N/A | Gets a result set from a prepared statement. Available only with mysqlnd. |
mysqli_stmt::get_warnings | mysqli_stmt_get_warnings | N/A | NOT DOCUMENTED |
$mysqli_stmt::more_results() | mysqli_stmt_more_results() | N/A | NOT DOCUMENTED Available only with mysqlnd. |
$mysqli_stmt::next_result() | mysqli_stmt_next_result() | N/A | NOT DOCUMENTED Available only with mysqlnd. |
mysqli_stmt::num_rows | mysqli_stmt_num_rows | N/A | See also property $mysqli_stmt::num_rows |
mysqli_stmt::prepare | mysqli_stmt_prepare | N/A | Prepare an SQL statement for execution |
mysqli_stmt::reset | mysqli_stmt_reset | N/A | Resets a prepared statement |
mysqli_stmt::result_metadata | mysqli_stmt_result_metadata | mysqli_get_metadata | Returns result set metadata from a prepared statement |
mysqli_stmt::send_long_data | mysqli_stmt_send_long_data | mysqli_send_long_data | Send data in blocks |
mysqli_stmt::store_result | mysqli_stmt_store_result | N/A | Transfers a result set from a prepared statement |
Table 21.44. Summary of mysqli_result methods
mysqli_result | |||
---|---|---|---|
OOP Interface | Procedural Interface | Alias (Do not use) | Description |
Properties | |||
$mysqli_result::current_field | mysqli_field_tell | N/A | Get current field offset of a result pointer |
$mysqli_result::field_count | mysqli_num_fields | N/A | Get the number of fields in a result |
$mysqli_result::lengths | mysqli_fetch_lengths | N/A | Returns the lengths of the columns of the current row in the result set |
$mysqli_result::num_rows | mysqli_num_rows | N/A | Gets the number of rows in a result |
Methods | |||
mysqli_result::data_seek | mysqli_data_seek | N/A | Adjusts the result pointer to an arbitrary row in the result |
mysqli_result::fetch_all | mysqli_fetch_all | N/A | Fetches all result rows and returns the result set as an associative array, a numeric array, or both. Available only with mysqlnd. |
mysqli_result::fetch_array | mysqli_fetch_array | N/A | Fetch a result row as an associative, a numeric array, or both |
mysqli_result::fetch_assoc | mysqli_fetch_assoc | N/A | Fetch a result row as an associative array |
mysqli_result::fetch_field_direct | mysqli_fetch_field_direct | N/A | Fetch meta-data for a single field |
mysqli_result::fetch_field | mysqli_fetch_field | N/A | Returns the next field in the result set |
mysqli_result::fetch_fields | mysqli_fetch_fields | N/A | Returns an array of objects representing the fields in a result set |
mysqli_result::fetch_object | mysqli_fetch_object | N/A | Returns the current row of a result set as an object |
mysqli_result::fetch_row | mysqli_fetch_row | N/A | Get a result row as an enumerated array |
mysqli_result::field_seek | mysqli_field_seek | N/A | Set result pointer to a specified field offset |
mysqli_result::free, mysqli_result::close, mysqli_result::free_result | mysqli_free_result | N/A | Frees the memory associated with a result |
Table 21.45. Summary of mysqli_driver methods
MySQL_Driver | |||
---|---|---|---|
OOP Interface | Procedural Interface | Alias (Do not use) | Description |
Properties | |||
N/A | |||
Methods | |||
mysqli_driver::embedded_server_end | mysqli_embedded_server_end | N/A | NOT DOCUMENTED |
mysqli_driver::embedded_server_start | mysqli_embedded_server_start | N/A | NOT DOCUMENTED |
Note
Alias functions are provided for backward compatibility purposes only. Do not use them in new projects.
21.9.3.9. The mysqli class (mysqli)
Copyright 1997-2012 the PHP Documentation Group.
Represents a connection between PHP and a MySQL database.
mysqli {
mysqli
Properties int mysqli->affected_rows ;
string mysqli->client_info ;
int mysqli->client_version ;
string mysqli->connect_errno ;
string mysqli->connect_error ;
int mysqli->errno ;
array mysqli->error_list ;
string mysqli->error ;
int mysqli->field_count ;
int mysqli->client_version ;
string mysqli->host_info ;
string mysqli->protocol_version ;
string mysqli->server_info ;
int mysqli->server_version ;
string mysqli->info ;
mixed mysqli->insert_id ;
string mysqli->sqlstate ;
int mysqli->thread_id ;
int mysqli->warning_count ;
Methods mysqli::__construct(string host= =ini_get("mysqli.default_host"),
string username= =ini_get("mysqli.default_user"),
string passwd= =ini_get("mysqli.default_pw"),
string dbname= ="",
int port= =ini_get("mysqli.default_port"),
string socket= =ini_get("mysqli.default_socket"));
bool mysqli::autocommit(bool mode);
bool mysqli::change_user(string user,
string password,
string database);
string mysqli::character_set_name();
bool mysqli::close();
bool mysqli::commit();
bool mysqli::debug(string message);
bool mysqli::dump_debug_info();
object mysqli::get_charset();
string mysqli::get_client_info();
bool mysqli::get_connection_stats();
mysqli_warning mysqli::get_warnings();
mysqli mysqli::init();
bool mysqli::kill(int processid);
bool mysqli::more_results();
bool mysqli::multi_query(string query);
bool mysqli::next_result();
bool mysqli::options(int option,
mixed value);
bool mysqli::ping();
public int mysqli::poll(array read,
array error,
array reject,
int sec,
int usec);
mysqli_stmt mysqli::prepare(string query);
mixed mysqli::query(string query,
int resultmode= =MYSQLI_STORE_RESULT);
bool mysqli::real_connect(string host,
string username,
string passwd,
string dbname,
int port,
string socket,
int flags);
string mysqli::escape_string(string escapestr);
bool mysqli::real_query(string query);
public mysqli_result mysqli::reap_async_query();
public bool mysqli::refresh(int options);
bool mysqli::rollback();
int mysqli::rpl_query_type(string query);
bool mysqli::select_db(string dbname);
bool mysqli::send_query(string query);
bool mysqli::set_charset(string charset);
bool mysqli::set_local_infile_handler(mysqli link,
callable read_func);
bool mysqli::ssl_set(string key,
string cert,
string ca,
string capath,
string cipher);
string mysqli::stat();
mysqli_stmt mysqli::stmt_init();
mysqli_result mysqli::store_result();
mysqli_result mysqli::use_result();
}
21.9.3.9.1. mysqli::$affected_rows, mysqli_affected_rows
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$affected_rows
mysqli_affected_rows
Gets the number of affected rows in a previous MySQL operation
Description
Object oriented style
int mysqli->affected_rows ;
Procedural style
int mysqli_affected_rows(mysqli link);
Returns the number of rows affected by the last INSERT, UPDATE, REPLACE or DELETE query.
For SELECT statements mysqli_affected_rows works like mysqli_num_rows.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no records where updated for an UPDATE statement, no rows matched the WHERE clause in the query or that no query has yet been executed. -1 indicates that the query returned an error.
Note
If the number of affected rows is greater than maximal int value, the number of affected rows will be returned as a string.
Examples
Example 21.106. $mysqli->affected_rows example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* Insert rows */
$mysqli->query("CREATE TABLE Language SELECT * from CountryLanguage");
printf("Affected rows (INSERT): %d\n", $mysqli->affected_rows);
$mysqli->query("ALTER TABLE Language ADD Status int default 0");
/* update rows */
$mysqli->query("UPDATE Language SET Status=1 WHERE Percentage > 50");
printf("Affected rows (UPDATE): %d\n", $mysqli->affected_rows);
/* delete rows */
$mysqli->query("DELETE FROM Language WHERE Percentage < 50");
printf("Affected rows (DELETE): %d\n", $mysqli->affected_rows);
/* select all rows */
$result = $mysqli->query("SELECT CountryCode FROM Language");
printf("Affected rows (SELECT): %d\n", $mysqli->affected_rows);
$result->close();
/* Delete table Language */
$mysqli->query("DROP TABLE Language");
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
if (!$link) {
printf("Can't connect to localhost. Error: %s\n", mysqli_connect_error());
exit();
}
/* Insert rows */
mysqli_query($link, "CREATE TABLE Language SELECT * from CountryLanguage");
printf("Affected rows (INSERT): %d\n", mysqli_affected_rows($link));
mysqli_query($link, "ALTER TABLE Language ADD Status int default 0");
/* update rows */
mysqli_query($link, "UPDATE Language SET Status=1 WHERE Percentage > 50");
printf("Affected rows (UPDATE): %d\n", mysqli_affected_rows($link));
/* delete rows */
mysqli_query($link, "DELETE FROM Language WHERE Percentage < 50");
printf("Affected rows (DELETE): %d\n", mysqli_affected_rows($link));
/* select all rows */
$result = mysqli_query($link, "SELECT CountryCode FROM Language");
printf("Affected rows (SELECT): %d\n", mysqli_affected_rows($link));
mysqli_free_result($result);
/* Delete table Language */
mysqli_query($link, "DROP TABLE Language");
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Affected rows (INSERT): 984
Affected rows (UPDATE): 168
Affected rows (DELETE): 815
Affected rows (SELECT): 169
See Also
mysqli_num_rows |
mysqli_info |
21.9.3.9.2. mysqli::autocommit, mysqli_autocommit
Copyright 1997-2012 the PHP Documentation Group.
mysqli::autocommit
mysqli_autocommit
Turns on or off auto-committing database modifications
Description
Object oriented style
bool mysqli::autocommit(bool mode);
Procedural style
bool mysqli_autocommit(mysqli link,
bool mode);
Turns on or off auto-commit mode on queries for the database connection.
To determine the current state of autocommit use the SQL command SELECT @@autocommit.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
mode
Whether to turn on auto-commit or not.
Return Values
Returns TRUE on success or FALSE on failure.
Notes
Note
This function doesn't work with non transactional table types (like MyISAM or ISAM).
Examples
Example 21.107. mysqli::autocommit example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* turn autocommit on */
$mysqli->autocommit(TRUE);
if ($result = $mysqli->query("SELECT @@autocommit")) {
$row = $result->fetch_row();
printf("Autocommit is %s\n", $row[0]);
$result->free();
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
if (!$link) {
printf("Can't connect to localhost. Error: %s\n", mysqli_connect_error());
exit();
}
/* turn autocommit on */
mysqli_autocommit($link, TRUE);
if ($result = mysqli_query($link, "SELECT @@autocommit")) {
$row = mysqli_fetch_row($result);
printf("Autocommit is %s\n", $row[0]);
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Autocommit is 1
See Also
mysqli_commit |
mysqli_rollback |
21.9.3.9.3. mysqli::change_user, mysqli_change_user
Copyright 1997-2012 the PHP Documentation Group.
mysqli::change_user
mysqli_change_user
Changes the user of the specified database connection
Description
Object oriented style
bool mysqli::change_user(string user,
string password,
string database);
Procedural style
bool mysqli_change_user(mysqli link,
string user,
string password,
string database);
Changes the user of the specified database connection and sets the current database.
In order to successfully change users a valid username and password parameters must be provided and that user must have sufficient permissions to access the desired database. If for any reason authorization fails, the current user authentication will remain.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
user
The MySQL user name.
password
The MySQL password.
database
The database to change to.
If desired, the NULL value may be passed resulting in only changing the user and not selecting a database. To select a database in this case use the mysqli_select_db function.
Return Values
Returns TRUE on success or FALSE on failure.
Notes
Note
Using this command will always cause the current database connection to behave as if was a completely new database connection, regardless of if the operation was completed successfully. This reset includes performing a rollback on any active transactions, closing all temporary tables, and unlocking all locked tables.
Examples
Example 21.108. mysqli::change_user example
Object oriented style
<?php
/* connect database test */
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* Set Variable a */
$mysqli->query("SET @a:=1");
/* reset all and select a new database */
$mysqli->change_user("my_user", "my_password", "world");
if ($result = $mysqli->query("SELECT DATABASE()")) {
$row = $result->fetch_row();
printf("Default database: %s\n", $row[0]);
$result->close();
}
if ($result = $mysqli->query("SELECT @a")) {
$row = $result->fetch_row();
if ($row[0] === NULL) {
printf("Value of variable a is NULL\n");
}
$result->close();
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
/* connect database test */
$link = mysqli_connect("localhost", "my_user", "my_password", "test");
/* check connection */
if (!$link) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* Set Variable a */
mysqli_query($link, "SET @a:=1");
/* reset all and select a new database */
mysqli_change_user($link, "my_user", "my_password", "world");
if ($result = mysqli_query($link, "SELECT DATABASE()")) {
$row = mysqli_fetch_row($result);
printf("Default database: %s\n", $row[0]);
mysqli_free_result($result);
}
if ($result = mysqli_query($link, "SELECT @a")) {
$row = mysqli_fetch_row($result);
if ($row[0] === NULL) {
printf("Value of variable a is NULL\n");
}
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Default database: world
Value of variable a is NULL
See Also
mysqli_connect |
mysqli_select_db |
21.9.3.9.4. mysqli::character_set_name, mysqli_character_set_name
Copyright 1997-2012 the PHP Documentation Group.
mysqli::character_set_name
mysqli_character_set_name
Returns the default character set for the database connection
Description
Object oriented style
string mysqli::character_set_name();
Procedural style
string mysqli_character_set_name(mysqli link);
Returns the current character set for the database connection.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
The default character set for the current connection
Examples
Example 21.109. mysqli::character_set_name example
Object oriented style
<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* Print current character set */
$charset = $mysqli->character_set_name();
printf ("Current character set is %s\n", $charset);
$mysqli->close();
?>
Procedural style
<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (!$link) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* Print current character set */
$charset = mysqli_character_set_name($link);
printf ("Current character set is %s\n",$charset);
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Current character set is latin1_swedish_ci
See Also
mysqli_set_charset |
mysqli_client_encoding |
mysqli_real_escape_string |
21.9.3.9.5. mysqli::$client_info, mysqli_get_client_info
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$client_info
mysqli_get_client_info
Get MySQL client info
Description
Object oriented style
string mysqli->client_info ;
Procedural style
string mysqli_get_client_info(mysqli link);
Returns a string that represents the MySQL client library version.
Return Values
A string that represents the MySQL client library version
Examples
Example 21.110. mysqli_get_client_info
<?php
/* We don't need a connection to determine
the version of mysql client library */
printf("Client library version: %s\n", mysqli_get_client_info());
?>
See Also
mysqli_get_client_version |
mysqli_get_server_info |
mysqli_get_server_version |
21.9.3.9.6. mysqli::$client_version, mysqli_get_client_version
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$client_version
mysqli_get_client_version
Returns the MySQL client version as a string
Description
Object oriented style
int mysqli->client_version ;
Procedural style
int mysqli_get_client_version(mysqli link);
Returns client version number as an integer.
Return Values
A number that represents the MySQL client library version in format: main_version*10000 + minor_version *100 + sub_version. For example, 4.1.0 is returned as 40100.
This is useful to quickly determine the version of the client library to know if some capability exists.
Examples
Example 21.111. mysqli_get_client_version
<?php
/* We don't need a connection to determine
the version of mysql client library */
printf("Client library version: %d\n", mysqli_get_client_version());
?>
See Also
mysqli_get_client_info |
mysqli_get_server_info |
mysqli_get_server_version |
21.9.3.9.7. mysqli::close, mysqli_close
Copyright 1997-2012 the PHP Documentation Group.
mysqli::close
mysqli_close
Closes a previously opened database connection
Description
Object oriented style
bool mysqli::close();
Procedural style
bool mysqli_close(mysqli link);
Closes a previously opened database connection.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns TRUE on success or FALSE on failure.
Examples
See mysqli_connect.
See Also
mysqli::__construct |
mysqli_init |
mysqli_real_connect |
21.9.3.9.8. mysqli::commit, mysqli_commit
Copyright 1997-2012 the PHP Documentation Group.
mysqli::commit
mysqli_commit
Commits the current transaction
Description
Object oriented style
bool mysqli::commit();
Procedural style
bool mysqli_commit(mysqli link);
Commits the current transaction for the database connection.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.112. mysqli::commit example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$mysqli->query("CREATE TABLE Language LIKE CountryLanguage");
/* set autocommit to off */
$mysqli->autocommit(FALSE);
/* Insert some values */
$mysqli->query("INSERT INTO Language VALUES ('DEU', 'Bavarian', 'F', 11.2)");
$mysqli->query("INSERT INTO Language VALUES ('DEU', 'Swabian', 'F', 9.4)");
/* commit transaction */
$mysqli->commit();
/* drop table */
$mysqli->query("DROP TABLE Language");
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");
/* check connection */
if (!$link) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* set autocommit to off */
mysqli_autocommit($link, FALSE);
mysqli_query($link, "CREATE TABLE Language LIKE CountryLanguage");
/* Insert some values */
mysqli_query($link, "INSERT INTO Language VALUES ('DEU', 'Bavarian', 'F', 11.2)");
mysqli_query($link, "INSERT INTO Language VALUES ('DEU', 'Swabian', 'F', 9.4)");
/* commit transaction */
mysqli_commit($link);
/* close connection */
mysqli_close($link);
?>
See Also
mysqli_autocommit |
mysqli_rollback |
21.9.3.9.9. mysqli::$connect_errno, mysqli_connect_errno
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$connect_errno
mysqli_connect_errno
Returns the error code from last connect call
Description
Object oriented style
string mysqli->connect_errno ;
Procedural style
int mysqli_connect_errno();
Returns the last error code number from the last call to mysqli_connect.
Note
Client error message numbers are listed in the MySQL errmsg.h header file, server error message numbers are listed in mysqld_error.h. In the MySQL source distribution you can find a complete list of error messages and error numbers in the file Docs/mysqld_error.txt.
Return Values
An error code value for the last call to mysqli_connect, if it failed. zero means no error occurred.
Examples
Example 21.113. $mysqli->connect_errno example
Object oriented style
<?php
$mysqli = @new mysqli('localhost', 'fake_user', 'my_password', 'my_db');
if ($mysqli->connect_errno) {
die('Connect Error: ' . $mysqli->connect_errno);
}
?>
Procedural style
<?php
$link = @mysqli_connect('localhost', 'fake_user', 'my_password', 'my_db');
if (!$link) {
die('Connect Error: ' . mysqli_connect_errno());
}
?>
The above examples will output:
Connect Error: 1045
See Also
mysqli_connect |
mysqli_connect_error |
mysqli_errno |
mysqli_error |
mysqli_sqlstate |
21.9.3.9.10. mysqli::$connect_error, mysqli_connect_error
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$connect_error
mysqli_connect_error
Returns a string description of the last connect error
Description
Object oriented style
string mysqli->connect_error ;
Procedural style
string mysqli_connect_error();
Returns the last error message string from the last call to mysqli_connect.
Return Values
A string that describes the error. NULL is returned if no error occurred.
Examples
Example 21.114. $mysqli->connect_error example
Object oriented style
<?php
$mysqli = @new mysqli('localhost', 'fake_user', 'my_password', 'my_db');
// Works as of PHP 5.2.9 and 5.3.0.
if ($mysqli->connect_error) {
die('Connect Error: ' . $mysqli->connect_error);
}
?>
Procedural style
<?php
$link = @mysqli_connect('localhost', 'fake_user', 'my_password', 'my_db');
if (!$link) {
die('Connect Error: ' . mysqli_connect_error());
}
?>
The above examples will output:
Connect Error: Access denied for user 'fake_user'@'localhost' (using password: YES)
Notes
Warning
The mysqli->connect_error property only works properly as of PHP versions 5.2.9 and 5.3.0. Use the mysqli_connect_error function if compatibility with earlier PHP versions is required.
See Also
mysqli_connect |
mysqli_connect_errno |
mysqli_errno |
mysqli_error |
mysqli_sqlstate |
21.9.3.9.11. mysqli::__construct, mysqli_connect
Copyright 1997-2012 the PHP Documentation Group.
mysqli::__construct
mysqli_connect
Open a new connection to the MySQL server
Description
Object oriented style
mysqli::__construct(string host= =ini_get("mysqli.default_host"),
string username= =ini_get("mysqli.default_user"),
string passwd= =ini_get("mysqli.default_pw"),
string dbname= ="",
int port= =ini_get("mysqli.default_port"),
string socket= =ini_get("mysqli.default_socket"));
Procedural style
mysqli mysqli_connect(string host= =ini_get("mysqli.default_host"),
string username= =ini_get("mysqli.default_user"),
string passwd= =ini_get("mysqli.default_pw"),
string dbname= ="",
int port= =ini_get("mysqli.default_port"),
string socket= =ini_get("mysqli.default_socket"));
Opens a connection to the MySQL Server running on.
Parameters
host
Can be either a host name or an IP address. Passing the NULL value or the string "localhost" to this parameter, the local host is assumed. When possible, pipes will be used instead of the TCP/IP protocol.
Prepending host by p: opens a persistent connection. mysqli_change_user is automatically called on connections opened from the connection pool.
username
The MySQL user name.
passwd
If not provided or NULL , the MySQL server will attempt to authenticate the user against those user records which have no password only. This allows one username to be used with different permissions (depending on if a password as provided or not).
dbname
If provided will specify the default database to be used when performing queries.
port
Specifies the port number to attempt to connect to the MySQL server.
socket
Specifies the socket or named pipe that should be used.
Note
Specifying the socket parameter will not explicitly determine the type of connection to be used when connecting to the MySQL server. How the connection is made to the MySQL database is determined by the host parameter.
Return Values
Returns an object which represents the connection to a MySQL Server.
Changelog
Version | Description |
---|---|
5.3.0 | Added the ability of persistent connections. |
Examples
Example 21.115. mysqli::__construct example
Object oriented style
<?php
$mysqli = new mysqli('localhost', 'my_user', 'my_password', 'my_db');
/*
* This is the "official" OO way to do it,
* BUT $connect_error was broken until PHP 5.2.9 and 5.3.0.
*/
if ($mysqli->connect_error) {
die('Connect Error (' . $mysqli->connect_errno . ') '
. $mysqli->connect_error);
}
/*
* Use this instead of $connect_error if you need to ensure
* compatibility with PHP versions prior to 5.2.9 and 5.3.0.
*/
if (mysqli_connect_error()) {
die('Connect Error (' . mysqli_connect_errno() . ') '
. mysqli_connect_error());
}
echo 'Success... ' . $mysqli->host_info . "\n";
$mysqli->close();
?>
Object oriented style when extending mysqli class
<?php
class foo_mysqli extends mysqli {
public function __construct($host, $user, $pass, $db) {
parent::__construct($host, $user, $pass, $db);
if (mysqli_connect_error()) {
die('Connect Error (' . mysqli_connect_errno() . ') '
. mysqli_connect_error());
}
}
}
$db = new foo_mysqli('localhost', 'my_user', 'my_password', 'my_db');
echo 'Success... ' . $db->host_info . "\n";
$db->close();
?>
Procedural style
<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'my_db');
if (!$link) {
die('Connect Error (' . mysqli_connect_errno() . ') '
. mysqli_connect_error());
}
echo 'Success... ' . mysqli_get_host_info($link) . "\n";
mysqli_close($link);
?>
The above examples will output:
Success... MySQL host info: localhost via TCP/IP
Notes
Note
MySQLnd always assumes the server default charset. This charset is sent during connection hand-shake/authentication, which mysqlnd will use.
Libmysqlclient uses the default charset set in the my.cnf or by an explicit call to mysqli_options prior to calling mysqli_real_connect, but after mysqli_init.
Note
OO syntax only: If a connection fails an object is still returned. To check if the connection failed then use either the mysqli_connect_error function or the mysqli->connect_error property as in the preceding examples.
Note
If it is necessary to set options, such as the connection timeout, mysqli_real_connect must be used instead.
Note
Calling the constructor with no parameters is the same as calling mysqli_init.
Note
Error "Can't create TCP/IP socket (10106)" usually means that the variables_order configure directive doesn't contain character E. On Windows, if the environment is not copied the SYSTEMROOT environment variable won't be available and PHP will have problems loading Winsock.
See Also
mysqli_real_connect |
mysqli_options |
mysqli_connect_errno |
mysqli_connect_error |
mysqli_close |
21.9.3.9.12. mysqli::debug, mysqli_debug
Copyright 1997-2012 the PHP Documentation Group.
mysqli::debug
mysqli_debug
Performs debugging operations
Description
Object oriented style
bool mysqli::debug(string message);
Procedural style
bool mysqli_debug(string message);
Performs debugging operations using the Fred Fish debugging library.
Parameters
message
A string representing the debugging operation to perform
Return Values
Returns TRUE .
Notes
Note
To use the mysqli_debug function you must compile the MySQL client library to support debugging.
Examples
Example 21.116. Generating a Trace File
<?php
/* Create a trace file in '/tmp/client.trace' on the local (client) machine: */
mysqli_debug("d:t:o,/tmp/client.trace");
?>
See Also
mysqli_dump_debug_info |
mysqli_report |
21.9.3.9.13. mysqli::dump_debug_info, mysqli_dump_debug_info
Copyright 1997-2012 the PHP Documentation Group.
mysqli::dump_debug_info
mysqli_dump_debug_info
Dump debugging information into the log
Description
Object oriented style
bool mysqli::dump_debug_info();
Procedural style
bool mysqli_dump_debug_info(mysqli link);
This function is designed to be executed by an user with the SUPER privilege and is used to dump debugging information into the log for the MySQL Server relating to the connection.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns TRUE on success or FALSE on failure.
See Also
mysqli_debug |
21.9.3.9.14. mysqli::$errno, mysqli_errno
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$errno
mysqli_errno
Returns the error code for the most recent function call
Description
Object oriented style
int mysqli->errno ;
Procedural style
int mysqli_errno(mysqli link);
Returns the last error code for the most recent MySQLi function call that can succeed or fail.
Client error message numbers are listed in the MySQL errmsg.h header file, server error message numbers are listed in mysqld_error.h. In the MySQL source distribution you can find a complete list of error messages and error numbers in the file Docs/mysqld_error.txt.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
An error code value for the last call, if it failed. zero means no error occurred.
Examples
Example 21.117. $mysqli->errno example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if ($mysqli->connect_errno) {
printf("Connect failed: %s\n", $mysqli->connect_error);
exit();
}
if (!$mysqli->query("SET a=1")) {
printf("Errorcode: %d\n", $mysqli->errno);
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
if (!mysqli_query($link, "SET a=1")) {
printf("Errorcode: %d\n", mysqli_errno($link));
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Errorcode: 1193
See Also
mysqli_connect_errno |
mysqli_connect_error |
mysqli_error |
mysqli_sqlstate |
21.9.3.9.15. mysqli::$error_list, mysqli_error_list
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$error_list
mysqli_error_list
Returns a list of errors from the last command executed
Description
Object oriented style
array mysqli->error_list ;
Procedural style
array mysqli_error_list(mysqli link);
Returns a array of errors for the most recent MySQLi function call that can succeed or fail.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
A list of errors, each as an associative array containing the errno, error, and sqlstate.
Examples
Example 21.118. $mysqli->error_list example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "nobody", "");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
if (!$mysqli->query("SET a=1")) {
print_r($mysqli->error_list);
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
if (!mysqli_query($link, "SET a=1")) {
print_r(mysqli_error_list($link));
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Array
(
[0] => Array
(
[errno] => 1193
[sqlstate] => HY000
[error] => Unknown system variable 'a'
)
)
See Also
mysqli_connect_errno |
mysqli_connect_error |
mysqli_error |
mysqli_sqlstate |
21.9.3.9.16. mysqli::$error, mysqli_error
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$error
mysqli_error
Returns a string description of the last error
Description
Object oriented style
string mysqli->error ;
Procedural style
string mysqli_error(mysqli link);
Returns the last error message for the most recent MySQLi function call that can succeed or fail.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
A string that describes the error. An empty string if no error occurred.
Examples
Example 21.119. $mysqli->error example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if ($mysqli->connect_errno) {
printf("Connect failed: %s\n", $mysqli->connect_error);
exit();
}
if (!$mysqli->query("SET a=1")) {
printf("Errormessage: %s\n", $mysqli->error);
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
if (!mysqli_query($link, "SET a=1")) {
printf("Errormessage: %s\n", mysqli_error($link));
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Errormessage: Unknown system variable 'a'
See Also
mysqli_connect_errno |
mysqli_connect_error |
mysqli_errno |
mysqli_sqlstate |
21.9.3.9.17. mysqli::$field_count, mysqli_field_count
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$field_count
mysqli_field_count
Returns the number of columns for the most recent query
Description
Object oriented style
int mysqli->field_count ;
Procedural style
int mysqli_field_count(mysqli link);
Returns the number of columns for the most recent query on the connection represented by the link parameter. This function can be useful when using the mysqli_store_result function to determine if the query should have produced a non-empty result set or not without knowing the nature of the query.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
An integer representing the number of fields in a result set.
Examples
Example 21.120. $mysqli->field_count example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");
$mysqli->query("DROP TABLE IF EXISTS friends");
$mysqli->query("CREATE TABLE friends (id int, name varchar(20))");
$mysqli->query("INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");
$mysqli->real_query("SELECT * FROM friends");
if ($mysqli->field_count) {
/* this was a select/show or describe query */
$result = $mysqli->store_result();
/* process resultset */
$row = $result->fetch_row();
/* free resultset */
$result->close();
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");
mysqli_query($link, "DROP TABLE IF EXISTS friends");
mysqli_query($link, "CREATE TABLE friends (id int, name varchar(20))");
mysqli_query($link, "INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");
mysqli_real_query($link, "SELECT * FROM friends");
if (mysqli_field_count($link)) {
/* this was a select/show or describe query */
$result = mysqli_store_result($link);
/* process resultset */
$row = mysqli_fetch_row($result);
/* free resultset */
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
21.9.3.9.18. mysqli::get_charset, mysqli_get_charset
Copyright 1997-2012 the PHP Documentation Group.
mysqli::get_charset
mysqli_get_charset
Returns a character set object
Description
Object oriented style
object mysqli::get_charset();
Procedural style
object mysqli_get_charset(mysqli link);
Returns a character set object providing several properties of the current active character set.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
The function returns a character set object with the following properties:
charset
Character set name
collation
Collation name
dir
Directory the charset description was fetched from (?) or "" for built-in character sets
min_length
Minimum character length in bytes
max_length
Maximum character length in bytes
number
Internal character set number
state
Character set status (?)
Examples
Example 21.121. mysqli::get_charset example
Object oriented style
<?php
$db = mysqli_init();
$db->real_connect("localhost","root","","test");
var_dump($db->get_charset());
?>
Procedural style
<?php
$db = mysqli_init();
mysqli_real_connect($db, "localhost","root","","test");
var_dump($db->get_charset());
?>
The above examples will output:
object(stdClass)#2 (7) {
["charset"]=>
string(6) "latin1"
["collation"]=>
string(17) "latin1_swedish_ci"
["dir"]=>
string(0) ""
["min_length"]=>
int(1)
["max_length"]=>
int(1)
["number"]=>
int(8)
["state"]=>
int(801)
}
See Also
mysqli_character_set_name |
mysqli_set_charset |
21.9.3.9.19. mysqli::get_client_info, mysqli_get_client_info
Copyright 1997-2012 the PHP Documentation Group.
mysqli::get_client_info
mysqli_get_client_info
Get MySQL client info
Description
Object oriented style
string mysqli::get_client_info();
Procedural style
string mysqli_get_client_info(mysqli link);
Returns a string that represents the MySQL client library version.
Return Values
A string that represents the MySQL client library version
Examples
Example 21.122. mysqli_get_client_info
<?php
/* We don't need a connection to determine
the version of mysql client library */
printf("Client library version: %s\n", mysqli_get_client_info());
?>
See Also
mysqli_get_client_version |
mysqli_get_server_info |
mysqli_get_server_version |
21.9.3.9.20. mysqli_get_client_stats
Copyright 1997-2012 the PHP Documentation Group.
mysqli_get_client_stats
Returns client per-process statistics
Description
array mysqli_get_client_stats();
Returns client per-process statistics. Available only with mysqlnd.
Parameters
Return Values
Returns an array with client stats if success, FALSE otherwise.
Examples
Example 21.123. A mysqli_get_client_stats example
<?php
$link = mysqli_connect();
print_r(mysqli_get_client_stats());
?>
The above example will output something similar to:
Array
(
[bytes_sent] => 43
[bytes_received] => 80
[packets_sent] => 1
[packets_received] => 2
[protocol_overhead_in] => 8
[protocol_overhead_out] => 4
[bytes_received_ok_packet] => 11
[bytes_received_eof_packet] => 0
[bytes_received_rset_header_packet] => 0
[bytes_received_rset_field_meta_packet] => 0
[bytes_received_rset_row_packet] => 0
[bytes_received_prepare_response_packet] => 0
[bytes_received_change_user_packet] => 0
[packets_sent_command] => 0
[packets_received_ok] => 1
[packets_received_eof] => 0
[packets_received_rset_header] => 0
[packets_received_rset_field_meta] => 0
[packets_received_rset_row] => 0
[packets_received_prepare_response] => 0
[packets_received_change_user] => 0
[result_set_queries] => 0
[non_result_set_queries] => 0
[no_index_used] => 0
[bad_index_used] => 0
[slow_queries] => 0
[buffered_sets] => 0
[unbuffered_sets] => 0
[ps_buffered_sets] => 0
[ps_unbuffered_sets] => 0
[flushed_normal_sets] => 0
[flushed_ps_sets] => 0
[ps_prepared_never_executed] => 0
[ps_prepared_once_executed] => 0
[rows_fetched_from_server_normal] => 0
[rows_fetched_from_server_ps] => 0
[rows_buffered_from_client_normal] => 0
[rows_buffered_from_client_ps] => 0
[rows_fetched_from_client_normal_buffered] => 0
[rows_fetched_from_client_normal_unbuffered] => 0
[rows_fetched_from_client_ps_buffered] => 0
[rows_fetched_from_client_ps_unbuffered] => 0
[rows_fetched_from_client_ps_cursor] => 0
[rows_skipped_normal] => 0
[rows_skipped_ps] => 0
[copy_on_write_saved] => 0
[copy_on_write_performed] => 0
[command_buffer_too_small] => 0
[connect_success] => 1
[connect_failure] => 0
[connection_reused] => 0
[reconnect] => 0
[pconnect_success] => 0
[active_connections] => 1
[active_persistent_connections] => 0
[explicit_close] => 0
[implicit_close] => 0
[disconnect_close] => 0
[in_middle_of_command_close] => 0
[explicit_free_result] => 0
[implicit_free_result] => 0
[explicit_stmt_close] => 0
[implicit_stmt_close] => 0
[mem_emalloc_count] => 0
[mem_emalloc_ammount] => 0
[mem_ecalloc_count] => 0
[mem_ecalloc_ammount] => 0
[mem_erealloc_count] => 0
[mem_erealloc_ammount] => 0
[mem_efree_count] => 0
[mem_malloc_count] => 0
[mem_malloc_ammount] => 0
[mem_calloc_count] => 0
[mem_calloc_ammount] => 0
[mem_realloc_count] => 0
[mem_realloc_ammount] => 0
[mem_free_count] => 0
[proto_text_fetched_null] => 0
[proto_text_fetched_bit] => 0
[proto_text_fetched_tinyint] => 0
[proto_text_fetched_short] => 0
[proto_text_fetched_int24] => 0
[proto_text_fetched_int] => 0
[proto_text_fetched_bigint] => 0
[proto_text_fetched_decimal] => 0
[proto_text_fetched_float] => 0
[proto_text_fetched_double] => 0
[proto_text_fetched_date] => 0
[proto_text_fetched_year] => 0
[proto_text_fetched_time] => 0
[proto_text_fetched_datetime] => 0
[proto_text_fetched_timestamp] => 0
[proto_text_fetched_string] => 0
[proto_text_fetched_blob] => 0
[proto_text_fetched_enum] => 0
[proto_text_fetched_set] => 0
[proto_text_fetched_geometry] => 0
[proto_text_fetched_other] => 0
[proto_binary_fetched_null] => 0
[proto_binary_fetched_bit] => 0
[proto_binary_fetched_tinyint] => 0
[proto_binary_fetched_short] => 0
[proto_binary_fetched_int24] => 0
[proto_binary_fetched_int] => 0
[proto_binary_fetched_bigint] => 0
[proto_binary_fetched_decimal] => 0
[proto_binary_fetched_float] => 0
[proto_binary_fetched_double] => 0
[proto_binary_fetched_date] => 0
[proto_binary_fetched_year] => 0
[proto_binary_fetched_time] => 0
[proto_binary_fetched_datetime] => 0
[proto_binary_fetched_timestamp] => 0
[proto_binary_fetched_string] => 0
[proto_binary_fetched_blob] => 0
[proto_binary_fetched_enum] => 0
[proto_binary_fetched_set] => 0
[proto_binary_fetched_geometry] => 0
[proto_binary_fetched_other] => 0
)
See Also
Stats description |
21.9.3.9.21. mysqli_get_client_version, mysqli::$client_version
Copyright 1997-2012 the PHP Documentation Group.
mysqli_get_client_version
mysqli::$client_version
Returns the MySQL client version as a string
Description
Object oriented style
int mysqli->client_version ;
Procedural style
int mysqli_get_client_version(mysqli link);
Returns client version number as an integer.
Return Values
A number that represents the MySQL client library version in format: main_version*10000 + minor_version *100 + sub_version. For example, 4.1.0 is returned as 40100.
This is useful to quickly determine the version of the client library to know if some capability exits.
Examples
Example 21.124. mysqli_get_client_version
<?php
/* We don't need a connection to determine
the version of mysql client library */
printf("Client library version: %d\n", mysqli_get_client_version());
?>
See Also
mysqli_get_client_info |
mysqli_get_server_info |
mysqli_get_server_version |
21.9.3.9.22. mysqli::get_connection_stats, mysqli_get_connection_stats
Copyright 1997-2012 the PHP Documentation Group.
mysqli::get_connection_stats
mysqli_get_connection_stats
Returns statistics about the client connection
Description
Object oriented style
bool mysqli::get_connection_stats();
Procedural style
array mysqli_get_connection_stats(mysqli link);
Returns statistics about the client connection. Available only with mysqlnd.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns an array with connection stats if success, FALSE otherwise.
Examples
Example 21.125. A mysqli_get_connection_stats example
<?php
$link = mysqli_connect();
print_r(mysqli_get_connection_stats($link));
?>
The above example will output something similar to:
Array
(
[bytes_sent] => 43
[bytes_received] => 80
[packets_sent] => 1
[packets_received] => 2
[protocol_overhead_in] => 8
[protocol_overhead_out] => 4
[bytes_received_ok_packet] => 11
[bytes_received_eof_packet] => 0
[bytes_received_rset_header_packet] => 0
[bytes_received_rset_field_meta_packet] => 0
[bytes_received_rset_row_packet] => 0
[bytes_received_prepare_response_packet] => 0
[bytes_received_change_user_packet] => 0
[packets_sent_command] => 0
[packets_received_ok] => 1
[packets_received_eof] => 0
[packets_received_rset_header] => 0
[packets_received_rset_field_meta] => 0
[packets_received_rset_row] => 0
[packets_received_prepare_response] => 0
[packets_received_change_user] => 0
[result_set_queries] => 0
[non_result_set_queries] => 0
[no_index_used] => 0
[bad_index_used] => 0
[slow_queries] => 0
[buffered_sets] => 0
[unbuffered_sets] => 0
[ps_buffered_sets] => 0
[ps_unbuffered_sets] => 0
[flushed_normal_sets] => 0
[flushed_ps_sets] => 0
[ps_prepared_never_executed] => 0
[ps_prepared_once_executed] => 0
[rows_fetched_from_server_normal] => 0
[rows_fetched_from_server_ps] => 0
[rows_buffered_from_client_normal] => 0
[rows_buffered_from_client_ps] => 0
[rows_fetched_from_client_normal_buffered] => 0
[rows_fetched_from_client_normal_unbuffered] => 0
[rows_fetched_from_client_ps_buffered] => 0
[rows_fetched_from_client_ps_unbuffered] => 0
[rows_fetched_from_client_ps_cursor] => 0
[rows_skipped_normal] => 0
[rows_skipped_ps] => 0
[copy_on_write_saved] => 0
[copy_on_write_performed] => 0
[command_buffer_too_small] => 0
[connect_success] => 1
[connect_failure] => 0
[connection_reused] => 0
[reconnect] => 0
[pconnect_success] => 0
[active_connections] => 1
[active_persistent_connections] => 0
[explicit_close] => 0
[implicit_close] => 0
[disconnect_close] => 0
[in_middle_of_command_close] => 0
[explicit_free_result] => 0
[implicit_free_result] => 0
[explicit_stmt_close] => 0
[implicit_stmt_close] => 0
[mem_emalloc_count] => 0
[mem_emalloc_ammount] => 0
[mem_ecalloc_count] => 0
[mem_ecalloc_ammount] => 0
[mem_erealloc_count] => 0
[mem_erealloc_ammount] => 0
[mem_efree_count] => 0
[mem_malloc_count] => 0
[mem_malloc_ammount] => 0
[mem_calloc_count] => 0
[mem_calloc_ammount] => 0
[mem_realloc_count] => 0
[mem_realloc_ammount] => 0
[mem_free_count] => 0
[proto_text_fetched_null] => 0
[proto_text_fetched_bit] => 0
[proto_text_fetched_tinyint] => 0
[proto_text_fetched_short] => 0
[proto_text_fetched_int24] => 0
[proto_text_fetched_int] => 0
[proto_text_fetched_bigint] => 0
[proto_text_fetched_decimal] => 0
[proto_text_fetched_float] => 0
[proto_text_fetched_double] => 0
[proto_text_fetched_date] => 0
[proto_text_fetched_year] => 0
[proto_text_fetched_time] => 0
[proto_text_fetched_datetime] => 0
[proto_text_fetched_timestamp] => 0
[proto_text_fetched_string] => 0
[proto_text_fetched_blob] => 0
[proto_text_fetched_enum] => 0
[proto_text_fetched_set] => 0
[proto_text_fetched_geometry] => 0
[proto_text_fetched_other] => 0
[proto_binary_fetched_null] => 0
[proto_binary_fetched_bit] => 0
[proto_binary_fetched_tinyint] => 0
[proto_binary_fetched_short] => 0
[proto_binary_fetched_int24] => 0
[proto_binary_fetched_int] => 0
[proto_binary_fetched_bigint] => 0
[proto_binary_fetched_decimal] => 0
[proto_binary_fetched_float] => 0
[proto_binary_fetched_double] => 0
[proto_binary_fetched_date] => 0
[proto_binary_fetched_year] => 0
[proto_binary_fetched_time] => 0
[proto_binary_fetched_datetime] => 0
[proto_binary_fetched_timestamp] => 0
[proto_binary_fetched_string] => 0
[proto_binary_fetched_blob] => 0
[proto_binary_fetched_enum] => 0
[proto_binary_fetched_set] => 0
[proto_binary_fetched_geometry] => 0
[proto_binary_fetched_other] => 0
)
See Also
Stats description |
21.9.3.9.23. mysqli::$host_info, mysqli_get_host_info
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$host_info
mysqli_get_host_info
Returns a string representing the type of connection used
Description
Object oriented style
string mysqli->host_info ;
Procedural style
string mysqli_get_host_info(mysqli link);
Returns a string describing the connection represented by the link parameter (including the server host name).
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
A character string representing the server hostname and the connection type.
Examples
Example 21.126. $mysqli->host_info example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* print host information */
printf("Host info: %s\n", $mysqli->host_info);
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* print host information */
printf("Host info: %s\n", mysqli_get_host_info($link));
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Host info: Localhost via UNIX socket
See Also
mysqli_get_proto_info |
21.9.3.9.24. mysqli::$protocol_version, mysqli_get_proto_info
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$protocol_version
mysqli_get_proto_info
Returns the version of the MySQL protocol used
Description
Object oriented style
string mysqli->protocol_version ;
Procedural style
int mysqli_get_proto_info(mysqli link);
Returns an integer representing the MySQL protocol version used by the connection represented by the link parameter.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns an integer representing the protocol version.
Examples
Example 21.127. $mysqli->protocol_version example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* print protocol version */
printf("Protocol version: %d\n", $mysqli->protocol_version);
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* print protocol version */
printf("Protocol version: %d\n", mysqli_get_proto_info($link));
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Protocol version: 10
See Also
mysqli_get_host_info |
21.9.3.9.25. mysqli::$server_info, mysqli_get_server_info
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$server_info
mysqli_get_server_info
Returns the version of the MySQL server
Description
Object oriented style
string mysqli->server_info ;
Procedural style
string mysqli_get_server_info(mysqli link);
Returns a string representing the version of the MySQL server that the MySQLi extension is connected to.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
A character string representing the server version.
Examples
Example 21.128. $mysqli->server_info example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* print server version */
printf("Server version: %s\n", $mysqli->server_info);
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* print server version */
printf("Server version: %s\n", mysqli_get_server_info($link));
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Server version: 4.1.2-alpha-debug
See Also
mysqli_get_client_info |
mysqli_get_client_version |
mysqli_get_server_version |
21.9.3.9.26. mysqli::$server_version, mysqli_get_server_version
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$server_version
mysqli_get_server_version
Returns the version of the MySQL server as an integer
Description
Object oriented style
int mysqli->server_version ;
Procedural style
int mysqli_get_server_version(mysqli link);
The mysqli_get_server_version function returns the version of the server connected to (represented by the link parameter) as an integer.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
An integer representing the server version.
The form of this version number is main_version * 10000 + minor_version * 100 + sub_version (i.e. version 4.1.0 is 40100).
Examples
Example 21.129. $mysqli->server_version example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* print server version */
printf("Server version: %d\n", $mysqli->server_version);
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* print server version */
printf("Server version: %d\n", mysqli_get_server_version($link));
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Server version: 40102
See Also
mysqli_get_client_info |
mysqli_get_client_version |
mysqli_get_server_info |
21.9.3.9.27. mysqli::get_warnings, mysqli_get_warnings
Copyright 1997-2012 the PHP Documentation Group.
mysqli::get_warnings
mysqli_get_warnings
Get result of SHOW WARNINGS
Description
Object oriented style
mysqli_warning mysqli::get_warnings();
Procedural style
mysqli_warning mysqli_get_warnings(mysqli link);
Warning
This function is currently not documented; only its argument list is available.
21.9.3.9.28. mysqli::$info, mysqli_info
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$info
mysqli_info
Retrieves information about the most recently executed query
Description
Object oriented style
string mysqli->info ;
Procedural style
string mysqli_info(mysqli link);
The mysqli_info function returns a string providing information about the last query executed. The nature of this string is provided below:
Table 21.46. Possible mysqli_info return values
Query type | Example result string |
---|---|
INSERT INTO...SELECT... | Records: 100 Duplicates: 0 Warnings: 0 |
INSERT INTO...VALUES (...),(...),(...) | Records: 3 Duplicates: 0 Warnings: 0 |
LOAD DATA INFILE ... | Records: 1 Deleted: 0 Skipped: 0 Warnings: 0 |
ALTER TABLE ... | Records: 3 Duplicates: 0 Warnings: 0 |
UPDATE ... | Rows matched: 40 Changed: 40 Warnings: 0 |
Note
Queries which do not fall into one of the preceding formats are not supported. In these situations, mysqli_info will return an empty string.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
A character string representing additional information about the most recently executed query.
Examples
Example 21.130. $mysqli->info example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$mysqli->query("CREATE TEMPORARY TABLE t1 LIKE City");
/* INSERT INTO .. SELECT */
$mysqli->query("INSERT INTO t1 SELECT * FROM City ORDER BY ID LIMIT 150");
printf("%s\n", $mysqli->info);
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
mysqli_query($link, "CREATE TEMPORARY TABLE t1 LIKE City");
/* INSERT INTO .. SELECT */
mysqli_query($link, "INSERT INTO t1 SELECT * FROM City ORDER BY ID LIMIT 150");
printf("%s\n", mysqli_info($link));
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Records: 150 Duplicates: 0 Warnings: 0
See Also
mysqli_affected_rows |
mysqli_warning_count |
mysqli_num_rows |
21.9.3.9.29. mysqli::init, mysqli_init
Copyright 1997-2012 the PHP Documentation Group.
mysqli::init
mysqli_init
Initializes MySQLi and returns a resource for use with mysqli_real_connect()
Description
Object oriented style
mysqli mysqli::init();
Procedural style
mysqli mysqli_init();
Allocates or initializes a MYSQL object suitable for mysqli_options and mysqli_real_connect.
Note
Any subsequent calls to any mysqli function (except mysqli_options) will fail until mysqli_real_connect was called.
Return Values
Returns an object.
Examples
See mysqli_real_connect.
See Also
mysqli_options |
mysqli_close |
mysqli_real_connect |
mysqli_connect |
21.9.3.9.30. mysqli::$insert_id, mysqli_insert_id
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$insert_id
mysqli_insert_id
Returns the auto generated id used in the last query
Description
Object oriented style
mixed mysqli->insert_id ;
Procedural style
mixed mysqli_insert_id(mysqli link);
The mysqli_insert_id function returns the ID generated by a query on a table with a column having the AUTO_INCREMENT attribute. If the last query wasn't an INSERT or UPDATE statement or if the modified table does not have a column with the AUTO_INCREMENT attribute, this function will return zero.
Note
Performing an INSERT or UPDATE statement using the LAST_INSERT_ID() function will also modify the value returned by the mysqli_insert_id function.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
The value of the AUTO_INCREMENT field that was updated by the previous query. Returns zero if there was no previous query on the connection or if the query did not update an AUTO_INCREMENT value.
Note
If the number is greater than maximal int value, mysqli_insert_id will return a string.
Examples
Example 21.131. $mysqli->insert_id example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$mysqli->query("CREATE TABLE myCity LIKE City");
$query = "INSERT INTO myCity VALUES (NULL, 'Stuttgart', 'DEU', 'Stuttgart', 617000)";
$mysqli->query($query);
printf ("New Record has id %d.\n", $mysqli->insert_id);
/* drop table */
$mysqli->query("DROP TABLE myCity");
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
mysqli_query($link, "CREATE TABLE myCity LIKE City");
$query = "INSERT INTO myCity VALUES (NULL, 'Stuttgart', 'DEU', 'Stuttgart', 617000)";
mysqli_query($link, $query);
printf ("New Record has id %d.\n", mysqli_insert_id($link));
/* drop table */
mysqli_query($link, "DROP TABLE myCity");
/* close connection */
mysqli_close($link);
?>
The above examples will output:
New Record has id 1.
21.9.3.9.31. mysqli::kill, mysqli_kill
Copyright 1997-2012 the PHP Documentation Group.
mysqli::kill
mysqli_kill
Asks the server to kill a MySQL thread
Description
Object oriented style
bool mysqli::kill(int processid);
Procedural style
bool mysqli_kill(mysqli link,
int processid);
This function is used to ask the server to kill a MySQL thread specified by the processid parameter. This value must be retrieved by calling the mysqli_thread_id function.
To stop a running query you should use the SQL command KILL QUERY processid.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.132. mysqli::kill example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* determine our thread id */
$thread_id = $mysqli->thread_id;
/* Kill connection */
$mysqli->kill($thread_id);
/* This should produce an error */
if (!$mysqli->query("CREATE TABLE myCity LIKE City")) {
printf("Error: %s\n", $mysqli->error);
exit;
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* determine our thread id */
$thread_id = mysqli_thread_id($link);
/* Kill connection */
mysqli_kill($link, $thread_id);
/* This should produce an error */
if (!mysqli_query($link, "CREATE TABLE myCity LIKE City")) {
printf("Error: %s\n", mysqli_error($link));
exit;
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Error: MySQL server has gone away
See Also
mysqli_thread_id |
21.9.3.9.32. mysqli::more_results, mysqli_more_results
Copyright 1997-2012 the PHP Documentation Group.
mysqli::more_results
mysqli_more_results
Check if there are any more query results from a multi query
Description
Object oriented style
bool mysqli::more_results();
Procedural style
bool mysqli_more_results(mysqli link);
Indicates if one or more result sets are available from a previous call to mysqli_multi_query.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns TRUE on success or FALSE on failure.
Examples
See mysqli_multi_query.
See Also
mysqli_multi_query |
mysqli_next_result |
mysqli_store_result |
mysqli_use_result |
21.9.3.9.33. mysqli::multi_query, mysqli_multi_query
Copyright 1997-2012 the PHP Documentation Group.
mysqli::multi_query
mysqli_multi_query
Performs a query on the database
Description
Object oriented style
bool mysqli::multi_query(string query);
Procedural style
bool mysqli_multi_query(mysqli link,
string query);
Executes one or multiple queries which are concatenated by a semicolon.
To retrieve the resultset from the first query you can use mysqli_use_result or mysqli_store_result. All subsequent query results can be processed using mysqli_more_results and mysqli_next_result.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
query
The query, as a string.
Data inside the query should be properly escaped.
Return Values
Returns FALSE if the first statement failed. To retrieve subsequent errors from other statements you have to call mysqli_next_result first.
Examples
Example 21.133. mysqli::multi_query example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";
/* execute multi query */
if ($mysqli->multi_query($query)) {
do {
/* store first result set */
if ($result = $mysqli->store_result()) {
while ($row = $result->fetch_row()) {
printf("%s\n", $row[0]);
}
$result->free();
}
/* print divider */
if ($mysqli->more_results()) {
printf("-----------------\n");
}
} while ($mysqli->next_result());
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";
/* execute multi query */
if (mysqli_multi_query($link, $query)) {
do {
/* store first result set */
if ($result = mysqli_store_result($link)) {
while ($row = mysqli_fetch_row($result)) {
printf("%s\n", $row[0]);
}
mysqli_free_result($result);
}
/* print divider */
if (mysqli_more_results($link)) {
printf("-----------------\n");
}
} while (mysqli_next_result($link));
}
/* close connection */
mysqli_close($link);
?>
The above examples will output something similar to:
my_user@localhost

Amersfoort
Maastricht
Dordrecht
Leiden
Haarlemmermeer
See Also
mysqli_query |
mysqli_use_result |
mysqli_store_result |
mysqli_next_result |
mysqli_more_results |
21.9.3.9.34. mysqli::next_result, mysqli_next_result
Copyright 1997-2012 the PHP Documentation Group.
mysqli::next_result
mysqli_next_result
Prepare next result from multi_query
Description
Object oriented style
bool mysqli::next_result();
Procedural style
bool mysqli_next_result(mysqli link);
Prepares next result set from a previous call to mysqli_multi_query which can be retrieved by mysqli_store_result or mysqli_use_result.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns TRUE on success or FALSE on failure.
Examples
See mysqli_multi_query.
See Also
mysqli_multi_query |
mysqli_more_results |
mysqli_store_result |
mysqli_use_result |
21.9.3.9.35. mysqli::options, mysqli_options
Copyright 1997-2012 the PHP Documentation Group.
mysqli::options
mysqli_options
Set options
Description
Object oriented style
bool mysqli::options(int option,
mixed value);
Procedural style
bool mysqli_options(mysqli link,
int option,
mixed value);
Used to set extra connect options and affect behavior for a connection.
This function may be called multiple times to set several options.
mysqli_options should be called after mysqli_init and before mysqli_real_connect.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
option
The option that you want to set. It can be one of the following values:
Table 21.47. Valid options
Name | Description |
---|---|
MYSQLI_OPT_CONNECT_TIMEOUT | connection timeout in seconds (supported on Windows with TCP/IP since PHP 5.3.1) |
MYSQLI_OPT_LOCAL_INFILE | enable/disable use of LOAD LOCAL INFILE |
MYSQLI_INIT_COMMAND | command to execute after when connecting to MySQL server |
MYSQLI_READ_DEFAULT_FILE | Read options from named option file instead of my.cnf |
MYSQLI_READ_DEFAULT_GROUP | Read options from the named group from my.cnf or the file specified with MYSQL_READ_DEFAULT_FILE . |
MYSQLI_SERVER_PUBLIC_KEY | RSA public key file used with the SHA-256 based authentication. |
value
The value for the option.
Return Values
Returns TRUE on success or FALSE on failure.
Changelog
Version | Description |
---|---|
5.5.0 | The MYSQLI_SERVER_PUBLIC_KEY option was added. |
Examples
See mysqli_real_connect.
Notes
Note
MySQLnd always assumes the server default charset. This charset is sent during connection hand-shake/authentication, which mysqlnd will use.
Libmysqlclient uses the default charset set in the my.cnf or by an explicit call to mysqli_options prior to calling mysqli_real_connect, but after mysqli_init.
See Also
mysqli_init |
mysqli_real_connect |
21.9.3.9.36. mysqli::ping, mysqli_ping
Copyright 1997-2012 the PHP Documentation Group.
mysqli::ping
mysqli_ping
Pings a server connection, or tries to reconnect if the connection has gone down
Description
Object oriented style
bool mysqli::ping();
Procedural style
bool mysqli_ping(mysqli link);
Checks whether the connection to the server is working. If it has gone down, and global option mysqli.reconnect is enabled an automatic reconnection is attempted.
This function can be used by clients that remain idle for a long while, to check whether the server has closed the connection and reconnect if necessary.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.134. mysqli::ping example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* check if server is alive */
if ($mysqli->ping()) {
printf ("Our connection is ok!\n");
} else {
printf ("Error: %s\n", $mysqli->error);
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* check if server is alive */
if (mysqli_ping($link)) {
printf ("Our connection is ok!\n");
} else {
printf ("Error: %s\n", mysqli_error($link));
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Our connection is ok!
21.9.3.9.37. mysqli::poll, mysqli_poll
Copyright 1997-2012 the PHP Documentation Group.
mysqli::poll
mysqli_poll
Poll connections
Description
Object oriented style
public int mysqli::poll(array read,
array error,
array reject,
int sec,
int usec);
Procedural style
int mysqli_poll(array read,
array error,
array reject,
int sec,
int usec);
Warning
This function is currently not documented; only its argument list is available.
Poll connections. Available only with mysqlnd. The method can be used as static.
Parameters
read
error
reject
sec
Number of seconds to wait, must be non-negative.
usec
Number of microseconds to wait, must be non-negative.
Return Values
Returns number of ready connections upon success, FALSE otherwise.
Examples
Example 21.135. A mysqli_poll example
<?php
$link1 = mysqli_connect();
$link1->query("SELECT 'test'", MYSQLI_ASYNC);
$all_links = array($link1);
$processed = 0;
do {
$links = $errors = $reject = array();
foreach ($all_links as $link) {
$links[] = $errors[] = $reject[] = $link;
}
if (!mysqli_poll($links, $errors, $reject, 1)) {
continue;
}
foreach ($links as $link) {
if ($result = $link->reap_async_query()) {
print_r($result->fetch_row());
if (is_object($result))
mysqli_free_result($result);
} else die(sprintf("MySQLi Error: %s", mysqli_error($link)));
$processed++;
}
} while ($processed < count($all_links));
?>
The above example will output:
Array
(
[0] => test
)
See Also
mysqli_query |
mysqli_reap_async_query |
21.9.3.9.38. mysqli::prepare, mysqli_prepare
Copyright 1997-2012 the PHP Documentation Group.
mysqli::prepare
mysqli_prepare
Prepare an SQL statement for execution
Description
Object oriented style
mysqli_stmt mysqli::prepare(string query);
Procedural style
mysqli_stmt mysqli_prepare(mysqli link,
string query);
Prepares the SQL query, and returns a statement handle to be used for further operations on the statement. The query must consist of a single SQL statement.
The parameter markers must be bound to application variables using mysqli_stmt_bind_param and/or mysqli_stmt_bind_result before executing the statement or fetching rows.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
query
The query, as a string.
Note
You should not add a terminating semicolon or \g to the statement.
This parameter can include one or more parameter markers in the SQL statement by embedding question mark (?) characters at the appropriate positions.
Note
The markers are legal only in certain places in SQL statements. For example, they are allowed in the VALUES() list of an INSERT statement (to specify column values for a row), or in a comparison with a column in a WHERE clause to specify a comparison value.
However, they are not allowed for identifiers (such as table or column names), in the select list that names the columns to be returned by a SELECT statement, or to specify both operands of a binary operator such as the = equal sign. The latter restriction is necessary because it would be impossible to determine the parameter type. It's not allowed to compare marker with NULL by ? IS NULL too. In general, parameters are legal only in Data Manipulation Language (DML) statements, and not in Data Definition Language (DDL) statements.
Return Values
mysqli_prepare returns a statement object or FALSE if an error occurred.
Examples
Example 21.136. mysqli::prepare example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$city = "Amersfoort";
/* create a prepared statement */
if ($stmt = $mysqli->prepare("SELECT District FROM City WHERE Name=?")) {
/* bind parameters for markers */
$stmt->bind_param("s", $city);
/* execute query */
$stmt->execute();
/* bind result variables */
$stmt->bind_result($district);
/* fetch value */
$stmt->fetch();
printf("%s is in district %s\n", $city, $district);
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$city = "Amersfoort";
/* create a prepared statement */
if ($stmt = mysqli_prepare($link, "SELECT District FROM City WHERE Name=?")) {
/* bind parameters for markers */
mysqli_stmt_bind_param($stmt, "s", $city);
/* execute query */
mysqli_stmt_execute($stmt);
/* bind result variables */
mysqli_stmt_bind_result($stmt, $district);
/* fetch value */
mysqli_stmt_fetch($stmt);
printf("%s is in district %s\n", $city, $district);
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Amersfoort is in district Utrecht
See Also
mysqli_stmt_execute |
mysqli_stmt_fetch |
mysqli_stmt_bind_param |
mysqli_stmt_bind_result |
mysqli_stmt_close |
21.9.3.9.39. mysqli::query, mysqli_query
Copyright 1997-2012 the PHP Documentation Group.
mysqli::query
mysqli_query
Performs a query on the database
Description
Object oriented style
mixed mysqli::query(string query,
int resultmode= =MYSQLI_STORE_RESULT);
Procedural style
mixed mysqli_query(mysqli link,
string query,
int resultmode= =MYSQLI_STORE_RESULT);
Performs a query against the database.
For non-DML queries (not INSERT, UPDATE or DELETE), this function is similar to calling mysqli_real_query followed by either mysqli_use_result or mysqli_store_result.
Note
In the case where you pass a statement to mysqli_query that is longer than max_allowed_packet of the server, the returned error codes are different depending on whether you are using MySQL Native Driver (mysqlnd) or MySQL Client Library (libmysqlclient). The behavior is as follows:
mysqlnd on Linux returns an error code of 1153. The error message means “got a packet bigger than max_allowed_packet bytes”.
mysqlnd on Windows returns an error code 2006. This error message means “server has gone away”.
libmysqlclient on all platforms returns an error code 2006. This error message means “server has gone away”.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
query
The query string.
Data inside the query should be properly escaped.
resultmode
Either the constant MYSQLI_USE_RESULT or MYSQLI_STORE_RESULT depending on the desired behavior. By default, MYSQLI_STORE_RESULT is used.
If you use MYSQLI_USE_RESULT all subsequent calls will return error Commands out of sync unless you call mysqli_free_result
With MYSQLI_ASYNC (available with mysqlnd), it is possible to perform query asynchronously. mysqli_poll is then used to get results from such queries.
Return Values
Returns FALSE on failure. For successful SELECT, SHOW, DESCRIBE or EXPLAIN queries mysqli_query will return a mysqli_result object. For other successful queries mysqli_query will return TRUE .
Changelog
Version | Description |
---|---|
5.3.0 | Added the ability of async queries. |
Examples
Example 21.137. mysqli::query example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if ($mysqli->connect_errno) {
printf("Connect failed: %s\n", $mysqli->connect_error);
exit();
}
/* Create table doesn't return a resultset */
if ($mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {
printf("Table myCity successfully created.\n");
}
/* Select queries return a resultset */
if ($result = $mysqli->query("SELECT Name FROM City LIMIT 10")) {
printf("Select returned %d rows.\n", $result->num_rows);
/* free result set */
$result->close();
}
/* If we have to retrieve large amount of data we use MYSQLI_USE_RESULT */
if ($result = $mysqli->query("SELECT * FROM City", MYSQLI_USE_RESULT)) {
/* Note, that we can't execute any functions which interact with the
server until result set was closed. All calls will return an
'out of sync' error */
if (!$mysqli->query("SET @a:='this will not work'")) {
printf("Error: %s\n", $mysqli->error);
}
$result->close();
}
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* Create table doesn't return a resultset */
if (mysqli_query($link, "CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {
printf("Table myCity successfully created.\n");
}
/* Select queries return a resultset */
if ($result = mysqli_query($link, "SELECT Name FROM City LIMIT 10")) {
printf("Select returned %d rows.\n", mysqli_num_rows($result));
/* free result set */
mysqli_free_result($result);
}
/* If we have to retrieve large amount of data we use MYSQLI_USE_RESULT */
if ($result = mysqli_query($link, "SELECT * FROM City", MYSQLI_USE_RESULT)) {
/* Note, that we can't execute any functions which interact with the
server until result set was closed. All calls will return an
'out of sync' error */
if (!mysqli_query($link, "SET @a:='this will not work'")) {
printf("Error: %s\n", mysqli_error($link));
}
mysqli_free_result($result);
}
mysqli_close($link);
?>
The above examples will output:
Table myCity successfully created.
Select returned 10 rows.
Error: Commands out of sync; You can't run this command now
See Also
mysqli_real_query |
mysqli_multi_query |
mysqli_free_result |
21.9.3.9.40. mysqli::real_connect, mysqli_real_connect
Copyright 1997-2012 the PHP Documentation Group.
mysqli::real_connect
mysqli_real_connect
Opens a connection to a mysql server
Description
Object oriented style
bool mysqli::real_connect(string host,
string username,
string passwd,
string dbname,
int port,
string socket,
int flags);
Procedural style
bool mysqli_real_connect(mysqli link,
string host,
string username,
string passwd,
string dbname,
int port,
string socket,
int flags);
Establish a connection to a MySQL database engine.
This function differs from mysqli_connect:
mysqli_real_connect needs a valid object which has to be created by function mysqli_init.
With the mysqli_options function you can set various options for connection.
There is a flags parameter.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
host
Can be either a host name or an IP address. Passing the NULL value or the string "localhost" to this parameter, the local host is assumed. When possible, pipes will be used instead of the TCP/IP protocol.
username
The MySQL user name.
passwd
If provided or NULL , the MySQL server will attempt to authenticate the user against those user records which have no password only. This allows one username to be used with different permissions (depending on if a password as provided or not).
dbname
If provided will specify the default database to be used when performing queries.
port
Specifies the port number to attempt to connect to the MySQL server.
socket
Specifies the socket or named pipe that should be used.
Note
Specifying the socket parameter will not explicitly determine the type of connection to be used when connecting to the MySQL server. How the connection is made to the MySQL database is determined by the host parameter.
flags
With the parameter flags you can set different connection options:
Table 21.48. Supported flags
Name | Description |
---|---|
MYSQLI_CLIENT_COMPRESS | Use compression protocol |
MYSQLI_CLIENT_FOUND_ROWS | return number of matched rows, not the number of affected rows |
MYSQLI_CLIENT_IGNORE_SPACE | Allow spaces after function names. Makes all function names reserved words. |
MYSQLI_CLIENT_INTERACTIVE | Allow interactive_timeout seconds (instead of wait_timeout seconds) of inactivity before closing the connection |
MYSQLI_CLIENT_SSL | Use SSL (encryption) |
Note
For security reasons the MULTI_STATEMENT flag is not supported in PHP. If you want to execute multiple queries use the mysqli_multi_query function.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.138. mysqli::real_connect example
Object oriented style
<?php
$mysqli = mysqli_init();
if (!$mysqli) {
die('mysqli_init failed');
}
if (!$mysqli->options(MYSQLI_INIT_COMMAND, 'SET AUTOCOMMIT = 0')) {
die('Setting MYSQLI_INIT_COMMAND failed');
}
if (!$mysqli->options(MYSQLI_OPT_CONNECT_TIMEOUT, 5)) {
die('Setting MYSQLI_OPT_CONNECT_TIMEOUT failed');
}
if (!$mysqli->real_connect('localhost', 'my_user', 'my_password', 'my_db')) {
die('Connect Error (' . mysqli_connect_errno() . ') '
. mysqli_connect_error());
}
echo 'Success... ' . $mysqli->host_info . "\n";
$mysqli->close();
?>
Object oriented style when extending mysqli class
<?php
class foo_mysqli extends mysqli {
public function __construct($host, $user, $pass, $db) {
parent::init();
if (!parent::options(MYSQLI_INIT_COMMAND, 'SET AUTOCOMMIT = 0')) {
die('Setting MYSQLI_INIT_COMMAND failed');
}
if (!parent::options(MYSQLI_OPT_CONNECT_TIMEOUT, 5)) {
die('Setting MYSQLI_OPT_CONNECT_TIMEOUT failed');
}
if (!parent::real_connect($host, $user, $pass, $db)) {
die('Connect Error (' . mysqli_connect_errno() . ') '
. mysqli_connect_error());
}
}
}
$db = new foo_mysqli('localhost', 'my_user', 'my_password', 'my_db');
echo 'Success... ' . $db->host_info . "\n";
$db->close();
?>
Procedural style
<?php
$link = mysqli_init();
if (!$link) {
die('mysqli_init failed');
}
if (!mysqli_options($link, MYSQLI_INIT_COMMAND, 'SET AUTOCOMMIT = 0')) {
die('Setting MYSQLI_INIT_COMMAND failed');
}
if (!mysqli_options($link, MYSQLI_OPT_CONNECT_TIMEOUT, 5)) {
die('Setting MYSQLI_OPT_CONNECT_TIMEOUT failed');
}
if (!mysqli_real_connect($link, 'localhost', 'my_user', 'my_password', 'my_db')) {
die('Connect Error (' . mysqli_connect_errno() . ') '
. mysqli_connect_error());
}
echo 'Success... ' . mysqli_get_host_info($link) . "\n";
mysqli_close($link);
?>
The above examples will output:
Success... MySQL host info: localhost via TCP/IP
Notes
Note
MySQLnd always assumes the server default charset. This charset is sent during connection hand-shake/authentication, which mysqlnd will use.
Libmysqlclient uses the default charset set in the my.cnf or by an explicit call to mysqli_options prior to calling mysqli_real_connect, but after mysqli_init.
See Also
mysqli_connect |
mysqli_init |
mysqli_options |
mysqli_ssl_set |
mysqli_close |
21.9.3.9.41. mysqli::real_escape_string, mysqli_real_escape_string
Copyright 1997-2012 the PHP Documentation Group.
mysqli::real_escape_string
mysqli_real_escape_string
Escapes special characters in a string for use in an SQL statement, taking into account the current charset of the connection
Description
Object oriented style
string mysqli::escape_string(string escapestr);
string mysqli::real_escape_string(string escapestr);
Procedural style
string mysqli_real_escape_string(mysqli link,
string escapestr);
This function is used to create a legal SQL string that you can use in an SQL statement. The given string is encoded to an escaped SQL string, taking into account the current character set of the connection.
Security: the default character set
The character set must be set either at the server level, or with the API function mysqli_set_charset for it to affect mysqli_real_escape_string. See the concepts section on character sets for more information.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
escapestr
The string to be escaped.
Characters encoded are NUL (ASCII 0), \n, \r, \, ', ", and Control-Z.
Return Values
Returns an escaped string.
Examples
Example 21.139. mysqli::real_escape_string example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City");
$city = "'s Hertogenbosch";
/* this query will fail, cause we didn't escape $city */
if (!$mysqli->query("INSERT into myCity (Name) VALUES ('$city')")) {
printf("Error: %s\n", $mysqli->sqlstate);
}
$city = $mysqli->real_escape_string($city);
/* this query with escaped $city will work */
if ($mysqli->query("INSERT into myCity (Name) VALUES ('$city')")) {
printf("%d Row inserted.\n", $mysqli->affected_rows);
}
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
mysqli_query($link, "CREATE TEMPORARY TABLE myCity LIKE City");
$city = "'s Hertogenbosch";
/* this query will fail, cause we didn't escape $city */
if (!mysqli_query($link, "INSERT into myCity (Name) VALUES ('$city')")) {
printf("Error: %s\n", mysqli_sqlstate($link));
}
$city = mysqli_real_escape_string($link, $city);
/* this query with escaped $city will work */
if (mysqli_query($link, "INSERT into myCity (Name) VALUES ('$city')")) {
printf("%d Row inserted.\n", mysqli_affected_rows($link));
}
mysqli_close($link);
?>
The above examples will output:
Error: 42000
1 Row inserted.
Notes
Note
For those accustomed to using mysql_real_escape_string, note that the arguments of mysqli_real_escape_string differ from what mysql_real_escape_string expects. The link identifier comes first in mysqli_real_escape_string, whereas the string to be escaped comes first in mysql_real_escape_string.
See Also
mysqli_set_charset |
mysqli_character_set_name |
21.9.3.9.42. mysqli::real_query, mysqli_real_query
Copyright 1997-2012 the PHP Documentation Group.
mysqli::real_query
mysqli_real_query
Execute an SQL query
Description
Object oriented style
bool mysqli::real_query(string query);
Procedural style
bool mysqli_real_query(mysqli link,
string query);
Executes a single query against the database whose result can then be retrieved or stored using the mysqli_store_result or mysqli_use_result functions.
In order to determine if a given query should return a result set or not, see mysqli_field_count.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
query
The query, as a string.
Data inside the query should be properly escaped.
Return Values
Returns TRUE on success or FALSE on failure.
See Also
mysqli_query |
mysqli_store_result |
mysqli_use_result |
21.9.3.9.43. mysqli::reap_async_query, mysqli_reap_async_query
Copyright 1997-2012 the PHP Documentation Group.
mysqli::reap_async_query
mysqli_reap_async_query
Get result from async query
Description
Object oriented style
public mysqli_result mysqli::reap_async_query();
Procedural style
mysqli_result mysqli_reap_async_query(mysql link);
Warning
This function is currently not documented; only its argument list is available.
Get result from async query. Available only with mysqlnd.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns mysqli_result in success, FALSE otherwise.
See Also
mysqli_poll |
21.9.3.9.44. mysqli::refresh, mysqli_refresh
Copyright 1997-2012 the PHP Documentation Group.
mysqli::refresh
mysqli_refresh
Refreshes
Description
Object oriented style
public bool mysqli::refresh(int options);
Procedural style
int mysqli_refresh(resource link,
int options);
Flushes tables or caches, or resets the replication server information.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
options
The options to refresh, using the MYSQLI_REFRESH_* constants as documented within the MySQLi constants documentation.
See also the official MySQL Refresh documentation.
Return Values
TRUE if the refresh was a success, otherwise FALSE
See Also
mysqli_poll |
21.9.3.9.45. mysqli::rollback, mysqli_rollback
Copyright 1997-2012 the PHP Documentation Group.
mysqli::rollback
mysqli_rollback
Rolls back current transaction
Description
Object oriented style
bool mysqli::rollback();
Procedural style
bool mysqli_rollback(mysqli link);
Rollbacks the current transaction for the database.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.140. mysqli::rollback example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* disable autocommit */
$mysqli->autocommit(FALSE);
$mysqli->query("CREATE TABLE myCity LIKE City");
$mysqli->query("ALTER TABLE myCity Type=InnoDB");
$mysqli->query("INSERT INTO myCity SELECT * FROM City LIMIT 50");
/* commit insert */
$mysqli->commit();
/* delete all rows */
$mysqli->query("DELETE FROM myCity");
if ($result = $mysqli->query("SELECT COUNT(*) FROM myCity")) {
$row = $result->fetch_row();
printf("%d rows in table myCity.\n", $row[0]);
/* Free result */
$result->close();
}
/* Rollback */
$mysqli->rollback();
if ($result = $mysqli->query("SELECT COUNT(*) FROM myCity")) {
$row = $result->fetch_row();
printf("%d rows in table myCity (after rollback).\n", $row[0]);
/* Free result */
$result->close();
}
/* Drop table myCity */
$mysqli->query("DROP TABLE myCity");
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* disable autocommit */
mysqli_autocommit($link, FALSE);
mysqli_query($link, "CREATE TABLE myCity LIKE City");
mysqli_query($link, "ALTER TABLE myCity Type=InnoDB");
mysqli_query($link, "INSERT INTO myCity SELECT * FROM City LIMIT 50");
/* commit insert */
mysqli_commit($link);
/* delete all rows */
mysqli_query($link, "DELETE FROM myCity");
if ($result = mysqli_query($link, "SELECT COUNT(*) FROM myCity")) {
$row = mysqli_fetch_row($result);
printf("%d rows in table myCity.\n", $row[0]);
/* Free result */
mysqli_free_result($result);
}
/* Rollback */
mysqli_rollback($link);
if ($result = mysqli_query($link, "SELECT COUNT(*) FROM myCity")) {
$row = mysqli_fetch_row($result);
printf("%d rows in table myCity (after rollback).\n", $row[0]);
/* Free result */
mysqli_free_result($result);
}
/* Drop table myCity */
mysqli_query($link, "DROP TABLE myCity");
mysqli_close($link);
?>
The above examples will output:
0 rows in table myCity.
50 rows in table myCity (after rollback).
See Also
mysqli_commit |
mysqli_autocommit |
21.9.3.9.46. mysqli::rpl_query_type, mysqli_rpl_query_type
Copyright 1997-2012 the PHP Documentation Group.
mysqli::rpl_query_type
mysqli_rpl_query_type
Returns RPL query type
Description
Object oriented style
int mysqli::rpl_query_type(string query);
Procedural style
int mysqli_rpl_query_type(mysqli link,
string query);
Returns MYSQLI_RPL_MASTER , MYSQLI_RPL_SLAVE or MYSQLI_RPL_ADMIN depending on a query type. INSERT, UPDATE and similar are master queries, SELECT is slave, and FLUSH, REPAIR and similar are admin.
Warning
This function is currently not documented; only its argument list is available.
Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
21.9.3.9.47. mysqli::select_db, mysqli_select_db
Copyright 1997-2012 the PHP Documentation Group.
mysqli::select_db
mysqli_select_db
Selects the default database for database queries
Description
Object oriented style
bool mysqli::select_db(string dbname);
Procedural style
bool mysqli_select_db(mysqli link,
string dbname);
Selects the default database to be used when performing queries against the database connection.
Note
This function should only be used to change the default database for the connection. You can select the default database with 4th parameter in mysqli_connect.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
dbname
The database name.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.141. mysqli::select_db example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* return name of current default database */
if ($result = $mysqli->query("SELECT DATABASE()")) {
$row = $result->fetch_row();
printf("Default database is %s.\n", $row[0]);
$result->close();
}
/* change db to world db */
$mysqli->select_db("world");
/* return name of current default database */
if ($result = $mysqli->query("SELECT DATABASE()")) {
$row = $result->fetch_row();
printf("Default database is %s.\n", $row[0]);
$result->close();
}
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* return name of current default database */
if ($result = mysqli_query($link, "SELECT DATABASE()")) {
$row = mysqli_fetch_row($result);
printf("Default database is %s.\n", $row[0]);
mysqli_free_result($result);
}
/* change db to world db */
mysqli_select_db($link, "world");
/* return name of current default database */
if ($result = mysqli_query($link, "SELECT DATABASE()")) {
$row = mysqli_fetch_row($result);
printf("Default database is %s.\n", $row[0]);
mysqli_free_result($result);
}
mysqli_close($link);
?>
The above examples will output:
Default database is test.
Default database is world.
See Also
mysqli_connect |
mysqli_real_connect |
21.9.3.9.48. mysqli::send_query, mysqli_send_query
Copyright 1997-2012 the PHP Documentation Group.
mysqli::send_query
mysqli_send_query
Send the query and return
Description
Object oriented style
bool mysqli::send_query(string query);
Procedural style
bool mysqli_send_query(mysqli link,
string query);
Warning
This function is currently not documented; only its argument list is available.
Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
21.9.3.9.49. mysqli::set_charset, mysqli_set_charset
Copyright 1997-2012 the PHP Documentation Group.
mysqli::set_charset
mysqli_set_charset
Sets the default client character set
Description
Object oriented style
bool mysqli::set_charset(string charset);
Procedural style
bool mysqli_set_charset(mysqli link,
string charset);
Sets the default character set to be used when sending data from and to the database server.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
charset
The charset to be set as default.
Return Values
Returns TRUE on success or FALSE on failure.
Notes
Note
To use this function on a Windows platform you need MySQL client library version 4.1.11 or above (for MySQL 5.0 you need 5.0.6 or above).
Note
This is the preferred way to change the charset. Using mysqli_query to set it (such as SET NAMES utf8) is not recommended. See the MySQL character set concepts section for more information.
Examples
Example 21.142. mysqli::set_charset example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* change character set to utf8 */
if (!$mysqli->set_charset("utf8")) {
printf("Error loading character set utf8: %s\n", $mysqli->error);
} else {
printf("Current character set: %s\n", $mysqli->character_set_name());
}
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'test');
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* change character set to utf8 */
if (!mysqli_set_charset($link, "utf8")) {
printf("Error loading character set utf8: %s\n", mysqli_error($link));
} else {
printf("Current character set: %s\n", mysqli_character_set_name($link));
}
mysqli_close($link);
?>
The above examples will output:
Current character set: utf8
See Also
mysqli_character_set_name |
mysqli_real_escape_string |
List of character sets that MySQL supports |
21.9.3.9.50. mysqli::set_local_infile_default, mysqli_set_local_infile_default
Copyright 1997-2012 the PHP Documentation Group.
mysqli::set_local_infile_default
mysqli_set_local_infile_default
Unsets user defined handler for load local infile command
Description
void mysqli_set_local_infile_default(mysqli link);
Deactivates a LOAD DATA INFILE LOCAL handler previously set with mysqli_set_local_infile_handler.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
No value is returned.
Examples
See mysqli_set_local_infile_handler examples
See Also
mysqli_set_local_infile_handler |
21.9.3.9.51. mysqli::set_local_infile_handler, mysqli_set_local_infile_handler
Copyright 1997-2012 the PHP Documentation Group.
mysqli::set_local_infile_handler
mysqli_set_local_infile_handler
Set callback function for LOAD DATA LOCAL INFILE command
Description
Object oriented style
bool mysqli::set_local_infile_handler(mysqli link,
callable read_func);
Procedural style
bool mysqli_set_local_infile_handler(mysqli link,
callable read_func);
Set callback function for LOAD DATA LOCAL INFILE command
The callbacks task is to read input from the file specified in the LOAD DATA LOCAL INFILE and to reformat it into the format understood by LOAD DATA INFILE.
The returned data needs to match the format specified in the LOAD DATA
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
read_func
A callback function or object method taking the following parameters:
stream
A PHP stream associated with the SQL commands INFILE
&buffer
A string buffer to store the rewritten input into
buflen
The maximum number of characters to be stored in the buffer
&errormsg
If an error occurs you can store an error message in here
The callback function should return the number of characters stored in the buffer or a negative value if an error occurred.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.143. mysqli::set_local_infile_handler example
Object oriented style
<?php
$db = mysqli_init();
$db->real_connect("localhost","root","","test");
function callme($stream, &$buffer, $buflen, &$errmsg)
{
$buffer = fgets($stream);
echo $buffer;
// convert to upper case and replace "," delimiter with [TAB]
$buffer = strtoupper(str_replace(",", "\t", $buffer));
return strlen($buffer);
}
echo "Input:\n";
$db->set_local_infile_handler("callme");
$db->query("LOAD DATA LOCAL INFILE 'input.txt' INTO TABLE t1");
$db->set_local_infile_default();
$res = $db->query("SELECT * FROM t1");
echo "\nResult:\n";
while ($row = $res->fetch_assoc()) {
echo join(",", $row)."\n";
}
?>
Procedural style
<?php
$db = mysqli_init();
mysqli_real_connect($db, "localhost","root","","test");
function callme($stream, &$buffer, $buflen, &$errmsg)
{
$buffer = fgets($stream);
echo $buffer;
// convert to upper case and replace "," delimiter with [TAB]
$buffer = strtoupper(str_replace(",", "\t", $buffer));
return strlen($buffer);
}
echo "Input:\n";
mysqli_set_local_infile_handler($db, "callme");
mysqli_query($db, "LOAD DATA LOCAL INFILE 'input.txt' INTO TABLE t1");
mysqli_set_local_infile_default($db);
$res = mysqli_query($db, "SELECT * FROM t1");
echo "\nResult:\n";
while ($row = mysqli_fetch_assoc($res)) {
echo join(",", $row)."\n";
}
?>
The above examples will output:
Input:
23,foo
42,bar
Output:
23,FOO
42,BAR
See Also
mysqli_set_local_infile_default |
21.9.3.9.52. mysqli::$sqlstate, mysqli_sqlstate
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$sqlstate
mysqli_sqlstate
Returns the SQLSTATE error from previous MySQL operation
Description
Object oriented style
string mysqli->sqlstate ;
Procedural style
string mysqli_sqlstate(mysqli link);
Returns a string containing the SQLSTATE error code for the last error. The error code consists of five characters. '00000' means no error. The values are specified by ANSI SQL and ODBC. For a list of possible values, see http://dev.mysql.com/doc/mysql/en/error-handling.html.
Note
Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HY000 (general error) is used for unmapped errors.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns a string containing the SQLSTATE error code for the last error. The error code consists of five characters. '00000' means no error.
Examples
Example 21.144. $mysqli->sqlstate example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* Table City already exists, so we should get an error */
if (!$mysqli->query("CREATE TABLE City (ID INT, Name VARCHAR(30))")) {
printf("Error - SQLSTATE %s.\n", $mysqli->sqlstate);
}
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* Table City already exists, so we should get an error */
if (!mysqli_query($link, "CREATE TABLE City (ID INT, Name VARCHAR(30))")) {
printf("Error - SQLSTATE %s.\n", mysqli_sqlstate($link));
}
mysqli_close($link);
?>
The above examples will output:
Error - SQLSTATE 42S01.
See Also
mysqli_errno |
mysqli_error |
21.9.3.9.53. mysqli::ssl_set, mysqli_ssl_set
Copyright 1997-2012 the PHP Documentation Group.
mysqli::ssl_set
mysqli_ssl_set
Used for establishing secure connections using SSL
Description
Object oriented style
bool mysqli::ssl_set(string key,
string cert,
string ca,
string capath,
string cipher);
Procedural style
bool mysqli_ssl_set(mysqli link,
string key,
string cert,
string ca,
string capath,
string cipher);
Used for establishing secure connections using SSL. It must be called before mysqli_real_connect. This function does nothing unless OpenSSL support is enabled.
Note that MySQL Native Driver does not support SSL before PHP 5.3.3, so calling this function when using MySQL Native Driver will result in an error. MySQL Native Driver is enabled by default on Microsoft Windows from PHP version 5.3 onwards.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
key
The path name to the key file.
cert
The path name to the certificate file.
ca
The path name to the certificate authority file.
capath
The pathname to a directory that contains trusted SSL CA certificates in PEM format.
cipher
A list of allowable ciphers to use for SSL encryption.
Any unused SSL parameters may be given as NULL
Return Values
This function always returns TRUE value. If SSL setup is incorrect mysqli_real_connect will return an error when you attempt to connect.
See Also
mysqli_options |
mysqli_real_connect |
21.9.3.9.54. mysqli::stat, mysqli_stat
Copyright 1997-2012 the PHP Documentation Group.
mysqli::stat
mysqli_stat
Gets the current system status
Description
Object oriented style
string mysqli::stat();
Procedural style
string mysqli_stat(mysqli link);
mysqli_stat returns a string containing information similar to that provided by the 'mysqladmin status' command. This includes uptime in seconds and the number of running threads, questions, reloads, and open tables.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
A string describing the server status. FALSE if an error occurred.
Examples
Example 21.145. mysqli::stat example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
printf ("System status: %s\n", $mysqli->stat());
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
printf("System status: %s\n", mysqli_stat($link));
mysqli_close($link);
?>
The above examples will output:
System status: Uptime: 272 Threads: 1 Questions: 5340 Slow queries: 0
Opens: 13 Flush tables: 1 Open tables: 0 Queries per second avg: 19.632
Memory in use: 8496K Max memory used: 8560K
See Also
mysqli_get_server_info |
21.9.3.9.55. mysqli::stmt_init, mysqli_stmt_init
Copyright 1997-2012 the PHP Documentation Group.
mysqli::stmt_init
mysqli_stmt_init
Initializes a statement and returns an object for use with mysqli_stmt_prepare
Description
Object oriented style
mysqli_stmt mysqli::stmt_init();
Procedural style
mysqli_stmt mysqli_stmt_init(mysqli link);
Allocates and initializes a statement object suitable for mysqli_stmt_prepare.
Note
Any subsequent calls to any mysqli_stmt function will fail until mysqli_stmt_prepare was called.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns an object.
See Also
mysqli_stmt_prepare |
21.9.3.9.56. mysqli::store_result, mysqli_store_result
Copyright 1997-2012 the PHP Documentation Group.
mysqli::store_result
mysqli_store_result
Transfers a result set from the last query
Description
Object oriented style
mysqli_result mysqli::store_result();
Procedural style
mysqli_result mysqli_store_result(mysqli link);
Transfers the result set from the last query on the database connection represented by the link parameter to be used with the mysqli_data_seek function.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns a buffered result object or FALSE if an error occurred.
Note
mysqli_store_result returns FALSE in case the query didn't return a result set (if the query was, for example an INSERT statement). This function also returns FALSE if the reading of the result set failed. You can check if you have got an error by checking if mysqli_error doesn't return an empty string, if mysqli_errno returns a non zero value, or if mysqli_field_count returns a non zero value. Also possible reason for this function returning FALSE after successful call to mysqli_query can be too large result set (memory for it cannot be allocated). If mysqli_field_count returns a non-zero value, the statement should have produced a non-empty result set.
Notes
Note
Although it is always good practice to free the memory used by the result of a query using the mysqli_free_result function, when transferring large result sets using the mysqli_store_result this becomes particularly important.
Examples
See mysqli_multi_query.
See Also
mysqli_real_query |
mysqli_use_result |
21.9.3.9.57. mysqli::$thread_id, mysqli_thread_id
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$thread_id
mysqli_thread_id
Returns the thread ID for the current connection
Description
Object oriented style
int mysqli->thread_id ;
Procedural style
int mysqli_thread_id(mysqli link);
The mysqli_thread_id function returns the thread ID for the current connection which can then be killed using the mysqli_kill function. If the connection is lost and you reconnect with mysqli_ping, the thread ID will be other. Therefore you should get the thread ID only when you need it.
Note
The thread ID is assigned on a connection-by-connection basis. Hence, if the connection is broken and then re-established a new thread ID will be assigned.
To kill a running query you can use the SQL command KILL QUERY processid.
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Returns the Thread ID for the current connection.
Examples
Example 21.146. $mysqli->thread_id example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* determine our thread id */
$thread_id = $mysqli->thread_id;
/* Kill connection */
$mysqli->kill($thread_id);
/* This should produce an error */
if (!$mysqli->query("CREATE TABLE myCity LIKE City")) {
printf("Error: %s\n", $mysqli->error);
exit;
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* determine our thread id */
$thread_id = mysqli_thread_id($link);
/* Kill connection */
mysqli_kill($link, $thread_id);
/* This should produce an error */
if (!mysqli_query($link, "CREATE TABLE myCity LIKE City")) {
printf("Error: %s\n", mysqli_error($link));
exit;
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Error: MySQL server has gone away
See Also
mysqli_kill |
21.9.3.9.58. mysqli::thread_safe, mysqli_thread_safe
Copyright 1997-2012 the PHP Documentation Group.
mysqli::thread_safe
mysqli_thread_safe
Returns whether thread safety is given or not
Description
Procedural style
bool mysqli_thread_safe();
Tells whether the client library is compiled as thread-safe.
Return Values
TRUE if the client library is thread-safe, otherwise FALSE .
21.9.3.9.59. mysqli::use_result, mysqli_use_result
Copyright 1997-2012 the PHP Documentation Group.
mysqli::use_result
mysqli_use_result
Initiate a result set retrieval
Description
Object oriented style
mysqli_result mysqli::use_result();
Procedural style
mysqli_result mysqli_use_result(mysqli link);
Used to initiate the retrieval of a result set from the last query executed using the mysqli_real_query function on the database connection.
Either this or the mysqli_store_result function must be called before the results of a query can be retrieved, and one or the other must be called to prevent the next query on that database connection from failing.
Note
The mysqli_use_result function does not transfer the entire result set from the database and hence cannot be used functions such as mysqli_data_seek to move to a particular row within the set. To use this functionality, the result set must be stored using mysqli_store_result. One should not use mysqli_use_result if a lot of processing on the client side is performed, since this will tie up the server and prevent other threads from updating any tables from which the data is being fetched.
Return Values
Returns an unbuffered result object or FALSE if an error occurred.
Examples
Example 21.147. mysqli::use_result example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";
/* execute multi query */
if ($mysqli->multi_query($query)) {
do {
/* store first result set */
if ($result = $mysqli->use_result()) {
while ($row = $result->fetch_row()) {
printf("%s\n", $row[0]);
}
$result->close();
}
/* print divider */
if ($mysqli->more_results()) {
printf("-----------------\n");
}
} while ($mysqli->next_result());
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";
/* execute multi query */
if (mysqli_multi_query($link, $query)) {
do {
/* store first result set */
if ($result = mysqli_use_result($link)) {
while ($row = mysqli_fetch_row($result)) {
printf("%s\n", $row[0]);
}
mysqli_free_result($result);
}
/* print divider */
if (mysqli_more_results($link)) {
printf("-----------------\n");
}
} while (mysqli_next_result($link));
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
my_user@localhost

Amersfoort
Maastricht
Dordrecht
Leiden
Haarlemmermeer
See Also
mysqli_real_query |
mysqli_store_result |
21.9.3.9.60. mysqli::$warning_count, mysqli_warning_count
Copyright 1997-2012 the PHP Documentation Group.
mysqli::$warning_count
mysqli_warning_count
Returns the number of warnings from the last query for the given link
Description
Object oriented style
int mysqli->warning_count ;
Procedural style
int mysqli_warning_count(mysqli link);
Returns the number of warnings from the last query in the connection.
Note
For retrieving warning messages you can use the SQL command SHOW WARNINGS [limit row_count].
Parameters
link
Procedural style only: A link identifier returned by mysqli_connect or mysqli_init
Return Values
Number of warnings or zero if there are no warnings.
Examples
Example 21.148. $mysqli->warning_count example
Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$mysqli->query("CREATE TABLE myCity LIKE City");
/* a remarkable city in Wales */
$query = "INSERT INTO myCity (CountryCode, Name) VALUES('GBR',
'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";
$mysqli->query($query);
if ($mysqli->warning_count) {
if ($result = $mysqli->query("SHOW WARNINGS")) {
$row = $result->fetch_row();
printf("%s (%d): %s\n", $row[0], $row[1], $row[2]);
$result->close();
}
}
/* close connection */
$mysqli->close();
?>
Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
mysqli_query($link, "CREATE TABLE myCity LIKE City");
/* a remarkable long city name in Wales */
$query = "INSERT INTO myCity (CountryCode, Name) VALUES('GBR',
'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";
mysqli_query($link, $query);
if (mysqli_warning_count($link)) {
if ($result = mysqli_query($link, "SHOW WARNINGS")) {
$row = mysqli_fetch_row($result);
printf("%s (%d): %s\n", $row[0], $row[1], $row[2]);
mysqli_free_result($result);
}
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Warning (1264): Data truncated for column 'Name' at row 1
See Also
mysqli_errno |
mysqli_error |
mysqli_sqlstate |
21.9.3.10. The mysqli_stmt class (mysqli_stmt)
Copyright 1997-2012 the PHP Documentation Group.
Represents a prepared statement.
mysqli_stmt {
mysqli_stmt
Properties int mysqli_stmt->affected_rows ;
int mysqli_stmt->errno ;
array mysqli_stmt->error_list ;
string mysqli_stmt->error ;
int mysqli_stmt->field_count ;
int mysqli_stmt->insert_id ;
int mysqli_stmt->num_rows ;
int mysqli_stmt->param_count ;
string mysqli_stmt->sqlstate ;
Methods int mysqli_stmt::attr_get(int attr);
bool mysqli_stmt::attr_set(int attr,
int mode);
bool mysqli_stmt::bind_param(string types,
mixed var1,
mixed ...);
bool mysqli_stmt::bind_result(mixed var1,
mixed ...);
bool mysqli_stmt::close();
void mysqli_stmt::data_seek(int offset);
bool mysqli_stmt::execute();
bool mysqli_stmt::fetch();
void mysqli_stmt::free_result();
mysqli_result mysqli_stmt::get_result();
object mysqli_stmt::get_warnings(mysqli_stmt stmt);
mixed mysqli_stmt::prepare(string query);
bool mysqli_stmt::reset();
mysqli_result mysqli_stmt::result_metadata();
bool mysqli_stmt::send_long_data(int param_nr,
string data);
bool mysqli_stmt::store_result();
}
21.9.3.10.1. mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::$affected_rows
mysqli_stmt_affected_rows
Returns the total number of rows changed, deleted, or inserted by the last executed statement
Description
Object oriented style
int mysqli_stmt->affected_rows ;
Procedural style
int mysqli_stmt_affected_rows(mysqli_stmt stmt);
Returns the number of rows affected by INSERT, UPDATE, or DELETE query.
This function only works with queries which update a table. In order to get the number of rows from a SELECT query, use mysqli_stmt_num_rows instead.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no records where updated for an UPDATE/DELETE statement, no rows matched the WHERE clause in the query or that no query has yet been executed. -1 indicates that the query has returned an error. NULL indicates an invalid argument was supplied to the function.
Note
If the number of affected rows is greater than maximal PHP int value, the number of affected rows will be returned as a string value.
Examples
Example 21.149. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* create temp table */
$mysqli->query("CREATE TEMPORARY TABLE myCountry LIKE Country");
$query = "INSERT INTO myCountry SELECT * FROM Country WHERE Code LIKE ?";
/* prepare statement */
if ($stmt = $mysqli->prepare($query)) {
/* Bind variable for placeholder */
$code = 'A%';
$stmt->bind_param("s", $code);
/* execute statement */
$stmt->execute();
printf("rows inserted: %d\n", $stmt->affected_rows);
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.150. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* create temp table */
mysqli_query($link, "CREATE TEMPORARY TABLE myCountry LIKE Country");
$query = "INSERT INTO myCountry SELECT * FROM Country WHERE Code LIKE ?";
/* prepare statement */
if ($stmt = mysqli_prepare($link, $query)) {
/* Bind variable for placeholder */
$code = 'A%';
mysqli_stmt_bind_param($stmt, "s", $code);
/* execute statement */
mysqli_stmt_execute($stmt);
printf("rows inserted: %d\n", mysqli_stmt_affected_rows($stmt));
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
rows inserted: 17
See Also
mysqli_stmt_num_rows |
mysqli_prepare |
21.9.3.10.2. mysqli_stmt::attr_get, mysqli_stmt_attr_get
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::attr_get
mysqli_stmt_attr_get
Used to get the current value of a statement attribute
Description
Object oriented style
int mysqli_stmt::attr_get(int attr);
Procedural style
int mysqli_stmt_attr_get(mysqli_stmt stmt,
int attr);
Gets the current value of a statement attribute.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
attr
The attribute that you want to get.
Return Values
Returns FALSE if the attribute is not found, otherwise returns the value of the attribute.
21.9.3.10.3. mysqli_stmt::attr_set, mysqli_stmt_attr_set
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::attr_set
mysqli_stmt_attr_set
Used to modify the behavior of a prepared statement
Description
Object oriented style
bool mysqli_stmt::attr_set(int attr,
int mode);
Procedural style
bool mysqli_stmt_attr_set(mysqli_stmt stmt,
int attr,
int mode);
Used to modify the behavior of a prepared statement. This function may be called multiple times to set several attributes.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
attr
The attribute that you want to set. It can have one of the following values:
Table 21.49. Attribute values
Character | Description |
---|---|
MYSQLI_STMT_ATTR_UPDATE_MAX_LENGTH | If set to 1, causes mysqli_stmt_store_result to update the metadata MYSQL_FIELD->max_length value. |
MYSQLI_STMT_ATTR_CURSOR_TYPE | Type of cursor to open for statement when mysqli_stmt_execute is invoked. mode can be MYSQLI_CURSOR_TYPE_NO_CURSOR (the default) or MYSQLI_CURSOR_TYPE_READ_ONLY. |
MYSQLI_STMT_ATTR_PREFETCH_ROWS | Number of rows to fetch from server at a time when using a cursor. mode can be in the range from 1 to the maximum value of unsigned long. The default is 1. |
If you use the MYSQLI_STMT_ATTR_CURSOR_TYPE option with MYSQLI_CURSOR_TYPE_READ_ONLY, a cursor is opened for the statement when you invoke mysqli_stmt_execute. If there is already an open cursor from a previous mysqli_stmt_execute call, it closes the cursor before opening a new one. mysqli_stmt_reset also closes any open cursor before preparing the statement for re-execution. mysqli_stmt_free_result closes any open cursor.
If you open a cursor for a prepared statement, mysqli_stmt_store_result is unnecessary.
mode
The value to assign to the attribute.
21.9.3.10.4. mysqli_stmt::bind_param, mysqli_stmt_bind_param
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::bind_param
mysqli_stmt_bind_param
Binds variables to a prepared statement as parameters
Description
Object oriented style
bool mysqli_stmt::bind_param(string types,
mixed var1,
mixed ...);
Procedural style
bool mysqli_stmt_bind_param(mysqli_stmt stmt,
string types,
mixed var1,
mixed ...);
Bind variables for the parameter markers in the SQL statement that was passed to mysqli_prepare.
Note
If data size of a variable exceeds max. allowed packet size (max_allowed_packet), you have to specify b in types and use mysqli_stmt_send_long_data to send the data in packets.
Note
Care must be taken when using mysqli_stmt_bind_param in conjunction with call_user_func_array. Note that mysqli_stmt_bind_param requires parameters to be passed by reference, whereas call_user_func_array can accept as a parameter a list of variables that can represent references or values.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
types
A string that contains one or more characters which specify the types for the corresponding bind variables:
Table 21.50. Type specification chars
Character | Description |
---|---|
i | corresponding variable has type integer |
d | corresponding variable has type double |
s | corresponding variable has type string |
b | corresponding variable is a blob and will be sent in packets |
var1
The number of variables and length of string types must match the parameters in the statement.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.151. Object oriented style
<?php
$mysqli = new mysqli('localhost', 'my_user', 'my_password', 'world');
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$stmt = $mysqli->prepare("INSERT INTO CountryLanguage VALUES (?, ?, ?, ?)");
$stmt->bind_param('sssd', $code, $language, $official, $percent);
$code = 'DEU';
$language = 'Bavarian';
$official = "F";
$percent = 11.2;
/* execute prepared statement */
$stmt->execute();
printf("%d Row inserted.\n", $stmt->affected_rows);
/* close statement and connection */
$stmt->close();
/* Clean up table CountryLanguage */
$mysqli->query("DELETE FROM CountryLanguage WHERE Language='Bavarian'");
printf("%d Row deleted.\n", $mysqli->affected_rows);
/* close connection */
$mysqli->close();
?>
Example 21.152. Procedural style
<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'world');
/* check connection */
if (!$link) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$stmt = mysqli_prepare($link, "INSERT INTO CountryLanguage VALUES (?, ?, ?, ?)");
mysqli_stmt_bind_param($stmt, 'sssd', $code, $language, $official, $percent);
$code = 'DEU';
$language = 'Bavarian';
$official = "F";
$percent = 11.2;
/* execute prepared statement */
mysqli_stmt_execute($stmt);
printf("%d Row inserted.\n", mysqli_stmt_affected_rows($stmt));
/* close statement and connection */
mysqli_stmt_close($stmt);
/* Clean up table CountryLanguage */
mysqli_query($link, "DELETE FROM CountryLanguage WHERE Language='Bavarian'");
printf("%d Row deleted.\n", mysqli_affected_rows($link));
/* close connection */
mysqli_close($link);
?>
The above examples will output:
1 Row inserted.
1 Row deleted.
See Also
mysqli_stmt_bind_result |
mysqli_stmt_execute |
mysqli_stmt_fetch |
mysqli_prepare |
mysqli_stmt_send_long_data |
mysqli_stmt_errno |
mysqli_stmt_error |
21.9.3.10.5. mysqli_stmt::bind_result, mysqli_stmt_bind_result
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::bind_result
mysqli_stmt_bind_result
Binds variables to a prepared statement for result storage
Description
Object oriented style
bool mysqli_stmt::bind_result(mixed var1,
mixed ...);
Procedural style
bool mysqli_stmt_bind_result(mysqli_stmt stmt,
mixed var1,
mixed ...);
Binds columns in the result set to variables.
When mysqli_stmt_fetch is called to fetch data, the MySQL client/server protocol places the data for the bound columns into the specified variables var1,
Note
Note that all columns must be bound after mysqli_stmt_execute and prior to calling mysqli_stmt_fetch. Depending on column types bound variables can silently change to the corresponding PHP type.
A column can be bound or rebound at any time, even after a result set has been partially retrieved. The new binding takes effect the next time mysqli_stmt_fetch is called.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
var1
The variable to be bound.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.153. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* prepare statement */
if ($stmt = $mysqli->prepare("SELECT Code, Name FROM Country ORDER BY Name LIMIT 5")) {
$stmt->execute();
/* bind variables to prepared statement */
$stmt->bind_result($col1, $col2);
/* fetch values */
while ($stmt->fetch()) {
printf("%s %s\n", $col1, $col2);
}
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.154. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (!$link) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* prepare statement */
if ($stmt = mysqli_prepare($link, "SELECT Code, Name FROM Country ORDER BY Name LIMIT 5")) {
mysqli_stmt_execute($stmt);
/* bind variables to prepared statement */
mysqli_stmt_bind_result($stmt, $col1, $col2);
/* fetch values */
while (mysqli_stmt_fetch($stmt)) {
printf("%s %s\n", $col1, $col2);
}
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
AFG Afghanistan
ALB Albania
DZA Algeria
ASM American Samoa
AND Andorra
See Also
mysqli_stmt_bind_param |
mysqli_stmt_execute |
mysqli_stmt_fetch |
mysqli_prepare |
mysqli_stmt_prepare |
mysqli_stmt_init |
mysqli_stmt_errno |
mysqli_stmt_error |
21.9.3.10.6. mysqli_stmt::close, mysqli_stmt_close
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::close
mysqli_stmt_close
Closes a prepared statement
Description
Object oriented style
bool mysqli_stmt::close();
Procedural style
bool mysqli_stmt_close(mysqli_stmt stmt);
Closes a prepared statement. mysqli_stmt_close also deallocates the statement handle. If the current statement has pending or unread results, this function cancels them so that the next query can be executed.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Returns TRUE on success or FALSE on failure.
See Also
mysqli_prepare |
21.9.3.10.7. mysqli_stmt::data_seek, mysqli_stmt_data_seek
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::data_seek
mysqli_stmt_data_seek
Seeks to an arbitrary row in statement result set
Description
Object oriented style
void mysqli_stmt::data_seek(int offset);
Procedural style
void mysqli_stmt_data_seek(mysqli_stmt stmt,
int offset);
Seeks to an arbitrary result pointer in the statement result set.
mysqli_stmt_store_result must be called prior to mysqli_stmt_data_seek.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
offset
Must be between zero and the total number of rows minus one (0.. mysqli_stmt_num_rows - 1).
Return Values
No value is returned.
Examples
Example 21.155. Object oriented style
<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {
/* execute query */
$stmt->execute();
/* bind result variables */
$stmt->bind_result($name, $code);
/* store result */
$stmt->store_result();
/* seek to row no. 400 */
$stmt->data_seek(399);
/* fetch values */
$stmt->fetch();
printf ("City: %s Countrycode: %s\n", $name, $code);
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.156. Procedural style
<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {
/* execute query */
mysqli_stmt_execute($stmt);
/* bind result variables */
mysqli_stmt_bind_result($stmt, $name, $code);
/* store result */
mysqli_stmt_store_result($stmt);
/* seek to row no. 400 */
mysqli_stmt_data_seek($stmt, 399);
/* fetch values */
mysqli_stmt_fetch($stmt);
printf ("City: %s Countrycode: %s\n", $name, $code);
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
City: Benin City Countrycode: NGA
See Also
mysqli_prepare |
21.9.3.10.8. mysqli_stmt::$errno, mysqli_stmt_errno
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::$errno
mysqli_stmt_errno
Returns the error code for the most recent statement call
Description
Object oriented style
int mysqli_stmt->errno ;
Procedural style
int mysqli_stmt_errno(mysqli_stmt stmt);
Returns the error code for the most recently invoked statement function that can succeed or fail.
Client error message numbers are listed in the MySQL errmsg.h header file, server error message numbers are listed in mysqld_error.h. In the MySQL source distribution you can find a complete list of error messages and error numbers in the file Docs/mysqld_error.txt.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
An error code value. Zero means no error occurred.
Examples
Example 21.157. Object oriented style
<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");
$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {
/* drop table */
$mysqli->query("DROP TABLE myCountry");
/* execute query */
$stmt->execute();
printf("Error: %d.\n", $stmt->errno);
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.158. Procedural style
<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");
$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {
/* drop table */
mysqli_query($link, "DROP TABLE myCountry");
/* execute query */
mysqli_stmt_execute($stmt);
printf("Error: %d.\n", mysqli_stmt_errno($stmt));
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Error: 1146.
See Also
mysqli_stmt_error |
mysqli_stmt_sqlstate |
21.9.3.10.9. mysqli_stmt::$error_list, mysqli_stmt_error_list
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::$error_list
mysqli_stmt_error_list
Returns a list of errors from the last statement executed
Description
Object oriented style
array mysqli_stmt->error_list ;
Procedural style
array mysqli_stmt_error_list(mysqli_stmt stmt);
Returns an array of errors for the most recently invoked statement function that can succeed or fail.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
A list of errors, each as an associative array containing the errno, error, and sqlstate.
Examples
Example 21.159. Object oriented style
<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");
$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {
/* drop table */
$mysqli->query("DROP TABLE myCountry");
/* execute query */
$stmt->execute();
echo "Error:\n";
print_r($stmt->error_list);
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.160. Procedural style
<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");
$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {
/* drop table */
mysqli_query($link, "DROP TABLE myCountry");
/* execute query */
mysqli_stmt_execute($stmt);
echo "Error:\n";
print_r(mysql_stmt_error_list($stmt));
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Array
(
[0] => Array
(
[errno] => 1146
[sqlstate] => 42S02
[error] => Table 'world.myCountry' doesn't exist
)
)
See Also
mysqli_stmt_error |
mysqli_stmt_errno |
mysqli_stmt_sqlstate |
21.9.3.10.10. mysqli_stmt::$error, mysqli_stmt_error
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::$error
mysqli_stmt_error
Returns a string description for last statement error
Description
Object oriented style
string mysqli_stmt->error ;
Procedural style
string mysqli_stmt_error(mysqli_stmt stmt);
Returns a containing the error message for the most recently invoked statement function that can succeed or fail.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
A string that describes the error. An empty string if no error occurred.
Examples
Example 21.161. Object oriented style
<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");
$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {
/* drop table */
$mysqli->query("DROP TABLE myCountry");
/* execute query */
$stmt->execute();
printf("Error: %s.\n", $stmt->error);
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.162. Procedural style
<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");
$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {
/* drop table */
mysqli_query($link, "DROP TABLE myCountry");
/* execute query */
mysqli_stmt_execute($stmt);
printf("Error: %s.\n", mysqli_stmt_error($stmt));
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Error: Table 'world.myCountry' doesn't exist.
See Also
mysqli_stmt_errno |
mysqli_stmt_sqlstate |
21.9.3.10.11. mysqli_stmt::execute, mysqli_stmt_execute
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::execute
mysqli_stmt_execute
Executes a prepared Query
Description
Object oriented style
bool mysqli_stmt::execute();
Procedural style
bool mysqli_stmt_execute(mysqli_stmt stmt);
Executes a query that has been previously prepared using the mysqli_prepare function. When executed any parameter markers which exist will automatically be replaced with the appropriate data.
If the statement is UPDATE, DELETE, or INSERT, the total number of affected rows can be determined by using the mysqli_stmt_affected_rows function. Likewise, if the query yields a result set the mysqli_stmt_fetch function is used.
Note
When using mysqli_stmt_execute, the mysqli_stmt_fetch function must be used to fetch the data prior to performing any additional queries.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.163. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$mysqli->query("CREATE TABLE myCity LIKE City");
/* Prepare an insert statement */
$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES (?,?,?)";
$stmt = $mysqli->prepare($query);
$stmt->bind_param("sss", $val1, $val2, $val3);
$val1 = 'Stuttgart';
$val2 = 'DEU';
$val3 = 'Baden-Wuerttemberg';
/* Execute the statement */
$stmt->execute();
$val1 = 'Bordeaux';
$val2 = 'FRA';
$val3 = 'Aquitaine';
/* Execute the statement */
$stmt->execute();
/* close statement */
$stmt->close();
/* retrieve all rows from myCity */
$query = "SELECT Name, CountryCode, District FROM myCity";
if ($result = $mysqli->query($query)) {
while ($row = $result->fetch_row()) {
printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);
}
/* free result set */
$result->close();
}
/* remove table */
$mysqli->query("DROP TABLE myCity");
/* close connection */
$mysqli->close();
?>
Example 21.164. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
mysqli_query($link, "CREATE TABLE myCity LIKE City");
/* Prepare an insert statement */
$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES (?,?,?)";
$stmt = mysqli_prepare($link, $query);
mysqli_stmt_bind_param($stmt, "sss", $val1, $val2, $val3);
$val1 = 'Stuttgart';
$val2 = 'DEU';
$val3 = 'Baden-Wuerttemberg';
/* Execute the statement */
mysqli_stmt_execute($stmt);
$val1 = 'Bordeaux';
$val2 = 'FRA';
$val3 = 'Aquitaine';
/* Execute the statement */
mysqli_stmt_execute($stmt);
/* close statement */
mysqli_stmt_close($stmt);
/* retrieve all rows from myCity */
$query = "SELECT Name, CountryCode, District FROM myCity";
if ($result = mysqli_query($link, $query)) {
while ($row = mysqli_fetch_row($result)) {
printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);
}
/* free result set */
mysqli_free_result($result);
}
/* remove table */
mysqli_query($link, "DROP TABLE myCity");
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Stuttgart (DEU,Baden-Wuerttemberg)
Bordeaux (FRA,Aquitaine)
See Also
mysqli_prepare |
mysqli_stmt_bind_param |
21.9.3.10.12. mysqli_stmt::fetch, mysqli_stmt_fetch
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::fetch
mysqli_stmt_fetch
Fetch results from a prepared statement into the bound variables
Description
Object oriented style
bool mysqli_stmt::fetch();
Procedural style
bool mysqli_stmt_fetch(mysqli_stmt stmt);
Fetch the result from a prepared statement into the variables bound by mysqli_stmt_bind_result.
Note
Note that all columns must be bound by the application before calling mysqli_stmt_fetch.
Note
Data are transferred unbuffered without calling mysqli_stmt_store_result which can decrease performance (but reduces memory cost).
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Table 21.51. Return Values
Value | Description |
---|---|
TRUE | Success. Data has been fetched |
FALSE | Error occurred |
NULL | No more rows/data exists or data truncation occurred |
Examples
Example 21.165. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 150,5";
if ($stmt = $mysqli->prepare($query)) {
/* execute statement */
$stmt->execute();
/* bind result variables */
$stmt->bind_result($name, $code);
/* fetch values */
while ($stmt->fetch()) {
printf ("%s (%s)\n", $name, $code);
}
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.166. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 150,5";
if ($stmt = mysqli_prepare($link, $query)) {
/* execute statement */
mysqli_stmt_execute($stmt);
/* bind result variables */
mysqli_stmt_bind_result($stmt, $name, $code);
/* fetch values */
while (mysqli_stmt_fetch($stmt)) {
printf ("%s (%s)\n", $name, $code);
}
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Rockford (USA)
Tallahassee (USA)
Salinas (USA)
Santa Clarita (USA)
Springfield (USA)
See Also
mysqli_prepare |
mysqli_stmt_errno |
mysqli_stmt_error |
mysqli_stmt_bind_result |
21.9.3.10.13. mysqli_stmt::$field_count, mysqli_stmt_field_count
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::$field_count
mysqli_stmt_field_count
Returns the number of field in the given statement
Description
Object oriented style
int mysqli_stmt->field_count ;
Procedural style
int mysqli_stmt_field_count(mysqli_stmt stmt);
Warning
This function is currently not documented; only its argument list is available.
21.9.3.10.14. mysqli_stmt::free_result, mysqli_stmt_free_result
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::free_result
mysqli_stmt_free_result
Frees stored result memory for the given statement handle
Description
Object oriented style
void mysqli_stmt::free_result();
Procedural style
void mysqli_stmt_free_result(mysqli_stmt stmt);
Frees the result memory associated with the statement, which was allocated by mysqli_stmt_store_result.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
No value is returned.
See Also
mysqli_stmt_store_result |
21.9.3.10.15. mysqli_stmt::get_result, mysqli_stmt_get_result
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::get_result
mysqli_stmt_get_result
Gets a result set from a prepared statement
Description
Object oriented style
mysqli_result mysqli_stmt::get_result();
Procedural style
mysqli_result mysqli_stmt_get_result(mysqli_stmt stmt);
Call to return a result set from a prepared statement query.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Returns a resultset or FALSE on failure.
MySQL Native Driver Only
Available only with mysqlnd.
Examples
Example 21.167. Object oriented style
<?php
$mysqli = new mysqli("127.0.0.1", "user", "password", "world");
if($mysqli->connect_error)
{
die("$mysqli->connect_errno: $mysqli->connect_error");
}
$query = "SELECT Name, Population, Continent FROM Country WHERE Continent=? ORDER BY Name LIMIT 1";
$stmt = $mysqli->stmt_init();
if(!$stmt->prepare($query))
{
print "Failed to prepare statement\n";
}
else
{
$stmt->bind_param("s", $continent);
$continent_array = array('Europe','Africa','Asia','North America');
foreach($continent_array as $continent)
{
$stmt->execute();
$result = $stmt->get_result();
while ($row = $result->fetch_array(MYSQLI_NUM))
{
foreach ($row as $r)
{
print "$r ";
}
print "\n";
}
}
}
$stmt->close();
$mysqli->close();
?>
Example 21.168. Procedural style
<?php
$link = mysqli_connect("127.0.0.1", "user", "password", "world");
if (!$link)
{
$error = mysqli_connect_error();
$errno = mysqli_connect_errno();
print "$errno: $error\n";
exit();
}
$query = "SELECT Name, Population, Continent FROM Country WHERE Continent=? ORDER BY Name LIMIT 1";
$stmt = mysqli_stmt_init($link);
if(!mysqli_stmt_prepare($stmt, $query))
{
print "Failed to prepare statement\n";
}
else
{
mysqli_stmt_bind_param($stmt, "s", $continent);
$continent_array = array('Europe','Africa','Asia','North America');
foreach($continent_array as $continent)
{
mysqli_stmt_execute($stmt);
$result = mysqli_stmt_get_result($stmt);
while ($row = mysqli_fetch_array($result, MYSQLI_NUM))
{
foreach ($row as $r)
{
print "$r ";
}
print "\n";
}
}
}
mysqli_stmt_close($stmt);
mysqli_close($link);
?>
The above examples will output:
Albania 3401200 Europe
Algeria 31471000 Africa
Afghanistan 22720000 Asia
Anguilla 8000 North America
See Also
mysqli_prepare |
mysqli_stmt_result_metadata |
mysqli_stmt_fetch |
mysqli_fetch_array |
mysqli_stmt_store_result |
21.9.3.10.16. mysqli_stmt::get_warnings, mysqli_stmt_get_warnings
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::get_warnings
mysqli_stmt_get_warnings
Get result of SHOW WARNINGS
Description
Object oriented style
object mysqli_stmt::get_warnings(mysqli_stmt stmt);
Procedural style
object mysqli_stmt_get_warnings(mysqli_stmt stmt);
Warning
This function is currently not documented; only its argument list is available.
21.9.3.10.17. mysqli_stmt::$insert_id, mysqli_stmt_insert_id
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::$insert_id
mysqli_stmt_insert_id
Get the ID generated from the previous INSERT operation
Description
Object oriented style
int mysqli_stmt->insert_id ;
Procedural style
mixed mysqli_stmt_insert_id(mysqli_stmt stmt);
Warning
This function is currently not documented; only its argument list is available.
21.9.3.10.18. mysqli_stmt::more_results, mysqli_stmt_more_results
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::more_results
mysqli_stmt_more_results
Check if there are more query results from a multiple query
Description
Object oriented style (method):
public bool mysqli_stmt::more_results();
Procedural style:
bool mysqli_stmt_more_results(mysql_stmt stmt);
Checks if there are more query results from a multiple query.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Returns TRUE if more results exist, otherwise FALSE .
See Also
mysqli_stmt::next_result |
mysqli::multi_query |
21.9.3.10.19. mysqli_stmt::next_result, mysqli_stmt_next_result
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::next_result
mysqli_stmt_next_result
Reads the next result from a multiple query
Description
Object oriented style (method):
public bool mysqli_stmt::next_result();
Procedural style:
bool mysqli_stmt_next_result(mysql_stmt stmt);
Reads the next result from a multiple query.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Returns TRUE on success or FALSE on failure.
Errors/Exceptions
Emits an E_STRICT level error if a result set does not exist, and suggests using mysqli_stmt::more_results in these cases, before calling mysqli_stmt::next_result.
See Also
mysqli_stmt::more_results |
mysqli::multi_query |
21.9.3.10.20. mysqli_stmt::$num_rows, mysqli_stmt_num_rows
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::$num_rows
mysqli_stmt_num_rows
Return the number of rows in statements result set
Description
Object oriented style
int mysqli_stmt->num_rows ;
Procedural style
int mysqli_stmt_num_rows(mysqli_stmt stmt);
Returns the number of rows in the result set. The use of mysqli_stmt_num_rows depends on whether or not you used mysqli_stmt_store_result to buffer the entire result set in the statement handle.
If you use mysqli_stmt_store_result, mysqli_stmt_num_rows may be called immediately.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
An integer representing the number of rows in result set.
Examples
Example 21.169. Object oriented style
<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = $mysqli->prepare($query)) {
/* execute query */
$stmt->execute();
/* store result */
$stmt->store_result();
printf("Number of rows: %d.\n", $stmt->num_rows);
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.170. Procedural style
<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = mysqli_prepare($link, $query)) {
/* execute query */
mysqli_stmt_execute($stmt);
/* store result */
mysqli_stmt_store_result($stmt);
printf("Number of rows: %d.\n", mysqli_stmt_num_rows($stmt));
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Number of rows: 20.
See Also
mysqli_stmt_affected_rows |
mysqli_prepare |
mysqli_stmt_store_result |
21.9.3.10.21. mysqli_stmt::$param_count, mysqli_stmt_param_count
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::$param_count
mysqli_stmt_param_count
Returns the number of parameter for the given statement
Description
Object oriented style
int mysqli_stmt->param_count ;
Procedural style
int mysqli_stmt_param_count(mysqli_stmt stmt);
Returns the number of parameter markers present in the prepared statement.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Returns an integer representing the number of parameters.
Examples
Example 21.171. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
if ($stmt = $mysqli->prepare("SELECT Name FROM Country WHERE Name=? OR Code=?")) {
$marker = $stmt->param_count;
printf("Statement has %d markers.\n", $marker);
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.172. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
if ($stmt = mysqli_prepare($link, "SELECT Name FROM Country WHERE Name=? OR Code=?")) {
$marker = mysqli_stmt_param_count($stmt);
printf("Statement has %d markers.\n", $marker);
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Statement has 2 markers.
See Also
mysqli_prepare |
21.9.3.10.22. mysqli_stmt::prepare, mysqli_stmt_prepare
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::prepare
mysqli_stmt_prepare
Prepare an SQL statement for execution
Description
Object oriented style
mixed mysqli_stmt::prepare(string query);
Procedural style
bool mysqli_stmt_prepare(mysqli_stmt stmt,
string query);
Prepares the SQL query pointed to by the null-terminated string query.
The parameter markers must be bound to application variables using mysqli_stmt_bind_param and/or mysqli_stmt_bind_result before executing the statement or fetching rows.
Note
In the case where you pass a statement to mysqli_stmt_prepare that is longer than max_allowed_packet of the server, the returned error codes are different depending on whether you are using MySQL Native Driver (mysqlnd) or MySQL Client Library (libmysqlclient). The behavior is as follows:
mysqlnd on Linux returns an error code of 1153. The error message means “got a packet bigger than max_allowed_packet bytes”.
mysqlnd on Windows returns an error code 2006. This error message means “server has gone away”.
libmysqlclient on all platforms returns an error code 2006. This error message means “server has gone away”.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
query
The query, as a string. It must consist of a single SQL statement.
You can include one or more parameter markers in the SQL statement by embedding question mark (?) characters at the appropriate positions.
Note
You should not add a terminating semicolon or \g to the statement.
Note
The markers are legal only in certain places in SQL statements. For example, they are allowed in the VALUES() list of an INSERT statement (to specify column values for a row), or in a comparison with a column in a WHERE clause to specify a comparison value.
However, they are not allowed for identifiers (such as table or column names), in the select list that names the columns to be returned by a SELECT statement), or to specify both operands of a binary operator such as the = equal sign. The latter restriction is necessary because it would be impossible to determine the parameter type. In general, parameters are legal only in Data Manipulation Language (DML) statements, and not in Data Definition Language (DDL) statements.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.173. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$city = "Amersfoort";
/* create a prepared statement */
$stmt = $mysqli->stmt_init();
if ($stmt->prepare("SELECT District FROM City WHERE Name=?")) {
/* bind parameters for markers */
$stmt->bind_param("s", $city);
/* execute query */
$stmt->execute();
/* bind result variables */
$stmt->bind_result($district);
/* fetch value */
$stmt->fetch();
printf("%s is in district %s\n", $city, $district);
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.174. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$city = "Amersfoort";
/* create a prepared statement */
$stmt = mysqli_stmt_init($link);
if (mysqli_stmt_prepare($stmt, 'SELECT District FROM City WHERE Name=?')) {
/* bind parameters for markers */
mysqli_stmt_bind_param($stmt, "s", $city);
/* execute query */
mysqli_stmt_execute($stmt);
/* bind result variables */
mysqli_stmt_bind_result($stmt, $district);
/* fetch value */
mysqli_stmt_fetch($stmt);
printf("%s is in district %s\n", $city, $district);
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Amersfoort is in district Utrecht
See Also
mysqli_stmt_init |
mysqli_stmt_execute |
mysqli_stmt_fetch |
mysqli_stmt_bind_param |
mysqli_stmt_bind_result |
mysqli_stmt_close |
21.9.3.10.23. mysqli_stmt::reset, mysqli_stmt_reset
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::reset
mysqli_stmt_reset
Resets a prepared statement
Description
Object oriented style
bool mysqli_stmt::reset();
Procedural style
bool mysqli_stmt_reset(mysqli_stmt stmt);
Resets a prepared statement on client and server to state after prepare.
It resets the statement on the server, data sent using mysqli_stmt_send_long_data, unbuffered result sets and current errors. It does not clear bindings or stored result sets. Stored result sets will be cleared when executing the prepared statement (or closing it).
To prepare a statement with another query use function mysqli_stmt_prepare.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Returns TRUE on success or FALSE on failure.
See Also
mysqli_prepare |
21.9.3.10.24. mysqli_stmt::result_metadata, mysqli_stmt_result_metadata
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::result_metadata
mysqli_stmt_result_metadata
Returns result set metadata from a prepared statement
Description
Object oriented style
mysqli_result mysqli_stmt::result_metadata();
Procedural style
mysqli_result mysqli_stmt_result_metadata(mysqli_stmt stmt);
If a statement passed to mysqli_prepare is one that produces a result set, mysqli_stmt_result_metadata returns the result object that can be used to process the meta information such as total number of fields and individual field information.
Note
This result set pointer can be passed as an argument to any of the field-based functions that process result set metadata, such as:
mysqli_num_fields
mysqli_fetch_field
mysqli_fetch_field_direct
mysqli_fetch_fields
mysqli_field_count
mysqli_field_seek
mysqli_field_tell
mysqli_free_result
The result set structure should be freed when you are done with it, which you can do by passing it to mysqli_free_result
Note
The result set returned by mysqli_stmt_result_metadata contains only metadata. It does not contain any row results. The rows are obtained by using the statement handle with mysqli_stmt_fetch.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Returns a result object or FALSE if an error occurred.
Examples
Example 21.175. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");
$mysqli->query("DROP TABLE IF EXISTS friends");
$mysqli->query("CREATE TABLE friends (id int, name varchar(20))");
$mysqli->query("INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");
$stmt = $mysqli->prepare("SELECT id, name FROM friends");
$stmt->execute();
/* get resultset for metadata */
$result = $stmt->result_metadata();
/* retrieve field information from metadata result set */
$field = $result->fetch_field();
printf("Fieldname: %s\n", $field->name);
/* close resultset */
$result->close();
/* close connection */
$mysqli->close();
?>
Example 21.176. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");
mysqli_query($link, "DROP TABLE IF EXISTS friends");
mysqli_query($link, "CREATE TABLE friends (id int, name varchar(20))");
mysqli_query($link, "INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");
$stmt = mysqli_prepare($link, "SELECT id, name FROM friends");
mysqli_stmt_execute($stmt);
/* get resultset for metadata */
$result = mysqli_stmt_result_metadata($stmt);
/* retrieve field information from metadata result set */
$field = mysqli_fetch_field($result);
printf("Fieldname: %s\n", $field->name);
/* close resultset */
mysqli_free_result($result);
/* close connection */
mysqli_close($link);
?>
See Also
mysqli_prepare |
mysqli_free_result |
21.9.3.10.25. mysqli_stmt::send_long_data, mysqli_stmt_send_long_data
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::send_long_data
mysqli_stmt_send_long_data
Send data in blocks
Description
Object oriented style
bool mysqli_stmt::send_long_data(int param_nr,
string data);
Procedural style
bool mysqli_stmt_send_long_data(mysqli_stmt stmt,
int param_nr,
string data);
Allows to send parameter data to the server in pieces (or chunks), e.g. if the size of a blob exceeds the size of max_allowed_packet. This function can be called multiple times to send the parts of a character or binary data value for a column, which must be one of the TEXT or BLOB datatypes.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
param_nr
Indicates which parameter to associate the data with. Parameters are numbered beginning with 0.
data
A string containing data to be sent.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.177. Object oriented style
<?php
$stmt = $mysqli->prepare("INSERT INTO messages (message) VALUES (?)");
$null = NULL;
$stmt->bind_param("b", $null);
$fp = fopen("messages.txt", "r");
while (!feof($fp)) {
$stmt->send_long_data(0, fread($fp, 8192));
}
fclose($fp);
$stmt->execute();
?>
See Also
mysqli_prepare |
mysqli_stmt_bind_param |
21.9.3.10.26. mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::$sqlstate
mysqli_stmt_sqlstate
Returns SQLSTATE error from previous statement operation
Description
Object oriented style
string mysqli_stmt->sqlstate ;
Procedural style
string mysqli_stmt_sqlstate(mysqli_stmt stmt);
Returns a string containing the SQLSTATE error code for the most recently invoked prepared statement function that can succeed or fail. The error code consists of five characters. '00000' means no error. The values are specified by ANSI SQL and ODBC. For a list of possible values, see http://dev.mysql.com/doc/mysql/en/error-handling.html.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Returns a string containing the SQLSTATE error code for the last error. The error code consists of five characters. '00000' means no error.
Notes
Note
Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HY000 (general error) is used for unmapped errors.
Examples
Example 21.178. Object oriented style
<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");
$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {
/* drop table */
$mysqli->query("DROP TABLE myCountry");
/* execute query */
$stmt->execute();
printf("Error: %s.\n", $stmt->sqlstate);
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.179. Procedural style
<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");
$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {
/* drop table */
mysqli_query($link, "DROP TABLE myCountry");
/* execute query */
mysqli_stmt_execute($stmt);
printf("Error: %s.\n", mysqli_stmt_sqlstate($stmt));
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Error: 42S02.
See Also
mysqli_stmt_errno |
mysqli_stmt_error |
21.9.3.10.27. mysqli_stmt::store_result, mysqli_stmt_store_result
Copyright 1997-2012 the PHP Documentation Group.
mysqli_stmt::store_result
mysqli_stmt_store_result
Transfers a result set from a prepared statement
Description
Object oriented style
bool mysqli_stmt::store_result();
Procedural style
bool mysqli_stmt_store_result(mysqli_stmt stmt);
You must call mysqli_stmt_store_result for every query that successfully produces a result set (SELECT, SHOW, DESCRIBE, EXPLAIN), and only if you want to buffer the complete result set by the client, so that the subsequent mysqli_stmt_fetch call returns buffered data.
Note
It is unnecessary to call mysqli_stmt_store_result for other queries, but if you do, it will not harm or cause any notable performance in all cases. You can detect whether the query produced a result set by checking if mysqli_stmt_result_metadata returns NULL.
Parameters
stmt
Procedural style only: A statement identifier returned by mysqli_stmt_init.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.180. Object oriented style
<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = $mysqli->prepare($query)) {
/* execute query */
$stmt->execute();
/* store result */
$stmt->store_result();
printf("Number of rows: %d.\n", $stmt->num_rows);
/* free result */
$stmt->free_result();
/* close statement */
$stmt->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.181. Procedural style
<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = mysqli_prepare($link, $query)) {
/* execute query */
mysqli_stmt_execute($stmt);
/* store result */
mysqli_stmt_store_result($stmt);
printf("Number of rows: %d.\n", mysqli_stmt_num_rows($stmt));
/* free result */
mysqli_stmt_free_result($stmt);
/* close statement */
mysqli_stmt_close($stmt);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Number of rows: 20.
See Also
mysqli_prepare |
mysqli_stmt_result_metadata |
mysqli_stmt_fetch |
21.9.3.11. The mysqli_result class (mysqli_result)
Copyright 1997-2012 the PHP Documentation Group.
Represents the result set obtained from a query against the database.
Changelog
Table 21.52. Changelog
Version | Description |
---|---|
5.4.0 | Iterator support was added, as mysqli_result now implements Traversable. |
mysqli_result {
mysqli_result
, Traversable
Properties int mysqli_result->current_field ;
int mysqli_result->field_count ;
array mysqli_result->lengths ;
int mysqli_result->num_rows ;
Methods bool mysqli_result::data_seek(int offset);
mixed mysqli_result::fetch_all(int resulttype= =MYSQLI_NUM);
mixed mysqli_result::fetch_array(int resulttype= =MYSQLI_BOTH);
array mysqli_result::fetch_assoc();
object mysqli_result::fetch_field_direct(int fieldnr);
object mysqli_result::fetch_field();
array mysqli_result::fetch_fields();
object mysqli_result::fetch_object(string class_name,
array params);
mixed mysqli_result::fetch_row();
bool mysqli_result::field_seek(int fieldnr);
void mysqli_result::free();
}
21.9.3.11.1. mysqli_result::$current_field, mysqli_field_tell
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::$current_field
mysqli_field_tell
Get current field offset of a result pointer
Description
Object oriented style
int mysqli_result->current_field ;
Procedural style
int mysqli_field_tell(mysqli_result result);
Returns the position of the field cursor used for the last mysqli_fetch_field call. This value can be used as an argument to mysqli_field_seek.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
Return Values
Returns current offset of field cursor.
Examples
Example 21.182. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";
if ($result = $mysqli->query($query)) {
/* Get field information for all columns */
while ($finfo = $result->fetch_field()) {
/* get fieldpointer offset */
$currentfield = $result->current_field;
printf("Column %d:\n", $currentfield);
printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);
}
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.183. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";
if ($result = mysqli_query($link, $query)) {
/* Get field information for all fields */
while ($finfo = mysqli_fetch_field($result)) {
/* get fieldpointer offset */
$currentfield = mysqli_field_tell($result);
printf("Column %d:\n", $currentfield);
printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);
}
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Column 1:
Name: Name
Table: Country
max. Len: 11
Flags: 1
Type: 254
Column 2:
Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4
See Also
mysqli_fetch_field |
mysqli_field_seek |
21.9.3.11.2. mysqli_result::data_seek, mysqli_data_seek
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::data_seek
mysqli_data_seek
Adjusts the result pointer to an arbitrary row in the result
Description
Object oriented style
bool mysqli_result::data_seek(int offset);
Procedural style
bool mysqli_data_seek(mysqli_result result,
int offset);
The mysqli_data_seek function seeks to an arbitrary result pointer specified by the offset in the result set.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
offset
The field offset. Must be between zero and the total number of rows minus one (0..mysqli_num_rows - 1).
Return Values
Returns TRUE on success or FALSE on failure.
Notes
Note
This function can only be used with buffered results attained from the use of the mysqli_store_result or mysqli_query functions.
Examples
Example 21.184. Object oriented style
<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($result = $mysqli->query($query)) {
/* seek to row no. 400 */
$result->data_seek(399);
/* fetch row */
$row = $result->fetch_row();
printf ("City: %s Countrycode: %s\n", $row[0], $row[1]);
/* free result set*/
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.185. Procedural style
<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (!$link) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($result = mysqli_query($link, $query)) {
/* seek to row no. 400 */
mysqli_data_seek($result, 399);
/* fetch row */
$row = mysqli_fetch_row($result);
printf ("City: %s Countrycode: %s\n", $row[0], $row[1]);
/* free result set*/
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
City: Benin City Countrycode: NGA
See Also
mysqli_store_result |
mysqli_fetch_row |
mysqli_fetch_array |
mysqli_fetch_assoc |
mysqli_fetch_object |
mysqli_query |
mysqli_num_rows |
21.9.3.11.3. mysqli_result::fetch_all, mysqli_fetch_all
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::fetch_all
mysqli_fetch_all
Fetches all result rows as an associative array, a numeric array, or both
Description
Object oriented style
mixed mysqli_result::fetch_all(int resulttype= =MYSQLI_NUM);
Procedural style
mixed mysqli_fetch_all(mysqli_result result,
int resulttype= =MYSQLI_NUM);
mysqli_fetch_all fetches all result rows and returns the result set as an associative array, a numeric array, or both.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
resulttype
This optional parameter is a constant indicating what type of array should be produced from the current row data. The possible values for this parameter are the constants MYSQLI_ASSOC , MYSQLI_NUM , or MYSQLI_BOTH .
Return Values
Returns an array of associative or numeric arrays holding result rows.
MySQL Native Driver Only
Available only with mysqlnd.
As mysqli_fetch_all returns all the rows as an array in a single step, it may consume more memory than some similar functions such as mysqli_fetch_array, which only returns one row at a time from the result set. Further, if you need to iterate over the result set, you will need a looping construct that will further impact performance. For these reasons mysqli_fetch_all should only be used in those situations where the fetched result set will be sent to another layer for processing.
See Also
mysqli_fetch_array |
mysqli_query |
21.9.3.11.4. mysqli_result::fetch_array, mysqli_fetch_array
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::fetch_array
mysqli_fetch_array
Fetch a result row as an associative, a numeric array, or both
Description
Object oriented style
mixed mysqli_result::fetch_array(int resulttype= =MYSQLI_BOTH);
Procedural style
mixed mysqli_fetch_array(mysqli_result result,
int resulttype= =MYSQLI_BOTH);
Returns an array that corresponds to the fetched row or NULL if there are no more rows for the resultset represented by the result parameter.
mysqli_fetch_array is an extended version of the mysqli_fetch_row function. In addition to storing the data in the numeric indices of the result array, the mysqli_fetch_array function can also store the data in associative indices, using the field names of the result set as keys.
Note
Field names returned by this function are case-sensitive.
Note
This function sets NULL fields to the PHP NULL value.
If two or more columns of the result have the same field names, the last column will take precedence and overwrite the earlier data. In order to access multiple columns with the same name, the numerically indexed version of the row must be used.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
resulttype
This optional parameter is a constant indicating what type of array should be produced from the current row data. The possible values for this parameter are the constants MYSQLI_ASSOC , MYSQLI_NUM , or MYSQLI_BOTH .
By using the MYSQLI_ASSOC constant this function will behave identically to the mysqli_fetch_assoc, while MYSQLI_NUM will behave identically to the mysqli_fetch_row function. The final option MYSQLI_BOTH will create a single array with the attributes of both.
Return Values
Returns an array of strings that corresponds to the fetched row or NULL if there are no more rows in resultset.
Examples
Example 21.186. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMIT 3";
$result = $mysqli->query($query);
/* numeric array */
$row = $result->fetch_array(MYSQLI_NUM);
printf ("%s (%s)\n", $row[0], $row[1]);
/* associative array */
$row = $result->fetch_array(MYSQLI_ASSOC);
printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);
/* associative and numeric array */
$row = $result->fetch_array(MYSQLI_BOTH);
printf ("%s (%s)\n", $row[0], $row["CountryCode"]);
/* free result set */
$result->free();
/* close connection */
$mysqli->close();
?>
Example 21.187. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMIT 3";
$result = mysqli_query($link, $query);
/* numeric array */
$row = mysqli_fetch_array($result, MYSQLI_NUM);
printf ("%s (%s)\n", $row[0], $row[1]);
/* associative array */
$row = mysqli_fetch_array($result, MYSQLI_ASSOC);
printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);
/* associative and numeric array */
$row = mysqli_fetch_array($result, MYSQLI_BOTH);
printf ("%s (%s)\n", $row[0], $row["CountryCode"]);
/* free result set */
mysqli_free_result($result);
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Kabul (AFG)
Qandahar (AFG)
Herat (AFG)
See Also
mysqli_fetch_assoc |
mysqli_fetch_row |
mysqli_fetch_object |
mysqli_query |
mysqli_data_seek |
21.9.3.11.5. mysqli_result::fetch_assoc, mysqli_fetch_assoc
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::fetch_assoc
mysqli_fetch_assoc
Fetch a result row as an associative array
Description
Object oriented style
array mysqli_result::fetch_assoc();
Procedural style
array mysqli_fetch_assoc(mysqli_result result);
Returns an associative array that corresponds to the fetched row or NULL if there are no more rows.
Note
Field names returned by this function are case-sensitive.
Note
This function sets NULL fields to the PHP NULL value.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
Return Values
Returns an associative array of strings representing the fetched row in the result set, where each key in the array represents the name of one of the result set's columns or NULL if there are no more rows in resultset.
If two or more columns of the result have the same field names, the last column will take precedence. To access the other column(s) of the same name, you either need to access the result with numeric indices by using mysqli_fetch_row or add alias names.
Examples
Example 21.188. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";
if ($result = $mysqli->query($query)) {
/* fetch associative array */
while ($row = $result->fetch_assoc()) {
printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);
}
/* free result set */
$result->free();
}
/* close connection */
$mysqli->close();
?>
Example 21.189. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";
if ($result = mysqli_query($link, $query)) {
/* fetch associative array */
while ($row = mysqli_fetch_assoc($result)) {
printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);
}
/* free result set */
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)
Example 21.190. A mysqli_result example comparing iterator usage
<?php
$c = mysqli_connect('127.0.0.1','user', 'pass');
// Using iterators (support was added with PHP 5.4)
foreach ($c->query('SELECT user,host FROM mysql.user') as $row) {
printf("'%s'@'%s'\n", $row['user'], $row['host']);
}
echo "\n==================\n";
// Not using iterators
$result = $c->query('SELECT user,host FROM mysql.user');
while ($row = $result->fetch_assoc()) {
printf("'%s'@'%s'\n", $row['user'], $row['host']);
}
?>
The above example will output something similar to:
'root'@'192.168.1.1'
'root'@'127.0.0.1'
'dude'@'localhost'
'lebowski'@'localhost'
==================
'root'@'192.168.1.1'
'root'@'127.0.0.1'
'dude'@'localhost'
'lebowski'@'localhost'
See Also
mysqli_fetch_array |
mysqli_fetch_row |
mysqli_fetch_object |
mysqli_query |
mysqli_data_seek |
21.9.3.11.6. mysqli_result::fetch_field_direct, mysqli_fetch_field_direct
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::fetch_field_direct
mysqli_fetch_field_direct
Fetch meta-data for a single field
Description
Object oriented style
object mysqli_result::fetch_field_direct(int fieldnr);
Procedural style
object mysqli_fetch_field_direct(mysqli_result result,
int fieldnr);
Returns an object which contains field definition information from the specified result set.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
fieldnr
The field number. This value must be in the range from 0 to number of fields - 1.
Return Values
Returns an object which contains field definition information or FALSE if no field information for specified fieldnr is available.
Table 21.53. Object attributes
Attribute | Description |
---|---|
name | The name of the column |
orgname | Original column name if an alias was specified |
table | The name of the table this field belongs to (if not calculated) |
orgtable | Original table name if an alias was specified |
def | The default value for this field, represented as a string |
max_length | The maximum width of the field for the result set. |
length | The width of the field, as specified in the table definition. |
charsetnr | The character set number for the field. |
flags | An integer representing the bit-flags for the field. |
type | The data type used for this field |
decimals | The number of decimals used (for integer fields) |
Examples
Example 21.191. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, SurfaceArea from Country ORDER BY Name LIMIT 5";
if ($result = $mysqli->query($query)) {
/* Get field information for column 'SurfaceArea' */
$finfo = $result->fetch_field_direct(1);
printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n", $finfo->type);
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.192. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, SurfaceArea from Country ORDER BY Name LIMIT 5";
if ($result = mysqli_query($link, $query)) {
/* Get field information for column 'SurfaceArea' */
$finfo = mysqli_fetch_field_direct($result, 1);
printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n", $finfo->type);
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4
See Also
mysqli_num_fields |
mysqli_fetch_field |
mysqli_fetch_fields |
21.9.3.11.7. mysqli_result::fetch_field, mysqli_fetch_field
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::fetch_field
mysqli_fetch_field
Returns the next field in the result set
Description
Object oriented style
object mysqli_result::fetch_field();
Procedural style
object mysqli_fetch_field(mysqli_result result);
Returns the definition of one column of a result set as an object. Call this function repeatedly to retrieve information about all columns in the result set.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
Return Values
Returns an object which contains field definition information or FALSE if no field information is available.
Table 21.54. Object properties
Property | Description |
---|---|
name | The name of the column |
orgname | Original column name if an alias was specified |
table | The name of the table this field belongs to (if not calculated) |
orgtable | Original table name if an alias was specified |
def | Reserved for default value, currently always "" |
db | Database (since PHP 5.3.6) |
catalog | The catalog name, always "def" (since PHP 5.3.6) |
max_length | The maximum width of the field for the result set. |
length | The width of the field, as specified in the table definition. |
charsetnr | The character set number for the field. |
flags | An integer representing the bit-flags for the field. |
type | The data type used for this field |
decimals | The number of decimals used (for integer fields) |
Examples
Example 21.193. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";
if ($result = $mysqli->query($query)) {
/* Get field information for all columns */
while ($finfo = $result->fetch_field()) {
printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);
}
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.194. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";
if ($result = mysqli_query($link, $query)) {
/* Get field information for all fields */
while ($finfo = mysqli_fetch_field($result)) {
printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);
}
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Name: Name
Table: Country
max. Len: 11
Flags: 1
Type: 254
Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4
See Also
mysqli_num_fields |
mysqli_fetch_field_direct |
mysqli_fetch_fields |
mysqli_field_seek |
21.9.3.11.8. mysqli_result::fetch_fields, mysqli_fetch_fields
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::fetch_fields
mysqli_fetch_fields
Returns an array of objects representing the fields in a result set
Description
Object oriented style
array mysqli_result::fetch_fields();
Procedural style
array mysqli_fetch_fields(mysqli_result result);
This function serves an identical purpose to the mysqli_fetch_field function with the single difference that, instead of returning one object at a time for each field, the columns are returned as an array of objects.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
Return Values
Returns an array of objects which contains field definition information or FALSE if no field information is available.
Table 21.55. Object properties
Property | Description |
---|---|
name | The name of the column |
orgname | Original column name if an alias was specified |
table | The name of the table this field belongs to (if not calculated) |
orgtable | Original table name if an alias was specified |
max_length | The maximum width of the field for the result set. |
length | The width of the field, as specified in the table definition. |
charsetnr | The character set number for the field. |
flags | An integer representing the bit-flags for the field. |
type | The data type used for this field |
decimals | The number of decimals used (for integer fields) |
Examples
Example 21.195. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";
if ($result = $mysqli->query($query)) {
/* Get field information for all columns */
$finfo = $result->fetch_fields();
foreach ($finfo as $val) {
printf("Name: %s\n", $val->name);
printf("Table: %s\n", $val->table);
printf("max. Len: %d\n", $val->max_length);
printf("Flags: %d\n", $val->flags);
printf("Type: %d\n\n", $val->type);
}
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.196. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";
if ($result = mysqli_query($link, $query)) {
/* Get field information for all columns */
$finfo = mysqli_fetch_fields($result);
foreach ($finfo as $val) {
printf("Name: %s\n", $val->name);
printf("Table: %s\n", $val->table);
printf("max. Len: %d\n", $val->max_length);
printf("Flags: %d\n", $val->flags);
printf("Type: %d\n\n", $val->type);
}
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Name: Name
Table: Country
max. Len: 11
Flags: 1
Type: 254
Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4
See Also
mysqli_num_fields |
mysqli_fetch_field_direct |
mysqli_fetch_field |
21.9.3.11.9. mysqli_result::fetch_object, mysqli_fetch_object
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::fetch_object
mysqli_fetch_object
Returns the current row of a result set as an object
Description
Object oriented style
object mysqli_result::fetch_object(string class_name,
array params);
Procedural style
object mysqli_fetch_object(mysqli_result result,
string class_name,
array params);
The mysqli_fetch_object will return the current row result set as an object where the attributes of the object represent the names of the fields found within the result set.
Note that mysqli_fetch_object sets the properties of the object before calling the object constructor.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
class_name
The name of the class to instantiate, set the properties of and return. If not specified, a stdClass object is returned.
params
An optional array of parameters to pass to the constructor for class_name objects.
Return Values
Returns an object with string properties that corresponds to the fetched row or NULL if there are no more rows in resultset.
Note
Field names returned by this function are case-sensitive.
Note
This function sets NULL fields to the PHP NULL value.
Changelog
Version | Description |
---|---|
5.0.0 | Added the ability to return as a different object. |
Examples
Example 21.197. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";
if ($result = $mysqli->query($query)) {
/* fetch object array */
while ($obj = $result->fetch_object()) {
printf ("%s (%s)\n", $obj->Name, $obj->CountryCode);
}
/* free result set */
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.198. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";
if ($result = mysqli_query($link, $query)) {
/* fetch associative array */
while ($obj = mysqli_fetch_object($result)) {
printf ("%s (%s)\n", $obj->Name, $obj->CountryCode);
}
/* free result set */
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)
See Also
mysqli_fetch_array |
mysqli_fetch_assoc |
mysqli_fetch_row |
mysqli_query |
mysqli_data_seek |
21.9.3.11.10. mysqli_result::fetch_row, mysqli_fetch_row
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::fetch_row
mysqli_fetch_row
Get a result row as an enumerated array
Description
Object oriented style
mixed mysqli_result::fetch_row();
Procedural style
mixed mysqli_fetch_row(mysqli_result result);
Fetches one row of data from the result set and returns it as an enumerated array, where each column is stored in an array offset starting from 0 (zero). Each subsequent call to this function will return the next row within the result set, or NULL if there are no more rows.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
Return Values
mysqli_fetch_row returns an array of strings that corresponds to the fetched row or NULL if there are no more rows in result set.
Note
This function sets NULL fields to the PHP NULL value.
Examples
Example 21.199. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";
if ($result = $mysqli->query($query)) {
/* fetch object array */
while ($row = $result->fetch_row()) {
printf ("%s (%s)\n", $row[0], $row[1]);
}
/* free result set */
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.200. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";
if ($result = mysqli_query($link, $query)) {
/* fetch associative array */
while ($row = mysqli_fetch_row($result)) {
printf ("%s (%s)\n", $row[0], $row[1]);
}
/* free result set */
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)
See Also
mysqli_fetch_array |
mysqli_fetch_assoc |
mysqli_fetch_object |
mysqli_query |
mysqli_data_seek |
21.9.3.11.11. mysqli_result::$field_count, mysqli_num_fields
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::$field_count
mysqli_num_fields
Get the number of fields in a result
Description
Object oriented style
int mysqli_result->field_count ;
Procedural style
int mysqli_num_fields(mysqli_result result);
Returns the number of fields from specified result set.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
Return Values
The number of fields from a result set.
Examples
Example 21.201. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
if ($result = $mysqli->query("SELECT * FROM City ORDER BY ID LIMIT 1")) {
/* determine number of fields in result set */
$field_cnt = $result->field_count;
printf("Result set has %d fields.\n", $field_cnt);
/* close result set */
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.202. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
if ($result = mysqli_query($link, "SELECT * FROM City ORDER BY ID LIMIT 1")) {
/* determine number of fields in result set */
$field_cnt = mysqli_num_fields($result);
printf("Result set has %d fields.\n", $field_cnt);
/* close result set */
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Result set has 5 fields.
See Also
mysqli_fetch_field |
21.9.3.11.12. mysqli_result::field_seek, mysqli_field_seek
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::field_seek
mysqli_field_seek
Set result pointer to a specified field offset
Description
Object oriented style
bool mysqli_result::field_seek(int fieldnr);
Procedural style
bool mysqli_field_seek(mysqli_result result,
int fieldnr);
Sets the field cursor to the given offset. The next call to mysqli_fetch_field will retrieve the field definition of the column associated with that offset.
Note
To seek to the beginning of a row, pass an offset value of zero.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
fieldnr
The field number. This value must be in the range from 0 to number of fields - 1.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.203. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";
if ($result = $mysqli->query($query)) {
/* Get field information for 2nd column */
$result->field_seek(1);
$finfo = $result->fetch_field();
printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.204. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";
if ($result = mysqli_query($link, $query)) {
/* Get field information for 2nd column */
mysqli_field_seek($result, 1);
$finfo = mysqli_fetch_field($result);
printf("Name: %s\n", $finfo->name);
printf("Table: %s\n", $finfo->table);
printf("max. Len: %d\n", $finfo->max_length);
printf("Flags: %d\n", $finfo->flags);
printf("Type: %d\n\n", $finfo->type);
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4
See Also
mysqli_fetch_field |
21.9.3.11.13. mysqli_result::free, mysqli_free_result
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::free
mysqli_free_result
Frees the memory associated with a result
Description
Object oriented style
void mysqli_result::free();
void mysqli_result::close();
void mysqli_result::free_result();
Procedural style
void mysqli_free_result(mysqli_result result);
Frees the memory associated with the result.
Note
You should always free your result with mysqli_free_result, when your result object is not needed anymore.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
Return Values
No value is returned.
See Also
mysqli_query |
mysqli_stmt_store_result |
mysqli_store_result |
mysqli_use_result |
21.9.3.11.14. mysqli_result::$lengths, mysqli_fetch_lengths
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::$lengths
mysqli_fetch_lengths
Returns the lengths of the columns of the current row in the result set
Description
Object oriented style
array mysqli_result->lengths ;
Procedural style
array mysqli_fetch_lengths(mysqli_result result);
The mysqli_fetch_lengths function returns an array containing the lengths of every column of the current row within the result set.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
Return Values
An array of integers representing the size of each column (not including any terminating null characters). FALSE if an error occurred.
mysqli_fetch_lengths is valid only for the current row of the result set. It returns FALSE if you call it before calling mysqli_fetch_row/array/object or after retrieving all rows in the result.
Examples
Example 21.205. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT * from Country ORDER BY Code LIMIT 1";
if ($result = $mysqli->query($query)) {
$row = $result->fetch_row();
/* display column lengths */
foreach ($result->lengths as $i => $val) {
printf("Field %2d has Length %2d\n", $i+1, $val);
}
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.206. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$query = "SELECT * from Country ORDER BY Code LIMIT 1";
if ($result = mysqli_query($link, $query)) {
$row = mysqli_fetch_row($result);
/* display column lengths */
foreach (mysqli_fetch_lengths($result) as $i => $val) {
printf("Field %2d has Length %2d\n", $i+1, $val);
}
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Field 1 has Length 3
Field 2 has Length 5
Field 3 has Length 13
Field 4 has Length 9
Field 5 has Length 6
Field 6 has Length 1
Field 7 has Length 6
Field 8 has Length 4
Field 9 has Length 6
Field 10 has Length 6
Field 11 has Length 5
Field 12 has Length 44
Field 13 has Length 7
Field 14 has Length 3
Field 15 has Length 2
21.9.3.11.15. mysqli_result::$num_rows, mysqli_num_rows
Copyright 1997-2012 the PHP Documentation Group.
mysqli_result::$num_rows
mysqli_num_rows
Gets the number of rows in a result
Description
Object oriented style
int mysqli_result->num_rows ;
Procedural style
int mysqli_num_rows(mysqli_result result);
Returns the number of rows in the result set.
The behaviour of mysqli_num_rows depends on whether buffered or unbuffered result sets are being used. For unbuffered result sets, mysqli_num_rows will not return the correct number of rows until all the rows in the result have been retrieved.
Parameters
result
Procedural style only: A result set identifier returned by mysqli_query, mysqli_store_result or mysqli_use_result.
Return Values
Returns number of rows in the result set.
Note
If the number of rows is greater than MAXINT , the number will be returned as a string.
Examples
Example 21.207. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
if ($result = $mysqli->query("SELECT Code, Name FROM Country ORDER BY Name")) {
/* determine number of rows result set */
$row_cnt = $result->num_rows;
printf("Result set has %d rows.\n", $row_cnt);
/* close result set */
$result->close();
}
/* close connection */
$mysqli->close();
?>
Example 21.208. Procedural style
<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
if ($result = mysqli_query($link, "SELECT Code, Name FROM Country ORDER BY Name")) {
/* determine number of rows result set */
$row_cnt = mysqli_num_rows($result);
printf("Result set has %d rows.\n", $row_cnt);
/* close result set */
mysqli_free_result($result);
}
/* close connection */
mysqli_close($link);
?>
The above examples will output:
Result set has 239 rows.
See Also
mysqli_affected_rows |
mysqli_store_result |
mysqli_use_result |
mysqli_query |
21.9.3.12. The mysqli_driver class (mysqli_driver)
Copyright 1997-2012 the PHP Documentation Group.
MySQLi Driver.
mysqli_driver {
mysqli_driver
Properties public readonly string client_info ;
public readonly string client_version ;
public readonly string driver_version ;
public readonly string embedded ;
public bool reconnect ;
public int report_mode ;
Methods void mysqli_driver::embedded_server_end();
bool mysqli_driver::embedded_server_start(bool start,
array arguments,
array groups);
}
client_info
The Client API header version
client_version
The Client version
driver_version
The MySQLi Driver version
embedded
Whether MySQLi Embedded support is enabled
reconnect
Allow or prevent reconnect (see the mysqli.reconnect INI directive)
report_mode
Set to MYSQLI_REPORT_OFF , MYSQLI_REPORT_ALL or any combination of MYSQLI_REPORT_STRICT (throw Exceptions for errors), MYSQLI_REPORT_ERROR (report errors) and MYSQLI_REPORT_INDEX (errors regarding indexes). See also mysqli_report.
21.9.3.12.1. mysqli_driver::embedded_server_end, mysqli_embedded_server_end
Copyright 1997-2012 the PHP Documentation Group.
mysqli_driver::embedded_server_end
mysqli_embedded_server_end
Stop embedded server
Description
Object oriented style
void mysqli_driver::embedded_server_end();
Procedural style
void mysqli_embedded_server_end();
Warning
This function is currently not documented; only its argument list is available.
21.9.3.12.2. mysqli_driver::embedded_server_start, mysqli_embedded_server_start
Copyright 1997-2012 the PHP Documentation Group.
mysqli_driver::embedded_server_start
mysqli_embedded_server_start
Initialize and start embedded server
Description
Object oriented style
bool mysqli_driver::embedded_server_start(bool start,
array arguments,
array groups);
Procedural style
bool mysqli_embedded_server_start(bool start,
array arguments,
array groups);
Warning
This function is currently not documented; only its argument list is available.
21.9.3.12.3. mysqli_driver::$report_mode, mysqli_report
Copyright 1997-2012 the PHP Documentation Group.
mysqli_driver::$report_mode
mysqli_report
Enables or disables internal report functions
Description
Object oriented style
int mysqli_driver->report_mode ;
Procedural style
bool mysqli_report(int flags);
A function helpful in improving queries during code development and testing. Depending on the flags, it reports errors from mysqli function calls or queries that don't use an index (or use a bad index).
Parameters
flags
Table 21.56. Supported flags
Name | Description |
---|---|
MYSQLI_REPORT_OFF | Turns reporting off |
MYSQLI_REPORT_ERROR | Report errors from mysqli function calls |
MYSQLI_REPORT_STRICT | Throw mysqli_sql_exception for errors instead of warnings |
MYSQLI_REPORT_INDEX | Report if no index or bad index was used in a query |
MYSQLI_REPORT_ALL | Set all options (report all) |
Return Values
Returns TRUE on success or FALSE on failure.
Changelog
Version | Description |
---|---|
5.3.4 | Changing the reporting mode is now be per-request, rather than per-process. |
5.2.15 | Changing the reporting mode is now be per-request, rather than per-process. |
Examples
Example 21.209. Object oriented style
<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* activate reporting */
$driver = new mysqli_driver();
$driver->report_mode = MYSQLI_REPORT_ALL;
try {
/* this query should report an error */
$result = $mysqli->query("SELECT Name FROM Nonexistingtable WHERE population > 50000");
/* this query should report a bad index */
$result = $mysqli->query("SELECT Name FROM City WHERE population > 50000");
$result->close();
$mysqli->close();
} catch (mysqli_sql_exception $e) {
echo $e->__toString();
}
?>
Example 21.210. Procedural style
<?php
/* activate reporting */
mysqli_report(MYSQLI_REPORT_ALL);
$link = mysqli_connect("localhost", "my_user", "my_password", "world");
/* check connection */
if (mysqli_connect_errno()) {
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
/* this query should report an error */
$result = mysqli_query("SELECT Name FROM Nonexistingtable WHERE population > 50000");
/* this query should report a bad index */
$result = mysqli_query("SELECT Name FROM City WHERE population > 50000");
mysqli_free_result($result);
mysqli_close($link);
?>
See Also
mysqli_debug |
mysqli_dump_debug_info |
mysqli_sql_exception |
set_exception_handler |
error_reporting |
21.9.3.13. The mysqli_warning class (mysqli_warning)
Copyright 1997-2012 the PHP Documentation Group.
Represents a MySQL warning.
mysqli_warning {
mysqli_warning
Properties public message ;
public sqlstate ;
public errno ;
Methods public mysqli_warning::__construct();
public void mysqli_warning::next();
}
message
Message string
sqlstate
SQL state
errno
Error number
21.9.3.13.1. mysqli_warning::__construct
Copyright 1997-2012 the PHP Documentation Group.
mysqli_warning::__construct
The __construct purpose
Description
public mysqli_warning::__construct();
Warning
This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
21.9.3.13.2. mysqli_warning::next
Copyright 1997-2012 the PHP Documentation Group.
mysqli_warning::next
The next purpose
Description
public void mysqli_warning::next();
Warning
This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
21.9.3.14. The mysqli_sql_exception class (mysqli_sql_exception)
Copyright 1997-2012 the PHP Documentation Group.
The mysqli exception handling class.
mysqli_sql_exception {
mysqli_sql_exception, extends RuntimeException
Properties protected code ;
protected sqlstate ;
}
message
The error message.
file
The file with the error.
line
The line with the error.
code
The code causing the error.
sqlstate
The sql state with the error.
21.9.3.15. Aliases and deprecated Mysqli Functions
Copyright 1997-2012 the PHP Documentation Group.
21.9.3.15.1. mysqli_bind_param
Copyright 1997-2012 the PHP Documentation Group.
mysqli_bind_param
Alias for mysqli_stmt_bind_param
Description
This function is an alias of mysqli_stmt_bind_param.
Warning
This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP 5.4.0.
See Also
mysqli_stmt_bind_param |
21.9.3.15.2. mysqli_bind_result
Copyright 1997-2012 the PHP Documentation Group.
mysqli_bind_result
Alias for mysqli_stmt_bind_result
Description
This function is an alias of mysqli_stmt_bind_result.
Warning
This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP 5.4.0.
See Also
mysqli_stmt_bind_result |
21.9.3.15.3. mysqli_client_encoding
Copyright 1997-2012 the PHP Documentation Group.
mysqli_client_encoding
Alias of mysqli_character_set_name
Description
This function is an alias of mysqli_character_set_name.
Warning
This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP 5.4.0.
See Also
mysqli_real_escape_string |
21.9.3.15.4. mysqli_connect
Copyright 1997-2012 the PHP Documentation Group.
mysqli_connect
Alias of mysqli::__construct
Description
This function is an alias of: mysqli::__construct
21.9.3.15.5. mysqli::disable_reads_from_master, mysqli_disable_reads_from_master
Copyright 1997-2012 the PHP Documentation Group.
mysqli::disable_reads_from_master
mysqli_disable_reads_from_master
Disable reads from master
Description
Object oriented style
void mysqli::disable_reads_from_master();
Procedural style
bool mysqli_disable_reads_from_master(mysqli link);
Warning
This function is currently not documented; only its argument list is available.
Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
21.9.3.15.6. mysqli_disable_rpl_parse
Copyright 1997-2012 the PHP Documentation Group.
mysqli_disable_rpl_parse
Disable RPL parse
Description
bool mysqli_disable_rpl_parse(mysqli link);
Warning
This function is currently not documented; only its argument list is available.
Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
21.9.3.15.7. mysqli_enable_reads_from_master
Copyright 1997-2012 the PHP Documentation Group.
mysqli_enable_reads_from_master
Enable reads from master
Description
bool mysqli_enable_reads_from_master(mysqli link);
Warning
This function is currently not documented; only its argument list is available.
Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
21.9.3.15.8. mysqli_enable_rpl_parse
Copyright 1997-2012 the PHP Documentation Group.
mysqli_enable_rpl_parse
Enable RPL parse
Description
bool mysqli_enable_rpl_parse(mysqli link);
Warning
This function is currently not documented; only its argument list is available.
Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
21.9.3.15.9. mysqli_escape_string
Copyright 1997-2012 the PHP Documentation Group.
mysqli_escape_string
Alias of mysqli_real_escape_string
Description
This function is an alias of: mysqli_real_escape_string.
21.9.3.15.10. mysqli_execute
Copyright 1997-2012 the PHP Documentation Group.
mysqli_execute
Alias for mysqli_stmt_execute
Description
This function is an alias of mysqli_stmt_execute.
Notes
Note
mysqli_execute is deprecated and will be removed.
See Also
mysqli_stmt_execute |
21.9.3.15.11. mysqli_fetch
Copyright 1997-2012 the PHP Documentation Group.
mysqli_fetch
Alias for mysqli_stmt_fetch
Description
This function is an alias of mysqli_stmt_fetch.
Warning
This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP 5.4.0.
See Also
mysqli_stmt_fetch |
21.9.3.15.12. mysqli_get_cache_stats
Copyright 1997-2012 the PHP Documentation Group.
mysqli_get_cache_stats
Returns client Zval cache statistics
Description
array mysqli_get_cache_stats();
Warning
This function is currently not documented; only its argument list is available.
Returns client Zval cache statistics. Available only with mysqlnd.
Parameters
Return Values
Returns an array with client Zval cache stats if success, FALSE otherwise.
Examples
Example 21.211. A mysqli_get_cache_stats example
<?php
$link = mysqli_connect();
print_r(mysqli_get_cache_stats());
?>
The above example will output something similar to:
Array
(
[bytes_sent] => 43
[bytes_received] => 80
[packets_sent] => 1
[packets_received] => 2
[protocol_overhead_in] => 8
[protocol_overhead_out] => 4
[bytes_received_ok_packet] => 11
[bytes_received_eof_packet] => 0
[bytes_received_rset_header_packet] => 0
[bytes_received_rset_field_meta_packet] => 0
[bytes_received_rset_row_packet] => 0
[bytes_received_prepare_response_packet] => 0
[bytes_received_change_user_packet] => 0
[packets_sent_command] => 0
[packets_received_ok] => 1
[packets_received_eof] => 0
[packets_received_rset_header] => 0
[packets_received_rset_field_meta] => 0
[packets_received_rset_row] => 0
[packets_received_prepare_response] => 0
[packets_received_change_user] => 0
[result_set_queries] => 0
[non_result_set_queries] => 0
[no_index_used] => 0
[bad_index_used] => 0
[slow_queries] => 0
[buffered_sets] => 0
[unbuffered_sets] => 0
[ps_buffered_sets] => 0
[ps_unbuffered_sets] => 0
[flushed_normal_sets] => 0
[flushed_ps_sets] => 0
[ps_prepared_never_executed] => 0
[ps_prepared_once_executed] => 0
[rows_fetched_from_server_normal] => 0
[rows_fetched_from_server_ps] => 0
[rows_buffered_from_client_normal] => 0
[rows_buffered_from_client_ps] => 0
[rows_fetched_from_client_normal_buffered] => 0
[rows_fetched_from_client_normal_unbuffered] => 0
[rows_fetched_from_client_ps_buffered] => 0
[rows_fetched_from_client_ps_unbuffered] => 0
[rows_fetched_from_client_ps_cursor] => 0
[rows_skipped_normal] => 0
[rows_skipped_ps] => 0
[copy_on_write_saved] => 0
[copy_on_write_performed] => 0
[command_buffer_too_small] => 0
[connect_success] => 1
[connect_failure] => 0
[connection_reused] => 0
[reconnect] => 0
[pconnect_success] => 0
[active_connections] => 1
[active_persistent_connections] => 0
[explicit_close] => 0
[implicit_close] => 0
[disconnect_close] => 0
[in_middle_of_command_close] => 0
[explicit_free_result] => 0
[implicit_free_result] => 0
[explicit_stmt_close] => 0
[implicit_stmt_close] => 0
[mem_emalloc_count] => 0
[mem_emalloc_ammount] => 0
[mem_ecalloc_count] => 0
[mem_ecalloc_ammount] => 0
[mem_erealloc_count] => 0
[mem_erealloc_ammount] => 0
[mem_efree_count] => 0
[mem_malloc_count] => 0
[mem_malloc_ammount] => 0
[mem_calloc_count] => 0
[mem_calloc_ammount] => 0
[mem_realloc_count] => 0
[mem_realloc_ammount] => 0
[mem_free_count] => 0
[proto_text_fetched_null] => 0
[proto_text_fetched_bit] => 0
[proto_text_fetched_tinyint] => 0
[proto_text_fetched_short] => 0
[proto_text_fetched_int24] => 0
[proto_text_fetched_int] => 0
[proto_text_fetched_bigint] => 0
[proto_text_fetched_decimal] => 0
[proto_text_fetched_float] => 0
[proto_text_fetched_double] => 0
[proto_text_fetched_date] => 0
[proto_text_fetched_year] => 0
[proto_text_fetched_time] => 0
[proto_text_fetched_datetime] => 0
[proto_text_fetched_timestamp] => 0
[proto_text_fetched_string] => 0
[proto_text_fetched_blob] => 0
[proto_text_fetched_enum] => 0
[proto_text_fetched_set] => 0
[proto_text_fetched_geometry] => 0
[proto_text_fetched_other] => 0
[proto_binary_fetched_null] => 0
[proto_binary_fetched_bit] => 0
[proto_binary_fetched_tinyint] => 0
[proto_binary_fetched_short] => 0
[proto_binary_fetched_int24] => 0
[proto_binary_fetched_int] => 0
[proto_binary_fetched_bigint] => 0
[proto_binary_fetched_decimal] => 0
[proto_binary_fetched_float] => 0
[proto_binary_fetched_double] => 0
[proto_binary_fetched_date] => 0
[proto_binary_fetched_year] => 0
[proto_binary_fetched_time] => 0
[proto_binary_fetched_datetime] => 0
[proto_binary_fetched_timestamp] => 0
[proto_binary_fetched_string] => 0
[proto_binary_fetched_blob] => 0
[proto_binary_fetched_enum] => 0
[proto_binary_fetched_set] => 0
[proto_binary_fetched_geometry] => 0
[proto_binary_fetched_other] => 0
)
See Also
Stats description |
21.9.3.15.13. mysqli_get_metadata
Copyright 1997-2012 the PHP Documentation Group.
mysqli_get_metadata
Alias for mysqli_stmt_result_metadata
Description
This function is an alias of mysqli_stmt_result_metadata.
Warning
This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP 5.4.0.
See Also
mysqli_stmt_result_metadata |
21.9.3.15.14. mysqli_master_query
Copyright 1997-2012 the PHP Documentation Group.
mysqli_master_query
Enforce execution of a query on the master in a master/slave setup
Description
bool mysqli_master_query(mysqli link,
string query);
Warning
This function is currently not documented; only its argument list is available.
Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
21.9.3.15.15. mysqli_param_count
Copyright 1997-2012 the PHP Documentation Group.
mysqli_param_count
Alias for mysqli_stmt_param_count
Description
This function is an alias of mysqli_stmt_param_count.
Warning
This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP 5.4.0.
See Also
mysqli_stmt_param_count |
21.9.3.15.16. mysqli_report
Copyright 1997-2012 the PHP Documentation Group.
mysqli_report
Alias of of mysqli_driver->report_mode
Description
This function is an alias of: mysqli_driver->report_mode
21.9.3.15.17. mysqli_rpl_parse_enabled
Copyright 1997-2012 the PHP Documentation Group.
mysqli_rpl_parse_enabled
Check if RPL parse is enabled
Description
int mysqli_rpl_parse_enabled(mysqli link);
Warning
This function is currently not documented; only its argument list is available.
Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
21.9.3.15.18. mysqli_rpl_probe
Copyright 1997-2012 the PHP Documentation Group.
mysqli_rpl_probe
RPL probe
Description
bool mysqli_rpl_probe(mysqli link);
Warning
This function is currently not documented; only its argument list is available.
Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
21.9.3.15.19. mysqli_send_long_data
Copyright 1997-2012 the PHP Documentation Group.
mysqli_send_long_data
Alias for mysqli_stmt_send_long_data
Description
This function is an alias of mysqli_stmt_send_long_data.
Warning
This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP 5.4.0.
See Also
mysqli_stmt_send_long_data |
21.9.3.15.20. mysqli_set_opt
Copyright 1997-2012 the PHP Documentation Group.
mysqli_set_opt
Alias of mysqli_options
Description
This function is an alias of mysqli_options.
21.9.3.15.21. mysqli_slave_query
Copyright 1997-2012 the PHP Documentation Group.
mysqli_slave_query
Force execution of a query on a slave in a master/slave setup
Description
bool mysqli_slave_query(mysqli link,
string query);
Warning
This function is currently not documented; only its argument list is available.
Warning
This function has been DEPRECATED and REMOVED as of PHP 5.3.0.
21.9.3.16. Changelog
Copyright 1997-2012 the PHP Documentation Group.
The following changes have been made to classes/functions/methods of this extension.
21.9.4. MySQL Functions (PDO_MYSQL) (MySQL (PDO))
Copyright 1997-2012 the PHP Documentation Group.
PDO_MYSQL is a driver that implements the PHP Data Objects (PDO) interface to enable access from PHP to MySQL 3.x, 4.x and 5.x databases.
PDO_MYSQL will take advantage of native prepared statement support present in MySQL 4.1 and higher. If you're using an older version of the mysql client libraries, PDO will emulate them for you.
Warning
Beware: Some MySQL table types (storage engines) do not support transactions. When writing transactional database code using a table type that does not support transactions, MySQL will pretend that a transaction was initiated successfully. In addition, any DDL queries issued will implicitly commit any pending transactions.
Use --with-pdo-mysql[=DIR] to install the PDO MySQL extension, where the optional [=DIR] is the MySQL base install directory. If mysqlnd is passed as [=DIR], then the MySQL native driver will be used.
Optionally, the --with-mysql-sock[=DIR] sets to location to the MySQL unix socket pointer for all MySQL extensions, including PDO_MYSQL. If unspecified, the default locations are searched.
Optionally, the --with-zlib-dir[=DIR] is used to set the path to the libz install prefix.
$./configure --with-pdo-mysql --with-mysql-sock=/var/mysql/mysql.sock
SSL support is enabled using the appropriate PDO_MySQL constants, which is equivalent to calling the MySQL C API function mysql_ssl_set(). Also, SSL cannot be enabled with PDO::setAttribute because the connection already exists. See also the MySQL documentation about connecting to MySQL with SSL.
Table 21.57. Changelog
Version | Description |
---|---|
5.4.0 | MySQL client libraries 4.1 and below are no longer supported. |
5.3.9 | Added SSL support with mysqlnd and OpenSSL. |
5.3.7 | Added SSL support with libmysqlclient and OpenSSL. |
The constants below are defined by this driver, and will only be available when the extension has been either compiled into PHP or dynamically loaded at runtime. In addition, these driver-specific constants should only be used if you are using this driver. Using driver-specific attributes with another driver may result in unexpected behaviour. PDO::getAttribute may be used to obtain the PDO_ATTR_DRIVER_NAME attribute to check the driver, if your code can run against multiple drivers.
PDO::MYSQL_ATTR_USE_BUFFERED_QUERY (integer)
If this attribute is set to TRUE on a PDOStatement, the MySQL driver will use the buffered versions of the MySQL API. If you're writing portable code, you should use PDOStatement::fetchAll instead.
Example 21.212. Forcing queries to be buffered in mysql
<?php
if ($db->getAttribute(PDO::ATTR_DRIVER_NAME) == 'mysql') {
$stmt = $db->prepare('select * from foo',
array(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY => true));
} else {
die("my application only works with mysql; I should use \$stmt->fetchAll() instead");
}
?>
PDO::MYSQL_ATTR_LOCAL_INFILE (integer)
Enable LOAD LOCAL INFILE.
Note, this constant can only be used in the driver_options array when constructing a new database handle.
PDO::MYSQL_ATTR_INIT_COMMAND (integer)
Command to execute when connecting to the MySQL server. Will automatically be re-executed when reconnecting.
Note, this constant can only be used in the driver_options array when constructing a new database handle.
PDO::MYSQL_ATTR_READ_DEFAULT_FILE (integer)
Read options from the named option file instead of from my.cnf. This option is not available if mysqlnd is used, because mysqlnd does not read the mysql configuration files.
PDO::MYSQL_ATTR_READ_DEFAULT_GROUP (integer)
Read options from the named group from my.cnf or the file specified with MYSQL_READ_DEFAULT_FILE . This option is not available if mysqlnd is used, because mysqlnd does not read the mysql configuration files.
PDO::MYSQL_ATTR_MAX_BUFFER_SIZE (integer)
Maximum buffer size. Defaults to 1 MiB. This constant is not supported when compiled against mysqlnd.
PDO::MYSQL_ATTR_DIRECT_QUERY (integer)
Perform direct queries, don't use prepared statements.
PDO::MYSQL_ATTR_FOUND_ROWS (integer)
Return the number of found (matched) rows, not the number of changed rows.
PDO::MYSQL_ATTR_IGNORE_SPACE (integer)
Permit spaces after function names. Makes all functions names reserved words.
PDO::MYSQL_ATTR_COMPRESS (integer)
Enable network communication compression. This is not supported when compiled against mysqlnd.
PDO::MYSQL_ATTR_SSL_CA (integer)
The file path to the SSL certificate authority.
This exists as of PHP 5.3.7.
PDO::MYSQL_ATTR_SSL_CAPATH (integer)
The file path to the directory that contains the trusted SSL CA certificates, which are stored in PEM format.
This exists as of PHP 5.3.7.
PDO::MYSQL_ATTR_SSL_CERT (integer)
The file path to the SSL certificate.
This exists as of PHP 5.3.7.
PDO::MYSQL_ATTR_SSL_CIPHER (integer)
A list of one or more permissible ciphers to use for SSL encryption, in a format understood by OpenSSL. For example: DHE-RSA-AES256-SHA:AES128-SHA
This exists as of PHP 5.3.7.
PDO::MYSQL_ATTR_SSL_KEY (integer)
The file path to the SSL key.
This exists as of PHP 5.3.7.
The behaviour of these functions is affected by settings in php.ini.
Table 21.58. PDO_MYSQL Configuration Options
Name | Default | Changeable |
---|---|---|
pdo_mysql.default_socket | "/tmp/mysql.sock" | PHP_INI_SYSTEM |
pdo_mysql.debug | NULL | PHP_INI_SYSTEM |
Here's a short explanation of the configuration directives.
pdo_mysql.default_socket string
Sets a Unix domain socket. This value can either be set at compile time if a domain socket is found at configure. This ini setting is Unix only.
pdo_mysql.debug boolean
Enables debugging for PDO_MYSQL. This setting is only available when PDO_MYSQL is compiled against mysqlnd and in PDO debug mode.
21.9.4.1. PDO_MYSQL DSN
Copyright 1997-2012 the PHP Documentation Group.
PDO_MYSQL DSN
Connecting to MySQL databases
Description
The PDO_MYSQL Data Source Name (DSN) is composed of the following elements:
DSN prefix
The DSN prefix is mysql:.
host
The hostname on which the database server resides.
port
The port number where the database server is listening.
dbname
The name of the database.
unix_socket
The MySQL Unix socket (shouldn't be used with host or port).
charset
The character set. See the character set concepts documentation for more information.
Prior to PHP 5.3.6, this element was silently ignored. The same behaviour can be partly replicated with the PDO::MYSQL_ATTR_INIT_COMMAND driver option, as the following example shows.
Warning
The method in the below example can only be used with character sets that share the same lower 7 bit representation as ASCII, such as ISO-8859-1 and UTF-8. Users using character sets that have different representations (such as UTF-16 or Big5) must use the charset option provided in PHP 5.3.6 and later versions.
Example 21.213. Setting the connection character set to UTF-8 prior to PHP 5.3.6
<?php
$dsn = 'mysql:host=localhost;dbname=testdb';
$username = 'username';
$password = 'password';
$options = array(
PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES utf8',
);
$dbh = new PDO($dsn, $username, $password, $options);
?>
Changelog
Version | Description |
---|---|
5.3.6 | Prior to version 5.3.6, charset was ignored. |
Examples
Example 21.214. PDO_MYSQL DSN examples
The following example shows a PDO_MYSQL DSN for connecting to MySQL databases:
mysql:host=localhost;dbname=testdb
Notes
Unix only:
When the host name is set to "localhost", then the connection to the server is made thru a domain socket. If PDO_MYSQL is compiled against libmysqlclient then the location of the socket file is at libmysqlclient's compiled in location. If PDO_MYSQL is compiled against mysqlnd a default socket can be set thru the pdo_mysql.default_socket setting.
21.9.5. MySQL Native Driver (Mysqlnd)
Copyright 1997-2012 the PHP Documentation Group.
MySQL Native Driver is a replacement for the MySQL Client Library (libmysqlclient). MySQL Native Driver is part of the official PHP sources as of PHP 5.3.0.
The MySQL database extensions MySQL extension, mysqli and PDO MYSQL all communicate with the MySQL server. In the past, this was done by the extension using the services provided by the MySQL Client Library. The extensions were compiled against the MySQL Client Library in order to use its client-server protocol.
With MySQL Native Driver there is now an alternative, as the MySQL database extensions can be compiled to use MySQL Native Driver instead of the MySQL Client Library.
MySQL Native Driver is written in C as a PHP extension.
21.9.5.1. Overview
Copyright 1997-2012 the PHP Documentation Group.
What it is not
Although MySQL Native Driver is written as a PHP extension, it is important to note that it does not provide a new API to the PHP programmer. The programmer APIs for MySQL database connectivity are provided by the MySQL extension, mysqli and PDO MYSQL. These extensions can now use the services of MySQL Native Driver to communicate with the MySQL Server. Therefore, you should not think of MySQL Native Driver as an API.
Why use it?
Using the MySQL Native Driver offers a number of advantages over using the MySQL Client Library.
The older MySQL Client Library was written by MySQL AB (now Oracle Corporation) and so was released under the MySQL license. This ultimately led to MySQL support being disabled by default in PHP. However, the MySQL Native Driver has been developed as part of the PHP project, and is therefore released under the PHP license. This removes licensing issues that have been problematic in the past.
Also, in the past, you needed to build the MySQL database extensions against a copy of the MySQL Client Library. This typically meant you needed to have MySQL installed on a machine where you were building the PHP source code. Also, when your PHP application was running, the MySQL database extensions would call down to the MySQL Client library file at run time, so the file needed to be installed on your system. With MySQL Native Driver that is no longer the case as it is included as part of the standard distribution. So you do not need MySQL installed in order to build PHP or run PHP database applications.
Because MySQL Native Driver is written as a PHP extension, it is tightly coupled to the workings of PHP. This leads to gains in efficiency, especially when it comes to memory usage, as the driver uses the PHP memory management system. It also supports the PHP memory limit. Using MySQL Native Driver leads to comparable or better performance than using MySQL Client Library, it always ensures the most efficient use of memory. One example of the memory efficiency is the fact that when using the MySQL Client Library, each row is stored in memory twice, whereas with the MySQL Native Driver each row is only stored once in memory.
Reporting memory usage
Because MySQL Native Driver uses the PHP memory management system, its memory usage can be tracked with memory_get_usage. This is not possible with libmysqlclient because it uses the C function malloc() instead.
Special features
MySQL Native Driver also provides some special features not available when the MySQL database extensions use MySQL Client Library. These special features are listed below:
Improved persistent connections
The special function mysqli_fetch_all
Performance statistics calls: mysqli_get_cache_stats, mysqli_get_client_stats, mysqli_get_connection_stats
The performance statistics facility can prove to be very useful in identifying performance bottlenecks.
MySQL Native Driver also allows for persistent connections when used with the mysqli extension.
SSL Support
MySQL Native Driver has supported SSL since PHP version 5.3.3
Compressed Protocol Support
As of PHP 5.3.2 MySQL Native Driver supports the compressed client server protocol. MySQL Native Driver did not support this in 5.3.0 and 5.3.1. Extensions such as ext/mysql, ext/mysqli, that are configured to use MySQL Native Driver, can also take advantage of this feature. Note that PDO_MYSQL does NOT support compression when used together with mysqlnd.
Named Pipes Support
Named pipes support for Windows was added in PHP version 5.4.0.
21.9.5.2. Installation
Copyright 1997-2012 the PHP Documentation Group.
Changelog
Table 21.59. Changelog
Version | Description |
---|---|
5.3.0 | The MySQL Native Driver was added, with support for all MySQL extensions (i.e., mysql, mysqli and PDO_MYSQL). Passing in mysqlnd to the appropriate configure switch enables this support. |
5.4.0 | The MySQL Native Driver is now the default for all MySQL extensions (i.e., mysql, mysqli and PDO_MYSQL). Passing in mysqlnd to configure is now optional. |
5.5.0 | SHA-256 Authentication Plugin support was added |
Installation on Unix
The MySQL database extensions must be configured to use the MySQL Client Library. In order to use the MySQL Native Driver, PHP needs to be built specifying that the MySQL database extensions are compiled with MySQL Native Driver support. This is done through configuration options prior to building the PHP source code.
For example, to build the MySQL extension, mysqli and PDO MYSQL using the MySQL Native Driver, the following command would be given:
./configure --with-mysql=mysqlnd \
--with-mysqli=mysqlnd \
--with-pdo-mysql=mysqlnd \
[other options]
Installation on Windows
In the official PHP Windows distributions from 5.3 onwards, MySQL Native Driver is enabled by default, so no additional configuration is required to use it. All MySQL database extensions will use MySQL Native Driver in this case.
SHA-256 Authentication Plugin support
The MySQL Native Driver requires the OpenSSL functionality of PHP to be loaded and enabled to connect to MySQL through accounts that use the MySQL SHA-256 Authentication Plugin. For example, PHP could be configured using:
./configure --with-mysql=mysqlnd \
--with-mysqli=mysqlnd \
--with-pdo-mysql=mysqlnd \
--with-openssl
[other options]
21.9.5.3. Runtime Configuration
Copyright 1997-2012 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php.ini.
Table 21.60. MySQL Native Driver Configuration Options
Name | Default | Changeable | Changelog |
---|---|---|---|
mysqlnd.collect_statistics | "1" | PHP_INI_SYSTEM | Available since PHP 5.3.0. |
mysqlnd.collect_memory_statistics | "0" | PHP_INI_SYSTEM | Available since PHP 5.3.0. |
mysqlnd.debug | "0" | PHP_INI_SYSTEM | Available since PHP 5.3.0. |
mysqlnd.log_mask | 0 | PHP_INI_ALL | Available since PHP 5.3.0 |
mysqlnd.mempool_default_size | 16000 | PHP_INI_ALL | Available since PHP 5.3.3 |
mysqlnd.net_read_timeout | "31536000" | PHP_INI_SYSTEM | Available since PHP 5.3.0. |
mysqlnd.net_cmd_buffer_size | 5.3.0 - "2048", 5.3.1 - "4096" | PHP_INI_SYSTEM | Available since PHP 5.3.0. |
mysqlnd.net_read_buffer_size | "32768" | PHP_INI_SYSTEM | Available since PHP 5.3.0. |
mysqlnd.sha256_server_public_key | "" | PHP_INI_PERDIR | Available since PHP 5.5.0. |
Here's a short explanation of the configuration directives.
mysqlnd.collect_statistics boolean
Enables the collection of various client statistics which can be accessed through mysqli_get_client_stats, mysqli_get_connection_stats, mysqli_get_cache_stats and are shown in mysqlnd section of the output of the phpinfo function as well.
This configuration setting enables all MySQL Native Driver statistics except those relating to memory management.
mysqlnd.collect_memory_statistics boolean
Enable the collection of various memory statistics which can be accessed through mysqli_get_client_stats, mysqli_get_connection_stats, mysqli_get_cache_stats and are shown in mysqlnd section of the output of the phpinfo function as well.
This configuration setting enables the memory management statistics within the overall set of MySQL Native Driver statistics.
mysqlnd.debug string
Records communication from all extensions using mysqlnd to the specified log file.
The format of the directive is mysqlnd.debug = "option1[,parameter_option1][:option2[,parameter_option2]]".
The options for the format string are as follows:
A[,file] - Appends trace output to specified file. Also ensures that data is written after each write. This is done by closing and reopening the trace file (this is slow). It helps ensure a complete log file should the application crash.
a[,file] - Appends trace output to the specified file.
d - Enables output from DBUG_<N> macros for the current state. May be followed by a list of keywords which selects output only for the DBUG macros with that keyword. An empty list of keywords implies output for all macros.
f[,functions] - Limits debugger actions to the specified list of functions. An empty list of functions implies that all functions are selected.
F - Marks each debugger output line with the name of the source file containing the macro causing the output.
i - Marks each debugger output line with the PID of the current process.
L - Marks each debugger output line with the name of the source file line number of the macro causing the output.
n - Marks each debugger output line with the current function nesting depth
o[,file] - Similar to a[,file] but overwrites old file, and does not append.
O[,file] - Similar to A[,file] but overwrites old file, and does not append.
t[,N] - Enables function control flow tracing. The maximum nesting depth is specified by N, and defaults to 200.
x - This option activates profiling.
Example:
d:t:x:O,/tmp/mysqlnd.trace
Note
This feature is only available with a debug build of PHP. Works on Microsoft Windows if using a debug build of PHP and PHP was built using Microsoft Visual C version 9 and above.
mysqlnd.log_mask integer
Defines which queries will be logged. The default 0, which disables logging. Define using an integer, and not with PHP constants. For example, a value of 48 (16 + 32) will log slow queries which either use 'no good index' (SERVER_QUERY_NO_GOOD_INDEX_USED = 16) or no index at all (SERVER_QUERY_NO_INDEX_USED = 32). A value of 2043 (1 + 2 + 8 + ... + 1024) will log all slow query types.
The types are as follows: SERVER_STATUS_IN_TRANS=1, SERVER_STATUS_AUTOCOMMIT=2, SERVER_MORE_RESULTS_EXISTS=8, SERVER_QUERY_NO_GOOD_INDEX_USED=16, SERVER_QUERY_NO_INDEX_USED=32, SERVER_STATUS_CURSOR_EXISTS=64, SERVER_STATUS_LAST_ROW_SENT=128, SERVER_STATUS_DB_DROPPED=256, SERVER_STATUS_NO_BACKSLASH_ESCAPES=512, and SERVER_QUERY_WAS_SLOW=1024.
mysqlnd.mempool_default_size integer
Default size of the mysqlnd memory pool, which is used by result sets.
mysqlnd.net_read_timeout integer
mysqlnd and the MySQL Client Library, libmysqlclient use different networking APIs. mysqlnd uses PHP streams, whereas libmysqlclient uses its own wrapper around the operating level network calls. PHP, by default, sets a read timeout of 60s for streams. This is set via php.ini, default_socket_timeout. This default applies to all streams that set no other timeout value. mysqlnd does not set any other value and therefore connections of long running queries can be disconnected after default_socket_timeout seconds resulting in an error message “2006 - MySQL Server has gone away”. The MySQL Client Library sets a default timeout of 365 * 24 * 3600 seconds (1 year) and waits for other timeouts to occur, such as TCP/IP timeouts. mysqlnd now uses the same very long timeout. The value is configurable through a new php.ini setting: mysqlnd.net_read_timeout. mysqlnd.net_read_timeout gets used by any extension (ext/mysql, ext/mysqli, PDO_MySQL) that uses mysqlnd. mysqlnd tells PHP Streams to use mysqlnd.net_read_timeout. Please note that there may be subtle differences between MYSQL_OPT_READ_TIMEOUT from the MySQL Client Library and PHP Streams, for example MYSQL_OPT_READ_TIMEOUT is documented to work only for TCP/IP connections and, prior to MySQL 5.1.2, only for Windows. PHP streams may not have this limitation. Please check the streams documentation, if in doubt.
mysqlnd.net_cmd_buffer_size long
mysqlnd allocates an internal command/network buffer of mysqlnd.net_cmd_buffer_size (in php.ini) bytes for every connection. If a MySQL Client Server protocol command, for example, COM_QUERY (“normal” query), does not fit into the buffer, mysqlnd will grow the buffer to the size required for sending the command. Whenever the buffer gets extended for one connection, command_buffer_too_small will be incremented by one.
If mysqlnd has to grow the buffer beyond its initial size of mysqlnd.net_cmd_buffer_size bytes for almost every connection, you should consider increasing the default size to avoid re-allocations.
The default buffer size is 2048 bytes in PHP 5.3.0. In later versions the default is 4096 bytes. The default can changed either through the php.ini setting mysqlnd.net_cmd_buffer_size or using mysqli_options(MYSQLI_OPT_NET_CMD_BUFFER_SIZE, int size).
It is recommended that the buffer size be set to no less than 4096 bytes because mysqlnd also uses it when reading certain communication packet from MySQL. In PHP 5.3.0, mysqlnd will not grow the buffer if MySQL sends a packet that is larger than the current size of the buffer. As a consequence, mysqlnd is unable to decode the packet and the client application will get an error. There are only two situations when the packet can be larger than the 2048 bytes default of mysqlnd.net_cmd_buffer_size in PHP 5.3.0: the packet transports a very long error message, or the packet holds column meta data from COM_LIST_FIELD (mysql_list_fields() and the meta data come from a string column with a very long default value (>1900 bytes).
As of PHP 5.3.2 mysqlnd does not allow setting buffers smaller than 4096 bytes.
The value can also be set using mysqli_options(link, MYSQLI_OPT_NET_CMD_BUFFER_SIZE, size).
mysqlnd.net_read_buffer_size long
Maximum read chunk size in bytes when reading the body of a MySQL command packet. The MySQL client server protocol encapsulates all its commands in packets. The packets consist of a small header and a body with the actual payload. The size of the body is encoded in the header. mysqlnd reads the body in chunks of MIN(header.size, mysqlnd.net_read_buffer_size) bytes. If a packet body is larger than mysqlnd.net_read_buffer_size bytes, mysqlnd has to call read() multiple times.
The value can also be set using mysqli_options(link, MYSQLI_OPT_NET_READ_BUFFER_SIZE, size).
mysqlnd.sha256_server_public_key string
SHA-256 Authentication Plugin related. File with the MySQL server public RSA key.
Clients can either omit setting a public RSA key, specify the key through this PHP configuration setting or set the key at runtime using mysqli_options. If not public RSA key file is given by the client, then the key will be exchanged as part of the standard SHA-256 Authentication Plugin authentication procedure.
21.9.5.4. Persistent Connections
Copyright 1997-2012 the PHP Documentation Group.
Using Persistent Connections
If mysqli is used with mysqlnd, when a persistent connection is created it generates a COM_CHANGE_USER (mysql_change_user()) call on the server. This ensures that re-authentication of the connection takes place.
As there is some overhead associated with the COM_CHANGE_USER call, it is possible to switch this off at compile time. Reusing a persistent connection will then generate a COM_PING (mysql_ping) call to simply test the connection is reusable.
Generation of COM_CHANGE_USER can be switched off with the compile flag MYSQLI_NO_CHANGE_USER_ON_PCONNECT. For example:
shell# CFLAGS="-DMYSQLI_NO_CHANGE_USER_ON_PCONNECT" ./configure --with-mysql=/usr/local/mysql/ --with-mysqli=/usr/local/mysql/bin/mysql_config --with-pdo-mysql=/usr/local/mysql/bin/mysql_config --enable-debug && make clean && make -j6
Or alternatively:
shell# export CFLAGS="-DMYSQLI_NO_CHANGE_USER_ON_PCONNECT"
shell# configure --whatever-option
shell# make clean
shell# make
Note that only mysqli on mysqlnd uses COM_CHANGE_USER. Other extension-driver combinations use COM_PING on initial use of a persistent connection.
21.9.5.5. Statistics
Copyright 1997-2012 the PHP Documentation Group.
Using Statistical Data
MySQL Native Driver contains support for gathering statistics on the communication between the client and the server. The statistics gathered are of three main types:
Client statistics
Connection statistics
Zval cache statistics
If you are using the mysqli extension, these statistics can be obtained through three API calls:
Note
Statistics are aggregated among all extensions that use MySQL Native Driver. For example, when compiling both ext/mysql and ext/mysqli against MySQL Native Driver, both function calls of ext/mysql and ext/mysqli will change the statistics. There is no way to find out how much a certain API call of any extension that has been compiled against MySQL Native Driver has impacted a certain statistic. You can configure the PDO MySQL Driver, ext/mysql and ext/mysqli to optionally use the MySQL Native Driver. When doing so, all three extensions will change the statistics.
Accessing Client Statistics
To access client statistics, you need to call mysqli_get_client_stats. The function call does not require any parameters.
The function returns an associative array that contains the name of the statistic as the key and the statistical data as the value.
Client statistics can also be accessed by calling the phpinfo function.
Accessing Connection Statistics
To access connection statistics call mysqli_get_connection_stats. This takes the database connection handle as the parameter.
The function returns an associative array that contains the name of the statistic as the key and the statistical data as the value.
Accessing Zval Cache Statistics
The MySQL Native Driver also collects statistics from its internal Zval cache. These statistics can be accessed by calling mysqli_get_cache_stats.
The Zval cache statistics obtained may lead to a tweaking of php.ini settings related to the Zval cache, resulting in better performance.
Buffered and Unbuffered Result Sets
Result sets can be buffered or unbuffered. Using default settings, ext/mysql and ext/mysqli work with buffered result sets for normal (non prepared statement) queries. Buffered result sets are cached on the client. After the query execution all results are fetched from the MySQL Server and stored in a cache on the client. The big advantage of buffered result sets is that they allow the server to free all resources allocated to a result set, once the results have been fetched by the client.
Unbuffered result sets on the other hand are kept much longer on the server. If you want to reduce memory consumption on the client, but increase load on the server, use unbuffered results. If you experience a high server load and the figures for unbuffered result sets are high, you should consider moving the load to the clients. Clients typically scale better than servers. “Load” does not only refer to memory buffers - the server also needs to keep other resources open, for example file handles and threads, before a result set can be freed.
Prepared Statements use unbuffered result sets by default. However, you can use mysqli_stmt_store_result to enable buffered result sets.
Statistics returned by MySQL Native Driver
The following tables show a list of statistics returned by the mysqli_get_client_stats, mysqli_get_connection_stats and mysqli_get_cache_stats functions.
Table 21.61. Returned mysqlnd statistics: Network
Statistic | Scope | Description | Notes |
---|---|---|---|
bytes_sent | Connection | Number of bytes sent from PHP to the MySQL server | Can be used to check the efficiency of the compression protocol |
bytes_received | Connection | Number of bytes received from MySQL server | Can be used to check the efficiency of the compression protocol |
packets_sent | Connection | Number of MySQL Client Server protocol packets sent | Used for debugging Client Server protocol implementation |
packets_received | Connection | Number of MySQL Client Server protocol packets received | Used for debugging Client Server protocol implementation |
protocol_overhead_in | Connection | MySQL Client Server protocol overhead in bytes for incoming traffic. Currently only the Packet Header (4 bytes) is considered as overhead. protocol_overhead_in = packets_received * 4 | Used for debugging Client Server protocol implementation |
protocol_overhead_out | Connection | MySQL Client Server protocol overhead in bytes for outgoing traffic. Currently only the Packet Header (4 bytes) is considered as overhead. protocol_overhead_out = packets_sent * 4 | Used for debugging Client Server protocol implementation |
bytes_received_ok_packet | Connection | Total size of bytes of MySQL Client Server protocol OK packets received. OK packets can contain a status message. The length of the status message can vary and thus the size of an OK packet is not fixed. | Used for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
packets_received_ok | Connection | Number of MySQL Client Server protocol OK packets received. | Used for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
bytes_received_eof_packet | Connection | Total size in bytes of MySQL Client Server protocol EOF packets received. EOF can vary in size depending on the server version. Also, EOF can transport an error message. | Used for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
packets_received_eof | Connection | Number of MySQL Client Server protocol EOF packets. Like with other packet statistics the number of packets will be increased even if PHP does not receive the expected packet but, for example, an error message. | Used for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
bytes_received_rset_header_packet | Connection | Total size in bytes of MySQL Client Server protocol result set header packets. The size of the packets varies depending on the payload (LOAD LOCAL INFILE, INSERT, UPDATE, SELECT, error message). | Used for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
packets_received_rset_header | Connection | Number of MySQL Client Server protocol result set header packets. | Used for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
bytes_received_rset_field_meta_packet | Connection | Total size in bytes of MySQL Client Server protocol result set meta data (field information) packets. Of course the size varies with the fields in the result set. The packet may also transport an error or an EOF packet in case of COM_LIST_FIELDS. | Only useful for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
packets_received_rset_field_meta | Connection | Number of MySQL Client Server protocol result set meta data (field information) packets. | Only useful for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
bytes_received_rset_row_packet | Connection | Total size in bytes of MySQL Client Server protocol result set row data packets. The packet may also transport an error or an EOF packet. You can reverse engineer the number of error and EOF packets by subtracting rows_fetched_from_server_normal and rows_fetched_from_server_ps from bytes_received_rset_row_packet. | Only useful for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
packets_received_rset_row | Connection | Number of MySQL Client Server protocol result set row data packets and their total size in bytes. | Only useful for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
bytes_received_prepare_response_packet | Connection | Total size in bytes of MySQL Client Server protocol OK for Prepared Statement Initialization packets (prepared statement init packets). The packet may also transport an error. The packet size depends on the MySQL version: 9 bytes with MySQL 4.1 and 12 bytes from MySQL 5.0 on. There is no safe way to know how many errors happened. You may be able to guess that an error has occurred if, for example, you always connect to MySQL 5.0 or newer and, bytes_received_prepare_response_packet != packets_received_prepare_response * 12. See also ps_prepared_never_executed, ps_prepared_once_executed. | Only useful for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
packets_received_prepare_response | Connection | Number of MySQL Client Server protocol OK for Prepared Statement Initialization packets (prepared statement init packets). | Only useful for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
bytes_received_change_user_packet | Connection | Total size in bytes of MySQL Client Server protocol COM_CHANGE_USER packets. The packet may also transport an error or EOF. | Only useful for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
packets_received_change_user | Connection | Number of MySQL Client Server protocol COM_CHANGE_USER packets | Only useful for debugging CS protocol implementation. Note that the total size in bytes includes the size of the header packet (4 bytes, see protocol overhead). |
packets_sent_command | Connection | Number of MySQL Client Server protocol commands sent from PHP to MySQL. There is no way to know which specific commands and how many of them have been sent. At its best you can use it to check if PHP has sent any commands to MySQL to know if you can consider to disable MySQL support in your PHP binary. There is also no way to reverse engineer the number of errors that may have occurred while sending data to MySQL. The only error that is recorded is command_buffer_too_small (see below). | Only useful for debugging CS protocol implementation. |
bytes_received_real_data_normal | Connection | Number of bytes of payload fetched by the PHP client from mysqlnd using the text protocol. | This is the size of the actual data contained in result sets that do not originate from prepared statements and which have been fetched by the PHP client. Note that although a full result set may have been pulled from MySQL by mysqlnd, this statistic only counts actual data pulled from mysqlnd by the PHP client. An example of a code sequence that will increase the value is as follows:
Every fetch operation will increase the value. The statistic will not be increased if the result set is only buffered on the client, but not fetched, such as in the following example:
This statistic is available as of PHP version 5.3.4. |
bytes_received_real_data_ps | Connection | Number of bytes of the payload fetched by the PHP client from mysqlnd using the prepared statement protocol. | This is the size of the actual data contained in result sets that originate from prepared statements and which has been fetched by the PHP client. The value will not be increased if the result set is not subsequently read by the PHP client. Note that although a full result set may have been pulled from MySQL by mysqlnd, this statistic only counts actual data pulled from mysqlnd by the PHP client. See also bytes_received_real_data_normal. This statistic is available as of PHP version 5.3.4. |
Result Set
Table 21.62. Returned mysqlnd statistics: Result Set
Statistic | Scope | Description | Notes |
---|---|---|---|
result_set_queries | Connection | Number of queries that have generated a result set. Examples of queries that generate a result set: SELECT, SHOW. The statistic will not be incremented if there is an error reading the result set header packet from the line. | You may use it as an indirect measure for the number of queries PHP has sent to MySQL, for example, to identify a client that causes a high database load. |
non_result_set_queries | Connection | Number of queries that did not generate a result set. Examples of queries that do not generate a result set: INSERT, UPDATE, LOAD DATA, SHOW. The statistic will not be incremented if there is an error reading the result set header packet from the line. | You may use it as an indirect measure for the number of queries PHP has sent to MySQL, for example, to identify a client that causes a high database load. |
no_index_used | Connection | Number of queries that have generated a result set but did not use an index (see also mysqld start option –log-queries-not-using-indexes). If you want these queries to be reported you can use mysqli_report(MYSQLI_REPORT_INDEX) to make ext/mysqli throw an exception. If you prefer a warning instead of an exception use mysqli_report(MYSQLI_REPORT_INDEX ^ MYSQLI_REPORT_STRICT). | |
bad_index_used | Connection | Number of queries that have generated a result set and did not use a good index (see also mysqld start option –log-slow-queries). | If you want these queries to be reported you can use mysqli_report(MYSQLI_REPORT_INDEX) to make ext/mysqli throw an exception. If you prefer a warning instead of an exception use mysqli_report(MYSQLI_REPORT_INDEX ^ MYSQLI_REPORT_STRICT) |
slow_queries | Connection | SQL statements that took more than long_query_time seconds to execute and required at least min_examined_row_limit rows to be examined. | Not reported through mysqli_report |
buffered_sets | Connection | Number of buffered result sets returned by “normal” queries. “Normal” means “not prepared statement” in the following notes. | Examples of API calls that will buffer result sets on the client: mysql_query, mysqli_query, mysqli_store_result, mysqli_stmt_get_result. Buffering result sets on the client ensures that server resources are freed as soon as possible and it makes result set scrolling easier. The downside is the additional memory consumption on the client for buffering data. Note that mysqlnd (unlike the MySQL Client Library) respects the PHP memory limit because it uses PHP internal memory management functions to allocate memory. This is also the reason why memory_get_usage reports a higher memory consumption when using mysqlnd instead of the MySQL Client Library. memory_get_usage does not measure the memory consumption of the MySQL Client Library at all because the MySQL Client Library does not use PHP internal memory management functions monitored by the function! |
unbuffered_sets | Connection | Number of unbuffered result sets returned by normal (non prepared statement) queries. | Examples of API calls that will not buffer result sets on the client: mysqli_use_result |
ps_buffered_sets | Connection | Number of buffered result sets returned by prepared statements. By default prepared statements are unbuffered. | Examples of API calls that will not buffer result sets on the client: mysqli_stmt_store_result |
ps_unbuffered_sets | Connection | Number of unbuffered result sets returned by prepared statements. | By default prepared statements are unbuffered. |
flushed_normal_sets | Connection | Number of result sets from normal (non prepared statement) queries with unread data which have been flushed silently for you. Flushing happens only with unbuffered result sets. | Unbuffered result sets must be fetched completely before a new query can be run on the connection otherwise MySQL will throw an error. If the application does not fetch all rows from an unbuffered result set, mysqlnd does implicitly fetch the result set to clear the line. See also rows_skipped_normal, rows_skipped_ps. Some possible causes for an implicit flush:
|
flushed_ps_sets | Connection | Number of result sets from prepared statements with unread data which have been flushed silently for you. Flushing happens only with unbuffered result sets. | Unbuffered result sets must be fetched completely before a new query can be run on the connection otherwise MySQL will throw an error. If the application does not fetch all rows from an unbuffered result set, mysqlnd does implicitly fetch the result set to clear the line. See also rows_skipped_normal, rows_skipped_ps. Some possible causes for an implicit flush:
|
ps_prepared_never_executed | Connection | Number of statements prepared but never executed. | Prepared statements occupy server resources. You should not prepare a statement if you do not plan to execute it. |
ps_prepared_once_executed | Connection | Number of prepared statements executed only one. | One of the ideas behind prepared statements is that the same query gets executed over and over again (with different parameters) and some parsing and other preparation work can be saved, if statement execution is split up in separate prepare and execute stages. The idea is to prepare once and “cache” results, for example, the parse tree to be reused during multiple statement executions. If you execute a prepared statement only once the two stage processing can be inefficient compared to “normal” queries because all the caching means extra work and it takes (limited) server resources to hold the cached information. Consequently, prepared statements that are executed only once may cause performance hurts. |
rows_fetched_from_server_normal, rows_fetched_from_server_ps | Connection | Total number of result set rows successfully fetched from MySQL regardless if the client application has consumed them or not. Some of the rows may not have been fetched by the client application but have been flushed implicitly. | See also packets_received_rset_row |
rows_buffered_from_client_normal, rows_buffered_from_client_ps | Connection | Total number of successfully buffered rows originating from a "normal" query or a prepared statement. This is the number of rows that have been fetched from MySQL and buffered on client. Note that there are two distinct statistics on rows that have been buffered (MySQL to mysqlnd internal buffer) and buffered rows that have been fetched by the client application (mysqlnd internal buffer to client application). If the number of buffered rows is higher than the number of fetched buffered rows it can mean that the client application runs queries that cause larger result sets than needed resulting in rows not read by the client. | Examples of queries that will buffer results: mysqli_query, mysqli_store_result |
rows_fetched_from_client_normal_buffered, rows_fetched_from_client_ps_buffered | Connection | Total number of rows fetched by the client from a buffered result set created by a normal query or a prepared statement. | |
rows_fetched_from_client_normal_unbuffered, rows_fetched_from_client_ps_unbuffered | Connection | Total number of rows fetched by the client from a unbuffered result set created by a "normal" query or a prepared statement. | |
rows_fetched_from_client_ps_cursor | Connection | Total number of rows fetch by the client from a cursor created by a prepared statement. | |
rows_skipped_normal, rows_skipped_ps | Connection | Reserved for future use (currently not supported) | |
copy_on_write_saved, copy_on_write_performed | Process | With mysqlnd, variables returned by the extensions point into mysqlnd internal network result buffers. If you do not change the variables, fetched data will be kept only once in memory. If you change the variables, mysqlnd has to perform a copy-on-write to protect the internal network result buffers from being changed. With the MySQL Client Library you always hold fetched data twice in memory. Once in the internal MySQL Client Library buffers and once in the variables returned by the extensions. In theory mysqlnd can save up to 40% memory. However, note that the memory saving cannot be measured using memory_get_usage. | |
explicit_free_result, implicit_free_result | Connection, Process (only during prepared statement cleanup) | Total number of freed result sets. | The free is always considered explicit but for result sets created by an init command, for example, mysqli_options(MYSQLI_INIT_COMMAND , ...) |
proto_text_fetched_null, proto_text_fetched_bit, proto_text_fetched_tinyint proto_text_fetched_short, proto_text_fetched_int24, proto_text_fetched_int proto_text_fetched_bigint, proto_text_fetched_decimal, proto_text_fetched_float proto_text_fetched_double, proto_text_fetched_date, proto_text_fetched_year proto_text_fetched_time, proto_text_fetched_datetime, proto_text_fetched_timestamp proto_text_fetched_string, proto_text_fetched_blob, proto_text_fetched_enum proto_text_fetched_set, proto_text_fetched_geometry, proto_text_fetched_other | Connection | Total number of columns of a certain type fetched from a normal query (MySQL text protocol). | Mapping from C API / MySQL meta data type to statistics name:
Note that the MYSQL_*-type constants may not be associated with the very same SQL column types in every version of MySQL. |
proto_binary_fetched_null, proto_binary_fetched_bit, proto_binary_fetched_tinyint proto_binary_fetched_short, proto_binary_fetched_int24, proto_binary_fetched_int, proto_binary_fetched_bigint, proto_binary_fetched_decimal, proto_binary_fetched_float, proto_binary_fetched_double, proto_binary_fetched_date, proto_binary_fetched_year, proto_binary_fetched_time, proto_binary_fetched_datetime, proto_binary_fetched_timestamp, proto_binary_fetched_string, proto_binary_fetched_blob, proto_binary_fetched_enum, proto_binary_fetched_set, proto_binary_fetched_geometry, proto_binary_fetched_other | Connection | Total number of columns of a certain type fetched from a prepared statement (MySQL binary protocol). | For type mapping see proto_text_* described in the preceding text. |
Table 21.63. Returned mysqlnd statistics: Connection
Statistic | Scope | Description | Notes |
---|---|---|---|
connect_success, connect_failure | Connection | Total number of successful / failed connection attempt. | Reused connections and all other kinds of connections are included. |
reconnect | Process | Total number of (real_)connect attempts made on an already opened connection handle. | The code sequence $link = new mysqli(...); $link->real_connect(...) will cause a reconnect. But $link = new mysqli(...); $link->connect(...) will not because $link->connect(...) will explicitly close the existing connection before a new connection is established. |
pconnect_success | Connection | Total number of successful persistent connection attempts. | Note that connect_success holds the sum of successful persistent and non-persistent connection attempts. The number of successful non-persistent connection attempts is connect_success - pconnect_success. |
active_connections | Connection | Total number of active persistent and non-persistent connections. | |
active_persistent_connections | Connection | Total number of active persistent connections. | The total number of active non-persistent connections is active_connections - active_persistent_connections. |
explicit_close | Connection | Total number of explicitly closed connections (ext/mysqli only). | Examples of code snippets that cause an explicit close :
|
implicit_close | Connection | Total number of implicitly closed connections (ext/mysqli only). | Examples of code snippets that cause an implicit close :
|
disconnect_close | Connection | Connection failures indicated by the C API call mysql_real_connect during an attempt to establish a connection. | It is called disconnect_close because the connection handle passed to the C API call will be closed. |
in_middle_of_command_close | Process | A connection has been closed in the middle of a command execution (outstanding result sets not fetched, after sending a query and before retrieving an answer, while fetching data, while transferring data with LOAD DATA). | Unless you use asynchronous queries this should only happen if your script stops unexpectedly and PHP shuts down the connections for you. |
init_command_executed_count | Connection | Total number of init command executions, for example, mysqli_options(MYSQLI_INIT_COMMAND , ...). | The number of successful executions is init_command_executed_count - init_command_failed_count. |
init_command_failed_count | Connection | Total number of failed init commands. |
Table 21.64. Returned mysqlnd statistics: COM_* Command
Statistic | Scope | Description | Notes |
---|---|---|---|
com_quit, com_init_db, com_query, com_field_list, com_create_db, com_drop_db, com_refresh, com_shutdown, com_statistics, com_process_info, com_connect, com_process_kill, com_debug, com_ping, com_time, com_delayed_insert, com_change_user, com_binlog_dump, com_table_dump, com_connect_out, com_register_slave, com_stmt_prepare, com_stmt_execute, com_stmt_send_long_data, com_stmt_close, com_stmt_reset, com_stmt_set_option, com_stmt_fetch, com_daemon | Connection | Total number of attempts to send a certain COM_* command from PHP to MySQL. | The statistics are incremented after checking the line and immediately before sending the corresponding MySQL client server protocol packet. If mysqlnd fails to send the packet over the wire the statistics will not be decremented. In case of a failure mysqlnd emits a PHP warning “Error while sending %s packet. PID=%d.” Usage examples:
|
Miscellaneous
Table 21.65. Returned mysqlnd statistics: Miscellaneous
Statistic | Scope | Description | Notes |
---|---|---|---|
explicit_stmt_close, implicit_stmt_close | Process | Total number of close prepared statements. | A close is always considered explicit but for a failed prepare. |
mem_emalloc_count, mem_emalloc_ammount, mem_ecalloc_count, mem_ecalloc_ammount, mem_erealloc_count, mem_erealloc_ammount, mem_efree_count, mem_malloc_count, mem_malloc_ammount, mem_calloc_count, mem_calloc_ammount, mem_realloc_count, mem_realloc_ammount, mem_free_count | Process | Memory management calls. | Development only. |
command_buffer_too_small | Connection | Number of network command buffer extensions while sending commands from PHP to MySQL. | mysqlnd allocates an internal command/network buffer of mysqlnd.net_cmd_buffer_size (php.ini) bytes for every connection. If a MySQL Client Server protocol command, for example, COM_QUERY (normal query), does not fit into the buffer, mysqlnd will grow the buffer to what is needed for sending the command. Whenever the buffer gets extended for one connection command_buffer_too_small will be incremented by one. If mysqlnd has to grow the buffer beyond its initial size of mysqlnd.net_cmd_buffer_size (php.ini) bytes for almost every connection, you should consider to increase the default size to avoid re-allocations. The default buffer size is 2048 bytes in PHP 5.3.0. In future versions the default will be 4kB or larger. The default can changed either through the php.ini setting mysqlnd.net_cmd_buffer_size or using mysqli_options(MYSQLI_OPT_NET_CMD_BUFFER_SIZE, int size). It is recommended to set the buffer size to no less than 4096 bytes because mysqlnd also uses it when reading certain communication packet from MySQL. In PHP 5.3.0, mysqlnd will not grow the buffer if MySQL sends a packet that is larger than the current size of the buffer. As a consequence mysqlnd is unable to decode the packet and the client application will get an error. There are only two situations when the packet can be larger than the 2048 bytes default of mysqlnd.net_cmd_buffer_size in PHP 5.3.0: the packet transports a very long error message or the packet holds column meta data from COM_LIST_FIELD (mysql_list_fields) and the meta data comes from a string column with a very long default value (>1900 bytes). No bug report on this exists - it should happen rarely. As of PHP 5.3.2 mysqlnd does not allow setting buffers smaller than 4096 bytes. |
connection_reused |
21.9.5.6. Notes
Copyright 1997-2012 the PHP Documentation Group.
This section provides a collection of miscellaneous notes on MySQL Native Driver usage.
Using mysqlnd means using PHP streams for underlying connectivity. For mysqlnd, the PHP streams documentation (http://www.php.net/manual/en/book.stream) should be consulted on such details as timeout settings, not the documentation for the MySQL Client Library.
21.9.5.7. MySQL Native Driver Plugin API
Copyright 1997-2012 the PHP Documentation Group.
The MySQL Native Driver Plugin API is a feature of MySQL Native Driver, or mysqlnd. Mysqlnd plugins operate in the layer between PHP applications and the MySQL server. This is comparable to MySQL Proxy. MySQL Proxy operates on a layer between any MySQL client application, for example, a PHP application and, the MySQL server. Mysqlnd plugins can undertake typical MySQL Proxy tasks such as load balancing, monitoring and performance optimizations. Due to the different architecture and location, mysqlnd plugins do not have some of MySQL Proxy's disadvantages. For example, with plugins, there is no single point of failure, no dedicated proxy server to deploy, and no new programming language to learn (Lua).
A mysqlnd plugin can be thought of as an extension to mysqlnd. Plugins can intercept the majority of mysqlnd functions. The mysqlnd functions are called by the PHP MySQL extensions such as ext/mysql, ext/mysqli, and PDO_MYSQL. As a result, it is possible for a mysqlnd plugin to intercept all calls made to these extensions from the client application.
Internal mysqlnd function calls can also be intercepted, or replaced. There are no restrictions on manipulating mysqlnd internal function tables. It is possible to set things up so that when certain mysqlnd functions are called by the extensions that use mysqlnd, the call is directed to the appropriate function in the mysqlnd plugin. The ability to manipulate mysqlnd internal function tables in this way allows maximum flexibility for plugins.
Mysqlnd plugins are in fact PHP Extensions, written in C, that use the mysqlnd plugin API (which is built into MySQL Native Driver, mysqlnd). Plugins can be made 100% transparent to PHP applications. No application changes are needed because plugins operate on a different layer. The mysqlnd plugin can be thought of as operating in a layer below mysqlnd.
The following list represents some possible applications of mysqlnd plugins.
Load Balancing
Read/Write Splitting. An example of this is the PECL/mysqlnd_ms (Master Slave) extension. This extension splits read/write queries for a replication setup.
Failover
Round-Robin, least loaded
Monitoring
Query Logging
Query Analysis
Query Auditing. An example of this is the PECL/mysqlnd_sip (SQL Injection Protection) extension. This extension inspects queries and executes only those that are allowed according to a ruleset.
Performance
Caching. An example of this is the PECL/mysqlnd_qc (Query Cache) extension.
Throttling
Sharding. An example of this is the PECL/mysqlnd_mc (Multi Connect) extension. This extension will attempt to split a SELECT statement into n-parts, using SELECT ... LIMIT part_1, SELECT LIMIT part_n. It sends the queries to distinct MySQL servers and merges the result at the client.
MySQL Native Driver Plugins Available
There are a number of mysqlnd plugins already available. These include:
PECL/mysqlnd_mc - Multi Connect plugin.
PECL/mysqlnd_ms - Master Slave plugin.
PECL/mysqlnd_qc - Query Cache plugin.
PECL/mysqlnd_pscache - Prepared Statement Handle Cache plugin.
PECL/mysqlnd_sip - SQL Injection Protection plugin.
PECL/mysqlnd_uh - User Handler plugin.
21.9.5.7.1. A comparison of mysqlnd plugins with MySQL Proxy
Copyright 1997-2012 the PHP Documentation Group.
Mysqlnd plugins and MySQL Proxy are different technologies using different approaches. Both are valid tools for solving a variety of common tasks such as load balancing, monitoring, and performance enhancements. An important difference is that MySQL Proxy works with all MySQL clients, whereas mysqlnd plugins are specific to PHP applications.
As a PHP Extension, a mysqlnd plugin gets installed on the PHP application server, along with the rest of PHP. MySQL Proxy can either be run on the PHP application server or can be installed on a dedicated machine to handle multiple PHP application servers.
Deploying MySQL Proxy on the application server has two advantages:
No single point of failure
Easy to scale out (horizontal scale out, scale by client)
MySQL Proxy (and mysqlnd plugins) can solve problems easily which otherwise would have required changes to existing applications.
However, MySQL Proxy does have some disadvantages:
MySQL Proxy is a new component and technology to master and deploy.
MySQL Proxy requires knowledge of the Lua scripting language.
MySQL Proxy can be customized with C and Lua programming. Lua is the preferred scripting language of MySQL Proxy. For most PHP experts Lua is a new language to learn. A mysqlnd plugin can be written in C. It is also possible to write plugins in PHP using PECL/mysqlnd_uh.
MySQL Proxy runs as a daemon - a background process. MySQL Proxy can recall earlier decisions, as all state can be retained. However, a mysqlnd plugin is bound to the request-based lifecycle of PHP. MySQL Proxy can also share one-time computed results among multiple application servers. A mysqlnd plugin would need to store data in a persistent medium to be able to do this. Another daemon would need to be used for this purpose, such as Memcache. This gives MySQL Proxy an advantage in this case.
MySQL Proxy works on top of the wire protocol. With MySQL Proxy you have to parse and reverse engineer the MySQL Client Server Protocol. Actions are limited to those that can be achieved by manipulating the communication protocol. If the wire protocol changes (which happens very rarely) MySQL Proxy scripts would need to be changed as well.
Mysqlnd plugins work on top of the C API, which mirrors the libmysqlclient client and Connector/C APIs. This C API is basically a wrapper around the MySQL Client Server protocol, or wire protocol, as it is sometimes called. You can intercept all C API calls. PHP makes use of the C API, therefore you can hook all PHP calls, without the need to program at the level of the wire protocol.
Mysqlnd implements the wire protocol. Plugins can therefore parse, reverse engineer, manipulate and even replace the communication protocol. However, this is usually not required.
As plugins allow you to create implementations that use two levels (C API and wire protocol), they have greater flexibility than MySQL Proxy. If a mysqlnd plugin is implemented using the C API, any subsequent changes to the wire protocol do not require changes to the plugin itself.
21.9.5.7.2. Obtaining the mysqlnd plugin API
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd plugin API is simply part of the MySQL Native Driver PHP extension, ext/mysqlnd. Development started on the mysqlnd plugin API in December 2009. It is developed as part of the PHP source repository, and as such is available to the public either via Git, or through source snapshot downloads.
The following table shows PHP versions and the corresponding mysqlnd version contained within.
Table 21.66. The bundled mysqlnd version per PHP release
PHP Version | MySQL Native Driver version |
---|---|
5.3.0 | 5.0.5 |
5.3.1 | 5.0.5 |
5.3.2 | 5.0.7 |
5.3.3 | 5.0.7 |
5.3.4 | 5.0.7 |
Plugin developers can determine the mysqlnd version through accessing MYSQLND_VERSION, which is a string of the format “mysqlnd 5.0.7-dev - 091210 - $Revision: 300535”, or through MYSQLND_VERSION_ID, which is an integer such as 50007. Developers can calculate the version number as follows:
Table 21.67. MYSQLND_VERSION_ID calculation table
Version (part) | Example |
---|---|
Major*10000 | 5*10000 = 50000 |
Minor*100 | 0*100 = 0 |
Patch | 7 = 7 |
MYSQLND_VERSION_ID | 50007 |
During development, developers should refer to the mysqlnd version number for compatibility and version tests, as several iterations of mysqlnd could occur during the lifetime of a PHP development branch with a single PHP version number.
21.9.5.7.3. MySQL Native Driver Plugin Architecture
Copyright 1997-2012 the PHP Documentation Group.
This section provides an overview of the mysqlnd plugin architecture.
MySQL Native Driver Overview
Before developing mysqlnd plugins, it is useful to know a little of how mysqlnd itself is organized. Mysqlnd consists of the following modules:
Table 21.68. The mysqlnd organization chart, per module
Modules Statistics | mysqlnd_statistics.c |
Connection | mysqlnd.c |
Resultset | mysqlnd_result.c |
Resultset Metadata | mysqlnd_result_meta.c |
Statement | mysqlnd_ps.c |
Network | mysqlnd_net.c |
Wire protocol | mysqlnd_wireprotocol.c |
C Object Oriented Paradigm
At the code level, mysqlnd uses a C pattern for implementing object orientation.
In C you use a struct to represent an object. Members of the struct represent object properties. Struct members pointing to functions represent methods.
Unlike with other languages such as C++ or Java, there are no fixed rules on inheritance in the C object oriented paradigm. However, there are some conventions that need to be followed that will be discussed later.
The PHP Life Cycle
When considering the PHP life cycle there are two basic cycles:
PHP engine startup and shutdown cycle
Request cycle
When the PHP engine starts up it will call the module initialization (MINIT) function of each registered extension. This allows each module to setup variables and allocate resources that will exist for the lifetime of the PHP engine process. When the PHP engine shuts down it will call the module shutdown (MSHUTDOWN) function of each extension.
During the lifetime of the PHP engine it will receive a number of requests. Each request constitutes another life cycle. On each request the PHP engine will call the request initialization function of each extension. The extension can perform any variable setup and resource allocation required for request processing. As the request cycle ends the engine calls the request shutdown (RSHUTDOWN) function of each extension so the extension can perform any cleanup required.
How a plugin works
A mysqlnd plugin works by intercepting calls made to mysqlnd by extensions that use mysqlnd. This is achieved by obtaining the mysqlnd function table, backing it up, and replacing it by a custom function table, which calls the functions of the plugin as required.
The following code shows how the mysqlnd function table is replaced:
/* a place to store original function table */
struct st_mysqlnd_conn_methods org_methods;
void minit_register_hooks(TSRMLS_D) {
/* active function table */
struct st_mysqlnd_conn_methods * current_methods
= mysqlnd_conn_get_methods();
/* backup original function table */
memcpy(&org_methods, current_methods,
sizeof(struct st_mysqlnd_conn_methods);
/* install new methods */
current_methods->query = MYSQLND_METHOD(my_conn_class, query);
}
Connection function table manipulations must be done during Module Initialization (MINIT). The function table is a global shared resource. In an multi-threaded environment, with a TSRM build, the manipulation of a global shared resource during the request processing will almost certainly result in conflicts.
Note
Do not use any fixed-size logic when manipulating the mysqlnd function table: new methods may be added at the end of the function table. The function table may change at any time in the future.
Calling parent methods
If the original function table entries are backed up, it is still possible to call the original function table entries - the parent methods.
In some cases, such as for Connection::stmt_init(), it is vital to call the parent method prior to any other activity in the derived method.
MYSQLND_METHOD(my_conn_class, query)(MYSQLND *conn,
const char *query, unsigned int query_len TSRMLS_DC) {
php_printf("my_conn_class::query(query = %s)\n", query);
query = "SELECT 'query rewritten' FROM DUAL";
query_len = strlen(query);
return org_methods.query(conn, query, query_len); /* return with call to parent */
}
Extending properties
A mysqlnd object is represented by a C struct. It is not possible to add a member to a C struct at run time. Users of mysqlnd objects cannot simply add properties to the objects.
Arbitrary data (properties) can be added to a mysqlnd objects using an appropriate function of the mysqlnd_plugin_get_plugin_<object>_data() family. When allocating an object mysqlnd reserves space at the end of the object to hold a void * pointer to arbitrary data. mysqlnd reserves space for one void * pointer per plugin.
The following table shows how to calculate the position of the pointer for a specific plugin:
Table 21.69. Pointer calculations for mysqlnd
Memory address | Contents |
0 | Beginning of the mysqlnd object C struct |
n | End of the mysqlnd object C struct |
n + (m x sizeof(void*)) | void* to object data of the m-th plugin |
If you plan to subclass any of the mysqlnd object constructors, which is allowed, you must keep this in mind!
The following code shows extending properties:
/* any data we want to associate */
typedef struct my_conn_properties {
unsigned long query_counter;
} MY_CONN_PROPERTIES;
/* plugin id */
unsigned int my_plugin_id;
void minit_register_hooks(TSRMLS_D) {
/* obtain unique plugin ID */
my_plugin_id = mysqlnd_plugin_register();
/* snip - see Extending Connection: methods */
}
static MY_CONN_PROPERTIES** get_conn_properties(const MYSQLND *conn TSRMLS_DC) {
MY_CONN_PROPERTIES** props;
props = (MY_CONN_PROPERTIES**)mysqlnd_plugin_get_plugin_connection_data(
conn, my_plugin_id);
if (!props || !(*props)) {
*props = mnd_pecalloc(1, sizeof(MY_CONN_PROPERTIES), conn->persistent);
(*props)->query_counter = 0;
}
return props;
}
The plugin developer is responsible for the management of plugin data memory.
Use of the mysqlnd memory allocator is recommended for plugin data. These functions are named using the convention: mnd_*loc(). The mysqlnd allocator has some useful features, such as the ability to use a debug allocator in a non-debug build.
Table 21.70. When and how to subclass
When to subclass? | Each instance has its own private function table? | How to subclass? | |
Connection (MYSQLND) | MINIT | No | mysqlnd_conn_get_methods() |
Resultset (MYSQLND_RES) | MINIT or later | Yes | mysqlnd_result_get_methods() or object method function table manipulation |
Resultset Meta (MYSQLND_RES_METADATA) | MINIT | No | mysqlnd_result_metadata_get_methods() |
Statement (MYSQLND_STMT) | MINIT | No | mysqlnd_stmt_get_methods() |
Network (MYSQLND_NET) | MINIT or later | Yes | mysqlnd_net_get_methods() or object method function table manipulation |
Wire protocol (MYSQLND_PROTOCOL) | MINIT or later | Yes | mysqlnd_protocol_get_methods() or object method function table manipulation |
You must not manipulate function tables at any time later than MINIT if it is not allowed according to the above table.
Some classes contain a pointer to the method function table. All instances of such a class will share the same function table. To avoid chaos, in particular in threaded environments, such function tables must only be manipulated during MINIT.
Other classes use copies of a globally shared function table. The class function table copy is created together with the object. Each object uses its own function table. This gives you two options: you can manipulate the default function table of an object at MINIT, and you can additionally refine methods of an object without impacting other instances of the same class.
The advantage of the shared function table approach is performance. There is no need to copy a function table for each and every object.
Table 21.71. Constructor status
Allocation, construction, reset | Can be modified? | Caller | |
Connection (MYSQLND) | mysqlnd_init() | No | mysqlnd_connect() |
Resultset(MYSQLND_RES) | Allocation:
Reset and re-initialized during:
| Yes, but call parent! |
|
Resultset Meta (MYSQLND_RES_METADATA) | Connection::result_meta_init() | Yes, but call parent! | Result::read_result_metadata() |
Statement (MYSQLND_STMT) | Connection::stmt_init() | Yes, but call parent! | Connection::stmt_init() |
Network (MYSQLND_NET) | mysqlnd_net_init() | No | Connection::init() |
Wire protocol (MYSQLND_PROTOCOL) | mysqlnd_protocol_init() | No | Connection::init() |
It is strongly recommended that you do not entirely replace a constructor. The constructors perform memory allocations. The memory allocations are vital for the mysqlnd plugin API and the object logic of mysqlnd. If you do not care about warnings and insist on hooking the constructors, you should at least call the parent constructor before doing anything in your constructor.
Regardless of all warnings, it can be useful to subclass constructors. Constructors are the perfect place for modifying the function tables of objects with non-shared object tables, such as Resultset, Network, Wire Protocol.
Table 21.72. Destruction status
Derived method must call parent? | Destructor | |
Connection | yes, after method execution | free_contents(), end_psession() |
Resultset | yes, after method execution | free_result() |
Resultset Meta | yes, after method execution | free() |
Statement | yes, after method execution | dtor(), free_stmt_content() |
Network | yes, after method execution | free() |
Wire protocol | yes, after method execution | free() |
The destructors are the appropriate place to free properties, mysqlnd_plugin_get_plugin_<object>_data().
The listed destructors may not be equivalent to the actual mysqlnd method freeing the object itself. However, they are the best possible place for you to hook in and free your plugin data. As with constructors you may replace the methods entirely but this is not recommended. If multiple methods are listed in the above table you will need to hook all of the listed methods and free your plugin data in whichever method is called first by mysqlnd.
The recommended method for plugins is to simply hook the methods, free your memory and call the parent implementation immediately following this.
Caution
Due to a bug in PHP versions 5.3.0 to 5.3.3, plugins do not associate plugin data with a persistent connection. This is because ext/mysql and ext/mysqli do not trigger all the necessary mysqlnd end_psession() method calls and the plugin may therefore leak memory. This has been fixed in PHP 5.3.4.
21.9.5.7.4. The mysqlnd plugin API
Copyright 1997-2012 the PHP Documentation Group.
The following is a list of functions provided in the mysqlnd plugin API:
mysqlnd_plugin_register()
mysqlnd_plugin_count()
mysqlnd_plugin_get_plugin_connection_data()
mysqlnd_plugin_get_plugin_result_data()
mysqlnd_plugin_get_plugin_stmt_data()
mysqlnd_plugin_get_plugin_net_data()
mysqlnd_plugin_get_plugin_protocol_data()
mysqlnd_conn_get_methods()
mysqlnd_result_get_methods()
mysqlnd_result_meta_get_methods()
mysqlnd_stmt_get_methods()
mysqlnd_net_get_methods()
mysqlnd_protocol_get_methods()
There is no formal definition of what a plugin is and how a plugin mechanism works.
Components often found in plugins mechanisms are:
A plugin manager
A plugin API
Application services (or modules)
Application service APIs (or module APIs)
The mysqlnd plugin concept employs these features, and additionally enjoys an open architecture.
No Restrictions
A plugin has full access to the inner workings of mysqlnd. There are no security limits or restrictions. Everything can be overwritten to implement friendly or hostile algorithms. It is recommended you only deploy plugins from a trusted source.
As discussed previously, plugins can use pointers freely. These pointers are not restricted in any way, and can point into another plugin's data. Simple offset arithmetic can be used to read another plugin's data.
It is recommended that you write cooperative plugins, and that you always call the parent method. The plugins should always cooperate with mysqlnd itself.
Table 21.73. Issues: an example of chaining and cooperation
Extension | mysqlnd.query() pointer | call stack if calling parent |
ext/mysqlnd | mysqlnd.query() | mysqlnd.query |
ext/mysqlnd_cache | mysqlnd_cache.query() |
|
ext/mysqlnd_monitor | mysqlnd_monitor.query() |
|
In this scenario, a cache (ext/mysqlnd_cache) and a monitor (ext/mysqlnd_monitor) plugin are loaded. Both subclass Connection::query(). Plugin registration happens at MINIT using the logic shown previously. PHP calls extensions in alphabetical order by default. Plugins are not aware of each other and do not set extension dependencies.
By default the plugins call the parent implementation of the query method in their derived version of the method.
PHP Extension Recap
This is a recap of what happens when using an example plugin, ext/mysqlnd_plugin, which exposes the mysqlnd C plugin API to PHP:
Any PHP MySQL application tries to establish a connection to 192.168.2.29
The PHP application will either use ext/mysql, ext/mysqli or PDO_MYSQL. All three PHP MySQL extensions use mysqlnd to establish the connection to 192.168.2.29.
Mysqlnd calls its connect method, which has been subclassed by ext/mysqlnd_plugin.
ext/mysqlnd_plugin calls the userspace hook proxy::connect() registered by the user.
The userspace hook changes the connection host IP from 192.168.2.29 to 127.0.0.1 and returns the connection established by parent::connect().
ext/mysqlnd_plugin performs the equivalent of parent::connect(127.0.0.1) by calling the original mysqlnd method for establishing a connection.
ext/mysqlnd establishes a connection and returns to ext/mysqlnd_plugin. ext/mysqlnd_plugin returns as well.
Whatever PHP MySQL extension had been used by the application, it receives a connection to 127.0.0.1. The PHP MySQL extension itself returns to the PHP application. The circle is closed.
21.9.5.7.5. Getting started building a mysqlnd plugin
Copyright 1997-2012 the PHP Documentation Group.
It is important to remember that a mysqlnd plugin is itself a PHP extension.
The following code shows the basic structure of the MINIT function that will be used in the typical mysqlnd plugin:
/* my_php_mysqlnd_plugin.c */
static PHP_MINIT_FUNCTION(mysqlnd_plugin) {
/* globals, ini entries, resources, classes */
/* register mysqlnd plugin */
mysqlnd_plugin_id = mysqlnd_plugin_register();
conn_m = mysqlnd_get_conn_methods();
memcpy(org_conn_m, conn_m,
sizeof(struct st_mysqlnd_conn_methods));
conn_m->query = MYSQLND_METHOD(mysqlnd_plugin_conn, query);
conn_m->connect = MYSQLND_METHOD(mysqlnd_plugin_conn, connect);
}
/* my_mysqlnd_plugin.c */
enum_func_status MYSQLND_METHOD(mysqlnd_plugin_conn, query)(/* ... */) {
/* ... */
}
enum_func_status MYSQLND_METHOD(mysqlnd_plugin_conn, connect)(/* ... */) {
/* ... */
}
Task analysis: from C to userspace
class proxy extends mysqlnd_plugin_connection {
public function connect($host, ...) { .. }
}
mysqlnd_plugin_set_conn_proxy(new proxy());
Process:
PHP: user registers plugin callback
PHP: user calls any PHP MySQL API to connect to MySQL
C: ext/*mysql* calls mysqlnd method
C: mysqlnd ends up in ext/mysqlnd_plugin
C: ext/mysqlnd_plugin
Calls userspace callback
Or original mysqlnd method, if userspace callback not set
You need to carry out the following:
Write a class "mysqlnd_plugin_connection" in C
Accept and register proxy object through "mysqlnd_plugin_set_conn_proxy()"
Call userspace proxy methods from C (optimization - zend_interfaces.h)
Userspace object methods can either be called using call_user_function() or you can operate at a level closer to the Zend Engine and use zend_call_method().
Optimization: calling methods from C using zend_call_method
The following code snippet shows the prototype for the zend_call_method function, taken from zend_interfaces.h.
ZEND_API zval* zend_call_method(
zval **object_pp, zend_class_entry *obj_ce,
zend_function **fn_proxy, char *function_name,
int function_name_len, zval **retval_ptr_ptr,
int param_count, zval* arg1, zval* arg2 TSRMLS_DC
);
Zend API supports only two arguments. You may need more, for example:
enum_func_status (*func_mysqlnd_conn__connect)(
MYSQLND *conn, const char *host,
const char * user, const char * passwd,
unsigned int passwd_len, const char * db,
unsigned int db_len, unsigned int port,
const char * socket, unsigned int mysql_flags TSRMLS_DC
);
To get around this problem you will need to make a copy of zend_call_method() and add a facility for additional parameters. You can do this by creating a set of MY_ZEND_CALL_METHOD_WRAPPER macros.
Calling PHP userspace
This code snippet shows the optimized method for calling a userspace function from C:
/* my_mysqlnd_plugin.c */
MYSQLND_METHOD(my_conn_class,connect)(
MYSQLND *conn, const char *host /* ... */ TSRMLS_DC) {
enum_func_status ret = FAIL;
zval * global_user_conn_proxy = fetch_userspace_proxy();
if (global_user_conn_proxy) {
/* call userspace proxy */
ret = MY_ZEND_CALL_METHOD_WRAPPER(global_user_conn_proxy, host, /*...*/);
} else {
/* or original mysqlnd method = do nothing, be transparent */
ret = org_methods.connect(conn, host, user, passwd,
passwd_len, db, db_len, port,
socket, mysql_flags TSRMLS_CC);
}
return ret;
}
Calling userspace: simple arguments
/* my_mysqlnd_plugin.c */
MYSQLND_METHOD(my_conn_class,connect)(
/* ... */, const char *host, /* ...*/) {
/* ... */
if (global_user_conn_proxy) {
/* ... */
zval* zv_host;
MAKE_STD_ZVAL(zv_host);
ZVAL_STRING(zv_host, host, 1);
MY_ZEND_CALL_METHOD_WRAPPER(global_user_conn_proxy, zv_retval, zv_host /*, ...*/);
zval_ptr_dtor(&zv_host);
/* ... */
}
/* ... */
}
Calling userspace: structs as arguments
/* my_mysqlnd_plugin.c */
MYSQLND_METHOD(my_conn_class, connect)(
MYSQLND *conn, /* ...*/) {
/* ... */
if (global_user_conn_proxy) {
/* ... */
zval* zv_conn;
ZEND_REGISTER_RESOURCE(zv_conn, (void *)conn, le_mysqlnd_plugin_conn);
MY_ZEND_CALL_METHOD_WRAPPER(global_user_conn_proxy, zv_retval, zv_conn, zv_host /*, ...*/);
zval_ptr_dtor(&zv_conn);
/* ... */
}
/* ... */
}
The first argument of many mysqlnd methods is a C "object". For example, the first argument of the connect() method is a pointer to MYSQLND. The struct MYSQLND represents a mysqlnd connection object.
The mysqlnd connection object pointer can be compared to a standard I/O file handle. Like a standard I/O file handle a mysqlnd connection object shall be linked to the userspace using the PHP resource variable type.
From C to userspace and back
class proxy extends mysqlnd_plugin_connection {
public function connect($conn, $host, ...) {
/* "pre" hook */
printf("Connecting to host = '%s'\n", $host);
debug_print_backtrace();
return parent::connect($conn);
}
public function query($conn, $query) {
/* "post" hook */
$ret = parent::query($conn, $query);
printf("Query = '%s'\n", $query);
return $ret;
}
}
mysqlnd_plugin_set_conn_proxy(new proxy());
PHP users must be able to call the parent implementation of an overwritten method.
As a result of subclassing it is possible to refine only selected methods and you can choose to have "pre" or "post" hooks.
Buildin class: mysqlnd_plugin_connection::connect()
/* my_mysqlnd_plugin_classes.c */
PHP_METHOD("mysqlnd_plugin_connection", connect) {
/* ... simplified! ... */
zval* mysqlnd_rsrc;
MYSQLND* conn;
char* host; int host_len;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs",
&mysqlnd_rsrc, &host, &host_len) == FAILURE) {
RETURN_NULL();
}
ZEND_FETCH_RESOURCE(conn, MYSQLND* conn, &mysqlnd_rsrc, -1,
"Mysqlnd Connection", le_mysqlnd_plugin_conn);
if (PASS == org_methods.connect(conn, host, /* simplified! */ TSRMLS_CC))
RETVAL_TRUE;
else
RETVAL_FALSE;
}
21.9.6. Mysqlnd replication and load balancing plugin (mysqlnd_ms)
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd replication and load balancing plugin (mysqlnd_ms) adds easy to use MySQL replication support to all PHP MySQL extensions that use mysqlnd.
As of version PHP 5.3.3 the MySQL native driver for PHP (mysqlnd) features an internal plugin C API. C plugins, such as the replication and load balancing plugin, can extend the functionality of mysqlnd.
The MySQL native driver for PHP is a C library that ships together with PHP as of PHP 5.3.0. It serves as a drop-in replacement for the MySQL Client Library (libmysqlclient). Using mysqlnd has several advantages: no extra downloads are required because it's bundled with PHP, it's under the PHP license, there is lower memory consumption in certain cases, and it contains new functionality such as asynchronous queries.
Mysqlnd plugins like mysqlnd_ms operate, for the most part, transparently from a user perspective. The replication and load balancing plugin supports all PHP applications, and all MySQL PHP extensions. It does not change existing APIs. Therefore, it can easily be used with existing PHP applications.
21.9.6.1. Key Features
Copyright 1997-2012 the PHP Documentation Group.
The key features of PECL/mysqlnd_ms are as follows.
Transparent and therefore easy to use.
Supports all of the PHP MySQL extensions.
SSL support.
A consistent API.
Little to no application changes required, dependent on the required usage scenario.
Lazy connections: connections to master and slave servers are not opened before a SQL statement is executed.
Optional: automatic use of master after the first write in a web request, to lower the possible impact of replication lag.
Can be used with any MySQL clustering solution.
MySQL Replication: Read-write splitting is done by the plugin. Primary focus of the plugin.
MySQL Cluster: Read-write splitting can be disabled. Configuration of multiple masters possible
Third-party solutions: the plugin is optimized for MySQL Replication but can be used with any other kind of MySQL clustering solution.
Featured read-write split strategies
Automatic detection of SELECT.
Supports SQL hints to overrule automatism.
User-defined.
Can be disabled for, for example, when using synchronous clusters such as MySQL Cluster.
Featured load balancing strategies
Round Robin: choose a different slave in round-robin fashion for every slave request.
Random: choose a random slave for every slave request.
Random once (sticky): choose a random slave once to run all slave requests for the duration of a web request.
User-defined. The application can register callbacks with mysqlnd_ms.
PHP 5.4.0 or newer: transaction aware when using API calls only to control transactions.
Weighted load balancing: servers can be assigned different priorities, for example, to direct more requests to a powerful machine than to another less powerful machine. Or, to prefer nearby machines to reduce latency.
Global transaction ID
Client-side emulation. Makes manual master server failover and slave promotion easier with asynchronous clusters, such as MySQL Replication.
Support for built-in global transaction identifier feature of MySQL 5.6.5 or newer.
Supports using transaction ids to identify up-to-date asynchronous slaves for reading when session consistency is required.
Throttling: optionally, the plugin can wait for a slave to become "synchronous" before continuing.
Service and consistency levels
Applications can request eventual, session and strong consistency service levels for connections. Appropriate cluster nodes will be searched automatically.
Eventual consistent MySQL Replication slave accesses can be replaced with fast local cache accesses transparently to reduce server load.
Partitioning and sharding
Servers of a replication cluster can be organized into groups. SQL hints can be used to manually direct queries to a specific group. Grouping can be used to partition (shard) the data, or to cure the issue of hotspots with updates.
MySQL Replication filters are supported through the table filter.
21.9.6.2. Limitations
Copyright 1997-2012 the PHP Documentation Group.
The built-in read-write-split mechanism is very basic. Every query which starts with SELECT is considered a read request to be sent to a MySQL slave server. All other queries (such as SHOW statements) are considered as write requests that are sent to the MySQL master server. The build-in behavior can be overruled using SQL hints, or a user-defined callback function.
The read-write splitter is not aware of multi-statements. Multi-statements are considered as one statement. The decision of where to run the statement will be based on the beginning of the statement string. For example, if using mysqli_multi_query to execute the multi-statement SELECT id FROM test ; INSERT INTO test(id) VALUES (1), the statement will be redirected to a slave server because it begins with SELECT. The INSERT statement, which is also part of the multi-statement, will not be redirected to a master server.
Note
Applications must be aware of the consequences of connection switches that are performed for load balancing purposes. Please check the documentation on connection pooling and switching, transaction handling, failover load balancing and read-write splitting.
21.9.6.3. On the name
Copyright 1997-2012 the PHP Documentation Group.
The shortcut mysqlnd_ms stands for mysqlnd master slave plugin. The name was chosen for a quick-and-dirty proof-of-concept. In the beginning the developers did not expect to continue using the code base.
21.9.6.4. Quickstart and Examples
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd replication load balancing plugin is easy to use. This quickstart will demo typical use-cases, and provide practical advice on getting started.
It is strongly recommended to read the reference sections in addition to the quickstart. The quickstart tries to avoid discussing theoretical concepts and limitations. Instead, it will link to the reference sections. It is safe to begin with the quickstart. However, before using the plugin in mission critical environments we urge you to read additionally the background information from the reference sections.
The focus is on using PECL mysqlnd_ms for work with an asynchronous MySQL cluster, namely MySQL replication. Generally speaking an asynchronous cluster is more difficult to use than a synchronous one. Thus, users of, for example, MySQL Cluster will find more information than needed.
21.9.6.4.1. Setup
Copyright 1997-2012 the PHP Documentation Group.
The plugin is implemented as a PHP extension. See also the installation instructions to install the PECL/mysqlnd_ms extension.
Compile or configure the PHP MySQL extension (API) (mysqli, PDO_MYSQL, mysql) that you plan to use with support for the mysqlnd library. PECL/mysqlnd_ms is a plugin for the mysqlnd library. To use the plugin with any of the PHP MySQL extensions, the extension has to use the mysqlnd library.
Then, load the extension into PHP and activate the plugin in the PHP configuration file using the PHP configuration directive named mysqlnd_ms.enable.
Example 21.215. Enabling the plugin (php.ini)
mysqlnd_ms.enable=1
mysqlnd_ms.config_file=/path/to/mysqlnd_ms_plugin.ini
The plugin uses its own configuration file. Use the PHP configuration directive mysqlnd_ms.config_file to set the full file path to the plugin-specific configuration file. This file must be readable by PHP (e.g., the web server user). Please note, the configuration directive mysqlnd_ms.config_file superseeds mysqlnd_ms.ini_file since 1.4.0. It is a common pitfall to use the old, no longer available configuration directive.
Create a plugin-specific configuration file. Save the file to the path set by the PHP configuration directive mysqlnd_ms.config_file.
The plugins configuration file is JSON based. It is divided into one or more sections. Each section has a name, for example, myapp. Every section makes its own set of configuration settings.
A section must, at a minimum, list the MySQL replication master server, and set a list of slaves. The plugin supports using only one master server per section. Multi-master MySQL replication setups are not yet fully supported. Use the configuration setting master to set the hostname, and the port or socket of the MySQL master server. MySQL slave servers are configured using the slave keyword.
Example 21.216. Minimal plugin-specific configuration file (mysqlnd_ms_plugin.ini)
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": [
]
}
}
Configuring a MySQL slave server list is required, although it may contain an empty list. It is recommended to always configure at least one slave server.
Server lists can use anonymous or non-anonymous syntax. Non-anonymous lists include alias names for the servers, such as master_0 for the master in the above example. The quickstart uses the more verbose non-anonymous syntax.
Example 21.217. Recommended minimal plugin-specific config (mysqlnd_ms_plugin.ini)
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "192.168.2.27",
"port": "3306"
}
}
}
}
If there are at least two servers in total, the plugin can start to load balance and switch connections. Switching connections is not always transparent and can cause issues in certain cases. The reference sections about connection pooling and switching, transaction handling, fail over load balancing and read-write splitting all provide more details. And potential pitfalls are described later in this guide.
It is the responsibility of the application to handle potential issues caused by connection switches, by configuring a master with at least one slave server, which allows switching to work therefore related problems can be found.
The MySQL master and MySQL slave servers, which you configure, do not need to be part of MySQL replication setup. For testing purpose you can use single MySQL server and make it known to the plugin as a master and slave server as shown below. This could help you to detect many potential issues with connection switches. However, such a setup will not be prone to the issues caused by replication lag.
Example 21.218. Using one server as a master and as a slave (testing only!)
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": "3306"
}
}
}
}
The plugin attempts to notify you of invalid configurations. Since 1.5.0 it will throw a warning during PHP startup if the configuration file cannot be read, is empty or parsing the JSON failed. Depending on your PHP settings those errors may appear in some log files only. Further validation is done when a connection is to be established and the configuration file is searched for valid sections. Setting mysqlnd_ms.force_config_usage may help debugging a faulty setup. Please, see also configuration file debugging notes.
21.9.6.4.2. Running statements
Copyright 1997-2012 the PHP Documentation Group.
The plugin can be used with any PHP MySQL extension (mysqli, mysql, and PDO_MYSQL) that is compiled to use the mysqlnd library. PECL/mysqlnd_ms plugs into the mysqlnd library. It does not change the API or behavior of those extensions.
Whenever a connection to MySQL is being opened, the plugin compares the host parameter value of the connect call, with the section names from the plugin specific configuration file. If, for example, the plugin specific configuration file has a section myapp then the section should be referenced by opening a MySQL connection to the host myapp
Example 21.219. Plugin specific configuration file (mysqlnd_ms_plugin.ini)
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "192.168.2.27",
"port": "3306"
}
}
}
}
Example 21.220. Opening a load balanced connection
<?php
/* Load balanced following "myapp" section rules from the plugins config file */
$mysqli = new mysqli("myapp", "username", "password", "database");
$pdo = new PDO('mysql:host=myapp;dbname=database', 'username', 'password');
$mysql = mysql_connect("myapp", "username", "password");
?>
The connection examples above will be load balanced. The plugin will send read-only statements to the MySQL slave server with the IP 192.168.2.27 and will listen on port 3306 for the MySQL client connection. All other statements will be directed to the MySQL master server running on the host localhost. If on Unix like operating systems, the master on localhost will be accepting MySQL client connections on the Unix domain socket /tmp/mysql.sock, while TCP/IP is the default port on Windows. The plugin will use the user name username and the password password to connect to any of the MySQL servers listed in the section myapp of the plugins configuration file. Upon connect, the plugin will select database as the current schemata.
The username, password and schema name are taken from the connect API calls and used for all servers. In other words: you must use the same username and password for every MySQL server listed in a plugin configuration file section. The is not a general limitation. As of PECL/mysqlnd_ms 1.1.0, it is possible to set the username and password for any server in the plugins configuration file, to be used instead of the credentials passed to the API call.
The plugin does not change the API for running statements. Read-write splitting works out of the box. The following example assumes that there is no significant replication lag between the master and the slave.
Example 21.221. Executing statements
<?php
/* Load balanced following "myapp" section rules from the plugins config file */
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno())
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Statements will be run on the master */
if (!$mysqli->query("DROP TABLE IF EXISTS test")) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
if (!$mysqli->query("CREATE TABLE test(id INT)")) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
if (!$mysqli->query("INSERT INTO test(id) VALUES (1)")) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
/* read-only: statement will be run on a slave */
if (!($res = $mysqli->query("SELECT id FROM test")) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
} else {
$row = $res->fetch_assoc();
$res->close();
printf("Slave returns id = '%s'\n", $row['id'];
}
$mysqli->close();
?>
The above example will output something similar to:
Slave returns id = '1'
21.9.6.4.3. Connection state
Copyright 1997-2012 the PHP Documentation Group.
The plugin changes the semantics of a PHP MySQL connection handle. A new connection handle represents a connection pool, instead of a single MySQL client-server network connection. The connection pool consists of a master connection, and optionally any number of slave connections.
Every connection from the connection pool has its own state. For example, SQL user variables, temporary tables and transactions are part of the state. For a complete list of items that belong to the state of a connection, see the connection pooling and switching concepts documentation. If the plugin decides to switch connections for load balancing, the application could be given a connection which has a different state. Applications must be made aware of this.
Example 21.222. Plugin config with one slave and one master
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "192.168.2.27",
"port": "3306"
}
}
}
}
Example 21.223. Pitfall: connection state and SQL user variables
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Connection 1, connection bound SQL user variable, no SELECT thus run on master */
if (!$mysqli->query("SET @myrole='master'")) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
/* Connection 2, run on slave because SELECT */
if (!($res = $mysqli->query("SELECT @myrole AS _role"))) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
} else {
$row = $res->fetch_assoc();
$res->close();
printf("@myrole = '%s'\n", $row['_role']);
}
$mysqli->close();
?>
The above example will output:
@myrole = ''
The example opens a load balanced connection and executes two statements. The first statement SET @myrole='master' does not begin with the string SELECT. Therefore the plugin does not recognize it as a read-only query which shall be run on a slave. The plugin runs the statement on the connection to the master. The statement sets a SQL user variable which is bound to the master connection. The state of the master connection has been changed.
The next statement is SELECT @myrole AS _role. The plugin does recognize it as a read-only query and sends it to the slave. The statement is run on a connection to the slave. This second connection does not have any SQL user variables bound to it. It has a different state than the first connection to the master. The requested SQL user variable is not set. The example script prints @myrole = ''.
It is the responsibility of the application developer to take care of the connection state. The plugin does not monitor all connection state changing activities. Monitoring all possible cases would be a very CPU intensive task, if it could be done at all.
The pitfalls can easily be worked around using SQL hints.
21.9.6.4.4. SQL Hints
Copyright 1997-2012 the PHP Documentation Group.
SQL hints can force a query to choose a specific server from the connection pool. It gives the plugin a hint to use a designated server, which can solve issues caused by connection switches and connection state.
SQL hints are standard compliant SQL comments. Because SQL comments are supposed to be ignored by SQL processing systems, they do not interfere with other programs such as the MySQL Server, the MySQL Proxy, or a firewall.
Three SQL hints are supported by the plugin: The MYSQLND_MS_MASTER_SWITCH hint makes the plugin run a statement on the master, MYSQLND_MS_SLAVE_SWITCH enforces the use of the slave, and MYSQLND_MS_LAST_USED_SWITCH will run a statement on the same server that was used for the previous statement.
The plugin scans the beginning of a statement for the existence of an SQL hint. SQL hints are only recognized if they appear at the beginning of the statement.
Example 21.224. Plugin config with one slave and one master
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "192.168.2.27",
"port": "3306"
}
}
}
}
Example 21.225. SQL hints to prevent connection switches
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno())
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Connection 1, connection bound SQL user variable, no SELECT thus run on master */
if (!$mysqli->query("SET @myrole='master'")) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
/* Connection 1, run on master because of SQL hint */
if (!($res = $mysqli->query(sprintf("/*%s*/SELECT @myrole AS _role", MYSQLND_MS_LAST_USED_SWITCH)))) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
} else {
$row = $res->fetch_assoc();
$res->close();
printf("@myrole = '%s'\n", $row['_role']);
}
$mysqli->close();
?>
The above example will output:
@myrole = 'master'
In the above example, using MYSQLND_MS_LAST_USED_SWITCH prevents session switching from the master to a slave when running the SELECT statement.
SQL hints can also be used to run SELECT statements on the MySQL master server. This may be desired if the MySQL slave servers are typically behind the master, but you need current data from the cluster.
In version 1.2.0 the concept of a service level has been introduced to address cases when current data is required. Using a service level requires less attention and removes the need of using SQL hints for this use case. Please, find more information below in the service level and consistency section.
Example 21.226. Fighting replication lag
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Force use of master, master has always fresh and current data */
if (!$mysqli->query(sprintf("/*%s*/SELECT critical_data FROM important_table", MYSQLND_MS_MASTER_SWITCH))) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
?>
A use case may include the creation of tables on a slave. If an SQL hint is not given, then the plugin will send CREATE and INSERT statements to the master. Use the SQL hint MYSQLND_MS_SLAVE_SWITCH if you want to run any such statement on a slave, for example, to build temporary reporting tables.
Example 21.227. Table creation on a slave
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Force use of slave */
if (!$mysqli->query(sprintf("/*%s*/CREATE TABLE slave_reporting(id INT)", MYSQLND_MS_SLAVE_SWITCH))) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
/* Continue using this particular slave connection */
if (!$mysqli->query(sprintf("/*%s*/INSERT INTO slave_reporting(id) VALUES (1), (2), (3)", MYSQLND_MS_LAST_USED_SWITCH))) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
/* Don't use MYSQLND_MS_SLAVE_SWITCH which would allow switching to another slave! */
if ($res = $mysqli->query(sprintf("/*%s*/SELECT COUNT(*) AS _num FROM slave_reporting", MYSQLND_MS_LAST_USED_SWITCH))) {
$row = $res->fetch_assoc();
$res->close();
printf("There are %d rows in the table 'slave_reporting'", $row['_num']);
} else {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
$mysqli->close();
?>
The SQL hint MYSQLND_MS_LAST_USED forbids switching a connection, and forces use of the previously used connection.
21.9.6.4.5. Transactions
Copyright 1997-2012 the PHP Documentation Group.
The current version of the plugin is not transaction safe by default, because it is not aware of running transactions in all cases. SQL transactions are units of work to be run on a single server. The plugin does not always know when the unit of work starts and when it ends. Therefore, the plugin may decide to switch connections in the middle of a transaction.
No kind of MySQL load balancer can detect transaction boundaries without any kind of hint from the application.
You can either use SQL hints to work around this limitation. Alternatively, you can activate transaction API call monitoring. In the latter case you must use API calls only to control transactions, see below.
Example 21.228. Plugin config with one slave and one master
[myapp]
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "192.168.2.27",
"port": "3306"
}
}
}
}
Example 21.229. Using SQL hints for transactions
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Not a SELECT, will use master */
if (!$mysqli->query("START TRANSACTION")) {
/* Please use better error handling in your code */
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
/* Prevent connection switch! */
if (!$mysqli->query(sprintf("/*%s*/INSERT INTO test(id) VALUES (1)", MYSQLND_MS_LAST_USED_SWITCH)))) {
/* Please do proper ROLLBACK in your code, don't just die */
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if ($res = $mysqli->query(sprintf("/*%s*/SELECT COUNT(*) AS _num FROM test", MYSQLND_MS_LAST_USED_SWITCH)))) {
$row = $res->fetch_assoc();
$res->close();
if ($row['_num'] > 1000) {
if (!$mysqli->query(sprintf("/*%s*/INSERT INTO events(task) VALUES ('cleanup')", MYSQLND_MS_LAST_USED_SWITCH)))) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
}
} else {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if (!$mysqli->query(sprintf("/*%s*/UPDATE log SET last_update = NOW()", MYSQLND_MS_LAST_USED_SWITCH)))) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if (!$mysqli->query(sprintf("/*%s*/COMMIT", MYSQLND_MS_LAST_USED_SWITCH)))) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
$mysqli->close();
?>
Starting with PHP 5.4.0, the mysqlnd library allows the plugin to monitor the status of the autocommit mode, if the mode is set by API calls instead of using SQL statements such as SET AUTOCOMMIT=0. This makes it possible for the plugin to become transaction aware. In this case, you do not need to use SQL hints.
If using PHP 5.4.0 or newer, API calls that enable autocommit mode, and when setting the plugin configuration option trx_stickiness=master, the plugin can automatically disable load balancing and connection switches for SQL transactions. In this configuration, the plugin stops load balancing if autocommit is disabled and directs all statements to the master. This prevents connection switches in the middle of a transaction. Once autocommit is re-enabled, the plugin starts to load balance statements again.
API based transaction boundary detection has been improved with PHP 5.5.0 and PECL/mysqlnd_ms 1.5.0 to cover not only calls to mysqli_autocommit but also mysqli_begin, mysqli_commit and mysqli_rollback.
Example 21.230. Transaction aware load balancing: trx_stickiness setting
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": "3306"
}
},
"trx_stickiness": "master"
}
}
Example 21.231. Transaction aware
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Disable autocommit, plugin will run all statements on the master */
$mysqli->autocommit(FALSE);
if (!$mysqli->query("INSERT INTO test(id) VALUES (1)")) {
/* Please do proper ROLLBACK in your code, don't just die */
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if ($res = $mysqli->query("SELECT COUNT(*) AS _num FROM test")) {
$row = $res->fetch_assoc();
$res->close();
if ($row['_num'] > 1000) {
if (!$mysqli->query("INSERT INTO events(task) VALUES ('cleanup')")) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
}
} else {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if (!$mysqli->query("UPDATE log SET last_update = NOW()")) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if (!$mysqli->commit()) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
/* Plugin assumes that the transaction has ended and starts load balancing again */
$mysqli->autocommit(TRUE);
$mysqli->close();
?>
Version requirement
The plugin configuration option trx_stickiness=master requires PHP 5.4.0 or newer.
Please note the restrictions outlined in the transaction handling concepts section.
21.9.6.4.6. Service level and consistency
Copyright 1997-2012 the PHP Documentation Group.
Version requirement
Service levels have been introduced in PECL mysqlnd_ms version 1.2.0-alpha. mysqlnd_ms_set_qos is available with PHP 5.4.0 or newer.
Different types of MySQL cluster solutions offer different service and data consistency levels to their users. An asynchronous MySQL replication cluster offers eventual consistency by default. A read executed on an asynchronous slave may return current, stale or no data at all, depending on whether the slave has replayed all changesets from the master or not.
Applications using an MySQL replication cluster need to be designed to work correctly with eventual consistent data. In some cases, however, stale data is not acceptable. In those cases only certain slaves or even only master accesses are allowed to achieve the required quality of service from the cluster.
As of PECL mysqlnd_ms 1.2.0 the plugin is capable of selecting MySQL replication nodes automatically that deliver session consistency or strong consistency. Session consistency means that one client can read its writes. Other clients may or may not see the clients' write. Strong consistency means that all clients will see all writes from the client.
Example 21.232. Session consistency: read your writes
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": "3306"
}
}
}
}
Example 21.233. Requesting session consistency
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* read-write splitting: master used */
if (!$mysqli->query("INSERT INTO orders(order_id, item) VALUES (1, 'christmas tree, 1.8m')")) {
/* Please use better error handling in your code */
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
/* Request session consistency: read your writes */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_SESSION))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Plugin picks a node which has the changes, here: master */
if (!$res = $mysqli->query("SELECT item FROM orders WHERE order_id = 1"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
var_dump($res->fetch_assoc());
/* Back to eventual consistency: stale data allowed */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Plugin picks any slave, stale data is allowed */
if (!$res = $mysqli->query("SELECT item, price FROM specials"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
?>
Service levels can be set in the plugins configuration file and at runtime using mysqlnd_ms_set_qos. In the example the function is used to enforce session consistency (read your writes) for all future statements until further notice. The SELECT statement on the orders table is run on the master to ensure the previous write can be seen by the client. Read-write splitting logic has been adapted to fulfill the service level.
After the application has read its changes from the orders table it returns to the default service level, which is eventual consistency. Eventual consistency puts no restrictions on choosing a node for statement execution. Thus, the SELECT statement on the specials table is executed on a slave.
The new functionality supersedes the use of SQL hints and the master_on_write configuration option. In many cases mysqlnd_ms_set_qos is easier to use, more powerful improves portability.
Example 21.234. Maximum age/slave lag
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": "3306"
}
},
"failover" : "master"
}
}
Example 21.235. Limiting slave lag
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Read from slaves lagging no more than four seconds */
$ret = mysqlnd_ms_set_qos($mysqli,
MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL,
MYSQLND_MS_QOS_OPTION_AGE, 4);
if (!$ret)
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Plugin picks any slave, which may or may not have the changes */
if (!$res = $mysqli->query("SELECT item, price FROM daytrade"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Back to default: use of all slaves and masters permitted */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
?>
The eventual consistency service level can be used with an optional parameter to set a maximum slave lag for choosing slaves. If set, the plugin checks SHOW SLAVE STATUS for all configured slaves. In case of the example, only slaves for which Slave_IO_Running=Yes, Slave_SQL_Running=Yes and Seconds_Behind_Master <= 4 is true are considered for executing the statement SELECT item, price FROM daytrade.
Checking SHOW SLAVE STATUS is done transparently from an applications perspective. Errors, if any, are reported as warnings. No error will be set on the connection handle. Even if all SHOW SLAVE STATUS SQL statements executed by the plugin fail, the execution of the users statement is not stopped, given that master fail over is enabled. Thus, no application changes are required.
Expensive and slow operation
Checking SHOW SLAVE STATUS for all slaves adds overhead to the application. It is an expensive and slow background operation. Try to minimize the use of it. Unfortunately, a MySQL replication cluster does not give clients the possibility to request a list of candidates from a central instance. Thus, a more efficient way of checking the slaves lag is not available.
Please, note the limitations and properties of SHOW SLAVE STATUS as explained in the MySQL reference manual.
To prevent mysqlnd_ms from emitting a warning if no slaves can be found that lag no more than the defined number of seconds behind the master, it is necessary to enable master fail over in the plugins configuration file. If no slaves can be found and fail over is turned on, the plugin picks a master for executing the statement.
If no slave can be found and fail over is turned off, the plugin emits a warning, it does not execute the statement and it sets an error on the connection.
Example 21.236. Fail over not set
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": "3306"
}
}
}
}
Example 21.237. No slave within time limit
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Read from slaves lagging no more than four seconds */
$ret = mysqlnd_ms_set_qos($mysqli,
MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL,
MYSQLND_MS_QOS_OPTION_AGE, 4);
if (!$ret)
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Plugin picks any slave, which may or may not have the changes */
if (!$res = $mysqli->query("SELECT item, price FROM daytrade"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Back to default: use of all slaves and masters permitted */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
?>
The above example will output:
PHP Warning: mysqli::query(): (mysqlnd_ms) Couldn't find the appropriate slave connection. 0 slaves to choose from. Something is wrong in %s on line %d
PHP Warning: mysqli::query(): (mysqlnd_ms) No connection selected by the last filter in %s on line %d
[2000] (mysqlnd_ms) No connection selected by the last filter
21.9.6.4.7. Global transaction IDs
Copyright 1997-2012 the PHP Documentation Group.
Version requirement
A client-side global transaction ID injection has been introduced in mysqlnd_ms version 1.2.0-alpha. The feature is not required for synchronous clusters, such as MySQL Cluster. Use it with asynchronous clusters such as classical MySQL replication.
As of MySQL 5.6.5-m8 the MySQL server features built-in global transaction identifiers. The MySQL built-in global transaction ID feature is supported by PECL/mysqlnd_ms 1.3.0-alpha or later.
PECL/mysqlnd_ms can either use its own global transaction ID emulation or the global transaction ID feature built-in to MySQL 5.6.5-m8 or later. From a developer perspective the client-side and server-side approach offer the same features with regards to service levels provided by PECL/mysqlnd_ms. Their differences are discussed in the concepts section.
The quickstart first demonstrates the use of the client-side global transaction ID emulation built-in to PECL/mysqlnd_ms before its show how to use the server-side counterpart. The order ensures that the underlying idea is discussed first.
Idea and client-side emulation
In its most basic form a global transaction ID (GTID) is a counter in a table on the master. The counter is incremented whenever a transaction is committed on the master. Slaves replicate the table. The counter serves two purposes. In case of a master failure, it helps the database administrator to identify the most recent slave for promoting it to the new master. The most recent slave is the one with the highest counter value. Applications can use the global transaction ID to search for slaves which have replicated a certain write (identified by a global transaction ID) already.
PECL/mysqlnd_ms can inject SQL for every committed transaction to increment a GTID counter. The so created GTID is accessible by the application to identify an applications write operation. This enables the plugin to deliver session consistency (read your writes) service level by not only querying masters but also slaves which have replicated the change already. Read load is taken away from the master.
Client-side global transaction ID emulation has some limitations. Please, read the concepts section carefully to fully understand the principles and ideas behind it, before using in production environments. The background knowledge is not required to continue with the quickstart.
First, create a counter table on your master server and insert a record into it. The plugin does not assist creating the table. Database administrators must make sure it exists. Depending on the error reporting mode, the plugin will silently ignore the lack of the table or bail out.
Example 21.238. Create counter table on master
CREATE TABLE `trx` (
`trx_id` int(11) DEFAULT NULL,
`last_update` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
) ENGINE=InnoDB DEFAULT CHARSET=latin1
INSERT INTO `trx`(`trx_id`) VALUES (1);
In the plugins configuration file set the SQL to update the global transaction ID table using on_commit from the global_transaction_id_injection section. Make sure the table name used for the UPDATE statement is fully qualified. In the example, test.trx is used to refer to table trx in the schema (database) test. Use the table that was created in the previous step. It is important to set the fully qualified table name because the connection on which the injection is done may use a different default database. Make sure the user that opens the connection is allowed to execute the UPDATE.
Enable reporting of errors that may occur when mysqlnd_ms does global transaction ID injection.
Example 21.239. Plugin config: SQL for client-side GTID injection
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": "3306"
}
},
"global_transaction_id_injection":{
"on_commit":"UPDATE test.trx SET trx_id = trx_id + 1",
"report_error":true
}
}
}
Example 21.240. Transparent global transaction ID injection
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("DROP TABLE IF EXISTS test"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("CREATE TABLE test(id INT)"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("INSERT INTO test(id) VALUES (1)"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* auto commit mode, read on slave, no increment */
if (!($res = $mysqli->query("SELECT id FROM test")))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
var_dump($res->fetch_assoc());
?>
The above example will output:
array(1) {
["id"]=>
string(1) "1"
}
The example runs three statements in auto commit mode on the master, causing three transactions on the master. For every such statement, the plugin will inject the configured UPDATE transparently before executing the users SQL statement. When the script ends the global transaction ID counter on the master has been incremented by three.
The fourth SQL statement executed in the example, a SELECT, does not trigger an increment. Only transactions (writes) executed on a master shall increment the GTID counter.
SQL for global transaction ID: efficient solution wanted!
The SQL used for the client-side global transaction ID emulation is inefficient. It is optimized for clearity not for performance. Do not use it for production environments. Please, help finding an efficient solution for inclusion in the manual. We appreciate your input.
Example 21.241. Plugin config: SQL for fetching GTID
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": "3306"
}
},
"global_transaction_id_injection":{
"on_commit":"UPDATE test.trx SET trx_id = trx_id + 1",
"fetch_last_gtid" : "SELECT MAX(trx_id) FROM test.trx",
"report_error":true
}
}
}
Example 21.242. Obtaining GTID after injection
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("DROP TABLE IF EXISTS test"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
printf("GTID after transaction %s\n", mysqlnd_ms_get_last_gtid($mysqli));
/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("CREATE TABLE test(id INT)"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
printf("GTID after transaction %s\n", mysqlnd_ms_get_last_gtid($mysqli));
?>
The above example will output:
GTID after transaction 7
GTID after transaction 8
Applications can ask PECL mysqlnd_ms for a global transaction ID which belongs to the last write operation performed by the application. The function mysqlnd_ms_get_last_gtid returns the GTID obtained when executing the SQL statement from the fetch_last_gtid entry of the global_transaction_id_injection section from the plugins configuration file. The function may be called after the GTID has been incremented.
Applications are adviced not to run the SQL statement themselves as this bares the risk of accidently causing an implicit GTID increment. Also, if the function is used, it is easy to migrate an application from one SQL statement for fetching a transaction ID to another, for example, if any MySQL server ever features built-in global transaction ID support.
The quickstart shows a SQL statement which will return a GTID equal or greater to that created for the previous statement. It is exactly the GTID created for the previous statement if no other clients have incremented the GTID in the time span between the statement execution and the SELECT to fetch the GTID. Otherwise, it is greater.
Example 21.243. Plugin config: Checking for a certain GTID
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": "3306"
}
},
"global_transaction_id_injection":{
"on_commit":"UPDATE test.trx SET trx_id = trx_id + 1",
"fetch_last_gtid" : "SELECT MAX(trx_id) FROM test.trx",
"check_for_gtid" : "SELECT trx_id FROM test.trx WHERE trx_id >= #GTID",
"report_error":true
}
}
}
Example 21.244. Session consistency service level and GTID combined
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT)") ||
!$mysqli->query("INSERT INTO test(id) VALUES (1)"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* GTID as an identifier for the last write */
$gtid = mysqlnd_ms_get_last_gtid($mysqli);
/* Session consistency (read your writes): try to read from slaves not only master */
if (false == mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_SESSION, MYSQLND_MS_QOS_OPTION_GTID, $gtid)) {
die(sprintf("[006] [%d] %s\n", $mysqli->errno, $mysqli->error));
}
/* Either run on master or a slave which has replicated the INSERT */
if (!($res = $mysqli->query("SELECT id FROM test"))) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
var_dump($res->fetch_assoc());
?>
A GTID returned from mysqlnd_ms_get_last_gtid can be used as an option for the session consistency service level. Session consistency delivers read your writes. Session consistency can be requested by calling mysqlnd_ms_set_qos. In the example, the plugin will execute the SELECT statement either on the master or on a slave which has replicated the previous INSERT already.
PECL mysqlnd_ms will transparently check every configured slave if it has replicated the INSERT by checking the slaves GTID table. The check is done running the SQL set with the check_for_gtid option from the global_transaction_id_injection section of the plugins configuration file. Please note, that this is a slow and expensive procedure. Applications should try to use it sparsely and only if read load on the master becomes to high otherwise.
Use of the server-side global transaction ID feature
Starting with MySQL 5.6.5-m8 the MySQL Replication system features server-side global transaction IDs. Transaction identifiers are automatically generated and maintained by the server. Users do not need to take care of maintaining them. There is no need to setup any tables in advance, or for setting on_commit. A client-side emulation is no longer needed.
Clients can continue to use global transaction identifier to achieve session consistency when reading from MySQL Replication slaves. The algorithm works as described above. Different SQL statements must be configured for fetch_last_gtid and check_for_gtid. The statements are given below. Please note, MySQL 5.6.5-m8 is a development version. Details of the server implementation may change in the future and require adoption of the SQL statements shown.
Using the following configuration any of the above described functionality can be used together with the server-side global transaction ID feature. mysqlnd_ms_get_last_gtid and mysqlnd_ms_set_qos continue to work as described above. The only difference is that the server does not use a simple sequence number but a string containing of a server identifier and a sequence number. Thus, users cannot easily derive an order from GTIDs returned by mysqlnd_ms_get_last_gtid.
Example 21.245. Plugin config: using MySQL 5.6.5-m8 built-in GTID feature
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": "3306"
}
},
"global_transaction_id_injection":{
"fetch_last_gtid" : "SELECT @@GLOBAL.GTID_DONE AS trx_id FROM DUAL",
"check_for_gtid" : "SELECT GTID_SUBSET('#GTID', @@GLOBAL.GTID_DONE) AS trx_id FROM DUAL",
"report_error":true
}
}
}
21.9.6.4.8. Cache integration
Copyright 1997-2012 the PHP Documentation Group.
Version requirement, dependencies and status
Please, find more about version requirements, extension load order dependencies and the current status in the concepts section!
Databases clusters can deliver different levels of consistency. As of PECL/mysqlnd_ms 1.2.0 it is possible to advice the plugin to consider only cluster nodes that can deliver the consistency level requested. For example, if using asynchronous MySQL Replication with its cluster-wide eventual consistency, it is possible to request session consistency (read your writes) at any time using mysqlnd_ms_set_quos. Please, see also the service level and consistency introduction.
Example 21.246. Recap: quality of service to request read your writes
/* Request session consistency: read your writes */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_SESSION))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
Assuming PECL/mysqlnd has been explicitly told to deliver no consistency level higher than eventual consistency, it is possible to replace a database node read access with a client-side cache using time-to-live (TTL) as its invalidation strategy. Both the database node and the cache may or may not serve current data as this is what eventual consistency defines.
Replacing a database node read access with a local cache access can improve overall performance and lower the database load. If the cache entry is every reused by other clients than the one creating the cache entry, a database access is saved and thus database load is lowered. Furthermore, system performance can become better if computation and delivery of a database query is slower than a local cache access.
Example 21.247. Plugin config: no special entries for caching
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": "3306"
}
},
}
}
Example 21.248. Caching a slave request
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT)") ||
!$mysqli->query("INSERT INTO test(id) VALUES (1)"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Explicitly allow eventual consistency and caching (TTL <= 60 seconds) */
if (false == mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL, MYSQLND_MS_QOS_OPTION_CACHE, 60)) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
/* To make this example work, we must wait for a slave to catch up. Brute force style. */
$attempts = 0;
do {
/* check if slave has the table */
if ($res = $mysqli->query("SELECT id FROM test")) {
break;
} else if ($mysqli->errno) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
/* wait for slave to catch up */
usleep(200000);
} while ($attempts++ < 10);
/* Query has been run on a slave, result is in the cache */
assert($res);
var_dump($res->fetch_assoc());
/* Served from cache */
$res = $mysqli->query("SELECT id FROM test");
?>
The example shows how to use the cache feature. First, you have to set the quality of service to eventual consistency and explicitly allow for caching. This is done by calling mysqlnd_ms_set_qos. Then, the result set of every read-only statement is cached for upto that many seconds as allowed with mysqlnd_ms_set_qos.
The actual TTL is lower or equal to the value set with mysqlnd_ms_set_qos. The value passed to the function sets the maximum age (seconds) of the data delivered. To calculate the actual TTL value the replication lag on a slave is checked and subtracted from the given value. If, for example, the maximum age is set to 60 seconds and the slave reports a lag of 10 seconds the resulting TTL is 50 seconds. The TTL is calculated individually for every cached query.
Example 21.249. Read your writes and caching combined
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
!$mysqli->query("CREATE TABLE test(id INT)") ||
!$mysqli->query("INSERT INTO test(id) VALUES (1)"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Explicitly allow eventual consistency and caching (TTL <= 60 seconds) */
if (false == mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL, MYSQLND_MS_QOS_OPTION_CACHE, 60)) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
/* To make this example work, we must wait for a slave to catch up. Brute force style. */
$attempts = 0;
do {
/* check if slave has the table */
if ($res = $mysqli->query("SELECT id FROM test")) {
break;
} else if ($mysqli->errno) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
/* wait for slave to catch up */
usleep(200000);
} while ($attempts++ < 10);
assert($res);
/* Query has been run on a slave, result is in the cache */
var_dump($res->fetch_assoc());
/* Served from cache */
if (!($res = $mysqli->query("SELECT id FROM test")))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
var_dump($res->fetch_assoc());
/* Update on master */
if (!$mysqli->query("UPDATE test SET id = 2"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Read your writes */
if (false == mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_SESSION)) {
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
/* Fetch latest data */
if (!($res = $mysqli->query("SELECT id FROM test")))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
var_dump($res->fetch_assoc());
?>
The quality of service can be changed at any time to avoid further cache usage. If needed, you can switch to read your writes (session consistency). In that case, the cache will not be used and fresh data is read.
21.9.6.4.9. Failover
Copyright 1997-2012 the PHP Documentation Group.
By default, the plugin does not attempt to fail over if connecting to a host fails. This prevents pitfalls related to connection state. It is recommended to manually handle connection errors in a way similar to a failed transaction. You should catch the error, rebuild the connection state and rerun your query as shown below.
If connection state is no issue to you, you can alternatively enable automatic and silent failover. Depending on the configuration, the automatic and silent failover will either attempt to fail over to the master before issuing and error or, try to connect to other slaves, given the query allowes for it, before attempting to connect to a master. Because automatic failover is not fool-proof, it is not discussed in the quickstart. Instead, details are given in the concepts section below.
Example 21.250. Manual failover, automatic optional
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "simulate_slave_failure",
"port": "0"
},
"slave_1": {
"host": "127.0.0.1",
"port": 3311
}
},
"filters": { "roundrobin": [] }
}
}
Example 21.251. Manual failover
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
$sql = "SELECT 1 FROM DUAL";
/* error handling as it should be done regardless of the plugin */
if (!($res = $link->query($sql))) {
/* plugin specific: check for connection error */
switch ($link->errno) {
case 2002:
case 2003:
case 2005:
printf("Connection error - trying next slave!\n");
/* load balancer will pick next slave */
$res = $link->query($sql);
break;
default:
/* no connection error, failover is unlikely to help */
die(sprintf("SQL error: [%d] %s", $link->errno, $link->error));
break;
}
}
if ($res) {
var_dump($res->fetch_assoc());
}
?>
21.9.6.4.10. Partitioning and Sharding
Copyright 1997-2012 the PHP Documentation Group.
Database clustering is done for various reasons. Clusters can improve availability, fault tolerance, and increase performance by applying a divide and conquer approach as work is distributed over many machines. Clustering is sometimes combined with partitioning and sharding to further break up a large complex task into smaller, more manageable units.
The mysqlnd_ms plugin aims to support a wide variety of MySQL database clusters. Some flavors of MySQL database clusters have built-in methods for partitioning and sharding, which could be transparent to use. The plugin supports the two most common approaches: MySQL Replication table filtering, and Sharding (application based partitioning).
MySQL Replication supports partitioning as filters that allow you to create slaves that replicate all or specific databases of the master, or tables. It is then in the responsibility of the application to choose a slave according to the filter rules. You can either use the mysqlnd_ms node_groups filter to manually support this, or use the experimental table filter.
Manual partitioning or sharding is supported through the node grouping filter, and SQL hints as of 1.5.0. The node_groups filter lets you assign a symbolic name to a group of master and slave servers. In the example, the master master_0 and slave_0 form a group with the name Partition_A. It is entirely up to you to decide what makes up a group. For example, you may use node groups for sharding, and use the group names to address shards like Shard_A_Range_0_100.
Example 21.252. Cluster node groups
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "simulate_slave_failure",
"port": "0"
},
"slave_1": {
"host": "127.0.0.1",
"port": 3311
}
},
"filters": {
"node_groups": {
"Partition_A" : {
"master": ["master_0"],
"slave": ["slave_0"]
}
},
"roundrobin": []
}
}
}
Example 21.253. Manual partitioning using SQL hints
<?php
function select($mysqli, $msg, $hint = '') {
/* Note: weak test, two connections to two servers may have the same thread id */
$sql = sprintf("SELECT CONNECTION_ID() AS _thread, '%s' AS _hint FROM DUAL", $msg);
if ($hint) {
$sql = $hint . $sql;
}
if (!($res = $mysqli->query($sql))) {
printf("[%d] %s", $mysqli->errno, $mysqli->error);
return false;
}
$row = $res->fetch_assoc();
printf("%d - %s - %s\n", $row['_thread'], $row['_hint'], $sql);
return true;
}
$mysqli = new mysqli("myapp", "user", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* All slaves allowed */
select($mysqli, "slave_0");
select($mysqli, "slave_1");
/* only servers of node group "Partition_A" allowed */
select($mysqli, "slave_1", "/*Partition_A*/");
select($mysqli, "slave_1", "/*Partition_A*/");
?>
6804 - slave_0 - SELECT CONNECTION_ID() AS _thread, 'slave1' AS _hint FROM DUAL
2442 - slave_1 - SELECT CONNECTION_ID() AS _thread, 'slave2' AS _hint FROM DUAL
6804 - slave_0 - /*Partition_A*/SELECT CONNECTION_ID() AS _thread, 'slave1' AS _hint FROM DUAL
6804 - slave_0 - /*Partition_A*/SELECT CONNECTION_ID() AS _thread, 'slave1' AS _hint FROM DUAL
By default, the plugin will use all configured master and slave servers for query execution. But if a query begins with a SQL hint like /*node_group*/, the plugin will only consider the servers listed in the node_group for query execution. Thus, SELECT queries prefixed with /*Partition_A*/ will only be executed on slave_0.
21.9.6.5. Concepts
Copyright 1997-2012 the PHP Documentation Group.
This explains the architecture and related concepts for this plugin, and describes the impact that MySQL replication and this plugin have on developmental tasks while using a database cluster. Reading and understanding these concepts is required, in order to use this plugin with success.
21.9.6.5.1. Architecture
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd replication and load balancing plugin is implemented as a PHP extension. It is written in C and operates under the hood of PHP. During the startup of the PHP interpreter, in the module init phase of the PHP engine, it gets registered as a mysqlnd plugin to replace selected mysqlnd C methods.
At PHP runtime, it inspects queries sent from mysqlnd (PHP) to the MySQL server. If a query is recognized as read-only, it will be sent to one of the configured slave servers. Statements are considered read-only if they either start with SELECT, the SQL hint /*ms=slave*/ or a slave had been chosen for running the previous query, and the query started with the SQL hint /*ms=last_used*/. In all other cases, the query will be sent to the MySQL replication master server.
For better portability, applications should use the MYSQLND_MS_MASTER_SWITCH , MYSQLND_MS_SLAVE_SWITCH , and MYSQLND_MS_LAST_USED_SWITCH predefined mysqlnd_ms constants, instead of their literal values, such as /*ms=slave*/.
The plugin handles the opening and closing of database connections to both master and slave servers. From an application point of view, there continues to be only one connection handle. However, internally, this one public connection handle represents a pool of network connections that are managed by the plugin. The plugin proxies queries to the master server, and to the slaves using multiple connections.
Database connections have a state consisting of, for example, transaction status, transaction settings, character set settings, and temporary tables. The plugin will try to maintain the same state among all internal connections, whenever this can be done in an automatic and transparent way. In cases where it is not easily possible to maintain state among all connections, such as when using BEGIN TRANSACTION, the plugin leaves it to the user to handle.
21.9.6.5.2. Connection pooling and switching
Copyright 1997-2012 the PHP Documentation Group.
The replication and load balancing plugin changes the semantics of a PHP MySQL connection handle. The existing API of the PHP MySQL extensions (mysqli, mysql, and PDO_MYSQL) are not changed in a way that functions are added or removed. But their behaviour changes when using the plugin. Existing applications do not need to be adapted to a new API, but they may need to be modified because of the behaviour changes.
The plugin breaks the one-by-one relationship between a mysqli, mysql, and PDO_MYSQL connection handle and a MySQL network connection. And a mysqli, mysql, and PDO_MYSQL connection handle represents a local pool of connections to the configured MySQL replication master and MySQL replication slave servers. The plugin redirects queries to the master and slave servers. At some point in time one and the same PHP connection handle may point to the MySQL master server. Later on, it may point to one of the slave servers or still the master. Manipulating and replacing the network connection referenced by a PHP MySQL connection handle is not a transparent operation.
Every MySQL connection has a state. The state of the connections in the connection pool of the plugin can differ. Whenever the plugin switches from one wire connection to another, the current state of the user connection may change. The applications must be aware of this.
The following list shows what the connection state consists of. The list may not be complete.
Connection switches happen right before queries are executed. The plugin does not switch the current connection until the next statement is executed.
Replication issues
See also the MySQL reference manual chapter about replication features and related issues. Some restrictions may not be related to the PHP plugin, but are properties of the MySQL replication system.
Broadcasted messages
The plugins philosophy is to align the state of connections in the pool only if the state is under full control of the plugin, or if it is necessary for security reasons. Just a few actions that change the state of the connection fall into this category.
The following is a list of connection client library calls that change state, and are broadcasted to all open connections in the connection pool.
If any of the listed calls below are to be executed, the plugin loops over all open master and slave connections. The loop continues until all servers have been contacted, and the loop does not break if a server indicates a failure. If possible, the failure will propagate to the called user API function, which may be detected depending on which underlying library function was triggered.
Library call | Notes | Version |
---|---|---|
change_user() | Called by the mysqli_change_user user API call. Also triggered upon reuse of a persistent mysqli connection. | Since 1.0.0. |
select_db | Called by the following user API calls: mysql_select_db, mysql_list_tables, mysql_db_query, mysql_list_fields, mysqli_select_db. Note, that SQL USE is not monitored. | Since 1.0.0. |
set_charset() | Called by the following user API calls: mysql_set_charset. mysqli_set_charset. Note, that SQL SET NAMES is not monitored. | Since 1.0.0. |
set_server_option() | Called by the following user API calls: mysqli_multi_query, mysqli_real_query, mysqli_query, mysql_query. | Since 1.0.0. |
set_client_option() | Called by the following user API calls: mysqli_options, mysqli_ssl_set, mysqli_connect, mysql_connect, mysql_pconnect. | Since 1.0.0. |
set_autocommit() | Called by the following user API calls: mysqli_autocommit, PDO::setAttribute(PDO::ATTR_AUTOCOMMIT). | Since 1.0.0. PHP >= 5.4.0. |
ssl_set() | Called by the following user API calls: mysqli_ssl_set. | Since 1.1.0. |
Broadcasting and lazy connections
The plugin does not proxy or “remember” all settings to apply them on connections opened in the future. This is important to remember, if using lazy connections. Lazy connections are connections which are not opened before the client sends the first connection. Use of lazy connections is the default plugin action.
The following connection library calls each changed state, and their execution is recorded for later use when lazy connections are opened. This helps ensure that the connection state of all connections in the connection pool are comparable.
Library call | Notes | Version |
---|---|---|
change_user() | User, password and database recorded for future use. | Since 1.1.0. |
select_db | Database recorded for future use. | Since 1.1.0. |
set_charset() | Calls set_client_option(MYSQL_SET_CHARSET_NAME, charset) on lazy connection to ensure charset will be used upon opening the lazy connection. | Since 1.1.0. |
set_autocommit() | Adds SET AUTOCOMMIT=0|1 to the list of init commands of a lazy connection using set_client_option(MYSQL_INIT_COMMAND, "SET AUTOCOMMIT=...%quot;). | Since 1.1.0. PHP >= 5.4.0. |
Connection state
The connection state is not only changed by API calls. Thus, even if PECL mysqlnd_ms monitors all API calls, the application must still be aware. Ultimately, it is the applications responsibility to maintain the connection state, if needed.
Charsets and string escaping
Due to the use of lazy connections, which are a default, it can happen that an application tries to escape a string for use within SQL statements before a connection has been established. In this case string escaping is not possible. The string escape function does not know what charset to use before a connection has been established.
To overcome the problem a new configuration setting server_charset has been introduced in version 1.4.0.
Attention has to be paid on escaping strings with a certain charset but using the result on a connection that uses a different charset. Please note, that PECL/mysqlnd_ms manipulates connections and one application level connection represents a pool of multiple connections that all may have different default charsets. It is recommended to configure the servers involved to use the same default charsets. The configuration setting server_charset does help with this situation as well. If using server_charset, the plugin will set the given charset on all newly opened connections.
21.9.6.5.3. Transaction handling
Copyright 1997-2012 the PHP Documentation Group.
Transaction handling is fundamentally changed. An SQL transaction is a unit of work that is run on one database server. The unit of work consists of one or more SQL statements.
By default the plugin is not aware of SQL transactions. The plugin may switch connections for load balancing at any point in time. Connection switches may happen in the middle of a transaction. This is against the nature of an SQL transaction. By default, the plugin is not transaction safe.
Any kind of MySQL load balancer must be hinted about the begin and end of a transaction. Hinting can either be done implicitly by monitoring API calls or using SQL hints. Both options are supported by the plugin, depending on your PHP version. API monitoring requires PHP 5.4.0 or newer. The plugin, like any other MySQL load balancer, cannot detect transaction boundaries based on the MySQL Client Server Protocol. Thus, entirely transparent transaction aware load balancing is not possible. The least intrusive option is API monitoring, which requires little to no application changes, depending on your application.
Please, find examples of using SQL hints or the API monitoring in the examples section. The details behind the API monitoring, which makes the plugin transaction aware, are described below.
Beginning with PHP 5.4.0, the mysqlnd library allows this plugin to subclass the library C API call set_autocommit(), to detect the status of autocommit mode.
The PHP MySQL extensions either issue a query (such as SET AUTOCOMMIT=0|1), or use the mysqlnd library call set_autocommit() to control the autocommit setting. If an extension makes use of set_autocommit(), the plugin can be made transaction aware. Transaction awareness cannot be achieved if using SQL to set the autocommit mode. The library function set_autocommit() is called by the mysqli_autocommit and PDO::setAttribute(PDO::ATTR_AUTOCOMMIT) user API calls.
The plugin configuration option trx_stickiness=master can be used to make the plugin transactional aware. In this mode, the plugin stops load balancing if autocommit becomes disabled, and directs all statements to the master until autocommit gets enabled.
An application that does not want to set SQL hints for transactions but wants to use the transparent API monitoring to avoid application changes must make sure that the autocommit settings is changed exclusively through the listed API calls.
API based transaction boundary detection has been improved with PHP 5.5.0 and PECL/mysqlnd_ms 1.5.0 to cover not only calls to mysqli_autocommit but also mysqli_begin, mysqli_commit and mysqli_rollback.
21.9.6.5.4. Error handling
Copyright 1997-2012 the PHP Documentation Group.
Applications using PECL/mysqlnd_ms should implement proper error handling for all user API calls. And because the plugin changes the semantics of a connection handle, API calls may return unexpected errors. If using the plugin on a connection handle that no longer represents an individual network connection, but a connection pool, an error code and error message will be set on the connection handle whenever an error occurs on any of the network connections behind.
If using lazy connections, which is the default, connections are not opened until they are needed for query execution. Therefore, an API call for a statement execution may return a connection error. In the example below, an error is provoked when trying to run a statement on a slave. Opening a slave connection fails because the plugin configuration file lists an invalid host name for the slave.
Example 21.254. Provoking a connection error
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": {
"slave_0": {
"host": "invalid_host_name",
}
},
"lazy_connections": 1
}
}
The explicit activation of lazy connections is for demonstration purpose only.
Example 21.255. Connection error on query execution
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno())
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Connection 1, connection bound SQL user variable, no SELECT thus run on master */
if (!$mysqli->query("SET @myrole='master'")) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
/* Connection 2, run on slave because SELECT, provoke connection error */
if (!($res = $mysqli->query("SELECT @myrole AS _role"))) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
} else {
$row = $res->fetch_assoc();
$res->close();
printf("@myrole = '%s'\n", $row['_role']);
}
$mysqli->close();
?>
The above example will output something similar to:
PHP Warning: mysqli::query(): php_network_getaddresses: getaddrinfo failed: Name or service not known in %s on line %d
PHP Warning: mysqli::query(): [2002] php_network_getaddresses: getaddrinfo failed: Name or service not known (trying to connect via tcp://invalid_host_name:3306) in %s on line %d
[2002] php_network_getaddresses: getaddrinfo failed: Name or service not known
Applications are expected to handle possible connection errors by implementing proper error handling.
Depending on the use case, applications may want to handle connection errors differently from other errors. Typical connection errors are 2002 (CR_CONNECTION_ERROR) - Can't connect to local MySQL server through socket '%s' (%d), 2003 (CR_CONN_HOST_ERROR) - Can't connect to MySQL server on '%s' (%d) and 2005 (CR_UNKNOWN_HOST) - Unknown MySQL server host '%s' (%d). For example, the application may test for the error codes and manually perform a fail over. The plugins philosophy is not to offer automatic fail over, beyond master fail over, because fail over is not a transparent operation.
Example 21.256. Provoking a connection error
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "invalid_host_name"
},
"slave_1": {
"host": "192.168.78.136"
}
},
"lazy_connections": 1,
"filters": {
"roundrobin": [
]
}
}
}
Explicitly activating lazy connections is done for demonstration purposes, as is round robin load balancing as opposed to the default random once type.
Example 21.257. Most basic failover
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno())
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Connection 1, connection bound SQL user variable, no SELECT thus run on master */
if (!$mysqli->query("SET @myrole='master'")) {
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
/* Connection 2, first slave */
$res = $mysqli->query("SELECT VERSION() AS _version");
/* Hackish manual fail over */
if (2002 == $mysqli->errno || 2003 == $mysqli->errno || 2004 == $mysqli->errno) {
/* Connection 3, first slave connection failed, trying next slave */
$res = $mysqli->query("SELECT VERSION() AS _version");
}
if (!$res) {
printf("ERROR, [%d] '%s'\n", $mysqli->errno, $mysqli->error);
} else {
/* Error messages are taken from connection 3, thus no error */
printf("SUCCESS, [%d] '%s'\n", $mysqli->errno, $mysqli->error);
$row = $res->fetch_assoc();
$res->close();
printf("version = %s\n", $row['_version']);
}
$mysqli->close();
?>
The above example will output something similar to:
[1045] Access denied for user 'username'@'localhost' (using password: YES)
PHP Warning: mysqli::query(): php_network_getaddresses: getaddrinfo failed: Name or service not known in %s on line %d
PHP Warning: mysqli::query(): [2002] php_network_getaddresses: getaddrinfo failed: Name or service not known (trying to connect via tcp://invalid_host_name:3306) in %s on line %d
SUCCESS, [0] ''
version = 5.6.2-m5-log
In some cases, it may not be easily possible to retrieve all errors that occur on all network connections through a connection handle. For example, let's assume a connection handle represents a pool of three open connections. One connection to a master and two connections to the slaves. The application changes the current database using the user API call mysqli_select_db, which then calls the mysqlnd library function to change the schemata. mysqlnd_ms monitors the function, and tries to change the current database on all connections to harmonize their state. Now, assume the master succeeds in changing the database, and both slaves fail. Upon the initial error from the first slave, the plugin will set an appropriate error on the connection handle. The same is done when the second slave fails to change the database. The error message from the first slave is lost.
Such cases can be debugged by either checking for errors of the type E_WARNING (see above) or, if no other option, investigation of the mysqlnd_ms debug and trace log.
21.9.6.5.5. Failover
Copyright 1997-2012 the PHP Documentation Group.
By default, connection failover handling is left to the user. The application is responsible for checking return values of the database functions it calls and reacting to possible errors. If, for example, the plugin recognizes a query as a read-only query to be sent to the slave servers, and the slave server selected by the plugin is not available, the plugin will raise an error after not executing the statement.
Default: manual failover
It is up to the application to handle the error and, if required, re-issue the query to trigger the selection of another slave server for statement execution. The plugin will make no attempts to failover automatically, because the plugin cannot ensure that an automatic failover will not change the state of the connection. For example, the application may have issued a query which depends on SQL user variables which are bound to a specific connection. Such a query might return incorrect results if the plugin would switch the connection implicitly as part of automatic failover. To ensure correct results, the application must take care of the failover, and rebuild the required connection state. Therefore, by default, no automatic failover is performed by the plugin.
A user that does not change the connection state after opening a connection may activate automatic failover. Please note, that automatic failover logic is limited to connection attempts. Automatic failover is not used for already established connections. There is no way to instruct the plugin to attempt failover on a connection that has been connected to MySQL already in the past.
Automatic failover
The failover policy is configured in the plugins configuration file, by using the failover configuration directive.
Automatic and silent failover can be enabled through the failover configuration directive. Automatic failover can either be configured to try exactly one master after a slave failure or, alternatively, loop over slaves and masters before returning an error to the user. The number of connection attempts can be limited and failed hosts can be excluded from future load balancing attempts. Limiting the number of retries and remembering failed hosts are considered experimental features, albeit being reasonable stable. Syntax and semantics may change in future versions.
Please note, since version 1.5.0 automatic failover is disabled for the duration of a transaction if transaction stickiness is enabled and transaction boundaries have been detected. The plugin will not switch connections for the duration of a transaction. It will also not perform automatic and silent failover. Instead an error will be thrown. It is then left to the user to handle the failure of the transaction. Please check, the trx_stickiness documentation how to do this.
A basic manual failover example is provided within the error handling section.
Standby servers
Using weighted load balancing, introduced in PECL/mysqlnd 1.4.0, it is possible to configure standby servers that are sparsely used during normal operations. A standby server that is primarily used as a worst-case standby failover target can be assigned a very low weight/priority in relation to all other servers. As long as all servers are up and running the majority of the workload is assigned to the servers which have hight weight values. Few requests will be directed to the standby system which has a very low weight value.
Upon failure of the servers with a high priority, you can still failover to the standby, which has been given a low load balancing priority by assigning a low weight to it. Failover can be some manually or automatically. If done automatically, you may want to combine it with the remember_failed option.
At this point, it is not possible to instruct the load balancer to direct no requests at all to a standby. This may not be much of a limitation given that the highest weight you can assign to a server is 65535. Given two slaves, of which one shall act as a standby and has been assigned a weight of 1, the standby will have to handle far less than one percent of the overall workload.
Failover and primary copy
Please note, if using a primary copy cluster, such as MySQL Replication, it is difficult to do connection failover in case of a master failure. At any time there is only one master in the cluster for a given dataset. The master is a single point of failure. If the master fails, clients have no target to fail over write requests. In case of a master outage the database administrator must take care of the situation and update the client configurations, if need be.
21.9.6.5.6. Load balancing
Copyright 1997-2012 the PHP Documentation Group.
Four load balancing strategies are supported to distribute statements over the configured MySQL slave servers:
random
Chooses a random server whenever a statement is executed.
random once (default)
Chooses a random server after the first statement is executed, and uses the decision for the rest of the PHP request.
It is the default, and the lowest impact on the connection state.
round robin
Iterates over the list of configured servers.
user-defined via callback
Is used to implement any other strategy.
The load balancing policy is configured in the plugins configuration file using the random, roundrobin, and user filters.
Servers can be prioritized assigning a weight. A server that has been given a weight of two will get twice as many requests as a server that has been given the default weight of one. Prioritization can be handy in heterogenous environments. For example, you may want to assign more requests to a powerful machine than to a less powerful. Or, you may have configured servers that are close or far from the client, thus expose different latencies.
21.9.6.5.7. Read-write splitting
Copyright 1997-2012 the PHP Documentation Group.
The plugin executes read-only statements on the configured MySQL slaves, and all other queries on the MySQL master. Statements are considered read-only if they either start with SELECT, the SQL hint /*ms=slave*/, or if a slave had been chosen for running the previous query and the query starts with the SQL hint /*ms=last_used*/. In all other cases, the query will be sent to the MySQL replication master server. It is recommended to use the constants MYSQLND_MS_SLAVE_SWITCH , MYSQLND_MS_MASTER_SWITCH and MYSQLND_MS_LAST_USED_SWITCH instead of /*ms=slave*/. See also the list of mysqlnd_ms constants.
SQL hints are a special kind of standard compliant SQL comments. The plugin does check every statement for certain SQL hints. The SQL hints are described within the mysqlnd_ms constants documentation, constants that are exported by the extension. Other systems involved with the statement processing, such as the MySQL server, SQL firewalls, and SQL proxies, are unaffected by the SQL hints, because those systems are designed to ignore SQL comments.
The built-in read-write splitter can be replaced by a user-defined filter, see also the user filter documentation.
A user-defined read-write splitter can request the built-in logic to send a statement to a specific location, by invoking mysqlnd_ms_is_select.
Note
The built-in read-write splitter is not aware of multi-statements. Multi-statements are seen as one statement. The splitter will check the beginning of the statement to decide where to run the statement. If, for example, a multi-statement begins with SELECT 1 FROM DUAL; INSERT INTO test(id) VALUES (1); ... the plugin will run it on a slave although the statement is not read-only.
21.9.6.5.8. Filter
Copyright 1997-2012 the PHP Documentation Group.
Version requirement
Filters exist as of mysqlnd_ms version 1.1.0-beta.
filters. PHP applications that implement a MySQL replication cluster must first identify a group of servers in the cluster which could execute a statement before the statement is executed by one of the candidates. In other words: a defined list of servers must be filtered until only one server is available.
The process of filtering may include using one or more filters, and filters can be chained. And they are executed in the order they are defined in the plugins configuration file.
Explanation: comparing filter chaining to pipes
The concept of chained filters can be compared to using pipes to connect command line utilities on an operating system command shell. For example, an input stream is passed to a processor, filtered, and then transferred to be output. Then, the output is passed as input to the next command, which is connected to the previous using the pipe operator.
Available filters:
The random filter implements the 'random' and 'random once' load balancing policies. The 'round robin' load balancing can be configured through the roundrobin filter. Setting a 'user defined callback' for server selection is possible with the user filter. The quality_of_service filter finds cluster nodes capable of delivering a certain service, for example, read-your-writes or, not lagging more seconds behind the master than allowed.
Filters can accept parameters to change their behaviour. The random filter accepts an optional sticky parameter. If set to true, the filter changes load balancing from random to random once. Random picks a random server every time a statement is to be executed. Random once picks a random server when the first statement is to be executed and uses the same server for the rest of the PHP request.
One of the biggest strength of the filter concept is the possibility to chain filters. This strength does not become immediately visible because tje random, roundrobin and user filters are supposed to output no more than one server. If a filter reduces the list of candidates for running a statement to only one server, it makes little sense to use that one server as input for another filter for further reduction of the list of candidates.
An example filter sequence that will fail:
A second type of filter exists: multi filter. A multi filter emits zero, one or multiple servers after processing. The quality_of_service filter is an example. If the service quality requested sets an upper limit for the slave lag and more than one slave is lagging behind less than the allowed number of seconds, the filter returns more than one cluster node. A multi filter must be followed by other to further reduce the list of candidates for statement execution until a candidate is found.
A filter sequence with the quality_of_service multi filter followed by a load balancing filter.
A filter sequence must not end with a multi filter. If trying to use a filter sequence which ends with a multi filter the plugin may emit a warning like (mysqlnd_ms) Error in configuration. Last filter is multi filter. Needs to be non-multi one. Stopping in %s on line %d. Furthermore, an appropriate error on the connection handle may be set.
Speculation towards the future: MySQL replication filtering
In future versions, there may be additional multi filters. For example, there may be a table filter to support MySQL replication filtering. This would allow you to define rules for which database or table is to be replicated to which node of a replication cluster. Assume your replication cluster consists of four slaves (slave_0, slave_1, slave_2, slave_3) two of which replicate a database named sales (slave_0, slave_1). If the application queries the database slaves, the hypothetical table filter reduces the list of possible servers to slave_0 and slave_1. Because the output and list of candidates consists of more than one server, it is necessary and possible to add additional filters to the candidate list, for example, using a load balancing filter to identify a server for statement execution.
21.9.6.5.9. Service level and consistency
Copyright 1997-2012 the PHP Documentation Group.
Version requirement
Service levels have been introduced in mysqlnd_ms version 1.2.0-alpha. mysqlnd_ms_set_qos requires PHP 5.4.0 or newer.
The plugin can be used with different kinds of MySQL database clusters. Different clusters can deliver different levels of service to applications. The service levels can be grouped by the data consistency levels that can be achieved. The plugin knows about:
Depending how a cluster is used it may be possible to achieve higher service levels than the default one. For example, a read from an asynchronous MySQL replication slave is eventual consistent. Thus, one may say the default consistency level of a MySQL replication cluster is eventual consistency. However, if the master only is used by a client for reading and writing during a session, session consistency (read your writes) is given. PECL mysqlnd 1.2.0 abstracts the details of choosing an appropriate node for any of the above service levels from the user.
Service levels can be set through the qualify-of-service filter in the plugins configuration file and at runtime using the function mysqlnd_ms_set_qos.
The plugin defines the different service levels as follows.
Eventual consistency is the default service provided by an asynchronous cluster, such as classical MySQL replication. A read operation executed on an arbitrary node may or may not return stale data. The applications view of the data is eventual consistent.
Session consistency is given if a client can always read its own writes. An asynchronous MySQL replication cluster can deliver session consistency if clients always use the master after the first write or never query a slave which has not yet replicated the clients write operation.
The plugins understanding of strong consistency is that all clients always see the committed writes of all other clients. This is the default when using MySQL Cluster or any other cluster offering synchronous data distribution.
Service level parameters
Eventual consistency and session consistency service level accept parameters.
Eventual consistency is the service provided by classical MySQL replication. By default, all nodes qualify for read requests. An optional age parameter can be given to filter out nodes which lag more than a certain number of seconds behind the master. The plugin is using SHOW SLAVE STATUS to measure the lag. Please, see the MySQL reference manual to learn about accuracy and reliability of the SHOW SLAVE STATUS command.
Session consistency (read your writes) accepts an optional GTID parameter to consider reading not only from the master but also from slaves which already have replicated a certain write described by its transaction identifier. This way, when using asynchronous MySQL replication, read requests may be load balanced over slaves while still ensuring session consistency.
The latter requires the use of client-side global transaction id injection.
Advantages of the new approach
The new approach supersedes the use of SQL hints and the configuration option master_on_write in some respects. If an application running on top of an asynchronous MySQL replication cluster cannot accept stale data for certain reads, it is easier to tell the plugin to choose appropriate nodes than prefixing all read statements in question with the SQL hint to enforce the use of the master. Furthermore, the plugin may be able to use selected slaves for reading.
The master_on_write configuration option makes the plugin use the master after the first write (session consistency, read your writes). In some cases, session consistency may not be needed for the rest of the session but only for some, few read operations. Thus, master_on_write may result in more read load on the master than necessary. In those cases it is better to request a higher than default service level only for those reads that actually need it. Once the reads are done, the application can return to default service level. Switching between service levels is only possible using mysqlnd_ms_set_qos.
Performance considerations
A MySQL replication cluster cannot tell clients which slaves are capable of delivering which level of service. Thus, in some cases, clients need to query the slaves to check their status. PECL mysqlnd_ms transparently runs the necessary SQL in the background. However, this is an expensive and slow operation. SQL statements are run if eventual consistency is combined with an age (slave lag) limit and if session consistency is combined with a global transaction ID.
If eventual consistency is combined with an maximum age (slave lag), the plugin selects candidates for statement execution and load balancing for each statement as follows. If the statement is a write all masters are considered as candidates. Slaves are not checked and not considered as candidates. If the statement is a read, the plugin transparently executes SHOW SLAVE STATUS on every slaves connection. It will loop over all connections, send the statement and then start checking for results. Usually, this is slightly faster than a loop over all connections in which for every connection a query is send and the plugin waits for its results. A slave is considered a candidate if SHOW SLAVE STATUS reports Slave_IO_Running=Yes, Slave_SQL_Running=Yes and Seconds_Behind_Master is less or equal than the allowed maximum age. In case of an SQL error, the plugin emits a warning but does not set an error on the connection. The error is not set to make it possible to use the plugin as a drop-in.
If session consistency is combined with a global transaction ID, the plugin executes the SQL statement set with the fetch_last_gtid entry of the global_transaction_id_injection section from the plugins configuration file. Further details are identical to those described above.
In version 1.2.0 no additional optimizations are done for executing background queries. Future versions may contain optimizations, depending on user demand.
If no parameters and options are set, no SQL is needed. In that case, the plugin consider all nodes of the type shown below.
Throttling
The quality of service filter can be combined with Global transaction IDs to throttle clients. Throttling does reduce the write load on the master by slowing down clients. If session consistency is requested and global transactions idenentifier are used to check the status of a slave, the check can be done in two ways. By default a slave is checked and skipped immediately if it does not match the criteria for session consistency. Alternatively, the plugin can wait for a slave to catch up to the master until session consistency is possible. To enable the throttling, you have to set wait_for_gtid_timeout configuration option.
21.9.6.5.10. Global transaction IDs
Copyright 1997-2012 the PHP Documentation Group.
Version requirement
Client side global transaction ID injection exists as of mysqlnd_ms version 1.2.0-alpha. Transaction boundaries are detected by monitoring API calls. This is possible as of PHP 5.4.0. Please, see also Transaction handling.
As of MySQL 5.6.5-m8 the MySQL server features built-in global transaction identifiers. The MySQL built-in global transaction ID feature is supported by PECL/mysqlnd_ms 1.3.0-alpha or later. Neither are client-side transaction boundary monitoring nor any setup activities required if using the server feature.
Idea and client-side emulation
PECL/mysqlnd_ms can do client-side transparent global transaction ID injection. In its most basic form, a global transaction identifier is a counter which is incremented for every transaction executed on the master. The counter is held in a table on the master. Slaves replicate the counter table.
In case of a master failure a database administrator can easily identify the most recent slave for promiting it as a new master. The most recent slave has the highest transaction identifier.
Application developers can ask the plugin for the global transaction identifier (GTID) for their last successful write operation. The plugin will return an identifier that refers to an transaction no older than that of the clients last write operation. Then, the GTID can be passed as a parameter to the quality of service (QoS) filter as an option for session consistency. Session consistency ensures read your writes. The filter ensures that all reads are either directed to a master or a slave which has replicated the write referenced by the GTID.
When injection is done
The plugin transparently maintains the GTID table on the master. In autocommit mode the plugin injects an UPDATE statement before executing the users statement for every master use. In manual transaction mode, the injection is done before the application calls commit() to close a transaction. The configuration option report_error of the GTID section in the plugins configuration file is used to control whether a failed injection shall abort the current operation or be ignored silently (default).
Please note, the PHP version requirements for transaction boundary monitoring and their limits.
Limitations
Client-side global transaction ID injection has shortcomings. The potential issues are not specific to PECL/mysqlnd_ms but are rather of general nature.
Using server-side global transaction identifier
Starting with PECL/mysqlnd_ms 1.3.0-alpha the MySQL 5.6.5-m8 or newer built-in global transaction identifier feature is supported. Use of the server feature lifts all of the above listed limitations. Please, see the MySQL Reference Manual for limitations and preconditions for using server built-in global transaction identifiers.
Whether to use the client-side emulation or the server built-in functionality is a question not directly related to the plugin, thus it is not discussed in depth. There are no plans to remove the client-side emulation and you can continue to use it, if the server-side solution is no option. This may be the case in heterogenous environments with old MySQL server or, if any of the server-side solution limitations is not acceptable.
From an applications perspective there is hardly a difference in using one or the other approach. The following properties differ.
Client-side emulation, as shown in the manual, is using an easy to compare sequence number for global transactions. Multi-master is not handled to keep the manual examples easy.
Server-side built-in feature is using a combination of a server identifier and a sequence number as a global transaction identifier. Comparison cannot use numeric algebra. Instead a SQL function must be used. Please, see the MySQL Reference Manual for details.
Global transaction identifiers in distributed systems
Global transaction identifiers can serve multiple purposes in the context of distributed systems, such as a database cluster. Global transaction identifiers can be used for, for example, system wide identification of transactions, global ordering of transactions, heartbeat mechanism and for checking the replication status of replicas. PECL/mysqlnd_ms, a clientside driver based software, does focus on using GTIDs for tasks that can be handled at the client, such as checking the replication status of replicas for asynchronous replication setups.
21.9.6.5.11. Cache integration
Copyright 1997-2012 the PHP Documentation Group.
Version requirement
The feature requires use of PECL/mysqlnd_ms 1.3.0-beta or later, and PECL/mysqlnd_qc 1.1.0-alpha or newer. PECL/mysqlnd_ms must be compiled to support the feature. PHP 5.4.0 or newer is required.
Setup: extension load order
PECL/mysqlnd_ms must be loaded before PECL/mysqlnd_qc, when using shared extensions.
Feature stability
The cache integration is of beta quality.
Suitable MySQL clusters
The feature is targeted for use with MySQL Replication (primary copy). Currently, no other kinds of MySQL clusters are supported. Users of such cluster must control PECL/mysqlnd_qc manually if they are interested in client-side query caching.
Support for MySQL replication clusters (asynchronous primary copy) is the main focus of PECL/mysqlnd_ms. The slaves of a MySQL replication cluster may or may not reflect the latest updates from the master. Slaves are asynchronous and can lag behind the master. A read from a slave is eventual consistent from a cluster-wide perspective.
The same level of consistency is offered by a local cache using time-to-live (TTL) invalidation strategy. Current data or stale data may be served. Eventually, data searched for in the cache is not available and the source of the cache needs to be accessed.
Given that both a MySQL Replication slave (asynchronous secondary) and a local TTL-driven cache deliver the same level of service it is possible to transparently replace a remote database access with a local cache access to gain better possibility.
As of PECL/mysqlnd_ms 1.3.0-beta the plugin is capable of transparently controlling PECL/mysqlnd_ms 1.1.0-alpha or newer to cache a read-only query if explicitly allowed by setting an appropriate quality of service through mysqlnd_ms_set_qos. Please, see the quickstart for a code example. Both plugins must be installed, PECL/mysqlnd_ms must be compiled to support the cache feature and PHP 5.4.0 or newer has to be used.
Applications have full control of cache usage and can request fresh data at any time, if need be. Thec ache usage can be enabled and disabled time during the execution of a script. The cache will be used if mysqlnd_ms_set_qos sets the quality of service to eventual consistency and enables cache usage. Cache usage is disabled by requesting higher consistency levels, for example, session consistency (read your writes). Once the quality of service has been relaxed to eventual consistency the cache can be used again.
If caching is enabled for a read-only statement, PECL/mysqlnd_ms may inject SQL hints to control caching by PECL/mysqlnd_qc. It may modify the SQL statement it got from the application. Subsequent SQL processors are supposed to ignore the SQL hints. A SQL hint is a SQL comment. Comments must not be ignored, for example, by the database server.
The TTL of a cache entry is computed on a per statement basis. Applications set an maximum age for the data they want to retrieve using mysqlnd_ms_set_qos. The age sets an approximate upper limit of how many seconds the data returned may lag behind the master.
The following logic is used to compute the actual TTL if caching is enabled. The logic takes the estimated slave lag into account for choosing a TTL. If, for example, there are two slaves lagging 5 and 10 seconds behind and the maximum age allowed is 60 seconds, the TTL is set to 50 seconds. Please note, the age setting is no more than an estimated guess.
The algorithm may seem expensive. SHOW SLAVE STATUS is a very fast operation. Given a sufficient number of requests and cache hits per second the cost of checking the slaves lag can easily outweight the costs of the cache decision.
Suggestions on a better algorithm are always welcome.
21.9.6.5.12. Supported clusters
Copyright 1997-2012 the PHP Documentation Group.
Any application using any kind of MySQL cluster is faced with the same tasks:
The plugin is optimized for fulfilling these tasks in the context of a classical asynchronous MySQL replication cluster consisting of a single master and many slaves (primary copy). When using classical, asynchronous MySQL replication all of the above listed tasks need to be mastered at the client side.
Other types of MySQL cluster may have lower requirements on the application side. For example, if all nodes in the cluster can answer read and write requests, no read-write splitting needs to be done (multi-master, update-all). If all nodes in the cluster are synchronous, they automatically provide the highest possible quality of service which makes choosing a node easier. In this case, the plugin may serve the application after some reconfiguration to disable certain features, such as built-in read-write splitting.
Documentation focus
The documentation focusses describing the use of the plugin with classical asynchronous MySQL replication clusters (primary copy). Support for this kind of cluster has been the original development goal. Use of other clusters is briefly described below. Please note, that this is still work in progress.
Primary copy (MySQL Replication)
This is the primary use case of the plugin. Follow the hints given in the descriptions of each feature.
Example 21.258. Enabling the plugin (php.ini)
mysqlnd_ms.enable=1
mysqlnd_ms.config_file=/path/to/mysqlnd_ms_plugin.ini
Example 21.259. Basic plugin configuration (mysqlnd_ms_plugin.ini) for MySQL Replication
{
"myapp": {
"master": {
"master_1": {
"host": "localhost",
"socket": "\/tmp\/mysql57.sock"
}
},
"slave": {
"slave_0": {
"host": "127.0.0.1",
"port": 3308
},
"slave_1": {
"host": "192.168.2.28",
"port": 3306
}
},
"filters": {
"random": {
"sticky": "1"
}
}
}
}
Primary copy with multi primaries (MMM - MySQL Multi Master)
MySQL Replication allows you to create cluster topologies with multiple masters (primaries). Write-write conflicts are not handled by the replication system. This is no update anywhere setup. Thus, data must be partitioned manually and clients must redirected in accordance to the partitioning rules. The recommended setup is equal to the sharding setup below.
Manual sharding, possibly combined with primary copy and multiple primaries
Use SQL hints and the node group filter for clusters that use data partitioning but leave query redirection to the client. The example configuration shows a multi master setup with two shards.
Example 21.260. Multiple primaries - multi master (php.ini)
mysqlnd_ms.enable=1
mysqlnd_ms.config_file=/path/to/mysqlnd_ms_plugin.ini
mysqlnd_ms.multi_master=1
Example 21.261. Primary copy with multiple primaries and paritioning
{
"myapp": {
"master": {
"master_1": {
"host": "localhost",
"socket": "\/tmp\/mysql57.sock"
}
"master_2": {
"host": "192.168.2.27",
"socket": "3306"
}
},
"slave": {
"slave_1": {
"host": "127.0.0.1",
"port": 3308
},
"slave_2": {
"host": "192.168.2.28",
"port": 3306
}
},
"filters": {
"node_groups": {
"Partition_A" : {
"master": ["master_1"],
"slave": ["slave_1"]
},
"Partition_B" : {
"master": ["master_2"],
"slave": ["slave_2"]
}
},
"roundrobin": []
}
}
}
The plugin can also be used with a loose collection of unrelated shards. For such a cluster, configure masters only and disable read write splitting. The nodes of such a cluster are called masters in the plugin configuration as they accept both reads and writes for their partition.
Using synchronous update everywhere clusters such as MySQL Cluster
MySQL Cluster is a synchronous cluster solution. All cluster nodes accept read and write requests. In the context of the plugin, all nodes shall be considered as masters.
Use the load balancing and fail over features only.
Disabling built-in read-write splitting.
Configure masters only.
Set failover=loop_before_master in the plugins configuration file to avoid warnings about the empty slave list and to make the failover logic loop over all configured masters before emitting an error.
Please, note the warnings about automatic failover given in the previous sections.
Example 21.262. Multiple primaries - multi master (php.ini)
mysqlnd_ms.enable=1
mysqlnd_ms.config_file=/path/to/mysqlnd_ms_plugin.ini
mysqlnd_ms.multi_master=1
mysqlnd_ms.disable_rw_split=1
Example 21.263. Synchronous update anywhere cluster
"myapp": {
"master": {
"master_1": {
"host": "localhost",
"socket": "\/tmp\/mysql57.sock"
},
"master_2": {
"host": "192.168.2.28",
"port": 3306
}
},
"slave": {
},
"filters": {
"roundrobin": {
}
},
"failover": {
"strategy": "loop_before_master",
"remember_failed": true
}
}
}
If running an update everywhere cluster that has no built-in partitioning to avoid hot spots and high collision rates, consider using the node groups filter to keep updates on a frequently accessed table on one of the nodes. This may help to reduce collision rates and thus improve performance.
21.9.6.6. Installing/Configuring
Copyright 1997-2012 the PHP Documentation Group.
21.9.6.6.1. Requirements
Copyright 1997-2012 the PHP Documentation Group.
PHP 5.3.6 or newer. Some advanced functionality requires PHP 5.4.0 or newer.
The mysqlnd_ms replication and load balancing plugin supports all PHP applications and all available PHP MySQL extensions (mysqli, mysql, PDO_MYSQL). The PHP MySQL extension must be configured to use mysqlnd in order to be able to use the mysqlnd_ms plugin for mysqlnd.
21.9.6.6.2. Installation
Copyright 1997-2012 the PHP Documentation Group.
This PECL extension is not bundled with PHP.
Information for installing this PECL extension may be found in the manual chapter titled Installation of PECL extensions. Additional information such as new releases, downloads, source files, maintainer information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqlnd_ms
A DLL for this PECL extension is currently unavailable. See also the building on Windows section.
21.9.6.6.3. Runtime Configuration
Copyright 1997-2012 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php.ini.
Table 21.74. Mysqlnd_ms Configure Options
Name | Default | Changeable | Changelog |
---|---|---|---|
mysqlnd_ms.enable | 0 | PHP_INI_SYSTEM | |
mysqlnd_ms.force_config_usage | 0 | PHP_INI_SYSTEM | |
mysqlnd_ms.ini_file | "" | PHP_INI_SYSTEM | |
mysqlnd_ms.config_file | "" | PHP_INI_SYSTEM | |
mysqlnd_ms.collect_statistics | 0 | PHP_INI_SYSTEM | |
mysqlnd_ms.multi_master | 0 | PHP_INI_SYSTEM | |
mysqlnd_ms.disable_rw_split | 0 | PHP_INI_SYSTEM |
Here's a short explanation of the configuration directives.
mysqlnd_ms.enable integer
Enables or disables the plugin. If disabled, the extension will not plug into mysqlnd to proxy internal mysqlnd C API calls.
mysqlnd_ms.force_config_usage integer
If enabled, the plugin checks if the host (server) parameters value of any MySQL connection attempt, matches a section name from the plugin configuration file. If not, the connection attempt is blocked.
This setting is not only useful to restrict PHP to certain servers but also to debug configuration file problems. The configuration file validity is checked at two different stages. The first check is performed when PHP begins to handle a web request. At this point the plugin reads and decodes the configuration file. Errors thrown at this early stage in an extensions life cycle may not be shown properly to the user. Thus, the plugin buffers the errors, if any, and additionally displays them when establishing a connection to MySQL. By default a buffered startup error will emit an error of type E_WARNING. If force_config_usage is set, the error type used is E_RECOVERABLE_ERROR.
Please, see also configuration file debugging notes.
mysqlnd_ms.ini_file string
Plugin specific configuration file. This setting has been renamed to mysqlnd_ms.config_file in version 1.4.0.
mysqlnd_ms.config_file string
Plugin specific configuration file. This setting superseeds mysqlnd_ms.ini_file since 1.4.0.
mysqlnd_ms.collect_statistics integer
Enables or disables the collection of statistics. The collection of statistics is disabled by default for performance reasons. Statistics are returned by the function mysqlnd_ms_get_stats.
mysqlnd_ms.multi_master integer
Enables or disables support of MySQL multi master replication setups. Please, see also supported clusters.
mysqlnd_ms.disable_rw_split integer
Enables or disables built-in read write splitting.
Controls whether load balancing and lazy connection functionality can be used independently of read write splitting. If read write splitting is disabled, only servers from the master list will be used for statement execution. All configured slave servers will be ignored.
The SQL hint MYSQLND_MS_USE_SLAVE will not be recognized. If found, the statement will be redirected to a master.
Disabling read write splitting impacts the return value of mysqlnd_ms_query_is_select. The function will no longer propose query execution on slave servers.
Multiple master servers
Setting mysqlnd_ms.multi_master=1 allows the plugin to use multiple master servers, instead of only the first master server of the master list.
Please, see also supported clusters.
21.9.6.6.4. Plugin configuration file (>=1.1.x)
Copyright 1997-2012 the PHP Documentation Group.
Changelog: Feature was added in PECL/mysqlnd_ms 1.1.0-beta
The below description applies to PECL/mysqlnd_ms >= 1.1.0-beta. It is not valid for prior versions.
The plugin uses its own configuration file. The configuration file holds information about the MySQL replication master server, the MySQL replication slave servers, the server pick (load balancing) policy, the failover strategy, and the use of lazy connections.
The plugin loads its configuration file at the beginning of a web request. It is then cached in memory and used for the duration of the web request. This way, there is no need to restart PHP after deploying the configuration file. Configuration file changes will become active almost instantly.
The PHP configuration directive mysqlnd_ms.config_file is used to set the plugins configuration file. Please note, that the PHP configuration directive may not be evaluated for every web request. Therefore, changing the plugins configuration file name or location may require a PHP restart. However, no restart is required to read changes if an already existing plugin configuration file is updated.
Using and parsing JSON is efficient, and using JSON makes it easier to express hierarchical data structures than the standard php.ini format.
Example 21.264. Converting a PHP array (hash) into JSON format
Or alternatively, a developer may be more familiar with the PHP array syntax, and prefer it. This example demonstrates how a developer might convert a PHP array to JSON.
<?php
$config = array(
"myapp" => array(
"master" => array(
"master_0" => array(
"host" => "localhost",
"socket" => "/tmp/mysql.sock",
),
),
"slave" => array(),
),
);
file_put_contents("mysqlnd_ms.ini", json_encode($config, JSON_PRETTY_PRINT));
printf("mysqlnd_ms.ini file created...\n");
printf("Dumping file contents...\n");
printf("%s\n", str_repeat("-", 80));
echo file_get_contents("mysqlnd_ms.ini");
printf("\n%s\n", str_repeat("-", 80));
?>
The above example will output:
mysqlnd_ms.ini file created...
Dumping file contents...
--
{
"myapp": {
"master": {
"master_0": {
"host": "localhost",
"socket": "\/tmp\/mysql.sock"
}
},
"slave": [
]
}
}
--
A plugin configuration file consists of one or more sections. Sections are represented by the top-level object properties of the object encoded in the JSON file. Sections could also be called configuration names.
Applications reference sections by their name. Applications use section names as the host (server) parameter to the various connect methods of the mysqli, mysql and PDO_MYSQL extensions. Upon connect, the mysqlnd plugin compares the hostname with all of the section names from the plugin configuration file. If the hostname and section name match, then the plugin will load the settings for that section.
Example 21.265. Using section names example
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.2.27"
},
"slave_1": {
"host": "192.168.2.27",
"port": 3306
}
}
},
"localhost": {
"master": [
{
"host": "localhost",
"socket": "\/path\/to\/mysql.sock"
}
],
"slave": [
{
"host": "192.168.3.24",
"port": "3305"
},
{
"host": "192.168.3.65",
"port": "3309"
}
]
}
}
<?php
/* All of the following connections will be load balanced */
$mysqli = new mysqli("myapp", "username", "password", "database");
$pdo = new PDO('mysql:host=myapp;dbname=database', 'username', 'password');
$mysql = mysql_connect("myapp", "username", "password");
$mysqli = new mysqli("localhost", "username", "password", "database");
?>
Section names are strings. It is valid to use a section name such as 192.168.2.1, 127.0.0.1 or localhost. If, for example, an application connects to localhost and a plugin configuration section localhost exists, the semantics of the connect operation are changed. The application will no longer only use the MySQL server running on the host localhost, but the plugin will start to load balance MySQL queries following the rules from the localhost configuration section. This way you can load balance queries from an application without changing the applications source code. Please keep in mind, that such a configuration may not contribute to overall readability of your applications source code. Using section names that can be mixed up with host names should be seen as a last resort.
Each configuration section contains, at a minimum, a list of master servers and a list of slave servers. The master list is configured with the keyword master, while the slave list is configured with the slave keyword. Failing to provide a slave list will result in a fatal E_ERROR level error, although a slave list may be empty. It is possible to allow no slaves. However, this is only recommended with synchronous clusters, please see also supported clusters. The main part of the documentation focusses on the use of asynchronous MySQL replication clusters.
The master and slave server lists can be optionally indexed by symbolic names for the servers they describe. Alternatively, an array of descriptions for slave and master servers may be used.
Example 21.266. List of anonymous slaves
"slave": [
{
"host": "192.168.3.24",
"port": "3305"
},
{
"host": "192.168.3.65",
"port": "3309"
}
]
An anonymous server list is encoded by the JSON array type. Optionally, symbolic names may be used for indexing the slave or master servers of a server list, and done so using the JSON object type.
Example 21.267. Master list using symbolic names
"master": {
"master_0": {
"host": "localhost"
}
}
It is recommended to index the server lists with symbolic server names. The alias names will be shown in error messages.
The order of servers is preserved and taken into account by mysqlnd_ms. If, for example, you configure round robin load balancing strategy, the first SELECT statement will be executed on the slave that appears first in the slave server list.
A configured server can be described with the host, port, socket, db, user, password and connect_flags. It is mandatory to set the database server host using the host keyword. All other settings are optional.
Example 21.268. Keywords to configure a server
{
"myapp": {
"master": {
"master_0": {
"host": "db_server_host",
"port": "db_server_port",
"socket": "db_server_socket",
"db": "database_resp_schema",
"user": "user",
"password": "password",
"connect_flags": 0
}
},
"slave": {
"slave_0": {
"host": "db_server_host",
"port": "db_server_port",
"socket": "db_server_socket"
}
}
}
}
If a setting is omitted, the plugin will use the value provided by the user API call used to open a connection. Please, see the using section names example above.
The configuration file format has been changed in version 1.1.0-beta to allow for chained filters. Filters are responsible for filtering the configured list of servers to identify a server for execution of a given statement. Filters are configured with the filter keyword. Filters are executed by mysqlnd_ms in the order of their appearance. Defining filters is optional. A configuration section in the plugins configuration file does not need to have a filters entry.
Filters replace the pick[] setting from prior versions. The new random and roundrobin provide the same functionality.
Example 21.269. New roundrobin filter, old functionality
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
},
"slave_1": {
"host": "192.168.78.137",
"port": "3306"
}
},
"filters": {
"roundrobin": [
]
}
}
}
The function mysqlnd_ms_set_user_pick_server has been removed. Setting a callback is now done with the user filter. Some filters accept parameters. The user filter requires and accepts a mandatory callback parameter to set the callback previously set through the function mysqlnd_ms_set_user_pick_server.
Example 21.270. The user filter replaces mysqlnd_ms_set_user_pick_server
"filters": {
"user": {
"callback": "pick_server"
}
}
The validity of the configuration file is checked both when reading the configuration file and later when establishing a connection. The configuration file is read during PHP request startup. At this early stage a PHP extension may not display error messages properly. In the worst case, no error is shown and a connection attempt fails without an adequate error message. This problem has been cured in version 1.5.0.
Example 21.271. Common error message in case of configuration file issues (upto version 1.5.0)
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
?>
The above example will output:
Warning: mysqli::mysqli(): (mysqlnd_ms) (mysqlnd_ms) Failed to parse config file [s1.json]. Please, verify the JSON in Command line code
Warning: mysqli::mysqli(): (HY000/2002): php_network_getaddresses: getaddrinfo failed: Name or service not known in Command line code on line 1
Warning: mysqli::query(): Couldn't fetch mysqli in Command line code on line 1
Fatal error: Call to a member function fetch_assoc() on a non-object in Command line code on line 1
Since version 1.5.0 startup errors are additionally buffered and emitted when a connection attempt is made. Use the configuration directive mysqlnd_ms.force_config_usage to set the error type used to display buffered errors. By default an error of type E_WARNING will be emitted.
Example 21.272. Improved configuration file validation since 1.5.0
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
?>
The above example will output:
Warning: mysqli::mysqli(): (mysqlnd_ms) (mysqlnd_ms) Failed to parse config file [s1.json]. Please, verify the JSON in Command line code on line 1
It can be useful to set mysqlnd_ms.force_config_usage = 1 when debugging potential configuration file errors. This will not only turn the type of buffered startup errors into E_RECOVERABLE_ERROR but also help detecting misspelled section names.
Example 21.273. Possibly more precise error due to mysqlnd_ms.force_config_usage=1
mysqlnd_ms.force_config_usage=1
<?php
$mysqli = new mysqli("invalid_section", "username", "password", "database");
?>
The above example will output:
Warning: mysqli::mysqli(): (mysqlnd_ms) Exclusive usage of configuration enforced but did not find the correct INI file section (invalid_section) in Command line code on line 1 line 1
Here is a short explanation of the configuration directives that can be used.
master array or object
List of MySQL replication master servers. The list of either of the JSON type array to declare an anonymous list of servers or of the JSON type object. Please, see above for examples.
Setting at least one master server is mandatory. The plugin will issue an error of type E_ERROR if the user has failed to provide a master server list for a configuration section. The fatal error may read (mysqlnd_ms) Section [master] doesn't exist for host [name_of_a_config_section] in %s on line %d.
A server is described with the host, port, socket, db, user, password and connect_flags. It is mandatory to provide at a value for host. If any of the other values is not given, it will be taken from the user API connect call, please, see also: using section names example.
Table of server configuration keywords.
Keyword | Description | Version |
---|---|---|
host | Database server host. This is a mandatory setting. Failing to provide, will cause an error of type E_RECOVERABLE_ERROR when the plugin tries to connect to the server. The error message may read (mysqlnd_ms) Cannot find [host] in [%s] section in config in %s on line %d. | Since 1.1.0. |
port | Database server TCP/IP port. | Since 1.1.0. |
socket | Database server Unix domain socket. | Since 1.1.0. |
db | Database (schemata). | Since 1.1.0. |
user | MySQL database user. | Since 1.1.0. |
password | MySQL database user password. | Since 1.1.0. |
connect_flags | Connection flags. | Since 1.1.0. |
The plugin supports using only one master server. An experimental setting exists to enable multi-master support. The details are not documented. The setting is meant for development only.
slave array or object
List of one or more MySQL replication slave servers. The syntax is identical to setting master servers, please, see master above for details.
The plugin supports using one or more slave servers.
Setting a list of slave servers is mandatory. The plugin will report an error of the type E_ERROR if slave is not given for a configuration section. The fatal error message may read (mysqlnd_ms) Section [slave] doesn't exist for host [%s] in %s on line %d. Note, that it is valid to use an empty slave server list. The error has been introduced to prevent accidently setting no slaves by forgetting about the slave setting. A master-only setup is still possible using an empty slave server list.
If an empty slave list is configured and an attempt is made to execute a statement on a slave the plugin may emit a warning like mysqlnd_ms) Couldn't find the appropriate slave connection. 0 slaves to choose from. upon statement execution. It is possible that another warning follows such as (mysqlnd_ms) No connection selected by the last filter.
global_transaction_id_injection array or object
Global transaction identifier configuration related to both the use of the server built-in global transaction ID feature and the client-side emulation.
Keyword | Description | Version |
---|---|---|
fetch_last_gtid | SQL statement for accessing the latest global transaction identifier. The SQL statement is run if the plugin needs to know the most recent global transaction identifier. This can be the case, for example, when checking MySQL Replication slave status. Also used with mysqlnd_ms_get_last_gtid. | Since 1.2.0. |
check_for_gtid | SQL statement for checking if a replica has replicated all transactions up to and including ones searched for. The SQL statement is run when searching for replicas which can offer a higher level of consistency than eventual consistency. The statement must contain a placeholder #GTID which is to be replaced with the global transaction identifier searched for by the plugin. Please, check the quickstart for examples. | Since 1.2.0. |
report_errors | Whether to emit an error of type warning if an issue occurs while executing any of the configured SQL statements. | Since 1.2.0. |
on_commit | Client-side global transaction ID emulation only. SQL statement to run when a transaction finished to update the global transaction identifier sequence number on the master. Please, see the quickstart for examples. | Since 1.2.0. |
wait_for_gtid_timeout | Instructs the plugin to wait up to wait_for_gtid_timeout seconds for a slave to catch up when searching for slaves that can deliver session consistency. The setting limits the time spend for polling the slave status. If polling the status takes very long, the total clock time spend waiting may exceed wait_for_gtid_timeout. The plugin calls sleep(1) to sleep one second between each two polls. The setting can be used both with the plugins client-side emulation and the server-side global transaction identifier feature of MySQL 5.6. Waiting for a slave to replicate a certain GTID needed for session consistency also means throttling the client. By throttling the client the write load on the master is reduced indirectly. A primary copy based replication system, such as MySQL Replication, is given more time to reach a consistent state. This can be desired, for example, to increase the number of data copies for high availability considerations or to prevent the master from being overloaded. | Since 1.4.0. |
filters object
List of filters. A filter is responsible to filter the list of available servers for executing a given statement. Filters can be chained. The random and roundrobin filter replace the pick[] directive used in prior version to select a load balancing policy. The user filter replaces the mysqlnd_ms_set_user_pick_server function.
Filters may accept parameters to refine their actions.
If no load balancing policy is set, the plugin will default to random_once. The random_once policy picks a random slave server when running the first read-only statement. The slave server will be used for all read-only statements until the PHP script execution ends. No load balancing policy is set and thus, defaulting takes place, if neither the random nor the roundrobin are part of a configuration section.
If a filter chain is configured so that a filter which output no more than once server is used as input for a filter which should be given more than one server as input, the plugin may emit a warning upon opening a connection. The warning may read: (mysqlnd_ms) Error while creating filter '%s' . Non-multi filter '%s' already created. Stopping in %s on line %d. Furthermore, an error of the error code 2000, the sql state HY000 and an error message similar to the warning may be set on the connection handle.
Example 21.274. Invalid filter sequence
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
}
},
"filters": [
"roundrobin",
"random"
]
}
}
<?php
$link = new mysqli("myapp", "root", "", "test");
printf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error());
$link->query("SELECT 1 FROM DUAL");
?>
The above example will output:
PHP Warning: mysqli::mysqli(): (HY000/2000): (mysqlnd_ms) Error while creating filter 'random' . Non-multi filter 'roundrobin' already created. Stopping in filter_warning.php on line 1
[2000] (mysqlnd_ms) Error while creating filter 'random' . Non-multi filter 'roundrobin' already created. Stopping
PHP Warning: mysqli::query(): Couldn't fetch mysqli in filter_warning.php on line 3
Filter: random object
The random filter features the random and random once load balancing policies, set through the pick[] directive in older versions.
The random policy will pick a random server whenever a read-only statement is to be executed. The random once strategy picks a random slave server once and continues using the slave for the rest of the PHP web request. Random once is a default, if load balancing is not configured through a filter.
If the random filter is not given any arguments, it stands for random load balancing policy.
Example 21.275. Random load balancing with random filter
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
},
"slave_1": {
"host": "192.168.78.137",
"port": "3306"
}
},
"filters": [
"random"
]
}
}
Optionally, the sticky argument can be passed to the filter. If the parameter sticky is set to the string 1, the filter follows the random once load balancing strategy.
Example 21.276. Random once load balancing with random filter
{
"filters": {
"random": {
"sticky": "1"
}
}
}
Both the random and roundrobin filters support setting a priority, a weight for a server, since PECL/mysqlnd_ms 1.4.0. If the weight argument is passed to the filter, it must assign a weight for all servers. Servers must be given an alias name in the slave respectively master server lists. The alias must be used to reference servers for assigning a priority with weight.
Example 21.277. Referencing error
[E_RECOVERABLE_ERROR] mysqli_real_connect(): (mysqlnd_ms) Unknown server 'slave3' in 'random' filter configuration. Stopping in %s on line %d
Using a wrong alias name with weight may result in an error similar to the shown above.
If weight is omitted, the default weight of all servers is one.
Example 21.278. Assigning a weight for load balancing
{
"myapp": {
"master": {
"master1":{
"host":"localhost",
"socket":"\/var\/run\/mysql\/mysql.sock"
}
},
"slave": {
"slave1": {
"host":"192.168.2.28",
"port":3306
},
"slave2": {
"host":"192.168.2.29",
"port":3306
},
"slave3": {
"host":"192.0.43.10",
"port":3306
},
},
"filters": {
"random": {
"weights": {
"slave1":8,
"slave2":4,
"slave3":1,
"master1":1
}
}
}
}
}
At the average a server assigned a weight of two will be selected twice as often as a server assigned a weight of one. Different weights can be assigned to reflect differently sized machines, to prefer co-located slaves which have a low network latency or, to configure a standby failover server. In the latter case, you may want to assign the standby server a very low weight in relation to the other servers. For example, given the configuration above slave3 will get only some eight percent of the requests in the average. As long as slave1 and slave2 are running, it will be used sparsely, similar to a standby failover server. Upon failure of slave1 and slave2, the usage of slave3 increases. Please, check the notes on failover before using weight this way.
Valid weight values range from 1 to 65535.
Unknown arguments are ignored by the filter. No warning or error is given.
The filter expects one or more servers as input. Outputs one server. A filter sequence such as random, roundrobin may cause a warning and an error message to be set on the connection handle when executing a statement.
List of filter arguments.
Keyword | Description | Version |
---|---|---|
sticky | Enables or disabled random once load balancing policy. See above. | Since 1.2.0. |
weight | Assigns a load balancing weight/priority to a server. Please, see above for a description. | Since 1.4.0. |
Filter: roundrobin object
If using the roundrobin filter, the plugin iterates over the list of configured slave servers to pick a server for statement execution. If the plugin reaches the end of the list, it wraps around to the beginning of the list and picks the first configured slave server.
Example 21.279. roundrobin filter
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
}
},
"filters": [
"roundrobin"
]
}
}
Expects one or more servers as input. Outputs one server. A filter sequence such as roundrobin, random may cause a warning and an error message to be set on the connection handle when executing a statement.
List of filter arguments.
Keyword | Description | Version |
---|---|---|
weight | Assigns a load balancing weight/priority to a server. Please, find a description above. | Since 1.4.0. |
Filter: user object
The user replaces mysqlnd_ms_set_user_pick_server function, which was removed in 1.1.0-beta. The filter sets a callback for user-defined read/write splitting and server selection.
The plugins built-in read/write query split mechanism decisions can be overwritten in two ways. The easiest way is to prepend a query string with the SQL hints MYSQLND_MS_MASTER_SWITCH , MYSQLND_MS_SLAVE_SWITCH or MYSQLND_MS_LAST_USED_SWITCH . Using SQL hints one can control, for example, whether a query shall be send to the MySQL replication master server or one of the slave servers. By help of SQL hints it is not possible to pick a certain slave server for query execution.
Full control on server selection can be gained using a callback function. Use of a callback is recommended to expert users only because the callback has to cover all cases otherwise handled by the plugin.
The plugin will invoke the callback function for selecting a server from the lists of configured master and slave servers. The callback function inspects the query to run and picks a server for query execution by returning the hosts URI, as found in the master and slave list.
If the lazy connections are enabled and the callback chooses a slave server for which no connection has been established so far and establishing the connection to the slave fails, the plugin will return an error upon the next action on the failed connection, for example, when running a query. It is the responsibility of the application developer to handle the error. For example, the application can re-run the query to trigger a new server selection and callback invocation. If so, the callback must make sure to select a different slave, or check slave availability, before returning to the plugin to prevent an endless loop.
Example 21.280. Setting a callback
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
}
},
"filters": {
"user": {
"callback": "pick_server"
}
}
}
}
The callback is supposed to return a host to run the query on. The host URI is to be taken from the master and slave connection lists passed to the callback function. If callback returns a value neither found in the master nor in the slave connection lists the plugin will emit an error of the type E_RECOVERABLE_ERROR The error may read like (mysqlnd_ms) User filter callback has returned an unknown server. The server 'server that is not in master or slave list' can neither be found in the master list nor in the slave list. If the application catches the error to ignore it, follow up errors may be set on the connection handle, for example, (mysqlnd_ms) No connection selected by the last filter with the error code 2000 and the sqlstate HY000. Furthermore a warning may be emitted.
Referencing a non-existing function as a callback will result in any error of the type E_RECOVERABLE_ERROR whenever the plugin tries to callback function. The error message may reads like: (mysqlnd_ms) Specified callback (pick_server) is not a valid callback. If the application catches the error to ignore it, follow up errors may be set on the connection handle, for example, (mysqlnd_ms) Specified callback (pick_server) is not a valid callback with the error code 2000 and the sqlstate HY000. Furthermore a warning may be emitted.
The following parameters are passed from the plugin to the callback.
Parameter | Description | Version |
---|---|---|
connected_host | URI of the currently connected database server. | Since 1.1.0. |
query | Query string of the statement for which a server needs to be picked. | Since 1.1.0. |
masters | List of master servers to choose from. Note, that the list of master servers may not be identical to the list of configured master servers if the filter is not the first in the filter chain. Previously run filters may have reduced the master list already. | Since 1.1.0. |
slaves | List of slave servers to choose from. Note, that the list of master servers may not be identical to the list of configured master servers if the filter is not the first in the filter chain. Previously run filters may have reduced the master list already. | Since 1.1.0. |
last_used_connection | URI of the server of the connection used to execute the previous statement on. | Since 1.1.0. |
in_transaction | Boolean flag indicating whether the statement is part of an open transaction. If autocommit mode is turned off, this will be set to TRUE . Otherwise it is set to FALSE . Transaction detection is based on monitoring the mysqlnd library call set_autocommit. Monitoring is not possible before PHP 5.4.0. Please, see connection pooling and switching concepts discussion for further details. | Since 1.1.0. |
Example 21.281. Using a callback
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.2.27",
"port": "3306"
},
"slave_1": {
"host": "192.168.78.136",
"port": "3306"
}
},
"filters": {
"user": {
"callback": "pick_server"
}
}
}
}
<?php
function pick_server($connected, $query, $masters, $slaves, $last_used_connection, $in_transaction)
{
static $slave_idx = 0;
static $num_slaves = NULL;
if (is_null($num_slaves))
$num_slaves = count($slaves);
/* default: fallback to the plugins build-in logic */
$ret = NULL;
printf("User has connected to '%s'...\n", $connected);
printf("... deciding where to run '%s'\n", $query);
$where = mysqlnd_ms_query_is_select($query);
switch ($where)
{
case MYSQLND_MS_QUERY_USE_MASTER:
printf("... using master\n");
$ret = $masters[0];
break;
case MYSQLND_MS_QUERY_USE_SLAVE:
/* SELECT or SQL hint for using slave */
if (stristr($query, "FROM table_on_slave_a_only"))
{
/* a table which is only on the first configured slave */
printf("... access to table available only on slave A detected\n");
$ret = $slaves[0];
}
else
{
/* round robin */
printf("... some read-only query for a slave\n");
$ret = $slaves[$slave_idx++ % $num_slaves];
}
break;
case MYSQLND_MS_QUERY_LAST_USED:
printf("... using last used server\n");
$ret = $last_used_connection;
break;
}
printf("... ret = '%s'\n", $ret);
return $ret;
}
$mysqli = new mysqli("myapp", "root", "", "test");
if (!($res = $mysqli->query("SELECT 1 FROM DUAL")))
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
$res->close();
if (!($res = $mysqli->query("SELECT 2 FROM DUAL")))
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
$res->close();
if (!($res = $mysqli->query("SELECT * FROM table_on_slave_a_only")))
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
$res->close();
$mysqli->close();
?>
The above example will output:
User has connected to 'myapp'...
... deciding where to run 'SELECT 1 FROM DUAL'
... some read-only query for a slave
... ret = 'tcp://192.168.2.27:3306'
User has connected to 'myapp'...
... deciding where to run 'SELECT 2 FROM DUAL'
... some read-only query for a slave
... ret = 'tcp://192.168.78.136:3306'
User has connected to 'myapp'...
... deciding where to run 'SELECT * FROM table_on_slave_a_only'
... access to table available only on slave A detected
... ret = 'tcp://192.168.2.27:3306'
Filter: user_multi object
The user_multi differs from the user only in one aspect. Otherwise, their syntax is identical. The user filter must pick and return exactly one node for statement execution. A filter chain usually ends with a filter that emits only one node. The filter chain shall reduce the list of candidates for statement execution down to one. This, only one node left, is the case after the user filter has been run.
The user_multi filter is a multi filter. It returns a list of slave and a list of master servers. This list needs further filtering to identify exactly one node for statement execution. A multi filter is typically placed at the top of the filter chain. The quality_of_service filter is another example of a multi filter.
The return value of the callback set for user_multi must be an an array with two elements. The first element holds a list of selected master servers. The second element contains a list of selected slave servers. The lists shall contain the keys of the slave and master servers as found in the slave and master lists passed to the callback. The below example returns random master and slave lists extracted from the functions input.
Example 21.282. Returning random masters and slaves
<?php
function pick_server($connected, $query, $masters, $slaves, $last_used_connection, $in_transaction)
{
$picked_masters = array()
foreach ($masters as $key => $value) {
if (mt_rand(0, 2) > 1)
$picked_masters[] = $key;
}
$picked_slaves = array()
foreach ($slaves as $key => $value) {
if (mt_rand(0, 2) > 1)
$picked_slaves[] = $key;
}
return array($picked_masters, $picked_slaves);
}
?>
The plugin will issue an error of type E_RECOVERABLE if the callback fails to return a server list. The error may read (mysqlnd_ms) User multi filter callback has not returned a list of servers to use. The callback must return an array in %s on line %d. In case the server list is not empty but has invalid servers key/ids in it, an error of type E_RECOVERABLE will the thrown with an error message like (mysqlnd_ms) User multi filter callback has returned an invalid list of servers to use. Server id is negative in %s on line %d, or similar.
Whether an error is emitted in case of an empty slave or master list depends on the configuration. If an empty master list is returned for a write operation, it is likely that the plugin will emit a warning that may read (mysqlnd_ms) Couldn't find the appropriate master connection. 0 masters to choose from. Something is wrong in %s on line %d. Typically a follow up error of type E_ERROR will happen. In case of a read operation and an empty slave list the behavior depends on the fail over configuration. If fail over to master is enabled, no error should appear. If fail over to master is deactivated the plugin will emit a warning that may read (mysqlnd_ms) Couldn't find the appropriate slave connection. 0 slaves to choose from. Something is wrong in %s on line %d.
Filter: node_groups object
The node_groups filter lets you group cluster nodes and query selected groups, for example, to support data partitioning. Data partitioning can be required for manual sharding, primary copy based clusters running multiple masters, or to avoid hot spots in update everywhere clusters that have no built-in partitioning. The filter is a multi filter which returns zero, one or multiple of its input servers. Thus, it must be followed by other filters to reduce the number of candidates down to one for statement execution.
Keyword | Description | Version |
---|---|---|
user defined node group name | One or more node groups must be defined. A node group can have an arbitrary user defined name. The name is used in combination with a SQL hint to restrict query execution to the nodes listed for the node group. To run a query on any of the servers of a node group, the query must begin with the SQL hint /*user defined node group name*/. Please note, no white space is allowed around user defined node group name. Because user defined node group name is used as-is as part of a SQL hint, you should choose the name that is compliant with the SQL language. Each node group entry must contain a list of master servers. Additional slave servers are allowed. Failing to provide a list of master for a node group name_of_group may cause an error of type E_RECOVERABLE_ERROR like (mysqlnd_ms) No masters configured in node group 'name_of_group' for 'node_groups' filter. The list of master and slave servers must reference corresponding entries in the global master respectively slave server list. Referencing an unknown server in either of the both server lists may cause an E_RECOVERABLE_ERROR error like (mysqlnd_ms) Unknown master 'server_alias_name' (section 'name_of_group') in 'node_groups' filter configuration. Example 21.283. Manual partitioning
Please note, if a filter chain generates an empty slave list and the PHP configuration directive mysqlnd_ms.multi_master=0 is used, the plugin may emit a warning. | Since 1.5.0. |
Filter: quality_of_service object
The quality_of_service identifies cluster nodes capable of delivering a certain quality of service. It is a multi filter which returns zero, one or multiple of its input servers. Thus, it must be followed by other filters to reduce the number of candidates down to one for statement execution.
The quality_of_service filter has been introduced in 1.2.0-alpha. In the 1.2 series the filters focus is on the consistency aspect of service quality. Different types of clusters offer different default data consistencies. For example, an asynchronous MySQL replication slave offers eventual consistency. The slave may not be able to deliver requested data because it has not replicated the write, it may serve stale database because its lagging behind or it may serve current information. Often, this is acceptable. In some cases higher consistency levels are needed for the application to work correct. In those cases, the quality_of_service can filter out cluster nodes which cannot deliver the necessary quality of service.
The quality_of_service filter can be replaced or created at runtime. A successful call to mysqlnd_ms_set_qos removes all existing qos filter entries from the filter list and installs a new one at the very beginning. All settings that can be made through mysqlnd_ms_set_qos can also be in the plugins configuration file. However, use of the function is by far the most common use case. Instead of setting session consistency and strong consistency service levels in the plugins configuration file it is recommended to define only masters and no slaves. Both service levels will force the use of masters only. Using an empty slave list shortens the configuration file, thus improving readability. The only service level for which there is a case of defining in the plugins configuration file is the combination of eventual consistency and maximum slave lag.
Keyword | Description | Version |
---|---|---|
eventual_consistency | Request eventual consistency. Allows the use of all master and slave servers. Data returned may or may not be current. Eventual consistency accepts an optional age parameter. If age is given the plugin considers only slaves for reading for which MySQL replication reports a slave lag less or equal to age. The replication lag is measure using SHOW SLAVE STATUS. If the plugin fails to fetch the replication lag, the slave tested is skipped. Implementation details and tips are given in the quality of service concepts section. Please note, if a filter chain generates an empty slave list and the PHP configuration directive mysqlnd_ms.multi_master=0 is used, the plugin may emit a warning. Example 21.284. Global limit on slave lag
| Since 1.2.0. |
session_consistency | Request session consistency (read your writes). Allows use of all masters and all slaves which are in sync with the master. If no further parameters are given slaves are filtered out as there is no reliable way to test if a slave has caught up to the master or is lagging behind. Please note, if a filter chain generates an empty slave list and the PHP configuration directive mysqlnd_ms.multi_master=0 is used, the plugin may emit a warning. Session consistency temporarily requested using mysqlnd_ms_set_qos is a valuable alternative to using master_on_write. master_on_write is likely to send more statements to the master than needed. The application may be able to continue operation at a lower consistency level after it has done some critical reads. | Since 1.1.0. |
strong_consistency | Request strong consistency. Only masters will be used. | Since 1.2.0. |
failover Up to and including 1.3.x: string. Since 1.4.0: object.
Failover policy. Supported policies: disabled (default), master, loop_before_master (Since 1.4.0).
If no failover policy is set, the plugin will not do any automatic failover (failover=disabled). Whenever the plugin fails to connect a server it will emit a warning and set the connections error code and message. Thereafter it is up to the application to handle the error and, for example, resent the last statement to trigger the selection of another server.
Please note, the automatic failover logic is applied when opening connections only. Once a connection has been opened no automatic attempts are made to reopen it in case of an error. If, for example, the server a connection is connected to is shut down and the user attempts to run a statement on the connection, no automatic failover will be tried. Instead, an error will be reported.
If using failover=master the plugin will implicitly failover to a master, if available. Please check the concepts documentation to learn about potential pitfalls and risks of using failover=master.
Example 21.285. Optional master failover when failing to connect to slave (PECL/mysqlnd_ms < 1.4.0)
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
}
},
"failover": "master"
}
}
Since PECL/mysqlnd_ms 1.4.0 the failover configuration keyword refers to an object.
Example 21.286. New syntax since 1.4.0
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
}
},
"failover": {"strategy": "master" }
}
}
Keyword | Description | Version |
---|---|---|
strategy | Failover policy. Possible values: disabled (default), master, loop_before_master A value of disabled disables automatic failover. Setting master instructs the plugin to try to connect to a master in case of a slave connection error. If the master connection attempt fails, the plugin exists the failover loop and returns an error to the user. If using loop_before_master and a slave request is made, the plugin tries to connect to other slaves before failing over to a master. If multiple master are given and multi master is enabled, the plugin also loops over the list of masters and attempts to connect before returning an error to the user. | Since 1.4.0. |
remember_failed | Remember failures for the duration of a web request. Default: false. If set to true the plugin will remember failed hosts and skip the hosts in all future load balancing made for the duration of the current web request. | Since 1.4.0. The feature is only available together with the random and roundrobin load balancing filter. Use of the setting is recommended. |
max_retries | Maximum number of connection attempts before skipping host. Default: 0 (no limit). The setting is used to prevent hosts from being dropped of the host list upon the first failure. If set to n > 0, the plugin will keep the node in the node list even after a failed connection attempt. The node will not be removed immediately from the slave respectively master lists after the first connection failure but instead be tried to connect to up to n times in future load balancing rounds before being removed. | Since 1.4.0. The feature is only available together with the random and roundrobin load balancing filter. |
Setting failover to any other value but disabled, master or loop_before_master will not emit any warning or error.
lazy_connections bool
Controls the use of lazy connections. Lazy connections are connections which are not opened before the client sends the first connection. Lazy connections are a default.
It is strongly recommended to use lazy connections. Lazy connections help to keep the number of open connections low. If you disable lazy connections and, for example, configure one MySQL replication master server and two MySQL replication slaves, the plugin will open three connections upon the first call to a connect function although the application might use the master connection only.
Lazy connections bare a risk if you make heavy use of actions which change the state of a connection. The plugin does not dispatch all state changing actions to all connections from the connection pool. The few dispatched actions are applied to already opened connections only. Lazy connections opened in the future are not affected. Only some settings are "remembered" and applied when lazy connections are opened.
Example 21.287. Disabling lazy connection
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
}
},
"lazy_connections": 0
}
}
Please, see also server_charset to overcome potential problems with string escaping and servers using different default charsets.
server_charset string
The setting has been introduced in 1.4.0. It is recommended to set it if using lazy connections.
The server_charset setting serves two purposes. It acts as a fallback charset to be used for string escaping done before a connection has been established and it helps to avoid escaping pitfalls in heterogeneous environments which servers using different default charsets.
String escaping takes a connections charset into account. String escaping is not possible before a connection has been opened and the connections charset is known. The use of lazy connections delays the actual opening of connections until a statement is send.
An application using lazy connections may attempt to escape a string before sending a statement. In fact, this should be a common case as the statement string may contain the string that is to be escaped. However, due to the lazy connection feature no connection has been opened yet and escaping fails. The plugin may report an error of the type E_WARNING and a message like (mysqlnd_ms) string escaping doesn't work without established connection. Possible solution is to add server_charset to your configuration to inform you of the pitfall.
Setting server_charset makes the plugin use the given charset for string escaping done on lazy connection handles before establishing a network connection to MySQL. Furthermore, the plugin will enforce the use of the charset when the connection is established.
Enforcing the use of the configured charset used for escaping is done to prevent tapping into the pitfall of using a different charset for escaping than used later for the connection. This has the additional benefit of removing the need to align the charset configuration of all servers used. No matter what the default charset on any of the servers is, the plugin will set the configured one as a default.
The plugin does not stop the user from changing the charset at any time using the set_charset call or corresponding SQL statements. Please, note that the use of SQL is not recommended as it cannot be monitored by the plugin. The user can, for example, change the charset on a lazy connection handle after escaping a string and before the actual connection is opened. The charset set by the user will be used for any subsequent escaping before the connection is established. The connection will be established using the configured charset, no matter what the server charset is or what the user has set before. Once a connection has been opened, set_charset is of no meaning anymore.
Example 21.288. String escaping on a lazy connection handle
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
}
},
"lazy_connections": 1,
"server_charset" : "utf8"
}
}
<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
$mysqli->real_escape("this will be escaped using the server_charset setting - utf8");
$mysqli->set_charset("latin1");
$mysqli->real_escape("this will be escaped using latin1");
/* server_charset implicitly set - utf8 connection */
$mysqli->query("SELECT 'This connection will be set to server_charset upon establishing' AS _msg FROM DUAL");
/* latin1 used from now on */
$mysqli->set_charset("latin1");
?>
master_on_write bool
If set, the plugin will use the master server only after the first statement has been executed on the master. Applications can still send statements to the slaves using SQL hints to overrule the automatic decision.
The setting may help with replication lag. If an application runs an INSERT the plugin will, by default, use the master to execute all following statements, including SELECT statements. This helps to avoid problems with reads from slaves which have not replicated the INSERT yet.
Example 21.289. Master on write for consistent reads
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
}
},
"master_on_write": 1
}
}
Please, note the quality_of_service filter introduced in version 1.2.0-alpha. It gives finer control, for example, for achieving read-your-writes and, it offers additional functionality introducing service levels.
All transaction stickiness settings, including trx_stickiness=on, are overruled by master_on_write=1.
trx_stickiness string
Transaction stickiness policy. Supported policies: disabled (default), master.
The setting requires 5.4.0 or newer. If used with PHP older than 5.4.0, the plugin will emit a warning like (mysqlnd_ms) trx_stickiness strategy is not supported before PHP 5.3.99.
If no transaction stickiness policy is set or, if setting trx_stickiness=disabled, the plugin is not transaction aware. Thus, the plugin may load balance connections and switch connections in the middle of a transaction. The plugin is not transaction safe. SQL hints must be used avoid connection switches during a transaction.
As of PHP 5.4.0 the mysqlnd library allows the plugin to monitor the autocommit mode set by calls to the libraries set_autocommit() function. If setting set_stickiness=master and autocommit gets disabled by a PHP MySQL extension invoking the mysqlnd library internal function call set_autocommit(), the plugin is made aware of the begin of a transaction. Then, the plugin stops load balancing and directs all statements to the master server until autocommit is enabled. Thus, no SQL hints are required.
An example of a PHP MySQL API function calling the mysqlnd library internal function call set_autocommit() is mysqli_autocommit.
Although setting trx_stickiness=master, the plugin cannot be made aware of autocommit mode changes caused by SQL statements such as SET AUTOCOMMIT=0 or BEGIN.
As of PHP 5.5.0, the mysqlnd library features additional C API calls to control transactions. The level of control matches the one offered by SQL statements. The mysqli API has been modified to use these calls. Since version 1.5.0, PECL/mysqlnd_ms can monitor not only mysqli_autocommit, but also mysqli_begin, mysqli_commit and mysqli_rollback to detect transaction boundaries and stop load balancing for the duration of a transaction.
Example 21.290. Using master to execute transactions
{
"myapp": {
"master": {
"master_0": {
"host": "localhost"
}
},
"slave": {
"slave_0": {
"host": "192.168.78.136",
"port": "3306"
}
},
"trx_stickiness": "master"
}
}
Since version 1.5.0 automatic and silent failover is disabled for the duration of a transaction. If the boundaries of a transaction have been properly detected, transaction stickiness is enabled and a server fails, the plugin will not attempt to fail over to the next server, if any, regardless of the failover policy configured. The user must handle the error manually. Depending on the configuration, the plugin may emit an error of type E_WARNING reading like (mysqlnd_ms) Automatic failover is not permitted in the middle of a transaction. This error may then be overwritten by follow up errors such as (mysqlnd_ms) No connection selected by the last filter. Those errors will be generated by the failing query function.
Example 21.291. No automatic failover, error handling pitfall
<?php
/* assumption: automatic failover configured */
$mysqli = new mysqli("myapp", "username", "password", "database");
/* sets plugin internal state in_trx = 1 */
$mysqli->autocommit(false);
/* assumption: server fails */
if (!($res = $mysqli->query("SELECT 'Assume this query fails' AS _msg FROM DUAL"))) {
/* handle failure of transaction, plugin internal state is still in_trx = 1 */
printf("[%d] %s", $mysqli->errno, $mysqli->error);
/*
If using autocommit() based transaction detection it is a
MUST to call autocommit(true). Otherwise the plugin assumes
the current transaction continues and connection
changes remain forbidden.
*/
$mysqli->autocommit(true);
/* Likewise, you'll want to start a new transaction */
$mysqli->autocommit(false);
}
/* latin1 used from now on */
$mysqli->set_charset("latin1");
?>
If a server fails in the middle of a transaction the plugin continues to refuse to switch connections until the current transaction has been finished. Recall that the plugin monitors API calls to detect transaction boundaries. Thus, you have to, for example, enable auto commit mode to end the current transaction before the plugin continues load balancing and switches the server. Likewise, you will want to start a new transaction immediately thereafter and disable auto commit mode again.
Not handling failed queries and not ending a failed transaction using API calls may cause all following commands emit errors such as Commands out of sync; you can't run this command now. Thus, it is important to handle all errors.
21.9.6.6.5. Plugin configuration file (<= 1.0.x)
Copyright 1997-2012 the PHP Documentation Group.
Note
The below description applies to PECL/mysqlnd_ms < 1.1.0-beta. It is not valid for later versions.
The plugin is using its own configuration file. The configuration file holds information on the MySQL replication master server, the MySQL replication slave servers, the server pick (load balancing) policy, the failover strategy and the use of lazy connections.
The PHP configuration directive mysqlnd_ms.ini_file is used to set the plugins configuration file.
The configuration file mimics standard the php.ini format. It consists of one or more sections. Every section defines its own unit of settings. There is no global section for setting defaults.
Applications reference sections by their name. Applications use section names as the host (server) parameter to the various connect methods of the mysqli, mysql and PDO_MYSQL extensions. Upon connect the mysqlnd plugin compares the hostname with all section names from the plugin configuration file. If hostname and section name match, the plugin will load the sections settings.
Example 21.292. Using section names example
[myapp]
master[] = localhost
slave[] = 192.168.2.27
slave[] = 192.168.2.28:3306
[localhost]
master[] = localhost:/tmp/mysql/mysql.sock
slave[] = 192.168.3.24:3305
slave[] = 192.168.3.65:3309
<?php
/* All of the following connections will be load balanced */
$mysqli = new mysqli("myapp", "username", "password", "database");
$pdo = new PDO('mysql:host=myapp;dbname=database', 'username', 'password');
$mysql = mysql_connect("myapp", "username", "password");
$mysqli = new mysqli("localhost", "username", "password", "database");
?>
Section names are strings. It is valid to use a section name such as 192.168.2.1, 127.0.0.1 or localhost. If, for example, an application connects to localhost and a plugin configuration section [localhost] exists, the semantics of the connect operation are changed. The application will no longer only use the MySQL server running on the host localhost but the plugin will start to load balance MySQL queries following the rules from the [localhost] configuration section. This way you can load balance queries from an application without changing the applications source code.
The master[], slave[] and pick[] configuration directives use a list-like syntax. Configuration directives supporting list-like syntax may appear multiple times in a configuration section. The plugin maintains the order in which entries appear when interpreting them. For example, the below example shows two slave[] configuration directives in the configuration section [myapp]. If doing round-robin load balancing for read-only queries, the plugin will send the first read-only query to the MySQL server mysql_slave_1 because it is the first in the list. The second read-only query will be send to the MySQL server mysql_slave_2 because it is the second in the list. Configuration directives supporting list-like syntax result are ordered from top to bottom in accordance to their appearance within a configuration section.
Example 21.293. List-like syntax
[myapp]
master[] = mysql_master_server
slave[] = mysql_slave_1
slave[] = mysql_slave_2
Here is a short explanation of the configuration directives that can be used.
master[] string
URI of a MySQL replication master server. The URI follows the syntax hostname[:port|unix_domain_socket].
The plugin supports using only one master server.
Setting a master server is mandatory. The plugin will report a warning upon connect if the user has failed to provide a master server for a configuration section. The warning may read (mysqlnd_ms) Cannot find master section in config. Furthermore the plugin may set an error code for the connection handle such as HY000/2000 (CR_UNKNOWN_ERROR). The corresponding error message depends on your language settings.
slave[] string
URI of one or more MySQL replication slave servers. The URI follows the syntax hostname[:port|unix_domain_socket].
The plugin supports using one or more slave servers.
Setting a slave server is mandatory. The plugin will report a warning upon connect if the user has failed to provide at least one slave server for a configuration section. The warning may read (mysqlnd_ms) Cannot find slaves section in config. Furthermore the plugin may set an error code for the connection handle such as HY000/2000 (CR_UNKNOWN_ERROR). The corresponding error message depends on your language settings.
pick[] string
Load balancing (server picking) policy. Supported policies: random, random_once (default), roundrobin, user.
If no load balancing policy is set, the plugin will default to random_once. The random_once policy picks a random slave server when running the first read-only statement. The slave server will be used for all read-only statements until the PHP script execution ends.
The random policy will pick a random server whenever a read-only statement is to be executed.
If using roundrobin the plugin iterates over the list of configured slave servers to pick a server for statement execution. If the plugin reaches the end of the list, it wraps around to the beginning of the list and picks the first configured slave server.
Setting more than one load balancing policy for a configuration section makes only sense in conjunction with user and mysqlnd_ms_set_user_pick_server. If the user defined callback fails to pick a server, the plugin falls back to the second configured load balancing policy.
failover string
Failover policy. Supported policies: disabled (default), master.
If no failover policy is set, the plugin will not do any automatic failover (failover=disabled). Whenever the plugin fails to connect a server it will emit a warning and set the connections error code and message. Thereafter it is up to the application to handle the error and, for example, resent the last statement to trigger the selection of another server.
If using failover=master the plugin will implicitly failover to a slave, if available. Please check the concepts documentation to learn about potential pitfalls and risks of using failover=master.
lazy_connections bool
Controls the use of lazy connections. Lazy connections are connections which are not opened before the client sends the first connection.
It is strongly recommended to use lazy connections. Lazy connections help to keep the number of open connections low. If you disable lazy connections and, for example, configure one MySQL replication master server and two MySQL replication slaves, the plugin will open three connections upon the first call to a connect function although the application might use the master connection only.
Lazy connections bare a risk if you make heavy use of actions which change the state of a connection. The plugin does not dispatch all state changing actions to all connections from the connection pool. The few dispatched actions are applied to already opened connections only. Lazy connections opened in the future are not affected. If, for example, the connection character set is changed using a PHP MySQL API call, the plugin will change the character set of all currently opened connection. It will not remember the character set change to apply it on lazy connections opened in the future. As a result the internal connection pool would hold connections using different character sets. This is not desired. Remember that character sets are taken into account for escaping.
master_on_write bool
If set, the plugin will use the master server only after the first statement has been executed on the master. Applications can still send statements to the slaves using SQL hints to overrule the automatic decision.
The setting may help with replication lag. If an application runs an INSERT the plugin will, by default, use the master to execute all following statements, including SELECT statements. This helps to avoid problems with reads from slaves which have not replicated the INSERT yet.
trx_stickiness string
Transaction stickiness policy. Supported policies: disabled (default), master.
Experimental feature.
The setting requires 5.4.0 or newer. If used with PHP older than 5.4.0, the plugin will emit a warning like (mysqlnd_ms) trx_stickiness strategy is not supported before PHP 5.3.99.
If no transaction stickiness policy is set or, if setting trx_stickiness=disabled, the plugin is not transaction aware. Thus, the plugin may load balance connections and switch connections in the middle of a transaction. The plugin is not transaction safe. SQL hints must be used avoid connection switches during a transaction.
As of PHP 5.4.0 the mysqlnd library allows the plugin to monitor the autocommit mode set by calls to the libraries trx_autocommit() function. If setting trx_stickiness=master and autocommit gets disabled by a PHP MySQL extension invoking the mysqlnd library internal function call trx_autocommit(), the plugin is made aware of the begin of a transaction. Then, the plugin stops load balancing and directs all statements to the master server until autocommit is enabled. Thus, no SQL hints are required.
An example of a PHP MySQL API function calling the mysqlnd library internal function call trx_autocommit() is mysqli_autocommit.
Although setting trx_stickiness=master, the plugin cannot be made aware of autocommit mode changes caused by SQL statements such as SET AUTOCOMMIT=0.
21.9.6.6.6. Testing
Copyright 1997-2012 the PHP Documentation Group.
Note
The section applies to mysqlnd_ms 1.1.0 or newer, not the 1.0 series.
The PECL/mysqlnd_ms test suite is in the tests/ directory of the source distribution. The test suite consists of standard phpt tests, which are described on the PHP Quality Assurance Teams website.
Running the tests requires setting up one to four MySQL servers. Some tests don't connect to MySQL at all. Others require one server for testing. Some require two distinct servers. In some cases two servers are used to emulate a replication setup. In other cases a master and a slave of an existing MySQL replication setup are required for testing. The tests will try to detect how many servers and what kind of servers are given. If the required servers are not found, the test will be skipped automatically.
Before running the tests, edit tests/config.inc to configure the MySQL servers to be used for testing.
The most basic configuration is as follows.
putenv("MYSQL_TEST_HOST=localhost");
putenv("MYSQL_TEST_PORT=3306");
putenv("MYSQL_TEST_USER=root");
putenv("MYSQL_TEST_PASSWD=");
putenv("MYSQL_TEST_DB=test");
putenv("MYSQL_TEST_ENGINE=MyISAM");
putenv("MYSQL_TEST_SOCKET=");
putenv("MYSQL_TEST_SKIP_CONNECT_FAILURE=1");
putenv("MYSQL_TEST_CONNECT_FLAGS=0");
putenv("MYSQL_TEST_EXPERIMENTAL=0");
/* replication cluster emulation */
putenv("MYSQL_TEST_EMULATED_MASTER_HOST=". getenv("MYSQL_TEST_HOST"));
putenv("MYSQL_TEST_EMULATED_SLAVE_HOST=". getenv("MYSQL_TEST_HOST"));
/* real replication cluster */
putenv("MYSQL_TEST_MASTER_HOST=". getenv("MYSQL_TEST_EMULATED_MASTER_HOST"));
putenv("MYSQL_TEST_SLAVE_HOST=". getenv("MYSQL_TEST_EMULATED_SLAVE_HOST"));
MYSQL_TEST_HOST, MYSQL_TEST_PORT and MYSQL_TEST_SOCKET define the hostname, TCP/IP port and Unix domain socket of the default database server. MYSQL_TEST_USER and MYSQL_TEST_PASSWD contain the user and password needed to connect to the database/schema configured with MYSQL_TEST_DB. All configured servers must have the same database user configured to give access to the test database.
Using host, host:port or host:/path/to/socket syntax one can set an alternate host, host and port or host and socket for any of the servers.
putenv("MYSQL_TEST_SLAVE_HOST=192.168.78.136:3307"));
putenv("MYSQL_TEST_MASTER_HOST=myserver_hostname:/path/to/socket"));
21.9.6.6.7. Debugging and Tracing
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd debug log can be used to debug and trace the actitivities of PECL/mysqlnd_ms. As a mysqlnd PECL/mysqlnd_ms adds trace information to the mysqlnd library debug file. Please, see the mysqlnd.debug PHP configuration directive documentation for a detailed description on how to configure the debug log.
Configuration setting example to activate the debug log:
mysqlnd.debug=d:t:x:O,/tmp/mysqlnd.trace
The debug log shows mysqlnd library and PECL/mysqlnd_ms plugin function calls, similar to a trace log. Mysqlnd library calls are usually prefixed with mysqlnd_. PECL/mysqlnd internal calls begin with mysqlnd_ms.
Example excerpt from the debug log (connect):
[...]
>mysqlnd_connect
| info : host=myapp user=root db=test port=3306 flags=131072
| >mysqlnd_ms::connect
| | >mysqlnd_ms_config_json_section_exists
| | | info : section=[myapp] len=[5]
| | | >mysqlnd_ms_config_json_sub_section_exists
| | | | info : section=[myapp] len=[5]
| | | | info : ret=1
| | | <mysqlnd_ms_config_json_sub_section_exists
| | | info : ret=1
| | <mysqlnd_ms_config_json_section_exists
[...]
The debug log is not only useful for plugin developers but also to find the cause of user errors. For example, if your application does not do proper error handling and fails to record error messages, checking the debug and trace log may help finding the cause. Use of the debug log to debug application issues should be considered only if no other option is available. Writing the debug log to disk is a slow operation and may have negative impact on the application performance.
Example excerpt from the debug log (connection failure):
[...]
| | | | | | | info : adding error [Access denied for user 'root'@'localhost' (using password: YES)] to the list
| | | | | | | info : PACKET_FREE(0)
| | | | | | | info : PACKET_FREE(0x7f3ef6323f50)
| | | | | | | info : PACKET_FREE(0x7f3ef6324080)
| | | | | | <mysqlnd_auth_handshake
| | | | | | info : switch_to_auth_protocol=n/a
| | | | | | info : conn->error_info.error_no = 1045
| | | | | <mysqlnd_connect_run_authentication
| | | | | info : PACKET_FREE(0x7f3ef63236d8)
| | | | | >mysqlnd_conn::free_contents
| | | | | | >mysqlnd_net::free_contents
| | | | | | <mysqlnd_net::free_contents
| | | | | | info : Freeing memory of members
| | | | | | info : scheme=unix:///tmp/mysql.sock
| | | | | | >mysqlnd_error_list_pdtor
| | | | | | <mysqlnd_error_list_pdtor
| | | | | <mysqlnd_conn::free_contents
| | | | <mysqlnd_conn::connect
[...]
The trace log can also be used to verify correct behaviour of PECL/mysqlnd_ms itself, for example, to check which server has been selected for query execution and why.
Example excerpt from the debug log (plugin decision):
[...]
>mysqlnd_ms::query
| info : query=DROP TABLE IF EXISTS test
| >_mysqlnd_plugin_get_plugin_connection_data
| | info : plugin_id=5
| <_mysqlnd_plugin_get_plugin_connection_data
| >mysqlnd_ms_pick_server_ex
| | info : conn_data=0x7fb6a7d3e5a0 *conn_data=0x7fb6a7d410d0
| | >mysqlnd_ms_select_servers_all
| | <mysqlnd_ms_select_servers_all
| | >mysqlnd_ms_choose_connection_rr
| | | >mysqlnd_ms_query_is_select
[...]
| | | <mysqlnd_ms_query_is_select
[...]
| | | info : Init the master context
| | | info : list(0x7fb6a7d3f598) has 1
| | | info : Using master connection
| | | >mysqlnd_ms_advanced_connect
| | | | >mysqlnd_conn::connect
| | | | | info : host=localhost user=root db=test port=3306 flags=131072 persistent=0 state=0
In this case the statement DROP TABLE IF EXISTS test has been executed. Note that the statement string is shown in the log file. You may want to take measures to restrict access to the log for security considerations.
The statement has been load balanced using round robin policy, as you can easily guess from the functions name >mysqlnd_ms_choose_connection_rr. It has been sent to a master server running on host=localhost user=root db=test port=3306 flags=131072 persistent=0 state=0.
21.9.6.6.8. Monitoring
Copyright 1997-2012 the PHP Documentation Group.
Plugin activity can be monitored using the mysqlnd trace log, mysqlnd statistics, mysqlnd_ms plugin statistics and external PHP debugging tools. Use of the trace log should be limited to debugging. It is recommended to use the plugins statistics for monitoring.
Writing a trace log is a slow operation. If using an external PHP debugging tool, please refer to the vendors manual about its performance impact and the type of information collected. In many cases, external debugging tools will provide call stacks. Often, a call stack or a trace log is more difficult to interpret than the statistics provided by the plugin.
Plugin statistics tell how often which kind of cluster node has been used (slave or master), why the node was used, if lazy connections have been used and if global transaction ID injection has been performed. The monitoring information provided enables user to verify plugin decisions and to plan their cluster resources based on usage pattern. The function mysqlnd_ms_get_stats is used to access the statistics. Please, see the functions description for a list of available statistics.
Statistics are collected on a per PHP process basis. Their scope is a PHP process. Depending on the PHP deployment model a process may serve one or multiple web requests. If using CGI model, a PHP process serves one web request. If using FastCGI or pre-fork web server models, a PHP process usually serves multiple web requests. The same is the case with a threaded web server. Please, note that threads running in parallel can update the statistics in parallel. Thus, if using a threaded PHP deployment model, statistics can be changed by more than one script at a time. A script cannot rely on the fact that it sees only its own changes to statistics.
Example 21.294. Verify plugin activity in a non-threaded deployment model
mysqlnd_ms.enable=1
mysqlnd_ms.collect_statistics=1
<?php
/* Load balanced following "myapp" section rules from the plugins config file (not shown) */
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno())
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
$stats_before = mysqlnd_ms_get_stats();
if ($res = $mysqli->query("SELECT 'Read request' FROM DUAL")) {
var_dump($res->fetch_all());
}
$stats_after = mysqlnd_ms_get_stats();
if ($stats_after['use_slave'] <= $stats_before['use_slave']) {
echo "According to the statistics the read request has not been run on a slave!";
}
?>
Statistics are aggregated for all plugin activities and all connections handled by the plugin. It is not possible to tell how much a certain connection handle has contributed to the overall statistics.
Utilizing PHPs register_shutdown_function function or the auto_append_file PHP configuration directive it is easily possible to dump statistics into, for example, a log file when a script finishes. Instead of using a log file it is also possible to send the statistics to an external monitoring tool for recording and display.
Example 21.295. Recording statistics during shutdown
mysqlnd_ms.enable=1
mysqlnd_ms.collect_statistics=1
error_log=/tmp/php_errors.log
<?php
function check_stats() {
$msg = str_repeat("-", 80) . "\n";
$msg .= var_export(mysqlnd_ms_get_stats(), true) . "\n";
$msg .= str_repeat("-", 80) . "\n";
error_log($msg);
}
register_shutdown_function("check_stats");
?>
21.9.6.7. Predefined Constants
Copyright 1997-2012 the PHP Documentation Group.
The constants below are defined by this extension, and will only be available when the extension has either been compiled into PHP or dynamically loaded at runtime.
SQL hint related
Example 21.296. Example demonstrating the usage of mysqlnd_ms constants
The mysqlnd replication and load balancing plugin (mysqlnd_ms) performs read/write splitting. This directs write queries to a MySQL master server, and read-only queries to the MySQL slave servers. The plugin has a built-in read/write split logic. All queries which start with SELECT are considered read-only queries, which are then sent to a MySQL slave server that is listed in the plugin configuration file. All other queries are directed to the MySQL master server that is also specified in the plugin configuration file.
User supplied SQL hints can be used to overrule automatic read/write splitting, to gain full control on the process. SQL hints are standards compliant SQL comments. The plugin will scan the beginning of a query string for an SQL comment for certain commands, which then control query redirection. Other systems involved in the query processing are unaffected by the SQL hints because other systems will ignore the SQL comments.
The plugin supports three SQL hints to direct queries to either the MySQL slave servers, the MySQL master server, or the last used MySQL server. SQL hints must be placed at the beginning of a query to be recognized by the plugin.
For better portability, it is recommended to use the string constants MYSQLND_MS_MASTER_SWITCH , MYSQLND_MS_SLAVE_SWITCH and MYSQLND_MS_LAST_USED_SWITCH instead of their literal values.
<?php
/* Use constants for maximum portability */
$master_query = "/*" . MYSQLND_MS_MASTER_SWITCH . "*/SELECT id FROM test";
/* Valid but less portable: using literal instead of constant */
$slave_query = "/*ms=slave*/SHOW TABLES";
printf("master_query = '%s'\n", $master_query);
printf("slave_query = '%s'\n", $slave_query);
?>
The above examples will output:
master_query = /*ms=master*/SELECT id FROM test
slave_query = /*ms=slave*/SHOW TABLES
MYSQLND_MS_MASTER_SWITCH (string)
SQL hint used to send a query to the MySQL replication master server.
MYSQLND_MS_SLAVE_SWITCH (string)
SQL hint used to send a query to one of the MySQL replication slave servers.
MYSQLND_MS_LAST_USED_SWITCH (string)
SQL hint used to send a query to the last used MySQL server. The last used MySQL server can either be a master or a slave server in a MySQL replication setup.
mysqlnd_ms_query_is_select related
MYSQLND_MS_QUERY_USE_MASTER (integer)
If mysqlnd_ms_is_select returns MYSQLND_MS_QUERY_USE_MASTER for a given query, the built-in read/write split mechanism recommends sending the query to a MySQL replication master server.
MYSQLND_MS_QUERY_USE_SLAVE (integer)
If mysqlnd_ms_is_select returns MYSQLND_MS_QUERY_USE_SLAVE for a given query, the built-in read/write split mechanism recommends sending the query to a MySQL replication slave server.
MYSQLND_MS_QUERY_USE_LAST_USED (integer)
If mysqlnd_ms_is_select returns MYSQLND_MS_QUERY_USE_LAST_USED for a given query, the built-in read/write split mechanism recommends sending the query to the last used server.
mysqlnd_ms_set_qos, quality of service filter and service level related
MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL (integer)
Use to request the service level eventual consistency from the mysqlnd_ms_set_qos. Eventual consistency is the default quality of service when reading from an asynchronous MySQL replication slave. Data returned in this service level may or may not be stale, depending on whether the selected slaves happen to have replicated the latest changes from the MySQL replication master or not.
MYSQLND_MS_QOS_CONSISTENCY_SESSION (integer)
Use to request the service level session consistency from the mysqlnd_ms_set_qos. Session consistency is defined as read your writes. The client is guaranteed to see his latest changes.
MYSQLND_MS_QOS_CONSISTENCY_STRONG (integer)
Use to request the service level strong consistency from the mysqlnd_ms_set_qos. Strong consistency is used to ensure all clients see each others changes.
MYSQLND_MS_QOS_OPTION_GTID (integer)
Used as a service level option with mysqlnd_ms_set_qos to parameterize session consistency.
MYSQLND_MS_QOS_OPTION_AGE (integer)
Used as a service level option with mysqlnd_ms_set_qos to parameterize eventual consistency.
Other
The plugins version number can be obtained using MYSQLND_MS_VERSION or MYSQLND_MS_VERSION_ID . MYSQLND_MS_VERSION is the string representation of the numerical version number MYSQLND_MS_VERSION_ID , which is an integer such as 10000. Developers can calculate the version number as follows.
Version (part) | Example |
---|---|
Major*10000 | 1*10000 = 10000 |
Minor*100 | 0*100 = 0 |
Patch | 0 = 0 |
MYSQLND_MS_VERSION_ID | 10000 |
MYSQLND_MS_VERSION (string)
Plugin version string, for example, “1.0.0-prototype”.
MYSQLND_MS_VERSION_ID (integer)
Plugin version number, for example, 10000.
21.9.6.8. Mysqlnd_ms Functions
Copyright 1997-2012 the PHP Documentation Group.
21.9.6.8.1. mysqlnd_ms_get_last_gtid
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_ms_get_last_gtid
Returns the latest global transaction ID
Description
string mysqlnd_ms_get_last_gtid(mixed connection);
Returns a global transaction identifier which belongs to a write operation no older than the last write performed by the client. It is not guaranteed that the global transaction identifier is identical to that one created for the last write transaction performed by the client.
Parameters
connection
A PECL/mysqlnd_ms connection handle to a MySQL server of the type PDO_MYSQL, mysqli> or ext/mysql. The connection handle is obtained when opening a connection with a host name that matches a mysqlnd_ms configuration file entry using any of the above three MySQL driver extensions.
Return Values
Returns a global transaction ID (GTID) on success. Otherwise, returns FALSE .
The function mysqlnd_ms_get_last_gtid returns the GTID obtained when executing the SQL statement from the fetch_last_gtid entry of the global_transaction_id_injection section from the plugins configuration file.
The function may be called after the GTID has been incremented.
Notes
Note
mysqlnd_ms_get_last_gtid requires PHP >= 5.4.0 and PECL mysqlnd_ms >= 1.2.0. Internally, it is using a mysqlnd library C functionality not available with PHP 5.3.
Examples
Example 21.297. mysqlnd_ms_get_last_gtid example
<?php
/* Open mysqlnd_ms connection using mysqli, PDO_MySQL or mysql extension */
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("DROP TABLE IF EXISTS test"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
printf("GTID after transaction %s\n", mysqlnd_ms_get_last_gtid($mysqli));
/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("CREATE TABLE test(id INT)"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
printf("GTID after transaction %s\n", mysqlnd_ms_get_last_gtid($mysqli));
?>
See Also
Global Transaction IDs |
21.9.6.8.2. mysqlnd_ms_get_last_used_connection
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_ms_get_last_used_connection
Returns an array which describes the last used connection
Description
array mysqlnd_ms_get_last_used_connection(mixed connection);
Returns an array which describes the last used connection from the plugins connection pool currently pointed to by the user connection handle. If using the plugin, a user connection handle represents a pool of database connections. It is not possible to tell from the user connection handles properties to which database server from the pool the user connection handle points.
The function can be used to debug or monitor PECL mysqlnd_ms.
Parameters
connection
A MySQL connection handle obtained from any of the connect functions of the mysqli, mysql or PDO_MYSQL extensions.
Return Values
FALSE on error. Otherwise, an array which describes the connection used to execute the last statement on.
Array which describes the connection.
Property | Description | Version |
---|---|---|
scheme | Connection scheme. Either tcp://host:port or unix://host:socket. If you want to distinguish connections from each other use a combination of scheme and thread_id as a unique key. Neither scheme nor thread_id alone are sufficient to distinguish two connections from each other. Two servers may assign the same thread_id to two different connections. Thus, connections in the pool may have the same thread_id. Also, do not rely on uniqueness of scheme in a pool. Your QA engineers may use the same MySQL server instance for two distinct logical roles and add it multiple times to the pool. This hack is used, for example, in the test suite. | Since 1.1.0. |
host | Database server host used with the connection. The host is only set with TCP/IP connections. It is empty with Unix domain or Windows named pipe connections, | Since 1.1.0. |
host_info | A character string representing the server hostname and the connection type. | Since 1.1.2. |
port | Database server port used with the connection. | Since 1.1.0. |
socket_or_pipe | Unix domain socket or Windows named pipe used with the connection. The value is empty for TCP/IP connections. | Since 1.1.2. |
thread_id | Connection thread id. | Since 1.1.0. |
last_message | Info message obtained from the MySQL C API function mysql_info(). Please, see mysqli_info for a description. | Since 1.1.0. |
errno | Error code. | Since 1.1.0. |
error | Error message. | Since 1.1.0. |
sqlstate | Error SQLstate code. | Since 1.1.0. |
Notes
Note
mysqlnd_ms_get_last_used_connection requires PHP >= 5.4.0 and PECL mysqlnd_ms >> 1.1.0. Internally, it is using a mysqlnd library C call not available with PHP 5.3.
Examples
The example assumes that myapp refers to a plugin configuration file section and represents a connection pool.
Example 21.298. mysqlnd_ms_get_last_used_connection example
<?php
$link = new mysqli("myapp", "user", "password", "database");
$res = $link->query("SELECT 1 FROM DUAL");
var_dump(mysqlnd_ms_get_last_used_connection($link));
?>
The above example will output:
array(10) {
["scheme"]=>
string(22) "unix:///tmp/mysql.sock"
["host_info"]=>
string(25) "Localhost via UNIX socket"
["host"]=>
string(0) ""
["port"]=>
int(3306)
["socket_or_pipe"]=>
string(15) "/tmp/mysql.sock"
["thread_id"]=>
int(46253)
["last_message"]=>
string(0) ""
["errno"]=>
int(0)
["error"]=>
string(0) ""
["sqlstate"]=>
string(5) "00000"
}
21.9.6.8.3. mysqlnd_ms_get_stats
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_ms_get_stats
Returns query distribution and connection statistics
Description
array mysqlnd_ms_get_stats();
Returns an array of statistics collected by the replication and load balancing plugin.
The PHP configuration setting mysqlnd_ms.collect_statistics controls the collection of statistics. The collection of statistics is disabled by default for performance reasons.
The scope of the statistics is the PHP process. Depending on your deployment model a PHP process may handle one or multiple requests.
Statistics are aggregated for all connections and all storage handler. It is not possible to tell how much queries originating from mysqli, PDO_MySQL or mysql API calls have contributed to the aggregated data values.
Parameters
This function has no parameters.
Return Values
Returns NULL if the PHP configuration directive mysqlnd_ms.enable has disabled the plugin. Otherwise, returns array of statistics.
Array of statistics
Statistic | Description | Version |
---|---|---|
use_slave | The semantics of this statistic has changed between 1.0.1 - 1.1.0. The meaning for version 1.0.1 is as follows. Number of statements considered as read-only by the built-in query analyzer. Neither statements which begin with a SQL hint to force use of slave nor statements directed to a slave by an user-defined callback are included. The total number of statements sent to the slaves is use_slave + use_slave_sql_hint + use_slave_callback. PECL/mysqlnd_ms 1.1.0 introduces a new concept of chained filters. The statistics is now set by the internal load balancing filter. With version 1.1.0 the load balancing filter is always the last in the filter chain, if used. In future versions a load balancing filter may be followed by other filters causing another change in the meaning of the statistic. If, in the future, a load balancing filter is followed by another filter it is no longer guaranteed that the statement, which increments use_slave, will be executed on the slaves. The meaning for version 1.1.0 is as follows. Number of statements sent to the slaves. Statements directed to a slave by the user filter (an user-defined callback) are not included. The latter are counted by use_slave_callback. | Since 1.0.0. |
use_master | The semantics of this statistic has changed between 1.0.1 - 1.1.0. The meaning for version 1.0.1 is as follows. Number of statements not considered as read-only by the built-in query analyzer. Neither statements which begin with a SQL hint to force use of master nor statements directed to a master by an user-defined callback are included. The total number of statements sent to the master is use_master + use_master_sql_hint + use_master_callback. PECL/mysqlnd_ms 1.1.0 introduces a new concept of chained filters. The statictics is now set by the internal load balancing filter. With version 1.1.0 the load balancing filter is always the last in the filter chain, if used. In future versions a load balancing filter may be followed by other filters causing another change in the meaning of the statistic. If, in the future, a load balancing filter is followed by another filter it is no longer guaranteed that the statement, which increments use_master, will be executed on the slaves. The meaning for version 1.1.0 is as follows. Number of statements sent to the masters. Statements directed to a master by the user filter (an user-defined callback) are not included. The latter are counted by use_master_callback. | Since 1.0.0. |
use_slave_guess | Number of statements the built-in query analyzer recommends sending to a slave because they contain no SQL hint to force use of a certain server. The recommendation may be overruled in the following. It is not guaranteed whether the statement will be executed on a slave or not. This is how often the internal is_select function has guessed that a slave shall be used. Please, see also the user space function mysqlnd_ms_query_is_select. | Since 1.1.0. |
use_master_guess | Number of statements the built-in query analyzer recommends sending to a master because they contain no SQL hint to force use of a certain server. The recommendation may be overruled in the following. It is not guaranteed whether the statement will be executed on a slave or not. This is how often the internal is_select function has guessed that a master shall be used. Please, see also the user space function mysqlnd_ms_query_is_select. | Since 1.1.0. |
use_slave_sql_hint | Number of statements sent to a slave because statement begins with the SQL hint to force use of slave. | Since 1.0.0. |
use_master_sql_hint | Number of statements sent to a master because statement begins with the SQL hint to force use of master. | Since 1.0.0. |
use_last_used_sql_hint | Number of statements sent to server which has run the previous statement, because statement begins with the SQL hint to force use of previously used server. | Since 1.0.0. |
use_slave_callback | Number of statements sent to a slave because an user-defined callback has chosen a slave server for statement execution. | Since 1.0.0. |
use_master_callback | Number of statements sent to a master because an user-defined callback has chosen a master server for statement execution. | Since 1.0.0. |
non_lazy_connections_slave_success | Number of successfully opened slave connections from configurations not using lazy connections. The total number of successfully opened slave connections is non_lazy_connections_slave_success + lazy_connections_slave_success | Since 1.0.0. |
non_lazy_connections_slave_failure | Number of failed slave connection attempts from configurations not using lazy connections. The total number of failed slave connection attempts is non_lazy_connections_slave_failure + lazy_connections_slave_failure | Since 1.0.0. |
non_lazy_connections_master_success | Number of successfully opened master connections from configurations not using lazy connections. The total number of successfully opened master connections is non_lazy_connections_master_success + lazy_connections_master_success | Since 1.0.0. |
non_lazy_connections_master_failure | Number of failed master connection attempts from configurations not using lazy connections. The total number of failed master connection attempts is non_lazy_connections_master_failure + lazy_connections_master_failure | Since 1.0.0. |
lazy_connections_slave_success | Number of successfully opened slave connections from configurations using lazy connections. | Since 1.0.0. |
lazy_connections_slave_failure | Number of failed slave connection attempts from configurations using lazy connections. | Since 1.0.0. |
lazy_connections_master_success | Number of successfully opened master connections from configurations using lazy connections. | Since 1.0.0. |
lazy_connections_master_failure | Number of failed master connection attempts from configurations using lazy connections. | Since 1.0.0. |
trx_autocommit_on | Number of autocommit mode activations via API calls. This figure may be used to monitor activity related to the plugin configuration setting trx_stickiness. If, for example, you want to know if a certain API call invokes the mysqlnd library function trx_autocommit(), which is a requirement for trx_stickiness, you may call the user API function in question and check if the statistic has changed. The statistic is modified only by the plugins internal subclassed trx_autocommit() method. | Since 1.0.0. |
trx_autocommit_off | Number of autocommit mode deactivations via API calls. | Since 1.0.0. |
trx_master_forced | Number of statements redirected to the master while trx_stickiness=master and autocommit mode is disabled. | Since 1.0.0. |
gtid_autocommit_injections_success | Number of successful SQL injections in autocommit mode as part of the plugins client-side global transaction id emulation. | Since 1.2.0. |
gtid_autocommit_injections_failure | Number of failed SQL injections in autocommit mode as part of the plugins client-side global transaction id emulation. | Since 1.2.0. |
gtid_commit_injections_success | Number of successful SQL injections in commit mode as part of the plugins client-side global transaction id emulation. | Since 1.2.0. |
gtid_commit_injections_failure | Number of failed SQL injections in commit mode as part of the plugins client-side global transaction id emulation. | Since 1.2.0. |
gtid_implicit_commit_injections_success | Number of successful SQL injections when implicit commit is detected as part of the plugins client-side global transaction id emulation. Implicit commit happens, for example, when autocommit has been turned off, a query is executed and autocommit is enabled again. In that case, the statement will be committed by the server and SQL to maintain is injected before the autocommit is re-enabled. Another sequence causing an an implicit commit is begin(), query(), begin(). The second call to begin() will implicitly commit the transaction started by the first call to begin(). begin() refers to internal library calls not actual PHP user API calls. | Since 1.2.0. |
gtid_implicit_commit_injections_failure | Number of failed SQL injections when implicit commit is detected as part of the plugins client-side global transaction id emulation. Implicit commit happens, for example, when autocommit has been turned off, a query is executed and autocommit is enabled again. In that case, the statement will be committed by the server and SQL to maintain is injected before the autocommit is re-enabled. | Since 1.2.0. |
Examples
Example 21.299. mysqlnd_ms_get_stats example
<?php
printf("mysqlnd_ms.enable = %d\n", ini_get("mysqlnd_ms.enable"));
printf("mysqlnd_ms.collect_statistics = %d\n", ini_get("mysqlnd_ms.collect_statistics"));
var_dump(mysqlnd_ms_get_stats());
?>
The above example will output:
mysqlnd_ms.enable = 1
mysqlnd_ms.collect_statistics = 1
array(26) {
["use_slave"]=>
string(1) "0"
["use_master"]=>
string(1) "0"
["use_slave_guess"]=>
string(1) "0"
["use_master_guess"]=>
string(1) "0"
["use_slave_sql_hint"]=>
string(1) "0"
["use_master_sql_hint"]=>
string(1) "0"
["use_last_used_sql_hint"]=>
string(1) "0"
["use_slave_callback"]=>
string(1) "0"
["use_master_callback"]=>
string(1) "0"
["non_lazy_connections_slave_success"]=>
string(1) "0"
["non_lazy_connections_slave_failure"]=>
string(1) "0"
["non_lazy_connections_master_success"]=>
string(1) "0"
["non_lazy_connections_master_failure"]=>
string(1) "0"
["lazy_connections_slave_success"]=>
string(1) "0"
["lazy_connections_slave_failure"]=>
string(1) "0"
["lazy_connections_master_success"]=>
string(1) "0"
["lazy_connections_master_failure"]=>
string(1) "0"
["trx_autocommit_on"]=>
string(1) "0"
["trx_autocommit_off"]=>
string(1) "0"
["trx_master_forced"]=>
string(1) "0"
["gtid_autocommit_injections_success"]=>
string(1) "0"
["gtid_autocommit_injections_failure"]=>
string(1) "0"
["gtid_commit_injections_success"]=>
string(1) "0"
["gtid_commit_injections_failure"]=>
string(1) "0"
["gtid_implicit_commit_injections_success"]=>
string(1) "0"
["gtid_implicit_commit_injections_failure"]=>
string(1) "0"
}
See Also
Runtime configuration |
mysqlnd_ms.collect_statistics |
mysqlnd_ms.enable |
Monitoring |
21.9.6.8.4. mysqlnd_ms_match_wild
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_ms_match_wild
Finds whether a table name matches a wildcard pattern or not
Description
bool mysqlnd_ms_match_wild(string table_name,
string wildcard);
Finds whether a table name matches a wildcard pattern or not.
This function is not of much practical relevance with PECL mysqlnd_ms 1.1.0 because the plugin does not support MySQL replication table filtering yet.
Parameters
table_name
The table name to check if it is matched by the wildcard.
wildcard
The wildcard pattern to check against the table name. The wildcard pattern supports the same placeholders as MySQL replication filters do.
MySQL replication filters can be configured by using the MySQL Server configuration options --replicate-wild-do-table and --replicate-wild-do-db. Please, consult the MySQL Reference Manual to learn more about this MySQL Server feature.
The supported placeholders are:
Placeholders can be escaped using \.
Return Values
Returns TRUE table_name is matched by wildcard. Otherwise, returns FALSE
Examples
Example 21.300. mysqlnd_ms_match_wild example
<?php
var_dump(mysqlnd_ms_match_wild("schema_name.table_name", "schema%"));
var_dump(mysqlnd_ms_match_wild("abc", "_"));
var_dump(mysqlnd_ms_match_wild("table1", "table_"));
var_dump(mysqlnd_ms_match_wild("asia_customers", "%customers"));
var_dump(mysqlnd_ms_match_wild("funny%table","funny\%table"));
var_dump(mysqlnd_ms_match_wild("funnytable", "funny%table"));
?>
The above example will output:
bool(true)
bool(false)
bool(true)
bool(true)
bool(true)
bool(true)
21.9.6.8.5. mysqlnd_ms_query_is_select
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_ms_query_is_select
Find whether to send the query to the master, the slave or the last used MySQL server
Description
int mysqlnd_ms_query_is_select(string query);
Finds whether to send the query to the master, the slave or the last used MySQL server.
The plugins built-in read/write split mechanism will be used to analyze the query string to make a recommendation where to send the query. The built-in read/write split mechanism is very basic and simple. The plugin will recommend sending all queries to the MySQL replication master server but those which begin with SELECT, or begin with a SQL hint which enforces sending the query to a slave server. Due to the basic but fast algorithm the plugin may propose to run some read-only statements such as SHOW TABLES on the replication master.
Parameters
query
Query string to test.
Return Values
A return value of MYSQLND_MS_QUERY_USE_MASTER indicates that the query should be send to the MySQL replication master server. The function returns a value of MYSQLND_MS_QUERY_USE_SLAVE if the query can be run on a slave because it is considered read-only. A value of MYSQLND_MS_QUERY_USE_LAST_USED is returned to recommend running the query on the last used server. This can either be a MySQL replication master server or a MySQL replication slave server.
If read write splitting has been disabled by setting mysqlnd_ms.disable_rw_split, the function will always return MYSQLND_MS_QUERY_USE_MASTER or MYSQLND_MS_QUERY_USE_LAST_USED .
Examples
Example 21.301. mysqlnd_ms_query_is_select example
<?php
function is_select($query)
{
switch (mysqlnd_ms_query_is_select($query))
{
case MYSQLND_MS_QUERY_USE_MASTER:
printf("'%s' should be run on the master.\n", $query);
break;
case MYSQLND_MS_QUERY_USE_SLAVE:
printf("'%s' should be run on a slave.\n", $query);
break;
case MYSQLND_MS_QUERY_USE_LAST_USED:
printf("'%s' should be run on the server that has run the previous query\n", $query);
break;
default:
printf("No suggestion where to run the '%s', fallback to master recommended\n", $query);
break;
}
}
is_select("INSERT INTO test(id) VALUES (1)");
is_select("SELECT 1 FROM DUAL");
is_select("/*" . MYSQLND_MS_LAST_USED_SWITCH . "*/SELECT 2 FROM DUAL");
?>
The above example will output:
INSERT INTO test(id) VALUES (1) should be run on the master.
SELECT 1 FROM DUAL should be run on a slave.
/*ms=last_used*/SELECT 2 FROM DUAL should be run on the server that has run the previous query
See Also
Predefined Constants |
user filter |
21.9.6.8.6. mysqlnd_ms_set_qos
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_ms_set_qos
Sets the quality of service needed from the cluster
Description
bool mysqlnd_ms_set_qos(mixed connection,
int service_level,
int service_level_option,
mixed option_value);
Sets the quality of service needed from the cluster. A database cluster delivers a certain quality of service to the user depending on its architecture. A major aspect of the quality of service is the consistency level the cluster can offer. An asynchronous MySQL replication cluster defaults to eventual consistency for slave reads: a slave may serve stale data, current data, or it may have not the requested data at all, because it is not synchronous to the master. In a MySQL replication cluster, only master accesses can give strong consistency, which promises that all clients see each others changes.
PECL/mysqlnd_ms hides the complexity of choosing appropriate nodes to achieve a certain level of service from the cluster. The "Quality of Service" filter implements the necessary logic. The filter can either be configured in the plugins configuration file, or at runtime using mysqlnd_ms_set_qos.
Similar results can be achieved with PECL mysqlnd_ms < 1.2.0, if using SQL hints to force the use of a certain type of node or using the master_on_write plugin configuration option. The first requires more code and causes more work on the application side. The latter is less refined than using the quality of service filter. Settings made through the function call can be reversed, as shown in the example below. The example temporarily switches to a higher service level (session consistency, read your writes) and returns back to the clusters default after it has performed all operations that require the better service. This way, read load on the master can be minimized compared to using master_on_write, which would continue using the master after the first write.
Since 1.5.0 calls will fail when done in the middle of a transaction if transaction stickiness is enabled and transaction boundaries have been detected. properly.
Parameters
connection
A PECL/mysqlnd_ms connection handle to a MySQL server of the type PDO_MYSQL, mysqli or ext/mysql for which a service level is to be set. The connection handle is obtained when opening a connection with a host name that matches a mysqlnd_ms configuration file entry using any of the above three MySQL driver extensions.
service_level
The requested service level: MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL , MYSQLND_MS_QOS_CONSISTENCY_SESSION or MYSQLND_MS_QOS_CONSISTENCY_STRONG .
service_level_option
An option to parameterize the requested service level. The option can either be MYSQLND_MS_QOS_OPTION_GTID or MYSQLND_MS_QOS_OPTION_AGE .
The option MYSQLND_MS_QOS_OPTION_GTID can be used to refine the service level MYSQLND_MS_QOS_CONSISTENCY_SESSION . It must be combined with a fourth function parameter, the option_value. The option_value shall be a global transaction ID obtained from mysqlnd_ms_get_last_gtid. If set, the plugin considers both master servers and asynchronous slaves for session consistency (read your writes). Otherwise, only masters are used to achieve session consistency. A slave is considered up-to-date and checked if it has already replicated the global transaction ID from option_value. Please note, searching appropriate slaves is an expensive and slow operation. Use the feature sparsely, if the master cannot handle the read load alone.
The MYSQLND_MS_QOS_OPTION_AGE option can be combined with the MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL service level, to filter out asynchronous slaves that lag more seconds behind the master than option_value. If set, the plugin will only consider slaves for reading if SHOW SLAVE STATUS reports Slave_IO_Running=Yes, Slave_SQL_Running=Yes and Seconds_Behind_Master <= option_value. Please note, searching appropriate slaves is an expensive and slow operation. Use the feature sparsely in version 1.2.0. Future versions may improve the algorithm used to identify candidates. Please, see the MySQL reference manual about the precision, accuracy and limitations of the MySQL administrative command SHOW SLAVE STATUS.
option_value
Parameter value for the service level option. See also the service_level_option parameter.
Return Values
Returns TRUE if the connections service level has been switched to the requested. Otherwise, returns FALSE
Notes
Note
mysqlnd_ms_set_qos requires PHP >= 5.4.0 and PECL mysqlnd_ms >= 1.2.0. Internally, it is using a mysqlnd library C functionality not available with PHP 5.3.
Examples
Example 21.302. mysqlnd_ms_set_qos example
<?php
/* Open mysqlnd_ms connection using mysqli, PDO_MySQL or mysql extension */
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
/* Of course, your error handling is nicer... */
die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
/* Session consistency: read your writes */
$ret = mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_SESSION);
if (!$ret)
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Will use master and return fresh data, client can see his last write */
if (!$res = $mysqli->query("SELECT item, price FROM orders WHERE order_id = 1"))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* Back to default: use of all slaves and masters permitted, stale data can happen */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL))
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
?>
See Also
mysqlnd_ms_get_last_gtid |
Service level and consistency concept |
Filter concept |
21.9.6.8.7. mysqlnd_ms_set_user_pick_server
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_ms_set_user_pick_server
Sets a callback for user-defined read/write splitting
Description
bool mysqlnd_ms_set_user_pick_server(string function);
Sets a callback for user-defined read/write splitting. The plugin will call the callback only if pick[]=user is the default rule for server picking in the relevant section of the plugins configuration file.
The plugins built-in read/write query split mechanism decisions can be overwritten in two ways. The easiest way is to prepend the query string with the SQL hints MYSQLND_MS_MASTER_SWITCH , MYSQLND_MS_SLAVE_SWITCH or MYSQLND_MS_LAST_USED_SWITCH . Using SQL hints one can control, for example, whether a query shall be send to the MySQL replication master server or one of the slave servers. By help of SQL hints it is not possible to pick a certain slave server for query execution.
Full control on server selection can be gained using a callback function. Use of a callback is recommended to expert users only because the callback has to cover all cases otherwise handled by the plugin.
The plugin will invoke the callback function for selecting a server from the lists of configured master and slave servers. The callback function inspects the query to run and picks a server for query execution by returning the hosts URI, as found in the master and slave list.
If the lazy connections are enabled and the callback chooses a slave server for which no connection has been established so far and establishing the connection to the slave fails, the plugin will return an error upon the next action on the failed connection, for example, when running a query. It is the responsibility of the application developer to handle the error. For example, the application can re-run the query to trigger a new server selection and callback invocation. If so, the callback must make sure to select a different slave, or check slave availability, before returning to the plugin to prevent an endless loop.
Parameters
function
The function to be called. Class methods may also be invoked statically using this function by passing array($classname, $methodname) to this parameter. Additionally class methods of an object instance may be called by passing array($objectinstance, $methodname) to this parameter.
Return Values
Host to run the query on. The host URI is to be taken from the master and slave connection lists passed to the callback function. If callback returns a value neither found in the master nor in the slave connection lists the plugin will fallback to the second pick method configured via the pick[] setting in the plugin configuration file. If not second pick method is given, the plugin falls back to the build-in default pick method for server selection.
Notes
Note
mysqlnd_ms_set_user_pick_server is available with PECL mysqlnd_ms < 1.1.0. It has been replaced by the user filter. Please, check the Change History for upgrade notes.
Examples
Example 21.303. mysqlnd_ms_set_user_pick_server example
[myapp]
master[] = localhost
slave[] = 192.168.2.27:3306
slave[] = 192.168.78.136:3306
pick[] = user
<?php
function pick_server($connected, $query, $master, $slaves, $last_used)
{
static $slave_idx = 0;
static $num_slaves = NULL;
if (is_null($num_slaves))
$num_slaves = count($slaves);
/* default: fallback to the plugins build-in logic */
$ret = NULL;
printf("User has connected to '%s'...\n", $connected);
printf("... deciding where to run '%s'\n", $query);
$where = mysqlnd_ms_query_is_select($query);
switch ($where)
{
case MYSQLND_MS_QUERY_USE_MASTER:
printf("... using master\n");
$ret = $master[0];
break;
case MYSQLND_MS_QUERY_USE_SLAVE:
/* SELECT or SQL hint for using slave */
if (stristr($query, "FROM table_on_slave_a_only"))
{
/* a table which is only on the first configured slave */
printf("... access to table available only on slave A detected\n");
$ret = $slaves[0];
}
else
{
/* round robin */
printf("... some read-only query for a slave\n");
$ret = $slaves[$slave_idx++ % $num_slaves];
}
break;
case MYSQLND_MS_QUERY_LAST_USED:
printf("... using last used server\n");
$ret = $last_used;
break;
}
printf("... ret = '%s'\n", $ret);
return $ret;
}
mysqlnd_ms_set_user_pick_server("pick_server");
$mysqli = new mysqli("myapp", "root", "root", "test");
if (!($res = $mysqli->query("SELECT 1 FROM DUAL")))
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
$res->close();
if (!($res = $mysqli->query("SELECT 2 FROM DUAL")))
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
$res->close();
if (!($res = $mysqli->query("SELECT * FROM table_on_slave_a_only")))
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
$res->close();
$mysqli->close();
?>
The above example will output:
User has connected to 'myapp'...
... deciding where to run 'SELECT 1 FROM DUAL'
... some read-only query for a slave
... ret = 'tcp://192.168.2.27:3306'
User has connected to 'myapp'...
... deciding where to run 'SELECT 2 FROM DUAL'
... some read-only query for a slave
... ret = 'tcp://192.168.78.136:3306'
User has connected to 'myapp'...
... deciding where to run 'SELECT * FROM table_on_slave_a_only'
... access to table available only on slave A detected
... ret = 'tcp://192.168.2.27:3306'
See Also
mysqlnd_ms_query_is_select |
Filter concept |
user filter |
21.9.6.9. Change History
Copyright 1997-2012 the PHP Documentation Group.
This change history is a high level summary of selected changes that may impact applications and/or break backwards compatibility.
See also the CHANGES file in the source distribution for a complete list of changes.
21.9.6.9.1. PECL/mysqlnd_ms 1.5 series
Copyright 1997-2012 the PHP Documentation Group.
1.5.0-alpha
Note
This is the current development series. All features are at an early stage. Changes may happen at any time without prior notice. Please, do not use this version in production environments.
The documentation may not reflect all changes yet.
Bug fixes
Fixed #60605 PHP segmentation fault when mysqlnd_ms is enabled.
Setting transaction stickiness disables all load balancing, including automatic failover, for the duration of a transaction. So far connection switches could have happened in the middle of a transaction in multi-master configurations and during automatic failover although transaction monitoring had detected transaction boundaries properly.
BC break and bug fix. SQL hints enforcing the use of a specific kind of server (MYSQLND_MS_MASTER_SWITCH , MYSQLND_MS_SLAVE_SWITCH , MYSQLND_MS_LAST_USED_SWITCH) are ignored for the duration of a transaction of transaction stickiness is enabled and transaction boundaries have been detected properly.
This is a change in behaviour. However, it is also a bug fix and a step to align behaviour. If, in previous versions, transaction stickiness, one of the above listed SQL hints and the quality of service filtering was combined it could happened that the SQL hints got ignored. In some case the SQL hints did work, in other cases they did not. The new behaviour is more consistent. SQL hints will always be ignore for the duration of a transaction, if transaction stickiness is enabled.
Please note, transaction boundary detection continues to be based on API call monitoring. SQL commands controlling transactions are not monitored.
BC break and bug fix. Calls to mysqlnd_ms_set_qos will fail when done in the middle of a transaction if transaction stickiness is enabled. Connection switches are not allowed for the duration of a transaction. Changing the quality of service likely results on a different set of servers qualifying for query execution, possibly making it necessary to switch connections. Thus, the call is not allowed in during an active transaction. The quality of server can, however, be changed in between transactions.
Feature changes
Introduced the node_group filter. The filter lets you organize servers (master and slaves) into groups. Queries can be directed to a certain group of servers by prefixing the query statement with a SQL hint/comment that contains the groups configured name. Grouping can be used for partitioning and sharding, and also to optimize for local caching. In the case of sharding, a group name can be thought of like a shard key. All queries for a given shard key will be executed on the configured shard. Note: both the client and server must support sharding for sharding to function with mysqlnd_ms.
Extended configuration file validation during PHP startup (RINIT). An E_WARNING level error will be thrown if the configuration file can not be read (permissions), is empty, or the file (JSON) could not be parsed. Warnings may appear in log files, which depending on how PHP is configured.
Distributions that aim to provide a pre-configured setup, including a configuration file stub, are asked to put {} into the configuration file to prevent this warning about an invalid configuration file.
Further configuration file validation is done when parsing sections upon opening a connection. Please, note that there may still be situations when an invalid plugin configuration file does not lead to proper error messages but a failure to connect.
As of PHP 5.5.0, improved support for transaction boundaries detection was added for mysqli. The mysqli extension has been modified to use the new C API calls of the mysqlnd library to begin, commit, and rollback a transaction or savepoint. If trx_stickiness is used to enable transaction aware load balancing, the mysqli_begin, mysqli_commit and mysqli_rollback functions will now be monitered by the plugin, to go along with the mysqli_autocommit function that was already supported. All SQL features to control transactions are also available through the improved mysqli transaction control related functions. This means that it is not required to issue SQL statements instead of using API calls. Applications using the appropriate API calls can be load balanced by PECL/mysqlnd_ms in a completely transaction-aware way.
Please note, PDO_MySQL has not been updated yet to utilize the new mysqlnd API calls. Thus, transaction boundary detection with PDO_MySQL continues to be limited to the monitoring by passing in PDO::ATTR_AUTOCOMMIT to PDO::setAttribute.
Introduced trx_stickiness=on. This trx_stickiness option differs from trx_stickiness=master as it tries to execute a read-only transaction on a slave, if quality of service (consistency level) allows the use of a slave. Read-only transactions were introduced in MySQL 5.6, and they offer performance gains.
Query cache support is considered beta if used with the mysqli API. It should work fine with primary copy based clusters. For all other APIs, this feature continues to be called experimental.
The code examples in the mysqlnd_ms source were updated.
21.9.6.9.2. PECL/mysqlnd_ms 1.4 series
Copyright 1997-2012 the PHP Documentation Group.
1.4.2-stable
1.4.1-beta
Bug fixes
Fixed build with PHP 5.5
1.4.0-alpha
Feature changes
BC break: Renamed plugin configuration setting ini_file to config_file. In early versions the plugin configuration file used ini style. Back then the configuration setting was named accordingly. It has now been renamed to reflect the newer file format and to distinguish it from PHP's own ini file (configuration directives file).
Introduced new default charset setting server_charset to allow proper escaping before a connection is opened. This is most useful when using lazy connections, which are a default.
Introduced wait_for_gtid_timeout setting to throttle slave reads that need session consistency. If global transaction identifier are used and the service level is set to session consistency, the plugin tries to find up-to-date slaves. The slave status check is done by a SQL statement. If nothing else is set, the slave status is checked only one can the search for more up-to-date slaves continues immediately thereafter. Setting wait_for_gtid_timeout instructs the plugin to poll a slaves status for wait_for_gtid_timeout seconds if the first execution of the SQL statement has shown that the slave is not up-to-date yet. The poll will be done once per second. This way, the plugin will wait for slaves to catch up and throttle the client.
New failover strategy loop_before_master. By default the plugin does no failover. It is possible to enable automatic failover if a connection attempt fails. Upto version 1.3 only master strategy existed to failover to a master if a slave connection fails. loop_before_master is similar but tries all other slaves before attempting to connect to the master if a slave connection fails.
The number of attempts can be limited using the max_retries option. Failed hosts can be remembered and skipped in load balancing for the rest of the web request. max_retries and remember_failed are considered experimental although decent stability is given. Syntax and semantics may change in the future without prior notice.
21.9.6.9.3. PECL/mysqlnd_ms 1.3 series
Copyright 1997-2012 the PHP Documentation Group.
1.3.2-stable
Bug fixes
Fixed problem with multi-master where although in a transaction the queries to the master weren't sticky and were spread all over the masters (RR). Still not sticky for Random. Random_once is not affected.
1.3.1-beta
Bug fixes
Fixed problem with building together with QC.
1.3.0-alpha
The 1.3 series aims to improve the performance of applications and the overall load of an asynchronous MySQL cluster, for example, a MySQL cluster using MySQL Replication. This is done by transparently replacing a slave access with a local cache access, if the application allows it by setting an appropriate quality of service flag. When using MySQL replication a slave can serve stale data. An application using MySQL replication must continue to work correctly with stale data. Given that the application is know to work correctly with stale data, the slave access can transparently be replace with a local cache access.
PECL/mysqlnd_qc serves as a cache backend. PECL/mysqlnd_qc supports use of various storage locations, among others main memory, APC and MEMCACHE.
Feature changes
Added cache option to quality-of-service (QoS) filter.
Support for built-in global transaction identifier feature of MySQL 5.6.5-m8 or newer.
21.9.6.9.4. PECL/mysqlnd_ms 1.2 series
Copyright 1997-2012 the PHP Documentation Group.
1.2.1-beta
Minor test changes.
1.2.0-alpha
In version 1.2 the focus continues to be on supporting MySQL database clusters with asynchronous replication. The plugin tries to make using the cluster introducing a quality-of-service filter which applications can use to define what service quality they need from the cluster. Service levels provided are eventual consistency with optional maximum age/slave slag, session consistency and strong consistency.
Additionally the plugin can do client-side global transaction id injection to make manual master failover easier.
Feature changes
Introduced quality-of-service (QoS) filter. Service levels provided by QoS filter:
Added the mysqlnd_ms_set_qos function to set the required connection quality at runtime. The new constants related to mysqlnd_ms_set_qos are:
Added client-side global transaction id injection (GTID).
New statistics related to GTID:
Added mysqlnd_ms_get_last_gtid to fetch the last global transaction id.
Enabled support for multi master without slaves.
21.9.6.9.5. PECL/mysqlnd_ms 1.1 series
Copyright 1997-2012 the PHP Documentation Group.
1.1.0
The 1.1 and 1.0 series expose a similar feature set. Internally, the 1.1 series has been refactored to plan for future feature additions. A new configuration file format has been introduced, and limitations have been lifted. And the code quality and quality assurance has been improved.
Feature changes
Added the (chainable) filter concept:
New statistics: use_master_guess, use_slave_guess.
Bug fixes
The mysqlnd_ms_set_user_pick_server function was removed, and replaced in favor of a new user filter. You can no longer set a callback function using mysqlnd_ms_set_user_pick_server at runtime, but instead have to configure it in the plugins configuration file. The user filter will pass the same arguments to the callback as before. Therefore, you can continue to use the same procedural function as a callback.callback It is no longer possible to use static class methods, or class methods of an object instance, as a callback. Doing so will cause the function executing a statement handled by the plugin to emit an E_RECOVERABLE_ERROR level error, which might look like: "(mysqlnd_ms) Specified callback (picker) is not a valid callback." Note: this may halt your application.
21.9.6.9.6. PECL/mysqlnd_ms 1.0 series
Copyright 1997-2012 the PHP Documentation Group.
1.0.1-alpha
1.0.0-alpha
The first release of practical use. It features basic automatic read-write splitting, SQL hints to overrule automatic redirection, load balancing of slave requests, lazy connections, and optional, automatic use of the master after the first write.
The public feature set is close to that of the 1.1 release.
1.0.0-pre-alpha
Initial check-in. Essentially a demo of the mysqlnd plugin API.
21.9.7. Mysqlnd query result cache plugin (mysqlnd_qc)
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd query result cache plugin adds easy to use client-side query caching to all PHP MySQL extensions using mysqlnd.
As of version PHP 5.3.3 the MySQL native driver for PHP (mysqlnd) features an internal plugin C API. C plugins, such as the query cache plugin, can extend the functionality of mysqlnd.
Mysqlnd plugins such as the query cache plugin operate transparent from a user perspective. The cache plugin supports all PHP applications and all PHP MySQL extensions (mysqli, mysql, PDO_MYSQL). It does not change existing APIs.
No significant application changes are required to cache a query. The cache has two operation modes. It will either cache all queries (not recommended) or only those queries marked with a certain SQL hint (recommended).
21.9.7.1. Key Features
Copyright 1997-2012 the PHP Documentation Group.
Transparent and therefore easy to use
supports all PHP MySQL extensions
no API changes
very little application changes required
Flexible invalidation strategy
Time-to-Live (TTL)
user-defined
Storage with different scope and life-span
Default (Hash, process memory)
MEMCACHE
sqlite
user-defined
Built-in slam defense to prevent cache stampeding.
21.9.7.2. Limitations
Copyright 1997-2012 the PHP Documentation Group.
The current 1.0.1 release of PECL mysqlnd_qc does not support PHP 5.4. Version 1.1.0-alpha lifts this limitation.
Prepared statements and unbuffered queries are fully supported. Thus, the plugin is capable of caching all statements issued with mysqli or PDO_MySQL, which are the only two PHP MySQL APIs to offer prepared statement support.
21.9.7.3. On the name
Copyright 1997-2012 the PHP Documentation Group.
The shortcut mysqlnd_qc stands for mysqlnd query cache plugin. The name was chosen for a quick-and-dirty proof-of-concept. In the beginning the developers did not expect to continue using the code base. Sometimes PECL/mysqlnd_qc has also been called client-side query result set cache.
21.9.7.4. Quickstart and Examples
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd query cache plugin is easy to use. This quickstart will demo typical use-cases, and provide practical advice on getting started.
It is strongly recommended to read the reference sections in addition to the quickstart. It is safe to begin with the quickstart. However, before using the plugin in mission critical environments we urge you to read additionally the background information from the reference sections.
Most of the examples use the mysqli extension because it is the most feature complete PHP MySQL extension. However, the plugin can be used with any PHP MySQL extension that is using the mysqlnd library.
21.9.7.4.1. Architecture and Concepts
Copyright 1997-2012 the PHP Documentation Group.
The query cache plugin is implemented as a PHP extension. It is written in C and operates under the hood of PHP. During the startup of the PHP interpreter, it gets registered as a mysqlnd plugin to replace selected mysqlnd C methods. Hereby, it can change the behaviour of any PHP MySQL extension (mysqli, PDO_MYSQL, mysql) compiled to use the mysqlnd library without changing the extensions API. This makes the plugin compatible with each and every PHP MySQL application. Because existing APIs are not changed, it is almost transparent to use. Please, see the mysqlnd plugin API description for a discussion of the advantages of the plugin architecture and a comparison with proxy based solutions.
Transparent to use
At PHP run time PECL/mysqlnd_qc can proxy queries send from PHP (mysqlnd) to the MySQL server. It then inspects the statement string to find whether it shall cache its results. If so, result set is cached using a storage handler and further executions of the statement are served from the cache for a user-defined period. The Time to Live (TTL) of the cache entry can either be set globally or on a per statement basis.
A statement is either cached if the plugin is instructed to cache all statements globally using a or, if the query string starts with the SQL hint (/*qc=on*/). The plugin is capable of caching any query issued by calling appropriate API calls of any of the existing PHP MySQL extensions.
Flexible storage: various storage handler
Various storage handler are supported to offer different scopes for cache entries. Different scopes allow for different degrees in sharing cache entries among clients.
default (built-in): process memory, scope: process, one or more web requests depending on PHP deployment model used
APC: shared memory, scope: single server, multiple web requests
SQLite: memory or file, scope: single server, multiple web requests
MEMCACHE: main memory, scope: single or multiple server, multiple web requests
user (built-in): user-defined - any, scope: user-defined - any
Support for the APC, SQLite and MEMCACHE storage handler has to be enabled at compile time. The default and user handler are built-in. It is possible to switch between compiled-in storage handlers on a per query basis at run time. However, it is recommended to pick one storage handler and use it for all cache entries.
Built-in slam defense to avoid overloading
To avoid overload situations the cache plugin has a built-in slam defense mechanism. If a popular cache entries expires many clients using the cache entries will try to refresh the cache entry. For the duration of the refresh many clients may access the database server concurrently. In the worst case, the database server becomes overloaded and it takes more and more time to refresh the cache entry, which in turn lets more and more clients try to refresh the cache entry. To prevent this from happening the plugin has a slam defense mechanism. If slam defense is enabled and the plugin detects an expired cache entry it extends the life time of the cache entry before it refreshes the cache entry. This way other concurrent accesses to the expired cache entry are still served from the cache for a certain time. The other concurrent accesses to not trigger a concurrent refresh. Ideally, the cache entry gets refreshed by the client which extended the cache entries lifespan before other clients try to refresh the cache and potentially cause an overload situation.
Unique approach to caching
PECL/mysqlnd_qc has a unique approach to caching result sets that is superior to application based cache solutions. Application based solutions first fetch a result set into PHP variables. Then, the PHP variables are serialized for storage in a persistent cache, and then unserialized when fetching. The mysqlnd query cache stores the raw wire protocol data sent from MySQL to PHP in its cache and replays it, if still valid, on a cache hit. This way, it saves an extra serialization step for a cache put that all application based solutions have to do. It can store the raw wire protocol data in the cache without having to serialize into a PHP variable first and deserializing the PHP variable for storing in the cache again.
21.9.7.4.2. Setup
Copyright 1997-2012 the PHP Documentation Group.
The plugin is implemented as a PHP extension. See also the installation instructions to install the PECL/mysqlnd_qc extension.
Compile or configure the PHP MySQL extension (mysqli, PDO_MYSQL, mysql) that you plan to use with support for the mysqlnd library. PECL/mysqlnd_qc is a plugin for the mysqlnd library. To use the plugin with any of the existing PHP MySQL extensions (APIs), the extension has to use the mysqlnd library.
Then, load the extension into PHP and activate the plugin in the PHP configuration file using the PHP configuration directive named mysqlnd_qc.enable_qc.
Example 21.304. Enabling the plugin (php.ini)
mysqlnd_qc.enable_qc=1
21.9.7.4.3. Caching queries
Copyright 1997-2012 the PHP Documentation Group.
There are four ways to trigger caching of a query.
Use of SQL hints and mysqlnd_qc.cache_by_default = 1 are explained below. Please, refer to the function reference on mysqlnd_qc_is_select for a description of using a callback and, mysqlnd_qc_set_cache_condition on how to set rules for automatic caching.
A SQL hint is a SQL standards compliant comment. As a SQL comment it is ignored by the database. A statement is considered eligible for caching if it either begins with the SQL hint enabling caching or it is a SELECT statement.
An individual query which shall be cached must begin with the SQL hint /*qc=on*/. It is recommended to use the PHP constant MYSQLND_QC_ENABLE_SWITCH instead of using the string value.
not eligible for caching and not cached: INSERT INTO test(id) VALUES (1)
not eligible for caching and not cached: SHOW ENGINES
eligible for caching but uncached: SELECT id FROM test
eligible for caching and cached: /*qc=on*/SELECT id FROM test
The examples SELECT statement string is prefixed with the MYSQLND_QC_ENABLE_SWITCH SQL hint to enable caching of the statement. The SQL hint must be given at the very beginning of the statement string to enable caching.
Example 21.305. Using the MYSQLND_QC_ENABLE_SWITCH SQL hint
mysqlnd_qc.enable_qc=1
<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");
/* Will be cached because of the SQL hint */
$start = microtime(true);
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
printf("Total time uncached query: %.6fs\n", microtime(true) - $start);
/* Cache hit */
$start = microtime(true);
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
printf("Total time cached query: %.6fs\n", microtime(true) - $start);
?>
The above examples will output something similar to:
array(1) {
["id"]=>
string(1) "1"
}
Total time uncached query: 0.000740s
array(1) {
["id"]=>
string(1) "1"
}
Total time cached query: 0.000098s
If nothing else is configured, as it is the case in the quickstart example, the plugin will use the built-in default storage handler. The default storage handler uses process memory to hold a cache entry. Depending on the PHP deployment model, a PHP process may serve one or more web requests. Please, consult the web server manual for details. Details make no difference for the examples given in the quickstart.
The query cache plugin will cache all queries regardless if the query string begins with the SQL hint which enables caching or not, if the PHP configuration directive mysqlnd_qc.cache_by_default is set to 1. The setting mysqlnd_qc.cache_by_default is evaluated by the core of the query cache plugins. Neither the built-in nor user-defined storage handler can overrule the setting.
The SQL hint /*qc=off*/ can be used to disable caching of individual queries if mysqlnd_qc.cache_by_default = 1 It is recommended to use the PHP constant MYSQLND_QC_DISABLE_SWITCH instead of using the string value.
Example 21.306. Using the MYSQLND_QC_DISABLE_SWITCH SQL hint
mysqlnd_qc.enable_qc=1
mysqlnd_qc.cache_by_default=1
<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");
/* Will be cached although no SQL hint is present because of mysqlnd_qc.cache_by_default = 1*/
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
$mysqli->query("DELETE FROM test WHERE id = 1");
/* Cache hit - no automatic invalidation and still valid! */
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
/* Cache miss - query must not be cached because of the SQL hint */
$res = $mysqli->query("/*" . MYSQLND_QC_DISABLE_SWITCH . "*/SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
?>
The above examples will output:
array(1) {
["id"]=>
string(1) "1"
}
array(1) {
["id"]=>
string(1) "1"
}
NULL
PECL/mysqlnd_qc forbids caching of statements for which at least one column from the statements result set shows no table name in its meta data by default. This is usually the case for columns originating from SQL functions such as NOW() or LAST_INSERT_ID(). The policy aims to prevent pitfalls if caching by default is used.
Example 21.307. Example showing which type of statements are not cached
mysqlnd_qc.enable_qc=1
mysqlnd_qc.cache_by_default=1
<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1)");
for ($i = 0; $i < 3; $i++) {
$start = microtime(true);
/* Note: statement will not be cached because of NOW() use */
$res = $mysqli->query("SELECT id, NOW() AS _time FROM test");
$row = $res->fetch_assoc();
/* dump results */
var_dump($row);
printf("Total time: %.6fs\n", microtime(true) - $start);
/* pause one second */
sleep(1);
}
?>
The above examples will output something similar to:
array(2) {
["id"]=>
string(1) "1"
["_time"]=>
string(19) "2012-01-11 15:43:10"
}
Total time: 0.000540s
array(2) {
["id"]=>
string(1) "1"
["_time"]=>
string(19) "2012-01-11 15:43:11"
}
Total time: 0.000555s
array(2) {
["id"]=>
string(1) "1"
["_time"]=>
string(19) "2012-01-11 15:43:12"
}
Total time: 0.000549s
It is possible to enable caching for all statements including those which has columns in their result set for which MySQL reports no table, such as the statement from the example. Set mysqlnd_qc.cache_no_table = 1 to enable caching of such statements. Please, note the difference in the measured times for the above and below examples.
Example 21.308. Enabling caching for all statements using the mysqlnd_qc.cache_no_table ini setting
mysqlnd_qc.enable_qc=1
mysqlnd_qc.cache_by_default=1
mysqlnd_qc.cache_no_table=1
<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1)");
for ($i = 0; $i < 3; $i++) {
$start = microtime(true);
/* Note: statement will not be cached because of NOW() use */
$res = $mysqli->query("SELECT id, NOW() AS _time FROM test");
$row = $res->fetch_assoc();
/* dump results */
var_dump($row);
printf("Total time: %.6fs\n", microtime(true) - $start);
/* pause one second */
sleep(1);
}
?>
The above examples will output something similar to:
array(2) {
["id"]=>
string(1) "1"
["_time"]=>
string(19) "2012-01-11 15:47:45"
}
Total time: 0.000546s
array(2) {
["id"]=>
string(1) "1"
["_time"]=>
string(19) "2012-01-11 15:47:45"
}
Total time: 0.000187s
array(2) {
["id"]=>
string(1) "1"
["_time"]=>
string(19) "2012-01-11 15:47:45"
}
Total time: 0.000167s
Note
Although mysqlnd_qc.cache_no_table = 1 has been created for use with mysqlnd_qc.cache_by_default = 1 it is bound it. The plugin will evaluate the mysqlnd_qc.cache_no_table whenever a query is to be cached, no matter whether caching has been enabled using a SQL hint or any other measure.
21.9.7.4.4. Setting the TTL
Copyright 1997-2012 the PHP Documentation Group.
The default invalidation strategy of the query cache plugin is Time to Live (TTL). The built-in storage handlers will use the default TTL defined by the PHP configuration value mysqlnd_qc.ttl unless the query string contains a hint for setting a different TTL. The TTL is specified in seconds. By default cache entries expire after 30 seconds
The example sets mysqlnd_qc.ttl=3 to cache statements for three seconds by default. Every second it updates a database table record to hold the current time and executes a SELECT statement to fetch the record from the database. The SELECT statement is cached for three seconds because it is prefixed with the SQL hint enabling caching. The output verifies that the query results are taken from the cache for the duration of three seconds before they are refreshed.
Example 21.309. Setting the TTL with the mysqlnd_qc.ttl ini setting
mysqlnd_qc.enable_qc=1
mysqlnd_qc.ttl=3
<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id VARCHAR(255))");
for ($i = 0; $i < 7; $i++) {
/* update DB row */
if (!$mysqli->query("DELETE FROM test") ||
!$mysqli->query("INSERT INTO test(id) VALUES (NOW())"))
/* Of course, a real-life script should do better error handling */
die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
/* select latest row but cache results */
$query = "/*" . MYSQLND_QC_ENABLE_SWITCH . "*/";
$query .= "SELECT id AS _time FROM test";
if (!($res = $mysqli->query($query)) ||
!($row = $res->fetch_assoc()))
{
printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
$res->free();
printf("Wall time %s - DB row time %s\n", date("H:i:s"), $row['_time']);
/* pause one second */
sleep(1);
}
?>
The above examples will output something similar to:
Wall time 14:55:59 - DB row time 2012-01-11 14:55:59
Wall time 14:56:00 - DB row time 2012-01-11 14:55:59
Wall time 14:56:01 - DB row time 2012-01-11 14:55:59
Wall time 14:56:02 - DB row time 2012-01-11 14:56:02
Wall time 14:56:03 - DB row time 2012-01-11 14:56:02
Wall time 14:56:04 - DB row time 2012-01-11 14:56:02
Wall time 14:56:05 - DB row time 2012-01-11 14:56:05
As can be seen from the example, any TTL based cache can serve stale data. Cache entries are not automatically invalidated, if underlying data changes. Applications using the default TTL invalidation strategy must be able to work correctly with stale data.
A user-defined cache storage handler can implement any invalidation strategy to work around this limitation.
The default TTL can be overruled using the SQL hint /*qc_tt=seconds*/. The SQL hint must be appear immediately after the SQL hint which enables caching. It is recommended to use the PHP constant MYSQLND_QC_TTL_SWITCH instead of using the string value.
Example 21.310. Setting TTL with SQL hints
<?php
$start = microtime(true);
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");
printf("Default TTL\t: %d seconds\n", ini_get("mysqlnd_qc.ttl"));
/* Will be cached for 2 seconds */
$sql = sprintf("/*%s*//*%s%d*/SELECT id FROM test WHERE id = 1", MYSQLND_QC_ENABLE_SWITCH, MYSQLND_QC_TTL_SWITCH, 2);
$res = $mysqli->query($sql);
var_dump($res->fetch_assoc());
$res->free();
$mysqli->query("DELETE FROM test WHERE id = 1");
sleep(1);
/* Cache hit - no automatic invalidation and still valid! */
$res = $mysqli->query($sql);
var_dump($res->fetch_assoc());
$res->free();
sleep(2);
/* Cache miss - cache entry has expired */
$res = $mysqli->query($sql);
var_dump($res->fetch_assoc());
$res->free();
printf("Script runtime\t: %d seconds\n", microtime(true) - $start);
?>
The above examples will output something similar to:
Default TTL : 30 seconds
array(1) {
["id"]=>
string(1) "1"
}
array(1) {
["id"]=>
string(1) "1"
}
NULL
Script runtime : 3 seconds
21.9.7.4.5. Pattern based caching
Copyright 1997-2012 the PHP Documentation Group.
An application has three options for telling PECL/mysqlnd_qc whether a particular statement shall be used. The most basic approach is to cache all statements by setting mysqlnd_qc.cache_by_default = 1. This approach is often of little practical value. But it enables users to make a quick estimation about the maximum performance gains from caching. An application designed to use a cache may be able to prefix selected statements with the appropriate SQL hints. However, altering an applications source code may not always be possible or desired, for example, to avoid problems with software updates. Therefore, PECL/mysqlnd_qc allows setting a callback which decides if a query is to be cached.
The callback is installed with the mysqlnd_qc_set_is_select function. The callback is given the statement string of every statement inspected by the plugin. Then, the callback can decide whether to cache the function. The callback is supposed to return FALSE if the statement shall not be cached. A return value of TRUE makes the plugin try to add the statement into the cache. The cache entry will be given the default TTL (mysqlnd_qc.ttl). If the callback returns a numerical value it is used as the TTL instead of the global default.
Example 21.311. Setting a callback with mysqlnd_qc_set_is_select
mysqlnd_qc.enable_qc=1
mysqlnd_qc.collect_statistics=1
<?php
/* callback which decides if query is cached */
function is_select($query) {
static $patterns = array(
/* true - use default from mysqlnd_qc.ttl */
"@SELECT\s+.*\s+FROM\s+test@ismU" => true,
/* 3 - use TTL = 3 seconds */
"@SELECT\s+.*\s+FROM\s+news@ismU" => 3
);
/* check if query does match pattern */
foreach ($patterns as $pattern => $ttl) {
if (preg_match($pattern, $query)) {
printf("is_select(%45s): cache\n", $query);
return $ttl;
}
}
printf("is_select(%45s): do not cache\n", $query);
return false;
}
/* install callback */
mysqlnd_qc_set_is_select("is_select");
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");
/* cache put */
$mysqli->query("SELECT id FROM test WHERE id = 1");
/* cache hit */
$mysqli->query("SELECT id FROM test WHERE id = 1");
/* cache put */
$mysqli->query("SELECT * FROM test");
$stats = mysqlnd_qc_get_core_stats();
printf("Cache put: %d\n", $stats['cache_put']);
printf("Cache hit: %d\n", $stats['cache_hit']);
?>
The above examples will output something similar to:
is_select(DROP TABLE IF EXISTS test): do not cache
is_select(CREATE TABLE test(id INT)): do not cache
is_select(INSERT INTO test(id) VALUES (1), (2), (3)): do not cache
is_select(SELECT id FROM test WHERE id = 1): cache
is_select(SELECT id FROM test WHERE id = 1): cache
is_select(SELECT * FROM test): cache
Cache put: 2
Cache hit: 1
The examples callback tests if a statement string matches a pattern. If this is the case, it either returns TRUE to cache the statement using the global default TTL or an alternative TTL.
To minimize application changes the callback can put into and registered in an auto prepend file.
21.9.7.4.6. Slam defense
Copyright 1997-2012 the PHP Documentation Group.
A badly designed cache can do more harm than good. In the worst case a cache can increase database server load instead of minimizing it. An overload situation can occur if a highly shared cache entry expires (cache stampeding).
Cache entries are shared and reused to a different degree depending on the storage used. The default storage handler stores cache entries in process memory. Thus, a cache entry can be reused for the life-span of a process. Other PHP processes cannot access it. If Memcache is used, a cache entry can be shared among multiple PHP processes and even among multiple machines, depending on the set up being used.
If a highly shared cache entry stored, for example, in Memcache expires, many clients gets a cache miss. Many client requests can no longer be served from the cache but try to run the underlying query on the database server. Until the cache entry is refreshed, more and more clients contact the database server. In the worst case, a total lost of service is the result.
The overload can be avoided using a storage handler which limits the reuse of cache entries to few clients. Then, at the average, its likely that only a limited number of clients will try to refresh a cache entry concurrently.
Additionally, the built-in slam defense mechanism can and should be used. If slam defense is activated an expired cache entry is given an extended life time. The first client getting a cache miss for the expired cache entry tries to refresh the cache entry within the extended life time. All other clients requesting the cache entry are temporarily served from the cache although the original TTL of the cache entry has expired. The other clients will not experience a cache miss before the extended life time is over.
Example 21.312. Enabling the slam defense mechanism
mysqlnd_qc.slam_defense=1
mysqlnd_qc.slam_defense_ttl=1
The slam defense mechanism is enabled with the PHP configuration directive mysqlnd_qc.slam_defense. The extended life time of a cache entry is set with mysqlnd_qc.slam_defense_ttl.
The function mysqlnd_qc_get_core_stats returns an array of statistics. The statistics slam_stale_refresh and slam_stale_hit are incremented if slam defense takes place.
It is not possible to give a one-fits-all recommendation on the slam defense configuration. Users are advised to monitor and test their setup and derive settings accordingly.
21.9.7.4.7. Finding cache candidates
Copyright 1997-2012 the PHP Documentation Group.
A statement should be considered for caching if it is executed often and has a long run time. Cache candidates are found by creating a list of statements sorted by the product of the number of executions multiplied by the statements run time. The function mysqlnd_qc_get_query_trace_log returns a query log which help with the task.
Collecting a query trace is a slow operation. Thus, it is disabled by default. The PHP configuration directive mysqlnd_qc.collect_query_trace is used to enable it. The functions trace contains one entry for every query issued before the function is called.
Example 21.313. Collecting a query trace
mysqlnd_qc.enable_qc=1
mysqlnd_qc.collect_query_trace=1
<?php
/* connect to MySQL */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
/* dummy queries to fill the query trace */
for ($i = 0; $i < 2; $i++) {
$res = $mysqli->query("SELECT 1 AS _one FROM DUAL");
$res->free();
}
/* dump trace */
var_dump(mysqlnd_qc_get_query_trace_log());
?>
The above examples will output:
array(2) {
[0]=>
array(8) {
["query"]=>
string(26) "SELECT 1 AS _one FROM DUAL"
["origin"]=>
string(102) "#0 qc.php(7): mysqli->query('SELECT 1 AS _on...')
#1 {main}"
["run_time"]=>
int(0)
["store_time"]=>
int(25)
["eligible_for_caching"]=>
bool(false)
["no_table"]=>
bool(false)
["was_added"]=>
bool(false)
["was_already_in_cache"]=>
bool(false)
}
[1]=>
array(8) {
["query"]=>
string(26) "SELECT 1 AS _one FROM DUAL"
["origin"]=>
string(102) "#0 qc.php(7): mysqli->query('SELECT 1 AS _on...')
#1 {main}"
["run_time"]=>
int(0)
["store_time"]=>
int(8)
["eligible_for_caching"]=>
bool(false)
["no_table"]=>
bool(false)
["was_added"]=>
bool(false)
["was_already_in_cache"]=>
bool(false)
}
}
Assorted information is given in the trace. Among them timings and the origin of the query call. The origin property holds a code backtrace to identify the source of the query. The depth of the backtrace can be limited with the PHP configuration directive mysqlnd_qc.query_trace_bt_depth. The default depth is 3.
Example 21.314. Setting the backtrace depth with the mysqlnd_qc.query_trace_bt_depth ini setting
mysqlnd_qc.enable_qc=1
mysqlnd_qc.collect_query_trace=1
<?php
/* connect to MySQL */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");
/* dummy queries to fill the query trace */
for ($i = 0; $i < 3; $i++) {
$res = $mysqli->query("SELECT id FROM test WHERE id = " . $mysqli->real_escape_string($i));
$res->free();
}
$trace = mysqlnd_qc_get_query_trace_log();
$summary = array();
foreach ($trace as $entry) {
if (!isset($summary[$entry['query']])) {
$summary[$entry['query']] = array(
"executions" => 1,
"time" => $entry['run_time'] + $entry['store_time'],
);
} else {
$summary[$entry['query']]['executions']++;
$summary[$entry['query']]['time'] += $entry['run_time'] + $entry['store_time'];
}
}
foreach ($summary as $query => $details) {
printf("%45s: %5dms (%dx)\n",
$query, $details['time'], $details['executions']);
}
?>
The above examples will output something similar to:
DROP TABLE IF EXISTS test: 0ms (1x)
CREATE TABLE test(id INT): 0ms (1x)
INSERT INTO test(id) VALUES (1), (2), (3): 0ms (1x)
SELECT id FROM test WHERE id = 0: 25ms (1x)
SELECT id FROM test WHERE id = 1: 10ms (1x)
SELECT id FROM test WHERE id = 2: 9ms (1x)
21.9.7.4.8. Measuring cache efficiency
Copyright 1997-2012 the PHP Documentation Group.
PECL/mysqlnd_qc offers three ways to measure the cache efficiency. The function mysqlnd_qc_get_normalized_query_trace_log returns statistics aggregated by the normalized query string, mysqlnd_qc_get_cache_info gives storage handler specific information which includes a list of all cached items, depending on the storage handler. Additionally, the core of PECL/mysqlnd_qc collects high-level summary statistics aggregated per PHP process. The high-level statistics are returned by mysqlnd_qc_get_core_stats.
The functions mysqlnd_qc_get_normalized_query_trace_log and mysqlnd_qc_get_core_stats will not collect data unless data collection has been enabled through their corresponding PHP configuration directives. Data collection is disabled by default for performance considerations. It is configurable with the mysqlnd_qc.time_statistics option, which determines if timing information should be collected. Collection of time statistics is enabled by default but only performed if data collection as such has been enabled. Recording time statistics causes extra system calls. In most cases, the benefit of the monitoring outweighs any potential performance penalty of the additional system calls.
Example 21.315. Collecting statistics data with the mysqlnd_qc.time_statistics ini setting
mysqlnd_qc.enable_qc=1
mysqlnd_qc.collect_statistics=1
<?php
/* connect to MySQL */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");
/* dummy queries */
for ($i = 1; $i <= 4; $i++) {
$query = sprintf("/*%s*/SELECT id FROM test WHERE id = %d", MYSQLND_QC_ENABLE_SWITCH, $i % 2);
$res = $mysqli->query($query);
$res->free();
}
var_dump(mysqlnd_qc_get_core_stats());
?>
The above examples will output something similar to:
array(26) {
["cache_hit"]=>
string(1) "2"
["cache_miss"]=>
string(1) "2"
["cache_put"]=>
string(1) "2"
["query_should_cache"]=>
string(1) "4"
["query_should_not_cache"]=>
string(1) "3"
["query_not_cached"]=>
string(1) "3"
["query_could_cache"]=>
string(1) "4"
["query_found_in_cache"]=>
string(1) "2"
["query_uncached_other"]=>
string(1) "0"
["query_uncached_no_table"]=>
string(1) "0"
["query_uncached_no_result"]=>
string(1) "0"
["query_uncached_use_result"]=>
string(1) "0"
["query_aggr_run_time_cache_hit"]=>
string(2) "28"
["query_aggr_run_time_cache_put"]=>
string(3) "900"
["query_aggr_run_time_total"]=>
string(3) "928"
["query_aggr_store_time_cache_hit"]=>
string(2) "14"
["query_aggr_store_time_cache_put"]=>
string(2) "40"
["query_aggr_store_time_total"]=>
string(2) "54"
["receive_bytes_recorded"]=>
string(3) "136"
["receive_bytes_replayed"]=>
string(3) "136"
["send_bytes_recorded"]=>
string(2) "84"
["send_bytes_replayed"]=>
string(2) "84"
["slam_stale_refresh"]=>
string(1) "0"
["slam_stale_hit"]=>
string(1) "0"
["request_counter"]=>
int(1)
["process_hash"]=>
int(1929695233)
}
For a quick overview, call mysqlnd_qc_get_core_stats. It delivers cache usage, cache timing and traffic related statistics. Values are aggregated on a per process basis for all queries issued by any PHP MySQL API call.
Some storage handler, such as the default handler, can report cache entries, statistics related to the entries and meta data for the underlying query through the mysqlnd_qc_get_cache_info function. Please note, that the information returned depends on the storage handler. Values are aggregated on a per process basis.
Example 21.316. Example mysqlnd_qc_get_cache_info usage
mysqlnd_qc.enable_qc=1
<?php
/* connect to MySQL */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");
/* dummy queries to fill the query trace */
for ($i = 1; $i <= 4; $i++) {
$query = sprintf("/*%s*/SELECT id FROM test WHERE id = %d", MYSQLND_QC_ENABLE_SWITCH, $i % 2);
$res = $mysqli->query($query);
$res->free();
}
var_dump(mysqlnd_qc_get_cache_info());
?>
The above examples will output something similar to:
array(4) {
["num_entries"]=>
int(2)
["handler"]=>
string(7) "default"
["handler_version"]=>
string(5) "1.0.0"
["data"]=>
array(2) {
["Localhost via UNIX socket
3306
root
test|/*qc=on*/SELECT id FROM test WHERE id = 1"]=>
array(2) {
["statistics"]=>
array(11) {
["rows"]=>
int(1)
["stored_size"]=>
int(71)
["cache_hits"]=>
int(1)
["run_time"]=>
int(391)
["store_time"]=>
int(27)
["min_run_time"]=>
int(16)
["max_run_time"]=>
int(16)
["min_store_time"]=>
int(8)
["max_store_time"]=>
int(8)
["avg_run_time"]=>
int(8)
["avg_store_time"]=>
int(4)
}
["metadata"]=>
array(1) {
[0]=>
array(8) {
["name"]=>
string(2) "id"
["orig_name"]=>
string(2) "id"
["table"]=>
string(4) "test"
["orig_table"]=>
string(4) "test"
["db"]=>
string(4) "test"
["max_length"]=>
int(1)
["length"]=>
int(11)
["type"]=>
int(3)
}
}
}
["Localhost via UNIX socket
3306
root
test|/*qc=on*/SELECT id FROM test WHERE id = 0"]=>
array(2) {
["statistics"]=>
array(11) {
["rows"]=>
int(0)
["stored_size"]=>
int(65)
["cache_hits"]=>
int(1)
["run_time"]=>
int(299)
["store_time"]=>
int(13)
["min_run_time"]=>
int(11)
["max_run_time"]=>
int(11)
["min_store_time"]=>
int(6)
["max_store_time"]=>
int(6)
["avg_run_time"]=>
int(5)
["avg_store_time"]=>
int(3)
}
["metadata"]=>
array(1) {
[0]=>
array(8) {
["name"]=>
string(2) "id"
["orig_name"]=>
string(2) "id"
["table"]=>
string(4) "test"
["orig_table"]=>
string(4) "test"
["db"]=>
string(4) "test"
["max_length"]=>
int(0)
["length"]=>
int(11)
["type"]=>
int(3)
}
}
}
}
}
It is possible to further break down the granularity of statistics to the level of the normalized statement string. The normalized statement string is the statements string with all parameters replaced with question marks. For example, the two statements SELECT id FROM test WHERE id = 0 and SELECT id FROM test WHERE id = 1 are normalized into SELECT id FROM test WHERE id = ?. Their both statistics are aggregated into one entry for SELECT id FROM test WHERE id = ?.
Example 21.317. Example mysqlnd_qc_get_normalized_query_trace_log usage
mysqlnd_qc.enable_qc=1
mysqlnd_qc.collect_normalized_query_trace=1
<?php
/* connect to MySQL */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");
/* dummy queries to fill the query trace */
for ($i = 1; $i <= 4; $i++) {
$query = sprintf("/*%s*/SELECT id FROM test WHERE id = %d", MYSQLND_QC_ENABLE_SWITCH, $i % 2);
$res = $mysqli->query($query);
$res->free();
}
var_dump(mysqlnd_qc_get_normalized_query_trace_log());
?>
The above examples will output something similar to:
array(4) {
[0]=>
array(9) {
["query"]=>
string(25) "DROP TABLE IF EXISTS test"
["occurences"]=>
int(0)
["eligible_for_caching"]=>
bool(false)
["avg_run_time"]=>
int(0)
["min_run_time"]=>
int(0)
["max_run_time"]=>
int(0)
["avg_store_time"]=>
int(0)
["min_store_time"]=>
int(0)
["max_store_time"]=>
int(0)
}
[1]=>
array(9) {
["query"]=>
string(27) "CREATE TABLE test (id INT)"
["occurences"]=>
int(0)
["eligible_for_caching"]=>
bool(false)
["avg_run_time"]=>
int(0)
["min_run_time"]=>
int(0)
["max_run_time"]=>
int(0)
["avg_store_time"]=>
int(0)
["min_store_time"]=>
int(0)
["max_store_time"]=>
int(0)
}
[2]=>
array(9) {
["query"]=>
string(46) "INSERT INTO test (id) VALUES (?), (?), (?)"
["occurences"]=>
int(0)
["eligible_for_caching"]=>
bool(false)
["avg_run_time"]=>
int(0)
["min_run_time"]=>
int(0)
["max_run_time"]=>
int(0)
["avg_store_time"]=>
int(0)
["min_store_time"]=>
int(0)
["max_store_time"]=>
int(0)
}
[3]=>
array(9) {
["query"]=>
string(31) "SELECT id FROM test WHERE id =?"
["occurences"]=>
int(4)
["eligible_for_caching"]=>
bool(true)
["avg_run_time"]=>
int(179)
["min_run_time"]=>
int(11)
["max_run_time"]=>
int(393)
["avg_store_time"]=>
int(12)
["min_store_time"]=>
int(7)
["max_store_time"]=>
int(25)
}
}
The source distribution of PECL/mysqlnd_qc contains a directory web/ in which web based monitoring scripts can be found which give an example how to write a cache monitor. Please, follow the instructions given in the source.
Since PECL/mysqlnd_qc 1.1.0 it is possible to write statistics into a log file. Please, see mysqlnd_qc.collect_statistics_log_file.
21.9.7.4.9. Beyond TTL: user-defined storage
Copyright 1997-2012 the PHP Documentation Group.
The query cache plugin supports the use of user-defined storage handler. User-defined storage handler can use arbitrarily complex invalidation algorithms and support arbitrary storage media.
All user-defined storage handlers have to provide a certain interface. The functions of the user-defined storage handler will be called by the core of the cache plugin. The necessary interface consists of seven public functions. Both procedural and object oriented user-defined storage handler must implement the same set of functions.
Example 21.318. Using a user-defined storage handler
<?php
/* Enable default caching of all statements */
ini_set("mysqlnd_qc.cache_by_default", 1);
/* Procedural user defined storage handler functions */
$__cache = array();
function get_hash($host_info, $port, $user, $db, $query) {
global $__cache;
printf("\t%s(%d)\n", __FUNCTION__, func_num_args());
return md5(sprintf("%s%s%s%s%s", $host_info, $port, $user, $db, $query));
}
function find_query_in_cache($key) {
global $__cache;
printf("\t%s(%d)\n", __FUNCTION__, func_num_args());
if (isset($__cache[$key])) {
$tmp = $__cache[$key];
if ($tmp["valid_until"] < time()) {
unset($__cache[$key]);
$ret = NULL;
} else {
$ret = $__cache[$key]["data"];
}
} else {
$ret = NULL;
}
return $ret;
}
function return_to_cache($key) {
/*
Called on cache hit after cached data has been processed,
may be used for reference counting
*/
printf("\t%s(%d)\n", __FUNCTION__, func_num_args());
}
function add_query_to_cache_if_not_exists($key, $data, $ttl, $run_time, $store_time, $row_count) {
global $__cache;
printf("\t%s(%d)\n", __FUNCTION__, func_num_args());
$__cache[$key] = array(
"data" => $data,
"row_count" => $row_count,
"valid_until" => time() + $ttl,
"hits" => 0,
"run_time" => $run_time,
"store_time" => $store_time,
"cached_run_times" => array(),
"cached_store_times" => array(),
);
return TRUE;
}
function query_is_select($query) {
printf("\t%s('%s'): ", __FUNCTION__, $query);
$ret = FALSE;
if (stristr($query, "SELECT") !== FALSE) {
/* cache for 5 seconds */
$ret = 5;
}
printf("%s\n", (FALSE === $ret) ? "FALSE" : $ret);
return $ret;
}
function update_query_run_time_stats($key, $run_time, $store_time) {
global $__cache;
printf("\t%s(%d)\n", __FUNCTION__, func_num_args());
if (isset($__cache[$key])) {
$__cache[$key]['hits']++;
$__cache[$key]["cached_run_times"][] = $run_time;
$__cache[$key]["cached_store_times"][] = $store_time;
}
}
function get_stats($key = NULL) {
global $__cache;
printf("\t%s(%d)\n", __FUNCTION__, func_num_args());
if ($key && isset($__cache[$key])) {
$stats = $__cache[$key];
} else {
$stats = array();
foreach ($__cache as $key => $details) {
$stats[$key] = array(
'hits' => $details['hits'],
'bytes' => strlen($details['data']),
'uncached_run_time' => $details['run_time'],
'cached_run_time' => (count($details['cached_run_times']))
? array_sum($details['cached_run_times']) / count($details['cached_run_times'])
: 0,
);
}
}
return $stats;
}
function clear_cache() {
global $__cache;
printf("\t%s(%d)\n", __FUNCTION__, func_num_args());
$__cache = array();
return TRUE;
}
/* Install procedural user-defined storage handler */
if (!mysqlnd_qc_set_user_handlers("get_hash", "find_query_in_cache",
"return_to_cache", "add_query_to_cache_if_not_exists",
"query_is_select", "update_query_run_time_stats", "get_stats", "clear_cache")) {
printf("Failed to install user-defined storage handler\n");
}
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");
printf("\nCache put/cache miss\n");
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
/* Delete record to verify we get our data from the cache */
$mysqli->query("DELETE FROM test WHERE id = 1");
printf("\nCache hit\n");
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
printf("\nDisplay cache statistics\n");
var_dump(mysqlnd_qc_get_cache_info());
printf("\nFlushing cache, cache put/cache miss");
var_dump(mysqlnd_qc_clear_cache());
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
?>
The above examples will output something similar to:
query_is_select('DROP TABLE IF EXISTS test'): FALSE
query_is_select('CREATE TABLE test(id INT)'): FALSE
query_is_select('INSERT INTO test(id) VALUES (1), (2)'): FALSE
Cache put/cache miss
query_is_select('SELECT id FROM test WHERE id = 1'): 5
get_hash(5)
find_query_in_cache(1)
add_query_to_cache_if_not_exists(6)
array(1) {
["id"]=>
string(1) "1"
}
query_is_select('DELETE FROM test WHERE id = 1'): FALSE
Cache hit
query_is_select('SELECT id FROM test WHERE id = 1'): 5
get_hash(5)
find_query_in_cache(1)
return_to_cache(1)
update_query_run_time_stats(3)
array(1) {
["id"]=>
string(1) "1"
}
Display cache statistics
get_stats(0)
array(4) {
["num_entries"]=>
int(1)
["handler"]=>
string(4) "user"
["handler_version"]=>
string(5) "1.0.0"
["data"]=>
array(1) {
["18683c177dc89bb352b29965d112fdaa"]=>
array(4) {
["hits"]=>
int(1)
["bytes"]=>
int(71)
["uncached_run_time"]=>
int(398)
["cached_run_time"]=>
int(4)
}
}
}
Flushing cache, cache put/cache miss clear_cache(0)
bool(true)
query_is_select('SELECT id FROM test WHERE id = 1'): 5
get_hash(5)
find_query_in_cache(1)
add_query_to_cache_if_not_exists(6)
NULL
21.9.7.5. Installing/Configuring
Copyright 1997-2012 the PHP Documentation Group.
21.9.7.5.1. Requirements
Copyright 1997-2012 the PHP Documentation Group.
PHP 5.3.3 or a newer version of PHP.
PECL/mysqlnd_qc is a mysqlnd plugin. It plugs into the mysqlnd library. To use you this plugin with a PHP MySQL extension, the extension (mysqli, mysql, or PDO_MYSQL) must enable the mysqlnd library.
For using the APC storage handler with PECL/mysqlnd_qc 1.0 APC 3.1.3p1-beta or newer. PECL/mysqlnd_qc 1.2 has been tested with APC 3.1.13-beta. The APC storage handler cannot be used with a shared build. You cannot use the PHP configuration directive extension to load the APC and PECL/mysqlnd_qc extensions if PECL/mysqlnd_qc will use APC as a storage handler. For using the APC storage handler, you have to statically compile PHP with APC and PECL/mysqlnd_qc support into PHP.
For using MEMCACHE storage handler: Use libmemcache 0.38 or newer. PECL/mysqlnd_qc 1.2 has been tested with libmemcache 1.4.0.
For using sqlite storage handler: Use the sqlite3 extension that bundled with PHP.
21.9.7.5.2. Installation
Copyright 1997-2012 the PHP Documentation Group.
This PECL extension is not bundled with PHP.
Information for installing this PECL extension may be found in the manual chapter titled Installation of PECL extensions. Additional information such as new releases, downloads, source files, maintainer information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqlnd_qc
A DLL for this PECL extension is currently unavailable. See also the building on Windows section.
21.9.7.5.3. Runtime Configuration
Copyright 1997-2012 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php.ini.
Table 21.75. mysqlnd_qc Configure Options
Name | Default | Changeable | Changelog |
---|---|---|---|
mysqlnd_qc.enable_qc | 1 | PHP_INI_SYSTEM | |
mysqlnd_qc.ttl | 30 | PHP_INI_ALL | |
mysqlnd_qc.cache_by_default | 0 | PHP_INI_ALL | |
mysqlnd_qc.cache_no_table | 0 | PHP_INI_ALL | |
mysqlnd_qc.use_request_time | 0 | PHP_INI_ALL | |
mysqlnd_qc.time_statistics | 1 | PHP_INI_ALL | |
mysqlnd_qc.collect_statistics | 0 | PHP_INI_ALL | |
mysqlnd_qc.collect_statistics_log_file | /tmp/mysqlnd_qc.stats | PHP_INI_SYSTEM | |
mysqlnd_qc.collect_query_trace | 0 | PHP_INI_SYSTEM | |
mysqlnd_qc.query_trace_bt_depth | 3 | PHP_INI_SYSTEM | |
mysqlnd_qc.collect_normalized_query_trace | 0 | PHP_INI_SYSTEM | |
mysqlnd_qc.ignore_sql_comments | 1 | PHP_INI_ALL | |
mysqlnd_qc.slam_defense | 0 | PHP_INI_SYSTEM | |
mysqlnd_qc.slam_defense_ttl | 30 | PHP_INI_SYSTEM | |
mysqlnd_qc.std_data_copy | 0 | PHP_INI_SYSTEM | |
mysqlnd_qc.apc_prefix | qc_ | PHP_INI_ALL | |
mysqlnd_qc.memc_server | 127.0.0.1 | PHP_INI_ALL | |
mysqlnd_qc.memc_port | 11211 | PHP_INI_ALL | |
mysqlnd_qc.sqlite_data_file | :memory: | PHP_INI_ALL |
Here's a short explanation of the configuration directives.
mysqlnd_qc.enable_qc integer
Enables or disables the plugin. If disabled the extension will not plug into mysqlnd to proxy internal mysqlnd C API calls.
mysqlnd_qc.ttl integer
Default Time-to-Live (TTL) for cache entries in seconds.
mysqlnd_qc.cache_by_default integer
Cache all queries regardless if they begin with the SQL hint that enables caching of a query or not. Storage handler cannot overrule the setting. It is evaluated by the core of the plugin.
mysqlnd_qc.cache_no_table integer
Whether to cache queries with no table name in any of columns meta data of their result set, for example, SELECT SLEEP(1), SELECT NOW(), SELECT SUBSTRING().
mysqlnd_qc.use_request_time integer
Use PHP global request time to avoid gettimeofday() system calls? If using APC storage handler it should be set to the value of apc.use_request_time , if not warnings will be generated.
mysqlnd_qc.time_statistics integer
Collect run time and store time statistics using gettimeofday() system call? Data will be collected only if you also set mysqlnd_qc.collect_statistics = 1,
mysqlnd_qc.collect_statistics integer
Collect statistics for mysqlnd_qc_get_core_stats? Does not influence storage handler statistics! Handler statistics can be an integral part of the handler internal storage format. Therefore, collection of some handler statistics cannot be disabled.
mysqlnd_qc.collect_statistics-log-file integer
If mysqlnd_qc.collect_statistics and mysqlnd_qc.collect_statistics_log_file are set, the plugin will dump statistics into the specified log file at every 10th web request during PHP request shutdown. The log file needs to be writable by the web server user.
Since 1.1.0.
mysqlnd_qc.collect_query_trace integer
Collect query back traces?
mysqlnd_qc.query_trace_bt_depth integer
Maximum depth/level of a query code backtrace.
mysqlnd_qc.ignore_sql_comments integer
Whether to remove SQL comments from a query string before hashing it to generate a cache key. Disable if you do not want two statemts such as SELECT /*my_source_ip=123*/ id FROM test and SELECT /*my_source_ip=456*/ id FROM test to refer to the same cache entry.
Since 1.1.0.
mysqlnd_qc.slam_defense integer
Activates handler based slam defense (cache stampeding protection) if available. Supported by Default and APC storage handler
mysqlnd_qc.slam_defense_ttl integer
TTL for stale cache entries which are served while another client updates the entries. Supported by APC storage handler.
mysqlnd_qc.collect_normalized_query_trace integer
Collect aggregated normalized query traces? The setting has no effect by default. You compile the extension using the define NORM_QUERY_TRACE_LOG to make use of the setting.
mysqlnd_qc.std_data_copy integer
Default storage handler: copy cached wire data? EXPERIMENTAL – use default setting!
mysqlnd_qc.apc_prefix string
The APC storage handler stores data in the APC user cache. The setting sets a prefix to be used for cache entries.
mysqlnd_qc.memc_server string
MEMCACHE storage handler: memcache server host.
mysqlnd_qc.memc_port integer
MEMCACHE storage handler: memcached server port.
mysqlnd_qc.sqlite_data_file string
sqlite storage handler: data file. Any setting but :memory: may be of little practical value.
21.9.7.6. Predefined Constants
Copyright 1997-2012 the PHP Documentation Group.
The constants below are defined by this extension, and will only be available when the extension has either been compiled into PHP or dynamically loaded at runtime.
SQL hint related
Example 21.319. Using SQL hint constants
The query cache is controlled by SQL hints. SQL hints are used to enable and disable caching. SQL hints can be used to set the TTL of a query.
The SQL hints recognized by the query cache can be manually changed at compile time. This makes it possible to use mysqlnd_qc in environments in which the default SQL hints are already taken and interpreted by other systems. Therefore it is recommended to use the SQL hint string constants instead of manually adding the default SQL hints to the query string.
<?php
/* Use constants for maximum portability */
$query = "/*" . MYSQLND_QC_ENABLE_SWITCH . "*/SELECT id FROM test";
/* Valid but less portable: default TTL */
$query = "/*qc=on*/SELECT id FROM test";
/* Valid but less portable: per statement TTL */
$query = "/*qc=on*//*qc_ttl=5*/SELECT id FROM test";
printf("MYSQLND_QC_ENABLE_SWITCH: %s\n", MYSQLND_QC_ENABLE_SWITCH);
printf("MYSQLND_QC_DISABLE_SWITCH: %s\n", MYSQLND_QC_DISABLE_SWITCH);
printf("MYSQLND_QC_TTL_SWITCH: %s\n", MYSQLND_QC_TTL_SWITCH);
?>
The above examples will output:
MYSQLND_QC_ENABLE_SWITCH: qc=on
MYSQLND_QC_DISABLE_SWITCH: qc=off
MYSQLND_QC_TTL_SWITCH: qc_ttl=
MYSQLND_QC_ENABLE_SWITCH (string)
SQL hint used to enable caching of a query.
MYSQLND_QC_DISABLE_SWITCH (string)
SQL hint used to disable caching of a query if mysqlnd_qc.cache_by_default = 1.
MYSQLND_QC_TTL_SWITCH (string)
SQL hint used to set the TTL of a result set.
MYSQLND_QC_SERVER_ID_SWITCH (string)
This SQL hint should not be used in general.
It is needed by PECL/mysqlnd_ms to group cache entries for one statement but originating from different physical connections. If the hint is used connection settings such as user, hostname and charset are not considered for generating a cache key of a query. Instead the given value and the query string are used as input to the hashing function that generates the key.
PECL/mysqlnd_ms may, if instructed, cache results from MySQL Replication slaves. Because it can hold many connections to the slave the cache key shall not be formed from the user, hostname or other settings that may vary for the various slave connections. Instead, PECL/mysqlnd_ms provides an identifier which refers to the group of slave connections that shall be enabled to share cache entries no matter which physical slave connection was to generate the cache entry.
Use of this feature outside of PECL/mysqlnd_ms is not recommended.
mysqlnd_qc_set_cache_condition related
Example 21.320. Example mysqlnd_qc_set_cache_condition usage
The function mysqlnd_qc_set_cache_condition allows setting conditions for automatic caching of statements which don't begin with the SQL hints necessary to manually enable caching.
<?php
/* Cache all accesses to tables with the name "new%" in schema/database "db_example" for 1 second */
if (!mysqlnd_qc_set_cache_condition(MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN, "db_example.new%", 1)) {
die("Failed to set cache condition!");
}
$mysqli = new mysqli("host", "user", "password", "db_example", "port");
/* cached although no SQL hint given */
$mysqli->query("SELECT id, title FROM news");
$pdo_mysql = new PDO("mysql:host=host;dbname=db_example;port=port", "user", "password");
/* not cached: no SQL hint, no pattern match */
$pdo_mysql->query("SELECT id, title FROM latest_news");
/* cached: TTL 1 second, pattern match */
$pdo_mysql->query("SELECT id, title FROM news");
?>
MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN (int)
Used as a parameter of mysqlnd_qc_set_cache_condition to set conditions for schema based automatic caching.
Other
The plugin version number can be obtained using either MYSQLND_QC_VERSION , which is the string representation of the numerical version number, or MYSQLND_QC_VERSION_ID , which is an integer such as 10000. Developers can calculate the version number as follows.
Version (part) | Example |
---|---|
Major*10000 | 1*10000 = 10000 |
Minor*100 | 0*100 = 0 |
Patch | 0 = 0 |
MYSQLND_QC_VERSION_ID | 10000 |
MYSQLND_QC_VERSION (string)
Plugin version string, for example, “1.0.0-prototype”.
MYSQLND_QC_VERSION_ID (int)
Plugin version number, for example, 10000.
21.9.7.7. mysqlnd_qc Functions
Copyright 1997-2012 the PHP Documentation Group.
21.9.7.7.1. mysqlnd_qc_clear_cache
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_qc_clear_cache
Flush all cache contents
Description
bool mysqlnd_qc_clear_cache();
Flush all cache contents.
Flushing the cache is a storage handler responsibility. All built-in storage handler but the memcache storage handler support flushing the cache. The memcache storage handler cannot flush its cache contents.
User-defined storage handler may or may not support the operation.
Parameters
This function has no parameters.
Return Values
Returns TRUE on success or FALSE on failure.
A return value of FALSE indicates that flushing all cache contents has failed or the operation is not supported by the active storage handler. Applications must not expect that calling the function will always flush the cache.
21.9.7.7.2. mysqlnd_qc_get_available_handlers
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_qc_get_available_handlers
Returns a list of available storage handler
Description
array mysqlnd_qc_get_available_handlers();
Which storage are available depends on the compile time configuration of the query cache plugin. The default storage handler is always available. All other storage handler must be enabled explicitly when building the extension.
Parameters
This function has no parameters.
Return Values
Returns an array of available built-in storage handler. For each storage handler the version number and version string is given.
Examples
Example 21.321. mysqlnd_qc_get_available_handlers example
<?php
var_dump(mysqlnd_qc_get_available_handlers());
?>
The above examples will output:
array(5) {
["default"]=>
array(2) {
["version"]=>
string(5) "1.0.0"
["version_number"]=>
int(100000)
}
["user"]=>
array(2) {
["version"]=>
string(5) "1.0.0"
["version_number"]=>
int(100000)
}
["APC"]=>
array(2) {
["version"]=>
string(5) "1.0.0"
["version_number"]=>
int(100000)
}
["MEMCACHE"]=>
array(2) {
["version"]=>
string(5) "1.0.0"
["version_number"]=>
int(100000)
}
["sqlite"]=>
array(2) {
["version"]=>
string(5) "1.0.0"
["version_number"]=>
int(100000)
}
}
See Also
Installation |
mysqlnd_qc_set_storage_handler |
21.9.7.7.3. mysqlnd_qc_get_cache_info
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_qc_get_cache_info
Returns information on the current handler, the number of cache entries and cache entries, if available
Description
array mysqlnd_qc_get_cache_info();
Parameters
This function has no parameters.
Return Values
Returns information on the current handler, the number of cache entries and cache entries, if available. If and what data will be returned for the cache entries is subject to the active storage handler. Storage handler are free to return any data. Storage handler are recommended to return at least the data provided by the default handler, if technically possible.
The scope of the information is the PHP process. Depending on the PHP deployment model a process may serve one or more web requests.
Values are aggregated for all cache activities on a per storage handler basis. It is not possible to tell how much queries originating from mysqli, PDO_MySQL or mysql.API calls have contributed to the aggregated data values. Use mysqlnd_qc_get_core_stats to get timing data aggregated for all storage handlers.
Array of cache information
handler string
The active storage handler.
All storage handler. Since 1.0.0.
handler_version string
The version of the active storage handler.
All storage handler. Since 1.0.0.
num_entries int
The number of cache entries. The value depends on the storage handler in use.
The default, APC and SQLite storage handler provide the actual number of cache entries.
The MEMCACHE storage handler always returns 0. MEMCACHE does not support counting the number of cache entries.
If a user defined handler is used, the number of entries of the data property is reported.
Since 1.0.0.
data array
The version of the active storage handler.
Additional storage handler dependent data on the cache entries. Storage handler are requested to provide similar and comparable information. A user defined storage handler is free to return any data.
Since 1.0.0.
The following information is provided by the default storage handler for the data property.
The data property holds a hash. The hash is indexed by the internal cache entry identifier of the storage handler. The cache entry identifier is human-readable and contains the query string leading to the cache entry. Please, see also the example below. The following data is given for every cache entry.
statistics array
Statistics of the cache entry.
Since 1.0.0.
Property | Description | Version |
---|---|---|
rows | Number of rows of the cached result set. | Since 1.0.0. |
stored_size | The size of the cached result set in bytes. This is the size of the payload. The value is not suited for calculating the total memory consumption of all cache entries including the administrative overhead of the cache entries. | Since 1.0.0. |
cache_hits | How often the cached entry has been returned. | Since 1.0.0. |
run_time | Run time of the statement to which the cache entry belongs. This is the run time of the uncached statement. It is the time between sending the statement to MySQL receiving a reply from MySQL. Run time saved by using the query cache plugin can be calculated like this: cache_hits * ((run_time - avg_run_time) + (store_time - avg_store_time)). | Since 1.0.0. |
store_time | Store time of the statements result set to which the cache entry belongs. This is the time it took to fetch and store the results of the uncached statement. | Since 1.0.0. |
min_run_time | Minimum run time of the cached statement. How long it took to find the statement in the cache. | Since 1.0.0. |
min_store_time | Minimum store time of the cached statement. The time taken for fetching the cached result set from the storage medium and decoding | Since 1.0.0. |
avg_run_time | Average run time of the cached statement. | Since 1.0.0. |
avg_store_time | Average store time of the cached statement. | Since 1.0.0. |
max_run_time | Average run time of the cached statement. | Since 1.0.0. |
max_store_time | Average store time of the cached statement. | Since 1.0.0. |
valid_until | Timestamp when the cache entry expires. | Since 1.1.0. |
metadata array
Metadata of the cache entry. This is the metadata provided by MySQL together with the result set of the statement in question. Different versions of the MySQL server may return different metadata. Unlike with some of the PHP MySQL extensions no attempt is made to hide MySQL server version dependencies and version details from the caller. Please, refer to the MySQL C API documentation that belongs to the MySQL server in use for further details.
The metadata list contains one entry for every column.
Since 1.0.0.
Property | Description | Version |
---|---|---|
name | The field name. Depending on the MySQL version this may be the fields alias name. | Since 1.0.0. |
org_name | The field name. | Since 1.0.0. |
table | The table name. If an alias name was used for the table, this usually holds the alias name. | Since 1.0.0. |
org_table | The table name. | Since 1.0.0. |
db | The database/schema name. | Since 1.0.0. |
max_length | The maximum width of the field. Details may vary by MySQL server version. | Since 1.0.0. |
length | The width of the field. Details may vary by MySQL server version. | Since 1.0.0. |
type | The data type of the field. Details may vary by the MySQL server in use. This is the MySQL C API type constants value. It is recommended to use type constants provided by the mysqli extension to test for its meaning. You should not test for certain type values by comparing with certain numbers. | Since 1.0.0. |
The APC storage handler returns the same information for the data property but no metadata. The metadata of a cache entry is set to NULL.
The MEMCACHE storage handler does not fill the data property. Statistics are not available on a per cache entry basis with the MEMCACHE storage handler.
A user defined storage handler is free to provide any data.
Examples
Example 21.322. mysqlnd_qc_get_cache_info example
The example shows the output from the built-in default storage handler. Other storage handler may report different data.
<?php
/* Populate the cache, e.g. using mysqli */
$mysqli = new mysqli("host", "user", "password", "schema");
$mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/SELECT id FROM test");
/* Display cache information */
var_dump(mysqlnd_qc_get_cache_info());
?>
The above examples will output:
array(4) {
["num_entries"]=>
int(1)
["handler"]=>
string(7) "default"
["handler_version"]=>
string(5) "1.0.0"
["data"]=>
array(1) {
["Localhost via UNIX socket 3306 user schema|/*qc=on*/SELECT id FROM test"]=>
array(2) {
["statistics"]=>
array(11) {
["rows"]=>
int(6)
["stored_size"]=>
int(101)
["cache_hits"]=>
int(0)
["run_time"]=>
int(471)
["store_time"]=>
int(27)
["min_run_time"]=>
int(0)
["max_run_time"]=>
int(0)
["min_store_time"]=>
int(0)
["max_store_time"]=>
int(0)
["avg_run_time"]=>
int(0)
["avg_store_time"]=>
int(0)
}
["metadata"]=>
array(1) {
[0]=>
array(8) {
["name"]=>
string(2) "id"
["orig_name"]=>
string(2) "id"
["table"]=>
string(4) "test"
["orig_table"]=>
string(4) "test"
["db"]=>
string(4) "schema"
["max_length"]=>
int(1)
["length"]=>
int(11)
["type"]=>
int(3)
}
}
}
}
}
See Also
mysqlnd_qc_get_core_stats |
21.9.7.7.4. mysqlnd_qc_get_core_stats
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_qc_get_core_stats
Statistics collected by the core of the query cache
Description
array mysqlnd_qc_get_core_stats();
Returns an array of statistics collected by the core of the cache plugin. The same data fields will be reported for any storage handler because the data is collected by the core.
The PHP configuration setting mysqlnd_qc.collect_statistics controls the collection of statistics. The collection of statistics is disabled by default for performance reasons. Disabling the collection of statistics will also disable the collection of time related statistics.
The PHP configuration setting mysqlnd_qc.collect_time_statistics controls the collection of time related statistics.
The scope of the core statistics is the PHP process. Depending on your deployment model a PHP process may handle one or multiple requests.
Statistics are aggregated for all cache entries and all storage handler. It is not possible to tell how much queries originating from mysqli, PDO_MySQL or mysql API calls have contributed to the aggregated data values.
Parameters
This function has no parameters.
Return Values
Array of core statistics
Statistic | Description | Version |
---|---|---|
cache_hit | Statement is considered cacheable and cached data has been reused. Statement is considered cacheable and a cache miss happened but the statement got cached by someone else while we process it and thus we can fetch the result from the refreshed cache. | Since 1.0.0. |
cache_miss | Statement is considered cacheable...
| Since 1.0.0. |
cache_put | Statement is considered cacheable and has been added to the cache. Take care when calculating derived statistics. Storage handler with a storage life time beyond process scope may report cache_put = 0 together with cache_hit > 0, if another process has filled the cache. You may want to use num_entries from mysqlnd_qc_get_cache_info if the handler supports it (default, APC). | Since 1.0.0. |
query_should_cache | Statement is considered cacheable based on query string analysis. The statement may or may not be added to the cache. See also cache_put. | Since 1.0.0. |
query_should_not_cache | Statement is considered not cacheable based on query string analysis. | Since 1.0.0. |
query_not_cached | Statement is considered not cacheable or it is considered cachable but the storage handler has not returned a hash key for it. | Since 1.0.0. |
query_could_cache | Statement is considered cacheable...
| Since 1.0.0. |
query_found_in_cache | Statement is considered cacheable and we have found it in the cache but we have not replayed the cached data yet and we have not send the result set to the client yet. This is not considered a cache hit because the client might not fetch the result or the cached data may be faulty. | Since 1.0.0. |
query_uncached_other | Statement is considered cacheable and it may or may not be in the cache already but either replaying cached data has failed, no result set is available or some other error has happened. | |
query_uncached_no_table | Statement has not been cached because the result set has at least one column which has no table name in its meta data. An example of such a query is SELECT SLEEP(1). To cache those statements you have to change default value of the PHP configuration directive mysqlnd_qc.cache_no_table and set mysqlnd_qc.cache_no_table = 1. Often, it is not desired to cache such statements. | Since 1.0.0. |
query_uncached_use_result | Statement would have been cached if a buffered result set had been used. The situation is also considered as a cache miss and cache_miss will be incremented as well. | Since 1.0.0. |
query_aggr_run_time_cache_hit | Aggregated run time (ms) of all cached queries. Cached queries are those which have incremented cache_hit. | Since 1.0.0. |
query_aggr_run_time_cache_put | Aggregated run time (ms) of all uncached queries that have been put into the cache. See also cache_put. | Since 1.0.0. |
query_aggr_run_time_total | Aggregated run time (ms) of all uncached and cached queries that have been inspected and executed by the query cache. | Since 1.0.0. |
query_aggr_store_time_cache_hit | Aggregated store time (ms) of all cached queries. Cached queries are those which have incremented cache_hit. | Since 1.0.0. |
query_aggr_store_time_cache_put | Aggregated store time (ms) of all uncached queries that have been put into the cache. See also cache_put. | Since 1.0.0. |
query_aggr_store_time_total | Aggregated store time (ms) of all uncached and cached queries that have been inspected and executed by the query cache. | Since 1.0.0. |
receive_bytes_recorded | Recorded incoming network traffic (bytes) send from MySQL to PHP. The traffic may or may not have been added to the cache. The traffic is the total for all queries regardless if cached or not. | Since 1.0.0. |
receive_bytes_replayed | Network traffic replayed during cache. This is the total amount of incoming traffic saved because of the usage of the query cache plugin. | Since 1.0.0. |
send_bytes_recorded | Recorded outgoing network traffic (bytes) send from MySQL to PHP. The traffic may or may not have been added to the cache. The traffic is the total for all queries regardless if cached or not. | Since 1.0.0. |
send_bytes_replayed | Network traffic replayed during cache. This is the total amount of outgoing traffic saved because of the usage of the query cache plugin. | Since 1.0.0. |
slam_stale_refresh | Number of cache misses which triggered serving stale data until the client causing the cache miss has refreshed the cache entry. | Since 1.0.0. |
slam_stale_hit | Number of cache hits while a stale cache entry gets refreshed. | Since 1.0.0. |
Examples
Example 21.323. mysqlnd_qc_get_core_stats example
<?php
/* Enable collection of statistics - default: disabled */
ini_set("mysqlnd_qc.collect_statistics", 1);
/* Enable collection of all timing related statistics -
default: enabled but overruled by mysqlnd_qc.collect_statistics = 0 */
ini_set("mysqlnd_qc.collect_time_statistics", 1);
/* Populate the cache, e.g. using mysqli */
$mysqli = new mysqli('host', 'user', 'password', 'schema');
/* Cache miss and cache put */
$mysqli->query("/*qc=on*/SELECT id FROM test");
/* Cache hit */
$mysqli->query("/*qc=on*/SELECT id FROM test");
/* Display core statistics */
var_dump(mysqlnd_qc_get_core_stats());
?>
The above examples will output:
array(26) {
["cache_hit"]=>
string(1) "1"
["cache_miss"]=>
string(1) "1"
["cache_put"]=>
string(1) "1"
["query_should_cache"]=>
string(1) "2"
["query_should_not_cache"]=>
string(1) "0"
["query_not_cached"]=>
string(1) "0"
["query_could_cache"]=>
string(1) "2"
["query_found_in_cache"]=>
string(1) "1"
["query_uncached_other"]=>
string(1) "0"
["query_uncached_no_table"]=>
string(1) "0"
["query_uncached_no_result"]=>
string(1) "0"
["query_uncached_use_result"]=>
string(1) "0"
["query_aggr_run_time_cache_hit"]=>
string(1) "4"
["query_aggr_run_time_cache_put"]=>
string(3) "395"
["query_aggr_run_time_total"]=>
string(3) "399"
["query_aggr_store_time_cache_hit"]=>
string(1) "2"
["query_aggr_store_time_cache_put"]=>
string(1) "8"
["query_aggr_store_time_total"]=>
string(2) "10"
["receive_bytes_recorded"]=>
string(2) "65"
["receive_bytes_replayed"]=>
string(2) "65"
["send_bytes_recorded"]=>
string(2) "29"
["send_bytes_replayed"]=>
string(2) "29"
["slam_stale_refresh"]=>
string(1) "0"
["slam_stale_hit"]=>
string(1) "0"
["request_counter"]=>
int(1)
["process_hash"]=>
int(3547549858)
}
See Also
Runtime configuration |
mysqlnd_qc.collect_statistics |
mysqlnd_qc.time_statistics |
mysqlnd_qc_get_cache_info |
21.9.7.7.5. mysqlnd_qc_get_normalized_query_trace_log
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_qc_get_normalized_query_trace_log
Returns a normalized query trace log for each query inspected by the query cache
Description
array mysqlnd_qc_get_normalized_query_trace_log();
Returns a normalized query trace log for each query inspected by the query cache. The collection of the trace log is disabled by default. To collect the trace log you have to set the PHP configuration directive mysqlnd_qc.collect_normalized_query_trace to 1
Entries in the trace log are grouped by the normalized query statement. The normalized query statement is the query statement with all statement parameter values being replaced with a question mark. For example, the two statements SELECT id FROM test WHERE id = 1 and SELECT id FROM test WHERE id = 2 are normalized as SELECT id FROM test WHERE id = ?. Whenever a statement is inspected by the query cache which matches the normalized statement pattern, its statistics are grouped by the normalized statement string.
Parameters
This function has no parameters.
Return Values
An array of query log. Every list entry contains the normalized query stringand further detail information.
Key | Description |
---|---|
query | Normalized statement string. |
occurences | How many statements have matched the normalized statement string in addition to the one which has created the log entry. The value is zero if a statement has been normalized, its normalized representation has been added to the log but no further queries inspected by PECL/mysqlnd_qc have the same normalized statement string. |
eligible_for_caching | Whether the statement could be cached. An statement eligible for caching has not necessarily been cached. It not possible to tell for sure if or how many cached statement have contributed to the aggregated normalized statement log entry. However, comparing the minimum and average run time one can make an educated guess. |
avg_run_time | The average run time of all queries contributing to the query log entry. The run time is the time between sending the query statement to MySQL and receiving an answer from MySQL. |
avg_store_time | The average store time of all queries contributing to the query log entry. The store time is the time needed to fetch a statements result set from the server to the client and, storing it on the client. |
min_run_time | The minimum run time of all queries contributing to the query log entry. |
min_store_time | The minimum store time of all queries contributing to the query log entry. |
max_run_time | The maximum run time of all queries contributing to the query log entry. |
max_store_time | The maximum store time of all queries contributing to the query log entry. |
Examples
Example 21.324. mysqlnd_qc_get_normalized_query_trace_log example
mysqlnd_qc.collect_normalized_query_trace=1
<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");
/* not cached */
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
/* cache put */
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 2");
var_dump($res->fetch_assoc());
$res->free();
/* cache hit */
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 2");
var_dump($res->fetch_assoc());
$res->free();
var_dump(mysqlnd_qc_get_normalized_query_trace_log());
?>
The above examples will output:
array(1) {
["id"]=>
string(1) "1"
}
array(1) {
["id"]=>
string(1) "2"
}
array(1) {
["id"]=>
string(1) "2"
}
array(4) {
[0]=>
array(9) {
["query"]=>
string(25) "DROP TABLE IF EXISTS test"
["occurences"]=>
int(0)
["eligible_for_caching"]=>
bool(false)
["avg_run_time"]=>
int(0)
["min_run_time"]=>
int(0)
["max_run_time"]=>
int(0)
["avg_store_time"]=>
int(0)
["min_store_time"]=>
int(0)
["max_store_time"]=>
int(0)
}
[1]=>
array(9) {
["query"]=>
string(27) "CREATE TABLE test (id INT)"
["occurences"]=>
int(0)
["eligible_for_caching"]=>
bool(false)
["avg_run_time"]=>
int(0)
["min_run_time"]=>
int(0)
["max_run_time"]=>
int(0)
["avg_store_time"]=>
int(0)
["min_store_time"]=>
int(0)
["max_store_time"]=>
int(0)
}
[2]=>
array(9) {
["query"]=>
string(40) "INSERT INTO test (id) VALUES (?), (?)"
["occurences"]=>
int(0)
["eligible_for_caching"]=>
bool(false)
["avg_run_time"]=>
int(0)
["min_run_time"]=>
int(0)
["max_run_time"]=>
int(0)
["avg_store_time"]=>
int(0)
["min_store_time"]=>
int(0)
["max_store_time"]=>
int(0)
}
[3]=>
array(9) {
["query"]=>
string(31) "SELECT id FROM test WHERE id =?"
["occurences"]=>
int(2)
["eligible_for_caching"]=>
bool(true)
["avg_run_time"]=>
int(159)
["min_run_time"]=>
int(12)
["max_run_time"]=>
int(307)
["avg_store_time"]=>
int(10)
["min_store_time"]=>
int(8)
["max_store_time"]=>
int(13)
}
}
See Also
Runtime configuration |
mysqlnd_qc.collect_normalized_query_trace |
mysqlnd_qc.time_statistics |
mysqlnd_qc_get_query_trace_log |
21.9.7.7.6. mysqlnd_qc_get_query_trace_log
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_qc_get_query_trace_log
Returns a backtrace for each query inspected by the query cache
Description
array mysqlnd_qc_get_query_trace_log();
Returns a backtrace for each query inspected by the query cache. The collection of the backtrace is disabled by default. To collect the backtrace you have to set the PHP configuration directive mysqlnd_qc.collect_query_trace to 1
The maximum depth of the backtrace is limited to the depth set with the PHP configuration directive mysqlnd_qc.query_trace_bt_depth.
Parameters
This function has no parameters.
Return Values
An array of query backtrace. Every list entry contains the query string, a backtrace and further detail information.
Key | Description |
---|---|
query | Query string. |
origin | Code backtrace. |
run_time | Query run time in milliseconds. The collection of all times and the necessary gettimeofday system calls can be disabled by setting the PHP configuration directive mysqlnd_qc.time_statistics to 0 |
store_time | Query result set store time in milliseconds. The collection of all times and the necessary gettimeofday system calls can be disabled by setting the PHP configuration directive mysqlnd_qc.time_statistics to 0 |
eligible_for_caching | TRUE if query is cacheable otherwise FALSE . |
no_table | TRUE if the query has generated a result set and at least one column from the result set has no table name set in its metadata. This is usually the case with queries which one probably do not want to cache such as SELECT SLEEP(1). By default any such query will not be added to the cache. See also PHP configuration directive mysqlnd_qc.cache_no_table. |
was_added | TRUE if the query result has been put into the cache, otherwise FALSE . |
was_already_in_cache | TRUE if the query result would have been added to the cache if it was not already in the cache (cache hit). Otherwise FALSE . |
Examples
Example 21.325. mysqlnd_qc_get_query_trace_log example
mysqlnd_qc.collect_query_trace=1
<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");
/* not cached */
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
/* cache put */
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 2");
var_dump($res->fetch_assoc());
$res->free();
/* cache hit */
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 2");
var_dump($res->fetch_assoc());
$res->free();
var_dump(mysqlnd_qc_get_query_trace_log());
?>
The above examples will output:
array(1) {
["id"]=>
string(1) "1"
}
array(1) {
["id"]=>
string(1) "2"
}
array(1) {
["id"]=>
string(1) "2"
}
array(6) {
[0]=>
array(8) {
["query"]=>
string(25) "DROP TABLE IF EXISTS test"
["origin"]=>
string(102) "#0 qc.php(4): mysqli->query('DROP TABLE IF E...')
#1 {main}"
["run_time"]=>
int(0)
["store_time"]=>
int(0)
["eligible_for_caching"]=>
bool(false)
["no_table"]=>
bool(false)
["was_added"]=>
bool(false)
["was_already_in_cache"]=>
bool(false)
}
[1]=>
array(8) {
["query"]=>
string(25) "CREATE TABLE test(id INT)"
["origin"]=>
string(102) "#0 qc.php(5): mysqli->query('CREATE TABLE te...')
#1 {main}"
["run_time"]=>
int(0)
["store_time"]=>
int(0)
["eligible_for_caching"]=>
bool(false)
["no_table"]=>
bool(false)
["was_added"]=>
bool(false)
["was_already_in_cache"]=>
bool(false)
}
[2]=>
array(8) {
["query"]=>
string(36) "INSERT INTO test(id) VALUES (1), (2)"
["origin"]=>
string(102) "#0 qc.php(6): mysqli->query('INSERT INTO tes...')
#1 {main}"
["run_time"]=>
int(0)
["store_time"]=>
int(0)
["eligible_for_caching"]=>
bool(false)
["no_table"]=>
bool(false)
["was_added"]=>
bool(false)
["was_already_in_cache"]=>
bool(false)
}
[3]=>
array(8) {
["query"]=>
string(32) "SELECT id FROM test WHERE id = 1"
["origin"]=>
string(102) "#0 qc.php(9): mysqli->query('SELECT id FROM ...')
#1 {main}"
["run_time"]=>
int(0)
["store_time"]=>
int(25)
["eligible_for_caching"]=>
bool(false)
["no_table"]=>
bool(false)
["was_added"]=>
bool(false)
["was_already_in_cache"]=>
bool(false)
}
[4]=>
array(8) {
["query"]=>
string(41) "/*qc=on*/SELECT id FROM test WHERE id = 2"
["origin"]=>
string(103) "#0 qc.php(14): mysqli->query('/*qc=on*/SELECT...')
#1 {main}"
["run_time"]=>
int(311)
["store_time"]=>
int(13)
["eligible_for_caching"]=>
bool(true)
["no_table"]=>
bool(false)
["was_added"]=>
bool(true)
["was_already_in_cache"]=>
bool(false)
}
[5]=>
array(8) {
["query"]=>
string(41) "/*qc=on*/SELECT id FROM test WHERE id = 2"
["origin"]=>
string(103) "#0 qc.php(19): mysqli->query('/*qc=on*/SELECT...')
#1 {main}"
["run_time"]=>
int(13)
["store_time"]=>
int(8)
["eligible_for_caching"]=>
bool(true)
["no_table"]=>
bool(false)
["was_added"]=>
bool(false)
["was_already_in_cache"]=>
bool(true)
}
}
See Also
Runtime configuration |
mysqlnd_qc.collect_query_trace |
mysqlnd_qc.query_trace_bt_depth |
mysqlnd_qc.time_statistics |
mysqlnd_qc.cache_no_table |
mysqlnd_qc_get_normalized_query_trace_log |
21.9.7.7.7. mysqlnd_qc_set_cache_condition
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_qc_set_cache_condition
Set conditions for automatic caching
Description
bool mysqlnd_qc_set_cache_condition(int condition_type,
mixed condition,
mixed condition_option);
Sets a condition for automatic caching of statements which do not contain the necessary SQL hints to enable caching of them.
Parameters
condition_type
Type of the condition. The only allowed value is MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN .
condition
Parameter for the condition set with condition_type. Parameter type and structure depend on condition_type
If condition_type equals MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN condition must be a string. The string sets a pattern. Statements are cached if table and database meta data entry of their result sets match the pattern. The pattern is checked for a match with the db and org_table meta data entries provided by the underlying MySQL client server library. Please, check the MySQL Reference manual for details about the two entries. The db and org_table values are concatenated with a dot (.) before matched against condition. Pattern matching supports the wildcards % and _. The wildcard % will match one or many arbitrary characters. _ will match one arbitrary character. The escape symbol is backslash.
condition_option
Option for condition. Type and structure depend on condition_type.
If condition_type equals MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN condition_options is the TTL to be used.
Examples
Example 21.326. mysqlnd_qc_set_cache_condition example
<?php
/* Cache all accesses to tables with the name "new%" in schema/database "db_example" for 1 second */
if (!mysqlnd_qc_set_cache_condition(MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN, "db_example.new%", 1)) {
die("Failed to set cache condition!");
}
$mysqli = new mysqli("host", "user", "password", "db_example", "port");
/* cached although no SQL hint given */
$mysqli->query("SELECT id, title FROM news");
$pdo_mysql = new PDO("mysql:host=host;dbname=db_example;port=port", "user", "password");
/* not cached: no SQL hint, no pattern match */
$pdo_mysql->query("SELECT id, title FROM latest_news");
/* cached: TTL 1 second, pattern match */
$pdo_mysql->query("SELECT id, title FROM news");
?>
Return Values
Returns TRUE on success or FALSE on FAILURE.
See Also
Quickstart: pattern based caching |
21.9.7.7.8. mysqlnd_qc_set_is_select
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_qc_set_is_select
Installs a callback which decides whether a statement is cached
Description
mixed mysqlnd_qc_set_is_select(string callback);
Installs a callback which decides whether a statement is cached.
There are several ways of hinting PELC/mysqlnd_qc to cache a query. By default, PECL/mysqlnd_qc attempts to cache a if caching of all statements is enabled or the query string begins with a certain SQL hint. The plugin internally calls a function named is_select() to find out. This internal function can be replaced with a user-defined callback. Then, the user-defined callback is responsible to decide whether the plugin attempts to cache a statement. Because the internal function is replaced with the callback, the callback gains full control. The callback is free to ignore the configuration setting mysqlnd_qc.cache_by_default and SQL hints.
The callback is invoked for every statement inspected by the plugin. It is given the statements string as a parameter. The callback returns FALSE if the statement shall not be cached. It returns TRUE to make the plugin attempt to cache the statements result set, if any. A so-created cache entry is given the default TTL set with the PHP configuration directive mysqlnd_qc.ttl. If a different TTL shall be used, the callback returns a numeric value to be used as the TTL.
The internal is_select function is part of the internal cache storage handler interface. Thus, a user-defined storage handler offers the same capabilities.
Parameters
This function has no parameters.
Return Values
Returns TRUE on success or FALSE on failure.
Examples
Example 21.327. mysqlnd_qc_set_is_select example
<?php
/* callback which decides if query is cached */
function is_select($query) {
static $patterns = array(
/* true - use default from mysqlnd_qc.ttl */
"@SELECT\s+.*\s+FROM\s+test@ismU" => true,
/* 3 - use TTL = 3 seconds */
"@SELECT\s+.*\s+FROM\s+news@ismU" => 3
);
/* check if query does match pattern */
foreach ($patterns as $pattern => $ttl) {
if (preg_match($pattern, $query)) {
printf("is_select(%45s): cache\n", $query);
return $ttl;
}
}
printf("is_select(%45s): do not cache\n", $query);
return false;
}
mysqlnd_qc_set_is_select("is_select");
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");
/* cache put */
$mysqli->query("SELECT id FROM test WHERE id = 1");
/* cache hit */
$mysqli->query("SELECT id FROM test WHERE id = 1");
/* cache put */
$mysqli->query("SELECT * FROM test");
?>
The above examples will output:
is_select(DROP TABLE IF EXISTS test): do not cache
is_select(CREATE TABLE test(id INT)): do not cache
is_select(INSERT INTO test(id) VALUES (1), (2), (3)): do not cache
is_select(SELECT id FROM test WHERE id = 1): cache
is_select(SELECT id FROM test WHERE id = 1): cache
is_select(SELECT * FROM test): cache
See Also
Runtime configuration |
mysqlnd_qc.ttl |
mysqlnd_qc.cache_by_default |
mysqlnd_qc_set_user_handlers |
21.9.7.7.9. mysqlnd_qc_set_storage_handler
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_qc_set_storage_handler
Change current storage handler
Description
bool mysqlnd_qc_set_storage_handler(string handler);
Sets the storage handler used by the query cache. A list of available storage handler can be obtained from mysqlnd_qc_get_available_handlers. Which storage are available depends on the compile time configuration of the query cache plugin. The default storage handler is always available. All other storage handler must be enabled explicitly when building the extension.
Parameters
handler
Handler can be of type string representing the name of a built-in storage handler or an object of type mysqlnd_qc_handler_default. The names of the built-in storage handler are default, APC, MEMCACHE, sqlite.
Return Values
Returns TRUE on success or FALSE on failure.
If changing the storage handler fails a catchable fatal error will be thrown. The query cache cannot operate if the previous storage handler has been shutdown but no new storage handler has been installed.
Examples
Example 21.328. mysqlnd_qc_set_storage_handler example
The example shows the output from the built-in default storage handler. Other storage handler may report different data.
<?php
var_dump(mysqlnd_qc_set_storage_handler("memcache"));
if (true === mysqlnd_qc_set_storage_handler("default"))
printf("Default storage handler activated");
/* Catchable fatal error */
var_dump(mysqlnd_qc_set_storage_handler("unknown"));
?>
The above examples will output:
bool(true)
Default storage handler activated
Catchable fatal error: mysqlnd_qc_set_storage_handler(): Unknown handler 'unknown' in (file) on line (line)
See Also
Installation |
mysqlnd_qc_get_available_handlers |
21.9.7.7.10. mysqlnd_qc_set_user_handlers
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_qc_set_user_handlers
Sets the callback functions for a user-defined procedural storage handler
Description
bool mysqlnd_qc_set_user_handlers(string get_hash,
string find_query_in_cache,
string return_to_cache,
string add_query_to_cache_if_not_exists,
string query_is_select,
string update_query_run_time_stats,
string get_stats,
string clear_cache);
Sets the callback functions for a user-defined procedural storage handler.
Parameters
get_hash
Name of the user function implementing the storage handler get_hash functionality.
find_query_in_cache
Name of the user function implementing the storage handler find_in_cache functionality.
return_to_cache
Name of the user function implementing the storage handler return_to_cache functionality.
add_query_to_cache_if_not_exists
Name of the user function implementing the storage handler add_query_to_cache_if_not_exists functionality.
query_is_select
Name of the user function implementing the storage handler query_is_select functionality.
update_query_run_time_stats
Name of the user function implementing the storage handler update_query_run_time_stats functionality.
get_stats
Name of the user function implementing the storage handler get_stats functionality.
clear_cache
Name of the user function implementing the storage handler clear_cache functionality.
Return Values
Returns TRUE on success or FALSE on FAILURE.
See Also
Procedural user-defined storage handler example |
21.9.7.8. Change History
Copyright 1997-2012 the PHP Documentation Group.
This change history is a high level summary of selected changes that may impact applications and/or break backwards compatibility.
See also the CHANGES file in the source distribution for a complete list of changes.
21.9.7.8.1. PECL/mysqlnd_qc 1.2 series
Copyright 1997-2012 the PHP Documentation Group.
1.2.0 - alpha
Feature changes
Update build for PHP 5.5 (Credits: Remi Collet)
APC storage handler update
Introduced MYSQLND_QC_VERSION and MYSQLND_QC_VERSION_ID .
21.9.7.8.2. PECL/mysqlnd_qc 1.1 series
Copyright 1997-2012 the PHP Documentation Group.
1.1.0 - stable
1.1.0 - beta
1.1.0 - alpha
Feature changes
APC storage handler update
New PHP configuration directives
New constants and SQL hints
New function mysqlnd_qc_set_cache_condition for built-in schema pattern based caching. Likely to support a wider range of conditions in the future.
Report valid_until timestamp for cache entries of the default handler through mysqlnd_qc_get_cache_info.
Include charset number for cache entry hashing. This should prevent serving result sets which have the wrong charset.
API change: get_hash_key expects new "charsetnr" (int) parameter after "port".
API change: changing is_select() signature from bool is_select() to mixed is_select(). Mixed can be either boolean or array(long ttl, string server_id). This is needed by PECL/mysqlnd_ms.
Other
Support acting as a cache backend for PECL/mysqlnd_ms 1.3.0-beta or later to transparently replace MySQL Replication slave reads with cache accesses, if the user explicitly allows.
Bug fixes
21.9.7.8.3. PECL/mysqlnd_qc 1.0 series
Copyright 1997-2012 the PHP Documentation Group.
1.0.1-stable
Added support for Prepared statements and unbuffered queries.
1.0.0-beta
Initial public release of the transparent TTL-based query result cache. Flexible storage of cached results. Various storage media supported.
21.9.8. Mysqlnd user handler plugin (mysqlnd_uh)
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd user handler plugin (mysqlnd_uh) allows users to set hooks for most internal calls of the MySQL native driver for PHP (mysqlnd). Mysqlnd and its plugins, including PECL/mysqlnd_uh, operate on a layer beneath the PHP MySQL extensions. A mysqlnd plugin can be considered as a proxy between the PHP MySQL extensions and the MySQL server as part of the PHP executable on the client-side. Because the plugins operates on their own layer below the PHP MySQL extensions, they can monitor and change application actions without requiring application changes. If the PHP MySQL extensions (mysqli, mysql, PDO_MYSQL) are compiled to use mysqlnd this can be used for:
Monitoring
Queries executed by any of the PHP MySQL extensions
Prepared statements executing by any of the PHP MySQL extensions
Auditing
Detection of database usage
SQL injection protection using black and white lists
Assorted
Load Balancing connections
The MySQL native driver for PHP (mysqlnd) features an internal plugin C API. C plugins, such as the mysqlnd user handler plugin, can extend the functionality of mysqlnd. PECL/mysqlnd_uh makes parts of the internal plugin C API available to the PHP user for plugin development with PHP.
Status
The mysqlnd user handler plugin is in alpha status. Take appropriate care before using it in production environments.
21.9.8.1. Security considerations
Copyright 1997-2012 the PHP Documentation Group.
PECL/mysqlnd_uh gives users access to MySQL user names, MySQL password used by any of the PHP MySQL extensions to connect to MySQL. It allows monitoring of all queries and prepared statements exposing the statement string to the user. Therefore, the extension should be installed with care. The PHP_INI_SYSTEM configuration setting mysqlnd_uh.enable can be used to prevent users from hooking mysqlnd calls.
Code obfuscators and similar technologies are not suitable to prevent monitoring of mysqlnd library activities if PECL/mysqlnd_uh is made available and the user can install a proxy, for example, using auto_prepend_file.
21.9.8.2. Documentation note
Copyright 1997-2012 the PHP Documentation Group.
Many of the mysqlnd_uh functions are briefly described because the mysqli extension is a thin abstraction layer on top of the MySQL C API that the mysqlnd library provides. Therefore, the corresponding mysqli documentation (along with the MySQL reference manual) can be consulted to receive more information about a particular function.
21.9.8.3. On the name
Copyright 1997-2012 the PHP Documentation Group.
The shortcut mysqlnd_uh stands for mysqlnd user handler, and has been the name since early development.
21.9.8.4. Quickstart and Examples
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd user handler plugin can be understood as a client-side proxy for all PHP MySQL extensions (mysqli, mysql, PDO_MYSQL), if they are compiled to use the mysqlnd library. The extensions use the mysqlnd library internally, at the C level, to communicate with the MySQL server. PECL/mysqlnd_uh allows it to hook many mysqlnd calls. Therefore, most activities of the PHP MySQL extensions can be monitored.
Because monitoring happens at the level of the library, at a layer below the application, it is possible to monitor applications without changing them.
On the C level, the mysqlnd library is structured in modules or classes. The extension hooks almost all methods of the mysqlnd internal connection class and exposes them through the user space class MysqlndUhConnection. Some few methods of the mysqlnd internal statement class are made available to the PHP user with the class MysqlndUhPreparedStatement. By subclassing the classes MysqlndUhConnection and MysqlndUhPreparedStatement users get access to mysqlnd internal function calls.
Note
The internal mysqlnd function calls are not designed to be exposed to the PHP user. Manipulating their activities may cause PHP to crash or leak memory. Often, this is not considered a bug. Please, keep in mind that you are accessing C library functions through PHP which are expected to take certain actions, which you may not be able to emulate in user space. Therefore, it is strongly recommended to always call the parent method implementation when subclassing MysqlndUhConnection or MysqlndUhPreparedStatement. To prevent the worst case, the extension performs some sanity checks. Please, see also the Mysqlnd_uh Configure Options.
21.9.8.4.1. Setup
Copyright 1997-2012 the PHP Documentation Group.
The plugin is implemented as a PHP extension. See the installation instructions to install the PECL/mysqlnd_uh extension. Then, load the extension into PHP and activate the plugin in the PHP configuration file using the PHP configuration directive named mysqlnd_uh.enable. The below example shows the default settings of the extension.
Example 21.329. Enabling the plugin (php.ini)
mysqlnd_uh.enable=1
mysqlnd_uh.report_wrong_types=1
21.9.8.4.2. How it works
Copyright 1997-2012 the PHP Documentation Group.
This describes the background and inner workings of the mysqlnd_uh extension.
Two classes are provided by the extension: MysqlndUhConnection and MysqlndUhPreparedStatement. MysqlndUhConnection lets you access almost all methods of the mysqlnd internal connection class. The latter exposes some selected methods of the mysqlnd internal statement class. For example, MysqlndUhConnection::connect maps to the mysqlnd library C function mysqlnd_conn__connect.
As a mysqlnd plugin, the PECL/mysqlnd_uh extension replaces mysqlnd library C functions with its own functions. Whenever a PHP MySQL extension compiled to use mysqlnd calls a mysqlnd function, the functions installed by the plugin are executed instead of the original mysqlnd ones. For example, mysqli_connect invokes mysqlnd_conn__connect, so the connect function installed by PECL/mysqlnd_uh will be called. The functions installed by PECL/mysqlnd_uh are the methods of the built-in classes.
The built-in PHP classes and their methods do nothing but call their mysqlnd C library counterparts, to behave exactly like the original mysqlnd function they replace. The code below illustrates in pseudo-code what the extension does.
Example 21.330. Pseudo-code: what a built-in class does
class MysqlndUhConnection {
public function connect(($conn, $host, $user, $passwd, $db, $port, $socket, $mysql_flags) {
MYSQLND* c_mysqlnd_connection = convert_from_php_to_c($conn);
...
return call_c_function(mysqlnd_conn__connect(c_mysqlnd_connection, ...));
}
}
The build-in classes behave like a transparent proxy. It is possible for you to replace the proxy with your own. This is done by subclassing MysqlndUhConnection or MysqlndUhPreparedStatement to extend the functionality of the proxy, followed by registering a new proxy object. Proxy objects are installed by mysqlnd_uh_set_connection_proxy and mysqlnd_uh_set_statement_proxy.
Example 21.331. Installing a proxy
<?php
class proxy extends MysqlndUhConnection {
public function connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
?>
The above example will output:
proxy::connect(array (
0 => NULL,
1 => 'localhost',
2 => 'root',
3 => '',
4 => 'test',
5 => 3306,
6 => NULL,
7 => 131072,
))
proxy::connect returns true
21.9.8.4.3. Installing a proxy
Copyright 1997-2012 the PHP Documentation Group.
The extension provides two built-in classes: MysqlndUhConnection and MysqlndUhPreparedStatement. The classes are used for hooking mysqlnd library calls. Their methods correspond to mysqlnd internal functions. By default they act like a transparent proxy and do nothing but call their mysqlnd counterparts. By subclassing the classes you can install your own proxy to monitor mysqlnd.
See also the How it works guide to learn about the inner workings of this extension.
Connection proxies are objects of the type MysqlndUhConnection. Connection proxy objects are installed by mysqlnd_uh_set_connection_proxy. If you install the built-in class MysqlndUhConnection as a proxy, nothing happens. It behaves like a transparent proxy.
Example 21.332. Proxy registration, mysqlnd_uh.enable=1
<?php
mysqlnd_uh_set_connection_proxy(new MysqlndUhConnection());
$mysqli = new mysqli("localhost", "root", "", "test");
?>
The PHP_INI_SYSTEM configuration setting mysqlnd_uh.enable controls whether a proxy may be set. If disabled, the extension will throw errors of type E_WARNING
Example 21.333. Proxy installation disabled
mysqlnd_uh.enable=0
<?php
mysqlnd_uh_set_connection_proxy(new MysqlndUhConnection());
$mysqli = new mysqli("localhost", "root", "", "test");
?>
The above example will output:
PHP Warning: MysqlndUhConnection::__construct(): (Mysqlnd User Handler) The plugin has been disabled by setting the configuration parameter mysqlnd_uh.enabled = false. You must not use any of the base classes in %s on line %d
PHP Warning: mysqlnd_uh_set_connection_proxy(): (Mysqlnd User Handler) The plugin has been disabled by setting the configuration parameter mysqlnd_uh.enable = false. The proxy has not been installed in %s on line %d
To monitor mysqlnd, you have to write your own proxy object subclassing MysqlndUhConnection. Please, see the function reference for a the list of methods that can be subclassed. Alternatively, you can use reflection to inspect the built-in MysqlndUhConnection.
Create a new class proxy. Derive it from the built-in class MysqlndUhConnection. Replace the MysqlndUhConnection::connect. method. Print out the host parameter value passed to the method. Make sure that you call the parent implementation of the connect method. Failing to do so may give unexpected and undesired results, including memory leaks and crashes.
Register your proxy and open three connections using the PHP MySQL extensions mysqli, mysql, PDO_MYSQL. If the extensions have been compiled to use the mysqlnd library, the proxy::connect method will be called three times, once for each connection opened.
Example 21.334. Connection proxy
<?php
class proxy extends MysqlndUhConnection {
public function connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags) {
printf("Connection opened to '%s'\n", $host);
/* Always call the parent implementation! */
return parent::connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags);
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysql = mysql_connect("localhost", "root", "");
$pdo = new PDO("mysql:host=localhost;dbname=test", "root", "");
?>
The above example will output:
Connection opened to 'localhost'
Connection opened to 'localhost'
Connection opened to 'localhost'
The use of prepared statement proxies follows the same pattern: create a proxy object of the type MysqlndUhPreparedStatement and install the proxy using mysqlnd_uh_set_statement_proxy.
Example 21.335. Prepared statement proxy
<?php
class stmt_proxy extends MysqlndUhPreparedStatement {
public function prepare($res, $query) {
printf("%s(%s)\n", __METHOD__, $query);
return parent::prepare($res, $query);
}
}
mysqlnd_uh_set_statement_proxy(new stmt_proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$stmt = $mysqli->prepare("SELECT 'mysqlnd hacking made easy' AS _msg FROM DUAL");
?>
The above example will output:
stmt_proxy::prepare(SELECT 'mysqlnd hacking made easy' AS _msg FROM DUAL)
21.9.8.4.4. Basic query monitoring
Copyright 1997-2012 the PHP Documentation Group.
Basic monitoring of a query statement is easy with PECL/mysqlnd_uh. Combined with debug_print_backtrace it can become a powerful tool, for example, to find the origin of certain statement. This may be desired when searching for slow queries but also after database refactoring to find code still accessing deprecated databases or tables. The latter may be a complicated matter to do otherwise, especially if the application uses auto-generated queries.
Example 21.336. Basic Monitoring
<?php
class conn_proxy extends MysqlndUhConnection {
public function query($res, $query) {
debug_print_backtrace();
return parent::query($res, $query);
}
}
class stmt_proxy extends MysqlndUhPreparedStatement {
public function prepare($res, $query) {
debug_print_backtrace();
return parent::prepare($res, $query);
}
}
mysqlnd_uh_set_connection_proxy(new conn_proxy());
mysqlnd_uh_set_statement_proxy(new stmt_proxy());
printf("Proxies installed...\n");
$pdo = new PDO("mysql:host=localhost;dbname=test", "root", "");
var_dump($pdo->query("SELECT 1 AS _one FROM DUAL")->fetchAll(PDO::FETCH_ASSOC));
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->prepare("SELECT 1 AS _two FROM DUAL");
?>
The above example will output:
#0 conn_proxy->query(Resource id #19, SELECT 1 AS _one FROM DUAL)
#1 PDO->query(SELECT 1 AS _one FROM DUAL) called at [example.php:19]
array(1) {
[0]=>
array(1) {
["_one"]=>
string(1) "1"
}
}
#0 stmt_proxy->prepare(Resource id #753, SELECT 1 AS _two FROM DUAL)
#1 mysqli->prepare(SELECT 1 AS _two FROM DUAL) called at [example.php:22]
For basic query monitoring you should install a connection and a prepared statement proxy. The connection proxy should subclass MysqlndUhConnection::query. All database queries not using native prepared statements will call this method. In the example the query function is invoked by a PDO call. By default, PDO_MySQL is using prepared statement emulation.
All native prepared statements are prepared with the prepare method of mysqlnd exported through MysqlndUhPreparedStatement::prepare. Subclass MysqlndUhPreparedStatement and overwrite prepare for native prepared statement monitoring.
21.9.8.5. Installing/Configuring
Copyright 1997-2012 the PHP Documentation Group.
21.9.8.5.1. Requirements
Copyright 1997-2012 the PHP Documentation Group.
PHP 5.3.3 or later. It is recommended to use PHP 5.4.0 or later to get access to the latest mysqlnd features.
The mysqlnd_uh user handler plugin supports all PHP applications and all available PHP MySQL extensions (mysqli, mysql, PDO_MYSQL). The PHP MySQL extension must be configured to use mysqlnd in order to be able to use the mysqlnd_uh plugin for mysqlnd.
The alpha versions makes use of some mysqli features. You must enable mysqli to compile the plugin. This requirement may be removed in the future. Note, that this requirement does not restrict you to use the plugin only with mysqli. You can use the plugin to monitor mysql, mysqli and PDO_MYSQL.
21.9.8.5.2. Installation
Copyright 1997-2012 the PHP Documentation Group.
Information for installing this PECL extension may be found in the manual chapter titled Installation of PECL extensions. Additional information such as new releases, downloads, source files, maintainer information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqlnd-uh
PECL/mysqlnd_uh is currently not available on Windows. The source code of the extension makes use of C99 constructs not allowed with PHP Windows builds.
21.9.8.5.3. Runtime Configuration
Copyright 1997-2012 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php.ini.
Table 21.76. Mysqlnd_uh Configure Options
Name | Default | Changeable | Changelog |
---|---|---|---|
mysqlnd_uh.enable | 1 | PHP_INI_SYSTEM | |
mysqlnd_uh.report_wrong_types | 1 | PHP_INI_ALL |
Here's a short explanation of the configuration directives.
mysqlnd_uh.enable integer
Enables or disables the plugin. If set to disabled, the extension will not allow users to plug into mysqlnd to hook mysqlnd calls.
mysqlnd_uh.report_wrong_types integer
Whether to report wrong return value types of user hooks as E_WARNING level errors. This is recommended for detecting errors.
21.9.8.5.4. Resource Types
Copyright 1997-2012 the PHP Documentation Group.
This extension has no resource types defined.
21.9.8.6. Predefined Constants
Copyright 1997-2012 the PHP Documentation Group.
The constants below are defined by this extension, and will only be available when the extension has either been compiled into PHP or dynamically loaded at runtime.
Most of the constants refer to details of the MySQL Client Server Protocol. Please, refer to the MySQL reference manual to learn about their meaning. To avoid content duplication, only short descriptions are given.
MysqlndUhConnection::simpleCommand related
The following constants can be used to detect what command is to be send through MysqlndUhConnection::simpleCommand.
MYSQLND_UH_MYSQLND_COM_SLEEP (integer)
MySQL Client Server protocol command: COM_SLEEP.
MYSQLND_UH_MYSQLND_COM_QUIT (integer)
MySQL Client Server protocol command: COM_QUIT.
MYSQLND_UH_MYSQLND_COM_INIT_DB (integer)
MySQL Client Server protocol command: COM_INIT_DB.
MYSQLND_UH_MYSQLND_COM_QUERY (integer)
MySQL Client Server protocol command: COM_QUERY.
MYSQLND_UH_MYSQLND_COM_FIELD_LIST (integer)
MySQL Client Server protocol command: COM_FIELD_LIST.
MYSQLND_UH_MYSQLND_COM_CREATE_DB (integer)
MySQL Client Server protocol command: COM_CREATE_DB.
MYSQLND_UH_MYSQLND_COM_DROP_DB (integer)
MySQL Client Server protocol command: COM_DROP_DB.
MYSQLND_UH_MYSQLND_COM_REFRESH (integer)
MySQL Client Server protocol command: COM_REFRESH.
MYSQLND_UH_MYSQLND_COM_SHUTDOWN (integer)
MySQL Client Server protocol command: COM_SHUTDOWN.
MYSQLND_UH_MYSQLND_COM_STATISTICS (integer)
MySQL Client Server protocol command: COM_STATISTICS.
MYSQLND_UH_MYSQLND_COM_PROCESS_INFO (integer)
MySQL Client Server protocol command: COM_PROCESS_INFO.
MYSQLND_UH_MYSQLND_COM_CONNECT (integer)
MySQL Client Server protocol command: COM_CONNECT.
MYSQLND_UH_MYSQLND_COM_PROCESS_KILL (integer)
MySQL Client Server protocol command: COM_PROCESS_KILL.
MYSQLND_UH_MYSQLND_COM_DEBUG (integer)
MySQL Client Server protocol command: COM_DEBUG.
MYSQLND_UH_MYSQLND_COM_PING (integer)
MySQL Client Server protocol command: COM_PING.
MYSQLND_UH_MYSQLND_COM_TIME (integer)
MySQL Client Server protocol command: COM_TIME.
MYSQLND_UH_MYSQLND_COM_DELAYED_INSERT (integer)
MySQL Client Server protocol command: COM_DELAYED_INSERT.
MYSQLND_UH_MYSQLND_COM_CHANGE_USER (integer)
MySQL Client Server protocol command: COM_CHANGE_USER.
MYSQLND_UH_MYSQLND_COM_BINLOG_DUMP (integer)
MySQL Client Server protocol command: COM_BINLOG_DUMP.
MYSQLND_UH_MYSQLND_COM_TABLE_DUMP (integer)
MySQL Client Server protocol command: COM_TABLE_DUMP.
MYSQLND_UH_MYSQLND_COM_CONNECT_OUT (integer)
MySQL Client Server protocol command: COM_CONNECT_OUT.
MYSQLND_UH_MYSQLND_COM_REGISTER_SLAVED (integer)
MySQL Client Server protocol command: COM_REGISTER_SLAVED.
MYSQLND_UH_MYSQLND_COM_STMT_PREPARE (integer)
MySQL Client Server protocol command: COM_STMT_PREPARE.
MYSQLND_UH_MYSQLND_COM_STMT_EXECUTE (integer)
MySQL Client Server protocol command: COM_STMT_EXECUTE.
MYSQLND_UH_MYSQLND_COM_STMT_SEND_LONG_DATA (integer)
MySQL Client Server protocol command: COM_STMT_SEND_LONG_DATA.
MYSQLND_UH_MYSQLND_COM_STMT_CLOSE (integer)
MySQL Client Server protocol command: COM_STMT_CLOSE.
MYSQLND_UH_MYSQLND_COM_STMT_RESET (integer)
MySQL Client Server protocol command: COM_STMT_RESET.
MYSQLND_UH_MYSQLND_COM_SET_OPTION (integer)
MySQL Client Server protocol command: COM_SET_OPTION.
MYSQLND_UH_MYSQLND_COM_STMT_FETCH (integer)
MySQL Client Server protocol command: COM_STMT_FETCH.
MYSQLND_UH_MYSQLND_COM_DAEMON (integer)
MySQL Client Server protocol command: COM_DAEMON.
MYSQLND_UH_MYSQLND_COM_END (integer)
MySQL Client Server protocol command: COM_END.
The following constants can be used to analyze the ok_packet argument of MysqlndUhConnection::simpleCommand.
MYSQLND_UH_MYSQLND_PROT_GREET_PACKET (integer)
MySQL Client Server protocol packet: greeting.
MYSQLND_UH_MYSQLND_PROT_AUTH_PACKET (integer)
MySQL Client Server protocol packet: authentication.
MYSQLND_UH_MYSQLND_PROT_OK_PACKET (integer)
MySQL Client Server protocol packet: OK.
MYSQLND_UH_MYSQLND_PROT_EOF_PACKET (integer)
MySQL Client Server protocol packet: EOF.
MYSQLND_UH_MYSQLND_PROT_CMD_PACKET (integer)
MySQL Client Server protocol packet: command.
MYSQLND_UH_MYSQLND_PROT_RSET_HEADER_PACKET (integer)
MySQL Client Server protocol packet: result set header.
MYSQLND_UH_MYSQLND_PROT_RSET_FLD_PACKET (integer)
MySQL Client Server protocol packet: resultset field.
MYSQLND_UH_MYSQLND_PROT_ROW_PACKET (integer)
MySQL Client Server protocol packet: row.
MYSQLND_UH_MYSQLND_PROT_STATS_PACKET (integer)
MySQL Client Server protocol packet: stats.
MYSQLND_UH_MYSQLND_PREPARE_RESP_PACKET (integer)
MySQL Client Server protocol packet: prepare response.
MYSQLND_UH_MYSQLND_CHG_USER_RESP_PACKET (integer)
MySQL Client Server protocol packet: change user response.
MYSQLND_UH_MYSQLND_PROT_LAST (integer)
No practical meaning. Last entry marker of internal C data structure list.
MysqlndUhConnection::close related
The following constants can be used to detect why a connection has been closed through MysqlndUhConnection::close().
MYSQLND_UH_MYSQLND_CLOSE_EXPLICIT (integer)
User has called mysqlnd to close the connection.
MYSQLND_UH_MYSQLND_CLOSE_IMPLICIT (integer)
Implicitly closed, for example, during garbage connection.
MYSQLND_UH_MYSQLND_CLOSE_DISCONNECTED (integer)
Connection error.
MYSQLND_UH_MYSQLND_CLOSE_LAST (integer)
No practical meaning. Last entry marker of internal C data structure list.
MysqlndUhConnection::setServerOption() related
The following constants can be used to detect which option is set through MysqlndUhConnection::setServerOption().
MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_ON (integer)
Option: enables multi statement support.
MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_OFF (integer)
Option: disables multi statement support.
MysqlndUhConnection::setClientOption related
The following constants can be used to detect which option is set through MysqlndUhConnection::setClientOption.
MYSQLND_UH_MYSQLND_OPTION_OPT_CONNECT_TIMEOUT (integer)
Option: connection timeout.
MYSQLND_UH_MYSQLND_OPTION_OPT_COMPRESS (integer)
Option: whether the MySQL compressed protocol is to be used.
MYSQLND_UH_MYSQLND_OPTION_OPT_NAMED_PIPE (integer)
Option: named pipe to use for connection (Windows).
MYSQLND_UH_MYSQLND_OPTION_INIT_COMMAND (integer)
Option: init command to execute upon connect.
MYSQLND_UH_MYSQLND_READ_DEFAULT_FILE (integer)
Option: MySQL server default file to read upon connect.
MYSQLND_UH_MYSQLND_READ_DEFAULT_GROUP (integer)
Option: MySQL server default file group to read upon connect.
MYSQLND_UH_MYSQLND_SET_CHARSET_DIR (integer)
Option: charset description files directory.
MYSQLND_UH_MYSQLND_SET_CHARSET_NAME (integer)
Option: charset name.
MYSQLND_UH_MYSQLND_OPT_LOCAL_INFILE (integer)
Option: Whether to allow LOAD DATA LOCAL INFILE use.
MYSQLND_UH_MYSQLND_OPT_PROTOCOL (integer)
Option: supported protocol version.
MYSQLND_UH_MYSQLND_SHARED_MEMORY_BASE_NAME (integer)
Option: shared memory base name for shared memory connections.
MYSQLND_UH_MYSQLND_OPT_READ_TIMEOUT (integer)
Option: connection read timeout.
MYSQLND_UH_MYSQLND_OPT_WRITE_TIMEOUT (integer)
Option: connection write timeout.
MYSQLND_UH_MYSQLND_OPT_USE_RESULT (integer)
Option: unbuffered result sets.
MYSQLND_UH_MYSQLND_OPT_USE_REMOTE_CONNECTION (integer)
Embedded server related.
MYSQLND_UH_MYSQLND_OPT_USE_EMBEDDED_CONNECTION (integer)
Embedded server related.
MYSQLND_UH_MYSQLND_OPT_GUESS_CONNECTION (integer)
TODO
MYSQLND_UH_MYSQLND_SET_CLIENT_IP (integer)
TODO
MYSQLND_UH_MYSQLND_SECURE_AUTH (integer)
TODO
MYSQLND_UH_MYSQLND_REPORT_DATA_TRUNCATION (integer)
Option: Whether to report data truncation.
MYSQLND_UH_MYSQLND_OPT_RECONNECT (integer)
Option: Whether to reconnect automatically.
MYSQLND_UH_MYSQLND_OPT_SSL_VERIFY_SERVER_CERT (integer)
Option: TODO
MYSQLND_UH_MYSQLND_OPT_NET_CMD_BUFFER_SIZE (integer)
Option: mysqlnd network buffer size for commands.
MYSQLND_UH_MYSQLND_OPT_NET_READ_BUFFER_SIZE (integer)
Option: mysqlnd network buffer size for reading from the server.
MYSQLND_UH_MYSQLND_OPT_SSL_KEY (integer)
Option: SSL key.
MYSQLND_UH_MYSQLND_OPT_SSL_CERT (integer)
Option: SSL certificate.
MYSQLND_UH_MYSQLND_OPT_SSL_CA (integer)
Option: SSL CA.
MYSQLND_UH_MYSQLND_OPT_SSL_CAPATH (integer)
Option: Path to SSL CA.
MYSQLND_UH_MYSQLND_OPT_SSL_CIPHER (integer)
Option: SSL cipher.
MYSQLND_UH_MYSQLND_OPT_SSL_PASSPHRASE (integer)
Option: SSL passphrase.
MYSQLND_UH_SERVER_OPTION_PLUGIN_DIR (integer)
Option: server plugin directory.
MYSQLND_UH_SERVER_OPTION_DEFAULT_AUTH (integer)
Option: default authentication method.
MYSQLND_UH_SERVER_OPTION_SET_CLIENT_IP (integer)
TODO
MYSQLND_UH_MYSQLND_OPT_MAX_ALLOWED_PACKET (integer)
Option: maximum allowed packet size. Available as of PHP 5.4.0.
MYSQLND_UH_MYSQLND_OPT_AUTH_PROTOCOL (integer)
Option: TODO. Available as of PHP 5.4.0.
MYSQLND_UH_MYSQLND_OPT_INT_AND_FLOAT_NATIVE (integer)
Option: make mysqlnd return integer and float columns as long even when using the MySQL Client Server text protocol. Only available with a custom build of mysqlnd.
Other
The plugins version number can be obtained using MYSQLND_UH_VERSION or MYSQLND_UH_VERSION_ID . MYSQLND_UH_VERSION is the string representation of the numerical version number MYSQLND_UH_VERSION_ID , which is an integer such as 10000. Developers can calculate the version number as follows.
Version (part) | Example |
---|---|
Major*10000 | 1*10000 = 10000 |
Minor*100 | 0*100 = 0 |
Patch | 0 = 0 |
MYSQLND_UH_VERSION_ID | 10000 |
MYSQLND_UH_VERSION (string)
Plugin version string, for example, “1.0.0-alpha”.
MYSQLND_UH_VERSION_ID (integer)
Plugin version number, for example, 10000.
21.9.8.7. The MysqlndUhConnection class (MysqlndUhConnection)
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection {
MysqlndUhConnection
Methods public bool MysqlndUhConnection::changeUser(mysqlnd_connection connection,
string user,
string password,
string database,
bool silent,
int passwd_len);
public string MysqlndUhConnection::charsetName(mysqlnd_connection connection);
public bool MysqlndUhConnection::close(mysqlnd_connection connection,
int close_type);
public bool MysqlndUhConnection::connect(mysqlnd_connection connection,
string host,
string use",
string password,
string database,
int port,
string socket,
int mysql_flags);
public MysqlndUhConnection::__construct();
public bool MysqlndUhConnection::endPSession(mysqlnd_connection connection);
public string MysqlndUhConnection::escapeString(mysqlnd_connection connection,
string escape_string);
public int MysqlndUhConnection::getAffectedRows(mysqlnd_connection connection);
public int MysqlndUhConnection::getErrorNumber(mysqlnd_connection connection);
public string MysqlndUhConnection::getErrorString(mysqlnd_connection connection);
public int MysqlndUhConnection::getFieldCount(mysqlnd_connection connection);
public string MysqlndUhConnection::getHostInformation(mysqlnd_connection connection);
public int MysqlndUhConnection::getLastInsertId(mysqlnd_connection connection);
public void MysqlndUhConnection::getLastMessage(mysqlnd_connection connection);
public string MysqlndUhConnection::getProtocolInformation(mysqlnd_connection connection);
public string MysqlndUhConnection::getServerInformation(mysqlnd_connection connection);
public string MysqlndUhConnection::getServerStatistics(mysqlnd_connection connection);
public int MysqlndUhConnection::getServerVersion(mysqlnd_connection connection);
public string MysqlndUhConnection::getSqlstate(mysqlnd_connection connection);
public array MysqlndUhConnection::getStatistics(mysqlnd_connection connection);
public int MysqlndUhConnection::getThreadId(mysqlnd_connection connection);
public int MysqlndUhConnection::getWarningCount(mysqlnd_connection connection);
public bool MysqlndUhConnection::init(mysqlnd_connection connection);
public bool MysqlndUhConnection::killConnection(mysqlnd_connection connection,
int pid);
public array MysqlndUhConnection::listFields(mysqlnd_connection connection,
string table,
string achtung_wild);
public void MysqlndUhConnection::listMethod(mysqlnd_connection connection,
string query,
string achtung_wild,
string par1);
public bool MysqlndUhConnection::moreResults(mysqlnd_connection connection);
public bool MysqlndUhConnection::nextResult(mysqlnd_connection connection);
public bool MysqlndUhConnection::ping(mysqlnd_connection connection);
public bool MysqlndUhConnection::query(mysqlnd_connection connection,
string query);
public bool MysqlndUhConnection::queryReadResultsetHeader(mysqlnd_connection connection,
mysqlnd_statement mysqlnd_stmt);
public bool MysqlndUhConnection::reapQuery(mysqlnd_connection connection);
public bool MysqlndUhConnection::refreshServer(mysqlnd_connection connection,
int options);
public bool MysqlndUhConnection::restartPSession(mysqlnd_connection connection);
public bool MysqlndUhConnection::selectDb(mysqlnd_connection connection,
string database);
public bool MysqlndUhConnection::sendClose(mysqlnd_connection connection);
public bool MysqlndUhConnection::sendQuery(mysqlnd_connection connection,
string query);
public bool MysqlndUhConnection::serverDumpDebugInformation(mysqlnd_connection connection);
public bool MysqlndUhConnection::setAutocommit(mysqlnd_connection connection,
int mode);
public bool MysqlndUhConnection::setCharset(mysqlnd_connection connection,
string charset);
public bool MysqlndUhConnection::setClientOption(mysqlnd_connection connection,
int option,
int value);
public void MysqlndUhConnection::setServerOption(mysqlnd_connection connection,
int option);
public void MysqlndUhConnection::shutdownServer(string MYSQLND_UH_RES_MYSQLND_NAME,
string "level");
public bool MysqlndUhConnection::simpleCommand(mysqlnd_connection connection,
int command,
string arg,
int ok_packet,
bool silent,
bool ignore_upsert_status);
public bool MysqlndUhConnection::simpleCommandHandleResponse(mysqlnd_connection connection,
int ok_packet,
bool silent,
int command,
bool ignore_upsert_status);
public bool MysqlndUhConnection::sslSet(mysqlnd_connection connection,
string key,
string cert,
string ca,
string capath,
string cipher);
public resource MysqlndUhConnection::stmtInit(mysqlnd_connection connection);
public resource MysqlndUhConnection::storeResult(mysqlnd_connection connection);
public bool MysqlndUhConnection::txCommit(mysqlnd_connection connection);
public bool MysqlndUhConnection::txRollback(mysqlnd_connection connection);
public resource MysqlndUhConnection::useResult(mysqlnd_connection connection);
}
21.9.8.7.1. MysqlndUhConnection::changeUser
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::changeUser
Changes the user of the specified mysqlnd database connection
Description
public bool MysqlndUhConnection::changeUser(mysqlnd_connection connection,
string user,
string password,
string database,
bool silent,
int passwd_len);
Changes the user of the specified mysqlnd database connection
Parameters
connection
Mysqlnd connection handle. Do not modify!
user
The MySQL user name.
password
The MySQL password.
database
The MySQL database to change to.
silent
Controls if mysqlnd is allowed to emit errors or not.
passwd_len
Length of the MySQL password.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.337. MysqlndUhConnection::changeUser example
<?php
class proxy extends MysqlndUhConnection {
/* Hook mysqlnd's connection::change_user call */
public function changeUser($res, $user, $passwd, $db, $silent, $passwd_len) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::changeUser($res, $user, $passwd, $db, $silent, $passwd_len);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
/* Install proxy/hooks to be used with all future mysqlnd connection */
mysqlnd_uh_set_connection_proxy(new proxy());
/* Create mysqli connection which is using the mysqlnd library */
$mysqli = new mysqli("localhost", "root", "", "test");
/* Example of a user API call which triggers the hooked mysqlnd call */
var_dump($mysqli->change_user("root", "bar", "test"));
?>
The above example will output:
proxy::changeUser(array (
0 => NULL,
1 => 'root',
2 => 'bar',
3 => 'test',
4 => false,
5 => 3,
))
proxy::changeUser returns false
bool(false)
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_change_user |
21.9.8.7.2. MysqlndUhConnection::charsetName
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::charsetName
Returns the default character set for the database connection
Description
public string MysqlndUhConnection::charsetName(mysqlnd_connection connection);
Returns the default character set for the database connection.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
The default character set.
Examples
Example 21.338. MysqlndUhConnection::charsetName example
<?php
class proxy extends MysqlndUhConnection {
public function charsetName($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::charsetName($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump(mysqli_character_set_name($mysqli));
?>
The above example will output:
proxy::charsetName(array (
0 => NULL,
))
proxy::charsetName returns 'latin1'
string(6) "latin1"
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_character_set_name |
21.9.8.7.3. MysqlndUhConnection::close
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::close
Closes a previously opened database connection
Description
public bool MysqlndUhConnection::close(mysqlnd_connection connection,
int close_type);
Closes a previously opened database connection.
Note
Failing to call the parent implementation may cause memory leaks or crash PHP. This is not considered a bug. Please, keep in mind that the mysqlnd library functions have never been designed to be exposed to the user space.
Parameters
connection
The connection to be closed. Do not modify!
close_type
Why the connection is to be closed. The value of close_type is one of MYSQLND_UH_MYSQLND_CLOSE_EXPLICIT , MYSQLND_UH_MYSQLND_CLOSE_IMPLICIT , MYSQLND_UH_MYSQLND_CLOSE_DISCONNECTED or MYSQLND_UH_MYSQLND_CLOSE_LAST . The latter should never be seen, unless the default behaviour of the mysqlnd library has been changed by a plugin.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.339. MysqlndUhConnection::close example
<?php
function close_type_to_string($close_type) {
$mapping = array(
MYSQLND_UH_MYSQLND_CLOSE_DISCONNECTED => "MYSQLND_UH_MYSQLND_CLOSE_DISCONNECTED",
MYSQLND_UH_MYSQLND_CLOSE_EXPLICIT => "MYSQLND_UH_MYSQLND_CLOSE_EXPLICIT",
MYSQLND_UH_MYSQLND_CLOSE_IMPLICIT => "MYSQLND_UH_MYSQLND_CLOSE_IMPLICIT",
MYSQLND_UH_MYSQLND_CLOSE_LAST => "MYSQLND_UH_MYSQLND_CLOSE_IMPLICIT"
);
return (isset($mapping[$close_type])) ? $mapping[$close_type] : 'unknown';
}
class proxy extends MysqlndUhConnection {
public function close($res, $close_type) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
printf("close_type = %s\n", close_type_to_string($close_type));
/* WARNING: you must call the parent */
$ret = parent::close($res, $close_type);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->close();
?>
The above example will output:
proxy::close(array (
0 => NULL,
1 => 0,
))
close_type = MYSQLND_UH_MYSQLND_CLOSE_EXPLICIT
proxy::close returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_close |
mysql_close |
21.9.8.7.4. MysqlndUhConnection::connect
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::connect
Open a new connection to the MySQL server
Description
public bool MysqlndUhConnection::connect(mysqlnd_connection connection,
string host,
string use",
string password,
string database,
int port,
string socket,
int mysql_flags);
Open a new connection to the MySQL server.
Parameters
connection
Mysqlnd connection handle. Do not modify!
host
Can be either a host name or an IP address. Passing the NULL value or the string "localhost" to this parameter, the local host is assumed. When possible, pipes will be used instead of the TCP/IP protocol.
user
The MySQL user name.
password
If not provided or NULL , the MySQL server will attempt to authenticate the user against those user records which have no password only. This allows one username to be used with different permissions (depending on if a password as provided or not).
database
If provided will specify the default database to be used when performing queries.
port
Specifies the port number to attempt to connect to the MySQL server.
socket
Specifies the socket or named pipe that should be used. If NULL , mysqlnd will default to /tmp/mysql.sock.
mysql_flags
Connection options.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.340. MysqlndUhConnection::connect example
<?php
class proxy extends MysqlndUhConnection {
public function connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
?>
The above example will output:
proxy::connect(array (
0 => NULL,
1 => 'localhost',
2 => 'root',
3 => '',
4 => 'test',
5 => 3306,
6 => NULL,
7 => 131072,
))
proxy::connect returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_connect |
mysql_connect |
21.9.8.7.5. MysqlndUhConnection::__construct
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::__construct
The __construct purpose
Description
public MysqlndUhConnection::__construct();
Warning
This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
21.9.8.7.6. MysqlndUhConnection::endPSession
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::endPSession
End a persistent connection
Description
public bool MysqlndUhConnection::endPSession(mysqlnd_connection connection);
End a persistent connection
Warning
This function is currently not documented; only its argument list is available.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.341. MysqlndUhConnection::endPSession example
<?php
class proxy extends MysqlndUhConnection {
public function endPSession($conn) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::endPSession($conn);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("p:localhost", "root", "", "test");
$mysqli->close();
?>
The above example will output:
proxy::endPSession(array (
0 => NULL,
))
proxy::endPSession returns true
See Also
mysqlnd_uh_set_connection_proxy |
21.9.8.7.7. MysqlndUhConnection::escapeString
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::escapeString
Escapes special characters in a string for use in an SQL statement, taking into account the current charset of the connection
Description
public string MysqlndUhConnection::escapeString(mysqlnd_connection connection,
string escape_string);
Escapes special characters in a string for use in an SQL statement, taking into account the current charset of the connection.
Parameters
MYSQLND_UH_RES_MYSQLND_NAME
Mysqlnd connection handle. Do not modify!
escape_string
The string to be escaped.
Return Values
The escaped string.
Examples
Example 21.342. MysqlndUhConnection::escapeString example
<?php
class proxy extends MysqlndUhConnection {
public function escapeString($res, $string) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::escapeString($res, $string);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->set_charset("latin1");
$mysqli->real_escape_string("test0'test");
?>
The above example will output:
proxy::escapeString(array (
0 => NULL,
1 => 'test0\'test',
))
proxy::escapeString returns 'test0\\\'test'
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_real_escape_string |
mysql_real_escape_string |
21.9.8.7.8. MysqlndUhConnection::getAffectedRows
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getAffectedRows
Gets the number of affected rows in a previous MySQL operation
Description
public int MysqlndUhConnection::getAffectedRows(mysqlnd_connection connection);
Gets the number of affected rows in a previous MySQL operation.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Number of affected rows.
Examples
Example 21.343. MysqlndUhConnection::getAffectedRows example
<?php
class proxy extends MysqlndUhConnection {
public function getAffectedRows($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getAffectedRows($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1)");
var_dump($mysqli->affected_rows);
?>
The above example will output:
proxy::getAffectedRows(array (
0 => NULL,
))
proxy::getAffectedRows returns 1
int(1)
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_affected_rows |
mysql_affected_rows |
21.9.8.7.9. MysqlndUhConnection::getErrorNumber
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getErrorNumber
Returns the error code for the most recent function call
Description
public int MysqlndUhConnection::getErrorNumber(mysqlnd_connection connection);
Returns the error code for the most recent function call.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Error code for the most recent function call.
Examples
MysqlndUhConnection::getErrorNumber is not only executed after the invocation of a user space API call which maps directly to it but also called internally.
Example 21.344. MysqlndUhConnection::getErrorNumber example
<?php
class proxy extends MysqlndUhConnection {
public function getErrorNumber($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getErrorNumber($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
printf("connect...\n");
$mysqli = new mysqli("localhost", "root", "", "test");
printf("query...\n");
$mysqli->query("PLEASE_LET_THIS_BE_INVALID_SQL");
printf("errno...\n");
var_dump($mysqli->errno);
printf("close...\n");
$mysqli->close();
?>
The above example will output:
connect...
proxy::getErrorNumber(array (
0 => NULL,
))
proxy::getErrorNumber returns 0
query...
errno...
proxy::getErrorNumber(array (
0 => NULL,
))
proxy::getErrorNumber returns 1064
int(1064)
close...
See Also
mysqlnd_uh_set_connection_proxy |
MysqlndUhConnection::getErrorString |
mysqli_errno |
mysql_errno |
21.9.8.7.10. MysqlndUhConnection::getErrorString
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getErrorString
Returns a string description of the last error
Description
public string MysqlndUhConnection::getErrorString(mysqlnd_connection connection);
Returns a string description of the last error.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Error string for the most recent function call.
Examples
MysqlndUhConnection::getErrorString is not only executed after the invocation of a user space API call which maps directly to it but also called internally.
Example 21.345. MysqlndUhConnection::getErrorString example
<?php
class proxy extends MysqlndUhConnection {
public function getErrorString($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getErrorString($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
printf("connect...\n");
$mysqli = new mysqli("localhost", "root", "", "test");
printf("query...\n");
$mysqli->query("WILL_I_EVER_LEARN_SQL?");
printf("errno...\n");
var_dump($mysqli->error);
printf("close...\n");
$mysqli->close();
?>
The above example will output:
connect...
proxy::getErrorString(array (
0 => NULL,
))
proxy::getErrorString returns ''
query...
errno...
proxy::getErrorString(array (
0 => NULL,
))
proxy::getErrorString returns 'You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near \'WILL_I_EVER_LEARN_SQL?\' at line 1'
string(168) "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'WILL_I_EVER_LEARN_SQL?' at line 1"
close...
See Also
mysqlnd_uh_set_connection_proxy |
MysqlndUhConnection::getErrorNumber |
mysqli_error |
mysql_error |
21.9.8.7.11. MysqlndUhConnection::getFieldCount
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getFieldCount
Returns the number of columns for the most recent query
Description
public int MysqlndUhConnection::getFieldCount(mysqlnd_connection connection);
Returns the number of columns for the most recent query.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Number of columns.
Examples
MysqlndUhConnection::getFieldCount is not only executed after the invocation of a user space API call which maps directly to it but also called internally.
Example 21.346. MysqlndUhConnection::getFieldCount example
<?php
class proxy extends MysqlndUhConnection {
public function getFieldCount($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getFieldCount($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("WILL_I_EVER_LEARN_SQL?");
var_dump($mysqli->field_count);
$mysqli->query("SELECT 1, 2, 3 FROM DUAL");
var_dump($mysqli->field_count);
?>
The above example will output:
proxy::getFieldCount(array (
0 => NULL,
))
proxy::getFieldCount returns 0
int(0)
proxy::getFieldCount(array (
0 => NULL,
))
proxy::getFieldCount returns 3
proxy::getFieldCount(array (
0 => NULL,
))
proxy::getFieldCount returns 3
int(3)
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_field_count |
21.9.8.7.12. MysqlndUhConnection::getHostInformation
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getHostInformation
Returns a string representing the type of connection used
Description
public string MysqlndUhConnection::getHostInformation(mysqlnd_connection connection);
Returns a string representing the type of connection used.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Connection description.
Examples
Example 21.347. MysqlndUhConnection::getHostInformation example
<?php
class proxy extends MysqlndUhConnection {
public function getHostInformation($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getHostInformation($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->host_info);
?>
The above example will output:
proxy::getHostInformation(array (
0 => NULL,
))
proxy::getHostInformation returns 'Localhost via UNIX socket'
string(25) "Localhost via UNIX socket"
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_get_host_info |
mysql_get_host_info |
21.9.8.7.13. MysqlndUhConnection::getLastInsertId
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getLastInsertId
Returns the auto generated id used in the last query.
Description
public int MysqlndUhConnection::getLastInsertId(mysqlnd_connection connection);
Returns the auto generated id used in the last query.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Last insert id.
Examples
Example 21.348. MysqlndUhConnection::getLastInsertId example
<?php
class proxy extends MysqlndUhConnection {
public function getLastInsertId($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getLastInsertId($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT AUTO_INCREMENT PRIMARY KEY, col VARCHAR(255))");
$mysqli->query("INSERT INTO test(col) VALUES ('a')");
var_dump($mysqli->insert_id);
?>
The above example will output:
proxy::getLastInsertId(array (
0 => NULL,
))
proxy::getLastInsertId returns 1
int(1)
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_insert_id |
mysql_insert_id |
21.9.8.7.14. MysqlndUhConnection::getLastMessage
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getLastMessage
Retrieves information about the most recently executed query
Description
public void MysqlndUhConnection::getLastMessage(mysqlnd_connection connection);
Retrieves information about the most recently executed query.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Last message. Trying to return a string longer than 511 bytes will cause an error of the type E_WARNING and result in the string being truncated.
Examples
Example 21.349. MysqlndUhConnection::getLastMessage example
<?php
class proxy extends MysqlndUhConnection {
public function getLastMessage($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getLastMessage($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->info);
$mysqli->query("DROP TABLE IF EXISTS test");
var_dump($mysqli->info);
?>
The above example will output:
proxy::getLastMessage(array (
0 => NULL,
))
proxy::getLastMessage returns ''
string(0) ""
proxy::getLastMessage(array (
0 => NULL,
))
proxy::getLastMessage returns ''
string(0) ""
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_info |
mysql_info |
21.9.8.7.15. MysqlndUhConnection::getProtocolInformation
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getProtocolInformation
Returns the version of the MySQL protocol used
Description
public string MysqlndUhConnection::getProtocolInformation(mysqlnd_connection connection);
Returns the version of the MySQL protocol used.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
The protocol version.
Examples
Example 21.350. MysqlndUhConnection::getProtocolInformation example
<?php
class proxy extends MysqlndUhConnection {
public function getProtocolInformation($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getProtocolInformation($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->protocol_version);
?>
The above example will output:
proxy::getProtocolInformation(array (
0 => NULL,
))
proxy::getProtocolInformation returns 10
int(10)
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_get_proto_info |
mysql_get_proto_info |
21.9.8.7.16. MysqlndUhConnection::getServerInformation
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getServerInformation
Returns the version of the MySQL server
Description
public string MysqlndUhConnection::getServerInformation(mysqlnd_connection connection);
Returns the version of the MySQL server.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
The server version.
Examples
Example 21.351. MysqlndUhConnection::getServerInformation example
<?php
class proxy extends MysqlndUhConnection {
public function getServerInformation($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getServerInformation($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->server_info);
?>
The above example will output:
proxy::getServerInformation(array (
0 => NULL,
))
proxy::getServerInformation returns '5.1.45-debug-log'
string(16) "5.1.45-debug-log"
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_get_server_info |
mysql_get_server_info |
21.9.8.7.17. MysqlndUhConnection::getServerStatistics
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getServerStatistics
Gets the current system status
Description
public string MysqlndUhConnection::getServerStatistics(mysqlnd_connection connection);
Gets the current system status.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
The system status message.
Examples
Example 21.352. MysqlndUhConnection::getServerStatistics example
<?php
class proxy extends MysqlndUhConnection {
public function getServerStatistics($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getServerStatistics($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump(mysqli_stat($mysqli));
?>
The above example will output:
proxy::getServerStatistics(array (
0 => NULL,
))
proxy::getServerStatistics returns 'Uptime: 2059995 Threads: 1 Questions: 126157 Slow queries: 0 Opens: 6377 Flush tables: 1 Open tables: 18 Queries per second avg: 0.61'
string(140) "Uptime: 2059995 Threads: 1 Questions: 126157 Slow queries: 0 Opens: 6377 Flush tables: 1 Open tables: 18 Queries per second avg: 0.61"
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_stat |
mysql_stat |
21.9.8.7.18. MysqlndUhConnection::getServerVersion
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getServerVersion
Returns the version of the MySQL server as an integer
Description
public int MysqlndUhConnection::getServerVersion(mysqlnd_connection connection);
Returns the version of the MySQL server as an integer.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
The MySQL version.
Examples
Example 21.353. MysqlndUhConnection::getServerVersion example
<?php
class proxy extends MysqlndUhConnection {
public function getServerVersion($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getServerVersion($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->server_version);
?>
The above example will output:
proxy::getServerVersion(array (
0 => NULL,
))
proxy::getServerVersion returns 50145
int(50145)
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_get_server_version |
mysql_get_server_version |
21.9.8.7.19. MysqlndUhConnection::getSqlstate
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getSqlstate
Returns the SQLSTATE error from previous MySQL operation
Description
public string MysqlndUhConnection::getSqlstate(mysqlnd_connection connection);
Returns the SQLSTATE error from previous MySQL operation.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
The SQLSTATE code.
Examples
Example 21.354. MysqlndUhConnection::getSqlstate example
<?php
class proxy extends MysqlndUhConnection {
public function getSqlstate($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getSqlstate($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->sqlstate);
$mysqli->query("AN_INVALID_REQUEST_TO_PROVOKE_AN_ERROR");
var_dump($mysqli->sqlstate);
?>
The above example will output:
proxy::getSqlstate(array (
0 => NULL,
))
proxy::getSqlstate returns '00000'
string(5) "00000"
proxy::getSqlstate(array (
0 => NULL,
))
proxy::getSqlstate returns '42000'
string(5) "42000"
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_sql_state |
21.9.8.7.20. MysqlndUhConnection::getStatistics
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getStatistics
Returns statistics about the client connection.
Description
public array MysqlndUhConnection::getStatistics(mysqlnd_connection connection);
Returns statistics about the client connection.
Warning
This function is currently not documented; only its argument list is available.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Connection statistics collected by mysqlnd.
Examples
Example 21.355. MysqlndUhConnection::getStatistics example
<?php
class proxy extends MysqlndUhConnection {
public function getStatistics($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getStatistics($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->get_connection_stats());
?>
The above example will output:
proxy::getStatistics(array (
0 => NULL,
))
proxy::getStatistics returns array (
'bytes_sent' => '73',
'bytes_received' => '77',
'packets_sent' => '2',
'packets_received' => '2',
'protocol_overhead_in' => '8',
'protocol_overhead_out' => '8',
'bytes_received_ok_packet' => '0',
'bytes_received_eof_packet' => '0',
'bytes_received_rset_header_packet' => '0',
'bytes_received_rset_field_meta_packet' => '0',
'bytes_received_rset_row_packet' => '0',
'bytes_received_prepare_response_packet' => '0',
'bytes_received_change_user_packet' => '0',
'packets_sent_command' => '0',
'packets_received_ok' => '0',
'packets_received_eof' => '0',
'packets_received_rset_header' => '0',
'packets_received_rset_field_meta' => '0',
'packets_received_rset_row' => '0',
'packets_received_prepare_response' => '0',
'packets_received_change_user' => '0',
'result_set_queries' => '0',
'non_result_set_queries' => '0',
'no_index_used' => '0',
'bad_index_used' => '0',
'slow_queries' => '0',
'buffered_sets' => '0',
'unbuffered_sets' => '0',
'ps_buffered_sets' => '0',
'ps_unbuffered_sets' => '0',
'flushed_normal_sets' => '0',
'flushed_ps_sets' => '0',
'ps_prepared_never_executed' => '0',
'ps_prepared_once_executed' => '0',
'rows_fetched_from_server_normal' => '0',
'rows_fetched_from_server_ps' => '0',
'rows_buffered_from_client_normal' => '0',
'rows_buffered_from_client_ps' => '0',
'rows_fetched_from_client_normal_buffered' => '0',
'rows_fetched_from_client_normal_unbuffered' => '0',
'rows_fetched_from_client_ps_buffered' => '0',
'rows_fetched_from_client_ps_unbuffered' => '0',
'rows_fetched_from_client_ps_cursor' => '0',
'rows_affected_normal' => '0',
'rows_affected_ps' => '0',
'rows_skipped_normal' => '0',
'rows_skipped_ps' => '0',
'copy_on_write_saved' => '0',
'copy_on_write_performed' => '0',
'command_buffer_too_small' => '0',
'connect_success' => '1',
'connect_failure' => '0',
'connection_reused' => '0',
'reconnect' => '0',
'pconnect_success' => '0',
'active_connections' => '1',
'active_persistent_connections' => '0',
'explicit_close' => '0',
'implicit_close' => '0',
'disconnect_close' => '0',
'in_middle_of_command_close' => '0',
'explicit_free_result' => '0',
'implicit_free_result' => '0',
'explicit_stmt_close' => '0',
'implicit_stmt_close' => '0',
'mem_emalloc_count' => '0',
'mem_emalloc_amount' => '0',
'mem_ecalloc_count' => '0',
'mem_ecalloc_amount' => '0',
'mem_erealloc_count' => '0',
'mem_erealloc_amount' => '0',
'mem_efree_count' => '0',
'mem_efree_amount' => '0',
'mem_malloc_count' => '0',
'mem_malloc_amount' => '0',
'mem_calloc_count' => '0',
'mem_calloc_amount' => '0',
'mem_realloc_count' => '0',
'mem_realloc_amount' => '0',
'mem_free_count' => '0',
'mem_free_amount' => '0',
'mem_estrndup_count' => '0',
'mem_strndup_count' => '0',
'mem_estndup_count' => '0',
'mem_strdup_count' => '0',
'proto_text_fetched_null' => '0',
'proto_text_fetched_bit' => '0',
'proto_text_fetched_tinyint' => '0',
'proto_text_fetched_short' => '0',
'proto_text_fetched_int24' => '0',
'proto_text_fetched_int' => '0',
'proto_text_fetched_bigint' => '0',
'proto_text_fetched_decimal' => '0',
'proto_text_fetched_float' => '0',
'proto_text_fetched_double' => '0',
'proto_text_fetched_date' => '0',
'proto_text_fetched_year' => '0',
'proto_text_fetched_time' => '0',
'proto_text_fetched_datetime' => '0',
'proto_text_fetched_timestamp' => '0',
'proto_text_fetched_string' => '0',
'proto_text_fetched_blob' => '0',
'proto_text_fetched_enum' => '0',
'proto_text_fetched_set' => '0',
'proto_text_fetched_geometry' => '0',
'proto_text_fetched_other' => '0',
'proto_binary_fetched_null' => '0',
'proto_binary_fetched_bit' => '0',
'proto_binary_fetched_tinyint' => '0',
'proto_binary_fetched_short' => '0',
'proto_binary_fetched_int24' => '0',
'proto_binary_fetched_int' => '0',
'proto_binary_fetched_bigint' => '0',
'proto_binary_fetched_decimal' => '0',
'proto_binary_fetched_float' => '0',
'proto_binary_fetched_double' => '0',
'proto_binary_fetched_date' => '0',
'proto_binary_fetched_year' => '0',
'proto_binary_fetched_time' => '0',
'proto_binary_fetched_datetime' => '0',
'proto_binary_fetched_timestamp' => '0',
'proto_binary_fetched_string' => '0',
'proto_binary_fetched_blob' => '0',
'proto_binary_fetched_enum' => '0',
'proto_binary_fetched_set' => '0',
'proto_binary_fetched_geometry' => '0',
'proto_binary_fetched_other' => '0',
'init_command_executed_count' => '0',
'init_command_failed_count' => '0',
'com_quit' => '0',
'com_init_db' => '0',
'com_query' => '0',
'com_field_list' => '0',
'com_create_db' => '0',
'com_drop_db' => '0',
'com_refresh' => '0',
'com_shutdown' => '0',
'com_statistics' => '0',
'com_process_info' => '0',
'com_connect' => '0',
'com_process_kill' => '0',
'com_debug' => '0',
'com_ping' => '0',
'com_time' => '0',
'com_delayed_insert' => '0',
'com_change_user' => '0',
'com_binlog_dump' => '0',
'com_table_dump' => '0',
'com_connect_out' => '0',
'com_register_slave' => '0',
'com_stmt_prepare' => '0',
'com_stmt_execute' => '0',
'com_stmt_send_long_data' => '0',
'com_stmt_close' => '0',
'com_stmt_reset' => '0',
'com_stmt_set_option' => '0',
'com_stmt_fetch' => '0',
'com_deamon' => '0',
'bytes_received_real_data_normal' => '0',
'bytes_received_real_data_ps' => '0',
)
array(160) {
["bytes_sent"]=>
string(2) "73"
["bytes_received"]=>
string(2) "77"
["packets_sent"]=>
string(1) "2"
["packets_received"]=>
string(1) "2"
["protocol_overhead_in"]=>
string(1) "8"
["protocol_overhead_out"]=>
string(1) "8"
["bytes_received_ok_packet"]=>
string(1) "0"
["bytes_received_eof_packet"]=>
string(1) "0"
["bytes_received_rset_header_packet"]=>
string(1) "0"
["bytes_received_rset_field_meta_packet"]=>
string(1) "0"
["bytes_received_rset_row_packet"]=>
string(1) "0"
["bytes_received_prepare_response_packet"]=>
string(1) "0"
["bytes_received_change_user_packet"]=>
string(1) "0"
["packets_sent_command"]=>
string(1) "0"
["packets_received_ok"]=>
string(1) "0"
["packets_received_eof"]=>
string(1) "0"
["packets_received_rset_header"]=>
string(1) "0"
["packets_received_rset_field_meta"]=>
string(1) "0"
["packets_received_rset_row"]=>
string(1) "0"
["packets_received_prepare_response"]=>
string(1) "0"
["packets_received_change_user"]=>
string(1) "0"
["result_set_queries"]=>
string(1) "0"
["non_result_set_queries"]=>
string(1) "0"
["no_index_used"]=>
string(1) "0"
["bad_index_used"]=>
string(1) "0"
["slow_queries"]=>
string(1) "0"
["buffered_sets"]=>
string(1) "0"
["unbuffered_sets"]=>
string(1) "0"
["ps_buffered_sets"]=>
string(1) "0"
["ps_unbuffered_sets"]=>
string(1) "0"
["flushed_normal_sets"]=>
string(1) "0"
["flushed_ps_sets"]=>
string(1) "0"
["ps_prepared_never_executed"]=>
string(1) "0"
["ps_prepared_once_executed"]=>
string(1) "0"
["rows_fetched_from_server_normal"]=>
string(1) "0"
["rows_fetched_from_server_ps"]=>
string(1) "0"
["rows_buffered_from_client_normal"]=>
string(1) "0"
["rows_buffered_from_client_ps"]=>
string(1) "0"
["rows_fetched_from_client_normal_buffered"]=>
string(1) "0"
["rows_fetched_from_client_normal_unbuffered"]=>
string(1) "0"
["rows_fetched_from_client_ps_buffered"]=>
string(1) "0"
["rows_fetched_from_client_ps_unbuffered"]=>
string(1) "0"
["rows_fetched_from_client_ps_cursor"]=>
string(1) "0"
["rows_affected_normal"]=>
string(1) "0"
["rows_affected_ps"]=>
string(1) "0"
["rows_skipped_normal"]=>
string(1) "0"
["rows_skipped_ps"]=>
string(1) "0"
["copy_on_write_saved"]=>
string(1) "0"
["copy_on_write_performed"]=>
string(1) "0"
["command_buffer_too_small"]=>
string(1) "0"
["connect_success"]=>
string(1) "1"
["connect_failure"]=>
string(1) "0"
["connection_reused"]=>
string(1) "0"
["reconnect"]=>
string(1) "0"
["pconnect_success"]=>
string(1) "0"
["active_connections"]=>
string(1) "1"
["active_persistent_connections"]=>
string(1) "0"
["explicit_close"]=>
string(1) "0"
["implicit_close"]=>
string(1) "0"
["disconnect_close"]=>
string(1) "0"
["in_middle_of_command_close"]=>
string(1) "0"
["explicit_free_result"]=>
string(1) "0"
["implicit_free_result"]=>
string(1) "0"
["explicit_stmt_close"]=>
string(1) "0"
["implicit_stmt_close"]=>
string(1) "0"
["mem_emalloc_count"]=>
string(1) "0"
["mem_emalloc_amount"]=>
string(1) "0"
["mem_ecalloc_count"]=>
string(1) "0"
["mem_ecalloc_amount"]=>
string(1) "0"
["mem_erealloc_count"]=>
string(1) "0"
["mem_erealloc_amount"]=>
string(1) "0"
["mem_efree_count"]=>
string(1) "0"
["mem_efree_amount"]=>
string(1) "0"
["mem_malloc_count"]=>
string(1) "0"
["mem_malloc_amount"]=>
string(1) "0"
["mem_calloc_count"]=>
string(1) "0"
["mem_calloc_amount"]=>
string(1) "0"
["mem_realloc_count"]=>
string(1) "0"
["mem_realloc_amount"]=>
string(1) "0"
["mem_free_count"]=>
string(1) "0"
["mem_free_amount"]=>
string(1) "0"
["mem_estrndup_count"]=>
string(1) "0"
["mem_strndup_count"]=>
string(1) "0"
["mem_estndup_count"]=>
string(1) "0"
["mem_strdup_count"]=>
string(1) "0"
["proto_text_fetched_null"]=>
string(1) "0"
["proto_text_fetched_bit"]=>
string(1) "0"
["proto_text_fetched_tinyint"]=>
string(1) "0"
["proto_text_fetched_short"]=>
string(1) "0"
["proto_text_fetched_int24"]=>
string(1) "0"
["proto_text_fetched_int"]=>
string(1) "0"
["proto_text_fetched_bigint"]=>
string(1) "0"
["proto_text_fetched_decimal"]=>
string(1) "0"
["proto_text_fetched_float"]=>
string(1) "0"
["proto_text_fetched_double"]=>
string(1) "0"
["proto_text_fetched_date"]=>
string(1) "0"
["proto_text_fetched_year"]=>
string(1) "0"
["proto_text_fetched_time"]=>
string(1) "0"
["proto_text_fetched_datetime"]=>
string(1) "0"
["proto_text_fetched_timestamp"]=>
string(1) "0"
["proto_text_fetched_string"]=>
string(1) "0"
["proto_text_fetched_blob"]=>
string(1) "0"
["proto_text_fetched_enum"]=>
string(1) "0"
["proto_text_fetched_set"]=>
string(1) "0"
["proto_text_fetched_geometry"]=>
string(1) "0"
["proto_text_fetched_other"]=>
string(1) "0"
["proto_binary_fetched_null"]=>
string(1) "0"
["proto_binary_fetched_bit"]=>
string(1) "0"
["proto_binary_fetched_tinyint"]=>
string(1) "0"
["proto_binary_fetched_short"]=>
string(1) "0"
["proto_binary_fetched_int24"]=>
string(1) "0"
["proto_binary_fetched_int"]=>
string(1) "0"
["proto_binary_fetched_bigint"]=>
string(1) "0"
["proto_binary_fetched_decimal"]=>
string(1) "0"
["proto_binary_fetched_float"]=>
string(1) "0"
["proto_binary_fetched_double"]=>
string(1) "0"
["proto_binary_fetched_date"]=>
string(1) "0"
["proto_binary_fetched_year"]=>
string(1) "0"
["proto_binary_fetched_time"]=>
string(1) "0"
["proto_binary_fetched_datetime"]=>
string(1) "0"
["proto_binary_fetched_timestamp"]=>
string(1) "0"
["proto_binary_fetched_string"]=>
string(1) "0"
["proto_binary_fetched_blob"]=>
string(1) "0"
["proto_binary_fetched_enum"]=>
string(1) "0"
["proto_binary_fetched_set"]=>
string(1) "0"
["proto_binary_fetched_geometry"]=>
string(1) "0"
["proto_binary_fetched_other"]=>
string(1) "0"
["init_command_executed_count"]=>
string(1) "0"
["init_command_failed_count"]=>
string(1) "0"
["com_quit"]=>
string(1) "0"
["com_init_db"]=>
string(1) "0"
["com_query"]=>
string(1) "0"
["com_field_list"]=>
string(1) "0"
["com_create_db"]=>
string(1) "0"
["com_drop_db"]=>
string(1) "0"
["com_refresh"]=>
string(1) "0"
["com_shutdown"]=>
string(1) "0"
["com_statistics"]=>
string(1) "0"
["com_process_info"]=>
string(1) "0"
["com_connect"]=>
string(1) "0"
["com_process_kill"]=>
string(1) "0"
["com_debug"]=>
string(1) "0"
["com_ping"]=>
string(1) "0"
["com_time"]=>
string(1) "0"
["com_delayed_insert"]=>
string(1) "0"
["com_change_user"]=>
string(1) "0"
["com_binlog_dump"]=>
string(1) "0"
["com_table_dump"]=>
string(1) "0"
["com_connect_out"]=>
string(1) "0"
["com_register_slave"]=>
string(1) "0"
["com_stmt_prepare"]=>
string(1) "0"
["com_stmt_execute"]=>
string(1) "0"
["com_stmt_send_long_data"]=>
string(1) "0"
["com_stmt_close"]=>
string(1) "0"
["com_stmt_reset"]=>
string(1) "0"
["com_stmt_set_option"]=>
string(1) "0"
["com_stmt_fetch"]=>
string(1) "0"
["com_deamon"]=>
string(1) "0"
["bytes_received_real_data_normal"]=>
string(1) "0"
["bytes_received_real_data_ps"]=>
string(1) "0"
}
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_get_connection_stats |
21.9.8.7.21. MysqlndUhConnection::getThreadId
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getThreadId
Returns the thread ID for the current connection
Description
public int MysqlndUhConnection::getThreadId(mysqlnd_connection connection);
Returns the thread ID for the current connection.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Connection thread id.
Examples
Example 21.356. MysqlndUhConnection::getThreadId example
<?php
class proxy extends MysqlndUhConnection {
public function getThreadId($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getThreadId($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->thread_id);
?>
The above example will output:
proxy::getThreadId(array (
0 => NULL,
))
proxy::getThreadId returns 27646
int(27646)
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_thread_id |
mysql_thread_id |
21.9.8.7.22. MysqlndUhConnection::getWarningCount
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::getWarningCount
Returns the number of warnings from the last query for the given link
Description
public int MysqlndUhConnection::getWarningCount(mysqlnd_connection connection);
Returns the number of warnings from the last query for the given link.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Number of warnings.
Examples
Example 21.357. MysqlndUhConnection::getWarningCount example
<?php
class proxy extends MysqlndUhConnection {
public function getWarningCount($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::getWarningCount($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->warning_count);
?>
The above example will output:
proxy::getWarningCount(array (
0 => NULL,
))
proxy::getWarningCount returns 0
int(0)
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_warning_count |
21.9.8.7.23. MysqlndUhConnection::init
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::init
Initialize mysqlnd connection
Description
public bool MysqlndUhConnection::init(mysqlnd_connection connection);
Initialize mysqlnd connection. This is an mysqlnd internal call to initialize the connection object.
Note
Failing to call the parent implementation may cause memory leaks or crash PHP. This is not considered a bug. Please, keep in mind that the mysqlnd library functions have never been designed to be exposed to the user space.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.358. MysqlndUhConnection::init example
<?php
class proxy extends MysqlndUhConnection {
public function init($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::init($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
?>
The above example will output:
proxy::init(array (
0 => NULL,
))
proxy::init returns true
See Also
mysqlnd_uh_set_connection_proxy |
21.9.8.7.24. MysqlndUhConnection::killConnection
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::killConnection
Asks the server to kill a MySQL thread
Description
public bool MysqlndUhConnection::killConnection(mysqlnd_connection connection,
int pid);
Asks the server to kill a MySQL thread.
Parameters
connection
Mysqlnd connection handle. Do not modify!
pid
Thread Id of the connection to be killed.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.359. MysqlndUhConnection::kill example
<?php
class proxy extends MysqlndUhConnection {
public function killConnection($res, $pid) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::killConnection($res, $pid);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->kill($mysqli->thread_id);
?>
The above example will output:
proxy::killConnection(array (
0 => NULL,
1 => 27650,
))
proxy::killConnection returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_kill |
21.9.8.7.25. MysqlndUhConnection::listFields
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::listFields
List MySQL table fields
Description
public array MysqlndUhConnection::listFields(mysqlnd_connection connection,
string table,
string achtung_wild);
List MySQL table fields.
Warning
This function is currently not documented; only its argument list is available.
Parameters
connection
Mysqlnd connection handle. Do not modify!
table
The name of the table that's being queried.
pattern
Name pattern.
Return Values
Examples
Example 21.360. MysqlndUhConnection::listFields example
<?php
class proxy extends MysqlndUhConnection {
public function listFields($res, $table, $pattern) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::listFields($res, $table, $pattern);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysql = mysql_connect("localhost", "root", "");
mysql_select_db("test", $mysql);
mysql_query("DROP TABLE IF EXISTS test_a", $mysql);
mysql_query("CREATE TABLE test_a(id INT, col1 VARCHAR(255))", $mysql);
$res = mysql_list_fields("test", "test_a", $mysql);
printf("num_rows = %d\n", mysql_num_rows($res));
while ($row = mysql_fetch_assoc($res))
var_dump($row);
?>
The above example will output:
proxy::listFields(array (
0 => NULL,
1 => 'test_a',
2 => '',
))
proxy::listFields returns NULL
num_rows = 0
See Also
mysqlnd_uh_set_connection_proxy |
mysql_list_fields |
21.9.8.7.26. MysqlndUhConnection::listMethod
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::listMethod
Wrapper for assorted list commands
Description
public void MysqlndUhConnection::listMethod(mysqlnd_connection connection,
string query,
string achtung_wild,
string par1);
Wrapper for assorted list commands.
Warning
This function is currently not documented; only its argument list is available.
Parameters
connection
Mysqlnd connection handle. Do not modify!
query
SHOW command to be executed.
achtung_wild
par1
Return Values
Return Values
TODO
Examples
Example 21.361. MysqlndUhConnection::listMethod example
<?php
class proxy extends MysqlndUhConnection {
public function listMethod($res, $query, $pattern, $par1) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::listMethod($res, $query, $pattern, $par1);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysql = mysql_connect("localhost", "root", "");
$res = mysql_list_dbs($mysql);
printf("num_rows = %d\n", mysql_num_rows($res));
while ($row = mysql_fetch_assoc($res))
var_dump($row);
?>
The above example will output:
proxy::listMethod(array (
0 => NULL,
1 => 'SHOW DATABASES',
2 => '',
3 => '',
))
proxy::listMethod returns NULL
num_rows = 6
array(1) {
["Database"]=>
string(18) "information_schema"
}
array(1) {
["Database"]=>
string(5) "mysql"
}
array(1) {
["Database"]=>
string(8) "oxid_new"
}
array(1) {
["Database"]=>
string(7) "phptest"
}
array(1) {
["Database"]=>
string(7) "pushphp"
}
array(1) {
["Database"]=>
string(4) "test"
}
See Also
mysqlnd_uh_set_connection_proxy |
mysql_list_dbs |
21.9.8.7.27. MysqlndUhConnection::moreResults
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::moreResults
Check if there are any more query results from a multi query
Description
public bool MysqlndUhConnection::moreResults(mysqlnd_connection connection);
Check if there are any more query results from a multi query.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.362. MysqlndUhConnection::moreResults example
<?php
class proxy extends MysqlndUhConnection {
public function moreResults($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::moreResults($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->multi_query("SELECT 1 AS _one; SELECT 2 AS _two");
do {
$res = $mysqli->store_result();
var_dump($res->fetch_assoc());
printf("%s\n", str_repeat("-", 40));
} while ($mysqli->more_results() && $mysqli->next_result());
?>
The above example will output:
array(1) {
["_one"]=>
string(1) "1"
}
--
proxy::moreResults(array (
0 => NULL,
))
proxy::moreResults returns true
proxy::moreResults(array (
0 => NULL,
))
proxy::moreResults returns true
array(1) {
["_two"]=>
string(1) "2"
}
--
proxy::moreResults(array (
0 => NULL,
))
proxy::moreResults returns false
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_more_results |
21.9.8.7.28. MysqlndUhConnection::nextResult
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::nextResult
Prepare next result from multi_query
Description
public bool MysqlndUhConnection::nextResult(mysqlnd_connection connection);
Prepare next result from multi_query.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.363. MysqlndUhConnection::nextResult example
<?php
class proxy extends MysqlndUhConnection {
public function nextResult($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::nextResult($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->multi_query("SELECT 1 AS _one; SELECT 2 AS _two");
do {
$res = $mysqli->store_result();
var_dump($res->fetch_assoc());
printf("%s\n", str_repeat("-", 40));
} while ($mysqli->more_results() && $mysqli->next_result());
?>
The above example will output:
array(1) {
["_one"]=>
string(1) "1"
}
--
proxy::nextResult(array (
0 => NULL,
))
proxy::nextResult returns true
array(1) {
["_two"]=>
string(1) "2"
}
--
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_next_result |
21.9.8.7.29. MysqlndUhConnection::ping
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::ping
Pings a server connection, or tries to reconnect if the connection has gone down
Description
public bool MysqlndUhConnection::ping(mysqlnd_connection connection);
Pings a server connection, or tries to reconnect if the connection has gone down.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.364. MysqlndUhConnection::ping example
<?php
class proxy extends MysqlndUhConnection {
public function ping($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::ping($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->ping();
?>
The above example will output:
proxy::ping(array (
0 => NULL,
))
proxy::ping returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_ping |
mysql_ping |
21.9.8.7.30. MysqlndUhConnection::query
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::query
Performs a query on the database
Description
public bool MysqlndUhConnection::query(mysqlnd_connection connection,
string query);
Performs a query on the database (COM_QUERY).
Parameters
connection
Mysqlnd connection handle. Do not modify!
query
The query string.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.365. MysqlndUhConnection::query example
<?php
class proxy extends MysqlndUhConnection {
public function query($res, $query) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$query = "SELECT 'How about query rewriting?'";
$ret = parent::query($res, $query);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$res = $mysqli->query("SELECT 'Welcome mysqlnd_uh!' FROM DUAL");
var_dump($res->fetch_assoc());
?>
The above example will output:
proxy::query(array (
0 => NULL,
1 => 'SELECT \'Welcome mysqlnd_uh!\' FROM DUAL',
))
proxy::query returns true
array(1) {
["How about query rewriting?"]=>
string(26) "How about query rewriting?"
}
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_query |
mysql_query |
21.9.8.7.31. MysqlndUhConnection::queryReadResultsetHeader
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::queryReadResultsetHeader
Read a result set header
Description
public bool MysqlndUhConnection::queryReadResultsetHeader(mysqlnd_connection connection,
mysqlnd_statement mysqlnd_stmt);
Read a result set header.
Parameters
connection
Mysqlnd connection handle. Do not modify!
mysqlnd_stmt
Mysqlnd statement handle. Do not modify! Set to NULL , if function is not used in the context of a prepared statement.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.366. MysqlndUhConnection::queryReadResultsetHeader example
<?php
class proxy extends MysqlndUhConnection {
public function queryReadResultsetHeader($res, $stmt) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::queryReadResultsetHeader($res, $stmt);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$res = $mysqli->query("SELECT 'Welcome mysqlnd_uh!' FROM DUAL");
var_dump($res->fetch_assoc());
?>
The above example will output:
proxy::queryReadResultsetHeader(array (
0 => NULL,
1 => NULL,
))
proxy::queryReadResultsetHeader returns true
array(1) {
["Welcome mysqlnd_uh!"]=>
string(19) "Welcome mysqlnd_uh!"
}
See Also
mysqlnd_uh_set_connection_proxy |
21.9.8.7.32. MysqlndUhConnection::reapQuery
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::reapQuery
Get result from async query
Description
public bool MysqlndUhConnection::reapQuery(mysqlnd_connection connection);
Get result from async query.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.367. MysqlndUhConnection::reapQuery example
<?php
class proxy extends MysqlndUhConnection {
public function reapQuery($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::reapQuery($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$conn1 = new mysqli("localhost", "root", "", "test");
$conn2 = new mysqli("localhost", "root", "", "test");
$conn1->query("SELECT 1 as 'one', SLEEP(1) AS _sleep FROM DUAL", MYSQLI_ASYNC | MYSQLI_USE_RESULT);
$conn2->query("SELECT 1.1 as 'one dot one' FROM DUAL", MYSQLI_ASYNC | MYSQLI_USE_RESULT);
$links = array(
$conn1->thread_id => array('link' => $conn1, 'processed' => false),
$conn2->thread_id => array('link' => $conn2, 'processed' => false)
);
$saved_errors = array();
do {
$poll_links = $poll_errors = $poll_reject = array();
foreach ($links as $thread_id => $link) {
if (!$link['processed']) {
$poll_links[] = $link['link'];
$poll_errors[] = $link['link'];
$poll_reject[] = $link['link'];
}
}
if (0 == count($poll_links))
break;
if (0 == ($num_ready = mysqli_poll($poll_links, $poll_errors, $poll_reject, 0, 200000)))
continue;
if (!empty($poll_errors)) {
die(var_dump($poll_errors));
}
foreach ($poll_links as $link) {
$thread_id = mysqli_thread_id($link);
$links[$thread_id]['processed'] = true;
if (is_object($res = mysqli_reap_async_query($link))) {
// result set object
while ($row = mysqli_fetch_assoc($res)) {
// eat up all results
var_dump($row);
}
mysqli_free_result($res);
} else {
// either there is no result (no SELECT) or there is an error
if (mysqli_errno($link) > 0) {
$saved_errors[$thread_id] = mysqli_errno($link);
printf("'%s' caused %d\n", $links[$thread_id]['query'], mysqli_errno($link));
}
}
}
} while (true);
?>
The above example will output:
proxy::reapQuery(array (
0 => NULL,
))
proxy::reapQuery returns true
array(1) {
["one dot one"]=>
string(3) "1.1"
}
proxy::reapQuery(array (
0 => NULL,
))
proxy::reapQuery returns true
array(2) {
["one"]=>
string(1) "1"
["_sleep"]=>
string(1) "0"
}
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_real_async_query |
21.9.8.7.33. MysqlndUhConnection::refreshServer
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::refreshServer
Flush or reset tables and caches
Description
public bool MysqlndUhConnection::refreshServer(mysqlnd_connection connection,
int options);
Flush or reset tables and caches.
Warning
This function is currently not documented; only its argument list is available.
Parameters
connection
Mysqlnd connection handle. Do not modify!
options
What to refresh.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.368. MysqlndUhConnection::refreshServer example
<?php
class proxy extends MysqlndUhConnection {
public function refreshServer($res, $option) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::refreshServer($res, $option);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
mysqli_refresh($mysqli, 1);
?>
The above example will output:
proxy::refreshServer(array (
0 => NULL,
1 => 1,
))
proxy::refreshServer returns false
See Also
mysqlnd_uh_set_connection_proxy |
21.9.8.7.34. MysqlndUhConnection::restartPSession
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::restartPSession
Restart a persistent mysqlnd connection
Description
public bool MysqlndUhConnection::restartPSession(mysqlnd_connection connection);
Restart a persistent mysqlnd connection.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.369. MysqlndUhConnection::restartPSession example
<?php
class proxy extends MysqlndUhConnection {
public function ping($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::ping($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->ping();
?>
The above example will output:
proxy::restartPSession(array (
0 => NULL,
))
proxy::restartPSession returns true
See Also
mysqlnd_uh_set_connection_proxy |
21.9.8.7.35. MysqlndUhConnection::selectDb
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::selectDb
Selects the default database for database queries
Description
public bool MysqlndUhConnection::selectDb(mysqlnd_connection connection,
string database);
Selects the default database for database queries.
Parameters
connection
Mysqlnd connection handle. Do not modify!
database
The database name.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.370. MysqlndUhConnection::selectDb example
<?php
class proxy extends MysqlndUhConnection {
public function selectDb($res, $database) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::selectDb($res, $database);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->select_db("mysql");
?>
The above example will output:
proxy::selectDb(array (
0 => NULL,
1 => 'mysql',
))
proxy::selectDb returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_select_db |
mysql_select_db |
21.9.8.7.36. MysqlndUhConnection::sendClose
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::sendClose
Sends a close command to MySQL
Description
public bool MysqlndUhConnection::sendClose(mysqlnd_connection connection);
Sends a close command to MySQL.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.371. MysqlndUhConnection::sendClose example
<?php
class proxy extends MysqlndUhConnection {
public function sendClose($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::sendClose($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->close();
?>
The above example will output:
proxy::sendClose(array (
0 => NULL,
))
proxy::sendClose returns true
proxy::sendClose(array (
0 => NULL,
))
proxy::sendClose returns true
See Also
mysqlnd_uh_set_connection_proxy |
21.9.8.7.37. MysqlndUhConnection::sendQuery
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::sendQuery
Sends a query to MySQL
Description
public bool MysqlndUhConnection::sendQuery(mysqlnd_connection connection,
string query);
Sends a query to MySQL.
Parameters
connection
Mysqlnd connection handle. Do not modify!
query
The query string.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.372. MysqlndUhConnection::sendQuery example
<?php
class proxy extends MysqlndUhConnection {
public function sendQuery($res, $query) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::sendQuery($res, $query);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("SELECT 1");
?>
The above example will output:
proxy::sendQuery(array (
0 => NULL,
1 => 'SELECT 1',
))
proxy::sendQuery returns true
See Also
mysqlnd_uh_set_connection_proxy |
21.9.8.7.38. MysqlndUhConnection::serverDumpDebugInformation
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::serverDumpDebugInformation
Dump debugging information into the log for the MySQL server
Description
public bool MysqlndUhConnection::serverDumpDebugInformation(mysqlnd_connection connection);
Dump debugging information into the log for the MySQL server.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.373. MysqlndUhConnection::serverDumpDebugInformation example
<?php
class proxy extends MysqlndUhConnection {
public function serverDumpDebugInformation($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::serverDumpDebugInformation($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->dump_debug_info();
?>
The above example will output:
proxy::serverDumpDebugInformation(array (
0 => NULL,
))
proxy::serverDumpDebugInformation returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_dump_debug_info |
21.9.8.7.39. MysqlndUhConnection::setAutocommit
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::setAutocommit
Turns on or off auto-committing database modifications
Description
public bool MysqlndUhConnection::setAutocommit(mysqlnd_connection connection,
int mode);
Turns on or off auto-committing database modifications
Parameters
connection
Mysqlnd connection handle. Do not modify!
mode
Whether to turn on auto-commit or not.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.374. MysqlndUhConnection::setAutocommit example
<?php
class proxy extends MysqlndUhConnection {
public function setAutocommit($res, $mode) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::setAutocommit($res, $mode);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->autocommit(false);
$mysqli->autocommit(true);
?>
The above example will output:
proxy::setAutocommit(array (
0 => NULL,
1 => 0,
))
proxy::setAutocommit returns true
proxy::setAutocommit(array (
0 => NULL,
1 => 1,
))
proxy::setAutocommit returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_autocommit |
21.9.8.7.40. MysqlndUhConnection::setCharset
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::setCharset
Sets the default client character set
Description
public bool MysqlndUhConnection::setCharset(mysqlnd_connection connection,
string charset);
Sets the default client character set.
Parameters
connection
Mysqlnd connection handle. Do not modify!
charset
The charset to be set as default.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.375. MysqlndUhConnection::setCharset example
<?php
class proxy extends MysqlndUhConnection {
public function setCharset($res, $charset) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::setCharset($res, $charset);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->set_charset("latin1");
?>
The above example will output:
proxy::setCharset(array (
0 => NULL,
1 => 'latin1',
))
proxy::setCharset returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_set_charset |
21.9.8.7.41. MysqlndUhConnection::setClientOption
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::setClientOption
Sets a client option
Description
public bool MysqlndUhConnection::setClientOption(mysqlnd_connection connection,
int option,
int value);
Sets a client option.
Parameters
connection
Mysqlnd connection handle. Do not modify!
option
The option to be set.
value
Optional option value, if required.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.376. MysqlndUhConnection::setClientOption example
<?php
function client_option_to_string($option) {
static $mapping = array(
MYSQLND_UH_MYSQLND_OPTION_OPT_CONNECT_TIMEOUT => "MYSQLND_UH_MYSQLND_OPTION_OPT_CONNECT_TIMEOUT",
MYSQLND_UH_MYSQLND_OPTION_OPT_COMPRESS => "MYSQLND_UH_MYSQLND_OPTION_OPT_COMPRESS",
MYSQLND_UH_MYSQLND_OPTION_OPT_NAMED_PIPE => "MYSQLND_UH_MYSQLND_OPTION_OPT_NAMED_PIPE",
MYSQLND_UH_MYSQLND_OPTION_INIT_COMMAND => "MYSQLND_UH_MYSQLND_OPTION_INIT_COMMAND",
MYSQLND_UH_MYSQLND_READ_DEFAULT_FILE => "MYSQLND_UH_MYSQLND_READ_DEFAULT_FILE",
MYSQLND_UH_MYSQLND_READ_DEFAULT_GROUP => "MYSQLND_UH_MYSQLND_READ_DEFAULT_GROUP",
MYSQLND_UH_MYSQLND_SET_CHARSET_DIR => "MYSQLND_UH_MYSQLND_SET_CHARSET_DIR",
MYSQLND_UH_MYSQLND_SET_CHARSET_NAME => "MYSQLND_UH_MYSQLND_SET_CHARSET_NAME",
MYSQLND_UH_MYSQLND_OPT_LOCAL_INFILE => "MYSQLND_UH_MYSQLND_OPT_LOCAL_INFILE",
MYSQLND_UH_MYSQLND_OPT_PROTOCOL => "MYSQLND_UH_MYSQLND_OPT_PROTOCOL",
MYSQLND_UH_MYSQLND_SHARED_MEMORY_BASE_NAME => "MYSQLND_UH_MYSQLND_SHARED_MEMORY_BASE_NAME",
MYSQLND_UH_MYSQLND_OPT_READ_TIMEOUT => "MYSQLND_UH_MYSQLND_OPT_READ_TIMEOUT",
MYSQLND_UH_MYSQLND_OPT_WRITE_TIMEOUT => "MYSQLND_UH_MYSQLND_OPT_WRITE_TIMEOUT",
MYSQLND_UH_MYSQLND_OPT_USE_RESULT => "MYSQLND_UH_MYSQLND_OPT_USE_RESULT",
MYSQLND_UH_MYSQLND_OPT_USE_REMOTE_CONNECTION => "MYSQLND_UH_MYSQLND_OPT_USE_REMOTE_CONNECTION",
MYSQLND_UH_MYSQLND_OPT_USE_EMBEDDED_CONNECTION => "MYSQLND_UH_MYSQLND_OPT_USE_EMBEDDED_CONNECTION",
MYSQLND_UH_MYSQLND_OPT_GUESS_CONNECTION => "MYSQLND_UH_MYSQLND_OPT_GUESS_CONNECTION",
MYSQLND_UH_MYSQLND_SET_CLIENT_IP => "MYSQLND_UH_MYSQLND_SET_CLIENT_IP",
MYSQLND_UH_MYSQLND_SECURE_AUTH => "MYSQLND_UH_MYSQLND_SECURE_AUTH",
MYSQLND_UH_MYSQLND_REPORT_DATA_TRUNCATION => "MYSQLND_UH_MYSQLND_REPORT_DATA_TRUNCATION",
MYSQLND_UH_MYSQLND_OPT_RECONNECT => "MYSQLND_UH_MYSQLND_OPT_RECONNECT",
MYSQLND_UH_MYSQLND_OPT_SSL_VERIFY_SERVER_CERT => "MYSQLND_UH_MYSQLND_OPT_SSL_VERIFY_SERVER_CERT",
MYSQLND_UH_MYSQLND_OPT_NET_CMD_BUFFER_SIZE => "MYSQLND_UH_MYSQLND_OPT_NET_CMD_BUFFER_SIZE",
MYSQLND_UH_MYSQLND_OPT_NET_READ_BUFFER_SIZE => "MYSQLND_UH_MYSQLND_OPT_NET_READ_BUFFER_SIZE",
MYSQLND_UH_MYSQLND_OPT_SSL_KEY => "MYSQLND_UH_MYSQLND_OPT_SSL_KEY",
MYSQLND_UH_MYSQLND_OPT_SSL_CERT => "MYSQLND_UH_MYSQLND_OPT_SSL_CERT",
MYSQLND_UH_MYSQLND_OPT_SSL_CA => "MYSQLND_UH_MYSQLND_OPT_SSL_CA",
MYSQLND_UH_MYSQLND_OPT_SSL_CAPATH => "MYSQLND_UH_MYSQLND_OPT_SSL_CAPATH",
MYSQLND_UH_MYSQLND_OPT_SSL_CIPHER => "MYSQLND_UH_MYSQLND_OPT_SSL_CIPHER",
MYSQLND_UH_MYSQLND_OPT_SSL_PASSPHRASE => "MYSQLND_UH_MYSQLND_OPT_SSL_PASSPHRASE",
MYSQLND_UH_SERVER_OPTION_PLUGIN_DIR => "MYSQLND_UH_SERVER_OPTION_PLUGIN_DIR",
MYSQLND_UH_SERVER_OPTION_DEFAULT_AUTH => "MYSQLND_UH_SERVER_OPTION_DEFAULT_AUTH",
MYSQLND_UH_SERVER_OPTION_SET_CLIENT_IP => "MYSQLND_UH_SERVER_OPTION_SET_CLIENT_IP"
);
if (version_compare(PHP_VERSION, '5.3.99-dev', '>')) {
$mapping[MYSQLND_UH_MYSQLND_OPT_MAX_ALLOWED_PACKET] = "MYSQLND_UH_MYSQLND_OPT_MAX_ALLOWED_PACKET";
$mapping[MYSQLND_UH_MYSQLND_OPT_AUTH_PROTOCOL] = "MYSQLND_UH_MYSQLND_OPT_AUTH_PROTOCOL";
}
if (defined("MYSQLND_UH_MYSQLND_OPT_INT_AND_FLOAT_NATIVE")) {
/* special mysqlnd build */
$mapping["MYSQLND_UH_MYSQLND_OPT_INT_AND_FLOAT_NATIVE"] = "MYSQLND_UH_MYSQLND_OPT_INT_AND_FLOAT_NATIVE";
}
return (isset($mapping[$option])) ? $mapping[$option] : 'unknown';
}
class proxy extends MysqlndUhConnection {
public function setClientOption($res, $option, $value) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
printf("Option '%s' set to %s\n", client_option_to_string($option), var_export($value, true));
$ret = parent::setClientOption($res, $option, $value);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
?>
The above example will output:
proxy::setClientOption(array (
0 => NULL,
1 => 210,
2 => 3221225472,
))
Option 'MYSQLND_UH_MYSQLND_OPT_MAX_ALLOWED_PACKET' set to 3221225472
proxy::setClientOption returns true
proxy::setClientOption(array (
0 => NULL,
1 => 211,
2 => 'mysql_native_password',
))
Option 'MYSQLND_UH_MYSQLND_OPT_AUTH_PROTOCOL' set to 'mysql_native_password'
proxy::setClientOption returns true
proxy::setClientOption(array (
0 => NULL,
1 => 8,
2 => 1,
))
Option 'MYSQLND_UH_MYSQLND_OPT_LOCAL_INFILE' set to 1
proxy::setClientOption returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_real_connect |
mysqli_options |
21.9.8.7.42. MysqlndUhConnection::setServerOption
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::setServerOption
Sets a server option
Description
public void MysqlndUhConnection::setServerOption(mysqlnd_connection connection,
int option);
Sets a server option.
Parameters
connection
Mysqlnd connection handle. Do not modify!
option
The option to be set.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.377. MysqlndUhConnection::setServerOption example
<?php
function server_option_to_string($option) {
$ret = 'unknown';
switch ($option) {
case MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_ON:
$ret = 'MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_ON';
break;
case MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_OFF:
$ret = 'MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_ON';
break;
}
return $ret;
}
class proxy extends MysqlndUhConnection {
public function setServerOption($res, $option) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
printf("Option '%s' set\n", server_option_to_string($option));
$ret = parent::setServerOption($res, $option);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->multi_query("SELECT 1; SELECT 2");
?>
The above example will output:
proxy::setServerOption(array (
0 => NULL,
1 => 0,
))
Option 'MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_ON' set
proxy::setServerOption returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_real_connect |
mysqli_options |
mysqli_multi_query |
21.9.8.7.43. MysqlndUhConnection::shutdownServer
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::shutdownServer
The shutdownServer purpose
Description
public void MysqlndUhConnection::shutdownServer(string MYSQLND_UH_RES_MYSQLND_NAME,
string "level");
Warning
This function is currently not documented; only its argument list is available.
Parameters
MYSQLND_UH_RES_MYSQLND_NAME
"level"
Return Values
21.9.8.7.44. MysqlndUhConnection::simpleCommand
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::simpleCommand
Sends a basic COM_* command
Description
public bool MysqlndUhConnection::simpleCommand(mysqlnd_connection connection,
int command,
string arg,
int ok_packet,
bool silent,
bool ignore_upsert_status);
Sends a basic COM_* command to MySQL.
Parameters
connection
Mysqlnd connection handle. Do not modify!
command
The COM command to be send.
arg
Optional COM command arguments.
ok_packet
The OK packet type.
silent
Whether mysqlnd may emit errors.
ignore_upsert_status
Whether to ignore UPDATE/INSERT status.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.378. MysqlndUhConnection::simpleCommand example
<?php
function server_cmd_2_string($command) {
$mapping = array(
MYSQLND_UH_MYSQLND_COM_SLEEP => "MYSQLND_UH_MYSQLND_COM_SLEEP",
MYSQLND_UH_MYSQLND_COM_QUIT => "MYSQLND_UH_MYSQLND_COM_QUIT",
MYSQLND_UH_MYSQLND_COM_INIT_DB => "MYSQLND_UH_MYSQLND_COM_INIT_DB",
MYSQLND_UH_MYSQLND_COM_QUERY => "MYSQLND_UH_MYSQLND_COM_QUERY",
MYSQLND_UH_MYSQLND_COM_FIELD_LIST => "MYSQLND_UH_MYSQLND_COM_FIELD_LIST",
MYSQLND_UH_MYSQLND_COM_CREATE_DB => "MYSQLND_UH_MYSQLND_COM_CREATE_DB",
MYSQLND_UH_MYSQLND_COM_DROP_DB => "MYSQLND_UH_MYSQLND_COM_DROP_DB",
MYSQLND_UH_MYSQLND_COM_REFRESH => "MYSQLND_UH_MYSQLND_COM_REFRESH",
MYSQLND_UH_MYSQLND_COM_SHUTDOWN => "MYSQLND_UH_MYSQLND_COM_SHUTDOWN",
MYSQLND_UH_MYSQLND_COM_STATISTICS => "MYSQLND_UH_MYSQLND_COM_STATISTICS",
MYSQLND_UH_MYSQLND_COM_PROCESS_INFO => "MYSQLND_UH_MYSQLND_COM_PROCESS_INFO",
MYSQLND_UH_MYSQLND_COM_CONNECT => "MYSQLND_UH_MYSQLND_COM_CONNECT",
MYSQLND_UH_MYSQLND_COM_PROCESS_KILL => "MYSQLND_UH_MYSQLND_COM_PROCESS_KILL",
MYSQLND_UH_MYSQLND_COM_DEBUG => "MYSQLND_UH_MYSQLND_COM_DEBUG",
MYSQLND_UH_MYSQLND_COM_PING => "MYSQLND_UH_MYSQLND_COM_PING",
MYSQLND_UH_MYSQLND_COM_TIME => "MYSQLND_UH_MYSQLND_COM_TIME",
MYSQLND_UH_MYSQLND_COM_DELAYED_INSERT => "MYSQLND_UH_MYSQLND_COM_DELAYED_INSERT",
MYSQLND_UH_MYSQLND_COM_CHANGE_USER => "MYSQLND_UH_MYSQLND_COM_CHANGE_USER",
MYSQLND_UH_MYSQLND_COM_BINLOG_DUMP => "MYSQLND_UH_MYSQLND_COM_BINLOG_DUMP",
MYSQLND_UH_MYSQLND_COM_TABLE_DUMP => "MYSQLND_UH_MYSQLND_COM_TABLE_DUMP",
MYSQLND_UH_MYSQLND_COM_CONNECT_OUT => "MYSQLND_UH_MYSQLND_COM_CONNECT_OUT",
MYSQLND_UH_MYSQLND_COM_REGISTER_SLAVED => "MYSQLND_UH_MYSQLND_COM_REGISTER_SLAVED",
MYSQLND_UH_MYSQLND_COM_STMT_PREPARE => "MYSQLND_UH_MYSQLND_COM_STMT_PREPARE",
MYSQLND_UH_MYSQLND_COM_STMT_EXECUTE => "MYSQLND_UH_MYSQLND_COM_STMT_EXECUTE",
MYSQLND_UH_MYSQLND_COM_STMT_SEND_LONG_DATA => "MYSQLND_UH_MYSQLND_COM_STMT_SEND_LONG_DATA",
MYSQLND_UH_MYSQLND_COM_STMT_CLOSE => "MYSQLND_UH_MYSQLND_COM_STMT_CLOSE",
MYSQLND_UH_MYSQLND_COM_STMT_RESET => "MYSQLND_UH_MYSQLND_COM_STMT_RESET",
MYSQLND_UH_MYSQLND_COM_SET_OPTION => "MYSQLND_UH_MYSQLND_COM_SET_OPTION",
MYSQLND_UH_MYSQLND_COM_STMT_FETCH => "MYSQLND_UH_MYSQLND_COM_STMT_FETCH",
MYSQLND_UH_MYSQLND_COM_DAEMON => "MYSQLND_UH_MYSQLND_COM_DAEMON",
MYSQLND_UH_MYSQLND_COM_END => "MYSQLND_UH_MYSQLND_COM_END",
);
return (isset($mapping[$command])) ? $mapping[$command] : 'unknown';
}
function ok_packet_2_string($ok_packet) {
$mapping = array(
MYSQLND_UH_MYSQLND_PROT_GREET_PACKET => "MYSQLND_UH_MYSQLND_PROT_GREET_PACKET",
MYSQLND_UH_MYSQLND_PROT_AUTH_PACKET => "MYSQLND_UH_MYSQLND_PROT_AUTH_PACKET",
MYSQLND_UH_MYSQLND_PROT_OK_PACKET => "MYSQLND_UH_MYSQLND_PROT_OK_PACKET",
MYSQLND_UH_MYSQLND_PROT_EOF_PACKET => "MYSQLND_UH_MYSQLND_PROT_EOF_PACKET",
MYSQLND_UH_MYSQLND_PROT_CMD_PACKET => "MYSQLND_UH_MYSQLND_PROT_CMD_PACKET",
MYSQLND_UH_MYSQLND_PROT_RSET_HEADER_PACKET => "MYSQLND_UH_MYSQLND_PROT_RSET_HEADER_PACKET",
MYSQLND_UH_MYSQLND_PROT_RSET_FLD_PACKET => "MYSQLND_UH_MYSQLND_PROT_RSET_FLD_PACKET",
MYSQLND_UH_MYSQLND_PROT_ROW_PACKET => "MYSQLND_UH_MYSQLND_PROT_ROW_PACKET",
MYSQLND_UH_MYSQLND_PROT_STATS_PACKET => "MYSQLND_UH_MYSQLND_PROT_STATS_PACKET",
MYSQLND_UH_MYSQLND_PREPARE_RESP_PACKET => "MYSQLND_UH_MYSQLND_PREPARE_RESP_PACKET",
MYSQLND_UH_MYSQLND_CHG_USER_RESP_PACKET => "MYSQLND_UH_MYSQLND_CHG_USER_RESP_PACKET",
MYSQLND_UH_MYSQLND_PROT_LAST => "MYSQLND_UH_MYSQLND_PROT_LAST",
);
return (isset($mapping[$ok_packet])) ? $mapping[$ok_packet] : 'unknown';
}
class proxy extends MysqlndUhConnection {
public function simpleCommand($conn, $command, $arg, $ok_packet, $silent, $ignore_upsert_status) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
printf("Command '%s'\n", server_cmd_2_string($command));
printf("OK packet '%s'\n", ok_packet_2_string($ok_packet));
$ret = parent::simpleCommand($conn, $command, $arg, $ok_packet, $silent, $ignore_upsert_status);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("SELECT 1");
?>
The above example will output:
proxy::simpleCommand(array (
0 => NULL,
1 => 3,
2 => 'SELECT 1',
3 => 13,
4 => false,
5 => false,
))
Command 'MYSQLND_UH_MYSQLND_COM_QUERY'
OK packet 'MYSQLND_UH_MYSQLND_PROT_LAST'
proxy::simpleCommand returns true
:)proxy::simpleCommand(array (
0 => NULL,
1 => 1,
2 => '',
3 => 13,
4 => true,
5 => true,
))
Command 'MYSQLND_UH_MYSQLND_COM_QUIT'
OK packet 'MYSQLND_UH_MYSQLND_PROT_LAST'
proxy::simpleCommand returns true
See Also
mysqlnd_uh_set_connection_proxy |
21.9.8.7.45. MysqlndUhConnection::simpleCommandHandleResponse
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::simpleCommandHandleResponse
Process a response for a basic COM_* command send to the client
Description
public bool MysqlndUhConnection::simpleCommandHandleResponse(mysqlnd_connection connection,
int ok_packet,
bool silent,
int command,
bool ignore_upsert_status);
Process a response for a basic COM_* command send to the client.
Parameters
connection
Mysqlnd connection handle. Do not modify!
ok_packet
The OK packet type.
silent
Whether mysqlnd may emit errors.
command
The COM command to process results from.
ignore_upsert_status
Whether to ignore UPDATE/INSERT status.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.379. MysqlndUhConnection::simpleCommandHandleResponse example
<?php
function server_cmd_2_string($command) {
$mapping = array(
MYSQLND_UH_MYSQLND_COM_SLEEP => "MYSQLND_UH_MYSQLND_COM_SLEEP",
MYSQLND_UH_MYSQLND_COM_QUIT => "MYSQLND_UH_MYSQLND_COM_QUIT",
MYSQLND_UH_MYSQLND_COM_INIT_DB => "MYSQLND_UH_MYSQLND_COM_INIT_DB",
MYSQLND_UH_MYSQLND_COM_QUERY => "MYSQLND_UH_MYSQLND_COM_QUERY",
MYSQLND_UH_MYSQLND_COM_FIELD_LIST => "MYSQLND_UH_MYSQLND_COM_FIELD_LIST",
MYSQLND_UH_MYSQLND_COM_CREATE_DB => "MYSQLND_UH_MYSQLND_COM_CREATE_DB",
MYSQLND_UH_MYSQLND_COM_DROP_DB => "MYSQLND_UH_MYSQLND_COM_DROP_DB",
MYSQLND_UH_MYSQLND_COM_REFRESH => "MYSQLND_UH_MYSQLND_COM_REFRESH",
MYSQLND_UH_MYSQLND_COM_SHUTDOWN => "MYSQLND_UH_MYSQLND_COM_SHUTDOWN",
MYSQLND_UH_MYSQLND_COM_STATISTICS => "MYSQLND_UH_MYSQLND_COM_STATISTICS",
MYSQLND_UH_MYSQLND_COM_PROCESS_INFO => "MYSQLND_UH_MYSQLND_COM_PROCESS_INFO",
MYSQLND_UH_MYSQLND_COM_CONNECT => "MYSQLND_UH_MYSQLND_COM_CONNECT",
MYSQLND_UH_MYSQLND_COM_PROCESS_KILL => "MYSQLND_UH_MYSQLND_COM_PROCESS_KILL",
MYSQLND_UH_MYSQLND_COM_DEBUG => "MYSQLND_UH_MYSQLND_COM_DEBUG",
MYSQLND_UH_MYSQLND_COM_PING => "MYSQLND_UH_MYSQLND_COM_PING",
MYSQLND_UH_MYSQLND_COM_TIME => "MYSQLND_UH_MYSQLND_COM_TIME",
MYSQLND_UH_MYSQLND_COM_DELAYED_INSERT => "MYSQLND_UH_MYSQLND_COM_DELAYED_INSERT",
MYSQLND_UH_MYSQLND_COM_CHANGE_USER => "MYSQLND_UH_MYSQLND_COM_CHANGE_USER",
MYSQLND_UH_MYSQLND_COM_BINLOG_DUMP => "MYSQLND_UH_MYSQLND_COM_BINLOG_DUMP",
MYSQLND_UH_MYSQLND_COM_TABLE_DUMP => "MYSQLND_UH_MYSQLND_COM_TABLE_DUMP",
MYSQLND_UH_MYSQLND_COM_CONNECT_OUT => "MYSQLND_UH_MYSQLND_COM_CONNECT_OUT",
MYSQLND_UH_MYSQLND_COM_REGISTER_SLAVED => "MYSQLND_UH_MYSQLND_COM_REGISTER_SLAVED",
MYSQLND_UH_MYSQLND_COM_STMT_PREPARE => "MYSQLND_UH_MYSQLND_COM_STMT_PREPARE",
MYSQLND_UH_MYSQLND_COM_STMT_EXECUTE => "MYSQLND_UH_MYSQLND_COM_STMT_EXECUTE",
MYSQLND_UH_MYSQLND_COM_STMT_SEND_LONG_DATA => "MYSQLND_UH_MYSQLND_COM_STMT_SEND_LONG_DATA",
MYSQLND_UH_MYSQLND_COM_STMT_CLOSE => "MYSQLND_UH_MYSQLND_COM_STMT_CLOSE",
MYSQLND_UH_MYSQLND_COM_STMT_RESET => "MYSQLND_UH_MYSQLND_COM_STMT_RESET",
MYSQLND_UH_MYSQLND_COM_SET_OPTION => "MYSQLND_UH_MYSQLND_COM_SET_OPTION",
MYSQLND_UH_MYSQLND_COM_STMT_FETCH => "MYSQLND_UH_MYSQLND_COM_STMT_FETCH",
MYSQLND_UH_MYSQLND_COM_DAEMON => "MYSQLND_UH_MYSQLND_COM_DAEMON",
MYSQLND_UH_MYSQLND_COM_END => "MYSQLND_UH_MYSQLND_COM_END",
);
return (isset($mapping[$command])) ? $mapping[$command] : 'unknown';
}
function ok_packet_2_string($ok_packet) {
$mapping = array(
MYSQLND_UH_MYSQLND_PROT_GREET_PACKET => "MYSQLND_UH_MYSQLND_PROT_GREET_PACKET",
MYSQLND_UH_MYSQLND_PROT_AUTH_PACKET => "MYSQLND_UH_MYSQLND_PROT_AUTH_PACKET",
MYSQLND_UH_MYSQLND_PROT_OK_PACKET => "MYSQLND_UH_MYSQLND_PROT_OK_PACKET",
MYSQLND_UH_MYSQLND_PROT_EOF_PACKET => "MYSQLND_UH_MYSQLND_PROT_EOF_PACKET",
MYSQLND_UH_MYSQLND_PROT_CMD_PACKET => "MYSQLND_UH_MYSQLND_PROT_CMD_PACKET",
MYSQLND_UH_MYSQLND_PROT_RSET_HEADER_PACKET => "MYSQLND_UH_MYSQLND_PROT_RSET_HEADER_PACKET",
MYSQLND_UH_MYSQLND_PROT_RSET_FLD_PACKET => "MYSQLND_UH_MYSQLND_PROT_RSET_FLD_PACKET",
MYSQLND_UH_MYSQLND_PROT_ROW_PACKET => "MYSQLND_UH_MYSQLND_PROT_ROW_PACKET",
MYSQLND_UH_MYSQLND_PROT_STATS_PACKET => "MYSQLND_UH_MYSQLND_PROT_STATS_PACKET",
MYSQLND_UH_MYSQLND_PREPARE_RESP_PACKET => "MYSQLND_UH_MYSQLND_PREPARE_RESP_PACKET",
MYSQLND_UH_MYSQLND_CHG_USER_RESP_PACKET => "MYSQLND_UH_MYSQLND_CHG_USER_RESP_PACKET",
MYSQLND_UH_MYSQLND_PROT_LAST => "MYSQLND_UH_MYSQLND_PROT_LAST",
);
return (isset($mapping[$ok_packet])) ? $mapping[$ok_packet] : 'unknown';
}
class proxy extends MysqlndUhConnection {
public function simpleCommandHandleResponse($conn, $ok_packet, $silent, $command, $ignore_upsert_status) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
printf("Command '%s'\n", server_cmd_2_string($command));
printf("OK packet '%s'\n", ok_packet_2_string($ok_packet));
$ret = parent::simpleCommandHandleResponse($conn, $ok_packet, $silent, $command, $ignore_upsert_status);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysql = mysql_connect("localhost", "root", "");
mysql_query("SELECT 1 FROM DUAL", $mysql);
?>
The above example will output:
proxy::simpleCommandHandleResponse(array (
0 => NULL,
1 => 5,
2 => false,
3 => 27,
4 => true,
))
Command 'MYSQLND_UH_MYSQLND_COM_SET_OPTION'
OK packet 'MYSQLND_UH_MYSQLND_PROT_EOF_PACKET'
proxy::simpleCommandHandleResponse returns true
See Also
mysqlnd_uh_set_connection_proxy |
21.9.8.7.46. MysqlndUhConnection::sslSet
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::sslSet
Used for establishing secure connections using SSL
Description
public bool MysqlndUhConnection::sslSet(mysqlnd_connection connection,
string key,
string cert,
string ca,
string capath,
string cipher);
Used for establishing secure connections using SSL.
Parameters
connection
Mysqlnd connection handle. Do not modify!
key
The path name to the key file.
cert
The path name to the certificate file.
ca
The path name to the certificate authority file.
capath
The pathname to a directory that contains trusted SSL CA certificates in PEM format.
cipher
A list of allowable ciphers to use for SSL encryption.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.380. MysqlndUhConnection::sslSet example
<?php
class proxy extends MysqlndUhConnection {
public function sslSet($conn, $key, $cert, $ca, $capath, $cipher) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::sslSet($conn, $key, $cert, $ca, $capath, $cipher);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->ssl_set("key", "cert", "ca", "capath", "cipher");
?>
The above example will output:
proxy::sslSet(array (
0 => NULL,
1 => 'key',
2 => 'cert',
3 => 'ca',
4 => 'capath',
5 => 'cipher',
))
proxy::sslSet returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_ssl_set |
21.9.8.7.47. MysqlndUhConnection::stmtInit
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::stmtInit
Initializes a statement and returns a resource for use with mysqli_statement::prepare
Description
public resource MysqlndUhConnection::stmtInit(mysqlnd_connection connection);
Initializes a statement and returns a resource for use with mysqli_statement::prepare.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Resource of type Mysqlnd Prepared Statement (internal only - you must not modify it!). The documentation may also refer to such resources using the alias name mysqlnd_prepared_statement.
Examples
Example 21.381. MysqlndUhConnection::stmtInit example
<?php
class proxy extends MysqlndUhConnection {
public function stmtInit($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
var_dump($res);
$ret = parent::stmtInit($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
var_dump($ret);
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$stmt = $mysqli->prepare("SELECT 1 AS _one FROM DUAL");
$stmt->execute();
$one = NULL;
$stmt->bind_result($one);
$stmt->fetch();
var_dump($one);
?>
The above example will output:
proxy::stmtInit(array (
0 => NULL,
))
resource(19) of type (Mysqlnd Connection)
proxy::stmtInit returns NULL
resource(246) of type (Mysqlnd Prepared Statement (internal only - you must not modify it!))
int(1)
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_stmt_init |
21.9.8.7.48. MysqlndUhConnection::storeResult
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::storeResult
Transfers a result set from the last query
Description
public resource MysqlndUhConnection::storeResult(mysqlnd_connection connection);
Transfers a result set from the last query.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Resource of type Mysqlnd Resultset (internal only - you must not modify it!). The documentation may also refer to such resources using the alias name mysqlnd_resultset.
Examples
Example 21.382. MysqlndUhConnection::storeResult example
<?php
class proxy extends MysqlndUhConnection {
public function storeResult($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::storeResult($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
var_dump($ret);
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$res = $mysqli->query("SELECT 'Also called buffered result' AS _msg FROM DUAL");
var_dump($res->fetch_assoc());
$mysqli->real_query("SELECT 'Good morning!' AS _msg FROM DUAL");
$res = $mysqli->store_result();
var_dump($res->fetch_assoc());
?>
The above example will output:
proxy::storeResult(array (
0 => NULL,
))
proxy::storeResult returns NULL
resource(475) of type (Mysqlnd Resultset (internal only - you must not modify it!))
array(1) {
["_msg"]=>
string(27) "Also called buffered result"
}
proxy::storeResult(array (
0 => NULL,
))
proxy::storeResult returns NULL
resource(730) of type (Mysqlnd Resultset (internal only - you must not modify it!))
array(1) {
["_msg"]=>
string(13) "Good morning!"
}
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_store_result |
mysqli_real_query |
21.9.8.7.49. MysqlndUhConnection::txCommit
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::txCommit
Commits the current transaction
Description
public bool MysqlndUhConnection::txCommit(mysqlnd_connection connection);
Commits the current transaction.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.383. MysqlndUhConnection::txCommit example
<?php
class proxy extends MysqlndUhConnection {
public function txCommit($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::txCommit($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->commit();
?>
The above example will output:
proxy::txCommit(array (
0 => NULL,
))
proxy::txCommit returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_commit |
21.9.8.7.50. MysqlndUhConnection::txRollback
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::txRollback
Rolls back current transaction
Description
public bool MysqlndUhConnection::txRollback(mysqlnd_connection connection);
Rolls back current transaction.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.384. MysqlndUhConnection::txRollback example
<?php
class proxy extends MysqlndUhConnection {
public function txRollback($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::txRollback($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->rollback();
?>
The above example will output:
proxy::txRollback(array (
0 => NULL,
))
proxy::txRollback returns true
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_commit |
21.9.8.7.51. MysqlndUhConnection::useResult
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhConnection::useResult
Initiate a result set retrieval
Description
public resource MysqlndUhConnection::useResult(mysqlnd_connection connection);
Initiate a result set retrieval.
Parameters
connection
Mysqlnd connection handle. Do not modify!
Return Values
Resource of type Mysqlnd Resultset (internal only - you must not modify it!). The documentation may also refer to such resources using the alias name mysqlnd_resultset.
Examples
Example 21.385. MysqlndUhConnection::useResult example
<?php
class proxy extends MysqlndUhConnection {
public function useResult($res) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::useResult($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
var_dump($ret);
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->real_query("SELECT 'Good morning!' AS _msg FROM DUAL");
$res = $mysqli->use_result();
var_dump($res->fetch_assoc());
?>
The above example will output:
proxy::useResult(array (
0 => NULL,
))
proxy::useResult returns NULL
resource(425) of type (Mysqlnd Resultset (internal only - you must not modify it!))
array(1) {
["_msg"]=>
string(13) "Good morning!"
}
See Also
mysqlnd_uh_set_connection_proxy |
mysqli_use_result |
mysqli_real_query |
21.9.8.8. The MysqlndUhPreparedStatement class (MysqlndUhPreparedStatement)
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhPreparedStatement {
MysqlndUhPreparedStatement
Methods public MysqlndUhPreparedStatement::__construct();
public bool MysqlndUhPreparedStatement::execute(mysqlnd_prepared_statement statement);
public bool MysqlndUhPreparedStatement::prepare(mysqlnd_prepared_statement statement,
string query);
}
21.9.8.8.1. MysqlndUhPreparedStatement::__construct
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhPreparedStatement::__construct
The __construct purpose
Description
public MysqlndUhPreparedStatement::__construct();
Warning
This function is currently not documented; only its argument list is available.
Parameters
This function has no parameters.
Return Values
21.9.8.8.2. MysqlndUhPreparedStatement::execute
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhPreparedStatement::execute
Executes a prepared Query
Description
public bool MysqlndUhPreparedStatement::execute(mysqlnd_prepared_statement statement);
Executes a prepared Query.
Parameters
statement
Mysqlnd prepared statement handle. Do not modify! Resource of type Mysqlnd Prepared Statement (internal only - you must not modify it!).
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.386. MysqlndUhPreparedStatement::execute example
<?php
class stmt_proxy extends MysqlndUhPreparedStatement {
public function execute($res) {
printf("%s(", __METHOD__);
var_dump($res);
printf(")\n");
$ret = parent::execute($res);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
var_dump($ret);
return $ret;
}
}
mysqlnd_uh_set_statement_proxy(new stmt_proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$stmt = $mysqli->prepare("SELECT 'Labskaus' AS _msg FROM DUAL");
$stmt->execute();
$msg = NULL;
$stmt->bind_result($msg);
$stmt->fetch();
var_dump($msg);
?>
The above example will output:
stmt_proxy::execute(resource(256) of type (Mysqlnd Prepared Statement (internal only - you must not modify it!))
)
stmt_proxy::execute returns true
bool(true)
string(8) "Labskaus"
See Also
mysqlnd_uh_set_statement_proxy |
mysqli_stmt_execute |
21.9.8.8.3. MysqlndUhPreparedStatement::prepare
Copyright 1997-2012 the PHP Documentation Group.
MysqlndUhPreparedStatement::prepare
Prepare an SQL statement for execution
Description
public bool MysqlndUhPreparedStatement::prepare(mysqlnd_prepared_statement statement,
string query);
Prepare an SQL statement for execution.
Parameters
statement
Mysqlnd prepared statement handle. Do not modify! Resource of type Mysqlnd Prepared Statement (internal only - you must not modify it!).
query
The query to be prepared.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.387. MysqlndUhPreparedStatement::prepare example
<?php
class stmt_proxy extends MysqlndUhPreparedStatement {
public function prepare($res, $query) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$query = "SELECT 'No more you-know-what-I-mean for lunch, please' AS _msg FROM DUAL";
$ret = parent::prepare($res, $query);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
var_dump($ret);
return $ret;
}
}
mysqlnd_uh_set_statement_proxy(new stmt_proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$stmt = $mysqli->prepare("SELECT 'Labskaus' AS _msg FROM DUAL");
$stmt->execute();
$msg = NULL;
$stmt->bind_result($msg);
$stmt->fetch();
var_dump($msg);
?>
The above example will output:
stmt_proxy::prepare(array (
0 => NULL,
1 => 'SELECT \'Labskaus\' AS _msg FROM DUAL',
))
stmt_proxy::prepare returns true
bool(true)
string(46) "No more you-know-what-I-mean for lunch, please"
See Also
mysqlnd_uh_set_statement_proxy |
mysqli_stmt_prepare |
mysqli_prepare |
21.9.8.9. Mysqlnd_uh Functions
Copyright 1997-2012 the PHP Documentation Group.
21.9.8.9.1. mysqlnd_uh_convert_to_mysqlnd
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_uh_convert_to_mysqlnd
Converts a MySQL connection handle into a mysqlnd connection handle
Description
resource mysqlnd_uh_convert_to_mysqlnd(mysqli mysql_connection);
Converts a MySQL connection handle into a mysqlnd connection handle. After conversion you can execute mysqlnd library calls on the connection handle. This can be used to access mysqlnd functionality not made available through user space API calls.
The function can be disabled with mysqlnd_uh.enable. If mysqlnd_uh.enable is set to FALSE the function will not install the proxy and always return TRUE . Additionally, an error of the type E_WARNING may be emitted. The error message may read like PHP Warning: mysqlnd_uh_convert_to_mysqlnd(): (Mysqlnd User Handler) The plugin has been disabled by setting the configuration parameter mysqlnd_uh.enable = false. You are not allowed to call this function [...].
Parameters
MySQL connection handle
A MySQL connection handle of type mysql, mysqli or PDO_MySQL.
Return Values
A mysqlnd connection handle.
Changelog
Version | Description |
---|---|
5.4.0 | The mysql_connection parameter can now be of type mysql, PDO_MySQL, or mysqli. Before, only the mysqli type was allowed. |
Examples
Example 21.388. mysqlnd_uh_convert_to_mysqlnd example
<?php
/* PDO user API gives no access to connection thread id */
$mysql_connection = new PDO("mysql:host=localhost;dbname=test", "root", "");
/* Convert PDO MySQL handle to mysqlnd handle */
$mysqlnd = mysqlnd_uh_convert_to_mysqlnd($mysql_connection);
/* Create Proxy to call mysqlnd connection class methods */
$obj = new MySQLndUHConnection();
/* Call mysqlnd_conn::get_thread_id */
var_dump($obj->getThreadId($mysqlnd));
/* Use SQL to fetch connection thread id */
var_dump($mysql_connection->query("SELECT CONNECTION_ID()")->fetchAll());
?>
The above example will output:
int(27054)
array(1) {
[0]=>
array(2) {
["CONNECTION_ID()"]=>
string(5) "27054"
[0]=>
string(5) "27054"
}
}
See Also
mysqlnd_uh.enable |
21.9.8.9.2. mysqlnd_uh_set_connection_proxy
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_uh_set_connection_proxy
Installs a proxy for mysqlnd connections
Description
bool mysqlnd_uh_set_connection_proxy(MysqlndUhConnection connection_proxy,
mysqli mysqli_connection);
Installs a proxy object to hook mysqlnd's connection objects methods. Once installed, the proxy will be used for all MySQL connections opened with mysqli, mysql or PDO_MYSQL, assuming that the listed extensions are compiled to use the mysqlnd library.
The function can be disabled with mysqlnd_uh.enable. If mysqlnd_uh.enable is set to FALSE the function will not install the proxy and always return TRUE . Additionally, an error of the type E_WARNING may be emitted. The error message may read like PHP Warning: mysqlnd_uh_set_connection_proxy(): (Mysqlnd User Handler) The plugin has been disabled by setting the configuration parameter mysqlnd_uh.enable = false. The proxy has not been installed [...].
Parameters
connection_proxy
A proxy object of type MysqlndUhConnection.
mysqli_connection
Object of type mysqli. If given, the proxy will be set for this particular connection only.
Return Values
Returns TRUE on success. Otherwise, returns FALSE
Examples
Example 21.389. mysqlnd_uh_set_connection_proxy example
<?php
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("SELECT 'No proxy installed, yet'");
class proxy extends MysqlndUhConnection {
public function query($res, $query) {
printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
$ret = parent::query($res, $query);
printf("%s returns %s\n", __METHOD__, var_export($ret, true));
return $ret;
}
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli->query("SELECT 'mysqlnd rocks!'");
$mysql = mysql_connect("localhost", "root", "", "test");
mysql_query("SELECT 'Ahoy Andrey!'", $mysql);
$pdo = new PDO("mysql:host=localhost;dbname=test", "root", "");
$pdo->query("SELECT 'Moin Johannes!'");
?>
The above example will output:
proxy::query(array (
0 => NULL,
1 => 'SELECT \'mysqlnd rocks!\'',
))
proxy::query returns true
proxy::query(array (
0 => NULL,
1 => 'SELECT \'Ahoy Andrey!\'',
))
proxy::query returns true
proxy::query(array (
0 => NULL,
1 => 'SELECT \'Moin Johannes!\'',
))
proxy::query returns true
See Also
mysqlnd_uh_set_statement_proxy |
mysqlnd_uh.enable |
21.9.8.9.3. mysqlnd_uh_set_statement_proxy
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_uh_set_statement_proxy
Installs a proxy for mysqlnd statements
Description
bool mysqlnd_uh_set_statement_proxy(MysqlndUhStatement statement_proxy);
Installs a proxy for mysqlnd statements. The proxy object will be used for all mysqlnd prepared statement objects, regardless which PHP MySQL extension (mysqli, mysql, PDO_MYSQL) has created them as long as the extension is compiled to use the mysqlnd library.
The function can be disabled with mysqlnd_uh.enable. If mysqlnd_uh.enable is set to FALSE the function will not install the proxy and always return TRUE . Additionally, an error of the type E_WARNING may be emitted. The error message may read like PHP Warning: mysqlnd_uh_set_statement_proxy(): (Mysqlnd User Handler) The plugin has been disabled by setting the configuration parameter mysqlnd_uh.enable = false. The proxy has not been installed [...].
Parameters
statement_proxy
The mysqlnd statement proxy object of type MysqlndUhStatement
Return Values
Returns TRUE on success. Otherwise, returns FALSE
See Also
mysqlnd_uh_set_connection_proxy |
mysqlnd_uh.enable |
21.9.8.10. Change History
Copyright 1997-2012 the PHP Documentation Group.
The Change History lists major changes users need to be aware if upgrading from one version to another. It is a high level summary of selected changes that may impact applications or might even break backwards compatibility. See also the CHANGES file contained in the source for additional changelog information. The commit history is also available.
21.9.8.10.1. PECL/mysqlnd_uh 1.0 series
Copyright 1997-2012 the PHP Documentation Group.
1.0.1-alpha
Feature changes
1.0.0-alpha
21.9.9. Mysqlnd connection multiplexing plugin (mysqlnd_mux)
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd multiplexing plugin (mysqlnd_mux) multiplexes MySQL connections established by all PHP MySQL extensions that use the MySQL native driver (mysqlnd) for PHP.
The MySQL native driver for PHP features an internal C API for plugins, such as the connection multiplexing plugin, which can extend the functionality of mysqlnd. See the mysqlnd for additional details about its benefits over the MySQL Client Library libmysqlclient.
Mysqlnd plugins like mysqlnd_mux operate, for the most part, transparently from a user perspective. The connection multiplexing plugin supports all PHP applications, and all MySQL PHP extensions. It does not change existing APIs. Therefore, it can easily be used with existing PHP applications.
Note
This is a proof-of-concept. All features are at an early stage. Not all kinds of queries are handled by the plugin yet. Thus, it cannot be used in a drop-in fashion at the moment.
Please, do not use this version in production environments.
21.9.9.1. Key Features
Copyright 1997-2012 the PHP Documentation Group.
The key features of mysqlnd_mux are as follows:
Transparent and therefore easy to use:
Supports all of the PHP MySQL extensions.
Little to no application changes are required, dependent on the required usage scenario.
Reduces server load and connection establishment latency:
Opens less connections to the MySQL server.
Less connections to MySQL mean less work for the MySQL server. In a client-server environment scaling the server is often more difficult than scaling the client. Multiplexing helps with horizontal scale-out (scale-by-client).
Pooling saves connection time.
Multiplexed connection: multiple user handles share the same network connection. Once opened, a network connection is cached and shared among multiple user handles. There is a 1:n relationship between internal network connection and user connection handles.
Persistent connection: a network connection is kept open at the end of the web request, if the PHP deployment model allows. Thus, subsequently web requests can reuse a previously opened connection. Like other resources, network connections are bound to the scope of a process. Thus, they can be reused for all web requests served by a process.
21.9.9.2. Limitations
Copyright 1997-2012 the PHP Documentation Group.
The proof-of-concept does not support unbuffered queries, prepared statements, and asynchronous queries.
The connection pool is using a combination of the transport method and hostname as keys. As a consequence, two connections to the same host using the same transport method (TCP/IP, Unix socket, Windows named pipe) will be linked to the same pooled connection even if username and password differ. Be aware of the possible security implications.
The proof-of-concept is transaction agnostic. It does not about SQL transactions.
Note
Applications must be aware of the consequences of connection sharing connections.
21.9.9.3. About the name mysqlnd_mux
Copyright 1997-2012 the PHP Documentation Group.
The shortcut mysqlnd_mux stands for mysqlnd connection multiplexing plugin.
21.9.9.4. Concepts
Copyright 1997-2012 the PHP Documentation Group.
This explains the architecture and related concepts for this plugin. Reading and understanding these concepts is required to successfully use this plugin.
21.9.9.4.1. Architecture
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd connection multiplexing plugin is implemented as a PHP extension. It is written in C and operates under the hood of PHP. During the startup of the PHP interpreter, in the module initialization phase of the PHP engine, it gets registered as a mysqlnd plugin to replace specific mysqlnd C methods.
The mysqlnd library uses PHP streams to communicate with the MySQL server. PHP streams are accessed by the mysqlnd library through its net module. The mysqlnd connection multiplexing plugin proxies methods of the mysqlnd library net module to control opening and closing of network streams.
Upon opening a user connection to MySQL using the appropriate connection functions of either mysqli, PDO_MYSQL or ext/mysql, the plugin will search its connection pool for an open network connection. If the pool contains a network connection to the host specified by the connect function using the transport method requested (TCP/IP, Unix domain socket, Windows named pipe), the pooled connection is linked to the user handle. Otherwise, a new network connection is opened, put into the poolm and associated with the user connection handle. This way, multiple user handles can be linked to the same network connection.
21.9.9.4.2. Connection pool
Copyright 1997-2012 the PHP Documentation Group.
The plugins connection pool is created when PHP initializes its modules (MINIT) and free'd when PHP shuts down the modules (MSHUTDOWN). This is the same as for persistent MySQL connections.
Depending on the deployment model, the pool is used for the duration of one or multiple web requests. Network connections are bound to the lifespan of an operating system level process. If the PHP process serves multiple web requests as it is the case for Fast-CGI or threaded web server deployments, then the pooled connections can be reused over multiple connections. Because multiplexing means sharing connections, it can even happen with a threaded deployment that two threads or two distinct web requests are linked to one pooled network connections.
A pooled connection is explicitly closed once the last reference to it is released. An implicit close happens when PHP shuts down its modules.
21.9.9.4.3. Sharing connections
Copyright 1997-2012 the PHP Documentation Group.
The PHP mysqlnd connection multiplexing plugin changes the relationship between a users connection handle and the underlying MySQL connection. Without the plugin, every MySQL connection belongs to exactly one user connection at a time. The multiplexing plugin changes. A MySQL connection is shared among multiple user handles. There no one-to-one relation if using the plugin.
Sharing pooled connections has an impact on the connection state. State changing operations from multiple user handles pointing to one MySQL connection are not isolated from each other. If, for example, a session variable is set through one user connection handle, the session variable becomes visible to all other user handles that reference the same underlying MySQL connection.
This is similar in concept to connection state related phenomens described for the PHP mysqlnd replication and load balancing plugin. Please, check the PECL/mysqlnd_ms documentation for more details on the state of a connection.
The proof-of-concept takes no measures to isolate multiplexed connections from each other.
21.9.9.5. Installing/Configuring
Copyright 1997-2012 the PHP Documentation Group.
21.9.9.5.1. Requirements
Copyright 1997-2012 the PHP Documentation Group.
PHP 5.5.0 or newer. Some advanced functionality requires PHP 5.5.0 or newer.
The mysqlnd_mux replication and load balancing plugin supports all PHP applications and all available PHP MySQL extensions (mysqli, mysql, PDO_MYSQL). The PHP MySQL extension must be configured to use mysqlnd in order to be able to use the mysqlnd_mux plugin for mysqlnd.
21.9.9.5.2. Installation
Copyright 1997-2012 the PHP Documentation Group.
Information for installing this PECL extension may be found in the manual chapter titled Installation of PECL extensions. Additional information such as new releases, downloads, source files, maintainer information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqlnd_mux
21.9.9.5.3. Runtime Configuration
Copyright 1997-2012 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php.ini.
Table 21.77. Mysqlnd_mux Configure Options
Name | Default | Changeable | Changelog |
---|---|---|---|
mysqlnd_mux.enable | 0 | PHP_INI_SYSTEM |
Here's a short explanation of the configuration directives.
mysqlnd_mux.enable integer
Enables or disables the plugin. If disabled, the extension will not plug into mysqlnd to proxy internal mysqlnd C API calls.
21.9.9.6. Predefined Constants
Copyright 1997-2012 the PHP Documentation Group.
The constants below are defined by this extension, and will only be available when the extension has either been compiled into PHP or dynamically loaded at runtime.
Other
The plugins version number can be obtained using MYSQLND_MUX_VERSION or MYSQLND_MUX_VERSION_ID . MYSQLND_MUX_VERSION is the string representation of the numerical version number MYSQLND_MUX_VERSION_ID , which is an integer such as 10000. Developers can calculate the version number as follows.
Version (part) | Example |
---|---|
Major*10000 | 1*10000 = 10000 |
Minor*100 | 0*100 = 0 |
Patch | 0 = 0 |
MYSQLND_MUX_VERSION_ID | 10000 |
MYSQLND_MUX_VERSION (string)
Plugin version string, for example, “1.0.0-prototype”.
MYSQLND_MUX_VERSION_ID (integer)
Plugin version number, for example, 10000.
21.9.9.7. Change History
Copyright 1997-2012 the PHP Documentation Group.
This change history is a high level summary of selected changes that may impact applications and/or break backwards compatibility.
See also the CHANGES file in the source distribution for a complete list of changes.
21.9.9.7.1. PECL/mysqlnd_mux 1.0 series
Copyright 1997-2012 the PHP Documentation Group.
1.0.0-pre-alpha
Initial check-in. Essentially a demo of the mysqlnd plugin API.
Note
This is the current development series. All features are at an early stage. Changes may happen at any time without prior notice. Please, do not use this version in production environments.
The documentation may not reflect all changes yet.
21.9.10. Mysqlnd Memcache plugin (mysqlnd_memcache)
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd memcache plugin (mysqlnd_memcache) is an PHP extension for transparently translating SQL into requests for the MySQL InnoDB Memcached Daemon Plugin (server plugin). It includes experimental support for the MySQL Cluster Memcached Daemon. The server plugin provides access to data stored inside MySQL InnoDB (respectively MySQL Cluster NDB) tables using the Memcache protocol. This PHP extension, which supports all PHP MySQL extensions that use mysqlnd, will identify tables exported in this way and will translate specific SELECT queries into Memcache requests.
Figure 21.92. mysqlnd_memcache data flow
Note
This plugin depends on the MySQL InnoDB Memcached Daemon Plugin. It is not provided to be used with a stand-alone Memcached. For a generic query cache using Memcached look at the mysqlnd query cache plugin. For direct Memcache access look at the memcache and memcached extensions.
The MySQL native driver for PHP is a C library that ships together with PHP as of PHP 5.3.0. It serves as a drop-in replacement for the MySQL Client Library (libmysqlclient). Using mysqlnd has several advantages: no extra downloads are required because it's bundled with PHP, it's under the PHP license, there is lower memory consumption in certain cases, and it contains new functionality such as asynchronous queries.
The mysqlnd_mmemcache operates, for the most part, transparently from a user perspective. The mysqlnd memcache plugin supports all PHP applications, and all MySQL PHP extensions. It does not change existing APIs. Therefore, it can easily be used with existing PHP applications.
The MySQL Memcache plugins add key-value style access method for data stored in InnoDB resp. NDB (MySQL Cluster) SQL tables through the Memcache protocol. This type of key-value access if often faster than using SQL.
21.9.10.1. Key Features
Copyright 1997-2012 the PHP Documentation Group.
The key features of PECL/mysqlnd_memcache are as follows.
Possible performance benefits
Client-side: light-weight protocol.
Server-side: no SQL parsing, direct access to the storage.
Please, run your own benchmarks! Actual performance results are highly dependent on setup and hardware used.
21.9.10.2. Limitations
Copyright 1997-2012 the PHP Documentation Group.
The initial version is not binary safe. Due to the way the MySQL Memcache plugins works there are restrictions related to separators.
Prepared statements and asynchronous queries are not supported. Result set meta data support is limited.
The mapping information for tables accessible via Memcache is not cached in the plugin between requests but fetched from the MySQL server each time a MySQL connection is associated with a Memcache connection. See mysqlnd_memcache_set for details.
21.9.10.3. On the name
Copyright 1997-2012 the PHP Documentation Group.
The shortcut mysqlnd_memcache stands for mysqlnd memcache plugin. Memcache refers to support of the MySQL Memcache plugins for InnoDB and NDB (MySQL Cluster). The plugin is not related to the Memcached cache server.
21.9.10.4. Quickstart and Examples
Copyright 1997-2012 the PHP Documentation Group.
The mysqlnd memcache plugin is easy to use. This quickstart will demo typical use-cases, and provide practical advice on getting started.
It is strongly recommended to read the reference sections in addition to the quickstart. The quickstart tries to avoid discussing theoretical concepts and limitations. Instead, it will link to the reference sections. It is safe to begin with the quickstart. However, before using the plugin in mission critical environments we urge you to read additionally the background information from the reference sections.
21.9.10.4.1. Setup
Copyright 1997-2012 the PHP Documentation Group.
The plugin is implemented as a PHP extension. See also the installation instructions to install this extension.
Compile or configure the PHP MySQL extension (API) (mysqli, PDO_MYSQL, mysql). That extension must use the mysqlnd library as because mysqlnd_memcache is a plugin for the mysqlnd library. For additional information, refer to the mysqlnd_memcache installation instructions.
Then, load this extension into PHP and activate the plugin in the PHP configuration file using the PHP configuration directive named mysqlnd_memcache.enable.
Example 21.390. Enabling the plugin (php.ini)
; On Windows the filename is php_mysqnd_memcache.dll
; Load the extension
extension=mysqlnd_memcache.so
; Enable it
mysqlnd_memcache.enable=1
Follow the instructions given in the MySQL Reference Manual on installing the Memcache plugins for the MySQL server. Activate the plugins and configure Memcache access for SQL tables.
The examples in this quickguide assume that the following table exists, and that Memcache is configured with access to it.
Example 21.391. SQL table used for the Quickstart
CREATE TABLE test(
id CHAR(16),
f1 VARCHAR(255),
f2 VARCHAR(255),
f3 VARCHAR(255),
flags INT NOT NULL,
cas_column INT,
expire_time_column INT,
PRIMARY KEY(id)
) ENGINE=InnoDB;
INSERT INTO test (id, f1, f2, f3) VALUES (1, 'Hello', 'World', '!');
INSERT INTO test (id, f1, f2, f3) VALUES (2, 'Lady', 'and', 'the tramp');
INSERT INTO innodb_memcache.containers(
name, db_schema, db_table, key_columns, value_columns,
flags, cas_column, expire_time_column, unique_idx_name_on_key)
VALUES (
'plugin_test', 'test', 'test', 'id', 'f1,f2,f3',
'flags', 'cas_column', 'expire_time_column', 'PRIMARY KEY');
21.9.10.4.2. Usage
Copyright 1997-2012 the PHP Documentation Group.
After associating a MySQL connection with a Memcache connection using mysqnd_memcache_set the plugin attempts to transparently replace SQL SELECT statements by a memcache access. For that purpose the plugin monitors all SQL statements executed and tries to match the statement string against MYSQLND_MEMCACHE_DEFAULT_REGEXP . In case of a match, the mysqlnd memcache plugin checks whether the SELECT is accessing only columns of a mapped table and the WHERE clause is limited to a single key lookup.
In case of the example SQL table, the plugin will use the Memcache interface of the MySQL server to fetch results for a SQL query like SELECT f1, f2, f3 WHERE id = n.
Example 21.392. Basic example.
<?php
$mysqli = new mysqli("host", "user", "passwd", "database");
$memc = new Memcached();
$memc->addServer("host", 11211);
mysqlnd_memcache_set($mysqli, $memc);
/*
This is a query which queries table test using id as key in the WHERE part
and is accessing fields f1, f2 and f3. Therefore, mysqlnd_memcache
will intercept it and route it via memcache.
*/
$result = $mysqli->query("SELECT f1, f2, f3 FROM test WHERE id = 1");
while ($row = $result->fetch_row()) {
print_r($row);
}
/*
This is a query which queries table test but using f1 in the WHERE clause.
Therefore, mysqlnd_memcache can't intercept it. This will be executed
using the MySQL protocol
*/
$mysqli->query("SELECT id FROM test WHERE f1 = 'Lady'");
while ($row = $result->fetch_row()) {
print_r($row);
}
?>
The above example will output:
array(
[f1] => Hello
[f2] => World
[f3] => !
)
array(
[id] => 2
)
21.9.10.5. Installing/Configuring
Copyright 1997-2012 the PHP Documentation Group.
21.9.10.5.1. Requirements
Copyright 1997-2012 the PHP Documentation Group.
PHP: this extension requires PHP 5.4+, version PHP 5.4.4 or never. The required PHP extensions are PCRE (enabled by default), and the memcached extension version 2.0.x.
The mysqlnd_memcache Memcache plugin supports all PHP applications and all available PHP MySQL extensions (mysqli, mysql, PDO_MYSQL). The PHP MySQL extension must be configured with mysqlnd support.
For accessing InnoDB tables, this PHP extension requires MySQL Server 5.6.6 or newer with the InnoDB Memcache Daemon Plugin enabled.
For accessing MySQL Cluster NDB tables, this PHP extension requires MySQL Cluster 7.2 or newer with the NDB Memcache API nodes enabled.
21.9.10.5.2. Installation
Copyright 1997-2012 the PHP Documentation Group.
This PECL extension is not bundled with PHP.
Information for installing this PECL extension may be found in the manual chapter titled Installation of PECL extensions. Additional information such as new releases, downloads, source files, maintainer information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqlnd_memcache
A DLL for this PECL extension is currently unavailable. See also the building on Windows section.
21.9.10.5.3. Runtime Configuration
Copyright 1997-2012 the PHP Documentation Group.
The behaviour of these functions is affected by settings in php.ini.
Table 21.78. Mysqlnd_memcache Configure Options
Name | Default | Changeable | Changelog |
---|---|---|---|
mysqlnd_memcache.enable | 1 | PHP_INI_SYSTEM | Available since 1.0.0 |
Here's a short explanation of the configuration directives.
mysqlnd_memcache.enable integer
Enables or disables the plugin. If disabled, the extension will not plug into mysqlnd to proxy internal mysqlnd C API calls.
Note
This option is mainly used by developers to build this extension statically into PHP. General users are encouraged to build this extension as a shared object, and to unload it completely when it is not needed.
21.9.10.6. Predefined Constants
Copyright 1997-2012 the PHP Documentation Group.
The constants below are defined by this extension, and will only be available when the extension has either been compiled into PHP or dynamically loaded at runtime.
MySQL Memcache Plugin related
MYSQLND_MEMCACHE_DEFAULT_REGEXP (string)
Default regular expression (PCRE style) used for matching SELECT statements that will be mapped into a MySQL Memcache Plugin access point, if possible.
It is also possible to use mysqlnd_memcache_set, but the default approach is using this regular expression for pattern matching.
Assorted
The version number of this plugin can be obtained by using MYSQLND_MEMCACHE_VERSION or MYSQLND_MEMCACHE_VERSION_ID . MYSQLND_MEMCACHE_VERSION is the string representation of the numerical version number MYSQLND_MEMCACHE_VERSION_ID , which is an integer such as 10000. Developers can calculate the version number as follows.
Version (part) | Example |
---|---|
Major*10000 | 1*10000 = 10000 |
Minor*100 | 0*100 = 0 |
Patch | 0 = 0 |
MYSQLND_MEMCACHE_VERSION_ID | 10000 |
MYSQLND_MEMCACHE_VERSION (string)
Plugin version string, for example, “1.0.0-alpha”.
MYSQLND_MEMCACHE_VERSION_ID (integer)
Plugin version number, for example, 10000.
21.9.10.7. Mysqlnd_memcache Functions
Copyright 1997-2012 the PHP Documentation Group.
21.9.10.7.1. mysqlnd_memcache_get_config
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_memcache_get_config
Returns information about the plugin configuration
Description
array mysqlnd_memcache_get_config(mixed connection);
This function returns an array of all mysqlnd_memcache related configuration information that is attached to the MySQL connection. This includes MySQL, the Memcache object provided via mysqlnd_memcache_set, and the table mapping configuration that was automatically collected from the MySQL Server.
Parameters
connection
A handle to a MySQL Server using one of the MySQL API extensions for PHP, which are PDO_MYSQL, mysqli or ext/mysql.
Return Values
An array of mysqlnd_memcache configuration information on success, otherwise FALSE .
The returned array has these elements:
Table 21.79. mysqlnd_memcache_get_config array structure
Array Key | Description |
---|---|
memcached | Instance of Memcached associated to this MySQL connection by mysqlnd_memcache_set. You can use this to change settings of the memcache connection, or directly by querying the server on this connection. |
pattern | The PCRE regular expression used to match the SQL query sent to the server. Queries matching this pattern will be further analyzed to decide whether the query can be intercepted and sent via the memcache interface or whether the query is sent using the general MySQL protocol to the server. The pattern is either the default pattern (MYSQLND_MEMCACHE_DEFAULT_REGEXP) or it is set via mysqlnd_memcache_set. |
mappings | An associative array with a list of all configured containers as they were discovered by this plugin. The key for these elements is the name of the container in the MySQL configuration. The value is described below. The contents of this field is created by querying the MySQL Server during association to MySQL and a memcache connection using mysqlnd_memcache_set. |
mapping_query | An SQL query used during mysqlnd_memcache_set to identify the available containers and mappings. The result of that query is provided in the mappings element. |
Examples
Example 21.393. mysqlnd_memcache_get_config example
<?php
$mysqli = new mysqli("host", "user", "passwd", "database");
$memc = new Memcached();
$memc->addServer("host", 11211);
mysqlnd_memcache_set($mysqli, $memc);
var_dump(mysqlnd_memcache_get_config($mysqli));
?>
The above example will output:
array(4) {
["memcached"]=>
object(Memcached)#2 (0) {
}
["pattern"]=>
string(125) "/^\s*SELECT\s*(.+?)\s*FROM\s*`?([a-z0-9_]+)`?\s*WHERE\s*`?([a-z0-9_]+)`?\s*=\s*(?(?=["'])["']([^"']*)["']|([0-9e\.]*))\s*$/is"
["mappings"]=>
array(1) {
["mymem_test"]=>
array(6) {
["prefix"]=>
string(13) "@@mymem_test."
["schema_name"]=>
string(4) "test"
["table_name"]=>
string(10) "mymem_test"
["id_field_name"]=>
string(2) "id"
["separator"]=>
string(1) "|"
["fields"]=>
array(3) {
[0]=>
string(2) "f1"
[1]=>
string(2) "f2"
[2]=>
string(2) "f3"
}
}
}
["mapping_query"]=>
string(209) " SELECT c.name,
CONCAT('@@', c.name, (SELECT value FROM innodb_memcache.config_options WHERE name = 'table_map_delimiter')) AS key_prefix,
c.db_schema,
c.db_table,
c.key_columns,
c.value_columns,
(SELECT value FROM innodb_memcache.config_options WHERE name = 'separator') AS sep
FROM innodb_memcache.containers c"
}
See Also
mysqlnd_memcache_set |
21.9.10.7.2. mysqlnd_memcache_set
Copyright 1997-2012 the PHP Documentation Group.
mysqlnd_memcache_set
Associate a MySQL connection with a Memcache connection
Description
bool mysqlnd_memcache_set(mixed mysql_connection,
Memcached memcache_connection,
string pattern,
callback callback);
Associate mysql_connection with memcache_connection using pattern as a PCRE regular expression, and callback as a notification callback or to unset the association of mysql_connection.
While associating a MySQL connection with a Memcache connection, this function will query the MySQL Server for its configuration. It will automatically detect whether the server is configured to use the InnoDB Memcache Daemon Plugin or MySQL Cluster NDB Memcache support. It will also query the server to automatically identify exported tables and other configuration options. The results of this automatic configuration can be retrieved using mysqlnd_memcache_get_config.
Parameters
mysql_connection
A handle to a MySQL Server using one of the MySQL API extensions for PHP, which are PDO_MYSQL, mysqli or ext/mysql.
memcache_connection
A Memcached instance with a connection to the MySQL Memcache Daemon plugin. If this parameter is omitted, then mysql_connection will be unassociated from any memcache connection. And if a previous association exists, then it will be replaced.
pattern
A regular expression in Perl Compatible Regular Expression syntax used to identify potential Memcache-queries. The query should have three sub patterns. The first subpattern contains the requested field list, the second the name of the ID column from the query and the third the requested value. If this parameter is omitted or os set to NULL , then a default pattern will be used.
callback
A callback which will be used whenever a query is being sent to MySQL. The callback will receive a single boolean parameter telling if a query was sent via Memcache.
Return Values
TRUE if the association or disassociation is successful, otherwise FALSE if there is an error.
Examples
Example 21.394. mysqlnd_memcache_set example with var_dump as a simple debugging callback.
<?php
$mysqli = new mysqli("host", "user", "passwd", "database");
$memc = new Memcached();
$memc->addServer("host", 11211);
mysqlnd_memcache_set($mysqli, $memc, NULL, 'var_dump');
/* This query will be intercepted and executed via Memcache protocol */
echo "Sending query for id via Memcache: ";
$mysqli->query("SELECT f1, f2, f3 FROM test WHERE id = 1");
/* f1 is not configured as valid key field, this won't be sent via Memcache */
echo "Sending query for f1 via Memcache: ";
$mysqli->query("SELECT id FROM test WHERE f1 = 1");
mysqlnd_memcache_set($mysqli);
/* Now the regular MySQL protocol will be used */
echo "var_dump won't be invoked: ";
$mysqli->query("SELECT f1, f2, f3 WHERE id = 1");
?>
The above example will output:
Sending query for id via Memcache: bool(true)
Sending query for f1 via Memcache: bool(false)
var_dump won't be invoked:
See Also
mysqlnd_memcache_get_config |
21.9.10.8. Change History
Copyright 1997-2012 the PHP Documentation Group.
This change history is a high level summary of selected changes that may impact applications and/or break backwards compatibility.
See also the CHANGES file in the source distribution for a complete list of changes.
21.9.10.8.1. PECL/mysqlnd_memcache 1.0 series
Copyright 1997-2012 the PHP Documentation Group.
1.0.0-alpha
The initial release does map basic SQL SELECT statements to a MySQL Memcache plugin access. This bares potential performance benefits as the direct key-value access to MySQL storage using the Memcache protocol is usually faster than using SQL access.
21.9.11. Connector/PHP
This documentation, and other publications, sometimes uses the term Connector/PHP. This term refers to the full set of MySQL related functionality in PHP, which includes the three APIs that are described above, along with the mysqlnd core library and all of its plugins.
21.9.12. Common Problems with MySQL and PHP
Error: Maximum Execution Time Exceeded: This is a PHP limit; go into the php.ini file and set the maximum execution time up from 30 seconds to something higher, as needed. It is also not a bad idea to double the RAM allowed per script to 16MB instead of 8MB.
Fatal error: Call to unsupported or undefined function mysql_connect() in ...: This means that your PHP version isn't compiled with MySQL support. You can either compile a dynamic MySQL module and load it into PHP or recompile PHP with built-in MySQL support. This process is described in detail in the PHP manual.
Error: Undefined reference to 'uncompress': This means that the client library is compiled with support for a compressed client/server protocol. The fix is to add -lz last when linking with -lmysqlclient.
Error: Client does not support authentication protocol: This is most often encountered when trying to use the older mysql extension with MySQL 4.1.1 and later. Possible solutions are: downgrade to MySQL 4.0; switch to PHP 5 and the newer mysqli extension; or configure the MySQL server with the old_passwords system variable set to 1. (See Section C.5.2.4, “Client does not support authentication protocol”, for more information.)
21.9.13. Enabling Both mysql and mysqli in PHP
If you're experiencing problems with enabling both the mysql and the mysqli extension when building PHP on Linux yourself, you should try the following procedure.
Configure PHP like this:
./configure --with-mysqli=/usr/bin/mysql_config --with-mysql=/usr
Edit the Makefile and search for a line that starts with EXTRA_LIBS. It might look like this (all on one line):
EXTRA_LIBS = -lcrypt -lcrypt -lmysqlclient -lz -lresolv -lm -ldl -lnsl
-lxml2 -lz -lm -lxml2 -lz -lm -lmysqlclient -lz -lcrypt -lnsl -lm
-lxml2 -lz -lm -lcrypt -lxml2 -lz -lm -lcrypt
Build and install PHP:
make
make install
21.10. MySQL Perl API
The Perl DBI module provides a generic interface for database access. You can write a DBI script that works with many different database engines without change. To use DBI with MySQL, install the following:
The DBI module.
The DBD::mysql module. This is the DataBase Driver (DBD) module for Perl.
Optionally, the DBD module for any other type of database server you want to access.
Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl, which should be considered obsolete.
These sections contain information about using Perl with MySQL and writing MySQL applications in Perl:
For installation instructions for Perl DBI support, see Section 2.13, “Perl Installation Notes”.
For an example of reading options from option files, see Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”.
For secure coding tips, see Section 6.1.1, “Security Guidelines”.
For debugging tips, see Section 22.4.1.4, “Debugging mysqld under gdb”.
For some Perl-specific environment variables, see Section 2.12, “Environment Variables”.
For considerations for running on Mac OS X, see Section 2.4.5, “Using the Bundled MySQL on Mac OS X Server”.
For ways to quote string literals, see Section 9.1.1, “String Literals”.
DBI information is available at the command line, online, or in printed form:
Once you have the DBI and DBD::mysql modules installed, you can get information about them at the command line with the perldoc command:
shell> perldoc DBI
shell> perldoc DBI::FAQ
shell> perldoc DBD::mysql
You can also use pod2man, pod2html, and so on to translate this information into other formats.
For online information about Perl DBI, visit the DBI Web site, http://dbi.perl.org/. That site hosts a general DBI mailing list. Oracle Corporation hosts a list specifically about DBD::mysql; see Section 1.6.1, “MySQL Mailing Lists”.
For printed information, the official DBI book is Programming the Perl DBI (Alligator Descartes and Tim Bunce, O'Reilly & Associates, 2000). Information about the book is available at the DBI Web site, http://dbi.perl.org/.
For information that focuses specifically on using DBI with MySQL, see MySQL and Perl for the Web (Paul DuBois, New Riders, 2001). This book's Web site is http://www.kitebird.com/mysql-perl/.
21.11. MySQL Python API
MySQLdb is a third-party driver that provides MySQL support for Python, compliant with the Python DB API version 2.0. It can be found at http://sourceforge.net/projects/mysql-python/.
The new MySQL Connector/Python component provides an interface to the same Python API, and is built into the MySQL Server and supported by Oracle. See Section 21.6, “MySQL Connector/Python” for details on the Connector, as well as coding guidelines for Python applications and sample Python code.
21.12. MySQL Ruby APIs
Two APIs are available for Ruby programmers developing MySQL applications:
The MySQL/Ruby API is based on the libmysqlclient API library. For information on installing and using the MySQL/Ruby API, see Section 21.12.1, “The MySQL/Ruby API”.
The Ruby/MySQL API is written to use the native MySQL network protocol (a native driver). For information on installing and using the Ruby/MySQL API, see Section 21.12.2, “The Ruby/MySQL API”.
For background and syntax information about the Ruby language, see Ruby Programming Language.
21.12.1. The MySQL/Ruby API
The MySQL/Ruby module provides access to MySQL databases using Ruby through libmysqlclient.
For information on installing the module, and the functions exposed, see MySQL/Ruby.
21.12.2. The Ruby/MySQL API
The Ruby/MySQL module provides access to MySQL databases using Ruby through a native driver interface using the MySQL network protocol.
For information on installing the module, and the functions exposed, see Ruby/MySQL.
21.13. MySQL Tcl API
MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming language. It can be found at http://www.xdobry.de/mysqltcl/.
21.14. MySQL Eiffel Wrapper
Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language, written by Michael Ravits. It can be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.
Chapter 22. Extending MySQL
Table of Contents
22.1.1. MySQL Threads
22.1.2. The MySQL Test Suite
22.2.1. Plugin API Characteristics
22.2.2. Plugin API Components
22.2.3. Types of Plugins
22.2.4. Writing Plugins
22.2.5. MySQL Services for Plugins
22.3. Adding New Functions to MySQL
22.3.1. Features of the User-Defined Function Interface
22.3.2. Adding a New User-Defined Function
22.3.3. Adding a New Native Function
22.4. Debugging and Porting MySQL
22.4.1. Debugging a MySQL Server
22.4.2. Debugging a MySQL Client
22.4.3. The DBUG Package
22.1. MySQL Internals
This chapter describes a lot of things that you need to know when working on the MySQL code. To track or contribute to MySQL development, follow the instructions in Section 2.9.3, “Installing MySQL from a Development Source Tree”. If you are interested in MySQL internals, you should also subscribe to our internals mailing list. This list has relatively low traffic. For details on how to subscribe, please see Section 1.6.1, “MySQL Mailing Lists”. Many MySQL developers at Oracle Corporation are on the internals list and we help other people who are working on the MySQL code. Feel free to use this list both to ask questions about the code and to send patches that you would like to contribute to the MySQL project!
22.1.1. MySQL Threads
The MySQL server creates the following threads:
Connection manager threads handle client connection requests on the network interfaces that the server listens to. On all platforms, one manager thread handles TCP/IP connection requests. On Unix, this manager thread also handles Unix socket file connection requests. On Windows, a manager thread handles shared-memory connection requests, and another handles named-pipe connection requests. The server does not create threads to handle interfaces that it does not listen to. For example, a Windows server that does not have support for named-pipe connections enabled does not create a thread to handle them.
Connection manager threads associate each client connection with a thread dedicated to it that handles authentication and request processing for that connection. Manager threads create a new thread when necessary but try to avoid doing so by consulting the thread cache first to see whether it contains a thread that can be used for the connection. When a connection ends, its thread is returned to the thread cache if the cache is not full.
For information about tuning the parameters that control thread resources, see Section 8.11.5.1, “How MySQL Uses Threads for Client Connections”.
On a master replication server, connections from slave servers are handled like client connections: There is one thread per connected slave.
On a slave replication server, an I/O thread is started to connect to the master server and read updates from it. An SQL thread is started to apply updates read from the master. These two threads run independently and can be started and stopped independently.
A signal thread handles all signals. This thread also normally handles alarms and calls process_alarm() to force timeouts on connections that have been idle too long.
If InnoDB is used, there will be additional read and write threads by default. The number of these are controlled by the innodb_read_io_threads and innodb_write_io_threads parameters. See Section 14.2.6, “InnoDB Startup Options and System Variables”.
If mysqld is compiled with -DUSE_ALARM_THREAD, a dedicated thread that handles alarms is created. This is only used on some systems where there are problems with sigwait() or if you want to use the thr_alarm() code in your application without a dedicated signal handling thread.
If the server is started with the --flush_time=val option, a dedicated thread is created to flush all tables every val seconds.
Each table for which INSERT DELAYED statements are issued gets its own thread. See Section 13.2.5.2, “INSERT DELAYED Syntax”.
If the event scheduler is active, there is one thread for the scheduler, and a thread for each event currently running. See Section 18.4.1, “Event Scheduler Overview”.
mysqladmin processlist only shows the connection, INSERT DELAYED, replication, and event threads.
22.1.2. The MySQL Test Suite
The test system that is included in Unix source and binary distributions makes it possible for users and developers to perform regression tests on the MySQL code. These tests can be run on Unix.
You can also write your own test cases. For information about the MySQL Test Framework, including system requirements, see the manual available at http://dev.mysql.com/doc/mysqltest/2.0/en/.
The current set of test cases doesn't test everything in MySQL, but it should catch most obvious bugs in the SQL processing code, operating system or library issues, and is quite thorough in testing replication. Our goal is to have the tests cover 100% of the code. We welcome contributions to our test suite. You may especially want to contribute tests that examine the functionality critical to your system because this ensures that all future MySQL releases work well with your applications.
The test system consists of a test language interpreter (mysqltest), a Perl script to run all tests (mysql-test-run.pl), the actual test cases written in a special test language, and their expected results. To run the test suite on your system after a build, type make test from the source root directory, or change location to the mysql-test directory and type ./mysql-test-run.pl. If you have installed a binary distribution, change location to the mysql-test directory under the installation root directory (for example, /usr/local/mysql/mysql-test), and run ./mysql-test-run.pl. All tests should succeed. If any do not, feel free to try to find out why and report the problem if it indicates a bug in MySQL. See Section 1.7, “How to Report Bugs or Problems”.
If one test fails, you should run mysql-test-run.pl with the --force option to check whether any other tests fail.
If you have a copy of mysqld running on the machine where you want to run the test suite, you do not have to stop it, as long as it is not using ports 9306 or 9307. If either of those ports is taken, you should set the MTR_BUILD_THREAD environment variable to an appropriate value, and the test suite will use a different set of ports for master, slave, and NDB). For example:
shell> export MTR_BUILD_THREAD=31
shell> ./mysql-test-run.pl [options] [test_name]
In the mysql-test directory, you can run an individual test case with ./mysql-test-run.pl test_name.
If you have a question about the test suite, or have a test case to contribute, send an email message to the MySQL internals mailing list. See Section 1.6.1, “MySQL Mailing Lists”.
22.2. The MySQL Plugin API
MySQL supports a plugin API that enables creation of server components. Plugins can be loaded at server startup, or loaded and unloaded at runtime without restarting the server. The API is generic and does not specify what plugins can do. The components supported by this interface include, but are not limited to, storage engines, full-text parser plugins, and server extensions.
For example, full-text parser plugins can be used to replace or augment the built-in full-text parser. A plugin can parse text into words using rules that differ from those used by the built-in parser. This can be useful if you need to parse text with characteristics different from those expected by the built-in parser.
The plugin interface is more general than the older user-defined function (UDF) interface.
The plugin interface uses the plugin table in the mysql database to record information about plugins that have been installed permanently with the INSTALL PLUGIN statement. This table is created as part of the MySQL installation process. Plugins can also be installed for a single server invocation with the --plugin-load option. Plugins installed this way are not recorded in the plugin table. See Section 5.1.8.1, “Installing and Uninstalling Plugins”.
MySQL 5.6 supports an API for client plugins in addition to that for server plugins. This is used, for example, by authentication plugins where a server-side plugin and a client-side plugin cooperate to enable clients to connect to the server through a variety of authentication methods.
Additional Resources
The book MySQL 5.1 Plugin Development by Sergei Golubchik and Andrew Hutchings provides a wealth of detail about the plugin API. Despite the fact that the book's title refers to MySQL Server 5.1, most of the information in it applies to later versions as well.
22.2.1. Plugin API Characteristics
The server plugin API has these characteristics:
All plugins have several things in common.
Each plugin has a name that it can be referred to in SQL statements, as well as other metadata such as an author and a description that provide other information. This information can be examined in the INFORMATION_SCHEMA.PLUGINS table or using the SHOW PLUGINS statement.
The plugin framework is extendable to accommodate different kinds of plugins.
Although some aspects of the plugin API are common to all types of plugins, the API also permits type-specific interface elements so that different types of plugins can be created. A plugin with one purpose can have an interface most appropriate to its own requirements and not the requirements of some other plugin type.
Interfaces for several types of plugins exist, such as storage engines, full-text parser, and INFORMATION_SCHEMA tables. Others can be added.
Plugins can expose information to users.
A plugin can implement system and status variables that are available through the SHOW VARIABLES and SHOW STATUS statements.
The plugin API includes versioning information.
The version information included in the plugin API enables a plugin library and each plugin that it contains to be self-identifying with respect to the API version that was used to build the library. If the API changes over time, the version numbers will change, but a server can examine a given plugin library's version information to determine whether it supports the plugins in the library.
There are two types of version numbers. The first is the version for the general plugin framework itself. Each plugin library includes this kind of version number. The second type of version applies to individual plugins. Each specific type of plugin has a version for its interface, so each plugin in a library has a type-specific version number. For example, a library containing a full-text parser plugin has a general plugin API version number, and the plugin has a version number specific to the full-text plugin interface.
The plugin API implements security restrictions.
A plugin library must be installed in a specific dedicated directory for which the location is controlled by the server and cannot be changed at runtime. Also, the library must contain specific symbols that identify it as a plugin library. The server will not load something as a plugin if it was not built as a plugin.
Plugins have access to server services.
The services interface exposes server functionality that plugins can access using ordinary function calls. For details, see Section 22.2.5, “MySQL Services for Plugins”.
In some respects, the server plugin API is similar to the older user-defined function (UDF) API that it supersedes, but the plugin API has several advantages over the older interface. For example, UDFs had no versioning information. Also, the newer plugin interface eliminates the security issues of the older UDF interface. The older interface for writing nonplugin UDFs permitted libraries to be loaded from any directory searched by the system's dynamic linker, and the symbols that identified the UDF library were relatively nonspecific.
The client plugin API has similar architectural characteristics, but client plugins have no direct access to the server the way server plugins do.
22.2.2. Plugin API Components
The server plugin implementation comprises several components.
SQL statements:
INSTALL PLUGIN registers a plugin in the mysql.plugin table and loads the plugin code.
UNINSTALL PLUGIN unregisters a plugin from the mysql.plugin table and unloads the plugin code.
The WITH PARSER clause for full-text index creation associates a full-text parser plugin with a given FULLTEXT index.
SHOW PLUGINS displays information about server plugins.
Command-line options and system variables:
The --plugin-load option enables plugins to be loaded at server startup time.
The plugin_dir system variable indicates the location of the directory where all plugins must be installed. The value of this variable can be specified at server startup with a --plugin_dir=path option. mysql_config --plugindir displays the default plugin directory path name.
For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.
Plugin-related tables:
The INFORMATION_SCHEMA.PLUGINS table contains plugin information.
The mysql.plugin table lists each plugin that was installed with INSTALL PLUGIN and is required for plugin use. For new MySQL installations, this table is created during the installation process.
The client plugin implementation is simpler:
For the mysql_options() C API function, the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options enable client programs to load authentication plugins.
There are C API functions that enable management of client plugins.
To examine how MySQL implements plugins, consult the following source files in a MySQL source distribution:
In the include/mysql directory, plugin.h exposes the public plugin API. This file should be examined by anyone who wants to write a plugin library. plugin_xxx.h files provide additional information that pertains to specific types of plugins. client_plugin.h contains information specific to client plugins.
In the sql directory, sql_plugin.h and sql_plugin.cc comprise the internal plugin implementation. sql_acl.cc is where the server uses authentication plugins. These files need not be consulted by plugin developers. They may be of interest for those who want to know more about how the server handles plugins.
In the sql-common directory, client_plugin.h implements the C API client plugin functions, and client.c implements client authentication support. These files need not be consulted by plugin developers. They may be of interest for those who want to know more about how the server handles plugins.
22.2.3. Types of Plugins
The plugin API enables creation of plugins that implement several capabilities:
Storage engines
Full-text parsers
Daemons
INFORMATION_SCHEMA tables
Semisynchronous replication
Auditing
Authentication
The following sections provide an overview of these plugin types.
22.2.3.1. Storage Engine Plugins
The pluggable storage engine architecture used by MySQL Server enables storage engines to be written as plugins and loaded into and unloaded from a running server. For a description of this architecture, see Section 14.12, “Overview of MySQL Storage Engine Architecture”.
For information on how to use the plugin API to write storage engines, see MySQL Internals: Writing a Custom Storage Engine.
22.2.3.2. Full-Text Parser Plugins
MySQL has a built-in parser that it uses by default for full-text operations (parsing text to be indexed, or parsing a query string to determine the terms to be used for a search). For full-text processing, “parsing” means extracting words from text or a query string based on rules that define which character sequences make up a word and where word boundaries lie.
When parsing for indexing purposes, the parser passes each word to the server, which adds it to a full-text index. When parsing a query string, the parser passes each word to the server, which accumulates the words for use in a search.
The parsing properties of the built-in full-text parser are described in Section 12.9, “Full-Text Search Functions”. These properties include rules for determining how to extract words from text. The parser is influenced by certain system variables such as ft_min_word_len and ft_max_word_len that cause words shorter or longer to be excluded, and by the stopword list that identifies common words to be ignored.
The plugin API enables you to provide a full-text parser of your own so that you have control over the basic duties of a parser. A parser plugin can operate in either of two roles:
The plugin can replace the built-in parser. In this role, the plugin reads the input to be parsed, splits it up into words, and passes the words to the server (either for indexing or for word accumulation).
One reason to use a parser this way is that you need to use different rules from those of the built-in parser for determining how to split up input into words. For example, the built-in parser considers the text “case-sensitive” to consist of two words “case” and “sensitive,” whereas an application might need to treat the text as a single word.
The plugin can act in conjunction with the built-in parser by serving as a front end for it. In this role, the plugin extracts text from the input and passes the text to the parser, which splits up the text into words using its normal parsing rules. In particular, this parsing will be affected by the ft_xxx system variables and the stopword list.
One reason to use a parser this way is that you need to index content such as PDF documents, XML documents, or .doc files. The built-in parser is not intended for those types of input but a plugin can pull out the text from these input sources and pass it to the built-in parser.
It is also possible for a parser plugin to operate in both roles. That is, it could extract text from nonplaintext input (the front end role), and also parse the text into words (thus replacing the built-in parser).
A full-text plugin is associated with full-text indexes on a per-index basis. That is, when you install a parser plugin initially, that does not cause it to be used for any full-text operations. It simply becomes available. For example, a full-text parser plugin becomes available to be named in a WITH PARSER clause when creating individual FULLTEXT indexes. To create such an index at table-creation time, do this:
CREATE TABLE t
(
doc CHAR(255),
FULLTEXT INDEX (doc) WITH PARSER my_parser
) ENGINE=MyISAM;
Or you can add the index after the table has been created:
ALTER TABLE t ADD FULLTEXT INDEX (doc) WITH PARSER my_parser;
The only SQL change for associating the parser with the index is the WITH PARSER clause. Searches are specified as before, with no changes needed for queries.
When you associate a parser plugin with a FULLTEXT index, the plugin is required for using the index. If the parser plugin is dropped, any index associated with it becomes unusable. Any attempt to use it a table for which a plugin is not available results in an error, although DROP TABLE is still possible.
For more information about full-text plugins, see Section 22.2.4.4, “Writing Full-Text Parser Plugins”.
22.2.3.3. Daemon Plugins
A daemon plugin is a simple type of plugin used for code that should be run by the server but that does not communicate with it. MySQL distributions include an example daemon plugin that writes periodic heartbeat messages to a file.
For more information about daemon plugins, see Section 22.2.4.5, “Writing Daemon Plugins”.
22.2.3.4. INFORMATION_SCHEMA Plugins
INFORMATION_SCHEMA plugins enable the creation of tables containing server metadata that are exposed to users through the INFORMATION_SCHEMA database. For example, InnoDB uses INFORMATION_SCHEMA plugins to provide tables that contain information about current transactions and locks.
For more information about INFORMATION_SCHEMA plugins, see Section 22.2.4.6, “Writing INFORMATION_SCHEMA Plugins”.
22.2.3.5. Semisynchronous Replication Plugins
MySQL replication is asynchronous by default. With semisynchronous replication, a commit performed on the master side blocks before returning to the session that performed the transaction until at least one slave acknowledges that it has received and logged the events for the transaction. Semisynchronous replication is implemented through complementary master and client plugins. See Section 16.3.8, “Semisynchronous Replication”.
For more information about semisynchronous replication plugins, see Section 22.2.4.7, “Writing Semisynchronous Replication Plugins”.
22.2.3.6. Audit Plugins
In MySQL 5.6, the server provides a pluggable audit interface that enables information about server operations to be reported to interested parties. Currently, audit notification occurs for these operations (although the interface is general and the server could be modified to report others):
Write a message to the general query log (if the log is enabled)
Write a message to the error log
Send a query result to a client
Audit plugins may register with the audit interface to receive notification about server operations. When an auditable event occurs within the server, the server determines whether notification is needed. For each registered audit plugin, the server checks the event against those event classes in which the plugin is interested and passes the event to the plugin if there is a match.
This interface enables audit plugins to receive notifications only about operations in event classes they consider significant and to ignore others. The interface provides for categorization of operations into event classes and further division into event subclasses within each class.
When an audit plugin is notified of an auditable event, it receives a pointer to the current THD structure and a pointer to a structure that contains information about the event. The plugin can examine the event and perform whatever auditing actions are appropriate. For example, the plugin can see what statement produced a result set or was logged, the number of rows in a result, who the current user was for an operation, or the error code for failed operations.
For more information about audit plugins, see Section 22.2.4.8, “Writing Audit Plugins”.
22.2.3.7. Authentication Plugins
MySQL 5.6 supports pluggable authentication. Authentication plugins exist on both the server and client sides. Plugins on the server side implement authentication methods for use by clients when they connect to the server. A plugin on the client side communicates with a server-side plugin to provide the authentication information that it requires. A client-side plugin may interact with the user, performing tasks such as soliciting a password or other authentication credentials to be sent to the server. See Section 6.3.7, “Pluggable Authentication”.
Pluggable authentication also enables proxy user capability, in which one user takes the identity of another user. A server-side authentication plugin can return to the server the name of the user whose identity the connecting user should have. See Section 6.3.8, “Proxy Users”.
For more information about authentication plugins, see Section 22.2.4.9, “Writing Authentication Plugins”.
22.2.3.8. Password-Validation Plugins
As of MySQL 5.6.6, the server provides an interface for writing plugins that test passwords. Such a plugin implements two capabilities:
Rejection of too-weak passwords in statements that assign passwords (such as CREATE USER, GRANT, and SET PASSWORD statements), and passwords given as arguments to the PASSWORD() and OLD_PASSWORD() functions.
Assessing the strength of potential passwords for the VALIDATE_PASSWORD_STRENGTH() SQL function.
For information about writing this type of plugin, see Section 22.2.4.10, “Writing Password-Validation Plugins”.
22.2.4. Writing Plugins
To create a plugin library, you must provide the required descriptor information that indicates what plugins the library file contains, and write the interface functions for each plugin.
Every server plugin must have a general descriptor that provides information to the plugin API, and a type-specific descriptor that provides information about the plugin interface for a given type of plugin. The structure of the general descriptor is the same for all plugin types. The structure of the type-specific descriptor varies among plugin types and is determined by the requirements of what the plugin needs to do. The server plugin interface also enables plugins to expose status and system variables. These variables become visible through the SHOW STATUS and SHOW VARIABLES statements and the corresponding INFORMATION_SCHEMA tables.
For client-side plugins, the architecture is a bit different. Each plugin must have a descriptor, but there is no division into separate general and type-specific descriptors. Instead, the descriptor begins with a fixed set of members common to all client plugin types, and the common members are followed by any additional members required to implement the specific plugin type.
You can write plugins in C or C++ (or another language that can use C calling conventions). Plugins are loaded and unloaded dynamically, so your operating system must support dynamic loading and you must have compiled the calling application dynamically (not statically). For server plugins, this means that mysqld must be compiled dynamically.
A server plugin contains code that becomes part of the running server, so when you write the plugin, you are bound by any and all constraints that otherwise apply to writing server code. For example, you may have problems if you attempt to use functions from the libstdc++ library. These constraints may change in future versions of the server, so it is possible that server upgrades will require revisions to plugins originally written for older servers. For information about these constraints, see Section 2.9.4, “MySQL Source-Configuration Options”, and Section 2.9.5, “Dealing with Problems Compiling MySQL”.
Client plugin writers should avoid dependencies on what symbols the calling application has because you cannot be sure what applications will use the plugin.
22.2.4.1. Overview of Plugin Writing
The following procedure provides an overview of the steps needed to create a plugin library. The next sections provide additional details on setting plugin data structures and writing specific types of plugins.
In the plugin source file, include the header files that the plugin library needs. The plugin.h file is required, and the library might require other files as well. For example:
#include <stdlib.h>
#include <ctype.h>
#include <mysql/plugin.h>
Set up the descriptor information for the plugin library file. For server plugins, write the library descriptor, which must contain the general plugin descriptor for each server plugin in the file. For more information, see Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”. In addition, set up the type-specific descriptor for each server plugin in the library. Each plugin's general descriptor points to its type-specific descriptor.
For client plugins, write the client descriptor. For more information, see Section 22.2.4.2.3, “Client Plugin Descriptors”.
Write the plugin interface functions for each plugin. For example, each plugin's general plugin descriptor points to the initialization and deinitialization functions that the server should invoke when it loads and unloads the plugin. The plugin's type-specific description may also point to interface functions.
For server plugins, set up the status and system variables, if there are any.
Compile the plugin library as a shared library and install it in the plugin directory. For more information, see Section 22.2.4.3, “Compiling and Installing Plugin Libraries”.
For server plugins, register the plugin with the server. For more information, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.
Test the plugin to verify that it works properly.
22.2.4.2. Plugin Data Structures
A plugin library file includes descriptor information to indicate what plugins it contains.
If the plugin library contains any server plugins, it must include the following descriptor information:
A library descriptor indicates the general server plugin API version number used by the library and contains a general plugin descriptor for each server plugin in the library. To provide the framework for this descriptor, invoke two macros from the plugin.h header file:
mysql_declare_plugin(name)
... one or more server plugin descriptors here ...
mysql_declare_plugin_end;
The macros expand to provide a declaration for the API version automatically. You must provide the plugin descriptors.
Within the library descriptor, each general server plugin is described by a st_mysql_plugin structure. This plugin descriptor structure contains information that is common to every type of server plugin: A value that indicates the plugin type; the plugin name, author, description, and license type; pointers to the initialization and deinitialization functions that the server invokes when it loads and unloads the plugin, and pointers to any status or system variables the plugin implements.
Each general server plugin descriptor within the library descriptor also contains a pointer to a type-specific plugin descriptor. The structure of the type-specific descriptors varies from one plugin type to another because each type of plugin can have its own API. A type-specific plugin descriptor contains a type-specific API version number and pointers to the functions that are needed to implement that plugin type. For example, a full-text parser plugin has initialization and deinitialization functions, and a main parsing function. The server invokes these functions when it uses the plugin to parse text.
The plugin library also contains the interface functions that are referenced by the general and type-specific descriptors for each plugin in the library.
If the plugin library contains a client plugin, it must include a descriptor for the plugin. The descriptor begins with a fixed set of members common to all client plugins, followed by any members specific to the plugin type. To provide the descriptor framework, invoke two macros from the client_plugin.h header file:
mysql_declare_client_plugin(plugin_type)
... members common to all client plugins ...
... type-specific extra members ...
mysql_end_client_plugin;
The plugin library also contains any interface functions referenced by the client descriptor.
The mysql_declare_plugin() and mysql_declare_client_plugin() macros differ somewhat in how they can be invoked, which has implications for the contents of plugin libraries. The following guidelines summarize the rules:
mysql_declare_plugin() and mysql_declare_client_plugin() can both be used in the same source file, which means that a plugin library can contain both server and client plugins. However, each of mysql_declare_plugin() and mysql_declare_client_plugin() can be used at most once.
mysql_declare_plugin() permits multiple server plugin declarations, so a plugin library can contain multiple server plugins.
mysql_declare_client_plugin() permits only a single client plugin declaration. To create multiple client plugins, separate plugin libraries must be used.
When a client program looks for a client plugin that is in a plugin library and not built into libmysqlclient, it looks for a file with a basename that is the same as the plugin name. For example, if a program needs to use a client authentication plugin named auth_xxx on a system that uses .so as the library suffix, it looks in the file named auth_xxx.so. (On Mac OS X, the program looks first for auth_xxx.dylib, then for auth_xxx.so.) For this reason, if a plugin library contains a client plugin, the library must have the same basename as that plugin.
The same is not true for a library that contains server plugins. The --plugin-load option and the INSTALL PLUGIN statement provide the library file name explicitly, so there need be no explicit relationship between the library name and the name of any server plugins it contains.
22.2.4.2.1. Server Plugin Library and Plugin Descriptors
Every plugin library that contains server plugins must include a library descriptor that contains the general plugin descriptor for each server plugin in the file. This section discusses how to write the library and general descriptors for server plugins.
The library descriptor must define two symbols:
_mysql_plugin_interface_version_ specifies the version number of the general plugin framework. This is given by the MYSQL_PLUGIN_INTERFACE_VERSION symbol, which is defined in the plugin.h file.
_mysql_plugin_declarations_ defines an array of plugin declarations, terminated by a declaration with all members set to 0. Each declaration is an instance of the st_mysql_plugin structure (also defined in plugin.h). There must be one of these for each server plugin in the library.
If the server does not find those two symbols in a library, it does not accept it as a legal plugin library and rejects it with an error. This prevents use of a library for plugin purposes unless it was built specifically as a plugin library.
The conventional way to define the two required symbols is by using the mysql_declare_plugin() and mysql_declare_plugin_end macros from the plugin.h file:
mysql_declare_plugin(name)
... one or more server plugin descriptors here ...
mysql_declare_plugin_end;
Each server plugin must have a general descriptor that provides information to the server plugin API. The general descriptor has the same structure for all plugin types. The st_mysql_plugin structure in the plugin.h file defines this descriptor:
struct st_mysql_plugin
{
int type; /* the plugin type (a MYSQL_XXX_PLUGIN value) */
void *info; /* pointer to type-specific plugin descriptor */
const char *name; /* plugin name */
const char *author; /* plugin author (for I_S.PLUGINS) */
const char *descr; /* general descriptive text (for I_S.PLUGINS) */
int license; /* the plugin license (PLUGIN_LICENSE_XXX) */
int (*init)(void *); /* the function to invoke when plugin is loaded */
int (*deinit)(void *);/* the function to invoke when plugin is unloaded */
unsigned int version; /* plugin version (for I_S.PLUGINS) */
struct st_mysql_show_var *status_vars;
struct st_mysql_sys_var **system_vars;
void * __reserved1; /* reserved for dependency checking */
unsigned long flags; /* flags for plugin */
};
The st_mysql_plugin descriptor structure members are used as follows. char * members should be specified as null-terminated strings.
type: The plugin type. This must be one of the plugin-type values from plugin.h:
/*
The allowable types of plugins
*/
#define MYSQL_UDF_PLUGIN 0 /* User-defined function */
#define MYSQL_STORAGE_ENGINE_PLUGIN 1 /* Storage Engine */
#define MYSQL_FTPARSER_PLUGIN 2 /* Full-text parser plugin */
#define MYSQL_DAEMON_PLUGIN 3 /* The daemon/raw plugin type */
#define MYSQL_INFORMATION_SCHEMA_PLUGIN 4 /* The I_S plugin type */
#define MYSQL_AUDIT_PLUGIN 5 /* The Audit plugin type */
#define MYSQL_REPLICATION_PLUGIN 6 /* The replication plugin type */
#define MYSQL_AUTHENTICATION_PLUGIN 7 /* The authentication plugin type */
...
For example, for a full-text parser plugin, the type value is MYSQL_FTPARSER_PLUGIN.
info: A pointer to the type-specific descriptor for the plugin. This descriptor's structure depends on the particular type of plugin, unlike that of the general plugin descriptor structure. For version-control purposes, the first member of the type-specific descriptor for every plugin type is expected to be the interface version for the type. This enables the server to check the type-specific version for every plugin no matter its type. Following the version number, the descriptor includes any other members needed, such as callback functions and other information needed by the server to invoke the plugin properly. Later sections on writing particular types of server plugins describe the structure of their type-specific descriptors.
name: A string that gives the plugin name. This is the name that will be listed in the mysql.plugin table and by which you refer to the plugin in SQL statements such as INSTALL PLUGIN and UNINSTALL PLUGIN, or with the --plugin-load option. The name is also visible in the INFORMATION_SCHEMA.PLUGINS table or the output from SHOW PLUGINS.
The plugin name should not begin with the name of any server option. If it does, the server will fail to initialize it. For example, the server has a --socket option, so you should not use a plugin name such as socket, socket_plugin, and so forth.
author: A string naming the plugin author. This can be whatever you like.
desc: A string that provides a general description of the plugin. This can be whatever you like.
license: The plugin license type. The value can be one of PLUGIN_LICENSE_PROPRIETARY, PLUGIN_LICENSE_GPL, or PLUGIN_LICENSE_BSD.
init: A once-only initialization function, or NULL if there is no such function. The server executes this function when it loads the plugin, which happens for INSTALL PLUGIN or, for plugins listed in the mysql.plugin table, at server startup. The function takes one argument that points to the internal structure used to identify the plugin. It returns zero for success and nonzero for failure.
deinit: A once-only deinitialization function, or NULL if there is no such function. The server executes this function when it unloads the plugin, which happens for UNINSTALL PLUGIN or, for plugins listed in the mysql.plugin table, at server shutdown. The function takes one argument that points to the internal structure used to identify the plugin It returns zero for success and nonzero for failure.
version: The plugin version number. When the plugin is installed, this value can be retrieved from the INFORMATION_SCHEMA.PLUGINS table. The value includes major and minor numbers. If you write the value as a hex constant, the format is 0xMMNN, where MM and NN are the major and minor numbers, respectively. For example, 0x0302 represents version 3.2.
status_vars: A pointer to a structure for status variables associated with the plugin, or NULL if there are no such variables. When the plugin is installed, these variables are displayed in the output of the SHOW STATUS statement.
The status_vars member, if not NULL, points to an array of st_mysql_show_var structures that describe status variables. See Section 22.2.4.2.2, “Server Plugin Status and System Variables”.
system_vars: A pointer to a structure for system variables associated with the plugin, or NULL if there are no such variables. These options and system variables can be used to help initialize variables within the plugin.
The system_vars member, if not NULL, points to an array of st_mysql_sys_var structures that describe system variables. See Section 22.2.4.2.2, “Server Plugin Status and System Variables”.
__reserved1: A placeholder for the future. Currently, it should be set to NULL.
flags: Plugin flags. Individual bits correspond to different flags. The value should be set to the OR of the applicable flags. These flags are available:
#define PLUGIN_OPT_NO_INSTALL 1UL /* Not dynamically loadable */
#define PLUGIN_OPT_NO_UNINSTALL 2UL /* Not dynamically unloadable */
PLUGIN_OPT_NO_INSTALL indicates that the plugin cannot be loaded at runtime with the INSTALL PLUGIN statement. This is appropriate for plugins that must be loaded at server startup with the --plugin-load option. PLUGIN_OPT_NO_UNINSTALL indicates that the plugin cannot be unloaded at runtime with the UNINSTALL PLUGIN statement.
This member was added in MySQL 5.6.3.
The server invokes the init and deinit functions in the general plugin descriptor only when loading and unloading the plugin. They have nothing to do with use of the plugin such as happens when an SQL statement causes the plugin to be invoked.
For example, the descriptor information for a library that contains a single full-text parser plugin named simple_parser looks like this:
mysql_declare_plugin(ftexample)
{
MYSQL_FTPARSER_PLUGIN, /* type */
&simple_parser_descriptor, /* descriptor */
"simple_parser", /* name */
"Oracle Corporation", /* author */
"Simple Full-Text Parser", /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status, /* status variables */
simple_system_variables, /* system variables */
NULL,
0
}
mysql_declare_plugin_end;
For a full-text parser plugin, the type must be MYSQL_FTPARSER_PLUGIN. This is the value that identifies the plugin as being legal for use in a WITH PARSER clause when creating a FULLTEXT index. (No other plugin type is legal for this clause.)
plugin.h defines the mysql_declare_plugin() and mysql_declare_plugin_end macros like this:
#ifndef MYSQL_DYNAMIC_PLUGIN
#define __MYSQL_DECLARE_PLUGIN(NAME, VERSION, PSIZE, DECLS) \
MYSQL_PLUGIN_EXPORT int VERSION= MYSQL_PLUGIN_INTERFACE_VERSION; \
MYSQL_PLUGIN_EXPORT int PSIZE= sizeof(struct st_mysql_plugin); \
MYSQL_PLUGIN_EXPORT struct st_mysql_plugin DECLS[]= {
#else
#define __MYSQL_DECLARE_PLUGIN(NAME, VERSION, PSIZE, DECLS) \
MYSQL_PLUGIN_EXPORT int _mysql_plugin_interface_version_= MYSQL_PLUGIN_INTERFACE_VERSION; \
MYSQL_PLUGIN_EXPORT int _mysql_sizeof_struct_st_plugin_= sizeof(struct st_mysql_plugin); \
MYSQL_PLUGIN_EXPORT struct st_mysql_plugin _mysql_plugin_declarations_[]= {
#endif
#define mysql_declare_plugin(NAME) \
__MYSQL_DECLARE_PLUGIN(NAME, \
builtin_ ## NAME ## _plugin_interface_version, \
builtin_ ## NAME ## _sizeof_struct_st_plugin, \
builtin_ ## NAME ## _plugin)
#define mysql_declare_plugin_end ,{0,0,0,0,0,0,0,0,0,0,0,0,0}}
Note
Those declarations define the _mysql_plugin_interface_version_ symbol only if the MYSQL_DYNAMIC_PLUGIN symbol is defined. This means that -DMYSQL_DYNAMIC_PLUGIN must be provided as part of the compilation command to build the plugin as a shared library.
When the macros are used as just shown, they expand to the following code, which defines both of the required symbols (_mysql_plugin_interface_version_ and _mysql_plugin_declarations_):
int _mysql_plugin_interface_version_= MYSQL_PLUGIN_INTERFACE_VERSION;
int _mysql_sizeof_struct_st_plugin_= sizeof(struct st_mysql_plugin);
struct st_mysql_plugin _mysql_plugin_declarations_[]= {
{
MYSQL_FTPARSER_PLUGIN, /* type */
&simple_parser_descriptor, /* descriptor */
"simple_parser", /* name */
"Oracle Corporation", /* author */
"Simple Full-Text Parser", /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status, /* status variables */
simple_system_variables, /* system variables */
NULL,
0
}
,{0,0,0,0,0,0,0,0,0,0,0,0}}
};
The preceding example declares a single plugin in the general descriptor, but it is possible to declare multiple plugins. List the declarations one after the other between mysql_declare_plugin() and mysql_declare_plugin_end, separated by commas.
MySQL server plugins can be written in C or C++ (or another language that can use C calling conventions). If you write a C++ plugin, one C++ feature that you should not use is nonconstant variables to initialize global structures. Members of structures such as the st_mysql_plugin structure should be initialized only with constant variables. The simple_parser descriptor shown earlier is permissible in a C++ plugin because it satisfies that requirement:
mysql_declare_plugin(ftexample)
{
MYSQL_FTPARSER_PLUGIN, /* type */
&simple_parser_descriptor, /* descriptor */
"simple_parser", /* name */
"Oracle Corporation", /* author */
"Simple Full-Text Parser", /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status, /* status variables */
simple_system_variables, /* system variables */
NULL,
0
}
mysql_declare_plugin_end;
Here is another valid way to write the general descriptor. It uses constant variables to indicate the plugin name, author, and description:
const char *simple_parser_name = "simple_parser";
const char *simple_parser_author = "Oracle Corporation";
const char *simple_parser_description = "Simple Full-Text Parser";
mysql_declare_plugin(ftexample)
{
MYSQL_FTPARSER_PLUGIN, /* type */
&simple_parser_descriptor, /* descriptor */
simple_parser_name, /* name */
simple_parser_author, /* author */
simple_parser_description, /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status, /* status variables */
simple_system_variables, /* system variables */
NULL,
0
}
mysql_declare_plugin_end;
However, the following general descriptor is invalid. It uses structure members to indicate the plugin name, author, and description, but structures are not considered constant initializers in C++:
typedef struct
{
const char *name;
const char *author;
const char *description;
} plugin_info;
plugin_info parser_info = {
"simple_parser",
"Oracle Corporation",
"Simple Full-Text Parser"
};
mysql_declare_plugin(ftexample)
{
MYSQL_FTPARSER_PLUGIN, /* type */
&simple_parser_descriptor, /* descriptor */
parser_info.name, /* name */
parser_info.author, /* author */
parser_info.description, /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status, /* status variables */
simple_system_variables, /* system variables */
NULL,
0
}
mysql_declare_plugin_end;
22.2.4.2.2. Server Plugin Status and System Variables
The server plugin interface enables plugins to expose status and system variables using the status_vars and system_vars members of the general plugin descriptor.
The status_vars member of the general plugin descriptor, if not 0, points to an array of st_mysql_show_var structures, each of which describes one status variable, followed by a structure with all members set to 0. The st_mysql_show_var structure has this definition:
struct st_mysql_show_var {
const char *name;
char *value;
enum enum_mysql_show_type type;
};
When the plugin is installed, the plugin name and the name value are joined with an underscore to form the name displayed by SHOW STATUS.
The following table shows the permissible status variable type values and what the corresponding variable should be.
Table 22.1. Server Plugin Status Variable Types
Variable Type | Meaning |
---|---|
SHOW_BOOL | Pointer to a boolean variable |
SHOW_INT | Pointer to an integer variable |
SHOW_LONG | Pointer to a long integer variable |
SHOW_LONGLONG | Pointer to a longlong integer variable |
SHOW_CHAR | A string |
SHOW_CHAR_PTR | Pointer to a string |
SHOW_ARRAY | Pointer to another st_mysql_show_var array |
SHOW_FUNC | Pointer to a function |
SHOW_DOUBLE | Pointer to a double |
For the SHOW_FUNC type, the function is called and fills in its out parameter, which then provides information about the variable to be displayed. The function has this signature:
#define SHOW_VAR_FUNC_BUFF_SIZE 1024
typedef int (*mysql_show_var_func) (void *thd,
struct st_mysql_show_var *out,
char *buf);
The system_vars member, if not 0, points to an array of st_mysql_sys_var structures, each of which describes one system variable (which can also be set from the command-line or configuration file), followed by a structure with all members set to 0. The st_mysql_sys_var structure is defined as follows:
struct st_mysql_sys_var {
int flags;
const char *name, *comment;
int (*check)(THD*, struct st_mysql_sys_var *, void*, st_mysql_value*);
void (*update)(THD*, struct st_mysql_sys_var *, void*, const void*);
};
Additional fields are append as required depending upon the flags.
For convenience, a number of macros are defined that make creating new system variables within a plugin much simpler.
Throughout the macros, the following fields are available:
name: An unquoted identifier for the system variable.
varname: The identifier for the static variable. Where not available, it is the same as the name field.
opt: Additional use flags for the system variable. The following table shows the permissible flags.
Table 22.2. Server Plugin System Variable Flags
Flag Value | Description |
---|---|
PLUGIN_VAR_READONLY | The system variable is read only |
PLUGIN_VAR_NOSYSVAR | The system variable is not user visible at runtime |
PLUGIN_VAR_NOCMDOPT | The system variable is not configurable from the command line |
PLUGIN_VAR_NOCMDARG | No argument is required at the command line (typically used for boolean variables) |
PLUGIN_VAR_RQCMDARG | An argument is required at the command line (this is the default) |
PLUGIN_VAR_OPCMDARG | An argument is optional at the command line |
PLUGIN_VAR_MEMALLOC | Used for string variables; indicates that memory is to be allocated for storage of the string |
comment: A descriptive comment to be displayed in the server help message. NULL if this variable is to be hidden.
check: The check function, NULL for default.
update: The update function, NULL for default.
default: The variable default value.
minimum: The variable minimum value.
maximum: The variable maximum value.
blocksize: The variable block size. When the value is set, it is rounded to the nearest multiple of blocksize.
A system variable may be accessed either by using the static variable directly or by using the SYSVAR()accessor macro. The SYSVAR() macro is provided for completeness. Usually it should be used only when the code cannot directly access the underlying variable.
For example:
static int my_foo;
static MYSQL_SYSVAR_INT(foo_var, my_foo,
PLUGIN_VAR_RQCMDARG, "foo comment",
NULL, NULL, 0, 0, INT_MAX, 0);
...
SYSVAR(foo_var)= value;
value= SYSVAR(foo_var);
my_foo= value;
value= my_foo;
Session variables may be accessed only through the THDVAR() accessor macro. For example:
static MYSQL_THDVAR_BOOL(some_flag,
PLUGIN_VAR_NOCMDARG, "flag comment",
NULL, NULL, FALSE);
...
if (THDVAR(thd, some_flag))
{
do_something();
THDVAR(thd, some_flag)= FALSE;
}
All global and session system variables must be published to mysqld before use. This is done by constructing a NULL-terminated array of the variables and linking to it in the plugin public interface. For example:
static struct st_mysql_sys_var *my_plugin_vars[]= {
MYSQL_SYSVAR(foo_var),
MYSQL_SYSVAR(some_flag),
NULL
};
mysql_declare_plugin(fooplug)
{
MYSQL_..._PLUGIN,
&plugin_data,
"fooplug",
"foo author",
"This does foo!",
PLUGIN_LICENSE_GPL,
foo_init,
foo_fini,
0x0001,
NULL,
my_plugin_vars,
NULL,
0
}
mysql_declare_plugin_end;
The following convenience macros enable you to declare different types of system variables:
Boolean system variables of type my_bool, which is a 1-byte boolean. (0 = FALSE, 1 = TRUE)
MYSQL_THDVAR_BOOL(name, opt, comment, check, update, default)
MYSQL_SYSVAR_BOOL(name, varname, opt, comment, check, update, default)
String system variables of type char*, which is a pointer to a null-terminated string.
MYSQL_THDVAR_STR(name, opt, comment, check, update, default)
MYSQL_SYSVAR_STR(name, varname, opt, comment, check, update, default)
Integer system variables, of which there are several varieties.
An int system variable, which is typically a 4-byte signed word.
MYSQL_THDVAR_INT(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_INT(name, varname, opt, comment, check, update, default,
minimum, maximum, blocksize)
An unsigned int system variable, which is typically a 4-byte unsigned word.
MYSQL_THDVAR_UINT(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_UINT(name, varname, opt, comment, check, update, default,
minimum, maximum, blocksize)
A long system variable, which is typically either a 4- or 8-byte signed word.
MYSQL_THDVAR_LONG(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_LONG(name, varname, opt, comment, check, update, default,
minimum, maximum, blocksize)
An unsigned long system variable, which is typically either a 4- or 8-byte unsigned word.
MYSQL_THDVAR_ULONG(name, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR_ULONG(name, varname, opt, comment, check, update, default,
minimum, maximum, blocksize)
A long long system variable, which is typically an 8-byte signed word.
MYSQL_THDVAR_LONGLONG(name, opt, comment, check, update,
default, minimum, maximum, blocksize)
MYSQL_SYSVAR_LONGLONG(name, varname, opt, comment, check, update,
default, minimum, maximum, blocksize)
An unsigned long long system variable, which is typically an 8-byte unsigned word.
MYSQL_THDVAR_ULONGLONG(name, opt, comment, check, update,
default, minimum, maximum, blocksize)
MYSQL_SYSVAR_ULONGLONG(name, varname, opt, comment, check, update,
default, minimum, maximum, blocksize)
An unsigned long system variable, which is typically either a 4- or 8-byte unsigned word. The range of possible values is an ordinal of the number of elements in the typelib, starting from 0.
MYSQL_THDVAR_ENUM(name, opt, comment, check, update, default, typelib)
MYSQL_SYSVAR_ENUM(name, varname, opt, comment, check, update,
default, typelib)
An unsigned long long system variable, which is typically an 8-byte unsigned word. Each bit represents an element in the typelib.
MYSQL_THDVAR_SET(name, opt, comment, check, update, default, typelib)
MYSQL_SYSVAR_SET(name, varname, opt, comment, check, update,
default, typelib)
Internally, all mutable and plugin system variables are stored in a HASH structure.
Display of the server command-line help text is handled by compiling a DYNAMIC_ARRAY of all variables relevant to command-line options, sorting them, and then iterating through them to display each option.
When a command-line option has been handled, it is then removed from the argv by the handle_option() function (my_getopt.c); in effect, it is consumed.
The server processes command-line options during the plugin installation process, immediately after the plugin has been successfully loaded but before the plugin initialization function has been called
Plugins loaded at runtime do not benefit from any configuration options and must have usable defaults. Once they are installed, they are loaded at mysqld initialization time and configuration options can be set at the command line or within my.cnf.
Plugins should consider the thd parameter to be read only.
22.2.4.2.3. Client Plugin Descriptors
Each client plugin must have a descriptor that provides information to the client plugin API. The descriptor structure begins with a fixed set of members common to all client plugins, followed by any members specific to the plugin type.
The st_mysql_client_plugin structure in the client_plugin.h file defines a “generic” descriptor that contains the common members:
struct st_mysql_client_plugin
{
int type;
unsigned int interface_version;
const char *name;
const char *author;
const char *desc;
unsigned int version[3];
const char *license;
void *mysql_api;
int (*init)(char *, size_t, int, va_list);
int (*deinit)();
int (*options)(const char *option, const void *);
};
The common st_mysql_client_plugin descriptor structure members are used as follows. char * members should be specified as null-terminated strings.
type: The plugin type. This must be one of the plugin-type values from client_plugin.h, such as MYSQL_CLIENT_AUTHENTICATION_PLUGIN.
interface_version: The plugin interface version. For example, this is MYSQL_CLIENT_AUTHENTICATION_PLUGIN_INTERFACE_VERSION for an authentication plugin.
name: A string that gives the plugin name. This is the name by which you refer to the plugin when you call mysql_options() with the MYSQL_DEFAULT_AUTH option or specify the --default-auth option to a MySQL client program.
author: A string naming the plugin author. This can be whatever you like.
desc: A string that provides a general description of the plugin. This can be whatever you like.
version: The plugin version as an array of three integers indicating the major, minor, and teeny versions. For example, {1,2,3} indicates version 1.2.3.
license: A string that specifies the license type.
mysql_api: For internal use. Specify it as NULL in the plugin descriptor.
init: A once-only initialization function, or NULL if there is no such function. The client library executes this function when it loads the plugin. The function returns zero for success and nonzero for failure.
The init function uses its first two arguments to return an error message if an error occurs. The first argument is a pointer to a char buffer, and the second argument indicates the buffer length. Any message returned by the init function must be null-terminated, so the maximum message length is the buffer length minus one. The next arguments are passed to mysql_load_plugin(). The first indicates how many more arguments there are (0 if none), followed by any remaining arguments.
deinit: A once-only deinitialization function, or NULL if there is no such function. The client library executes this function when it unloads the plugin. The function takes no arguments. It returns zero for success and nonzero for failure.
options: A function for handling options passed to the plugin, or NULL if there is no such function. The function takes two arguments representing the option name and a pointer to its value.
For a given client plugin type, the common descriptor members may be followed by additional members necessary to implement plugins of that type. For example, the st_mysql_client_plugin_AUTHENTICATION structure for authentication plugins has a function at the end that the client library calls to perform authentication.
To declare a plugin, use the mysql_declare_client_plugin() and mysql_end_client_plugin macros:
mysql_declare_client_plugin(plugin_type)
... members common to all client plugins ...
... type-specific extra members ...
mysql_end_client_plugin;
Do not specify the type or interface_version member explicitly. The mysql_declare_client_plugin() macro uses the plugin_type argument to generate their values automatically. For example, declare an authentication client plugin like this:
mysql_declare_client_plugin(AUTHENTICATION)
"my_auth_plugin",
"Author Name",
"My Client Authentication Plugin",
{1,0,0},
"GPL",
NULL,
my_auth_init,
my_auth_deinit,
my_auth_options,
my_auth_main
mysql_end_client_plugin;
This declaration uses the AUTHENTICATION argument to set the type and interface_version members to MYSQL_CLIENT_AUTHENTICATION_PLUGIN and MYSQL_CLIENT_AUTHENTICATION_PLUGIN_INTERFACE_VERSION.
Depending on the plugin type, the descriptor may have other members following the common members. For example, for an authentication plugin, there is a function (my_auth_main() in the descriptor just shown) that handles communication with the server. See Section 22.2.4.9, “Writing Authentication Plugins”.
Normally, a client program that supports the use of authentication plugins causes a plugin to be loaded by calling mysql_options() to set the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:
char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";
/* ... process command-line options ... */
mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);
Typically, the program will also accept --plugin-dir and --default-auth options that enable users to override the default values.
Should a client program require lower-level plugin management, the client library contains functions that take an st_mysql_client_plugin argument. See Section 21.8.13, “C API Client Plugin Functions”.
22.2.4.3. Compiling and Installing Plugin Libraries
After your plugin is written, you must compile it and install it. The procedure for compiling shared objects varies from system to system. If you build your library using CMake, it should be able to generate the correct compilation commands for your system. If the library is named somepluglib, you should end up with a shared object file that has a name something like somepluglib.so. (The file name might have a different suffix on your system.)
To use CMake, you'll need to set up the configuration files to enable the plugin to be compiled and installed. Use the plugin examples under the plugin directory of a MySQL source distribution as a guide.
Create CMakeLists.txt, which should look something like this:
MYSQL_ADD_PLUGIN(somepluglib somepluglib.c
MODULE_ONLY MODULE_OUTPUT_NAME "somepluglib")
When CMake generates the Makefile, it should take care of passing to the compilation command the -DMYSQL_DYNAMIC_PLUGIN flag, and passing to the linker the -lmysqlservices flag, which is needed to link in any functions from services provided through the plugin services interface. See Section 22.2.5, “MySQL Services for Plugins”.
Run CMake, then run make:
shell> cmake .
shell> make
If you need to specify configuration options to CMake, see Section 2.9.4, “MySQL Source-Configuration Options”, for a list. For example, you might want to specify CMAKE_INSTALL_PREFIX to indicate the MySQL base directory under which the plugin should be installed. You can see what value to use for this option with SHOW VARIABLES:
mysql> SHOW VARIABLES LIKE 'basedir';
+---------------+------------------+
| Variable_name | Value |
+---------------+------------------+
| base | /usr/local/mysql |
+---------------+------------------+
The location of the plugin directory where you should install the library is given by the plugin_dir system variable. For example:
mysql> SHOW VARIABLES LIKE 'plugin_dir';
+---------------+-----------------------------------+
| Variable_name | Value |
+---------------+-----------------------------------+
| plugin_dir | /usr/local/mysql/lib/mysql/plugin |
+---------------+-----------------------------------+
To install the plugin library, use make:
shell> make install
Verify that make install installed the plugin library in the proper directory. After installing it, make sure that the library permissions permit it to be executed by the server.
22.2.4.4. Writing Full-Text Parser Plugins
A full-text parser server plugin can be used to replace or modify the built-in full-text parser. This section describes how to write a full-text parser plugin named simple_parser. This plugin performs parsing based on simpler rules than those used by the MySQL built-in full-text parser: Words are nonempty runs of whitespace characters.
The instructions use the source code in the plugin/fulltext directory of MySQL source distributions, so change location into that directory. The following procedure describes how the plugin library is created:
To write a full-text parser plugin, include the following header file in the plugin source file. Other MySQL or general header files might also be needed.
#include <mysql/plugin.h>
plugin.h defines the MYSQL_FTPARSER_PLUGIN server plugin type and the data structures needed to declare the plugin.
Set up the library descriptor for the plugin library file.
This descriptor contains the general plugin descriptor for the server plugin. For a full-text parser plugin, the type must be MYSQL_FTPARSER_PLUGIN. This is the value that identifies the plugin as being legal for use in a WITH PARSER clause when creating a FULLTEXT index. (No other plugin type is legal for this clause.)
For example, the library descriptor for a library that contains a single full-text parser plugin named simple_parser looks like this:
mysql_declare_plugin(ftexample)
{
MYSQL_FTPARSER_PLUGIN, /* type */
&simple_parser_descriptor, /* descriptor */
"simple_parser", /* name */
"Oracle Corporation", /* author */
"Simple Full-Text Parser", /* description */
PLUGIN_LICENSE_GPL, /* plugin license */
simple_parser_plugin_init, /* init function (when loaded) */
simple_parser_plugin_deinit,/* deinit function (when unloaded) */
0x0001, /* version */
simple_status, /* status variables */
simple_system_variables, /* system variables */
NULL,
0
}
mysql_declare_plugin_end;
The name member (simple_parser) indicates the name to use for references to the plugin in statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.
For more information, see Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”.
Set up the type-specific plugin descriptor.
Each general plugin descriptor in the library descriptor points to a type-specific descriptor. For a full-text parser plugin, the type-specific descriptor is an instance of the st_mysql_ftparser structure in the plugin.h file:
struct st_mysql_ftparser
{
int interface_version;
int (*parse)(MYSQL_FTPARSER_PARAM *param);
int (*init)(MYSQL_FTPARSER_PARAM *param);
int (*deinit)(MYSQL_FTPARSER_PARAM *param);
};
As shown by the structure definition, the descriptor has an interface version number and contains pointers to three functions. The version is specified using a symbol of the form MYSQL_xxx_INTERFACE_VERSION (such as (MYSQL_FTPARSER_INTERFACE_VERSION for full-text parser plugins) The init and deinit members should point to a function or be set to 0 if the function is not needed. The parse member must point to the function that performs the parsing.
In the simple_parser declaration, that descriptor is indicated by &simple_parser_descriptor. The descriptor specifies the version number for the full-text plugin interface (as given by MYSQL_FTPARSER_INTERFACE_VERSION), and the plugin's parsing, initialization, and deinitialization functions:
static struct st_mysql_ftparser simple_parser_descriptor=
{
MYSQL_FTPARSER_INTERFACE_VERSION, /* interface version */
simple_parser_parse, /* parsing function */
simple_parser_init, /* parser init function */
simple_parser_deinit /* parser deinit function */
};
A full-text parser plugin is used in two different contexts, indexing and searching. In both contexts, the server calls the initialization and deinitialization functions at the beginning and end of processing each SQL statement that causes the plugin to be invoked. However, during statement processing, the server calls the main parsing function in context-specific fashion:
For indexing, the server calls the parser for each column value to be indexed.
For searching, the server calls the parser to parse the search string. The parser might also be called for rows processed by the statement. In natural language mode, there is no need for the server to call the parser. For boolean mode phrase searches or natural language searches with query expansion, the parser is used to parse column values for information that is not in the index. Also, if a boolean mode search is done for a column that has no FULLTEXT index, the built-in parser will be called. (Plugins are associated with specific indexes. If there is no index, no plugin is used.)
The plugin declaration in the general plugin descriptor has init and deinit members that point initialization and deinitialization functions, and so does the type-specific plugin descriptor to which it points. However, these pairs of functions have different purposes and are invoked for different reasons:
For the plugin declaration in the general plugin descriptor, the initialization and deinitialization functions are invoked when the plugin is loaded and unloaded.
For the type-specific plugin descriptor, the initialization and deinitialization functions are invoked per SQL statement for which the plugin is used.
Each interface function named in the plugin descriptor should return zero for success or nonzero for failure, and each of them receives an argument that points to a MYSQL_FTPARSER_PARAM structure containing the parsing context. The structure has this definition:
typedef struct st_mysql_ftparser_param
{
int (*mysql_parse)(struct st_mysql_ftparser_param *,
char *doc, int doc_len);
int (*mysql_add_word)(struct st_mysql_ftparser_param *,
char *word, int word_len,
MYSQL_FTPARSER_BOOLEAN_INFO *boolean_info);
void *ftparser_state;
void *mysql_ftparam;
struct charset_info_st *cs;
char *doc;
int length;
int flags;
enum enum_ftparser_mode mode;
} MYSQL_FTPARSER_PARAM;
The structure members are used as follows:
mysql_parse: A pointer to a callback function that invokes the server's built-in parser. Use this callback when the plugin acts as a front end to the built-in parser. That is, when the plugin parsing function is called, it should process the input to extract the text and pass the text to the mysql_parse callback.
The first parameter for this callback function should be the param value itself:
param->mysql_parse(param, ...);
A front end plugin can extract text and pass it all at once to the built-in parser, or it can extract and pass text to the built-in parser a piece at a time. However, in this case, the built-in parser treats the pieces of text as though there are implicit word breaks between them.
mysql_add_word: A pointer to a callback function that adds a word to a full-text index or to the list of search terms. Use this callback when the parser plugin replaces the built-in parser. That is, when the plugin parsing function is called, it should parse the input into words and invoke the mysql_add_word callback for each word.
The first parameter for this callback function should be the param value itself:
param->mysql_add_word(param, ...);
ftparser_state: This is a generic pointer. The plugin can set it to point to information to be used internally for its own purposes.
mysql_ftparam: This is set by the server. It is passed as the first argument to the mysql_parse or mysql_add_word callback.
cs: A pointer to information about the character set of the text, or 0 if no information is available.
doc: A pointer to the text to be parsed.
length: The length of the text to be parsed, in bytes.
flags: Parser flags. This is zero if there are no special flags. Currently, the only nonzero flag is MYSQL_FTFLAGS_NEED_COPY, which means that mysql_add_word() must save a copy of the word (that is, it cannot use a pointer to the word because the word is in a buffer that will be overwritten.) This member was added in MySQL 5.1.12.
This flag might be set or reset by MySQL before calling the parser plugin, by the parser plugin itself, or by the mysql_parse() function.
mode: The parsing mode. This value will be one of the following constants:
MYSQL_FTPARSER_SIMPLE_MODE: Parse in fast and simple mode, which is used for indexing and for natural language queries. The parser should pass to the server only those words that should be indexed. If the parser uses length limits or a stopword list to determine which words to ignore, it should not pass such words to the server.
MYSQL_FTPARSER_WITH_STOPWORDS: Parse in stopword mode. This is used in boolean searches for phrase matching. The parser should pass all words to the server, even stopwords or words that are outside any normal length limits.
MYSQL_FTPARSER_FULL_BOOLEAN_INFO: Parse in boolean mode. This is used for parsing boolean query strings. The parser should recognize not only words but also boolean-mode operators and pass them to the server as tokens using the mysql_add_word callback. To tell the server what kind of token is being passed, the plugin needs to fill in a MYSQL_FTPARSER_BOOLEAN_INFO structure and pass a pointer to it.
If the parser is called in boolean mode, the param->mode value will be MYSQL_FTPARSER_FULL_BOOLEAN_INFO. The MYSQL_FTPARSER_BOOLEAN_INFO structure that the parser uses for passing token information to the server looks like this:
typedef struct st_mysql_ftparser_boolean_info
{
enum enum_ft_token_type type;
int yesno;
int weight_adjust;
bool wasign;
bool trunc;
/* These are parser state and must be removed. */
byte prev;
byte *quot;
} MYSQL_FTPARSER_BOOLEAN_INFO;
The parser should fill in the structure members as follows:
type: The token type. The following table shows the permissible types.
Table 22.3. Full-Text Parser Token Types
Token Value | Meaning |
---|---|
FT_TOKEN_EOF | End of data |
FT_TOKEN_WORD | A regular word |
FT_TOKEN_LEFT_PAREN | The beginning of a group or subexpression |
FT_TOKEN_RIGHT_PAREN | The end of a group or subexpression |
FT_TOKEN_STOPWORD | A stopword |
yesno: Whether the word must be present for a match to occur. 0 means that the word is optional but increases the match relevance if it is present. Values larger than 0 mean that the word must be present. Values smaller than 0 mean that the word must not be present.
weight_adjust: A weighting factor that determines how much a match for the word counts. It can be used to increase or decrease the word's importance in relevance calculations. A value of zero indicates no weight adjustment. Values greater than or less than zero mean higher or lower weight, respectively. The examples at Section 12.9.2, “Boolean Full-Text Searches”, that use the < and > operators illustrate how weighting works.
wasign: The sign of the weighting factor. A negative value acts like the ~ boolean-search operator, which causes the word's contribution to the relevance to be negative.
trunc: Whether matching should be done as if the boolean-mode * truncation operator had been given.
Plugins should not use the prev and quot members of the MYSQL_FTPARSER_BOOLEAN_INFO structure.
Set up the plugin interface functions.
The general plugin descriptor in the library descriptor names the initialization and deinitialization functions that the server should invoke when it loads and unloads the plugin. For simple_parser, these functions do nothing but return zero to indicate that they succeeded:
static int simple_parser_plugin_init(void *arg __attribute__((unused)))
{
return(0);
}
static int simple_parser_plugin_deinit(void *arg __attribute__((unused)))
{
return(0);
}
Because those functions do not actually do anything, you could omit them and specify 0 for each of them in the plugin declaration.
The type-specific plugin descriptor for simple_parser names the initialization, deinitialization, and parsing functions that the server invokes when the plugin is used. For simple_parser, the initialization and deinitialization functions do nothing:
static int simple_parser_init(MYSQL_FTPARSER_PARAM *param
__attribute__((unused)))
{
return(0);
}
static int simple_parser_deinit(MYSQL_FTPARSER_PARAM *param
__attribute__((unused)))
{
return(0);
}
Here too, because those functions do nothing, you could omit them and specify 0 for each of them in the plugin descriptor.
The main parsing function, simple_parser_parse(), acts as a replacement for the built-in full-text parser, so it needs to split text into words and pass each word to the server. The parsing function's first argument is a pointer to a structure that contains the parsing context. This structure has a doc member that points to the text to be parsed, and a length member that indicates how long the text is. The simple parsing done by the plugin considers nonempty runs of whitespace characters to be words, so it identifies words like this:
static int simple_parser_parse(MYSQL_FTPARSER_PARAM *param)
{
char *end, *start, *docend= param->doc + param->length;
for (end= start= param->doc;; end++)
{
if (end == docend)
{
if (end > start)
add_word(param, start, end - start);
break;
}
else if (isspace(*end))
{
if (end > start)
add_word(param, start, end - start);
start= end + 1;
}
}
return(0);
}
As the parser finds each word, it invokes a function add_word() to pass the word to the server. add_word() is a helper function only; it is not part of the plugin interface. The parser passes the parsing context pointer to add_word(), as well as a pointer to the word and a length value:
static void add_word(MYSQL_FTPARSER_PARAM *param, char *word, size_t len)
{
MYSQL_FTPARSER_BOOLEAN_INFO bool_info=
{ FT_TOKEN_WORD, 0, 0, 0, 0, ' ', 0 };
param->mysql_add_word(param, word, len, &bool_info);
}
For boolean-mode parsing, add_word() fills in the members of the bool_info structure as described earlier in the discussion of the st_mysql_ftparser_boolean_info structure.
Set up the status variables. For the simple_parser plugin, the following status variable array sets up one status variable with a value that is static text, and another with a value that is stored in a long integer variable:
long number_of_calls= 0;
struct st_mysql_show_var simple_status[]=
{
{"static", (char *)"just a static text", SHOW_CHAR},
{"called", (char *)&number_of_calls, SHOW_LONG},
{0,0,0}
};
When the plugin is installed, the plugin name and the name value are joined with an underscore to form the name displayed by SHOW STATUS. For the array just shown, the resulting status variable names are simple_parser_static and simple_parser_called. This convention means that you can easily display the variables for a plugin using its name:
mysql> SHOW STATUS LIKE 'simple_parser%';
+----------------------+--------------------+
| Variable_name | Value |
+----------------------+--------------------+
| simple_parser_static | just a static text |
| simple_parser_called | 0 |
+----------------------+--------------------+
To compile and install a plugin library object file, use the instructions in Section 22.2.4.3, “Compiling and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the directory named by the plugin_dir system variable). For the simple_parser plugin, it is compiled and installed when you build MySQL from source. It is also included in binary distributions. The build process produces a shared object library with a name of mypluglib.so (the suffix might differ depending on your platform).
To use the plugin, register it with the server. For example, to register the plugin at runtime, use this statement (changing the suffix as necessary):
mysql> INSTALL PLUGIN simple_parser SONAME 'mypluglib.so';
For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.
To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS statement.
Test the plugin to verify that it works properly.
Create a table that contains a string column and associate the parser plugin with a FULLTEXT index on the column:
mysql> CREATE TABLE t (c VARCHAR(255),
-> FULLTEXT (c) WITH PARSER simple_parser
->) ENGINE=MyISAM;
Query OK, 0 rows affected (0.01 sec)
Insert some text into the table and try some searches. These should verify that the parser plugin treats all nonwhitespace characters as word characters:
mysql> INSERT INTO t VALUES
-> ('latin1_general_cs is a case-sensitive collation'),
-> ('I\'d like a case of oranges'),
-> ('this is sensitive information'),
-> ('another row'),
-> ('yet another row');
Query OK, 5 rows affected (0.02 sec)
Records: 5 Duplicates: 0 Warnings: 0
mysql> SELECT c FROM t;
+---+
| c |
+---+
| latin1_general_cs is a case-sensitive collation |
| I'd like a case of oranges |
| this is sensitive information |
| another row |
| yet another row |
+---+
5 rows in set (0.00 sec)
mysql> SELECT MATCH(c) AGAINST('case') FROM t;
+--------------------------+
| MATCH(c) AGAINST('case') |
+--------------------------+
| 0 |
| 1.2968142032623 |
| 0 |
| 0 |
| 0 |
+--------------------------+
5 rows in set (0.00 sec)
mysql> SELECT MATCH(c) AGAINST('sensitive') FROM t;
+-------------------------------+
| MATCH(c) AGAINST('sensitive') |
+-------------------------------+
| 0 |
| 0 |
| 1.3253291845322 |
| 0 |
| 0 |
+-------------------------------+
5 rows in set (0.01 sec)
mysql> SELECT MATCH(c) AGAINST('case-sensitive') FROM t;
+------------------------------------+
| MATCH(c) AGAINST('case-sensitive') |
+------------------------------------+
| 1.3109166622162 |
| 0 |
| 0 |
| 0 |
| 0 |
+------------------------------------+
5 rows in set (0.01 sec)
mysql> SELECT MATCH(c) AGAINST('I\'d') FROM t;
+--------------------------+
| MATCH(c) AGAINST('I\'d') |
+--------------------------+
| 0 |
| 1.2968142032623 |
| 0 |
| 0 |
| 0 |
+--------------------------+
5 rows in set (0.01 sec)
Note how neither “case” nor “insensitive” match “case-insensitive” the way that they would for the built-in parser.
22.2.4.5. Writing Daemon Plugins
A daemon plugin is a simple type of plugin used for code that should be run by the server but that does not communicate with it. This section describes how to write a daemon server plugin, using the example plugin found in the plugin/daemon_example directory of MySQL source distributions. That directory contains the daemon_example.cc source file for a daemon plugin named daemon_example that writes a heartbeat string at regular intervals to a file named mysql-heartbeat.log in the data directory.
To write a daemon plugin, include the following header file in the plugin source file. Other MySQL or general header files might also be needed.
#include <mysql/plugin.h>
plugin.h defines the MYSQL_DAEMON_PLUGIN server plugin type and the data structures needed to declare the plugin.
The daemon_example.cc file sets up the library descriptor as follows. The library descriptor includes a single general server plugin descriptor.
mysql_declare_plugin(daemon_example)
{
MYSQL_DAEMON_PLUGIN,
&daemon_example_plugin,
"daemon_example",
"Brian Aker",
"Daemon example, creates a heartbeat beat file in mysql-heartbeat.log",
PLUGIN_LICENSE_GPL,
daemon_example_plugin_init, /* Plugin Init */
daemon_example_plugin_deinit, /* Plugin Deinit */
0x0100 /* 1.0 */,
NULL, /* status variables */
NULL, /* system variables */
NULL, /* config options */
0, /* flags */
}
mysql_declare_plugin_end;
The name member (daemon_example) indicates the name to use for references to the plugin in statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.
The second member of the plugin descriptor, daemon_example_plugin, points to the type-specific daemon plugin descriptor. This structure consists only of the type-specific API version number:
struct st_mysql_daemon daemon_example_plugin=
{ MYSQL_DAEMON_INTERFACE_VERSION };
The type-specific structure has no interface functions. There is no communication between the server and the plugin, except that the server calls the initialization and deinitialization functions from the general plugin descriptor to start and stop the plugin:
daemon_example_plugin_init() opens the heartbeat file and spawns a thread that wakes up periodically and writes the next message to the file.
daemon_example_plugin_deinit() closes the file and performs other cleanup.
To compile and install a plugin library object file, use the instructions in Section 22.2.4.3, “Compiling and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the directory named by the plugin_dir system variable). For the daemon_example plugin, it is compiled and installed when you build MySQL from source. It is also included in binary distributions. The build process produces a shared object library with a name of libdaemon_example.so (the suffix might differ depending on your platform).
To use the plugin, register it with the server. For example, to register the plugin at runtime, use this statement (change the suffix as necessary):
mysql> INSTALL PLUGIN daemon_example SONAME 'libdaemon_example.so';
For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.
To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS statement.
While the plugin is loaded, it writes a heartbeat string at regular intervals to a file named mysql-heartbeat.log in the data directory. This file grows without limit, so after you have satistifed yourself that the plugin operates correctly, unload it:
mysql> UNINSTALL PLUGIN daemon_example;
22.2.4.6. Writing INFORMATION_SCHEMA Plugins
This section describes how to write an INFORMATION_SCHEMA table server plugin. For example code that implements such plugins, see the sql/sql_show.cc file of a MySQL source distribution. You can also look at the example plugins found in the InnoDB source. See the handler/i_s.cc and handler/ha_innodb.cc files within the InnoDB source tree (in the storage/innobase directory).
To write an INFORMATION_SCHEMA table plugin, include the following header files in the plugin source file. Other MySQL or general header files might also be needed.
#include <sql_class.h>
#include <table.h>
These header files are located in the sql directory of MySQL source distributions. They contain C++ structures, so the source file for an INFORMATION_SCHEMA plugin must be compiled as C++ (not C) code.
The source file for the example plugin developed here is named simple_i_s_table.cc. It creates a simple INFORMATION_SCHEMA table named SIMPLE_I_S_TABLE that has two columns named NAME and VALUE. The general descriptor for a plugin library that implements the table looks like this:
mysql_declare_plugin(simple_i_s_library)
{
MYSQL_INFORMATION_SCHEMA_PLUGIN,
&simple_table_info, /* type-specific descriptor */
"SIMPLE_I_S_TABLE", /* table name */
"Author Name", /* author */
"Simple INFORMATION_SCHEMA table", /* description */
PLUGIN_LICENSE_GPL, /* license type */
simple_table_init, /* init function */
NULL,
0x0100, /* version = 1.0 */
NULL, /* no status variables */
NULL, /* no system variables */
NULL, /* no reserved information */
0 /* no flags */
}
mysql_declare_plugin_end;
The name member (SIMPLE_I_S_TABLE) indicates the name to use for references to the plugin in statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.
The simple_table_info member of the general descriptor points to the type-specific descriptor, which consists only of the type-specific API version number:
static struct st_mysql_information_schema simple_table_info =
{ MYSQL_INFORMATION_SCHEMA_INTERFACE_VERSION };
The general descriptor points to the initialization and deinitialization functions:
The initialization function provides information about the table structure and a function that populates the table.
The deinitialization function performs any required cleanup. If no cleanup is needed, this descriptor member can be NULL (as in the example shown).
The initialization function should return 0 for success, 1 if an error occurs. The function receives a generic pointer, which it should interpret as a pointer to the table structure:
static int table_init(void *ptr)
{
ST_SCHEMA_TABLE *schema_table= (ST_SCHEMA_TABLE*)ptr;
schema_table->fields_info= simple_table_fields;
schema_table->fill_table= simple_fill_table;
return 0;
}
The function should set these two members of the table structure:
fields_info: An array of ST_FIELD_INFO structures that contain information about each column.
fill_table: A function that populates the table.
The array pointed to by fields_info should contain one element per column of the INFORMATION_SCHEMA plus a terminating element. The following simple_table_fields array for the example plugin indicates that SIMPLE_I_S_TABLE has two columns. NAME is string-valued with a length of 10 and VALUE is integer-valued with a display width of 20. The last structure marks the end of the array.
static ST_FIELD_INFO simple_table_fields[]=
{
{"NAME", 10, MYSQL_TYPE_STRING, 0, 0 0, 0},
{"VALUE", 6, MYSQL_TYPE_LONG, 0, MY_I_S_UNSIGNED, 0, 0},
{0, 0, MYSQL_TYPE_NULL, 0, 0, 0, 0}
};
For more information about the column information structure, see the definition of ST_FIELD_INFO in the table.h header file. The permissible MYSQL_TYPE_xxx type values are those used in the C API; see Section 21.8.4, “C API Data Structures”.
The fill_table member should be set to a function that populates the table and returns 0 for success, 1 if an error occurs. For the example plugin, the simple_fill_table() function looks like this:
static int simple_fill_table(THD *thd, TABLE_LIST *tables, Item *cond)
{
TABLE *table= tables->table;
table->field[0]->store("Name 1", 6, system_charset_info);
table->field[1]->store(1);
if (schema_table_store_record(thd, table))
return 1;
table->field[0]->store("Name 2", 6, system_charset_info);
table->field[1]->store(2);
if (schema_table_store_record(thd, table))
return 1;
return 0;
}
For each row of the INFORMATION_SCHEMA table, this function initializes each column, then calls schema_table_store_record() to install the row. The store() method arguments depend on the type of value to be stored. For column 0 (NAME, a string), store() takes a pointer to a string, its length, and information about the character set of the string:
store(const char *to, uint length, CHARSET_INFO *cs);
For column 1 (VALUE, an integer), store() takes the value and a flag indicating whether it is unsigned:
store(longlong nr, bool unsigned_value);
For other examples of how to populate INFORMATION_SCHEMA tables, search for instances of schema_table_store_record() in sql_show.cc.
To compile and install a plugin library object file, see the instructions in Section 22.2.4.3, “Compiling and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the directory named by the plugin_dir system variable).
To test the plugin, install it:
mysql> INSTALL PLUGIN SIMPLE_I_S_TABLE SONAME 'simple_i_s_table.so';
Verify that the table is present:
mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
-> WHERE TABLE_NAME = 'SIMPLE_I_S_TABLE';
+------------------+
| TABLE_NAME |
+------------------+
| SIMPLE_I_S_TABLE |
+------------------+
Try to select from it:
mysql> SELECT * FROM INFORMATION_SCHEMA.SIMPLE_I_S_TABLE;
+--------+-------+
| NAME | VALUE |
+--------+-------+
| Name 1 | 1 |
| Name 2 | 2 |
+--------+-------+
Uninstall it:
mysql> UNINSTALL PLUGIN SIMPLE_I_S_TABLE;
22.2.4.7. Writing Semisynchronous Replication Plugins
This section describes how to write semisynchronous replication server plugins, using the example plugins found in the plugin/semisync directory of MySQL source distributions. That directory contains the source files for master and slave plugins named rpl_semi_sync_master and rpl_semi_sync_slave. The information here covers only how to set up the plugin framework. For details about how the plugins implement replication functions, see the source.
To write a semisynchronous replication plugin, include the following header file in the plugin source file. Other MySQL or general header files might also be needed.
#include <mysql/plugin.h>
plugin.h defines the MYSQL_REPLICATION_PLUGIN server plugin type and the data structures needed to declare the plugin.
For the master side, semisync_master_plugin.cc contains this general descriptor for a plugin named rpl_semi_sync_master:
mysql_declare_plugin(semi_sync_master)
{
MYSQL_REPLICATION_PLUGIN,
&semi_sync_master_plugin,
"rpl_semi_sync_master",
"He Zhenxing",
"Semi-synchronous replication master",
PLUGIN_LICENSE_GPL,
semi_sync_master_plugin_init, /* Plugin Init */
semi_sync_master_plugin_deinit, /* Plugin Deinit */
0x0100 /* 1.0 */,
semi_sync_master_status_vars, /* status variables */
semi_sync_master_system_vars, /* system variables */
NULL, /* config options */
0, /* flags */
}
mysql_declare_plugin_end;
For the slave side, semisync_slave_plugin.cc contains this general descriptor for a plugin named rpl_semi_sync_slave:
mysql_declare_plugin(semi_sync_slave)
{
MYSQL_REPLICATION_PLUGIN,
&semi_sync_slave_plugin,
"rpl_semi_sync_slave",
"He Zhenxing",
"Semi-synchronous replication slave",
PLUGIN_LICENSE_GPL,
semi_sync_slave_plugin_init, /* Plugin Init */
semi_sync_slave_plugin_deinit, /* Plugin Deinit */
0x0100 /* 1.0 */,
semi_sync_slave_status_vars, /* status variables */
semi_sync_slave_system_vars, /* system variables */
NULL, /* config options */
0, /* flags */
}
mysql_declare_plugin_end;
For both the master and slave plugins, the general descriptor has pointers to the type-specific descriptor, the initialization and deinitialization functions, and to the status and system variables implemented by the plugin. For information about variable setup, see Section 22.2.4.2.2, “Server Plugin Status and System Variables”. The following remarks discuss the type-specific descriptor and the initialization and deinitialization functions for the master plugin but apply similarly to the slave plugin.
The semi_sync_master_plugin member of the master general descriptor points to the type-specific descriptor, which consists only of the type-specific API version number:
struct Mysql_replication semi_sync_master_plugin= {
MYSQL_REPLICATION_INTERFACE_VERSION
};
The initialization and deinitialization function declarations look like this:
static int semi_sync_master_plugin_init(void *p);
static int semi_sync_master_plugin_deinit(void *p);
The initialization function uses the pointer to register transaction and binary logging “observers” with the server. After successful initialization, the server takes care of invoking the observers at the appropriate times. (For details on the observers, see the source files.) The deinitialization function cleans up by deregistering the observers. Each function returns 0 for success or 1 if an error occurs.
To compile and install a plugin library object file, use the instructions in Section 22.2.4.3, “Compiling and Installing Plugin Libraries”. To use the library files, they must be installed in the plugin directory (the directory named by the plugin_dir system variable). For the rpl_semi_sync_master and rpl_semi_sync_slave plugins, they are compiled and installed when you build MySQL from source. They are also included in binary distributions. The build process produces shared object libraries with names of semisync_master.so and semisync_slave.so (the suffix might differ depending on your platform).
22.2.4.8. Writing Audit Plugins
This section describes how to write an audit server plugin, using the example plugin found in the plugin/audit_null directory of MySQL source distributions. The audit_null.c source file in that directory implements a simple example audit plugin named NULL_AUDIT.
Within the server, the pluggable audit interface is implemented in the sql_audit.h and sql_audit.cc files in the sql directory of MySQL source distributions. Additionally, several places in the server are modified to call the audit interface when an auditable event occurs, so that registered audit plugins can be notified about the event if necessary. To see where such calls occur, look for invocations of functions with names of the form mysql_audit_xxx(). Audit notification occurs for server operations such as these:
Writing a message to the general query log (if the log is enabled)
Writing a message to the error log
Sending a query result to a client
Client connect and disconnect events
To write an audit plugin, include the following header file in the plugin source file. Other MySQL or general header files might also be needed.
#include <mysql/plugin_audit.h>
plugin_audit.h includes plugin.h, so you need not include the latter file explicitly. plugin.h defines the MYSQL_AUDIT_PLUGIN server plugin type and the data structures needed to declare the plugin. plugin_audit.h defines data structures specific to audit plugins.
An audit plugin, like any MySQL server plugin, has a general plugin descriptor (see Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”). In audit_null.c, the general descriptor looks like this:
mysql_declare_plugin(audit_null)
{
MYSQL_AUDIT_PLUGIN, /* type */
&audit_null_descriptor, /* descriptor */
"NULL_AUDIT", /* name */
"Oracle Corp", /* author */
"Simple NULL Audit", /* description */
PLUGIN_LICENSE_GPL,
audit_null_plugin_init, /* init function (when loaded) */
audit_null_plugin_deinit, /* deinit function (when unloaded) */
0x0003, /* version */
simple_status, /* status variables */
NULL, /* system variables */
NULL,
0,
}
mysql_declare_plugin_end;
The name member (NULL_AUDIT) indicates the name to use for references to the plugin in statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.
The general descriptor also refers to simple_status, a structure that exposes several status variables to the SHOW STATUS statement:
static struct st_mysql_show_var simple_status[]=
{
{ "Audit_null_called",
(char *) &number_of_calls,
SHOW_INT },
{ "Audit_null_general_log",
(char *) &number_of_calls_general_log,
SHOW_INT },
{ "Audit_null_general_error",
(char *) &number_of_calls_general_error,
SHOW_INT },
{ "Audit_null_general_result",
(char *) &number_of_calls_general_result,
SHOW_INT },
{ "Audit_null_general_status",
(char *) &number_of_calls_general_status,
SHOW_INT },
{ "Audit_null_connection_connect",
(char *) &number_of_calls_connection_connect,
SHOW_INT },
{ "Audit_null_connection_disconnect",
(char *) &number_of_calls_connection_disconnect,
SHOW_INT },
{ "Audit_null_connection_change_user",
(char *) &number_of_calls_connection_change_user,
SHOW_INT },
{ 0, 0, 0}
};
The audit_null_plugin_init initialization function sets the status variables to zero when the plugin is loaded. The audit_null_plugin_deinit function performs cleanup with the plugin is unloaded. During operation, the plugin increments the first status variable for each notification it receives. It also increments the others according to the event class and subclass. In effect, the first variable is the aggregate of the counts for the event subclasses.
The audit_null_descriptor value in the general descriptor points to the type-specific descriptor. For audit plugins, this descriptor has the following structure:
struct st_mysql_audit
{
int interface_version;
void (*release_thd)(MYSQL_THD);
void (*event_notify)(MYSQL_THD, unsigned int, const void *);
unsigned long class_mask[MYSQL_AUDIT_CLASS_MASK_SIZE];
};
The type-specific descriptor has these members:
interface_version: By convention, type-specific plugin descriptors begin with the interface version for the given plugin type. The server checks interface_version when it loads the plugin to see whether the plugin is compatible with it. For audit plugins, the value of the interface_version member is MYSQL_AUDIT_INTERFACE_VERSION (defined in plugin_audit.h).
release_thd: A function that the server calls to inform the plugin that it is being dissociated from its thread context. This should be NULL if there is no such function.
event_notify: A function that the server calls to notify the plugin that an auditable event has occurred. This function should not be NULL; that would not make sense because no auditing would occur.
class_mask: A bit mask that indicates the event classes for which the plugin wants to receive notification. If this value is 0, the server passes no events to the plugin.
The server uses the event_notify and release_thd functions together. They are called within the context of a specific thread, and a thread might perform an activity that produces several event notifications. The first time the server calls event_notify for a thread, it creates a binding of the plugin to the thread. The plugin cannot be uninstalled while this binding exists. When no more events for the thread will occur, the server informs the plugin of this by calling the release_thd function, and then destroys the binding. For example, when a client issues a statement, the thread processing the statement might notify audit plugins about the result set produced by the statement and about the statement being logged. After these notifications occur, the server releases the plugin before putting the thread to sleep until the client issues another statement.
This design enables the plugin to allocate resources needed for a given thread in the first call to the event_notify function and release them in the release_thd function:
event_notify function:
if memory is needed to service the thread
allocate memory
... rest of notification processing ...
release_thd function:
if memory was allocated
release memory
... rest of release processing ...
That is more efficient than allocating and releasing memory repeatedly in the notification function.
For the NULL_AUDIT example audit plugin, the type-specific descriptor looks like this:
static struct st_mysql_audit audit_null_descriptor=
{
MYSQL_AUDIT_INTERFACE_VERSION, /* interface version */
NULL, /* release_thd function */
audit_null_notify, /* notify function */
{ (unsigned long) MYSQL_AUDIT_GENERAL_CLASSMASK |
MYSQL_AUDIT_CONNECTION_CLASSMASK } /* class mask */
};
The server calls audit_null_notify to pass audit event information to the plugin. There is no release_thd function.
The event class mask indicates an interest in all events of the “general” and “connection” classes. plugin_audit.h defines symbols for these classes and their corresponding class masks:
#define MYSQL_AUDIT_GENERAL_CLASS 0
#define MYSQL_AUDIT_GENERAL_CLASSMASK (1 << MYSQL_AUDIT_GENERAL_CLASS)
#define MYSQL_AUDIT_CONNECTION_CLASS 1
#define MYSQL_AUDIT_CONNECTION_CLASSMASK (1 << MYSQL_AUDIT_CONNECTION_CLASS)
In the type-specific descriptor, the second and third parameters of the event_notify function prototype represent the event class and a generic pointer to an event structure:
void (*event_notify)(MYSQL_THD, unsigned int, const void *);
Events in different classes may have different structures, so the notification function should use the event class value to determine how to interpret the pointer to the event structure.
If the server calls the notification function with an event class of MYSQL_AUDIT_GENERAL_CLASS, it passes the event structure as a pointer to a mysql_event_general structure:
struct mysql_event_general
{
unsigned int event_subclass;
int general_error_code;
unsigned long general_thread_id;
const char *general_user;
unsigned int general_user_length;
const char *general_command;
unsigned int general_command_length;
const char *general_query;
unsigned int general_query_length;
struct charset_info_st *general_charset;
unsigned long long general_time;
unsigned long long general_rows;
};
Audit plugins can interpret mysql_event_general members as follows:
event_subclass: The event subclass, one of the following values:
#define MYSQL_AUDIT_GENERAL_LOG 0
#define MYSQL_AUDIT_GENERAL_ERROR 1
#define MYSQL_AUDIT_GENERAL_RESULT 2
#define MYSQL_AUDIT_GENERAL_STATUS 3
general_error_code: The error code. This is a value like that returned by the mysql_errno() C API function; 0 means “no error.”
general_thread_id: The ID of the thread for which the event occurred.
general_user: The current user for the event.
general_user_length: The length of general_user, in bytes.
general_command: For general query log events, the type of operation. Examples: Connect, Query, Shutdown. For error log events, the error message. This is a value like that returned by the mysql_error() C API function; an empty string means “no error.” For result events, this is empty.
general_command_length: The length of general_command, in bytes.
general_query: The SQL statement that was logged or produced a result.
general_query_length: The length of general_query, in bytes.
general_charset: Character set information for the event.
general_time: A TIMESTAMP value indicating the time just before the notification function was called.
general_rows: For general query log events, zero. For error log events, the row number at which an error occurred. For result events, the number of rows in the result plus one. For statements that produce no result set, the value is 0. This encoding enables statements that produce no result set to be distinguished from those that produce an empty result set. For example, for a DELETE statement, this value is 0. For a SELECT, the result is always 1 or more, where 1 represents an empty result set.
If the server calls the notification function with an event class of MYSQL_AUDIT_CONNECTION_CLASS, it passes the event structure as a pointer to a mysql_event_connection structure, which is similar to and interpreted much the same way as the mysql_event_general structure.
The NULL_AUDIT plugin notification function is quite simple. It increments a global event counter, determines the event class, then looks at the event subclass to determine which subclass counter to increment:
static void audit_null_notify(MYSQL_THD thd __attribute__((unused)),
unsigned int event_class,
const void *event)
{
/* prone to races, oh well */
number_of_calls++;
if (event_class == MYSQL_AUDIT_GENERAL_CLASS)
{
const struct mysql_event_general *event_general=
(const struct mysql_event_general *) event;
switch (event_general->event_subclass)
{
case MYSQL_AUDIT_GENERAL_LOG:
number_of_calls_general_log++;
break;
case MYSQL_AUDIT_GENERAL_ERROR:
number_of_calls_general_error++;
break;
case MYSQL_AUDIT_GENERAL_RESULT:
number_of_calls_general_result++;
break;
case MYSQL_AUDIT_GENERAL_STATUS:
number_of_calls_general_status++;
break;
default:
break;
}
}
else if (event_class == MYSQL_AUDIT_CONNECTION_CLASS)
{
const struct mysql_event_connection *event_connection=
(const struct mysql_event_connection *) event;
switch (event_connection->event_subclass)
{
case MYSQL_AUDIT_CONNECTION_CONNECT:
number_of_calls_connection_connect++;
break;
case MYSQL_AUDIT_CONNECTION_DISCONNECT:
number_of_calls_connection_disconnect++;
break;
case MYSQL_AUDIT_CONNECTION_CHANGE_USER:
number_of_calls_connection_change_user++;
break;
default:
break;
}
}
}
To compile and install a plugin library object file, use the instructions in Section 22.2.4.3, “Compiling and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the directory named by the plugin_dir system variable). For the AUDIT_NULL plugin, it is compiled and installed when you build MySQL from source. It is also included in binary distributions. The build process produces a shared object library with a name of adt_null.so (the suffix might differ depending on your platform).
To register the plugin at runtime, use this statement (change the suffix as necessary):
mysql> INSTALL PLUGIN NULL_AUDIT SONAME 'adt_null.so';
For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.
To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS statement.
While the audit plugin is installed, it exposes status variables that indicate the events for which the plugin has been called:
mysql> SHOW STATUS LIKE 'Audit_null%';
+-----------------------------------+-------+
| Variable_name | Value |
+-----------------------------------+-------+
| Audit_null_called | 1388 |
| Audit_null_connection_change_user | 0 |
| Audit_null_connection_connect | 22 |
| Audit_null_connection_disconnect | 21 |
| Audit_null_general_error | 1 |
| Audit_null_general_log | 513 |
| Audit_null_general_result | 415 |
| Audit_null_general_status | 416 |
+-----------------------------------+-------+
Audit_null_called counts all events, and the other variables count instances of event subclasses. For example, the preceding SHOW STATUS statement causes the server to send a result to the client and to write a message to the general query log if that log is enabled. Thus, a client that issues the statement repeatedly causes Audit_null_called and Audit_null_general_result to be incremented each time, and Audit_null_general_log to be incremented if the log is enabled.
To disable the plugin after testing it, use this statement to unload it:
mysql> UNINSTALL PLUGIN NULL_AUDIT;
22.2.4.9. Writing Authentication Plugins
MySQL supports pluggable authentication, in which plugins are invoked to authenticate client connections. Authentication plugins enable the use of authentication methods other than the built-in method of passwords stored in the mysql.user table. For example, plugins can be written to access external authentication methods. Also, authentication plugins can support the proxy user capability, such that the connecting user is a proxy for another user and is treated, for purposes of access control, as having the privileges of a different user. For more information, see Section 6.3.7, “Pluggable Authentication”, and Section 6.3.8, “Proxy Users”.
An authentication plugin can be written for the server side or the client side. Server-side plugins use the same plugin API that is used for the other server plugin types such as full-text parser or audit plugins (although with a different type-specific descriptor). Client-side plugins use the client plugin API.
Several header files contain information relevant to authentication plugins:
plugin.h: Defines the MYSQL_AUTHENTICATION_PLUGIN server plugin type.
client_plugin.h: Defines the API for client plugins. This includes the client plugin descriptor and function prototypes for client plugin C API calls (see Section 21.8.13, “C API Client Plugin Functions”).
plugin_auth.h: Defines the part of the server plugin API specific to authentication plugins. This includes the type-specific descriptor for server-side authentication plugins and the MYSQL_SERVER_AUTH_INFO structure.
plugin_auth_common.h: Contains common elements of client and server authentication plugins. This includes return value definitions and the MYSQL_PLUGIN_VIO structure.
To write an authentication plugin, include the following header files in the plugin source file. Other MySQL or general header files might also be needed.
For a source file that implements a server authentication plugin, include this file:
#include <mysql/plugin_auth.h>
For a source file that implements a client authentication plugin, or both client and server plugins, include these files:
#include <mysql/plugin_auth.h>
#include <mysql/client_plugin.h>
#include <mysql>
plugin_auth.h includes plugin.h and plugin_auth_common.h, so you need not include the latter files explicitly.
This section describes how to write a pair of simple server and client authentication plugins that work together.
Warning
These plugins accept any non-empty password and the password is sent in clear text. This is insecure, so the plugins should not be used in production environments.
The server-side and client-side plugins developed here both are named auth_simple. As described in Section 22.2.4.2, “Plugin Data Structures”, the plugin library file must have the same basename as the client plugin, so the source file name is auth_simple.c and produces a library named auth_simple.so (assuming that your system uses .so as the suffix for library files).
In MySQL source distributions, authentication plugin source is located in the plugin/auth directory and can be examined as a guide to writing other authentication plugins. Also, to see how the built-in authentication plugins are implemented, see sql/sql_acl.cc for plugins that are built in to the MySQL server and sql-common/client.c for plugins that are built in to the libmysqlclient client library. (For the built-in client plugins, note that the auth_plugin_t structures used there differ from the structures used with the usual client plugin declaration macros. In particular, the first two members are provided explicitly, not by declaration macros.)
22.2.4.9.1. Writing the Server-Side Authentication Plugin
Declare the server-side plugin with the usual general descriptor format that is used for all server plugin types (see Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”). For the auth_simple plugin, the descriptor looks like this:
mysql_declare_plugin(auth_simple)
{
MYSQL_AUTHENTICATION_PLUGIN,
&auth_simple_handler, /* type-specific descriptor */
"auth_simple", /* plugin name */
"Author Name", /* author */
"Any-password authentication plugin", /* description */
PLUGIN_LICENSE_GPL, /* license type */
NULL, /* no init function */
NULL, /* no deinit function */
0x0100, /* version = 1.0 */
NULL, /* no status variables */
NULL, /* no system variables */
NULL, /* no reserved information */
0 /* no flags */
}
mysql_declare_plugin_end;
The name member (auth_simple) indicates the name to use for references to the plugin in statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by SHOW PLUGINS or INFORMATION_SCHEMA.PLUGINS.
The auth_simple_handler member of the general descriptor points to the type-specific descriptor. For an authentication plugin, the type-specific descriptor is an instance of the st_mysql_auth structure (defined in plugin_auth.h):
struct st_mysql_auth
{
int interface_version;
const char *client_auth_plugin;
int (*authenticate_user)(MYSQL_PLUGIN_VIO *vio, MYSQL_SERVER_AUTH_INFO *info);
};
The st_mysql_auth structure has three members: The type-specific API version number, the client plugin name, and a pointer to the main plugin function that communicates with the client. The client_auth_plugin member should indicate the name of the client plugin if a specific plugin is required. A value of NULL means “any plugin.” In the latter case, whatever plugin the client uses will do. This is useful if the server plugin does not care about the client plugin or what user name or password it sends. For example, this might be true if the server plugin authenticates only local clients and uses some property of the operating system rather than the information sent by the client plugin.
For auth_simple, the type-specific descriptor looks like this:
static struct st_mysql_auth auth_simple_handler =
{
MYSQL_AUTHENTICATION_INTERFACE_VERSION,
"auth_simple", /* required client-side plugin name */
auth_simple_server /* server-side plugin main function */
};
The main function takes two arguments representing an I/O structure and a MYSQL_SERVER_AUTH_INFO structure. The structure definition is found in plugin_auth.h. It looks like this:
typedef struct st_mysql_server_auth_info
{
char *user_name;
unsigned int user_name_length;
const char *auth_string;
unsigned long auth_string_length;
char authenticated_as[MYSQL_USERNAME_LENGTH+1];
char external_user[512];
int password_used;
const char *host_or_ip;
unsigned int host_or_ip_length;
} MYSQL_SERVER_AUTH_INFO;
The character set for string members is UTF-8. If there is a _length member associated with a string, it indicates the string length in bytes. Strings are also null-terminated.
When an authentication plugin is invoked by the server, it should interpret the MYSQL_SERVER_AUTH_INFO structure members as follows. Some of these are used to set the value of SQL functions or system variables within the client session, as indicated.
user_name: The user name sent by the client. The value becomes the USER() function value.
user_name_length: The length of user_name in bytes.
auth_string: The value of the authentication_string column of the mysql.user table row for the matching account name (that is, the row that matches the client user name and host name and that the server uses to determine how to authenticate the client).
Suppose that you create an account using the following statement:
CREATE USER 'my_user'@'localhost'
IDENTIFIED WITH my_plugin AS 'my_auth_string';
When my_user connects from the local host, the server invokes my_plugin and passes 'my_auth_string' to it as the auth_string value.
auth_string_length: The length of auth_string in bytes.
authenticated_as: The server sets this to the user name (the value of user_name). The plugin can alter it to indicate that the client should have the privileges of a different user. For example, if the plugin supports proxy users, the initial value is the name of the connecting (proxy) user, and the plugin can change this member to the proxied user name. The server then treats the proxy user as having the privileges of the proxied user (assuming that the other conditions for proxy user support are satisfied; see Section 22.2.4.9.4, “Implementing Proxy User Support in Authentication Plugins”). The value is represented as a string at most MYSQL_USER_NAME_LENGTH bytes long, plus a terminating null. The value becomes the CURRENT_USER() function value.
external_user: The server sets this to the empty string (null terminated). Its value becomes the external_user system variable value. If the plugin wants that system variable to have a different value, it should set this member accordingly; for example, to the connecting user name. The value is represented as a string at most 511 bytes long, plus a terminating null.
password_used: This member applies when authentication fails. The plugin can set it or ignore it. The value is used to construct the failure error message of Authentication fails. Password used: %s. The value of password_used determines how %s is handled, as shown in the following table.
password_used | %s Handling |
---|---|
0 | NO |
1 | YES |
2 | There will be no %s |
host_or_ip: The name of the client host if it can be resolved, or the IP address otherwise.
host_or_ip_length: The length of host_or_ip in bytes.
The auth_simple main function, auth_simple_server(), reads the password (a null-terminated string) from the client and succeeds if the password is nonempty (first byte not null):
static int auth_simple_server (MYSQL_PLUGIN_VIO *vio,
MYSQL_SERVER_AUTH_INFO *info)
{
unsigned char *pkt;
int pkt_len;
/* read the password as null-terminated string, fail on error */
if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
return CR_ERROR;
/* fail on empty password */
if (!pkt_len || *pkt == '\0')
{
info->password_used= PASSWORD_USED_NO;
return CR_ERROR;
}
/* accept any nonempty password */
info->password_used= PASSWORD_USED_YES;
return CR_OK;
}
The main function should return one of the error codes shown in the following table.
Error Code | Meaning |
---|---|
CR_OK | Success |
CR_OK_HANDSHAKE_COMPLETE | Do not send a status packet back to client |
CR_ERROR | Error |
CR_AUTH_USER_CREDENTIALS | Authentication failure |
CR_AUTH_HANDSHAKE | Authentication handshake failure |
CR_AUTH_PLUGIN_ERROR | Internal plugin error |
For an example of how the handshake works, see the plugin/auth/dialog.c source file.
The error codes following CR_ERROR are available from MySQL 5.6.5. The server counts plugin errors in the Performance Schema host_cache table, also available as of MySQL 5.6.5.
auth_simple_server_main() is so basic that it does not use the authentication information structure except to set the member that indicates whether a password was received.
A plugin that supports proxy users must return to the server the name of the proxied user (the MySQL user whose privileges the client user should get). To do this, the plugin must set the info->authenticated_as member to the proxied user name. For information about proxying, see Section 6.3.8, “Proxy Users”, and Section 22.2.4.9.4, “Implementing Proxy User Support in Authentication Plugins”.
22.2.4.9.2. Writing the Client-Side Authentication Plugin
Declare the client-side plugin descriptor with the mysql_declare_client_plugin() and mysql_end_client_plugin macros (see Section 22.2.4.2.3, “Client Plugin Descriptors”). For the auth_simple plugin, the descriptor looks like this:
mysql_declare_client_plugin(AUTHENTICATION)
"auth_simple", /* plugin name */
"Author Name", /* author */
"Any-password authentication plugin", /* description */
{1,0,0}, /* version = 1.0.0 */
"GPL", /* license type */
NULL, /* for internal use */
NULL, /* no init function */
NULL, /* no deinit function */
NULL, /* no option-handling function */
auth_simple_client /* main function */
mysql_end_client_plugin;
The descriptor members common to all client plugins are the plugin name through the option-handling function. Following the common members, an authentication plugin also has one extra member. This is the “main” function, which handles communication with the server. The function takes two arguments representing an I/O structure and a connection handler. For our simple any-password plugin, the main function does nothing but write to the server the password provided by the user:
static int auth_simple_client (MYSQL_PLUGIN_VIO *vio, MYSQL *mysql)
{
int res;
/* send password as null-terminated string in clear text */
res= vio->write_packet(vio, (const unsigned char *) mysql->passwd,
strlen(mysql->passwd) + 1);
return res ? CR_ERROR : CR_OK;
}
The main function should return one of the error codes shown in the following table.
Error Code | Meaning |
---|---|
CR_OK | Success |
CR_OK_HANDSHAKE_COMPLETE | Success, client done |
CR_ERROR | Error |
CR_OK_HANDSHAKE_COMPLETE indicates that the client has done its part successfully and has read the last packet. A client plugin may return CR_OK_HANDSHAKE_COMPLETE if the number of round trips in the authentication protocol is not known in advance and the plugin must read another packet to determine whether authentication is finished.
22.2.4.9.3. Using the Authentication Plugins
To compile and install a plugin library object file, see the instructions in Section 22.2.4.3, “Compiling and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the directory named by the plugin_dir system variable).
Register the server-side plugin with the server. For example, to load the plugin at server startup, use a --plugin-load=auth_simple.so option (change the library suffix as necessary for your system).
Create a user for whom the server will use the auth_simple plugin for authentication:
mysql> CREATE USER 'x'@'localhost'
-> IDENTIFIED WITH auth_simple;
Use a client program to connect to the server as user x. The server-side auth_simple plugin communicates with the client program that it should use the client-side auth_simple plugin, and the latter sends the password to the server. The server plugin should reject connections that send an empty password and accept connections that send a nonempty password. Invoke the client program each way to verify this:
shell> mysql --user=x --skip-password
ERROR 1045 (28000): Access denied for user 'x'@'localhost' (using password: NO)
shell> mysql --user=x --password=abc
mysql>
Because the server plugin accepts any nonempty password, it should be considered insecure. After testing the plugin to verify that it works, restart the server without the --plugin-load option so as not to indavertently leave the server running with an insecure authentication plugin loaded. Also, drop the user with DROP USER 'x'@'localhost'.
For additional information about loading and using authentication plugins, see Section 5.1.8.1, “Installing and Uninstalling Plugins”, and Section 6.3.7, “Pluggable Authentication”.
If you are writing a client program that supports the use of authentication plugins, normally such a program causes a plugin to be loaded by calling mysql_options() to set the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:
char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";
/* ... process command-line options ... */
mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);
Typically, the program will also accept --plugin-dir and --default-auth options that enable users to override the default values.
Should a client program require lower-level plugin management, the client library contains functions that take an st_mysql_client_plugin argument. See Section 21.8.13, “C API Client Plugin Functions”.
22.2.4.9.4. Implementing Proxy User Support in Authentication Plugins
One of the capabilities that pluggable authentication makes possible is proxy users (see Section 6.3.8, “Proxy Users”). For a server-side authentication plugin to participate in proxy user support, these conditions must be satisfied:
When a connecting client should be treated as a proxy user, the plugin must return a different name in the authenticated_as member of the MYSQL_SERVER_AUTH_INFO structure, to indicate the proxied user name. It may also optionally set the external_user member, to set the value of the external_user system variable.
Proxy user accounts must be set up to be authenticated by the plugin. Use the CREATE USER or GRANT statement to associate accounts with plugins.
Proxy user accounts must have the PROXY privilege for the proxied accounts. Use the GRANT statement to grant this privilege.
In other words, the only aspect of proxy user support required of the plugin is that it set authenticated_as to the proxied user name. The rest is optional (setting external_user) or done by the DBA using SQL statements.
How does an authentication plugin determine which proxied user to return when the proxy user connects? That depends on the plugin. Typically, the plugin maps clients to proxied users based on the authentication string passed to it by the server. This string comes from the AS part of the IDENTIFIED WITH clause of the CREATE USER statement that specifies use of the plugin for authentication.
The plugin developer determines the syntax rules for the authentication string and implements the plugin according to those rules. Suppose that a plugin takes a comma-separated list of pairs that map external users to MySQL users. For example:
CREATE USER ''@'%.example.com'
IDENTIFIED WITH my_plugin AS 'extuser1=mysqlusera, extuser2=mysqluserb'
CREATE USER ''@'%.example.org'
IDENTIFIED WITH my_plugin AS 'extuser1=mysqluserc, extuser2=mysqluserd'
When the server invokes a plugin to authenticate a client, it passes the appropriate authentication string to the plugin. The plugin is responsible to:
Parse the string into its components to determine the mapping to use
Compare the client user name to the mapping
Return the proper MySQL user name
For example, if extuser2 connects from an example.com host, the server passes 'extuser1=mysqlusera, extuser2=mysqluserb' to the plugin, and the plugin should copy mysqluserb into authenticated_as, with a terminating null byte. If extuser2 connects from an example.org host, the server passes 'extuser1=mysqluserc, extuser2=mysqluserd', and the plugin should copy mysqluserd instead.
If there is no match in the mapping, the action depends on the plugin. If a match is required, the plugin likely will return an error. Or the plugin might simply return the client name; in this case, it should not change authenticated_as, and the server will not treat the client as a proxy.
The following example demonstrates how to handle proxy users using a plugin named auth_simple_proxy. Like the auth_simple plugin described earlier, auth_simple_proxy accepts any nonempty password as valid (and thus should not be used in production environments). In addition, it examines the auth_string authentication string member and uses these very simple rules for interpreting it:
If the string is empty, the plugin returns the user name as given and no proxying occurs. That is, the plugin leaves the value of authenticated_as unchanged.
If the string is nonempty, the plugin treats it as the name of the proxied user and copies it to authenticated_as so that proxying occurs.
For testing, set up one account that is not proxied according to the preceding rules, and one that is. This means that one account has no AS clause, and one includes an AS clause that names the proxied user:
CREATE USER 'plugin_user1'@'localhost'
IDENTIFIED WITH auth_simple_proxy;
CREATE USER 'plugin_user2'@'localhost'
IDENTIFIED WITH auth_simple_proxy AS 'proxied_user';
In addition, create an account for the proxied user and grant plugin_user2 the PROXY privilege for it:
CREATE USER 'proxied_user'@'localhost'
IDENTIFIED BY 'proxied_user_pass';
GRANT PROXY
ON 'proxied_user'@'localhost'
TO 'plugin_user2'@'localhost';
Before the server invokes an authentication plugin, it sets authenticated_as to the client user name. To indicate that the user is a proxy, the plugin should set authenticated_as to the proxied user name. For auth_simple_proxy, this means that it must examine the auth_string value, and, if the value is nonempty, copy it to the authenticated_as member to return it as the name of the proxied user. In addition, when proxying occurs, the plugin sets the external_user member to the client user name; this becomes the value of the external_user system variable.
static int auth_simple_proxy_server (MYSQL_PLUGIN_VIO *vio,
MYSQL_SERVER_AUTH_INFO *info)
{
unsigned char *pkt;
int pkt_len;
/* read the password as null-terminated string, fail on error */
if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
return CR_ERROR;
/* fail on empty password */
if (!pkt_len || *pkt == '\0')
{
info->password_used= PASSWORD_USED_NO;
return CR_ERROR;
}
/* accept any nonempty password */
info->password_used= PASSWORD_USED_YES;
/* if authentication string is nonempty, use as proxied user name */
/* and use client name as external_user value */
if (info->auth_string_length > 0)
{
strcpy (info->authenticated_as, info->auth_string);
strcpy (info->external_user, info->user_name);
}
return CR_OK;
}
After a successful connection, the USER() function should indicate the connecting client user and host name, and CURRENT_USER() should indicate the account whose privileges apply during the session. The latter value should be the connecting user account if no proxying occurs or the proxied account if proxying does occur.
Compile and install the plugin, then test it. First, connect as plugin_user1:
shell> mysql --user=plugin_user1 --password=x
In this case, there should be no proxying:
mysql> SELECT USER(), CURRENT_USER(), @@proxy_user, @@external_user\G
*************************** 1. row ***************************
USER(): plugin_user1@localhost
CURRENT_USER(): plugin_user1@localhost
@@proxy_user: NULL
@@external_user: NULL
Then connect as plugin_user2:
shell> mysql --user=plugin_user2 --password=x
In this case, plugin_user2 should be proxied to proxied_user:
mysql> SELECT USER(), CURRENT_USER(), @@proxy_user, @@external_user\G
*************************** 1. row ***************************
USER(): plugin_user2@localhost
CURRENT_USER(): proxied_user@localhost
@@proxy_user: 'plugin_user2'@'localhost'
@@external_user: 'plugin_user2'@'localhost'
22.2.4.10. Writing Password-Validation Plugins
This section describes how to write a password-validation server plugin. The instructions are based on the source code in the plugin/password_validation directory of MySQL source distributions. The validate_password.cc source file in that directory implements the the plugin named validate_password.
To write a password-validation plugin, include the following header file in the plugin source file. Other MySQL or general header files might also be needed.
#include <mysql/plugin_validate_password.h>
plugin_validate_password.h includes plugin.h, so you need not include the latter file explicitly. plugin.h defines the MYSQL_VALIDATE_PASSWORD_PLUGIN server plugin type and the data structures needed to declare the plugin. plugin_validate_password.h defines data structures specific to password-validation plugins.
A password-validation plugin, like any MySQL server plugin, has a general plugin descriptor (see Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”). In validate_password.cc, the general descriptor looks like this:
mysql_declare_plugin(validate_password)
{
MYSQL_VALIDATE_PASSWORD_PLUGIN, /* type */
&validate_password_descriptor, /* descriptor */
"validate_password", /* name */
"Oracle Corporation", /* author */
"check password strength", /* description */
PLUGIN_LICENSE_GPL,
validate_password_init, /* init function (when loaded) */
validate_password_deinit, /* deinit function (when unloaded) */
0x0100, /* version */
NULL,
validate_password_system_variables, /* system variables */
NULL,
0,
}
mysql_declare_plugin_end;
The name member (validate_password) indicates the name to use for references to the plugin in statements such as INSTALL PLUGIN or UNINSTALL PLUGIN. This is also the name displayed by INFORMATION_SCHEMA.PLUGINS or SHOW PLUGINS.
The general descriptor also refers to validate_password_system_variables, a structure that exposes several system variables to the SHOW VARIABLES statement:
static struct st_mysql_sys_var* validate_password_system_variables[]= {
MYSQL_SYSVAR(length),
MYSQL_SYSVAR(number_count),
MYSQL_SYSVAR(mixed_case_count),
MYSQL_SYSVAR(special_char_count),
MYSQL_SYSVAR(policy),
MYSQL_SYSVAR(dictionary_file),
NULL
};
The validate_password_init initialization function reads the dictionary file if one was specified, and the validate_password_deinit function frees data structures associated with the file.
The validate_password_descriptor value in the general descriptor points to the type-specific descriptor. For password-validation plugins, this descriptor has the following structure:
struct st_mysql_validate_password
{
int interface_version;
/*
This function returns TRUE for passwords which satisfy the password
policy (as chosen by plugin variable) and FALSE for all other
password
*/
int (*validate_password)(mysql_string_handle password);
/*
This function returns the password strength (0-100) depending
upon the policies
*/
int (*get_password_strength)(mysql_string_handle password);
};
The type-specific descriptor has these members:
interface_version: By convention, type-specific plugin descriptors begin with the interface version for the given plugin type. The server checks interface_version when it loads the plugin to see whether the plugin is compatible with it. For password-validation plugins, the value of the interface_version member is MYSQL_VALIDATE_PASSWORD_INTERFACE_VERSION (defined in plugin_validate_password.h).
validate_password: A function that the server calls to test whether a password satisfies the current password policy. It returns 1 if the password is okay and 0 otherwise. The argument is the password, passed as a mysql_string_handle value. This data type is implemented by the mysql_string server service. For details, see the string_service.h and string_service.cc source files in the sql directory.
get_password_strength: A function that the server calls to assess the strength of a password. It returns a value from 0 (weak) to 100 (strong). The argument is the password, passed as a mysql_string_handle value.
For the validate_password plugin, the type-specific descriptor looks like this:
static struct st_mysql_validate_password validate_password_descriptor=
{
MYSQL_VALIDATE_PASSWORD_INTERFACE_VERSION,
validate_password, /* validate function */
get_password_strength /* validate strength function */
};
To compile and install a plugin library object file, use the instructions in Section 22.2.4.3, “Compiling and Installing Plugin Libraries”. To use the library file, it must be installed in the plugin directory (the directory named by the plugin_dir system variable). For the validate_password plugin, it is compiled and installed when you build MySQL from source. It is also included in binary distributions. The build process produces a shared object library with a name of validate_password.so (the extension might be be different depending on your platform).
To register the plugin at runtime, use this statement (change the extension as necessary):
mysql> INSTALL PLUGIN validate_password SONAME 'validate_password.so';
For additional information about plugin loading, see Section 5.1.8.1, “Installing and Uninstalling Plugins”.
To verify plugin installation, examine the INFORMATION_SCHEMA.PLUGINS table or use the SHOW PLUGINS statement.
While the validate_password plugin is installed, it exposes system variables that indicate the password-checking parameters:
mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
| validate_password_dictionary_file | |
| validate_password_length | 8 |
| validate_password_mixed_case_count | 1 |
| validate_password_number_count | 1 |
| validate_password_policy | MEDIUM |
| validate_password_special_char_count | 1 |
+--------------------------------------+--------+
For descriptions of these variables, see Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”.
To disable the plugin after testing it, use this statement to unload it:
mysql> UNINSTALL PLUGIN validate_password;
22.2.5. MySQL Services for Plugins
MySQL server plugins have access to server “services.” The services interface exposes server functionality that plugins can call. It complements the plugin API and has these characteristics:
Services enable plugins to access code inside the server using ordinary function calls.
Services are portable and work on multiple platforms.
The interface includes a versioning mechanism so that service versions supported by the server can be checked at load time against plugin versions. Versioning protects against incompatibilities between the version of a service that the server provides and the version of the service expected or required by a plugin.
Current services include the following, and others can be implemented:
my_plugin_log_service: A service that enables plugins to report errors and specify error messages. The server writes the messages to the error log.
my_snprintf: A string-formatting service that produces consistent results across platforms.
my_thd_scheduler: A service for plugins to select a thread scheduler.
mysql_string: A service for string manipulation.
thd_alloc: A memory-allocation service.
thd_wait: A service for plugins to report when they are going to sleep or stall.
The plugin services interface differs from the plugin API as follows:
The plugin API enables plugins to be used by the server. The calling initiative lies with the server to invoke plugins. This enables plugins to extend server functionality or register to receive notifications about server processing.
The plugin services interface enables plugins to call code inside the server. The calling initiative lies with plugins to invoke service functions. This enables functionality already implemented in the server to be used by many plugins; they need not individually implement it themselves.
For developers who wish to modify the server to add a new service, see MySQL Services for Plugins.
The remainder of this section describes how a plugin uses server functionality that is available as a service. See also the source for the “daemon” example plugin, which uses the my_snprintf service. Within a MySQL source distribution, that plugin is located in the plugin/daemon_example directory.
To determine what services exist and what functions they provide, look in the include/mysql directory of a MySQL source distribution. The relevant files are:
plugin.h includes services.h.
services.h is the “umbrella” header that includes all available service-specific header files.
Service-specific headers have names like service_my_snprintf.h or service_thd_alloc.h.
Each service-specific header should contain comments that provide full usage documentation for a given service, including what service functions are available, their calling sequences, and return values.
To use a service or services from within a plugin, the plugin source file must include the plugin.h header file to access service-related information:
#include <mysql/plugin.h>
This does not represent any additional setup cost. A plugin must include that file anyway because it contains definitions and structures that every plugin needs.
To access a service, a plugin calls service functions like any other function. For example, to format a string into a buffer for printing, call the my_snprintf() function provided by the service of the same name:
char buffer[BUFFER_SIZE];
my_snprintf(buffer, sizeof(buffer), format_string, argument_to_format, ...);
To report an error that the server will write to the error log, first choose an error level. mysql/service_my_plugin_log.h defines these levels:
enum plugin_log_level
{
MY_ERROR_LEVEL,
MY_WARNING_LEVEL,
MY_INFORMATION_LEVEL
};
Then invoke my_plugin_log_message():
int my_plugin_log_message(MYSQL_PLUGIN *plugin, enum plugin_log_level level,
const char *format, ...);
For example:
my_plugin_log_message(plugin_ptr, MY_ERROR_LEVEL, "Cannot initialize plugin");
When you build your plugin, you must link in the libmysqlservices library. Use the -lmysqlservices flag at link time. For example, for CMake, put this in the top-level CMakeLists.txt file:
FIND_LIBRARY(MYSQLSERVICES_LIB mysqlservices
PATHS "${MYSQL_SRCDIR}/libservices" NO_DEFAULT_PATH)
Put this in the CMakeLists.txt file in the directory containing the plugin source:
the plugin needs the mysql services library for error logging
TARGET_LINK_LIBRARIES (your_plugin_library_name ${MYSQLSERVICES_LIB})
22.3. Adding New Functions to MySQL
There are three ways to add new functions to MySQL:
You can add functions through the user-defined function (UDF) interface. User-defined functions are compiled as object files and then added to and removed from the server dynamically using the CREATE FUNCTION and DROP FUNCTION statements. See Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”.
You can add functions as native (built-in) MySQL functions. Native functions are compiled into the mysqld server and become available on a permanent basis.
Another way to add functions is by creating stored functions. These are written using SQL statements rather than by compiling object code. The syntax for writing stored functions is not covered here. See Section 18.2, “Using Stored Routines (Procedures and Functions)”.
Each method of creating compiled functions has advantages and disadvantages:
If you write user-defined functions, you must install object files in addition to the server itself. If you compile your function into the server, you don't need to do that.
Native functions require you to modify a source distribution. UDFs do not. You can add UDFs to a binary MySQL distribution. No access to MySQL source is necessary.
If you upgrade your MySQL distribution, you can continue to use your previously installed UDFs, unless you upgrade to a newer version for which the UDF interface changes. For native functions, you must repeat your modifications each time you upgrade.
Whichever method you use to add new functions, they can be invoked in SQL statements just like native functions such as ABS() or SOUNDEX().
See Section 9.2.4, “Function Name Parsing and Resolution”, for the rules describing how the server interprets references to different kinds of functions.
The following sections describe features of the UDF interface, provide instructions for writing UDFs, discuss security precautions that MySQL takes to prevent UDF misuse, and describe how to add native MySQL functions.
For example source code that illustrates how to write UDFs, take a look at the sql/udf_example.c file that is provided in MySQL source distributions.
22.3.1. Features of the User-Defined Function Interface
The MySQL interface for user-defined functions provides the following features and capabilities:
Functions can return string, integer, or real values and can accept arguments of those same types.
You can define simple functions that operate on a single row at a time, or aggregate functions that operate on groups of rows.
Information is provided to functions that enables them to check the number, types, and names of the arguments passed to them.
You can tell MySQL to coerce arguments to a given type before passing them to a function.
You can indicate that a function returns NULL or that an error occurred.
22.3.2. Adding a New User-Defined Function
For the UDF mechanism to work, functions must be written in C or C++ and your operating system must support dynamic loading. MySQL source distributions include a file sql/udf_example.c that defines five UDF functions. Consult this file to see how UDF calling conventions work. The include/mysql_com.h header file defines UDF-related symbols and data structures, although you need not include this header file directly; it is included by mysql.h.
A UDF contains code that becomes part of the running server, so when you write a UDF, you are bound by any and all constraints that apply to writing server code. For example, you may have problems if you attempt to use functions from the libstdc++ library. These constraints may change in future versions of the server, so it is possible that server upgrades will require revisions to UDFs that were originally written for older servers. For information about these constraints, see Section 2.9.4, “MySQL Source-Configuration Options”, and Section 2.9.5, “Dealing with Problems Compiling MySQL”.
To be able to use UDFs, you must link mysqld dynamically. If you want to use a UDF that needs to access symbols from mysqld (for example, the metaphone function in sql/udf_example.c uses default_charset_info), you must link the program with -rdynamic (see man dlopen).
For each function that you want to use in SQL statements, you should define corresponding C (or C++) functions. In the following discussion, the name “xxx” is used for an example function name. To distinguish between SQL and C/C++ usage, XXX() (uppercase) indicates an SQL function call, and xxx() (lowercase) indicates a C/C++ function call.
Note
When using C++ you can encapsulate your C functions within:
extern "C" { ... }
This ensures that your C++ function names remain readable in the completed UDF.
The following list describes the C/C++ functions that you write to implement the interface for a function named XXX(). The main function, xxx(), is required. In addition, a UDF requires at least one of the other functions described here, for reasons discussed in Section 22.3.2.6, “User-Defined Function Security Precautions”.
xxx()
The main function. This is where the function result is computed. The correspondence between the SQL function data type and the return type of your C/C++ function is shown here.
SQL Type | C/C++ Type |
---|---|
STRING | char * |
INTEGER | long long |
REAL | double |
It is also possible to declare a DECIMAL function, but currently the value is returned as a string, so you should write the UDF as though it were a STRING function. ROW functions are not implemented.
xxx_init()
The initialization function for xxx(). If present, it can be used for the following purposes:
To check the number of arguments to XXX().
To verify that the arguments are of a required type or, alternatively, to tell MySQL to coerce arguments to the required types when the main function is called.
To allocate any memory required by the main function.
To specify the maximum length of the result.
To specify (for REAL functions) the maximum number of decimal places in the result.
To specify whether the result can be NULL.
xxx_deinit()
The deinitialization function for xxx(). If present, it should deallocate any memory allocated by the initialization function.
When an SQL statement invokes XXX(), MySQL calls the initialization function xxx_init() to let it perform any required setup, such as argument checking or memory allocation. If xxx_init() returns an error, MySQL aborts the SQL statement with an error message and does not call the main or deinitialization functions. Otherwise, MySQL calls the main function xxx() once for each row. After all rows have been processed, MySQL calls the deinitialization function xxx_deinit() so that it can perform any required cleanup.
For aggregate functions that work like SUM(), you must also provide the following functions:
xxx_clear()
Reset the current aggregate value but do not insert the argument as the initial aggregate value for a new group.
xxx_add()
Add the argument to the current aggregate value.
MySQL handles aggregate UDFs as follows:
Call xxx_init() to let the aggregate function allocate any memory it needs for storing results.
Sort the table according to the GROUP BY expression.
Call xxx_clear() for the first row in each new group.
Call xxx_add() for each row that belongs in the same group.
Call xxx() to get the result for the aggregate when the group changes or after the last row has been processed.
Repeat steps 3 to 5 until all rows has been processed
Call xxx_deinit() to let the UDF free any memory it has allocated.
All functions must be thread-safe. This includes not just the main function, but the initialization and deinitialization functions as well, and also the additional functions required by aggregate functions. A consequence of this requirement is that you are not permitted to allocate any global or static variables that change! If you need memory, you should allocate it in xxx_init() and free it in xxx_deinit().
22.3.2.1. UDF Calling Sequences for Simple Functions
This section describes the different functions that you need to define when you create a simple UDF. Section 22.3.2, “Adding a New User-Defined Function”, describes the order in which MySQL calls these functions.
The main xxx() function should be declared as shown in this section. Note that the return type and parameters differ, depending on whether you declare the SQL function XXX() to return STRING, INTEGER, or REAL in the CREATE FUNCTION statement:
For STRING functions:
char *xxx(UDF_INIT *initid, UDF_ARGS *args,
char *result, unsigned long *length,
char *is_null, char *error);
For INTEGER functions:
long long xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);
For REAL functions:
double xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);
DECIMAL functions return string values and should be declared the same way as STRING functions. ROW functions are not implemented.
The initialization and deinitialization functions are declared like this:
my_bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *message);
void xxx_deinit(UDF_INIT *initid);
The initid parameter is passed to all three functions. It points to a UDF_INIT structure that is used to communicate information between functions. The UDF_INIT structure members follow. The initialization function should fill in any members that it wishes to change. (To use the default for a member, leave it unchanged.)
my_bool maybe_null
xxx_init() should set maybe_null to 1 if xxx() can return NULL. The default value is 1 if any of the arguments are declared maybe_null.
unsigned int decimals
The number of decimal digits to the right of the decimal point. The default value is the maximum number of decimal digits in the arguments passed to the main function. For example, if the function is passed 1.34, 1.345, and 1.3, the default would be 3, because 1.345 has 3 decimal digits.
For arguments that have no fixed number of decimals, the decimals value is set to 31, which is 1 more than the maximum number of decimals permitted for the DECIMAL, FLOAT, and DOUBLE data types. In MySQL 5.6, this value is available as the constant NOT_FIXED_DEC in the mysql_com.h header file.
A decimals value of 31 is used for arguments in cases such as a FLOAT or DOUBLE column declared without an explicit number of decimals (for example, FLOAT rather than FLOAT(10,3)) and for floating-point constants such as 1345E-3. It is also used for string and other nonnumber arguments that might be converted within the function to numeric form.
The value to which the decimals member is initialized is only a default. It can be changed within the function to reflect the actual calculation performed. The default is determined such that the largest number of decimals of the arguments is used. If the number of decimals is NOT_FIXED_DEC for even one of the arguments, that is the value used for decimals.
unsigned int max_length
The maximum length of the result. The default max_length value differs depending on the result type of the function. For string functions, the default is the length of the longest argument. For integer functions, the default is 21 digits. For real functions, the default is 13 plus the number of decimal digits indicated by initid->decimals. (For numeric functions, the length includes any sign or decimal point characters.)
If you want to return a blob value, you can set max_length to 65KB or 16MB. This memory is not allocated, but the value is used to decide which data type to use if there is a need to temporarily store the data.
char *ptr
A pointer that the function can use for its own purposes. For example, functions can use initid->ptr to communicate allocated memory among themselves. xxx_init() should allocate the memory and assign it to this pointer:
initid->ptr = allocated_memory;
In xxx() and xxx_deinit(), refer to initid->ptr to use or deallocate the memory.
my_bool const_item
xxx_init() should set const_item to 1 if xxx() always returns the same value and to 0 otherwise.
22.3.2.2. UDF Calling Sequences for Aggregate Functions
This section describes the different functions that you need to define when you create an aggregate UDF. Section 22.3.2, “Adding a New User-Defined Function”, describes the order in which MySQL calls these functions.
xxx_reset()
This function is called when MySQL finds the first row in a new group. It should reset any internal summary variables and then use the given UDF_ARGS argument as the first value in your internal summary value for the group. Declare xxx_reset() as follows:
void xxx_reset(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);
xxx_reset() is not needed or used in MySQL 5.6, in which the UDF interface uses xxx_clear() instead. However, you can define both xxx_reset() and xxx_clear() if you want to have your UDF work with older versions of the server. (If you do include both functions, the xxx_reset() function in many cases can be implemented internally by calling xxx_clear() to reset all variables, and then calling xxx_add() to add the UDF_ARGS argument as the first value in the group.)
xxx_clear()
This function is called when MySQL needs to reset the summary results. It is called at the beginning for each new group but can also be called to reset the values for a query where there were no matching rows. Declare xxx_clear() as follows:
void xxx_clear(UDF_INIT *initid, char *is_null, char *error);
is_null is set to point to CHAR(0) before calling xxx_clear().
If something went wrong, you can store a value in the variable to which the error argument points. error points to a single-byte variable, not to a string buffer.
xxx_clear() is required by MySQL 5.6.
xxx_add()
This function is called for all rows that belong to the same group. You should use it to add the value in the UDF_ARGS argument to your internal summary variable.
void xxx_add(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);
The xxx() function for an aggregate UDF should be declared the same way as for a nonaggregate UDF. See Section 22.3.2.1, “UDF Calling Sequences for Simple Functions”.
For an aggregate UDF, MySQL calls the xxx() function after all rows in the group have been processed. You should normally never access its UDF_ARGS argument here but instead return a value based on your internal summary variables.
Return value handling in xxx() should be done the same way as for a nonaggregate UDF. See Section 22.3.2.4, “UDF Return Values and Error Handling”.
The xxx_reset() and xxx_add() functions handle their UDF_ARGS argument the same way as functions for nonaggregate UDFs. See Section 22.3.2.3, “UDF Argument Processing”.
The pointer arguments to is_null and error are the same for all calls to xxx_reset(), xxx_clear(), xxx_add() and xxx(). You can use this to remember that you got an error or whether the xxx() function should return NULL. You should not store a string into *error! error points to a single-byte variable, not to a string buffer.
*is_null is reset for each group (before calling xxx_clear()). *error is never reset.
If *is_null or *error are set when xxx() returns, MySQL returns NULL as the result for the group function.
22.3.2.3. UDF Argument Processing
The args parameter points to a UDF_ARGS structure that has the members listed here:
unsigned int arg_count
The number of arguments. Check this value in the initialization function if you require your function to be called with a particular number of arguments. For example:
if (args->arg_count != 2)
{
strcpy(message,"XXX() requires two arguments");
return 1;
}
For other UDF_ARGS member values that are arrays, array references are zero-based. That is, refer to array members using index values from 0 to args->arg_count – 1.
enum Item_result *arg_type
A pointer to an array containing the types for each argument. The possible type values are STRING_RESULT, INT_RESULT, REAL_RESULT, and DECIMAL_RESULT.
To make sure that arguments are of a given type and return an error if they are not, check the arg_type array in the initialization function. For example:
if (args->arg_type[0] != STRING_RESULT ||
args->arg_type[1] != INT_RESULT)
{
strcpy(message,"XXX() requires a string and an integer");
return 1;
}
Arguments of type DECIMAL_RESULT are passed as strings, so you should handle them the same way as STRING_RESULT values.
As an alternative to requiring your function's arguments to be of particular types, you can use the initialization function to set the arg_type elements to the types you want. This causes MySQL to coerce arguments to those types for each call to xxx(). For example, to specify that the first two arguments should be coerced to string and integer, respectively, do this in xxx_init():
args->arg_type[0] = STRING_RESULT;
args->arg_type[1] = INT_RESULT;
Exact-value decimal arguments such as 1.3 or DECIMAL column values are passed with a type of DECIMAL_RESULT. However, the values are passed as strings. If you want to receive a number, use the initialization function to specify that the argument should be coerced to a REAL_RESULT value:
args->arg_type[2] = REAL_RESULT;
char **args
args->args communicates information to the initialization function about the general nature of the arguments passed to your function. For a constant argument i, args->args[i] points to the argument value. (See later for instructions on how to access the value properly.) For a nonconstant argument, args->args[i] is 0. A constant argument is an expression that uses only constants, such as 3 or 4*7-2 or SIN(3.14). A nonconstant argument is an expression that refers to values that may change from row to row, such as column names or functions that are called with nonconstant arguments.
For each invocation of the main function, args->args contains the actual arguments that are passed for the row currently being processed.
If argument i represents NULL, args->args[i] is a null pointer (0). If the argument is not NULL, functions can refer to it as follows:
An argument of type STRING_RESULT is given as a string pointer plus a length, to enable handling of binary data or data of arbitrary length. The string contents are available as args->args[i] and the string length is args->lengths[i]. Do not assume that the string is null-terminated.
For an argument of type INT_RESULT, you must cast args->args[i] to a long long value:
long long int_val;
int_val = *((long long*) args->args[i]);
For an argument of type REAL_RESULT, you must cast args->args[i] to a double value:
double real_val;
real_val = *((double*) args->args[i]);
For an argument of type DECIMAL_RESULT, the value is passed as a string and should be handled like a STRING_RESULT value.
ROW_RESULT arguments are not implemented.
unsigned long *lengths
For the initialization function, the lengths array indicates the maximum string length for each argument. You should not change these. For each invocation of the main function, lengths contains the actual lengths of any string arguments that are passed for the row currently being processed. For arguments of types INT_RESULT or REAL_RESULT, lengths still contains the maximum length of the argument (as for the initialization function).
char *maybe_null
For the initialization function, the maybe_null array indicates for each argument whether the argument value might be null (0 if no, 1 if yes).
char **attributes
args->attributes communicates information about the names of the UDF arguments. For argument i, the attribute name is available as a string in args->attributes[i] and the attribute length is args->attribute_lengths[i]. Do not assume that the string is null-terminated.
By default, the name of a UDF argument is the text of the expression used to specify the argument. For UDFs, an argument may also have an optional [AS] alias_name clause, in which case the argument name is alias_name. The attributes value for each argument thus depends on whether an alias was given.
Suppose that a UDF my_udf() is invoked as follows:
SELECT my_udf(expr1, expr2 AS alias1, expr3 alias2);
In this case, the attributes and attribute_lengths arrays will have these values:
args->attributes[0] = "expr1"
args->attribute_lengths[0] = 5
args->attributes[1] = "alias1"
args->attribute_lengths[1] = 6
args->attributes[2] = "alias2"
args->attribute_lengths[2] = 6
unsigned long *attribute_lengths
The attribute_lengths array indicates the length of each argument name.
22.3.2.4. UDF Return Values and Error Handling
The initialization function should return 0 if no error occurred and 1 otherwise. If an error occurs, xxx_init() should store a null-terminated error message in the message parameter. The message is returned to the client. The message buffer is MYSQL_ERRMSG_SIZE characters long, but you should try to keep the message to less than 80 characters so that it fits the width of a standard terminal screen.
The return value of the main function xxx() is the function value, for long long and double functions. A string function should return a pointer to the result and set *length to the length (in bytes) of the return value. For example:
memcpy(result, "result string", 13);
*length = 13;
MySQL passes a buffer to the xxx() function using the result parameter. This buffer is sufficiently long to hold 255 characters, which can be multi-byte characters. The xxx() function can store the result in this buffer if it fits, in which case the return value should be a pointer to the buffer. If the function stores the result in a different buffer, it should return a pointer to that buffer.
If your string function does not use the supplied buffer (for example, if it needs to return a string longer than 255 characters), you must allocate the space for your own buffer with malloc() in your xxx_init() function or your xxx() function and free it in your xxx_deinit() function. You can store the allocated memory in the ptr slot in the UDF_INIT structure for reuse by future xxx() calls. See Section 22.3.2.1, “UDF Calling Sequences for Simple Functions”.
To indicate a return value of NULL in the main function, set *is_null to 1:
*is_null = 1;
To indicate an error return in the main function, set *error to 1:
*error = 1;
If xxx() sets *error to 1 for any row, the function value is NULL for the current row and for any subsequent rows processed by the statement in which XXX() was invoked. (xxx() is not even called for subsequent rows.)
22.3.2.5. Compiling and Installing User-Defined Functions
Files implementing UDFs must be compiled and installed on the host where the server runs. This process is described below for the example UDF file sql/udf_example.c that is included in MySQL source distributions.
If a UDF will be referred to in statements that will be replicated to slave servers, you must ensure that every slave also has the function available. Otherwise, replication will fail on the slaves when they attempt to invoke the function.
The immediately following instructions are for Unix. Instructions for Windows are given later in this section.
The udf_example.c file contains the following functions:
metaphon() returns a metaphon string of the string argument. This is something like a soundex string, but it is more tuned for English.
myfunc_double() returns the sum of the ASCII values of the characters in its arguments, divided by the sum of the length of its arguments.
myfunc_int() returns the sum of the length of its arguments.
sequence([const int]) returns a sequence starting from the given number or 1 if no number has been given.
lookup() returns the IP address for a host name.
reverse_lookup() returns the host name for an IP address. The function may be called either with a single string argument of the form 'xxx.xxx.xxx.xxx' or with four numbers.
avgcost() returns an average cost. This is an aggregate function.
A dynamically loadable file should be compiled as a sharable object file, using a command something like this:
shell> gcc -shared -o udf_example.so udf_example.c
If you are using gcc with CMake (which is how MySQL is configured), you should be able to create udf_example.so with a simpler command:
shell> make udf_example
After you compile a shared object containing UDFs, you must install it and tell MySQL about it. Compiling a shared object from udf_example.c using gcc directly produces a file named udf_example.so. Copy the shared object to the server's plugin directory and name it udf_example.so. This directory is given by the value of the plugin_dir system variable.
On some systems, the ldconfig program that configures the dynamic linker does not recognize a shared object unless its name begins with lib. In this case you should rename a file such as udf_example.so to libudf_example.so.
On Windows, you can compile user-defined functions by using the following procedure:
Obtain a MySQL source distribution. See Section 2.1.3, “How to Get MySQL”.
Obtain the CMake build utility, if necessary, from http://www.cmake.org. (Version 2.6 or later is required).
In the source tree, look in the sql directory. There are files named udf_example.def udf_example.c there. Copy both files from this directory to your working directory.
Create a CMake makefile (CMakeLists.txt) with these contents:
PROJECT(udf_example)
Path for MySQL include directory
INCLUDE_DIRECTORIES("c:/mysql/include")
ADD_DEFINITIONS("-DHAVE_DLOPEN")
ADD_LIBRARY(udf_example MODULE udf_example.c udf_example.def)
TARGET_LINK_LIBRARIES(udf_example wsock32)
Create the VC project and solution files:
cmake -G "<Generator>"
Invoking cmake --help shows you a list of valid Generators.
Create udf_example.dll:
devenv udf_example.sln /build Release
After the shared object file has been installed, notify mysqld about the new functions with the following statements. If object files have a suffix different from .so on your system, substitute the correct suffix throughout (for example, .dll on Windows).
mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_double RETURNS REAL SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION sequence RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION lookup RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION reverse_lookup
-> RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE AGGREGATE FUNCTION avgcost
-> RETURNS REAL SONAME 'udf_example.so';
To delete functions, use DROP FUNCTION:
mysql> DROP FUNCTION metaphon;
mysql> DROP FUNCTION myfunc_double;
mysql> DROP FUNCTION myfunc_int;
mysql> DROP FUNCTION sequence;
mysql> DROP FUNCTION lookup;
mysql> DROP FUNCTION reverse_lookup;
mysql> DROP FUNCTION avgcost;
The CREATE FUNCTION and DROP FUNCTION statements update the func system table in the mysql database. The function's name, type and shared library name are saved in the table. You must have the INSERT or DELETE privilege for the mysql database to create or drop functions, respectively.
You should not use CREATE FUNCTION to add a function that has previously been created. If you need to reinstall a function, you should remove it with DROP FUNCTION and then reinstall it with CREATE FUNCTION. You would need to do this, for example, if you recompile a new version of your function, so that mysqld gets the new version. Otherwise, the server continues to use the old version.
An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld with the --skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are unavailable.
22.3.2.6. User-Defined Function Security Precautions
MySQL takes several measures to prevent misuse of user-defined functions.
UDF object files cannot be placed in arbitrary directories. They must be located in the server's plugin directory. This directory is given by the value of the plugin_dir system variable.
To use CREATE FUNCTION or DROP FUNCTION, you must have the INSERT or DELETE privilege, respectively, for the mysql database. This is necessary because those statements add and delete rows from the mysql.func table.
UDFs should have at least one symbol defined in addition to the xxx symbol that corresponds to the main xxx() function. These auxiliary symbols correspond to the xxx_init(), xxx_deinit(), xxx_reset(), xxx_clear(), and xxx_add() functions. mysqld also supports an --allow-suspicious-udfs option that controls whether UDFs that have only an xxx symbol can be loaded. By default, the option is off, to prevent attempts at loading functions from shared object files other than those containing legitimate UDFs. If you have older UDFs that contain only the xxx symbol and that cannot be recompiled to include an auxiliary symbol, it may be necessary to specify the --allow-suspicious-udfs option. Otherwise, you should avoid enabling this capability.
22.3.3. Adding a New Native Function
To add a new native MySQL function, use the procedure described here, which requires that you use a source distribution. You cannot add native functions to a binary distribution because it is necessary to modify MySQL source code and compile MySQL from the modified source. If you migrate to another version of MySQL (for example, when a new version is released), you must repeat the procedure with the new version.
If the new native function will be referred to in statements that will be replicated to slave servers, you must ensure that every slave server also has the function available. Otherwise, replication will fail on the slaves when they attempt to invoke the function.
To add a new native function, follow these steps to modify source files in the sql directory:
Create a subclass for the function in item_create.cc:
If the function takes a fixed number of arguments, create a subclass of Create_func_arg0, Create_func_arg1, Create_func_arg2, or Create_func_arg3, respectively, depending on whether the function takes zero, one, two, or three arguments. For examples, see the Create_func_uuid, Create_func_abs, Create_func_pow, and Create_func_lpad classes.
If the function takes a variable number of arguments, create a subclass of Create_native_func. For an example, see Create_func_concat.
To provide a name by which the function can be referred to in SQL statements, register the name in item_create.cc by adding a line to this array:
static Native_func_registry func_array[]
You can register several names for the same function. For example, see the lines for "LCASE" and "LOWER", which are aliases for Create_func_lcase.
In item_func.h, declare a class inheriting from Item_num_func or Item_str_func, depending on whether your function returns a number or a string.
In item_func.cc, add one of the following declarations, depending on whether you are defining a numeric or string function:
double Item_func_newname::val()
longlong Item_func_newname::val_int()
String *Item_func_newname::Str(String *str)
If you inherit your object from any of the standard items (like Item_num_func), you probably only have to define one of these functions and let the parent object take care of the other functions. For example, the Item_str_func class defines a val() function that executes atof() on the value returned by ::str().
If the function is nondeterministic, include the following statement in the item constructor to indicate that function results should not be cached:
current_thd->lex->safe_to_cache_query=0;
A function is nondeterministic if, given fixed values for its arguments, it can return different results for different invocations.
You should probably also define the following object function:
void Item_func_newname::fix_length_and_dec()
This function should at least calculate max_length based on the given arguments. max_length is the maximum number of characters the function may return. This function should also set maybe_null = 0 if the main function can't return a NULL value. The function can check whether any of the function arguments can return NULL by checking the arguments' maybe_null variable. Look at Item_func_mod::fix_length_and_dec for a typical example of how to do this.
All functions must be thread-safe. In other words, do not use any global or static variables in the functions without protecting them with mutexes.
If you want to return NULL from ::val(), ::val_int(), or ::str(), you should set null_value to 1 and return 0.
For ::str() object functions, there are additional considerations to be aware of:
The String *str argument provides a string buffer that may be used to hold the result. (For more information about the String type, take a look at the sql_string.h file.)
The ::str() function should return the string that holds the result, or (char*) 0 if the result is NULL.
All current string functions try to avoid allocating any memory unless absolutely necessary!
22.4. Debugging and Porting MySQL
This appendix helps you port MySQL to other operating systems. Do check the list of currently supported operating systems first. See Section 2.1.1, “Operating Systems Supported by MySQL Community Server”. If you have created a new port of MySQL, please let us know so that we can list it here and on our Web site (http://www.mysql.com/), recommending it to other users.
Note
If you create a new port of MySQL, you are free to copy and distribute it under the GPL license, but it does not make you a copyright holder of MySQL.
A working POSIX thread library is needed for the server.
To build MySQL from source, your system must satisfy the tool requirements listed at Section 2.9, “Installing MySQL from Source”.
Important
If you are trying to build MySQL 5.6 with icc on the IA64 platform, and need support for MySQL Cluster, you should first ensure that you are using icc version 9.1.043 or later. (For details, see Bug #21875.)
If you run into problems with a new port, you may have to do some debugging of MySQL! See Section 22.4.1, “Debugging a MySQL Server”.
Note
Before you start debugging mysqld, first get the test programs mysys/thr_alarm and mysys/thr_lock to work. This ensures that your thread installation has even a remote chance to work!
22.4.1. Debugging a MySQL Server
If you are using some functionality that is very new in MySQL, you can try to run mysqld with the --skip-new (which disables all new, potentially unsafe functionality). See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.
If mysqld doesn't want to start, you should verify that you don't have any my.cnf files that interfere with your setup! You can check your my.cnf arguments with mysqld --print-defaults and avoid using them by starting with mysqld --no-defaults
If mysqld starts to eat up CPU or memory or if it “hangs,” you can use mysqladmin processlist status to find out if someone is executing a query that takes a long time. It may be a good idea to run mysqladmin -i10 processlist status in some window if you are experiencing performance problems or problems when new clients can't connect.
The command mysqladmin debug dumps some information about locks in use, used memory and query usage to the MySQL log file. This may help solve some problems. This command also provides some useful information even if you haven't compiled MySQL for debugging!
If the problem is that some tables are getting slower and slower you should try to optimize the table with OPTIMIZE TABLE or myisamchk. See Chapter 5, MySQL Server Administration. You should also check the slow queries with EXPLAIN.
You should also read the OS-specific section in this manual for problems that may be unique to your environment. See Section 2.1, “General Installation Guidance”.
22.4.1.1. Compiling MySQL for Debugging
If you have some very specific problem, you can always try to debug MySQL. To do this you must configure MySQL with the -DWITH_DEBUG=1 option. You can check whether MySQL was compiled with debugging by doing: mysqld --help. If the --debug flag is listed with the options then you have debugging enabled. mysqladmin ver also lists the mysqld version as mysql ... --debug in this case.
If mysqld stops crashing when you compile it with -DWITH_DEBUG=1, you probably have found a compiler bug or a timing bug within MySQL. In this case, you can try to add -g to the CFLAGS and CXXFLAGS environment variables and not use -DWITH_DEBUG=1. If mysqld dies, you can at least attach to it with gdb or use gdb on the core file to find out what happened.
When you configure MySQL for debugging you automatically enable a lot of extra safety check functions that monitor the health of mysqld. If they find something “unexpected,” an entry is written to stderr, which mysqld_safe directs to the error log! This also means that if you are having some unexpected problems with MySQL and are using a source distribution, the first thing you should do is to configure MySQL for debugging! (The second thing is to send mail to a MySQL mailing list and ask for help. See Section 1.6.1, “MySQL Mailing Lists”. If you believe that you have found a bug, please use the instructions at Section 1.7, “How to Report Bugs or Problems”.
In the Windows MySQL distribution, mysqld.exe is by default compiled with support for trace files.
22.4.1.2. Creating Trace Files
If the mysqld server doesn't start or if you can cause it to crash quickly, you can try to create a trace file to find the problem.
To do this, you must have a mysqld that has been compiled with debugging support. You can check this by executing mysqld -V. If the version number ends with -debug, it is compiled with support for trace files. (On Windows, the debugging server is named mysqld-debug rather than mysqld as of MySQL 4.1.)
Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or C:\mysqld.trace on Windows:
shell> mysqld --debug
On Windows, you should also use the --standalone flag to not start mysqld as a service. In a console window, use this command:
C:\> mysqld-debug --debug --standalone
After this, you can use the mysql.exe command-line tool in a second console window to reproduce the problem. You can stop the mysqld server with mysqladmin shutdown.
The trace file can become very large! To generate a smaller trace file, you can use debugging options something like this:
mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace
This only prints information with the most interesting tags to the trace file.
If you make a bug report about this, please only send the lines from the trace file to the appropriate mailing list where something seems to go wrong! If you can't locate the wrong place, you can open a bug report and upload the trace file to the report, so that a MySQL developer can take a look at it. For instructions, see Section 1.7, “How to Report Bugs or Problems”.
The trace file is made with the DBUG package by Fred Fish. See Section 22.4.3, “The DBUG Package”.
22.4.1.3. Using pdb to create a Windows crashdump
Program Database files (extension pdb) are included in the Noinstall distribution of MySQL. These files provide information for debugging your MySQL installation in the event of a problem.
The PDB file contains more detailed information about mysqld and other tools that enables more detailed trace and dump files to be created. You can use these with Dr Watson, WinDbg and Visual Studio to debug mysqld.
For more information on PDB files, see Microsoft Knowledge Base Article 121366. For more information on the debugging options available, see Debugging Tools for Windows.
Dr Watson is installed with all Windows distributions, but if you have installed Windows development tools, Dr Watson may have been replaced with WinDbg, the debugger included with Visual Studio, or the debugging tools provided with Borland or Delphi.
To generate a crash file using Dr Watson, follow these steps:
Start Dr Watson by running drwtsn32.exe interactively using the -i option:
C:\> drwtsn32 -i
Set the Log File Path to the directory where you want to store trace files.
Make sure Dump All Thread Contexts and Append To Existing Log File.
Uncheck Dump Symbol Table, Visual Notification, Sound Notification and Create Crash Dump File.
Set the Number of Instructions to a suitable value to capture enough calls in the stacktrace. A value of at 25 should be enough.
Note that the file generated can become very large.
22.4.1.4. Debugging mysqld under gdb
On most systems you can also start mysqld from gdb to get more information if mysqld crashes.
With some older gdb versions on Linux you must use run --one-thread if you want to be able to debug mysqld threads. In this case, you can only have one thread active at a time. It is best to upgrade to gdb 5.1 because thread debugging works much better with this version!
NPTL threads (the new thread library on Linux) may cause problems while running mysqld under gdb. Some symptoms are:
mysqld hangs during startup (before it writes ready for connections).
mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.
In this case, you should set the following environment variable in the shell before starting gdb:
LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL
When running mysqld under gdb, you should disable the stack trace with --skip-stack-trace to be able to catch segfaults within gdb.
In MySQL 4.0.14 and above you should use the --gdb option to mysqld. This installs an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and disable stack tracing and core file handling.
It is very hard to debug MySQL under gdb if you do a lot of new connections the whole time as gdb doesn't free the memory for old threads. You can avoid this problem by starting mysqld with thread_cache_size set to a value equal to max_connections + 1. In most cases just using --thread_cache_size=5' helps a lot!
If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with the --core-file option. This core file can be used to make a backtrace that may help you find out why mysqld died:
shell> gdb mysqld core
gdb> backtrace full
gdb> quit
See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.
If you are using gdb 4.17.x or above on Linux, you should install a .gdb file, with the following information, in your current directory:
set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint
If you have problems debugging threads with gdb, you should download gdb 5.x and try this instead. The new gdb version has very improved thread handling!
Here is an example how to debug mysqld:
shell> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes
Include the preceding output in a bug report, which you can file using the instructions in Section 1.7, “How to Report Bugs or Problems”.
If mysqld hangs, you can try to use some system tools like strace or /usr/proc/bin/pstack to examine where mysqld has hung.
strace /tmp/log libexec/mysqld
If you are using the Perl DBI interface, you can turn on debugging information by using the trace method or by setting the DBI_TRACE environment variable.
22.4.1.5. Using a Stack Trace
On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You can use this to find out where (and maybe why) mysqld died. See Section 5.2.2, “The Error Log”. To get a stack trace, you must not compile mysqld with the -fomit-frame-pointer option to gcc. See Section 22.4.1.1, “Compiling MySQL for Debugging”.
A stack trace in the error log looks something like this:
mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...
stack_bottom = 0x41fd0110 thread_stack 0x40000
mysqld(my_print_stacktrace+0x32)[0x9da402]
mysqld(handle_segfault+0x28a)[0x6648e9]
/lib/libpthread.so.0[0x7f1a5af000f0]
/lib/libc.so.6(strcmp+0x2)[0x7f1a5a10f0f2]
mysqld(_Z21check_change_passwordP3THDPKcS2_Pcj+0x7c)[0x7412cb]
mysqld(_ZN16set_var_password5checkEP3THD+0xd0)[0x688354]
mysqld(_Z17sql_set_variablesP3THDP4ListI12set_var_baseE+0x68)[0x688494]
mysqld(_Z21mysql_execute_commandP3THD+0x41a0)[0x67a170]
mysqld(_Z11mysql_parseP3THDPKcjPS2_+0x282)[0x67f0ad]
mysqld(_Z16dispatch_command19enum_server_commandP3THDPcj+0xbb7[0x67fdf8]
mysqld(_Z10do_commandP3THD+0x24d)[0x6811b6]
mysqld(handle_one_connection+0x11c)[0x66e05e]
If resolution of function names for the trace fails, the trace contains less information:
mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...
stack_bottom = 0x41fd0110 thread_stack 0x40000
[0x9da402]
[0x6648e9]
[0x7f1a5af000f0]
[0x7f1a5a10f0f2]
[0x7412cb]
[0x688354]
[0x688494]
[0x67a170]
[0x67f0ad]
[0x67fdf8]
[0x6811b6]
[0x66e05e]
In the latter case, you can use the resolve_stack_dump utility to determine where mysqld died by using the following procedure:
Copy the numbers from the stack trace to a file, for example mysqld.stack. The numbers should not include the surrounding square brackets:
0x9da402
0x6648e9
0x7f1a5af000f0
0x7f1a5a10f0f2
0x7412cb
0x688354
0x688494
0x67a170
0x67f0ad
0x67fdf8
0x6811b6
0x66e05e
Make a symbol file for the mysqld server:
shell> nm -n libexec/mysqld > /tmp/mysqld.sym
If mysqld is not linked statically, use the following command instead:
shell> nm -D -n libexec/mysqld > /tmp/mysqld.sym
If you want to decode C++ symbols, use the --demangle, if available, to nm. If your version of nm does not have this option, you will need to use the c++filt command after the stack dump has been produced to demangle the C++ names.
Execute the following command:
shell> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack
If you were not able to include demangled C++ names in your symbol file, process the resolve_stack_dump output using c++filt:
shell> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack | c++filt
This prints out where mysqld died. If that does not help you find out why mysqld died, you should create a bug report and include the output from the preceding command with the bug report.
However, in most cases it does not help us to have just a stack trace to find the reason for the problem. To be able to locate the bug or provide a workaround, in most cases we need to know the statement that killed mysqld and preferably a test case so that we can repeat the problem! See Section 1.7, “How to Report Bugs or Problems”.
Newer versions of glibc stack trace functions also print the address as relative to the object. On glibc-based systems (Linux), the trace for a crash within a plugin looks something like:
plugin/auth/auth_test_plugin.so(+0x9a6)[0x7ff4d11c29a6]
To translate the relative address (+0x9a6) into a file name and line number, use this command:
shell> addr2line -fie auth_test_plugin.so 0x9a6
auth_test_plugin
mysql-trunk/plugin/auth/test_plugin.c:65
The addr2line utility is part of the binutils package on Linux.
On Solaris, the procedure is similar. The Solaris printstack() already prints relative addresses:
plugin/auth/auth_test_plugin.so:0x1510
To translate, use this command:
shell> gaddr2line -fie auth_test_plugin.so 0x1510
mysql-trunk/plugin/auth/test_plugin.c:88
Windows already prints the address, function name and line:
000007FEF07E10A4 auth_test_plugin.dll!auth_test_plugin()[test_plugin.c:72]
22.4.1.6. Using Server Logs to Find Causes of Errors in mysqld
Note that before starting mysqld with the general query log enabled, you should check all your tables with myisamchk. See Chapter 5, MySQL Server Administration.
If mysqld dies or hangs, you should start mysqld with the general query log enabled. See Section 5.2.3, “The General Query Log”. When mysqld dies again, you can examine the end of the log file for the query that killed mysqld.
If you use the default general query log file, the log is stored in the database directory as host_name.log In most cases it is the last query in the log file that killed mysqld, but if possible you should verify this by restarting mysqld and executing the found query from the mysql command-line tools. If this works, you should also test all complicated queries that didn't complete.
You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure that mysqld is using indexes properly. See Section 13.8.2, “EXPLAIN Syntax”.
You can find the queries that take a long time to execute by starting mysqld with the slow query log enabled. See Section 5.2.5, “The Slow Query Log”.
If you find the text mysqld restarted in the error log file (normally named hostname.err) you probably have found a query that causes mysqld to fail. If this happens, you should check all your tables with myisamchk (see Chapter 5, MySQL Server Administration), and test the queries in the MySQL log files to see whether one fails. If you find such a query, try first upgrading to the newest MySQL version. If this doesn't help and you can't find anything in the mysql mail archive, you should report the bug to a MySQL mailing list. The mailing lists are described at http://lists.mysql.com/, which also has links to online list archives.
If you have started mysqld with --myisam-recover-options, MySQL automatically checks and tries to repair MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens, MySQL writes an entry in the hostname.err file 'Warning: Checking table ...' which is followed by Warning: Repairing table if the table needs to be repaired. If you get a lot of these errors, without mysqld having died unexpectedly just before, then something is wrong and needs to be investigated further. See Section 5.1.3, “Server Command Options”.
In MySQL 5.6, when the server detects MyISAM table corruption, it writes additional information to the error log, such as the name and line number of the source file, and the list of threads accessing the table. Example: Got an error from thread_id=1, mi_dynrec.c:368. This is useful information to include in bug reports.
It is not a good sign if mysqld did die unexpectedly, but in this case, you should not investigate the Checking table... messages, but instead try to find out why mysqld died.
22.4.1.7. Making a Test Case If You Experience Table Corruption
If you get corrupted tables or if mysqld always fails after some update commands, you can test whether this bug is reproducible by doing the following:
Take down the MySQL daemon (with mysqladmin shutdown).
Make a backup of the tables (to guard against the very unlikely case that the repair does something bad).
Check all tables with myisamchk -s database/*.MYI. Repair any wrong tables with myisamchk -r database/table.MYI.
Make a second backup of the tables.
Remove (or move away) any old log files from the MySQL data directory if you need more space.
Start mysqld with the binary log enabled. If you want to find a query that crashes mysqld, you should start the server with both the general query log enabled as well. See Section 5.2.3, “The General Query Log”, and Section 5.2.4, “The Binary Log”.
When you have gotten a crashed table, stop the mysqld server.
Restore the backup.
Restart the mysqld server without the binary log enabled.
Re-execute the commands with mysqlbinlog binary-log-file | mysql. The binary log is saved in the MySQL database directory with the name hostname-bin.NNNNNN.
If the tables are corrupted again or you can get mysqld to die with the above command, you have found reproducible bug that should be easy to fix! FTP the tables and the binary log to our bugs database using the instructions given in Section 1.7, “How to Report Bugs or Problems”. If you are a support customer, you can use the MySQL Customer Support Center https://support.mysql.com/ to alert the MySQL team about the problem and have it fixed as soon as possible.
You can also use the script mysql_find_rows to just execute some of the update statements if you want to narrow down the problem.
22.4.2. Debugging a MySQL Client
To be able to debug a MySQL client with the integrated debug package, you should configure MySQL with -DWITH_DEBUG=1. See Section 2.9.4, “MySQL Source-Configuration Options”.
Before running a client, you should set the MYSQL_DEBUG environment variable:
shell> MYSQL_DEBUG=d:t:O,/tmp/client.trace
shell> export MYSQL_DEBUG
This causes clients to generate a trace file in /tmp/client.trace.
If you have problems with your own client code, you should attempt to connect to the server and run your query using a client that is known to work. Do this by running mysql in debugging mode (assuming that you have compiled MySQL with debugging on):
shell> mysql --debug=d:t:O,/tmp/client.trace
This provides useful information in case you mail a bug report. See Section 1.7, “How to Report Bugs or Problems”.
If your client crashes at some 'legal' looking code, you should check that your mysql.h include file matches your MySQL library file. A very common mistake is to use an old mysql.h file from an old MySQL installation with new MySQL library.
22.4.3. The DBUG Package
The MySQL server and most MySQL clients are compiled with the DBUG package originally created by Fred Fish. When you have configured MySQL for debugging, this package makes it possible to get a trace file of what the program is debugging. See Section 22.4.1.2, “Creating Trace Files”.
This section summarizes the argument values that you can specify in debug options on the command line for MySQL programs that have been built with debugging support. For more information about programming with the DBUG package, see the DBUG manual in the dbug directory of MySQL source distributions. It is best to use a recent distribution to get the most updated DBUG manual.
You use the debug package by invoking a program with the --debug="..." or the -#... option.
Most MySQL programs have a default debug string that is used if you don't specify an option to --debug. The default trace file is usually /tmp/program_name.trace on Unix and \program_name.trace on Windows.
The debug control string is a sequence of colon-separated fields as follows:
<field_1>:<field_2>:...:<field_N>
Each field consists of a mandatory flag character followed by an optional “,” and comma-separated list of modifiers:
flag[,modifier,modifier,...,modifier]
The following table shows the currently recognized flag characters.
Flag | Description |
---|---|
d | Enable output from DBUG_<N> macros for the current state. May be followed by a list of keywords which selects output only for the DBUG macros with that keyword. An empty list of keywords implies output for all macros. |
D | Delay after each debugger output line. The argument is the number of tenths of seconds to delay, subject to machine capabilities. For example, -#D,20 specifies a delay of two seconds. |
f | Limit debugging, tracing, and profiling to the list of named functions. Note that a null list disables all functions. The appropriate d or t flags must still be given; this flag only limits their actions if they are enabled. |
F | Identify the source file name for each line of debug or trace output. |
i | Identify the process with the PID or thread ID for each line of debug or trace output. |
g | Enable profiling. Create a file called dbugmon.out containing information that can be used to profile the program. May be followed by a list of keywords that select profiling only for the functions in that list. A null list implies that all functions are considered. |
L | Identify the source file line number for each line of debug or trace output. |
n | Print the current function nesting depth for each line of debug or trace output. |
N | Number each line of debug output. |
o | Redirect the debugger output stream to the specified file. The default output is stderr. |
O | Like o, but the file is really flushed between each write. When needed, the file is closed and reopened between each write. |
p | Limit debugger actions to specified processes. A process must be identified with the DBUG_PROCESS macro and match one in the list for debugger actions to occur. |
P | Print the current process name for each line of debug or trace output. |
r | When pushing a new state, do not inherit the previous state's function nesting level. Useful when the output is to start at the left margin. |
S | Do function _sanity(_file_,_line_) at each debugged function until _sanity() returns something that differs from 0. |
t | Enable function call/exit trace lines. May be followed by a list (containing only one modifier) giving a numeric maximum trace level, beyond which no output occurs for either debugging or tracing macros. The default is a compile time option. |
Some examples of debug control strings that might appear on a shell command line (the -# is typically used to introduce a control string to an application program) are:
-#d:t
-#d:f,main,subr1:F:L:t,20
-#d,input,output,files:n
-#d:t:i:O,\\mysqld.trace
In MySQL, common tags to print (with the d option) are enter, exit, error, warning, info, and loop.
Chapter 23. MySQL Enterprise Edition
Table of Contents
23.1. MySQL Enterprise Monitor
23.3. MySQL Enterprise Security
MySQL Enterprise Edition is a commercial product. Like MySQL Community Edition, MySQL Enterprise Edition includes MySQL Server, a fully integrated transaction-safe, ACID-compliant database with full commit, rollback, crash-recovery, and row-level locking capabilities. In addition, MySQL Enterprise Edition includes the following components designed to provide monitoring and online backup, as well as improved security and scalability:
The following sections briefly discuss each of these components and indicate where to find more detailed information. To learn more about commercial products, see http://www.mysql.com/products/.
23.1. MySQL Enterprise Monitor
MySQL Enterprise Monitor is an enterprise monitoring system for MySQL that keeps an eye on your MySQL servers, notifies you of potential issues and problems, and advises you how to fix the issues. MySQL Enterprise Monitor can monitor all kinds of configurations, from a single MySQL server that is important to your business, all the way up to a huge farm of MySQL servers powering a busy web site.
The following discussion briefly summarizes the basic components that make up the MySQL Enterprise Monitor product. For more information, see the MySQL Enterprise Monitor manual, available at http://dev.mysql.com/doc/mysql-monitor/en/.
MySQL Enterprise Monitor components can be installed in various configurations depending on your database and network topology, to give you the best combination of reliable and responsive monitoring data, with minimal overhead on the database server machines. A typical MySQL Enterprise Monitor installation consists of:
One or more MySQL servers to monitor. MySQL Enterprise Monitor can monitor both Community and Enterprise MySQL server releases.
A MySQL Enterprise Agent for each monitored MySQL server.
A single MySQL Enterprise Service Manager, which collates information from the agents and provides the user interface to the collected data.
MySQL Enterprise Monitor is designed to monitor one or more MySQL servers. The monitoring information is collected by using an agent, MySQL Enterprise Agent. The agent communicates with the MySQL server that it monitors, collecting variables, status and health information, and sending this information to the MySQL Enterprise Service Manager. If you have multiple MySQL servers, then you have multiple MySQL Enterprise Agent processes monitoring each MySQL server.
The information collected by the agent about each MySQL server you are monitoring is sent to the MySQL Enterprise Service Manager. This server collates all of the information from the agents. As it collates the information sent by the agents, the MySQL Enterprise Service Manager continually tests the collected data, comparing the status of the server to reasonable values. When thresholds are reached, the server can trigger an event (including an alarm and notification) to highlight a potential issue, such as low memory, high CPU usage, or more complex conditions such insufficient buffer sizes and status information. We call each test, with its associated threshold value, a rule.
These rules, and the alarms and notifications, are each known as a MySQL Enterprise Advisor. Advisors form a critical part of the MySQL Enterprise Service Manager, as they provide warning information and troubleshooting advice about potential problems.
The MySQL Enterprise Service Manager includes a web server, and you interact with it through any web browser. This interface, the MySQL Enterprise Dashboard, displays all of the information collected by the agents, and lets you view all of your servers and their current status as a group or individually. You control and configure all aspects of the service using the MySQL Enterprise Dashboard.
The information supplied by the MySQL Enterprise Agent processes also includes statistical and query information, which you can view in the form of graphs. For example, you can view aspects such as server load, query numbers, or index usage information as a graph over time. The graph lets you pinpoint problems or potential issues on your server, and can help diagnose the impact from database or external problems (such as external system or network failure) by examining the data from a specific time interval.
The MySQL Enterprise Agent can also be configured to collect detailed information about the queries executed on your server, including the row counts and performance times for executing each query. You can correlate the detailed query data with the graphical information to identify which queries were executing when you experienced a particularly high load, index or other issue. The query data is supported by a system called Query Analyzer, and the data can be presented in different ways depending on your needs.
23.2. MySQL Enterprise Backup
MySQL Enterprise Backup performs hot backup operations for MySQL databases. The product is architected for efficient and reliable backups of tables created by the InnoDB storage engine. For completeness, it can also back up tables from MyISAM and other storage engines.
The following discussion briefly summarizes MySQL Enterprise Backup. For more information, see the MySQL Enterprise Backup manual, available at http://dev.mysql.com/doc/mysql-enterprise-backup/en/.
Hot backups are performed while the database is running and applications are reading and writing to it. This type of backup does not block normal database operations, and it captures even changes that occur while the backup is happening. For these reasons, hot backups are desirable when your database “grows up” -- when the data is large enough that the backup takes significant time, and when your data is important enough to your business that you must capture every last change, without taking your application, web site, or web service offline.
MySQL Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For tables using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where the database continues to run, but those tables cannot be modified while being backed up. For efficient backup operations, you can designate InnoDB as the default storage engine for new tables, or convert existing tables to use the InnoDB storage engine.
23.3. MySQL Enterprise Security
MySQL Enterprise Edition provides plugins that implement authentication using external services:
MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use PAM (Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a standard interface to access various kinds of authentication methods, such as Unix passwords or an LDAP directory.
MySQL Enterprise Edition includes an authentication plugin that performs external authentication on Windows, enabling MySQL Server to use native Windows services to authenticate client connections. Users who have logged in to Windows can connect from MySQL client programs to the server based on the information in their environment without specifying an additional password.
For more information, see Section 6.3.7.3, “The PAM Authentication Plugin”, and Section 6.3.7.4, “The Windows Native Authentication Plugin”.
23.4. MySQL Enterprise Audit
MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin. MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based monitoring and logging of connection and query activity executed on specific MySQL servers. Designed to meet the Oracle audit specification, MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance solution for applications that are governed by both internal and external regulatory guidelines.
When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record of server activity. The log contents include when clients connect and disconnect, and what actions they perform while connected, such as which databases and tables they access.
For more information, see Section 6.3.11, “MySQL Enterprise Audit Log Plugin”.
23.5. MySQL Thread Pool
MySQL Enterprise Edition includes the MySQL Thread Pool, implemented using a server plugin. The default thread-handling model in MySQL Server executes statements using one thread per client connection. As more clients connect to the server and execute statements, overall performance degrades. In MySQL Enterprise Edition, a thread pool plugin provides an alternative thread-handling model designed to reduce overhead and improve performance. The plugin implements a thread pool that increases server performance by efficiently managing statement execution threads for large numbers of client connections.
For more information, see Section 8.11.6, “The Thread Pool Plugin”.
Chapter 24. MySQL Workbench
MySQL Workbench provides a graphical tool for working with MySQL Servers and databases. MySQL Workbench fully supports MySQL Server versions 5.1 and above. It is also compatible with MySQL Server 5.0, but not every feature of 5.0 may be supported. It does not support MySQL Server versions 4.x.
The following discussion briefly describes MySQL Workbench capabilities. For more information, see the MySQL Workbench manual, available at http://dev.mysql.com/doc/workbench/en/.
MySQL Workbench provides three main areas of functionality:
SQL Development: Enables you to create and manage connections to database servers. As well as enabling you to configure connection parameters, MySQL Workbench provides the capability to execute SQL queries on the database connections using the built-in SQL Editor. This functionality replaces that previously provided by the Query Browser standalone application.
Data Modeling: Enables you to create models of your database schema graphically, reverse and forward engineer between a schema and a live database, and edit all aspects of your database using the comprehensive Table Editor. The Table Editor provides easy-to-use facilities for editing Tables, Columns, Indexes, Triggers, Partitioning, Options, Inserts and Privileges, Routines and Views.
Server Administration: Enables you to create and administer server instances. This functionality replaces that previously provided by the MySQL Administrator standalone application.
MySQL Workbench is available in two editions, the Community Edition and the Standard Edition. The Community Edition is available free of charge. The Standard Edition provides additional Enterprise features, such as database documentation generation, at low cost.
Chapter 25. MySQL for Excel
Table of Contents
25.1. Installing and Configuring
MySQL for Excel enables you to work with a MySQL database from within Microsoft Excel. MySQL data can be imported into Excel, Excel data can be exported into MySQL as a new table or appended to a current table, and MySQL for Excel enables you to edit the MySQL data directly from within Excel.
Visit the MySQL for Excel forum for additional MySQL for Excel help and support.
For release notes detailing the changes in each release of MySQL for Excel, see MySQL for Excel Release Notes.
25.1. Installing and Configuring
MySQL for Excel is a product for Microsoft Windows, and it is installed with MySQL Installer. And typically you will not be required to install or configure additional tools to use MySQL for Excel.
Note
To install, download and execute the MySQL Installer. Select the MySQL for Excel product and then proceed with the installation. See the MySQL Installer manual for additional details.
MySQL for Excel Requirements
The MySQL Installer installation process will check if these requirements are met, or notify you if further action is required before proceeding with the installation.
.NET Framework 4.0 (Client or Full Profile).
Microsoft Office Excel 2007 or greater, for Microsoft Windows.
Visual Studio Tools for Office 4.0, and MySQL Installer may install this for you.
An available MySQL Server connection.
MySQL for Excel is loaded and executed by selecting the Data menu tab in Excel, and then choosing the "MySQL for Excel" Database icon. This opens a new Excel sidebar with the available MySQL for Excel options. The navigation bar with the MySQL for Excel icon is shown in the following screenshot:
Figure 25.1. The MySQL for Excel navigation bar
25.2. Edit MySQL Data
MySQL for Excel enables you to load and edit MySQL data directly from Microsoft Excel. Changes are immediately committed if the Auto-Commit option is enabled, or done manually by pressing Commit Changes.
Note
The Edit MySQL Data feature exists as of MySQL for Excel 1.1.0.
The example below uses the category table of the example sakila database, but the screen will look the same for any table. Within MySQL for Excel, Open a MySQL Connection, click the sakila schema, Next, select the category table, click Edit MySQL Data, then choose Import to import the data into a new Microsoft Excel worksheet for editing.
Figure 25.2. Editing table data with MySQL for Excel
The background color represents the status of each cell, and there are four distinct colors that are used while editing table data:
Table 25.1. Background cell colors
Color | Description |
---|---|
White | Default color for all cells. This is either the original data, or the data after Refresh from DB is clicked. |
Blue | Cells that were committed with success. |
Green | Cells that were modified but have not yet been committed. |
Red | Cells that generated an error when a commit was attempted. An error dialog is also displayed while the commit is attempted. |
Yellow | Cells that accept new data. Data entered here is inserted into the MySQL table. |
In our example, the blue "Drama" field was changed and then committed first, then the green "Gaming" field was changed but not committed, and then Auto-Commit was enabled before changing the "9" to a "10" in column 10, which generated an error because this commit would have added a duplicate value as primary key.
25.3. Import MySQL Data
Data can be imported from MySQL into a Microsoft Excel spreadsheet by using the Import MySQL Data option after selecting either a table, view, or procedure to import.
Choosing columns to import
By default, all columns are selected and will be imported. Specific columns may be selected (or unselected) using the standard Microsoft Windows method of either Control + Mouse click to toggle the selection of individual columns, or Shift + Mouse click to select a range of columns.
The background color of a column shows the status of each column. The color white means that the column has been selected, and therefore it will be imported. Conversely, a gray background means that the column will not be imported.
Right-clicking anywhere in the preview grid opens a context-menu with either a Select None or Select All option, depending on the current status.
Importing a table
The dialog while importing a table includes the following options:
Include Column Names as Headers: Enabled by default, this inserts the column names at the top of the Microsoft Excel spreadsheet as a "headers" row.
Limit to ___ Rows and Start with Row ___: Disabled by default, this limits the range of imported data. The Limit to option defaults to 1, and defines the number of rows to import. The Start with Row option defaults to 1 (the first row), and defines where the import begins. Each option has a maximum value of COUNT(rows) in the table.
Importing a table displays a dialog similar to the following:
Figure 25.3. Importing table data with MySQL for Excel
Importing a view or procedure
Importing a view or procedure displays a similar dialogue, but with the following options:
Include Column Names as Headers: Enabled by default, this will insert the column names at the top of the Excel spreadsheet as a "headers" row.
Import: Because a procedure might return multiple result sets, the import options include:
Selected Result Set: Imports the selected tab sheet. This is the default behavior.
All Result Sets - Arranged Horizontally: Imports all result sets into the Excel Worksheet horizontally, and inserts one empty column between each result set.
All Result Sets - Arranged Vertically: Imports all result sets into the Excel Worksheet vertically, and inserts one empty row between each result set.
For example, a dialogue like the following is displayed after importing a procedure and pressing the Call button to invoke the stored procedure:
Figure 25.4. Importing called stored procedure data with MySQL for Excel
25.4. Append MySQL Data
Data from a Microsoft Excel spreadsheet can be appended to a MySQL database table by using the Append Excel MySQL Data to Table option.
Column mappings
Mapping the Excel columns to the MySQL columns can be executed automatically (default), manually, or by using a stored mapping routine. An automatic mapping routine is the default, and can be can be tweaked if every column cannot be matched automatically. The following screenshot shows two columns of Excel data, and the preview dialog after choosing Append Excel Data to Table:
Figure 25.5. Appending Excel data to MySQL (Automatic mapping)
General mapping information
It is common to tweak the column mappings. A few notes about the manual mapping process:
Manual mapping is performed by dragging a column from the upper source grid (Excel spreadsheet) and dropping it into the lower target column MySQL table grid. Click anywhere within the column to initiate this dragging routine.
The color of the header field for each column defines the current mapping status of the column. The colors include:
Green: A source column is mapped to a target column.
Red: A target column is not mapped.
Gray: A source column is not mapped.
A source column may be mapped to multiple target columns, although this action generates a warning dialog.
Right-clicking a target column shows a context menu with options to either Remove Column Mapping for a single column, or to Clear All Mappings for all columns. Dragging a target column outside of the grid removes the mapping.
Mapping methods
The three mapping methods are described below:
Automatic: The automatic mapping method attempts to match the Excel source column names with the MySQL target table column names. It is then possible to manually tweak the mapping afterwards.
If the automatic process finds zero columns to match, then a simple 1 to 1 matching routine is attempted. Meaning, SourceColumn #1 to TargetColumn #1, SourceColumn #2 to TargetColumn #2, and so on.
Manual: The source column names are manually dragged (matched) with the target column names. Manual dragging can also be performed after the Automatic method is selected.
Stored: Manual mapping styles may be saved using the Store Mapping button, which will also prompt for a name and then save it using a "name (dbname.tablename)" naming scheme. The saved mapping style will then be available alongside the Automatic and Manual options.
Stored mappings may be deleted or renamed within the Advanced Options dialog.
Advanced Options
There are several advanced options that are configured and stored between sessions for each Excel user. The dialog looks similar to:
Figure 25.6. Appending Excel data to MySQL (Advanced Options)
The advanced Mapping Options:
Perform an automatic mapping when dialog opens: Automatically attempt to map the target and source when the Append Data dialog is opened. This feature is enabled by default.
Automatically store the column mapping for the given table: Stores each mapping routine after executing the Append operation. The mapping routine is saved using the "tablenameMapping (dbname.tablename)" format. This may also be performed manually using the Store Mapping button. It is enabled by default, and this feature was added in MySQL for Excel 1.1.0.
Reload stored column mapping for the selected table automatically: If a stored mapping routine exists that matches all column names in the source grid with the target grid, then it is automatically be loaded. This is enabled by default, and this feature was added in MySQL for Excel 1.1.0.
The advanced Field Data Options:
Use the first 100 (default) Excel data rows to preview and calculate data types. This determines the number of rows that the preview displays, and the values that affect the automatic mapping feature.
Use formatted values: The data from Excel is treated as Text, Double, or Date. This is enabled by default. When disabled, data is never treated as a Date type, so for example, this means that a date would be represented as a number.
The Stored Column Mappings is a list of saved column mappings that were saved with with the "Automatically store the column mapping for the given table" feature, or manually with the Store Mapping option.
25.5. Export MySQL Data
Data from a Microsoft Excel spreadsheet can be exported to a new MySQL database table by using the Export Excel Data to New Table option. Exporting data looks like so:
Figure 25.7. Exporting Excel data to MySQL
Advanced Export options
Several advanced options enables you to tweak the exported data. The advanced options dialog looks like so:
Figure 25.8. Exporting Excel data to MySQL (Advanced options)
Column Datatype Options:
Use the first 100 (default) Excel data rows to preview and calculate data types: This determines the number of rows that the preview displays, and the values that affect the automatic mapping feature.
Analyze and try to detect correct datatype based on column field contents: Attempts to analyze the data and determine the data type for the column. The column type is defined as VARCHAR if it contains multiple types.
Add additional buffer to VARCHAR length (round up to 12, 25, 45, 125, 255): When the data type is automatically detected and is set to VARCHAR, then it calculates the maximum length for all rows within the column, and rounds up the maximum length to one of the defined lengths above.
If disabled, then the VARCHAR length is set to the length of the longest entry in the Excel spreadsheet.
Automatically check the Index checkbox for Integer columns: If enabled (default), columns with an Integer data type will have the Create Index option enabled by default.
Automatically check the Allow Empty checkbox for columns without an index: If enabled (default), columns without the Create Index checkbox checked will automatically enable the Allow Empty configuration option.
Field Data options:
Use formatted values: When enabled (default), the data from Excel is treated as Text, Double, or Date. When disabled, data is never treated as a Date type, so for example this means that a date would be represented as a number.
Other options:
Remove columns that contain no data, otherwise flag them as "Excluded": If enabled, columns without data in Excel are removed and not shown in the preview panel. If disabled (default), these columns will exist but have the Exclude Column option checked. This option was added in MySQL for Excel 1.1.0.
25.6. MySQL for Excel FAQ
Frequently Asked Questions, with Answers.
Questions
26.6.1: I installed the MySQL for Excel plugin, but can't find it in Microsoft Excel. How do I start it?
Questions and Answers
26.6.1: I installed the MySQL for Excel plugin, but can't find it in Microsoft Excel. How do I start it?
The MySQL for Excel plugin is automatically added to Microsoft Excel's data menu when it is installed. Look for the MySQL for Excel icon, by default it will be listed on the right side of the main menu.
If it's not there, then you might have to reinstall the plugin. But before doing so, first check if it's listed under "Add/Remove Programs" in Microsoft Windows. If not, then it has not been installed. Next, check the Excel Add-Ins list. For Office 2007 this is found by clicking the Office logo in Excel (top left corner), click Excel Options, then select Add-Ins. Is MySQL for Excel listed as a COM Add-in? If so, then consider filing a bug report (bugs.mysql.com), or attempt to reinstall the plugin.
Appendix A. Licenses for Third-Party Components
Table of Contents
A.4. c3p0 JDBC Library License
A.6. Editline Library (libedit) License
A.7. Facebook Fast Checksum Patch License
A.10. Fred Fish's Dbug Library License
A.12. GLib License (for MySQL Proxy)
A.13. GNU General Public License Version 2.0, June 1991
A.15. GNU Lesser General Public License Version 2.1, February 1999
A.18. GNU Standard C++ Library (libstdc++) License
A.19. Google Controlling Master Thread I/O Rate Patch License
A.20. Google Perftools (TCMalloc utility) License
A.21. Google SMP Patch License
A.22. jboss-common-jdbc-wrapper.jar License
A.31. LuaFileSystem Library License
A.32. md5 (Message-Digest Algorithm 5) License
A.35. nt_servc (Windows NT Service class library) License
A.39. Percona Multiple I/O Threads Patch License
A.40. Red HAT RPM Spec File License
A.41. RegEX-Spencer Library License
A.42. RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License
A.43. Richard A. O'Keefe String Library License
A.45. Simple Logging Facade for Java (SLF4J) License
The following is a list of the libraries we have included with the MySQL Server source and components used to test MySQL. We are thankful to all individuals that have created these. Some of the components require that their licensing terms be included in the documentation of products that include them. Cross references to these licensing terms are given with the applicable items in the list.
GroupLens Research Project
The MySQL Quality Assurance team would like to acknowledge the use of the MovieLens Data Sets (10 million ratings and 100,000 tags for 10681 movies by 71567 users) to help test MySQL products and to thank the GroupLens Research Project at the University of Minnesota for making the data sets available.
MySQL 5.6
Section A.13, “GNU General Public License Version 2.0, June 1991”
Section A.15, “GNU Lesser General Public License Version 2.1, February 1999”
Section A.18, “GNU Standard C++ Library (libstdc++) License”
Section A.19, “Google Controlling Master Thread I/O Rate Patch License”
Section A.35, “nt_servc (Windows NT Service class library) License”
MySQL Connector/C 6.0
MySQL Connector/C 6.1
MySQL Connector/C++
MySQL Connector/J
Section A.15, “GNU Lesser General Public License Version 2.1, February 1999”
Section A.45, “Simple Logging Facade for Java (SLF4J) License”
MySQL Connector/Net
MySQL Connector/ODBC
MySQL Proxy
A.1. Ant-Contrib License
The following software may be included in this product: Ant-Contrib
Ant-Contrib
Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.
Licensed under the Apache 1.1 License Agreement, a copy of which is reproduced below.
The Apache Software License, Version 1.1
Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. The end-user documentation included with the redistribution, if
any, must include the following acknowlegement:
"This product includes software developed by the
Ant-Contrib project (http://sourceforge.net/projects/ant-contrib)."
Alternately, this acknowlegement may appear in the software itself,
if and wherever such third-party acknowlegements normally appear.
4. The name Ant-Contrib must not be used to endorse or promote
products derived from this software without prior written
permission. For written permission, please contact
ant-contrib-developers@lists.sourceforge.net.
5. Products derived from this software may not be called "Ant-Contrib"
nor may "Ant-Contrib" appear in their names without prior written
permission of the Ant-Contrib project.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB PROJECT OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
A.2. ANTLR 3.3 License
The following software may be included in this product:
ANTLR 3.3
ANTLR 3.3 License
Copyright (c) 2010 Terence Parr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
Neither the name of the author nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
A.3. Boost Library License
The following software may be included in this product:
Boost C++ Libraries
Use of any of this software is governed by the terms of the license below:
Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or
organization obtaining a copy of the software and accompanying
documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit
third-parties to whom the Software is furnished to do so, all
subject to the following:
The copyright notices in the Software and this entire statement,
including the above license grant, this restriction and the
following disclaimer, must be included in all copies of the
Software, in whole or in part, and all derivative works of the
Software, unless such copies or derivative works are solely in the
form of machine-executable object code generated by a source
language processor.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER
LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
A.4. c3p0 JDBC Library License
You are receiving a copy of c3p0-0.9.1-pre6.jar in both source and object code in the following /src/lib/c3p0-0.9.1-pre6.jar. The terms of the Oracle license do NOT apply to c3p0-0.9.1-pre6.jar; it is licensed under the following license, separately from the Oracle programs you receive. If you do not wish to install this library, you may remove the file /src/lib/c3p0-0.9.1-pre6.jar, but the Oracle program might not operate properly or at all without the library.
This component is licensed under Section A.15, “GNU Lesser General Public License Version 2.1, February 1999”.
A.5. dtoa.c License
The following software may be included in this product:
dtoa.c
The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this entire
notice is included in all copies of any software which is or includes
a copy or modification of this software and in all copies of the
supporting documentation for such software.
THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT
MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
PURPOSE.
A.6. Editline Library (libedit) License
The following software may be included in this product:
Editline Library (libedit)
Some files are:
Copyright (c) 1992, 1993
The Regents of the University of California. All rights reserved.
This code is derived from software contributed to
Berkeley by Christos Zoulas of Cornell University.
Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the
above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or
other materials provided with the distribution.
3. Neither the name of the University nor the names of
its contributors may be used to endorse or promote
products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
Some files are:
Copyright (c) 2001 The NetBSD Foundation, Inc.
All rights reserved.
This code is derived from software contributed to The NetBSD Foundation
by Anthony Mallet.
Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the
above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or
other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC.
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
Some files are:
Copyright (c) 1997 The NetBSD Foundation, Inc.
All rights reserved.
This code is derived from software contributed to The NetBSD Foundation
by Jaromir Dolecek.
Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the
above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions
and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC.
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
Some files are:
Copyright (c) 1998 Todd C. Miller <Todd.Miller@courtesan.com>
Permission to use, copy, modify, and distribute this
software for any purpose with or without fee is hereby
granted, provided that the above copyright notice and
this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND TODD C. MILLER
DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL TODD C. MILLER BE LIABLE
FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
Some files are:
Copyright (c) 1998 The NetBSD Foundation, Inc.
All rights reserved.
This code is derived from software contributed to The NetBSD
Foundation by Christos Zoulas.
Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Some files are:
Copyright (c) 2009 The NetBSD Foundation, Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.
3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:
This product includes software developed by the NetBSD
Foundation, Inc. and its contributors.
4. Neither the name of The NetBSD Foundation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
A.7. Facebook Fast Checksum Patch License
The following software may be included in this product:
Facebook Fast Checksum Patch
Copyright (C) 2009-2010 Facebook, Inc. All Rights Reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY FACEBOOK, INC. “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL FACEBOOK, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Also included:
crc32.c -- compute the CRC-32 of a buf stream
Copyright (C) 1995-2005 Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu
A.8. Facebook Patches License
The following software may be included in this product:
Copyright (c) 2012, Facebook, Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
A.9. FindGTest.cmake License
The following software may be included in this product:
FindGTest.cmake helper script (part of CMake)
Copyright 2009 Kitware, Inc.
Copyright 2009 Philip Lowman
Copyright 2009 Daniel Blezek
Distributed under the OSI-approved BSD License (the "License");
see accompanying file Copyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the License for more information.
==
(To distributed this file outside of CMake, substitute the full
License text for the above reference.)
Thanks to Daniel Blezek for the GTEST_ADD_TESTS code
Text of Copyright.txt mentioned above:
CMake - Cross Platform Makefile Generator
Copyright 2000-2009 Kitware, Inc., Insight Software Consortium
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the names of Kitware, Inc., the Insight Software Consortium,
nor the names of their contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
A.10. Fred Fish's Dbug Library License
The following software may be included in this product:
Fred Fish's Dbug Library
N O T I C E
Copyright Abandoned, 1987, Fred Fish
This previously copyrighted work has been placed into the public
domain by the author and may be freely used for any purpose,
private or commercial.
Because of the number of inquiries I was receiving about the use
of this product in commercially developed works I have decided to
simply make it public domain to further its unrestricted use. I
specifically would be most happy to see this material become a
part of the standard Unix distributions by AT&T and the Berkeley
Computer Science Research Group, and a standard part of the GNU
system from the Free Software Foundation.
I would appreciate it, as a courtesy, if this notice is left in
all copies and derivative works. Thank you.
The author makes no warranty of any kind with respect to this
product and explicitly disclaims any implied warranties of mer-
chantability or fitness for any particular purpose.
The dbug_analyze.c file is subject to the following notice:
Copyright June 1987, Binayak Banerjee
All rights reserved.
This program may be freely distributed under the same terms and
conditions as Fred Fish's Dbug package.
A.11. getarg License
The following software may be included in this product:
getarg Function (getarg.h, getarg.c files)
Copyright (c) 1997 – 2000 Kungliga Tekniska Högskolan
(Royal Institute of Technology, Stockholm, Sweden).
All rights reserved.
Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
3. Neither the name of the Institute nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
A.12. GLib License (for MySQL Proxy)
The following software may be included in this product:
GLib
You are receiving a copy of the GLib library in both source
and object code in the following [proxy install dir]/lib/ and
[proxy install dir]/licenses/lgpl folders. The terms of the
Oracle license do NOT apply to the GLib library; it is licensed
under the following license, separately from the Oracle programs
you receive. If you do not wish to install this library, you may
create an "exclude" file and run tar with the X option, as in
the following example, but the Oracle program might not operate
properly or at all without the library:
tar -xvfX <package-tar-file> <exclude-file>
where the exclude-file contains, e.g.:
<package-name>/lib/libglib-2.0.so.0.1600.6
<package-name>/lib/libglib-2.0.so.0
...
Example:
tar -xvfX mysql-proxy-0.8.1-solaris10-x86-64bit.tar.gz Exclude
Exclude File:
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libglib-2.0.so
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libglib-2.0.so.0
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libglib-2.0.so.0.1600.6
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgmodule-2.0.so
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgmodule-2.0.so.0
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgmodule-2.0.so.0.1600.6
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgthread-2.0.so
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgthread-2.0.so.0
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgthread-2.0.so.0.1600.6
mysql-proxy-0.8.1-solaris10-x86-64bit/licenses/lgpl/glib-2.16.6.tar.gz
This component is licensed under Section A.15, “GNU Lesser General Public License Version 2.1, February 1999”.
A.13. GNU General Public License Version 2.0, June 1991
The following applies to all products licensed under the GNU General
Public License, Version 2.0: You may not use the identified files
except in compliance with the GNU General Public License, Version
2.0 (the "License.") You may obtain a copy of the License at
http://www.gnu.org/licenses/gpl-2.0.txt. A copy of the license is
also reproduced below. Unless required by applicable law or agreed
to in writing, software distributed under the License is distributed
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language
governing permissions and limitations under the License.
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not
allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original,
so that any problems introduced by others will not reflect on the
original authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software
interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as
a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever
published by the Free Software Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it
does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type 'show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type 'show c'
for details.
The hypothetical commands 'show w' and 'show c' should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than 'show w' and
'show c'; they could even be mouse-clicks or menu items--whatever
suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
program 'Gnomovision' (which makes passes at compilers) written
by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License.
A.14. GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library Exception Version 3.1, 31 March 2009
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are
designed to take away your freedom to share and change the works.
By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program--to make
sure it remains free software for all its users. We, the Free
Software Foundation, use the GNU General Public License for most
of our software; it applies also to any other work released this
way by its authors. You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and
charge for them if you wish), that you receive source code or can
get it if you want it, that you can change the software or use
pieces of it in new free programs, and that you know you can do
these things.
To protect your rights, we need to prevent others from denying
you these rights or asking you to surrender the rights. Therefore,
you have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the
freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these
terms so they know their rights.
Developers that use the GNU GPL protect your rights with two
steps: (1) assert copyright on the software, and (2) offer you this
License giving you legal permission to copy, distribute and/or
modify it.
For the developers' and authors' protection, the GPL clearly
explains that there is no warranty for this free software. For
both users' and authors' sake, the GPL requires that modified
versions be marked as changed, so that their problems will not be
attributed erroneously to authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with
the aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially
in other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.
Finally, every program is threatened constantly by software
patents. States should not allow patents to restrict development
and use of software on general-purpose computers, but in those that
do, we wish to avoid the special danger that patents applied to a
free program could make it effectively proprietary. To prevent
this, the GPL assures that patents cannot be used to render the
program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the
work in a fashion requiring copyright permission, other than the
making of an exact copy. The resulting work is called a "modified
version" of the earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it
on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available
to the public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to
the extent that warranties are provided), that licensees may convey
the work under this License, and how to view a copy of this License.
If the interface presents a list of user commands or options, such
as a menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case
of interfaces specified for a particular programming language, one
that is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form
of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts
to control those activities. However, it does not include the
work's System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in performing
those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is
specifically designed to require, such as by intimate data communication
or control flow between those subprograms and other parts of the
work.
The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running
a covered work is covered by this License only if the output, given
its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright
law.
You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in
force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide
you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for
which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf,
under your direction and control, on terms that prohibit them from
making any copies of your copyrighted material outside their
relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section
10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit operation
or modification of the work as a means of enforcing, against the
work's users, your or third parties' legal rights to forbid
circumvention of technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive
terms added in accord with section 7 apply to the code; keep intact
all notices of the absence of any warranty; and give all recipients
a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications
to produce it from the Program, in the form of source code under
the terms of section 4, provided that you also meet all of these
conditions:
a) The work must carry prominent notices stating that you
modified it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7. This requirement modifies the requirement in
section 4 to "keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has
interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called
an "aggregate" if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation's
users beyond what the individual works permit. Inclusion of a
covered work in an aggregate does not cause this License to apply
to the other parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of
these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code
either (1) a copy of the Corresponding Source for all the
software in the product that is covered by this License, on a
durable physical medium customarily used for software
interchange, for a price no more than your reasonable cost
of physically performing this conveying of source, or (2)
access to copy the Corresponding Source from a network server
at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in
accord with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to
the Corresponding Source in the same way through the same place
at no further charge. You need not require recipients to copy
the Corresponding Source along with the object code. If the
place to copy the object code is a network server, the
Corresponding Source may be on a different server (operated
by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the
object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you
remain obligated to ensure that it is available for as long
as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means
any tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product
is a consumer product, doubtful cases shall be resolved in favor
of coverage. For a particular product received by a particular
user, "normally used" refers to a typical or common use of that
class of product, regardless of the status of the particular user
or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product
regardless of whether the product has substantial commercial,
industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that
User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning
of the modified object code is in no case prevented or interfered
with solely because modification has been made.
If you convey an object code work under this section in, or with,
or specifically for use in, a User Product, and the conveying occurs
as part of a transaction in which the right of possession and use
of the User Product is transferred to the recipient in perpetuity
or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be
accompanied by the Installation Information. But this requirement
does not apply if neither you nor any third party retains the ability
to install modified object code on the User Product (for example,
the work has been installed in ROM).
The requirement to provide Installation Information does not include
a requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified
or installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of
this License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program
shall be treated as though they were included in this License, to
the extent that they are valid under applicable law. If additional
permissions apply only to part of the Program, that part may be
used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional
permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material
you add to a covered work, you may (if authorized by the copyright
holders of that material) supplement the terms of this License with
terms:
a) Disclaiming warranty or limiting liability differently from
the terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices
or author attributions in that material or in the Appropriate
Legal Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be marked
in reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions
of it) with contractual assumptions of liability to the
recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as
you received it, or any part of it, contains a notice stating that
it is governed by this License along with a term that is a further
restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed
by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in
the form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate
or modify it is void, and will automatically terminate your rights
under this License (including any patent licenses granted under the
third paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.
Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from you
under this License. If your rights have been terminated and not
permanently reinstated, you do not qualify to receive new licenses
for the same material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you
may not impose a license fee, royalty, or other charge for exercise
of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit)
alleging that any patent claim is infringed by making, using,
selling, offering for sale, or importing the Program or any portion
of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired
or hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as
a consequence of further modification of the contributor version.
For purposes of this definition, "control" includes the right to
grant patent sublicenses in a manner consistent with the requirements
of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify
and propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a
patent (such as an express permission to practice a patent or
covenant not to sue for patent infringement). To "grant" such a
patent license to a party means to make such an agreement or
commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible
means, then you must either (1) cause the Corresponding Source to
be so available, or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or (3) arrange, in
a manner consistent with the requirements of this License, to extend
the patent license to downstream recipients. "Knowingly relying"
means you have actual knowledge that, but for the patent license,
your conveying the covered work in a country, or your recipient's
use of the covered work in a country, would infringe one or more
identifiable patents in that country that you have reason to believe
are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of,
a covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the
patent license you grant is automatically extended to all recipients
of the covered work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is conditioned
on the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if
you are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to
the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you
cannot convey a covered work so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations,
then as a consequence you may not convey it at all. For example,
if you agree to terms that obligate you to collect a royalty for
further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a
single combined work, and to convey the resulting work. The terms
of this License will continue to apply to the part which is the
covered work, but the special requirements of the GNU Affero General
Public License, section 13, concerning interaction through a network
will apply to the combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of
the GNU General Public License, you may choose any version ever
published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow
a later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make
it free software which everyone can redistribute and change under
these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is
found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type 'show c' for details.
The hypothetical commands 'show w' and 'show c' should show the
appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you
would use an "about box".
You should also get your employer (if you work as a programmer) or
school, if any, to sign a "copyright disclaimer" for the program,
if necessary. For more information on this, and how to apply and
follow the GNU GPL, see <http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use
the GNU Lesser General Public License instead of this License. But
first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
==
==
GCC RUNTIME LIBRARY EXCEPTION
Version 3.1, 31 March 2009
Copyright © 2009 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.
This GCC Runtime Library Exception ("Exception") is an additional
permission under section 7 of the GNU General Public License, version
3 ("GPLv3"). It applies to a given file (the "Runtime Library")
that bears a notice placed by the copyright holder of the file
stating that the file is governed by GPLv3 along with this Exception.
When you use GCC to compile a program, GCC may combine portions of
certain GCC header files and runtime libraries with the compiled
program. The purpose of this Exception is to allow compilation of
non-GPL (including proprietary) programs to use, in this way, the
header files and runtime libraries covered by this Exception.
0. Definitions.
A file is an "Independent Module" if it either requires the Runtime
Library for execution after a Compilation Process, or makes use of
an interface provided by the Runtime Library, but is not otherwise
based on the Runtime Library.
"GCC" means a version of the GNU Compiler Collection, with or without
modifications, governed by version 3 (or a specified later version)
of the GNU General Public License (GPL) with the option of using
any subsequent versions published by the FSF.
"GPL-compatible Software" is software whose conditions of propagation,
modification and use would permit combination with GCC in accord
with the license of GCC.
"Target Code" refers to output from any compiler for a real or
virtual target processor architecture, in executable form or suitable
for input to an assembler, loader, linker and/or execution phase.
Notwithstanding that, Target Code does not include data in any
format that is used as a compiler intermediate representation, or
used for producing a compiler intermediate representation.
The "Compilation Process" transforms code entirely represented in
non-intermediate languages designed for human-written code, and/or
in Java Virtual Machine byte code, into Target Code. Thus, for
example, use of source code generators and preprocessors need not
be considered part of the Compilation Process, since the Compilation
Process can be understood as starting with the output of the
generators or preprocessors.
A Compilation Process is "Eligible" if it is done using GCC, alone
or with other GPL-compatible software, or if it is done without
using any work based on GCC. For example, using non-GPL-compatible
Software to optimize any GCC intermediate representations would not
qualify as an Eligible Compilation Process.
1. Grant of Additional Permission.
You have permission to propagate a work of Target Code formed by
combining the Runtime Library with Independent Modules, even if
such propagation would otherwise violate the terms of GPLv3, provided
that all Target Code was generated by Eligible Compilation Processes.
You may then convey such a combination under terms of your choice,
consistent with the licensing of the Independent Modules.
2. No Weakening of GCC Copyleft.
The availability of this Exception does not imply any general
presumption that third-party software is unaffected by the copyleft
requirements of the license of GCC.
==
A.15. GNU Lesser General Public License Version 2.1, February 1999
The following applies to all products licensed under the
GNU Lesser General Public License, Version 2.1: You may
not use the identified files except in compliance with
the GNU Lesser General Public License, Version 2.1 (the
"License"). You may obtain a copy of the License at
http://www.gnu.org/licenses/lgpl-2.1.html. A copy of the
license is also reproduced below. Unless required by
applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing
permissions and limitations under the License.
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it
becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that
a free library does the same job as widely used non-free libraries.
In this case, there is little to gain by limiting the free library
to free software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control
compilation and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply, and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms
of the ordinary General Public License).
To apply these terms, attach the following notices to the library.
It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should
have at least the "copyright" line and a pointer to where the full
notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James
Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!
A.16. GNU Libtool License
The following software may be included in this product:
GNU Libtool (The GNU Portable Library Tool)
If you are receiving a copy of the Oracle software in
source code, you are also receiving a copy of two files
(ltmain.sh and ltdl.h) generated by the GNU Libtool in
source code. If you received the Oracle software under
a license other than a commercial (non-GPL) license,
then the terms of the Oracle license do NOT apply to
these files from GNU Libtool; they are licensed under
the following licenses, separately from the Oracle
programs you receive.
Oracle elects to use GNU General Public License version
2 (GPL) for any software where a choice of GPL or GNU
Lesser/Library General Public License (LGPL) license
versions are made available with the language indicating
that GPL/LGPL or any later version may be used, or where
a choice of which version of the GPL/LGPL is applied is
unspecified.
From GNU Libtool:
ltmain.sh - Provide generalized library-building support
services.
NOTE: Changing this file will not affect anything until
you rerun configure.
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004,
2005, 2006, 2007 Free Software Foundation, Inc.
Originally by Gordon Matzigkeit, 1996
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any
later version.
This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General
Public License along with this program; if not, write to
the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA.
As a special exception to the GNU General Public License,
if you distribute this file as part of a program that
contains a configuration script generated by Autoconf,
you may include it under the same distribution terms that
you use for the rest of that program.
This component is licensed under Section A.13, “GNU General Public License Version 2.0, June 1991”
A.17. GNU Readline License
The following software may be included in this product:
GNU Readline Library
GNU Readline Library
With respect to MySQL Server/Cluster software licensed
under GNU General Public License, you are receiving a
copy of the GNU Readline Library in source code. The
terms of any Oracle license that might accompany the
Oracle programs do NOT apply to the GNU Readline Library;
it is licensed under the following license, separately
from the Oracle programs you receive. Oracle elects to
use GNU General Public License version 2 (GPL) for any
software where a choice of GPL license versions are
made available with the language indicating that GPLv2
or any later version may be used, or where a choice of
which version of the GPL is applied is unspecified.
This component is licensed under Section A.13, “GNU General Public License Version 2.0, June 1991”
A.18. GNU Standard C++ Library (libstdc++) License
The following software may be included in this product: GNU Standard C++ Library (libstdc++)
This component is licensed under Section A.14, “GNU General Public License Version 3.0, 29 June 2007 and GCC Runtime Library Exception Version 3.1, 31 March 2009”.
Additional notices:
==
Copyright (c) 1994
Hewlett-Packard Company
Permission to use, copy, modify, distribute and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear
in supporting documentation. Hewlett-Packard Company makes no
representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied
warranty.
==
==
Copyright (c) 1996,1997
Silicon Graphics Computer Systems, Inc.
Permission to use, copy, modify, distribute and sell this software
and its documentation for any purpose is hereby granted without fee,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear
in supporting documentation. Silicon Graphics makes no
representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied
warranty.
==
==
shared_count.hpp
@ Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
shared_ptr.hpp
Copyright (C) 1998, 1999 Greg Colvin and Beman Dawes.
Copyright (C) 2001, 2002, 2003 Peter Dimov
weak_ptr.hpp
Copyright (C) 2001, 2002, 2003 Peter Dimov
enable_shared_from_this.hpp
Copyright (C) 2002 Peter Dimov
Distributed under the Boost Software License, Version 1.0.
Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or
organization obtaining a copy of the software and accompanying
documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit
third-parties to whom the Software is furnished to do so, all subject
to the following:
The copyright notices in the Software and this entire statement,
including the above license grant, this restriction and the following
disclaimer, must be included in all copies of the Software, in whole
or in part, and all derivative works of the Software, unless such
copies or derivative works are solely in the form of machine-executable
object code generated by a source language processor.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER
LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
==
==
Copyright (C) 2004 Ami Tavory and Vladimir Dreizin, IBM-HRL.
Permission to use, copy, modify, sell, and distribute this software
is hereby granted without fee, provided that the above copyright
notice appears in all copies, and that both that copyright notice
and this permission notice appear in supporting documentation. None
of the above authors, nor IBM Haifa Research Laboratories, make any
representation about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.
==
A.19. Google Controlling Master Thread I/O Rate Patch License
The following software may be included in this product:
Google Controlling master thread I/O rate patch
Copyright (c) 2009, Google Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Google Inc. nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
A.20. Google Perftools (TCMalloc utility) License
The following software may be included in this product:
Google Perftools (TCMalloc utility)
Copyright (c) 1998-2006, Google Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
A.21. Google SMP Patch License
The following software may be included in this product:
Google SMP Patch
Google SMP patch
Copyright (c) 2008, Google Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Google Inc. nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
A.22. jboss-common-jdbc-wrapper.jar License
You are receiving a copy of jboss-common-jdbc-wrapper.jar in both source and object code in the following /src/lib/jboss-common-jdbc-wrapper.jar. The terms of the Oracle license do NOT apply to jboss-common-jdbc-wrapper.jar; it is licensed under the following license, separately from the Oracle programs you receive. If you do not wish to install this library, you may remove the file /src/lib/jboss-common-jdbc-wrapper.jar, but the Oracle program might not operate properly or at all without the library.
This component is licensed under Section A.15, “GNU Lesser General Public License Version 2.1, February 1999”.
A.23. lib_sql.cc License
The following software may be included in this product:
lib_sql.cc
Copyright (c) 2000
SWsoft company
This material is provided "as is", with absolutely no warranty
expressed or implied. Any use is at your own risk.
Permission to use or copy this software for any purpose is hereby
granted without fee, provided the above notices are retained on
all copies. Permission to modify the code and to distribute modified
code is granted, provided the above notices are retained, and a
notice that the code was modified is included with the above copyright
notice.
This code was modified by the MySQL team.
A.24. Libaio License
The following software may be included in this product:
libaio
This component is licensed under Section A.15, “GNU Lesser General Public License Version 2.1, February 1999”.
A.25. libevent License
The following software may be included in this product:
libevent
Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
==
Parts developed by Adam Langley
==
==
log.c
Based on err.c, which was adapted from OpenBSD libc *err*warncode.
Copyright (c) 2005 Nick Mathewson
Copyright (c) 2000 Dug Song
Copyright (c) 1993 The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. Neither the name of the University nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
==
==
min_heap.h
Copyright (c) 2006 Maxim Yegorushkin
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior
written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==
==
win32.c
Copyright 2000-2002 Niels Provos
Copyright 2003 Michael A. Davis
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior
written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==
A.26. Libiconv License
The following software may be included in this product:
Libiconv
You are receiving a copy of the GNU LIBICONV Library. The terms of the Oracle
license do NOT apply to the GNU LIBICONV Library; it is licensed under the
following license, separately from the Oracle programs you receive. If you do
not wish to install this program, you may delete [agent install
dir]/lib/libiconv.* and [agent install dir]/licenses/lgpl/iconv files.
This component is licensed under Section A.15, “GNU Lesser General Public License Version 2.1, February 1999”.
A.27. libintl License
The following software may be included in this product:
libintl
Copyright (C) 1994 X Consortium
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of the X Consortium shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from the X Consortium.
FSF changes to this file are in the public domain.
.
Copyright 1996-2007 Free Software Foundation, Inc. Taken from GNU libtool, 2001
Originally by Gordon Matzigkeit <gord@gnu.ai.mit.edu>, 1996
This file is free software; the Free Software Foundation gives unlimited
permission to copy and/or distribute it, with or without modifications, as long
as this notice is preserved.
.
You are receiving a copy of the libintl library. The terms of the Oracle license
do NOT apply to the libintl library; it is licensed under the following license,
separately from the Oracle programs you receive. If you do not wish to install
this program, you may create an "exclude" file and run tar with the X option.
This component is licensed under Section A.15, “GNU Lesser General Public License Version 2.1, February 1999”.
A.28. Linux-PAM License
The following software may be included in this product:
Linux-PAM (pam-devel, Pluggable authentication modules for Linux)
Copyright Theodore Ts'o, 1996. All rights reserved.
(For the avoidance of doubt, Oracle uses and distributes this
component under the terms below and elects not to do so under
the GPL even though the GPL is referenced as an option below.)
Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright
notice, and the entire permission notice in its entirety,
including the disclaimer of warranties.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior
written permission.
ALTERNATIVELY, this product may be distributed under the terms
of the GNU Public License, in which case the provisions of the
GPL are required INSTEAD OF the above restrictions. (This clause
is necessary due to a potential bad interaction between the GPL
and the restrictions contained in a BSD-style copyright.)
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
A.29. LPeg Library License
The following software may be included in this product:
LPeg
Use of any of this software is governed by the terms of the license below:
Copyright © 2008 Lua.org, PUC-Rio.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
A.30. Lua (liblua) License
The following software may be included in this product:
Lua (liblua)
Copyright © 1994–2008 Lua.org, PUC-Rio.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject
to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
A.31. LuaFileSystem Library License
The following software may be included in this product:
LuaFileSystem
Copyright © 2003 Kepler Project.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject
to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
A.32. md5 (Message-Digest Algorithm 5) License
The following software may be included in this product:
md5 (Message-Digest Algorithm 5)
This code implements the MD5 message-digest algorithm.
The algorithm is due to Ron Rivest. This code was
written by Colin Plumb in 1993, no copyright is claimed.
This code is in the public domain; do with it what you wish.
Equivalent code is available from RSA Data Security, Inc.
This code has been tested against that, and is equivalent,
except that you don't need to include two pages of legalese
with every copy.
The code has been modified by Mikael Ronstroem to handle
calculating a hash value of a key that is always a multiple
of 4 bytes long. Word 0 of the calculated 4-word hash value
is returned as the hash value.
A.33. memcached License
The following software may be included in this product:
memcached
Copyright (c) 2003, Danga Interactive, Inc.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of the Danga Interactive nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
A.34. mkpasswd.pl License
The following software may be included in this product:
mkpasswd.pl Perl module
Copyright (C) 2003-2004 by Chris Grau
This library is free software; you can redistribute it and/or modify it under
the same terms as Perl itself, either Perl version 5.8.1 or, at your option,
any later version of Perl 5 you may have available.
The Perl 5.8.1 license (from http://www.cpan.org/src/5.0/perl-5.8.1.tar.gz - main readme file):
Perl Kit, Version 5
Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998
1999, 2000, 2001, by Larry Wall and others
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of either:
a) the GNU General Public License as published by the Free
Software Foundation; either version 1, or (at your option) any
later version, or
b) the "Artistic License" which comes with this Kit.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See either
the GNU General Public License or the Artistic License for more details.
You should have received a copy of the Artistic License with this
Kit, in the file named "Artistic". If not, I'll be glad to provide one.
You should also have received a copy of the GNU General Public License
along with this program in the file named "Copying". If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA or visit their web page on the internet at
http://www.gnu.org/copyleft/gpl.html.
For those of you that choose to use the GNU General Public License,
my interpretation of the GNU General Public License is that no Perl
script falls under the terms of the GPL unless you explicitly put
said script under the terms of the GPL yourself. Furthermore, any
object code linked with perl does not automatically fall under the
terms of the GPL, provided such object code only adds definitions
of subroutines and variables, and does not otherwise impair the
resulting interpreter from executing any standard Perl script. I
consider linking in C subroutines in this manner to be the moral
equivalent of defining subroutines in the Perl language itself. You
may sell such an object file as proprietary provided that you provide
or offer to provide the Perl source, as specified by the GNU General
Public License. (This is merely an alternate way of specifying input
to the program.) You may also sell a binary produced by the dumping of
a running Perl script that belongs to you, provided that you provide or
offer to provide the Perl source as specified by the GPL. (The
fact that a Perl interpreter and your code are in the same binary file
is, in this case, a form of mere aggregation.) This is my interpretation
of the GPL. If you still have concerns or difficulties understanding
my intent, feel free to contact me. Of course, the Artistic License
spells all this out for your protection, so you may prefer to use that.
--
Perl is a language that combines some of the features of C, sed, awk
and shell. See the manual page for more hype. There are also many Perl
books available, covering a wide variety of topics, from various publishers.
See pod/perlbook.pod for more information.
Please read all the directions below before you proceed any further, and
then follow them carefully.
After you have unpacked your kit, you should have all the files listed
in MANIFEST.
Installation
1) Detailed instructions are in the file "INSTALL", which you should
read if you are either installing on a system resembling Unix
or porting perl to another platform. For non-Unix platforms, see the
corresponding README.
2) Read the manual entries before running perl.
3) IMPORTANT! Help save the world! Communicate any problems and suggested
patches to perlbug@perl.org so we can keep the world in sync.
If you have a problem, there's someone else out there who either has had
or will have the same problem. It's usually helpful if you send the
output of the "myconfig" script in the main perl directory.
If you've succeeded in compiling perl, the perlbug script in the "utils"
subdirectory can be used to help mail in a bug report.
If possible, send in patches such that the patch program will apply them.
Context diffs are the best, then normal diffs. Don't send ed scripts--
I've probably changed my copy since the version you have.
The latest versions of perl are always available on the various CPAN
(Comprehensive Perl Archive Network) sites around the world.
See <URL:http://www.cpan.org/src/>.
Just a personal note: I want you to know that I create nice things like this
because it pleases the Author of my story. If this bothers you, then your
notion of Authorship needs some revision. But you can use perl anyway. :-)
The author.
===
The "Artistic License"
Preamble
The intent of this document is to state the conditions under which a
Package may be copied, such that the Copyright Holder maintains some
semblance of artistic control over the development of the package,
while giving the users of the package the right to use and distribute
the Package in a more-or-less customary fashion, plus the right to make
reasonable modifications.
Definitions:
"Package" refers to the collection of files distributed by the
Copyright Holder, and derivatives of that collection of files
created through textual modification.
"Standard Version" refers to such a Package if it has not been
modified, or has been modified in accordance with the wishes
of the Copyright Holder as specified below.
"Copyright Holder" is whoever is named in the copyright or
copyrights for the package.
"You" is you, if you're thinking about copying or distributing
this Package.
"Reasonable copying fee" is whatever you can justify on the
basis of media cost, duplication charges, time of people involved,
and so on. (You will not be required to justify it to the
Copyright Holder, but only to the computing community at large
as a market that must bear the fee.)
"Freely Available" means that no fee is charged for the item
itself, though there may be fees involved in handling the item.
It also means that recipients of the item may redistribute it
under the same conditions they received it.
1. You may make and give away verbatim copies of the source form of the
Standard Version of this Package without restriction, provided that you
duplicate all of the original copyright notices and associated disclaimers.
2. You may apply bug fixes, portability fixes and other modifications
derived from the Public Domain or from the Copyright Holder. A Package
modified in such a way shall still be considered the Standard Version.
3. You may otherwise modify your copy of this Package in any way, provided
that you insert a prominent notice in each changed file stating how and
when you changed that file, and provided that you do at least ONE of the
following:
a) place your modifications in the Public Domain or otherwise make them
Freely Available, such as by posting said modifications to Usenet or
an equivalent medium, or placing the modifications on a major archive
site such as uunet.uu.net, or by allowing the Copyright Holder to include
your modifications in the Standard Version of the Package.
b) use the modified Package only within your corporation or organization.
c) rename any non-standard executables so the names do not conflict
with standard executables, which must also be provided, and provide
a separate manual page for each non-standard executable that clearly
documents how it differs from the Standard Version.
d) make other distribution arrangements with the Copyright Holder.
4. You may distribute the programs of this Package in object code or
executable form, provided that you do at least ONE of the following:
a) distribute a Standard Version of the executables and library files,
together with instructions (in the manual page or equivalent) on where
to get the Standard Version.
b) accompany the distribution with the machine-readable source of
the Package with your modifications.
c) give non-standard executables non-standard names, and clearly
document the differences in manual pages (or equivalent), together
with instructions on where to get the Standard Version.
d) make other distribution arrangements with the Copyright Holder.
5. You may charge a reasonable copying fee for any distribution of this
Package. You may charge any fee you choose for support of this
Package. You may not charge a fee for this Package itself. However,
you may distribute this Package in aggregate with other (possibly
commercial) programs as part of a larger (possibly commercial) software
distribution provided that you do not advertise this Package as a
product of your own. You may embed this Package's interpreter within
an executable of yours (by linking); this shall be construed as a mere
form of aggregation, provided that the complete Standard Version of the
interpreter is so embedded.
6. The scripts and library files supplied as input to or produced as
output from the programs of this Package do not automatically fall
under the copyright of this Package, but belong to whoever generated
them, and may be sold commercially, and may be aggregated with this
Package. If such scripts or library files are aggregated with this
Package via the so-called "undump" or "unexec" methods of producing a
binary executable image, then distribution of such an image shall
neither be construed as a distribution of this Package nor shall it
fall under the restrictions of Paragraphs 3 and 4, provided that you do
not represent such an executable image as a Standard Version of this
Package.
7. C subroutines (or comparably compiled subroutines in other
languages) supplied by you and linked into this Package in order to
emulate subroutines and variables of the language defined by this
Package shall not be considered part of this Package, but are the
equivalent of input as in Paragraph 6, provided these subroutines do
not change the language in any way that would cause it to fail the
regression tests for the language.
8. Aggregation of this Package with a commercial distribution is always
permitted provided that the use of this Package is embedded; that is,
when no overt attempt is made to make this Package's interfaces visible
to the end user of the commercial distribution. Such use shall not be
construed as a distribution of this Package.
9. The name of the Copyright Holder may not be used to endorse or promote
products derived from this software without specific prior written
permission.
10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
The End
A.35. nt_servc (Windows NT Service class library) License
The following software may be included in this product:
nt_servc (Windows NT Service class library)
Windows NT Service class library
Copyright Abandoned 1998 Irena Pancirov - Irnet Snc
This file is public domain and comes with NO WARRANTY of any kind
A.36. OpenPAM License
The following software may be included in this product:
OpenPAM
Copyright (c) 2002-2003 Networks Associates Technology, Inc.
Copyright (c) 2004-2007 Dag-Erling Smørgrav
All rights reserved.
This software was developed for the FreeBSD Project by
ThinkSec AS and Network Associates Laboratories, the
Security Research Division of Network Associates, Inc.
under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"),
as part of the DARPA CHATS research program.
Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or
other materials provided with the distribution.
3. The name of the author may not be used to endorse or
promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
A.37. OpenSSL v1.0 License
The following software may be included in this product:
NOTE: Does not apply to GPL licensed server (OpenSSL is not shipped with it)
OpenSSL v1.0
LICENSE ISSUES
==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit. See
below for the actual license texts. Actually both licenses are BSD-style Open
Source licenses. In case of any license issues related to OpenSSL please
contact openssl-core@openssl.org.
OpenSSL License

/ ==
Copyright (c) 1998-2008 The OpenSSL Project.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
.
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must
display the following acknowledgment: "This product includes software
developed by the OpenSSL Project for use in the OpenSSL Toolkit. (Link1 /)"
.
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may
"OpenSSL" appear in their names without prior written permission of the
OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following
acknowledgment: "This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit (Link2 /)"
.
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==
This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).
Original SSLeay License

/ Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.
This package is an SSL implementation written by Eric Young
(eay@cryptsoft.com). The implementation was written so as to conform with
Netscapes SSL. This library is free for commercial and non-commercial use
as long as the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA, lhash,
DES, etc., code; not just the SSL code. The SSL documentation included with
this distribution is covered by the same copyright terms except that the
holder is Tim Hudson (tjh@cryptsoft.com). Copyright remains Eric Young's,
and as such any Copyright notices in the code are not to be removed. If this
package is used in a product, Eric Young should be given attribution as the
author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual)
provided with the package. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the
following conditions are met: 1. Redistributions of source code must retain
the copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. 3. All advertising
materials mentioning features or use of this software must display the
following acknowledgement: "This product includes cryptographic software
written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be
left out if the routines from the library being used are not cryptographic
related :-). 4. If you include any Windows specific code (or a derivative
thereof) from the apps directory (application code) you must include an
acknowledgement: "This product includes software written by Tim Hudson
(tjh@cryptsoft.com)" THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The
license and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution license [including the GNU Public
License.]
A.38. PCRE License
The following software may be included in this product:
PCRE (Perl Compatible Regular Expressions) Library
PCRE LICENCE
PCRE is a library of functions to support regular expressions
whose syntax and semantics are as close as possible to those
of the Perl 5 language.
Release 7 of PCRE is distributed under the terms of the "BSD"
licence, as specified below. The documentation for PCRE,
supplied in the "doc" directory, is distributed under the same
terms as the software itself.
The basic library functions are written in C and are
freestanding. Also included in the distribution is a set
of C++ wrapper functions.
THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk
University of Cambridge Computing Service,
Cambridge, England. Phone: +44 1223 334714.
Copyright (c) 1997-2006 University of Cambridge
All rights reserved.
THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.
Copyright (c) 2006, Google Inc.
All rights reserved.
THE "BSD" LICENCE

Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or
other materials provided with the distribution.
* Neither the name of the University of Cambridge nor
the name of Google Inc. nor the names of their contributors
may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
End
A.39. Percona Multiple I/O Threads Patch License
The following software may be included in this product:
Percona Multiple I/O threads patch
Copyright (c) 2008, 2009 Percona Inc
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Percona Inc. nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission of Percona Inc.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
A.40. Red HAT RPM Spec File License
The following software may be included in this product:
Red Hat RPM Spec File
You are receiving a copy of the Red Hat spec file. The terms of the Oracle
license do NOT apply to the Red Hat spec file; it is licensed under the
following license, separately from the Oracle programs you receive.
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[for rest of text, see following link]
This component is licensed under Section A.13, “GNU General Public License Version 2.0, June 1991”
A.41. RegEX-Spencer Library License
The following software may be included in this product: Henry Spencer's Regular-Expression Library (RegEX-Spencer)
Copyright 1992, 1993, 1994 Henry Spencer. All rights reserved.
This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of California.
Permission is granted to anyone to use this software for any purpose on
any computer system, and to alter it and redistribute it, subject
to the following restrictions:
1. The author is not responsible for the consequences of use of this
software, no matter how awful, even if they arise from flaws in it.
2. The origin of this software must not be misrepresented, either by
explicit claim or by omission. Since few users ever read sources,
credits must appear in the documentation.
3. Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software. Since few users
ever read sources, credits must appear in the documentation.
4. This notice may not be removed or altered.
A.42. RFC 3174 - US Secure Hash Algorithm 1 (SHA1) License
The following software may be included in this product:
RFC 3174 - US Secure Hash Algorithm 1 (SHA1)
RFC 3174 - US Secure Hash Algorithm 1 (SHA1)
Copyright (C) The Internet Society (2001). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
A.43. Richard A. O'Keefe String Library License
The following software may be included in this product:
Richard A. O'Keefe String Library
The Richard O’Keefe String Library is subject to the following notice:
These files are in the public domain. This includes getopt.c, which
is the work of Henry Spencer, University of Toronto Zoology, who
says of it "None of this software is derived from Bell software. I
had no access to the source for Bell's versions at the time I wrote
it. This software is hereby explicitly placed in the public domain.
It may be used for any purpose on any machine by anyone." I would
greatly prefer it if *my* material received no military use.
The t_ctype.h file is subject to the following notice:
Copyright (C) 1998, 1999 by Pruet Boonma, all rights reserved.
Copyright (C) 1998 by Theppitak Karoonboonyanan, all rights reserved.
Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the above
copyright notice appear in all copies.
Smaphan Raruenrom and Pruet Boonma makes no representations about
the suitability of this software for any purpose. It is provided
"as is" without express or implied warranty.
A.44. SHA-1 in C License
The following software may be included in this product:
SHA-1 in C
SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain
A.45. Simple Logging Facade for Java (SLF4J) License
The following software may be included in this product:
Simple Logging Facade for Java (SLF4J)
Copyright (c) 2004-2008 QOS.ch
All rights reserved.
Permission is hereby granted, free of charge,
to any person obtaining a copy of this software
and associated documentation files (the "Software"),
to deal in the Software without restriction, including
without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the
following conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.
A.46. Unicode Data Files
The following software may be included in this product:
Unicode Data Files
Copyright 2001-2009 Unicode, Inc.
Disclaimer
This source code is provided as is by Unicode, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any
kind are expressed or implied. The recipient agrees to determine
applicability of information provided. If this file has been
purchased on magnetic or optical media from Unicode, Inc., the
sole remedy for any claim will be exchange of defective media
within 90 days of receipt.
Limitations on Rights to Redistribute This Code
Unicode, Inc. hereby grants the right to freely use the information
supplied in this file in the creation of products supporting the
Unicode Standard, and to make copies of this file in any form
for internal or external distribution as long as this notice
remains attached.
A.47. zlib License
The following software may be included in this product:
zlib
Oracle gratefully acknowledges the contributions of Jean-loup Gailly and Mark Adler in creating the zlib general purpose compression library which is used in this product.
zlib.h -- interface of the 'zlib' general purpose compression library
Copyright (C) 1995-2004 Jean-loup Gailly and Mark Adler
zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.3, July 18th, 2005
Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler
zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.5, April 19th, 2010
Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the
use of this software. Permission is granted to anyone to use this software
for any purpose,including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would
be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not
be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly jloup@gzip.org
Mark Adler madler@alumni.caltech.edu
A.48. ZLIB.NET License
The following software may be included in this product:
ZLIB.NET
Copyright (c) 2006-2007, ComponentAce
http://www.componentace.com
All rights reserved.
Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
* Redistributions of source code must retain the
above copyright notice, this list of conditions and
the following disclaimer.
* Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or
other materials provided with the distribution.
* Neither the name of ComponentAce nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Appendix B. MySQL 5.6 Frequently Asked Questions
Table of Contents
B.2. MySQL 5.6 FAQ: Storage Engines
B.3. MySQL 5.6 FAQ: Server SQL Mode
B.4. MySQL 5.6 FAQ: Stored Procedures and Functions
B.7. MySQL 5.6 FAQ: INFORMATION_SCHEMA
B.10. MySQL 5.6 FAQ: MySQL Cluster
B.11. MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
B.12. MySQL 5.6 FAQ: Connectors & APIs
B.13. MySQL 5.6 FAQ: Replication
B.14. MySQL 5.6 FAQ: MySQL Enterprise Scalability Thread Pool
B.1. MySQL 5.6 FAQ: General
Questions
B.1.1: Which version of MySQL is production-ready (GA)?
B.1.2: What is the state of development (non-GA) versions?
B.1.3: Can MySQL 5.6 do subqueries?
B.1.4: Can MySQL 5.6 perform multiple-table inserts, updates, and deletes?
B.1.5: Does MySQL 5.6 have a Query Cache? Does it work on Server, Instance or Database?
B.1.6: Does MySQL 5.6 have Sequences?
B.1.7: Does MySQL 5.6 have a NOW() function with fractions of seconds?
B.1.8: Does MySQL 5.6 work with multi-core processors?
B.1.9: Why do I see multiple processes for mysqld?
B.1.10: Have there been there any improvements in error reporting when foreign keys fail? Does MySQL now report which column and reference failed?
B.1.11: Can MySQL 5.6 perform ACID transactions?
Questions and Answers
B.1.1: Which version of MySQL is production-ready (GA)?
MySQL 5.6, MySQL 5.5, MySQL 5.1, and MySQL 5.0 are supported for production use.
MySQL 5.6 achieved General Availability (GA) status with MySQL 5.6.10, which was released for production use on 5 February 2013.
MySQL 5.5 achieved General Availability (GA) status with MySQL 5.5.8, which was released for production use on 3 December 2010.
MySQL 5.1 achieved General Availability (GA) status with MySQL 5.1.30, which was released for production use on 14 November 2008.
MySQL 5.0 achieved General Availability (GA) status with MySQL 5.0.15, which was released for production use on 19 October 2005. Note that active development for MySQL 5.0 has ended.
B.1.2: What is the state of development (non-GA) versions?
MySQL follows a milestone release model that introduces pre-production-quality features and stabilizes them to release quality (see http://dev.mysql.com/doc/mysql-development-cycle/en/index.html). This process then repeats, so releases cycle between pre-production and release quality status. Please check the change logs to identify the status of a given release.
MySQL 5.4 was a development series. Work on this series has ceased.
MySQL 5.7 is being actively developed using the milestone release methodology described above.
MySQL 6.0 was a development series. Work on this series has ceased.
B.1.3: Can MySQL 5.6 do subqueries?
Yes. See Section 13.2.10, “Subquery Syntax”.
B.1.4: Can MySQL 5.6 perform multiple-table inserts, updates, and deletes?
Yes. For the syntax required to perform multiple-table updates, see Section 13.2.11, “UPDATE Syntax”; for that required to perform multiple-table deletes, see Section 13.2.2, “DELETE Syntax”.
A multiple-table insert can be accomplished using a trigger whose FOR EACH ROW clause contains multiple INSERT statements within a BEGIN ... END block. See Section 18.3, “Using Triggers”.
B.1.5: Does MySQL 5.6 have a Query Cache? Does it work on Server, Instance or Database?
Yes. The query cache operates on the server level, caching complete result sets matched with the original query string. If an exactly identical query is made (which often happens, particularly in web applications), no parsing or execution is necessary; the result is sent directly from the cache. Various tuning options are available. See Section 8.9.3, “The MySQL Query Cache”.
B.1.6: Does MySQL 5.6 have Sequences?
No. However, MySQL has an AUTO_INCREMENT system, which in MySQL 5.6 can also handle inserts in a multi-master replication setup. With the auto_increment_increment and auto_increment_offset system variables, you can set each server to generate auto-increment values that don't conflict with other servers. The auto_increment_increment value should be greater than the number of servers, and each server should have a unique offset.
B.1.7: Does MySQL 5.6 have a NOW() function with fractions of seconds?
No. This is on the MySQL roadmap as a “rolling feature”. This means that it is not a flagship feature, but will be implemented, development time permitting. Specific customer demand may change this scheduling.
However, MySQL does parse time strings with a fractional component. See Section 11.3.2, “The TIME Type”.
B.1.8: Does MySQL 5.6 work with multi-core processors?
Yes. MySQL is fully multi-threaded, and will make use of multiple CPUs, provided that the operating system supports them.
B.1.9: Why do I see multiple processes for mysqld?
When using LinuxThreads, you should see a minimum of three mysqld processes running. These are in fact threads. There is one thread for the LinuxThreads manager, one thread to handle connections, and one thread to handle alarms and signals.
B.1.10: Have there been there any improvements in error reporting when foreign keys fail? Does MySQL now report which column and reference failed?
The foreign key support in InnoDB has seen improvements in each major version of MySQL. Foreign key support generic to all storage engines is scheduled for MySQL 6.x; this should resolve any inadequacies in the current storage engine specific implementation.
B.1.11: Can MySQL 5.6 perform ACID transactions?
Yes. All current MySQL versions support transactions. The InnoDB storage engine offers full ACID transactions with row-level locking, multi-versioning, nonlocking repeatable reads, and all four SQL standard isolation levels.
The NDB storage engine supports the READ COMMITTED transaction isolation level only.
B.2. MySQL 5.6 FAQ: Storage Engines
Questions
B.2.1: Where can I obtain complete documentation for MySQL storage engines?
B.2.2: Are there any new storage engines in MySQL 5.6?
B.2.3: Have any storage engines been removed in MySQL 5.6?
B.2.4: What are the unique benefits of the ARCHIVE storage engine?
B.2.5: Do the new features in MySQL 5.6 apply to all storage engines?
Questions and Answers
B.2.1: Where can I obtain complete documentation for MySQL storage engines?
See Chapter 14, Storage Engines. That chapter contains information about all MySQL storage engines except for the NDB storage engine used for MySQL Cluster; NDB is covered in MySQL Cluster NDB 7.2.
B.2.2: Are there any new storage engines in MySQL 5.6?
The features from the optional InnoDB Plugin from MySQL 5.1 are folded into the built-in InnoDB storage engine, so you can take advantage of features such as the Barracuda file format, InnoDB table compression, and the new configuration options for performance. See Section 14.2, “The InnoDB Storage Engine” for details. InnoDB also becomes the default storage engine for new tables. See Section 14.2.1.1, “InnoDB as the Default MySQL Storage Engine” for details.
B.2.3: Have any storage engines been removed in MySQL 5.6?
No.
B.2.4: What are the unique benefits of the ARCHIVE storage engine?
The ARCHIVE storage engine is ideally suited for storing large amounts of data without indexes; it has a very small footprint, and performs selects using table scans. See Section 14.6, “The ARCHIVE Storage Engine”, for details.
B.2.5: Do the new features in MySQL 5.6 apply to all storage engines?
The general new features such as views, stored procedures, triggers, INFORMATION_SCHEMA, precision math (DECIMAL column type), and the BIT column type, apply to all storage engines. There are also additions and changes for specific storage engines.
B.3. MySQL 5.6 FAQ: Server SQL Mode
Questions
B.3.1: What are server SQL modes?
B.3.2: How many server SQL modes are there?
B.3.3: How do you determine the server SQL mode?
B.3.4: Is the mode dependent on the database or connection?
B.3.5: Can the rules for strict mode be extended?
B.3.6: Does strict mode impact performance?
B.3.7: What is the default server SQL mode when My SQL 5.6 is installed?
Questions and Answers
B.3.1: What are server SQL modes?
Server SQL modes define what SQL syntax MySQL should support and what kind of data validation checks it should perform. This makes it easier to use MySQL in different environments and to use MySQL together with other database servers. The MySQL Server apply these modes individually to different clients. For more information, see Section 5.1.7, “Server SQL Modes”.
B.3.2: How many server SQL modes are there?
Each mode can be independently switched on and off. See Section 5.1.7, “Server SQL Modes”, for a complete list of available modes.
B.3.3: How do you determine the server SQL mode?
You can set the default SQL mode (for mysqld startup) with the --sql-mode option. Using the statement SET [GLOBAL|SESSION] sql_mode='modes', you can change the settings from within a connection, either locally to the connection, or to take effect globally. You can retrieve the current mode by issuing a SELECT @@sql_mode statement.
B.3.4: Is the mode dependent on the database or connection?
A mode is not linked to a particular database. Modes can be set locally to the session (connection), or globally for the server. you can change these settings using SET [GLOBAL|SESSION] sql_mode='modes'.
B.3.5: Can the rules for strict mode be extended?
When we refer to strict mode, we mean a mode where at least one of the modes TRADITIONAL, STRICT_TRANS_TABLES, or STRICT_ALL_TABLES is enabled. Options can be combined, so you can add restrictions to a mode. See Section 5.1.7, “Server SQL Modes”, for more information.
B.3.6: Does strict mode impact performance?
The intensive validation of input data that some settings requires more time than if the validation is not done. While the performance impact is not that great, if you do not require such validation (perhaps your application already handles all of this), then MySQL gives you the option of leaving strict mode disabled. However—if you do require it—strict mode can provide such validation.
B.3.7: What is the default server SQL mode when My SQL 5.6 is installed?
By default, no special modes are enabled. See Section 5.1.7, “Server SQL Modes”, for information about all available modes and MySQL's default behavior.
B.4. MySQL 5.6 FAQ: Stored Procedures and Functions
Questions
B.4.1: Does MySQL 5.6 support stored procedures and functions?
B.4.2: Where can I find documentation for MySQL stored procedures and stored functions?
B.4.3: Is there a discussion forum for MySQL stored procedures?
B.4.4: Where can I find the ANSI SQL 2003 specification for stored procedures?
B.4.5: How do you manage stored routines?
B.4.6: Is there a way to view all stored procedures and stored functions in a given database?
B.4.7: Where are stored procedures stored?
B.4.8: Is it possible to group stored procedures or stored functions into packages?
B.4.9: Can a stored procedure call another stored procedure?
B.4.10: Can a stored procedure call a trigger?
B.4.11: Can a stored procedure access tables?
B.4.12: Do stored procedures have a statement for raising application errors?
B.4.13: Do stored procedures provide exception handling?
B.4.14: Can MySQL 5.6 stored routines return result sets?
B.4.15: Is WITH RECOMPILE supported for stored procedures?
B.4.16: Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to a stored procedure in the database?
B.4.17: Can I pass an array as input to a stored procedure?
B.4.18: Can I pass a cursor as an IN parameter to a stored procedure?
B.4.19: Can I return a cursor as an OUT parameter from a stored procedure?
B.4.20: Can I print out a variable's value within a stored routine for debugging purposes?
B.4.21: Can I commit or roll back transactions inside a stored procedure?
B.4.22: Do MySQL 5.6 stored procedures and functions work with replication?
B.4.23: Are stored procedures and functions created on a master server replicated to a slave?
B.4.24: How are actions that take place inside stored procedures and functions replicated?
B.4.25: Are there special security requirements for using stored procedures and functions together with replication?
B.4.26: What limitations exist for replicating stored procedure and function actions?
B.4.27: Do the preceding limitations affect MySQL's ability to do point-in-time recovery?
B.4.28: What is being done to correct the aforementioned limitations?
Questions and Answers
B.4.1: Does MySQL 5.6 support stored procedures and functions?
Yes. MySQL 5.6 supports two types of stored routines—stored procedures and stored functions.
B.4.2: Where can I find documentation for MySQL stored procedures and stored functions?
See Section 18.2, “Using Stored Routines (Procedures and Functions)”.
B.4.3: Is there a discussion forum for MySQL stored procedures?
Yes. See http://forums.mysql.com/list.php?98.
B.4.4: Where can I find the ANSI SQL 2003 specification for stored procedures?
Unfortunately, the official specifications are not freely available (ANSI makes them available for purchase). However, there are books—such as SQL-99 Complete, Really by Peter Gulutzan and Trudy Pelzer—which give a comprehensive overview of the standard, including coverage of stored procedures.
B.4.5: How do you manage stored routines?
It is always good practice to use a clear naming scheme for your stored routines. You can manage stored procedures with CREATE [FUNCTION|PROCEDURE], ALTER [FUNCTION|PROCEDURE], DROP [FUNCTION|PROCEDURE], and SHOW CREATE [FUNCTION|PROCEDURE]. You can obtain information about existing stored procedures using the ROUTINES table in the INFORMATION_SCHEMA database (see Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”).
B.4.6: Is there a way to view all stored procedures and stored functions in a given database?
Yes. For a database named dbname, use this query on the INFORMATION_SCHEMA.ROUTINES table:
SELECT ROUTINE_TYPE, ROUTINE_NAME
FROM INFORMATION_SCHEMA.ROUTINES
WHERE ROUTINE_SCHEMA='dbname';
For more information, see Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”.
The body of a stored routine can be viewed using SHOW CREATE FUNCTION (for a stored function) or SHOW CREATE PROCEDURE (for a stored procedure). See Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”, for more information.
B.4.7: Where are stored procedures stored?
In the proc table of the mysql system database. However, you should not access the tables in the system database directly. Instead, use SHOW CREATE FUNCTION to obtain information about stored functions, and SHOW CREATE PROCEDURE to obtain information about stored procedures. See Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”, for more information about these statements.
You can also query the ROUTINES table in the INFORMATION_SCHEMA database—see Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”, for information about this table.
B.4.8: Is it possible to group stored procedures or stored functions into packages?
No. This is not supported in MySQL 5.6.
B.4.9: Can a stored procedure call another stored procedure?
Yes.
B.4.10: Can a stored procedure call a trigger?
A stored procedure can execute an SQL statement, such as an UPDATE, that causes a trigger to activate.
B.4.11: Can a stored procedure access tables?
Yes. A stored procedure can access one or more tables as required.
B.4.12: Do stored procedures have a statement for raising application errors?
Yes. MySQL 5.6 implements the SQL standard SIGNAL and RESIGNAL statements. See Section 13.6.7, “Condition Handling”.
B.4.13: Do stored procedures provide exception handling?
MySQL implements HANDLER definitions according to the SQL standard. See Section 13.6.7.2, “DECLARE ... HANDLER Syntax”, for details.
B.4.14: Can MySQL 5.6 stored routines return result sets?
Stored procedures can, but stored functions cannot. If you perform an ordinary SELECT inside a stored procedure, the result set is returned directly to the client. You need to use the MySQL 4.1 (or above) client/server protocol for this to work. This means that—for instance—in PHP, you need to use the mysqli extension rather than the old mysql extension.
B.4.15: Is WITH RECOMPILE supported for stored procedures?
Not in MySQL 5.6.
B.4.16: Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to a stored procedure in the database?
There is no equivalent in MySQL 5.6.
B.4.17: Can I pass an array as input to a stored procedure?
Not in MySQL 5.6.
B.4.18: Can I pass a cursor as an IN parameter to a stored procedure?
In MySQL 5.6, cursors are available inside stored procedures only.
B.4.19: Can I return a cursor as an OUT parameter from a stored procedure?
In MySQL 5.6, cursors are available inside stored procedures only. However, if you do not open a cursor on a SELECT, the result will be sent directly to the client. You can also SELECT INTO variables. See Section 13.2.9, “SELECT Syntax”.
B.4.20: Can I print out a variable's value within a stored routine for debugging purposes?
Yes, you can do this in a stored procedure, but not in a stored function. If you perform an ordinary SELECT inside a stored procedure, the result set is returned directly to the client. You will need to use the MySQL 4.1 (or above) client/server protocol for this to work. This means that—for instance—in PHP, you need to use the mysqli extension rather than the old mysql extension.
B.4.21: Can I commit or roll back transactions inside a stored procedure?
Yes. However, you cannot perform transactional operations within a stored function.
B.4.22: Do MySQL 5.6 stored procedures and functions work with replication?
Yes, standard actions carried out in stored procedures and functions are replicated from a master MySQL server to a slave server. There are a few limitations that are described in detail in Section 18.7, “Binary Logging of Stored Programs”.
B.4.23: Are stored procedures and functions created on a master server replicated to a slave?
Yes, creation of stored procedures and functions carried out through normal DDL statements on a master server are replicated to a slave, so the objects will exist on both servers. ALTER and DROP statements for stored procedures and functions are also replicated.
B.4.24: How are actions that take place inside stored procedures and functions replicated?
MySQL records each DML event that occurs in a stored procedure and replicates those individual actions to a slave server. The actual calls made to execute stored procedures are not replicated.
Stored functions that change data are logged as function invocations, not as the DML events that occur inside each function.
B.4.25: Are there special security requirements for using stored procedures and functions together with replication?
Yes. Because a slave server has authority to execute any statement read from a master's binary log, special security constraints exist for using stored functions with replication. If replication or binary logging in general (for the purpose of point-in-time recovery) is active, then MySQL DBAs have two security options open to them:
Any user wishing to create stored functions must be granted the SUPER privilege.
Alternatively, a DBA can set the log_bin_trust_function_creators system variable to 1, which enables anyone with the standard CREATE ROUTINE privilege to create stored functions.
B.4.26: What limitations exist for replicating stored procedure and function actions?
Nondeterministic (random) or time-based actions embedded in stored procedures may not replicate properly. By their very nature, randomly produced results are not predictable and cannot be exactly reproduced, and therefore, random actions replicated to a slave will not mirror those performed on a master. Note that declaring stored functions to be DETERMINISTIC or setting the log_bin_trust_function_creators system variable to 0 will not allow random-valued operations to be invoked.
In addition, time-based actions cannot be reproduced on a slave because the timing of such actions in a stored procedure is not reproducible through the binary log used for replication. It records only DML events and does not factor in timing constraints.
Finally, nontransactional tables for which errors occur during large DML actions (such as bulk inserts) may experience replication issues in that a master may be partially updated from DML activity, but no updates are done to the slave because of the errors that occurred. A workaround is for a function's DML actions to be carried out with the IGNORE keyword so that updates on the master that cause errors are ignored and updates that do not cause errors are replicated to the slave.
B.4.27: Do the preceding limitations affect MySQL's ability to do point-in-time recovery?
The same limitations that affect replication do affect point-in-time recovery.
B.4.28: What is being done to correct the aforementioned limitations?
You can choose either statement-based replication or row-based replication. The original replication implementation is based on statement-based binary logging. Row-based binary logging resolves the limitations mentioned earlier.
Mixed replication is also available (by starting the server with --binlog-format=mixed). This hybrid, “smart” form of replication “knows” whether statement-level replication can safely be used, or row-level replication is required.
For additional information, see Section 16.1.2, “Replication Formats”.
B.5. MySQL 5.6 FAQ: Triggers
Questions
B.5.1: Where can I find the documentation for MySQL 5.6 triggers?
B.5.2: Is there a discussion forum for MySQL Triggers?
B.5.3: Does MySQL 5.6 have statement-level or row-level triggers?
B.5.4: Are there any default triggers?
B.5.5: How are triggers managed in MySQL?
B.5.6: Is there a way to view all triggers in a given database?
B.5.7: Where are triggers stored?
B.5.8: Can a trigger call a stored procedure?
B.5.9: Can triggers access tables?
B.5.10: Can triggers call an external application through a UDF?
B.5.11: Is it possible for a trigger to update tables on a remote server?
B.5.12: Do triggers work with replication?
B.5.13: How are actions carried out through triggers on a master replicated to a slave?
Questions and Answers
B.5.1: Where can I find the documentation for MySQL 5.6 triggers?
See Section 18.3, “Using Triggers”.
B.5.2: Is there a discussion forum for MySQL Triggers?
Yes. It is available at http://forums.mysql.com/list.php?99.
B.5.3: Does MySQL 5.6 have statement-level or row-level triggers?
In MySQL 5.6, all triggers are FOR EACH ROW—that is, the trigger is activated for each row that is inserted, updated, or deleted. MySQL 5.6 does not support triggers using FOR EACH STATEMENT.
B.5.4: Are there any default triggers?
Not explicitly. MySQL does have specific special behavior for some TIMESTAMP columns, as well as for columns which are defined using AUTO_INCREMENT.
B.5.5: How are triggers managed in MySQL?
In MySQL 5.6, triggers can be created using the CREATE TRIGGER statement, and dropped using DROP TRIGGER. See Section 13.1.15, “CREATE TRIGGER Syntax”, and Section 13.1.24, “DROP TRIGGER Syntax”, for more about these statements.
Information about triggers can be obtained by querying the INFORMATION_SCHEMA.TRIGGERS table. See Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”.
B.5.6: Is there a way to view all triggers in a given database?
Yes. You can obtain a listing of all triggers defined on database dbname using a query on the INFORMATION_SCHEMA.TRIGGERS table such as the one shown here:
SELECT TRIGGER_NAME, EVENT_MANIPULATION, EVENT_OBJECT_TABLE, ACTION_STATEMENT
FROM INFORMATION_SCHEMA.TRIGGERS
WHERE TRIGGER_SCHEMA='dbname';
For more information about this table, see Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”.
You can also use the SHOW TRIGGERS statement, which is specific to MySQL. See Section 13.7.5.39, “SHOW TRIGGERS Syntax”.
B.5.7: Where are triggers stored?
Triggers for a table are currently stored in .TRG files, with one such file one per table.
B.5.8: Can a trigger call a stored procedure?
Yes.
B.5.9: Can triggers access tables?
A trigger can access both old and new data in its own table. A trigger can also affect other tables, but it is not permitted to modify a table that is already being used (for reading or writing) by the statement that invoked the function or trigger.
B.5.10: Can triggers call an external application through a UDF?
Yes. For example, a trigger could invoke the sys_exec() UDF.
B.5.11: Is it possible for a trigger to update tables on a remote server?
Yes. A table on a remote server could be updated using the FEDERATED storage engine. (See Section 14.9, “The FEDERATED Storage Engine”).
B.5.12: Do triggers work with replication?
Yes. However, the way in which they work depends whether you are using MySQL's “classic” statement-based replication available in all versions of MySQL, or the row-based replication format introduced in MySQL 5.1.
When using statement-based replication, triggers on the slave are executed by statements that are executed on the master (and replicated to the slave).
When using row-based replication, triggers are not executed on the slave due to statements that were run on the master and then replicated to the slave. Instead, when using row-based replication, the changes caused by executing the trigger on the master are applied on the slave.
For more information, see Section 16.4.1.30, “Replication and Triggers”.
B.5.13: How are actions carried out through triggers on a master replicated to a slave?
Again, this depends on whether you are using statement-based or row-based replication.
Statement-based replication. First, the triggers that exist on a master must be re-created on the slave server. Once this is done, the replication flow works as any other standard DML statement that participates in replication. For example, consider a table EMP that has an AFTER insert trigger, which exists on a master MySQL server. The same EMP table and AFTER insert trigger exist on the slave server as well. The replication flow would be:
An INSERT statement is made to EMP.
The AFTER trigger on EMP activates.
The INSERT statement is written to the binary log.
The replication slave picks up the INSERT statement to EMP and executes it.
The AFTER trigger on EMP that exists on the slave activates.
Row-based replication. When you use row-based replication, the changes caused by executing the trigger on the master are applied on the slave. However, the triggers themselves are not actually executed on the slave under row-based replication. This is because, if both the master and the slave applied the changes from the master and—in addition—the trigger causing these changes were applied on the slave, the changes would in effect be applied twice on the slave, leading to different data on the master and the slave.
In most cases, the outcome is the same for both row-based and statement-based replication. However, if you use different triggers on the master and slave, you cannot use row-based replication. (This is because the row-based format replicates the changes made by triggers executing on the master to the slaves, rather than the statements that caused the triggers to execute, and the corresponding triggers on the slave are not executed.) Instead, any statements causing such triggers to be executed must be replicated using statement-based replication.
For more information, see Section 16.4.1.30, “Replication and Triggers”.
B.6. MySQL 5.6 FAQ: Views
Questions
B.6.1: Where can I find documentation covering MySQL Views?
B.6.2: Is there a discussion forum for MySQL Views?
B.6.3: What happens to a view if an underlying table is dropped or renamed?
B.6.4: Does MySQL 5.6 have table snapshots?
B.6.5: Does MySQL 5.6 have materialized views?
B.6.6: Can you insert into views that are based on joins?
Questions and Answers
B.6.1: Where can I find documentation covering MySQL Views?
See Section 18.5, “Using Views”.
B.6.2: Is there a discussion forum for MySQL Views?
Yes. See http://forums.mysql.com/list.php?100
B.6.3: What happens to a view if an underlying table is dropped or renamed?
After a view has been created, it is possible to drop or alter a table or view to which the definition refers. To check a view definition for problems of this kind, use the CHECK TABLE statement. (See Section 13.7.2.2, “CHECK TABLE Syntax”.)
B.6.4: Does MySQL 5.6 have table snapshots?
No.
B.6.5: Does MySQL 5.6 have materialized views?
No.
B.6.6: Can you insert into views that are based on joins?
It is possible, provided that your INSERT statement has a column list that makes it clear there is only one table involved.
You cannot insert into multiple tables with a single insert on a view.
B.7. MySQL 5.6 FAQ: INFORMATION_SCHEMA
Questions
B.7.1: Where can I find documentation for the MySQL INFORMATION_SCHEMA database?
B.7.2: Is there a discussion forum for INFORMATION_SCHEMA?
B.7.3: Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?
B.7.4: What is the difference between the Oracle Data Dictionary and MySQL's INFORMATION_SCHEMA?
B.7.5: Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?
Questions and Answers
B.7.1: Where can I find documentation for the MySQL INFORMATION_SCHEMA database?
See Chapter 19, INFORMATION_SCHEMA Tables
B.7.2: Is there a discussion forum for INFORMATION_SCHEMA?
See http://forums.mysql.com/list.php?101.
B.7.3: Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?
Unfortunately, the official specifications are not freely available. (ANSI makes them available for purchase.) However, there are books available—such as SQL-99 Complete, Really by Peter Gulutzan and Trudy Pelzer—which give a comprehensive overview of the standard, including INFORMATION_SCHEMA.
B.7.4: What is the difference between the Oracle Data Dictionary and MySQL's INFORMATION_SCHEMA?
Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different table names and column names. MySQL's implementation is more similar to those found in DB2 and SQL Server, which also support INFORMATION_SCHEMA as defined in the SQL standard.
B.7.5: Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?
No. Since applications may rely on a certain standard structure, this should not be modified. For this reason, we cannot support bugs or other issues which result from modifying INFORMATION_SCHEMA tables or data.
B.8. MySQL 5.6 FAQ: Migration
Questions
B.8.1: Where can I find information on how to migrate from MySQL 5.5 to MySQL 5.6?
B.8.2: How has storage engine (table type) support changed in MySQL 5.6 from previous versions?
Questions and Answers
B.8.1: Where can I find information on how to migrate from MySQL 5.5 to MySQL 5.6?
For detailed upgrade information, see Section 2.11.1, “Upgrading MySQL”. Do not skip a major version when upgrading, but rather complete the process in steps, upgrading from one major version to the next in each step. This may seem more complicated, but it will you save time and trouble—if you encounter problems during the upgrade, their origin will be easier to identify, either by you or—if you have a MySQL Enterprise subscription—by MySQL support.
B.8.2: How has storage engine (table type) support changed in MySQL 5.6 from previous versions?
Storage engine support has changed as follows:
Support for ISAM tables was removed in MySQL 5.0 and you should now use the MyISAM storage engine in place of ISAM. To convert a table tblname from ISAM to MyISAM, simply issue a statement such as this one:
ALTER TABLE tblname ENGINE=MYISAM;
Internal RAID for MyISAM tables was also removed in MySQL 5.0. This was formerly used to allow large tables in file systems that did not support file sizes greater than 2GB. All modern file systems allow for larger tables; in addition, there are now other solutions such as MERGE tables and views.
The VARCHAR column type now retains trailing spaces in all storage engines.
MEMORY tables (formerly known as HEAP tables) can also contain VARCHAR columns.
B.9. MySQL 5.6 FAQ: Security
Questions
B.9.1: Where can I find documentation that addresses security issues for MySQL?
B.9.2: Does MySQL 5.6 have native support for SSL?
B.9.3: Is SSL support be built into MySQL binaries, or must I recompile the binary myself to enable it?
B.9.4: Does MySQL 5.6 have built-in authentication against LDAP directories?
B.9.5: Does MySQL 5.6 include support for Roles Based Access Control (RBAC)?
Questions and Answers
B.9.1: Where can I find documentation that addresses security issues for MySQL?
The best place to start is Chapter 6, Security.
Other portions of the MySQL Documentation which you may find useful with regard to specific security concerns include the following:
Section 22.3.2.6, “User-Defined Function Security Precautions”.
Section 6.1.4, “Security-Related mysqld Options and Variables”.
B.9.2: Does MySQL 5.6 have native support for SSL?
Most 5.6 binaries have support for SSL connections between the client and server. See Section 6.3.9, “Using SSL for Secure Connections”.
You can also tunnel a connection using SSH, if (for example) the client application does not support SSL connections. For an example, see Section 6.3.10, “Connecting to MySQL Remotely from Windows with SSH”.
B.9.3: Is SSL support be built into MySQL binaries, or must I recompile the binary myself to enable it?
Most 5.6 binaries have SSL enabled for client-server connections that are secured, authenticated, or both. See Section 6.3.9, “Using SSL for Secure Connections”.
B.9.4: Does MySQL 5.6 have built-in authentication against LDAP directories?
Not at this time.
B.9.5: Does MySQL 5.6 include support for Roles Based Access Control (RBAC)?
Not at this time.
B.10. MySQL 5.6 FAQ: MySQL Cluster
In the following section, we answer questions that are frequently asked about MySQL Cluster and the NDB storage engine.
Questions
B.10.1: Which versions of the MySQL software support Cluster? Do I have to compile from source?
Questions and Answers
B.10.1: Which versions of the MySQL software support Cluster? Do I have to compile from source?
MySQL Cluster is not supported in MySQL Server 5.6 releases. Instead, MySQL Cluster is released as a separate product, available as MySQL Cluster NDB 7.1 and MySQL Cluster NDB 7.2. You should use MySQL Cluster NDB 7.2 for new deployments, and plan to upgrade if you are using a previous version of MySQL Cluster. For an overview of improvements made in MySQL Cluster NDB 7.1, see MySQL Cluster Development in MySQL Cluster NDB 7.1; for information about improvements made in MySQL Cluster NDB 7.2, see MySQL Cluster Development in MySQL Cluster NDB 7.2.
For detailed information about deploying and using MySQL Cluster, see MySQL Cluster NDB 6.1 - 7.1 and MySQL Cluster NDB 7.2.
B.11. MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
This set of Frequently Asked Questions derives from the experience of MySQL's Support and Development groups in handling many inquiries about CJK (Chinese-Japanese-Korean) issues.
Questions
B.11.1: What CJK character sets are available in MySQL?
B.11.2: I have inserted CJK characters into my table. Why does SELECT display them as “?” characters?
B.11.3: What problems should I be aware of when working with the Big5 Chinese character set?
B.11.4: Why do Japanese character set conversions fail?
B.11.5: What should I do if I want to convert SJIS 81CA to cp932?
B.11.6: How does MySQL represent the Yen (¥) sign?
B.11.7: Does MySQL plan to make a separate character set where 5C is the Yen sign, as at least one other major DBMS does?
B.11.8: Of what issues should I be aware when working with Korean character sets in MySQL?
B.11.9: Why do I get Incorrect string value error messages?
B.11.10: Why does my GUI front end or browser not display CJK characters correctly in my application using Access, PHP, or another API?
B.11.11: I've upgraded to MySQL 5.6. How can I revert to behavior like that in MySQL 4.0 with regard to character sets?
B.11.12: Why do some LIKE and FULLTEXT searches with CJK characters fail?
B.11.13: How do I know whether character X is available in all character sets?
B.11.14: Why do CJK strings sort incorrectly in Unicode? (I)
B.11.15: Why do CJK strings sort incorrectly in Unicode? (II)
B.11.16: Why are my supplementary characters rejected by MySQL?
B.11.17: Shouldn't it be “CJKV”?
B.11.18: Does MySQL allow CJK characters to be used in database and table names?
B.11.19: Where can I find translations of the MySQL Manual into Chinese, Japanese, and Korean?
B.11.20: Where can I get help with CJK and related issues in MySQL?
Questions and Answers
B.11.1: What CJK character sets are available in MySQL?
The list of CJK character sets may vary depending on your MySQL version. For example, the eucjpms character set was not supported prior to MySQL 5.0.3. However, since the name of the applicable language appears in the DESCRIPTION column for every entry in the INFORMATION_SCHEMA.CHARACTER_SETS table, you can obtain a current list of all the non-Unicode CJK character sets using this query:
mysql> SELECT CHARACTER_SET_NAME, DESCRIPTION
-> FROM INFORMATION_SCHEMA.CHARACTER_SETS
-> WHERE DESCRIPTION LIKE '%Chinese%'
-> OR DESCRIPTION LIKE '%Japanese%'
-> OR DESCRIPTION LIKE '%Korean%'
-> ORDER BY CHARACTER_SET_NAME;
+--------------------+---------------------------+
| CHARACTER_SET_NAME | DESCRIPTION |
+--------------------+---------------------------+
| big5 | Big5 Traditional Chinese |
| cp932 | SJIS for Windows Japanese |
| eucjpms | UJIS for Windows Japanese |
| euckr | EUC-KR Korean |
| gb2312 | GB2312 Simplified Chinese |
| gbk | GBK Simplified Chinese |
| sjis | Shift-JIS Japanese |
| ujis | EUC-JP Japanese |
+--------------------+---------------------------+
8 rows in set (0.01 sec)
(See Section 19.1, “The INFORMATION_SCHEMA CHARACTER_SETS Table”, for more information.)
MySQL supports the two common variants of the GB (Guojia Biaozhun, or National Standard, or Simplified Chinese) character sets which are official in the People's Republic of China: gb2312 and gbk. Sometimes people try to insert gbk characters into gb2312, and it works most of the time because gbk is a superset of gb2312—but eventually they try to insert a rarer Chinese character and it doesn't work. (See Bug #16072 for an example).
Here, we try to clarify exactly what characters are legitimate in gb2312 or gbk, with reference to the official documents. Please check these references before reporting gb2312 or gbk bugs.
For a complete listing of the gb2312 characters, ordered according to the gb2312_chinese_ci collation: gb2312
MySQL's gbk is in reality “Microsoft code page 936”. This differs from the official gbk for characters A1A4 (middle dot), A1AA (em dash), A6E0-A6F5, and A8BB-A8C0.
For a listing of gbk/Unicode mappings, see http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT.
For MySQL's listing of gbk characters, see gbk.
B.11.2: I have inserted CJK characters into my table. Why does SELECT display them as “?” characters?
This problem is usually due to a setting in MySQL that doesn't match the settings for the application program or the operating system. Here are some common steps for correcting these types of issues:
Be certain of what MySQL version you are using.
Use the statement SELECT VERSION(); to determine this.
Make sure that the database is actually using the desired character set.
People often think that the client character set is always the same as either the server character set or the character set used for display purposes. However, both of these are false assumptions. You can make sure by checking the result of SHOW CREATE TABLE tablename or—better yet—by using this statement:
SELECT character_set_name, collation_name
FROM information_schema.columns
WHERE table_schema = your_database_name
AND table_name = your_table_name
AND column_name = your_column_name;
Determine the hexadecimal value of the character or characters that are not being displayed correctly.
You can obtain this information for a column column_name in the table table_name using the following query:
SELECT HEX(column_name)
FROM table_name;
3F is the encoding for the ? character; this means that ? is the character actually stored in the column. This most often happens because of a problem converting a particular character from your client character set to the target character set.
Make sure that a round trip possible—that is, when you select literal (or _introducer hexadecimal-value), you obtain literal as a result.
For example, the Japanese Katakana character Pe (ペ') exists in all CJK character sets, and has the code point value (hexadecimal coding) 0x30da. To test a round trip for this character, use this query:
SELECT 'ペ' AS `ペ`; /* or SELECT _ucs2 0x30da; */
If the result is not also ペ, then the round trip has failed.
For bug reports regarding such failures, we might ask you to follow up with SELECT HEX('ペ');. Then we can determine whether the client encoding is correct.
Make sure that the problem is not with the browser or other application, rather than with MySQL.
Use the mysql client program (on Windows: mysql.exe) to accomplish this task. If mysql displays correctly but your application doesn't, then your problem is probably due to system settings.
To find out what your settings are, use the SHOW VARIABLES statement, whose output should resemble what is shown here:
mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
| character_set_client | utf8 |
| character_set_connection | utf8 |
| character_set_database | latin1 |
| character_set_filesystem | binary |
| character_set_results | utf8 |
| character_set_server | latin1 |
| character_set_system | utf8 |
| character_sets_dir | /usr/local/mysql/share/mysql/charsets/ |
+--------------------------+--+
8 rows in set (0.03 sec)
These are typical character-set settings for an international-oriented client (notice the use of utf8 Unicode) connected to a server in the West (latin1 is a West Europe character set and a default for MySQL).
Although Unicode (usually the utf8 variant on Unix, and the ucs2 variant on Windows) is preferable to Latin, it is often not what your operating system utilities support best. Many Windows users find that a Microsoft character set, such as cp932 for Japanese Windows, is suitable.
If you cannot control the server settings, and you have no idea what your underlying computer is, then try changing to a common character set for the country that you're in (euckr = Korea; gb2312 or gbk = People's Republic of China; big5 = Taiwan; sjis, ujis, cp932, or eucjpms = Japan; ucs2 or utf8 = anywhere). Usually it is necessary to change only the client and connection and results settings. There is a simple statement which changes all three at once: SET NAMES. For example:
SET NAMES 'big5';
Once the setting is correct, you can make it permanent by editing my.cnf or my.ini. For example you might add lines looking like these:
[mysqld]
character-set-server=big5
[client]
default-character-set=big5
It is also possible that there are issues with the API configuration setting being used in your application; see Why does my GUI front end or browser not display CJK characters correctly...? for more information.
B.11.3: What problems should I be aware of when working with the Big5 Chinese character set?
MySQL supports the Big5 character set which is common in Hong Kong and Taiwan (Republic of China). MySQL's big5 is in reality Microsoft code page 950, which is very similar to the original big5 character set. We changed to this character set starting with MySQL version 4.1.16 / 5.0.16 (as a result of Bug #12476). For example, the following statements work in current versions of MySQL, but not in old versions:
mysql> CREATE TABLE big5 (BIG5 CHAR(1) CHARACTER SET BIG5);
Query OK, 0 rows affected (0.13 sec)
mysql> INSERT INTO big5 VALUES (0xf9dc);
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM big5;
+------+
| big5 |
+------+
| 嫺 |
+------+
1 row in set (0.02 sec)
A feature request for adding HKSCS extensions has been filed. People who need this extension may find the suggested patch for Bug #13577 to be of interest.
B.11.4: Why do Japanese character set conversions fail?
MySQL supports the sjis, ujis, cp932, and eucjpms character sets, as well as Unicode. A common need is to convert between character sets. For example, there might be a Unix server (typically with sjis or ujis) and a Windows client (typically with cp932).
In the following conversion table, the ucs2 column represents the source, and the sjis, cp932, ujis, and eucjpms columns represent the destinations—that is, the last 4 columns provide the hexadecimal result when we use CONVERT(ucs2) or we assign a ucs2 column containing the value to an sjis, cp932, ujis, or eucjpms column.
Character Name | ucs2 | sjis | cp932 | ujis | eucjpms |
---|---|---|---|---|---|
BROKEN BAR | 00A6 | 3F | 3F | 8FA2C3 | 3F |
FULLWIDTH BROKEN BAR | FFE4 | 3F | FA55 | 3F | 8FA2 |
YEN SIGN | 00A5 | 3F | 3F | 20 | 3F |
FULLWIDTH YEN SIGN | FFE5 | 818F | 818F | A1EF | 3F |
TILDE | 007E | 7E | 7E | 7E | 7E |
OVERLINE | 203E | 3F | 3F | 20 | 3F |
HORIZONTAL BAR | 2015 | 815C | 815C | A1BD | A1BD |
EM DASH | 2014 | 3F | 3F | 3F | 3F |
REVERSE SOLIDUS | 005C | 815F | 5C | 5C | 5C |
FULLWIDTH "" | FF3C | 3F | 815F | 3F | A1C0 |
WAVE DASH | 301C | 8160 | 3F | A1C1 | 3F |
FULLWIDTH TILDE | FF5E | 3F | 8160 | 3F | A1C1 |
DOUBLE VERTICAL LINE | 2016 | 8161 | 3F | A1C2 | 3F |
PARALLEL TO | 2225 | 3F | 8161 | 3F | A1C2 |
MINUS SIGN | 2212 | 817C | 3F | A1DD | 3F |
FULLWIDTH HYPHEN-MINUS | FF0D | 3F | 817C | 3F | A1DD |
CENT SIGN | 00A2 | 8191 | 3F | A1F1 | 3F |
FULLWIDTH CENT SIGN | FFE0 | 3F | 8191 | 3F | A1F1 |
POUND SIGN | 00A3 | 8192 | 3F | A1F2 | 3F |
FULLWIDTH POUND SIGN | FFE1 | 3F | 8192 | 3F | A1F2 |
NOT SIGN | 00AC | 81CA | 3F | A2CC | 3F |
FULLWIDTH NOT SIGN | FFE2 | 3F | 81CA | 3F | A2CC |
Now consider the following portion of the table.
ucs2 | sjis | cp932 | |
---|---|---|---|
NOT SIGN | 00AC | 81CA | 3F |
FULLWIDTH NOT SIGN | FFE2 | 3F | 81CA |
This means that MySQL converts the NOT SIGN (Unicode U+00AC) to sjis code point 0x81CA and to cp932 code point 3F. (3F is the question mark (“?”)—this is what is always used when the conversion cannot be performed.
B.11.5: What should I do if I want to convert SJIS 81CA to cp932?
Our answer is: “?”. There are serious complaints about this: many people would prefer a “loose” conversion, so that 81CA (NOT SIGN) in sjis becomes 81CA (FULLWIDTH NOT SIGN) in cp932. We are considering a change to this behavior.
B.11.6: How does MySQL represent the Yen (¥) sign?
A problem arises because some versions of Japanese character sets (both sjis and euc) treat 5C as a reverse solidus (\—also known as a backslash), and others treat it as a yen sign (¥).
MySQL follows only one version of the JIS (Japanese Industrial Standards) standard description. In MySQL, 5C is always the reverse solidus (\).
B.11.7: Does MySQL plan to make a separate character set where 5C is the Yen sign, as at least one other major DBMS does?
This is one possible solution to the Yen sign issue; however, this will not happen in MySQL 5.1 or 6.0.
B.11.8: Of what issues should I be aware when working with Korean character sets in MySQL?
In theory, while there have been several versions of the euckr (Extended Unix Code Korea) character set, only one problem has been noted.
We use the “ASCII” variant of EUC-KR, in which the code point 0x5c is REVERSE SOLIDUS, that is \, instead of the “KS-Roman” variant of EUC-KR, in which the code point 0x5c is WON SIGN(₩). This means that you cannot convert Unicode U+20A9 to euckr:
mysql> SELECT
-> CONVERT('₩' USING euckr) AS euckr,
-> HEX(CONVERT('₩' USING euckr)) AS hexeuckr;
+-------+----------+
| euckr | hexeuckr |
+-------+----------+
| ? | 3F |
+-------+----------+
1 row in set (0.00 sec)
MySQL's graphic Korean chart is here: euckr.
B.11.9: Why do I get Incorrect string value error messages?
For illustration, we'll create a table with one Unicode (ucs2) column and one Chinese (gb2312) column.
mysql> CREATE TABLE ch
-> (ucs2 CHAR(3) CHARACTER SET ucs2,
-> gb2312 CHAR(3) CHARACTER SET gb2312);
Query OK, 0 rows affected (0.05 sec)
We'll try to place the rare character 汌 in both columns.
mysql> INSERT INTO ch VALUES ('A汌B','A汌B');
Query OK, 1 row affected, 1 warning (0.00 sec)
Ah, there is a warning. Use the following statement to see what it is:
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
Level: Warning
Code: 1366
Message: Incorrect string value: '\xE6\xB1\x8CB' for column 'gb2312' at row 1
1 row in set (0.00 sec)
So it is a warning about the gb2312 column only.
mysql> SELECT ucs2,HEX(ucs2),gb2312,HEX(gb2312) FROM ch;
+-------+--------------+--------+-------------+
| ucs2 | HEX(ucs2) | gb2312 | HEX(gb2312) |
+-------+--------------+--------+-------------+
| A汌B | 00416C4C0042 | A?B | 413F42 |
+-------+--------------+--------+-------------+
1 row in set (0.00 sec)
Several things need explanation here:
The fact that it is a “warning” rather than an “error” is characteristic of MySQL. We like to try to do what we can, to get the best fit, rather than give up.
The 汌 character is not in the gb2312 character set. We described that problem earlier.
If you are using an old version of MySQL, you will probably see a different message.
With sql_mode=TRADITIONAL, there would be an error message, rather than a warning.
B.11.10: Why does my GUI front end or browser not display CJK characters correctly in my application using Access, PHP, or another API?
Obtain a direct connection to the server using the mysql client (Windows: mysql.exe), and try the same query there. If mysql responds correctly, then the trouble may be that your application interface requires initialization. Use mysql to tell you what character set or sets it uses with the statement SHOW VARIABLES LIKE 'char%';. If you are using Access, then you are most likely connecting with Connector/ODBC. In this case, you should check Section 21.1.4, “Configuring Connector/ODBC”. If, for instance, you use big5, you would enter SET NAMES 'big5'. (Note that no ; is required in this case). If you are using ASP, you might need to add SET NAMES in the code. Here is an example that has worked in the past:
<%
Session.CodePage=0
Dim strConnection
Dim Conn
strConnection="driver={MySQL ODBC 3.51 Driver};server=server;uid=username;" \
& "pwd=password;database=database;stmt=SET NAMES 'big5';"
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open strConnection
%>
In much the same way, if you are using any character set other than latin1 with Connector/Net, then you must specify the character set in the connection string. See Section 21.2.5.1, “Connecting to MySQL Using Connector/Net”, for more information.
If you are using PHP, try this:
<?php
$link = mysql_connect($host, $usr, $pwd);
mysql_select_db($db);
if(mysql_error()) { print "Database ERROR: " . mysql_error(); }
mysql_query("SET NAMES 'utf8'", $link);
?>
In this case, we used SET NAMES to change character_set_client and character_set_connection and character_set_results.
We encourage the use of the newer mysqli extension, rather than mysql. Using mysqli, the previous example could be rewritten as shown here:
<?php
$link = new mysqli($host, $usr, $pwd, $db);
if(mysqli_connect_errno())
{
printf("Connect failed: %s\n", mysqli_connect_error());
exit();
}
$link->query("SET NAMES 'utf8'");
?>
Another issue often encountered in PHP applications has to do with assumptions made by the browser. Sometimes adding or changing a <meta> tag suffices to correct the problem: for example, to insure that the user agent interprets page content as UTF-8, you should include <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> in the <head> of the HTML page.
If you are using Connector/J, see Section 21.3.5.4, “Using Character Sets and Unicode”.
B.11.11: I've upgraded to MySQL 5.6. How can I revert to behavior like that in MySQL 4.0 with regard to character sets?
In MySQL Version 4.0, there was a single “global” character set for both server and client, and the decision as to which character to use was made by the server administrator. This changed starting with MySQL Version 4.1. What happens now is a “handshake”, as described in Section 10.1.4, “Connection Character Sets and Collations”:
When a client connects, it sends to the server the name of the character set that it wants to use. The server uses the name to set the character_set_client, character_set_results, and character_set_connection system variables. In effect, the server performs a SET NAMES operation using the character set name.
By way of example, suppose that your favorite server character set is latin1 (unlikely in a CJK area, but this is the default value). Suppose further that the client uses utf8 because this is what the client's operating system supports. Now, start the server with latin1 as its default character set:
mysqld --character-set-server=latin1
And then start the client with the default character set utf8:
mysql --default-character-set=utf8
The current settings can be seen by viewing the output of SHOW VARIABLES:
mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
| character_set_client | utf8 |
| character_set_connection | utf8 |
| character_set_database | latin1 |
| character_set_filesystem | binary |
| character_set_results | utf8 |
| character_set_server | latin1 |
| character_set_system | utf8 |
| character_sets_dir | /usr/local/mysql/share/mysql/charsets/ |
+--------------------------+--+
8 rows in set (0.01 sec)
Now stop the client, and then stop the server using mysqladmin. Then start the server again, but this time tell it to skip the handshake like so:
mysqld --character-set-server=utf8 --skip-character-set-client-handshake
Start the client with utf8 once again as the default character set, then display the current settings:
mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
| character_set_client | latin1 |
| character_set_connection | latin1 |
| character_set_database | latin1 |
| character_set_filesystem | binary |
| character_set_results | latin1 |
| character_set_server | latin1 |
| character_set_system | utf8 |
| character_sets_dir | /usr/local/mysql/share/mysql/charsets/ |
+--------------------------+--+
8 rows in set (0.01 sec)
As you can see by comparing the differing results from SHOW VARIABLES, the server ignores the client's initial settings if the --skip-character-set-client-handshake is used.
B.11.12: Why do some LIKE and FULLTEXT searches with CJK characters fail?
There is a very simple problem with LIKE searches on BINARY and BLOB columns: we need to know the end of a character. With multi-byte character sets, different characters might have different octet lengths. For example, in utf8, A requires one byte but ペ requires three bytes, as shown here:
+-------------------------+---------------------------+
| OCTET_LENGTH(_utf8 'A') | OCTET_LENGTH(_utf8 'ペ') |
+-------------------------+---------------------------+
| 1 | 3 |
+-------------------------+---------------------------+
1 row in set (0.00 sec)
If we don't know where the first character ends, then we don't know where the second character begins, in which case even very simple searches such as LIKE '_A%' fail. The solution is to use a regular CJK character set in the first place, or to convert to a CJK character set before comparing.
This is one reason why MySQL cannot allow encodings of nonexistent characters. If it is not strict about rejecting bad input, then it has no way of knowing where characters end.
For FULLTEXT searches, we need to know where words begin and end. With Western languages, this is rarely a problem because most (if not all) of these use an easy-to-identify word boundary—the space character. However, this is not usually the case with Asian writing. We could use arbitrary halfway measures, like assuming that all Han characters represent words, or (for Japanese) depending on changes from Katakana to Hiragana due to grammatical endings. However, the only sure solution requires a comprehensive word list, which means that we would have to include a dictionary in the server for each Asian language supported. This is simply not feasible.
B.11.13: How do I know whether character X is available in all character sets?
The majority of simplified Chinese and basic nonhalfwidth Japanese Kana characters appear in all CJK character sets. This stored procedure accepts a UCS-2 Unicode character, converts it to all other character sets, and displays the results in hexadecimal.
DELIMITER //
CREATE PROCEDURE p_convert(ucs2_char CHAR(1) CHARACTER SET ucs2)
BEGIN
CREATE TABLE tj
(ucs2 CHAR(1) character set ucs2,
utf8 CHAR(1) character set utf8,
big5 CHAR(1) character set big5,
cp932 CHAR(1) character set cp932,
eucjpms CHAR(1) character set eucjpms,
euckr CHAR(1) character set euckr,
gb2312 CHAR(1) character set gb2312,
gbk CHAR(1) character set gbk,
sjis CHAR(1) character set sjis,
ujis CHAR(1) character set ujis);
INSERT INTO tj (ucs2) VALUES (ucs2_char);
UPDATE tj SET utf8=ucs2,
big5=ucs2,
cp932=ucs2,
eucjpms=ucs2,
euckr=ucs2,
gb2312=ucs2,
gbk=ucs2,
sjis=ucs2,
ujis=ucs2;
/* If there is a conversion problem, UPDATE will produce a warning. */
SELECT hex(ucs2) AS ucs2,
hex(utf8) AS utf8,
hex(big5) AS big5,
hex(cp932) AS cp932,
hex(eucjpms) AS eucjpms,
hex(euckr) AS euckr,
hex(gb2312) AS gb2312,
hex(gbk) AS gbk,
hex(sjis) AS sjis,
hex(ujis) AS ujis
FROM tj;
DROP TABLE tj;
END//
The input can be any single ucs2 character, or it can be the code point value (hexadecimal representation) of that character. For example, from Unicode's list of ucs2 encodings and names (http://www.unicode.org/Public/UNIDATA/UnicodeData.txt), we know that the Katakana character Pe appears in all CJK character sets, and that its code point value is 0x30da. If we use this value as the argument to p_convert(), the result is as shown here:
mysql> CALL p_convert(0x30da)//
+------+--------+------+-------+---------+-------+--------+------+------+------+
| ucs2 | utf8 | big5 | cp932 | eucjpms | euckr | gb2312 | gbk | sjis | ujis |
+------+--------+------+-------+---------+-------+--------+------+------+------+
| 30DA | E3839A | C772 | 8379 | A5DA | ABDA | A5DA | A5DA | 8379 | A5DA |
+------+--------+------+-------+---------+-------+--------+------+------+------+
1 row in set (0.04 sec)
Since none of the column values is 3F—that is, the question mark character (?)—we know that every conversion worked.
B.11.14: Why do CJK strings sort incorrectly in Unicode? (I)
Sometimes people observe that the result of a utf8_unicode_ci or ucs2_unicode_ci search, or of an ORDER BY sort is not what they think a native would expect. Although we never rule out the possibility that there is a bug, we have found in the past that many people do not read correctly the standard table of weights for the Unicode Collation Algorithm. MySQL uses the table found at http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. This is not the first table you will find by navigating from the unicode.org home page, because MySQL uses the older 4.0.0 “allkeys” table, rather than the more recent 4.1.0 table. (The newer '520' collations in MySQL 5.6 use the 5.2 “allkeys” table.) This is because we are very wary about changing ordering which affects indexes, lest we bring about situations such as that reported in Bug #16526, illustrated as follows:
mysql< CREATE TABLE tj (s1 CHAR(1) CHARACTER SET utf8 COLLATE utf8_unicode_ci);
Query OK, 0 rows affected (0.05 sec)
mysql> INSERT INTO tj VALUES ('が'),('か');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
mysql> SELECT * FROM tj WHERE s1 = 'か';
+------+
| s1 |
+------+
| が |
| か |
+------+
2 rows in set (0.00 sec)
The character in the first result row is not the one that we searched for. Why did MySQL retrieve it? First we look for the Unicode code point value, which is possible by reading the hexadecimal number for the ucs2 version of the characters:
mysql> SELECT s1, HEX(CONVERT(s1 USING ucs2)) FROM tj;
+------+-----------------------------+
| s1 | HEX(CONVERT(s1 USING ucs2)) |
+------+-----------------------------+
| が | 304C |
| か | 304B |
+------+-----------------------------+
2 rows in set (0.03 sec)
Now we search for 304B and 304C in the 4.0.0 allkeys table, and find these lines:
304B ; [.1E57.0020.000E.304B] # HIRAGANA LETTER KA
304C ; [.1E57.0020.000E.304B][.0000.0140.0002.3099] # HIRAGANA LETTER GA; QQCM
The official Unicode names (following the “#” mark) tell us the Japanese syllabary (Hiragana), the informal classification (letter, digit, or punctuation mark), and the Western identifier (KA or GA, which happen to be voiced and unvoiced components of the same letter pair). More importantly, the primary weight (the first hexadecimal number inside the square brackets) is 1E57 on both lines. For comparisons in both searching and sorting, MySQL pays attention to the primary weight only, ignoring all the other numbers. This means that we are sorting が and か correctly according to the Unicode specification. If we wanted to distinguish them, we'd have to use a non-UCA (Unicode Collation Algorithm) collation (utf8_bin or utf8_general_ci), or to compare the HEX() values, or use ORDER BY CONVERT(s1 USING sjis). Being correct “according to Unicode” isn't enough, of course: the person who submitted the bug was equally correct. We plan to add another collation for Japanese according to the JIS X 4061 standard, in which voiced/unvoiced letter pairs like KA/GA are distinguishable for ordering purposes.
B.11.15: Why do CJK strings sort incorrectly in Unicode? (II)
If you are using Unicode (ucs2 or utf8), and you know what the Unicode sort order is (see Section B.11, “MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”), but MySQL still seems to sort your table incorrectly, then you should first verify the table character set:
mysql> SHOW CREATE TABLE t\G
******************** 1. row ******************
Table: t
Create Table: CREATE TABLE `t` (
`s1` char(1) CHARACTER SET ucs2 DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)
Since the character set appears to be correct, let's see what information the INFORMATION_SCHEMA.COLUMNS table can provide about this column:
mysql> SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
-> FROM INFORMATION_SCHEMA.COLUMNS
-> WHERE COLUMN_NAME = 's1'
-> AND TABLE_NAME = 't';
+-------------+--------------------+-----------------+
| COLUMN_NAME | CHARACTER_SET_NAME | COLLATION_NAME |
+-------------+--------------------+-----------------+
| s1 | ucs2 | ucs2_general_ci |
+-------------+--------------------+-----------------+
1 row in set (0.01 sec)
(See Section 19.4, “The INFORMATION_SCHEMA COLUMNS Table”, for more information.)
You can see that the collation is ucs2_general_ci instead of ucs2_unicode_ci. The reason why this is so can be found using SHOW CHARSET, as shown here:
mysql> SHOW CHARSET LIKE 'ucs2%';
+---------+---------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------+-------------------+--------+
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
+---------+---------------+-------------------+--------+
1 row in set (0.00 sec)
For ucs2 and utf8, the default collation is “general”. To specify a Unicode collation, use COLLATE ucs2_unicode_ci.
B.11.16: Why are my supplementary characters rejected by MySQL?
Before MySQL 5.5.3, MySQL does not support supplementary characters—that is, characters which need more than 3 bytes—for UTF-8. We support only what Unicode calls the Basic Multilingual Plane / Plane 0. Only a few very rare Han characters are supplementary; support for them is uncommon. This has led to reports such as that found in Bug #12600, which we rejected as “not a bug”. With utf8, we must truncate an input string when we encounter bytes that we don't understand. Otherwise, we wouldn't know how long the bad multi-byte character is.
One possible workaround is to use ucs2 instead of utf8, in which case the “bad” characters are changed to question marks; however, no truncation takes place. You can also change the data type to BLOB or BINARY, which perform no validity checking.
As of MySQL 5.5.3, Unicode support is extended to include supplementary characters by means of additional Unicode character sets: utf16, utf32, and 4-byte utf8mb4. These character sets support supplementary Unicode characters outside the Basic Multilingual Plane (BMP).
B.11.17: Shouldn't it be “CJKV”?
No. The term “CJKV” (Chinese Japanese Korean Vietnamese) refers to Vietnamese character sets which contain Han (originally Chinese) characters. MySQL has no plan to support the old Vietnamese script using Han characters. MySQL does of course support the modern Vietnamese script with Western characters.
As of MySQL 5.6, there are Vietnamese collations for Unicode character sets, as described in Section 10.1.14.1, “Unicode Character Sets”.
B.11.18: Does MySQL allow CJK characters to be used in database and table names?
This issue is fixed in MySQL 5.1, by automatically rewriting the names of the corresponding directories and files.
For example, if you create a database named 楮 on a server whose operating system does not support CJK in directory names, MySQL creates a directory named @0w@00a5@00ae. which is just a fancy way of encoding E6A5AE—that is, the Unicode hexadecimal representation for the 楮 character. However, if you run a SHOW DATABASES statement, you can see that the database is listed as 楮.
B.11.19: Where can I find translations of the MySQL Manual into Chinese, Japanese, and Korean?
A Simplified Chinese version of the Manual, current for MySQL 5.1.12, can be found at http://dev.mysql.com/doc/. The Japanese translation of the MySQL 4.1 manual can be downloaded from http://dev.mysql.com/doc/.
B.11.20: Where can I get help with CJK and related issues in MySQL?
The following resources are available:
A listing of MySQL user groups can be found at http://dev.mysql.com/user-groups/.
View feature requests relating to character set issues at http://tinyurl.com/y6xcuf.
Visit the MySQL Character Sets, Collation, Unicode Forum. We are also in the process of adding foreign-language forums at http://forums.mysql.com/.
B.12. MySQL 5.6 FAQ: Connectors & APIs
For common questions, issues, and answers relating to the MySQL Connectors and other APIs, see the following areas of the Manual:
B.13. MySQL 5.6 FAQ: Replication
In the following section, we provide answers to questions that are most frequently asked about MySQL Replication.
Questions
B.13.1: Must the slave be connected to the master all the time?
B.13.2: Must I enable networking on my master and slave to enable replication?
B.13.3: How do I know how late a slave is compared to the master? In other words, how do I know the date of the last statement replicated by the slave?
B.13.4: How do I force the master to block updates until the slave catches up?
B.13.5: What issues should I be aware of when setting up two-way replication?
B.13.6: How can I use replication to improve performance of my system?
B.13.7: What should I do to prepare client code in my own applications to use performance-enhancing replication?
B.13.8: When and how much can MySQL replication improve the performance of my system?
B.13.9: How can I use replication to provide redundancy or high availability?
B.13.10: How do I tell whether a master server is using statement-based or row-based binary logging format?
B.13.11: How do I tell a slave to use row-based replication?
B.13.12: How do I prevent GRANT and REVOKE statements from replicating to slave machines?
B.13.13: Does replication work on mixed operating systems (for example, the master runs on Linux while slaves run on Mac OS X and Windows)?
B.13.14: Does replication work on mixed hardware architectures (for example, the master runs on a 64-bit machine while slaves run on 32-bit machines)?
Questions and Answers
B.13.1: Must the slave be connected to the master all the time?
No, it does not. The slave can go down or stay disconnected for hours or even days, and then reconnect and catch up on updates. For example, you can set up a master/slave relationship over a dial-up link where the link is up only sporadically and for short periods of time. The implication of this is that, at any given time, the slave is not guaranteed to be in synchrony with the master unless you take some special measures.
To ensure that catchup can occur for a slave that has been disconnected, you must not remove binary log files from the master that contain information that has not yet been replicated to the slaves. Asynchronous replication can work only if the slave is able to continue reading the binary log from the point where it last read events.
B.13.2: Must I enable networking on my master and slave to enable replication?
Yes, networking must be enabled on the master and slave. If networking is not enabled, the slave cannot connect to the master and transfer the binary log. Check that the skip-networking option has not been enabled in the configuration file for either server.
B.13.3: How do I know how late a slave is compared to the master? In other words, how do I know the date of the last statement replicated by the slave?
Check the Seconds_Behind_Master column in the output from SHOW SLAVE STATUS. See Section 16.1.5.1, “Checking Replication Status”.
When the slave SQL thread executes an event read from the master, it modifies its own time to the event timestamp. (This is why TIMESTAMP is well replicated.) In the Time column in the output of SHOW PROCESSLIST, the number of seconds displayed for the slave SQL thread is the number of seconds between the timestamp of the last replicated event and the real time of the slave machine. You can use this to determine the date of the last replicated event. Note that if your slave has been disconnected from the master for one hour, and then reconnects, you may immediately see large Time values such as 3600 for the slave SQL thread in SHOW PROCESSLIST. This is because the slave is executing statements that are one hour old. See Section 16.2.1, “Replication Implementation Details”.
B.13.4: How do I force the master to block updates until the slave catches up?
Use the following procedure:
On the master, execute these statements:
mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;
Record the replication coordinates (the current binary log file name and position) from the output of the SHOW statement.
On the slave, issue the following statement, where the arguments to the MASTER_POS_WAIT() function are the replication coordinate values obtained in the previous step:
mysql> SELECT MASTER_POS_WAIT('log_name', log_pos);
The SELECT statement blocks until the slave reaches the specified log file and position. At that point, the slave is in synchrony with the master and the statement returns.
On the master, issue the following statement to enable the master to begin processing updates again:
mysql> UNLOCK TABLES;
B.13.5: What issues should I be aware of when setting up two-way replication?
MySQL replication currently does not support any locking protocol between master and slave to guarantee the atomicity of a distributed (cross-server) update. In other words, it is possible for client A to make an update to co-master 1, and in the meantime, before it propagates to co-master 2, client B could make an update to co-master 2 that makes the update of client A work differently than it did on co-master 1. Thus, when the update of client A makes it to co-master 2, it produces tables that are different from what you have on co-master 1, even after all the updates from co-master 2 have also propagated. This means that you should not chain two servers together in a two-way replication relationship unless you are sure that your updates can safely happen in any order, or unless you take care of mis-ordered updates somehow in the client code.
You should also realize that two-way replication actually does not improve performance very much (if at all) as far as updates are concerned. Each server must do the same number of updates, just as you would have a single server do. The only difference is that there is a little less lock contention because the updates originating on another server are serialized in one slave thread. Even this benefit might be offset by network delays.
B.13.6: How can I use replication to improve performance of my system?
Set up one server as the master and direct all writes to it. Then configure as many slaves as you have the budget and rackspace for, and distribute the reads among the master and the slaves. You can also start the slaves with the --skip-innodb, --low-priority-updates, and --delay-key-write=ALL options to get speed improvements on the slave end. In this case, the slave uses nontransactional MyISAM tables instead of InnoDB tables to get more speed by eliminating transactional overhead.
B.13.7: What should I do to prepare client code in my own applications to use performance-enhancing replication?
See the guide to using replication as a scale-out solution, Section 16.3.3, “Using Replication for Scale-Out”.
B.13.8: When and how much can MySQL replication improve the performance of my system?
MySQL replication is most beneficial for a system that processes frequent reads and infrequent writes. In theory, by using a single-master/multiple-slave setup, you can scale the system by adding more slaves until you either run out of network bandwidth, or your update load grows to the point that the master cannot handle it.
To determine how many slaves you can use before the added benefits begin to level out, and how much you can improve performance of your site, you must know your query patterns, and determine empirically by benchmarking the relationship between the throughput for reads and writes on a typical master and a typical slave. The example here shows a rather simplified calculation of what you can get with replication for a hypothetical system. Let reads and writes denote the number of reads and writes per second, respectively.
Let's say that system load consists of 10% writes and 90% reads, and we have determined by benchmarking that reads is 1200 - 2 * writes. In other words, the system can do 1,200 reads per second with no writes, the average write is twice as slow as the average read, and the relationship is linear. Suppose that the master and each slave have the same capacity, and that we have one master and N slaves. Then we have for each server (master or slave):
reads = 1200 - 2 * writes
reads = 9 * writes / (N + 1) (reads are split, but writes replicated to all slaves)
9 * writes / (N + 1) + 2 * writes = 1200
writes = 1200 / (2 + 9/(N + 1))
The last equation indicates the maximum number of writes for N slaves, given a maximum possible read rate of 1,200 per second and a ratio of nine reads per write.
This analysis yields the following conclusions:
If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109 writes per second.
If N = 1, we get up to 184 writes per second.
If N = 8, we get up to 400 writes per second.
If N = 17, we get up to 480 writes per second.
Eventually, as N approaches infinity (and our budget negative infinity), we can get very close to 600 writes per second, increasing system throughput about 5.5 times. However, with only eight servers, we increase it nearly four times.
Note that these computations assume infinite network bandwidth and neglect several other factors that could be significant on your system. In many cases, you may not be able to perform a computation similar to the one just shown that accurately predicts what will happen on your system if you add N replication slaves. However, answering the following questions should help you decide whether and by how much replication will improve the performance of your system:
What is the read/write ratio on your system?
How much more write load can one server handle if you reduce the reads?
For how many slaves do you have bandwidth available on your network?
B.13.9: How can I use replication to provide redundancy or high availability?
How you implement redundancy is entirely dependent on your application and circumstances. High-availability solutions (with automatic failover) require active monitoring and either custom scripts or third party tools to provide the failover support from the original MySQL server to the slave.
To handle the process manually, you should be able to switch from a failed master to a pre-configured slave by altering your application to talk to the new server or by adjusting the DNS for the MySQL server from the failed server to the new server.
For more information and some example solutions, see Section 16.3.6, “Switching Masters During Failover”.
B.13.10: How do I tell whether a master server is using statement-based or row-based binary logging format?
Check the value of the binlog_format system variable:
mysql> SHOW VARIABLES LIKE 'binlog_format';
The value shown will be one of STATEMENT, ROW, or MIXED. For MIXED mode, row-based logging is preferred but replication switches automatically to statement-based logging under certain conditions; for information about when this may occur, see Section 5.2.4.3, “Mixed Binary Logging Format”.
B.13.11: How do I tell a slave to use row-based replication?
Slaves automatically know which format to use.
B.13.12: How do I prevent GRANT and REVOKE statements from replicating to slave machines?
Start the server with the --replicate-wild-ignore-table=mysql.% option to ignore replication for tables in the mysql database.
B.13.13: Does replication work on mixed operating systems (for example, the master runs on Linux while slaves run on Mac OS X and Windows)?
Yes.
B.13.14: Does replication work on mixed hardware architectures (for example, the master runs on a 64-bit machine while slaves run on 32-bit machines)?
Yes.
B.14. MySQL 5.6 FAQ: MySQL Enterprise Scalability Thread Pool
Questions
B.14.1: What is the Thread Pool and what problem does it solve?
B.14.2: How does the Thead Pool limit and manage concurrent sessions and transactions for optimal performance and throughput?
B.14.3: How is the Thread Pool different from the client side Connection Pool?
B.14.4: When should I use the Thread Pool?
B.14.5: Are there recommended Thread Pool configurations?
Questions and Answers
B.14.1: What is the Thread Pool and what problem does it solve?
The MySQL Thread Pool is a MySQL server plugin that extends the default connection-handling capabilities of the MySQL server to limit the number of concurrently executing statements/queries and transactions to ensure that each has sufficient CPU and memory resources to fulfill its task. Commercial distributions of MySQL 5.5 and 5.6 include the Thread Pool plugin.
The default thread-handling model in MySQL Server executes statements using one thread per client connection. As more clients connect to the server and execute statements, overall performance degrades. The Thread Pool plugin provides an alternative thread-handling model designed to reduce overhead and improve performance. The Thread Pool plugin increases server performance by efficiently managing statement execution threads for large numbers of client connections, especially on modern multi-CPU/Core systems.
For more information, see Section 8.11.6, “The Thread Pool Plugin”.
B.14.2: How does the Thead Pool limit and manage concurrent sessions and transactions for optimal performance and throughput?
The Thread Pool uses a “divide and conquer” approach to limiting and balancing concurrency. Unlike the default connection handling of the MySQL Server, the Thread Pool separates connections and threads, so there is no fixed relationship between connections and the threads that execute statements received from those connections. The Thread Pool then manages client connections within configurable thread groups, where they are prioritized and queued based on the nature of the work they were submitted to accomplish.
For more information, see Section 8.11.6.2, “Thread Pool Operation”.
B.14.3: How is the Thread Pool different from the client side Connection Pool?
The MySQL Connection Pool operates on the client side to ensure that a MySQL client does not constantly connect to and disconnect from the MySQL server. It is designed to cache idle connections in the MySQL client for use by other users as they are needed. This minimizes the overhead and expense of establishing and tearing down connections as queries are submitted to the MySQL server. The MySQL Connection Pool has no visibility as to the query handling capabilities or load of the backend MySQL server. By contrast, the Thread Pool operates on the MySQL server side and is designed to manage the execution of inbound concurrent connections and queries as they are received from the client connections accessing the backend MySQL database. Because of the separation of duties, the MySQL Connection Pool and Thread Pool are orthogonal and can be used independent of each other.
MySQL Connection Pooling via the MySQL Connectors is covered in Chapter 21, Connectors and APIs.
B.14.4: When should I use the Thread Pool?
There are a few rules of thumb to consider for optimal Thread Pool use cases:
The MySQL Threads_running variable keeps track of the number of concurrent statements currently executing in the MySQL Server. If this variable consistently exceeds a region where the server won't operate optimally (usually going beyond 40 for InnoDB workloads), the Thread Pool will be beneficial, especially in extreme parallel overload situations.
If you are using the innodb_thread_concurrency to limit the number of concurrently executing statements, you will find the Thread Pool solves the same problem, only better, by assigning connections to thread groups, then queuing executions based on transactional content, user defined designations, and so forth.
Lastly, if your workload comprises mainly short queries, the Thread Pool will be beneficial.
To learn more, see Section 8.11.6.3, “Thread Pool Tuning”.
B.14.5: Are there recommended Thread Pool configurations?
The Thread Pool has a number of user case driven configuration parameters that affect its performance. To learn about these and tips on tuning, see Section 8.11.6.3, “Thread Pool Tuning”.
Appendix C. Errors, Error Codes, and Common Problems
Table of Contents
C.1. Sources of Error Information
C.3. Server Error Codes and Messages
C.4. Client Error Codes and Messages
C.5. Problems and Common Errors
C.5.1. How to Determine What Is Causing a Problem
C.5.2. Common Errors When Using MySQL Programs
C.5.3. Installation-Related Issues
C.5.4. Administration-Related Issues
C.5.5. Query-Related Issues
C.5.6. Optimizer-Related Issues
C.5.7. Table Definition-Related Issues
C.5.8. Known Issues in MySQL
This appendix lists common problems and errors that may occur and potential resolutions, in addition to listing the errors that may appear when you call MySQL from any host language. The first section covers problems and resolutions. Detailed information on errors is provided: One list displays server error messages. Another list displays client program messages.
C.1. Sources of Error Information
There are several sources of error information in MySQL:
Each SQL statement executed results in an error code, an SQLSTATE value, and an error message, as described in Section C.2, “Types of Error Values”. These errors are returned from the server side; see Section C.3, “Server Error Codes and Messages”.
Errors can occur on the client side, usually involving problems communicating with the server; see Section C.4, “Client Error Codes and Messages”.
SQL statement warning and error information is available through the SHOW WARNINGS and SHOW ERRORS statements. The warning_count system variable indicates the number of errors, warnings, and notes. The error_count system variable indicates the number of errors. Its value excludes warnings and notes.
SHOW SLAVE STATUS statement output includes information about replication errors occurring on the slave side.
SHOW ENGINE INNODB STATUS statement output includes information about the most recent foreign key error if a CREATE TABLE statement for an InnoDB table fails.
The perror program provides information from the command line about error numbers. See Section 4.8.1, “perror — Explain Error Codes”.
Descriptions of server and client errors are provided later in this Appendix. For information about errors related to InnoDB, see Section 14.2.3.14, “InnoDB Error Handling”.
C.2. Types of Error Values
When an error occurs in MySQL, the server returns two types of error values:
A MySQL-specific error code. This value is numeric. It is not portable to other database systems.
An SQLSTATE value. The value is a five-character string (for example, '42S02'). The values are taken from ANSI SQL and ODBC and are more standardized.
A message string that provides a textual description of the error is also available.
When an error occurs, the MySQL error code, SQLSTATE value, and message string are available using C API functions:
MySQL error code: Call mysql_errno()
SQLSTATE value: Call mysql_sqlstate()
Error message: Call mysql_error()
For prepared statements, the corresponding error functions are mysql_stmt_errno(), mysql_stmt_sqlstate(), and mysql_stmt_error(). All error functions are described in Section 21.8, “MySQL C API”.
The number of errors, warnings, and notes for the previous statement can be obtained by calling mysql_warning_count(). See Section 21.8.6.73, “mysql_warning_count()”.
The first two characters of an SQLSTATE value indicate the error class:
Class = '00' indicates success.
Class = '01' indicates a warning.
Class = '02' indicates “not found.” This is relevant within the context of cursors and is used to control what happens when a cursor reaches the end of a data set. This condition also occurs for SELECT ... INTO var_list statements that retrieve no rows.
Class > '02' indicates an exception.
C.3. Server Error Codes and Messages
MySQL programs have access to several types of error information when the server returns an error. For example, the mysql client program displays errors using the following format:
shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist
The message displayed contains three types of information:
A numeric error code (1146). This number is MySQL-specific and is not portable to other database systems.
A five-character SQLSTATE value ('42S02'). The values are taken from ANSI SQL and ODBC and are more standardized. Not all MySQL error numbers have corresponding SQLSTATE values. In these cases, 'HY000' (general error) is used.
A message string that provides a textual description of the error.
For error checking, use error codes, not error messages. Error messages do not change often, but it is possible. Also if the database administrator changes the language setting, that affects the language of error messages.
Error codes are stable across GA releases of a given MySQL series. Before a series reaches GA status, new codes may still be under development and subject to change.
Server error information comes from the following source files. For details about the way that error information is defined, see the MySQL Internals Manual.
Error message information is listed in the share/errmsg.txt file. %d and %s represent numbers and strings, respectively, that are substituted into the Message values when they are displayed.
The Error values listed in share/errmsg.txt are used to generate the definitions in the include/mysqld_error.h and include/mysqld_ername.h MySQL source files.
The SQLSTATE values listed in share/errmsg.txt are used to generate the definitions in the include/sql_state.h MySQL source file.
Because updates are frequent, it is possible that those files will contain additional error information not listed here.
Error: 1000 SQLSTATE: HY000 (ER_HASHCHK)
Message: hashchk
Error: 1001 SQLSTATE: HY000 (ER_NISAMCHK)
Message: isamchk
Error: 1002 SQLSTATE: HY000 (ER_NO)
Message: NO
Error: 1003 SQLSTATE: HY000 (ER_YES)
Message: YES
Error: 1004 SQLSTATE: HY000 (ER_CANT_CREATE_FILE)
Message: Can't create file '%s' (errno: %d - %s)
Error: 1005 SQLSTATE: HY000 (ER_CANT_CREATE_TABLE)
Message: Can't create table '%s' (errno: %d)
Error: 1006 SQLSTATE: HY000 (ER_CANT_CREATE_DB)
Message: Can't create database '%s' (errno: %d)
Error: 1007 SQLSTATE: HY000 (ER_DB_CREATE_EXISTS)
Message: Can't create database '%s'; database exists
Error: 1008 SQLSTATE: HY000 (ER_DB_DROP_EXISTS)
Message: Can't drop database '%s'; database doesn't exist
Error: 1009 SQLSTATE: HY000 (ER_DB_DROP_DELETE)
Message: Error dropping database (can't delete '%s', errno: %d)
Error: 1010 SQLSTATE: HY000 (ER_DB_DROP_RMDIR)
Message: Error dropping database (can't rmdir '%s', errno: %d)
Error: 1011 SQLSTATE: HY000 (ER_CANT_DELETE_FILE)
Message: Error on delete of '%s' (errno: %d - %s)
Error: 1012 SQLSTATE: HY000 (ER_CANT_FIND_SYSTEM_REC)
Message: Can't read record in system table
Error: 1013 SQLSTATE: HY000 (ER_CANT_GET_STAT)
Message: Can't get status of '%s' (errno: %d - %s)
Error: 1014 SQLSTATE: HY000 (ER_CANT_GET_WD)
Message: Can't get working directory (errno: %d - %s)
Error: 1015 SQLSTATE: HY000 (ER_CANT_LOCK)
Message: Can't lock file (errno: %d - %s)
Error: 1016 SQLSTATE: HY000 (ER_CANT_OPEN_FILE)
Message: Can't open file: '%s' (errno: %d - %s)
Error: 1017 SQLSTATE: HY000 (ER_FILE_NOT_FOUND)
Message: Can't find file: '%s' (errno: %d - %s)
Error: 1018 SQLSTATE: HY000 (ER_CANT_READ_DIR)
Message: Can't read dir of '%s' (errno: %d - %s)
Error: 1019 SQLSTATE: HY000 (ER_CANT_SET_WD)
Message: Can't change dir to '%s' (errno: %d - %s)
Error: 1020 SQLSTATE: HY000 (ER_CHECKREAD)
Message: Record has changed since last read in table '%s'
Error: 1021 SQLSTATE: HY000 (ER_DISK_FULL)
Message: Disk full (%s); waiting for someone to free some space... (errno: %d - %s)
Error: 1022 SQLSTATE: 23000 (ER_DUP_KEY)
Message: Can't write; duplicate key in table '%s'
Error: 1023 SQLSTATE: HY000 (ER_ERROR_ON_CLOSE)
Message: Error on close of '%s' (errno: %d - %s)
Error: 1024 SQLSTATE: HY000 (ER_ERROR_ON_READ)
Message: Error reading file '%s' (errno: %d - %s)
Error: 1025 SQLSTATE: HY000 (ER_ERROR_ON_RENAME)
Message: Error on rename of '%s' to '%s' (errno: %d - %s)
Error: 1026 SQLSTATE: HY000 (ER_ERROR_ON_WRITE)
Message: Error writing file '%s' (errno: %d - %s)
Error: 1027 SQLSTATE: HY000 (ER_FILE_USED)
Message: '%s' is locked against change
Error: 1028 SQLSTATE: HY000 (ER_FILSORT_ABORT)
Message: Sort aborted
Error: 1029 SQLSTATE: HY000 (ER_FORM_NOT_FOUND)
Message: View '%s' doesn't exist for '%s'
Error: 1030 SQLSTATE: HY000 (ER_GET_ERRNO)
Message: Got error %d from storage engine
Error: 1031 SQLSTATE: HY000 (ER_ILLEGAL_HA)
Message: Table storage engine for '%s' doesn't have this option
Error: 1032 SQLSTATE: HY000 (ER_KEY_NOT_FOUND)
Message: Can't find record in '%s'
Error: 1033 SQLSTATE: HY000 (ER_NOT_FORM_FILE)
Message: Incorrect information in file: '%s'
Error: 1034 SQLSTATE: HY000 (ER_NOT_KEYFILE)
Message: Incorrect key file for table '%s'; try to repair it
Error: 1035 SQLSTATE: HY000 (ER_OLD_KEYFILE)
Message: Old key file for table '%s'; repair it!
Error: 1036 SQLSTATE: HY000 (ER_OPEN_AS_READONLY)
Message: Table '%s' is read only
Error: 1037 SQLSTATE: HY001 (ER_OUTOFMEMORY)
Message: Out of memory; restart server and try again (needed %d bytes)
Error: 1038 SQLSTATE: HY001 (ER_OUT_OF_SORTMEMORY)
Message: Out of sort memory, consider increasing server sort buffer size
Error: 1039 SQLSTATE: HY000 (ER_UNEXPECTED_EOF)
Message: Unexpected EOF found when reading file '%s' (errno: %d - %s)
Error: 1040 SQLSTATE: 08004 (ER_CON_COUNT_ERROR)
Message: Too many connections
Error: 1041 SQLSTATE: HY000 (ER_OUT_OF_RESOURCES)
Message: Out of memory; check if mysqld or some other process uses all available memory; if not, you may have to use 'ulimit' to allow mysqld to use more memory or you can add more swap space
Error: 1042 SQLSTATE: 08S01 (ER_BAD_HOST_ERROR)
Message: Can't get hostname for your address
Error: 1043 SQLSTATE: 08S01 (ER_HANDSHAKE_ERROR)
Message: Bad handshake
Error: 1044 SQLSTATE: 42000 (ER_DBACCESS_DENIED_ERROR)
Message: Access denied for user '%s'@'%s' to database '%s'
Error: 1045 SQLSTATE: 28000 (ER_ACCESS_DENIED_ERROR)
Message: Access denied for user '%s'@'%s' (using password: %s)
Error: 1046 SQLSTATE: 3D000 (ER_NO_DB_ERROR)
Message: No database selected
Error: 1047 SQLSTATE: 08S01 (ER_UNKNOWN_COM_ERROR)
Message: Unknown command
Error: 1048 SQLSTATE: 23000 (ER_BAD_NULL_ERROR)
Message: Column '%s' cannot be null
Error: 1049 SQLSTATE: 42000 (ER_BAD_DB_ERROR)
Message: Unknown database '%s'
Error: 1050 SQLSTATE: 42S01 (ER_TABLE_EXISTS_ERROR)
Message: Table '%s' already exists
Error: 1051 SQLSTATE: 42S02 (ER_BAD_TABLE_ERROR)
Message: Unknown table '%s'
Error: 1052 SQLSTATE: 23000 (ER_NON_UNIQ_ERROR)
Message: Column '%s' in %s is ambiguous
Error: 1053 SQLSTATE: 08S01 (ER_SERVER_SHUTDOWN)
Message: Server shutdown in progress
Error: 1054 SQLSTATE: 42S22 (ER_BAD_FIELD_ERROR)
Message: Unknown column '%s' in '%s'
Error: 1055 SQLSTATE: 42000 (ER_WRONG_FIELD_WITH_GROUP)
Message: '%s' isn't in GROUP BY
Error: 1056 SQLSTATE: 42000 (ER_WRONG_GROUP_FIELD)
Message: Can't group on '%s'
Error: 1057 SQLSTATE: 42000 (ER_WRONG_SUM_SELECT)
Message: Statement has sum functions and columns in same statement
Error: 1058 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT)
Message: Column count doesn't match value count
Error: 1059 SQLSTATE: 42000 (ER_TOO_LONG_IDENT)
Message: Identifier name '%s' is too long
Error: 1060 SQLSTATE: 42S21 (ER_DUP_FIELDNAME)
Message: Duplicate column name '%s'
Error: 1061 SQLSTATE: 42000 (ER_DUP_KEYNAME)
Message: Duplicate key name '%s'
Error: 1062 SQLSTATE: 23000 (ER_DUP_ENTRY)
Message: Duplicate entry '%s' for key %d
As of MySQL 5.1.20, the message returned with this error uses the format string for ER_DUP_ENTRY_WITH_KEY_NAME.
Error: 1063 SQLSTATE: 42000 (ER_WRONG_FIELD_SPEC)
Message: Incorrect column specifier for column '%s'
Error: 1064 SQLSTATE: 42000 (ER_PARSE_ERROR)
Message: %s near '%s' at line %d
Error: 1065 SQLSTATE: 42000 (ER_EMPTY_QUERY)
Message: Query was empty
Error: 1066 SQLSTATE: 42000 (ER_NONUNIQ_TABLE)
Message: Not unique table/alias: '%s'
Error: 1067 SQLSTATE: 42000 (ER_INVALID_DEFAULT)
Message: Invalid default value for '%s'
Error: 1068 SQLSTATE: 42000 (ER_MULTIPLE_PRI_KEY)
Message: Multiple primary key defined
Error: 1069 SQLSTATE: 42000 (ER_TOO_MANY_KEYS)
Message: Too many keys specified; max %d keys allowed
Error: 1070 SQLSTATE: 42000 (ER_TOO_MANY_KEY_PARTS)
Message: Too many key parts specified; max %d parts allowed
Error: 1071 SQLSTATE: 42000 (ER_TOO_LONG_KEY)
Message: Specified key was too long; max key length is %d bytes
Error: 1072 SQLSTATE: 42000 (ER_KEY_COLUMN_DOES_NOT_EXITS)
Message: Key column '%s' doesn't exist in table
Error: 1073 SQLSTATE: 42000 (ER_BLOB_USED_AS_KEY)
Message: BLOB column '%s' can't be used in key specification with the used table type
Error: 1074 SQLSTATE: 42000 (ER_TOO_BIG_FIELDLENGTH)
Message: Column length too big for column '%s' (max = %lu); use BLOB or TEXT instead
Error: 1075 SQLSTATE: 42000 (ER_WRONG_AUTO_KEY)
Message: Incorrect table definition; there can be only one auto column and it must be defined as a key
Error: 1076 SQLSTATE: HY000 (ER_READY)
Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d
Error: 1077 SQLSTATE: HY000 (ER_NORMAL_SHUTDOWN)
Message: %s: Normal shutdown
Error: 1078 SQLSTATE: HY000 (ER_GOT_SIGNAL)
Message: %s: Got signal %d. Aborting!
Error: 1079 SQLSTATE: HY000 (ER_SHUTDOWN_COMPLETE)
Message: %s: Shutdown complete
Error: 1080 SQLSTATE: 08S01 (ER_FORCING_CLOSE)
Message: %s: Forcing close of thread %ld user: '%s'
Error: 1081 SQLSTATE: 08S01 (ER_IPSOCK_ERROR)
Message: Can't create IP socket
Error: 1082 SQLSTATE: 42S12 (ER_NO_SUCH_INDEX)
Message: Table '%s' has no index like the one used in CREATE INDEX; recreate the table
Error: 1083 SQLSTATE: 42000 (ER_WRONG_FIELD_TERMINATORS)
Message: Field separator argument is not what is expected; check the manual
Error: 1084 SQLSTATE: 42000 (ER_BLOBS_AND_NO_TERMINATED)
Message: You can't use fixed rowlength with BLOBs; please use 'fields terminated by'
Error: 1085 SQLSTATE: HY000 (ER_TEXTFILE_NOT_READABLE)
Message: The file '%s' must be in the database directory or be readable by all
Error: 1086 SQLSTATE: HY000 (ER_FILE_EXISTS_ERROR)
Message: File '%s' already exists
Error: 1087 SQLSTATE: HY000 (ER_LOAD_INFO)
Message: Records: %ld Deleted: %ld Skipped: %ld Warnings: %ld
Error: 1088 SQLSTATE: HY000 (ER_ALTER_INFO)
Message: Records: %ld Duplicates: %ld
Error: 1089 SQLSTATE: HY000 (ER_WRONG_SUB_KEY)
Message: Incorrect prefix key; the used key part isn't a string, the used length is longer than the key part, or the storage engine doesn't support unique prefix keys
Error: 1090 SQLSTATE: 42000 (ER_CANT_REMOVE_ALL_FIELDS)
Message: You can't delete all columns with ALTER TABLE; use DROP TABLE instead
Error: 1091 SQLSTATE: 42000 (ER_CANT_DROP_FIELD_OR_KEY)
Message: Can't DROP '%s'; check that column/key exists
Error: 1092 SQLSTATE: HY000 (ER_INSERT_INFO)
Message: Records: %ld Duplicates: %ld Warnings: %ld
Error: 1093 SQLSTATE: HY000 (ER_UPDATE_TABLE_USED)
Message: You can't specify target table '%s' for update in FROM clause
Error: 1094 SQLSTATE: HY000 (ER_NO_SUCH_THREAD)
Message: Unknown thread id: %lu
Error: 1095 SQLSTATE: HY000 (ER_KILL_DENIED_ERROR)
Message: You are not owner of thread %lu
Error: 1096 SQLSTATE: HY000 (ER_NO_TABLES_USED)
Message: No tables used
Error: 1097 SQLSTATE: HY000 (ER_TOO_BIG_SET)
Message: Too many strings for column %s and SET
Error: 1098 SQLSTATE: HY000 (ER_NO_UNIQUE_LOGFILE)
Message: Can't generate a unique log-filename %s.(1-999)
Error: 1099 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED_FOR_WRITE)
Message: Table '%s' was locked with a READ lock and can't be updated
Error: 1100 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED)
Message: Table '%s' was not locked with LOCK TABLES
Error: 1101 SQLSTATE: 42000 (ER_BLOB_CANT_HAVE_DEFAULT)
Message: BLOB/TEXT column '%s' can't have a default value
Error: 1102 SQLSTATE: 42000 (ER_WRONG_DB_NAME)
Message: Incorrect database name '%s'
Error: 1103 SQLSTATE: 42000 (ER_WRONG_TABLE_NAME)
Message: Incorrect table name '%s'
Error: 1104 SQLSTATE: 42000 (ER_TOO_BIG_SELECT)
Message: The SELECT would examine more than MAX_JOIN_SIZE rows; check your WHERE and use SET SQL_BIG_SELECTS=1 or SET MAX_JOIN_SIZE=# if the SELECT is okay
Error: 1105 SQLSTATE: HY000 (ER_UNKNOWN_ERROR)
Message: Unknown error
Error: 1106 SQLSTATE: 42000 (ER_UNKNOWN_PROCEDURE)
Message: Unknown procedure '%s'
Error: 1107 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_PROCEDURE)
Message: Incorrect parameter count to procedure '%s'
Error: 1108 SQLSTATE: HY000 (ER_WRONG_PARAMETERS_TO_PROCEDURE)
Message: Incorrect parameters to procedure '%s'
Error: 1109 SQLSTATE: 42S02 (ER_UNKNOWN_TABLE)
Message: Unknown table '%s' in %s
Error: 1110 SQLSTATE: 42000 (ER_FIELD_SPECIFIED_TWICE)
Message: Column '%s' specified twice
Error: 1111 SQLSTATE: HY000 (ER_INVALID_GROUP_FUNC_USE)
Message: Invalid use of group function
Error: 1112 SQLSTATE: 42000 (ER_UNSUPPORTED_EXTENSION)
Message: Table '%s' uses an extension that doesn't exist in this MySQL version
Error: 1113 SQLSTATE: 42000 (ER_TABLE_MUST_HAVE_COLUMNS)
Message: A table must have at least 1 column
Error: 1114 SQLSTATE: HY000 (ER_RECORD_FILE_FULL)
Message: The table '%s' is full
Error: 1115 SQLSTATE: 42000 (ER_UNKNOWN_CHARACTER_SET)
Message: Unknown character set: '%s'
Error: 1116 SQLSTATE: HY000 (ER_TOO_MANY_TABLES)
Message: Too many tables; MySQL can only use %d tables in a join
Error: 1117 SQLSTATE: HY000 (ER_TOO_MANY_FIELDS)
Message: Too many columns
Error: 1118 SQLSTATE: 42000 (ER_TOO_BIG_ROWSIZE)
Message: Row size too large. The maximum row size for the used table type, not counting BLOBs, is %ld. This includes storage overhead, check the manual. You have to change some columns to TEXT or BLOBs
Error: 1119 SQLSTATE: HY000 (ER_STACK_OVERRUN)
Message: Thread stack overrun: Used: %ld of a %ld stack. Use 'mysqld --thread_stack=#' to specify a bigger stack if needed
Error: 1120 SQLSTATE: 42000 (ER_WRONG_OUTER_JOIN)
Message: Cross dependency found in OUTER JOIN; examine your ON conditions
Error: 1121 SQLSTATE: 42000 (ER_NULL_COLUMN_IN_INDEX)
Message: Table handler doesn't support NULL in given index. Please change column '%s' to be NOT NULL or use another handler
Error: 1122 SQLSTATE: HY000 (ER_CANT_FIND_UDF)
Message: Can't load function '%s'
Error: 1123 SQLSTATE: HY000 (ER_CANT_INITIALIZE_UDF)
Message: Can't initialize function '%s'; %s
Error: 1124 SQLSTATE: HY000 (ER_UDF_NO_PATHS)
Message: No paths allowed for shared library
Error: 1125 SQLSTATE: HY000 (ER_UDF_EXISTS)
Message: Function '%s' already exists
Error: 1126 SQLSTATE: HY000 (ER_CANT_OPEN_LIBRARY)
Message: Can't open shared library '%s' (errno: %d %s)
Error: 1127 SQLSTATE: HY000 (ER_CANT_FIND_DL_ENTRY)
Message: Can't find symbol '%s' in library
Error: 1128 SQLSTATE: HY000 (ER_FUNCTION_NOT_DEFINED)
Message: Function '%s' is not defined
Error: 1129 SQLSTATE: HY000 (ER_HOST_IS_BLOCKED)
Message: Host '%s' is blocked because of many connection errors; unblock with 'mysqladmin flush-hosts'
Error: 1130 SQLSTATE: HY000 (ER_HOST_NOT_PRIVILEGED)
Message: Host '%s' is not allowed to connect to this MySQL server
Error: 1131 SQLSTATE: 42000 (ER_PASSWORD_ANONYMOUS_USER)
Message: You are using MySQL as an anonymous user and anonymous users are not allowed to change passwords
Error: 1132 SQLSTATE: 42000 (ER_PASSWORD_NOT_ALLOWED)
Message: You must have privileges to update tables in the mysql database to be able to change passwords for others
Error: 1133 SQLSTATE: 42000 (ER_PASSWORD_NO_MATCH)
Message: Can't find any matching row in the user table
Error: 1134 SQLSTATE: HY000 (ER_UPDATE_INFO)
Message: Rows matched: %ld Changed: %ld Warnings: %ld
Error: 1135 SQLSTATE: HY000 (ER_CANT_CREATE_THREAD)
Message: Can't create a new thread (errno %d); if you are not out of available memory, you can consult the manual for a possible OS-dependent bug
Error: 1136 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT_ON_ROW)
Message: Column count doesn't match value count at row %ld
Error: 1137 SQLSTATE: HY000 (ER_CANT_REOPEN_TABLE)
Message: Can't reopen table: '%s'
Error: 1138 SQLSTATE: 22004 (ER_INVALID_USE_OF_NULL)
Message: Invalid use of NULL value
Error: 1139 SQLSTATE: 42000 (ER_REGEXP_ERROR)
Message: Got error '%s' from regexp
Error: 1140 SQLSTATE: 42000 (ER_MIX_OF_GROUP_FUNC_AND_FIELDS)
Message: Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no GROUP columns is illegal if there is no GROUP BY clause
Error: 1141 SQLSTATE: 42000 (ER_NONEXISTING_GRANT)
Message: There is no such grant defined for user '%s' on host '%s'
Error: 1142 SQLSTATE: 42000 (ER_TABLEACCESS_DENIED_ERROR)
Message: %s command denied to user '%s'@'%s' for table '%s'
Error: 1143 SQLSTATE: 42000 (ER_COLUMNACCESS_DENIED_ERROR)
Message: %s command denied to user '%s'@'%s' for column '%s' in table '%s'
Error: 1144 SQLSTATE: 42000 (ER_ILLEGAL_GRANT_FOR_TABLE)
Message: Illegal GRANT/REVOKE command; please consult the manual to see which privileges can be used
Error: 1145 SQLSTATE: 42000 (ER_GRANT_WRONG_HOST_OR_USER)
Message: The host or user argument to GRANT is too long
Error: 1146 SQLSTATE: 42S02 (ER_NO_SUCH_TABLE)
Message: Table '%s.%s' doesn't exist
Error: 1147 SQLSTATE: 42000 (ER_NONEXISTING_TABLE_GRANT)
Message: There is no such grant defined for user '%s' on host '%s' on table '%s'
Error: 1148 SQLSTATE: 42000 (ER_NOT_ALLOWED_COMMAND)
Message: The used command is not allowed with this MySQL version
Error: 1149 SQLSTATE: 42000 (ER_SYNTAX_ERROR)
Message: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use
Error: 1150 SQLSTATE: HY000 (ER_DELAYED_CANT_CHANGE_LOCK)
Message: Delayed insert thread couldn't get requested lock for table %s
Error: 1151 SQLSTATE: HY000 (ER_TOO_MANY_DELAYED_THREADS)
Message: Too many delayed threads in use
Error: 1152 SQLSTATE: 08S01 (ER_ABORTING_CONNECTION)
Message: Aborted connection %ld to db: '%s' user: '%s' (%s)
Error: 1153 SQLSTATE: 08S01 (ER_NET_PACKET_TOO_LARGE)
Message: Got a packet bigger than 'max_allowed_packet' bytes
Error: 1154 SQLSTATE: 08S01 (ER_NET_READ_ERROR_FROM_PIPE)
Message: Got a read error from the connection pipe
Error: 1155 SQLSTATE: 08S01 (ER_NET_FCNTL_ERROR)
Message: Got an error from fcntl()
Error: 1156 SQLSTATE: 08S01 (ER_NET_PACKETS_OUT_OF_ORDER)
Message: Got packets out of order
Error: 1157 SQLSTATE: 08S01 (ER_NET_UNCOMPRESS_ERROR)
Message: Couldn't uncompress communication packet
Error: 1158 SQLSTATE: 08S01 (ER_NET_READ_ERROR)
Message: Got an error reading communication packets
Error: 1159 SQLSTATE: 08S01 (ER_NET_READ_INTERRUPTED)
Message: Got timeout reading communication packets
Error: 1160 SQLSTATE: 08S01 (ER_NET_ERROR_ON_WRITE)
Message: Got an error writing communication packets
Error: 1161 SQLSTATE: 08S01 (ER_NET_WRITE_INTERRUPTED)
Message: Got timeout writing communication packets
Error: 1162 SQLSTATE: 42000 (ER_TOO_LONG_STRING)
Message: Result string is longer than 'max_allowed_packet' bytes
Error: 1163 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_BLOB)
Message: The used table type doesn't support BLOB/TEXT columns
Error: 1164 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_AUTO_INCREMENT)
Message: The used table type doesn't support AUTO_INCREMENT columns
Error: 1165 SQLSTATE: HY000 (ER_DELAYED_INSERT_TABLE_LOCKED)
Message: INSERT DELAYED can't be used with table '%s' because it is locked with LOCK TABLES
Error: 1166 SQLSTATE: 42000 (ER_WRONG_COLUMN_NAME)
Message: Incorrect column name '%s'
Error: 1167 SQLSTATE: 42000 (ER_WRONG_KEY_COLUMN)
Message: The used storage engine can't index column '%s'
Error: 1168 SQLSTATE: HY000 (ER_WRONG_MRG_TABLE)
Message: Unable to open underlying table which is differently defined or of non-MyISAM type or doesn't exist
Error: 1169 SQLSTATE: 23000 (ER_DUP_UNIQUE)
Message: Can't write, because of unique constraint, to table '%s'
Error: 1170 SQLSTATE: 42000 (ER_BLOB_KEY_WITHOUT_LENGTH)
Message: BLOB/TEXT column '%s' used in key specification without a key length
Error: 1171 SQLSTATE: 42000 (ER_PRIMARY_CANT_HAVE_NULL)
Message: All parts of a PRIMARY KEY must be NOT NULL; if you need NULL in a key, use UNIQUE instead
Error: 1172 SQLSTATE: 42000 (ER_TOO_MANY_ROWS)
Message: Result consisted of more than one row
Error: 1173 SQLSTATE: 42000 (ER_REQUIRES_PRIMARY_KEY)
Message: This table type requires a primary key
Error: 1174 SQLSTATE: HY000 (ER_NO_RAID_COMPILED)
Message: This version of MySQL is not compiled with RAID support
Error: 1175 SQLSTATE: HY000 (ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE)
Message: You are using safe update mode and you tried to update a table without a WHERE that uses a KEY column
Error: 1176 SQLSTATE: 42000 (ER_KEY_DOES_NOT_EXITS)
Message: Key '%s' doesn't exist in table '%s'
Error: 1177 SQLSTATE: 42000 (ER_CHECK_NO_SUCH_TABLE)
Message: Can't open table
Error: 1178 SQLSTATE: 42000 (ER_CHECK_NOT_IMPLEMENTED)
Message: The storage engine for the table doesn't support %s
Error: 1179 SQLSTATE: 25000 (ER_CANT_DO_THIS_DURING_AN_TRANSACTION)
Message: You are not allowed to execute this command in a transaction
Error: 1180 SQLSTATE: HY000 (ER_ERROR_DURING_COMMIT)
Message: Got error %d during COMMIT
Error: 1181 SQLSTATE: HY000 (ER_ERROR_DURING_ROLLBACK)
Message: Got error %d during ROLLBACK
Error: 1182 SQLSTATE: HY000 (ER_ERROR_DURING_FLUSH_LOGS)
Message: Got error %d during FLUSH_LOGS
Error: 1183 SQLSTATE: HY000 (ER_ERROR_DURING_CHECKPOINT)
Message: Got error %d during CHECKPOINT
Error: 1184 SQLSTATE: 08S01 (ER_NEW_ABORTING_CONNECTION)
Message: Aborted connection %ld to db: '%s' user: '%s' host: '%s' (%s)
Error: 1185 SQLSTATE: HY000 (ER_DUMP_NOT_IMPLEMENTED)
Message: The storage engine for the table does not support binary table dump
Error: 1186 SQLSTATE: HY000 (ER_FLUSH_MASTER_BINLOG_CLOSED)
Message: Binlog closed, cannot RESET MASTER
Error: 1187 SQLSTATE: HY000 (ER_INDEX_REBUILD)
Message: Failed rebuilding the index of dumped table '%s'
Error: 1188 SQLSTATE: HY000 (ER_MASTER)
Message: Error from master: '%s'
Error: 1189 SQLSTATE: 08S01 (ER_MASTER_NET_READ)
Message: Net error reading from master
Error: 1190 SQLSTATE: 08S01 (ER_MASTER_NET_WRITE)
Message: Net error writing to master
Error: 1191 SQLSTATE: HY000 (ER_FT_MATCHING_KEY_NOT_FOUND)
Message: Can't find FULLTEXT index matching the column list
Error: 1192 SQLSTATE: HY000 (ER_LOCK_OR_ACTIVE_TRANSACTION)
Message: Can't execute the given command because you have active locked tables or an active transaction
Error: 1193 SQLSTATE: HY000 (ER_UNKNOWN_SYSTEM_VARIABLE)
Message: Unknown system variable '%s'
Error: 1194 SQLSTATE: HY000 (ER_CRASHED_ON_USAGE)
Message: Table '%s' is marked as crashed and should be repaired
Error: 1195 SQLSTATE: HY000 (ER_CRASHED_ON_REPAIR)
Message: Table '%s' is marked as crashed and last (automatic?) repair failed
Error: 1196 SQLSTATE: HY000 (ER_WARNING_NOT_COMPLETE_ROLLBACK)
Message: Some non-transactional changed tables couldn't be rolled back
Error: 1197 SQLSTATE: HY000 (ER_TRANS_CACHE_FULL)
Message: Multi-statement transaction required more than 'max_binlog_cache_size' bytes of storage; increase this mysqld variable and try again
Error: 1198 SQLSTATE: HY000 (ER_SLAVE_MUST_STOP)
Message: This operation cannot be performed with a running slave; run STOP SLAVE first
Error: 1199 SQLSTATE: HY000 (ER_SLAVE_NOT_RUNNING)
Message: This operation requires a running slave; configure slave and do START SLAVE
Error: 1200 SQLSTATE: HY000 (ER_BAD_SLAVE)
Message: The server is not configured as slave; fix in config file or with CHANGE MASTER TO
Error: 1201 SQLSTATE: HY000 (ER_MASTER_INFO)
Message: Could not initialize master info structure; more error messages can be found in the MySQL error log
Error: 1202 SQLSTATE: HY000 (ER_SLAVE_THREAD)
Message: Could not create slave thread; check system resources
Error: 1203 SQLSTATE: 42000 (ER_TOO_MANY_USER_CONNECTIONS)
Message: User %s already has more than 'max_user_connections' active connections
Error: 1204 SQLSTATE: HY000 (ER_SET_CONSTANTS_ONLY)
Message: You may only use constant expressions with SET
Error: 1205 SQLSTATE: HY000 (ER_LOCK_WAIT_TIMEOUT)
Message: Lock wait timeout exceeded; try restarting transaction
Error: 1206 SQLSTATE: HY000 (ER_LOCK_TABLE_FULL)
Message: The total number of locks exceeds the lock table size
Error: 1207 SQLSTATE: 25000 (ER_READ_ONLY_TRANSACTION)
Message: Update locks cannot be acquired during a READ UNCOMMITTED transaction
Error: 1208 SQLSTATE: HY000 (ER_DROP_DB_WITH_READ_LOCK)
Message: DROP DATABASE not allowed while thread is holding global read lock
Error: 1209 SQLSTATE: HY000 (ER_CREATE_DB_WITH_READ_LOCK)
Message: CREATE DATABASE not allowed while thread is holding global read lock
Error: 1210 SQLSTATE: HY000 (ER_WRONG_ARGUMENTS)
Message: Incorrect arguments to %s
Error: 1211 SQLSTATE: 42000 (ER_NO_PERMISSION_TO_CREATE_USER)
Message: '%s'@'%s' is not allowed to create new users
Error: 1212 SQLSTATE: HY000 (ER_UNION_TABLES_IN_DIFFERENT_DIR)
Message: Incorrect table definition; all MERGE tables must be in the same database
Error: 1213 SQLSTATE: 40001 (ER_LOCK_DEADLOCK)
Message: Deadlock found when trying to get lock; try restarting transaction
Error: 1214 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_FT)
Message: The used table type doesn't support FULLTEXT indexes
Error: 1215 SQLSTATE: HY000 (ER_CANNOT_ADD_FOREIGN)
Message: Cannot add foreign key constraint
Error: 1216 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW)
Message: Cannot add or update a child row: a foreign key constraint fails
Error: 1217 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED)
Message: Cannot delete or update a parent row: a foreign key constraint fails
Error: 1218 SQLSTATE: 08S01 (ER_CONNECT_TO_MASTER)
Message: Error connecting to master: %s
Error: 1219 SQLSTATE: HY000 (ER_QUERY_ON_MASTER)
Message: Error running query on master: %s
Error: 1220 SQLSTATE: HY000 (ER_ERROR_WHEN_EXECUTING_COMMAND)
Message: Error when executing command %s: %s
Error: 1221 SQLSTATE: HY000 (ER_WRONG_USAGE)
Message: Incorrect usage of %s and %s
Error: 1222 SQLSTATE: 21000 (ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT)
Message: The used SELECT statements have a different number of columns
Error: 1223 SQLSTATE: HY000 (ER_CANT_UPDATE_WITH_READLOCK)
Message: Can't execute the query because you have a conflicting read lock
Error: 1224 SQLSTATE: HY000 (ER_MIXING_NOT_ALLOWED)
Message: Mixing of transactional and non-transactional tables is disabled
Error: 1225 SQLSTATE: HY000 (ER_DUP_ARGUMENT)
Message: Option '%s' used twice in statement
Error: 1226 SQLSTATE: 42000 (ER_USER_LIMIT_REACHED)
Message: User '%s' has exceeded the '%s' resource (current value: %ld)
Error: 1227 SQLSTATE: 42000 (ER_SPECIFIC_ACCESS_DENIED_ERROR)
Message: Access denied; you need (at least one of) the %s privilege(s) for this operation
Error: 1228 SQLSTATE: HY000 (ER_LOCAL_VARIABLE)
Message: Variable '%s' is a SESSION variable and can't be used with SET GLOBAL
Error: 1229 SQLSTATE: HY000 (ER_GLOBAL_VARIABLE)
Message: Variable '%s' is a GLOBAL variable and should be set with SET GLOBAL
Error: 1230 SQLSTATE: 42000 (ER_NO_DEFAULT)
Message: Variable '%s' doesn't have a default value
Error: 1231 SQLSTATE: 42000 (ER_WRONG_VALUE_FOR_VAR)
Message: Variable '%s' can't be set to the value of '%s'
Error: 1232 SQLSTATE: 42000 (ER_WRONG_TYPE_FOR_VAR)
Message: Incorrect argument type to variable '%s'
Error: 1233 SQLSTATE: HY000 (ER_VAR_CANT_BE_READ)
Message: Variable '%s' can only be set, not read
Error: 1234 SQLSTATE: 42000 (ER_CANT_USE_OPTION_HERE)
Message: Incorrect usage/placement of '%s'
Error: 1235 SQLSTATE: 42000 (ER_NOT_SUPPORTED_YET)
Message: This version of MySQL doesn't yet support '%s'
Error: 1236 SQLSTATE: HY000 (ER_MASTER_FATAL_ERROR_READING_BINLOG)
Message: Got fatal error %d from master when reading data from binary log: '%s'
Error: 1237 SQLSTATE: HY000 (ER_SLAVE_IGNORED_TABLE)
Message: Slave SQL thread ignored the query because of replicate-*-table rules
Error: 1238 SQLSTATE: HY000 (ER_INCORRECT_GLOBAL_LOCAL_VAR)
Message: Variable '%s' is a %s variable
Error: 1239 SQLSTATE: 42000 (ER_WRONG_FK_DEF)
Message: Incorrect foreign key definition for '%s': %s
Error: 1240 SQLSTATE: HY000 (ER_KEY_REF_DO_NOT_MATCH_TABLE_REF)
Message: Key reference and table reference don't match
Error: 1241 SQLSTATE: 21000 (ER_OPERAND_COLUMNS)
Message: Operand should contain %d column(s)
Error: 1242 SQLSTATE: 21000 (ER_SUBQUERY_NO_1_ROW)
Message: Subquery returns more than 1 row
Error: 1243 SQLSTATE: HY000 (ER_UNKNOWN_STMT_HANDLER)
Message: Unknown prepared statement handler (%.*s) given to %s
Error: 1244 SQLSTATE: HY000 (ER_CORRUPT_HELP_DB)
Message: Help database is corrupt or does not exist
Error: 1245 SQLSTATE: HY000 (ER_CYCLIC_REFERENCE)
Message: Cyclic reference on subqueries
Error: 1246 SQLSTATE: HY000 (ER_AUTO_CONVERT)
Message: Converting column '%s' from %s to %s
Error: 1247 SQLSTATE: 42S22 (ER_ILLEGAL_REFERENCE)
Message: Reference '%s' not supported (%s)
Error: 1248 SQLSTATE: 42000 (ER_DERIVED_MUST_HAVE_ALIAS)
Message: Every derived table must have its own alias
Error: 1249 SQLSTATE: 01000 (ER_SELECT_REDUCED)
Message: Select %u was reduced during optimization
Error: 1250 SQLSTATE: 42000 (ER_TABLENAME_NOT_ALLOWED_HERE)
Message: Table '%s' from one of the SELECTs cannot be used in %s
Error: 1251 SQLSTATE: 08004 (ER_NOT_SUPPORTED_AUTH_MODE)
Message: Client does not support authentication protocol requested by server; consider upgrading MySQL client
Error: 1252 SQLSTATE: 42000 (ER_SPATIAL_CANT_HAVE_NULL)
Message: All parts of a SPATIAL index must be NOT NULL
Error: 1253 SQLSTATE: 42000 (ER_COLLATION_CHARSET_MISMATCH)
Message: COLLATION '%s' is not valid for CHARACTER SET '%s'
Error: 1254 SQLSTATE: HY000 (ER_SLAVE_WAS_RUNNING)
Message: Slave is already running
Error: 1255 SQLSTATE: HY000 (ER_SLAVE_WAS_NOT_RUNNING)
Message: Slave already has been stopped
Error: 1256 SQLSTATE: HY000 (ER_TOO_BIG_FOR_UNCOMPRESS)
Message: Uncompressed data size too large; the maximum size is %d (probably, length of uncompressed data was corrupted)
Error: 1257 SQLSTATE: HY000 (ER_ZLIB_Z_MEM_ERROR)
Message: ZLIB: Not enough memory
Error: 1258 SQLSTATE: HY000 (ER_ZLIB_Z_BUF_ERROR)
Message: ZLIB: Not enough room in the output buffer (probably, length of uncompressed data was corrupted)
Error: 1259 SQLSTATE: HY000 (ER_ZLIB_Z_DATA_ERROR)
Message: ZLIB: Input data corrupted
Error: 1260 SQLSTATE: HY000 (ER_CUT_VALUE_GROUP_CONCAT)
Message: Row %u was cut by GROUP_CONCAT()
Error: 1261 SQLSTATE: 01000 (ER_WARN_TOO_FEW_RECORDS)
Message: Row %ld doesn't contain data for all columns
Error: 1262 SQLSTATE: 01000 (ER_WARN_TOO_MANY_RECORDS)
Message: Row %ld was truncated; it contained more data than there were input columns
Error: 1263 SQLSTATE: 22004 (ER_WARN_NULL_TO_NOTNULL)
Message: Column set to default value; NULL supplied to NOT NULL column '%s' at row %ld
Error: 1264 SQLSTATE: 22003 (ER_WARN_DATA_OUT_OF_RANGE)
Message: Out of range value for column '%s' at row %ld
Error: 1265 SQLSTATE: 01000 (WARN_DATA_TRUNCATED)
Message: Data truncated for column '%s' at row %ld
Error: 1266 SQLSTATE: HY000 (ER_WARN_USING_OTHER_HANDLER)
Message: Using storage engine %s for table '%s'
Error: 1267 SQLSTATE: HY000 (ER_CANT_AGGREGATE_2COLLATIONS)
Message: Illegal mix of collations (%s,%s) and (%s,%s) for operation '%s'
Error: 1268 SQLSTATE: HY000 (ER_DROP_USER)
Message: Cannot drop one or more of the requested users
Error: 1269 SQLSTATE: HY000 (ER_REVOKE_GRANTS)
Message: Can't revoke all privileges for one or more of the requested users
Error: 1270 SQLSTATE: HY000 (ER_CANT_AGGREGATE_3COLLATIONS)
Message: Illegal mix of collations (%s,%s), (%s,%s), (%s,%s) for operation '%s'
Error: 1271 SQLSTATE: HY000 (ER_CANT_AGGREGATE_NCOLLATIONS)
Message: Illegal mix of collations for operation '%s'
Error: 1272 SQLSTATE: HY000 (ER_VARIABLE_IS_NOT_STRUCT)
Message: Variable '%s' is not a variable component (can't be used as XXXX.variable_name)
Error: 1273 SQLSTATE: HY000 (ER_UNKNOWN_COLLATION)
Message: Unknown collation: '%s'
Error: 1274 SQLSTATE: HY000 (ER_SLAVE_IGNORED_SSL_PARAMS)
Message: SSL parameters in CHANGE MASTER are ignored because this MySQL slave was compiled without SSL support; they can be used later if MySQL slave with SSL is started
Error: 1275 SQLSTATE: HY000 (ER_SERVER_IS_IN_SECURE_AUTH_MODE)
Message: Server is running in --secure-auth mode, but '%s'@'%s' has a password in the old format; please change the password to the new format
Error: 1276 SQLSTATE: HY000 (ER_WARN_FIELD_RESOLVED)
Message: Field or reference '%s%s%s%s%s' of SELECT #%d was resolved in SELECT #%d
Error: 1277 SQLSTATE: HY000 (ER_BAD_SLAVE_UNTIL_COND)
Message: Incorrect parameter or combination of parameters for START SLAVE UNTIL
Error: 1278 SQLSTATE: HY000 (ER_MISSING_SKIP_SLAVE)
Message: It is recommended to use --skip-slave-start when doing step-by-step replication with START SLAVE UNTIL; otherwise, you will get problems if you get an unexpected slave's mysqld restart
Error: 1279 SQLSTATE: HY000 (ER_UNTIL_COND_IGNORED)
Message: SQL thread is not to be started so UNTIL options are ignored
Error: 1280 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_INDEX)
Message: Incorrect index name '%s'
Error: 1281 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_CATALOG)
Message: Incorrect catalog name '%s'
Error: 1282 SQLSTATE: HY000 (ER_WARN_QC_RESIZE)
Message: Query cache failed to set size %lu; new query cache size is %lu
Error: 1283 SQLSTATE: HY000 (ER_BAD_FT_COLUMN)
Message: Column '%s' cannot be part of FULLTEXT index
Error: 1284 SQLSTATE: HY000 (ER_UNKNOWN_KEY_CACHE)
Message: Unknown key cache '%s'
Error: 1285 SQLSTATE: HY000 (ER_WARN_HOSTNAME_WONT_WORK)
Message: MySQL is started in --skip-name-resolve mode; you must restart it without this switch for this grant to work
Error: 1286 SQLSTATE: 42000 (ER_UNKNOWN_STORAGE_ENGINE)
Message: Unknown storage engine '%s'
Error: 1287 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX)
Message: '%s' is deprecated and will be removed in a future release. Please use %s instead
Error: 1288 SQLSTATE: HY000 (ER_NON_UPDATABLE_TABLE)
Message: The target table %s of the %s is not updatable
Error: 1289 SQLSTATE: HY000 (ER_FEATURE_DISABLED)
Message: The '%s' feature is disabled; you need MySQL built with '%s' to have it working
Error: 1290 SQLSTATE: HY000 (ER_OPTION_PREVENTS_STATEMENT)
Message: The MySQL server is running with the %s option so it cannot execute this statement
Error: 1291 SQLSTATE: HY000 (ER_DUPLICATED_VALUE_IN_TYPE)
Message: Column '%s' has duplicated value '%s' in %s
Error: 1292 SQLSTATE: 22007 (ER_TRUNCATED_WRONG_VALUE)
Message: Truncated incorrect %s value: '%s'
Error: 1293 SQLSTATE: HY000 (ER_TOO_MUCH_AUTO_TIMESTAMP_COLS)
Message: Incorrect table definition; there can be only one TIMESTAMP column with CURRENT_TIMESTAMP in DEFAULT or ON UPDATE clause
Error: 1294 SQLSTATE: HY000 (ER_INVALID_ON_UPDATE)
Message: Invalid ON UPDATE clause for '%s' column
Error: 1295 SQLSTATE: HY000 (ER_UNSUPPORTED_PS)
Message: This command is not supported in the prepared statement protocol yet
Error: 1296 SQLSTATE: HY000 (ER_GET_ERRMSG)
Message: Got error %d '%s' from %s
Error: 1297 SQLSTATE: HY000 (ER_GET_TEMPORARY_ERRMSG)
Message: Got temporary error %d '%s' from %s
Error: 1298 SQLSTATE: HY000 (ER_UNKNOWN_TIME_ZONE)
Message: Unknown or incorrect time zone: '%s'
Error: 1299 SQLSTATE: HY000 (ER_WARN_INVALID_TIMESTAMP)
Message: Invalid TIMESTAMP value in column '%s' at row %ld
Error: 1300 SQLSTATE: HY000 (ER_INVALID_CHARACTER_STRING)
Message: Invalid %s character string: '%s'
Error: 1301 SQLSTATE: HY000 (ER_WARN_ALLOWED_PACKET_OVERFLOWED)
Message: Result of %s() was larger than max_allowed_packet (%ld) - truncated
Error: 1302 SQLSTATE: HY000 (ER_CONFLICTING_DECLARATIONS)
Message: Conflicting declarations: '%s%s' and '%s%s'
Error: 1303 SQLSTATE: 2F003 (ER_SP_NO_RECURSIVE_CREATE)
Message: Can't create a %s from within another stored routine
Error: 1304 SQLSTATE: 42000 (ER_SP_ALREADY_EXISTS)
Message: %s %s already exists
Error: 1305 SQLSTATE: 42000 (ER_SP_DOES_NOT_EXIST)
Message: %s %s does not exist
Error: 1306 SQLSTATE: HY000 (ER_SP_DROP_FAILED)
Message: Failed to DROP %s %s
Error: 1307 SQLSTATE: HY000 (ER_SP_STORE_FAILED)
Message: Failed to CREATE %s %s
Error: 1308 SQLSTATE: 42000 (ER_SP_LILABEL_MISMATCH)
Message: %s with no matching label: %s
Error: 1309 SQLSTATE: 42000 (ER_SP_LABEL_REDEFINE)
Message: Redefining label %s
Error: 1310 SQLSTATE: 42000 (ER_SP_LABEL_MISMATCH)
Message: End-label %s without match
Error: 1311 SQLSTATE: 01000 (ER_SP_UNINIT_VAR)
Message: Referring to uninitialized variable %s
Error: 1312 SQLSTATE: 0A000 (ER_SP_BADSELECT)
Message: PROCEDURE %s can't return a result set in the given context
Error: 1313 SQLSTATE: 42000 (ER_SP_BADRETURN)
Message: RETURN is only allowed in a FUNCTION
Error: 1314 SQLSTATE: 0A000 (ER_SP_BADSTATEMENT)
Message: %s is not allowed in stored procedures
Error: 1315 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_IGNORED)
Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE has been ignored.
Error: 1316 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_TRANSLATED)
Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE has been translated to SET SQL_LOG_BIN.
Error: 1317 SQLSTATE: 70100 (ER_QUERY_INTERRUPTED)
Message: Query execution was interrupted
Error: 1318 SQLSTATE: 42000 (ER_SP_WRONG_NO_OF_ARGS)
Message: Incorrect number of arguments for %s %s; expected %u, got %u
Error: 1319 SQLSTATE: 42000 (ER_SP_COND_MISMATCH)
Message: Undefined CONDITION: %s
Error: 1320 SQLSTATE: 42000 (ER_SP_NORETURN)
Message: No RETURN found in FUNCTION %s
Error: 1321 SQLSTATE: 2F005 (ER_SP_NORETURNEND)
Message: FUNCTION %s ended without RETURN
Error: 1322 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_QUERY)
Message: Cursor statement must be a SELECT
Error: 1323 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_SELECT)
Message: Cursor SELECT must not have INTO
Error: 1324 SQLSTATE: 42000 (ER_SP_CURSOR_MISMATCH)
Message: Undefined CURSOR: %s
Error: 1325 SQLSTATE: 24000 (ER_SP_CURSOR_ALREADY_OPEN)
Message: Cursor is already open
Error: 1326 SQLSTATE: 24000 (ER_SP_CURSOR_NOT_OPEN)
Message: Cursor is not open
Error: 1327 SQLSTATE: 42000 (ER_SP_UNDECLARED_VAR)
Message: Undeclared variable: %s
Error: 1328 SQLSTATE: HY000 (ER_SP_WRONG_NO_OF_FETCH_ARGS)
Message: Incorrect number of FETCH variables
Error: 1329 SQLSTATE: 02000 (ER_SP_FETCH_NO_DATA)
Message: No data - zero rows fetched, selected, or processed
Error: 1330 SQLSTATE: 42000 (ER_SP_DUP_PARAM)
Message: Duplicate parameter: %s
Error: 1331 SQLSTATE: 42000 (ER_SP_DUP_VAR)
Message: Duplicate variable: %s
Error: 1332 SQLSTATE: 42000 (ER_SP_DUP_COND)
Message: Duplicate condition: %s
Error: 1333 SQLSTATE: 42000 (ER_SP_DUP_CURS)
Message: Duplicate cursor: %s
Error: 1334 SQLSTATE: HY000 (ER_SP_CANT_ALTER)
Message: Failed to ALTER %s %s
Error: 1335 SQLSTATE: 0A000 (ER_SP_SUBSELECT_NYI)
Message: Subquery value not supported
Error: 1336 SQLSTATE: 0A000 (ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG)
Message: %s is not allowed in stored function or trigger
Error: 1337 SQLSTATE: 42000 (ER_SP_VARCOND_AFTER_CURSHNDLR)
Message: Variable or condition declaration after cursor or handler declaration
Error: 1338 SQLSTATE: 42000 (ER_SP_CURSOR_AFTER_HANDLER)
Message: Cursor declaration after handler declaration
Error: 1339 SQLSTATE: 20000 (ER_SP_CASE_NOT_FOUND)
Message: Case not found for CASE statement
Error: 1340 SQLSTATE: HY000 (ER_FPARSER_TOO_BIG_FILE)
Message: Configuration file '%s' is too big
Error: 1341 SQLSTATE: HY000 (ER_FPARSER_BAD_HEADER)
Message: Malformed file type header in file '%s'
Error: 1342 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_COMMENT)
Message: Unexpected end of file while parsing comment '%s'
Error: 1343 SQLSTATE: HY000 (ER_FPARSER_ERROR_IN_PARAMETER)
Message: Error while parsing parameter '%s' (line: '%s')
Error: 1344 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER)
Message: Unexpected end of file while skipping unknown parameter '%s'
Error: 1345 SQLSTATE: HY000 (ER_VIEW_NO_EXPLAIN)
Message: EXPLAIN/SHOW can not be issued; lacking privileges for underlying table
Error: 1346 SQLSTATE: HY000 (ER_FRM_UNKNOWN_TYPE)
Message: File '%s' has unknown type '%s' in its header
Error: 1347 SQLSTATE: HY000 (ER_WRONG_OBJECT)
Message: '%s.%s' is not %s
Error: 1348 SQLSTATE: HY000 (ER_NONUPDATEABLE_COLUMN)
Message: Column '%s' is not updatable
Error: 1349 SQLSTATE: HY000 (ER_VIEW_SELECT_DERIVED)
Message: View's SELECT contains a subquery in the FROM clause
Error: 1350 SQLSTATE: HY000 (ER_VIEW_SELECT_CLAUSE)
Message: View's SELECT contains a '%s' clause
Error: 1351 SQLSTATE: HY000 (ER_VIEW_SELECT_VARIABLE)
Message: View's SELECT contains a variable or parameter
Error: 1352 SQLSTATE: HY000 (ER_VIEW_SELECT_TMPTABLE)
Message: View's SELECT refers to a temporary table '%s'
Error: 1353 SQLSTATE: HY000 (ER_VIEW_WRONG_LIST)
Message: View's SELECT and view's field list have different column counts
Error: 1354 SQLSTATE: HY000 (ER_WARN_VIEW_MERGE)
Message: View merge algorithm can't be used here for now (assumed undefined algorithm)
Error: 1355 SQLSTATE: HY000 (ER_WARN_VIEW_WITHOUT_KEY)
Message: View being updated does not have complete key of underlying table in it
Error: 1356 SQLSTATE: HY000 (ER_VIEW_INVALID)
Message: View '%s.%s' references invalid table(s) or column(s) or function(s) or definer/invoker of view lack rights to use them
Error: 1357 SQLSTATE: HY000 (ER_SP_NO_DROP_SP)
Message: Can't drop or alter a %s from within another stored routine
Error: 1358 SQLSTATE: HY000 (ER_SP_GOTO_IN_HNDLR)
Message: GOTO is not allowed in a stored procedure handler
Error: 1359 SQLSTATE: HY000 (ER_TRG_ALREADY_EXISTS)
Message: Trigger already exists
Error: 1360 SQLSTATE: HY000 (ER_TRG_DOES_NOT_EXIST)
Message: Trigger does not exist
Error: 1361 SQLSTATE: HY000 (ER_TRG_ON_VIEW_OR_TEMP_TABLE)
Message: Trigger's '%s' is view or temporary table
Error: 1362 SQLSTATE: HY000 (ER_TRG_CANT_CHANGE_ROW)
Message: Updating of %s row is not allowed in %strigger
Error: 1363 SQLSTATE: HY000 (ER_TRG_NO_SUCH_ROW_IN_TRG)
Message: There is no %s row in %s trigger
Error: 1364 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_FIELD)
Message: Field '%s' doesn't have a default value
Error: 1365 SQLSTATE: 22012 (ER_DIVISION_BY_ZERO)
Message: Division by 0
Error: 1366 SQLSTATE: HY000 (ER_TRUNCATED_WRONG_VALUE_FOR_FIELD)
Message: Incorrect %s value: '%s' for column '%s' at row %ld
Error: 1367 SQLSTATE: 22007 (ER_ILLEGAL_VALUE_FOR_TYPE)
Message: Illegal %s '%s' value found during parsing
Error: 1368 SQLSTATE: HY000 (ER_VIEW_NONUPD_CHECK)
Message: CHECK OPTION on non-updatable view '%s.%s'
Error: 1369 SQLSTATE: HY000 (ER_VIEW_CHECK_FAILED)
Message: CHECK OPTION failed '%s.%s'
Error: 1370 SQLSTATE: 42000 (ER_PROCACCESS_DENIED_ERROR)
Message: %s command denied to user '%s'@'%s' for routine '%s'
Error: 1371 SQLSTATE: HY000 (ER_RELAY_LOG_FAIL)
Message: Failed purging old relay logs: %s
Error: 1372 SQLSTATE: HY000 (ER_PASSWD_LENGTH)
Message: Password hash should be a %d-digit hexadecimal number
Error: 1373 SQLSTATE: HY000 (ER_UNKNOWN_TARGET_BINLOG)
Message: Target log not found in binlog index
Error: 1374 SQLSTATE: HY000 (ER_IO_ERR_LOG_INDEX_READ)
Message: I/O error reading log index file
Error: 1375 SQLSTATE: HY000 (ER_BINLOG_PURGE_PROHIBITED)
Message: Server configuration does not permit binlog purge
Error: 1376 SQLSTATE: HY000 (ER_FSEEK_FAIL)
Message: Failed on fseek()
Error: 1377 SQLSTATE: HY000 (ER_BINLOG_PURGE_FATAL_ERR)
Message: Fatal error during log purge
Error: 1378 SQLSTATE: HY000 (ER_LOG_IN_USE)
Message: A purgeable log is in use, will not purge
Error: 1379 SQLSTATE: HY000 (ER_LOG_PURGE_UNKNOWN_ERR)
Message: Unknown error during log purge
Error: 1380 SQLSTATE: HY000 (ER_RELAY_LOG_INIT)
Message: Failed initializing relay log position: %s
Error: 1381 SQLSTATE: HY000 (ER_NO_BINARY_LOGGING)
Message: You are not using binary logging
Error: 1382 SQLSTATE: HY000 (ER_RESERVED_SYNTAX)
Message: The '%s' syntax is reserved for purposes internal to the MySQL server
Error: 1383 SQLSTATE: HY000 (ER_WSAS_FAILED)
Message: WSAStartup Failed
Error: 1384 SQLSTATE: HY000 (ER_DIFF_GROUPS_PROC)
Message: Can't handle procedures with different groups yet
Error: 1385 SQLSTATE: HY000 (ER_NO_GROUP_FOR_PROC)
Message: Select must have a group with this procedure
Error: 1386 SQLSTATE: HY000 (ER_ORDER_WITH_PROC)
Message: Can't use ORDER clause with this procedure
Error: 1387 SQLSTATE: HY000 (ER_LOGGING_PROHIBIT_CHANGING_OF)
Message: Binary logging and replication forbid changing the global server %s
Error: 1388 SQLSTATE: HY000 (ER_NO_FILE_MAPPING)
Message: Can't map file: %s, errno: %d
Error: 1389 SQLSTATE: HY000 (ER_WRONG_MAGIC)
Message: Wrong magic in %s
Error: 1390 SQLSTATE: HY000 (ER_PS_MANY_PARAM)
Message: Prepared statement contains too many placeholders
Error: 1391 SQLSTATE: HY000 (ER_KEY_PART_0)
Message: Key part '%s' length cannot be 0
Error: 1392 SQLSTATE: HY000 (ER_VIEW_CHECKSUM)
Message: View text checksum failed
Error: 1393 SQLSTATE: HY000 (ER_VIEW_MULTIUPDATE)
Message: Can not modify more than one base table through a join view '%s.%s'
Error: 1394 SQLSTATE: HY000 (ER_VIEW_NO_INSERT_FIELD_LIST)
Message: Can not insert into join view '%s.%s' without fields list
Error: 1395 SQLSTATE: HY000 (ER_VIEW_DELETE_MERGE_VIEW)
Message: Can not delete from join view '%s.%s'
Error: 1396 SQLSTATE: HY000 (ER_CANNOT_USER)
Message: Operation %s failed for %s
Error: 1397 SQLSTATE: XAE04 (ER_XAER_NOTA)
Message: XAER_NOTA: Unknown XID
Error: 1398 SQLSTATE: XAE05 (ER_XAER_INVAL)
Message: XAER_INVAL: Invalid arguments (or unsupported command)
Error: 1399 SQLSTATE: XAE07 (ER_XAER_RMFAIL)
Message: XAER_RMFAIL: The command cannot be executed when global transaction is in the %s state
Error: 1400 SQLSTATE: XAE09 (ER_XAER_OUTSIDE)
Message: XAER_OUTSIDE: Some work is done outside global transaction
Error: 1401 SQLSTATE: XAE03 (ER_XAER_RMERR)
Message: XAER_RMERR: Fatal error occurred in the transaction branch - check your data for consistency
Error: 1402 SQLSTATE: XA100 (ER_XA_RBROLLBACK)
Message: XA_RBROLLBACK: Transaction branch was rolled back
Error: 1403 SQLSTATE: 42000 (ER_NONEXISTING_PROC_GRANT)
Message: There is no such grant defined for user '%s' on host '%s' on routine '%s'
Error: 1404 SQLSTATE: HY000 (ER_PROC_AUTO_GRANT_FAIL)
Message: Failed to grant EXECUTE and ALTER ROUTINE privileges
Error: 1405 SQLSTATE: HY000 (ER_PROC_AUTO_REVOKE_FAIL)
Message: Failed to revoke all privileges to dropped routine
Error: 1406 SQLSTATE: 22001 (ER_DATA_TOO_LONG)
Message: Data too long for column '%s' at row %ld
Error: 1407 SQLSTATE: 42000 (ER_SP_BAD_SQLSTATE)
Message: Bad SQLSTATE: '%s'
Error: 1408 SQLSTATE: HY000 (ER_STARTUP)
Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d %s
Error: 1409 SQLSTATE: HY000 (ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR)
Message: Can't load value from file with fixed size rows to variable
Error: 1410 SQLSTATE: 42000 (ER_CANT_CREATE_USER_WITH_GRANT)
Message: You are not allowed to create a user with GRANT
Error: 1411 SQLSTATE: HY000 (ER_WRONG_VALUE_FOR_TYPE)
Message: Incorrect %s value: '%s' for function %s
Error: 1412 SQLSTATE: HY000 (ER_TABLE_DEF_CHANGED)
Message: Table definition has changed, please retry transaction
Error: 1413 SQLSTATE: 42000 (ER_SP_DUP_HANDLER)
Message: Duplicate handler declared in the same block
Error: 1414 SQLSTATE: 42000 (ER_SP_NOT_VAR_ARG)
Message: OUT or INOUT argument %d for routine %s is not a variable or NEW pseudo-variable in BEFORE trigger
Error: 1415 SQLSTATE: 0A000 (ER_SP_NO_RETSET)
Message: Not allowed to return a result set from a %s
Error: 1416 SQLSTATE: 22003 (ER_CANT_CREATE_GEOMETRY_OBJECT)
Message: Cannot get geometry object from data you send to the GEOMETRY field
Error: 1417 SQLSTATE: HY000 (ER_FAILED_ROUTINE_BREAK_BINLOG)
Message: A routine failed and has neither NO SQL nor READS SQL DATA in its declaration and binary logging is enabled; if non-transactional tables were updated, the binary log will miss their changes
Error: 1418 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_ROUTINE)
Message: This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in its declaration and binary logging is enabled (you *might* want to use the less safe log_bin_trust_function_creators variable)
Error: 1419 SQLSTATE: HY000 (ER_BINLOG_CREATE_ROUTINE_NEED_SUPER)
Message: You do not have the SUPER privilege and binary logging is enabled (you *might* want to use the less safe log_bin_trust_function_creators variable)
Error: 1420 SQLSTATE: HY000 (ER_EXEC_STMT_WITH_OPEN_CURSOR)
Message: You can't execute a prepared statement which has an open cursor associated with it. Reset the statement to re-execute it.
Error: 1421 SQLSTATE: HY000 (ER_STMT_HAS_NO_OPEN_CURSOR)
Message: The statement (%lu) has no open cursor.
Error: 1422 SQLSTATE: HY000 (ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG)
Message: Explicit or implicit commit is not allowed in stored function or trigger.
Error: 1423 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_VIEW_FIELD)
Message: Field of view '%s.%s' underlying table doesn't have a default value
Error: 1424 SQLSTATE: HY000 (ER_SP_NO_RECURSION)
Message: Recursive stored functions and triggers are not allowed.
Error: 1425 SQLSTATE: 42000 (ER_TOO_BIG_SCALE)
Message: Too big scale %d specified for column '%s'. Maximum is %lu.
Error: 1426 SQLSTATE: 42000 (ER_TOO_BIG_PRECISION)
Message: Too big precision %d specified for column '%s'. Maximum is %lu.
Error: 1427 SQLSTATE: 42000 (ER_M_BIGGER_THAN_D)
Message: For float(M,D), double(M,D) or decimal(M,D), M must be >= D (column '%s').
Error: 1428 SQLSTATE: HY000 (ER_WRONG_LOCK_OF_SYSTEM_TABLE)
Message: You can't combine write-locking of system tables with other tables or lock types
Error: 1429 SQLSTATE: HY000 (ER_CONNECT_TO_FOREIGN_DATA_SOURCE)
Message: Unable to connect to foreign data source: %s
Error: 1430 SQLSTATE: HY000 (ER_QUERY_ON_FOREIGN_DATA_SOURCE)
Message: There was a problem processing the query on the foreign data source. Data source error: %s
Error: 1431 SQLSTATE: HY000 (ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST)
Message: The foreign data source you are trying to reference does not exist. Data source error: %s
Error: 1432 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE)
Message: Can't create federated table. The data source connection string '%s' is not in the correct format
Error: 1433 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID)
Message: The data source connection string '%s' is not in the correct format
Error: 1434 SQLSTATE: HY000 (ER_CANT_CREATE_FEDERATED_TABLE)
Message: Can't create federated table. Foreign data src error: %s
Error: 1435 SQLSTATE: HY000 (ER_TRG_IN_WRONG_SCHEMA)
Message: Trigger in wrong schema
Error: 1436 SQLSTATE: HY000 (ER_STACK_OVERRUN_NEED_MORE)
Message: Thread stack overrun: %ld bytes used of a %ld byte stack, and %ld bytes needed. Use 'mysqld --thread_stack=#' to specify a bigger stack.
Error: 1437 SQLSTATE: 42000 (ER_TOO_LONG_BODY)
Message: Routine body for '%s' is too long
Error: 1438 SQLSTATE: HY000 (ER_WARN_CANT_DROP_DEFAULT_KEYCACHE)
Message: Cannot drop default keycache
Error: 1439 SQLSTATE: 42000 (ER_TOO_BIG_DISPLAYWIDTH)
Message: Display width out of range for column '%s' (max = %lu)
Error: 1440 SQLSTATE: XAE08 (ER_XAER_DUPID)
Message: XAER_DUPID: The XID already exists
Error: 1441 SQLSTATE: 22008 (ER_DATETIME_FUNCTION_OVERFLOW)
Message: Datetime function: %s field overflow
Error: 1442 SQLSTATE: HY000 (ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG)
Message: Can't update table '%s' in stored function/trigger because it is already used by statement which invoked this stored function/trigger.
Error: 1443 SQLSTATE: HY000 (ER_VIEW_PREVENT_UPDATE)
Message: The definition of table '%s' prevents operation %s on table '%s'.
Error: 1444 SQLSTATE: HY000 (ER_PS_NO_RECURSION)
Message: The prepared statement contains a stored routine call that refers to that same statement. It's not allowed to execute a prepared statement in such a recursive manner
Error: 1445 SQLSTATE: HY000 (ER_SP_CANT_SET_AUTOCOMMIT)
Message: Not allowed to set autocommit from a stored function or trigger
Error: 1446 SQLSTATE: HY000 (ER_MALFORMED_DEFINER)
Message: Definer is not fully qualified
Error: 1447 SQLSTATE: HY000 (ER_VIEW_FRM_NO_USER)
Message: View '%s'.'%s' has no definer information (old table format). Current user is used as definer. Please recreate the view!
Error: 1448 SQLSTATE: HY000 (ER_VIEW_OTHER_USER)
Message: You need the SUPER privilege for creation view with '%s'@'%s' definer
Error: 1449 SQLSTATE: HY000 (ER_NO_SUCH_USER)
Message: The user specified as a definer ('%s'@'%s') does not exist
Error: 1450 SQLSTATE: HY000 (ER_FORBID_SCHEMA_CHANGE)
Message: Changing schema from '%s' to '%s' is not allowed.
Error: 1451 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED_2)
Message: Cannot delete or update a parent row: a foreign key constraint fails (%s)
Error: 1452 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW_2)
Message: Cannot add or update a child row: a foreign key constraint fails (%s)
Error: 1453 SQLSTATE: 42000 (ER_SP_BAD_VAR_SHADOW)
Message: Variable '%s' must be quoted with `...`, or renamed
Error: 1454 SQLSTATE: HY000 (ER_TRG_NO_DEFINER)
Message: No definer attribute for trigger '%s'.'%s'. The trigger will be activated under the authorization of the invoker, which may have insufficient privileges. Please recreate the trigger.
Error: 1455 SQLSTATE: HY000 (ER_OLD_FILE_FORMAT)
Message: '%s' has an old format, you should re-create the '%s' object(s)
Error: 1456 SQLSTATE: HY000 (ER_SP_RECURSION_LIMIT)
Message: Recursive limit %d (as set by the max_sp_recursion_depth variable) was exceeded for routine %s
Error: 1457 SQLSTATE: HY000 (ER_SP_PROC_TABLE_CORRUPT)
Message: Failed to load routine %s. The table mysql.proc is missing, corrupt, or contains bad data (internal code %d)
Error: 1458 SQLSTATE: 42000 (ER_SP_WRONG_NAME)
Message: Incorrect routine name '%s'
Error: 1459 SQLSTATE: HY000 (ER_TABLE_NEEDS_UPGRADE)
Message: Table upgrade required. Please do "REPAIR TABLE `%s`" or dump/reload to fix it!
Error: 1460 SQLSTATE: 42000 (ER_SP_NO_AGGREGATE)
Message: AGGREGATE is not supported for stored functions
Error: 1461 SQLSTATE: 42000 (ER_MAX_PREPARED_STMT_COUNT_REACHED)
Message: Can't create more than max_prepared_stmt_count statements (current value: %lu)
Error: 1462 SQLSTATE: HY000 (ER_VIEW_RECURSIVE)
Message: `%s`.`%s` contains view recursion
Error: 1463 SQLSTATE: 42000 (ER_NON_GROUPING_FIELD_USED)
Message: Non-grouping field '%s' is used in %s clause
Error: 1464 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_SPKEYS)
Message: The used table type doesn't support SPATIAL indexes
Error: 1465 SQLSTATE: HY000 (ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA)
Message: Triggers can not be created on system tables
Error: 1466 SQLSTATE: HY000 (ER_REMOVED_SPACES)
Message: Leading spaces are removed from name '%s'
Error: 1467 SQLSTATE: HY000 (ER_AUTOINC_READ_FAILED)
Message: Failed to read auto-increment value from storage engine
Error: 1468 SQLSTATE: HY000 (ER_USERNAME)
Message: user name
Error: 1469 SQLSTATE: HY000 (ER_HOSTNAME)
Message: host name
Error: 1470 SQLSTATE: HY000 (ER_WRONG_STRING_LENGTH)
Message: String '%s' is too long for %s (should be no longer than %d)
Error: 1471 SQLSTATE: HY000 (ER_NON_INSERTABLE_TABLE)
Message: The target table %s of the %s is not insertable-into
Error: 1472 SQLSTATE: HY000 (ER_ADMIN_WRONG_MRG_TABLE)
Message: Table '%s' is differently defined or of non-MyISAM type or doesn't exist
Error: 1473 SQLSTATE: HY000 (ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT)
Message: Too high level of nesting for select
Error: 1474 SQLSTATE: HY000 (ER_NAME_BECOMES_EMPTY)
Message: Name '%s' has become ''
Error: 1475 SQLSTATE: HY000 (ER_AMBIGUOUS_FIELD_TERM)
Message: First character of the FIELDS TERMINATED string is ambiguous; please use non-optional and non-empty FIELDS ENCLOSED BY
Error: 1476 SQLSTATE: HY000 (ER_FOREIGN_SERVER_EXISTS)
Message: The foreign server, %s, you are trying to create already exists.
Error: 1477 SQLSTATE: HY000 (ER_FOREIGN_SERVER_DOESNT_EXIST)
Message: The foreign server name you are trying to reference does not exist. Data source error: %s
Error: 1478 SQLSTATE: HY000 (ER_ILLEGAL_HA_CREATE_OPTION)
Message: Table storage engine '%s' does not support the create option '%s'
Error: 1479 SQLSTATE: HY000 (ER_PARTITION_REQUIRES_VALUES_ERROR)
Message: Syntax error: %s PARTITIONING requires definition of VALUES %s for each partition
Error: 1480 SQLSTATE: HY000 (ER_PARTITION_WRONG_VALUES_ERROR)
Message: Only %s PARTITIONING can use VALUES %s in partition definition
Error: 1481 SQLSTATE: HY000 (ER_PARTITION_MAXVALUE_ERROR)
Message: MAXVALUE can only be used in last partition definition
Error: 1482 SQLSTATE: HY000 (ER_PARTITION_SUBPARTITION_ERROR)
Message: Subpartitions can only be hash partitions and by key
Error: 1483 SQLSTATE: HY000 (ER_PARTITION_SUBPART_MIX_ERROR)
Message: Must define subpartitions on all partitions if on one partition
Error: 1484 SQLSTATE: HY000 (ER_PARTITION_WRONG_NO_PART_ERROR)
Message: Wrong number of partitions defined, mismatch with previous setting
Error: 1485 SQLSTATE: HY000 (ER_PARTITION_WRONG_NO_SUBPART_ERROR)
Message: Wrong number of subpartitions defined, mismatch with previous setting
Error: 1486 SQLSTATE: HY000 (ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR)
Message: Constant, random or timezone-dependent expressions in (sub)partitioning function are not allowed
Error: 1487 SQLSTATE: HY000 (ER_NO_CONST_EXPR_IN_RANGE_OR_LIST_ERROR)
Message: Expression in RANGE/LIST VALUES must be constant
Error: 1488 SQLSTATE: HY000 (ER_FIELD_NOT_FOUND_PART_ERROR)
Message: Field in list of fields for partition function not found in table
Error: 1489 SQLSTATE: HY000 (ER_LIST_OF_FIELDS_ONLY_IN_HASH_ERROR)
Message: List of fields is only allowed in KEY partitions
Error: 1490 SQLSTATE: HY000 (ER_INCONSISTENT_PARTITION_INFO_ERROR)
Message: The partition info in the frm file is not consistent with what can be written into the frm file
Error: 1491 SQLSTATE: HY000 (ER_PARTITION_FUNC_NOT_ALLOWED_ERROR)
Message: The %s function returns the wrong type
Error: 1492 SQLSTATE: HY000 (ER_PARTITIONS_MUST_BE_DEFINED_ERROR)
Message: For %s partitions each partition must be defined
Error: 1493 SQLSTATE: HY000 (ER_RANGE_NOT_INCREASING_ERROR)
Message: VALUES LESS THAN value must be strictly increasing for each partition
Error: 1494 SQLSTATE: HY000 (ER_INCONSISTENT_TYPE_OF_FUNCTIONS_ERROR)
Message: VALUES value must be of same type as partition function
Error: 1495 SQLSTATE: HY000 (ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR)
Message: Multiple definition of same constant in list partitioning
Error: 1496 SQLSTATE: HY000 (ER_PARTITION_ENTRY_ERROR)
Message: Partitioning can not be used stand-alone in query
Error: 1497 SQLSTATE: HY000 (ER_MIX_HANDLER_ERROR)
Message: The mix of handlers in the partitions is not allowed in this version of MySQL
Error: 1498 SQLSTATE: HY000 (ER_PARTITION_NOT_DEFINED_ERROR)
Message: For the partitioned engine it is necessary to define all %s
Error: 1499 SQLSTATE: HY000 (ER_TOO_MANY_PARTITIONS_ERROR)
Message: Too many partitions (including subpartitions) were defined
Error: 1500 SQLSTATE: HY000 (ER_SUBPARTITION_ERROR)
Message: It is only possible to mix RANGE/LIST partitioning with HASH/KEY partitioning for subpartitioning
Error: 1501 SQLSTATE: HY000 (ER_CANT_CREATE_HANDLER_FILE)
Message: Failed to create specific handler file
Error: 1502 SQLSTATE: HY000 (ER_BLOB_FIELD_IN_PART_FUNC_ERROR)
Message: A BLOB field is not allowed in partition function
Error: 1503 SQLSTATE: HY000 (ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF)
Message: A %s must include all columns in the table's partitioning function
Error: 1504 SQLSTATE: HY000 (ER_NO_PARTS_ERROR)
Message: Number of %s = 0 is not an allowed value
Error: 1505 SQLSTATE: HY000 (ER_PARTITION_MGMT_ON_NONPARTITIONED)
Message: Partition management on a not partitioned table is not possible
Error: 1506 SQLSTATE: HY000 (ER_FOREIGN_KEY_ON_PARTITIONED)
Message: Foreign key clause is not yet supported in conjunction with partitioning
Error: 1507 SQLSTATE: HY000 (ER_DROP_PARTITION_NON_EXISTENT)
Message: Error in list of partitions to %s
Error: 1508 SQLSTATE: HY000 (ER_DROP_LAST_PARTITION)
Message: Cannot remove all partitions, use DROP TABLE instead
Error: 1509 SQLSTATE: HY000 (ER_COALESCE_ONLY_ON_HASH_PARTITION)
Message: COALESCE PARTITION can only be used on HASH/KEY partitions
Error: 1510 SQLSTATE: HY000 (ER_REORG_HASH_ONLY_ON_SAME_NO)
Message: REORGANIZE PARTITION can only be used to reorganize partitions not to change their numbers
Error: 1511 SQLSTATE: HY000 (ER_REORG_NO_PARAM_ERROR)
Message: REORGANIZE PARTITION without parameters can only be used on auto-partitioned tables using HASH PARTITIONs
Error: 1512 SQLSTATE: HY000 (ER_ONLY_ON_RANGE_LIST_PARTITION)
Message: %s PARTITION can only be used on RANGE/LIST partitions
Error: 1513 SQLSTATE: HY000 (ER_ADD_PARTITION_SUBPART_ERROR)
Message: Trying to Add partition(s) with wrong number of subpartitions
Error: 1514 SQLSTATE: HY000 (ER_ADD_PARTITION_NO_NEW_PARTITION)
Message: At least one partition must be added
Error: 1515 SQLSTATE: HY000 (ER_COALESCE_PARTITION_NO_PARTITION)
Message: At least one partition must be coalesced
Error: 1516 SQLSTATE: HY000 (ER_REORG_PARTITION_NOT_EXIST)
Message: More partitions to reorganize than there are partitions
Error: 1517 SQLSTATE: HY000 (ER_SAME_NAME_PARTITION)
Message: Duplicate partition name %s
Error: 1518 SQLSTATE: HY000 (ER_NO_BINLOG_ERROR)
Message: It is not allowed to shut off binlog on this command
Error: 1519 SQLSTATE: HY000 (ER_CONSECUTIVE_REORG_PARTITIONS)
Message: When reorganizing a set of partitions they must be in consecutive order
Error: 1520 SQLSTATE: HY000 (ER_REORG_OUTSIDE_RANGE)
Message: Reorganize of range partitions cannot change total ranges except for last partition where it can extend the range
Error: 1521 SQLSTATE: HY000 (ER_PARTITION_FUNCTION_FAILURE)
Message: Partition function not supported in this version for this handler
Error: 1522 SQLSTATE: HY000 (ER_PART_STATE_ERROR)
Message: Partition state cannot be defined from CREATE/ALTER TABLE
Error: 1523 SQLSTATE: HY000 (ER_LIMITED_PART_RANGE)
Message: The %s handler only supports 32 bit integers in VALUES
Error: 1524 SQLSTATE: HY000 (ER_PLUGIN_IS_NOT_LOADED)
Message: Plugin '%s' is not loaded
Error: 1525 SQLSTATE: HY000 (ER_WRONG_VALUE)
Message: Incorrect %s value: '%s'
Error: 1526 SQLSTATE: HY000 (ER_NO_PARTITION_FOR_GIVEN_VALUE)
Message: Table has no partition for value %s
Error: 1527 SQLSTATE: HY000 (ER_FILEGROUP_OPTION_ONLY_ONCE)
Message: It is not allowed to specify %s more than once
Error: 1528 SQLSTATE: HY000 (ER_CREATE_FILEGROUP_FAILED)
Message: Failed to create %s
Error: 1529 SQLSTATE: HY000 (ER_DROP_FILEGROUP_FAILED)
Message: Failed to drop %s
Error: 1530 SQLSTATE: HY000 (ER_TABLESPACE_AUTO_EXTEND_ERROR)
Message: The handler doesn't support autoextend of tablespaces
Error: 1531 SQLSTATE: HY000 (ER_WRONG_SIZE_NUMBER)
Message: A size parameter was incorrectly specified, either number or on the form 10M
Error: 1532 SQLSTATE: HY000 (ER_SIZE_OVERFLOW_ERROR)
Message: The size number was correct but we don't allow the digit part to be more than 2 billion
Error: 1533 SQLSTATE: HY000 (ER_ALTER_FILEGROUP_FAILED)
Message: Failed to alter: %s
Error: 1534 SQLSTATE: HY000 (ER_BINLOG_ROW_LOGGING_FAILED)
Message: Writing one row to the row-based binary log failed
Error: 1535 SQLSTATE: HY000 (ER_BINLOG_ROW_WRONG_TABLE_DEF)
Message: Table definition on master and slave does not match: %s
Error: 1536 SQLSTATE: HY000 (ER_BINLOG_ROW_RBR_TO_SBR)
Message: Slave running with --log-slave-updates must use row-based binary logging to be able to replicate row-based binary log events
Error: 1537 SQLSTATE: HY000 (ER_EVENT_ALREADY_EXISTS)
Message: Event '%s' already exists
Error: 1538 SQLSTATE: HY000 (ER_EVENT_STORE_FAILED)
Message: Failed to store event %s. Error code %d from storage engine.
Error: 1539 SQLSTATE: HY000 (ER_EVENT_DOES_NOT_EXIST)
Message: Unknown event '%s'
Error: 1540 SQLSTATE: HY000 (ER_EVENT_CANT_ALTER)
Message: Failed to alter event '%s'
Error: 1541 SQLSTATE: HY000 (ER_EVENT_DROP_FAILED)
Message: Failed to drop %s
Error: 1542 SQLSTATE: HY000 (ER_EVENT_INTERVAL_NOT_POSITIVE_OR_TOO_BIG)
Message: INTERVAL is either not positive or too big
Error: 1543 SQLSTATE: HY000 (ER_EVENT_ENDS_BEFORE_STARTS)
Message: ENDS is either invalid or before STARTS
Error: 1544 SQLSTATE: HY000 (ER_EVENT_EXEC_TIME_IN_THE_PAST)
Message: Event execution time is in the past. Event has been disabled
Error: 1545 SQLSTATE: HY000 (ER_EVENT_OPEN_TABLE_FAILED)
Message: Failed to open mysql.event
Error: 1546 SQLSTATE: HY000 (ER_EVENT_NEITHER_M_EXPR_NOR_M_AT)
Message: No datetime expression provided
Error: 1547 SQLSTATE: HY000 (ER_OBSOLETE_COL_COUNT_DOESNT_MATCH_CORRUPTED)
Message: Column count of mysql.%s is wrong. Expected %d, found %d. The table is probably corrupted
Error: 1548 SQLSTATE: HY000 (ER_OBSOLETE_CANNOT_LOAD_FROM_TABLE)
Message: Cannot load from mysql.%s. The table is probably corrupted
Error: 1549 SQLSTATE: HY000 (ER_EVENT_CANNOT_DELETE)
Message: Failed to delete the event from mysql.event
Error: 1550 SQLSTATE: HY000 (ER_EVENT_COMPILE_ERROR)
Message: Error during compilation of event's body
Error: 1551 SQLSTATE: HY000 (ER_EVENT_SAME_NAME)
Message: Same old and new event name
Error: 1552 SQLSTATE: HY000 (ER_EVENT_DATA_TOO_LONG)
Message: Data for column '%s' too long
Error: 1553 SQLSTATE: HY000 (ER_DROP_INDEX_FK)
Message: Cannot drop index '%s': needed in a foreign key constraint
Error: 1554 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX_WITH_VER)
Message: The syntax '%s' is deprecated and will be removed in MySQL %s. Please use %s instead
Error: 1555 SQLSTATE: HY000 (ER_CANT_WRITE_LOCK_LOG_TABLE)
Message: You can't write-lock a log table. Only read access is possible
Error: 1556 SQLSTATE: HY000 (ER_CANT_LOCK_LOG_TABLE)
Message: You can't use locks with log tables.
Error: 1557 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY_OLD_UNUSED)
Message: Upholding foreign key constraints for table '%s', entry '%s', key %d would lead to a duplicate entry
Error: 1558 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_PLEASE_UPDATE)
Message: Column count of mysql.%s is wrong. Expected %d, found %d. Created with MySQL %d, now running %d. Please use mysql_upgrade to fix this error.
Error: 1559 SQLSTATE: HY000 (ER_TEMP_TABLE_PREVENTS_SWITCH_OUT_OF_RBR)
Message: Cannot switch out of the row-based binary log format when the session has open temporary tables
Error: 1560 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_FORMAT)
Message: Cannot change the binary logging format inside a stored function or trigger
Error: 1561 SQLSTATE: HY000 (ER_NDB_CANT_SWITCH_BINLOG_FORMAT)
Message: The NDB cluster engine does not support changing the binlog format on the fly yet
Error: 1562 SQLSTATE: HY000 (ER_PARTITION_NO_TEMPORARY)
Message: Cannot create temporary table with partitions
Error: 1563 SQLSTATE: HY000 (ER_PARTITION_CONST_DOMAIN_ERROR)
Message: Partition constant is out of partition function domain
Error: 1564 SQLSTATE: HY000 (ER_PARTITION_FUNCTION_IS_NOT_ALLOWED)
Message: This partition function is not allowed
Error: 1565 SQLSTATE: HY000 (ER_DDL_LOG_ERROR)
Message: Error in DDL log
Error: 1566 SQLSTATE: HY000 (ER_NULL_IN_VALUES_LESS_THAN)
Message: Not allowed to use NULL value in VALUES LESS THAN
Error: 1567 SQLSTATE: HY000 (ER_WRONG_PARTITION_NAME)
Message: Incorrect partition name
Error: 1568 SQLSTATE: 25001 (ER_CANT_CHANGE_TX_CHARACTERISTICS)
Message: Transaction characteristics can't be changed while a transaction is in progress
Error: 1569 SQLSTATE: HY000 (ER_DUP_ENTRY_AUTOINCREMENT_CASE)
Message: ALTER TABLE causes auto_increment resequencing, resulting in duplicate entry '%s' for key '%s'
Error: 1570 SQLSTATE: HY000 (ER_EVENT_MODIFY_QUEUE_ERROR)
Message: Internal scheduler error %d
Error: 1571 SQLSTATE: HY000 (ER_EVENT_SET_VAR_ERROR)
Message: Error during starting/stopping of the scheduler. Error code %u
Error: 1572 SQLSTATE: HY000 (ER_PARTITION_MERGE_ERROR)
Message: Engine cannot be used in partitioned tables
Error: 1573 SQLSTATE: HY000 (ER_CANT_ACTIVATE_LOG)
Message: Cannot activate '%s' log
Error: 1574 SQLSTATE: HY000 (ER_RBR_NOT_AVAILABLE)
Message: The server was not built with row-based replication
Error: 1575 SQLSTATE: HY000 (ER_BASE64_DECODE_ERROR)
Message: Decoding of base64 string failed
Error: 1576 SQLSTATE: HY000 (ER_EVENT_RECURSION_FORBIDDEN)
Message: Recursion of EVENT DDL statements is forbidden when body is present
Error: 1577 SQLSTATE: HY000 (ER_EVENTS_DB_ERROR)
Message: Cannot proceed because system tables used by Event Scheduler were found damaged at server start
Error: 1578 SQLSTATE: HY000 (ER_ONLY_INTEGERS_ALLOWED)
Message: Only integers allowed as number here
Error: 1579 SQLSTATE: HY000 (ER_UNSUPORTED_LOG_ENGINE)
Message: This storage engine cannot be used for log tables"
Error: 1580 SQLSTATE: HY000 (ER_BAD_LOG_STATEMENT)
Message: You cannot '%s' a log table if logging is enabled
Error: 1581 SQLSTATE: HY000 (ER_CANT_RENAME_LOG_TABLE)
Message: Cannot rename '%s'. When logging enabled, rename to/from log table must rename two tables: the log table to an archive table and another table back to '%s'
Error: 1582 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_NATIVE_FCT)
Message: Incorrect parameter count in the call to native function '%s'
Error: 1583 SQLSTATE: 42000 (ER_WRONG_PARAMETERS_TO_NATIVE_FCT)
Message: Incorrect parameters in the call to native function '%s'
Error: 1584 SQLSTATE: 42000 (ER_WRONG_PARAMETERS_TO_STORED_FCT)
Message: Incorrect parameters in the call to stored function '%s'
Error: 1585 SQLSTATE: HY000 (ER_NATIVE_FCT_NAME_COLLISION)
Message: This function '%s' has the same name as a native function
Error: 1586 SQLSTATE: 23000 (ER_DUP_ENTRY_WITH_KEY_NAME)
Message: Duplicate entry '%s' for key '%s'
As of MySQL 5.1.20, the format string for this error is also used with ER_DUP_ENTRY.
Error: 1587 SQLSTATE: HY000 (ER_BINLOG_PURGE_EMFILE)
Message: Too many files opened, please execute the command again
Error: 1588 SQLSTATE: HY000 (ER_EVENT_CANNOT_CREATE_IN_THE_PAST)
Message: Event execution time is in the past and ON COMPLETION NOT PRESERVE is set. The event was dropped immediately after creation.
Error: 1589 SQLSTATE: HY000 (ER_EVENT_CANNOT_ALTER_IN_THE_PAST)
Message: Event execution time is in the past and ON COMPLETION NOT PRESERVE is set. The event was not changed. Specify a time in the future.
Error: 1590 SQLSTATE: HY000 (ER_SLAVE_INCIDENT)
Message: The incident %s occured on the master. Message: %s
Error: 1591 SQLSTATE: HY000 (ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT)
Message: Table has no partition for some existing values
Error: 1592 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_STATEMENT)
Message: Unsafe statement written to the binary log using statement format since BINLOG_FORMAT = STATEMENT. %s
Error: 1593 SQLSTATE: HY000 (ER_SLAVE_FATAL_ERROR)
Message: Fatal error: %s
Error: 1594 SQLSTATE: HY000 (ER_SLAVE_RELAY_LOG_READ_FAILURE)
Message: Relay log read failure: %s
Error: 1595 SQLSTATE: HY000 (ER_SLAVE_RELAY_LOG_WRITE_FAILURE)
Message: Relay log write failure: %s
Error: 1596 SQLSTATE: HY000 (ER_SLAVE_CREATE_EVENT_FAILURE)
Message: Failed to create %s
Error: 1597 SQLSTATE: HY000 (ER_SLAVE_MASTER_COM_FAILURE)
Message: Master command %s failed: %s
Error: 1598 SQLSTATE: HY000 (ER_BINLOG_LOGGING_IMPOSSIBLE)
Message: Binary logging not possible. Message: %s
Error: 1599 SQLSTATE: HY000 (ER_VIEW_NO_CREATION_CTX)
Message: View `%s`.`%s` has no creation context
Error: 1600 SQLSTATE: HY000 (ER_VIEW_INVALID_CREATION_CTX)
Message: Creation context of view `%s`.`%s' is invalid
Error: 1601 SQLSTATE: HY000 (ER_SR_INVALID_CREATION_CTX)
Message: Creation context of stored routine `%s`.`%s` is invalid
Error: 1602 SQLSTATE: HY000 (ER_TRG_CORRUPTED_FILE)
Message: Corrupted TRG file for table `%s`.`%s`
Error: 1603 SQLSTATE: HY000 (ER_TRG_NO_CREATION_CTX)
Message: Triggers for table `%s`.`%s` have no creation context
Error: 1604 SQLSTATE: HY000 (ER_TRG_INVALID_CREATION_CTX)
Message: Trigger creation context of table `%s`.`%s` is invalid
Error: 1605 SQLSTATE: HY000 (ER_EVENT_INVALID_CREATION_CTX)
Message: Creation context of event `%s`.`%s` is invalid
Error: 1606 SQLSTATE: HY000 (ER_TRG_CANT_OPEN_TABLE)
Message: Cannot open table for trigger `%s`.`%s`
Error: 1607 SQLSTATE: HY000 (ER_CANT_CREATE_SROUTINE)
Message: Cannot create stored routine `%s`. Check warnings
Error: 1608 SQLSTATE: HY000 (ER_NEVER_USED)
Message: Ambiguous slave modes combination. %s
Error: 1609 SQLSTATE: HY000 (ER_NO_FORMAT_DESCRIPTION_EVENT_BEFORE_BINLOG_STATEMENT)
Message: The BINLOG statement of type `%s` was not preceded by a format description BINLOG statement.
Error: 1610 SQLSTATE: HY000 (ER_SLAVE_CORRUPT_EVENT)
Message: Corrupted replication event was detected
Error: 1611 SQLSTATE: HY000 (ER_LOAD_DATA_INVALID_COLUMN)
Message: Invalid column reference (%s) in LOAD DATA
Error: 1612 SQLSTATE: HY000 (ER_LOG_PURGE_NO_FILE)
Message: Being purged log %s was not found
Error: 1613 SQLSTATE: XA106 (ER_XA_RBTIMEOUT)
Message: XA_RBTIMEOUT: Transaction branch was rolled back: took too long
Error: 1614 SQLSTATE: XA102 (ER_XA_RBDEADLOCK)
Message: XA_RBDEADLOCK: Transaction branch was rolled back: deadlock was detected
Error: 1615 SQLSTATE: HY000 (ER_NEED_REPREPARE)
Message: Prepared statement needs to be re-prepared
Error: 1616 SQLSTATE: HY000 (ER_DELAYED_NOT_SUPPORTED)
Message: DELAYED option not supported for table '%s'
Error: 1617 SQLSTATE: HY000 (WARN_NO_MASTER_INFO)
Message: The master info structure does not exist
Error: 1618 SQLSTATE: HY000 (WARN_OPTION_IGNORED)
Message: <%s> option ignored
Error: 1619 SQLSTATE: HY000 (WARN_PLUGIN_DELETE_BUILTIN)
Message: Built-in plugins cannot be deleted
Error: 1620 SQLSTATE: HY000 (WARN_PLUGIN_BUSY)
Message: Plugin is busy and will be uninstalled on shutdown
Error: 1621 SQLSTATE: HY000 (ER_VARIABLE_IS_READONLY)
Message: %s variable '%s' is read-only. Use SET %s to assign the value
Error: 1622 SQLSTATE: HY000 (ER_WARN_ENGINE_TRANSACTION_ROLLBACK)
Message: Storage engine %s does not support rollback for this statement. Transaction rolled back and must be restarted
Error: 1623 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_FAILURE)
Message: Unexpected master's heartbeat data: %s
Error: 1624 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE)
Message: The requested value for the heartbeat period is either negative or exceeds the maximum allowed (%s seconds).
Error: 1625 SQLSTATE: HY000 (ER_NDB_REPLICATION_SCHEMA_ERROR)
Message: Bad schema for mysql.ndb_replication table. Message: %s
Error: 1626 SQLSTATE: HY000 (ER_CONFLICT_FN_PARSE_ERROR)
Message: Error in parsing conflict function. Message: %s
Error: 1627 SQLSTATE: HY000 (ER_EXCEPTIONS_WRITE_ERROR)
Message: Write to exceptions table failed. Message: %s"
Error: 1628 SQLSTATE: HY000 (ER_TOO_LONG_TABLE_COMMENT)
Message: Comment for table '%s' is too long (max = %lu)
Error: 1629 SQLSTATE: HY000 (ER_TOO_LONG_FIELD_COMMENT)
Message: Comment for field '%s' is too long (max = %lu)
Error: 1630 SQLSTATE: 42000 (ER_FUNC_INEXISTENT_NAME_COLLISION)
Message: FUNCTION %s does not exist. Check the 'Function Name Parsing and Resolution' section in the Reference Manual
Error: 1631 SQLSTATE: HY000 (ER_DATABASE_NAME)
Message: Database
Error: 1632 SQLSTATE: HY000 (ER_TABLE_NAME)
Message: Table
Error: 1633 SQLSTATE: HY000 (ER_PARTITION_NAME)
Message: Partition
Error: 1634 SQLSTATE: HY000 (ER_SUBPARTITION_NAME)
Message: Subpartition
Error: 1635 SQLSTATE: HY000 (ER_TEMPORARY_NAME)
Message: Temporary
Error: 1636 SQLSTATE: HY000 (ER_RENAMED_NAME)
Message: Renamed
Error: 1637 SQLSTATE: HY000 (ER_TOO_MANY_CONCURRENT_TRXS)
Message: Too many active concurrent transactions
Error: 1638 SQLSTATE: HY000 (WARN_NON_ASCII_SEPARATOR_NOT_IMPLEMENTED)
Message: Non-ASCII separator arguments are not fully supported
Error: 1639 SQLSTATE: HY000 (ER_DEBUG_SYNC_TIMEOUT)
Message: debug sync point wait timed out
Error: 1640 SQLSTATE: HY000 (ER_DEBUG_SYNC_HIT_LIMIT)
Message: debug sync point hit limit reached
Error: 1641 SQLSTATE: 42000 (ER_DUP_SIGNAL_SET)
Message: Duplicate condition information item '%s'
Error: 1642 SQLSTATE: 01000 (ER_SIGNAL_WARN)
Message: Unhandled user-defined warning condition
Error: 1643 SQLSTATE: 02000 (ER_SIGNAL_NOT_FOUND)
Message: Unhandled user-defined not found condition
Error: 1644 SQLSTATE: HY000 (ER_SIGNAL_EXCEPTION)
Message: Unhandled user-defined exception condition
Error: 1645 SQLSTATE: 0K000 (ER_RESIGNAL_WITHOUT_ACTIVE_HANDLER)
Message: RESIGNAL when handler not active
Error: 1646 SQLSTATE: HY000 (ER_SIGNAL_BAD_CONDITION_TYPE)
Message: SIGNAL/RESIGNAL can only use a CONDITION defined with SQLSTATE
Error: 1647 SQLSTATE: HY000 (WARN_COND_ITEM_TRUNCATED)
Message: Data truncated for condition item '%s'
Error: 1648 SQLSTATE: HY000 (ER_COND_ITEM_TOO_LONG)
Message: Data too long for condition item '%s'
Error: 1649 SQLSTATE: HY000 (ER_UNKNOWN_LOCALE)
Message: Unknown locale: '%s'
Error: 1650 SQLSTATE: HY000 (ER_SLAVE_IGNORE_SERVER_IDS)
Message: The requested server id %d clashes with the slave startup option --replicate-same-server-id
Error: 1651 SQLSTATE: HY000 (ER_QUERY_CACHE_DISABLED)
Message: Query cache is disabled; restart the server with query_cache_type=1 to enable it
Error: 1652 SQLSTATE: HY000 (ER_SAME_NAME_PARTITION_FIELD)
Message: Duplicate partition field name '%s'
Error: 1653 SQLSTATE: HY000 (ER_PARTITION_COLUMN_LIST_ERROR)
Message: Inconsistency in usage of column lists for partitioning
Error: 1654 SQLSTATE: HY000 (ER_WRONG_TYPE_COLUMN_VALUE_ERROR)
Message: Partition column values of incorrect type
Error: 1655 SQLSTATE: HY000 (ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR)
Message: Too many fields in '%s'
Error: 1656 SQLSTATE: HY000 (ER_MAXVALUE_IN_VALUES_IN)
Message: Cannot use MAXVALUE as value in VALUES IN
Error: 1657 SQLSTATE: HY000 (ER_TOO_MANY_VALUES_ERROR)
Message: Cannot have more than one value for this type of %s partitioning
Error: 1658 SQLSTATE: HY000 (ER_ROW_SINGLE_PARTITION_FIELD_ERROR)
Message: Row expressions in VALUES IN only allowed for multi-field column partitioning
Error: 1659 SQLSTATE: HY000 (ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD)
Message: Field '%s' is of a not allowed type for this type of partitioning
Error: 1660 SQLSTATE: HY000 (ER_PARTITION_FIELDS_TOO_LONG)
Message: The total length of the partitioning fields is too large
Error: 1661 SQLSTATE: HY000 (ER_BINLOG_ROW_ENGINE_AND_STMT_ENGINE)
Message: Cannot execute statement: impossible to write to binary log since both row-incapable engines and statement-incapable engines are involved.
Error: 1662 SQLSTATE: HY000 (ER_BINLOG_ROW_MODE_AND_STMT_ENGINE)
Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT = ROW and at least one table uses a storage engine limited to statement-based logging.
Error: 1663 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AND_STMT_ENGINE)
Message: Cannot execute statement: impossible to write to binary log since statement is unsafe, storage engine is limited to statement-based logging, and BINLOG_FORMAT = MIXED. %s
Error: 1664 SQLSTATE: HY000 (ER_BINLOG_ROW_INJECTION_AND_STMT_ENGINE)
Message: Cannot execute statement: impossible to write to binary log since statement is in row format and at least one table uses a storage engine limited to statement-based logging.
Error: 1665 SQLSTATE: HY000 (ER_BINLOG_STMT_MODE_AND_ROW_ENGINE)
Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT = STATEMENT and at least one table uses a storage engine limited to row-based logging.%s
Error: 1666 SQLSTATE: HY000 (ER_BINLOG_ROW_INJECTION_AND_STMT_MODE)
Message: Cannot execute statement: impossible to write to binary log since statement is in row format and BINLOG_FORMAT = STATEMENT.
Error: 1667 SQLSTATE: HY000 (ER_BINLOG_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE)
Message: Cannot execute statement: impossible to write to binary log since more than one engine is involved and at least one engine is self-logging.
Error: 1668 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_LIMIT)
Message: The statement is unsafe because it uses a LIMIT clause. This is unsafe because the set of rows included cannot be predicted.
Error: 1669 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_DELAYED)
Message: The statement is unsafe because it uses INSERT DELAYED. This is unsafe because the times when rows are inserted cannot be predicted.
Error: 1670 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_TABLE)
Message: The statement is unsafe because it uses the general log, slow query log, or performance_schema table(s). This is unsafe because system tables may differ on slaves.
Error: 1671 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AUTOINC_COLUMNS)
Message: Statement is unsafe because it invokes a trigger or a stored function that inserts into an AUTO_INCREMENT column. Inserted values cannot be logged correctly.
Error: 1672 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_UDF)
Message: Statement is unsafe because it uses a UDF which may not return the same value on the slave.
Error: 1673 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_VARIABLE)
Message: Statement is unsafe because it uses a system variable that may have a different value on the slave.
Error: 1674 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_SYSTEM_FUNCTION)
Message: Statement is unsafe because it uses a system function that may return a different value on the slave.
Error: 1675 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS)
Message: Statement is unsafe because it accesses a non-transactional table after accessing a transactional table within the same transaction.
Error: 1676 SQLSTATE: HY000 (ER_MESSAGE_AND_STATEMENT)
Message: %s Statement: %s
Error: 1677 SQLSTATE: HY000 (ER_SLAVE_CONVERSION_FAILED)
Message: Column %d of table '%s.%s' cannot be converted from type '%s' to type '%s'
Error: 1678 SQLSTATE: HY000 (ER_SLAVE_CANT_CREATE_CONVERSION)
Message: Can't create conversion table for table '%s.%s'
Error: 1679 SQLSTATE: HY000 (ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_FORMAT)
Message: Cannot modify @@session.binlog_format inside a transaction
Error: 1680 SQLSTATE: HY000 (ER_PATH_LENGTH)
Message: The path specified for %s is too long.
Error: 1681 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX_NO_REPLACEMENT)
Message: '%s' is deprecated and will be removed in a future release.
Error: 1682 SQLSTATE: HY000 (ER_WRONG_NATIVE_TABLE_STRUCTURE)
Message: Native table '%s'.'%s' has the wrong structure
Error: 1683 SQLSTATE: HY000 (ER_WRONG_PERFSCHEMA_USAGE)
Message: Invalid performance_schema usage.
Error: 1684 SQLSTATE: HY000 (ER_WARN_I_S_SKIPPED_TABLE)
Message: Table '%s'.'%s' was skipped since its definition is being modified by concurrent DDL statement
Error: 1685 SQLSTATE: HY000 (ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_BINLOG_DIRECT)
Message: Cannot modify @@session.binlog_direct_non_transactional_updates inside a transaction
Error: 1686 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_BINLOG_DIRECT)
Message: Cannot change the binlog direct flag inside a stored function or trigger
Error: 1687 SQLSTATE: 42000 (ER_SPATIAL_MUST_HAVE_GEOM_COL)
Message: A SPATIAL index may only contain a geometrical type column
Error: 1688 SQLSTATE: HY000 (ER_TOO_LONG_INDEX_COMMENT)
Message: Comment for index '%s' is too long (max = %lu)
Error: 1689 SQLSTATE: HY000 (ER_LOCK_ABORTED)
Message: Wait on a lock was aborted due to a pending exclusive lock
Error: 1690 SQLSTATE: 22003 (ER_DATA_OUT_OF_RANGE)
Message: %s value is out of range in '%s'
Error: 1691 SQLSTATE: HY000 (ER_WRONG_SPVAR_TYPE_IN_LIMIT)
Message: A variable of a non-integer based type in LIMIT clause
Error: 1692 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE)
Message: Mixing self-logging and non-self-logging engines in a statement is unsafe.
Error: 1693 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_MIXED_STATEMENT)
Message: Statement accesses nontransactional table as well as transactional or temporary table, and writes to any of them.
Error: 1694 SQLSTATE: HY000 (ER_INSIDE_TRANSACTION_PREVENTS_SWITCH_SQL_LOG_BIN)
Message: Cannot modify @@session.sql_log_bin inside a transaction
Error: 1695 SQLSTATE: HY000 (ER_STORED_FUNCTION_PREVENTS_SWITCH_SQL_LOG_BIN)
Message: Cannot change the sql_log_bin inside a stored function or trigger
Error: 1696 SQLSTATE: HY000 (ER_FAILED_READ_FROM_PAR_FILE)
Message: Failed to read from the .par file
Error: 1697 SQLSTATE: HY000 (ER_VALUES_IS_NOT_INT_TYPE_ERROR)
Message: VALUES value for partition '%s' must have type INT
Error: 1698 SQLSTATE: 28000 (ER_ACCESS_DENIED_NO_PASSWORD_ERROR)
Message: Access denied for user '%s'@'%s'
Error: 1699 SQLSTATE: HY000 (ER_SET_PASSWORD_AUTH_PLUGIN)
Message: SET PASSWORD has no significance for users authenticating via plugins
Error: 1700 SQLSTATE: HY000 (ER_GRANT_PLUGIN_USER_EXISTS)
Message: GRANT with IDENTIFIED WITH is illegal because the user %-.*s already exists
Error: 1701 SQLSTATE: 42000 (ER_TRUNCATE_ILLEGAL_FK)
Message: Cannot truncate a table referenced in a foreign key constraint (%s)
Error: 1702 SQLSTATE: HY000 (ER_PLUGIN_IS_PERMANENT)
Message: Plugin '%s' is force_plus_permanent and can not be unloaded
Error: 1703 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MIN)
Message: The requested value for the heartbeat period is less than 1 millisecond. The value is reset to 0, meaning that heartbeating will effectively be disabled.
Error: 1704 SQLSTATE: HY000 (ER_SLAVE_HEARTBEAT_VALUE_OUT_OF_RANGE_MAX)
Message: The requested value for the heartbeat period exceeds the value of `slave_net_timeout' seconds. A sensible value for the period should be less than the timeout.
Error: 1705 SQLSTATE: HY000 (ER_STMT_CACHE_FULL)
Message: Multi-row statements required more than 'max_binlog_stmt_cache_size' bytes of storage; increase this mysqld variable and try again
Error: 1706 SQLSTATE: HY000 (ER_MULTI_UPDATE_KEY_CONFLICT)
Message: Primary key/partition key update is not allowed since the table is updated both as '%s' and '%s'.
Error: 1707 SQLSTATE: HY000 (ER_TABLE_NEEDS_REBUILD)
Message: Table rebuild required. Please do "ALTER TABLE `%s` FORCE" or dump/reload to fix it!
Error: 1708 SQLSTATE: HY000 (WARN_OPTION_BELOW_LIMIT)
Message: The value of '%s' should be no less than the value of '%s'
Error: 1709 SQLSTATE: HY000 (ER_INDEX_COLUMN_TOO_LONG)
Message: Index column size too large. The maximum column size is %lu bytes.
Error: 1710 SQLSTATE: HY000 (ER_ERROR_IN_TRIGGER_BODY)
Message: Trigger '%s' has an error in its body: '%s'
Error: 1711 SQLSTATE: HY000 (ER_ERROR_IN_UNKNOWN_TRIGGER_BODY)
Message: Unknown trigger has an error in its body: '%s'
Error: 1712 SQLSTATE: HY000 (ER_INDEX_CORRUPT)
Message: Index %s is corrupted
Error: 1713 SQLSTATE: HY000 (ER_UNDO_RECORD_TOO_BIG)
Message: Undo log record is too big.
Error: 1714 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT)
Message: INSERT IGNORE... SELECT is unsafe because the order in which rows are retrieved by the SELECT determines which (if any) rows are ignored. This order cannot be predicted and may differ on master and the slave.
Error: 1715 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE)
Message: INSERT... SELECT... ON DUPLICATE KEY UPDATE is unsafe because the order in which rows are retrieved by the SELECT determines which (if any) rows are updated. This order cannot be predicted and may differ on master and the slave.
Error: 1716 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_REPLACE_SELECT)
Message: REPLACE... SELECT is unsafe because the order in which rows are retrieved by the SELECT determines which (if any) rows are replaced. This order cannot be predicted and may differ on master and the slave.
Error: 1717 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT)
Message: CREATE... IGNORE SELECT is unsafe because the order in which rows are retrieved by the SELECT determines which (if any) rows are ignored. This order cannot be predicted and may differ on master and the slave.
Error: 1718 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT)
Message: CREATE... REPLACE SELECT is unsafe because the order in which rows are retrieved by the SELECT determines which (if any) rows are replaced. This order cannot be predicted and may differ on master and the slave.
Error: 1719 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_UPDATE_IGNORE)
Message: UPDATE IGNORE is unsafe because the order in which rows are updated determines which (if any) rows are ignored. This order cannot be predicted and may differ on master and the slave.
Error: 1720 SQLSTATE: HY000 (ER_PLUGIN_NO_UNINSTALL)
Message: Plugin '%s' is marked as not dynamically uninstallable. You have to stop the server to uninstall it.
Error: 1721 SQLSTATE: HY000 (ER_PLUGIN_NO_INSTALL)
Message: Plugin '%s' is marked as not dynamically installable. You have to stop the server to install it.
Error: 1722 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT)
Message: Statements writing to a table with an auto-increment column after selecting from another table are unsafe because the order in which rows are retrieved determines what (if any) rows will be written. This order cannot be predicted and may differ on master and the slave.
Error: 1723 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC)
Message: CREATE TABLE... SELECT... on a table with an auto-increment column is unsafe because the order in which rows are retrieved by the SELECT determines which (if any) rows are inserted. This order cannot be predicted and may differ on master and the slave.
Error: 1724 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_INSERT_TWO_KEYS)
Message: INSERT... ON DUPLICATE KEY UPDATE on a table with more than one UNIQUE KEY is unsafe
Error: 1725 SQLSTATE: HY000 (ER_TABLE_IN_FK_CHECK)
Message: Table is being used in foreign key check.
Error: 1726 SQLSTATE: HY000 (ER_UNSUPPORTED_ENGINE)
Message: Storage engine '%s' does not support system tables. [%s.%s]
Error: 1727 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST)
Message: INSERT into autoincrement field which is not the first part in the composed primary key is unsafe.
Error: 1728 SQLSTATE: HY000 (ER_CANNOT_LOAD_FROM_TABLE_V2)
Message: Cannot load from %s.%s. The table is probably corrupted
Error: 1729 SQLSTATE: HY000 (ER_MASTER_DELAY_VALUE_OUT_OF_RANGE)
Message: The requested value %u for the master delay exceeds the maximum %u
Error: 1730 SQLSTATE: HY000 (ER_ONLY_FD_AND_RBR_EVENTS_ALLOWED_IN_BINLOG_STATEMENT)
Message: Only Format_description_log_event and row events are allowed in BINLOG statements (but %s was provided)
Error: 1731 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_DIFFERENT_OPTION)
Message: Non matching attribute '%s' between partition and table
Error: 1732 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_PART_TABLE)
Message: Table to exchange with partition is partitioned: '%s'
Error: 1733 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_TEMP_TABLE)
Message: Table to exchange with partition is temporary: '%s'
Error: 1734 SQLSTATE: HY000 (ER_PARTITION_INSTEAD_OF_SUBPARTITION)
Message: Subpartitioned table, use subpartition instead of partition
Error: 1735 SQLSTATE: HY000 (ER_UNKNOWN_PARTITION)
Message: Unknown partition '%s' in table '%s'
Error: 1736 SQLSTATE: HY000 (ER_TABLES_DIFFERENT_METADATA)
Message: Tables have different definitions
Error: 1737 SQLSTATE: HY000 (ER_ROW_DOES_NOT_MATCH_PARTITION)
Message: Found a row that does not match the partition
Error: 1738 SQLSTATE: HY000 (ER_BINLOG_CACHE_SIZE_GREATER_THAN_MAX)
Message: Option binlog_cache_size (%lu) is greater than max_binlog_cache_size (%lu); setting binlog_cache_size equal to max_binlog_cache_size.
Error: 1739 SQLSTATE: HY000 (ER_WARN_INDEX_NOT_APPLICABLE)
Message: Cannot use %s access on index '%s' due to type or collation conversion on field '%s'
Error: 1740 SQLSTATE: HY000 (ER_PARTITION_EXCHANGE_FOREIGN_KEY)
Message: Table to exchange with partition has foreign key references: '%s'
Error: 1741 SQLSTATE: HY000 (ER_NO_SUCH_KEY_VALUE)
Message: Key value '%s' was not found in table '%s.%s'
Error: 1742 SQLSTATE: HY000 (ER_RPL_INFO_DATA_TOO_LONG)
Message: Data for column '%s' too long
Error: 1743 SQLSTATE: HY000 (ER_NETWORK_READ_EVENT_CHECKSUM_FAILURE)
Message: Replication event checksum verification failed while reading from network.
Error: 1744 SQLSTATE: HY000 (ER_BINLOG_READ_EVENT_CHECKSUM_FAILURE)
Message: Replication event checksum verification failed while reading from a log file.
Error: 1745 SQLSTATE: HY000 (ER_BINLOG_STMT_CACHE_SIZE_GREATER_THAN_MAX)
Message: Option binlog_stmt_cache_size (%lu) is greater than max_binlog_stmt_cache_size (%lu); setting binlog_stmt_cache_size equal to max_binlog_stmt_cache_size.
Error: 1746 SQLSTATE: HY000 (ER_CANT_UPDATE_TABLE_IN_CREATE_TABLE_SELECT)
Message: Can't update table '%s' while '%s' is being created.
Error: 1747 SQLSTATE: HY000 (ER_PARTITION_CLAUSE_ON_NONPARTITIONED)
Message: PARTITION () clause on non partitioned table
Error: 1748 SQLSTATE: HY000 (ER_ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET)
Message: Found a row not matching the given partition set
Error: 1749 SQLSTATE: HY000 (ER_NO_SUCH_PARTITION__UNUSED)
Message: partition '%s' doesn't exist
Error: 1750 SQLSTATE: HY000 (ER_CHANGE_RPL_INFO_REPOSITORY_FAILURE)
Message: Failure while changing the type of replication repository: %s.
Error: 1751 SQLSTATE: HY000 (ER_WARNING_NOT_COMPLETE_ROLLBACK_WITH_CREATED_TEMP_TABLE)
Message: The creation of some temporary tables could not be rolled back.
Error: 1752 SQLSTATE: HY000 (ER_WARNING_NOT_COMPLETE_ROLLBACK_WITH_DROPPED_TEMP_TABLE)
Message: Some temporary tables were dropped, but these operations could not be rolled back.
Error: 1753 SQLSTATE: HY000 (ER_MTS_FEATURE_IS_NOT_SUPPORTED)
Message: %s is not supported in multi-threaded slave mode. %s
Error: 1754 SQLSTATE: HY000 (ER_MTS_UPDATED_DBS_GREATER_MAX)
Message: The number of modified databases exceeds the maximum %d; the database names will not be included in the replication event metadata.
Error: 1755 SQLSTATE: HY000 (ER_MTS_CANT_PARALLEL)
Message: Cannot execute the current event group in the parallel mode. Encountered event %s, relay-log name %s, position %s which prevents execution of this event group in parallel mode. Reason: %s.
Error: 1756 SQLSTATE: HY000 (ER_MTS_INCONSISTENT_DATA)
Message: %s
Error: 1757 SQLSTATE: HY000 (ER_FULLTEXT_NOT_SUPPORTED_WITH_PARTITIONING)
Message: FULLTEXT index is not supported for partitioned tables.
Error: 1758 SQLSTATE: 35000 (ER_DA_INVALID_CONDITION_NUMBER)
Message: Invalid condition number
Error: 1759 SQLSTATE: HY000 (ER_INSECURE_PLAIN_TEXT)
Message: Sending passwords in plain text without SSL/TLS is extremely insecure.
Error: 1760 SQLSTATE: HY000 (ER_INSECURE_CHANGE_MASTER)
Message: Storing MySQL user name or password information in the master.info repository is not secure and is therefore not recommended. Please see the MySQL Manual for more about this issue and possible alternatives.
Error: 1761 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO)
Message: Foreign key constraint for table '%s', record '%s' would lead to a duplicate entry in table '%s', key '%s'
Error: 1762 SQLSTATE: 23000 (ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO)
Message: Foreign key constraint for table '%s', record '%s' would lead to a duplicate entry in a child table
Error: 1763 SQLSTATE: HY000 (ER_SQLTHREAD_WITH_SECURE_SLAVE)
Message: Setting authentication options is not possible when only the Slave SQL Thread is being started.
Error: 1764 SQLSTATE: HY000 (ER_TABLE_HAS_NO_FT)
Message: The table does not have FULLTEXT index to support this query
Error: 1765 SQLSTATE: HY000 (ER_VARIABLE_NOT_SETTABLE_IN_SF_OR_TRIGGER)
Message: The system variable %s cannot be set in stored functions or triggers.
Error: 1766 SQLSTATE: HY000 (ER_VARIABLE_NOT_SETTABLE_IN_TRANSACTION)
Message: The system variable %s cannot be set when there is an ongoing transaction.
Error: 1767 SQLSTATE: HY000 (ER_GTID_NEXT_IS_NOT_IN_GTID_NEXT_LIST)
Message: The system variable @@SESSION.GTID_NEXT has the value %s, which is not listed in @@SESSION.GTID_NEXT_LIST.
Error: 1768 SQLSTATE: HY000 (ER_CANT_CHANGE_GTID_NEXT_IN_TRANSACTION_WHEN_GTID_NEXT_LIST_IS_NULL)
Message: When @@SESSION.GTID_NEXT_LIST == NULL, the system variable @@SESSION.GTID_NEXT cannot change inside a transaction.
Error: 1769 SQLSTATE: HY000 (ER_SET_STATEMENT_CANNOT_INVOKE_FUNCTION)
Message: The statement 'SET %s' cannot invoke a stored function.
Error: 1770 SQLSTATE: HY000 (ER_GTID_NEXT_CANT_BE_AUTOMATIC_IF_GTID_NEXT_LIST_IS_NON_NULL)
Message: The system variable @@SESSION.GTID_NEXT cannot be 'AUTOMATIC' when @@SESSION.GTID_NEXT_LIST is non-NULL.
Error: 1771 SQLSTATE: HY000 (ER_SKIPPING_LOGGED_TRANSACTION)
Message: Skipping transaction %s because it has already been executed and logged.
Error: 1772 SQLSTATE: HY000 (ER_MALFORMED_GTID_SET_SPECIFICATION)
Message: Malformed GTID set specification '%s'.
Error: 1773 SQLSTATE: HY000 (ER_MALFORMED_GTID_SET_ENCODING)
Message: Malformed GTID set encoding.
Error: 1774 SQLSTATE: HY000 (ER_MALFORMED_GTID_SPECIFICATION)
Message: Malformed GTID specification '%s'.
Error: 1775 SQLSTATE: HY000 (ER_GNO_EXHAUSTED)
Message: Impossible to generate Global Transaction Identifier: the integer component reached the maximal value. Restart the server with a new server_uuid.
Error: 1776 SQLSTATE: HY000 (ER_BAD_SLAVE_AUTO_POSITION)
Message: Parameters MASTER_LOG_FILE, MASTER_LOG_POS, RELAY_LOG_FILE and RELAY_LOG_POS cannot be set when MASTER_AUTO_POSITION is active.
Error: 1777 SQLSTATE: HY000 (ER_AUTO_POSITION_REQUIRES_GTID_MODE_ON)
Message: CHANGE MASTER TO MASTER_AUTO_POSITION = 1 can only be executed when @@GLOBAL.GTID_MODE = ON.
Error: 1778 SQLSTATE: HY000 (ER_CANT_DO_IMPLICIT_COMMIT_IN_TRX_WHEN_GTID_NEXT_IS_SET)
Message: Cannot execute statements with implicit commit inside a transaction when @@SESSION.GTID_NEXT != AUTOMATIC or @@SESSION.GTID_NEXT_LIST != NULL.
Error: 1779 SQLSTATE: HY000 (ER_GTID_MODE_2_OR_3_REQUIRES_ENFORCE_GTID_CONSISTENCY_ON)
Message: @@GLOBAL.GTID_MODE = ON or UPGRADE_STEP_2 requires @@GLOBAL.ENFORCE_GTID_CONSISTENCY = 1.
Error: 1780 SQLSTATE: HY000 (ER_GTID_MODE_REQUIRES_BINLOG)
Message: @@GLOBAL.GTID_MODE = ON or UPGRADE_STEP_1 or UPGRADE_STEP_2 requires --log-bin and --log-slave-updates.
Error: 1781 SQLSTATE: HY000 (ER_CANT_SET_GTID_NEXT_TO_GTID_WHEN_GTID_MODE_IS_OFF)
Message: @@SESSION.GTID_NEXT cannot be set to UUID:NUMBER when @@GLOBAL.GTID_MODE = OFF.
Error: 1782 SQLSTATE: HY000 (ER_CANT_SET_GTID_NEXT_TO_ANONYMOUS_WHEN_GTID_MODE_IS_ON)
Message: @@SESSION.GTID_NEXT cannot be set to ANONYMOUS when @@GLOBAL.GTID_MODE = ON.
Error: 1783 SQLSTATE: HY000 (ER_CANT_SET_GTID_NEXT_LIST_TO_NON_NULL_WHEN_GTID_MODE_IS_OFF)
Message: @@SESSION.GTID_NEXT_LIST cannot be set to a non-NULL value when @@GLOBAL.GTID_MODE = OFF.
Error: 1784 SQLSTATE: HY000 (ER_FOUND_GTID_EVENT_WHEN_GTID_MODE_IS_OFF)
Message: Found a Gtid_log_event or Previous_gtids_log_event when @@GLOBAL.GTID_MODE = OFF.
Error: 1785 SQLSTATE: HY000 (ER_GTID_UNSAFE_NON_TRANSACTIONAL_TABLE)
Message: When @@GLOBAL.ENFORCE_GTID_CONSISTENCY = 1, updates to non-transactional tables can only be done in either autocommitted statements or single-statement transactions, and never in the same statement as updates to transactional tables.
Error: 1786 SQLSTATE: HY000 (ER_GTID_UNSAFE_CREATE_SELECT)
Message: CREATE TABLE ... SELECT is forbidden when @@GLOBAL.ENFORCE_GTID_CONSISTENCY = 1.
Error: 1787 SQLSTATE: HY000 (ER_GTID_UNSAFE_CREATE_DROP_TEMPORARY_TABLE_IN_TRANSACTION)
Message: When @@GLOBAL.ENFORCE_GTID_CONSISTENCY = 1, the statements CREATE TEMPORARY TABLE and DROP TEMPORARY TABLE can be executed in a non-transactional context only, and require that AUTOCOMMIT = 1.
Error: 1788 SQLSTATE: HY000 (ER_GTID_MODE_CAN_ONLY_CHANGE_ONE_STEP_AT_A_TIME)
Message: The value of @@GLOBAL.GTID_MODE can only change one step at a time: OFF <-> UPGRADE_STEP_1 <-> UPGRADE_STEP_2 <-> ON. Also note that this value must be stepped up or down simultaneously on all servers; see the Manual for instructions.
Error: 1789 SQLSTATE: HY000 (ER_MASTER_HAS_PURGED_REQUIRED_GTIDS)
Message: The slave is connecting using CHANGE MASTER TO MASTER_AUTO_POSITION = 1, but the master has purged binary logs containing GTIDs that the slave requires.
Error: 1790 SQLSTATE: HY000 (ER_CANT_SET_GTID_NEXT_WHEN_OWNING_GTID)
Message: @@SESSION.GTID_NEXT cannot be changed by a client that owns a GTID. The client owns %s. Ownership is released on COMMIT or ROLLBACK.
Error: 1791 SQLSTATE: HY000 (ER_UNKNOWN_EXPLAIN_FORMAT)
Message: Unknown EXPLAIN format name: '%s'
Error: 1792 SQLSTATE: 25006 (ER_CANT_EXECUTE_IN_READ_ONLY_TRANSACTION)
Message: Cannot execute statement in a READ ONLY transaction.
Error: 1793 SQLSTATE: HY000 (ER_TOO_LONG_TABLE_PARTITION_COMMENT)
Message: Comment for table partition '%s' is too long (max = %lu)
Error: 1794 SQLSTATE: HY000 (ER_SLAVE_CONFIGURATION)
Message: Slave is not configured or failed to initialize properly. You must at least set --server-id to enable either a master or a slave. Additional error messages can be found in the MySQL error log.
Error: 1795 SQLSTATE: HY000 (ER_INNODB_FT_LIMIT)
Message: InnoDB presently supports one FULLTEXT index creation at a time
Error: 1796 SQLSTATE: HY000 (ER_INNODB_NO_FT_TEMP_TABLE)
Message: Cannot create FULLTEXT index on temporary InnoDB table
Error: 1797 SQLSTATE: HY000 (ER_INNODB_FT_WRONG_DOCID_COLUMN)
Message: Column '%s' is of wrong type for an InnoDB FULLTEXT index
Error: 1798 SQLSTATE: HY000 (ER_INNODB_FT_WRONG_DOCID_INDEX)
Message: Index '%s' is of wrong type for an InnoDB FULLTEXT index
Error: 1799 SQLSTATE: HY000 (ER_INNODB_ONLINE_LOG_TOO_BIG)
Message: Creating index '%s' required more than 'innodb_online_alter_log_max_size' bytes of modification log. Please try again.
Error: 1800 SQLSTATE: HY000 (ER_UNKNOWN_ALTER_ALGORITHM)
Message: Unknown ALGORITHM '%s'
Error: 1801 SQLSTATE: HY000 (ER_UNKNOWN_ALTER_LOCK)
Message: Unknown LOCK type '%s'
Error: 1802 SQLSTATE: HY000 (ER_MTS_CHANGE_MASTER_CANT_RUN_WITH_GAPS)
Message: CHANGE MASTER cannot be executed when the slave was stopped with an error or killed in MTS mode. Consider using RESET SLAVE or START SLAVE UNTIL.
Error: 1803 SQLSTATE: HY000 (ER_MTS_RECOVERY_FAILURE)
Message: Cannot recover after SLAVE errored out in parallel execution mode. Additional error messages can be found in the MySQL error log.
Error: 1804 SQLSTATE: HY000 (ER_MTS_RESET_WORKERS)
Message: Cannot clean up worker info tables. Additional error messages can be found in the MySQL error log.
Error: 1805 SQLSTATE: HY000 (ER_COL_COUNT_DOESNT_MATCH_CORRUPTED_V2)
Message: Column count of %s.%s is wrong. Expected %d, found %d. The table is probably corrupted
Error: 1806 SQLSTATE: HY000 (ER_SLAVE_SILENT_RETRY_TRANSACTION)
Message: Slave must silently retry current transaction
Error: 1807 SQLSTATE: HY000 (ER_DISCARD_FK_CHECKS_RUNNING)
Message: There is a foreign key check running on table '%s'. Cannot discard the table.
Error: 1808 SQLSTATE: HY000 (ER_TABLE_SCHEMA_MISMATCH)
Message: Schema mismatch (%s)
Error: 1809 SQLSTATE: HY000 (ER_TABLE_IN_SYSTEM_TABLESPACE)
Message: Table '%s' in system tablespace
Error: 1810 SQLSTATE: HY000 (ER_IO_READ_ERROR)
Message: IO Read error: (%lu, %s) %s
Error: 1811 SQLSTATE: HY000 (ER_IO_WRITE_ERROR)
Message: IO Write error: (%lu, %s) %s
Error: 1812 SQLSTATE: HY000 (ER_TABLESPACE_MISSING)
Message: Tablespace is missing for table '%s'
Error: 1813 SQLSTATE: HY000 (ER_TABLESPACE_EXISTS)
Message: Tablespace for table '%s' exists. Please DISCARD the tablespace before IMPORT.
Error: 1814 SQLSTATE: HY000 (ER_TABLESPACE_DISCARDED)
Message: Tablespace has been discarded for table '%s'
Error: 1815 SQLSTATE: HY000 (ER_INTERNAL_ERROR)
Message: Internal error: %s
Error: 1816 SQLSTATE: HY000 (ER_INNODB_IMPORT_ERROR)
Message: ALTER TABLE '%s' IMPORT TABLESPACE failed with error %lu : '%s'
Error: 1817 SQLSTATE: HY000 (ER_INNODB_INDEX_CORRUPT)
Message: Index corrupt: %s
Error: 1818 SQLSTATE: HY000 (ER_INVALID_YEAR_COLUMN_LENGTH)
Message: YEAR(%lu) column type is deprecated. Creating YEAR(4) column instead.
Error: 1819 SQLSTATE: HY000 (ER_NOT_VALID_PASSWORD)
Message: Your password does not satisfy the current policy requirements
Error: 1820 SQLSTATE: HY000 (ER_MUST_CHANGE_PASSWORD)
Message: You must SET PASSWORD before executing this statement
Error: 1821 SQLSTATE: HY000 (ER_FK_NO_INDEX_CHILD)
Message: Failed to add the foreign key constaint. Missing index for constraint '%s' in the foreign table '%s'
Error: 1822 SQLSTATE: HY000 (ER_FK_NO_INDEX_PARENT)
Message: Failed to add the foreign key constaint. Missing index for constraint '%s' in the referenced table '%s'
Error: 1823 SQLSTATE: HY000 (ER_FK_FAIL_ADD_SYSTEM)
Message: Failed to add the foreign key constraint '%s' to system tables
Error: 1824 SQLSTATE: HY000 (ER_FK_CANNOT_OPEN_PARENT)
Message: Failed to open the referenced table '%s'
Error: 1825 SQLSTATE: HY000 (ER_FK_INCORRECT_OPTION)
Message: Failed to add the foreign key constraint on table '%s'. Incorrect options in FOREIGN KEY constraint '%s'
Error: 1826 SQLSTATE: HY000 (ER_FK_DUP_NAME)
Message: Duplicate foreign key constraint name '%s'
Error: 1827 SQLSTATE: HY000 (ER_PASSWORD_FORMAT)
Message: The password hash doesn't have the expected format. Check if the correct password algorithm is being used with the PASSWORD() function.
Error: 1828 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_DROP)
Message: Cannot drop column '%s': needed in a foreign key constraint '%s'
Error: 1829 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_DROP_CHILD)
Message: Cannot drop column '%s': needed in a foreign key constraint '%s' of table '%s'
Error: 1830 SQLSTATE: HY000 (ER_FK_COLUMN_NOT_NULL)
Message: Column '%s' cannot be NOT NULL: needed in a foreign key constraint '%s' SET NULL
Error: 1831 SQLSTATE: HY000 (ER_DUP_INDEX)
Message: Duplicate index '%s' defined on the table '%s.%s'. This is deprecated and will be disallowed in a future release.
Error: 1832 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_CHANGE)
Message: Cannot change column '%s': used in a foreign key constraint '%s'
Error: 1833 SQLSTATE: HY000 (ER_FK_COLUMN_CANNOT_CHANGE_CHILD)
Message: Cannot change column '%s': used in a foreign key constraint '%s' of table '%s'
Error: 1834 SQLSTATE: HY000 (ER_FK_CANNOT_DELETE_PARENT)
Message: Cannot delete rows from table which is parent in a foreign key constraint '%s' of table '%s'
Error: 1835 SQLSTATE: HY000 (ER_MALFORMED_PACKET)
Message: Malformed communication packet.
Error: 1836 SQLSTATE: HY000 (ER_READ_ONLY_MODE)
Message: Running in read-only mode
Error: 1837 SQLSTATE: HY000 (ER_GTID_NEXT_TYPE_UNDEFINED_GROUP)
Message: When @@SESSION.GTID_NEXT is set to a GTID, you must explicitly set it again after a COMMIT or ROLLBACK. If you see this error message in the slave SQL thread, it means that a table in the current transaction is transactional on the master and non-transactional on the slave. In a client connection, it means that you executed SET @@SESSION.GTID_NEXT before a transaction and forgot to set @@SESSION.GTID_NEXT to a different identifier or to 'AUTOMATIC' after COMMIT or ROLLBACK. Current @@SESSION.GTID_NEXT is '%s'.
Error: 1838 SQLSTATE: HY000 (ER_VARIABLE_NOT_SETTABLE_IN_SP)
Message: The system variable %s cannot be set in stored procedures.
Error: 1839 SQLSTATE: HY000 (ER_CANT_SET_GTID_PURGED_WHEN_GTID_MODE_IS_OFF)
Message: @@GLOBAL.GTID_PURGED can only be set when @@GLOBAL.GTID_MODE = ON.
Error: 1840 SQLSTATE: HY000 (ER_CANT_SET_GTID_PURGED_WHEN_GTID_EXECUTED_IS_NOT_EMPTY)
Message: @@GLOBAL.GTID_PURGED can only be set when @@GLOBAL.GTID_EXECUTED is empty.
Error: 1841 SQLSTATE: HY000 (ER_CANT_SET_GTID_PURGED_WHEN_OWNED_GTIDS_IS_NOT_EMPTY)
Message: @@GLOBAL.GTID_PURGED can only be set when there are no ongoing transactions (not even in other clients).
Error: 1842 SQLSTATE: HY000 (ER_GTID_PURGED_WAS_CHANGED)
Message: @@GLOBAL.GTID_PURGED was changed from '%s' to '%s'.
Error: 1843 SQLSTATE: HY000 (ER_GTID_EXECUTED_WAS_CHANGED)
Message: @@GLOBAL.GTID_EXECUTED was changed from '%s' to '%s'.
Error: 1844 SQLSTATE: HY000 (ER_BINLOG_STMT_MODE_AND_NO_REPL_TABLES)
Message: Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT = STATEMENT, and both replicated and non replicated tables are written to.
Error: 1845 SQLSTATE: 0A000 (ER_ALTER_OPERATION_NOT_SUPPORTED)
Message: %s is not supported for this operation. Try %s.
Error: 1846 SQLSTATE: 0A000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON)
Message: %s is not supported. Reason: %s. Try %s.
Error: 1847 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COPY)
Message: COPY algorithm requires a lock
Error: 1848 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_PARTITION)
Message: Partition specific operations do not yet support LOCK/ALGORITHM
Error: 1849 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_RENAME)
Message: Columns participating in a foreign key are renamed
Error: 1850 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_COLUMN_TYPE)
Message: Cannot change column type INPLACE
Error: 1851 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FK_CHECK)
Message: Adding foreign keys needs foreign_key_checks=OFF
Error: 1852 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_IGNORE)
Message: Creating unique indexes with IGNORE requires COPY algorithm to remove duplicate rows
Error: 1853 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOPK)
Message: Dropping a primary key is not allowed without also adding a new primary key
Error: 1854 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_AUTOINC)
Message: Adding an auto-increment column requires a lock
Error: 1855 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_HIDDEN_FTS)
Message: Cannot replace hidden FTS_DOC_ID with a user-visible one
Error: 1856 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_CHANGE_FTS)
Message: Cannot drop or rename FTS_DOC_ID
Error: 1857 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_FTS)
Message: Fulltext index creation requires a lock
Error: 1858 SQLSTATE: HY000 (ER_SQL_SLAVE_SKIP_COUNTER_NOT_SETTABLE_IN_GTID_MODE)
Message: sql_slave_skip_counter can not be set when the server is running with @@GLOBAL.GTID_MODE = ON. Instead, for each transaction that you want to skip, generate an empty transaction with the same GTID as the transaction
Error: 1859 SQLSTATE: 23000 (ER_DUP_UNKNOWN_IN_INDEX)
Message: Duplicate entry for key '%s'
Error: 1860 SQLSTATE: HY000 (ER_IDENT_CAUSES_TOO_LONG_PATH)
Message: Long database name and identifier for object resulted in path length exceeding %d characters. Path: '%s'.
Error: 1861 SQLSTATE: HY000 (ER_ALTER_OPERATION_NOT_SUPPORTED_REASON_NOT_NULL)
Message: cannot silently convert NULL values, as required in this SQL_MODE
Error: 1862 SQLSTATE: HY000 (ER_MUST_CHANGE_PASSWORD_LOGIN)
Message: Your password has expired. To log in you must change it using a client that supports expired passwords.
Error: 1863 SQLSTATE: HY000 (ER_ROW_IN_WRONG_PARTITION)
Message: Found a row in wrong partition %s
Error: 1864 SQLSTATE: HY000 (ER_MTS_EVENT_BIGGER_PENDING_JOBS_SIZE_MAX)
Message: Cannot schedule event %s, relay-log name %s, position %s to Worker thread because its size %lu exceeds %lu of slave_pending_jobs_size_max.
Error: 1865 SQLSTATE: HY000 (ER_INNODB_NO_FT_USES_PARSER)
Message: Cannot CREATE FULLTEXT INDEX WITH PARSER on InnoDB table
Error: 1866 SQLSTATE: HY000 (ER_BINLOG_LOGICAL_CORRUPTION)
Message: The binary log file '%s' is logically corrupted: %s
Error: 1867 SQLSTATE: HY000 (ER_WARN_PURGE_LOG_IN_USE)
Message: file %s was not purged because it was being read by %d thread(s), purged only %d out of %d files.
Error: 1868 SQLSTATE: HY000 (ER_WARN_PURGE_LOG_IS_ACTIVE)
Message: file %s was not purged because it is the active log file.
C.4. Client Error Codes and Messages
Client error information comes from the following source files:
The Error values and the symbols in parentheses correspond to definitions in the include/errmsg.h MySQL source file.
The Message values correspond to the error messages that are listed in the libmysql/errmsg.c file. %d and %s represent numbers and strings, respectively, that are substituted into the messages when they are displayed.
Because updates are frequent, it is possible that those files will contain additional error information not listed here.
Error: 2000 (CR_UNKNOWN_ERROR)
Message: Unknown MySQL error
Error: 2001 (CR_SOCKET_CREATE_ERROR)
Message: Can't create UNIX socket (%d)
Error: 2002 (CR_CONNECTION_ERROR)
Message: Can't connect to local MySQL server through socket '%s' (%d)
Error: 2003 (CR_CONN_HOST_ERROR)
Message: Can't connect to MySQL server on '%s' (%d)
Error: 2004 (CR_IPSOCK_ERROR)
Message: Can't create TCP/IP socket (%d)
Error: 2005 (CR_UNKNOWN_HOST)
Message: Unknown MySQL server host '%s' (%d)
Error: 2006 (CR_SERVER_GONE_ERROR)
Message: MySQL server has gone away
Error: 2007 (CR_VERSION_ERROR)
Message: Protocol mismatch; server version = %d, client version = %d
Error: 2008 (CR_OUT_OF_MEMORY)
Message: MySQL client ran out of memory
Error: 2009 (CR_WRONG_HOST_INFO)
Message: Wrong host info
Error: 2010 (CR_LOCALHOST_CONNECTION)
Message: Localhost via UNIX socket
Error: 2011 (CR_TCP_CONNECTION)
Message: %s via TCP/IP
Error: 2012 (CR_SERVER_HANDSHAKE_ERR)
Message: Error in server handshake
Error: 2013 (CR_SERVER_LOST)
Message: Lost connection to MySQL server during query
Error: 2014 (CR_COMMANDS_OUT_OF_SYNC)
Message: Commands out of sync; you can't run this command now
Error: 2015 (CR_NAMEDPIPE_CONNECTION)
Message: Named pipe: %s
Error: 2016 (CR_NAMEDPIPEWAIT_ERROR)
Message: Can't wait for named pipe to host: %s pipe: %s (%lu)
Error: 2017 (CR_NAMEDPIPEOPEN_ERROR)
Message: Can't open named pipe to host: %s pipe: %s (%lu)
Error: 2018 (CR_NAMEDPIPESETSTATE_ERROR)
Message: Can't set state of named pipe to host: %s pipe: %s (%lu)
Error: 2019 (CR_CANT_READ_CHARSET)
Message: Can't initialize character set %s (path: %s)
Error: 2020 (CR_NET_PACKET_TOO_LARGE)
Message: Got packet bigger than 'max_allowed_packet' bytes
Error: 2021 (CR_EMBEDDED_CONNECTION)
Message: Embedded server
Error: 2022 (CR_PROBE_SLAVE_STATUS)
Message: Error on SHOW SLAVE STATUS:
Error: 2023 (CR_PROBE_SLAVE_HOSTS)
Message: Error on SHOW SLAVE HOSTS:
Error: 2024 (CR_PROBE_SLAVE_CONNECT)
Message: Error connecting to slave:
Error: 2025 (CR_PROBE_MASTER_CONNECT)
Message: Error connecting to master:
Error: 2026 (CR_SSL_CONNECTION_ERROR)
Message: SSL connection error: %s
Error: 2027 (CR_MALFORMED_PACKET)
Message: Malformed packet
Error: 2028 (CR_WRONG_LICENSE)
Message: This client library is licensed only for use with MySQL servers having '%s' license
Error: 2029 (CR_NULL_POINTER)
Message: Invalid use of null pointer
Error: 2030 (CR_NO_PREPARE_STMT)
Message: Statement not prepared
Error: 2031 (CR_PARAMS_NOT_BOUND)
Message: No data supplied for parameters in prepared statement
Error: 2032 (CR_DATA_TRUNCATED)
Message: Data truncated
Error: 2033 (CR_NO_PARAMETERS_EXISTS)
Message: No parameters exist in the statement
Error: 2034 (CR_INVALID_PARAMETER_NO)
Message: Invalid parameter number
Error: 2035 (CR_INVALID_BUFFER_USE)
Message: Can't send long data for non-string/non-binary data types (parameter: %d)
Error: 2036 (CR_UNSUPPORTED_PARAM_TYPE)
Message: Using unsupported buffer type: %d (parameter: %d)
Error: 2037 (CR_SHARED_MEMORY_CONNECTION)
Message: Shared memory: %s
Error: 2038 (CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR)
Message: Can't open shared memory; client could not create request event (%lu)
Error: 2039 (CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR)
Message: Can't open shared memory; no answer event received from server (%lu)
Error: 2040 (CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR)
Message: Can't open shared memory; server could not allocate file mapping (%lu)
Error: 2041 (CR_SHARED_MEMORY_CONNECT_MAP_ERROR)
Message: Can't open shared memory; server could not get pointer to file mapping (%lu)
Error: 2042 (CR_SHARED_MEMORY_FILE_MAP_ERROR)
Message: Can't open shared memory; client could not allocate file mapping (%lu)
Error: 2043 (CR_SHARED_MEMORY_MAP_ERROR)
Message: Can't open shared memory; client could not get pointer to file mapping (%lu)
Error: 2044 (CR_SHARED_MEMORY_EVENT_ERROR)
Message: Can't open shared memory; client could not create %s event (%lu)
Error: 2045 (CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR)
Message: Can't open shared memory; no answer from server (%lu)
Error: 2046 (CR_SHARED_MEMORY_CONNECT_SET_ERROR)
Message: Can't open shared memory; cannot send request event to server (%lu)
Error: 2047 (CR_CONN_UNKNOW_PROTOCOL)
Message: Wrong or unknown protocol
Error: 2048 (CR_INVALID_CONN_HANDLE)
Message: Invalid connection handle
Error: 2049 (CR_SECURE_AUTH)
Message: Connection using old (pre-4.1.1) authentication protocol refused (client option 'secure_auth' enabled)
Error: 2050 (CR_FETCH_CANCELED)
Message: Row retrieval was canceled by mysql_stmt_close() call
Error: 2051 (CR_NO_DATA)
Message: Attempt to read column without prior row fetch
Error: 2052 (CR_NO_STMT_METADATA)
Message: Prepared statement contains no metadata
Error: 2053 (CR_NO_RESULT_SET)
Message: Attempt to read a row while there is no result set associated with the statement
Error: 2054 (CR_NOT_IMPLEMENTED)
Message: This feature is not implemented yet
Error: 2055 (CR_SERVER_LOST_EXTENDED)
Message: Lost connection to MySQL server at '%s', system error: %d
Error: 2056 (CR_STMT_CLOSED)
Message: Statement closed indirectly because of a preceeding %s() call
Error: 2057 (CR_NEW_STMT_METADATA)
Message: The number of columns in the result set differs from the number of bound buffers. You must reset the statement, rebind the result set columns, and execute the statement again
Error: 2058 (CR_ALREADY_CONNECTED)
Message: This handle is already connected. Use a separate handle for each connection.
Error: 2059 (CR_AUTH_PLUGIN_CANNOT_LOAD)
Message: Authentication plugin '%s' cannot be loaded: %s
Error: 2060 (CR_DUPLICATE_CONNECTION_ATTR)
Message: There is an attribute with the same name already
Error: 2061 (CR_AUTH_PLUGIN_ERR)
Message: Authentication plugin '%s' reported error: %s
C.5. Problems and Common Errors
This section lists some common problems and error messages that you may encounter. It describes how to determine the causes of the problems and what to do to solve them.
C.5.1. How to Determine What Is Causing a Problem
When you run into a problem, the first thing you should do is to find out which program or piece of equipment is causing it:
If you have one of the following symptoms, then it is probably a hardware problems (such as memory, motherboard, CPU, or hard disk) or kernel problem:
The keyboard does not work. This can normally be checked by pressing the Caps Lock key. If the Caps Lock light does not change, you have to replace your keyboard. (Before doing this, you should try to restart your computer and check all cables to the keyboard.)
The mouse pointer does not move.
The machine does not answer to a remote machine's pings.
Other programs that are not related to MySQL do not behave correctly.
Your system restarted unexpectedly. (A faulty user-level program should never be able to take down your system.)
In this case, you should start by checking all your cables and run some diagnostic tool to check your hardware! You should also check whether there are any patches, updates, or service packs for your operating system that could likely solve your problem. Check also that all your libraries (such as glibc) are up to date.
It is always good to use a machine with ECC memory to discover memory problems early.
If your keyboard is locked up, you may be able to recover by logging in to your machine from another machine and executing kbd_mode -a.
Please examine your system log file (/var/log/messages or similar) for reasons for your problem. If you think the problem is in MySQL, you should also examine MySQL's log files. See Section 5.2, “MySQL Server Logs”.
If you do not think you have hardware problems, you should try to find out which program is causing problems. Try using top, ps, Task Manager, or some similar program, to check which program is taking all CPU or is locking the machine.
Use top, df, or a similar program to check whether you are out of memory, disk space, file descriptors, or some other critical resource.
If the problem is some runaway process, you can always try to kill it. If it does not want to die, there is probably a bug in the operating system.
If after you have examined all other possibilities and you have concluded that the MySQL server or a MySQL client is causing the problem, it is time to create a bug report for our mailing list or our support team. In the bug report, try to give a very detailed description of how the system is behaving and what you think is happening. You should also state why you think that MySQL is causing the problem. Take into consideration all the situations in this chapter. State any problems exactly how they appear when you examine your system. Use the “copy and paste” method for any output and error messages from programs and log files.
Try to describe in detail which program is not working and all symptoms you see. We have in the past received many bug reports that state only “the system does not work.” This provides us with no information about what could be the problem.
If a program fails, it is always useful to know the following information:
Has the program in question made a segmentation fault (did it dump core)?
Is the program taking up all available CPU time? Check with top. Let the program run for a while, it may simply be evaluating something computationally intensive.
If the mysqld server is causing problems, can you get any response from it with mysqladmin -u root ping or mysqladmin -u root processlist?
What does a client program say when you try to connect to the MySQL server? (Try with mysql, for example.) Does the client jam? Do you get any output from the program?
When sending a bug report, you should follow the outline described in Section 1.7, “How to Report Bugs or Problems”.
C.5.2. Common Errors When Using MySQL Programs
This section lists some errors that users frequently encounter when running MySQL programs. Although the problems show up when you try to run client programs, the solutions to many of the problems involves changing the configuration of the MySQL server.
C.5.2.1. Access denied
An Access denied error can have many causes. Often the problem is related to the MySQL accounts that the server permits client programs to use when connecting. See Section 6.2, “The MySQL Access Privilege System”, and Section 6.2.7, “Causes of Access-Denied Errors”.
C.5.2.2. Can't connect to [local] MySQL server
A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix socket file to connect through a file in the file system (default /tmp/mysql.sock), or by using TCP/IP, which connects through a port number. A Unix socket file connection is faster than TCP/IP, but can be used only when connecting to a server on the same computer. A Unix socket file is used if you do not specify a host name or if you specify the special host name localhost.
If the MySQL server is running on Windows, you can connect using TCP/IP. If the server is started with the --enable-named-pipe option, you can also connect with named pipes if you run the client on the host where the server is running. The name of the named pipe is MySQL by default. If you do not give a host name when connecting to mysqld, a MySQL client first tries to connect to the named pipe. If that does not work, it connects to the TCP/IP port. You can force the use of named pipes on Windows by using . as the host name.
The error (2002) Can't connect to ... normally means that there is no MySQL server running on the system or that you are using an incorrect Unix socket file name or TCP/IP port number when trying to connect to the server. You should also check that the TCP/IP port you are using has not been blocked by a firewall or port blocking service.
The error (2003) Can't connect to MySQL server on 'server' (10061) indicates that the network connection has been refused. You should check that there is a MySQL server running, that it has network connections enabled, and that the network port you specified is the one configured on the server.
Start by checking whether there is a process named mysqld running on your server host. (Use ps xa | grep mysqld on Unix or the Task Manager on Windows.) If there is no such process, you should start the server. See Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”.
If a mysqld process is running, you can check it by trying the following commands. The port number or Unix socket file name might be different in your setup. host_ip represents the IP address of the machine where the server is running.
shell> mysqladmin version
shell> mysqladmin variables
shell> mysqladmin -h `hostname` version variables
shell> mysqladmin -h `hostname` --port=3306 version
shell> mysqladmin -h host_ip version
shell> mysqladmin --protocol=SOCKET --socket=/tmp/mysql.sock version
Note the use of backticks rather than forward quotation marks with the hostname command; these cause the output of hostname (that is, the current host name) to be substituted into the mysqladmin command. If you have no hostname command or are running on Windows, you can manually type the host name of your machine (without backticks) following the -h option. You can also try -h 127.0.0.1 to connect with TCP/IP to the local host.
Make sure that the server has not been configured to ignore network connections or (if you are attempting to connect remotely) that it has not been configured to listen only locally on its network interfaces. If the server was started with --skip-networking, it will not accept TCP/IP connections at all. If the server was started with --bind-address=127.0.0.1, it will listen for TCP/IP connections only locally on the loopback interface and will not accept remote connections.
Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured on the basis of the application being executed, or the port number used by MySQL for communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or the Windows XP personal firewall may need to be configured not to block the MySQL port.
Here are some reasons the Can't connect to local MySQL server error might occur:
mysqld is not running on the local host. Check your operating system's process list to ensure the mysqld process is present.
You're running a MySQL server on Windows with many TCP/IP connections to it. If you're experiencing that quite often your clients get that error, you can find a workaround here: Section C.5.2.2.1, “Connection to MySQL Server Failing on Windows”.
Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default). For example, you might have a cron job that removes old files from the /tmp directory. You can always run mysqladmin version to check whether the Unix socket file that mysqladmin is trying to use really exists. The fix in this case is to change the cron job to not remove mysql.sock or to place the socket file somewhere else. See Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”.
You have started the mysqld server with the --socket=/path/to/socket option, but forgotten to tell client programs the new name of the socket file. If you change the socket path name for the server, you must also notify the MySQL clients. You can do this by providing the same --socket option when you run client programs. You also need to ensure that clients have permission to access the mysql.sock file. To find out where the socket file is, you can do:
shell> netstat -ln | grep mysql
See Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”.
You are using Linux and one server thread has died (dumped core). In this case, you must kill the other mysqld threads (for example, with kill or with the mysql_zap script) before you can restart the MySQL server. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.
The server or client program might not have the proper access privileges for the directory that holds the Unix socket file or the socket file itself. In this case, you must either change the access privileges for the directory or socket file so that the server and clients can access them, or restart mysqld with a --socket option that specifies a socket file name in a directory where the server can create it and where client programs can access it.
If you get the error message Can't connect to MySQL server on some_host, you can try the following things to find out what the problem is:
Check whether the server is running on that host by executing telnet some_host 3306 and pressing the Enter key a couple of times. (3306 is the default MySQL port number. Change the value if your server is listening to a different port.) If there is a MySQL server running and listening to the port, you should get a response that includes the server's version number. If you get an error such as telnet: Unable to connect to remote host: Connection refused, then there is no server running on the given port.
If the server is running on the local host, try using mysqladmin -h localhost variables to connect using the Unix socket file. Verify the TCP/IP port number that the server is configured to listen to (it is the value of the port variable.)
If you are running under Linux and Security-Enhanced Linux (SELinux) is enabled, make sure you have disabled SELinux protection for the mysqld process.
C.5.2.2.1. Connection to MySQL Server Failing on Windows
When you're running a MySQL server on Windows with many TCP/IP connections to it, and you're experiencing that quite often your clients get a Can't connect to MySQL server error, the reason might be that Windows does not allow for enough ephemeral (short-lived) ports to serve those connections.
The purpose of TIME_WAIT is to keep a connection accepting packets even after the connection has been closed. This is because Internet routing can cause a packet to take a slow route to its destination and it may arrive after both sides have agreed to close. If the port is in use for a new connection, that packet from the old connection could break the protocol or compromise personal information from the original connection. The TIME_WAIT delay prevents this by ensuring that the port cannot be reused until after some time has been permitted for those delayed packets to arrive.
It is safe to reduce TIME_WAIT greatly on LAN connections because there is little chance of packets arriving at very long delays, as they could through the Internet with its comparatively large distances and latencies.
Windows permits ephemeral (short-lived) TCP ports to the user. After any port is closed it will remain in a TIME_WAIT status for 120 seconds. The port will not be available again until this time expires. The default range of port numbers depends on the version of Windows, with a more limited number of ports in older versions:
Windows through Server 2003: Ports in range 1025–5000
Windows Vista, Server 2008, and newer: Ports in range 49152–65535
With a small stack of available TCP ports (5000) and a high number of TCP ports being open and closed over a short period of time along with the TIME_WAIT status you have a good chance for running out of ports. There are two ways to address this problem:
Reduce the number of TCP ports consumed quickly by investigating connection pooling or persistent connections where possible
Tune some settings in the Windows registry (see below)
IMPORTANT: The following procedure involves modifying the Windows registry. Before you modify the registry, make sure to back it up and make sure that you understand how to restore the registry if a problem occurs. For information about how to back up, restore, and edit the registry, view the following article in the Microsoft Knowledge Base: http://support.microsoft.com/kb/256986/EN-US/.
Start Registry Editor (Regedt32.exe).
Locate the following key in the registry:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
On the Edit menu, click Add Value, and then add the following registry value:
Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534
This sets the number of ephemeral ports available to any user. The valid range is between 5000 and 65534 (decimal). The default value is 0x1388 (5000 decimal).
On the Edit menu, click Add Value, and then add the following registry value:
Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30
This sets the number of seconds to hold a TCP port connection in TIME_WAIT state before closing. The valid range is between 0 (zero) and 300 (decimal). The default value is 0x78 (120 decimal).
Quit Registry Editor.
Reboot the machine.
Note: Undoing the above should be as simple as deleting the registry entries you've created.
C.5.2.3. Lost connection to MySQL server
There are three likely causes for this error message.
Usually it indicates network connectivity trouble and you should check the condition of your network if this error occurs frequently. If the error message includes “during query,” this is probably the case you are experiencing.
Sometimes the “during query” form happens when millions of rows are being sent as part of one or more queries. If you know that this is happening, you should try increasing net_read_timeout from its default of 30 seconds to 60 seconds or longer, sufficient for the data transfer to complete.
More rarely, it can happen when the client is attempting the initial connection to the server. In this case, if your connect_timeout value is set to only a few seconds, you may be able to resolve the problem by increasing it to ten seconds, perhaps more if you have a very long distance or slow connection. You can determine whether you are experiencing this more uncommon cause by using SHOW GLOBAL STATUS LIKE 'Aborted_connects'. It will increase by one for each initial connection attempt that the server aborts. You may see “reading authorization packet” as part of the error message; if so, that also suggests that this is the solution that you need.
If the cause is none of those just described, you may be experiencing a problem with BLOB values that are larger than max_allowed_packet, which can cause this error with some clients. Sometime you may see an ER_NET_PACKET_TOO_LARGE error, and that confirms that you need to increase max_allowed_packet.
C.5.2.4. Client does not support authentication protocol
The current implementation of the authentication protocol uses a password hashing algorithm that is incompatible with that used by older (pre-4.1) clients. Attempts to connect to a 4.1 or newer server with an older client may fail with the following message:
shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client
To deal with this problem, the preferred solution is to upgrade all client programs to use a 4.1.1 or newer client library. If that is not possible, use one of the following approaches:
To connect to the server with a pre-4.1 client program, use an account that still has a pre-4.1-style password.
Reset the password to pre-4.1 style for each user that needs to use a pre-4.1 client program. This can be done using the SET PASSWORD statement and the OLD_PASSWORD() function. As of MySQL 5.6.6, it is also necessary to first ensure that the authentication plugin for the account is mysql_old_password:
mysql> UPDATE mysql.user SET plugin = 'mysql_old_password'
mysql> WHERE User = 'some_user' AND Host = 'some_host';
mysql> FLUSH PRIVILEGES;
mysql> SET PASSWORD FOR
-> 'some_user'@'some_host' = OLD_PASSWORD('newpwd');
Substitute the password you want to use for “newpwd” in the preceding example. MySQL cannot tell you what the original password was, so you'll need to pick a new one.
Tell the server to use the older password hashing algorithm by default:
Start mysqld with the old_passwords system variable set to 1.
Assign an old-format password to each account that has had its password updated to the longer 4.1 format. You can identify these accounts with the following query:
mysql> SELECT Host, User, Password FROM mysql.user
-> WHERE LENGTH(Password) > 16;
For each account record displayed by the query, use the Host and User values and assign a password using one of the methods described previously.
The Client does not support authentication protocol error also can occur if multiple versions of MySQL are installed but client programs are dynamically linked and link to an older library. Make sure that clients use the most recent library version with which they are compatible. The procedure to do this will depend on your system.
Note
The mysql extension does not support the authentication protocol in MySQL 4.1.1 and higher. This is true regardless of the PHP version being used. If you wish to use the mysql extension with MySQL 4.1 or newer, you may need to follow one of the options discussed above for configuring MySQL to work with old clients. The mysqli extension (stands for "MySQL, Improved"; added in PHP 5) is compatible with the improved password hashing employed in MySQL 4.1 and higher, and no special configuration of MySQL need be done to use this MySQL client library. For more information about the mysqli extension, see http://php.net/mysqli.
For additional background on password hashing and authentication, see Section 6.1.2.4, “Password Hashing in MySQL”.
C.5.2.5. Password Fails When Entered Interactively
MySQL client programs prompt for a password when invoked with a --password or -p option that has no following password value:
shell> mysql -u user_name -p
Enter password:
On some systems, you may find that your password works when specified in an option file or on the command line, but not when you enter it interactively at the Enter password: prompt. This occurs when the library provided by the system to read passwords limits password values to a small number of characters (typically eight). That is a problem with the system library, not with MySQL. To work around it, change your MySQL password to a value that is eight or fewer characters long, or put your password in an option file.
C.5.2.6. Host 'host_name' is blocked
If the following error occurs, it means that mysqld has received many connection requests from the given host that were interrupted in the middle:
Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'
The value of the max_connect_errors system variable determines how many successive interrupted connection requests are permitted. (See Section 5.1.4, “Server System Variables”.) After max_connect_errors failed requests without a successful connection, mysqld assumes that something is wrong (for example, that someone is trying to break in), and blocks the host from further connections until you issue a FLUSH HOSTS statement or execute a mysqladmin flush-hosts command.
By default, mysqld blocks a host after 10 connection errors. You can adjust the value by setting max_connect_errors at server startup:
shell> mysqld_safe --max_connect_errors=10000 &
The value can also be set at runtime:
mysql> SET GLOBAL max_connect_errors=10000;
If you get the Host 'host_name' is blocked error message for a given host, you should first verify that there is nothing wrong with TCP/IP connections from that host. If you are having network problems, it does you no good to increase the value of the max_connect_errors variable.
C.5.2.7. Too many connections
If you get a Too many connections error when you try to connect to the mysqld server, this means that all available connections are in use by other clients.
The number of connections permitted is controlled by the max_connections system variable. The default value is 151 to improve performance when MySQL is used with the Apache Web server. (Previously, the default was 100.) If you need to support more connections, you should set a larger value for this variable.
mysqld actually permits max_connections+1 clients to connect. The extra connection is reserved for use by accounts that have the SUPER privilege. By granting the SUPER privilege to administrators and not to normal users (who should not need it), an administrator can connect to the server and use SHOW PROCESSLIST to diagnose problems even if the maximum number of unprivileged clients are connected. See Section 13.7.5.30, “SHOW PROCESSLIST Syntax”.
The maximum number of connections MySQL can support depends on the quality of the thread library on a given platform, the amount of RAM available, how much RAM is used for each connection, the workload from each connection, and the desired response time. Linux or Solaris should be able to support at 500 to 1000 simultaneous connections routinely and as many as 10,000 connections if you have many gigabytes of RAM available and the workload from each is low or the response time target undemanding. Windows is limited to (open tables × 2 + open connections) < 2048 due to the Posix compatibility layer used on that platform.
Increasing open-files-limit may be necessary. Also see Section 2.5, “Installing MySQL on Linux”, for how to raise the operating system limit on how many handles can be used by MySQL.
C.5.2.8. Out of memory
If you issue a query using the mysql client program and receive an error like the following one, it means that mysql does not have enough memory to store the entire query result:
mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory
To remedy the problem, first check whether your query is correct. Is it reasonable that it should return so many rows? If not, correct the query and try again. Otherwise, you can invoke mysql with the --quick option. This causes it to use the mysql_use_result() C API function to retrieve the result set, which places less of a load on the client (but more on the server).
C.5.2.9. MySQL server has gone away
This section also covers the related Lost connection to server during query error.
The most common reason for the MySQL server has gone away error is that the server timed out and closed the connection. In this case, you normally get one of the following error codes (which one you get is operating system-dependent).
Error Code | Description |
---|---|
CR_SERVER_GONE_ERROR | The client couldn't send a question to the server. |
CR_SERVER_LOST | The client didn't get an error when writing to the server, but it didn't get a full answer (or any answer) to the question. |
By default, the server closes the connection after eight hours if nothing has happened. You can change the time limit by setting the wait_timeout variable when you start mysqld. See Section 5.1.4, “Server System Variables”.
If you have a script, you just have to issue the query again for the client to do an automatic reconnection. This assumes that you have automatic reconnection in the client enabled (which is the default for the mysql command-line client).
Some other common reasons for the MySQL server has gone away error are:
You (or the db administrator) has killed the running thread with a KILL statement or a mysqladmin kill command.
You tried to run a query after closing the connection to the server. This indicates a logic error in the application that should be corrected.
A client application running on a different host does not have the necessary privileges to connect to the MySQL server from that host.
You got a timeout from the TCP/IP connection on the client side. This may happen if you have been using the commands: mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...) or mysql_options(..., MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing the timeout may help solve the problem.
You have encountered a timeout on the server side and the automatic reconnection in the client is disabled (the reconnect flag in the MYSQL structure is equal to 0).
You are using a Windows client and the server had dropped the connection (probably because wait_timeout expired) before the command was issued.
The problem on Windows is that in some cases MySQL does not get an error from the OS when writing to the TCP/IP connection to the server, but instead gets the error when trying to read the answer from the connection.
The solution to this is to either do a mysql_ping() on the connection if there has been a long time since the last query (this is what Connector/ODBC does) or set wait_timeout on the mysqld server so high that it in practice never times out.
You can also get these errors if you send a query to the server that is incorrect or too large. If mysqld receives a packet that is too large or out of order, it assumes that something has gone wrong with the client and closes the connection. If you need big queries (for example, if you are working with big BLOB columns), you can increase the query limit by setting the server's max_allowed_packet variable, which has a default value of 1MB. You may also need to increase the maximum packet size on the client end. More information on setting the packet size is given in Section C.5.2.10, “Packet Too Large”.
An INSERT or REPLACE statement that inserts a great many rows can also cause these sorts of errors. Either one of these statements sends a single request to the server irrespective of the number of rows to be inserted; thus, you can often avoid the error by reducing the number of rows sent per INSERT or REPLACE.
You also get a lost connection if you are sending a packet 16MB or larger if your client is older than 4.0.8 and your server is 4.0.8 and above, or the other way around.
It is also possible to see this error if host name lookups fail (for example, if the DNS server on which your server or network relies goes down). This is because MySQL is dependent on the host system for name resolution, but has no way of knowing whether it is working—from MySQL's point of view the problem is indistinguishable from any other network timeout.
You may also see the MySQL server has gone away error if MySQL is started with the --skip-networking option.
Another networking issue that can cause this error occurs if the MySQL port (default 3306) is blocked by your firewall, thus preventing any connections at all to the MySQL server.
You can also encounter this error with applications that fork child processes, all of which try to use the same connection to the MySQL server. This can be avoided by using a separate connection for each child process.
You have encountered a bug where the server died while executing the query.
You can check whether the MySQL server died and restarted by executing mysqladmin version and examining the server's uptime. If the client connection was broken because mysqld crashed and restarted, you should concentrate on finding the reason for the crash. Start by checking whether issuing the query again kills the server again. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.
You can get more information about the lost connections by starting mysqld with the --log-warnings=2 option. This logs some of the disconnected errors in the hostname.err file. See Section 5.2.2, “The Error Log”.
If you want to create a bug report regarding this problem, be sure that you include the following information:
Indicate whether the MySQL server died. You can find information about this in the server error log. See Section C.5.4.2, “What to Do If MySQL Keeps Crashing”.
If a specific query kills mysqld and the tables involved were checked with CHECK TABLE before you ran the query, can you provide a reproducible test case? See MySQL Internals: Porting to Other Systems.
What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin variables gives you the value of this variable.)
Have you tried to run mysqld with the general query log enabled to determine whether the problem query appears in the log? (See Section 5.2.3, “The General Query Log”.)
See also Section C.5.2.11, “Communication Errors and Aborted Connections”, and Section 1.7, “How to Report Bugs or Problems”.
C.5.2.10. Packet Too Large
A communication packet is a single SQL statement sent to the MySQL server, a single row that is sent to the client, or a binary log event sent from a master replication server to a slave.
The largest possible packet that can be transmitted to or from a MySQL 5.6 server or client is 1GB.
When a MySQL client or the mysqld server receives a packet bigger than max_allowed_packet bytes, it issues an ER_NET_PACKET_TOO_LARGE error and closes the connection. With some clients, you may also get a Lost connection to MySQL server during query error if the communication packet is too large.
Both the client and the server have their own max_allowed_packet variable, so if you want to handle big packets, you must increase this variable both in the client and in the server.
If you are using the mysql client program, its default max_allowed_packet variable is 16MB. To set a larger value, start mysql like this:
shell> mysql --max_allowed_packet=32M
That sets the packet size to 32MB.
The server's default max_allowed_packet value is 1MB. You can increase this if the server needs to handle big queries (for example, if you are working with big BLOB columns). For example, to set the variable to 16MB, start the server like this:
shell> mysqld --max_allowed_packet=16M
You can also use an option file to set max_allowed_packet. For example, to set the size for the server to 16MB, add the following lines in an option file:
[mysqld]
max_allowed_packet=16M
It is safe to increase the value of this variable because the extra memory is allocated only when needed. For example, mysqld allocates more memory only when you issue a long query or when mysqld must return a large result row. The small default value of the variable is a precaution to catch incorrect packets between the client and server and also to ensure that you do not run out of memory by using large packets accidentally.
You can also get strange problems with large packets if you are using large BLOB values but have not given mysqld access to enough memory to handle the query. If you suspect this is the case, try adding ulimit -d 256000 to the beginning of the mysqld_safe script and restarting mysqld.
C.5.2.11. Communication Errors and Aborted Connections
If connection problems occur such as communication errors or aborted connections, use these sources of information to diagnose problems:
The error log. See Section 5.2.2, “The Error Log”.
The general query log. See Section 5.2.3, “The General Query Log”.
The Aborted_xxx and Connection_errors_xxx status variables. See Section 5.1.6, “Server Status Variables”.
The host cache, which is accessible using the host_cache Performance Schema table. See Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”, and Section 20.9.9.1, “The host_cache Table”.
If you start the server with the --log-warnings option, you might find messages like this in your error log:
010301 14:38:23 Aborted connection 854 to db:
'users' user: 'josh'
If a client successfully connects but later disconnects improperly or is terminated, the server increments the Aborted_clients status variable, and logs an Aborted connection message to the error log. The cause can be any of the following:
The client program did not call mysql_close() before exiting.
The client had been sleeping more than wait_timeout or interactive_timeout seconds without issuing any requests to the server. See Section 5.1.4, “Server System Variables”.
The client program ended abruptly in the middle of a data transfer.
If a client is unable even to connect, the server increments the Aborted_connects status variable. Unsuccessful connection attempts can occur for the following reasons:
A client does not have privileges to connect to a database.
A client uses an incorrect password.
A connection packet does not contain the right information.
It takes more than connect_timeout seconds to get a connect packet. See Section 5.1.4, “Server System Variables”.
If these kinds of things happen, it might indicate that someone is trying to break into your server! Messages for these types of problems are logged to the general query log if it is enabled.
Other reasons for problems with aborted clients or aborted connections:
The max_allowed_packet variable value is too small or queries require more memory than you have allocated for mysqld. See Section C.5.2.10, “Packet Too Large”.
Use of Ethernet protocol with Linux, both half and full duplex. Many Linux Ethernet drivers have this bug. You should test for this bug by transferring a huge file using FTP between the client and server machines. If a transfer goes in burst-pause-burst-pause mode, you are experiencing a Linux duplex syndrome. Switch the duplex mode for both your network card and hub/switch to either full duplex or to half duplex and test the results to determine the best setting.
A problem with the thread library that causes interrupts on reads.
Badly configured TCP/IP.
Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by replacing hardware.
See also Section C.5.2.9, “MySQL server has gone away”.
C.5.2.12. The table is full
If a table-full error occurs, it may be that the disk is full or that the table has reached its maximum size. The effective maximum table size for MySQL databases is usually determined by operating system constraints on file sizes, not by MySQL internal limits. See Section E.10.3, “Limits on Table Size”.
C.5.2.13. Can't create/write to file
If you get an error of the following type for some queries, it means that MySQL cannot create a temporary file for the result set in the temporary directory:
Can't create/write to file '\\sqla3fe_0.ism'.
The preceding error is a typical message for Windows; the Unix message is similar.
One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] section of your option file. For example, to specify a directory of C:\temp, use these lines:
[mysqld]
tmpdir=C:/temp
The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See Section 4.2.3.3, “Using Option Files”.
Another cause of this error can be permissions issues. Make sure that the MySQL server can write to the tmpdir directory.
Check also the error code that you get with perror. One reason the server cannot write to a table is that the file system is full:
shell> perror 28
OS error code 28: No space left on device
If you get an error of the following type during startup, it indicates that the file system or directory used for storing data files is write protected. Providing the write error is to a test file, This error is not serious and can be safely ignored.
Can't create test file /usr/local/mysql/data/master.lower-test
C.5.2.14. Commands out of sync
If you get Commands out of sync; you can't run this command now in your client code, you are calling client functions in the wrong order.
This can happen, for example, if you are using mysql_use_result() and try to execute a new query before you have called mysql_free_result(). It can also happen if you try to execute two queries that return data without calling mysql_use_result() or mysql_store_result() in between.
C.5.2.15. Ignoring user
If you get the following error, it means that when mysqld was started or when it reloaded the grant tables, it found an account in the user table that had an invalid password.
Found wrong password for user 'some_user'@'some_host'; ignoring user
As a result, the account is simply ignored by the permission system.
The following list indicates possible causes of and fixes for this problem:
You may be running a new version of mysqld with an old user table. You can check this by executing mysqlshow mysql user to see whether the Password column is shorter than 16 characters. If so, you can correct this condition by running the scripts/add_long_password script.
The account has an old password (eight characters long). Update the account in the user table to have a new password.
You have specified a password in the user table without using the PASSWORD() function. Use mysql to update the account in the user table with a new password, making sure to use the PASSWORD() function:
mysql> UPDATE user SET Password=PASSWORD('newpwd')
-> WHERE User='some_user' AND Host='some_host';
C.5.2.16. Table 'tbl_name' doesn't exist
If you get either of the following errors, it usually means that no table exists in the default database with the given name:
Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)
In some cases, it may be that the table does exist but that you are referring to it incorrectly:
Because MySQL uses directories and files to store databases and tables, database and table names are case sensitive if they are located on a file system that has case-sensitive file names.
Even for file systems that are not case sensitive, such as on Windows, all references to a given table within a query must use the same lettercase.
You can check which tables are in the default database with SHOW TABLES. See Section 13.7.5, “SHOW Syntax”.
C.5.2.17. Can't initialize character set
You might see an error like this if you have character set problems:
MySQL Connection Failed: Can't initialize character set charset_name
This error can have any of the following causes:
The character set is a multi-byte character set and you have no support for the character set in the client. In this case, you need to recompile the client by running CMake with the -DDEFAULT_CHARSET=charset_name or -DWITH_EXTRA_CHARSETS=charset_name option. See Section 2.9.4, “MySQL Source-Configuration Options”.
All standard MySQL binaries are compiled with -DWITH_EXTRA_CHARSETS=complex, which enables support for all multi-byte character sets. See Section 2.9.4, “MySQL Source-Configuration Options”.
The character set is a simple character set that is not compiled into mysqld, and the character set definition files are not in the place where the client expects to find them.
In this case, you need to use one of the following methods to solve the problem:
Recompile the client with support for the character set. See Section 2.9.4, “MySQL Source-Configuration Options”.
Specify to the client the directory where the character set definition files are located. For many clients, you can do this with the --character-sets-dir option.
Copy the character definition files to the path where the client expects them to be.
C.5.2.18. 'File' Not Found and Similar Errors
If you get ERROR '...' not found (errno: 23), Can't open file: ... (errno: 24), or any other error with errno 23 or errno 24 from MySQL, it means that you haven't allocated enough file descriptors for the MySQL server. You can use the perror utility to get a description of what the error number means:
shell> perror 23
OS error code 23: File table overflow
shell> perror 24
OS error code 24: Too many open files
shell> perror 11
OS error code 11: Resource temporarily unavailable
The problem here is that mysqld is trying to keep open too many files simultaneously. You can either tell mysqld not to open so many files at once or increase the number of file descriptors available to mysqld.
To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing the value of the table_open_cache system variable (the default value is 64). This may not entirely prevent running out of file descriptors because in some circumstances the server may attempt to extend the cache size temporarily, as described in Section 8.4.3.1, “How MySQL Opens and Closes Tables”. Reducing the value of max_connections also reduces the number of open files (the default value is 100).
To change the number of file descriptors available to mysqld, you can use the --open-files-limit option to mysqld_safe or set the open_files_limit system variable. See Section 5.1.4, “Server System Variables”. The easiest way to set these values is to add an option to your option file. See Section 4.2.3.3, “Using Option Files”. If you have an old version of mysqld that does not support setting the open files limit, you can edit the mysqld_safe script. There is a commented-out line ulimit -n 256 in the script. You can remove the “#” character to uncomment this line, and change the number 256 to set the number of file descriptors to be made available to mysqld.
--open-files-limit and ulimit can increase the number of file descriptors, but only up to the limit imposed by the operating system. There is also a “hard” limit that can be overridden only if you start mysqld_safe or mysqld as root (just remember that you also need to start the server with the --user option in this case so that it does not continue to run as root after it starts up). If you need to increase the operating system limit on the number of file descriptors available to each process, consult the documentation for your system.
Note
If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect values when you ask for the current limits. In this case, you should start mysqld_safe using sh.
C.5.2.19. Table-Corruption Issues
If you have started mysqld with --myisam-recover-options, MySQL automatically checks and tries to repair MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens, MySQL writes an entry in the hostname.err file 'Warning: Checking table ...' which is followed by Warning: Repairing table if the table needs to be repaired. If you get a lot of these errors, without mysqld having died unexpectedly just before, then something is wrong and needs to be investigated further.
In MySQL 5.6, when the server detects MyISAM table corruption, it writes additional information to the error log, such as the name and line number of the source file, and the list of threads accessing the table. Example: Got an error from thread_id=1, mi_dynrec.c:368. This is useful information to include in bug reports.
See also Section 5.1.3, “Server Command Options”, and Section 22.4.1.7, “Making a Test Case If You Experience Table Corruption”.
C.5.3. Installation-Related Issues
C.5.3.1. Problems with File Permissions
If you have problems with file permissions, the UMASK environment variable might be set incorrectly when mysqld starts. For example, MySQL might issue the following error message when you create a table:
ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)
The default UMASK value is 0660. You can change this behavior by starting mysqld_safe as follows:
shell> UMASK=384 # = 600 in octal
shell> export UMASK
shell> mysqld_safe &
By default, MySQL creates database directories with an access permission value of 0700. You can modify this behavior by setting the UMASK_DIR variable. If you set its value, new directories are created with the combined UMASK and UMASK_DIR values. For example, if you want to give group access to all new directories, you can do this:
shell> UMASK_DIR=504 # = 770 in octal
shell> export UMASK_DIR
shell> mysqld_safe &
MySQL assumes that the value for UMASK or UMASK_DIR is in octal if it starts with a zero.
See Section 2.12, “Environment Variables”.
C.5.4. Administration-Related Issues
C.5.4.1. How to Reset the Root Password
If you have never set a root password for MySQL, the server does not require a password at all for connecting as root. However, this is insecure. For instructions on assigning passwords, see Section 2.10.2, “Securing the Initial MySQL Accounts”.
If you know the root password, but want to change it, see Section 13.7.1.7, “SET PASSWORD Syntax”.
If you set a root password previously, but have forgotten it, you can set a new password. The following sections provide instructions for Windows and Unix systems, as well as generic instructions that apply to any system.
C.5.4.1.1. Resetting the Root Password: Windows Systems
On Windows, use the following procedure to reset the password for all MySQL root accounts:
Log on to your system as Administrator.
Stop the MySQL server if it is running. For a server that is running as a Windows service, go to the Services manager: From the Start menu, select Control Panel, then Administrative Tools, then Services. Find the MySQL service in the list and stop it.
If your server is not running as a service, you may need to use the Task Manager to force it to stop.
Create a text file containing the following statements. Replace the password with the password that you want to use.
UPDATE mysql.user SET Password=PASSWORD('MyNewPass') WHERE User='root';
FLUSH PRIVILEGES;
Write the UPDATE and FLUSH statements each on a single line. The UPDATE statement resets the password for all root accounts, and the FLUSH statement tells the server to reload the grant tables into memory so that it notices the password change.
Save the file. For this example, the file will be named C:\mysql-init.txt.
Open a console window to get to the command prompt: From the Start menu, select Run, then enter cmd as the command to be run.
Start the MySQL server with the special --init-file option (notice that the backslash in the option value is doubled):
C:\> C:\mysql\bin\mysqld --init-file=C:\\mysql-init.txt
If you installed MySQL to a location other than C:\mysql, adjust the command accordingly.
The server executes the contents of the file named by the --init-file option at startup, changing each root account password.
You can also add the --console option to the command if you want server output to appear in the console window rather than in a log file.
If you installed MySQL using the MySQL Installation Wizard, you may need to specify a --defaults-file option:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysqld.exe"
--defaults-file="C:\\Program Files\\MySQL\\MySQL Server 5.6\\my.ini"
--init-file=C:\\mysql-init.txt
The appropriate --defaults-file setting can be found using the Services Manager: From the Start menu, select Control Panel, then Administrative Tools, then Services. Find the MySQL service in the list, right-click it, and choose the Properties option. The Path to executable field contains the --defaults-file setting.
After the server has started successfully, delete C:\mysql-init.txt.
You should now be able to connect to the MySQL server as root using the new password. Stop the MySQL server, then restart it in normal mode again. If you run the server as a service, start it from the Windows Services window. If you start the server manually, use whatever command you normally use.
C.5.4.1.2. Resetting the Root Password: Unix Systems
On Unix, use the following procedure to reset the password for all MySQL root accounts. The instructions assume that you will start the server so that it runs using the Unix login account that you normally use for running the server. For example, if you run the server using the mysql login account, you should log in as mysql before using the instructions. Alternatively, you can log in as root, but in this case you must start mysqld with the --user=mysql option. If you start the server as root without using --user=mysql, the server may create root-owned files in the data directory, such as log files, and these may cause permission-related problems for future server startups. If that happens, you will need to either change the ownership of the files to mysql or remove them.
Log on to your system as the Unix user that the mysqld server runs as (for example, mysql).
Locate the .pid file that contains the server's process ID. The exact location and name of this file depend on your distribution, host name, and configuration. Common locations are /var/lib/mysql/, /var/run/mysqld/, and /usr/local/mysql/data/. Generally, the file name has an extension of .pid and begins with either mysqld or your system's host name.
You can stop the MySQL server by sending a normal kill (not kill -9) to the mysqld process, using the path name of the .pid file in the following command:
shell> kill `cat /mysql-data-directory/host_name.pid`
Use backticks (not forward quotation marks) with the cat command. These cause the output of cat to be substituted into the kill command.
Create a text file containing the following statements. Replace the password with the password that you want to use.
UPDATE mysql.user SET Password=PASSWORD('MyNewPass') WHERE User='root';
FLUSH PRIVILEGES;
Write the UPDATE and FLUSH statements each on a single line. The UPDATE statement resets the password for all root accounts, and the FLUSH statement tells the server to reload the grant tables into memory so that it notices the password change.
Save the file. For this example, the file will be named /home/me/mysql-init. The file contains the password, so it should not be saved where it can be read by other users. If you are not logged in as mysql (the user the server runs as), make sure that the file has permissions that permit mysql to read it.
Start the MySQL server with the special --init-file option:
shell> mysqld_safe --init-file=/home/me/mysql-init &
The server executes the contents of the file named by the --init-file option at startup, changing each root account password.
After the server has started successfully, delete /home/me/mysql-init.
You should now be able to connect to the MySQL server as root using the new password. Stop the server and restart it normally.
C.5.4.1.3. Resetting the Root Password: Generic Instructions
The preceding sections provide password-resetting instructions for Windows and Unix systems. Alternatively, on any platform, you can set the new password using the mysql client (but this approach is less secure):
Stop mysqld and restart it with the --skip-grant-tables option. This enables anyone to connect without a password and with all privileges. Because this is insecure, you might want to use --skip-grant-tables in conjunction with --skip-networking to prevent remote clients from connecting.
Connect to the mysqld server with this command:
shell> mysql
Issue the following statements in the mysql client. Replace the password with the password that you want to use.
mysql> UPDATE mysql.user SET Password=PASSWORD('MyNewPass')
-> WHERE User='root';
mysql> FLUSH PRIVILEGES;
The FLUSH statement tells the server to reload the grant tables into memory so that it notices the password change.
You should now be able to connect to the MySQL server as root using the new password. Stop the server, then restart it normally (without the --skip-grant-tables and --skip-networking options).
C.5.4.2. What to Do If MySQL Keeps Crashing
Each MySQL version is tested on many platforms before it is released. This does not mean that there are no bugs in MySQL, but if there are bugs, they should be very few and can be hard to find. If you have a problem, it always helps if you try to find out exactly what crashes your system, because you have a much better chance of getting the problem fixed quickly.
First, you should try to find out whether the problem is that the mysqld server dies or whether your problem has to do with your client. You can check how long your mysqld server has been up by executing mysqladmin version. If mysqld has died and restarted, you may find the reason by looking in the server's error log. See Section 5.2.2, “The Error Log”.
On some systems, you can find in the error log a stack trace of where mysqld died that you can resolve with the resolve_stack_dump program. See MySQL Internals: Porting to Other Systems. Note that the variable values written in the error log may not always be 100% correct.
Many server crashes are caused by corrupted data files or index files. MySQL updates the files on disk with the write() system call after every SQL statement and before the client is notified about the result. (This is not true if you are running with --delay-key-write, in which case data files are written but not index files.) This means that data file contents are safe even if mysqld crashes, because the operating system ensures that the unflushed data is written to disk. You can force MySQL to flush everything to disk after every SQL statement by starting mysqld with the --flush option.
The preceding means that normally you should not get corrupted tables unless one of the following happens:
The MySQL server or the server host was killed in the middle of an update.
You have found a bug in mysqld that caused it to die in the middle of an update.
Some external program is manipulating data files or index files at the same time as mysqld without locking the table properly.
You are running many mysqld servers using the same data directory on a system that does not support good file system locks (normally handled by the lockd lock manager), or you are running multiple servers with external locking disabled.
You have a crashed data file or index file that contains very corrupt data that confused mysqld.
You have found a bug in the data storage code. This isn't likely, but it is at least possible. In this case, you can try to change the storage engine to another engine by using ALTER TABLE on a repaired copy of the table.
Because it is very difficult to know why something is crashing, first try to check whether things that work for others crash for you. Try the following things:
Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent --force */*.MYI from the data directory to check all MyISAM tables, and restart mysqld. This ensures that you are running from a clean state. See Chapter 5, MySQL Server Administration.
Start mysqld with the general query log enabled (see Section 5.2.3, “The General Query Log”). Then try to determine from the information written to the log whether some specific query kills the server. About 95% of all bugs are related to a particular query. Normally, this is one of the last queries in the log file just before the server restarts. See Section 5.2.3, “The General Query Log”. If you can repeatedly kill MySQL with a specific query, even when you have checked all tables just before issuing it, then you have isolated the bug and should submit a bug report for it. See Section 1.7, “How to Report Bugs or Problems”.
Try to make a test case that we can use to repeat the problem. See MySQL Internals: Porting to Other Systems.
Try running the tests in the mysql-test directory and the MySQL benchmarks. See Section 22.1.2, “The MySQL Test Suite”. They test MySQL rather well. You can also add code to the benchmarks that simulates your application. The benchmarks are in the sql-bench directory in a source distribution or, for a binary distribution, in the sql-bench directory under your MySQL installation directory.
Try the fork_big.pl script. (It is located in the tests directory of source distributions.)
Configuring MySQL for debugging makes it much easier to gather information about possible errors if something goes wrong. Reconfigure MySQL with the -DWITH_DEBUG=1 option to CMake and then recompile. See MySQL Internals: Porting to Other Systems.
Make sure that you have applied the latest patches for your operating system.
Use the --skip-external-locking option to mysqld. On some systems, the lockd lock manager does not work properly; the --skip-external-locking option tells mysqld not to use external locking. (This means that you cannot run two mysqld servers on the same data directory and that you must be careful if you use myisamchk. Nevertheless, it may be instructive to try the option as a test.)
If mysqld appears to be running but not responding, try mysqladmin -u root processlist. Sometimes mysqld is not hung even though it seems unresponsive. The problem may be that all connections are in use, or there may be some internal lock problem. mysqladmin -u root processlist usually is able to make a connection even in these cases, and can provide useful information about the current number of connections and their status.
Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a separate window to produce statistics while running other queries.
Try the following:
Start mysqld from gdb (or another debugger). See MySQL Internals: Porting to Other Systems.
Run your test scripts.
Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this with the following commands when mysqld has crashed inside gdb:
backtrace
info local
up
info local
up
info local
With gdb, you can also examine which threads exist with info threads and switch to a specific thread with thread N, where N is the thread ID.
Try to simulate your application with a Perl script to force MySQL to crash or misbehave.
Send a normal bug report. See Section 1.7, “How to Report Bugs or Problems”. Be even more detailed than usual. Because MySQL works for many people, the crash might result from something that exists only on your computer (for example, an error that is related to your particular system libraries).
If you have a problem with tables containing dynamic-length rows and you are using only VARCHAR columns (not BLOB or TEXT columns), you can try to change all VARCHAR to CHAR with ALTER TABLE. This forces MySQL to use fixed-size rows. Fixed-size rows take a little extra space, but are much more tolerant to corruption.
The current dynamic row code has been in use for several years with very few problems, but dynamic-length rows are by nature more prone to errors, so it may be a good idea to try this strategy to see whether it helps.
Consider the possibility of hardware faults when diagnosing problems. Defective hardware can be the cause of data corruption. Pay particular attention to your memory and disk subsystems when troubleshooting hardware.
C.5.4.3. How MySQL Handles a Full Disk
This section describes how MySQL responds to disk-full errors (such as “no space left on device”), and to quota-exceeded errors (such as “write failed” or “user block limit reached”).
This section is relevant for writes to MyISAM tables. It also applies for writes to binary log files and binary log index file, except that references to “row” and “record” should be understood to mean “event.”
When a disk-full condition occurs, MySQL does the following:
It checks once every minute to see whether there is enough space to write the current row. If there is enough space, it continues as if nothing had happened.
Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.
To alleviate the problem, take the following actions:
To continue, you only have to free enough disk space to insert all records.
Alternatively, to abort the thread, use mysqladmin kill. The thread is aborted the next time it checks the disk (in one minute).
Other threads might be waiting for the table that caused the disk-full condition. If you have several “locked” threads, killing the one thread that is waiting on the disk-full condition enables the other threads to continue.
Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE or when the indexes are created in a batch after LOAD DATA INFILE or after an ALTER TABLE statement. All of these statements may create large temporary files that, if left to themselves, would cause big problems for the rest of the system. If the disk becomes full while MySQL is doing any of these operations, it removes the big temporary files and mark the table as crashed. The exception is that for ALTER TABLE, the old table is left unchanged.
C.5.4.4. Where MySQL Stores Temporary Files
On Unix, MySQL uses the value of the TMPDIR environment variable as the path name of the directory in which to store temporary files. If TMPDIR is not set, MySQL uses the system default, which is usually /tmp, /var/tmp, or /usr/tmp.
On Windows, MySQL checks in order the values of the TMPDIR, TEMP, and TMP environment variables. For the first one found to be set, MySQL uses it and does not check those remaining. If none of TMPDIR, TEMP, or TMP are set, MySQL uses the Windows system default, which is usually C:\windows\temp\.
If the file system containing your temporary file directory is too small, you can use the --tmpdir option to mysqld to specify a directory in a file system where you have enough space.
In MySQL 5.6, the --tmpdir option can be set to a list of several paths that are used in round-robin fashion. Paths should be separated by colon characters (“:”) on Unix and semicolon characters (“;”) on Windows.
Note
To spread the load effectively, these paths should be located on different physical disks, not different partitions of the same disk.
If the MySQL server is acting as a replication slave, you should not set --tmpdir to point to a directory on a memory-based file system or to a directory that is cleared when the server host restarts. A replication slave needs some of its temporary files to survive a machine restart so that it can replicate temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost when the server restarts, replication fails.
MySQL arranges that temporary files are removed if mysqld is terminated. On platforms that support it (such as Unix), this is done by unlinking the file after opening it. The disadvantage of this is that the name does not appear in directory listings and you do not see a big temporary file that fills up the file system in which the temporary file directory is located. (In such cases, ls +L1 may be helpful in identifying large files associated with mysqld.)
When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The maximum disk space required is determined by the following expression:
(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2
The row pointer size is usually four bytes, but may grow in the future for really big tables.
For some SELECT queries, MySQL also creates temporary SQL tables. These are not hidden and have names of the form SQL_*.
ALTER TABLE creates a temporary table in the same directory as the original table.
C.5.4.5. How to Protect or Change the MySQL Unix Socket File
The default location for the Unix socket file that the server uses for communication with local clients is /tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /var/lib/mysql for RPMs.)
On some versions of Unix, anyone can delete files in the /tmp directory or other similar directories used for temporary files. If the socket file is located in such a directory on your system, this might cause problems.
On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by their owners or the superuser (root). To do this, set the sticky bit on the /tmp directory by logging in as root and using the following command:
shell> chmod +t /tmp
You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission character is t, the bit is set.
Another approach is to change the place where the server creates the Unix socket file. If you do this, you should also let client programs know the new location of the file. You can specify the file location in several ways:
Specify the path in a global or local option file. For example, put the following lines in /etc/my.cnf:
[mysqld]
socket=/path/to/socket
[client]
socket=/path/to/socket
Specify a --socket option on the command line to mysqld_safe and when you run client programs.
Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.
Recompile MySQL from source to use a different default Unix socket file location. Define the path to the file with the MYSQL_UNIX_ADDR option when you run CMake. See Section 2.9.4, “MySQL Source-Configuration Options”.
You can test whether the new socket location works by attempting to connect to the server with this command:
shell> mysqladmin --socket=/path/to/socket version
C.5.4.6. Time Zone Problems
If you have a problem with SELECT NOW() returning values in UTC and not your local time, you have to tell the server your current time zone. The same applies if UNIX_TIMESTAMP() returns the wrong value. This should be done for the environment in which the server runs; for example, in mysqld_safe or mysql.server. See Section 2.12, “Environment Variables”.
You can set the time zone for the server with the --timezone=timezone_name option to mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld.
The permissible values for --timezone or TZ are system dependent. Consult your operating system documentation to see what values are acceptable.
C.5.5. Query-Related Issues
C.5.5.1. Case Sensitivity in String Searches
For nonbinary strings (CHAR, VARCHAR, TEXT), string searches use the collation of the comparison operands. For binary strings (BINARY, VARBINARY, BLOB), comparisons use the numeric values of the bytes in the operands; this means that for alphabetic characters, comparisons will be case sensitive.
A comparison between a nonbinary string and binary string is treated as a comparison of binary strings.
Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each character's “sort value.” Characters with the same sort value are treated as the same character. For example, if “e” and “é” have the same sort value in a given collation, they compare as equal.
The default character set and collation are latin1 and latin1_swedish_ci, so nonbinary string comparisons are case insensitive by default. This means that if you search with col_name LIKE 'a%', you get all column values that start with A or a. To make this search case sensitive, make sure that one of the operands has a case sensitive or binary collation. For example, if you are comparing a column and a string that both have the latin1 character set, you can use the COLLATE operator to cause either operand to have the latin1_general_cs or latin1_bin collation:
col_name COLLATE latin1_general_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_general_cs
col_name COLLATE latin1_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_bin
If you want a column always to be treated in case-sensitive fashion, declare it with a case sensitive or binary collation. See Section 13.1.14, “CREATE TABLE Syntax”.
To cause a case-sensitive comparison of nonbinary strings to be case insensitive, use COLLATE to name a case-insensitive collation. The strings in the following example normally are case sensitive, but COLLATE changes the comparison to be case insensitive:
mysql> SET @s1 = 'MySQL' COLLATE latin1_bin,
-> @s2 = 'mysql' COLLATE latin1_bin;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_swedish_ci = @s2;
+-------------------------------------+
| @s1 COLLATE latin1_swedish_ci = @s2 |
+-------------------------------------+
| 1 |
+-------------------------------------+
A binary string is case sensitive in comparisons. To compare the string as case insensitive, convert it to a nonbinary string and use COLLATE to name a case-insensitive collation:
mysql> SET @s = BINARY 'MySQL';
mysql> SELECT @s = 'mysql';
+--------------+
| @s = 'mysql' |
+--------------+
| 0 |
+--------------+
mysql> SELECT CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql';
+--+
| CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql' |
+--+
| 1 |
+--+
To determine whether a value will compare as a nonbinary or binary string, use the COLLATION() function. This example shows that VERSION() returns a string that has a case-insensitive collation, so comparisons are case insensitive:
mysql> SELECT COLLATION(VERSION());
+----------------------+
| COLLATION(VERSION()) |
+----------------------+
| utf8_general_ci |
+----------------------+
For binary strings, the collation value is binary, so comparisons will be case sensitive. One context in which you will see binary is for compression and encryption functions, which return binary strings as a general rule: string:
mysql> SELECT COLLATION(ENCRYPT('x')), COLLATION(SHA1('x'));
+-------------------------+----------------------+
| COLLATION(ENCRYPT('x')) | COLLATION(SHA1('x')) |
+-------------------------+----------------------+
| binary | binary |
+-------------------------+----------------------+
To check the sort value of a string, the WEIGHT_STRING() may be helpful. See Section 12.5, “String Functions”.
C.5.5.2. Problems Using DATE Columns
The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is permitted. You should use this format in UPDATE expressions and in the WHERE clause of SELECT statements. For example:
SELECT * FROM t1 WHERE date >= '2003-05-05';
As a convenience, MySQL automatically converts a date to a number if the date is used in a numeric context and vice versa. MySQL also permits a “relaxed” string format when updating and in a WHERE clause that compares a date to a DATE, DATETIME, or TIMESTAMP column. “Relaxed” format means that any punctuation character may be used as the separator between parts. For example, '2004-08-15' and '2004#08#15' are equivalent. MySQL can also convert a string containing no separators (such as '20040815'), provided it makes sense as a date.
When you compare a DATE, TIME, DATETIME, or TIMESTAMP to a constant string with the <, <=, =, >=, >, or BETWEEN operators, MySQL normally converts the string to an internal long integer for faster comparison (and also for a bit more “relaxed” string checking). However, this conversion is subject to the following exceptions:
When you compare two columns
When you compare a DATE, TIME, DATETIME, or TIMESTAMP column to an expression
When you use any comparison method other than those just listed, such as IN or STRCMP().
For those exceptions, the comparison is done by converting the objects to strings and performing a string comparison.
To be on the safe side, assume that strings are compared as strings and use the appropriate string functions if you want to compare a temporal value to a string.
The special “zero” date '0000-00-00' can be stored and retrieved as '0000-00-00'. When a '0000-00-00' date is used through Connector/ODBC, it is automatically converted to NULL because ODBC cannot handle that kind of date.
Because MySQL performs the conversions just described, the following statements work (assume that idate is a DATE column):
INSERT INTO t1 (idate) VALUES (19970505);
INSERT INTO t1 (idate) VALUES ('19970505');
INSERT INTO t1 (idate) VALUES ('97-05-05');
INSERT INTO t1 (idate) VALUES ('1997.05.05');
INSERT INTO t1 (idate) VALUES ('1997 05 05');
INSERT INTO t1 (idate) VALUES ('0000-00-00');
SELECT idate FROM t1 WHERE idate >= '1997-05-05';
SELECT idate FROM t1 WHERE idate >= 19970505;
SELECT MOD(idate,100) FROM t1 WHERE idate >= 19970505;
SELECT idate FROM t1 WHERE idate >= '19970505';
However, the following statement does not work:
SELECT idate FROM t1 WHERE STRCMP(idate,'20030505')=0;
STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and performs a string comparison. It does not convert '20030505' to the date '2003-05-05' and perform a date comparison.
If you enable the ALLOW_INVALID_DATES SQL mode, MySQL permits you to store dates that are given only limited checking: MySQL requires only that the day is in the range from 1 to 31 and the month is in the range from 1 to 12. This makes MySQL very convenient for Web applications where you obtain year, month, and day in three different fields and you want to store exactly what the user inserted (without date validation).
MySQL permits you to store dates where the day or month and day are zero. This is convenient if you want to store a birthdate in a DATE column and you know only part of the date. To disallow zero month or day parts in dates, enable the NO_ZERO_IN_DATE SQL mode.
MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some cases more convenient than using NULL values. If a date to be stored in a DATE column cannot be converted to any reasonable value, MySQL stores '0000-00-00'. To disallow '0000-00-00', enable the NO_ZERO_DATE SQL mode.
To have MySQL check all dates and accept only legal dates (unless overridden by IGNORE), set the sql_mode system variable to "NO_ZERO_IN_DATE,NO_ZERO_DATE".
C.5.5.3. Problems with NULL Values
The concept of the NULL value is a common source of confusion for newcomers to SQL, who often think that NULL is the same thing as an empty string ''. This is not the case. For example, the following statements are completely different:
mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');
Both statements insert a value into the phone column, but the first inserts a NULL value and the second inserts an empty string. The meaning of the first can be regarded as “phone number is not known” and the meaning of the second can be regarded as “the person is known to have no phone, and thus no phone number.”
To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the IFNULL() function.
In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression that contains NULL always produces a NULL value unless otherwise indicated in the documentation for the operators and functions involved in the expression. All columns in the following example return NULL:
mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);
To search for column values that are NULL, you cannot use an expr = NULL test. The following statement returns no rows, because expr = NULL is never true for any expression:
mysql> SELECT * FROM my_table WHERE phone = NULL;
To look for NULL values, you must use the IS NULL test. The following statements show how to find the NULL phone number and the empty phone number:
mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';
See Section 3.3.4.6, “Working with NULL Values”, for additional information and examples.
You can add an index on a column that can have NULL values if you are using the MyISAM, InnoDB, or MEMORY storage engine. Otherwise, you must declare an indexed column NOT NULL, and you cannot insert NULL into the column.
When reading data with LOAD DATA INFILE, empty or missing columns are updated with ''. To load a NULL value into a column, use \N in the data file. The literal word “NULL” may also be used under some circumstances. See Section 13.2.6, “LOAD DATA INFILE Syntax”.
When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.
When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in descending order.
Aggregate (summary) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The exception to this is COUNT(*), which counts rows and not individual column values. For example, the following statement produces two counts. The first is a count of the number of rows in the table, and the second is a count of the number of non-NULL values in the age column:
mysql> SELECT COUNT(*), COUNT(age) FROM person;
For some data types, MySQL handles NULL values specially. If you insert NULL into a TIMESTAMP column, the current date and time is inserted. If you insert NULL into an integer or floating-point column that has the AUTO_INCREMENT attribute, the next number in the sequence is inserted.
C.5.5.4. Problems with Column Aliases
An alias can be used in a query select list to give a column a different name. You can use the alias in GROUP BY, ORDER BY, or HAVING clauses to refer to the column:
SELECT SQRT(a*b) AS root FROM tbl_name
GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name
GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;
Standard SQL disallows references to column aliases in a WHERE clause. This restriction is imposed because when the WHERE clause is evaluated, the column value may not yet have been determined. For example, the following query is illegal:
SELECT id, COUNT(*) AS cnt FROM tbl_name
WHERE cnt > 0 GROUP BY id;
The WHERE clause determines which rows should be included in the GROUP BY clause, but it refers to the alias of a column value that is not known until after the rows have been selected, and grouped by the GROUP BY.
In the select list of a query, a quoted column alias can be specified using identifier or string quoting characters:
SELECT 1 AS `one`, 2 AS 'two';
Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference is treated as a string literal. For example, this statement groups by the values in column id, referenced using the alias `a`:
SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
GROUP BY `a`;
But this statement groups by the literal string 'a' and will not work as expected:
SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
GROUP BY 'a';
C.5.5.5. Rollback Failure for Nontransactional Tables
If you receive the following message when trying to perform a ROLLBACK, it means that one or more of the tables you used in the transaction do not support transactions:
Warning: Some non-transactional changed tables couldn't be rolled back
These nontransactional tables are not affected by the ROLLBACK statement.
If you were not deliberately mixing transactional and nontransactional tables within the transaction, the most likely cause for this message is that a table you thought was transactional actually is not. This can happen if you try to create a table using a transactional storage engine that is not supported by your mysqld server (or that was disabled with a startup option). If mysqld does not support a storage engine, it instead creates the table as a MyISAM table, which is nontransactional.
You can check the storage engine for a table by using either of these statements:
SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;
See Section 13.7.5.37, “SHOW TABLE STATUS Syntax”, and Section 13.7.5.12, “SHOW CREATE TABLE Syntax”.
To check which storage engines your mysqld server supports, use this statement:
SHOW ENGINES;
See Section 13.7.5.17, “SHOW ENGINES Syntax” for full details.
C.5.5.6. Deleting Rows from Related Tables
If the total length of the DELETE statement for related_table is more than 1MB (the default value of the max_allowed_packet system variable), you should split it into smaller parts and execute multiple DELETE statements. You probably get the fastest DELETE by specifying only 100 to 1,000 related_column values per statement if the related_column is indexed. If the related_column isn't indexed, the speed is independent of the number of arguments in the IN clause.
C.5.5.7. Solving Problems with No Matching Rows
If you have a complicated query that uses many tables but that returns no rows, you should use the following procedure to find out what is wrong:
Test the query with EXPLAIN to check whether you can find something that is obviously wrong. See Section 13.8.2, “EXPLAIN Syntax”.
Select only those columns that are used in the WHERE clause.
Remove one table at a time from the query until it returns some rows. If the tables are large, it is a good idea to use LIMIT 10 with the query.
Issue a SELECT for the column that should have matched a row against the table that was last removed from the query.
If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you cannot use equality (=) comparisons. This problem is common in most computer languages because not all floating-point values can be stored with exact precision. In some cases, changing the FLOAT to a DOUBLE fixes this. See Section C.5.5.8, “Problems with Floating-Point Values”.
If you still cannot figure out what is wrong, create a minimal test that can be run with mysql test < query.sql that shows your problems. You can create a test file by dumping the tables with mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql. Open the file in an editor, remove some insert lines (if there are more than needed to demonstrate the problem), and add your SELECT statement at the end of the file.
Verify that the test file demonstrates the problem by executing these commands:
shell> mysqladmin create test2
shell> mysql test2 < query.sql
Attach the test file to a bug report, which you can file using the instructions in Section 1.7, “How to Report Bugs or Problems”.
C.5.5.8. Problems with Floating-Point Values
Floating-point numbers sometimes cause confusion because they are approximate and not stored as exact values. A floating-point value as written in an SQL statement may not be the same as the value represented internally. Attempts to treat floating-point values as exact in comparisons may lead to problems. They are also subject to platform or implementation dependencies. The FLOAT and DOUBLE data types are subject to these issues. For DECIMAL columns, MySQL performs operations with a precision of 65 decimal digits, which should solve most common inaccuracy problems.
The following example uses DOUBLE to demonstrate how calculations that are done using floating-point operations are subject to floating-point error.
mysql> CREATE TABLE t1 (i INT, d1 DOUBLE, d2 DOUBLE);
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),
-> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
-> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
-> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
-> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
-> (6, 0.00, 0.00), (6, -51.40, 0.00);
mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
-> FROM t1 GROUP BY i HAVING a <> b;
+------+-------+------+
| i | a | b |
+------+-------+------+
| 1 | 21.4 | 21.4 |
| 2 | 76.8 | 76.8 |
| 3 | 7.4 | 7.4 |
| 4 | 15.4 | 15.4 |
| 5 | 7.2 | 7.2 |
| 6 | -51.4 | 0 |
+------+-------+------+
The result is correct. Although the first five records look like they should not satisfy the comparison (the values of a and b do not appear to be different), they may do so because the difference between the numbers shows up around the tenth decimal or so, depending on factors such as computer architecture or the compiler version or optimization level. For example, different CPUs may evaluate floating-point numbers differently.
If columns d1 and d2 had been defined as DECIMAL rather than DOUBLE, the result of the SELECT query would have contained only one row—the last one shown above.
The correct way to do floating-point number comparison is to first decide on an acceptable tolerance for differences between the numbers and then do the comparison against the tolerance value. For example, if we agree that floating-point numbers should be regarded the same if they are same within a precision of one in ten thousand (0.0001), the comparison should be written to find differences larger than the tolerance value:
mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
-> GROUP BY i HAVING ABS(a - b) > 0.0001;
+------+-------+------+
| i | a | b |
+------+-------+------+
| 6 | -51.4 | 0 |
+------+-------+------+
1 row in set (0.00 sec)
Conversely, to get rows where the numbers are the same, the test should find differences within the tolerance value:
mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
-> GROUP BY i HAVING ABS(a - b) <= 0.0001;
+------+------+------+
| i | a | b |
+------+------+------+
| 1 | 21.4 | 21.4 |
| 2 | 76.8 | 76.8 |
| 3 | 7.4 | 7.4 |
| 4 | 15.4 | 15.4 |
| 5 | 7.2 | 7.2 |
+------+------+------+
5 rows in set (0.03 sec)
Floating-point values are subject to platform or implementation dependencies. Suppose that you execute the following statements:
CREATE TABLE t1(c1 FLOAT(53,0), c2 FLOAT(53,0));
INSERT INTO t1 VALUES('1e+52','-1e+52');
SELECT * FROM t1;
On some platforms, the SELECT statement returns inf and -inf. On others, it returns 0 and -0.
An implication of the preceding issues is that if you attempt to create a replication slave by dumping table contents with mysqldump on the master and reloading the dump file into the slave, tables containing floating-point columns might differ between the two hosts.
C.5.6. Optimizer-Related Issues
MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases, MySQL can calculate the best possible query plan, but sometimes MySQL does not have enough information about the data at hand and has to make “educated” guesses about the data.
For the cases when MySQL does not do the "right" thing, tools that you have available to help MySQL are:
Use the EXPLAIN statement to get information about how MySQL processes a query. To use it, just add the keyword EXPLAIN to the front of your SELECT statement:
mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;
EXPLAIN is discussed in more detail in Section 13.8.2, “EXPLAIN Syntax”.
Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.
Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive compared to using the given index:
SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;
USE INDEX and IGNORE INDEX may also be useful. See Section 13.2.9.3, “Index Hint Syntax”.
Global and table-level STRAIGHT_JOIN. See Section 13.2.9, “SELECT Syntax”.
You can tune global or thread-specific system variables. For example, start mysqld with the --max-seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the optimizer to assume that no key scan causes more than 1,000 key seeks. See Section 5.1.4, “Server System Variables”.
C.5.7. Table Definition-Related Issues
C.5.7.1. Problems with ALTER TABLE
If you get a duplicate-key error when using ALTER TABLE to change the character set or collation of a character column, the cause is either that the new column collation maps two keys to the same value or that the table is corrupted. In the latter case, you should run REPAIR TABLE on the table.
If ALTER TABLE dies with the following error, the problem may be that MySQL crashed during an earlier ALTER TABLE operation and there is an old table named A-xxx or B-xxx lying around:
Error on rename of './database/name.frm'
to './database/B-xxx.frm' (Errcode: 17)
In this case, go to the MySQL data directory and delete all files that have names starting with A- or B-. (You may want to move them elsewhere instead of deleting them.)
ALTER TABLE works in the following way:
Create a new table named A-xxx with the requested structural changes.
Copy all rows from the original table to A-xxx.
Rename the original table to B-xxx.
Rename A-xxx to your original table name.
Delete B-xxx.
If something goes wrong with the renaming operation, MySQL tries to undo the changes. If something goes seriously wrong (although this shouldn't happen), MySQL may leave the old table as B-xxx. A simple rename of the table files at the system level should get your data back.
If you use ALTER TABLE on a transactional table or if you are using Windows, ALTER TABLE unlocks the table if you had done a LOCK TABLE on it. This is done because InnoDB and these operating systems cannot drop a table that is in use.
C.5.7.2. TEMPORARY Table Problems
The following list indicates limitations on the use of TEMPORARY tables:
A TEMPORARY table can only be of type MEMORY, MyISAM, MERGE, or InnoDB.
Temporary tables are not supported for MySQL Cluster.
You cannot refer to a TEMPORARY table more than once in the same query. For example, the following does not work:
mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'
This error also occurs if you refer to a temporary table multiple times in a stored function under different aliases, even if the references occur in different statements within the function.
The SHOW TABLES statement does not list TEMPORARY tables.
You cannot use RENAME to rename a TEMPORARY table. However, you can use ALTER TABLE instead:
mysql> ALTER TABLE orig_name RENAME new_name;
There are known issues in using temporary tables with replication. See Section 16.4.1, “Replication Features and Issues”, for more information.
C.5.8. Known Issues in MySQL
This section lists known issues in recent versions of MySQL.
For information about platform-specific issues, see the installation and porting instructions in Section 2.1, “General Installation Guidance”, and MySQL Internals: Porting to Other Systems.
The following problems are known:
Subquery optimization for IN is not as effective as for =.
Even if you use lower_case_table_names=2 (which enables MySQL to remember the case used for databases and table names), MySQL does not remember the case used for database names for the function DATABASE() or within the various logs (on case-insensitive systems).
Dropping a FOREIGN KEY constraint does not work in replication because the constraint may have another name on the slave.
REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.
DISTINCT with ORDER BY does not work inside GROUP_CONCAT() if you do not use all and only those columns that are in the DISTINCT list.
When inserting a big integer value (between 263 and 264–1) into a decimal or string column, it is inserted as a negative value because the number is evaluated in a signed integer context.
ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on nontransactional tables for which you are using INSERT DELAYED.
With statement-based binary logging, the master writes the executed queries to the binary log. This is a very fast, compact, and efficient logging method that works perfectly in most cases. However, it is possible for the data on the master and slave to become different if a query is designed in such a way that the data modification is nondeterministic (generally not a recommended practice, even outside of replication).
For example:
CREATE TABLE ... SELECT or INSERT ... SELECT statements that insert zero or NULL values into an AUTO_INCREMENT column.
DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CASCADE properties.
REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values in the inserted data.
If and only if the preceding queries have no ORDER BY clause guaranteeing a deterministic order.
For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a different order (which results in a row having different ranks, hence getting a different number in the AUTO_INCREMENT column), depending on the choices made by the optimizers on the master and slave.
A query is optimized differently on the master and slave only if:
The table is stored using a different storage engine on the master than on the slave. (It is possible to use different storage engines on the master and slave. For example, you can use InnoDB on the master, but MyISAM on the slave if the slave has less available disk space.)
MySQL buffer sizes (key_buffer_size, and so on) are different on the master and slave.
The master and slave run different MySQL versions, and the optimizer code differs between these versions.
This problem may also affect database restoration using mysqlbinlog|mysql.
The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned nondeterministic queries to ensure that the rows are always stored or modified in the same order. Using row-based or mixed logging format also avoids the problem.
Log file names are based on the server host name if you do not specify a file name with the startup option. To retain the same log file names if you change your host name to something else, you must explicitly use options such as --log-bin=old_host_name-bin. See Section 5.1.3, “Server Command Options”. Alternatively, rename the old files to reflect your host name change. If these are binary logs, you must edit the binary log index file and fix the binary log file names there as well. (The same is true for the relay logs on a slave server.)
mysqlbinlog does not delete temporary files left after a LOAD DATA INFILE statement. See Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”.
RENAME does not work with TEMPORARY tables or tables used in a MERGE table.
When using SET CHARACTER SET, you cannot use translated characters in database, table, and column names.
You cannot use “_” or “%” with ESCAPE in LIKE ... ESCAPE.
Only the first max_sort_length bytes are used when comparing data values. This means that values cannot reliably be used in GROUP BY, ORDER BY or DISTINCT if they are not distinct in the first max_sort_length bytes. To work around this, increase the variable value. The default value of max_sort_length is 1024 and can be changed at server startup time or at runtime.
Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long). Which precision you get depends on the function. The general rule is that bit functions are performed with BIGINT precision, IF() and ELT() with BIGINT or DOUBLE precision, and the rest with DOUBLE precision. You should try to avoid using unsigned long long values if they resolve to be larger than 63 bits (9223372036854775807) for anything other than bit fields.
In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET columns by their string value rather than by the string's relative position in the set.
In an UPDATE statement, columns are updated from left to right. If you refer to an updated column, you get the updated value instead of the original value. For example, the following statement increments KEY by 2, not 1:
mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;
You can refer to multiple temporary tables in the same query, but you cannot refer to any given temporary table more than once. For example, the following does not work:
mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'
The optimizer may handle DISTINCT differently when you are using “hidden” columns in a join than when you are not. In a join, hidden columns are counted as part of the result (even if they are not shown), whereas in normal queries, hidden columns do not participate in the DISTINCT comparison.
An example of this is:
SELECT DISTINCT mp3id FROM band_downloads
WHERE userid = 9 ORDER BY id DESC;
and
SELECT DISTINCT band_downloads.mp3id
FROM band_downloads,band_mp3
WHERE band_downloads.userid = 9
AND band_mp3.id = band_downloads.mp3id
ORDER BY band_downloads.id DESC;
In the second case, using MySQL Server 3.23.x, you may get two identical rows in the result set (because the values in the hidden id column may differ).
Note that this happens only for queries that do not have the ORDER BY columns in the result.
If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE does not transform the columns.
Creation of a table of type MERGE does not check whether the underlying tables are compatible types.
If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table and then add a normal index on the MERGE table, the key order is different for the tables if there was an old, non-UNIQUE key in the table. This is because ALTER TABLE puts UNIQUE indexes before normal indexes to be able to detect duplicate keys as early as possible.
Appendix D. MySQL Release Notes
Release notes for MySQL Server and associated products are no longer published in the MySQL Reference Manual. Instead, see these release notes documents:
MySQL Connector/Net Release Notes (includes MySQL Visual Studio Plugin release notes)
Appendix E. Restrictions and Limits
Table of Contents
E.1. Restrictions on Stored Programs
E.2. Restrictions on Condition Handling
E.3. Restrictions on Server-Side Cursors
E.4. Restrictions on Subqueries
E.6. Restrictions on XA Transactions
E.7. Restrictions on Character Sets
E.8. Restrictions on Performance Schema
E.9. Restrictions on Pluggable Authentication
E.10.1. Limits of Joins
E.10.2. Limits on Number of Databases and Tables
E.10.3. Limits on Table Size
E.10.4. Limits on Table Column Count and Row Size
E.10.5. Limits Imposed by .frm File Structure
E.10.6. Windows Platform Limitations
The discussion here describes restrictions that apply to the use of MySQL features such as subqueries or views.
E.1. Restrictions on Stored Programs
These restrictions apply to the features described in Chapter 18, Stored Programs and Views.
Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures and stored functions. There are also some restrictions specific to stored functions but not to stored procedures.
The restrictions for stored functions also apply to triggers. There are also some restrictions specific to triggers.
The restrictions for stored procedures also apply to the DO clause of Event Scheduler event definitions. There are also some restrictions specific to events.
SQL Statements Not Permitted in Stored Routines
Stored routines cannot contain arbitrary SQL statements. The following statements are not permitted:
The locking statements LOCK TABLES and UNLOCK TABLES.
LOAD DATA and LOAD TABLE.
SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) can be used in stored procedures, but not stored functions or triggers. Thus, stored functions and triggers cannot use dynamic SQL (where you construct statements as strings and then execute them).
Generally, statements not permitted in SQL prepared statements are also not permitted in stored programs. For a list of statements supported as prepared statements, see Section 13.5, “SQL Syntax for Prepared Statements”. Exceptions are SIGNAL, RESIGNAL, and GET DIAGNOSTICS, which are not permissible as prepared statements but are permitted in stored programs.
Because local variables are in scope only during stored program execution, references to them are not permitted in prepared statements created within a stored program. Prepared statement scope is the current session, not the stored program, so the statement could be executed after the program ends, at which point the variables would no longer be in scope. For example, SELECT ... INTO local_var cannot be used as a prepared statement. This restriction also applies to stored procedure and function parameters. See Section 13.5.1, “PREPARE Syntax”.
Inserts cannot be delayed. INSERT DELAYED syntax is accepted, but the statement is handled as a normal INSERT.
Within all stored programs (stored procedures and functions, triggers, and events), the parser treats BEGIN [WORK] as the beginning of a BEGIN ... END block. To begin a transaction in this context, use START TRANSACTION instead.
Restrictions for Stored Functions
The following additional statements or operations are not permitted within stored functions. They are permitted within stored procedures, except stored procedures that are invoked from within a stored function or trigger. For example, if you use FLUSH in a stored procedure, that stored procedure cannot be called from a stored function or trigger.
Statements that perform explicit or implicit commit or rollback. Support for these statements is not required by the SQL standard, which states that each DBMS vendor may decide whether to permit them.
Statements that return a result set. This includes SELECT statements that do not have an INTO var_list clause and other statements such as SHOW, EXPLAIN, and CHECK TABLE. A function can process a result set either with SELECT ... INTO var_list or by using a cursor and FETCH statements. See Section 13.2.9.1, “SELECT ... INTO Syntax”, and Section 13.6.6, “Cursors”.
FLUSH statements.
Stored functions cannot be used recursively.
A stored function or trigger cannot modify a table that is already being used (for reading or writing) by the statement that invoked the function or trigger.
If you refer to a temporary table multiple times in a stored function under different aliases, a Can't reopen table: 'tbl_name' error occurs, even if the references occur in different statements within the function.
HANDLER ... READ statements that invoke stored functions can cause replication errors and are disallowed.
Restrictions for Triggers
For triggers, the following additional restrictions apply:
Triggers currently are not activated by foreign key actions.
When using row-based replication, triggers on the slave are not activated by statements originating on the master. The triggers on the slave are activated when using statement-based replication. For more information, see Section 16.4.1.30, “Replication and Triggers”.
The RETURN statement is not permitted in triggers, which cannot return a value. To exit a trigger immediately, use the LEAVE statement.
Triggers are not permitted on tables in the mysql database.
The trigger cache does not detect when metadata of the underlying objects has changed. If a trigger uses a table and the table has changed since the trigger was loaded into the cache, the trigger operates using the outdated metadata.
Name Conflicts within Stored Routines
The same identifier might be used for a routine parameter, a local variable, and a table column. Also, the same local variable name can be used in nested blocks. For example:
CREATE PROCEDURE p (i INT)
BEGIN
DECLARE i INT DEFAULT 0;
SELECT i FROM t;
BEGIN
DECLARE i INT DEFAULT 1;
SELECT i FROM t;
END;
END;
In such cases, the identifier is ambiguous and the following precedence rules apply:
A local variable takes precedence over a routine parameter or table column.
A routine parameter takes precedence over a table column.
A local variable in an inner block takes precedence over a local variable in an outer block.
The behavior that variables take precedence over table columns is nonstandard.
Replication Considerations
Use of stored routines can cause replication problems. This issue is discussed further in Section 18.7, “Binary Logging of Stored Programs”.
The --replicate-wild-do-table=db_name.tbl_name option applies to tables, views, and triggers. It does not apply to stored procedures and functions, or events. To filter statements operating on the latter objects, use one or more of the --replicate-*-db options.
Debugging Considerations
There are no stored routine debugging facilities.
Unsupported Syntax from the SQL:2003 Standard
The MySQL stored routine syntax is based on the SQL:2003 standard. The following items from that standard are not currently supported:
UNDO handlers
FOR loops
Concurrency Considerations
To prevent problems of interaction between sessions, when a client issues a statement, the server uses a snapshot of routines and triggers available for execution of the statement. That is, the server calculates a list of procedures, functions, and triggers that may be used during execution of the statement, loads them, and then proceeds to execute the statement. While the statement executes, it does not see changes to routines performed by other sessions.
For maximum concurrency, stored functions should minimize their side-effects; in particular, updating a table within a stored function can reduce concurrent operations on that table. A stored function acquires table locks before executing, to avoid inconsistency in the binary log due to mismatch of the order in which statements execute and when they appear in the log. When statement-based binary logging is used, statements that invoke a function are recorded rather than the statements executed within the function. Consequently, stored functions that update the same underlying tables do not execute in parallel. In contrast, stored procedures do not acquire table-level locks. All statements executed within stored procedures are written to the binary log, even for statement-based binary logging. See Section 18.7, “Binary Logging of Stored Programs”.
Event Scheduler Restrictions
The following limitations are specific to the Event Scheduler:
Event names are handled in case-insensitive fashion. For example, you cannot have two events in the same database with the names anEvent and AnEvent.
An event may not be created, altered, or dropped by a stored routine, trigger, or another event. An event also may not create, alter, or drop stored routines or triggers. (Bug #16409, Bug #18896)
DDL statements on events are prohibited while a LOCK TABLES statement is in effect.
Event timings using the intervals YEAR, QUARTER, MONTH, and YEAR_MONTH are resolved in months; those using any other interval are resolved in seconds. There is no way to cause events scheduled to occur at the same second to execute in a given order. In addition—due to rounding, the nature of threaded applications, and the fact that a nonzero length of time is required to create events and to signal their execution—events may be delayed by as much as 1 or 2 seconds. However, the time shown in the INFORMATION_SCHEMA.EVENTS table's LAST_EXECUTED column or the mysql.event table's last_executed column is always accurate to within one second of the actual event execution time. (See also Bug #16522.)
Each execution of the statements contained in the body of an event takes place in a new connection; thus, these statements has no effect in a given user session on the server's statement counts such as Com_select and Com_insert that are displayed by SHOW STATUS. However, such counts are updated in the global scope. (Bug #16422)
Events do not support times later than the end of the Unix Epoch; this is approximately the beginning of the year 2038. Such dates are specifically not permitted by the Event Scheduler. (Bug #16396)
References to stored functions, user-defined functions, and tables in the ON SCHEDULE clauses of CREATE EVENT and ALTER EVENT statements are not supported. These sorts of references are not permitted. (See Bug #22830 for more information.)
E.2. Restrictions on Condition Handling
SIGNAL, RESIGNAL, and GET DIAGNOSTICS are not permissible as prepared statements. For example, this statement is invalid:
PREPARE stmt1 FROM 'SIGNAL SQLSTATE "02000"';
SQLSTATE values in class '04' are not treated specially. They are handled the same as other exceptions.
Standard SQL has a diagnostics area stack, containing a diagnostics area for each nested execution context. Standard SQL syntax includes GET STACKED DIAGNOSTICS for referring to stacked areas. MySQL does not support the STACKED keyword because there is a single diagnostics area containing information from the most recent statement that wrote to it. See also Section 13.6.7.7, “The MySQL Diagnostics Area”.
In standard SQL, the first condition relates to the SQLSTATE value returned for the previous SQL statement. In MySQL, this is not guaranteed, so to get the main error, you cannot do this:
GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;
Instead, do this:
GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;
E.3. Restrictions on Server-Side Cursors
Server-side cursors are implemented in the C API using the mysql_stmt_attr_set() function. The same implementation is used for cursors in stored routines. A server-side cursor enables a result set to be generated on the server side, but not transferred to the client except for those rows that the client requests. For example, if a client executes a query but is only interested in the first row, the remaining rows are not transferred.
In MySQL, a server-side cursor is materialized into an internal temporary table. Initially, this is a MEMORY table, but is converted to a MyISAM table when its size exceeds the minimum value of the max_heap_table_size and tmp_table_size system variables. Note that the same restrictions apply to internal temporary tables created to hold the result set for a cursor as for other uses of internal temporary tables. See Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”. One limitation of the implementation is that for a large result set, retrieving its rows through a cursor might be slow.
Cursors are read only; you cannot use a cursor to update rows.
UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because updatable cursors are not supported.
Cursors are nonholdable (not held open after a commit).
Cursors are asensitive.
Cursors are nonscrollable.
Cursors are not named. The statement handler acts as the cursor ID.
You can have open only a single cursor per prepared statement. If you need several cursors, you must prepare several statements.
You cannot use a cursor for a statement that generates a result set if the statement is not supported in prepared mode. This includes statements such as CHECK TABLE, HANDLER READ, and SHOW BINLOG EVENTS.
E.4. Restrictions on Subqueries
Subquery optimization for IN is not as effective as for the = operator or for the IN(value_list) operator.
A typical case for poor IN subquery performance is when the subquery returns a small number of rows but the outer query returns a large number of rows to be compared to the subquery result.
The problem is that, for a statement that uses an IN subquery, the optimizer rewrites it as a correlated subquery. Consider the following statement that uses an uncorrelated subquery:
SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);
The optimizer rewrites the statement to a correlated subquery:
SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);
If the inner and outer queries return M and N rows, respectively, the execution time becomes on the order of O(M×N), rather than O(M+N) as it would be for an uncorrelated subquery.
An implication is that an IN subquery can be much slower than a query written using an IN(value_list) operator that lists the same values that the subquery would return.
In general, you cannot modify a table and select from the same table in a subquery. For example, this limitation applies to statements of the following forms:
DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);
Exception: The preceding prohibition does not apply if you are using a subquery for the modified table in the FROM clause. Example:
UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROM t...) AS _t ...);
Here the result from the subquery in the FROM clause is stored as a temporary table, so the relevant rows in t have already been selected by the time the update to t takes place.
Row comparison operations are only partially supported:
For expr [NOT] IN subquery, expr can be an n-tuple (specified using row constructor syntax) and the subquery can return rows of n-tuples. The permitted syntax is therefore more specifically expressed as row_constructor [NOT] IN table_subquery
For expr op {ALL|ANY|SOME} subquery, expr must be a scalar value and the subquery must be a column subquery; it cannot return multiple-column rows.
In other words, for a subquery that returns rows of n-tuples, this is supported:
(expr_1, ..., expr_n) [NOT] IN table_subquery
But this is not supported:
(expr_1, ..., expr_n) op {ALL|ANY|SOME} subquery
The reason for supporting row comparisons for IN but not for the others is that IN is implemented by rewriting it as a sequence of = comparisons and AND operations. This approach cannot be used for ALL, ANY, or SOME.
Subqueries in the FROM clause cannot be correlated subqueries. They are materialized in whole (evaluated to produce a result set) during query execution, so they cannot be evaluated per row of the outer query. Before MySQL 5.6.3, materialization takes place before evaluation of the outer query. As of 5.6.3, the optimizer delays materialization until the result is needed, which may permit materialization to be avoided. See Section 8.13.16.3, “Optimizing Subqueries in the FROM Clause (Derived Tables)”.
MySQL does not support LIMIT in subqueries for certain subquery operators:
mysql> SELECT * FROM t1
-> WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1);
ERROR 1235 (42000): This version of MySQL doesn't yet support
'LIMIT & IN/ALL/ANY/SOME subquery'
The optimizer is more mature for joins than for subqueries, so in many cases a statement that uses a subquery can be executed more efficiently if you rewrite it as a join.
An exception occurs for the case where an IN subquery can be rewritten as a SELECT DISTINCT join. Example:
SELECT col FROM t1 WHERE id_col IN (SELECT id_col2 FROM t2 WHERE condition);
That statement can be rewritten as follows:
SELECT DISTINCT col FROM t1, t2 WHERE t1.id_col = t2.id_col AND condition;
MySQL permits a subquery to refer to a stored function that has data-modifying side effects such as inserting rows into a table. For example, if f() inserts rows, the following query can modify data:
SELECT ... WHERE x IN (SELECT f() ...);
This behavior is an extension to the SQL standard. In MySQL, it can produce indeterminate results because f() might be executed a different number of times for different executions of a given query depending on how the optimizer chooses to handle it.
For statement-based or mixed-format replication, one implication of this indeterminism is that such a query can produce different results on the master and its slaves.
Before MySQL 5.6.3, a subquery in the FROM clause is evaluated by materializing the result into a temporary table, and this table does not use indexes. As of 5.6.3, the optimizer creates an index on the materialized table if this will result in faster query execution. See Section 8.13.16.3, “Optimizing Subqueries in the FROM Clause (Derived Tables)”.
E.5. Restrictions on Views
View processing is not optimized:
It is not possible to create an index on a view.
Indexes can be used for views processed using the merge algorithm. However, a view that is processed with the temptable algorithm is unable to take advantage of indexes on its underlying tables (although indexes can be used during generation of the temporary tables).
Subqueries cannot be used in the FROM clause of a view.
There is a general principle that you cannot modify a table and select from the same table in a subquery. See Section E.4, “Restrictions on Subqueries”.
The same principle also applies if you select from a view that selects from the table, if the view selects from the table in a subquery and the view is evaluated using the merge algorithm. Example:
CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);
UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;
If the view is evaluated using a temporary table, you can select from the table in the view subquery and still modify that table in the outer query. In this case the view will be stored in a temporary table and thus you are not really selecting from the table in a subquery and modifying it “at the same time.” (This is another reason you might wish to force MySQL to use the temptable algorithm by specifying ALGORITHM = TEMPTABLE in the view definition.)
You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition. No warning results from the DROP or ALTER operation, even though this invalidates the view. Instead, an error occurs later, when the view is used. CHECK TABLE can be used to check for views that have been invalidated by DROP or ALTER operations.
A view definition is “frozen” by certain statements:
If a statement prepared by PREPARE refers to a view, the view definition seen each time the statement is executed later will be the definition of the view at the time it was prepared. This is true even if the view definition is changed after the statement is prepared and before it is executed. Example:
CREATE VIEW v AS SELECT RAND();
PREPARE s FROM 'SELECT * FROM v';
ALTER VIEW v AS SELECT NOW();
EXECUTE s;
The result returned by the EXECUTE statement is a random number, not the current date and time.
With regard to view updatability, the overall goal for views is that if any view is theoretically updatable, it should be updatable in practice. This includes views that have UNION in their definition. Currently, not all views that are theoretically updatable can be updated. The initial view implementation was deliberately written this way to get usable, updatable views into MySQL as quickly as possible. Many theoretically updatable views can be updated now, but limitations still exist:
Updatable views with subqueries anywhere other than in the WHERE clause. Some views that have subqueries in the SELECT list may be updatable.
You cannot use UPDATE to update more than one underlying table of a view that is defined as a join.
You cannot use DELETE to update a view that is defined as a join.
There exists a shortcoming with the current implementation of views. If a user is granted the basic privileges necessary to create a view (the CREATE VIEW and SELECT privileges), that user will be unable to call SHOW CREATE VIEW on that object unless the user is also granted the SHOW VIEW privilege.
That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to insufficient privileges. This problem is described in Bug #22062.
The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to users who are granted CREATE VIEW, since MySQL doesn't grant it implicitly when views are created.
Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view is not permitted.
SHOW CREATE VIEW displays view definitions using an AS alias_name clause for each column. If a column is created from an expression, the default alias is the expression text, which can be quite long. Aliases for column names in CREATE VIEW statements are checked against the maximum column length of 64 characters (not the maximum alias length of 256 characters). As a result, views created from the output of SHOW CREATE VIEW fail if any column alias exceeds 64 characters. This can cause problems in the following circumstances for views with too-long aliases:
View definitions fail to replicate to newer slaves that enforce the column-length restriction.
Dump files created with mysqldump cannot be loaded into servers that enforce the column-length restriction.
A workaround for either problem is the modify each problematic view definition to use aliases that provide shorter column names. Then the view will replicate properly, and can be dumped and reloaded without causing an error. To modify the definition, drop and create the view again with DROP VIEW and CREATE VIEW, or replace the definition with CREATE OR REPLACE VIEW.
For problems that occur when reloading view definitions in dump files, another workaround is to edit the dump file to modify its CREATE VIEW statements. However, this does not change the original view definitions, which may cause problems for subsequent dump operations.
E.6. Restrictions on XA Transactions
XA transaction support is limited to the InnoDB storage engine.
For “external XA,” a MySQL server acts as a Resource Manager and client programs act as Transaction Managers. For “Internal XA”, storage engines within a MySQL server act as RMs, and the server itself acts as a TM. Internal XA support is limited by the capabilities of individual storage engines. Internal XA is required for handling XA transactions that involve more than one storage engine. The implementation of internal XA requires that a storage engine support two-phase commit at the table handler level, and currently this is true only for InnoDB.
For XA START, the JOIN and RESUME clauses are not supported.
For XA END, the SUSPEND [FOR MIGRATE] clause is not supported.
The requirement that the bqual part of the xid value be different for each XA transaction within a global transaction is a limitation of the current MySQL XA implementation. It is not part of the XA specification.
If an XA transaction has reached the PREPARED state and the MySQL server is killed (for example, with kill -9 on Unix) or shuts down abnormally, the transaction can be continued after the server restarts. However, if the client reconnects and commits the transaction, the transaction will be absent from the binary log even though it has been committed. This means the data and the binary log have gone out of synchrony. An implication is that XA cannot be used safely together with replication.
It is possible that the server will roll back a pending XA transaction, even one that has reached the PREPARED state. This happens if a client connection terminates and the server continues to run, or if clients are connected and the server shuts down gracefully. (In the latter case, the server marks each connection to be terminated, and then rolls back the PREPARED XA transaction associated with it.) It should be possible to commit or roll back a PREPARED XA transaction, but this cannot be done without changes to the binary logging mechanism.
E.7. Restrictions on Character Sets
Identifiers are stored in mysql database tables (user, db, and so forth) using utf8, but identifiers can contain only characters in the Basic Multilingual Plane (BMP). Supplementary characters are not permitted in identifiers.
The ucs2, utf16, utf16le, and utf32 character sets have the following restrictions:
They cannot be used as a client character set, which means that they do not work for SET NAMES or SET CHARACTER SET. (See Section 10.1.4, “Connection Character Sets and Collations”.)
It is currently not possible to use LOAD DATA INFILE to load data files that use these character sets.
FULLTEXT indexes cannot be created on a column that uses any of these character sets. However, you can perform IN BOOLEAN MODE searches on the column without an index.
The use of ENCRYPT() with these character sets is not recommended because the underlying system call expects a string terminated by a zero byte.
The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multi-byte safe and may produce unexpected results with multi-byte character sets. In addition, these operators compare characters by their byte values and accented characters may not compare as equal even if a given collation treats them as equal.
E.8. Restrictions on Performance Schema
The Performance Schema avoids using mutexes to collect or produce data, so there are no guarantees of consistency and results can sometimes be incorrect. Event values in performance_schema tables are nondeterministic and nonrepeatable.
If you save event information in another table, you should not assume that the original events will still be available later. For example, if you select events from a performance_schema table into a temporary table, intending to join that table with the original table later, there might be no matches.
mysqldump and BACKUP DATABASE ignore tables in the performance_schema database.
Tables in the performance_schema database cannot be locked with LOCK TABLES, except the setup_xxx tables.
Tables in the performance_schema database cannot be indexed.
Results for queries that refer to tables in the performance_schema database are not saved in the query cache.
Tables in the performance_schema database are not replicated.
The Performance Schema is not available in libmysqld, the embedded server.
The types of timers might vary per platform. The performance_timers table shows which event timers are available. If the values in this table for a given timer name are NULL, that timer is not supported on your platform.
Instruments that apply to storage engines might not be implemented for all storage engines. Instrumentation of each third-party engine is the responsibility of the engine maintainer.
E.9. Restrictions on Pluggable Authentication
The first part of this section describes general restrictions on the applicability of the pluggable authentication framework described at Section 6.3.7, “Pluggable Authentication”. The second part describes how third-party connector developers can determine the extent to which a connector can take advantage of pluggable authentication capabilities and what steps to take to become more compliant.
The term “native authentication” used here refers to authentication against passwords stored in the Password column of the mysql.user table. This is the same authentication method provided by older MySQL servers, before pluggable authentication was implemented. It remains the default method, although now it is implemented using plugins. “Windows native authentication” refers to authentication using the credentials of a user who has already logged in to Windows, as implemented by the Windows Native Authentication plugin (“Windows plugin” for short).
General Pluggable Authentication Restrictions
Connector/C, Connector/C++: Clients that use these connectors can connect to the server only through accounts that use native authentication.
Exception: A connector supports pluggable authentication if it was built to link to libmysqlclient dynamically (rather than statically) and it loads the current version of libmysqlclient if that version is installed, or if the connector is recompiled from source to link against the current libmysqlclient.
Connector/J: Clients that use this connector can connect to the server only through accounts that use native authentication.
Connector/Net: Before Connector/Net 6.4.4, clients that use this connector can connect to the server only through accounts that use native authentication. As of 6.4.4, clients can also connect to the server through accounts that use the Windows plugin.
Connector/ODBC: Before Connector/ODBC 3.51.29 and 5.1.9, clients that use this connector can connect to the server only through accounts that use native authentication. As of 3.51.29 and 5.1.9, clients that use binary releases of this connector for Windows can also connect to the server through accounts that use the PAM or Windows plugins. (These capabilities result from linking the Connector/ODBC binaries against the MySQL 5.5.16 libmysqlclient rather than the MySQL 5.1 libmysqlclient used previously. The newer libmysqlclient includes the client-side support needed for the server-side PAM and Windows authentication plugins.)
Connector/PHP: Clients that use this connector can connect to the server only through accounts that use native authentication, when compiled using the MySQL native driver for PHP (mysqlnd).
MySQL Proxy: Before MySQL Proxy 0.8.2, clients can connect to the server only through accounts that use native authentication. As of 0.8.2, clients can also connect to the server through accounts that use the PAM plugin. As of 0.8.3, clients can also connect to the server through accounts that use the Windows plugin.
MySQL Enterprise Backup: MySQL Enterprise Backup before version 3.6.1 supports connections to the server only through accounts that use native authentication. As of 3.6.1, MySQL Enterprise Backup can connect to the server through accounts that use nonnative authentication.
Windows native authentication: Connecting through an account that uses the Windows plugin requires Windows Domain setup. Without it, NTLM authentication is used and then only local connections are possible; that is, the client and server must run on the same computer.
Proxy users: Proxy user support is available to the extent that clients can connect through accounts authenticated with plugins that implement proxy user capability (that is, plugins that can return a user name different from that of the connecting user). For example, the native authentication plugins do not support proxy users, whereas the PAM and Windows plugins do.
Replication: Before MySQL 5.6.4, replication slaves can connect to the master server only through master accounts that use native authentication. As of 5.6.4, replication slaves can also connect through master accounts that use nonnative authentication if the required client-side plugin is available. If the plugin is built into libmysqlclient, it is available by default. Otherwise, the plugin must be installed on the slave side in the directory named by the slave plugin_dir system variable.
FEDERATED tables: A FEDERATED table can access the remote table only through accounts on the remote server that use native authentication.
Pluggable Authentication and Third-Party Connectors
Third-party connector developers can use the following guidelines to determine readiness of a connector to take advantage of pluggable authentication capabilities and what steps to take to become more compliant:
An existing connector to which no changes have been made uses native authentication and clients that use the connector can connect to the server only through accounts that use native authentication. However, you should test the connector against a recent version of the server to verify that such connections still work without problem.
Exception: A connector might work with pluggable authentication without any changes if it links to libmysqlclient dynamically (rather than statically) and it loads the current version of libmysqlclient if that version is installed.
To take advantage of pluggable authentication capabilities, a connector that is libmysqlclient-based should be relinked against the current version of libmysqlclient. This enables the connector to support connections though accounts that require client-side plugins now built into libmysqlclient (such as the cleartext plugin needed for PAM authentication and the Windows plugin needed for Windows native authentication). Linking with a current libmysqlclient also enables the connector to access client-side plugins installed in the default MySQL plugin directory (typically the directory named by the default value of the local server's plugin_dir system variable).
If a connector links to libmysqlclient dynamically, it must be ensured that the newer version of libmysqlclient is installed on the client host and that the connector loads it at runtime.
Another way for a connector to support a given authentication method is to implement it directly in the client/server protocol. Connector/Net uses this approach to provide support for Windows native authentication.
If a connector should be able to load client-side plugins from a directory different from the default plugin directory, it must implement some means for client users to specify the directory. Possibilities for this include a command-line option or environment variable from which the connector can obtain the directory name. Standard MySQL client programs such as mysql and mysqladmin implement a --plugin-dir option. See also Section 21.8.13, “C API Client Plugin Functions”.
Proxy user support by a connector depends, as described earlier in this section, on whether the authentication methods that it supports permit proxy users.
E.10. Limits in MySQL
This section lists current limits in MySQL 5.6.
E.10.1. Limits of Joins
The maximum number of tables that can be referenced in a single join is 61. This also applies to the number of tables that can be referenced in the definition of a view.
E.10.2. Limits on Number of Databases and Tables
MySQL has no limit on the number of databases. The underlying file system may have a limit on the number of directories.
MySQL has no limit on the number of tables. The underlying file system may have a limit on the number of files that represent tables. Individual storage engines may impose engine-specific constraints. InnoDB permits up to 4 billion tables.
E.10.3. Limits on Table Size
The effective maximum table size for MySQL databases is usually determined by operating system constraints on file sizes, not by MySQL internal limits. The following table lists some examples of operating system file-size limits. This is only a rough guide and is not intended to be definitive. For the most up-to-date information, be sure to check the documentation specific to your operating system.
Operating System | File-size Limit |
---|---|
Win32 w/ FAT/FAT32 | 2GB/4GB |
Win32 w/ NTFS | 2TB (possibly larger) |
Linux 2.2-Intel 32-bit | 2GB (LFS: 4GB) |
Linux 2.4+ | (using ext3 file system) 4TB |
Solaris 9/10 | 16TB |
Mac OS X w/ HFS+ | 2TB |
Windows users, please note that FAT and VFAT (FAT32) are not considered suitable for production use with MySQL. Use NTFS instead.
On Linux 2.2, you can get MyISAM tables larger than 2GB in size by using the Large File Support (LFS) patch for the ext2 file system. Most current Linux distributions are based on kernel 2.4 or higher and include all the required LFS patches. On Linux 2.4, patches also exist for ReiserFS to get support for big files (up to 2TB). With JFS and XFS, petabyte and larger files are possible on Linux.
For a detailed overview about LFS in Linux, have a look at Andreas Jaeger's Large File Support in Linux page at http://www.suse.de/~aj/linux_lfs.html.
If you do encounter a full-table error, there are several reasons why it might have occurred:
The disk might be full.
The InnoDB storage engine maintains InnoDB tables within a tablespace that can be created from several files. This enables a table to exceed the maximum individual file size. The tablespace can include raw disk partitions, which permits extremely large tables. The maximum tablespace size is 64TB.
If you are using InnoDB tables and run out of room in the InnoDB tablespace. In this case, the solution is to extend the InnoDB tablespace. See Section 14.2.2.2, “Adding, Removing, or Resizing InnoDB Data and Log Files”.
You are using MyISAM tables on an operating system that supports files only up to 2GB in size and you have hit this limit for the data file or index file.
You are using a MyISAM table and the space required for the table exceeds what is permitted by the internal pointer size. MyISAM permits data and index files to grow up to 256TB by default, but this limit can be changed up to the maximum permissible size of 65,536TB (2567 – 1 bytes).
If you need a MyISAM table that is larger than the default limit and your operating system supports large files, the CREATE TABLE statement supports AVG_ROW_LENGTH and MAX_ROWS options. See Section 13.1.14, “CREATE TABLE Syntax”. The server uses these options to determine how large a table to permit.
If the pointer size is too small for an existing table, you can change the options with ALTER TABLE to increase a table's maximum permissible size. See Section 13.1.6, “ALTER TABLE Syntax”.
ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;
You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this case, MySQL can't optimize the space required based only on the number of rows.
To change the default size limit for MyISAM tables, set the myisam_data_pointer_size, which sets the number of bytes used for internal row pointers. The value is used to set the pointer size for new tables if you do not specify the MAX_ROWS option. The value of myisam_data_pointer_size can be from 2 to 7. A value of 4 permits tables up to 4GB; a value of 6 permits tables up to 256TB.
You can check the maximum data and index sizes by using this statement:
SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';
You also can use myisamchk -dv /path/to/table-index-file. See Section 13.7.5, “SHOW Syntax”, or Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.
Other ways to work around file-size limits for MyISAM tables are as follows:
If your large table is read only, you can use myisampack to compress it. myisampack usually compresses a table by at least 50%, so you can have, in effect, much bigger tables. myisampack also can merge multiple tables into a single table. See Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”.
MySQL includes a MERGE library that enables you to handle a collection of MyISAM tables that have identical structure as a single MERGE table. See Section 14.8, “The MERGE Storage Engine”.
You are using the MEMORY (HEAP) storage engine; in this case you need to increase the value of the max_heap_table_size system variable. See Section 5.1.4, “Server System Variables”.
E.10.4. Limits on Table Column Count and Row Size
There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given table. The exact limit depends on several interacting factors.
Every table (regardless of storage engine) has a maximum row size of 65,535 bytes. Storage engines may place additional constraints on this limit, reducing the effective maximum row size.
The maximum row size constrains the number (and possibly size) of columns because the total length of all columns cannot exceed this size. For example, utf8 characters require up to three bytes per character, so for a CHAR(255) CHARACTER SET utf8 column, the server must allocate 255 × 3 = 765 bytes per value. Consequently, a table cannot contain more than 65,535 / 765 = 85 such columns.
Storage for variable-length columns includes length bytes, which are assessed against the row size. For example, a VARCHAR(255) CHARACTER SET utf8 column takes two bytes to store the length of the value, so each value can take up to 767 bytes.
BLOB and TEXT columns count from one to four plus eight bytes each toward the row-size limit because their contents are stored separately from the rest of the row.
Declaring columns NULL can reduce the maximum number of columns permitted. For MyISAM tables, NULL columns require additional space in the row to record whether their values are NULL. Each NULL column takes one bit extra, rounded up to the nearest byte. The maximum row length in bytes can be calculated as follows:
row length = 1
+ (sum of column lengths)
+ (number of NULL columns + delete_flag + 7)/8
+ (number of variable-length columns)
delete_flag is 1 for tables with static row format. Static tables use a bit in the row record for a flag that indicates whether the row has been deleted. delete_flag is 0 for dynamic tables because the flag is stored in the dynamic row header. For information about MyISAM table formats, see Section 14.3.3, “MyISAM Table Storage Formats”.
For InnoDB tables, storage size is the same for NULL and NOT NULL columns, so the preceding calculations do not apply.
The following statement to create table t1 succeeds because the columns require 32,765 + 2 bytes and 32,766 + 2 bytes, which falls within the maximum row size of 65,535 bytes:
mysql> CREATE TABLE t1
-> (c1 VARCHAR(32765) NOT NULL, c2 VARCHAR(32766) NOT NULL)
-> ENGINE = MyISAM CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)
The following statement to create table t2 fails because the columns are NULL and MyISAM requires additional space that causes the row size to exceed 65,535 bytes:
mysql> CREATE TABLE t2
-> (c1 VARCHAR(32765) NULL, c2 VARCHAR(32766) NULL)
-> ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs
The following statement to create table t3 fails because, although the column length is within the maximum length of 65,535 bytes, two additional bytes are required to record the length, which causes the row size to exceed 65,535 bytes:
mysql> CREATE TABLE t3
-> (c1 VARCHAR(65535) NOT NULL)
-> ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs
Reducing the column length to 65,533 or less permits the statement to succeed.
Individual storage engines might impose additional restrictions that limit table column count. Examples:
InnoDB permits up to 1000 columns.
InnoDB restricts row size to something less than half a database page (approximately 8000 bytes), not including VARBINARY, VARCHAR, BLOB, or TEXT columns.
Different InnoDB storage formats (COMPRESSED, REDUNDANT) use different amounts of page header and trailer data, which affects the amount of storage available for rows.
Each table has an .frm file that contains the table definition. The definition affects the content of this file in ways that may affect the number of columns permitted in the table. For more information, see Section E.10.5, “Limits Imposed by .frm File Structure”.
E.10.5. Limits Imposed by .frm File Structure
Each table has an .frm file that contains the table definition. The server uses the following expression to check some of the table information stored in the file against an upper limit of 64KB:
if (info_length+(ulong) create_fields.elements*FCOMP+288+
n_length+int_length+com_length > 65535L || int_count > 255)
The portion of the information stored in the .frm file that is checked against the expression cannot grow beyond the 64KB limit, so if the table definition reaches this size, no more columns can be added.
The relevant factors in the expression are:
info_length is space needed for “screens.” This is related to MySQL's Unireg heritage.
create_fields.elements is the number of columns.
FCOMP is 17.
n_length is the total length of all column names, including one byte per name as a separator.
int_length is related to the list of values for ENUM and SET columns. In this context, “int” does not mean “integer.” It means “interval,” a term that refers collectively to ENUM and SET columns.
com_length is the total length of column comments.
The expression just described has several implications for permitted table definitions:
Using long column names can reduce the maximum number of columns, as can the inclusion of ENUM or SET columns, or use of column comments.
A table can have no more than 255 unique ENUM and SET definitions. Columns with identical element lists are considered the same against this limt. For example, if a table contains these two columns, they count as one (not two) toward this limit because the definitions are identical:
e1 ENUM('a','b','c')
e2 ENUM('a','b','c')
The sum of the length of element names in the unique ENUM and SET definitions counts toward the 64KB limit, so although the theoretical limit on number of elements in a given ENUM column is 65,535, the practical limit is less than 3000.
E.10.6. Windows Platform Limitations
The following limitations apply to use of MySQL on the Windows platform:
Process memory
On Windows 32-bit platforms, it is not possible by default to use more than 2GB of RAM within a single process, including MySQL. This is because the physical address limit on Windows 32-bit is 4GB and the default setting within Windows is to split the virtual address space between kernel (2GB) and user/applications (2GB).
Some versions of Windows have a boot time setting to enable larger applications by reducing the kernel application. Alternatively, to use more than 2GB, use a 64-bit version of Windows.
File system aliases
When using MyISAM tables, you cannot use aliases within Windows link to the data files on another volume and then link back to the main MySQL datadir location.
This facility is often used to move the data and index files to a RAID or other fast solution, while retaining the main .frm files in the default data directory configured with the datadir option.
Limited number of ports
Windows systems have about 4,000 ports available for client connections, and after a connection on a port closes, it takes two to four minutes before the port can be reused. In situations where clients connect to and disconnect from the server at a high rate, it is possible for all available ports to be used up before closed ports become available again. If this happens, the MySQL server appears to be unresponsive even though it is running. Note that ports may be used by other applications running on the machine as well, in which case the number of ports available to MySQL is lower.
For more information about this problem, see http://support.microsoft.com/default.aspx?scid=kb;en-us;196271.
DATA DIRECTORY and INDEX DIRECTORY
The DATA DIRECTORY option for CREATE TABLE is supported on Windows only for InnoDB tables, as described in Section 5.4.1.2, “Specifying the Location of a Tablespace”. For MyISAM and other storage engines, the DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ignored on Windows and any other platforms with a nonfunctional realpath() call.
You cannot drop a database that is in use by another session.
Case-insensitive names
File names are not case sensitive on Windows, so MySQL database and table names are also not case sensitive on Windows. The only restriction is that database and table names must be specified using the same case throughout a given statement. See Section 9.2.2, “Identifier Case Sensitivity”.
Directory and file names
On Windows, MySQL Server supports only directory and file names that are compatible with the current ANSI code pages. For example, the following Japanese directory name will not work in the Western locale (code page 1252):
datadir="C:/私たちのプロジェクトのデータ"
The same limitation applies to directory and file names referred to in SQL statements, such as the data file path name in LOAD DATA INFILE.
The “\” path name separator character
Path name components in Windows are separated by the “\” character, which is also the escape character in MySQL. If you are using LOAD DATA INFILE or SELECT ... INTO OUTFILE, use Unix-style file names with “/” characters:
mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;
Alternatively, you must double the “\” character:
mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;
Problems with pipes
Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character ^Z / CHAR(24), Windows thinks that it has encountered end-of-file and aborts the program.
This is mainly a problem when you try to apply a binary log as follows:
C:\> mysqlbinlog binary_log_file | mysql --user=root
If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character, you can use the following workaround:
C:\> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"
The latter command also can be used to reliably read in any SQL file that may contain binary data.
MySQL Glossary
These terms are commonly used in information about the MySQL database server. This glossary originated as a reference for terminology about the InnoDB storage engine, and the majority of definitions are InnoDB-related.
A
ACID
An acronym standing for atomicity, consistency, isolation, and durability. These properties are all desirable in a database system, and are all closely tied to the notion of a transaction. The transactional features of InnoDB adhere to the ACID principles.
Transactions are atomic units of work that can be committed or rolled back. When a transaction makes multiple changes to the database, either all the changes succeed when the transaction is committed, or all the changes are undone when the transaction is rolled back.
The database remains in a consistent state at all times -- after each commit or rollback, and while transactions are in progress. If related data is being updated across multiple tables, queries see either all old values or all new values, not a mix of old and new values.
Transactions are protected (isolated) from each other while they are in progress; they cannot interfere with each other or see each other's uncommitted data. This isolation is achieved through the locking mechanism. Experienced users can adjust the isolation level, trading off less protection in favor of increased performance and concurrency, when they can be sure that the transactions really do not interfere with each other.
The results of transactions are durable: once a commit operation succeeds, the changes made by that transaction are safe from power failures, system crashes, race conditions, or other potential dangers that many non-database applications are vulnerable to. Durability typically involves writing to disk storage, with a certain amount of redundancy to protect against power failures or software crashes during write operations. (In InnoDB, the doublewrite buffer assists with durability.)
See Also atomic, commit, concurrency, doublewrite buffer, isolation level, locking, rollback, transaction.
adaptive flushing
An algorithm for InnoDB tables that smooths out the I/O overhead introduced by checkpoints. Instead of flushing all modified pages from the buffer pool to the data files at once, MySQL periodically flushes small sets of modified pages. The adaptive flushing algorithm extends this process by estimating the optimal rate to perform these periodic flushes, based on the rate of flushing and how fast redo information is generated. First introduced in MySQL 5.1, in the InnoDB Plugin.
See Also buffer pool, checkpoint, data files, flush, InnoDB, page, redo log.
adaptive hash index
An optimization for InnoDB tables that can speed up lookups using = and IN operators, by constructing a hash index in memory. MySQL monitors index searches for InnoDB tables, and if queries could benefit from a hash index, it builds one automatically for index pages that are frequently accessed. In a sense, the adaptive hash index configures MySQL at runtime to take advantage of ample main memory, coming closer to the architecture of main-memory databases. This feature is controlled by the innodb_adaptive_hash_index configuration option. Because this feature benefits some workloads and not others, and the memory used for the hash index is reserved in the buffer pool, typically you should benchmark with this feature both enabled and disabled.
The hash index is always built based on an existing InnoDB secondary index, which is organized as a B-tree structure. MySQL can build a hash index on a prefix of any length of the key defined for the B-tree, depending on the pattern of searches against the index. A hash index can be partial; the whole B-tree index does not need to be cached in the buffer pool.
In MySQL 5.6 and higher, another way to take advantage of fast single-value lookups with InnoDB tables is to use the memcached interface to InnoDB. See Section 14.2.9, “InnoDB Integration with memcached” for details.
See Also B-tree, buffer pool, hash index, memcached, page, secondary index.
AHI
Acronym for adaptive hash index.
See Also adaptive hash index.
AIO
Acronym for asynchronous I/O. You might see this acronym in InnoDB messages or keywords.
See Also asynchronous I/O.
Antelope
The code name for the original InnoDB file format. It supports the redundant and compact row formats, but not the newer dynamic and compressed row formats available in the Barracuda file format.
If your application could benefit from InnoDB table compression, or uses BLOBs or large text columns that could benefit from the dynamic row format, you might switch some tables to Barracuda format. You select the file format to use by setting the innodb_file_format option before creating the table.
See Also Barracuda, compact row format, compressed row format, dynamic row format, file format, innodb_file_format, redundant row format.
application programming interface (API)
A set of functions or procedures. An API provides a stable set of names and types for functions, procedures, parameters, and return values.
apply
When a backup produced by the MySQL Enterprise Backup product does not include the most recent changes that occurred while the backup was underway, the process of updating the backup files to include those changes is known as the apply step. It is specified by the apply-log option of the mysqlbackup command.
Before the changes are applied, we refer to the files as a raw backup. After the changes are applied, we refer to the files as a prepared backup. The changes are recorded in the ibbackup_logfile file; once the apply step is finished, this file is no longer necessary.
See Also hot backup, ibbackup_logfile, MySQL Enterprise Backup, prepared backup, raw backup.
.ARM file
Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file, MySQL Enterprise Backup, mysqlbackup command.
.ARZ file
Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file, MySQL Enterprise Backup, mysqlbackup command.
asynchronous I/O
A type of I/O operation that allows other processing to proceed before the I/O is completed. Also known as non-blocking I/O and abbreviated as AIO. InnoDB uses this type of I/O for certain operations that can run in parallel without affecting the reliability of the database, such as reading pages into the buffer pool that have not actually been requested, but might be needed soon.
Historically, InnoDB has used asynchronous I/O on Windows systems only. Starting with the InnoDB Plugin 1.1, InnoDB uses asynchronous I/O on Linux systems. This change introduces a dependency on libaio. On other Unix-like systems, InnoDB uses synchronous I/O only.
See Also buffer pool, non-blocking I/O.
atomic
In the SQL context, transactions are units of work that either succeed entirely (when committed) or have no effect at all (when rolled back). The indivisible ("atomic") property of transactions is the "A" in the acronym ACID.
See Also ACID, commit, rollback, transaction.
atomic instruction
Special instructions provided by the CPU, to ensure that critical low-level operations cannot be interrupted.
auto-increment
A property of a table column (specified by the AUTO_INCREMENT keyword) that automatically adds an ascending sequence of values in the column. InnoDB supports auto-increment only for primary key columns.
It saves work for the developer, not to have to produce new unique values when inserting new rows. It provides useful information for the query optimizer, because the column is known to be not null and with unique values. The values from such a column can be used as lookup keys in various contexts, and because they are auto-generated there is no reason to ever change them; for this reason, primary key columns are often specified as auto-incrementing.
Auto-increment columns can be problematic with statement-based replication, because replaying the statements on a slave might not produce the same set of column values as on the master, due to timing issues. When you have an auto-incrementing primary key, you can use statement-based replication only with the setting innodb_autoinc_lock_mode=1. If you have innodb_autoinc_lock_mode=2, which allows higher concurrency for insert operations, use row-based replication rather than statement-based replication. The setting innodb_autoinc_lock_mode=0 is the previous (traditional) default setting and should not be used except for compatibility purposes.
See Also auto-increment locking, innodb_autoinc_lock_mode, primary key, row-based replication, statement-based replication.
auto-increment locking
The convenience of an auto-increment primary key involves some tradeoff with concurrency. In the simplest case, if one transaction is inserting values into the table, any other transactions must wait to do their own inserts into that table, so that rows inserted by the first transaction receive consecutive primary key values. InnoDB includes optimizations, and the innodb_autoinc_lock_mode option, so that you can choose how to trade off between predictable sequences of auto-increment values and maximum concurrency for insert operations.
See Also auto-increment, concurrency, innodb_autoinc_lock_mode.
autocommit
A setting that causes a commit operation after each SQL statement. This mode is not recommended for working with InnoDB tables with transactions that span several statements. It can help performance for read-only transactions on InnoDB tables, where it minimizes overhead from locking and generation of undo data, especially in MySQL 5.6.4 and up. It is also appropriate for working with MyISAM tables, where transactions are not applicable.
See Also commit, locking, read-only transaction, SQL, transaction, undo.
availability
The ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL, the operating system, or the hardware and maintenance activity that may otherwise cause downtime. Often paired with scalability as critical aspects of a large-scale deployment.
See Also scalability.
B
B-tree
A tree data structure that is popular for use in database indexes. The structure is kept sorted at all times, enabling fast lookup for exact matches (equals operator) and ranges (for example, greater than, less than, and BETWEEN operators). This type of index is available for most storage engines, such as InnoDB and MyISAM.
Because B-tree nodes can have many children, a B-tree is not the same as a binary tree, which is limited to 2 children per node.
Contrast with hash index, which is only available in the MEMORY storage engine. The MEMORY storage engine can also use B-tree indexes, and you should choose B-tree indexes for MEMORY tables if some queries use range operators.
See Also hash index.
backticks
Identifiers within MySQL SQL statements must be quoted using the backtick character (`) if they contain special characters or reserved words. For example, to refer to a table named FOO#BAR or a column named SELECT, you would specify the identifiers as `FOO#BAR` and `SELECT`. Since the backticks provide an extra level of safety, they are used extensively in program-generated SQL statements, where the identifier names might not be known in advance.
Many other database systems use double quotation marks (") around such special names. For portability, you can enable ANSI_QUOTES mode in MySQL and use double quotation marks instead of backticks to qualify identifier names.
See Also SQL.
backup
The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can also refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore operation.
With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical backups are performed by the mysqldump command. These techniques have different characteristics in terms of size and representation of the backup data, and speed (especially speed of the restore operation).
Backups are further classified as hot, warm, or cold depending on how much they interfere with normal database operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, MySQL Enterprise Backup, mysqldump, physical backup, warm backup.
Barracuda
The code name for an InnoDB file format that supports compression for table data. This file format was first introduced in the InnoDB Plugin. It supports the compressed row format that enables InnoDB table compression, and the dynamic row format that improves the storage layout for BLOB and large text columns. You can select it through the innodb_file_format option.
Because the InnoDB system tablespace is stored in the original Antelope file format, to use the Barracuda file format you must also enable the file-per-table setting, which puts newly created tables in their own tablespaces separate from the system tablespace.
The MySQL Enterprise Backup product version 3.5 and above supports backing up tablespaces that use the Barracuda file format.
See Also Antelope, compact row format, compressed row format, dynamic row format, file format, file-per-table, innodb_file_format, MySQL Enterprise Backup, row format, system tablespace.
beta
An early stage in the life of a software product, when it is available only for evaluation, typically without a definite release number or a number less than 1. InnoDB does not use the beta designation, preferring an early adopter phase that can extend over several point releases, leading to a GA release.
See Also early adopter, GA.
binary log
A file containing a record of all statements that attempt to change table data. These statements can be replayed to bring slave servers up to date in a replication scenario, or to bring a database up to date after restoring table data from a backup. The binary logging feature can be turned on and off, although Oracle recommends always enabling it if you use replication or perform backups.
You can examine the contents of the binary log, or replay those statements during replication or recovery, by using the mysqlbinlog command. For full information about the binary log, see Section 5.2.4, “The Binary Log”. For MySQL configuration options related to the binary log, see Section 16.1.4.4, “Binary Log Options and Variables”.
For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the file are important details. To record this information for the master server when taking a backup in a replication context, you can specify the --slave-info option.
Prior to MySQL 5.0, a similar capability was available, known as the update log. In MySQL 5.0 and higher, the binary log replaces the update log.
See Also binlog, MySQL Enterprise Backup, replication.
binlog
An informal name for the binary log file. For example, you might see this abbreviation used in e-mail messages or forum discussions.
See Also binary log.
blind query expansion
A special mode of full-text search enabled by the WITH QUERY EXPANSION clause. It performs the search twice, where the search phrase for the second search is the original search phrase concatenated with the few most highly relevant documents from the first search. This technique is mainly applicable for short search phrases, perhaps only a single word. It can uncover relevant matches where the precise search term does not occur in the document.
See Also full-text search.
bottleneck
A portion of a system that is constrained in size or capacity, that has the effect of limiting overall throughput. For example, a memory area might be smaller than necessary; access to a single required resource might prevent multiple CPU cores from running simultaneously; or waiting for disk I/O to complete might prevent the CPU from running at full capacity. Removing bottlenecks tends to improve concurrency. For example, the ability to have multiple InnoDB buffer pool instances reduces contention when multiple sessions read from and write to the buffer pool simultaneously.
See Also buffer pool, concurrency.
bounce
A shutdown operation immediately followed by a restart. Ideally with a relatively short warmup period so that performance and throughput quickly return to a high level.
See Also shutdown.
buddy allocator
A mechanism for managing different-sized pages in the InnoDB buffer pool.
See Also buffer pool, page, page size.
buffer
A memory or disk area used for temporary storage. Data is buffered in memory so that it can be written to disk efficiently, with a few large I/O operations rather than many small ones. Data is buffered on disk for greater reliability, so that it can be recovered even when a crash or other failure occurs at the worst possible time. The main types of buffers used by InnoDB are the buffer pool, the doublewrite buffer, and the insert buffer.
See Also buffer pool, crash, doublewrite buffer, insert buffer.
buffer pool
The memory area that holds cached InnoDB data for both tables and indexes. For efficiency of high-volume read operations, the buffer pool is divided into pages that can potentially hold multiple rows. For efficiency of cache management, the buffer pool is implemented as a linked list of pages; data that is rarely used is aged out of the cache, using a variation of the LRU algorithm. On systems with large memory, you can improve concurrency by dividing the buffer pool into multiple buffer pool instances.
Several InnoDB status variables, information_schema tables, and performance_schema tables help to monitor the internal workings of the buffer pool. Starting in MySQL 5.6, you can also dump and restore the contents of the buffer pool, either automatically during shutdown and restart, or manually at any time, through a set of InnoDB configuration variables such as innodb_buffer_pool_dump_at_shutdown and innodb_buffer_pool_load_at_startup.
See Also buffer pool instance, LRU, page, warm up.
buffer pool instance
Any of the multiple regions into which the buffer pool can be divided, controlled by the innodb_buffer_pool_instances configuration option. The total memory size specified by the innodb_buffer_pool_size is divided among all the instances. Typically, multiple buffer pool instances are appropriate for systems devoting multiple gigabytes to the InnoDB buffer pool, with each instance 1 gigabyte or larger. On systems loading or looking up large amounts of data in the buffer pool from many concurrent sessions, having multiple instances reduces the contention for exclusive access to the data structures that manage the buffer pool.
See Also buffer pool.
built-in
The built-in InnoDB storage engine within MySQL is the original form of distribution for the storage engine. Contrast with the InnoDB Plugin. Starting with MySQL 5.5, the InnoDB Plugin is merged back into the MySQL code base as the built-in InnoDB storage engine (known as InnoDB 1.1).
This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin but not the built-in InnoDB, or vice versa.
See Also InnoDB, plugin.
business rules
The relationships and sequences of actions that form the basis of business software, used to run a commercial company. Sometimes these rules are dictated by law, other times by company policy. Careful planning ensures that the relationships encoded and enforced by the database, and the actions performed through application logic, accurately reflect the real policies of the company and can handle real-life situations.
For example, an employee leaving a company might trigger a sequence of actions from the human resources department. The human resources database might also need the flexibility to represent data about a person who has been hired, but not yet started work. Closing an account at an online service might result in data being removed from a database, or the data might be moved or flagged so that it could be recovered if the account is re-opened. A company might establish policies regarding salary maximums, minimums, and adjustments, in addition to basic sanity checks such as the salary not being a negative number. A retail database might not allow a purchase with the same serial number to be returned more than once, or might not allow credit card purchases above a certain value, while a database used to detect fraud might allow these kinds of things.
See Also relational.
C
cache
The general term for any memory area that stores copies of data for frequent or high-speed retrieval. In InnoDB, the primary kind of cache structure is the buffer pool.
See Also buffer, buffer pool.
cardinality
The number of different values in a table column. When queries refer to columns that have an associated index, the cardinality of each column influences which access method is most efficient. For example, for a column with a unique constraint, the number of different values is equal to the number of rows in the table. If a table has a million rows but only 10 different values for a particular column, each value occurs (on average) 100,000 times. A query such as SELECT c1 FROM t1 WHERE c1 = 50; thus might return 1 row or a huge number of rows, and the database server might process the query differently depending on the cardinality of c1.
If the values in a column have a very uneven distribution, the cardinality might not be a good way to determine the best query plan. For example, SELECT c1 FROM t1 WHERE c1 = x; might return 1 row when x=50 and a million rows when x=30. In such a case, you might need to use index hints to pass along advice about which lookup method is more efficient for a particular query.
Cardinality can also apply to the number of distinct values present in multiple columns, as in a composite index.
For InnoDB, the process of estimating cardinality for indexes is influenced by the innodb_stats_sample_pages and the innodb_stats_on_metadata configuration options. The estimated values are more stable when the persistent statistics feature is enabled (in MySQL 5.6 and higher).
See Also column, composite index, index, index hint, persistent statistics, random dive, selectivity, unique constraint.
.cfg file
A metadata file used with the InnoDB transportable tablespace feature. It is produced by the command FLUSH TABLES ... FOR EXPORT, puts one or more tables in a consistent state that can be copied to another server. The .cfg file is copied along with the corresponding .ibd file, and used to adjust the internal values of the .ibd file, such as the space ID, during the ALTER TABLE ... IMPORT TABLESPACE step.
See Also .ibd file, space ID, transportable tablespace.
change buffer
A special data structure that records changes to pages in secondary indexes. These values could result from SQL INSERT, UPDATE, or DELETE statements (DML). The set of features involving the change buffer is known collectively as change buffering, consisting of insert buffering, delete buffering, and purge buffering.
Changes are only recorded in the change buffer when the relevant page from the secondary index is not in the buffer pool. When the relevant index page is brought into the buffer pool while associated changes are still in the change buffer, the changes for that page are applied in the buffer pool (merged) using the data from the change buffer. Periodically, the purge operation that runs during times when the system is mostly idle, or during a slow shutdown, writes the new index pages to disk. The purge operation can write the disk blocks for a series of index values more efficiently than if each value were written to disk immediately.
Physically, the change buffer is part of the system tablespace, so that the index changes remain buffered across database restarts. The changes are only applied (merged) when the pages are brought into the buffer pool due to some other read operation.
The kinds and amount of data stored in the change buffer are governed by the innodb_change_buffering and innodb_change_buffer_max_size configuration options. To see information about the current data in the change buffer, issue the SHOW ENGINE INNODB STATUS command.
Formerly known as the insert buffer.
See Also buffer pool, change buffering, delete buffering, DML, insert buffer, insert buffering, merge, page, purge, purge buffering, secondary index, system tablespace.
change buffering
The general term for the features involving the change buffer, consisting of insert buffering, delete buffering, and purge buffering. Index changes resulting from SQL statements, which could normally involve random I/O operations, are held back and performed periodically by a background thread. This sequence of operations can write the disk blocks for a series of index values more efficiently than if each value were written to disk immediately. Controlled by the innodb_change_buffering and innodb_change_buffer_max_size configuration options.
See Also change buffer, delete buffering, insert buffering, purge buffering.
checkpoint
As changes are made to data pages that are cached in the buffer pool, those changes are written to the data files sometime later, a process known as flushing. The checkpoint is a record of the latest changes (represented by an LSN value) that have been successfully written to the data files.
See Also buffer pool, data files, flush, fuzzy checkpointing, LSN.
checksum
In InnoDB, a validation mechanism to detect corruption when a page in a tablespace is read from disk into the InnoDB buffer pool. This feature is turned on and off by the innodb_checksums configuration option. In MySQL 5.6, you can enable a faster checksum algorithm by also specifying the configuration option innodb_checksum_algorithm=crc32.
The innochecksum command helps to diagnose corruption problems by testing the checksum values for a specified tablespace file while the MySQL server is shut down.
MySQL also uses checksums for replication purposes. For details, see the configuration options binlog_checksum, master_verify_checksum, and slave_sql_verify_checksum.
See Also buffer pool, page, tablespace.
child table
In a foreign key relationship, a child table is one whose rows refer (or point) to rows in another table with an identical value for a specific column. This is the table that contains the FOREIGN KEY ... REFERENCES clause and optionally ON UPDATE and ON DELETE clauses. The corresponding row in the parent table must exist before the row can be created in the child table. The values in the child table can prevent delete or update operations on the parent table, or can cause automatic deletion or updates in the child table, based on the ON CASCADE option used when creating the foreign key.
See Also foreign key, parent table.
clean page
A page in the InnoDB buffer pool where all changes made in memory have also been written (flushed) to the data files. The opposite of a dirty page.
See Also buffer pool, data files, dirty page, flush, page.
clean shutdown
A shutdown that completes without errors and applies all changes to InnoDB tables before finishing, as opposed to a crash or a fast shutdown. Synonym for slow shutdown.
See Also crash, fast shutdown, shutdown, slow shutdown.
client
A type of program that sends requests to a server, and interprets or processes the results. The client software might run only some of the time (such as a mail or chat program), and might run interactively (such as the mysql command processor).
See Also mysql, server.
clustered index
The InnoDB term for a primary key index. InnoDB table storage is organized based on the values of the primary key columns, to speed up queries and sorts involving the primary key columns. For best performance, choose the primary key columns carefully based on the most performance-critical queries. Because modifying the columns of the clustered index is an expensive operation, choose primary columns that are rarely or never updated.
In the Oracle Database product, this type of table is known as an index-organized table.
See Also index, primary key, secondary index.
cold backup
A backup taken while the database is shut down. For busy applications and web sites, this might not be practical, and you might prefer a warm backup or a hot backup.
See Also backup, hot backup, warm backup.
column
A data item within a row, whose storage and semantics are defined by a data type. Each table and index is largely defined by the set of columns it contains.
Each column has a cardinality value. A column can be the primary key for its table, or part of the primary key. A column can be subject to a unique constraint, a NOT NULL constraint, or both. Values in different columns, even across different tables, can be linked by a foreign key relationship.
In discussions of MySQL internal operations, sometimes field is used as a synonym, while row is the preferred term when discussing SQL.
See Also cardinality, foreign key, index, primary key, row, SQL, table, unique constraint.
column index
An index on a single column.
See Also composite index, index.
column prefix
When an index is created with a length specification, such as CREATE INDEX idx ON t1 (c1(N)), only the first N characters of the column value are stored in the index. Keeping the index prefix small makes the index compact, and the memory and disk I/O savings help performance. (Although making the index prefix too small can hinder query optimization by making rows with different values appear to the query optimizer to be duplicates.)
For columns containing binary values or long text strings, where sorting is not a major consideration and storing the entire value in the index would waste space, the index automatically uses the first N (typically 768) characters of the value to do lookups and sorts.
See Also index.
commit
A SQL statement that ends a transaction, making permanent any changes made by the transaction. It is the opposite of rollback, which undoes any changes made in the transaction.
InnoDB uses an optimistic mechanism for commits, so that changes can be written to the data files before the commit actually occurs. This technique makes the commit itself faster, with the tradeoff that more work is required in case of a rollback.
By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL statement.
See Also autocommit, optimistic, rollback, SQL, transaction.
compact row format
The default InnoDB row format since MySQL 5.0.3. Available for tables that use the Antelope file format. It has a more compact representation for nulls and variable-length fields than the prior default (redundant row format).
Because of the B-tree indexes that make row lookups so fast in InnoDB, there is little if any performance benefit to keeping all rows the same size.
See Also Antelope, file format, redundant row format, row format.
composite index
An index that includes multiple columns.
See Also index, index prefix.
compressed backup
The compression feature of the MySQL Enterprise Backup product makes a compressed copy of each tablespace, changing the extension from .ibd to .ibz. Compressing the backup data allows you to keep more backups on hand, and reduces the time to transfer backups to a different server. The data is uncompressed during the restore operation. When a compressed backup operation processes a table that is already compressed, it skips the compression step for that table, because compressing again would result in little or no space savings.
A set of files produced by the MySQL Enterprise Backup product, where each tablespace is compressed. The compressed files are renamed with a .ibz file extension.
Applying compression right at the start of the backup process helps to avoid storage overhead during the compression process, and to avoid network overhead when transferring the backup files to another server. The process of applying the binary log takes longer, and requires uncompressing the backup files.
See Also apply, binary log, compression, hot backup, MySQL Enterprise Backup, tablespace.
compressed row format
A row format that enables data and index compression for InnoDB tables. It was introduced in the InnoDB Plugin, available as part of the Barracuda file format. Large fields are stored away from the page that holds the rest of the row data, as in dynamic row format. Both index pages and the large fields are compressed, yielding memory and disk savings. Depending on the structure of the data, the decrease in memory and disk usage might or might not outweigh the performance overhead of uncompressing the data as it is used. See Section 5.4.6, “Working with InnoDB Compressed Tables” for usage details.
See Also Barracuda, compression, dynamic row format, row format.
compression
A feature with wide-ranging benefits from using less disk space, performing less I/O, and using less memory for caching. InnoDB table and index data can be kept in a compressed format during database operation.
The data is uncompressed when needed for queries, and re-compressed when changes are made by DML operations. After you enable compression for a table, this processing is transparent to users and application developers. DBAs can consult information_schema tables to monitor how efficiently the compression parameters work for the MySQL instance and for particular compressed tables.
When InnoDB table data is compressed, the compression applies to the table itself, any associated index data, and the pages loaded into the buffer pool. Compression does not apply to pages in the undo buffer.
The table compression feature requires using MySQL 5.5 or higher, or the InnoDB Plugin in MySQL 5.1 or earlier, and creating the table using the Barracuda file format and compressed row format, with the innodb_file_per_table setting turned on. The compression for each table is influenced by the KEY_BLOCK_SIZE clause of the CREATE TABLE and ALTER TABLE statements. In MySQL 5.6 and higher, compression is also affected by the server-wide configuration options innodb_compression_failure_threshold_pct, innodb_compression_level, and innodb_compression_pad_pct_max. See Section 5.4.6, “Working with InnoDB Compressed Tables” for usage details.
Another type of compression is the compressed backup feature of the MySQL Enterprise Backup product.
See Also Barracuda, buffer pool, compressed row format, DML, hot backup, index, INFORMATION_SCHEMA, innodb_file_per_table, plugin, table, undo buffer.
compression failure
Not actually an error, rather an expensive operation that can occur when using compression in combination with DML operations. It occurs when: updates to a compressed page overflow the area on the page reserved for recording modifications; the page is compressed again, with all changes applied to the table data; the re-compressed data does not fit on the original page, requiring MySQL to split the data into two new pages and compress each one separately. To check the frequency of this condition, query the table INFORMATION_SCHEMA.INNODB_CMP and check how much the value of the COMPRESS_OPS column exceeds the value of the COMPRESS_OPS_OK column. Ideally, compression failures do not occur often; when they do, you can adjust the configuration options innodb_compression_level, innodb_compression_failure_threshold_pct, and innodb_compression_pad_pct_max.
See Also compression, DML, page.
concatenated index
See composite index.
concurrency
The ability of multiple operations (in database terminology, transactions) to run simultaneously, without interfering with each other. Concurrency is also involved with performance, because ideally the protection for multiple simultaneous transactions works with a minimum of performance overhead, using efficient mechanisms for locking.
See Also ACID, locking, transaction.
configuration file
The file that holds the option values used by MySQL at startup. Traditionally, on Linux and UNIX this file is named my.cnf, and on Windows it is named my.ini. You can set a number of options related to InnoDB under the [mysqld] section of the file.
Typically, this file is searched for in the locations /etc/my.cnf /etc/mysql/my.cnf /usr/local/mysql/etc/my.cnf and ~/.my.cnf. See Section 4.2.3.3, “Using Option Files” for details about the search path for this file.
When you use the MySQL Enterprise Backup product, you typically use two configuration files: one that specifies where the data comes from and how it is structured (which could be the original configuration file for your real server), and a stripped-down one containing only a small set of options that specify where the backup data goes and how it is structured. The configuration files used with the MySQL Enterprise Backup product must contain certain options that are typically left out of regular configuration files, so you might need to add some options to your existing configuration file for use with MySQL Enterprise Backup.
See Also my.cnf, option file.
consistent read
A read operation that uses snapshot information to present query results based on a point in time, regardless of changes performed by other transactions running at the same time. If queried data has been changed by another transaction, the original data is reconstructed based on the contents of the undo log. This technique avoids some of the locking issues that can reduce concurrency by forcing transactions to wait for other transactions to finish.
With the repeatable read isolation level, the snapshot is based on the time when the first read operation is performed. With the read committed isolation level, the snapshot is reset to the time of each consistent read operation.
Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED and REPEATABLE READ isolation levels. Because a consistent read does not set any locks on the tables it accesses, other sessions are free to modify those tables while a consistent read is being performed on the table.
For technical details about the applicable isolation levels, see Section 14.2.3.3, “Consistent Nonlocking Reads”.
See Also ACID, concurrency, isolation level, locking, MVCC, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE, transaction, undo log.
constraint
An automatic test that can block database changes to prevent data from becoming inconsistent. (In computer science terms, a kind of assertion related to an invariant condition.) Constraints are a crucial component of the ACID philosophy, to maintain data consistency. Constraints supported by MySQL include FOREIGN KEY constraints and unique constraints.
See Also ACID, foreign key, relational, unique constraint.
counter
A value that is incremented by a particular kind of InnoDB operation. Useful for measuring how busy a server is, troubleshooting the sources of performance issues, and testing whether changes (for example, to configuration settings or indexes used by queries) have the desired low-level effects. Different kinds of counters are available through performance_schema tables and information_schema tables, particularly information_schema.innodb_metrics.
See Also INFORMATION_SCHEMA, metrics counter, Performance Schema.
covering index
An index that includes all the columns retrieved by a query. Instead of using the index values as pointers to find the full table rows, the query returns values from the index structure, saving disk I/O. InnoDB can apply this optimization technique to more indexes than MyISAM can, because InnoDB secondary indexes also include the primary key columns. InnoDB cannot apply this technique for queries against tables modified by a transactions, until that transaction ends.
Any column index or composite index could act as a covering index, given the right query. Design your indexes and queries to take advantage of this optimization technique wherever possible.
See Also column index, composite index, index, secondary index.
crash
MySQL uses the term "crash" to refer generally to any unexpected shutdown operation where the server cannot do its normal cleanup. For example, a crash could happen due to a hardware fault on the database server machine or storage device; a power failure; a potential data mismatch that causes the MySQL server to halt; a fast shutdown initiated by the DBA; or many other reasons. The robust, automatic crash recovery for InnoDB tables ensures that data is made consistent when the server is restarted, without any extra work for the DBA.
See Also crash recovery, fast shutdown, InnoDB, redo log, shutdown.
crash recovery
The cleanup activities that occur when MySQL is started again after a crash. For InnoDB tables, changes from incomplete transactions are replayed using data from the redo log. Changes that were committed before the crash, but not yet written into the data files, are reconstructed from the doublewrite buffer. When the database is shut down normally, this type of activity is performed during shutdown by the purge operation.
During normal operation, committed data can be stored in the change buffer for a period of time before being written to the data files. There is always a tradeoff between keeping the data files up-to-date, which introduces performance overhead during normal operation, and buffering the data, which can make shutdown and crash recovery take longer.
See Also change buffer, commit, crash, data files, doublewrite buffer, InnoDB, purge, redo log.
CRUD
Acronym for "create, read, update, delete", a common sequence of operations in database applications. Often denotes a class of applications with relatively simple database usage (basic DDL, DML and query statements in SQL) that can be implemented quickly in any language.
See Also DDL, DML, query, SQL.
cursor
An internal data structure that is used to represent the result set of a query, or other operation that performs a search using an SQL WHERE clause. It works like an iterator in other high-level languages, producing each value from the result set as requested.
Although usually SQL handles the processing of cursors for you, you might delve into the inner workings when dealing with performance-critical code.
See Also query.
D
data definition language
See DDL.
data dictionary
Metadata that keeps track of InnoDB-related objects such as tables, indexes, and table columns. This metadata is physically located in the InnoDB system tablespace. For historical reasons, it overlaps to some degree with information stored in the .frm files.
Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups include the contents of the data dictionary.
See Also column, .frm file, hot backup, index, MySQL Enterprise Backup, system tablespace, table.
data directory
The directory under which each MySQL instance keeps the data files for InnoDB and the directories representing individual databases. Controlled by the datadir configuration option.
See Also data files, instance.
data files
The files that physically contain the InnoDB table and index data. There can be a one-to-many relationship between data files and tables, as in the case of the system tablespace, which can hold multiple InnoDB tables as well as the data dictionary. There can also be a one-to-one relationship between data files and tables, as when the file-per-table setting is enabled, causing each newly created table to be stored in a separate tablespace.
See Also data dictionary, file-per-table, index, system tablespace, table, tablespace.
data manipulation language
See DML.
data warehouse
A database system or application that primarily runs large queries. The read-only or read-mostly data might be organized in denormalized form for query efficiency. Can benefit from the optimizations for read-only transactions in MySQL 5.6 and higher. Contrast with OLTP.
See Also denormalized, OLTP, query, read-only transaction.
database
Within the MySQL data directory, each database is represented by a separate directory. The InnoDB system tablespace, which can hold table data from multiple databases within a MySQL instance, is kept in its data files that reside outside the individual database directories. When file-per-table mode is enabled, the .ibd files representing individual InnoDB tables are stored inside the database directories.
For long-time MySQL users, a database is a familiar notion. Users coming from an Oracle Database background will find that the MySQL meaning of a database is closer to what Oracle Database calls a schema.
See Also data files, file-per-table, .ibd file, instance, schema, system tablespace.
DCL
Data control language, a set of SQL statements for managing privileges. In MySQL, consists of the GRANT and REVOKE statements. Contrast with DDL and DML.
See Also DDL, DML, SQL.
DDL
Data definition language, a set of SQL statements for manipulating the database itself rather than individual table rows. Includes all forms of the CREATE, ALTER, and DROP statements. Also includes the TRUNCATE statement, because it works differently than a DELETE FROM table_name statement, even though the ultimate effect is similar.
DDL statements automatically commit the current transaction; they cannot be rolled back.
The InnoDB-related aspects of DDL include speed improvements for CREATE INDEX and DROP INDEX statements, and the way the file-per-table setting affects the behavior of the TRUNCATE TABLE statement.
Contrast with DML and DCL.
See Also commit, DCL, DML, file-per-table, rollback, SQL, transaction.
deadlock
A situation where different transactions are unable to proceed, because each holds a lock that the other needs. Because both transactions are waiting for a resource to become available, neither will ever release the locks it holds.
A deadlock can occur when the transactions lock rows in multiple tables (through statements such as UPDATE or SELECT ... FOR UPDATE), but in the opposite order. A deadlock can also occur when such statements lock ranges of index records and gaps, with each transaction acquiring some locks but not others due to a timing issue.
To reduce the possibility of deadlocks, use transactions rather than LOCK TABLE statements; keep transactions that insert or update data small enough that they do not stay open for long periods of time; when different transactions update multiple tables or large ranges of rows, use the same order of operations (such as SELECT ... FOR UPDATE) in each transaction; create indexes on the columns used in SELECT ... FOR UPDATE and UPDATE ... WHERE statements. The possibility of deadlocks is not affected by the isolation level, because the isolation level changes the behavior of read operations, while deadlocks occur because of write operations.
If a deadlock does occur, InnoDB detects the condition and rolls back one of the transactions (the victim). Thus, even if your application logic is perfectly correct, you must still handle the case where a transaction must be retried. To see the last deadlock in an InnoDB user transaction, use the command SHOW ENGINE INNODB STATUS. If frequent deadlocks highlight a problem with transaction structure or application error handling, run with the innodb_print_all_deadlocks setting enabled to print information about all deadlocks to the mysqld error log.
For background information on how deadlocks are automatically detected and handled, see Section 14.2.3.9, “Deadlock Detection and Rollback”. For tips on avoiding and recovering from deadlock conditions, see Section 14.2.3.10, “How to Cope with Deadlocks”.
See Also concurrency, gap, isolation level, lock, locking, rollback, transaction, victim.
deadlock detection
A mechanism that automatically detects when a deadlock occurs, and automatically rolls back one of the transactions involved (the victim).
See Also deadlock, rollback, transaction, victim.
delete
When InnoDB processes a DELETE statement, the rows are immediately marked for deletion and no longer are returned by queries. The storage is reclaimed sometime later, during the periodic garbage collection known as the purge operation, performed by a separate thread. For removing large quantities of data, related operations with their own performance characteristics are truncate and drop.
See Also drop, purge, truncate.
delete buffering
The technique of storing index changes due to DELETE operations in the insert buffer rather than writing them immediately, so that the physical writes can be performed to minimize random I/O. (Because delete operations are a two-step process, this operation buffers the write that normally marks an index record for deletion.) It is one of the types of change buffering; the others are insert buffering and purge buffering.
See Also change buffer, change buffering, insert buffer, insert buffering, purge buffering.
denormalized
A data storage strategy that duplicates data across different tables, rather than linking the tables with foreign keys and join queries. Typically used in data warehouse applications, where the data is not updated after loading. In such applications, query performance is more important than making it simple to maintain consistent data during updates. Contrast with normalized.
See Also normalized.
descending index
A type of index available with some database systems, where index storage is optimized to process ORDER BY column DESC clauses. Currently, although MySQL allows the DESC keyword in the CREATE TABLE statement, it does not use any special storage layout for the resulting index.
See Also index.
dirty page
A page in the InnoDB buffer pool that has been updated in memory, where the changes are not yet written (flushed) to the data files. The opposite of a clean page.
See Also buffer pool, clean page, data files, flush, page.
dirty read
An operation that retrieves unreliable data, data that was updated by another transaction but not yet committed. It is only possible with the isolation level known as read uncommitted.
This kind of operation does not adhere to the ACID principle of database design. It is considered very risky, because the data could be rolled back, or updated further before being committed; then, the transaction doing the dirty read would be using data that was never confirmed as accurate.
Its polar opposite is consistent read, where InnoDB goes to great lengths to ensure that a transaction does not read information updated by another transaction, even if the other transaction commits in the meantime.
See Also ACID, commit, consistent read, isolation level, READ COMMITTED, READ UNCOMMITTED, rollback.
disk-based
A kind of database that primarily organizes data on disk storage (hard drives or equivalent). Data is brought back and forth between disk and memory to be operated upon. It is the opposite of an in-memory database. Although InnoDB is disk-based, it also contains features such as the buffer pool, multiple buffer pool instances, and the adaptive hash index that allow certain kinds of workloads to work primarily from memory.
See Also adaptive hash index, buffer pool, in-memory database.
disk-bound
A type of workload where the primary bottleneck is CPU operations in memory. Typically involves read-intensive operations where the results can all be cached in the buffer pool.
See Also bottleneck, buffer pool, disk-bound, workload.
disk-bound
A type of workload where the primary bottleneck is disk I/O. (Also known as I/O-bound.) Typically involves frequent writes to disk, or random reads of more data than can fit into the buffer pool.
See Also bottleneck, buffer pool, disk-bound, workload.
DML
Data manipulation language, a set of SQL statements for performing insert, update, and delete operations. The SELECT statement is sometimes considered as a DML statement, because the SELECT ... FOR UPDATE form is subject to the same considerations for locking as INSERT, UPDATE, and DELETE.
DML statements for an InnoDB table operate in the context of a transaction, so their effects can be committed or rolled back as a single unit.
Contrast with DDL and DCL.
See Also commit, DCL, DDL, locking, rollback, SQL, transaction.
document id
In the InnoDB full-text search feature, a special column in the table containing the FULLTEXT index, to uniquely identify the document associated with each ilist value. Its name is FTS_DOC_ID (uppercase required). The column itself must be of BIGINT UNSIGNED NOT NULL type, with a unique index named FTS_DOC_ID_INDEX. Preferably, you define this column when creating the table. If InnoDB must add the column to the table while creating a FULLTEXT index, the indexing operation is considerably more expensive.
See Also full-text search, FULLTEXT index, ilist.
doublewrite buffer
InnoDB uses a novel file flush technique called doublewrite. Before writing pages to the data files, InnoDB first writes them to a contiguous area called the doublewrite buffer. Only after the write and the flush to the doublewrite buffer have completed, does InnoDB write the pages to their proper positions in the data file. If the operating system crashes in the middle of a page write, InnoDB can later find a good copy of the page from the doublewrite buffer during crash recovery.
Although data is always written twice, the doublewrite buffer does not require twice as much I/O overhead or twice as many I/O operations. Data is written to the buffer itself as a large sequential chunk, with a single fsync() call to the operating system.
To turn off the doublewrite buffer, specify the option innodb_doublewrite=0.
See Also crash recovery, data files, page, purge.
drop
A kind of DDL operation that removes a schema object, through a statement such as DROP TABLE or DROP INDEX. It maps internally to an ALTER TABLE statement. From an InnoDB perspective, the performance considerations of such operations involve the time that the data dictionary is locked to ensure that interrelated objects are all updated, and the time to update memory structures such as the buffer pool. For a table, the drop operation has somewhat different characteristics than a truncate operation (TRUNCATE TABLE statement).
See Also buffer pool, data dictionary, DDL, table, truncate.
dynamic row format
A row format introduced in the InnoDB Plugin, available as part of the Barracuda file format. Because TEXT and BLOB fields are stored outside of the rest of the page that holds the row data, it is very efficient for rows that include large objects. Since the large fields are typically not accessed to evaluate query conditions, they are not brought into the buffer pool as often, resulting in fewer I/O operations and better utilization of cache memory.
See Also Barracuda, buffer pool, file format, row format.
E
early adopter
A stage similar to beta, when a software product is typically evaluated for performance, functionality, and compatibility in a non-mission-critical setting. InnoDB uses the early adopter designation rather than beta, through a succession of point releases leading up to a GA release.
See Also beta, GA.
error log
A type of log showing information about MySQL startup and critical runtime errors and crash information. For details, see Section 5.2.2, “The Error Log”.
See Also crash, log.
eviction
The process of removing an item from a cache or other temporary storage area, such as the InnoDB buffer pool. Often, but not always, uses the LRU algorithm to determine which item to remove. When a dirty page is evicted, its contents are flushed to disk, and any dirty neighbor pages might be flushed also.
See Also buffer pool, dirty page, flush, LRU.
exclusive lock
A kind of lock that prevents any other transaction from locking the same row. Depending on the transaction isolation level, this kind of lock might block other transactions from writing to the same row, or might also block other transactions from reading the same row. The default InnoDB isolation level, REPEATABLE READ, enables higher concurrency by allowing transactions to read rows that have exclusive locks, a technique known as consistent read.
See Also concurrency, consistent read, isolation level, lock, REPEATABLE READ, shared lock, transaction.
extent
A group of pages within a tablespace totaling 1 megabyte. With the default page size of 16KB, an extent contains 64 pages. In MySQL 5.6, the page size can also be 4KB or 8KB, in which case an extent contains more pages, still adding up to 1MB.
InnoDB features such as segments, read-ahead requests and the doublewrite buffer use I/O operations that read, write, allocate, or free data one extent at a time.
See Also doublewrite buffer, neighbor page, page, page size, read-ahead, segment, tablespace.
F
Fast Index Creation
A capability first introduced in the InnoDB Plugin, now part of the MySQL server in 5.5 and higher, that speeds up creation of InnoDB secondary indexes by avoiding the need to completely rewrite the associated table. The speedup applies to dropping secondary indexes also.
Because index maintenance can add performance overhead to many data transfer operations, consider doing operations such as ALTER TABLE ... ENGINE=INNODB or INSERT INTO ... SELECT * FROM ... without any secondary indexes in place, and creating the indexes afterward.
In MySQL 5.6, this feature becomes more general: you can read and write to tables while an index is being created, and many more kinds of ALTER TABLE operations can be performed without copying the table, without blocking DML operations, or both. Thus in MySQL 5.6 and higher, we typically refer to this set of features as online DDL rather than Fast Index Creation.
See Also DML, index, online DDL, secondary index.
fast shutdown
The default shutdown procedure for InnoDB, based on the configuration setting innodb_fast_shutdown=1. To save time, certain flush operations are skipped. This type of shutdown is safe during normal usage, because the flush operations are performed during the next startup, using the same mechanism as in crash recovery. In cases where the database is being shut down for an upgrade or downgrade, do a slow shutdown instead to ensure that all relevant changes are applied to the data files during the shutdown.
See Also crash recovery, data files, flush, shutdown, slow shutdown.
file format
The format used by InnoDB for each table, typically with the file-per-table setting enabled so that each table is stored in a separate .ibd file. Currently, the file formats available in InnoDB are known as Antelope and Barracuda. Each file format supports one or more row formats. The row formats available for Barracuda tables, COMPRESSED and DYNAMIC, enable important new storage features for InnoDB tables.
See Also Antelope, Barracuda, file-per-table, .ibd file, ibdata file, row format.
file-per-table
A general name for the setting controlled by the innodb_file_per_table option. That is a very important configuration option that affects many aspects of InnoDB file storage, availability of features, and I/O characteristics. In MySQL 5.6.7 and higher, it is enabled by default. Prior to MySQL 5.6.7, it is disabled by default.
For each table created while this setting is in effect, the data is stored in a separate .ibd file rather than in the ibdata files of the system tablespace. When table data is stored in individual files, you have more flexibility to choose nondefault file formats and row formats, which are required for features such as data compression. The TRUNCATE TABLE operation is also much faster, and the reclaimed space can be used by the operating system rather than remaining reserved for InnoDB.
The MySQL Enterprise Backup product is more flexible for tables that are in their own files. For example, tables can be excluded from a backup, but only if they are in separate files. Thus, this setting is suitable for tables that are backed up less frequently or on a different schedule.
See Also compressed row format, compression, file format, .ibd file, ibdata file, innodb_file_per_table, row format, system tablespace.
fill factor
In an InnoDB index, the proportion of a page that is taken up by index data before the page is split. The unused space when index data is first divided between pages allows for rows to be updated with longer string values without requiring expensive index maintenance operations. If the fill factor is too low, the index consumes more space than needed, causing extra I/O overhead when reading the index. If the fill factor is too high, any update that increases the length of column values can cause extra I/O overhead for index maintenance. See Section 14.2.3.12.4, “Physical Structure of an InnoDB Index” for more information.
See Also index, page.
fixed row format
This row format is used by the MyISAM storage engine, not by InnoDB. If you create an InnoDB table with the option row_format=fixed, InnoDB translates this option to use the compact row format instead, although the fixed value might still show up in output such as SHOW TABLE STATUS reports.
See Also compact row format, row format.
flush
To write changes to the database files, that had been buffered in a memory area or a temporary disk storage area. The InnoDB storage structures that are periodically flushed include the redo log, the undo log, and the buffer pool.
Flushing can happen because a memory area becomes full and the system needs to free some space, because a commit operation means the changes from a transaction can be finalized, or because a slow shutdown operation means that all outstanding work should be finalized. When it is not critical to flush all the buffered data at once, InnoDB can use a technique called fuzzy checkpointing to flush small batches of pages to spread out the I/O overhead.
See Also buffer pool, commit, fuzzy checkpointing, neighbor page, redo log, slow shutdown, undo log.
flush list
An internal InnoDB data structure that tracks dirty pages in the buffer pool: that is, pages that have been changed and need to be written back out to disk. This data structure is updated frequently by InnoDB's internal mini-transactions, and so is protected by its own mutex to allow concurrent access to the buffer pool.
See Also buffer pool, dirty page, LRU, mini-transaction, mutex, page, page cleaner.
foreign key
A type of pointer relationship, between rows in separate InnoDB tables. The foreign key relationship is defined on one column in both the parent table and the child table.
In addition to enabling fast lookup of related information, foreign keys help to enforce referential integrity, by preventing any of these pointers from becoming invalid as data is inserted, updated, and deleted. This enforcement mechanism is a type of constraint. A row that points to another table cannot be inserted if the associated foreign key value does not exist in the other table. If a row is deleted or its foreign key value changed, and rows in another table point to that foreign key value, the foreign key can be set up to prevent the deletion, cause the corresponding column values in the other table to become null, or automatically delete the corresponding rows in the other table.
One of the stages in designing a normalized database is to identify data that is duplicated, separate that data into a new table, and set up a foreign key relationship so that the multiple tables can be queried like a single table, using a join operation.
See Also child table, FOREIGN KEY constraint, join, normalized, NULL, parent table, referential integrity, relational.
FOREIGN KEY constraint
The type of constraint that maintains database consistency through a foreign key relationship. Like other kinds of constraints, it can prevent data from being inserted or updated if data would become inconsistent; in this case, the inconsistency being prevented is between data in multiple tables. Alternatively, when a DML operation is performed, FOREIGN KEY constraints can cause data in child rows to be deleted, changed to different values, or set to null, based on the ON CASCADE option specified when creating the foreign key.
See Also child table, constraint, DML, foreign key, NULL.
.frm file
A file containing the metadata, such as the table definition, of a MySQL table.
Although each InnoDB table has a .frm file, InnoDB maintains its own table metadata (the data dictionary) in the system tablespace; the .frm files are not needed for InnoDB to operate on InnoDB tables. Problems can occur if a crash happens while the .frm file is being written, leading to inconsistencies between the .frm file and the data dictionary,
For backups, you must always keep the full set of .frm files along with the backup data, to be able to restore tables that are altered or dropped after the backup. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product. If you use the ibbackup command instead, you must copy the .frm files yourself.
These files are backed up by the MySQL Enterprise Backup product. These files must not be modified by an ALTER TABLE operation while the backup is taking place, which is why backups that include non-InnoDB tables perform a FLUSH TABLES WITH READ LOCK operation to freeze such activity while backing up the .frm files. Restoring a backup can result in .frm files being created, changed, or removed to match the state of the database at the time of the backup.
See Also crash, data dictionary, ibbackup command, MySQL Enterprise Backup, mysqlbackup command, system tablespace.
FTS
In most contexts, an acronym for full-text search. Sometimes in performance discussions, an acronym for full table scan.
See Also full table scan, full-text search.
full backup
A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance. Contrast with partial backup.
See Also backup, database, instance, partial backup, table.
full table scan
An operation that requires reading the entire contents of a table, rather than just selected portions using an index. Typically performed either with small lookup tables, or in data warehousing situations with large tables where all available data is aggregated and analyzed. How frequently these operations occur, and the sizes of the tables relative to available memory, have implications for the algorithms used in query optimization and managing the buffer pool.
The purpose of indexes is to allow lookups for specific values or ranges of values within a large table, thus avoiding full table scans when practical.
See Also buffer pool, index, LRU.
full-text search
The MySQL feature for finding words, phrases, Boolean combinations of words, and so on within table data, in a faster, more convenient, and more flexible way than using the SQL LIKE operator or writing your own application-level search algorithm. It uses the SQL function MATCH() and FULLTEXT indexes.
See Also FULLTEXT index.
FULLTEXT index
The special kind of index that holds the search index in the MySQL full-text search mechanism. Represents the words from values of a column, omitting any that are specified as stopwords. Originally, only available for MyISAM tables. Starting in MySQL 5.6.4, it is also available for InnoDB tables.
See Also full-text search, index, InnoDB, search index, stopword.
fuzzy checkpointing
A technique that flushes small batches of dirty pages from the buffer pool, rather than flushing all dirty pages at once which would disrupt database processing.
See Also buffer pool, dirty page, flush.
G
GA
"Generally available", the stage when a software product leaves beta and is available for sale, official support, and production use.
See Also beta, early adopter.
gap
A place in an InnoDB index data structure where new values could be inserted. When you lock a set of rows with a statement such as SELECT ... FOR UPDATE, InnoDB can create locks that apply to the gaps as well as the actual values in the index. For example, if you select all values greater than 10 for update, a gap lock prevents another transaction from inserting a new value that is greater than 10. The supremum record and infimum record represent the gaps containing all values greater than or less than all the current index values.
See Also concurrency, gap lock, index, infimum record, isolation level, supremum record.
gap lock
A lock on a gap between index records, or a lock on the gap before the first or after the last index record. For example, SELECT c1 FOR UPDATE FROM t WHERE c1 BETWEEN 10 and 20; prevents other transactions from inserting a value of 15 into the column t.c1, whether or not there was already any such value in the column, because the gaps between all existing values in the range are locked. Contrast with record lock and next-key lock.
Gap locks are part of the tradeoff between performance and concurrency, and are used in some transaction isolation levels and not others.
See Also gap, infimum record, lock, next-key lock, record lock, supremum record.
general log
See general query log.
general query log
A type of log used for diagnosis and troubleshooting of SQL statements processed by the MySQL server. Can be stored in a file or in a database table. You must enable this feature through the general_log configuration option to use it. You can disable it for a specific connection through the sql_log_off configuration option.
Records a broader range of queries than the slow query log. Unlike the binary log, which is used for replication, the general query log contains SELECT statements and does not maintain strict ordering. For more information, see Section 5.2.3, “The General Query Log”.
See Also binary log, general query log, log.
global_transaction
A type of transaction involved in XA operations. It consists of several actions that are transactional in themselves, but that all must either complete successfully as a group, or all be rolled back as a group. In essence, this extends ACID properties "up a level" so that multiple ACID transactions can be executed in concert as components of a global operation that also has ACID properties. For this type of distributed transaction, you must use the SERIALIZABLE isolation level to achieve ACID properties.
See Also ACID, SERIALIZABLE, transaction, XA.
group commit
An InnoDB optimization that performs some low-level I/O operations (log write) once for a set of commit operations, rather than flushing and syncing separately for each commit.
When the binlog is enabled, you typically also set the configuration option sync_binlog=0, because group commit for the binary log is only supported if it is set to 0.
See Also commit, plugin, XA.
H
hash index
A type of index intended for queries that use equality operators, rather than range operators such as greater-than or BETWEEN. It is available for MEMORY tables. Although hash indexes are the default for MEMORY tables for historic reasons, that storage engine also supports B-tree indexes, which are often a better choice for general-purpose queries.
MySQL includes a variant of this index type, the adaptive hash index, that is constructed automatically for InnoDB tables if needed based on runtime conditions.
See Also adaptive hash index, B-tree, index, InnoDB.
HDD
Acronym for "hard disk drive". Refers to storage media using spinning platters, usually when comparing and contrasting with SSD. Its performance characteristics can influence the throughput of a disk-based workload.
See Also disk-based, SSD.
heartbeat
A periodic message that is sent to indicate that a system is functioning properly. In a replication context, if the master stops sending such messages, one of the slaves can take its place. Similar techniques can be used between the servers in a cluster environment, to confirm that all of them are operating properly.
See Also replication.
high-water mark
A value representing an upper limit, either a hard limit that should not be exceeded at runtime, or a record of the maximum value that was actually reached. Contrast with low-water mark.
See Also low-water mark.
history list
A list of transactions with delete-marked records scheduled to be processed by the InnoDB purge operation. Recorded in the undo log. The length of the history list is reported by the command SHOW ENGINE INNODB STATUS. If the history list grows longer than the value of the innodb_max_purge_lag configuration option, each DML operation is delayed slightly to allow the purge operation to finish flushing the deleted records.
Also known as purge lag.
See Also flush, purge, purge lag, rollback segment, transaction, undo log.
hot
A condition where a row, table, or internal data structure is accessed so frequently, requiring some form of locking or mutual exclusion, that it results in a performance or scalability issue.
Although "hot" typically indicates an undesirable condition, a hot backup is the preferred type of backup.
See Also hot backup.
hot backup
A backup taken while the database and is running and applications are reading and writing to it. The backup involves more than simply copying data files: it must include any data that was inserted or updated while the backup was in process; it must exclude any data that was deleted while the backup was in process; and it must ignore any changes that were not committed.
The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and other storage engines, is known as MySQL Enterprise Backup.
The hot backup process consists of two stages. The initial copying of the data files produces a raw backup. The apply step incorporates any changes to the database that happened while the backup was running. Applying the changes produces a prepared backup; these files are ready to be restored whenever necessary.
See Also apply, MySQL Enterprise Backup, prepared backup, raw backup.
I
I/O-bound
See disk-bound.
ib-file set
The set of files managed by InnoDB within a MySQL database: the system tablespace, any file-per-table tablespaces, and the (typically 2) redo log files. Used sometimes in detailed discussions of InnoDB file structures and formats, to avoid ambiguity between the meanings of database between different DBMS products, and the non-InnoDB files that may be part of a MySQL database.
See Also database, file-per-table, redo log, system tablespace.
ib_logfile
A set of files, typically named ib_logfile0 and ib_logfile1, that form the redo log. Also sometimes referred to as the log group. These files record statements that attempt to change data in InnoDB tables. These statements are replayed automatically to correct data written by incomplete transactions, on startup following a crash.
This data cannot be used for manual recovery; for that type of operation, use the binary log.
See Also binary log, log group, redo log.
ibbackup command
The fundamental command-line tool of the MySQL Enterprise Backup product. It performs a hot backup operation for InnoDB tables. You use this command directly if all your data is in InnoDB tables, if all the important data that you need to back up is in InnoDB tables, or if you are running on the Windows platform. If you also need to back up tables from MyISAM or other storage engines, you use the mysqlbackup command instead (available on UNIX and Linux systems only).
See Also hot backup, MySQL Enterprise Backup, mysqlbackup command.
ibbackup_logfile
A supplemental backup file created by the MySQL Enterprise Backup product during a hot backup operation. It contains information about any data changes that occurred while the backup was running. The initial backup files, including ibbackup_logfile, are known as a raw backup, because the changes that occurred during the backup operation are not yet incorporated. After you perform the apply step to the raw backup files, the resulting files do include those final data changes, and are known as a prepared backup. At this stage, the ibbackup_logfile file is no longer necessary.
See Also apply, hot backup, MySQL Enterprise Backup, prepared backup, raw backup.
.ibd file
Each InnoDB table created using the file-per-table mode goes into its own tablespace file, with a .ibd extension, inside the database directory. This file contains the table data and any indexes for the table. File-per-table mode, controlled by the innodb_file_per_table option, affects many aspects of InnoDB storage usage and performance, and is enabled by default in MySQL 5.6.7 and higher.
This extension does not apply to the system tablespace, which consists of the ibdata files.
When a .ibd file is included in a compressed backup by the MySQL Enterprise Backup product, the compressed equivalent is a .ibz file.
If a table is create with the DATA DIRECTORY = clause in MySQL 5.6 and higher, the .ibd file is located outside the normal database directory, and is pointed to by a .isl file.
See Also database, file-per-table, ibdata file, .ibz file, index, innodb_file_per_table, .isl file, MySQL Enterprise Backup, system tablespace, table, tablespace.
ibdata file
A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system tablespace. These files contain metadata about InnoDB tables, (the data dictionary), and the storage areas for the undo log, the change buffer, and the doublewrite buffer. They also can contain some or all of the table data also (depending on whether the file-per-table mode is in effect when each table is created). When the innodb_file_per_table option is enabled, data and indexes for newly created tables are stored in separate .ibd files rather than in the system tablespace.
The growth of the ibdata files is influenced by the innodb_autoextend_increment configuration option.
See Also change buffer, data dictionary, doublewrite buffer, file-per-table, .ibd file, innodb_file_per_table, system tablespace, undo log.
.ibz file
When the MySQL Enterprise Backup product performs a compressed backup, it transforms each tablespace file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.
The compression applied during backup is distinct from the compressed row format that keeps table data compressed during normal operation. A compressed backup operation skips the compression step for a tablespace that is already in compressed row format, as compressing a second time would slow down the backup but produce little or no space savings.
See Also compressed backup, compressed row format, file-per-table, .ibd file, MySQL Enterprise Backup, tablespace.
ilist
Within an InnoDB FULLTEXT index, the data structure consisting of a document ID and positional information for a token (that is, a particular word).
See Also FULLTEXT index.
implicit row lock
A row lock that InnoDB acquires to ensure consistency, without you specifically requesting it.
See Also row lock.
in-memory database
A type of database system that maintains data in memory, to avoid overhead due to disk I/O and translation between disk blocks and memory areas. Some in-memory databases sacrifice durability (the "D" in the ACID design philosophy) and are vulnerable to hardware, power, and other types of failures, making them more suitable for read-only operations. Other in-memory databases do use durability mechanisms such as logging changes to disk or using non-volatile memory.
MySQL features that are address the same kinds of memory-intensive processing include the InnoDB buffer pool, adaptive hash index, and read-only transaction optimization, the MEMORY storage engine, the MyISAM key cache, and the MySQL query cache.
See Also ACID, adaptive hash index, buffer pool, disk-based, read-only transaction.
incremental backup
A type of hot backup, performed by the MySQL Enterprise Backup product, that only saves data changed since some point in time. Having a full backup and a succession of incremental backups lets you reconstruct backup data over a long period, without the storage overhead of keeping several full backups on hand. You can restore the full backup and then apply each of the incremental backups in succession, or you can keep the full backup up-to-date by applying each incremental backup to it, then perform a single restore operation.
The granularity of changed data is at the page level. A page might actually cover more than one row. Each changed page is included in the backup.
See Also hot backup, MySQL Enterprise Backup, page.
index
A data structure that provides a fast lookup capability for rows of a table, typically by forming a tree structure (B-tree) representing all the values of a particular column or set of columns.
InnoDB tables always have a clustered index representing the primary key. They can also have one or more secondary indexes defined on one or more columns. Depending on their structure, secondary indexes can be classified as partial, column, or composite indexes.
Indexes are a crucial aspect of query performance. Database architects design tables, queries, and indexes to allow fast lookups for data needed by applications. The ideal database design uses a covering index where practical; the query results are computed entirely from the index, without reading the actual table data. Each foreign key constraint also requires an index, to efficiently check whether values exist in both the parent and child tables.
Although a B-tree index is the most common, a different kind of data structure is used for hash indexes, as in the MEMORY storage engine and the InnoDB adaptive hash index.
See Also adaptive hash index, B-tree, child table, clustered index, column index, composite index, covering index, foreign key, hash index, parent table, partial index, primary key, query, row, secondary index, table.
index cache
A memory area that holds the token data for InnoDB full-text search. It buffers the data to minimize disk I/O when data is inserted or updated in columns that are part of a FULLTEXT index. The token data is written to disk when the index cache becomes full. Each InnoDB FULLTEXT index has its own separate index cache, whose size is controlled by the configuration option innodb_ft_cache_size.
See Also full-text search, FULLTEXT index.
index hint
Extended SQL syntax for overriding the indexes recommended by the optimizer. For example, the FORCE INDEX, USE INDEX, and IGNORE INDEX clauses. Typically used when indexed columns have unevenly distributed values, resulting in inaccurate cardinality estimates.
See Also cardinality, index.
index prefix
In an index that applies to multiple columns (known as a composite index), the initial or leading columns of the index. A query that references the first 1, 2, 3, and so on columns of a composite index can use the index, even if the query does not reference all the columns in the index.
See Also composite index, index.
index statistics
See statistics.
infimum record
A pseudo-record in an index, representing the gap below the smallest value in that index. If a transaction has a statement such as SELECT ... FOR UPDATE ... WHERE col < 10;, and the smallest value in the column is 5, it is a lock on the infimum record that prevents other transactions from inserting even smaller values such as 0, -10, and so on.
See Also gap, index, pseudo-record, supremum record.
INFORMATION_SCHEMA
The name of the database that provides a query interface to the MySQL data dictionary. (This name is defined by the ANSI SQL standard.) To examine information (metadata) about the database, you can query tables such as INFORMATION_SCHEMA.TABLES and INFORMATION_SCHEMA.COLUMNS, rather than using SHOW commands that produce unstructured output.
The information schema contains some tables that are specific to InnoDB, such as INNODB_LOCKS and INNODB_TRX. You use these tables not to see how the database is structured, but to get real-time information about the workings of InnoDB tables to help with performance monitoring, tuning, and troubleshooting. In particular, these tables provide information about MySQL features related to compression, and transactions and their associated locks.
See Also compression, data dictionary, database, InnoDB, lock, transaction.
innobackup command
A backup command from the former InnoDB Hot Backup product. It is superceded by the mysqlbackup command in the MySQL Enterprise Backup product.
See Also backup, InnoDB Hot Backup, MySQL Enterprise Backup, mysqlbackup command.
InnoDB
A MySQL component that combines high performance with transactional capability for reliability, robustness, and concurrent access. It embodies the ACID design philosophy. Represented as a storage engine; it handles tables created or altered with the ENGINE=INNODB clause. See Section 14.2, “The InnoDB Storage Engine” for architectural details and administration procedures, and Section 8.5, “Optimizing for InnoDB Tables” for performance advice.
In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables and the ENGINE=INNODB clause is not required. In MySQL 5.1 only, many of the advanced InnoDB features require enabling the component known as the InnoDB Plugin. See Section 14.2.1.1, “InnoDB as the Default MySQL Storage Engine” for the considerations involved in transitioning to recent releases where InnoDB tables are the default.
InnoDB tables are ideally suited for hot backups. See Section 23.2, “MySQL Enterprise Backup” for information about the MySQL Enterprise Backup product for backing up MySQL servers without interrupting normal processing.
See Also ACID, hot backup, storage engine, transaction.
InnoDB Hot Backup
A licensed backup product, superceded in MySQL 5.1 and above by MySQL Enterprise Backup.
See Also MySQL Enterprise Backup.
innodb_autoinc_lock_mode
The innodb_autoinc_lock_mode option controls the algorithm used for auto-increment locking. When you have an auto-incrementing primary key, you can use statement-based replication only with the setting innodb_autoinc_lock_mode=1. This setting is known as consecutive lock mode, because multi-row inserts within a transaction receive consecutive auto-increment values. If you have innodb_autoinc_lock_mode=2, which allows higher concurrency for insert operations, use row-based replication rather than statement-based replication. This setting is known as interleaved lock mode, because multiple multi-row insert statements running at the same time can receive autoincrement values that are interleaved. The setting innodb_autoinc_lock_mode=0 is the previous (traditional) default setting and should not be used except for compatibility purposes.
See Also auto-increment locking, mixed-mode insert, primary key.
innodb_file_format
The innodb_file_format option determines the file format for all InnoDB tablespaces created after you specify a value for this option. To create tablespaces other than the system tablespace, you must also use the file-per-table option. Currently, you can specify the Antelope and Barracuda file formats.
See Also Antelope, Barracuda, file format, file-per-table, innodb_file_per_table, system tablespace, tablespace.
innodb_file_per_table
A very important configuration option that affects many aspects of InnoDB file storage, availability of features, and I/O characteristics. In MySQL 5.6.7 and higher, it is enabled by default. Prior to MySQL 5.6.7, it is disabled by default. The innodb_file_per_table option turns on file-per-table mode, which stores each newly created InnoDB table and its associated index in its own .ibd file, outside the system tablespace.
This option affects the performance and storage considerations for a number of SQL statements, such as DROP TABLE and TRUNCATE TABLE.
This option is needed to take full advantage of many other InnoDB features, such as such as table compression, or backups of named tables in MySQL Enterprise Backup.
This option was once static, but can now be set using the SET GLOBAL command.
For reference information, see innodb_file_per_table. For usage information, see Section 5.4.1, “Managing InnoDB Tablespaces”.
See Also compression, file-per-table, .ibd file, MySQL Enterprise Backup, system tablespace.
innodb_lock_wait_timeout
The innodb_lock_wait_timeout option sets the balance between waiting for shared resources to become available, or giving up and handling the error, retrying, or doing alternative processing in your application. Rolls back any InnoDB transaction that waits more than a specified time to acquire a lock. Especially useful if deadlocks are caused by updates to multiple tables controlled by different storage engines; such deadlocks are not detected automatically.
See Also deadlock, deadlock detection, lock, wait.
innodb_strict_mode
The innodb_strict_mode option controls whether InnoDB operates in strict mode, where conditions that are normally treated as warnings, cause errors instead (and the underlying statements fail).
This mode is the default setting in MySQL 5.5.5 and higher.
See Also strict mode.
insert
One of the primary DML operations in SQL. The performance of inserts is a key factor in data warehouse systems that load millions of rows into tables, and OLTP systems where many concurrent connections might insert rows into the same table, in arbitrary order. If insert performance is important to you, you should learn about InnoDB features such as the insert buffer used in change buffering, and auto-increment columns.
See Also auto-increment, change buffering, data warehouse, DML, InnoDB, insert buffer, OLTP, SQL.
insert buffer
Former name for the change buffer. Now that change buffering includes delete and update operations as well as inserts, "change buffer" is the preferred term.
See Also change buffer, change buffering.
insert buffering
The technique of storing secondary index changes due to INSERT operations in the insert buffer rather than writing them immediately, so that the physical writes can be performed to minimize random I/O. It is one of the types of change buffering; the others are delete buffering and purge buffering.
Insert buffering is not used if the secondary index is unique, because the uniqueness of new values cannot be verified before the new entries are written out. Other kinds of change buffering do work for unique indexes.
See Also change buffer, change buffering, delete buffering, insert buffer, purge buffering, unique index.
instance
A single mysqld daemon managing a data directory representing one or more databases with a set of tables. It is common in development, testing, and some replication scenarios to have multiple instances on the same server machine, each managing its own data directory and listening on its own port or socket. With one instance running a disk-bound workload, the server might still have extra CPU and memory capacity to run additional instances.
See Also data directory, database, disk-bound, mysqld, replication, server.
instrumentation
Modifications at the source code level to collect performance data for tuning and debugging. In MySQL, data collected by instrumentation is exposed through a SQL interface using the INFORMATION_SCHEMA and PERFORMANCE_SCHEMA databases.
See Also INFORMATION_SCHEMA, Performance Schema.
intention exclusive lock
See intention lock.
intention lock
A kind of lock that applies to the table level, used to indicate what kind of lock the transaction intends to acquire on rows in the table. Different transactions can acquire different kinds of intention locks on the same table, but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions from acquiring any S or X locks on the table. Conversely, the first transaction to acquire an intention shared (IS) lock on a table prevents other transactions from acquiring any X locks on the table. The two-phase process allows the lock requests to be resolved in order, without blocking locks and corresponding operations that are compatible. For more details on this locking mechanism, see Section 14.2.3.2, “InnoDB Lock Modes”.
See Also lock, lock mode, locking.
intention shared lock
See intention lock.
inverted index
A data structure optimized for document retrieval systems, used in the implementation of InnoDB full-text search. The InnoDB FULLTEXT index, implemented as an inverted index, records the position of each word within a document, rather than the location of a table row. A single column value (a document stored as a text string) is represented by many entries in the inverted index.
See Also full-text search, FULLTEXT index, ilist.
IOPS
Acronym for I/O operations per second. A common measurement for busy systems, particularly OLTP applications. If this value is near the maximum that the storage devices can handle, the application can become disk-bound, limiting scalability.
See Also disk-bound, OLTP, scalability.
.isl file
A file that specifies the location of a .ibd file for an InnoDB table created with the DATA DIRECTORY = clause in MySQL 5.6 and higher. It functions like a symbolic link, without the platform restrictions of the actual symbolic link mechanism. You can store InnoDB tablespaces outside the database directory, for example, on an especially large or fast storage device depending on the usage of the table. For details, see Section 5.4.1.2, “Specifying the Location of a Tablespace”.
See Also database, .ibd file, table, tablespace.
isolation level
One of the foundations of database processing. Isolation is the I in the acronym ACID; the isolation level is the setting that fine-tunes the balance between performance and reliability, consistency, and reproducibility of results when multiple transactions are making changes and performing queries at the same time.
From highest amount of consistency and protection to the least, the isolation levels supported by InnoDB are: SERIALIZABLE, REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED.
With InnoDB tables, many users can keep the default isolation level (REPEATABLE READ) for all operations. Expert users might choose the read committed level as they push the boundaries of scalability with OLTP processing, or during data warehousing operations where minor inconsistencies do not affect the aggregate results of large amounts of data. The levels on the edges (SERIALIZABLE and READ UNCOMMITTED) change the processing behavior to such an extent that they are rarely used.
See Also ACID, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE, transaction.
J
join
A query that retrieves data from more than one table, by referencing columns in the tables that hold identical values. Ideally, these columns are part of an InnoDB foreign key relationship, which ensures referential integrity and that the join columns are indexed. Often used to save space and improve query performance by replacing repeated strings with numeric IDs, in a normalized data design.
See Also foreign key, index, normalized, query, referential integrity.
K
KEY_BLOCK_SIZE
An option to specify the size of data pages within an InnoDB table that uses compressed row format. The default is 8 kilobytes. Lower values risk hitting internal limits that depend on the combination of row size and compression percentage.
See Also compressed row format.
L
latch
A lightweight structure used by InnoDB to implement a lock for its own internal memory structures, typically held for a brief time measured in milliseconds or microseconds. A general term that includes both mutexes (for exclusive access) and rw-locks (for shared access). Certain latches are the focus of InnoDB performance tuning, such as the data dictionary mutex. Statistics about latch use and contention are available through the Performance Schema interface.
See Also data dictionary, lock, locking, mutex, Performance Schema, rw-lock.
list
The InnoDB buffer pool is represented as a list of memory pages. The list is reordered as new pages are accessed and enter the buffer pool, as pages within the buffer pool are accessed again and are considered newer, and as pages that are not accessed for a long time are evicted from the buffer pool. The buffer pool is actually divided into sublists, and the replacement policy is a variation of the familiar LRU technique.
See Also buffer pool, eviction, LRU, sublist.
lock
The high-level notion of an object that controls access to a resource, such as a table, row, or internal data structure, as part of a locking strategy. For intensive performance tuning, you might delve into the actual structures that implement locks, such as mutexes and latches.
See Also latch, lock mode, locking, mutex.
lock escalation
An operation used in some database systems that converts many row locks into a single table lock, saving memory space but reducing concurrent access to the table. InnoDB uses a space-efficient representation for row locks, so that lock escalation is not needed.
See Also locking, row lock, table lock.
lock mode
A shared (S) lock allows a transaction to read a row. Multiple transactions can acquire an S lock on that same row at the same time.
An exclusive (X) lock allows a transaction to update or delete a row. No other transaction can acquire any kind of lock on that same row at the same time.
Intention locks apply to the table level, and are used to indicate what kind of lock the transaction intends to acquire on rows in the table. Different transactions can acquire different kinds of intention locks on the same table, but the first transaction to acquire an intention exclusive (IX) lock on a table prevents other transactions from acquiring any S or X locks on the table. Conversely, the first transaction to acquire an intention shared (IS) lock on a table prevents other transactions from acquiring any X locks on the table. The two-phase process allows the lock requests to be resolved in order, without blocking locks and corresponding operations that are compatible.
See Also intention lock, lock, locking.
locking
The system of protecting a transaction from seeing or changing data that is being queried or changed by other transactions. The locking strategy must balance reliability and consistency of database operations (the principles of the ACID philosophy) against the performance needed for good concurrency. Fine-tuning the locking strategy often involves choosing an isolation level and ensuring all your database operations are safe and reliable for that isolation level.
See Also ACID, concurrency, isolation level, latch, lock, mutex, transaction.
locking read
A SELECT statement that also performs a locking operation on an InnoDB table. Either SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE. It has the potential to produce a deadlock, depending on the isolation level of the transaction. The opposite of a non-locking read. Not allowed for global tables in a read-only transaction.
See Also deadlock, isolation level, locking, non-locking read, read-only transaction.
log
In the InnoDB context, "log" or "log files" typically refers to the redo log represented by the ib_logfile* files. Another log area, which is physically part of the system tablespace, is the undo log.
Other kinds of logs that are important in MySQL are the error log (for diagnosing startup and runtime problems), binary log (for working with replication and performing point-in-time restores), the general query log (for diagnosing application problems), and the slow query log (for diagnosing performance problems).
See Also binary log, error log, general query log, ib_logfile, redo log, slow query log, system tablespace, undo log.
log buffer
The memory area that holds data to be written to the log files that make up the redo log. It is controlled by the innodb_log_buffer_size configuration option.
See Also log file, redo log.
log file
One of the ib_logfileN files that make up the redo log. Data is written to these files from the log buffer memory area.
See Also ib_logfile, log buffer, redo log.
log group
The set of files that make up the redo log, typically named ib_logfile0 and ib_logfile1. (For that reason, sometimes referred to collectively as ib_logfile.)
See Also ib_logfile, redo log.
logical
A type of operation that involves high-level, abstract aspects such as tables, queries, indexes, and other SQL concepts. Typically, logical aspects are important to make database administration and application development convenient and usable. Contrast with physical.
See Also logical backup, physical.
logical backup
A backup that reproduces table structure and data, without copying the actual data files. For example, the mysqldump command produces a logical backup, because its output contains statements such as CREATE TABLE and INSERT that can re-create the data. Contrast with physical backup. A logical backup offers flexibility (for example, you could edit table definitions or insert statements before restoring), but can take substantially longer to restore than a physical backup.
See Also backup, mysqldump, physical backup, restore.
loose_
In MySQL 5.1, a prefix added to InnoDB configuration options when installing the InnoDB Plugin after server startup, so any new configuration options not recognized by the current level of MySQL do not cause a startup failure. MySQL processes configuration options that start with this prefix, but gives a warning rather than a failure if the part after the prefix is not a recognized option.
See Also plugin.
low-water mark
A value representing a lower limit, typically a threshold value at which some corrective action begins or becomes more aggressive. Contrast with high-water mark.
See Also high-water mark.
LRU
An acronym for "least recently used", a common method for managing storage areas. The items that have not been used recently are evicted when space is needed to cache newer items. InnoDB uses the LRU mechanism by default to manage the pages within the buffer pool, but makes exceptions in cases where a page might be read only a single time, such as during a full table scan. This variation of the LRU algorithm is called the midpoint insertion strategy. The ways in which the buffer pool management differs from the traditional LRU algorithm is fine-tuned by the options innodb_old_blocks_pct, innodb_old_blocks_time, and the new MySQL 5.6 options innodb_lru_scan_depth and innodb_flush_neighbors.
See Also buffer pool, eviction, full table scan, midpoint insertion strategy.
LSN
Acronym for "log sequence number". This arbitrary, ever-increasing value represents a point in time corresponding to operations recorded in the redo log. (This point in time is regardless of transaction boundaries; it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash recovery and for managing the buffer pool.
In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which to take an incremental backup. The relevant LSN is displayed by the output of the ibbackup command. Once you have the LSN corresponding to the time of a full backup, you can specify that value to take a subsequent incremental backup, whose output contains another LSN for the next incremental backup.
See Also crash recovery, incremental backup, MySQL Enterprise Backup, redo log, transaction.
M
master server
Frequently shortened to "master". A database server machine in a replication scenario that processes the initial insert, update, and delete requests for data. These changes are propagated to, and repeated on, other servers known as slave servers.
See Also replication, slave server.
master thread
An InnoDB thread that performs various tasks in the background. Most of these tasks are I/O related, such as writing changes from the insert buffer to the appropriate secondary indexes.
To improve concurrency, sometimes actions are moved from the master thread to separate background threads. For example, in MySQL 5.6 and higher, dirty pages are flushed from the buffer pool by the page cleaner thread rather than the master thread.
See Also buffer pool, dirty page, flush, insert buffer, page cleaner, thread.
MDL
Acronym for "metadata lock".
See Also metadata lock.
memcached
A popular component of many MySQL and NoSQL software stacks, allowing fast reads and writes for single values and caching the results entirely in memory. Traditionally, applications required extra logic to write the same data to a MySQL database for permanent storage, or to read data from a MySQL database when it was not cached yet in memory. Now, applications can use the simple memcached protocol, supported by client libraries for many languages, to communicate directly with MySQL servers using InnoDB or MySQL Cluster tables. These NoSQL interfaces to MySQL tables allow applications to achieve higher read and write performance than by issuing SQL commands directly, and can simplify application logic and deployment configurations for systems that already incorporated memcached for in-memory caching.
The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see Section 14.2.9, “InnoDB Integration with memcached” for details. The memcached interface to MySQL Cluster tables is available in MySQL Cluster 7.2; see http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html for details.
See Also InnoDB, NoSQL.
merge
To apply changes to data cached in memory, such as when a page is brought into the buffer pool, and any applicable changes recorded in the change buffer are incorporated into the page in the buffer pool. The updated data is eventually written to the tablespace by the flush mechanism.
See Also buffer pool, change buffer, flush, tablespace.
metadata lock
A type of lock that prevents DDL operations on a table that is being used at the same time by another transaction. For details, see Section 8.10.4, “Metadata Locking”.
Enhancements to online operations, particularly in MySQL 5.6 and higher, are focused on reducing the amount of metadata locking. The objective is for DDL operations that do not change the table structure (such as CREATE INDEX and DROP INDEX for InnoDB tables) to proceed while the table is being queried, updated, and so on by other transactions.
See Also DDL, lock, online, transaction.
metrics counter
A feature implemented by the innodb_metrics table in the information_schema, in MySQL 5.6 and higher. You can query counts and totals for low-level InnoDB operations, and use the results for performance tuning in combination with data from the performance_schema.
See Also counter, INFORMATION_SCHEMA, Performance Schema.
midpoint insertion strategy
The technique of initially bringing pages into the InnoDB buffer pool not at the "newest" end of the list, but instead somewhere in the middle. The exact location of this point can vary, based on the setting of the innodb_old_blocks_pct option. The intent is that blocks that are only read once, such as during a full table scan, can be aged out of the buffer pool sooner than with a strict LRU algorithm.
See Also buffer pool, full table scan, LRU, page.
mini-transaction
An internal phase of InnoDB processing, when making changes at the physical level to internal data structures during DML operations. A mini-transaction has no notion of rollback; multiple mini-transactions can occur within a single transaction. Mini-transactions write information to the redo log that is used during crash recovery. A mini-transaction can also happen outside the context of a regular transaction, for example during purge processing by background threads.
See Also commit, crash recovery, DML, physical, purge, redo log, rollback, transaction.
mixed-mode insert
An INSERT statement where auto-increment values are specified for some but not all of the new rows. For example, a multi-value INSERT could specify a value for the auto-increment column in some cases and NULL in other cases. InnoDB generates auto-increment values for the rows where the column value was specified as NULL. Another example is an INSERT ... ON DUPLICATE KEY UPDATE statement, where auto-increment values might be generated but not used, for any duplicate rows that are processed as UPDATE rather than INSERT statements.
Can cause consistency issues between master and slave servers in a replication configuration. Can require adjusting the value of the innodb_autoinc_lock_mode configuration option.
See Also auto-increment, innodb_autoinc_lock_mode, master server, replication, slave server.
.MRG file
A file containing references to other tables, used by the MERGE storage engine. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.
multi-core
A type of processor that can take advantage of multi-threaded programs, such as the MySQL server.
multiversion concurrency control
See MVCC.
mutex
Informal abbreviation for "mutex variable". (Mutex itself is short for "mutual exclusion".) The low-level object that InnoDB uses to represent and enforce exclusive-access locks to internal in-memory data structures. Once the lock is acquired, any other process, thread, and so on is prevented from acquiring the same lock. Contrast with rw-locks, which allow shared access. Mutexes and rw-locks are known collectively as latches.
See Also latch, lock, Performance Schema, Pthreads, rw-lock.
MVCC
Acronym for "multiversion concurrency control". This technique lets InnoDB transactions with certain isolation levels to perform consistent read operations; that is, to query rows that are being updated by other transactions, and see the values from before those updates occurred. This is a powerful technique to increase concurrency, by allowing queries to proceed without waiting due to locks held by the other transactions.
This technique is not universal in the database world. Some other database products, and some other MySQL storage engines, do not support it.
See Also ACID, concurrency, consistent read, isolation level, lock, transaction.
my.cnf
The name, on UNIX or Linux systems, of the MySQL option file.
See Also my.ini, option file.
my.ini
The name, on Windows systems, of the MySQL option file.
See Also my.cnf, option file.
.MYD file
The file that MySQL uses to store data for a MyISAM table. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .MYI file, MySQL Enterprise Backup, mysqlbackup command.
.MYI file
A file that MySQL uses to store indexes for a MyISAM table. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .MYD file, MySQL Enterprise Backup, mysqlbackup command.
mysql
The mysql program is the command-line interpreter for the MySQL database. It processes SQL statements, and also MySQL-specific commands such as SHOW TABLES, by passing requests to the mysqld daemon.
See Also mysqld, SQL.
MySQL Enterprise Backup
A licensed product, superceding InnoDB Hot Backup, that performs hot backups of MySQL databases. It offers the most efficiency and flexibility when backing up InnoDB tables, but can also back up MyISAM and other kinds of tables.
See Also hot backup, InnoDB.
mysqlbackup command
A command-line tool of the MySQL Enterprise Backup product. It performs a hot backup operation for InnoDB tables, and a warm backup for MyISAM and other kinds of tables. See Section 23.2, “MySQL Enterprise Backup” for more information about this command.
See Also hot backup, ibbackup command, MySQL Enterprise Backup, warm backup.
mysqld
The mysqld program is the database engine for the MySQL database. It runs as a UNIX daemon or Windows service, constantly waiting for requests and performing maintenance work in the background.
See Also mysql.
mysqldump
A command that performs a logical backup of some combination of databases, tables, and table data. The results are SQL statements that reproduce the original schema objects, data, or both. For substantial amounts of data, a physical backup solution such as MySQL Enterprise Backup is faster, particularly for the restore operation.
See Also logical backup, MySQL Enterprise Backup, physical backup, restore.
N
natural key
A indexed column, typically a primary key, where the values have some real-world significance. Usually advised against because:
If the value should ever change, there is potentially a lot of index maintenance to re-sort the clustered index and update the copies of the primary key value that are repeated in each secondary index.
Even seemingly stable values can change in unpredictable ways that are difficult to represent correctly in the database. For example, one country can change into two or several, making the original country code obsolete. Or, rules about unique values might have exceptions. For example, even if taxpayer IDs are intended to be unique to a single person, a database might have to handle records that violate that rule, such as in cases of identity theft. Taxpayer IDs and other sensitive ID numbers also make poor primary keys, because they may need to be secured, encrypted, and otherwise treated differently than other columns.
Thus, it is typically better to use arbitrary numeric values to form a synthetic key, for example using an auto-increment column.
See Also auto-increment, primary key, secondary index, synthetic key.
neighbor page
Any page in the same extent as a particular page. When a page is selected to be flushed, any neighbor pages that are dirty are typically flushed as well, as an I/O optimization for traditional hard disks. In MySQL 5.6 and up, this behavior can be controlled by the configuration variable innodb_flush_neighbors; you might turn that setting off for SSD drives, which do not have the same overhead for writing smaller batches of data at random locations.
See Also dirty page, extent, flush, page.
next-key lock
A combination of a record lock on the index record and a gap lock on the gap before the index record.
See Also gap lock, locking, record lock.
non-blocking I/O
An industry term that means the same as asynchronous I/O.
See Also asynchronous I/O.
non-locking read
A query that does not use the SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE clauses. The only kind of query allowed for global tables in a read-only transaction. The opposite of a locking read.
See Also locking read, query, read-only transaction.
non-repeatable read
The situation when a query retrieves data, and a later query within the same transaction retrieves what should be the same data, but the queries return different results (changed by another transaction committing in the meantime).
This kind of operation goes against the ACID principle of database design. Within a transaction, data should be consistent, with predictable and stable relationships.
Among different isolation levels, non-repeatable reads are prevented by the serializable read and repeatable read levels, and allowed by the consistent read, and read uncommitted levels.
See Also ACID, consistent read, isolation level, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE, transaction.
normalized
A database design strategy where data is split into multiple tables, and duplicate values condensed into single rows represented by an ID, to avoid storing, querying, and updating redundant or lengthy values. It is typically used in OLTP applications.
For example, an address might be given a unique ID, so that a census database could represent the relationship lives at this address by associating that ID with each member of a family, rather than storing multiple copies of a complex value such as 123 Main Street, Anytown, USA.
For another example, although a simple address book application might store each phone number in the same table as a person's name and address, a phone company database might give each phone number a special ID, and store the numbers and IDs in a separate table. This normalized representation could simplify large-scale updates when area codes split apart.
Normalization is not always recommended. Data that is primarily queried, and only updated by deleting entirely and reloading, is often kept in fewer, larger tables with redundant copies of duplicate values. This data representation is referred to as denormalized, and is frequently found in data warehousing applications.
See Also denormalized, foreign key, OLTP, relational.
NoSQL
A broad term for a set of data access technologies that do not use the SQL language as their primary mechanism for reading and writing data. Some NoSQL technologies act as key-value stores, only accepting single-value reads and writes; some relax the restrictions of the ACID methodology; still others do not require a pre-planned schema. MySQL users can combine NoSQL-style processing for speed and simplicity with SQL operations for flexibility and convenience, by using the memcached API to directly access some kinds of MySQL tables. The memcached interface to InnoDB tables is available in MySQL 5.6 and higher; see Section 14.2.9, “InnoDB Integration with memcached” for details. The memcached interface to MySQL Cluster tables is available in MySQL Cluster 7.2; see http://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html for details.
See Also ACID, InnoDB, memcached, schema, SQL.
NOT NULL constraint
A type of constraint that specifies that a column cannot contain any NULL values. It helps to preserve referential integrity, as the database server can identify data with erroneous missing values. It also helps in the arithmetic involved in query optimization, allowing the optimizer to predict the number of entries in an index on that column.
See Also column, constraint, NULL, primary key, referential integrity.
NULL
A special value in SQL, indicating the absence of data. Any arithmetic operation or equality test involving a NULL value, in turn produces a NULL result. (Thus it is similar to the IEEE floating-point concept of NaN, "not a number".) Any aggregate calculation such as AVG() ignores rows with NULL values, when determining how many rows to divide by. The only test that works with NULL values uses the SQL idioms IS NULL or IS NOT NULL.
NULL values play a part in index operations, because for performance a database must minimize the overhead of keeping track of missing data values. Typically, NULL values are not stored in an index, because a query that tests an indexed column using a standard comparison operator could never match a row with a NULL value for that column. For the same reason, unique indexes do not prevent NULL values; those values simply are not represented in the index. Declaring a NOT NULL constraint on a column provides reassurance that there are no rows left out of the index, allowing for better query optimization (accurate counting of rows and estimation of whether to use the index).
Because the primary key must be able to uniquely identify every row in the table, a single-column primary key cannot contain any NULL values, and a multi-column primary key cannot contain any rows with NULL values in all columns.
Although the Oracle database allows a NULL value to be concatenated with a string, InnoDB treats the result of such an operation as NULL.
See Also index, primary key, SQL.
O
off-page column
A column containing variable-length data (such as BLOB and VARCHAR) that is too long to fit on a B-tree page. The data is stored in overflow pages. The DYNAMIC row format in the InnoDB Barracuda file format is more efficient for such storage than the older COMPACT row format.
See Also B-tree, Barracuda, overflow page.
OLTP
Acronym for "Online Transaction Processing". A database system, or a database application, that runs a workload with many transactions, with frequent writes as well as reads, typically affecting small amounts of data at a time. For example, an airline reservation system or an application that processes bank deposits. The data might be organized in normalized form for a balance between DML (insert/update/delete) efficiency and query efficiency. Contrast with data warehouse.
With its row-level locking and transactional capability, InnoDB is the ideal storage engine for MySQL tables used in OLTP applications.
See Also data warehouse, DML, InnoDB, query, row lock, transaction.
online
A type of operation that involves no downtime, blocking, or restricted operation for the database. Typically applied to DDL. Operations that shorten the periods of restricted operation, such as fast index creation, have evolved into a wider set of online DDL operations in MySQL 5.6.
In the context of backups, a hot backup is an online operation and a warm backup is partially an online operation.
See Also DDL, Fast Index Creation, hot backup, online DDL, warm backup.
online DDL
A feature that improves the performance, concurrency, and availability of InnoDB tables during DDL (primarily ALTER TABLE) operations. See Section 5.5, “Online DDL for InnoDB Tables” for details.
The details vary according to the type of operation. In some cases, the table can be modified concurrently while the ALTER TABLE is in progress. The operation might be able to be performed without doing a table copy, or using a specially optimized type of table copy. Space usage is controlled by the innodb_online_alter_log_max_size configuration option.
This feature is an enhancement of the Fast Index Creation feature in MySQL 5.5 and the InnoDB Plugin for MySQL 5.1.
See Also DDL, Fast Index Creation, online.
.OPT file
A file containing database configuration information. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.
optimistic
A methodology that guides low-level implementation decisions for a relational database system. The requirements of performance and concurrency in a relational database mean that operations must be started or dispatched quickly. The requirements of consistency and referential integrity mean that any operation could fail: a transaction might be rolled back, a DML operation could violate a constraint, a request for a lock could cause a deadlock, a network error could cause a timeout. An optimistic strategy is one that assumes most requests or attempts will succeed, so that relatively little work is done to prepare for the failure case. When this assumption is true, the database does little unnecessary work; when requests do fail, extra work must be done to clean up and undo changes.
InnoDB uses optimistic strategies for operations such as locking and commits. For example, data changed by a transaction can be written to the data files before the commit occurs, making the commit itself very fast, but requiring more work to undo the changes if the transaction is rolled back.
The opposite of an optimistic strategy is a pessimistic one, where a system is optimized to deal with operations that are unreliable and frequently unsuccessful. This methodology is rare in a database system, because so much care goes into choosing reliable hardware, networks, and algorithms.
See Also commit, concurrency, DML, locking, pessimistic.
optimizer
The MySQL component that determines the best indexes and join order to use for a query, based on characteristics and data distribution of the relevant tables.
See Also index, join, query, table.
option
A configuration parameter for MySQL, either stored in the option file or passed on the command line.
For the options that apply to InnoDB tables, each option name starts with the prefix innodb_.
See Also InnoDB, option file.
option file
The file that holds the configuration options for the MySQL instance. Traditionally, on Linux and UNIX this file is named my.cnf, and on Windows it is named my.ini.
See Also configuration file, my.cnf, option.
overflow page
Separately allocated disk pages that hold variable-length columns (such as BLOB and VARCHAR) that are too long to fit on a B-tree page. The associated columns are known as off-page columns.
See Also B-tree, off-page column, page.
P
page
A unit representing how much data InnoDB transfers at any one time between disk (the data files) and memory (the buffer pool). A page can contain one or more rows, depending on how much data is in each row. If a row does not fit entirely into a single page, InnoDB sets up additional pointer-style data structures so that the information about the row can be stored in one page.
One way to fit more data in each page is to use compressed row format. For tables that use BLOBs or large text fields, compact row format allows those large columns to be stored separately from the rest of the row, reducing I/O overhead and memory usage for queries that do not reference those columns.
When InnoDB reads or writes sets of pages as a batch to increase I/O throughput, it reads or writes an extent at a time.
All the InnoDB disk data structures within a MySQL instance share the same page size.
See Also buffer pool, compact row format, compressed row format, data files, extent, page size, row.
page cleaner
An InnoDB background thread that flushes dirty pages from the buffer pool. Prior to MySQL 5.6, this activity was performed by the master thread
See Also buffer pool, dirty page, flush, master thread, thread.
page size
For releases up to and including MySQL 5.5, the size of each InnoDB page is fixed at 16 kilobytes. This value represents a balance: large enough to hold the data for most rows, yet small enough to minimize the performance overhead of transferring unneeded data to memory. Other values are not tested or supported.
Starting in MySQL 5.6, the page size for an InnoDB instance can be either 4KB, 8KB, or 16KB, controlled by the innodb_page_size configuration option. You set the size when creating the MySQL instance, and it remains constant afterwards. The same page size applies to all InnoDB tablespaces, both the system tablespace and any separate tablespaces created in file-per-table mode.
Smaller page sizes can help performance with storage devices that use small block sizes, particularly for SSD devices in disk-bound workloads, such as for OLTP applications. As individual rows are updated, less data is copied into memory, written to disk, reorganized, locked, and so on.
See Also disk-bound, file-per-table, instance, OLTP, page, SSD, system tablespace, tablespace.
.PAR file
A file containing partition definitions. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command.
parent table
The table in a foreign key relationship that holds the initial column values pointed to from the child table. The consequences of deleting, or updating rows in the parent table depend on the ON UPDATE and ON DELETE clauses in the foreign key definition. Rows with corresponding values in the child table could be automatically deleted or updated in turn, or those columns could be set to NULL, or the operation could be prevented.
See Also child table, foreign key.
partial backup
A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL instance. Contrast with full backup.
See Also backup, full backup, table.
partial index
An index that represents only part of a column value, typically the first N characters (the prefix) of a long VARCHAR value.
See Also index, index prefix.
Performance Schema
The performance_schema schema, in MySQL 5.5 and up, presents a set of tables that you can query to get detailed information about the performance characteristics of many internal parts of the MySQL server.
See Also latch, mutex, rw-lock.
persistent statistics
A feature in MySQL 5.6 that stores index statistics for InnoDB tables on disk, providing better plan stability for queries.
See Also index, optimizer, plan stability, query, table.
pessimistic
A methodology that sacrifices performance or concurrency in favor of safety. It is appropriate if a high proportion of requests or attempts might fail, or if the consequences of a failed request are severe. InnoDB uses what is known as a pessimistic locking strategy, to minimize the chance of deadlocks. At the application level, you might avoid deadlocks by using a pessimistic strategy of acquiring all locks needed by a transaction at the very beginning.
Many built-in database mechanisms use the opposite optimistic methodology.
See Also deadlock, locking, optimistic.
phantom
A row that appears in the result set of a query, but not in the result set of an earlier query. For example, if a query is run twice within a transaction, and in the meantime, another transaction commits after inserting a new row or updating a row so that it matches the WHERE clause of the query.
This occurrence is known as a phantom read. It is harder to guard against than a non-repeatable read, because locking all the rows from the first query result set does not prevent the changes that cause the phantom to appear.
Among different isolation levels, phantom reads are prevented by the serializable read level, and allowed by the repeatable read, consistent read, and read uncommitted levels.
See Also consistent read, isolation level, non-repeatable read, READ UNCOMMITTED, REPEATABLE READ, SERIALIZABLE, transaction.
physical
A type of operation that involves hardware-related aspects such as disk blocks, memory pages, files, bits, disk reads, and so on. Typically, physical aspects are important during expert-level performance tuning and problem diagnosis. Contrast with logical.
See Also logical, physical backup.
physical backup
A backup that copies the actual data files. For example, the mysqlbackup command of the MySQL Enterprise Backup product produces a physical backup, because its output contains data files that can be used directly by the mysqld server, resulting in a faster restore operation. Contrast with logical backup.
See Also backup, logical backup, MySQL Enterprise Backup, restore.
PITR
Acronym for point-in-time recovery.
See Also point-in-time recovery.
plan stability
A property of a query execution plan, where the optimizer makes the same choices each time for a given query, so that performance is consistent and predictable.
See Also query, query execution plan.
plugin
In MySQL 5.1 and earlier, a separately installable form of the InnoDB storage engine that includes features and performance enhancements not included in the built-in InnoDB for those releases.
For MySQL 5.5 and higher, the MySQL distribution includes the very latest InnoDB features and performance enhancements, known as InnoDB 1.1, and there is no longer a separate InnoDB Plugin.
This distinction is important mainly in MySQL 5.1, where a feature or bug fix might apply to the InnoDB Plugin but not the built-in InnoDB, or vice versa.
See Also built-in, InnoDB.
point-in-time recovery
The process of restoring a backup to recreate the state of the database at a specific date and time. Commonly abbreviated PITR. Because it is unlikely that the specified time corresponds exactly to the time of a backup, this technique usually requires a combination of a physical backup and a logical backup. For example, with the MySQL Enterprise Backup product, you restore the last backup that you took before the specified point in time, then replay changes from the binary log between the time of the backup and the PITR time.
See Also backup, logical backup, MySQL Enterprise Backup, physical backup, PITR.
prefix
See index prefix.
prepared backup
A set of backup files, produced by the MySQL Enterprise Backup product, after all the stages of applying binary logs and incremental backups are finished. The resulting files are ready to be restored. Prior to the apply steps, the files are known as a raw backup.
See Also binary log, hot backup, incremental backup, MySQL Enterprise Backup, raw backup, restore.
primary key
A set of columns -- and by implication, the index based on this set of columns -- that can uniquely identify every row in a table. As such, it must be a unique index that does not contain any NULL values.
InnoDB requires that every table has such an index (also called the clustered index or cluster index), and organizes the table storage based on the column values of the primary key.
When choosing primary key values, consider using arbitrary values (a synthetic key) rather than relying on values derived from some other source (a natural key).
See Also clustered index, index, natural key, synthetic key.
process
An instance of an executing program. The operating system switches between multiple running processes, allowing for a certain degree of concurrency. On most operating systems, processes can contain multiple threads of execution that share resources. Context-switching between threads is faster than the equivalent switching between processes.
See Also concurrency, thread.
pseudo-record
An artificial record in an index, used for locking key values or ranges that do not currently exist.
See Also infimum record, locking, supremum record.
Pthreads
The POSIX threads standard, which defines an API for threading and locking operations on UNIX and Linux systems. On UNIX and Linux systems, InnoDB uses this implementation for mutexes.
See Also mutex.
purge
A type of garbage collection performed by a separate thread, running on a periodic schedule. The purge includes these actions: removing obsolete values from indexes; physically removing rows that were marked for deletion by previous DELETE statements.
See Also crash recovery, delete, doublewrite buffer.
purge buffering
The technique of storing index changes due to DELETE operations in the insert buffer rather than writing them immediately, so that the physical writes can be performed to minimize random I/O. (Because delete operations are a two-step process, this operation buffers the write that normally purges an index record that was previously marked for deletion.) It is one of the types of change buffering; the others are insert buffering. and delete buffering
See Also change buffer, change buffering, delete buffering, insert buffer, insert buffering.
purge lag
Another name for the InnoDB history list. Related to the innodb_max_purge_lag configuration option.
See Also history list, purge.
purge thread
A thread within the InnoDB process that is dedicated to performing the periodic purge operation. In MySQL 5.6 and higher, multiple purge threads are enabled by the innodb_purge_threads configuration option.
See Also purge, thread.
Q
query
In SQL, an operation that reads information from one or more tables. Depending on the organization of data and the parameters of the query, the lookup might be optimized by consulting an index. If multiple tables are involved, the query is known as a join.
For historical reasons, sometimes discussions of internal processing for statements use "query" in a broader sense, including other types of MySQL statements such as DDL and DML statements.
See Also DDL, DML, index, join, SQL, table.
query execution plan
The set of decisions made by the optimizer about how to perform a query most efficiently, including which index or indexes to use, and the order in which to join tables. Plan stability involves the same choices being made consistently for a given query.
See Also index, join, plan stability, query.
query log
See general query log.
quiesce
To reduce the amount of database activity, often in preparation for an operation such as an ALTER TABLE, a backup, or a shutdown. Might or might not involve doing as much flushing as possible, so that InnoDB does not continue doing background I/O.
In MySQL 5.6 and higher, the syntax FLUSH TABLES ... FOR EXPORT writes some data to disk for InnoDB tables that make it simpler to back up those tables by copying the data files.
See Also backup, flush, InnoDB, shutdown.
R
RAID
Acronym for "Redundant Array of Inexpensive Drives". Spreading I/O operations across multiple drives enables greater concurrency at the hardware level, and improves the efficiency of low-level write operations that otherwise would be performed in sequence.
See Also concurrency.
random dive
A technique for quickly estimating the number of different values in a column (the column's cardinality). InnoDB samples pages at random from the index and uses that data to estimate the number of different values. This operation occurs when each table is first opened.
Originally, the number of sampled pages was fixed at 8; now, it is determined by the setting of the innodb_stats_sample_pages parameter.
The way the random pages are picked depends on the setting of the innodb_use_legacy_cardinality_algorithm parameter. The default setting (OFF) has better randomness than in older releases.
See Also cardinality.
raw backup
The initial set of backup files produced by the MySQL Enterprise Backup product, before the changes reflected in the binary log and any incremental backups are applied. At this stage, the files are not ready to restore. After these changes are applied, the files are known as a prepared backup.
See Also binary log, hot backup, ibbackup_logfile, incremental backup, MySQL Enterprise Backup, prepared backup, restore.
READ COMMITTED
An isolation level that uses a locking strategy that relaxes some of the protection between transactions, in the interest of performance. Transactions cannot see uncommitted data from other transactions, but they can see data that is committed by another transaction after the current transaction started. Thus, a transaction never sees any bad data, but the data that it does see may depend to some extent on the timing of other transactions.
When a transaction with this isolation level performs UPDATE ... WHERE or DELETE ... WHERE operations, other transactions might have to wait. The transaction can perform SELECT ... FOR UPDATE, and LOCK IN SHARE MODE operations without making other transactions wait.
See Also ACID, isolation level, locking, REPEATABLE READ, SERIALIZABLE, transaction.
READ UNCOMMITTED
The isolation level that provides the least amount of protection between transactions. Queries employ a locking strategy that allows them to proceed in situations where they would normally wait for another transaction. However, this extra performance comes at the cost of less reliable results, including data that has been changed by other transactions and not committed yet (known as dirty read). Use this isolation level only with great caution, and be aware that the results might not be consistent or reproducible, depending on what other transactions are doing at the same time. Typically, transactions with this isolation level do only queries, not insert, update, or delete operations.
See Also ACID, dirty read, isolation level, locking, transaction.
read view
An internal snapshot used by the MVCC mechanism of InnoDB. Certain transactions, depending on their isolation level, see the data values as they were at the time the transaction (or in some cases, the statement) started. Isolation levels that use a read view are REPEATABLE READ, READ COMMITTED, and READ UNCOMMITTED.
See Also isolation level, MVCC, READ COMMITTED, READ UNCOMMITTED, REPEATABLE READ, transaction.
read-ahead
A type of I/O request that prefetches a group of pages (an entire extent) into the buffer pool asynchronously, in anticipation that these pages will be needed soon. The linear read-ahead technique prefetches all the pages of one extent based on access patterns for pages in the preceding extent, and is part of all MySQL versions starting with the InnoDB Plugin for MySQL 5.1. The random read-ahead technique prefetches all the pages for an extent once a certain number of pages from the same extent are in the buffer pool. Random read-ahead is not part of MySQL 5.5, but is re-introduced in MySQL 5.6 under the control of the innodb_random_read_ahead configuration option.
See Also buffer pool, extent, page.
read-only transaction
A type of transaction that can be optimized for InnoDB tables by eliminating some of the bookkeeping involved with creating a read view for each transaction. Can only perform non-locking read queries. It can be started explicitly with the syntax START TRANSACTION READ ONLY, or automatically under certain conditions. See Section 14.2.4.2.3, “Optimizations for Read-Only Transactions” for details.
See Also non-locking read, read view, transaction.
record lock
A lock on an index record. For example, SELECT c1 FOR UPDATE FROM t WHERE c1 = 10; prevents any other transaction from inserting, updating, or deleting rows where the value of t.c1 is 10. Contrast with gap lock and next-key lock.
See Also gap lock, lock, next-key lock.
redo
The data, in units of records, recorded in the redo log when DML statements make changes to InnoDB tables. It is used during crash recovery to correct data written by incomplete transactions. The ever-increasing LSN value represents the cumulative amount of redo data that has passed through the redo log.
See Also crash recovery, DML, LSN, redo log, transaction.
redo log
A disk-based data structure used during crash recovery, to correct data written by incomplete transactions. During normal operation, it encodes requests to change InnoDB table data, which result from SQL statements or low-level API calls through NoSQL interfaces. Modifications that did not finish updating the data files before an unexpected shutdown are replayed automatically.
The redo log is physically represented as a set of files, typically named ib_logfile0 and ib_logfile1. The data in the redo log is encoded in terms of records affected; this data is collectively referred to as redo. The passage of data through the redo logs is represented by the ever-increasing LSN value. The original 4GB limit on maximum size for the redo log is raised to 512GB in MySQL 5.6.
The disk layout of the redo log is influenced by the configuration options innodb_log_file_size, innodb_log_group_home_dir, and (rarely) innodb_log_files_in_group. The performance of redo log operations is also affected by the log buffer, which is controlled by the innodb_log_buffer_size configuration option.
See Also crash recovery, data files, ib_logfile, log buffer, LSN, redo, shutdown, transaction.
redundant row format
The oldest InnoDB row format, available for tables using the Antelope file format. Prior to MySQL 5.0.3, it was the only row format available in InnoDB. In My SQL 5.0.3 and later, the default is compact row format. You can still specify redundant row format for compatibility with older InnoDB tables.
See Also Antelope, compact row format, file format, row format.
referential integrity
The technique of maintaining data always in a consistent format, part of the ACID philosophy. In particular, data in different tables is kept consistent through the use of foreign key constraints, which can prevent changes from happening or automatically propagate those changes to all related tables. Related mechanisms include the unique constraint, which prevents duplicate values from being inserted by mistake, and the NOT NULL constraint, which prevents blank values from being inserted by mistake.
See Also ACID, FOREIGN KEY constraint, NOT NULL constraint, unique constraint.
relational
An important aspect of modern database systems. The database server encodes and enforces relationships such as one-to-one, one-to-many, many-to-one, and uniqueness. For example, a person might have zero, one, or many phone numbers in an address database; a single phone number might be associated with several family members. In a financial database, a person might be required to have exactly one taxpayer ID, and any taxpayer ID could only be associated with one person.
The database server can use these relationships to prevent bad data from being inserted, and to find efficient ways to look up information. For example, if a value is declared to be unique, the server can stop searching as soon as the first match is found, and it can reject attempts to insert a second copy of the same value.
At the database level, these relationships are expressed through SQL features such as columns within a table, unique and NOT NULL constraints, foreign keys, and different kinds of join operations. Complex relationships typically involve data split between more than one table. Often, the data is normalized, so that duplicate values in one-to-many relationships are stored only once.
In a mathematical context, the relations within a database are derived from set theory. For example, the OR and AND operators of a WHERE clause represent the notions of union and intersection.
See Also ACID, constraint, foreign key, normalized.
relevance
In the full-text search feature, a number signifying the similarity between the search string and the data in the FULLTEXT index. For example, when you search for a single word, that word is typically more relevant for a row where if it occurs several times in the text than a row where it appears only once.
See Also full-text search, FULLTEXT index.
REPEATABLE READ
The default isolation level for InnoDB. It prevents any rows that are queried from being changed by other transactions, thus blocking non-repeatable reads but not phantom reads. It uses a moderately strict locking strategy so that all queries within a transaction see data from the same snapshot, that is, the data as it was at the time the transaction started.
When a transaction with this isolation level performs UPDATE ... WHERE, DELETE ... WHERE, SELECT ... FOR UPDATE, and LOCK IN SHARE MODE operations, other transactions might have to wait.
See Also ACID, consistent read, isolation level, locking, phantom, SERIALIZABLE, transaction.
replication
The practice of sending changes from a master database, to one or more slave databases, so that all databases have the same data. This technique has a wide range of uses, such as load-balancing for better scalability, disaster recovery, and testing software upgrades and configuration changes. The changes can be sent between the database by methods called row-based replication and statement-based replication.
See Also row-based replication, statement-based replication.
restore
The process of putting a set of backup files from the MySQL Enterprise Backup product in place for use by MySQL. This operation can be performed to fix a corrupted database, to return to some earlier point in time, or (in a replication context) to set up a new slave database. In the MySQL Enterprise Backup product, this operation is performed by the copy-back option of the mysqlbackup command.
See Also hot backup, MySQL Enterprise Backup, mysqlbackup command, prepared backup, replication.
rollback
A SQL statement that ends a transaction, undoing any changes made by the transaction. It is the opposite of commit, which makes permanent any changes made in the transaction.
By default, MySQL uses the autocommit setting, which automatically issues a commit following each SQL statement. You must change this setting before you can use the rollback technique.
See Also ACID, commit, transaction.
rollback segment
The storage area containing the undo log, part of the system tablespace.
See Also system tablespace, undo log.
row
The logical data structure defined by a set of columns. A set of rows makes up a table. Within InnoDB data files, each page can contain one or more rows.
Although InnoDB uses the term row format for consistency with MySQL syntax, the row format is a property of each table and applies to all rows in that table.
See Also column, data files, page, row format, table.
row format
The disk storage format for a row from an InnoDB table. As InnoDB gains new capabilities such as compression, new row formats are introduced to support the resulting improvements in storage efficiency and performance.
Each table has its own row format, specified through the ROW_FORMAT option. To see the row format for each InnoDB table, issue the command SHOW TABLE STATUS. Because all the tables in the system tablespace share the same row format, to take advantage of other row formats typically requires setting the innodb_file_per_table option, so that each table is stored in a separate tablespace.
See Also compact row format, compressed row format, dynamic row format, fixed row format, redundant row format, row, table.
row lock
A lock that prevents a row from being accessed in an incompatible way by another transaction. Other rows in the same table can be freely written to by other transactions. This is the type of locking done by DML operations on InnoDB tables.
Contrast with table locks used by MyISAM, or during DDL operations on InnoDB tables that cannot be done with online DDL; those locks block concurrent access to the table.
See Also DDL, DML, InnoDB, lock, locking, online DDL, table lock, transaction.
row-based replication
A form of replication where events are propagated from the master server specifying how to change individual rows on the slave server. It is safe to use for all settings of the innodb_autoinc_lock_mode option.
See Also auto-increment locking, innodb_autoinc_lock_mode, replication, statement-based replication.
row-level locking
The locking mechanism used for InnoDB tables, relying on row locks rather than table locks. Multiple transactions can modify the same table concurrently. Only if two transactions try to modify the same row does one of the transactions wait for the other to complete (and release its row locks).
See Also InnoDB, locking, row lock, table lock, transaction.
rw-lock
The low-level object that InnoDB uses to represent and enforce shared-access locks to internal in-memory data structures. Once the lock is acquired, any other process, thread, and so on can read the data structure, but no one else can write to it. Contrast with mutexes, which enforce exclusive access. Mutexes and rw-locks are known collectively as latches.
See Also latch, lock, mutex, Performance Schema.
S
savepoint
Savepoints help to implement nested transactions. They can be used to provide scope to operations on tables that are part of a larger transaction. For example, scheduling a trip in a reservation system might involve booking several different flights; if a desired flight is unavailable, you might roll back the changes involved in booking that one leg, without rolling back the earlier flights that were successfully booked.
See Also rollback, transaction.
scalability
The ability to add more work and issue more simultaneous requests to a system, without a sudden drop in performance due to exceeding the limits of system capacity. Software architecture, hardware configuration, application coding, and type of workload all play a part in scalability. When the system reaches its maximum capacity, popular techniques for increasing scalability are scale up (increasing the capacity of existing hardware or software) and scale out (adding new servers and more instances of MySQL). Often paired with availability as critical aspects of a large-scale deployment.
See Also availability, scale out, scale up.
scale out
A technique for increasing scalability by adding new servers and more instances of MySQL. For example, setting up replication, MySQL Cluster, connection pooling, or other features that spread work across a group of servers. Contrast with scale up.
See Also scalability, scale up.
scale up
A technique for increasing scalability by increasing the capacity of existing hardware or software. For example, increasing the memory on a server and adjusting memory-related parameters such as innodb_buffer_pool_size and innodb_buffer_pool_instances. Contrast with scale out.
See Also scalability, scale out.
schema
Conceptually, a schema is a set of interrelated database objects, such as tables, table columns, data types of the columns, indexes, foreign keys, and so on. These objects are connected through SQL syntax, because the columns make up the tables, the foreign keys refer to tables and columns, and so on. Ideally, they are also connected logically, working together as part of a unified application or flexible framework. For example, the information_schema and performance_schema databases use "schema" in their names to emphasize the close relationships between the tables and columns they contain.
In MySQL, physically, a schema is synonymous with a database. You can substitute the keyword SCHEMA instead of DATABASE in MySQL SQL syntax, for example using CREATE SCHEMA instead of CREATE DATABASE.
Some other database products draw a distinction. For example, in the Oracle Database product, a schema represents only a part of a database: the tables and other objects owned by a single user.
See Also database, ib-file set, INFORMATION_SCHEMA, Performance Schema.
search index
In MySQL, full-text search queries use a special kind of index, the FULLTEXT index. In MySQL 5.6.4 and up, InnoDB and MyISAM tables both support FULLTEXT indexes; formerly, these indexes were only available for MyISAM tables.
See Also full-text search, FULLTEXT index.
secondary index
A type of InnoDB index that represents a subset of table columns. An InnoDB table can have zero, one, or many secondary indexes. (Contrast with the clustered index, which is required for each InnoDB table, and stores the data for all the table columns.)
A secondary index can be used to satisfy queries that only require values from the indexed columns. For more complex queries, it can be used to identify the relevant rows in the table, which are then retrieved through lookups using the clustered index.
Creating and dropping secondary indexes has traditionally involved significant overhead from copying all the data in the InnoDB table. The fast index creation feature of the InnoDB Plugin makes both CREATE INDEX and DROP INDEX statements much faster for InnoDB secondary indexes.
See Also clustered index, Fast Index Creation, index.
segment
A division within an InnoDB tablespace. If a tablespace is analogous to a directory, the segments are analogous to files within that directory. A segment can grow. New segments can be created.
For example, within a file-per-table tablespace, the table data is in one segment and each associated index is in its own segment. The system tablespace contains many different segments, because it can hold many tables and their associated indexes. The system tablespace also includes up to 128 rollback segments making up the undo log.
Segments grow and shrink as data is inserted and deleted. When a segment needs more room, it is extended by one extent (1 megabyte) at a time. Similarly, a segment releases one extent's worth of space when all the data in that extent is no longer needed.
See Also extent, file-per-table, rollback segment, system tablespace, tablespace, undo log.
selectivity
A property of data distribution, the number of distinct values in a column (its cardinality) divided by the number of records in the table. High selectivity means that the column values are relatively unique, and can retrieved efficiently through an index. If you (or the query optimizer) can predict that a test in a WHERE clause only matches a small number (or proportion) of rows in a table, the overall query tends to be efficient if it evaluates that test first, using an index.
See Also cardinality, query.
semi-consistent read
A type of read operation used for UPDATE statements, that is a combination of read committed and consistent read. When an UPDATE statement examines a row that is already locked, InnoDB returns the latest committed version to MySQL so that MySQL can determine whether the row matches the WHERE condition of the UPDATE. If the row matches (must be updated), MySQL reads the row again, and this time InnoDB either locks it or waits for a lock on it. This type of read operation can only happen when the transaction has the read committed isolation level, or when the innodb_locks_unsafe_for_binlog option is enabled.
See Also consistent read, isolation level, READ COMMITTED.
SERIALIZABLE
The isolation level that uses the most conservative locking strategy, to prevent any other transactions from inserting or changing data that was read by this transaction, until it is finished. This way, the same query can be run over and over within a transaction, and be certain to retrieve the same set of results each time. Any attempt to change data that was committed by another transaction since the start of the current transaction, cause the current transaction to wait.
This is the default isolation level specified by the SQL standard. In practice, this degree of strictness is rarely needed, so the default isolation level for InnoDB is the next most strict, repeatable read.
See Also ACID, consistent read, isolation level, locking, REPEATABLE READ, transaction.
server
A type of program that runs continuously, waiting to receive and act upon requests from another program (the client). Because often an entire computer is dedicated to running one or more server programs (such as a database server, a web server, an application server, or some combination of these), the term server can also refer to the computer that runs the server software.
See Also client, mysqld.
shared lock
A kind of lock that allows other transactions to read the locked object, and to also acquire other shared locks on it, but not to write to it. The opposite of exclusive lock.
See Also exclusive lock, lock, transaction.
shared tablespace
Another way of referring to the system tablespace.
See Also system tablespace.
sharp checkpoint
The process of flushing to disk all dirty buffer pool pages whose redo entries are contained in certain portion of the redo log. Occurs before InnoDB reuses a portion of a log file; the log files are used in a circular fashion. Typically occurs with write-intensive workloads.
See Also dirty page, flush, redo log, workload.
shutdown
The process of stopping the MySQL server. By default, this process does cleanup operations for InnoDB tables, so it can slow to shut down, but fast to start up later. If you skip the cleanup operations, it is fast to shut down but must do the cleanup during the next restart.
The shutdown mode is controlled by the innodb_fast_shutdown option.
See Also fast shutdown, InnoDB, slow shutdown, startup.
slave server
Frequently shortened to "slave". A database server machine in a replication scenario that receives changes from another server (the master) and applies those same changes. Thus it maintains the same contents as the master, although it might lag somewhat behind.
In MySQL, slave servers are commonly used in disaster recovery, to take the place of a master servers that fails. They are also commonly used for testing software upgrades and new settings, to ensure that database configuration changes do not cause problems with performance or reliability.
Slave servers typically have high workloads, because they process all the DML (write) operations relayed from the master, as well as user queries. To ensure that slave servers can apply changes from the master fast enough, they frequently have fast I/O devices and sufficient CPU and memory to run multiple database instances on the same slave server. For example, the master server might use hard drive storage while the slave servers use SSDs.
See Also DML, replication, server, SSD.
slow query log
A type of log used for performance tuning of SQL statements processed by the MySQL server. The log information is stored in a file. You must enable this feature to use it. You control which categories of "slow" SQL statements are logged. For more information, see Section 5.2.5, “The Slow Query Log”.
See Also general query log, log.
slow shutdown
A type of shutdown that does additional InnoDB flushing operations before completing. Also known as a clean shutdown. Specified by the configuration parameter innodb_fast_shutdown=0 or the command SET GLOBAL innodb_fast_shutdown=0;. Although the shutdown itself can take longer, that time will be saved on the subsequent startup.
See Also clean shutdown, fast shutdown, shutdown.
snapshot
A representation of data at a particular time, which remains the same even as changes are committed by other transactions. Used by certain isolation levels to allow consistent reads.
See Also commit, consistent read, isolation level, transaction.
space ID
An identifier used to uniquely identify an InnoDB tablespace within a MySQL instance. The space ID for the system tablespace is always zero; this same ID applies to all tables within the system tablespace. Each tablespace file created in file-per-table mode also has its own space ID.
Prior to MySQL 5.6, this hardcoded value presented difficulties in moving InnoDB tablespace files between MySQL instances. Starting in MySQL 5.6, you can copy tablespace files between instances by using the transportable tablespace feature involving the statements FLUSH TABLES ... FOR EXPORT, ALTER TABLE ... DISCARD TABLESPACE, and ALTER TABLE ... IMPORT TABLESPACE. The information needed to adjust the space ID is conveyed in the .cfg file which you copy along with the tablespace. See Section 14.2.4.2.34, “Improved Tablespace Management” for details.
See Also .cfg file, file-per-table, .ibd file, system tablespace, tablespace, transportable tablespace.
spin
A type of wait operation that continuously tests whether a resource becomes available. This technique is used for resources that are typically held only for brief periods, where it is more efficient to wait in a "busy loop" than to put the thread to sleep and perform a context switch. If the resource does not become available within a short time, the spin loop ceases and another wait technique is used.
See Also latch, lock, mutex, wait.
SQL
The Structured Query Language that is standard for performing database operations. Often divided into the categories DDL, DML, and queries. MySQL includes some additional statement categories such as replication. See Chapter 9, Language Structure for the building blocks of SQL syntax, Chapter 11, Data Types for the data types to use for MySQL table columns, Chapter 13, SQL Statement Syntax for details about SQL statements and their associated categories, and Chapter 12, Functions and Operators for standard and MySQL-specific functions to use in queries.
See Also DDL, DML, query, replication.
SSD
Acronym for "solid-state drive". A type of storage device with different performance characteristics than a traditional hard disk drive (HDD): smaller storage capacity, faster for random reads, no moving parts, and with a number of considerations affecting write performance. Its performance characteristics can influence the throughput of a disk-bound workload.
See Also disk-bound, SSD.
startup
The process of starting the MySQL server. Typically done by one of the programs listed in Section 4.3, “MySQL Server and Server-Startup Programs”. The opposite of shutdown.
See Also shutdown.
statement-based replication
A form of replication where SQL statements are sent from the master server and replayed on the slave server. It requires some care with the setting for the innodb_autoinc_lock_mode option, to avoid potential timing problems with auto-increment locking.
See Also auto-increment locking, innodb_autoinc_lock_mode, replication, row-based replication.
statistics
Estimated values relating to each InnoDB table and index, used to construct an efficient query execution plan. The main values are the cardinality (number of distinct values) and the total number of table rows or index entries. The statistics for the table represent the data in its primary key index. The statistics for a secondary index represent the rows covered by that index.
The values are estimated rather than counted precisely because at any moment, different transactions can be inserting and deleting rows from the same table. To keep the values from being recalculated frequently, you can enable persistent statistics, where the values are stored in InnoDB system tables, and refreshed only when you issue an ANALYZE TABLE statement.
You can control how NULL values are treated when calculating statistics through the innodb_stats_method configuration option.
Other types of statistics are available for database objects and database activity through the INFORMATION_SCHEMA and PERFORMANCE_SCHEMA tables.
See Also cardinality, index, INFORMATION_SCHEMA, NULL, Performance Schema, persistent statistics, primary key, query execution plan, secondary index, table, transaction.
stemming
The ability to search for different variations of a word based on a common root word, such as singular and plural, or past, present, and future verb tense. This feature is currently supported in MyISAM full-text search feature but not in FULLTEXT indexes for InnoDB tables.
See Also full-text search, FULLTEXT index.
stopword
In a FULLTEXT index, a word that is considered common or trivial enough that it is omitted from the search index and ignored in search queries. Different configuration settings control stopword processing for InnoDB and MyISAM tables. See Section 12.9.4, “Full-Text Stopwords” for details.
See Also FULLTEXT index, search index.
storage engine
A component of the MySQL database that performs the low-level work of storing, updating, and querying data. In MySQL 5.5 and higher, InnoDB is the default storage engine for new tables, superceding MyISAM. Different storage engines are designed with different tradeoffs between factors such as memory usage versus disk usage, read speed versus write speed, and speed versus robustness. Each storage engine manages specific tables, so we refer to InnoDB tables, MyISAM tables, and so on.
The MySQL Enterprise Backup product is optimized for backing up InnoDB tables. It can also back up tables handled by MyISAM and other storage engines.
See Also InnoDB, MySQL Enterprise Backup, table type.
strict mode
The general name for the setting controlled by the innodb_strict_mode option. Turning on this setting causes certain conditions that are normally treated as warnings, to be considered errors. For example, certain invalid combinations of options related to file format and row format, that normally produce a warning and continue with default values, now cause the CREATE TABLE operation to fail.
MySQL also has something called strict mode.
See Also file format, innodb_strict_mode, row format.
sublist
Within the list structure that represents the buffer pool, pages that are relatively old and relatively new are represented by different portions of the list. A set of parameters control the size of these portions and the dividing point between the new and old pages.
See Also buffer pool, eviction, list, LRU.
supremum record
A pseudo-record in an index, representing the gap above the largest value in that index. If a transaction has a statement such as SELECT ... FOR UPDATE ... WHERE col > 10;, and the largest value in the column is 20, it is a lock on the supremum record that prevents other transactions from inserting even larger values such as 50, 100, and so on.
See Also gap, infimum record, pseudo-record.
surrogate key
Synonym name for synthetic key.
See Also synthetic key.
synthetic key
A indexed column, typically a primary key, where the values are assigned arbitrarily. Often done using an auto-increment column. By treating the value as completely arbitrary, you can avoid overly restrictive rules and faulty application assumptions. For example, a numeric sequence representing employee numbers might have a gap if an employee was approved for hiring but never actually joined. Or employee number 100 might have a later hiring date than employee number 500, if they left the company and later rejoined. Numeric values also produce shorter values of predictable length. For example, storing numeric codes meaning "Road", "Boulevard", "Expressway", and so on is more space-efficient than repeating those strings over and over.
Also known as a surrogate key. Contrast with natural key.
See Also auto-increment, natural key, primary key, surrogate key.
system tablespace
A small set of data files (the ibdata files) containing the metadata for InnoDB-related objects (the data dictionary), and the storage areas for the undo log, the change buffer, and the doublewrite buffer. Depending on the setting of the innodb_file_per_table, when tables are created, it might also contain table and index data for some or all InnoDB tables. The data and metadata in the system tablespace apply to all the databases in a MySQL instance.
Prior to MySQL 5.6.7, the default was to keep all InnoDB tables and indexes inside the system tablespace, often causing this file to become very large. Because the system tablespace never shrinks, storage problems could arise if large amounts of temporary data were loaded and then deleted. In MySQL 5.6.7 and higher, the default is file-per-table mode, where each table and its associated indexes are stored in a separate .ibd file. This new default makes it easier to use InnoDB features that rely on the Barracuda file format, such as table compression and the DYNAMIC row format.
In MySQL 5.6 and higher, setting a value for the innodb_undo_tablespaces option splits the undo log into one or more separate tablespace files. These files are still considered part of the system tablespace.
Keeping all table data in the system tablespace or in separate .ibd files has implications for storage management in general. The MySQL Enterprise Backup product might back up a small set of large files, or many smaller files. On systems with thousands of tables, the filesystem operations to process thousands of .ibd files can cause bottlenecks.
See Also Barracuda, change buffer, compression, data dictionary, database, doublewrite buffer, dynamic row format, file-per-table, .ibd file, ibdata file, innodb_file_per_table, instance, MySQL Enterprise Backup, tablespace, undo log.
T
table
Each MySQL table is associated with a particular storage engine. InnoDB tables have particular physical and logical characteristics that affect performance, scalability, backup, administration, and application development.
In terms of file storage, each InnoDB table is either part of the single big InnoDB system tablespace, or in a separate .ibd file if the table is created in file-per-table mode. The .ibd file holds data for the table and all its indexes, and is known as a tablespace.
InnoDB tables created in file-per-table mode can use the Barracuda file format. Barracuda tables can use the DYNAMIC row format or the COMPRESSED row format. These relatively new settings enable a number of InnoDB features, such as compression, fast index creation, and off-page columns
For backward compatibility with MySQL 5.1 and earlier, InnoDB tables inside the system tablespace must use the Antelope file format, which supports the compact row format and the redundant row format.
The rows of an InnoDB table are organized into an index structure known as the clustered index, with entries sorted based on the primary key columns of the table. Data access is optimized for queries that filter and sort on the primary key columns, and each index contains a copy of the associated primary key columns for each entry. Modifying values for any of the primary key columns is an expensive operation. Thus an important aspect of InnoDB table design is choosing a primary key with columns that are used in the most important queries, and keeping the primary key short, with rarely changing values.
See Also Antelope, backup, Barracuda, clustered index, compact row format, compressed row format, compression, dynamic row format, Fast Index Creation, file-per-table, .ibd file, index, off-page column, primary key, redundant row format, row, system tablespace, tablespace.
table lock
A lock that prevents any other transaction from accessing a table. InnoDB makes considerable effort to make such locks unnecessary, by using techniques such as online DDL, row locks and consistent reads for processing DML statements and queries. You can create such a lock through SQL using the LOCK TABLE statement; one of the steps in migrating from other database systems or MySQL storage engines is to remove such statements wherever practical.
See Also consistent read, DML, lock, locking, online DDL, query, row lock, table, transaction.
table scan
See full table scan.
table statistics
See statistics.
table type
Obsolete synonym for storage engine. We refer to InnoDB tables, MyISAM tables, and so on.
See Also InnoDB, storage engine.
tablespace
A data file that can hold data for one or more InnoDB tables and associated indexes. The system tablespace contains the tables that make up the data dictionary, and prior to MySQL 5.6 holds all the other InnoDB tables by default. Turning on the innodb_file_per_table option, the default in MySQL 5.6 and higher, allows newly created tables to each have their own tablespace, with a separate data file for each table.
Using multiple tablespaces, by turning on the innodb_file_per_table option, is vital to using many MySQL features such as table compression and transportable tablespaces, and managing disk usage. See Section 5.4.1, “Managing InnoDB Tablespaces” and Section 14.2.4.2.34, “Improved Tablespace Management” for details.
Tablespaces created by the built-in InnoDB storage engine are upward compatible with the InnoDB Plugin. Tablespaces created by the InnoDB Plugin are downward compatible with the built-in InnoDB storage engine, if they use the Antelope file format.
MySQL Cluster also groups its tables into tablespaces. See MySQL Cluster Disk Data Objects for details.
See Also Antelope, Barracuda, compressed row format, data dictionary, data files, file-per-table, index, innodb_file_per_table, system tablespace, table.
tablespace dictionary
A representation of the data dictionary metadata for a table, within the InnoDB tablespace. This metadata can be checked against the .frm file for consistency when the table is opened, to diagnose errors resulting from out-of-date .frm files. This information is present for InnoDB tables that are part of the system tablespace, as well as for tables that have their own .ibd file because of the file-per-table option.
See Also data dictionary, file-per-table, .frm file, .ibd file, system tablespace, tablespace.
temporary table
A table whose data does not need to be truly permanent. For example, temporary tables might be used as storage areas for intermediate results in complicated calculations or transformations; this intermediate data would not need to be recovered after a crash. Database products can take various shortcuts to improve the performance of operations on temporary tables, by being less scrupulous about writing data to disk and other measures to protect the data across restarts.
Sometimes, the data itself is removed automatically at a set time, such as when the transaction ends or when the session ends. With some database products, the table itself is removed automatically too.
See Also table.
text collection
The set of columns included in a FULLTEXT index.
See Also FULLTEXT index.
thread
A unit of processing that is typically more lightweight than a process, allowing for greater concurrency.
See Also concurrency, master thread, process, Pthreads.
torn page
An error condition that can occur due to a combination of I/O device configuration and hardware failure. If data is written out in chunks smaller than the InnoDB page size (by default, 16KB), a hardware failure while writing could result in only part of a page being stored to disk. The InnoDB doublewrite buffer guards against this possibility.
See Also doublewrite buffer.
TPS
Acronym for "transactions per second", a unit of measurement sometimes used in benchmarks. Its value depends on the workload represented by a particular benchmark test, combined with factors that you control such as the hardware capacity and database configuration.
See Also transaction, workload.
transaction
Transactions are atomic units of work that can be committed or rolled back. When a transaction makes multiple changes to the database, either all the changes succeed when the transaction is committed, or all the changes are undone when the transaction is rolled back.
Database transactions, as implemented by InnoDB, have properties that are collectively known by the acronym ACID, for atomicity, consistency, isolation, and durability.
See Also ACID, commit, isolation level, lock, rollback.
transaction ID
An internal field associated with each row. This field is physically changed by INSERT, UPDATE, and DELETE operations to record which transaction has locked the row.
See Also implicit row lock.
transportable tablespace
A feature that allows a tablespace to be moved from one instance to another. Traditionally, this has not been possible for InnoDB tablespaces because all table data was part of the system tablespace. In MySQL 5.6 and higher, the FLUSH TABLES ... FOR EXPORT syntax prepares an InnoDB table for copying to another server; running ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ... IMPORT TABLESPACE on the other server brings the copied data file into the other instance. A separate .cfg file, copied along with the .ibd file, is used to update the table metadata (for example the space ID) as the tablespace is imported. See Section 14.2.4.2.34, “Improved Tablespace Management” for usage information.
See Also .ibd file, space ID, system tablespace, tablespace.
.TRG file
A file containing trigger parameters. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRN file.
.TRN file
A file containing trigger namespace information. Files with this extension are always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also MySQL Enterprise Backup, mysqlbackup command, .TRG file.
troubleshooting
Resources for troubleshooting InnoDB reliability and performance issues include: the Information Schema tables.
truncate
A DDL operation that removes the entire contents of a table, while leaving the table and related indexes intact. Contrast with drop. Although conceptually it has the same result as a DELETE statement with no WHERE clause, it operates differently behind the scenes: InnoDB creates a new empty table, drops the old table, then renames the new table to take the place of the old one. Because this is a DDL operation, it cannot be rolled back.
If the table being truncated contains foreign keys that reference another table, the truncation operation uses a slower method of operation, deleting one row at a time so that corresponding rows in the referenced table can be deleted as needed by any ON DELETE CASCADE clause. (MySQL 5.5 and higher do not allow this slower form of truncate, and return an error instead if foreign keys are involved. In this case, use a DELETE statement instead.
See Also DDL, drop, foreign key, rollback.
tuple
A technical term designating an ordered set of elements. It is an abstract notion, used in formal discussions of database theory. In the database field, tuples are usually represented by the columns of a table row. They could also be represented by the result sets of queries, for example, queries that retrieved only some columns of a table, or columns from joined tables.
See Also cursor.
two-phase commit
An operation that is part of a distributed transaction, under the XA specification. (Sometimes abbreviated as 2PC.) When multiple databases participate in the transaction, either all databases commit the changes, or all databases roll back the changes.
See Also commit, rollback, transaction, XA.
U
undo
Data that is maintained throughout the life of a transaction, recording all changes so that they can be undone in case of a rollback operation. It is stored in the undo log, also known as the rollback segment, either within the system tablespace or in separate undo tablespaces.
See Also rollback, rollback segment, system tablespace, transaction, undo log, undo tablespace.
undo buffer
See undo log.
undo log
A storage area that holds copies of data modified by active transactions. If another transaction needs to see the original data (as part of a consistent read operation), the unmodified data is retrieved from this storage area.
By default, this area is physically part of the system tablespace. In MySQL 5.6 and higher, you can use the innodb_undo_tablespaces and innodb_undo_directory configuration options to split it into one or more separate tablespace files, the undo tablespaces, optionally stored on another storage device such as an SSD.
The undo log is split into separate portions, the insert undo buffer and the update undo buffer. Collectively, these parts are also known as the rollback segment, a familiar term for Oracle DBAs.
See Also consistent read, rollback segment, SSD, system tablespace, transaction, undo tablespace.
undo tablespace
One of a set of files containing the undo log, when the undo log is separated from the system tablespace by the innodb_undo_tablespaces and innodb_undo_directory configuration options. Only applies to MySQL 5.6 and higher.
See Also system tablespace, undo log.
unique constraint
A kind of constraint that asserts that a column cannot contain any duplicate values. In terms of relational algebra, it is used to specify 1-to-1 relationships. For efficiency in checking whether a value can be inserted (that is, the value does not already exist in the column), a unique constraint is supported by an underlying unique index.
See Also constraint, relational, unique index.
unique index
An index on a column or set of columns that have a unique constraint. Because the index is known not to contain any duplicate values, certain kinds of lookups and count operations are more efficient than in the normal kind of index. Most of the lookups against this type of index are simply to determine if a certain value exists or not. The number of values in the index is the same as the number of rows in the table, or at least the number of rows with non-null values for the associated columns.
The insert buffering optimization does not apply to unique indexes. As a workaround, you can temporarily set unique_checks=0 while doing a bulk data load into an InnoDB table.
See Also cardinality, insert buffering, unique constraint, unique key.
unique key
The set of columns (one or more) comprising a unique index. When you can define a WHERE condition that matches exactly one row, and the query can use an associated unique index, the lookup and error handling can be performed very efficiently.
See Also cardinality, unique constraint, unique index.
V
victim
The transaction that is automatically chosen to be rolled back when a deadlock is detected. InnoDB rolls back the transaction that has updated the fewest rows.
See Also deadlock, deadlock detection, innodb_lock_wait_timeout.
W
wait
When an operation, such as acquiring a lock, mutex, or latch, cannot be completed immediately, InnoDB pauses and tries again. The mechanism for pausing is elaborate enough that this operation has its own name, the wait. Individual threads are paused using a combination of internal InnoDB scheduling, operating system wait() calls, and short-duration spin loops.
On systems with heavy load and many transactions, you might use the output from the SHOW INNODB STATUS command to determine whether threads are spending too much time waiting, and if so, how you can improve concurrency.
See Also concurrency, latch, lock, mutex, spin.
warm backup
A backup taken while the database is running, but that restricts some database operations during the backup process. For example, tables might become read-only. For busy applications and web sites, you might prefer a hot backup.
See Also backup, cold backup, hot backup.
warm up
To run a system under a typical workload for some time after startup, so that the buffer pool and other memory regions are filled as they would be under normal conditions.
This process happens naturally over time when a MySQL server is restarted or subjected to a new workload. Starting in MySQL 5.6, you can speed up the warmup process by setting the configuration variables innodb_buffer_pool_dump_at_shutdown=ON and innodb_buffer_pool_load_at_startup=ON, to bring the contents of the buffer pool back into memory after a restart. Typically, you run a workload for some time to warm up the buffer pool before running performance tests, to ensure consistent results across multiple runs; otherwise, performance might be artificially low during the first run.
See Also buffer pool, workload.
Windows
The built-in InnoDB storage engine and the InnoDB Plugin are supported on all the same Microsoft Windows versions as the MySQL server. The MySQL Enterprise Backup product has more comprehensive support for Windows systems than the InnoDB Hot Backup product that it supercedes.
See Also InnoDB, InnoDB Hot Backup, MySQL Enterprise Backup, plugin.
workload
The combination and volume of SQL and other database operations, performed by a database application during typical or peak usage. You can subject the database to a particular workload during performance testing to identify bottlenecks, or during capacity planning.
See Also bottleneck, disk-bound, disk-bound, SQL.
write combining
An optimization technique that reduces write operations when dirty pages are flushed from the InnoDB buffer pool. If a row in a page is updated multiple times, or multiple rows on the same page are updated, all of those changes are stored to the data files in a single write operation rather than one write for each change.
See Also buffer pool, dirty page, flush.
X
XA
A standard interface for coordinating distributed transactions, allowing multiple databases to participate in a transaction while maintaining ACID compliance. For full details, see Section 13.3.7, “XA Transactions”.
XA Distributed Transaction support is turned on by default. If you are not using this feature, you can disable the innodb_support_xa configuration option, avoiding the performance overhead of an extra fsync for each transaction.
See Also commit, transaction, two-phase commit.
Y
young
A characteristic of a page in the InnoDB buffer pool meaning it has been accessed recently, and so is moved within the buffer pool data structure, so that it will not be flushed soon by the LRU algorithm. This term is used in some information schema column names of tables related to the buffer pool.
See Also buffer pool, flush, INFORMATION_SCHEMA, LRU, page.
General Index
Symbols
! (logical NOT), Logical Operators
!= (not equal), Comparison Functions and Operators
#mysql50 identifier prefix, Schema Object Names, Mapping of Identifiers to File Names
% (modulo), Mathematical Functions
% (wildcard character), String Literals
& (bitwise AND), Bit Functions
&& (logical AND), Logical Operators
() (parentheses), Operator Precedence
(Control+Z) \Z, String Literals, LOAD DATA INFILE Syntax
* (multiplication), Arithmetic Operators
+ (addition), Arithmetic Operators
- (subtraction), Arithmetic Operators
- (unary minus), Arithmetic Operators
--master-info-repository option, Replication Relay and Status Logs
--password option, End-User Guidelines for Password Security
--relay-log-info-repository option, Replication Relay and Status Logs
-p option, End-User Guidelines for Password Security
.ARM file, MySQL Glossary
.ARZ file, MySQL Glossary
.cfg file, MySQL Glossary
.frm file, MySQL Glossary
.ibd file, MySQL Glossary
.ibz file, MySQL Glossary
.isl file, MySQL Glossary
.MRG file, MySQL Glossary
.my.cnf file, Connecting to the MySQL Server, Using Option Files, Using Client Programs in a Multiple-Server Environment, End-User Guidelines for Password Security, Causes of Access-Denied Errors
.MYD file, MySQL Glossary
.MYI file, MySQL Glossary
.mylogin.cnf file, Using Option Files, mysql_config_editor — MySQL Configuration Utility
.mysql_history file, mysql Logging, End-User Guidelines for Password Security
.NET
and ODBC, Using Connector/ODBC with .NET
.OPT file, MySQL Glossary
.PAR file, MySQL Glossary
.pid (process ID) file, Setting Up a MyISAM Table Maintenance Schedule
.TRG file, MySQL Glossary
.TRN file, MySQL Glossary
/ (division), Arithmetic Operators
/etc/passwd, Making MySQL Secure Against Attackers, SELECT ... INTO Syntax
3306 port, MySQL Source-Configuration Options, Server Command Options
:= (assignment operator), Assignment Operators
:= (assignment), User-Defined Variables
< (less than), Comparison Functions and Operators
<< (left shift), Calculating Visits Per Day, Bit Functions
<= (less than or equal), Comparison Functions and Operators
<=> (equal to), Comparison Functions and Operators
<> (not equal), Comparison Functions and Operators
= (assignment operator), Assignment Operators
= (assignment), User-Defined Variables
= (equal), Comparison Functions and Operators
> (greater than), Comparison Functions and Operators
>= (greater than or equal), Comparison Functions and Operators
>> (right shift), Bit Functions
\" (double quote), String Literals
\' (single quote), String Literals
\. (mysql client command), Using mysql in Batch Mode, Executing SQL Statements from a Text File
\0 (ASCII NUL), String Literals, LOAD DATA INFILE Syntax
\b (backspace), String Literals, LOAD DATA INFILE Syntax
\n (linefeed), String Literals, LOAD DATA INFILE Syntax
\n (newline), String Literals, LOAD DATA INFILE Syntax
\N (NULL), LOAD DATA INFILE Syntax
\r (carriage return), String Literals, LOAD DATA INFILE Syntax
\t (tab), String Literals, LOAD DATA INFILE Syntax
\Z (Control+Z) ASCII 26, String Literals, LOAD DATA INFILE Syntax
\\ (escape), String Literals
^ (bitwise XOR), Bit Functions
_ (wildcard character), String Literals
_rowid, CREATE TABLE Syntax
| (bitwise OR), Bit Functions
|| (logical OR), Logical Operators
~ (invert bits), Bit Functions
A
abort-slave-event-count option
mysqld, Replication Slave Options and Variables
aborted clients, Communication Errors and Aborted Connections
aborted connection, Communication Errors and Aborted Connections
ABS(), Mathematical Functions
access control, Access Control, Stage 1: Connection Verification
access denied errors, Access denied
access privileges, The MySQL Access Privilege System
account names, Specifying Account Names
accounts
adding privileges, Adding User Accounts
anonymous user, Securing the Initial MySQL Accounts
default, Securing the Initial MySQL Accounts
root, Securing the Initial MySQL Accounts
accounts table
performance_schema, The accounts Table
ACID, Transaction and Atomic Operation Differences, The InnoDB Storage Engine, MySQL and the ACID Model, MySQL Glossary
ACLs, The MySQL Access Privilege System
ACOS(), Mathematical Functions
action option
MySQLInstallerConsole, MySQL Installer Console
activating plugins, Installing and Uninstalling Plugins
Active Server Pages (ASP), Using Connector/ODBC with Active Server Pages (ASP)
ActiveState Perl, Installing ActiveState Perl on Windows
adaptive flushing, MySQL Glossary
adaptive hash index, Adaptive Hash Indexes, Controlling Adaptive Hash Indexing, Dynamically Changing innodb_adaptive_hash_index, MySQL Glossary
add-drop-database option
mysqldump, mysqldump — A Database Backup Program
add-drop-table option
mysqldump, mysqldump — A Database Backup Program
add-drop-trigger option
mysqldump, mysqldump — A Database Backup Program
add-locks option
mysqldump, mysqldump — A Database Backup Program
ADDDATE(), Date and Time Functions
adding
character sets, Adding a Character Set
native functions, Adding a New Native Function
new account privileges, Adding User Accounts
new functions, Adding New Functions to MySQL
new user privileges, Adding User Accounts
new users, Unix Postinstallation Procedures
user-defined functions, Adding a New User-Defined Function
addition (+), Arithmetic Operators
ADDTIME(), Date and Time Functions
addtodest option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
administration
server, mysqladmin — Client for Administering a MySQL Server
administrative programs, Overview of MySQL Programs
ADO.NET, Using the ADO.NET Entity Framework
AES_DECRYPT(), Encryption and Compression Functions
AES_ENCRYPT(), Encryption and Compression Functions
After create
thread state, General Thread States
age
calculating, Date Calculations
AHI, MySQL Glossary
AIO, MySQL Glossary
alias names
case sensitivity, Identifier Case Sensitivity
aliases
for expressions, MySQL Extensions to GROUP BY
for tables, SELECT Syntax
in GROUP BY clauses, MySQL Extensions to GROUP BY
names, Schema Object Names
on expressions, SELECT Syntax
ALL, SELECT Syntax, Subqueries with ALL
ALL join type
optimizer, EXPLAIN Output Format
all option
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
all-databases option
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
all-in-1 option
mysqlcheck, mysqlcheck — A Table Maintenance Program
all-tablespaces option
mysqldump, mysqldump — A Database Backup Program
allocating local table
thread state, Delayed-Insert Thread States
allow-keywords option
mysqldump, mysqldump — A Database Backup Program
allow-suspicious-udfs option
mysqld, Server Command Options
allowold option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
ALLOW_INVALID_DATES SQL mode, Server SQL Modes
ALTER COLUMN, ALTER TABLE Syntax
ALTER DATABASE, ALTER DATABASE Syntax
ALTER EVENT, ALTER EVENT Syntax
and replication, Replication of Invoked Features
ALTER FUNCTION, ALTER FUNCTION Syntax
ALTER PROCEDURE, ALTER PROCEDURE Syntax
ALTER SCHEMA, ALTER DATABASE Syntax
ALTER SERVER, ALTER SERVER Syntax
ALTER TABLE, ALTER TABLE Syntax, Problems with ALTER TABLE
and replication log tables, Replication Relay and Status Logs
ROW_FORMAT, Specifying the Row Format for a Table
ALTER USER, ALTER USER Syntax
ALTER VIEW, ALTER VIEW Syntax
altering
database, ALTER DATABASE Syntax
schema, ALTER DATABASE Syntax
altering table
thread state, General Thread States
altering user accounts, ALTER USER Syntax
ANALYSE()
PROCEDURE, Using PROCEDURE ANALYSE
analyze option
myisamchk, Other myisamchk Options
mysqlcheck, mysqlcheck — A Table Maintenance Program
ANALYZE TABLE, ANALYZE TABLE Syntax
and partitioning, Maintenance of Partitions
Analyzing
thread state, General Thread States
AND
bitwise, Bit Functions
logical, Logical Operators
anonymous user, Securing the Initial MySQL Accounts, Access Control, Stage 1: Connection Verification, Access Control, Stage 2: Request Verification
ANSI mode
running, Running MySQL in ANSI Mode
ansi option
mysqld, Server Command Options
ANSI SQL mode, Server SQL Modes
ANSI_QUOTES SQL mode, Server SQL Modes
answering questions
etiquette, Guidelines for Using the Mailing Lists
Antelope, MySQL Glossary
Antelope file format, InnoDB File-Format Management, COMPACT and REDUNDANT Row Formats, InnoDB Startup Options and System Variables
ANY, Subqueries with ANY, IN, or SOME
Apache, Using MySQL with Apache
APIs, Connectors and APIs
list of, Packages that support MySQL
Perl, MySQL Perl API
application programming interface (API), MySQL Glossary
apply, MySQL Glossary
apply-slave-statements option
mysqldump, mysqldump — A Database Backup Program
approximate-value literals, Precision Math
ARCHIVE storage engine, Storage Engines, The ARCHIVE Storage Engine
Area(), Polygon Functions, MultiPolygon Functions
argument processing, UDF Argument Processing
arithmetic expressions, Arithmetic Operators
arithmetic functions, Bit Functions
AS, SELECT Syntax, JOIN Syntax
AsBinary(), Geometry Format Conversion Functions
ASCII(), String Functions
ASIN(), Mathematical Functions
ASP.NET, Connector/Net Tutorials, ASP.NET Provider Model
assignment operator
:=, Assignment Operators
=, Assignment Operators
assignment operators, Assignment Operators
AsText(), Geometry Format Conversion Functions
asynchronous I/O, Asynchronous I/O on Linux, MySQL Glossary
ATAN(), Mathematical Functions
ATAN2(), Mathematical Functions
atomic, MySQL Glossary
atomic instruction, MySQL Glossary
attackers
security against, Making MySQL Secure Against Attackers
attribute demotion
replication, Replication of Columns Having Different Data Types
attribute promotion
replication, Replication of Columns Having Different Data Types
audit log plugin
, MySQL Enterprise Audit Log Plugin
audit plugins, Audit Plugins
audit-log option
mysqld, Audit Log Plugin Options and Variables
audit_log_buffer_size system variable, Audit Log Plugin Options and Variables
audit_log_file system variable, Audit Log Plugin Options and Variables
audit_log_flush system variable, Audit Log Plugin Options and Variables
audit_log_policy system variable, Audit Log Plugin Options and Variables
audit_log_rotate_on_size system variable, Audit Log Plugin Options and Variables
audit_log_strategy system variable, Audit Log Plugin Options and Variables
authentication
for the InnoDB memcached interface, Password-Protecting the memcached Interface through SASL
authentication plugins, Authentication Plugins
AUTHENTICATION_PAM_LOG environment variable, PAM Authentication Plugin Debugging
authentication_windows_log_level system variable, Server System Variables
authentication_windows_use_principal_name system variable, Server System Variables
auto-generate-sql option
mysqlslap, mysqlslap — Load Emulation Client
auto-generate-sql-add-autoincrement option
mysqlslap, mysqlslap — Load Emulation Client
auto-generate-sql-execute-number option
mysqlslap, mysqlslap — Load Emulation Client
auto-generate-sql-guid-primary option
mysqlslap, mysqlslap — Load Emulation Client
auto-generate-sql-load-type option
mysqlslap, mysqlslap — Load Emulation Client
auto-generate-sql-secondary-indexes option
mysqlslap, mysqlslap — Load Emulation Client
auto-generate-sql-unique-query-number option
mysqlslap, mysqlslap — Load Emulation Client
auto-generate-sql-unique-write-number option
mysqlslap, mysqlslap — Load Emulation Client
auto-generate-sql-write-number option
mysqlslap, mysqlslap — Load Emulation Client
AUTO-INCREMENT
ODBC, Obtaining Auto-Increment Values
auto-increment, MySQL Glossary
auto-increment locking, MySQL Glossary
auto-rehash option
mysql, mysql Options
auto-repair option
mysqlcheck, mysqlcheck — A Table Maintenance Program
auto-vertical-output option
mysql, mysql Options
auto.cnf file, Replication and Binary Logging Options and Variables
and SHOW SLAVE HOSTS, SHOW SLAVE HOSTS Syntax
autocommit, MySQL Glossary
autocommit session variable, Server System Variables
automatic_sp_privileges system variable, Server System Variables
AUTO_INCREMENT, Using AUTO_INCREMENT, Numeric Types
and NULL values, Problems with NULL Values
and replication, Replication and AUTO_INCREMENT
auto_increment_increment system variable, Replication Master Options and Variables
auto_increment_offset system variable, Replication Master Options and Variables
availability, MySQL Glossary
AVG(), GROUP BY (Aggregate) Functions
AVG(DISTINCT), GROUP BY (Aggregate) Functions
B
B-tree, MySQL Glossary
B-tree indexes, Comparison of B-Tree and Hash Indexes, Physical Structure of an InnoDB Index
background threads
master, Controlling the InnoDB Master Thread I/O Rate, Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool
read, Multiple Background InnoDB I/O Threads
write, Multiple Background InnoDB I/O Threads
backslash
escape character, String Literals
backspace (\b), String Literals, LOAD DATA INFILE Syntax
backticks, MySQL Glossary
backup, MySQL Glossary
backup option
myisamchk, myisamchk Repair Options
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
backups, Backup and Recovery, MySQL Enterprise Backup
databases and tables, mysqldump — A Database Backup Program, mysqlhotcopy — A Database Backup Program
InnoDB, Backing Up and Recovering an InnoDB Database
with mysqldump, Using mysqldump for Backups
back_log system variable, Server System Variables
Barracuda, MySQL Glossary
Barracuda file format, Enabling Compression for a Table, InnoDB File-Format Management, DYNAMIC and COMPRESSED Row Formats, The Barracuda File Format, InnoDB Startup Options and System Variables
base64-output option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
BaseCommandInterceptor class, BaseCommandInterceptor
basedir option
mysql.server, mysql.server — MySQL Server Startup Script
mysqld, Server Command Options
mysqld_safe, mysqld_safe — MySQL Server Startup Script
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
basedir system variable, Server System Variables
BaseExceptionInterceptor class, BaseExceptionInterceptor
batch mode, Using mysql in Batch Mode
batch option
mysql, mysql Options
batch SQL files, mysql — The MySQL Command-Line Tool
Batched Key Access
optimization, Block Nested-Loop and Batched Key Access Joins, Batched Key Access Joins
Bazaar tree, Installing MySQL from a Development Source Tree
BdMPolyFromText(), Creating Geometry Values Using WKT Functions
BdMPolyFromWKB(), Creating Geometry Values Using WKB Functions
BdPolyFromText(), Creating Geometry Values Using WKT Functions
BdPolyFromWKB(), Creating Geometry Values Using WKB Functions
BEGIN, START TRANSACTION, COMMIT, and ROLLBACK Syntax, BEGIN ... END Compound-Statement Syntax
labels, Statement Label Syntax
XA transactions, XA Transaction SQL Syntax
BENCHMARK(), Information Functions
benchmarks, The MySQL Benchmark Suite, Using Your Own Benchmarks
beta, MySQL Glossary
BETWEEN ... AND, Comparison Functions and Operators
big-tables option
mysqld, Server Command Options
big5, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
BIGINT data type, Numeric Type Overview
big_tables session variable, Server System Variables
BIN(), String Functions
BINARY, Cast Functions and Operators
BINARY data type, String Type Overview, The BINARY and VARBINARY Types
binary distributions
installing, Installing MySQL from Generic Binaries on Unix/Linux
binary log, The Binary Log, MySQL Glossary
event groups, SET GLOBAL sql_slave_skip_counter Syntax
binary-mode option
mysql, mysql Options
bind-address option
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
bind_address system variable, Server System Variables
BINLOG, BINLOG Syntax
binlog, MySQL Glossary
Binlog Dump
thread command, Thread Command Values
BINLOG statement
mysqlbinlog output, mysqlbinlog Row Event Display
binlog-checksum option
mysqld, Binary Log Options and Variables
binlog-do-db option
mysqld, Binary Log Options and Variables
binlog-format option
mysqld, Server Command Options
binlog-ignore-db option
mysqld, Binary Log Options and Variables
binlog-row-event-max-size option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqld, Binary Log Options and Variables
binlog-rows-query-log-events option
mysqld, Binary Log Options and Variables
binlog_cache_size system variable, Binary Log Options and Variables
binlog_checksum system variable, Binary Log Options and Variables
binlog_direct_non_transactional_updates system variable, Binary Log Options and Variables
binlog_format system variable, Binary Log Options and Variables
binlog_max_flush_queue_time system variable, Binary Log Options and Variables
binlog_order_commits system variable, Binary Log Options and Variables
binlog_rows_query_log_events system variable, Binary Log Options and Variables
binlog_row_image system variable, Binary Log Options and Variables
binlog_stmt_cache_size system variable, Binary Log Options and Variables
BIT data type, Numeric Type Overview
bit functions, Bit Functions
example, Calculating Visits Per Day
BIT_AND(), GROUP BY (Aggregate) Functions
BIT_COUNT, Calculating Visits Per Day
BIT_COUNT(), Bit Functions
BIT_LENGTH(), String Functions
BIT_OR, Calculating Visits Per Day
BIT_OR(), GROUP BY (Aggregate) Functions
BIT_XOR(), GROUP BY (Aggregate) Functions
BLACKHOLE storage engine, Storage Engines, The BLACKHOLE Storage Engine
blind query expansion, Full-Text Searches with Query Expansion, MySQL Glossary
BLOB columns
default values, The BLOB and TEXT Types
indexing, Column Indexes, CREATE TABLE Syntax
inserting binary data, String Literals
size, Data Type Storage Requirements
with Connector/Net, Handling BLOB Data With Connector/Net
BLOB data type, String Type Overview, The BLOB and TEXT Types
Block Nested-Loop
optimization, Block Nested-Loop and Batched Key Access Joins, Block Nested-Loop Algorithm for Outer Joins and Semi-Joins
Block Nested-Loop join algorithm, Nested-Loop Join Algorithms
block-search option
myisamchk, Other myisamchk Options
BOOL data type, Numeric Type Overview
BOOLEAN data type, Numeric Type Overview
boolean options, Program Option Modifiers
Boolean search, Boolean Full-Text Searches
bootstrap option
mysqld, Server Command Options
Borland applications, Using Connector/ODBC with Borland Applications
bottleneck, MySQL Glossary
bounce, MySQL Glossary
Boundary(), General Geometry Functions
brackets
square, Data Types
brief option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
buddy allocator, INNODB_CMPMEM and INNODB_CMPMEM_RESET, MySQL Glossary
buffer, MySQL Glossary
buffer pool, The InnoDB Buffer Pool, Making the Buffer Pool Scan Resistant, MySQL Glossary
and compressed tables, How Compression Works for InnoDB Tables
buffer pool instance, MySQL Glossary
buffer sizes, The InnoDB Buffer Pool
client, Connectors and APIs
mysqld server, Tuning Server Parameters
Buffer(), Spatial Operators
bugs
known, Known Issues in MySQL
reporting, General Information, How to Report Bugs or Problems
bugs database, How to Report Bugs or Problems
bugs.mysql.com, How to Report Bugs or Problems
building
client programs, Building C API Client Programs
BUILD_CONFIG option
CMake, MySQL Source-Configuration Options
built-in, MySQL Glossary
bulk loading
for InnoDB tables, Bulk Data Loading for InnoDB Tables
for MyISAM tables, Bulk Data Loading for MyISAM Tables
with Connector/Net, Using the MySqlBulkLoader Class
bulk_insert_buffer_size system variable, Server System Variables
business rules, MySQL Glossary
C
C API, Connectors and APIs
data types, MySQL C API
example programs, Example C API Client Programs
functions, C API Function Overview
linking problems, Building C API Client Programs
C prepared statement API
functions, C API Prepared Statement Type Conversions, C API Prepared Statement Function Overview
type codes, C API Prepared Statement Type Codes
C#, Tutorial: An Introduction to Connector/Net Programming, Connector/Net API Reference
C++ Builder, Using Connector/ODBC with C++ Builder
C:\my.cnf file, Using Client Programs in a Multiple-Server Environment
cache, MySQL Glossary
CACHE INDEX, CACHE INDEX Syntax
and partitioning, Restrictions and Limitations on Partitioning
caches
clearing, FLUSH Syntax
cache_policies table, Internals of the InnoDB memcached Plugin
calculating
aggregate value for a set of rows, GROUP BY (Aggregate) Functions
cardinality, SHOW INDEX Syntax
dates, Date Calculations
calendar, What Calendar Is Used By MySQL?
CALL, CALL Syntax
calling sequences for aggregate functions
UDF, UDF Calling Sequences for Aggregate Functions
calling sequences for simple functions
UDF, UDF Calling Sequences for Simple Functions
can't create/write to file, Can't create/write to file
cardinality, How to Avoid Full Table Scans, MySQL Glossary
carriage return (\r), String Literals, LOAD DATA INFILE Syntax
CASE, Control Flow Functions, CASE Syntax
case sensitivity
in access checking, Privilege System Grant Tables
in identifiers, Identifier Case Sensitivity
in names, Identifier Case Sensitivity
in searches, Case Sensitivity in String Searches
in string comparisons, String Comparison Functions
of database names, MySQL Extensions to Standard SQL
of replication filtering options, How Servers Evaluate Replication Filtering Rules
of table names, MySQL Extensions to Standard SQL
CAST, Cast Functions and Operators
cast functions, Cast Functions and Operators
cast operators, Cast Functions and Operators
casts, Type Conversion in Expression Evaluation, Comparison Functions and Operators, Cast Functions and Operators
catalog option
MySQLInstallerConsole, MySQL Installer Console
CC environment variable, Dealing with Problems Compiling MySQL, Environment Variables
CEIL(), Mathematical Functions
CEILING(), Mathematical Functions
Centroid(), MultiPolygon Functions
certificate file, Connector/Net Connection String Options Reference
CFLAGS environment variable, Dealing with Problems Compiling MySQL, Environment Variables
cflags option
mysql_config, mysql_config — Display Options for Compiling Clients
change buffer, MySQL Glossary
change buffering, MySQL Glossary
disabling, Controlling InnoDB Change Buffering
CHANGE MASTER TO, CHANGE MASTER TO Syntax
Change user
thread command, Thread Command Values
ChangeLog, MySQL Release Notes
changes
release notes, MySQL Release Notes
changes to privileges, When Privilege Changes Take Effect
changing
column, ALTER TABLE Syntax
field, ALTER TABLE Syntax
socket location, Starting and Stopping MySQL Automatically, How to Protect or Change the MySQL Unix Socket File
table, ALTER TABLE Syntax, Problems with ALTER TABLE
Changing master
thread state, Replication Slave Connection Thread States
CHAR data type, String Type Overview, String Types
CHAR VARYING data type, String Type Overview
CHAR(), String Functions
CHARACTER data type, String Type Overview
character set repertoire, The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)
character sets, Character Set Support
adding, Adding a Character Set
and replication, Replication and Character Sets
repertoire, String Repertoire
restrictions, Restrictions on Character Sets
with Connector/J, Using Character Sets and Unicode
with Connector/Net, Character Set Considerations for Connector/Net
CHARACTER VARYING data type, String Type Overview
character-set-client-handshake option
mysqld, Server Command Options
character-set-filesystem option
mysqld, Server Command Options
character-set-server option
mysqld, Server Command Options
character-sets-dir option
myisamchk, myisamchk Repair Options
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
characters
multi-byte, Multi-Byte Character Support for Complex Character Sets
CHARACTER_LENGTH(), String Functions
CHARACTER_SETS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA CHARACTER_SETS Table
character_sets_dir system variable, Server System Variables
character_set_client system variable, Server System Variables
character_set_connection system variable, Server System Variables
character_set_database system variable, Server System Variables
character_set_filesystem system variable, Server System Variables
character_set_results system variable, Server System Variables
character_set_server system variable, Server System Variables
character_set_system system variable, Server System Variables
charset command
mysql, mysql Commands
charset option
comp_err, comp_err — Compile MySQL Error Message File
CHARSET(), Information Functions
CHAR_LENGTH(), String Functions
check option
myisamchk, myisamchk Check Options
mysqlcheck, mysqlcheck — A Table Maintenance Program
check options
myisamchk, myisamchk Check Options
CHECK TABLE, CHECK TABLE Syntax
and partitioning, Maintenance of Partitions
check-only-changed option
myisamchk, myisamchk Check Options
mysqlcheck, mysqlcheck — A Table Maintenance Program
check-upgrade option
mysqlcheck, mysqlcheck — A Table Maintenance Program
checking
tables for errors, How to Check MyISAM Tables for Errors
Checking master version
thread state, Replication Slave I/O Thread States
checking permissions
thread state, General Thread States
checking privileges on cached query
thread state, Query Cache Thread States
checking query cache for query
thread state, Query Cache Thread States
Checking table
thread state, General Thread States
checkpoint, MySQL Glossary
checkpoint option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
checksum, MySQL Glossary
checksum errors, Installing MySQL on Solaris and OpenSolaris
CHECKSUM TABLE, CHECKSUM TABLE Syntax
child table, MySQL Glossary
Chinese, Japanese, Korean character sets
frequently asked questions, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
choosing
a MySQL version, Choosing Which MySQL Distribution to Install
data types, Choosing the Right Type for a Column
chroot option
mysqld, Server Command Options
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
CJK (Chinese, Japanese, Korean)
Access, PHP, etc., MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
availability of specific characters, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
big5, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
character sets available, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
characters displayed as question marks, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
CJKV, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
collations, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
conversion problems with Japanese character sets, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
data truncation, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
Database and table names, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
documentation in Chinese, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
documentation in Japanese, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
documentation in Korean, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
FAQ, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
gb2312, gbk, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
Japanese character sets, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
Korean character set, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
LIKE and FULLTEXT, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
MySQL 4.0 behavior, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
ORDER BY treatment, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
problems with Access, PHP, etc., MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
problems with Big5 character sets (Chinese), MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
problems with data truncation, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
problems with euckr character set (Korean), MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
problems with GB character sets (Chinese), MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
problems with LIKE and FULLTEXT, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
problems with Yen sign (Japanese), MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
rejected characters, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
sort order problems, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
sorting problems, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
testing availability of characters, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
Unicode collations, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
Vietnamese, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
Yen sign, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
clean page, MySQL Glossary
clean shutdown, The Shutdown Process, Setting Up Multiple Data Directories, Replication and Master or Slave Shutdowns, MySQL Glossary
cleaning up
thread state, General Thread States
clear command
mysql, mysql Commands
Clearing
thread state, Event Scheduler Thread States
clearing
caches, FLUSH Syntax
client, MySQL Glossary
client connection threads, How MySQL Uses Threads for Client Connections
client programs, Overview of MySQL Programs
building, Building C API Client Programs
client tools, Connectors and APIs
clients
debugging, Debugging a MySQL Client
threaded, Writing C API Threaded Client Programs
CLOSE, Cursor CLOSE Syntax
Close stmt
thread command, Thread Command Values
closing
tables, How MySQL Opens and Closes Tables
closing tables
thread state, General Thread States
clustered index, MySQL Glossary
InnoDB, Clustered and Secondary Indexes
CMake
BUILD_CONFIG option, MySQL Source-Configuration Options
CMAKE_BUILD_TYPE option, MySQL Source-Configuration Options
CMAKE_INSTALL_PREFIX option, MySQL Source-Configuration Options
COMPILATION_COMMENT option, MySQL Source-Configuration Options
CPACK_MONOLITHIC_INSTALL option, MySQL Source-Configuration Options
DEFAULT_CHARSET option, MySQL Source-Configuration Options
DEFAULT_COLLATION option, MySQL Source-Configuration Options
ENABLED_LOCAL_INFILE option, MySQL Source-Configuration Options
ENABLED_PROFILING option, MySQL Source-Configuration Options
ENABLE_DEBUG_SYNC option, MySQL Source-Configuration Options
ENABLE_DOWNLOADS option, MySQL Source-Configuration Options
ENABLE_DTRACE option, MySQL Source-Configuration Options
ENABLE_GCOV option, MySQL Source-Configuration Options
ENABLE_GPROF option, MySQL Source-Configuration Options
HAVE_EMBEDDED_PRIVILEGE_CONTROL option, MySQL Source-Configuration Options
IGNORE_AIO_CHECK option, MySQL Source-Configuration Options
INSTALL_BINDIR option, MySQL Source-Configuration Options
INSTALL_DOCDIR option, MySQL Source-Configuration Options
INSTALL_DOCREADMEDIR option, MySQL Source-Configuration Options
INSTALL_INCLUDEDIR option, MySQL Source-Configuration Options
INSTALL_INFODIR option, MySQL Source-Configuration Options
INSTALL_LAYOUT option, MySQL Source-Configuration Options
INSTALL_LIBDIR option, MySQL Source-Configuration Options
INSTALL_MANDIR option, MySQL Source-Configuration Options
INSTALL_MYSQLSHAREDIR option, MySQL Source-Configuration Options
INSTALL_MYSQLTESTDIR option, MySQL Source-Configuration Options
INSTALL_PLUGINDIR option, MySQL Source-Configuration Options
INSTALL_SBINDIR option, MySQL Source-Configuration Options
INSTALL_SCRIPTDIR option, MySQL Source-Configuration Options
INSTALL_SHAREDIR option, MySQL Source-Configuration Options
INSTALL_SQLBENCHDIR option, MySQL Source-Configuration Options
INSTALL_SUPPORTFILESDIR option, MySQL Source-Configuration Options
MYSQL_DATADIR option, MySQL Source-Configuration Options
MYSQL_MAINTAINER_MODE option, MySQL Source-Configuration Options
MYSQL_PROJECT_NAME option, MySQL Source-Configuration Options
MYSQL_TCP_PORT option, MySQL Source-Configuration Options
MYSQL_UNIX_ADDR option, MySQL Source-Configuration Options
ODBC_INCLUDES option, MySQL Source-Configuration Options
ODBC_LIB_DIR option, MySQL Source-Configuration Options
OPTIMIZER_TRACE option, MySQL Source-Configuration Options
options, MySQL Source-Configuration Options
running after prior invocation, Installing MySQL from a Standard Source Distribution, Dealing with Problems Compiling MySQL
SYSCONFDIR option, MySQL Source-Configuration Options
VERSION file, MySQL Configuration and Third-Party Tools
WITH_DEBUG option, MySQL Source-Configuration Options
WITH_DEFAULT_COMPILER_OPTIONS option, MySQL Source-Configuration Options
WITH_DEFAULT_FEATURE_SET option, MySQL Source-Configuration Options
WITH_EMBEDDED_SERVER option, MySQL Source-Configuration Options
WITH_EXTRA_CHARSETS option, MySQL Source-Configuration Options
WITH_LIBEDIT option, MySQL Source-Configuration Options
WITH_LIBWRAP option, MySQL Source-Configuration Options
WITH_READLINE option, MySQL Source-Configuration Options
WITH_SSL option, MySQL Source-Configuration Options
WITH_UNIXODBC option, MySQL Source-Configuration Options
WITH_ZLIB option, MySQL Source-Configuration Options
CMakeCache.txt file, Dealing with Problems Compiling MySQL
CMAKE_BUILD_TYPE option
CMake, MySQL Source-Configuration Options
CMAKE_INSTALL_PREFIX option
CMake, MySQL Source-Configuration Options
COALESCE(), Comparison Functions and Operators
COERCIBILITY(), Information Functions
cold backup, MySQL Glossary
ColdFusion, Using Connector/ODBC with ColdFusion
collating
strings, String Collating Support for Complex Character Sets
collation
adding, Adding a Collation to a Character Set
INFORMATION_SCHEMA, Collation and INFORMATION_SCHEMA Searches
modifying, Adding a Collation to a Character Set
names, Collation Names
COLLATION(), Information Functions
collation-server option
mysqld, Server Command Options
COLLATIONS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA COLLATIONS Table
COLLATION_CHARACTER_SET_APPLICABILITY
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
collation_connection system variable, Server System Variables
collation_database system variable, Server System Variables
collation_server system variable, Server System Variables
column, MySQL Glossary
changing, ALTER TABLE Syntax
types, Data Types
column alias
problems, Problems with Column Aliases
quoting, Schema Object Names, Problems with Column Aliases
column comments, CREATE TABLE Syntax
Column Editor, Column Editor
column index, MySQL Glossary
column names
case sensitivity, Identifier Case Sensitivity
column prefix, MySQL Glossary
column-names option
mysql, mysql Options
column-type-info option
mysql, mysql Options
columns
displaying, mysqlshow — Display Database, Table, and Column Information
indexes, Column Indexes
names, Schema Object Names
other types, Using Data Types from Other Database Engines
selecting, Selecting Particular Columns
storage requirements, Data Type Storage Requirements
COLUMNS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA COLUMNS Table
columns option
mysqlimport, mysqlimport — A Data Import Program
columns partitioning, COLUMNS Partitioning
columns per table
maximum, Limits on Table Column Count and Row Size
COLUMN_PRIVILEGES
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
comma-separated values data, reading, LOAD DATA INFILE Syntax, SELECT ... INTO Syntax
command options
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqld, Server Command Options
command syntax, Typographical and Syntax Conventions
command-line history
mysql, mysql Logging
command-line tool, MySQL Installer Console, mysql — The MySQL Command-Line Tool
commands
for binary distribution, Installing MySQL from Generic Binaries on Unix/Linux
commands out of sync, Commands out of sync
comment syntax, Comment Syntax
comments
adding, Comment Syntax
starting, '--' as the Start of a Comment
comments option
mysql, mysql Options
mysqldump, mysqldump — A Database Backup Program
COMMIT, Transaction and Atomic Operation Differences, START TRANSACTION, COMMIT, and ROLLBACK Syntax
XA transactions, XA Transaction SQL Syntax
commit, MySQL Glossary
commit option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
mysqlslap, mysqlslap — Load Emulation Client
committing alter table to storage engine
thread state, General Thread States
compact option
mysqldump, mysqldump — A Database Backup Program
compact row format, COMPACT and REDUNDANT Row Formats, MySQL Glossary
comparison operators, Comparison Functions and Operators
compatibility
between MySQL versions, Upgrading from MySQL 5.5 to 5.6
with mSQL, Regular Expressions
with ODBC, Server System Variables, Identifier Qualifiers, Numeric Type Overview, Type Conversion in Expression Evaluation, Comparison Functions and Operators, CREATE TABLE Syntax, JOIN Syntax
with Oracle, MySQL Extensions to Standard SQL, GROUP BY (Aggregate) Functions, ALTER TABLE Syntax, EXPLAIN Syntax
with PostgreSQL, MySQL Extensions to Standard SQL
with standard SQL, MySQL Standards Compliance
compatible option
mysqldump, mysqldump — A Database Backup Program
COMPILATION_COMMENT option
CMake, MySQL Source-Configuration Options
compiling
optimizing, System Factors and Startup Parameter Tuning
user-defined functions, Compiling and Installing User-Defined Functions
compiling clients
on Unix, Building C API Client Programs
on Windows, Building C API Client Programs
compiling MySQL server
problems, Dealing with Problems Compiling MySQL
complete-insert option
mysqldump, mysqldump — A Database Backup Program
completion_type system variable, Server System Variables
composite index, MySQL Glossary
composite partitioning, Subpartitioning
compound statements, MySQL Compound-Statement Syntax
compress option
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
COMPRESS(), Encryption and Compression Functions
compressed backup, MySQL Glossary
compressed row format, DYNAMIC and COMPRESSED Row Formats, MySQL Glossary
compressed tables, myisampack — Generate Compressed, Read-Only MyISAM Tables, Compressed Table Characteristics
compression, Working with InnoDB Compressed Tables, MySQL Glossary
application and schema design, Tuning Compression for InnoDB Tables
BLOBs, VARCHAR and TEXT, How Compression Works for InnoDB Tables
buffer pool considerations, How Compression Works for InnoDB Tables
compressed page size, Tuning Compression for InnoDB Tables
configuration characteristics, Tuning Compression for InnoDB Tables
data and indexes, How Compression Works for InnoDB Tables
data characteristics, Tuning Compression for InnoDB Tables
information schema, Information Schema Tables about Compression
innodb_strict_mode, InnoDB Strict Mode
KEY_BLOCK_SIZE, Tuning Compression for InnoDB Tables
log file format, How Compression Works for InnoDB Tables
monitoring, Monitoring Compression at Runtime
tuning, Tuning Compression for InnoDB Tables
with Connector/Net network traffic, Connector/Net Connection String Options Reference
workload characteristics, Tuning Compression for InnoDB Tables
compression failure, MySQL Glossary
comp_err, Overview of MySQL Programs, comp_err — Compile MySQL Error Message File
charset option, comp_err — Compile MySQL Error Message File
debug option, comp_err — Compile MySQL Error Message File
debug-info option, comp_err — Compile MySQL Error Message File
header_file option, comp_err — Compile MySQL Error Message File
help option, comp_err — Compile MySQL Error Message File
in_file option, comp_err — Compile MySQL Error Message File
name_file option, comp_err — Compile MySQL Error Message File
out_dir option, comp_err — Compile MySQL Error Message File
out_file option, comp_err — Compile MySQL Error Message File
statefile option, comp_err — Compile MySQL Error Message File
version option, comp_err — Compile MySQL Error Message File
CONCAT(), String Functions
concatenation
string, String Literals, String Functions
CONCAT_WS(), String Functions
concurrency, The InnoDB Storage Engine, MySQL Glossary
of commits, InnoDB Startup Options and System Variables
of threads, InnoDB Startup Options and System Variables
tickets, InnoDB Startup Options and System Variables
concurrency option
mysqlslap, mysqlslap — Load Emulation Client
concurrent inserts, Internal Locking Methods, Concurrent Inserts
concurrent_insert system variable, Server System Variables
Conditions, DECLARE ... CONDITION Syntax
conditions, SHOW ERRORS Syntax, SHOW WARNINGS Syntax
cond_instances table
performance_schema, The cond_instances Table
config option
MySQLInstallerConsole, MySQL Installer Console
config-file option
my_print_defaults, my_print_defaults — Display Options from Option Files
configuration file, MySQL Glossary
configuration files, Causes of Access-Denied Errors
config_options table, Internals of the InnoDB memcached Plugin
Connect
thread command, Thread Command Values
connect command
mysql, mysql Commands
Connect Out
thread command, Thread Command Values
connect-expired-password option
mysql, mysql Options
connecting
remotely with SSH, Connecting to MySQL Remotely from Windows with SSH
through Connector/Net, Connecting to MySQL Using Connector/Net
through JDBC and Connector/J, Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
through Visual Studio, Making a Connection
to the server, Connecting to and Disconnecting from the Server, Connecting to the MySQL Server
verification, Access Control, Stage 1: Connection Verification
Connecting to master
thread state, Replication Slave I/O Thread States
connection
aborted, Communication Errors and Aborted Connections
connection pooling, Using Connector/Net with Connection Pooling, Connector/Net Connection String Options Reference, Connection Pooling with Connector/J, Connection Pooling with Spring, Using Connector/J with GlassFish
connection string, Creating a Connector/Net Connection String, Connector/Net Connection String Options Reference
CONNECTION_ID(), Information Functions
Connector/C, Connectors and APIs, MySQL Connector/C
Connector/C++, Connectors and APIs, MySQL Connector/C++
Connector/J, Connectors and APIs, MySQL Connector/J
reporting problems, How to Report Connector/J Bugs or Problems
troubleshooting, Troubleshooting Connector/J Applications
Connector/Net, Connectors and APIs, MySQL Connector/Net
reporting problems, Connector/Net Support
Connector/ODBC, Connectors and APIs, MySQL Connector/ODBC
reporting problems, Connector/ODBC Support
with Borland applications, Using Connector/ODBC with Borland Applications
Connector/Python, Connectors and APIs, MySQL Connector/Python
Connectors, Connectors and APIs
connect_timeout system variable, Server System Variables
connect_timeout variable, mysql Options, mysqladmin — Client for Administering a MySQL Server
consistent read, MySQL Glossary
consistent reads, Consistent Nonlocking Reads
console option
mysqld, Server Command Options
const table
optimizer, EXPLAIN Output Format, SELECT Syntax
constant table, How MySQL Optimizes WHERE Clauses
constraint, MySQL Glossary
constraints, How MySQL Deals with Constraints
foreign keys, Using FOREIGN KEY Constraints
CONSTRAINTS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
containers table, Internals of the InnoDB memcached Plugin
Contains(), Functions That Test Spatial Relationships Between Geometries
contributing companies
list of, Supporters of MySQL
contributors
list of, Contributors to MySQL
control flow functions, Control Flow Functions
CONV(), Mathematical Functions
conventions
syntax, Typographical and Syntax Conventions
typographical, Typographical and Syntax Conventions
CONVERT, Cast Functions and Operators
CONVERT TO, ALTER TABLE Syntax
converting HEAP to MyISAM
thread state, General Thread States
CONVERT_TZ(), Date and Time Functions
ConvexHull(), Spatial Operators
copy option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
copy to tmp table
thread state, General Thread States
copying databases, Copying MySQL Databases to Another Machine
copying tables, CREATE TABLE Syntax, CREATE TABLE ... SELECT Syntax
Copying to group table
thread state, General Thread States
Copying to tmp table
thread state, General Thread States
Copying to tmp table on disk
thread state, General Thread States
core-file option
mysqld, Server Command Options
core-file-size option
mysqld_safe, mysqld_safe — MySQL Server Startup Script
core_file system variable, Server System Variables
correct-checksum option
myisamchk, myisamchk Repair Options
correlated subqueries, Correlated Subqueries
corruption, Starting InnoDB on a Corrupted Database
COS(), Mathematical Functions
COT(), Mathematical Functions
count option
myisam_ftdump, myisam_ftdump — Display Full-Text Index information
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlshow, mysqlshow — Display Database, Table, and Column Information
COUNT(), GROUP BY (Aggregate) Functions
COUNT(DISTINCT), GROUP BY (Aggregate) Functions
counter, MySQL Glossary
counting
table rows, Counting Rows
covering index, MySQL Glossary
CPACK_MONOLITHIC_INSTALL option
CMake, MySQL Source-Configuration Options
crash, Debugging a MySQL Server, MySQL Glossary
recovery, Using myisamchk for Crash Recovery
repeated, What to Do If MySQL Keeps Crashing
replication, Replication and Master or Slave Shutdowns
crash recovery, MySQL Glossary
crash-me, The MySQL Benchmark Suite
crash-me program, The MySQL Benchmark Suite
CRC32(), Mathematical Functions
CREATE ... IF NOT EXISTS
and replication, Replication of CREATE ... IF NOT EXISTS Statements
CREATE DATABASE, CREATE DATABASE Syntax
Create DB
thread command, Thread Command Values
CREATE EVENT, CREATE EVENT Syntax
and replication, Replication of Invoked Features
CREATE FUNCTION, CREATE PROCEDURE and CREATE FUNCTION Syntax, CREATE FUNCTION Syntax for User-Defined Functions
CREATE INDEX, Overview of Online DDL, CREATE INDEX Syntax
create option
mysqlslap, mysqlslap — Load Emulation Client
CREATE PROCEDURE, CREATE PROCEDURE and CREATE FUNCTION Syntax
CREATE SCHEMA, CREATE DATABASE Syntax
CREATE SERVER, CREATE SERVER Syntax
CREATE TABLE, CREATE TABLE Syntax
DIRECTORY options
and replication, Replication and DIRECTORY Table Options
KEY_BLOCK_SIZE, Tuning Compression for InnoDB Tables
options for table compression, Enabling Compression for a Table
ROW_FORMAT, Specifying the Row Format for a Table
CREATE TABLE ... SELECT
and replication, Replication of CREATE TABLE ... SELECT Statements
CREATE TRIGGER, CREATE TRIGGER Syntax
CREATE USER, CREATE USER Syntax
CREATE VIEW, CREATE VIEW Syntax
create-options option
mysqldump, mysqldump — A Database Backup Program
create-schema option
mysqlslap, mysqlslap — Load Emulation Client
creating
bug reports, How to Report Bugs or Problems
database, CREATE DATABASE Syntax
databases, Creating and Using a Database
default startup options, Using Option Files
function, CREATE FUNCTION Syntax for User-Defined Functions
schema, CREATE DATABASE Syntax
tables, Creating a Table
Creating delayed handler
thread state, Delayed-Insert Thread States
Creating index
thread state, General Thread States
Creating sort index
thread state, General Thread States
creating table
thread state, General Thread States
Creating tmp table
thread state, General Thread States
creating user accounts, CREATE USER Syntax
CROSS JOIN, JOIN Syntax
Crosses(), Functions That Test Spatial Relationships Between Geometries
CRUD, MySQL Glossary
Crystal Reports, Using Connector/Net with Crystal Reports
CR_SERVER_GONE_ERROR, MySQL server has gone away
CR_SERVER_LOST_ERROR, MySQL server has gone away
CSV data, reading, LOAD DATA INFILE Syntax, SELECT ... INTO Syntax
csv option
mysqlslap, mysqlslap — Load Emulation Client
CSV storage engine, Storage Engines, The CSV Storage Engine
CURDATE(), Date and Time Functions
CURRENT_DATE, Date and Time Functions
CURRENT_TIME, Date and Time Functions
CURRENT_TIMESTAMP, Date and Time Functions
CURRENT_USER(), Information Functions
cursor, MySQL Glossary
Cursors, Cursors
CURTIME(), Date and Time Functions
CXX environment variable, Dealing with Problems Compiling MySQL, Environment Variables
CXXFLAGS environment variable, Dealing with Problems Compiling MySQL, Environment Variables
cxxflags option
mysql_config, mysql_config — Display Options for Compiling Clients
D
Daemon
thread command, Thread Command Values
daemon plugins, Daemon Plugins
daemon_memcached_enable_binlog system variable, InnoDB Startup Options and System Variables
daemon_memcached_engine_lib_name system variable, InnoDB Startup Options and System Variables
daemon_memcached_engine_lib_path system variable, InnoDB Startup Options and System Variables
daemon_memcached_option system variable, InnoDB Startup Options and System Variables
daemon_memcached_r_batch_size system variable, InnoDB Startup Options and System Variables
daemon_memcached_w_batch_size system variable, InnoDB Startup Options and System Variables
data
importing, Executing SQL Statements from a Text File, mysqlimport — A Data Import Program
loading into tables, Loading Data into a Table
retrieving, Retrieving Information from a Table
size, Optimizing Data Size
data dictionary, Managing InnoDB Tablespaces, MySQL Glossary
DATA DIRECTORY
and replication, Replication and DIRECTORY Table Options
data directory, MySQL Glossary
data files, MySQL Glossary
Data truncation with CJK characters, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
data type
BIGINT, Numeric Type Overview
BINARY, String Type Overview, The BINARY and VARBINARY Types
BIT, Numeric Type Overview
BLOB, String Type Overview, The BLOB and TEXT Types
BOOL, Numeric Type Overview, Using Data Types from Other Database Engines
BOOLEAN, Numeric Type Overview, Using Data Types from Other Database Engines
CHAR, String Type Overview, String Types
CHAR VARYING, String Type Overview
CHARACTER, String Type Overview
CHARACTER VARYING, String Type Overview
DATE, Date and Time Type Overview, The DATE, DATETIME, and TIMESTAMP Types
DATETIME, Date and Time Type Overview, The DATE, DATETIME, and TIMESTAMP Types
DEC, Numeric Type Overview
DECIMAL, Numeric Type Overview, Precision Math
DOUBLE, Numeric Type Overview
DOUBLE PRECISION, Numeric Type Overview
ENUM, String Type Overview, The ENUM Type
FIXED, Numeric Type Overview
FLOAT, Numeric Type Overview
GEOMETRY, MySQL Spatial Data Types
GEOMETRYCOLLECTION, MySQL Spatial Data Types
INT, Numeric Type Overview
INTEGER, Numeric Type Overview
LINESTRING, MySQL Spatial Data Types
LONG, The BLOB and TEXT Types
LONGBLOB, String Type Overview
LONGTEXT, String Type Overview
MEDIUMBLOB, String Type Overview
MEDIUMINT, Numeric Type Overview
MEDIUMTEXT, String Type Overview
MULTILINESTRING, MySQL Spatial Data Types
MULTIPOINT, MySQL Spatial Data Types
MULTIPOLYGON, MySQL Spatial Data Types
NATIONAL CHAR, String Type Overview
NATIONAL VARCHAR, String Type Overview
NCHAR, String Type Overview
NUMERIC, Numeric Type Overview
NVARCHAR, String Type Overview
POINT, MySQL Spatial Data Types
POLYGON, MySQL Spatial Data Types
REAL, Numeric Type Overview
SET, String Type Overview, The SET Type
SMALLINT, Numeric Type Overview
TEXT, String Type Overview, The BLOB and TEXT Types
TIME, Date and Time Type Overview, The TIME Type
TIMESTAMP, Date and Time Type Overview, The DATE, DATETIME, and TIMESTAMP Types
TINYBLOB, String Type Overview
TINYINT, Numeric Type Overview
TINYTEXT, String Type Overview
VARBINARY, String Type Overview, The BINARY and VARBINARY Types
VARCHAR, String Type Overview, String Types
VARCHARACTER, String Type Overview
YEAR, Date and Time Type Overview, The YEAR Type
data types, Data Types
C API, MySQL C API
overview, Data Type Overview
data warehouse, MySQL Glossary
data-file-length option
myisamchk, myisamchk Repair Options
database, MySQL Glossary
altering, ALTER DATABASE Syntax
creating, CREATE DATABASE Syntax
deleting, DROP DATABASE Syntax
Database information
obtaining, SHOW Syntax
database metadata, INFORMATION_SCHEMA Tables
database names
case sensitivity, MySQL Extensions to Standard SQL, Identifier Case Sensitivity
database option
mysql, mysql Options
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
DATABASE(), Information Functions
databases
backups, Backup and Recovery
copying, Copying MySQL Databases to Another Machine
creating, Creating and Using a Database, CREATE DATABASE Syntax
defined, What is MySQL?
displaying, mysqlshow — Display Database, Table, and Column Information
dumping, mysqldump — A Database Backup Program, mysqlhotcopy — A Database Backup Program
information about, Getting Information About Databases and Tables
names, Schema Object Names
replicating, Replication
selecting, Creating and Selecting a Database, USE Syntax
symbolic links, Using Symbolic Links for Databases on Unix
using, Creating and Using a Database
databases option
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
datadir option
mysql.server, mysql.server — MySQL Server Startup Script
mysqld, Server Command Options
mysqld_safe, mysqld_safe — MySQL Server Startup Script
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
datadir system variable, Server System Variables
DataJunction, Using Connector/ODBC with Pervasive Software DataJunction
DATE, Problems Using DATE Columns
date and time functions, Date and Time Functions
Date and Time types, Date and Time Types
date calculations, Date Calculations
DATE columns
problems, Problems Using DATE Columns
with Connector/Net, Handling Date and Time Information in Connector/Net
DATE data type, Date and Time Type Overview, The DATE, DATETIME, and TIMESTAMP Types
date literals, Date and Time Literals
date types, Data Type Storage Requirements
date values
problems, The DATE, DATETIME, and TIMESTAMP Types
DATE(), Date and Time Functions
DATEDIFF(), Date and Time Functions
dates
used with partitioning, Partitioning Types
used with partitioning (examples), RANGE Partitioning, HASH Partitioning, Subpartitioning, Partition Pruning
DATETIME data type, Date and Time Type Overview, The DATE, DATETIME, and TIMESTAMP Types
datetime_format system variable, Server System Variables
DATE_ADD(), Date and Time Functions
date_format system variable, Server System Variables
DATE_FORMAT(), Date and Time Functions
DATE_SUB(), Date and Time Functions
DAY(), Date and Time Functions, Encryption and Compression Functions
DAYNAME(), Date and Time Functions
DAYOFMONTH(), Date and Time Functions
DAYOFWEEK(), Date and Time Functions
DAYOFYEAR(), Date and Time Functions
db option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
db table
sorting, Access Control, Stage 2: Request Verification
DB2 SQL mode, Server SQL Modes
DBI interface, MySQL Perl API
DBI->quote, String Literals
DBI->trace, Debugging mysqld under gdb
DBI/DBD interface, MySQL Perl API
DBI_TRACE environment variable, Environment Variables, Debugging mysqld under gdb
DBI_USER environment variable, Environment Variables
DBUG package, The DBUG Package
DCL, GRANT Syntax, REVOKE Syntax, MySQL Glossary
DDL, Data Definition Statements, MySQL Glossary
deadlock, Internal Locking Methods, Interaction of Table Locking and Transactions, InnoDB Lock Modes, Locks Set by Different SQL Statements in InnoDB, Deadlock Detection and Rollback, InnoDB Startup Options and System Variables, Replication Retries and Timeouts, Using the Performance Schema to Diagnose Problems, MySQL Glossary
deadlock detection, Non-Recursive Deadlock Detection, MySQL Glossary
DEALLOCATE PREPARE, SQL Syntax for Prepared Statements, DEALLOCATE PREPARE Syntax
Debug
thread command, Thread Command Values
debug option
comp_err, comp_err — Compile MySQL Error Message File
myisamchk, myisamchk General Options
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
mysql, mysql Options
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqldumpslow, mysqldumpslow — Summarize Slow Query Log Files
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
my_print_defaults, my_print_defaults — Display Options from Option Files
debug system variable, Server System Variables
debug-check option
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
debug-info option
comp_err, comp_err — Compile MySQL Error Message File
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
debug-sync-timeout option
mysqld, Server Command Options
debugging
client, Debugging a MySQL Client
server, Debugging a MySQL Server
debugging support, MySQL Source-Configuration Options
debug_sync system variable, Server System Variables
DEC data type, Numeric Type Overview
decimal arithmetic, Precision Math
DECIMAL data type, Numeric Type Overview, Precision Math
decimal point, Data Types
DECLARE, DECLARE Syntax
DECODE(), Encryption and Compression Functions
decode_bits myisamchk variable, myisamchk General Options
DEFAULT
constraint, Constraints on Invalid Data
default
privileges, Securing the Initial MySQL Accounts
default accounts, Securing the Initial MySQL Accounts
default host name, Connecting to the MySQL Server
default installation location, Installation Layouts
default options, Using Option Files
DEFAULT value clause, Data Type Default Values, CREATE TABLE Syntax
default values, Data Type Default Values, CREATE TABLE Syntax, INSERT Syntax
BLOB and TEXT columns, The BLOB and TEXT Types
explicit, Data Type Default Values
implicit, Data Type Default Values
suppression, Constraints on Invalid Data
DEFAULT(), Miscellaneous Functions
default-auth option
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
default-authentication-plugin option
mysqld, Server Command Options
default-character-set option
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
default-storage-engine option
mysqld, Server Command Options
default-time-zone option
mysqld, Server Command Options
defaults
embedded, Options with the Embedded Server
defaults-extra-file option, Command-Line Options that Affect Option-File Handling
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqld_safe, mysqld_safe — MySQL Server Startup Script
my_print_defaults, my_print_defaults — Display Options from Option Files
defaults-file option, Command-Line Options that Affect Option-File Handling
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqld_safe, mysqld_safe — MySQL Server Startup Script
my_print_defaults, my_print_defaults — Display Options from Option Files
defaults-group-suffix option, Command-Line Options that Affect Option-File Handling
my_print_defaults, my_print_defaults — Display Options from Option Files
DEFAULT_CHARSET option
CMake, MySQL Source-Configuration Options
DEFAULT_COLLATION option
CMake, MySQL Source-Configuration Options
default_storage_engine system variable, Server System Variables
default_tmp_storage_engine system variable, Server System Variables
default_week_format system variable, Server System Variables
DEGREES(), Mathematical Functions
delay-key-write option
mysqld, Server Command Options, MyISAM Startup Options
DELAYED, INSERT DELAYED Syntax
when ignored, INSERT Syntax
Delayed insert
thread command, Thread Command Values
delayed inserts
thread states, Delayed-Insert Thread States
delayed replication, Delayed Replication
delayed-insert option
mysqldump, mysqldump — A Database Backup Program
delayed_insert_limit, INSERT DELAYED Syntax
delayed_insert_limit system variable, Server System Variables
delayed_insert_timeout system variable, Server System Variables
delayed_queue_size system variable, Server System Variables
delay_key_write system variable, Server System Variables
DELETE, DELETE Syntax
delete, MySQL Glossary
delete buffering, MySQL Glossary
delete option
mysqlimport, mysqlimport — A Data Import Program
delete-master-logs option
mysqldump, mysqldump — A Database Backup Program
deleting
database, DROP DATABASE Syntax
foreign key, ALTER TABLE Syntax, Using FOREIGN KEY Constraints
function, DROP FUNCTION Syntax
index, ALTER TABLE Syntax, DROP INDEX Syntax
primary key, ALTER TABLE Syntax
rows, Deleting Rows from Related Tables
schema, DROP DATABASE Syntax
table, DROP TABLE Syntax
user, Removing User Accounts, DROP USER Syntax
users, Removing User Accounts, DROP USER Syntax
deleting from main table
thread state, General Thread States
deleting from reference tables
thread state, General Thread States
deletion
mysql.sock, How to Protect or Change the MySQL Unix Socket File
delimiter command
mysql, mysql Commands
delimiter option
mysql, mysql Options
mysqlslap, mysqlslap — Load Emulation Client
Delphi, Using Connector/ODBC with Delphi
demo_test table, Installing and Configuring the InnoDB memcached Plugin
denormalized, MySQL Glossary
derived tables, Subqueries in the FROM Clause
optimization, Optimizing Subqueries in the FROM Clause (Derived Tables)
des-key-file option
mysqld, Server Command Options
DESC, DESCRIBE Syntax
descending index, MySQL Glossary
DESCRIBE, Getting Information About Databases and Tables, DESCRIBE Syntax
description option
myisamchk, Other myisamchk Options
design
issues, Known Issues in MySQL
DES_DECRYPT(), Encryption and Compression Functions
DES_ENCRYPT(), Encryption and Compression Functions
detach option
mysqlslap, mysqlslap — Load Emulation Client
development source tree, Installing MySQL from a Development Source Tree
Difference(), Spatial Operators
digits, Data Types
Dimension(), General Geometry Functions
directory structure
default, Installation Layouts
dirty page, Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool, InnoDB Startup Options and System Variables, MySQL Glossary
dirty read, MySQL Glossary
disable named command
mysql, mysql Options
--disable option prefix, Program Option Modifiers
disable-gtid-unsafe-statements option, Global Transaction ID Options and Variables
disable-keys option
mysqldump, mysqldump — A Database Backup Program
disable-log-bin option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
disable_gtid_unsafe_statements system variable, Global Transaction ID Options and Variables
DISCARD TABLESPACE, ALTER TABLE Syntax, Moving or Copying InnoDB Tables to Another Machine
discard_or_import_tablespace
thread state, General Thread States
disconnect-slave-event-count option
mysqld, Replication Slave Options and Variables
disconnecting
from the server, Connecting to and Disconnecting from the Server
disconnect_on_expired_passwords session variable, Server System Variables
Disjoint(), Functions That Test Spatial Relationships Between Geometries
disk full, How MySQL Handles a Full Disk
disk performance, Optimizing Disk I/O
disk-based, MySQL Glossary
disk-bound, MySQL Glossary
disks
splitting data across, Using Symbolic Links for Databases on Windows
display size, Data Types
display triggers, SHOW TRIGGERS Syntax
display width, Data Types
displaying
database information, mysqlshow — Display Database, Table, and Column Information
information
Cardinality, SHOW INDEX Syntax
Collation, SHOW INDEX Syntax
SHOW, SHOW Syntax, SHOW COLUMNS Syntax, SHOW INDEX Syntax, SHOW OPEN TABLES Syntax, SHOW TABLES Syntax
table status, SHOW TABLE STATUS Syntax
DISTINCT, Selecting Particular Columns, DISTINCT Optimization, SELECT Syntax
AVG(), GROUP BY (Aggregate) Functions
COUNT(), GROUP BY (Aggregate) Functions
MAX(), GROUP BY (Aggregate) Functions
MIN(), GROUP BY (Aggregate) Functions
SUM(), GROUP BY (Aggregate) Functions
DISTINCTROW, SELECT Syntax
DIV, Arithmetic Operators
division (/), Arithmetic Operators
div_precision_increment system variable, Server System Variables
DML, Data Manipulation Statements, MySQL Glossary
DELETE statement, DELETE Syntax
INSERT statement, INSERT Syntax
UPDATE statement, UPDATE Syntax
DNS, DNS Lookup Optimization and the Host Cache
DO, DO Syntax
DocBook XML
documentation source format, About This Manual
document id, MySQL Glossary
Documentation
in Chinese, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
in Japanese, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
in Korean, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
Documenters
list of, Documenters and translators
DOUBLE data type, Numeric Type Overview
DOUBLE PRECISION data type, Numeric Type Overview
double quote (\"), String Literals
doublewrite buffer, Server Status Variables, InnoDB Disk I/O, InnoDB Startup Options and System Variables, MySQL Glossary
downgrading, Upgrading or Downgrading MySQL, Downgrading MySQL
downloading, How to Get MySQL
drop, MySQL Glossary
DROP ... IF EXISTS
and replication, Replication of DROP ... IF EXISTS Statements
DROP DATABASE, DROP DATABASE Syntax
Drop DB
thread command, Thread Command Values
DROP EVENT, DROP EVENT Syntax
DROP FOREIGN KEY, ALTER TABLE Syntax, Using FOREIGN KEY Constraints
DROP FUNCTION, DROP PROCEDURE and DROP FUNCTION Syntax, DROP FUNCTION Syntax
DROP INDEX, Overview of Online DDL, ALTER TABLE Syntax, DROP INDEX Syntax
DROP PREPARE, DEALLOCATE PREPARE Syntax
DROP PRIMARY KEY, ALTER TABLE Syntax
DROP PROCEDURE, DROP PROCEDURE and DROP FUNCTION Syntax
DROP SCHEMA, DROP DATABASE Syntax
DROP SERVER, DROP SERVER Syntax
DROP TABLE, DROP TABLE Syntax
DROP TRIGGER, DROP TRIGGER Syntax
DROP USER, DROP USER Syntax
DROP VIEW, DROP VIEW Syntax
dropping
user, Removing User Accounts, DROP USER Syntax
dryrun option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
DUAL, SELECT Syntax
dump option
myisam_ftdump, myisam_ftdump — Display Full-Text Index information
dump-date option
mysqldump, mysqldump — A Database Backup Program
dump-slave option
mysqldump, mysqldump — A Database Backup Program
DUMPFILE, SELECT ... INTO Syntax
dumping
databases and tables, mysqldump — A Database Backup Program, mysqlhotcopy — A Database Backup Program
dynamic row format, DYNAMIC and COMPRESSED Row Formats, MySQL Glossary
dynamic table characteristics, Dynamic Table Characteristics
E
early adopter, MySQL Glossary
edit command
mysql, mysql Commands
ego command
mysql, mysql Commands
Eiffel Wrapper, MySQL Eiffel Wrapper
ELT(), String Functions
email lists, MySQL Mailing Lists
embedded MySQL server library, libmysqld, the Embedded MySQL Server Library
embedded option
mysql_config, mysql_config — Display Options for Compiling Clients
--enable option prefix, Program Option Modifiers
enable-cleartext-plugin option
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlslap, mysqlslap — Load Emulation Client
enable-named-pipe option
mysqld, Server Command Options
ENABLED_LOCAL_INFILE option
CMake, MySQL Source-Configuration Options
ENABLED_PROFILING option
CMake, MySQL Source-Configuration Options
ENABLE_DEBUG_SYNC option
CMake, MySQL Source-Configuration Options
ENABLE_DOWNLOADS option
CMake, MySQL Source-Configuration Options
ENABLE_DTRACE option
CMake, MySQL Source-Configuration Options
ENABLE_GCOV option
CMake, MySQL Source-Configuration Options
ENABLE_GPROF option
CMake, MySQL Source-Configuration Options
ENCODE(), Encryption and Compression Functions
ENCRYPT(), Encryption and Compression Functions
encryption, Making MySQL Secure Against Attackers, Basic SSL Concepts
encryption functions, Encryption and Compression Functions
end
thread state, General Thread States
END, BEGIN ... END Compound-Statement Syntax
EndPoint(), LineString Functions
end_markers_in_json system variable, Server System Variables
enforce-gtid-consistency option, Global Transaction ID Options and Variables
enforce_gtid_consistency system variable, Global Transaction ID Options and Variables
engine option
mysqlslap, mysqlslap — Load Emulation Client
ENGINES
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA ENGINES Table
engine_condition_pushdown system variable, Server System Variables
entering
queries, Entering Queries
enterprise components
MySQL Enterprise Audit, MySQL Enterprise Audit Log Plugin, MySQL Enterprise Audit
MySQL Enterprise Backup, MySQL Enterprise Backup
MySQL Enterprise Monitor, MySQL Enterprise Monitor
MySQL Enterprise Security, The PAM Authentication Plugin, The Windows Native Authentication Plugin, MySQL Enterprise Security
MySQL Thread Pool, The Thread Pool Plugin, MySQL Thread Pool
ENUM
size, Data Type Storage Requirements
ENUM data type, String Type Overview, The ENUM Type
Envelope(), General Geometry Functions
environment variable
AUTHENTICATION_PAM_LOG, PAM Authentication Plugin Debugging
CC, Dealing with Problems Compiling MySQL, Environment Variables
CFLAGS, Dealing with Problems Compiling MySQL, Environment Variables
CXX, Dealing with Problems Compiling MySQL, Environment Variables
CXXFLAGS, Dealing with Problems Compiling MySQL, Environment Variables
DBI_TRACE, Environment Variables, Debugging mysqld under gdb
DBI_USER, Environment Variables
HOME, Environment Variables, mysql Logging
LD_LIBRARY_PATH, Problems Using the Perl DBI/DBD Interface
LD_RUN_PATH, Environment Variables, Problems Using the Perl DBI/DBD Interface
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN, Environment Variables
LIBMYSQL_PLUGINS, Environment Variables, mysql_load_plugin()
LIBMYSQL_PLUGIN_DIR, Environment Variables, mysql_load_plugin()
MYSQL_DEBUG, Environment Variables, Overview of MySQL Programs, Debugging a MySQL Client
MYSQL_GROUP_SUFFIX, Environment Variables
MYSQL_HISTFILE, Environment Variables, mysql Logging
MYSQL_HISTIGNORE, Environment Variables, mysql Logging
MYSQL_HOME, Environment Variables
MYSQL_HOST, Environment Variables, Connecting to the MySQL Server
MYSQL_PS1, Environment Variables
MYSQL_PWD, Environment Variables, Overview of MySQL Programs, Connecting to the MySQL Server
MYSQL_TCP_PORT, Environment Variables, Overview of MySQL Programs, Running Multiple MySQL Instances on Unix, Using Client Programs in a Multiple-Server Environment
MYSQL_TEST_LOGIN_FILE, Environment Variables
MYSQL_UNIX_PORT, Problems Running mysql_install_db, Environment Variables, Overview of MySQL Programs, Running Multiple MySQL Instances on Unix, Using Client Programs in a Multiple-Server Environment
PATH, Unix Postinstallation Procedures, Environment Variables, Invoking MySQL Programs
TMPDIR, Problems Running mysql_install_db, Environment Variables, Overview of MySQL Programs, Where MySQL Stores Temporary Files
TZ, Environment Variables, Time Zone Problems
UMASK, Environment Variables, Problems with File Permissions
UMASK_DIR, Environment Variables, Problems with File Permissions
USER, Environment Variables, Connecting to the MySQL Server
environment variables, Overview of MySQL Programs, Setting Environment Variables, Causes of Access-Denied Errors
list of, Environment Variables
equal (=), Comparison Functions and Operators
Equals(), Functions That Test Spatial Relationships Between Geometries
eq_ref join type
optimizer, EXPLAIN Output Format
Errcode, perror — Explain Error Codes
errno, perror — Explain Error Codes
Error
thread command, Thread Command Values
error codes, Mapping MySQL Error Numbers to JDBC SQLState Codes
error log, MySQL Glossary
error messages
can't find file, Problems with File Permissions
displaying, perror — Explain Error Codes
languages, Setting the Error Message Language
errors
access denied, Access denied
and replication, Slave Errors During Replication
checking tables for, How to Check MyISAM Tables for Errors
common, Problems and Common Errors
directory checksum, Installing MySQL on Solaris and OpenSolaris
handling for UDFs, UDF Return Values and Error Handling
in subqueries, Subquery Errors
known, Known Issues in MySQL
linking, Building C API Client Programs
list of, Common Errors When Using MySQL Programs
lost connection, Lost connection to MySQL server
reporting, How to Report Bugs or Problems
sources of information, Sources of Error Information
error_count session variable, Server System Variables
ERROR_FOR_DIVISION_BY_ZERO SQL mode, Server SQL Modes
ER_ABORTING_CONNECTION, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_ACCESS_DENIED_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_BAD_FIELD_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_BAD_HOST_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_BAD_TABLE_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_BLOBS_AND_NO_TERMINATED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_BLOB_CANT_HAVE_DEFAULT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_BLOB_KEY_WITHOUT_LENGTH, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_BLOB_USED_AS_KEY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_CANT_DO_THIS_DURING_AN_TRANSACTION, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_CANT_DROP_FIELD_OR_KEY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_CANT_REMOVE_ALL_FIELDS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_CANT_USE_OPTION_HERE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_CHECK_NOT_IMPLEMENTED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_CHECK_NO_SUCH_TABLE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_COLLATION_CHARSET_MISMATCH, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_COLUMNACCESS_DENIED_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_CONNECT_TO_MASTER, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_CON_COUNT_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_DBACCESS_DENIED_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_DERIVED_MUST_HAVE_ALIAS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_DUP_ENTRY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_DUP_FIELDNAME, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_DUP_KEY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_DUP_KEYNAME, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_DUP_UNIQUE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_EMPTY_QUERY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_FIELD_SPECIFIED_TWICE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_FORCING_CLOSE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_GRANT_WRONG_HOST_OR_USER, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_HANDSHAKE_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_HOST_IS_BLOCKED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_HOST_NOT_PRIVILEGED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_ILLEGAL_GRANT_FOR_TABLE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_ILLEGAL_REFERENCE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_INVALID_DEFAULT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_INVALID_USE_OF_NULL, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_IPSOCK_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_KEY_COLUMN_DOES_NOT_EXITS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_LOCK_DEADLOCK, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_LOCK_WAIT_TIMEOUT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_MASTER_NET_READ, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_MASTER_NET_WRITE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_MIX_OF_GROUP_FUNC_AND_FIELDS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_MULTIPLE_PRI_KEY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NET_ERROR_ON_WRITE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NET_FCNTL_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NET_PACKETS_OUT_OF_ORDER, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NET_PACKET_TOO_LARGE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NET_READ_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NET_READ_ERROR_FROM_PIPE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NET_READ_INTERRUPTED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NET_UNCOMPRESS_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NET_WRITE_INTERRUPTED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NEW_ABORTING_CONNECTION, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NONEXISTING_GRANT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NONEXISTING_TABLE_GRANT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NONUNIQ_TABLE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NON_UNIQ_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NOT_ALLOWED_COMMAND, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NOT_SUPPORTED_AUTH_MODE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NOT_SUPPORTED_YET, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NO_DEFAULT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NO_PERMISSION_TO_CREATE_USER, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NO_REFERENCED_ROW, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NO_SUCH_INDEX, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NO_SUCH_TABLE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_NULL_COLUMN_IN_INDEX, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_OPERAND_COLUMNS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_OUTOFMEMORY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_OUT_OF_SORTMEMORY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_PARSE_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_PASSWORD_ANONYMOUS_USER, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_PASSWORD_NOT_ALLOWED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_PASSWORD_NO_MATCH, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_PRIMARY_CANT_HAVE_NULL, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_READ_ONLY_TRANSACTION, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_REGEXP_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_REQUIRES_PRIMARY_KEY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_ROW_IS_REFERENCED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_SELECT_REDUCED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_SERVER_SHUTDOWN, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_SPATIAL_CANT_HAVE_NULL, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_SUBQUERY_NO_1_ROW, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_SYNTAX_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TABLEACCESS_DENIED_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TABLENAME_NOT_ALLOWED_HERE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TABLE_CANT_HANDLE_AUTO_INCREMENT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TABLE_CANT_HANDLE_BLOB, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TABLE_EXISTS_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TABLE_MUST_HAVE_COLUMNS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TOO_BIG_FIELDLENGTH, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TOO_BIG_ROWSIZE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TOO_BIG_SELECT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TOO_LONG_IDENT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TOO_LONG_KEY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TOO_LONG_STRING, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TOO_MANY_KEYS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TOO_MANY_KEY_PARTS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TOO_MANY_ROWS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_TOO_MANY_USER_CONNECTIONS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_UNKNOWN_CHARACTER_SET, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_UNKNOWN_COM_ERROR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_UNKNOWN_PROCEDURE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_UNKNOWN_STORAGE_ENGINE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_UNKNOWN_TABLE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_UNSUPPORTED_EXTENSION, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_USER_LIMIT_REACHED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WARN_DATA_OUT_OF_RANGE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WARN_DATA_TRUNCATED, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WARN_NULL_TO_NOTNULL, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WARN_TOO_FEW_RECORDS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WARN_TOO_MANY_RECORDS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_AUTO_KEY, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_COLUMN_NAME, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_DB_NAME, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_FIELD_SPEC, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_FIELD_TERMINATORS, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_FIELD_WITH_GROUP, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_FK_DEF, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_GROUP_FIELD, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_KEY_COLUMN, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_NAME_FOR_CATALOG, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_NAME_FOR_INDEX, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_OUTER_JOIN, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_PARAMCOUNT_TO_PROCEDURE, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_SUM_SELECT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_TABLE_NAME, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_TYPE_FOR_VAR, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_VALUE_COUNT, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_VALUE_COUNT_ON_ROW, Mapping MySQL Error Numbers to JDBC SQLState Codes
ER_WRONG_VALUE_FOR_VAR, Mapping MySQL Error Numbers to JDBC SQLState Codes
escape (\\), String Literals
escape sequences
option files, Using Option Files
strings, String Literals
estimating
query performance, Estimating Query Performance
event
restrictions, Restrictions on Stored Programs
event groups, SET GLOBAL sql_slave_skip_counter Syntax
event scheduler, Stored Programs and Views
thread states, Event Scheduler Thread States
Event Scheduler, Using the Event Scheduler
altering events, ALTER EVENT Syntax
and MySQL privileges, The Event Scheduler and MySQL Privileges
and mysqladmin debug, Event Scheduler Status
and replication, Replication of Invoked Features
and SHOW PROCESSLIST, Event Scheduler Configuration
concepts, Event Scheduler Overview
creating events, CREATE EVENT Syntax
dropping events, DROP EVENT Syntax
enabling and disabling, Event Scheduler Configuration
event metadata, Event Metadata
obtaining status information, Event Scheduler Status
SQL statements, Event Syntax
starting and stopping, Event Scheduler Configuration
time representation, Event Metadata
event-scheduler option
mysqld, Server Command Options
events, Stored Programs and Views, Using the Event Scheduler
altering, ALTER EVENT Syntax
creating, CREATE EVENT Syntax
dropping, DROP EVENT Syntax
metadata, Event Metadata
status variables, The Event Scheduler and MySQL Privileges
EVENTS
INFORMATION_SCHEMA table, The Event Scheduler and MySQL Privileges, The INFORMATION_SCHEMA EVENTS Table
events option
mysqldump, mysqldump — A Database Backup Program
events_stages_current table
performance_schema, The events_stages_current Table
events_stages_history table
performance_schema, The events_stages_history Table
events_stages_history_long table
performance_schema, The events_stages_history_long Table
events_stages_summary_by_account_by_event_name table
performance_schema, Connection Summary Tables
events_stages_summary_by_host_by_event_name table
performance_schema, Connection Summary Tables
events_stages_summary_by_thread_by_event_name table
performance_schema, Stage Summary Tables
events_stages_summary_by_user_by_event_name table
performance_schema, Connection Summary Tables
events_stages_summary_global_by_event_name table
performance_schema, Stage Summary Tables
events_statements_current table
performance_schema, The events_statements_current Table
events_statements_history table
performance_schema, The events_statements_history Table
events_statements_history_long table
performance_schema, The events_statements_history_long Table
events_statements_summary_by_account_by_event_name table
performance_schema, Connection Summary Tables
events_statements_summary_by_host_by_event_name table
performance_schema, Connection Summary Tables
events_statements_summary_by_thread_by_event_name table
performance_schema, Statement Summary Tables
events_statements_summary_by_user_by_event_name table
performance_schema, Connection Summary Tables
events_statements_summary_global_by_event_name table
performance_schema, Statement Summary Tables
events_waits_current table
performance_schema, The events_waits_current Table
events_waits_history table
performance_schema, The events_waits_history Table
events_waits_history_long table
performance_schema, The events_waits_history_long Table
events_waits_summary_by_account_by_event_name table
performance_schema, Connection Summary Tables
events_waits_summary_by_host_by_event_name table
performance_schema, Connection Summary Tables
events_waits_summary_by_instance table
performance_schema, Event Wait Summary Tables
events_waits_summary_by_thread_by_event_name table
performance_schema, Event Wait Summary Tables
events_waits_summary_by_user_by_event_name table
performance_schema, Connection Summary Tables
events_waits_summary_global_by_event_name table
performance_schema, Event Wait Summary Tables
event_scheduler system variable, Server System Variables
eviction, MySQL Glossary
exact-value literals, Precision Math
example option
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
example programs
C API, Example C API Client Programs
EXAMPLE storage engine, Storage Engines, The EXAMPLE Storage Engine
examples
compressed tables, myisampack — Generate Compressed, Read-Only MyISAM Tables
myisamchk output, Obtaining Table Information with myisamchk
queries, Examples of Common Queries
exclude-gtids option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
exclusive lock, MySQL Glossary
Execute
thread command, Thread Command Values
EXECUTE, SQL Syntax for Prepared Statements, EXECUTE Syntax
execute option
mysql, mysql Options
ExecuteNonQuery method, The MySqlCommand Object
ExecuteReader method, The MySqlCommand Object
ExecuteScalar method, The MySqlCommand Object
executing
thread state, General Thread States
executing SQL statements from text files, Using mysql in Batch Mode, Executing SQL Statements from a Text File
Execution of init_command
thread state, General Thread States
EXISTS
with subqueries, Subqueries with EXISTS or NOT EXISTS
exit command
mysql, mysql Commands
exit-info option
mysqld, Server Command Options
EXP(), Mathematical Functions
expire_logs_days system variable, Server System Variables
expiring passwords, Password Expiration and Sandbox Mode
EXPLAIN, Optimizing Queries with EXPLAIN, EXPLAIN Syntax
EXPLAIN PARTITIONS, Obtaining Information About Partitions
EXPLAIN used with partitioned tables, Obtaining Information About Partitions
explicit default values, Data Type Default Values
explicit_defaults_for_timestamp system variable, Server System Variables
EXPORT_SET(), String Functions
expression aliases, MySQL Extensions to GROUP BY, SELECT Syntax
expression syntax, Expression Syntax
expressions
extended, Pattern Matching
extend-check option
myisamchk, myisamchk Check Options, myisamchk Repair Options
extended option
mysqlcheck, mysqlcheck — A Table Maintenance Program
extended-insert option
mysqldump, mysqldump — A Database Backup Program
extensions
to standard SQL, MySQL Standards Compliance
extent, MySQL Glossary
ExteriorRing(), Polygon Functions
external locking, Server Command Options, Server System Variables, Using myisamchk for Crash Recovery, External Locking, General Thread States
external-locking option
mysqld, Server Command Options
external_user session variable, Server System Variables
extra-file option
my_print_defaults, my_print_defaults — Display Options from Option Files
EXTRACT(), Date and Time Functions
extracting
dates, Date Calculations
ExtractValue(), XML Functions
F
failover
Java clients, Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
FALSE, Number Literals, Boolean Literals
testing for, Comparison Functions and Operators
FAQs
C API, Common Questions and Problems When Using the C API
Connector/ODBC, Connector/ODBC Notes and Tips
Connectors and APIs, MySQL 5.6 FAQ: Connectors & APIs
MySQL Cluster, MySQL 5.6 FAQ: MySQL Cluster
replication, MySQL 5.6 FAQ: Replication
Fast Index Creation, Online DDL for InnoDB Tables, MySQL Glossary
fast option
myisamchk, myisamchk Check Options
mysqlcheck, mysqlcheck — A Table Maintenance Program
fast shutdown, MySQL Glossary
features of MySQL, The Main Features of MySQL
FEDERATED storage engine, Storage Engines, The FEDERATED Storage Engine
Fetch
thread command, Thread Command Values
FETCH, Cursor FETCH Syntax
field
changing, ALTER TABLE Syntax
Field List
thread command, Thread Command Values
FIELD(), String Functions
fields-enclosed-by option
mysqldump, mysqldump — A Database Backup Program, mysqlimport — A Data Import Program
fields-escaped-by option
mysqldump, mysqldump — A Database Backup Program, mysqlimport — A Data Import Program
fields-optionally-enclosed-by option
mysqldump, mysqldump — A Database Backup Program, mysqlimport — A Data Import Program
fields-terminated-by option
mysqldump, mysqldump — A Database Backup Program, mysqlimport — A Data Import Program
FILE, String Functions
file format, InnoDB File-Format Management, MySQL Glossary
Antelope, How Compression Works for InnoDB Tables
Barracuda, Enabling Compression for a Table
downgrading, Downgrading the File Format
identifying, Identifying the File Format in Use
file format management
enabling new file formats, The Barracuda File Format
file per table, Dynamically Changing innodb_file_per_table
file-per-table, MySQL Glossary
files
binary log, The Binary Log
error messages, Setting the Error Message Language
general query log, The General Query Log
log, Server Log Maintenance
my.cnf, Replication Features and Issues
not found message, Problems with File Permissions
permissions, Problems with File Permissions
repairing, myisamchk Repair Options
script, Using mysql in Batch Mode
size limits, Limits on Table Size
slow query log, The Slow Query Log
text, Executing SQL Statements from a Text File, mysqlimport — A Data Import Program
tmp, Problems Running mysql_install_db
FILES
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA FILES Table
filesort optimization, ORDER BY Optimization
file_instances table
performance_schema, The file_instances Table
file_summary_by_event_name table
performance_schema, File I/O Summary Tables
file_summary_by_instance table
performance_schema, File I/O Summary Tables
fill factor, Physical Structure of an InnoDB Index, MySQL Glossary
FIND_IN_SET(), String Functions
Finished reading one binlog; switching to next binlog
thread state, Replication Master Thread States
fix-db-names option
mysqlcheck, mysqlcheck — A Table Maintenance Program
fix-table-names option
mysqlcheck, mysqlcheck — A Table Maintenance Program
FIXED data type, Numeric Type Overview
fixed row format, MySQL Glossary
fixed-point arithmetic, Precision Math
FLOAT data type, Numeric Type Overview
floating-point number, Numeric Type Overview
floating-point values
and replication, Replication and Floating-Point Values
floats, Number Literals
FLOOR(), Mathematical Functions
FLUSH, FLUSH Syntax
and replication, Replication and FLUSH
flush, MySQL Glossary
flush list, MySQL Glossary
flush list mutex, Separate Flush List Mutex
flush option
mysqld, Server Command Options
flush system variable, Server System Variables
flush tables, mysqladmin — Client for Administering a MySQL Server
flush-logs option
mysqldump, mysqldump — A Database Backup Program
flush-privileges option
mysqldump, mysqldump — A Database Backup Program
Flushing tables
thread state, General Thread States
flushlog option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
flush_time system variable, Server System Variables
FOR UPDATE, SELECT Syntax
FORCE INDEX, Index Hint Syntax, Optimizer-Related Issues
FORCE KEY, Index Hint Syntax
force option
myisamchk, myisamchk Check Options, myisamchk Repair Options
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysql_convert_table_format, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
force-if-open option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
force-read option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
foreign key, MySQL Glossary
constraint, PRIMARY KEY and UNIQUE Index Constraints, FOREIGN KEY Constraints
deleting, ALTER TABLE Syntax, Using FOREIGN KEY Constraints
FOREIGN KEY constraint, MySQL Glossary
foreign key constraints, Using FOREIGN KEY Constraints
InnoDB, InnoDB and FOREIGN KEY Constraints
restrictions, InnoDB and FOREIGN KEY Constraints
FOREIGN KEY constraints
and online DDL, Limitations of Online DDL
and TRUNCATE TABLE, TRUNCATE TABLE Reclaims Space
foreign keys, Foreign Key Differences, Using Foreign Keys, ALTER TABLE Syntax, Editing Foreign Keys
foreign_key_checks session variable, Server System Variables
FORMAT(), String Functions
Forums, MySQL Community Support at the MySQL Forums
FOUND_ROWS(), Information Functions
fractional seconds
and replication, Replication and Fractional Seconds Support
fractional seconds precision, Data Types, Date and Time Type Overview
FreeBSD troubleshooting, Dealing with Problems Compiling MySQL
freeing items
thread state, General Thread States
FROM, SELECT Syntax
FROM_BASE64()(), String Functions
FROM_DAYS(), Date and Time Functions
FROM_UNIXTIME(), Date and Time Functions
FTS, MySQL Glossary
ft_boolean_syntax system variable, Server System Variables
ft_max_word_len myisamchk variable, myisamchk General Options
ft_max_word_len system variable, Server System Variables
ft_min_word_len myisamchk variable, myisamchk General Options
ft_min_word_len system variable, Server System Variables
ft_query_expansion_limit system variable, Server System Variables
ft_stopword_file myisamchk variable, myisamchk General Options
ft_stopword_file system variable, Server System Variables
full backup, MySQL Glossary
full disk, How MySQL Handles a Full Disk
full table scan, MySQL Glossary
full table scans
avoiding, How to Avoid Full Table Scans
full-text parser plugins, Full-Text Parser Plugins
full-text search, Full-Text Search Functions, MySQL Glossary
FULLTEXT, Full-Text Search Functions
fulltext
stopword list, Fine-Tuning MySQL Full-Text Search
FULLTEXT index, MySQL Glossary
InnoDB, FULLTEXT Indexes
FULLTEXT initialization
thread state, General Thread States
fulltext join type
optimizer, EXPLAIN Output Format
function
creating, CREATE FUNCTION Syntax for User-Defined Functions
deleting, DROP FUNCTION Syntax
function names
parsing, Function Name Parsing and Resolution
resolving ambiguity, Function Name Parsing and Resolution
functions, Functions and Operators
and replication, Replication and System Functions
arithmetic, Bit Functions
bit, Bit Functions
C API, C API Function Overview
C prepared statement API, C API Prepared Statement Type Conversions, C API Prepared Statement Function Overview
cast, Cast Functions and Operators
control flow, Control Flow Functions
date and time, Date and Time Functions
encryption, Encryption and Compression Functions
for SELECT and WHERE clauses, Functions and Operators
GROUP BY, GROUP BY (Aggregate) Functions
grouping, Operator Precedence
GTIDs, GTID Functions
information, Information Functions
mathematical, Mathematical Functions
miscellaneous, Miscellaneous Functions
native
adding, Adding a New Native Function
new, Adding New Functions to MySQL
stored, Using Stored Routines (Procedures and Functions)
string, String Functions
string comparison, String Comparison Functions
user-defined, CREATE FUNCTION Syntax for User-Defined Functions, DROP FUNCTION Syntax, Adding New Functions to MySQL
adding, Adding a New User-Defined Function
fuzzy checkpointing, MySQL Glossary
G
GA, MySQL Glossary
gap, MySQL Glossary
gap lock, MySQL Glossary
InnoDB, The InnoDB Transaction Model and Locking, InnoDB Record, Gap, and Next-Key Locks, Avoiding the Phantom Problem Using Next-Key Locking, InnoDB Startup Options and System Variables
gb2312, gbk, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
gdb
using, Debugging mysqld under gdb
gdb option
mysqld, Server Command Options
general information, General Information
General Public License, What is MySQL?
general query log, The General Query Log, MySQL Glossary
general-log option
mysqld, Server Command Options
general_log system variable, Server System Variables
general_log_file system variable, Server System Variables
geographic feature, Introduction to MySQL Spatial Support
GeomCollFromText(), Creating Geometry Values Using WKT Functions
GeomCollFromWKB(), Creating Geometry Values Using WKB Functions
geometry, Introduction to MySQL Spatial Support
GEOMETRY data type, MySQL Spatial Data Types
GEOMETRYCOLLECTION data type, MySQL Spatial Data Types
GeometryCollection(), Creating Geometry Values Using MySQL-Specific Functions
GeometryCollectionFromText(), Creating Geometry Values Using WKT Functions
GeometryCollectionFromWKB(), Creating Geometry Values Using WKB Functions
GeometryFromText(), Creating Geometry Values Using WKT Functions
GeometryFromWKB(), Creating Geometry Values Using WKB Functions
GeometryN(), GeometryCollection Functions
GeometryType(), General Geometry Functions
GeomFromText(), Creating Geometry Values Using WKT Functions, Geometry Format Conversion Functions
GeomFromWKB(), Creating Geometry Values Using WKB Functions, Geometry Format Conversion Functions
geospatial feature, Introduction to MySQL Spatial Support
GET DIAGNOSTICS, GET DIAGNOSTICS Syntax
getting MySQL, How to Get MySQL
GET_FORMAT(), Date and Time Functions
GET_LOCK(), Miscellaneous Functions
GIS, Spatial Extensions, Introduction to MySQL Spatial Support
Glassfish application server, Using Connector/J with GlassFish
GLength(), LineString Functions, MultiLineString Functions
global privileges, GRANT Syntax, REVOKE Syntax
globalization, Globalization
GLOBAL_STATUS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
global_transaction, MySQL Glossary
GLOBAL_VARIABLES
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
go command
mysql, mysql Commands
Google Test, MySQL Source-Configuration Options
got handler lock
thread state, Delayed-Insert Thread States
got old table
thread state, Delayed-Insert Thread States
GRANT, GRANT Syntax
GRANT statement, Adding User Accounts
grant tables
re-creating, Problems Running mysql_install_db
sorting, Access Control, Stage 1: Connection Verification, Access Control, Stage 2: Request Verification
structure, Privilege System Grant Tables
granting
privileges, GRANT Syntax
GRANTS, SHOW GRANTS Syntax
greater than (>), Comparison Functions and Operators
greater than or equal (>=), Comparison Functions and Operators
GREATEST(), Comparison Functions and Operators
GROUP BY, GROUP BY Optimization
aliases in, MySQL Extensions to GROUP BY
extensions to standard SQL, MySQL Extensions to GROUP BY, SELECT Syntax
GROUP BY functions, GROUP BY (Aggregate) Functions
group commit, Group Commit, MySQL Glossary
grouping
expressions, Operator Precedence
GROUP_CONCAT(), GROUP BY (Aggregate) Functions
group_concat_max_len system variable, Server System Variables
GTID functions, GTID Functions
gtid-mode option (mysqld), Global Transaction ID Options and Variables
gtid_done system variable, Global Transaction ID Options and Variables
gtid_executed system variable, Global Transaction ID Options and Variables
gtid_lost system variable, Global Transaction ID Options and Variables
gtid_mode system variable, Global Transaction ID Options and Variables
gtid_next system variable, Global Transaction ID Options and Variables
gtid_owned system variable, Global Transaction ID Options and Variables
gtid_purged system variable, Global Transaction ID Options and Variables
GTID_SUBSET(), GTID Functions
GTID_SUBTRACT(), GTID Functions
H
HANDLER, HANDLER Syntax
Handlers, DECLARE ... HANDLER Syntax
handling
errors, UDF Return Values and Error Handling
hash index, MySQL Glossary
hash indexes, Comparison of B-Tree and Hash Indexes
hash partitioning, HASH Partitioning
hash partitions
managing, Management of HASH and KEY Partitions
splitting and merging, Management of HASH and KEY Partitions
have_compress system variable, Server System Variables
have_crypt system variable, Server System Variables
have_csv system variable, Server System Variables
have_dynamic_loading system variable, Server System Variables
HAVE_EMBEDDED_PRIVILEGE_CONTROL option
CMake, MySQL Source-Configuration Options
have_geometry system variable, Server System Variables
have_innodb system variable, Server System Variables
have_openssl system variable, Server System Variables
have_partitioning system variable, Server System Variables
have_profiling system variable, Server System Variables
have_query_cache system variable, Server System Variables
have_rtree_keys system variable, Server System Variables
have_ssl system variable, Server System Variables
have_symlink system variable, Server System Variables
HAVING, SELECT Syntax
HDD, MySQL Glossary
header_file option
comp_err, comp_err — Compile MySQL Error Message File
HEAP storage engine, Storage Engines, The MEMORY Storage Engine
heartbeat, MySQL Glossary
help command
mysql, mysql Commands
help option
comp_err, comp_err — Compile MySQL Error Message File
myisamchk, myisamchk General Options
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
myisam_ftdump, myisam_ftdump — Display Full-Text Index information
mysql, mysql Options
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqldumpslow, mysqldumpslow — Summarize Slow Query Log Files
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqld_safe, mysqld_safe — MySQL Server Startup Script
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
MySQLInstallerConsole, MySQL Installer Console
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
mysql_convert_table_format, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_find_rows, mysql_find_rows — Extract SQL Statements from Files
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
mysql_setpermission, mysql_setpermission — Interactively Set Permissions in Grant Tables
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
mysql_waitpid, mysql_waitpid — Kill Process and Wait for Its Termination
my_print_defaults, my_print_defaults — Display Options from Option Files
perror, perror — Explain Error Codes
resolveip, resolveip — Resolve Host name to IP Address or Vice Versa
resolve_stack_dump, resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
HELP option
myisamchk, myisamchk General Options
HELP statement, HELP Syntax
HEX(), String Functions, Mathematical Functions
hex-blob option
mysqldump, mysqldump — A Database Backup Program
hexadecimal literals, Hexadecimal Literals
hexdump option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
high-water mark, MySQL Glossary
HIGH_NOT_PRECEDENCE SQL mode, Server SQL Modes
HIGH_PRIORITY, SELECT Syntax
hints, MySQL Extensions to Standard SQL
index, SELECT Syntax, Index Hint Syntax
histignore option
mysql, mysql Options
history list, MySQL Glossary
history of MySQL, History of MySQL
HOME environment variable, Environment Variables, mysql Logging
host name
default, Connecting to the MySQL Server
host name caching, DNS Lookup Optimization and the Host Cache
host name resolution, DNS Lookup Optimization and the Host Cache
host names, Connecting to the MySQL Server
in account names, Specifying Account Names
in default accounts, Securing the Initial MySQL Accounts
host option, Connecting to the MySQL Server
mysql, mysql Options
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
mysql_convert_table_format, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_setpermission, mysql_setpermission — Interactively Set Permissions in Grant Tables
host table
sorting, Access Control, Stage 2: Request Verification
host.frm
problems finding, Unix Postinstallation Procedures
hostname system variable, Server System Variables
hosts table
performance_schema, The hosts Table
host_cache table
performance_schema, The host_cache Table
hot, MySQL Glossary
hot backup, MySQL Glossary
HOUR(), Date and Time Functions
howto option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
html option
mysql, mysql Options
I
i-am-a-dummy option
mysql, mysql Options
ib-file set, Verifying File Format Compatibility, MySQL Glossary
ibbackup command, MySQL Glossary
ibbackup_logfile, MySQL Glossary
ibdata file, MySQL Glossary
ib_logfile, MySQL Glossary
icc
and MySQL Cluster support, Debugging and Porting MySQL
MySQL builds, Compiler-Specific Build Characteristics
ID
unique, How to Get the Unique ID for the Last Inserted Row
identifiers, Schema Object Names
case sensitivity, Identifier Case Sensitivity
quoting, Schema Object Names
identity session variable, Server System Variables
IF, IF Syntax
IF(), Control Flow Functions
IFNULL(), Control Flow Functions
IGNORE
with partitioned tables, INSERT Syntax
IGNORE INDEX, Index Hint Syntax
IGNORE KEY, Index Hint Syntax
ignore option
mysqlimport, mysqlimport — A Data Import Program
ignore-builtin-innodb option
mysqld, InnoDB Startup Options and System Variables
ignore-db-dir option
mysqld, Server Command Options
ignore-lines option
mysqlimport, mysqlimport — A Data Import Program
ignore-spaces option
mysql, mysql Options
ignore-table option
mysqldump, mysqldump — A Database Backup Program
IGNORE_AIO_CHECK option
CMake, MySQL Source-Configuration Options
ignore_builtin_innodb system variable, InnoDB Startup Options and System Variables
ignore_db_dirs system variable, Server System Variables
IGNORE_SPACE SQL mode, Server SQL Modes
ilist, MySQL Glossary
implicit default values, Data Type Default Values
implicit row lock, MySQL Glossary
IMPORT TABLESPACE, ALTER TABLE Syntax, Moving or Copying InnoDB Tables to Another Machine
importing
data, Executing SQL Statements from a Text File, mysqlimport — A Data Import Program
IN, Comparison Functions and Operators, Subqueries with ANY, IN, or SOME
in-memory database, MySQL Glossary
include option
mysql_config, mysql_config — Display Options for Compiling Clients
include-gtids option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
include-master-host-port option
mysqldump, mysqldump — A Database Backup Program
increasing with replication
speed, Replication
incremental backup, MySQL Glossary
incremental recovery, Point-in-Time (Incremental) Recovery Using the Binary Log
index, MySQL Glossary
deleting, ALTER TABLE Syntax, DROP INDEX Syntax
rebuilding, Rebuilding or Repairing Tables or Indexes
index cache, MySQL Glossary
INDEX DIRECTORY
and replication, Replication and DIRECTORY Table Options
index dives (for statistics estimation), Controlling Optimizer Statistics Estimation
index hint, MySQL Glossary
index hints, SELECT Syntax, Index Hint Syntax
index join type
optimizer, EXPLAIN Output Format
index prefix, MySQL Glossary
index-record lock
InnoDB, The InnoDB Transaction Model and Locking, InnoDB Record, Gap, and Next-Key Locks, Avoiding the Phantom Problem Using Next-Key Locking, InnoDB Startup Options and System Variables
indexes, CREATE INDEX Syntax
and BLOB columns, Column Indexes, CREATE TABLE Syntax
and IS NULL, Comparison of B-Tree and Hash Indexes
and LIKE, Comparison of B-Tree and Hash Indexes
and NULL values, CREATE TABLE Syntax
and TEXT columns, Column Indexes, CREATE TABLE Syntax
assigning to key cache, CACHE INDEX Syntax
block size, Server System Variables
columns, Column Indexes
creating and dropping, Implementation Details of Online DDL
leftmost prefix of, Multiple-Column Indexes
multi-column, Multiple-Column Indexes
multiple-part, CREATE INDEX Syntax
names, Schema Object Names
primary (clustered) and secondary, Implementation Details of Online DDL
use of, How MySQL Uses Indexes
Indexes/Keys dialog, Editing Indexes
index_merge join type
optimizer, EXPLAIN Output Format
index_subquery join type
optimizer, EXPLAIN Output Format
INET6_ATON(), Miscellaneous Functions
INET6_NTOA(), Miscellaneous Functions
INET_ATON(), Miscellaneous Functions
INET_NTOA(), Miscellaneous Functions
infimum record, MySQL Glossary
information functions, Information Functions
information option
myisamchk, myisamchk Check Options
INFORMATION SCHEMA
InnoDB tables, InnoDB INFORMATION_SCHEMA tables
INFORMATION_SCHEMA, INFORMATION_SCHEMA Tables, MySQL Glossary
collation and searching, Collation and INFORMATION_SCHEMA Searches
INNODB_CMP table, INNODB_CMP and INNODB_CMP_RESET
INNODB_CMPMEM table, INNODB_CMPMEM and INNODB_CMPMEM_RESET
INNODB_CMPMEM_RESET table, INNODB_CMPMEM and INNODB_CMPMEM_RESET
INNODB_CMP_RESET table, INNODB_CMP and INNODB_CMP_RESET
INNODB_LOCKS table, INNODB_LOCKS
INNODB_LOCK_WAITS table, INNODB_LOCK_WAITS
INNODB_METRICS table, The INFORMATION_SCHEMA INNODB_METRICS Table
INNODB_TRX table, INNODB_TRX
INFORMATION_SCHEMA plugins, INFORMATION_SCHEMA Plugins
init
thread state, General Thread States
Init DB
thread command, Thread Command Values
init-command option
mysql, mysql Options
init-file option
mysqld, Server Command Options
Initialized
thread state, Event Scheduler Thread States
init_connect system variable, Server System Variables
init_file system variable, Server System Variables
init_slave system variable, Replication Slave Options and Variables
INNER JOIN, JOIN Syntax
innobackup command, MySQL Glossary
innochecksum, Overview of MySQL Programs, innochecksum — Offline InnoDB File Checksum Utility
InnoDB, The InnoDB Storage Engine, MySQL Glossary
adaptive hash index, Adaptive Hash Indexes
auto-increment columns, AUTO_INCREMENT Handling in InnoDB
autocommit mode, Grouping DML Operations with Transactions, Implicit Transaction Commit and Rollback
backups, Backing Up and Recovering an InnoDB Database
checkpoints, InnoDB Checkpoints
clustered index, Clustered and Secondary Indexes
configuration parameters, InnoDB Startup Options and System Variables
configuring data files and memory allocation, Configuring InnoDB
considerations as default storage engine, InnoDB as the Default MySQL Storage Engine
consistent reads, Consistent Nonlocking Reads
crash recovery, The InnoDB Recovery Process
data files, Adding, Removing, or Resizing InnoDB Data and Log Files
deadlock detection, Deadlock Detection and Rollback
disk I/O, InnoDB Disk I/O
file space management, File Space Management
file-per-table setting, Managing InnoDB Tablespaces
foreign key constraints, InnoDB and FOREIGN KEY Constraints
FULLTEXT index, FULLTEXT Indexes
gap lock, The InnoDB Transaction Model and Locking, InnoDB Record, Gap, and Next-Key Locks, Avoiding the Phantom Problem Using Next-Key Locking, InnoDB Startup Options and System Variables
index-record lock, The InnoDB Transaction Model and Locking, InnoDB Record, Gap, and Next-Key Locks, Avoiding the Phantom Problem Using Next-Key Locking, InnoDB Startup Options and System Variables
indexes, InnoDB Table and Index Structures
insert buffering, Insert Buffering
limits and restrictions, Limits on InnoDB Tables
lock modes, InnoDB Lock Modes
locking, The InnoDB Transaction Model and Locking
locking reads, Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)
log files, Adding, Removing, or Resizing InnoDB Data and Log Files
migrating tables, Moving or Copying InnoDB Tables to Another Machine
Monitors, File Space Management, Backing Up and Recovering an InnoDB Database, SHOW ENGINE INNODB STATUS and the InnoDB Monitors, InnoDB General Troubleshooting, Troubleshooting InnoDB Data Dictionary Operations
multi-versioning, InnoDB Multi-Versioning
next-key lock, The InnoDB Transaction Model and Locking, InnoDB Record, Gap, and Next-Key Locks, Avoiding the Phantom Problem Using Next-Key Locking, InnoDB Startup Options and System Variables
NFS, Configuring InnoDB, Limits on InnoDB Tables
online DDL, Online DDL for InnoDB Tables
page size, Physical Structure of an InnoDB Index, Limits on InnoDB Tables
raw partitions, Using Raw Disk Partitions for the Shared Tablespace
record-level locks, The InnoDB Transaction Model and Locking, InnoDB Record, Gap, and Next-Key Locks, Avoiding the Phantom Problem Using Next-Key Locking, InnoDB Startup Options and System Variables
replication, InnoDB and MySQL Replication
row structure, Physical Row Structure
secondary index, Clustered and Secondary Indexes
semi-consistent read, InnoDB Startup Options and System Variables
Solaris 10 x86_64 issues, Installing MySQL on Solaris and OpenSolaris
storage requirements, Data Type Storage Requirements
system tablespace setup, Creating the InnoDB Tablespace
system variables, InnoDB Startup Options and System Variables
tables, Creating and Using InnoDB Tables and Indexes, InnoDB Table and Index Structures
converting from other storage engines, Converting Tables from MyISAM to InnoDB
transaction model, The InnoDB Transaction Model and Locking
troubleshooting, InnoDB General Troubleshooting
data dictionary problems, Troubleshooting InnoDB Data Dictionary Operations
deadlocks, Deadlock Detection and Rollback
defragmenting tables, Defragmenting a Table
I/O problems, Troubleshooting InnoDB I/O Problems
InnoDB error codes, InnoDB Error Codes
online DDL, Limitations of Online DDL
OS error codes, Operating System Error Codes
performance problems, Optimizing for InnoDB Tables
recovery problems, Starting InnoDB on a Corrupted Database
SQL errors, InnoDB Error Handling
InnoDB buffer pool, The InnoDB Buffer Pool
InnoDB Hot Backup, MySQL Glossary
innodb option
mysqld, InnoDB Startup Options and System Variables
InnoDB parameters, new, New Parameters
innodb_adaptive_flushing, Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool
innodb_change_buffering, Controlling InnoDB Change Buffering
innodb_file_format, The Barracuda File Format
innodb_file_format_check, Compatibility Check When InnoDB Is Started
innodb_io_capacity, Controlling the InnoDB Master Thread I/O Rate
innodb_large_prefix, InnoDB Startup Options and System Variables
innodb_read_ahead_threshold, Changes in the Read-Ahead Algorithm
innodb_read_io_threads, Multiple Background InnoDB I/O Threads
innodb_spin_wait_delay, Control of Spin Lock Polling
innodb_stats_sample_pages, Controlling Optimizer Statistics Estimation
innodb_strict_mode, InnoDB Strict Mode
innodb_use_sys_malloc, Using Operating System Memory Allocators
innodb_write_io_threads, Multiple Background InnoDB I/O Threads
InnoDB parameters, with new defaults, Parameters with New Defaults
innodb_additional_mem_pool_size, Parameters with New Defaults
innodb_buffer_pool_size, Parameters with New Defaults
innodb_change_buffering, Parameters with New Defaults
innodb_file_format_check, Parameters with New Defaults
innodb_log_buffer_size, Parameters with New Defaults
innodb_max_dirty_pages_pct, Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool, Parameters with New Defaults
innodb_sync_spin_loops, Parameters with New Defaults
innodb_thread_concurrency, Parameters with New Defaults
InnoDB storage engine, Storage Engines, The InnoDB Storage Engine
InnoDB tables, Transaction and Atomic Operation Differences
innodb-status-file option
mysqld, InnoDB Startup Options and System Variables
innodb_adaptive_flushing, Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool
innodb_adaptive_flushing system variable, InnoDB Startup Options and System Variables
innodb_adaptive_flushing_lwm system variable, InnoDB Startup Options and System Variables
innodb_adaptive_hash_index, Controlling Adaptive Hash Indexing
and innodb_thread_concurrency, Changes Regarding Thread Concurrency
dynamically changing, Dynamically Changing innodb_adaptive_hash_index
innodb_adaptive_hash_index system variable, InnoDB Startup Options and System Variables
innodb_adaptive_max_sleep_delay system variable, InnoDB Startup Options and System Variables
innodb_additional_mem_pool_size system variable, InnoDB Startup Options and System Variables
and innodb_use_sys_malloc, Using Operating System Memory Allocators
innodb_api_bk_commit_interval system variable, InnoDB Startup Options and System Variables
innodb_api_disable_rowlock system variable, InnoDB Startup Options and System Variables
innodb_api_enable_binlog system variable, InnoDB Startup Options and System Variables
innodb_api_enable_mdl system variable, InnoDB Startup Options and System Variables
innodb_api_trx_level system variable, InnoDB Startup Options and System Variables
innodb_autoextend_increment system variable, InnoDB Startup Options and System Variables
innodb_autoinc_lock_mode, MySQL Glossary
innodb_autoinc_lock_mode system variable, InnoDB Startup Options and System Variables
INNODB_BUFFER_PAGE table, The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
INNODB_BUFFER_PAGE_LRU table, The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
innodb_buffer_pool_dump_at_shutdown system variable, InnoDB Startup Options and System Variables
innodb_buffer_pool_dump_now system variable, InnoDB Startup Options and System Variables
innodb_buffer_pool_filename system variable, InnoDB Startup Options and System Variables
innodb_buffer_pool_instances system variable, InnoDB Startup Options and System Variables
innodb_buffer_pool_load_abort system variable, InnoDB Startup Options and System Variables
innodb_buffer_pool_load_at_startup system variable, InnoDB Startup Options and System Variables
innodb_buffer_pool_load_now system variable, InnoDB Startup Options and System Variables
innodb_buffer_pool_size system variable, InnoDB Startup Options and System Variables
INNODB_BUFFER_POOL_STATS table, The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
innodb_change_buffering, Controlling InnoDB Change Buffering
innodb_change_buffering system variable, InnoDB Startup Options and System Variables
innodb_change_buffer_max_size system variable, InnoDB Startup Options and System Variables
innodb_checksums system variable, InnoDB Startup Options and System Variables
innodb_checksum_algorithm system variable, InnoDB Startup Options and System Variables
INNODB_CMP table, The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
INNODB_CMPMEM table, The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
INNODB_CMPMEM_RESET table, The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
INNODB_CMP_PER_INDEX table, The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
innodb_cmp_per_index_enabled system variable, InnoDB Startup Options and System Variables
INNODB_CMP_PER_INDEX_RESET table, The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
INNODB_CMP_RESET table, The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
innodb_commit_concurrency system variable, InnoDB Startup Options and System Variables
innodb_compression_failure_threshold_pct system variable, InnoDB Startup Options and System Variables
innodb_compression_level system variable, InnoDB Startup Options and System Variables
innodb_compression_pad_pct_max system variable, InnoDB Startup Options and System Variables
innodb_concurrency_tickets, Changes Regarding Thread Concurrency
innodb_concurrency_tickets system variable, InnoDB Startup Options and System Variables
innodb_data_file_path system variable, InnoDB Startup Options and System Variables
innodb_data_home_dir system variable, InnoDB Startup Options and System Variables
innodb_disable_sort_file_cache system variable, InnoDB Startup Options and System Variables
innodb_doublewrite system variable, InnoDB Startup Options and System Variables
innodb_fast_shutdown system variable, InnoDB Startup Options and System Variables
innodb_file_format, InnoDB File-Format Management, MySQL Glossary
Antelope, How Compression Works for InnoDB Tables
Barracuda, Enabling Compression for a Table
enabling new file formats, The Barracuda File Format
identifying, Identifying the File Format in Use
innodb_file_format system variable, InnoDB Startup Options and System Variables
innodb_file_format_check, Compatibility Check When InnoDB Is Started
innodb_file_format_check system variable, InnoDB Startup Options and System Variables
innodb_file_format_max system variable, InnoDB Startup Options and System Variables
innodb_file_per_table, Enabling Compression for a Table, MySQL Glossary
dynamically changing, Dynamically Changing innodb_file_per_table
innodb_file_per_table system variable, InnoDB Startup Options and System Variables
innodb_flushing_avg_loops system variable, InnoDB Startup Options and System Variables
innodb_flush_log_at_timeout system variable, InnoDB Startup Options and System Variables
innodb_flush_log_at_trx_commit system variable, InnoDB Startup Options and System Variables
innodb_flush_method system variable, InnoDB Startup Options and System Variables
innodb_flush_neighbors system variable, InnoDB Startup Options and System Variables
innodb_force_load_corrupted system variable, InnoDB Startup Options and System Variables
innodb_force_recovery system variable, InnoDB Startup Options and System Variables
innodb_ft_aux_table system variable, InnoDB Startup Options and System Variables
INNODB_FT_BEING_DELETED table, The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table
innodb_ft_cache_size system variable, InnoDB Startup Options and System Variables
INNODB_FT_CONFIG table, The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
INNODB_FT_DEFAULT_STOPWORD table, The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
INNODB_FT_DELETED table, The INFORMATION_SCHEMA INNODB_FT_DELETED Table
innodb_ft_enable_stopword system variable, InnoDB Startup Options and System Variables
INNODB_FT_INDEX_CACHE table, The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table
INNODB_FT_INDEX_TABLE table, The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table
innodb_ft_max_token_size system variable, InnoDB Startup Options and System Variables
innodb_ft_min_token_size system variable, InnoDB Startup Options and System Variables
innodb_ft_num_word_optimize system variable, InnoDB Startup Options and System Variables
innodb_ft_server_stopword_table system variable, InnoDB Startup Options and System Variables
innodb_ft_sort_pll_degree system variable, InnoDB Startup Options and System Variables
innodb_ft_user_stopword_table system variable, InnoDB Startup Options and System Variables
innodb_index_stats table, Persistent Optimizer Statistics for InnoDB Tables
innodb_io_capacity, Controlling the InnoDB Master Thread I/O Rate
innodb_io_capacity system variable, InnoDB Startup Options and System Variables
innodb_io_capacity_max system variable, InnoDB Startup Options and System Variables
innodb_large_prefix system variable, InnoDB Startup Options and System Variables
INNODB_LOCKS table, The INFORMATION_SCHEMA INNODB_LOCKS Table
innodb_locks_unsafe_for_binlog system variable, InnoDB Startup Options and System Variables
INNODB_LOCK_WAITS table, The INFORMATION_SCHEMA INNODB_LOCK_WAITS Table
innodb_lock_wait_timeout, MySQL Glossary
dynamically changing, Dynamically Changing innodb_lock_wait_timeout
innodb_lock_wait_timeout system variable, InnoDB Startup Options and System Variables
innodb_log_buffer_size system variable, InnoDB Startup Options and System Variables
innodb_log_compressed_pages system variable, InnoDB Startup Options and System Variables
innodb_log_files_in_group system variable, InnoDB Startup Options and System Variables
innodb_log_file_size system variable, InnoDB Startup Options and System Variables
innodb_log_group_home_dir system variable, InnoDB Startup Options and System Variables
innodb_lru_scan_depth system variable, InnoDB Startup Options and System Variables
innodb_max_dirty_pages_pct, Controlling the Flushing Rate of Dirty Pages from the InnoDB Buffer Pool
innodb_max_dirty_pages_pct system variable, InnoDB Startup Options and System Variables
innodb_max_dirty_pages_pct_lwm system variable, InnoDB Startup Options and System Variables
innodb_max_purge_lag system variable, InnoDB Startup Options and System Variables
innodb_max_purge_lag_delay system variable, InnoDB Startup Options and System Variables
innodb_memcache database, Installing and Configuring the InnoDB memcached Plugin, Internals of the InnoDB memcached Plugin
innodb_memcached_config.sql script, Installing and Configuring the InnoDB memcached Plugin
INNODB_METRICS table, The INFORMATION_SCHEMA INNODB_METRICS Table
innodb_mirrored_log_groups system variable, InnoDB Startup Options and System Variables
innodb_monitor_disable system variable, InnoDB Startup Options and System Variables
innodb_monitor_enable system variable, InnoDB Startup Options and System Variables
innodb_monitor_reset system variable, InnoDB Startup Options and System Variables
innodb_monitor_reset_all system variable, InnoDB Startup Options and System Variables
innodb_old_blocks_pct, Making the Buffer Pool Scan Resistant
innodb_old_blocks_pct system variable, InnoDB Startup Options and System Variables
innodb_old_blocks_time, Making the Buffer Pool Scan Resistant
innodb_old_blocks_time system variable, InnoDB Startup Options and System Variables
innodb_online_alter_log_max_size system variable, InnoDB Startup Options and System Variables
innodb_open_files system variable, InnoDB Startup Options and System Variables
innodb_optimize_fulltext_only system variable, InnoDB Startup Options and System Variables
innodb_page_size system variable, InnoDB Startup Options and System Variables
innodb_print_all_deadlocks system variable, InnoDB Startup Options and System Variables
innodb_print_all_deadlocks, InnoDB Startup Options and System Variables
innodb_purge_batch_size system variable, InnoDB Startup Options and System Variables
innodb_purge_threads system variable, InnoDB Startup Options and System Variables
innodb_random_read_ahead system variable, InnoDB Startup Options and System Variables
innodb_read_ahead_threshold, Changes in the Read-Ahead Algorithm
innodb_read_ahead_threshold system variable, InnoDB Startup Options and System Variables
innodb_read_io_threads, Multiple Background InnoDB I/O Threads
innodb_read_io_threads system variable, InnoDB Startup Options and System Variables
innodb_read_only system variable, InnoDB Startup Options and System Variables
innodb_replication_delay system variable, InnoDB Startup Options and System Variables
innodb_rollback_on_timeout system variable, InnoDB Startup Options and System Variables
innodb_rollback_segments system variable, InnoDB Startup Options and System Variables
innodb_sort_buffer_size system variable, InnoDB Startup Options and System Variables
innodb_spin_wait_delay, Control of Spin Lock Polling
innodb_spin_wait_delay system variable, InnoDB Startup Options and System Variables
innodb_stats_auto_recalc system variable, InnoDB Startup Options and System Variables
innodb_stats_method system variable, InnoDB Startup Options and System Variables
innodb_stats_on_metadata system variable, Dynamically Changing innodb_stats_on_metadata, InnoDB Startup Options and System Variables
innodb_stats_persistent system variable
innodb_stats_persistent, InnoDB Startup Options and System Variables
innodb_stats_persistent_sample_pages system variable, InnoDB Startup Options and System Variables
innodb_stats_sample_pages, Controlling Optimizer Statistics Estimation
innodb_stats_sample_pages system variable, InnoDB Startup Options and System Variables
innodb_stats_transient_sample_pages system variable, InnoDB Startup Options and System Variables
innodb_stat_persistent system variable, InnoDB Startup Options and System Variables
innodb_strict_mode, InnoDB Strict Mode, MySQL Glossary
innodb_strict_mode system variable, InnoDB Startup Options and System Variables
innodb_support_xa system variable, InnoDB Startup Options and System Variables
innodb_sync_array_size system variable, InnoDB Startup Options and System Variables
innodb_sync_spin_loops system variable, InnoDB Startup Options and System Variables
INNODB_SYS_COLUMNS table, The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table
INNODB_SYS_FIELDS table, The INFORMATION_SCHEMA INNODB_SYS_FIELDS Table
INNODB_SYS_FOREIGN table, The INFORMATION_SCHEMA INNODB_SYS_FOREIGN Table
INNODB_SYS_FOREIGN_COLS table, The INFORMATION_SCHEMA INNODB_SYS_FOREIGN_COLS Table
INNODB_SYS_INDEXES table, The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table
INNODB_SYS_TABLES table, The INFORMATION_SCHEMA INNODB_SYS_TABLES Table
INNODB_SYS_TABLESTATS table, The INFORMATION_SCHEMA INNODB_SYS_TABLESTATS View
innodb_table_locks system variable, InnoDB Startup Options and System Variables
innodb_table_stats table, Persistent Optimizer Statistics for InnoDB Tables
innodb_thread_concurrency, Changes Regarding Thread Concurrency
innodb_thread_concurrency system variable, InnoDB Startup Options and System Variables
innodb_thread_sleep_delay, Changes Regarding Thread Concurrency
innodb_thread_sleep_delay system variable, InnoDB Startup Options and System Variables
INNODB_TRX table, The INFORMATION_SCHEMA INNODB_TRX Table
innodb_undo_directory system variable, InnoDB Startup Options and System Variables
innodb_undo_logs system variable, InnoDB Startup Options and System Variables
innodb_undo_tablespaces system variable, InnoDB Startup Options and System Variables
innodb_use_native_aio system variable, InnoDB Startup Options and System Variables
innodb_use_sys_malloc
and innodb_thread_concurrency, Changes Regarding Thread Concurrency
innodb_use_sys_malloc system variable, Using Operating System Memory Allocators, InnoDB Startup Options and System Variables
innodb_version system variable, InnoDB Startup Options and System Variables
innodb_write_io_threads, Multiple Background InnoDB I/O Threads
innodb_write_io_threads system variable, InnoDB Startup Options and System Variables
INSERT, Speed of INSERT Statements, INSERT Syntax
insert, MySQL Glossary
thread state, Delayed-Insert Thread States
INSERT ... SELECT, INSERT ... SELECT Syntax
insert buffer, MySQL Glossary
insert buffering, Insert Buffering, MySQL Glossary
disabling, Controlling InnoDB Change Buffering
INSERT DELAYED, INSERT DELAYED Syntax
INSERT statement
grant privileges, Adding User Accounts
INSERT(), String Functions
insert-ignore option
mysqldump, mysqldump — A Database Backup Program
insertable views
insertable, Updatable and Insertable Views
inserting
speed of, Speed of INSERT Statements
inserts
concurrent, Internal Locking Methods, Concurrent Inserts
insert_id session variable, Server System Variables
install option
mysqld, Server Command Options
INSTALL PLUGIN, INSTALL PLUGIN Syntax
install-manual option
mysqld, Server Command Options
Installation, MySQL Installer Console
installation layouts, Installation Layouts
installation overview, Installing MySQL from Source
installing
binary distribution, Installing MySQL from Generic Binaries on Unix/Linux
installing on HP-UX, Installing MySQL on HP-UX
Linux RPM packages, Installing MySQL from RPM Packages on Linux
Mac OS X PKG packages, Installing MySQL on Mac OS X
overview, Installing and Upgrading MySQL
Perl, Perl Installation Notes
Perl on Windows, Installing ActiveState Perl on Windows
Solaris PKG packages, Installing MySQL on Solaris and OpenSolaris
source distribution, Installing MySQL from Source
user-defined functions, Compiling and Installing User-Defined Functions
installing plugins, Installing and Uninstalling Plugins, INSTALL PLUGIN Syntax
INSTALL_BINDIR option
CMake, MySQL Source-Configuration Options
INSTALL_DOCDIR option
CMake, MySQL Source-Configuration Options
INSTALL_DOCREADMEDIR option
CMake, MySQL Source-Configuration Options
INSTALL_INCLUDEDIR option
CMake, MySQL Source-Configuration Options
INSTALL_INFODIR option
CMake, MySQL Source-Configuration Options
INSTALL_LAYOUT option
CMake, MySQL Source-Configuration Options
INSTALL_LIBDIR option
CMake, MySQL Source-Configuration Options
INSTALL_MANDIR option
CMake, MySQL Source-Configuration Options
INSTALL_MYSQLSHAREDIR option
CMake, MySQL Source-Configuration Options
INSTALL_MYSQLTESTDIR option
CMake, MySQL Source-Configuration Options
INSTALL_PLUGINDIR option
CMake, MySQL Source-Configuration Options
INSTALL_SBINDIR option
CMake, MySQL Source-Configuration Options
INSTALL_SCRIPTDIR option
CMake, MySQL Source-Configuration Options
INSTALL_SHAREDIR option
CMake, MySQL Source-Configuration Options
INSTALL_SQLBENCHDIR option
CMake, MySQL Source-Configuration Options
INSTALL_SUPPORTFILESDIR option
CMake, MySQL Source-Configuration Options
instance, MySQL Glossary
INSTR(), String Functions
instrumentation, MySQL Glossary
INT data type, Numeric Type Overview
integer arithmetic, Precision Math
INTEGER data type, Numeric Type Overview
integers, Number Literals
intention lock, MySQL Glossary
interactive_timeout system variable, Server System Variables
interceptors, Using the Connector/Net Interceptor Classes, Connector/Net Connection String Options Reference
InteriorRingN(), Polygon Functions
internal locking, Internal Locking Methods
internal memory allocator
disabling, Using Operating System Memory Allocators
internals, MySQL Internals
internationalization, Globalization
Internet Relay Chat, MySQL Community Support on Internet Relay Chat (IRC)
Intersection(), Spatial Operators
Intersects(), Functions That Test Spatial Relationships Between Geometries
INTERVAL(), Comparison Functions and Operators
INTO
SELECT, SELECT ... INTO Syntax
introducer
string literal, String Literals, Character String Literal Character Set and Collation
invalid data
constraint, Constraints on Invalid Data
invalidating query cache entries
thread state, Query Cache Thread States
inverted index, MySQL Glossary
in_file option
comp_err, comp_err — Compile MySQL Error Message File
IOPS, MySQL Glossary
IP addresses
in account names, Specifying Account Names
in default accounts, Securing the Initial MySQL Accounts
IPv6 addresses
for JDBC URLs, Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
in account names, Specifying Account Names
in default accounts, Securing the Initial MySQL Accounts
IPv6 connections, Securing the Initial MySQL Accounts
IRC, MySQL Community Support on Internet Relay Chat (IRC)
IS boolean_value, Comparison Functions and Operators
IS NOT boolean_value, Comparison Functions and Operators
IS NOT NULL, Comparison Functions and Operators
IS NULL, IS NULL Optimization, Comparison Functions and Operators
and indexes, Comparison of B-Tree and Hash Indexes
IsClosed(), MultiLineString Functions
IsEmpty(), General Geometry Functions
ISNULL(), Comparison Functions and Operators
ISOLATION LEVEL, SET TRANSACTION Syntax
isolation level, The InnoDB Transaction Model and Locking, MySQL Glossary, Transaction Isolation Level Index
IsRing(), LineString Functions
IsSimple(), General Geometry Functions
IS_FREE_LOCK(), Miscellaneous Functions
IS_IPV4(), Miscellaneous Functions
IS_IPV4_COMPAT(), Miscellaneous Functions
IS_IPV4_MAPPED(), Miscellaneous Functions
IS_IPV6(), Miscellaneous Functions
IS_USED_LOCK(), Miscellaneous Functions
ITERATE, ITERATE Syntax
iterations option
mysqlslap, mysqlslap — Load Emulation Client
J
J2EE
connection pooling, Connection Pooling with Connector/J
load balancing, Load Balancing with Connector/J
Japanese character sets
conversion, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
Japanese, Korean, Chinese character sets
frequently asked questions, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
JBoss application server, Using Connector/J with JBoss
JDBC, Connectors and APIs
and MySQL data types, Java, JDBC and MySQL Types
background information for Connector/J, JDBC Concepts
character sets, Using Character Sets and Unicode
CLASSPATH, Installing the Driver and Configuring the CLASSPATH
code examples, Connector/J Examples
compatibility, JDBC API Implementation Notes
configuration properties, Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
driver for MySQL, Overview of MySQL Connector/J
SQLState codes, Mapping MySQL Error Numbers to JDBC SQLState Codes
troubleshooting, JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer, Troubleshooting Connector/J Applications
versions supported, Connector/J Versions
join, MySQL Glossary
nested-loop algorithm, Nested Join Optimization
JOIN, JOIN Syntax
join algorithm
Block Nested-Loop, Nested-Loop Join Algorithms
Nested-Loop, Nested-Loop Join Algorithms
join option
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
join type, Join Types Index
ALL, EXPLAIN Output Format
const, EXPLAIN Output Format
eq_ref, EXPLAIN Output Format
fulltext, EXPLAIN Output Format
index, EXPLAIN Output Format
index_merge, EXPLAIN Output Format
index_subquery, EXPLAIN Output Format
range, EXPLAIN Output Format
ref, EXPLAIN Output Format
ref_or_null, EXPLAIN Output Format
system, EXPLAIN Output Format
unique_subquery, EXPLAIN Output Format
join_buffer_size system variable, Server System Variables
K
keepold option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
keep_files_on_create system variable, Server System Variables
Key cache
MyISAM, The MyISAM Key Cache
key cache
assigning indexes to, CACHE INDEX Syntax
key partitioning, KEY Partitioning
key partitions
managing, Management of HASH and KEY Partitions
splitting and merging, Management of HASH and KEY Partitions
key space
MyISAM, Space Needed for Keys
key-value store, Comparison of B-Tree and Hash Indexes
keys, Column Indexes
foreign, Foreign Key Differences, Using Foreign Keys
multi-column, Multiple-Column Indexes
searching on two, Searching on Two Keys
keys option
mysqlshow, mysqlshow — Display Database, Table, and Column Information
keys-used option
myisamchk, myisamchk Repair Options
keywords, Reserved Words
KEY_BLOCK_SIZE, Enabling Compression for a Table, Tuning Compression for InnoDB Tables, MySQL Glossary
key_buffer_size myisamchk variable, myisamchk General Options
key_buffer_size system variable, Server System Variables
key_cache_age_threshold system variable, Server System Variables
key_cache_block_size system variable, Server System Variables
key_cache_division_limit system variable, Server System Variables
KEY_COLUMN_USAGE
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
Kill
thread command, Thread Command Values
KILL, KILL Syntax
Killed
thread state, General Thread States
Killing slave
thread state, Replication Slave Connection Thread States
known errors, Known Issues in MySQL
Korean, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
L
labels
stored program block, Statement Label Syntax
language option
mysqld, Server Command Options
language support
error messages, Setting the Error Message Language
large page support, Enabling Large Page Support
large-pages option
mysqld, Server Command Options
large_files_support system variable, Server System Variables
large_pages system variable, Server System Variables
large_page_size system variable, Server System Variables
last row
unique ID, How to Get the Unique ID for the Last Inserted Row
LAST_DAY(), Date and Time Functions
last_insert_id session variable, Server System Variables
LAST_INSERT_ID(), Information Functions, INSERT Syntax
and replication, Replication and AUTO_INCREMENT
and stored routines, Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
and triggers, Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
locking considerations, Transaction and Atomic Operation Differences
latch, MySQL Glossary
layout of installation, Installation Layouts
lc-messages option
mysqld, Server Command Options
lc-messages-dir option
mysqld, Server Command Options
LCASE(), String Functions
lc_messages system variable, Server System Variables
lc_messages_dir system variable, Server System Variables
lc_time_names system variable, Server System Variables
ldata option
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
LDML syntax, LDML Syntax Supported in MySQL
LD_LIBRARY_PATH environment variable, Problems Using the Perl DBI/DBD Interface
LD_RUN_PATH environment variable, Environment Variables, Problems Using the Perl DBI/DBD Interface
LEAST(), Comparison Functions and Operators
LEAVE, LEAVE Syntax
ledir option
mysqld_safe, mysqld_safe — MySQL Server Startup Script
LEFT JOIN, LEFT JOIN and RIGHT JOIN Optimization, JOIN Syntax
LEFT OUTER JOIN, JOIN Syntax
LEFT(), String Functions
leftmost prefix of indexes, Multiple-Column Indexes
legal names, Schema Object Names
length option
myisam_ftdump, myisam_ftdump — Display Full-Text Index information
LENGTH(), String Functions
less than (<), Comparison Functions and Operators
less than or equal (<=), Comparison Functions and Operators
libmysqlclient library, Connectors and APIs
libmysqlclient.a, Building MySQL Connector/C++ Linux Applications with NetBeans
libmysqlcppconn-static.a, Building MySQL Connector/C++ Linux Applications with NetBeans
libmysqlcppconn.so, Building MySQL Connector/C++ Linux Applications with NetBeans
libmysqld, libmysqld, the Embedded MySQL Server Library
options, Options with the Embedded Server
libmysqld library, Connectors and APIs
libmysqld-libs option
mysql_config, mysql_config — Display Options for Compiling Clients
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable, Environment Variables
LIBMYSQL_PLUGINS environment variable, Environment Variables, mysql_load_plugin()
LIBMYSQL_PLUGIN_DIR environment variable, Environment Variables, mysql_load_plugin()
library
libmysqlclient, Connectors and APIs
libmysqld, Connectors and APIs
libs option
mysql_config, mysql_config — Display Options for Compiling Clients
libs_r option
mysql_config, mysql_config — Display Options for Compiling Clients
license system variable, Server System Variables
LIKE, String Comparison Functions
and indexes, Comparison of B-Tree and Hash Indexes
and wildcards, Comparison of B-Tree and Hash Indexes
LIMIT, Optimizing LIMIT Queries, Information Functions, SELECT Syntax
and replication, Replication and LIMIT
limitations
MySQL Limitations, Limits in MySQL
replication, Replication Features and Issues
limits
file-size, Limits on Table Size
InnoDB, Limits on InnoDB Tables
MySQL Limits, limits in MySQL, Limits in MySQL
line-numbers option
mysql, mysql Options
linear hash partitioning, LINEAR HASH Partitioning
linear key partitioning, KEY Partitioning
linefeed (\n), String Literals, LOAD DATA INFILE Syntax
LineFromText(), Creating Geometry Values Using WKT Functions
LineFromWKB(), Creating Geometry Values Using WKB Functions
lines-terminated-by option
mysqldump, mysqldump — A Database Backup Program, mysqlimport — A Data Import Program
LINESTRING data type, MySQL Spatial Data Types
LineString(), Creating Geometry Values Using MySQL-Specific Functions
LineStringFromText(), Creating Geometry Values Using WKT Functions
LineStringFromWKB(), Creating Geometry Values Using WKB Functions
linking, Building C API Client Programs
errors, Building C API Client Programs
problems, Building C API Client Programs
links
symbolic, Using Symbolic Links
LINQ, Tutorial: Databinding in ASP.NET using LINQ on Entities
list, MySQL Glossary
list partitioning, LIST Partitioning, COLUMNS Partitioning
list partitions
adding and dropping, Management of RANGE and LIST Partitions
managing, Management of RANGE and LIST Partitions
literals, Literal Values
LN(), Mathematical Functions
load balancing
with Connector/J, Using Master/Slave Replication with ReplicationConnection, Load Balancing with Connector/J
LOAD DATA
and replication, Replication and LOAD DATA INFILE
LOAD DATA INFILE, LOAD DATA INFILE Syntax, Using the MySqlBulkLoader Class, Problems with NULL Values
load emulation, mysqlslap — Load Emulation Client
LOAD INDEX INTO CACHE
and partitioning, Restrictions and Limitations on Partitioning
LOAD XML, LOAD XML Syntax
loading
tables, Loading Data into a Table
LOAD_FILE(), String Functions
local option
mysqlimport, mysqlimport — A Data Import Program
local-infile option
mysql, mysql Options
local-load option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
localhost, Connecting to the MySQL Server
localization, Globalization
LOCALTIME, Date and Time Functions
LOCALTIMESTAMP, Date and Time Functions
local_infile system variable, Server System Variables
LOCATE(), String Functions
lock, MySQL Glossary
lock escalation, MySQL Glossary
LOCK IN SHARE MODE, SELECT Syntax
lock mode, MySQL Glossary
Lock Monitor
InnoDB, SHOW ENGINE INNODB STATUS and the InnoDB Monitors
LOCK TABLES, LOCK TABLES and UNLOCK TABLES Syntax
lock wait timeout, Dynamically Changing innodb_lock_wait_timeout
lock-all-tables option
mysqldump, mysqldump — A Database Backup Program
lock-tables option
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
locked_in_memory system variable, Server System Variables
locking, System Factors and Startup Parameter Tuning, MySQL Glossary
external, Server Command Options, Server System Variables, Using myisamchk for Crash Recovery, External Locking, General Thread States
information schema, Information Schema Tables about Transactions
internal, Internal Locking Methods
row-level, Transaction and Atomic Operation Differences, Internal Locking Methods
table-level, Internal Locking Methods
Locking
information schema, Special Locking Considerations for InnoDB INFORMATION_SCHEMA Tables
locking methods, Internal Locking Methods
locking read, MySQL Glossary
lock_wait_timeout system variable, Server System Variables
log, MySQL Glossary
log buf mutex, Improved Log Sys Mutex
log buffer, MySQL Glossary
log file, MySQL Glossary
log files
maintaining, Server Log Maintenance
log group, MySQL Glossary
log option
mysqld, Server Command Options
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
log sys mutex, Improved Log Sys Mutex
log system variable, Server System Variables
LOG(), Mathematical Functions
log-bin option
mysqld, Binary Log Options and Variables
log-bin-index option
mysqld, Binary Log Options and Variables
log-bin-trust-function-creators option
mysqld, Binary Log Options and Variables
log-bin-use-v1-row-events option
mysqld, Binary Log Options and Variables
log-error option
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqld_safe, mysqld_safe — MySQL Server Startup Script
log-isam option
mysqld, Server Command Options
log-output option
mysqld, Server Command Options
log-queries-not-using-indexes option
mysqld, Server Command Options
log-raw option
mysqld, Server Command Options
log-short-format option
mysqld, Server Command Options, Binary Log Options and Variables
log-slave-updates option
mysqld, Replication Slave Options and Variables
log-slow-admin-statements option
mysqld, Server Command Options
log-slow-queries option
mysqld, Server Command Options
log-slow-slave-statements option
mysqld, Replication Slave Options and Variables
log-tc option
mysqld, Server Command Options
log-tc-size option
mysqld, Server Command Options
log-warnings option
mysqld, Server Command Options, Replication Slave Options and Variables
LOG10(), Mathematical Functions
LOG2(), Mathematical Functions
logging
passwords, Passwords and Logging
logging slow query
thread state, General Thread States
logical, MySQL Glossary
logical backup, MySQL Glossary
logical operators, Logical Operators
login
thread state, General Thread States
login-path option, Command-Line Options that Affect Option-File Handling, my_print_defaults — Display Options from Option Files
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
logs
flushing, MySQL Server Logs
server, MySQL Server Logs
log_bin system variable, Binary Log Options and Variables
log_bin_basename system variable, Binary Log Options and Variables
log_bin_trust_function_creators system variable, Server System Variables
log_bin_use_v1_row_events system variable, Binary Log Options and Variables
log_error system variable, Server System Variables
log_output system variable, Server System Variables
log_queries_not_using_indexes system variable, Server System Variables
log_slave_updates system variable, Binary Log Options and Variables
log_slow_admin_statements system variable
mysqld, Server System Variables
log_slow_queries system variable, Server System Variables
log_slow_slave_statements system variable
mysqld, Replication Slave Options and Variables
log_throttle_queries_not_using_indexes system variable, Server System Variables
log_warnings system variable, Server System Variables
Long Data
thread command, Thread Command Values
LONG data type, The BLOB and TEXT Types
LONGBLOB data type, String Type Overview
LONGTEXT data type, String Type Overview
long_query_time system variable, Server System Variables
LOOP, LOOP Syntax
labels, Statement Label Syntax
--loose option prefix, Program Option Modifiers
loose_, MySQL Glossary
lost connection errors, Lost connection to MySQL server
lost+found directory, Server Command Options
low-priority option
mysqlimport, mysqlimport — A Data Import Program
low-priority-updates option
mysqld, Server Command Options
low-water mark, MySQL Glossary
LOWER(), String Functions
lower_case_file_system system variable, Server System Variables
lower_case_table_names system variable, Server System Variables
low_priority_updates system variable, Server System Variables
LPAD(), String Functions
LRU, MySQL Glossary
LRU page replacement, Making the Buffer Pool Scan Resistant
LSN, MySQL Glossary
LTRIM(), String Functions
Lua, MySQL Proxy
M
Mac OS X, MySQL Connector/ODBC
installation, Installing MySQL on Mac OS X
mailing lists, MySQL Mailing Lists
archive location, MySQL Mailing Lists
guidelines, Guidelines for Using the Mailing Lists
main features of MySQL, The Main Features of MySQL
maintaining
log files, Server Log Maintenance
tables, Setting Up a MyISAM Table Maintenance Schedule
maintenance
tables, mysqlcheck — A Table Maintenance Program
MAKEDATE(), Date and Time Functions
MAKETIME(), Date and Time Functions
MAKE_SET(), String Functions
Making temp file
thread state, Replication Slave SQL Thread States
manage keys
thread state, General Thread States
manual
available formats, About This Manual
online location, About This Manual
syntax conventions, Typographical and Syntax Conventions
typographical conventions, Typographical and Syntax Conventions
Master has sent all binlog to slave; waiting for binlog to be updated
thread state, Replication Master Thread States
master server, MySQL Glossary
master thread, MySQL Glossary
master-data option
mysqldump, mysqldump — A Database Backup Program
master-info-file option
mysqld, Replication Slave Options and Variables
master-info-repository option
mysqld, Replication Slave Options and Variables
master-retry-count option
mysqld, Replication Slave Options and Variables
master-verify-checksum option
mysqld, Binary Log Options and Variables
master_info_repository system variable, Replication Slave Options and Variables
MASTER_POS_WAIT(), Miscellaneous Functions, MASTER_POS_WAIT() Syntax
master_verify_checksum system variable, Binary Log Options and Variables
MATCH ... AGAINST(), Full-Text Search Functions
matching
patterns, Pattern Matching
math, Precision Math
mathematical functions, Mathematical Functions
MAX(), GROUP BY (Aggregate) Functions
MAX(DISTINCT), GROUP BY (Aggregate) Functions
max-binlog-dump-events option
mysqld, Binary Log Options and Variables
max-record-length option
myisamchk, myisamchk Repair Options
max-relay-log-size option
mysqld, Replication Slave Options and Variables
MAXDB SQL mode, Server SQL Modes
--maximum option prefix, Program Option Modifiers
maximums
maximum columns per table, Limits on Table Column Count and Row Size
maximum number of databases, Limits on Number of Databases and Tables
maximum number of tables, Limits on Number of Databases and Tables
maximum row size, Limits on Table Column Count and Row Size
maximum tables per join, Limits of Joins
table size, Limits on Table Size
max_allowed_packet
and replication, Replication and max_allowed_packet
max_allowed_packet system variable, Server System Variables
max_allowed_packet variable, mysql Options
max_binlog_cache_size system variable, Binary Log Options and Variables
max_binlog_size system variable, Binary Log Options and Variables
max_binlog_stmt_cache_size system variable, Binary Log Options and Variables
max_connections system variable, Server System Variables
MAX_CONNECTIONS_PER_HOUR, Setting Account Resource Limits
max_connect_errors system variable, Server System Variables
max_delayed_threads system variable, Server System Variables
max_error_count system variable, Server System Variables
max_heap_table_size system variable, Server System Variables
max_insert_delayed_threads system variable, Server System Variables
max_join_size system variable, Server System Variables
max_join_size variable, mysql Options
max_length_for_sort_data system variable, Server System Variables
max_prepared_stmt_count system variable, Server System Variables
MAX_QUERIES_PER_HOUR, Setting Account Resource Limits
max_relay_log_size system variable, Server System Variables
max_seeks_for_key system variable, Server System Variables
max_sort_length system variable, Server System Variables
max_sp_recursion_depth system variable, Server System Variables
max_tmp_tables system variable, Server System Variables
MAX_UPDATES_PER_HOUR, Setting Account Resource Limits
MAX_USER_CONNECTIONS, Setting Account Resource Limits
max_user_connections system variable, Server System Variables
max_write_lock_count system variable, Server System Variables
MBR, Relations on Geometry Minimal Bounding Rectangles (MBRs)
MBRContains(), Relations on Geometry Minimal Bounding Rectangles (MBRs)
MBRDisjoint(), Relations on Geometry Minimal Bounding Rectangles (MBRs)
MBREqual(), Relations on Geometry Minimal Bounding Rectangles (MBRs)
MBRIntersects(), Relations on Geometry Minimal Bounding Rectangles (MBRs)
MBROverlaps(), Relations on Geometry Minimal Bounding Rectangles (MBRs)
MBRTouches(), Relations on Geometry Minimal Bounding Rectangles (MBRs)
MBRWithin(), Relations on Geometry Minimal Bounding Rectangles (MBRs)
MD5(), Encryption and Compression Functions
MDL, MySQL Glossary
medium trust, Working with Partial Trust / Medium Trust
medium-check option
myisamchk, myisamchk Check Options
mysqlcheck, mysqlcheck — A Table Maintenance Program
MEDIUMBLOB data type, String Type Overview
MEDIUMINT data type, Numeric Type Overview
MEDIUMTEXT data type, String Type Overview
memcached, InnoDB Integration with memcached, MySQL Glossary
MEMCACHED_SASL_PWDB environment variable, Password-Protecting the memcached Interface through SASL
memcapable command, Architecture of InnoDB and memcached Integration
memlock option
mysqld, Server Command Options
memory allocator
innodb_use_sys_malloc, Using Operating System Memory Allocators
MEMORY storage engine, Storage Engines, The MEMORY Storage Engine
and replication, Replication and MEMORY Tables
memory usage
myisamchk, myisamchk Memory Usage
memory use, How MySQL Uses Memory
Performance Schema, Performance Schema Startup Configuration
merge, MySQL Glossary
MERGE storage engine, Storage Engines, The MERGE Storage Engine
MERGE tables
defined, The MERGE Storage Engine
metadata
database, INFORMATION_SCHEMA Tables
InnoDB, INFORMATION_SCHEMA Tables for InnoDB
stored routines, Stored Routine Metadata
triggers, Trigger Metadata
views, View Metadata
metadata lock, MySQL Glossary
metadata locking
transactions, Metadata Locking
metadata_locks_cache_size system variable, Server System Variables
metadata_locks_hash_instances system variable, Server System Variables
method option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
methods
locking, Internal Locking Methods
metrics counter, MySQL Glossary
MICROSECOND(), Date and Time Functions
Microsoft Access, Microsoft Access
Microsoft ADO, Microsoft ADO, Using the ADO.NET Entity Framework
Microsoft Excel, Microsoft Excel and Column Types
Microsoft Visual Basic, Microsoft Visual Basic
Microsoft Visual InterDev, Microsoft Visual InterDev
Microsoft Visual Studio, Connector/Net Visual Studio Integration
MID(), String Functions
midpoint insertion, Making the Buffer Pool Scan Resistant
midpoint insertion strategy, MySQL Glossary
MIN(), GROUP BY (Aggregate) Functions
MIN(DISTINCT), GROUP BY (Aggregate) Functions
min-examined-row-limit option
mysqld, Server Command Options
mini-transaction, MySQL Glossary
Minimum Bounding Rectangle, Relations on Geometry Minimal Bounding Rectangles (MBRs)
minus
unary (-), Arithmetic Operators
MINUTE(), Date and Time Functions
min_examined_row_limit system variable, Server System Variables
mirror sites, How to Get MySQL
miscellaneous functions, Miscellaneous Functions
mixed statements (Replication), Replication and Transactions
mixed-mode insert, MySQL Glossary
MLineFromText(), Creating Geometry Values Using WKT Functions
MLineFromWKB(), Creating Geometry Values Using WKB Functions
MOD (modulo), Mathematical Functions
MOD(), Mathematical Functions
modes
batch, Using mysql in Batch Mode
modulo (%), Mathematical Functions
modulo (MOD), Mathematical Functions
monitor
terminal, Tutorial
monitoring, MySQL Enterprise Monitor
threads, Examining Thread Information
Monitors
InnoDB, File Space Management, Backing Up and Recovering an InnoDB Database, SHOW ENGINE INNODB STATUS and the InnoDB Monitors, InnoDB General Troubleshooting, Troubleshooting InnoDB Data Dictionary Operations
Mono, MySQL Connector/Net
MONTH(), Date and Time Functions
MONTHNAME(), Date and Time Functions
MPointFromText(), Creating Geometry Values Using WKT Functions
MPointFromWKB(), Creating Geometry Values Using WKB Functions
MPolyFromText(), Creating Geometry Values Using WKT Functions
MPolyFromWKB(), Creating Geometry Values Using WKB Functions
mSQL compatibility, Regular Expressions
msql2mysql, msql2mysql — Convert mSQL Programs for Use with MySQL
MSSQL SQL mode, Server SQL Modes
multi mysqld, mysqld_multi — Manage Multiple MySQL Servers
multi-byte character sets, Can't initialize character set
multi-byte characters, Multi-Byte Character Support for Complex Character Sets
multi-column indexes, Multiple-Column Indexes
multi-core, MySQL Glossary
Multi-Range Read
optimization, Multi-Range Read Optimization
MULTILINESTRING data type, MySQL Spatial Data Types
MultiLineString(), Creating Geometry Values Using MySQL-Specific Functions
MultiLineStringFromText(), Creating Geometry Values Using WKT Functions
MultiLineStringFromWKB(), Creating Geometry Values Using WKB Functions
multiple buffer pools, Improvements to Performance from Multiple Buffer Pools
multiple rollback segments, Better Scalability with Multiple Rollback Segments
multiple servers, Running Multiple MySQL Instances on One Machine
multiple-part index, CREATE INDEX Syntax
multiplication (*), Arithmetic Operators
MULTIPOINT data type, MySQL Spatial Data Types
MultiPoint(), Creating Geometry Values Using MySQL-Specific Functions
MultiPointFromText(), Creating Geometry Values Using WKT Functions
MultiPointFromWKB(), Creating Geometry Values Using WKB Functions
MULTIPOLYGON data type, MySQL Spatial Data Types
MultiPolygon(), Creating Geometry Values Using MySQL-Specific Functions
MultiPolygonFromText(), Creating Geometry Values Using WKT Functions
MultiPolygonFromWKB(), Creating Geometry Values Using WKB Functions
mutex, MySQL Glossary
mutex_instances table
performance_schema, The mutex_instances Table
MVCC, MySQL Glossary
MVCC (multi-version concurrency control), InnoDB Multi-Versioning
My
derivation, History of MySQL
my-print-defaults option
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
my.cnf, MySQL Glossary
my.cnf file, Replication Features and Issues
my.ini, MySQL Glossary
MyISAM
compressed tables, myisampack — Generate Compressed, Read-Only MyISAM Tables, Compressed Table Characteristics
converting tables to InnoDB, Converting Tables from MyISAM to InnoDB
MyISAM key cache, The MyISAM Key Cache
MyISAM storage engine, Storage Engines, The MyISAM Storage Engine
myisam-block-size option
mysqld, Server Command Options
myisam-recover-options option
mysqld, Server Command Options, MyISAM Startup Options
myisamchk, Overview of MySQL Programs, myisamchk — MyISAM Table-Maintenance Utility
analyze option, Other myisamchk Options
backup option, myisamchk Repair Options
block-search option, Other myisamchk Options
character-sets-dir option, myisamchk Repair Options
check option, myisamchk Check Options
check-only-changed option, myisamchk Check Options
correct-checksum option, myisamchk Repair Options
data-file-length option, myisamchk Repair Options
debug option, myisamchk General Options
description option, Other myisamchk Options
example output, Obtaining Table Information with myisamchk
extend-check option, myisamchk Check Options, myisamchk Repair Options
fast option, myisamchk Check Options
force option, myisamchk Check Options, myisamchk Repair Options
help option, myisamchk General Options
HELP option, myisamchk General Options
information option, myisamchk Check Options
keys-used option, myisamchk Repair Options
max-record-length option, myisamchk Repair Options
medium-check option, myisamchk Check Options
no-symlinks option, myisamchk Repair Options
options, myisamchk General Options
parallel-recover option, myisamchk Repair Options
quick option, myisamchk Repair Options
read-only option, myisamchk Check Options
recover option, myisamchk Repair Options
safe-recover option, myisamchk Repair Options
set-auto-increment[option, Other myisamchk Options
set-character-set option, myisamchk Repair Options
set-collation option, myisamchk Repair Options
silent option, myisamchk General Options
sort-index option, Other myisamchk Options
sort-records option, Other myisamchk Options
sort-recover option, myisamchk Repair Options
tmpdir option, myisamchk Repair Options
unpack option, myisamchk Repair Options
update-state option, myisamchk Check Options
verbose option, myisamchk General Options
version option, myisamchk General Options
wait option, myisamchk General Options
myisamlog, Overview of MySQL Programs, myisamlog — Display MyISAM Log File Contents
myisampack, Overview of MySQL Programs, myisampack — Generate Compressed, Read-Only MyISAM Tables, Silent Column Specification Changes, Compressed Table Characteristics
backup option, myisampack — Generate Compressed, Read-Only MyISAM Tables
character-sets-dir option, myisampack — Generate Compressed, Read-Only MyISAM Tables
debug option, myisampack — Generate Compressed, Read-Only MyISAM Tables
force option, myisampack — Generate Compressed, Read-Only MyISAM Tables
help option, myisampack — Generate Compressed, Read-Only MyISAM Tables
join option, myisampack — Generate Compressed, Read-Only MyISAM Tables
silent option, myisampack — Generate Compressed, Read-Only MyISAM Tables
test option, myisampack — Generate Compressed, Read-Only MyISAM Tables
tmpdir option, myisampack — Generate Compressed, Read-Only MyISAM Tables
verbose option, myisampack — Generate Compressed, Read-Only MyISAM Tables
version option, myisampack — Generate Compressed, Read-Only MyISAM Tables
wait option, myisampack — Generate Compressed, Read-Only MyISAM Tables
myisam_block_size myisamchk variable, myisamchk General Options
myisam_data_pointer_size system variable, Server System Variables
myisam_ftdump, Overview of MySQL Programs, myisam_ftdump — Display Full-Text Index information
count option, myisam_ftdump — Display Full-Text Index information
dump option, myisam_ftdump — Display Full-Text Index information
help option, myisam_ftdump — Display Full-Text Index information
length option, myisam_ftdump — Display Full-Text Index information
stats option, myisam_ftdump — Display Full-Text Index information
verbose option, myisam_ftdump — Display Full-Text Index information
myisam_max_sort_file_size system variable, Server System Variables
myisam_mmap_size system variable, Server System Variables
myisam_recover_options system variable, Server System Variables
myisam_repair_threads system variable, Server System Variables
myisam_sort_buffer_size myisamchk variable, myisamchk General Options
myisam_sort_buffer_size system variable, Server System Variables
myisam_stats_method system variable, Server System Variables
myisam_use_mmap system variable, Server System Variables
MyODBC, MySQL Connector/ODBC
MySQL
defined, What is MySQL?
introduction, What is MySQL?
pronunciation, What is MySQL?
upgrading, mysql_upgrade — Check and Upgrade MySQL Tables
mysql, Overview of MySQL Programs, mysql — The MySQL Command-Line Tool, MySQL Glossary
auto-rehash option, mysql Options
auto-vertical-output option, mysql Options
batch option, mysql Options
binary-mode option, mysql Options
bind-address option, mysql Options
character-sets-dir option, mysql Options
charset command, mysql Commands
clear command, mysql Commands
column-names option, mysql Options
column-type-info option, mysql Options
comments option, mysql Options
compress option, mysql Options
connect command, mysql Commands
connect-expired-password option, mysql Options
database option, mysql Options
debug option, mysql Options
debug-check option, mysql Options
debug-info option, mysql Options
default-auth option, mysql Options
default-character-set option, mysql Options
delimiter command, mysql Commands
delimiter option, mysql Options
disable named commands, mysql Options
edit command, mysql Commands
ego command, mysql Commands
enable-cleartext-plugin option, mysql Options
execute option, mysql Options
exit command, mysql Commands
force option, mysql Options
go command, mysql Commands
help command, mysql Commands
help option, mysql Options
histignore option, mysql Options
host option, mysql Options
html option, mysql Options
i-am-a-dummy option, mysql Options
ignore-spaces option, mysql Options
init-command option, mysql Options
line-numbers option, mysql Options
local-infile option, mysql Options
named-commands option, mysql Options
no-auto-rehash option, mysql Options
no-beep option, mysql Options
nopager command, mysql Commands
notee command, mysql Commands
nowarning command, mysql Commands
one-database option, mysql Options
pager command, mysql Commands
pager option, mysql Options
password option, mysql Options
pipe option, mysql Options
plugin-dir option, mysql Options
port option, mysql Options
print command, mysql Commands
prompt command, mysql Commands
prompt option, mysql Options
protocol option, mysql Options
quick option, mysql Options
quit command, mysql Commands
raw option, mysql Options
reconnect option, mysql Options
rehash command, mysql Commands
safe-updates option, mysql Options
secure-auth option, mysql Options
server-public-key-path option, mysql Options
show-warnings option, mysql Options
sigint-ignore option, mysql Options
silent option, mysql Options
skip-column-names option, mysql Options
skip-line-numbers option, mysql Options
socket option, mysql Options
source command, mysql Commands
SSL options, mysql Options
status command, mysql Commands
system command, mysql Commands
table option, mysql Options
tee command, mysql Commands
tee option, mysql Options
unbuffered option, mysql Options
use command, mysql Commands
user option, mysql Options
verbose option, mysql Options
version option, mysql Options
vertical option, mysql Options
wait option, mysql Options
warnings command, mysql Commands
xml option, mysql Options
MySQL binary distribution, Choosing Which MySQL Distribution to Install
MYSQL C type, C API Data Structures
MySQL Cluster
compiling with icc, Debugging and Porting MySQL
FAQ, MySQL 5.6 FAQ: MySQL Cluster
storage requirements, Data Type Storage Requirements
mysql command options, mysql Options
mysql commands
list of, mysql Commands
MySQL Dolphin name, History of MySQL
MySQL Enterprise Audit, MySQL Enterprise Audit Log Plugin, MySQL Enterprise Audit
MySQL Enterprise Backup, MySQL Enterprise Backup, MySQL Glossary
MySQL Enterprise Monitor, MySQL Enterprise Monitor
MySQL Enterprise Security, The PAM Authentication Plugin, The Windows Native Authentication Plugin, MySQL Enterprise Security
MySQL history, History of MySQL
mysql history file, mysql Logging
MySQL Installer, Installing MySQL on Microsoft Windows Using MySQL Installer
MySQL mailing lists, MySQL Mailing Lists
MySQL name, History of MySQL
MySQL Notifier, MySQL Notifier for Microsoft Windows
mysql prompt command, mysql Commands
MySQL server
mysqld, mysqld — The MySQL Server, The MySQL Server
mysql source (command for reading from text files), Using mysql in Batch Mode, Executing SQL Statements from a Text File
MySQL source distribution, Choosing Which MySQL Distribution to Install
MySQL storage engines, Storage Engines
MySQL system tables
and replication, Replication of the mysql System Database
MySQL Thread Pool, The Thread Pool Plugin, MySQL Thread Pool
MySQL version, How to Get MySQL
mysql \. (command for reading from text files), Using mysql in Batch Mode, Executing SQL Statements from a Text File
MySql.Data class, Connector/Net API Reference
MySql.Data.dll library, Installing Connector/Net Using the Zip Packages, Installing Connector/Net on Unix with Mono
mysql.data.ef.dll library, Connector/Net Visual Studio Integration
mysql.event table, The Event Scheduler and MySQL Privileges
mysql.server, Overview of MySQL Programs, mysql.server — MySQL Server Startup Script
basedir option, mysql.server — MySQL Server Startup Script
datadir option, mysql.server — MySQL Server Startup Script
pid-file option, mysql.server — MySQL Server Startup Script
service-startup-timeout option, mysql.server — MySQL Server Startup Script
use-mysqld_safe option, mysql.server — MySQL Server Startup Script
user option, mysql.server — MySQL Server Startup Script
mysql.slave_master_info table, Replication Relay and Status Logs
mysql.slave_relay_log_info table, Replication Relay and Status Logs
mysql.sock
protection, How to Protect or Change the MySQL Unix Socket File
mysql.visualstudio.dll library, Connector/Net Visual Studio Integration
MYSQL323 SQL mode, Server SQL Modes
MYSQL40 SQL mode, Server SQL Modes
mysqlaccess, Overview of MySQL Programs, mysqlaccess — Client for Checking Access Privileges
brief option, mysqlaccess — Client for Checking Access Privileges
commit option, mysqlaccess — Client for Checking Access Privileges
copy option, mysqlaccess — Client for Checking Access Privileges
db option, mysqlaccess — Client for Checking Access Privileges
debug option, mysqlaccess — Client for Checking Access Privileges
help option, mysqlaccess — Client for Checking Access Privileges
host option, mysqlaccess — Client for Checking Access Privileges
howto option, mysqlaccess — Client for Checking Access Privileges
old_server option, mysqlaccess — Client for Checking Access Privileges
password option, mysqlaccess — Client for Checking Access Privileges
plan option, mysqlaccess — Client for Checking Access Privileges
preview option, mysqlaccess — Client for Checking Access Privileges
relnotes option, mysqlaccess — Client for Checking Access Privileges
rhost option, mysqlaccess — Client for Checking Access Privileges
rollback option, mysqlaccess — Client for Checking Access Privileges
spassword option, mysqlaccess — Client for Checking Access Privileges
superuser option, mysqlaccess — Client for Checking Access Privileges
table option, mysqlaccess — Client for Checking Access Privileges
user option, mysqlaccess — Client for Checking Access Privileges
version option, mysqlaccess — Client for Checking Access Privileges
mysqladmin, Overview of MySQL Programs, mysqladmin — Client for Administering a MySQL Server, CREATE DATABASE Syntax, DROP DATABASE Syntax, SHOW STATUS Syntax, SHOW VARIABLES Syntax, FLUSH Syntax, KILL Syntax
bind-address option, mysqladmin — Client for Administering a MySQL Server
character-sets-dir option, mysqladmin — Client for Administering a MySQL Server
compress option, mysqladmin — Client for Administering a MySQL Server
count option, mysqladmin — Client for Administering a MySQL Server
debug option, mysqladmin — Client for Administering a MySQL Server
debug-check option, mysqladmin — Client for Administering a MySQL Server
debug-info option, mysqladmin — Client for Administering a MySQL Server
default-auth option, mysqladmin — Client for Administering a MySQL Server
default-character-set option, mysqladmin — Client for Administering a MySQL Server
enable-cleartext-plugin option, mysqladmin — Client for Administering a MySQL Server
force option, mysqladmin — Client for Administering a MySQL Server
help option, mysqladmin — Client for Administering a MySQL Server
host option, mysqladmin — Client for Administering a MySQL Server
no-beep option, mysqladmin — Client for Administering a MySQL Server
password option, mysqladmin — Client for Administering a MySQL Server
pipe option, mysqladmin — Client for Administering a MySQL Server
plugin-dir option, mysqladmin — Client for Administering a MySQL Server
port option, mysqladmin — Client for Administering a MySQL Server
protocol option, mysqladmin — Client for Administering a MySQL Server
relative option, mysqladmin — Client for Administering a MySQL Server
silent option, mysqladmin — Client for Administering a MySQL Server
sleep option, mysqladmin — Client for Administering a MySQL Server
socket option, mysqladmin — Client for Administering a MySQL Server
SSL options, mysqladmin — Client for Administering a MySQL Server
user option, mysqladmin — Client for Administering a MySQL Server
verbose option, mysqladmin — Client for Administering a MySQL Server
version option, mysqladmin — Client for Administering a MySQL Server
vertical option, mysqladmin — Client for Administering a MySQL Server
wait option, mysqladmin — Client for Administering a MySQL Server
mysqladmin command options, mysqladmin — Client for Administering a MySQL Server
mysqladmin option
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqlbackup command, MySQL Glossary
mysqlbinlog, Overview of MySQL Programs, mysqlbinlog — Utility for Processing Binary Log Files
base64-output option, mysqlbinlog — Utility for Processing Binary Log Files
bind-address option, mysqlbinlog — Utility for Processing Binary Log Files
binlog-row-event-max-size option, mysqlbinlog — Utility for Processing Binary Log Files
character-sets-dir option, mysqlbinlog — Utility for Processing Binary Log Files
database option, mysqlbinlog — Utility for Processing Binary Log Files
debug option, mysqlbinlog — Utility for Processing Binary Log Files
debug-check option, mysqlbinlog — Utility for Processing Binary Log Files
debug-info option, mysqlbinlog — Utility for Processing Binary Log Files
default-auth option, mysqlbinlog — Utility for Processing Binary Log Files
disable-log-bin option, mysqlbinlog — Utility for Processing Binary Log Files
exclude-gtids option, mysqlbinlog — Utility for Processing Binary Log Files
force-if-open option, mysqlbinlog — Utility for Processing Binary Log Files
force-read option, mysqlbinlog — Utility for Processing Binary Log Files
help option, mysqlbinlog — Utility for Processing Binary Log Files
hexdump option, mysqlbinlog — Utility for Processing Binary Log Files
host option, mysqlbinlog — Utility for Processing Binary Log Files
include-gtids option, mysqlbinlog — Utility for Processing Binary Log Files
local-load option, mysqlbinlog — Utility for Processing Binary Log Files
offset option, mysqlbinlog — Utility for Processing Binary Log Files
password option, mysqlbinlog — Utility for Processing Binary Log Files
plugin-dir option, mysqlbinlog — Utility for Processing Binary Log Files
port option, mysqlbinlog — Utility for Processing Binary Log Files
protocol option, mysqlbinlog — Utility for Processing Binary Log Files
raw option, mysqlbinlog — Utility for Processing Binary Log Files
read-from-remote-master option, mysqlbinlog — Utility for Processing Binary Log Files
read-from-remote-server option, mysqlbinlog — Utility for Processing Binary Log Files
result-file option, mysqlbinlog — Utility for Processing Binary Log Files
server-id option, mysqlbinlog — Utility for Processing Binary Log Files
set-charset option, mysqlbinlog — Utility for Processing Binary Log Files
short-form option, mysqlbinlog — Utility for Processing Binary Log Files
skip-gtids option, mysqlbinlog — Utility for Processing Binary Log Files
socket option, mysqlbinlog — Utility for Processing Binary Log Files
start-datetime option, mysqlbinlog — Utility for Processing Binary Log Files
start-position option, mysqlbinlog — Utility for Processing Binary Log Files
stop-datetime option, mysqlbinlog — Utility for Processing Binary Log Files
stop-never option, mysqlbinlog — Utility for Processing Binary Log Files
stop-never-slave-server-id option, mysqlbinlog — Utility for Processing Binary Log Files
stop-position option, mysqlbinlog — Utility for Processing Binary Log Files
to-last-log option, mysqlbinlog — Utility for Processing Binary Log Files
user option, mysqlbinlog — Utility for Processing Binary Log Files
verbose option, mysqlbinlog — Utility for Processing Binary Log Files
verify-binlog-checksum option, mysqlbinlog — Utility for Processing Binary Log Files
version option, mysqlbinlog — Utility for Processing Binary Log Files
mysqlbug, mysqlbug — Generate Bug Report
MySqlBulkLoader class, Using the MySqlBulkLoader Class
mysqlcheck, Overview of MySQL Programs, mysqlcheck — A Table Maintenance Program
all-databases option, mysqlcheck — A Table Maintenance Program
all-in-1 option, mysqlcheck — A Table Maintenance Program
analyze option, mysqlcheck — A Table Maintenance Program
auto-repair option, mysqlcheck — A Table Maintenance Program
bind-address option, mysqlcheck — A Table Maintenance Program
character-sets-dir option, mysqlcheck — A Table Maintenance Program
check option, mysqlcheck — A Table Maintenance Program
check-only-changed option, mysqlcheck — A Table Maintenance Program
check-upgrade option, mysqlcheck — A Table Maintenance Program
compress option, mysqlcheck — A Table Maintenance Program
databases option, mysqlcheck — A Table Maintenance Program
debug option, mysqlcheck — A Table Maintenance Program
debug-check option, mysqlcheck — A Table Maintenance Program
debug-info option, mysqlcheck — A Table Maintenance Program
default-auth option, mysqlcheck — A Table Maintenance Program
default-character-set option, mysqlcheck — A Table Maintenance Program
extended option, mysqlcheck — A Table Maintenance Program
fast option, mysqlcheck — A Table Maintenance Program
fix-db-names option, mysqlcheck — A Table Maintenance Program
fix-table-names option, mysqlcheck — A Table Maintenance Program
force option, mysqlcheck — A Table Maintenance Program
help option, mysqlcheck — A Table Maintenance Program
host option, mysqlcheck — A Table Maintenance Program
medium-check option, mysqlcheck — A Table Maintenance Program
optimize option, mysqlcheck — A Table Maintenance Program
password option, mysqlcheck — A Table Maintenance Program
pipe option, mysqlcheck — A Table Maintenance Program
plugin-dir option, mysqlcheck — A Table Maintenance Program
port option, mysqlcheck — A Table Maintenance Program
protocol option, mysqlcheck — A Table Maintenance Program
quick option, mysqlcheck — A Table Maintenance Program
repair option, mysqlcheck — A Table Maintenance Program
silent option, mysqlcheck — A Table Maintenance Program
skip-database option, mysqlcheck — A Table Maintenance Program
socket option, mysqlcheck — A Table Maintenance Program
SSL options, mysqlcheck — A Table Maintenance Program
tables option, mysqlcheck — A Table Maintenance Program
use-frm option, mysqlcheck — A Table Maintenance Program
user option, mysqlcheck — A Table Maintenance Program
verbose option, mysqlcheck — A Table Maintenance Program
version option, mysqlcheck — A Table Maintenance Program
write-binlog option, mysqlcheck — A Table Maintenance Program
MySqlClient namespace, MySql.Data.MySqlClient Namespace
MySqlCommand class, The MySqlCommand Object
MySQLCommand class, Using MySqlCommand
mysqlcppconn-static.lib, Building MySQL Connector/C++ Windows Applications with Microsoft Visual Studio
mysqlcppconn.dll, Building MySQL Connector/C++ Windows Applications with Microsoft Visual Studio
mysqld, Overview of MySQL Programs, MySQL Glossary
abort-slave-event-count option, Replication Slave Options and Variables
allow-suspicious-udfs option, Server Command Options
ansi option, Server Command Options
audit-log option, Audit Log Plugin Options and Variables
basedir option, Server Command Options
big-tables option, Server Command Options
bind-address option, Server Command Options
binlog-checksum option, Binary Log Options and Variables
binlog-do-db option, Binary Log Options and Variables
binlog-format option, Server Command Options
binlog-ignore-db option, Binary Log Options and Variables
binlog-row-event-max-size option, Binary Log Options and Variables
binlog-rows-query-log-events option, Binary Log Options and Variables
bootstrap option, Server Command Options
character-set-client-handshake option, Server Command Options
character-set-filesystem option, Server Command Options
character-set-server option, Server Command Options
character-sets-dir option, Server Command Options
chroot option, Server Command Options
collation-server option, Server Command Options
command options, Server Command Options
console option, Server Command Options
core-file option, Server Command Options
datadir option, Server Command Options
debug option, Server Command Options
debug-sync-timeout option, Server Command Options
default-authentication-plugin option, Server Command Options
default-storage-engine option, Server Command Options
default-time-zone option, Server Command Options
delay-key-write option, Server Command Options, MyISAM Startup Options
des-key-file option, Server Command Options
disconnect-slave-event-count option, Replication Slave Options and Variables
enable-named-pipe option, Server Command Options
event-scheduler option, Server Command Options
exit-info option, Server Command Options
external-locking option, Server Command Options
flush option, Server Command Options
gdb option, Server Command Options
general-log option, Server Command Options
help option, Server Command Options
ignore-builtin-innodb option, InnoDB Startup Options and System Variables
ignore-db-dir option, Server Command Options
init-file option, Server Command Options
innodb option, InnoDB Startup Options and System Variables
innodb-status-file option, InnoDB Startup Options and System Variables
install option, Server Command Options
install-manual option, Server Command Options
language option, Server Command Options
large-pages option, Server Command Options
lc-messages option, Server Command Options
lc-messages-dir option, Server Command Options
log option, Server Command Options
log-bin option, Binary Log Options and Variables
log-bin-index option, Binary Log Options and Variables
log-bin-trust-function-creators option, Binary Log Options and Variables
log-bin-use-v1-row-events option, Binary Log Options and Variables
log-error option, Server Command Options
log-isam option, Server Command Options
log-output option, Server Command Options
log-queries-not-using-indexes option, Server Command Options
log-raw option, Server Command Options
log-short-format option, Server Command Options, Binary Log Options and Variables
log-slave-updates option, Replication Slave Options and Variables
log-slow-admin-statements option, Server Command Options
log-slow-queries option, Server Command Options
log-slow-slave-statements option, Replication Slave Options and Variables
log-tc option, Server Command Options
log-tc-size option, Server Command Options
log-warnings option, Server Command Options, Replication Slave Options and Variables
log_slow_admin_statements system variable, Server System Variables
log_slow_slave_statements system variable, Replication Slave Options and Variables
low-priority-updates option, Server Command Options
master-info-file option, Replication Slave Options and Variables
master-info-repository option, Replication Slave Options and Variables
master-retry-count option, Replication Slave Options and Variables
master-verify-checksum option, Binary Log Options and Variables
max-binlog-dump-events option, Binary Log Options and Variables
max-relay-log-size option, Replication Slave Options and Variables
memlock option, Server Command Options
min-examined-row-limit option, Server Command Options
myisam-block-size option, Server Command Options
myisam-recover-options option, Server Command Options, MyISAM Startup Options
MySQL server, mysqld — The MySQL Server, The MySQL Server
old-alter-table option, Server Command Options
old-style-user-limits option, Server Command Options
one-thread option, Server Command Options
open-files-limit option, Server Command Options
partition option, Server Command Options
performance-schema-consumer-xxx option, Performance Schema Command Options
performance-schema-instrument option, Performance Schema Command Options
pid-file option, Server Command Options
plugin option prefix, Server Command Options
plugin-load option, Server Command Options
plugin-load-add option, Server Command Options
port option, Server Command Options
port-open-timeout option, Server Command Options
read-only option, Replication Slave Options and Variables
relay-log option, Replication Slave Options and Variables
relay-log-index option, Replication Slave Options and Variables
relay-log-info-file option, Replication Slave Options and Variables
relay-log-info-repository option, Replication Slave Options and Variables
relay-log-purge option, Replication Slave Options and Variables
relay-log-recovery option, Replication Slave Options and Variables
relay-log-space-limit option, Replication Slave Options and Variables
remove option, Server Command Options
replicate-do-db option, Replication Slave Options and Variables
replicate-do-table option, Replication Slave Options and Variables
replicate-ignore-db option, Replication Slave Options and Variables
replicate-ignore-table option, Replication Slave Options and Variables
replicate-rewrite-db option, Replication Slave Options and Variables
replicate-same-server-id option, Replication Slave Options and Variables
replicate-wild-do-table option, Replication Slave Options and Variables
replicate-wild-ignore-table option, Replication Slave Options and Variables
report-host option, Replication Slave Options and Variables
report-password option, Replication Slave Options and Variables
report-port option, Replication Slave Options and Variables
report-user option, Replication Slave Options and Variables
safe-mode option, Server Command Options
safe-user-create option, Server Command Options
secure-auth option, Server Command Options
secure-file-priv option, Server Command Options
server-id option, Replication and Binary Logging Options and Variables
server_uuid variable, Replication and Binary Logging Options and Variables
shared-memory option, Server Command Options
shared-memory-base-name option, Server Command Options
show-slave-auth-info option, Replication Slave Options and Variables
skip-concurrent-insert option, Server Command Options
skip-event-scheduler option, Server Command Options
skip-external-locking option, Server Command Options
skip-grant-tables option, Server Command Options
skip-host-cache option, Server Command Options
skip-innodb option, Server Command Options, InnoDB Startup Options and System Variables
skip-name-resolve option, Server Command Options
skip-networking option, Server Command Options
skip-partition option, Server Command Options
skip-show-database option, Server Command Options
skip-slave-start option, Replication Slave Options and Variables
skip-stack-trace option, Server Command Options
skip-symbolic-links option, Server Command Options
skip-thread-priority option, Server Command Options
slave-checkpoint-group option, Replication Slave Options and Variables
slave-checkpoint-period option, Replication Slave Options and Variables
slave-load-tmpdir option, Replication Slave Options and Variables
slave-max-allowed-packet, Replication Master Options and Variables
slave-net-timeout option, Replication Slave Options and Variables
slave-parallel-workers option, Replication Slave Options and Variables
slave-pending-jobs-size-max option, Replication Slave Options and Variables
slave-rows-search-algorithms, Replication Master Options and Variables
slave-skip-errors option, Replication Slave Options and Variables
slave-sql-verify-checksum option, Replication Slave Options and Variables
slave_compressed_protocol option, Replication Slave Options and Variables
slow-query-log option, Server Command Options
slow-start-timeout option, Server Command Options
socket option, Server Command Options
sporadic-binlog-dump-fail option, Binary Log Options and Variables
sql-mode option, Server Command Options
SSL options, Server Command Options
standalone option, Server Command Options
starting, How to Run MySQL as a Normal User
super-large-pages option, Server Command Options
symbolic-links option, Server Command Options
sysdate-is-now option, Server Command Options
tc-heuristic-recover option, Server Command Options
temp-pool option, Server Command Options
tmpdir option, Server Command Options
transaction-isolation option, Server Command Options
transaction-read-only option, Server Command Options
user option, Server Command Options
validate-password option, Password Validation Plugin Options and Variables
verbose option, Server Command Options
version option, Server Command Options
mysqld option
malloc-lib, mysqld_safe — MySQL Server Startup Script
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqld_safe, mysqld_safe — MySQL Server Startup Script
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
mysqld options, Tuning Server Parameters
disable-gtid-unsafe-statements, Global Transaction ID Options and Variables
enforce-gtid-consistency, Global Transaction ID Options and Variables
gtid-mode, Global Transaction ID Options and Variables
mysqld server
buffer sizes, Tuning Server Parameters
mysqld-version option
mysqld_safe, mysqld_safe — MySQL Server Startup Script
mysqldump, Copying MySQL Databases to Another Machine, Overview of MySQL Programs, mysqldump — A Database Backup Program, MySQL Glossary
add-drop-database option, mysqldump — A Database Backup Program
add-drop-table option, mysqldump — A Database Backup Program
add-drop-trigger option, mysqldump — A Database Backup Program
add-locks option, mysqldump — A Database Backup Program
all-databases option, mysqldump — A Database Backup Program
all-tablespaces option, mysqldump — A Database Backup Program
allow-keywords option, mysqldump — A Database Backup Program
apply-slave-statements option, mysqldump — A Database Backup Program
bind-address option, mysqldump — A Database Backup Program
character-sets-dir option, mysqldump — A Database Backup Program
comments option, mysqldump — A Database Backup Program
compact option, mysqldump — A Database Backup Program
compatible option, mysqldump — A Database Backup Program
complete-insert option, mysqldump — A Database Backup Program
compress option, mysqldump — A Database Backup Program
create-options option, mysqldump — A Database Backup Program
databases option, mysqldump — A Database Backup Program
debug option, mysqldump — A Database Backup Program
debug-check option, mysqldump — A Database Backup Program
debug-info option, mysqldump — A Database Backup Program
default-auth option, mysqldump — A Database Backup Program
default-character-set option, mysqldump — A Database Backup Program
delayed-insert option, mysqldump — A Database Backup Program
delete-master-logs option, mysqldump — A Database Backup Program
disable-keys option, mysqldump — A Database Backup Program
dump-date option, mysqldump — A Database Backup Program
dump-slave option, mysqldump — A Database Backup Program
events option, mysqldump — A Database Backup Program
extended-insert option, mysqldump — A Database Backup Program
fields-enclosed-by option, mysqldump — A Database Backup Program, mysqlimport — A Data Import Program
fields-escaped-by option, mysqldump — A Database Backup Program, mysqlimport — A Data Import Program
fields-optionally-enclosed-by option, mysqldump — A Database Backup Program, mysqlimport — A Data Import Program
fields-terminated-by option, mysqldump — A Database Backup Program, mysqlimport — A Data Import Program
flush-logs option, mysqldump — A Database Backup Program
flush-privileges option, mysqldump — A Database Backup Program
force option, mysqldump — A Database Backup Program
help option, mysqldump — A Database Backup Program
hex-blob option, mysqldump — A Database Backup Program
host option, mysqldump — A Database Backup Program
ignore-table option, mysqldump — A Database Backup Program
include-master-host-port option, mysqldump — A Database Backup Program
insert-ignore option, mysqldump — A Database Backup Program
lines-terminated-by option, mysqldump — A Database Backup Program, mysqlimport — A Data Import Program
lock-all-tables option, mysqldump — A Database Backup Program
lock-tables option, mysqldump — A Database Backup Program
log-error option, mysqldump — A Database Backup Program
master-data option, mysqldump — A Database Backup Program
no-autocommit option, mysqldump — A Database Backup Program
no-create-db option, mysqldump — A Database Backup Program
no-create-info option, mysqldump — A Database Backup Program
no-data option, mysqldump — A Database Backup Program
no-set-names option, mysqldump — A Database Backup Program
no-tablespaces option, mysqldump — A Database Backup Program
opt option, mysqldump — A Database Backup Program
order-by-primary option, mysqldump — A Database Backup Program
password option, mysqldump — A Database Backup Program
pipe option, mysqldump — A Database Backup Program
plugin-dir option, mysqldump — A Database Backup Program
port option, mysqldump — A Database Backup Program
problems, mysqldump — A Database Backup Program, Restrictions on Views
protocol option, mysqldump — A Database Backup Program
quick option, mysqldump — A Database Backup Program
quote-names option, mysqldump — A Database Backup Program
replace option, mysqldump — A Database Backup Program
result-file option, mysqldump — A Database Backup Program
routines option, mysqldump — A Database Backup Program
set-charset option, mysqldump — A Database Backup Program
set-gtid-purged option, mysqldump — A Database Backup Program
single-transaction option, mysqldump — A Database Backup Program
skip-comments option, mysqldump — A Database Backup Program
skip-opt option, mysqldump — A Database Backup Program
socket option, mysqldump — A Database Backup Program
SSL options, mysqldump — A Database Backup Program
tab option, mysqldump — A Database Backup Program
tables option, mysqldump — A Database Backup Program
triggers option, mysqldump — A Database Backup Program
tz-utc option, mysqldump — A Database Backup Program
user option, mysqldump — A Database Backup Program
using for backups, Using mysqldump for Backups
verbose option, mysqldump — A Database Backup Program
version option, mysqldump — A Database Backup Program
views, mysqldump — A Database Backup Program, Restrictions on Views
where option, mysqldump — A Database Backup Program
workarounds, mysqldump — A Database Backup Program, Restrictions on Views
xml option, mysqldump — A Database Backup Program
mysqldumpslow, Overview of MySQL Programs, mysqldumpslow — Summarize Slow Query Log Files
debug option, mysqldumpslow — Summarize Slow Query Log Files
help option, mysqldumpslow — Summarize Slow Query Log Files
verbose option, mysqldumpslow — Summarize Slow Query Log Files
mysqld_multi, Overview of MySQL Programs, mysqld_multi — Manage Multiple MySQL Servers
defaults-extra-file option, mysqld_multi — Manage Multiple MySQL Servers
defaults-file option, mysqld_multi — Manage Multiple MySQL Servers
example option, mysqld_multi — Manage Multiple MySQL Servers
help option, mysqld_multi — Manage Multiple MySQL Servers
log option, mysqld_multi — Manage Multiple MySQL Servers
mysqladmin option, mysqld_multi — Manage Multiple MySQL Servers
mysqld option, mysqld_multi — Manage Multiple MySQL Servers
no-defaults option, mysqld_multi — Manage Multiple MySQL Servers
no-log option, mysqld_multi — Manage Multiple MySQL Servers
password option, mysqld_multi — Manage Multiple MySQL Servers
silent option, mysqld_multi — Manage Multiple MySQL Servers
tcp-ip option, mysqld_multi — Manage Multiple MySQL Servers
user option, mysqld_multi — Manage Multiple MySQL Servers
verbose option, mysqld_multi — Manage Multiple MySQL Servers
version option, mysqld_multi — Manage Multiple MySQL Servers
mysqld_safe, Overview of MySQL Programs, mysqld_safe — MySQL Server Startup Script
basedir option, mysqld_safe — MySQL Server Startup Script
core-file-size option, mysqld_safe — MySQL Server Startup Script
datadir option, mysqld_safe — MySQL Server Startup Script
defaults-extra-file option, mysqld_safe — MySQL Server Startup Script
defaults-file option, mysqld_safe — MySQL Server Startup Script
help option, mysqld_safe — MySQL Server Startup Script
ledir option, mysqld_safe — MySQL Server Startup Script
log-error option, mysqld_safe — MySQL Server Startup Script
malloc-lib option, mysqld_safe — MySQL Server Startup Script
mysqld option, mysqld_safe — MySQL Server Startup Script
mysqld-version option, mysqld_safe — MySQL Server Startup Script
nice option, mysqld_safe — MySQL Server Startup Script
no-defaults option, mysqld_safe — MySQL Server Startup Script
open-files-limit option, mysqld_safe — MySQL Server Startup Script
pid-file option, mysqld_safe — MySQL Server Startup Script
plugin-dir option, mysqld_safe — MySQL Server Startup Script
port option, mysqld_safe — MySQL Server Startup Script
skip-kill-mysqld option, mysqld_safe — MySQL Server Startup Script
skip-syslog option, mysqld_safe — MySQL Server Startup Script
socket option, mysqld_safe — MySQL Server Startup Script
syslog option, mysqld_safe — MySQL Server Startup Script
syslog-tag option, mysqld_safe — MySQL Server Startup Script
timezone option, mysqld_safe — MySQL Server Startup Script
user option, mysqld_safe — MySQL Server Startup Script
mysqlhotcopy, Overview of MySQL Programs, mysqlhotcopy — A Database Backup Program
addtodest option, mysqlhotcopy — A Database Backup Program
allowold option, mysqlhotcopy — A Database Backup Program
checkpoint option, mysqlhotcopy — A Database Backup Program
chroot option, mysqlhotcopy — A Database Backup Program
debug option, mysqlhotcopy — A Database Backup Program
dryrun option, mysqlhotcopy — A Database Backup Program
flushlog option, mysqlhotcopy — A Database Backup Program
help option, mysqlhotcopy — A Database Backup Program
host option, mysqlhotcopy — A Database Backup Program
keepold option, mysqlhotcopy — A Database Backup Program
method option, mysqlhotcopy — A Database Backup Program
noindices option, mysqlhotcopy — A Database Backup Program
old_server option, mysqlhotcopy — A Database Backup Program
password option, mysqlhotcopy — A Database Backup Program
port option, mysqlhotcopy — A Database Backup Program
quiet option, mysqlhotcopy — A Database Backup Program
record_log_pos option, mysqlhotcopy — A Database Backup Program
regexp option, mysqlhotcopy — A Database Backup Program
resetmaster option, mysqlhotcopy — A Database Backup Program
resetslave option, mysqlhotcopy — A Database Backup Program
socket option, mysqlhotcopy — A Database Backup Program
suffix option, mysqlhotcopy — A Database Backup Program
tmpdir option, mysqlhotcopy — A Database Backup Program
user option, mysqlhotcopy — A Database Backup Program
mysqlimport, Copying MySQL Databases to Another Machine, Overview of MySQL Programs, mysqlimport — A Data Import Program, LOAD DATA INFILE Syntax
bind-address option, mysqlimport — A Data Import Program
character-sets-dir option, mysqlimport — A Data Import Program
columns option, mysqlimport — A Data Import Program
compress option, mysqlimport — A Data Import Program
debug option, mysqlimport — A Data Import Program
debug-check option, mysqlimport — A Data Import Program
debug-info option, mysqlimport — A Data Import Program
default-auth option, mysqlimport — A Data Import Program
default-character-set option, mysqlimport — A Data Import Program
delete option, mysqlimport — A Data Import Program
force option, mysqlimport — A Data Import Program
help option, mysqlimport — A Data Import Program
host option, mysqlimport — A Data Import Program
ignore option, mysqlimport — A Data Import Program
ignore-lines option, mysqlimport — A Data Import Program
local option, mysqlimport — A Data Import Program
lock-tables option, mysqlimport — A Data Import Program
low-priority option, mysqlimport — A Data Import Program
password option, mysqlimport — A Data Import Program
pipe option, mysqlimport — A Data Import Program
plugin-dir option, mysqlimport — A Data Import Program
port option, mysqlimport — A Data Import Program
protocol option, mysqlimport — A Data Import Program
replace option, mysqlimport — A Data Import Program
silent option, mysqlimport — A Data Import Program
socket option, mysqlimport — A Data Import Program
SSL options, mysqlimport — A Data Import Program
use-threads option, mysqlimport — A Data Import Program
user option, mysqlimport — A Data Import Program
verbose option, mysqlimport — A Data Import Program
version option, mysqlimport — A Data Import Program
MySQLInstallerConsole, MySQL Installer Console
action option, MySQL Installer Console
catalog option, MySQL Installer Console
config option, MySQL Installer Console
help option, MySQL Installer Console
install action option, MySQL Installer Console
list action option, MySQL Installer Console
nowait option, MySQL Installer Console
product option, MySQL Installer Console
remove action option, MySQL Installer Console
status action option, MySQL Installer Console
type option, MySQL Installer Console
updates option, MySQL Installer Console
upgrade action option, MySQL Installer Console
user option, MySQL Installer Console
mysqlshow, Overview of MySQL Programs, mysqlshow — Display Database, Table, and Column Information
bind-address option, mysqlshow — Display Database, Table, and Column Information
character-sets-dir option, mysqlshow — Display Database, Table, and Column Information
compress option, mysqlshow — Display Database, Table, and Column Information
count option, mysqlshow — Display Database, Table, and Column Information
debug option, mysqlshow — Display Database, Table, and Column Information
debug-check option, mysqlshow — Display Database, Table, and Column Information
debug-info option, mysqlshow — Display Database, Table, and Column Information
default-auth option, mysqlshow — Display Database, Table, and Column Information
default-character-set option, mysqlshow — Display Database, Table, and Column Information
help option, mysqlshow — Display Database, Table, and Column Information
host option, mysqlshow — Display Database, Table, and Column Information
keys option, mysqlshow — Display Database, Table, and Column Information
password option, mysqlshow — Display Database, Table, and Column Information
pipe option, mysqlshow — Display Database, Table, and Column Information
plugin-dir option, mysqlshow — Display Database, Table, and Column Information
port option, mysqlshow — Display Database, Table, and Column Information
protocol option, mysqlshow — Display Database, Table, and Column Information
show-table-type option, mysqlshow — Display Database, Table, and Column Information
socket option, mysqlshow — Display Database, Table, and Column Information
SSL options, mysqlshow — Display Database, Table, and Column Information
status option, mysqlshow — Display Database, Table, and Column Information
user option, mysqlshow — Display Database, Table, and Column Information
verbose option, mysqlshow — Display Database, Table, and Column Information
version option, mysqlshow — Display Database, Table, and Column Information
mysqlslap, Overview of MySQL Programs, mysqlslap — Load Emulation Client
auto-generate-sql option, mysqlslap — Load Emulation Client
auto-generate-sql-add-autoincrement option, mysqlslap — Load Emulation Client
auto-generate-sql-execute-number option, mysqlslap — Load Emulation Client
auto-generate-sql-guid-primary option, mysqlslap — Load Emulation Client
auto-generate-sql-load-type option, mysqlslap — Load Emulation Client
auto-generate-sql-secondary-indexes option, mysqlslap — Load Emulation Client
auto-generate-sql-unique-query-number option, mysqlslap — Load Emulation Client
auto-generate-sql-unique-write-number option, mysqlslap — Load Emulation Client
auto-generate-sql-write-number option, mysqlslap — Load Emulation Client
commit option, mysqlslap — Load Emulation Client
compress option, mysqlslap — Load Emulation Client
concurrency option, mysqlslap — Load Emulation Client
create option, mysqlslap — Load Emulation Client
create-schema option, mysqlslap — Load Emulation Client
csv option, mysqlslap — Load Emulation Client
debug option, mysqlslap — Load Emulation Client
debug-check option, mysqlslap — Load Emulation Client
debug-info option, mysqlslap — Load Emulation Client
default-auth option, mysqlslap — Load Emulation Client
delimiter option, mysqlslap — Load Emulation Client
detach option, mysqlslap — Load Emulation Client
enable-cleartext-plugin option, mysqlslap — Load Emulation Client
engine option, mysqlslap — Load Emulation Client
help option, mysqlslap — Load Emulation Client
host option, mysqlslap — Load Emulation Client
iterations option, mysqlslap — Load Emulation Client
no-drop option, mysqlslap — Load Emulation Client
number-char-cols option, mysqlslap — Load Emulation Client
number-int-cols option, mysqlslap — Load Emulation Client
number-of-queries option, mysqlslap — Load Emulation Client
only-print option, mysqlslap — Load Emulation Client
password option, mysqlslap — Load Emulation Client
pipe option, mysqlslap — Load Emulation Client
plugin-dir option, mysqlslap — Load Emulation Client
port option, mysqlslap — Load Emulation Client
post-query option, mysqlslap — Load Emulation Client
post-system option, mysqlslap — Load Emulation Client
pre-query option, mysqlslap — Load Emulation Client
pre-system option, mysqlslap — Load Emulation Client
protocol option, mysqlslap — Load Emulation Client
query option, mysqlslap — Load Emulation Client
shared-memory-base-name option, mysqlslap — Load Emulation Client
silent option, mysqlslap — Load Emulation Client
socket option, mysqlslap — Load Emulation Client
SSL options, mysqlslap — Load Emulation Client
user option, mysqlslap — Load Emulation Client
verbose option, mysqlslap — Load Emulation Client
version option, mysqlslap — Load Emulation Client
mysqltest
MySQL Test Suite, The MySQL Test Suite
mysql_affected_rows(), mysql_affected_rows()
mysql_autocommit(), mysql_autocommit()
MYSQL_BIND C type, C API Prepared Statement Data Structures
mysql_change_user(), mysql_change_user()
mysql_character_set_name(), mysql_character_set_name()
mysql_client_find_plugin(), mysql_client_find_plugin()
mysql_client_register_plugin(), mysql_client_register_plugin()
mysql_close(), mysql_close()
mysql_commit(), mysql_commit()
mysql_config, mysql_config — Display Options for Compiling Clients
cflags option, mysql_config — Display Options for Compiling Clients
cxxflags option, mysql_config — Display Options for Compiling Clients
embedded option, mysql_config — Display Options for Compiling Clients
include option, mysql_config — Display Options for Compiling Clients
libmysqld-libs option, mysql_config — Display Options for Compiling Clients
libs option, mysql_config — Display Options for Compiling Clients
libs_r option, mysql_config — Display Options for Compiling Clients
plugindir option, mysql_config — Display Options for Compiling Clients
port option, mysql_config — Display Options for Compiling Clients
socket option, mysql_config — Display Options for Compiling Clients
version option, mysql_config — Display Options for Compiling Clients
mysql_config_editor, Overview of MySQL Programs, mysql_config_editor — MySQL Configuration Utility
all option, mysql_config_editor — MySQL Configuration Utility
debug option, mysql_config_editor — MySQL Configuration Utility
help option, mysql_config_editor — MySQL Configuration Utility
host option, mysql_config_editor — MySQL Configuration Utility
login-path option, mysql_config_editor — MySQL Configuration Utility
password option, mysql_config_editor — MySQL Configuration Utility
port option, mysql_config_editor — MySQL Configuration Utility
socket option, mysql_config_editor — MySQL Configuration Utility
user option, mysql_config_editor — MySQL Configuration Utility
verbose option, mysql_config_editor — MySQL Configuration Utility
version option, mysql_config_editor — MySQL Configuration Utility
warn option, mysql_config_editor — MySQL Configuration Utility
mysql_connect(), mysql_connect()
mysql_convert_table_format, Overview of MySQL Programs, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
force option, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
help option, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
host option, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
password option, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
port option, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
socket option, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
type option, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
user option, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
verbose option, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
version option, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_create_db(), mysql_create_db()
MYSQL_DATADIR option
CMake, MySQL Source-Configuration Options
mysql_data_seek(), mysql_data_seek()
MYSQL_DEBUG environment variable, Environment Variables, Overview of MySQL Programs, Debugging a MySQL Client
mysql_debug(), mysql_debug()
mysql_drop_db(), mysql_drop_db()
mysql_dump_debug_info(), mysql_dump_debug_info()
mysql_eof(), mysql_eof()
mysql_errno(), mysql_errno()
mysql_error(), mysql_error()
mysql_escape_string(), mysql_escape_string()
mysql_fetch_field(), mysql_fetch_field()
mysql_fetch_fields(), mysql_fetch_fields()
mysql_fetch_field_direct(), mysql_fetch_field_direct()
mysql_fetch_lengths(), mysql_fetch_lengths()
mysql_fetch_row(), mysql_fetch_row()
MYSQL_FIELD C type, C API Data Structures
mysql_field_count(), mysql_field_count(), mysql_num_fields()
MYSQL_FIELD_OFFSET C type, C API Data Structures
mysql_field_seek(), mysql_field_seek()
mysql_field_tell(), mysql_field_tell()
mysql_find_rows, Overview of MySQL Programs, mysql_find_rows — Extract SQL Statements from Files
help option, mysql_find_rows — Extract SQL Statements from Files
regexp option, mysql_find_rows — Extract SQL Statements from Files
rows option, mysql_find_rows — Extract SQL Statements from Files
skip-use-db option, mysql_find_rows — Extract SQL Statements from Files
start_row option, mysql_find_rows — Extract SQL Statements from Files
mysql_fix_extensions, Overview of MySQL Programs, mysql_fix_extensions — Normalize Table File Name Extensions
mysql_free_result(), mysql_free_result()
mysql_get_character_set_info(), mysql_get_character_set_info()
mysql_get_client_info(), mysql_get_client_info()
mysql_get_client_version(), mysql_get_client_version()
mysql_get_host_info(), mysql_get_host_info()
mysql_get_proto_info(), mysql_get_proto_info()
mysql_get_server_info(), mysql_get_server_info()
mysql_get_server_version(), mysql_get_server_version()
mysql_get_ssl_cipher(), mysql_get_ssl_cipher()
MYSQL_GROUP_SUFFIX environment variable, Environment Variables
mysql_hex_string(), mysql_hex_string()
MYSQL_HISTFILE environment variable, Environment Variables, mysql Logging
MYSQL_HISTIGNORE environment variable, Environment Variables, mysql Logging
MYSQL_HOME environment variable, Environment Variables
MYSQL_HOST environment variable, Environment Variables, Connecting to the MySQL Server
mysql_info(), ALTER TABLE Syntax, INSERT Syntax, LOAD DATA INFILE Syntax, UPDATE Syntax, mysql_info()
mysql_init(), mysql_init()
mysql_insert_id(), Transaction and Atomic Operation Differences, INSERT Syntax, mysql_insert_id()
mysql_install_db, Problems Running mysql_install_db, Overview of MySQL Programs, mysql_install_db — Initialize MySQL Data Directory
basedir option, mysql_install_db — Initialize MySQL Data Directory
datadir option, mysql_install_db — Initialize MySQL Data Directory
force option, mysql_install_db — Initialize MySQL Data Directory
ldata option, mysql_install_db — Initialize MySQL Data Directory
random-passwords option, mysql_install_db — Initialize MySQL Data Directory
rpm option, mysql_install_db — Initialize MySQL Data Directory
skip-name-resolve option, mysql_install_db — Initialize MySQL Data Directory
srcdir option, mysql_install_db — Initialize MySQL Data Directory
user option, mysql_install_db — Initialize MySQL Data Directory
verbose option, mysql_install_db — Initialize MySQL Data Directory
windows option, mysql_install_db — Initialize MySQL Data Directory
mysql_kill(), mysql_kill()
mysql_library_end(), mysql_library_end()
mysql_library_init(), mysql_library_init()
mysql_list_dbs(), mysql_list_dbs()
mysql_list_fields(), mysql_list_fields()
mysql_list_processes(), mysql_list_processes()
mysql_list_tables(), mysql_list_tables()
mysql_load_plugin(), mysql_load_plugin()
mysql_load_plugin_v(), mysql_load_plugin_v()
MYSQL_MAINTAINER_MODE option
CMake, MySQL Source-Configuration Options
mysql_more_results(), mysql_more_results()
mysql_next_result(), mysql_next_result()
mysql_num_fields(), mysql_num_fields()
mysql_num_rows(), mysql_num_rows()
mysql_options(), mysql_options()
mysql_options4(), mysql_options4()
mysql_ping(), mysql_ping()
mysql_plugin, Overview of MySQL Programs, mysql_plugin — Configure MySQL Server Plugins
basedir option, mysql_plugin — Configure MySQL Server Plugins
datadir option, mysql_plugin — Configure MySQL Server Plugins
help option, mysql_plugin — Configure MySQL Server Plugins
my-print-defaults option, mysql_plugin — Configure MySQL Server Plugins
mysqld option, mysql_plugin — Configure MySQL Server Plugins
no-defaults option, mysql_plugin — Configure MySQL Server Plugins
plugin-dir option, mysql_plugin — Configure MySQL Server Plugins
plugin-ini option, mysql_plugin — Configure MySQL Server Plugins
print-defaults option, mysql_plugin — Configure MySQL Server Plugins
verbose option, mysql_plugin — Configure MySQL Server Plugins
version option, mysql_plugin — Configure MySQL Server Plugins
mysql_plugin_options(), mysql_plugin_options()
MYSQL_PROJECT_NAME option
CMake, MySQL Source-Configuration Options
MYSQL_PS1 environment variable, Environment Variables
MYSQL_PWD environment variable, Environment Variables, Overview of MySQL Programs, Connecting to the MySQL Server
mysql_query(), mysql_query(), Common Questions and Problems When Using the C API
mysql_real_connect(), mysql_real_connect()
mysql_real_escape_string(), String Literals, String Functions, mysql_real_escape_string()
mysql_real_query(), mysql_real_query()
mysql_refresh(), mysql_refresh()
mysql_reload(), mysql_reload()
MYSQL_RES C type, C API Data Structures
mysql_rollback(), mysql_rollback()
MYSQL_ROW C type, C API Data Structures
mysql_row_seek(), mysql_row_seek()
mysql_row_tell(), mysql_row_tell()
mysql_secure_installation, Overview of MySQL Programs, mysql_secure_installation — Improve MySQL Installation Security
mysql_select_db(), mysql_select_db()
MYSQL_SERVER_AUTH_INFO plugin structure, Writing the Server-Side Authentication Plugin
mysql_server_end(), mysql_server_end()
mysql_server_init(), mysql_server_init()
mysql_setpermission, Overview of MySQL Programs, mysql_setpermission — Interactively Set Permissions in Grant Tables
help option, mysql_setpermission — Interactively Set Permissions in Grant Tables
host option, mysql_setpermission — Interactively Set Permissions in Grant Tables
password option, mysql_setpermission — Interactively Set Permissions in Grant Tables
port option, mysql_setpermission — Interactively Set Permissions in Grant Tables
socket option, mysql_setpermission — Interactively Set Permissions in Grant Tables
user option, mysql_setpermission — Interactively Set Permissions in Grant Tables
mysql_set_character_set(), mysql_set_character_set()
mysql_set_local_infile_default(), mysql_set_local_infile_default()
mysql_set_server_option(), mysql_set_server_option()
mysql_shutdown(), mysql_shutdown()
mysql_sqlstate(), mysql_sqlstate()
mysql_ssl_set(), mysql_ssl_set()
mysql_stat(), mysql_stat()
MYSQL_STMT C type, C API Prepared Statement Data Structures
mysql_stmt_affected_rows(), mysql_stmt_affected_rows()
mysql_stmt_attr_get(), mysql_stmt_attr_get()
mysql_stmt_attr_set(), mysql_stmt_attr_set()
mysql_stmt_bind_param(), mysql_stmt_bind_param()
mysql_stmt_bind_result(), mysql_stmt_bind_result()
mysql_stmt_close(), mysql_stmt_close()
mysql_stmt_data_seek(), mysql_stmt_data_seek()
mysql_stmt_errno(), mysql_stmt_errno()
mysql_stmt_error(), mysql_stmt_error()
mysql_stmt_execute(), mysql_stmt_execute()
mysql_stmt_fetch(), mysql_stmt_fetch()
mysql_stmt_fetch_column(), mysql_stmt_fetch_column()
mysql_stmt_field_count(), mysql_stmt_field_count()
mysql_stmt_free_result(), mysql_stmt_free_result()
mysql_stmt_init(), mysql_stmt_init()
mysql_stmt_insert_id(), mysql_stmt_insert_id()
mysql_stmt_next_result(), mysql_stmt_next_result()
mysql_stmt_num_rows(), mysql_stmt_num_rows()
mysql_stmt_param_count(), mysql_stmt_param_count()
mysql_stmt_param_metadata(), mysql_stmt_param_metadata()
mysql_stmt_prepare(), mysql_stmt_prepare()
mysql_stmt_reset(), mysql_stmt_reset()
mysql_stmt_result_metadata, mysql_stmt_result_metadata()
mysql_stmt_row_seek(), mysql_stmt_row_seek()
mysql_stmt_row_tell(), mysql_stmt_row_tell()
mysql_stmt_send_long_data(), mysql_stmt_send_long_data()
mysql_stmt_sqlstate(), mysql_stmt_sqlstate()
mysql_stmt_store_result(), mysql_stmt_store_result()
mysql_store_result(), mysql_store_result(), Common Questions and Problems When Using the C API
MYSQL_TCP_PORT environment variable, Environment Variables, Overview of MySQL Programs, Running Multiple MySQL Instances on Unix, Using Client Programs in a Multiple-Server Environment
MYSQL_TCP_PORT option
CMake, MySQL Source-Configuration Options
MYSQL_TEST_LOGIN_FILE environment variable, Environment Variables
mysql_thread_end(), mysql_thread_end()
mysql_thread_id(), mysql_thread_id()
mysql_thread_init(), mysql_thread_init()
mysql_thread_safe(), mysql_thread_safe()
MYSQL_TIME C type, C API Prepared Statement Data Structures
mysql_tzinfo_to_sql, Overview of MySQL Programs, mysql_tzinfo_to_sql — Load the Time Zone Tables
MYSQL_UNIX_ADDR option
CMake, MySQL Source-Configuration Options
MYSQL_UNIX_PORT environment variable, Problems Running mysql_install_db, Environment Variables, Overview of MySQL Programs, Running Multiple MySQL Instances on Unix, Using Client Programs in a Multiple-Server Environment
mysql_upgrade, Overview of MySQL Programs, mysql_upgrade — Check and Upgrade MySQL Tables, Causes of Access-Denied Errors
basedir option, mysql_upgrade — Check and Upgrade MySQL Tables
datadir option, mysql_upgrade — Check and Upgrade MySQL Tables
debug-check option, mysql_upgrade — Check and Upgrade MySQL Tables
debug-info option, mysql_upgrade — Check and Upgrade MySQL Tables
default-auth option, mysql_upgrade — Check and Upgrade MySQL Tables
force option, mysql_upgrade — Check and Upgrade MySQL Tables
help option, mysql_upgrade — Check and Upgrade MySQL Tables
mysql_upgrade_info file, mysql_upgrade — Check and Upgrade MySQL Tables
plugin-dir option, mysql_upgrade — Check and Upgrade MySQL Tables
tmpdir option, mysql_upgrade — Check and Upgrade MySQL Tables
upgrade-system-tables option, mysql_upgrade — Check and Upgrade MySQL Tables
user option, mysql_upgrade — Check and Upgrade MySQL Tables
verbose option, mysql_upgrade — Check and Upgrade MySQL Tables
version-check option, mysql_upgrade — Check and Upgrade MySQL Tables
write-binlog option, mysql_upgrade — Check and Upgrade MySQL Tables
mysql_upgrade_info file
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
mysql_use_result(), mysql_use_result()
mysql_waitpid, Overview of MySQL Programs, mysql_waitpid — Kill Process and Wait for Its Termination
help option, mysql_waitpid — Kill Process and Wait for Its Termination
verbose option, mysql_waitpid — Kill Process and Wait for Its Termination
version option, mysql_waitpid — Kill Process and Wait for Its Termination
mysql_warning_count(), mysql_warning_count()
mysql_zap, Overview of MySQL Programs, mysql_zap — Kill Processes That Match a Pattern
my_bool C type, C API Data Structures
my_bool values
printing, C API Data Structures
my_init(), my_init()
my_print_defaults, Overview of MySQL Programs, my_print_defaults — Display Options from Option Files
config-file option, my_print_defaults — Display Options from Option Files
debug option, my_print_defaults — Display Options from Option Files
defaults-extra-file option, my_print_defaults — Display Options from Option Files
defaults-file option, my_print_defaults — Display Options from Option Files
defaults-group-suffix option, my_print_defaults — Display Options from Option Files
extra-file option, my_print_defaults — Display Options from Option Files
help option, my_print_defaults — Display Options from Option Files
no-defaults option, my_print_defaults — Display Options from Option Files
verbose option, my_print_defaults — Display Options from Option Files
version option, my_print_defaults — Display Options from Option Files
my_ulonglong C type, C API Data Structures
my_ulonglong values
printing, C API Data Structures
N
named pipes, Selecting a MySQL Server Type, Testing The MySQL Installation
named-commands option
mysql, mysql Options
named_pipe system variable, Server System Variables
names, Schema Object Names
case sensitivity, Identifier Case Sensitivity
variables, User-Defined Variables
NAME_CONST(), Miscellaneous Functions, Binary Logging of Stored Programs
name_file option
comp_err, comp_err — Compile MySQL Error Message File
naming
releases of MySQL, Choosing Which Version of MySQL to Install
NATIONAL CHAR data type, String Type Overview
NATIONAL VARCHAR data type, String Type Overview
native functions
adding, Adding a New Native Function
native thread support, Operating Systems Supported by MySQL Community Server
natural key, MySQL Glossary
NATURAL LEFT JOIN, JOIN Syntax
NATURAL LEFT OUTER JOIN, JOIN Syntax
NATURAL RIGHT JOIN, JOIN Syntax
NATURAL RIGHT OUTER JOIN, JOIN Syntax
NCHAR data type, String Type Overview
ndb option
perror, perror — Explain Error Codes
NDB storage engine
FAQ, MySQL 5.6 FAQ: MySQL Cluster
ndb_size.pl script, Data Type Storage Requirements
negative values, Number Literals
neighbor page, MySQL Glossary
nested queries, Subquery Syntax
Nested-Loop join algorithm, Nested-Loop Join Algorithms
nested-loop join algorithm, Nested Join Optimization
net etiquette, Guidelines for Using the Mailing Lists
NetBeans, Building MySQL Connector/C++ Linux Applications with NetBeans
netmask notation
in account names, Specifying Account Names
net_buffer_length system variable, Server System Variables
net_buffer_length variable, mysql Options
net_read_timeout system variable, Server System Variables
net_retry_count system variable, Server System Variables
net_write_timeout system variable, Server System Variables
new features in MySQL 5.6, What Is New in MySQL 5.6
new system variable, Server System Variables
new users
adding, Unix Postinstallation Procedures
newline (\n), String Literals, LOAD DATA INFILE Syntax
next-key lock, MySQL Glossary
InnoDB, The InnoDB Transaction Model and Locking, InnoDB Record, Gap, and Next-Key Locks, Avoiding the Phantom Problem Using Next-Key Locking, InnoDB Startup Options and System Variables
NFS
InnoDB, Configuring InnoDB, Limits on InnoDB Tables
nice option
mysqld_safe, mysqld_safe — MySQL Server Startup Script
no matching rows, Solving Problems with No Matching Rows
no-auto-rehash option
mysql, mysql Options
no-autocommit option
mysqldump, mysqldump — A Database Backup Program
no-beep option
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
no-create-db option
mysqldump, mysqldump — A Database Backup Program
no-create-info option
mysqldump, mysqldump — A Database Backup Program
no-data option
mysqldump, mysqldump — A Database Backup Program
no-defaults option, Command-Line Options that Affect Option-File Handling
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqld_safe, mysqld_safe — MySQL Server Startup Script
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
my_print_defaults, my_print_defaults — Display Options from Option Files
no-drop option
mysqlslap, mysqlslap — Load Emulation Client
no-log option
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
no-set-names option
mysqldump, mysqldump — A Database Backup Program
no-symlinks option
myisamchk, myisamchk Repair Options
no-tablespaces option
mysqldump, mysqldump — A Database Backup Program
noindices option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
non-blocking I/O, MySQL Glossary
non-locking read, MySQL Glossary
non-repeatable read, MySQL Glossary
nondelimited strings, Date and Time Literals
Nontransactional tables, Rollback Failure for Nontransactional Tables
nopager command
mysql, mysql Commands
normalized, MySQL Glossary
NoSQL, MySQL Glossary
NOT
logical, Logical Operators
NOT BETWEEN, Comparison Functions and Operators
not equal (!=), Comparison Functions and Operators
not equal (<>), Comparison Functions and Operators
NOT EXISTS
with subqueries, Subqueries with EXISTS or NOT EXISTS
NOT IN, Comparison Functions and Operators
NOT LIKE, String Comparison Functions
NOT NULL
constraint, Constraints on Invalid Data
NOT NULL constraint, MySQL Glossary
NOT REGEXP, Regular Expressions
notee command
mysql, mysql Commands
Notifier, MySQL Notifier for Microsoft Windows
NOW(), Date and Time Functions
nowait option
MySQLInstallerConsole, MySQL Installer Console
nowarning command
mysql, mysql Commands
NO_AUTO_CREATE_USER SQL mode, Server SQL Modes
NO_AUTO_VALUE_ON_ZERO SQL mode, Server SQL Modes
NO_BACKSLASH_ESCAPES SQL mode, Server SQL Modes
NO_DIR_IN_CREATE SQL mode, Server SQL Modes
NO_ENGINE_SUBSTITUTION SQL mode, Server SQL Modes
NO_FIELD_OPTIONS SQL mode, Server SQL Modes
NO_KEY_OPTIONS SQL mode, Server SQL Modes
NO_TABLE_OPTIONS SQL mode, Server SQL Modes
NO_UNSIGNED_SUBTRACTION SQL mode, Server SQL Modes
NO_ZERO_DATE SQL mode, Server SQL Modes
NO_ZERO_IN_DATE SQL mode, Server SQL Modes
NUL, String Literals, LOAD DATA INFILE Syntax
NULL, Working with NULL Values, Problems with NULL Values, MySQL Glossary
ORDER BY, ORDER BY Optimization, SELECT Syntax
testing for null, Comparison Functions and Operators, Control Flow Functions
thread state, General Thread States
NULL value, Working with NULL Values, NULL Values
NULL values
and AUTO_INCREMENT columns, Problems with NULL Values
and indexes, CREATE TABLE Syntax
and TIMESTAMP columns, Problems with NULL Values
vs. empty values, Problems with NULL Values
NULLIF(), Control Flow Functions
number-char-cols option
mysqlslap, mysqlslap — Load Emulation Client
number-int-cols option
mysqlslap, mysqlslap — Load Emulation Client
number-of-queries option
mysqlslap, mysqlslap — Load Emulation Client
numbers, Number Literals
NUMERIC data type, Numeric Type Overview
numeric precision, Data Types
numeric scale, Data Types
numeric types, Data Type Storage Requirements
numeric-dump-file option
resolve_stack_dump, resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
NumGeometries(), GeometryCollection Functions
NumInteriorRings(), Polygon Functions
NumPoints(), LineString Functions
NVARCHAR data type, String Type Overview
O
objects_summary_global_by_type table
performance_schema, Object Wait Summary Table
obtaining information about partitions, Obtaining Information About Partitions
OCT(), String Functions
OCTET_LENGTH(), String Functions
ODBC, MySQL Connector/ODBC
ODBC compatibility, Server System Variables, Identifier Qualifiers, Numeric Type Overview, Type Conversion in Expression Evaluation, Comparison Functions and Operators, CREATE TABLE Syntax, JOIN Syntax
ODBC.NET, Using Connector/ODBC with .NET
ODBC_INCLUDES= option
CMake, MySQL Source-Configuration Options
ODBC_LIB_DIR option
CMake, MySQL Source-Configuration Options
off-page column, MySQL Glossary
offset option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
OLAP, GROUP BY Modifiers
old system variable, Server System Variables
old-alter-table option
mysqld, Server Command Options
old-style-user-limits option
mysqld, Server Command Options
old_alter_table system variable, Server System Variables
OLD_PASSWORD(), Encryption and Compression Functions
old_passwords system variable, Server System Variables
old_server option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
OLTP, MySQL Glossary
ON DUPLICATE KEY UPDATE, INSERT Syntax
one-database option
mysql, mysql Options
one-thread option
mysqld, Server Command Options
online, MySQL Glossary
online DDL, Online DDL for InnoDB Tables, MySQL Glossary
concurrency, Performance and Concurrency Considerations for Online DDL
crash recovery, How Crash Recovery Works with Online DDL
examples, Examples of Online DDL
limitations, Limitations of Online DDL
online location of manual, About This Manual
only-print option
mysqlslap, mysqlslap — Load Emulation Client
ONLY_FULL_GROUP_BY
SQL mode, MySQL Extensions to GROUP BY
ONLY_FULL_GROUP_BY SQL mode, Server SQL Modes
OPEN, Cursor OPEN Syntax
Open Source
defined, What is MySQL?
open tables, mysqladmin — Client for Administering a MySQL Server, How MySQL Opens and Closes Tables
open-files-limit option
mysqld, Server Command Options
mysqld_safe, mysqld_safe — MySQL Server Startup Script
OpenGIS, Introduction to MySQL Spatial Support
opening
tables, How MySQL Opens and Closes Tables
Opening master dump table
thread state, Replication Slave Connection Thread States
Opening table
thread state, General Thread States
Opening tables
thread state, General Thread States
opens, mysqladmin — Client for Administering a MySQL Server
OpenSSL, Using SSL for Secure Connections, Configuring MySQL for SSL
open_files_limit system variable, Server System Variables
open_files_limit variable, mysqlbinlog — Utility for Processing Binary Log Files
operating systems
file-size limits, Limits on Table Size
supported, Operating Systems Supported by MySQL Community Server
operations
arithmetic, Arithmetic Operators
operators, Functions and Operators
assignment, User-Defined Variables, Assignment Operators
cast, Arithmetic Operators, Cast Functions and Operators
logical, Logical Operators
precedence, Operator Precedence
opt option
mysqldump, mysqldump — A Database Backup Program
optimistic, MySQL Glossary
optimization, Optimization
Batched Key Access, Block Nested-Loop and Batched Key Access Joins, Batched Key Access Joins
benchmarking, Measuring Performance (Benchmarking)
BLOB types, Optimizing for BLOB Types
Block Nested-Loop, Block Nested-Loop and Batched Key Access Joins, Block Nested-Loop Algorithm for Outer Joins and Semi-Joins
character and string types, Optimizing for Character and String Types
data size, Optimizing Data Size
DELETE statements, Speed of DELETE Statements
disk I/O, Optimizing Disk I/O
DML statements, Optimizing DML Statements
foreign keys, Using Foreign Keys
full table scans, How to Avoid Full Table Scans
indexes, Optimization and Indexes
InnoDB tables, Optimizing for InnoDB Tables
INSERT statements, Speed of INSERT Statements
internal details, Internal Details of MySQL Optimizations
many tables, Optimizing for Many Tables
MEMORY tables, Optimizing for MEMORY Tables
memory usage, Optimizing Memory Use
Multi-Range Read, Multi-Range Read Optimization
MyISAM tables, Optimizing for MyISAM Tables
network usage, Optimizing Network Use
numeric types, Optimizing for Numeric Data
PERFORMANCE_SCHEMA, Measuring Performance with performance_schema
primary keys, Using Primary Keys
SQL statements, Optimizing SQL Statements
subquery, Subquery Optimization, Optimizing Subqueries with EXISTS Strategy
subquery materialization, Optimizing Subqueries with Subquery Materialization
tips, Other Optimization Tips
UPDATE statements, Speed of UPDATE Statements
optimizations, How MySQL Optimizes WHERE Clauses, Index Merge Optimization
LIMIT clause, Optimizing LIMIT Queries
optimize option
mysqlcheck, mysqlcheck — A Table Maintenance Program
OPTIMIZE TABLE, OPTIMIZE TABLE Syntax
and partitioning, Maintenance of Partitions
optimizer, MySQL Glossary
and replication, Replication and the Query Optimizer
controlling, Controlling the Query Optimizer
query plan evaluation, Controlling Query Plan Evaluation
switchable optimizations, Controlling Switchable Optimizations
optimizer statistics
for InnoDB tables, Persistent Optimizer Statistics for InnoDB Tables
Optimizer Statistics Estimation, Dynamically Changing innodb_stats_on_metadata, Controlling Optimizer Statistics Estimation
optimizer_join_cache_level system variable, Server System Variables
optimizer_prune_level system variable, Server System Variables
optimizer_search_depth system variable, Server System Variables
optimizer_switch system variable, Server System Variables, Controlling Switchable Optimizations
OPTIMIZER_TRACE
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
OPTIMIZER_TRACE option
CMake, MySQL Source-Configuration Options
optimizer_trace system variable, Server System Variables
optimizer_trace_features system variable, Server System Variables
optimizer_trace_limit system variable, Server System Variables
optimizer_trace_max_mem_size system variable, Server System Variables
optimizer_trace_offset system variable, Server System Variables
optimizing
DISTINCT, DISTINCT Optimization
filesort, ORDER BY Optimization
GROUP BY, GROUP BY Optimization
LEFT JOIN, LEFT JOIN and RIGHT JOIN Optimization
tables, MyISAM Table Optimization
thread state, General Thread States
option, MySQL Glossary
option file, MySQL Glossary
option files, Using Option Files, Causes of Access-Denied Errors
escape sequences, Using Option Files
option prefix
--disable, Program Option Modifiers
--enable, Program Option Modifiers
--loose, Program Option Modifiers
--maximum, Program Option Modifiers
--skip, Program Option Modifiers
options
boolean, Program Option Modifiers
CMake, MySQL Source-Configuration Options
command-line
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
embedded server, Options with the Embedded Server
libmysqld, Options with the Embedded Server
myisamchk, myisamchk General Options
provided by MySQL, Tutorial
replication, Replication Features and Issues
OR, Searching on Two Keys, Index Merge Optimization
bitwise, Bit Functions
logical, Logical Operators
OR Index Merge optimization, Index Merge Optimization
Oracle compatibility, MySQL Extensions to Standard SQL, GROUP BY (Aggregate) Functions, ALTER TABLE Syntax, EXPLAIN Syntax
ORACLE SQL mode, Server SQL Modes
ORD(), String Functions
ORDER BY, Sorting Rows, ALTER TABLE Syntax, SELECT Syntax
NULL, ORDER BY Optimization, SELECT Syntax
order-by-primary option
mysqldump, mysqldump — A Database Backup Program
Out of resources error
and partitioned tables, Restrictions and Limitations on Partitioning
out-of-range handling, Out-of-Range and Overflow Handling
OUTFILE, SELECT ... INTO Syntax
out_dir option
comp_err, comp_err — Compile MySQL Error Message File
out_file option
comp_err, comp_err — Compile MySQL Error Message File
overflow handling, Out-of-Range and Overflow Handling
overflow page, MySQL Glossary
Overlaps(), Functions That Test Spatial Relationships Between Geometries
overview, General Information
P
packages
list of, Packages that support MySQL
PAD_CHAR_TO_FULL_LENGTH SQL mode, Server SQL Modes
page, MySQL Glossary
page cleaner, MySQL Glossary
page size, MySQL Glossary
InnoDB, Physical Structure of an InnoDB Index, Limits on InnoDB Tables
pager command
mysql, mysql Commands
pager option
mysql, mysql Options
PAM
pluggable authentication, The PAM Authentication Plugin
PAM authentication
with Connector/J, Connecting Using PAM Authentication
parallel-recover option
myisamchk, myisamchk Repair Options
parameters
server, Tuning Server Parameters
PARAMETERS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA PARAMETERS Table
parent table, MySQL Glossary
parentheses (and), Operator Precedence
partial backup, MySQL Glossary
partial index, MySQL Glossary
partial trust, Working with Partial Trust / Medium Trust
partial updates
and replication, Slave Errors During Replication
PARTITION, Partitioning
PARTITION BY LIST COLUMNS, COLUMNS Partitioning
PARTITION BY RANGE COLUMNS, COLUMNS Partitioning
partition management, Partition Management
partition option
mysqld, Server Command Options
partition pruning, Partition Pruning
partitioning, Partitioning
advantages, Overview of Partitioning in MySQL
and dates, Partitioning Types
and foreign keys, Restrictions and Limitations on Partitioning
and FULLTEXT indexes, Restrictions and Limitations on Partitioning
and key cache, Restrictions and Limitations on Partitioning
and query cache, Restrictions and Limitations on Partitioning
and replication, Replication and Server SQL Mode
and SQL mode, Replication and Server SQL Mode, Restrictions and Limitations on Partitioning
and subqueries, Restrictions and Limitations on Partitioning
and temporary tables, Restrictions and Limitations on Partitioning, Partitioning Keys, Primary Keys, and Unique Keys
by hash, HASH Partitioning
by key, KEY Partitioning
by linear hash, LINEAR HASH Partitioning
by linear key, KEY Partitioning
by list, LIST Partitioning
by range, RANGE Partitioning
COLUMNS, COLUMNS Partitioning
concepts, Overview of Partitioning in MySQL
data type of partitioning key, Restrictions and Limitations on Partitioning
enabling, Partitioning
functions supported in partitioning expressions, Partitioning Limitations Relating to Functions
limitations, Restrictions and Limitations on Partitioning
operators not permitted in partitioning expressions, Restrictions and Limitations on Partitioning
operators supported in partitioning expressions, Restrictions and Limitations on Partitioning
optimization, Obtaining Information About Partitions, Partition Pruning
resources, Partitioning
storage engines (limitations), Partitioning Limitations Relating to Storage Engines
subpartitioning, Restrictions and Limitations on Partitioning
support, Partitioning
types, Partitioning Types
Partitioning
maximum number of partitions, Restrictions and Limitations on Partitioning
partitioning information statements, Obtaining Information About Partitions
partitioning keys and primary keys, Partitioning Keys, Primary Keys, and Unique Keys
partitioning keys and unique keys, Partitioning Keys, Primary Keys, and Unique Keys
partitions
adding and dropping, Partition Management
analyzing, Maintenance of Partitions
checking, Maintenance of Partitions
managing, Partition Management
modifying, Partition Management
optimizing, Maintenance of Partitions
repairing, Maintenance of Partitions
splitting and merging, Partition Management
truncating, Partition Management
PARTITIONS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA PARTITIONS Table
password
root user, Securing the Initial MySQL Accounts
password encryption
reversibility of, Encryption and Compression Functions
password option, Connecting to the MySQL Server
mysql, mysql Options
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
mysql_convert_table_format, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_setpermission, mysql_setpermission — Interactively Set Permissions in Grant Tables
password policy, Password Validation Plugin Options and Variables
password validation, The Password Validation Plugin
PASSWORD(), Access Control, Stage 1: Connection Verification, Assigning Account Passwords, Encryption and Compression Functions, Ignoring user
passwords
administrator guidelines, Administrator Guidelines for Password Security
expiration, Password Expiration and Sandbox Mode
for the InnoDB memcached interface, Password-Protecting the memcached Interface through SASL
for users, User Names and Passwords
forgotten, How to Reset the Root Password
hashing, Password Hashing in MySQL
logging, Passwords and Logging
lost, How to Reset the Root Password
resetting, How to Reset the Root Password
security, Keeping Passwords Secure, The MySQL Access Privilege System
setting, Assigning Account Passwords, GRANT Syntax, SET PASSWORD Syntax
user guidelines, End-User Guidelines for Password Security
PATH environment variable, Unix Postinstallation Procedures, Environment Variables, Invoking MySQL Programs
path name separators
Windows, Using Option Files
pattern matching, Pattern Matching, Regular Expressions
PEP-249 specification for Python, MySQL Connector/Python
performance, Optimization
benchmarks, Using Your Own Benchmarks
disk I/O, Optimizing Disk I/O
estimating, Estimating Query Performance
Performance Schema, Integration with the MySQL Performance Schema, MySQL Performance Schema, MySQL Glossary
event filtering, Performance Schema Event Filtering
memory use, Performance Schema Startup Configuration
performance-schema-consumer-xxx option
mysqld, Performance Schema Command Options
performance-schema-instrument option
mysqld, Performance Schema Command Options
performance_schema
accounts table, The accounts Table
cond_instances table, The cond_instances Table
events_stages_current table, The events_stages_current Table
events_stages_history table, The events_stages_history Table
events_stages_history_long table, The events_stages_history_long Table
events_stages_summary_by_account_by_event_name table, Connection Summary Tables
events_stages_summary_by_host_by_event_name table, Connection Summary Tables
events_stages_summary_by_thread_by_event_name table, Stage Summary Tables
events_stages_summary_by_user_by_event_name table, Connection Summary Tables
events_stages_summary_global_by_event_name table, Stage Summary Tables
events_statements_current table, The events_statements_current Table
events_statements_history table, The events_statements_history Table
events_statements_history_long table, The events_statements_history_long Table
events_statements_summary_by_account_by_event_name table, Connection Summary Tables
events_statements_summary_by_digest table, Statement Summary Tables
events_statements_summary_by_host_by_event_name table, Connection Summary Tables
events_statements_summary_by_thread_by_event_name table, Statement Summary Tables
events_statements_summary_by_user_by_event_name table, Connection Summary Tables
events_statements_summary_global_by_event_name table, Statement Summary Tables
events_waits_current table, The events_waits_current Table
events_waits_history table, The events_waits_history Table
events_waits_history_long table, The events_waits_history_long Table
events_waits_summary_by_account_by_event_name table, Connection Summary Tables
events_waits_summary_by_host_by_event_name table, Connection Summary Tables
events_waits_summary_by_instance table, Event Wait Summary Tables
events_waits_summary_by_thread_by_event_name table, Event Wait Summary Tables
events_waits_summary_by_user_by_event_name table, Connection Summary Tables
events_waits_summary_global_by_event_name table, Event Wait Summary Tables
file_instances table, The file_instances Table
file_summary_by_event_name table, File I/O Summary Tables
file_summary_by_instance table, File I/O Summary Tables
hosts table, The hosts Table
host_cache table, The host_cache Table
mutex_instances table, The mutex_instances Table
objects_summary_global_by_type table, Object Wait Summary Table
performance_timers table, The performance_timers Table
rwlock_instances table, The rwlock_instances Table
session_account_connect_attrs table, Performance Schema Connection Attribute Tables
session_connect_attrs table, Performance Schema Connection Attribute Tables
setup_actors table, The setup_actors Table
setup_consumers table, The setup_consumers Table
setup_instruments table, The setup_instruments Table
setup_objects table, The setup_objects Table
setup_timers table, The setup_timers Table
socket_instances table, The socket_instances Table
socket_summary_by_event_name table, Socket Summary Tables
socket_summary_by_instance table, Socket Summary Tables
table_io_waits_summary_by_index_usage table, The table_io_waits_summary_by_index_usage Table
table_io_waits_summary_by_table table, The table_io_waits_summary_by_table Table
table_lock_waits_summary_by_table table, The table_lock_waits_summary_by_table Table
thread table, The threads Table
users table, The users Table
performance_schema database, MySQL Performance Schema
restrictions, Restrictions on Performance Schema
TRUNCATE TABLE, Performance Schema General Table Characteristics, Restrictions on Performance Schema
PERFORMANCE_SCHEMA storage engine, MySQL Performance Schema
performance_schema system variable, Performance Schema System Variables
performance_schema_accounts_size system variable, Performance Schema System Variables
performance_schema_digests_size system variable, Performance Schema System Variables
performance_schema_events_stages_history_long_size system variable, Performance Schema System Variables
performance_schema_events_stages_history_size system variable, Performance Schema System Variables
performance_schema_events_statements_history_long_size system variable, Performance Schema System Variables
performance_schema_events_statements_history_size system variable, Performance Schema System Variables
performance_schema_events_waits_history_long_size system variable, Performance Schema System Variables
performance_schema_events_waits_history_size system variable, Performance Schema System Variables
performance_schema_hosts_size system variable, Performance Schema System Variables
performance_schema_max_cond_classes system variable, Performance Schema System Variables
performance_schema_max_cond_instances system variable, Performance Schema System Variables
performance_schema_max_file_classes system variable, Performance Schema System Variables
performance_schema_max_file_handles system variable, Performance Schema System Variables
performance_schema_max_file_instances system variable, Performance Schema System Variables
performance_schema_max_mutex_classes system variable, Performance Schema System Variables
performance_schema_max_mutex_instances system variable, Performance Schema System Variables
performance_schema_max_rwlock_classes system variable, Performance Schema System Variables
performance_schema_max_rwlock_instances system variable, Performance Schema System Variables
performance_schema_max_socket_classes system variable, Performance Schema System Variables
performance_schema_max_socket_instances system variable, Performance Schema System Variables
performance_schema_max_stage_classes system variable, Performance Schema System Variables
performance_schema_max_statement_classes system variable, Performance Schema System Variables
performance_schema_max_table_handles system variable, Performance Schema System Variables
performance_schema_max_table_instances system variable, Performance Schema System Variables
performance_schema_max_thread_classes system variable, Performance Schema System Variables
performance_schema_max_thread_instances system variable, Performance Schema System Variables
performance_schema_session_connect_attrs_size system variable, Performance Schema System Variables
performance_schema_setup_actors_size system variable, Performance Schema System Variables
performance_schema_setup_objects_size system variable, Performance Schema System Variables
performance_schema_users_size system variable, Performance Schema System Variables
performance_timers table
performance_schema, The performance_timers Table
PERIOD_ADD(), Date and Time Functions
PERIOD_DIFF(), Date and Time Functions
Perl
installing, Perl Installation Notes
installing on Windows, Installing ActiveState Perl on Windows
Perl API, MySQL Perl API
Perl DBI/DBD
installation problems, Problems Using the Perl DBI/DBD Interface
permission checks
effect on speed, Optimizing Database Privileges
perror, Overview of MySQL Programs, perror — Explain Error Codes
help option, perror — Explain Error Codes
ndb option, perror — Explain Error Codes
silent option, perror — Explain Error Codes
verbose option, perror — Explain Error Codes
version option, perror — Explain Error Codes
persistent statistics, MySQL Glossary
pessimistic, MySQL Glossary
phantom, MySQL Glossary
phantom rows, Avoiding the Phantom Problem Using Next-Key Locking
PHP API, MySQL PHP API
physical, MySQL Glossary
physical backup, MySQL Glossary
PI(), Mathematical Functions
pid-file option
mysql.server, mysql.server — MySQL Server Startup Script
mysqld, Server Command Options
mysqld_safe, mysqld_safe — MySQL Server Startup Script
pid_file system variable, Server System Variables
Ping
thread command, Thread Command Values
pipe option, Connecting to the MySQL Server
mysql, mysql Options, mysqlcheck — A Table Maintenance Program
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
PIPES_AS_CONCAT SQL mode, Server SQL Modes
PITR, MySQL Glossary
plan option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
plan stability, MySQL Glossary
pluggable authentication
PAM, The PAM Authentication Plugin
restrictions, Restrictions on Pluggable Authentication
Windows, The Windows Native Authentication Plugin
plugin, MySQL Glossary
audit log, MySQL Enterprise Audit Log Plugin
plugin API, Server Plugins, The MySQL Plugin API
plugin option prefix
mysqld, Server Command Options
plugin services, MySQL Services for Plugins
plugin-dir option
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
mysqld_safe, mysqld_safe — MySQL Server Startup Script
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
plugin-ini option
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
plugin-load option
mysqld, Server Command Options
plugin-load-add option
mysqld, Server Command Options
plugindir option
mysql_config, mysql_config — Display Options for Compiling Clients
plugins
activating, Installing and Uninstalling Plugins
adding, The MySQL Plugin API
audit, Audit Plugins
authentication, Authentication Plugins
daemon, Daemon Plugins
full-text parser, Full-Text Parser Plugins
INFORMATION_SCHEMA, INFORMATION_SCHEMA Plugins
installing, Installing and Uninstalling Plugins, INSTALL PLUGIN Syntax
semisynchronous replication, Semisynchronous Replication Plugins
server, Server Plugins
storage engine, Storage Engine Plugins
uninstalling, Installing and Uninstalling Plugins, UNINSTALL PLUGIN Syntax
PLUGINS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA PLUGINS Table
plugin_dir system variable, Server System Variables
POINT data type, MySQL Spatial Data Types
Point(), Creating Geometry Values Using MySQL-Specific Functions
point-in-time recovery, Point-in-Time (Incremental) Recovery Using the Binary Log, MySQL Glossary
PointFromText(), Creating Geometry Values Using WKT Functions
PointFromWKB(), Creating Geometry Values Using WKB Functions
PointN(), LineString Functions
PointOnSurface(), MultiPolygon Functions
PolyFromText(), Creating Geometry Values Using WKT Functions
PolyFromWKB(), Creating Geometry Values Using WKB Functions
POLYGON data type, MySQL Spatial Data Types
Polygon(), Creating Geometry Values Using MySQL-Specific Functions
PolygonFromText(), Creating Geometry Values Using WKT Functions
PolygonFromWKB(), Creating Geometry Values Using WKB Functions
port option, Connecting to the MySQL Server
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqld_safe, mysqld_safe — MySQL Server Startup Script
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_config, mysql_config — Display Options for Compiling Clients
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
mysql_convert_table_format, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_setpermission, mysql_setpermission — Interactively Set Permissions in Grant Tables
port system variable, Server System Variables
port-open-timeout option
mysqld, Server Command Options
portability, Optimization Overview
types, Using Data Types from Other Database Engines
porting
to other systems, Debugging and Porting MySQL
ports, MySQL Source-Configuration Options, Starting and Troubleshooting the MySQL Server, Environment Variables, Connecting to the MySQL Server, mysqlbinlog — Utility for Processing Binary Log Files, Running Multiple MySQL Instances on Unix, Security Guidelines, Causes of Access-Denied Errors, Connecting to MySQL Remotely from Windows with SSH, Replication Slave Options and Variables, The socket_instances Table, Can't connect to [local] MySQL server
POSITION(), String Functions
post-filtering
Performance Schema, Performance Schema Event Filtering
post-query option
mysqlslap, mysqlslap — Load Emulation Client
post-system option
mysqlslap, mysqlslap — Load Emulation Client
PostgreSQL compatibility, MySQL Extensions to Standard SQL
POSTGRESQL SQL mode, Server SQL Modes
postinstall
multiple servers, Running Multiple MySQL Instances on One Machine
postinstallation
setup and testing, Postinstallation Setup and Testing
POW(), Mathematical Functions
POWER(), Mathematical Functions
pre-filtering
Performance Schema, Performance Schema Event Filtering
pre-query option
mysqlslap, mysqlslap — Load Emulation Client
pre-system option
mysqlslap, mysqlslap — Load Emulation Client
precedence
operator, Operator Precedence
precision
arithmetic, Precision Math
fractional seconds, Data Types, Date and Time Type Overview
numeric, Data Types
precision math, Precision Math
preload_buffer_size system variable, Server System Variables
Prepare
thread command, Thread Command Values
PREPARE, SQL Syntax for Prepared Statements, PREPARE Syntax
XA transactions, XA Transaction SQL Syntax
prepared backup, MySQL Glossary
prepared statements, SQL Syntax for Prepared Statements, PREPARE Syntax, EXECUTE Syntax, DEALLOCATE PREPARE Syntax, C API Prepared Statements
repreparation, Caching of Prepared Statements and Stored Programs
with Connector/Net, Using the Connector/Net with Prepared Statements
preparing
thread state, General Thread States
preparing for alter table
thread state, General Thread States
preview option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
primary key, MySQL Glossary
constraint, PRIMARY KEY and UNIQUE Index Constraints
deleting, ALTER TABLE Syntax
PRIMARY KEY, ALTER TABLE Syntax, CREATE TABLE Syntax
primary keys
and partitioning keys, Partitioning Keys, Primary Keys, and Unique Keys
print command
mysql, mysql Commands
print-defaults option, Command-Line Options that Affect Option-File Handling
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
privilege
changes, When Privilege Changes Take Effect
privilege checks
effect on speed, Optimizing Database Privileges
privilege information
location, Privilege System Grant Tables
privilege system, The MySQL Access Privilege System
privileges
access, The MySQL Access Privilege System
adding, Adding User Accounts
and replication, Replication of the mysql System Database
default, Securing the Initial MySQL Accounts
deleting, Removing User Accounts, DROP USER Syntax
display, SHOW GRANTS Syntax
dropping, Removing User Accounts, DROP USER Syntax
granting, GRANT Syntax
revoking, REVOKE Syntax
problems
access denied errors, Access denied
common errors, Problems and Common Errors
compiling MySQL server, Dealing with Problems Compiling MySQL
DATE columns, Problems Using DATE Columns
date values, The DATE, DATETIME, and TIMESTAMP Types
installing on Solaris, Installing MySQL on Solaris and OpenSolaris
installing Perl, Problems Using the Perl DBI/DBD Interface
linking, Building C API Client Programs
lost connection errors, Lost connection to MySQL server
ODBC, Connector/ODBC Support
reporting, General Information, How to Report Bugs or Problems
starting the server, Starting and Troubleshooting the MySQL Server
table locking, Table Locking Issues
time zone, Time Zone Problems
PROCEDURE, SELECT Syntax
PROCEDURE ANALYSE(), Using PROCEDURE ANALYSE
procedures
stored, Using Stored Routines (Procedures and Functions)
process, MySQL Glossary
process support, Operating Systems Supported by MySQL Community Server
processes
display, SHOW PROCESSLIST Syntax
processing
arguments, UDF Argument Processing
Processlist
thread command, Thread Command Values
PROCESSLIST, SHOW PROCESSLIST Syntax
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA PROCESSLIST Table
possible inconsistency with INFORMATION_SCHEMA tables, Possible Inconsistency with PROCESSLIST
product option
MySQLInstallerConsole, MySQL Installer Console
PROFILING
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA PROFILING Table
profiling session variable, Server System Variables
profiling_history_size session variable, Server System Variables
program variables
setting, Using Options to Set Program Variables
program-development utilities, Overview of MySQL Programs
programs
administrative, Overview of MySQL Programs
client, Overview of MySQL Programs, Building C API Client Programs
stored, MySQL Compound-Statement Syntax, Stored Programs and Views
utility, Overview of MySQL Programs
prompt command
mysql, mysql Commands
prompt option
mysql, mysql Options
prompts
meanings, Entering Queries
pronunciation
MySQL, What is MySQL?
protocol option, Connecting to the MySQL Server
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
protocol_version system variable, Server System Variables
proximity search, Boolean Full-Text Searches
Proxy, MySQL Proxy
proxy_user session variable, Server System Variables
pseudo-record, MySQL Glossary
pseudo_slave_mode system variable, Server System Variables
pseudo_thread_id system variable, Server System Variables
Pthreads, MySQL Glossary
purge, MySQL Glossary
PURGE BINARY LOGS, PURGE BINARY LOGS Syntax
purge buffering, MySQL Glossary
purge lag, MySQL Glossary
PURGE MASTER LOGS, PURGE BINARY LOGS Syntax
purge scheduling, Better Scalability with Improved Purge Scheduling
purge thread, MySQL Glossary
Purging old relay logs
thread state, General Thread States
Python, MySQL Connector/Python
third-party driver, MySQL Python API
Q
QUARTER(), Date and Time Functions
queries
entering, Entering Queries
estimating performance, Estimating Query Performance
examples, Examples of Common Queries
speed of, Optimizing SELECT Statements
Query
thread command, Thread Command Values
query, MySQL Glossary
Query Cache, The MySQL Query Cache
query cache
and partitioned tables, Restrictions and Limitations on Partitioning
thread states, Query Cache Thread States
query end
thread state, General Thread States
query execution plan, MySQL Glossary
query expansion, Full-Text Searches with Query Expansion
query option
mysqlslap, mysqlslap — Load Emulation Client
query_alloc_block_size system variable, Server System Variables
query_cache_limit system variable, Server System Variables
query_cache_min_res_unit system variable, Server System Variables
query_cache_size system variable, Server System Variables
query_cache_type system variable, Server System Variables
query_cache_wlock_invalidate system variable, Server System Variables
query_prealloc_size system variable, Server System Variables
questions, mysqladmin — Client for Administering a MySQL Server
answering, Guidelines for Using the Mailing Lists
Queueing master event to the relay log
thread state, Replication Slave I/O Thread States
quick option
myisamchk, myisamchk Repair Options
mysql, mysql Options
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
quiesce, MySQL Glossary
quiet option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
Quit
thread command, Thread Command Values
quit command
mysql, mysql Commands
quotation marks
in strings, String Literals
QUOTE(), String Literals, String Functions, mysql_real_escape_string()
quote-names option
mysqldump, mysqldump — A Database Backup Program
quoting, String Literals
column alias, Schema Object Names, Problems with Column Aliases
quoting binary data, String Literals
quoting of identifiers, Schema Object Names
R
RADIANS(), Mathematical Functions
RAID, MySQL Glossary
RAND(), Mathematical Functions
random dive, MySQL Glossary
random-passwords option
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
rand_seed1 session variable, Server System Variables
rand_seed2 session variable, Server System Variables
range join type
optimizer, EXPLAIN Output Format
range partitioning, RANGE Partitioning, COLUMNS Partitioning
range partitions
adding and dropping, Management of RANGE and LIST Partitions
managing, Management of RANGE and LIST Partitions
range_alloc_block_size system variable, Server System Variables
raw backup, MySQL Glossary
raw option
mysql, mysql Options
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
raw partitions, Using Raw Disk Partitions for the Shared Tablespace
re-creating
grant tables, Problems Running mysql_install_db
READ COMMITTED, MySQL Glossary
transaction isolation level, SET TRANSACTION Syntax
READ UNCOMMITTED, MySQL Glossary
transaction isolation level, SET TRANSACTION Syntax
read view, MySQL Glossary
read-ahead, More Read-Ahead Statistics, MySQL Glossary
linear, Changes in the Read-Ahead Algorithm
random, Changes in the Read-Ahead Algorithm
read-from-remote-master option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
read-from-remote-server option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
read-only option
myisamchk, myisamchk Check Options
mysqld, Replication Slave Options and Variables
read-only transaction, MySQL Glossary
Reading event from the relay log
thread state, Replication Slave SQL Thread States
Reading from net
thread state, General Thread States
Reading master dump table data
thread state, Replication Slave Connection Thread States
read_buffer_size myisamchk variable, myisamchk General Options
read_buffer_size system variable, Server System Variables
read_only system variable, Server System Variables
read_rnd_buffer_size system variable, Server System Variables
REAL data type, Numeric Type Overview
REAL_AS_FLOAT SQL mode, Server SQL Modes
Rebuilding the index on master dump table
thread state, Replication Slave Connection Thread States
reconfiguring, Dealing with Problems Compiling MySQL
reconnect option
mysql, mysql Options
Reconnecting after a failed binlog dump request
thread state, Replication Slave I/O Thread States
Reconnecting after a failed master event read
thread state, Replication Slave I/O Thread States
reconnection
automatic, The threads Table, Controlling Automatic Reconnection Behavior
record lock, MySQL Glossary
record-level locks
InnoDB, The InnoDB Transaction Model and Locking, InnoDB Record, Gap, and Next-Key Locks, Avoiding the Phantom Problem Using Next-Key Locking, InnoDB Startup Options and System Variables
record_log_pos option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
RECOVER
XA transactions, XA Transaction SQL Syntax
recover option
myisamchk, myisamchk Repair Options
recovery
from crash, Using myisamchk for Crash Recovery
incremental, Point-in-Time (Incremental) Recovery Using the Binary Log
point in time, Point-in-Time (Incremental) Recovery Using the Binary Log
redo, MySQL Glossary
redo log, Adding, Removing, or Resizing InnoDB Data and Log Files, MySQL Glossary
reducing
data size, Optimizing Data Size
redundant row format, COMPACT and REDUNDANT Row Formats, MySQL Glossary
ref join type
optimizer, EXPLAIN Output Format
references, ALTER TABLE Syntax
referential integrity, The InnoDB Storage Engine, InnoDB as the Default MySQL Storage Engine, MySQL Glossary
REFERENTIAL_CONSTRAINTS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
Refresh
thread command, Thread Command Values
ref_or_null, IS NULL Optimization
ref_or_null join type
optimizer, EXPLAIN Output Format
REGEXP, Regular Expressions
REGEXP operator, Regular Expressions
regexp option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
mysql_find_rows, mysql_find_rows — Extract SQL Statements from Files
Register Slave
thread command, Thread Command Values
Registering slave on master
thread state, Replication Slave I/O Thread States
regular expression syntax, Regular Expressions
rehash command
mysql, mysql Commands
relational, MySQL Glossary
relational databases
defined, What is MySQL?
relative option
mysqladmin, mysqladmin — Client for Administering a MySQL Server
relay logs (replication), Replication Relay and Status Logs
relay-log option
mysqld, Replication Slave Options and Variables
relay-log-index option
mysqld, Replication Slave Options and Variables
relay-log-info-file option
mysqld, Replication Slave Options and Variables
relay-log-info-repository option
mysqld, Replication Slave Options and Variables
relay-log-purge option
mysqld, Replication Slave Options and Variables
relay-log-recovery option
mysqld, Replication Slave Options and Variables
relay-log-space-limit option
mysqld, Replication Slave Options and Variables
relay_log system variable, Replication Slave Options and Variables
relay_log_basename system variable, Replication Slave Options and Variables
relay_log_index system variable, Replication Slave Options and Variables
relay_log_info_file system variable, Replication Slave Options and Variables
relay_log_info_repository system variable, Replication Slave Options and Variables
relay_log_purge system variable, Server System Variables
relay_log_recovery system variable, Replication Slave Options and Variables
relay_log_space_limit system variable, Server System Variables
release notes, MySQL Release Notes
release numbers, Choosing Which MySQL Distribution to Install
RELEASE SAVEPOINT, SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax
releases
naming scheme, Choosing Which Version of MySQL to Install
testing, Choosing Which Version of MySQL to Install
updating, How and When Updates Are Released
RELEASE_LOCK(), Miscellaneous Functions
relevance, MySQL Glossary
relnotes option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
remove option
mysqld, Server Command Options
Removing duplicates
thread state, General Thread States
removing tmp table
thread state, General Thread States
rename
thread state, General Thread States
rename result table
thread state, General Thread States
RENAME TABLE, RENAME TABLE Syntax
RENAME USER, RENAME USER Syntax
renaming user accounts, RENAME USER Syntax
Reopen tables
thread state, General Thread States
repair
tables, mysqlcheck — A Table Maintenance Program
Repair by sorting
thread state, General Thread States
Repair done
thread state, General Thread States
repair option
mysqlcheck, mysqlcheck — A Table Maintenance Program
repair options
myisamchk, myisamchk Repair Options
REPAIR TABLE, REPAIR TABLE Syntax
and partitioning, Maintenance of Partitions
and replication, REPAIR TABLE Syntax, Replication and REPAIR TABLE
Repair with keycache
thread state, General Thread States
repairing
tables, How to Repair MyISAM Tables
REPEAT, REPEAT Syntax
labels, Statement Label Syntax
REPEAT(), String Functions
REPEATABLE READ, MySQL Glossary
transaction isolation level, SET TRANSACTION Syntax
repertoire
character set, String Repertoire, The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)
replace, Overview of MySQL Programs
REPLACE, REPLACE Syntax
replace option
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
replace utility, replace — A String-Replacement Utility
REPLACE(), String Functions
replicate-do-db option
mysqld, Replication Slave Options and Variables
replicate-do-table option
mysqld, Replication Slave Options and Variables
replicate-ignore-db option
mysqld, Replication Slave Options and Variables
replicate-ignore-table option
mysqld, Replication Slave Options and Variables
replicate-rewrite-db option
mysqld, Replication Slave Options and Variables
replicate-same-server-id option
mysqld, Replication Slave Options and Variables
replicate-wild-do-table option
mysqld, Replication Slave Options and Variables
replicate-wild-ignore-table option
mysqld, Replication Slave Options and Variables
replication, Replication, MySQL Glossary
and AUTO_INCREMENT, Replication and AUTO_INCREMENT
and character sets, Replication and Character Sets
and CREATE ... IF NOT EXISTS, Replication of CREATE ... IF NOT EXISTS Statements
and CREATE TABLE ... SELECT, Replication of CREATE TABLE ... SELECT Statements
and DATA DIRECTORY, Replication and DIRECTORY Table Options
and DROP ... IF EXISTS, Replication of DROP ... IF EXISTS Statements
and errors on slave, Slave Errors During Replication
and floating-point values, Replication and Floating-Point Values
and FLUSH, Replication and FLUSH
and fractional seconds, Replication and Fractional Seconds Support
and functions, Replication and System Functions
and INDEX DIRECTORY, Replication and DIRECTORY Table Options
and invoked features, Replication of Invoked Features
and LAST_INSERT_ID(), Replication and AUTO_INCREMENT
and LIMIT, Replication and LIMIT
and LOAD DATA, Replication and LOAD DATA INFILE
and max_allowed_packet, Replication and max_allowed_packet
and MEMORY tables, Replication and MEMORY Tables
and mysql (system) database, Replication of the mysql System Database
and partial updates, Slave Errors During Replication
and partitioning, Replication and Server SQL Mode
and privileges, Replication of the mysql System Database
and query optimizer, Replication and the Query Optimizer
and REPAIR TABLE statement, REPAIR TABLE Syntax, Replication and REPAIR TABLE
and reserved words, Replication and Reserved Words
and scheduled events, Replication of Invoked Features
and SQL mode, Replication and Server SQL Mode
and stored routines, Replication of Invoked Features
and temporary tables, Replication and Temporary Tables
and time zones, Replication and Time Zones
and TIMESTAMP, Replication and AUTO_INCREMENT
and transactions, Replication Retries and Timeouts, Replication and Transactions
and triggers, Replication of Invoked Features, Replication and Triggers
and TRUNCATE TABLE, Replication and TRUNCATE TABLE
and variables, Replication and Variables
and views, Replication and Views
attribute demotion, Replication of Columns Having Different Data Types
attribute promotion, Replication of Columns Having Different Data Types
crashes, Replication and Master or Slave Shutdowns
delayed, Delayed Replication
relay logs, Replication Relay and Status Logs
row-based vs statement-based, Advantages and Disadvantages of Statement-Based and Row-Based Replication
safe and unsafe statements, Determination of Safe and Unsafe Statements in Binary Logging
semisynchronous, Semisynchronous Replication
shutdown and restart, Replication and Master or Slave Shutdowns, Replication and Temporary Tables
statements incompatible with STATEMENT format, Advantages and Disadvantages of Statement-Based and Row-Based Replication
status logs, Replication Relay and Status Logs
timeouts, Replication Retries and Timeouts
with differing tables on master and slave, Replication with Differing Table Definitions on Master and Slave
with ZFS, Using ZFS Replication
replication filtering options
and case sensitivity, How Servers Evaluate Replication Filtering Rules
replication formats
compared, Advantages and Disadvantages of Statement-Based and Row-Based Replication
replication implementation, Replication Implementation
replication limitations, Replication Features and Issues
replication log tables, Replication Relay and Status Logs
replication master
thread states, Replication Master Thread States
replication masters
statements, SQL Statements for Controlling Master Servers
replication options, Replication Features and Issues
replication slave
thread states, Replication Slave I/O Thread States, Replication Slave SQL Thread States, Replication Slave Connection Thread States
replication slaves
statements, SQL Statements for Controlling Slave Servers
report-host option
mysqld, Replication Slave Options and Variables
report-password option
mysqld, Replication Slave Options and Variables
report-port option
mysqld, Replication Slave Options and Variables
report-user option
mysqld, Replication Slave Options and Variables
reporting
bugs, General Information, How to Report Bugs or Problems
Connector/Net problems, Connector/Net Support
Connector/ODBC problems, Connector/ODBC Support
errors, How to Report Bugs or Problems
problems, General Information
report_host system variable, Server System Variables
report_password system variable, Server System Variables
report_port system variable, Server System Variables
report_user system variable, Server System Variables
Requesting binlog dump
thread state, Replication Slave I/O Thread States
REQUIRE GRANT option, GRANT Syntax
reschedule
thread state, Delayed-Insert Thread States
reserved words, Reserved Words
and replication, Replication and Reserved Words
RESET MASTER, RESET MASTER Syntax
RESET SLAVE, RESET SLAVE Syntax
RESET SLAVE ALL, RESET SLAVE Syntax
Reset stmt
thread command, Thread Command Values
resetmaster option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
resetslave option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
RESIGNAL, RESIGNAL Syntax
resolveip, Overview of MySQL Programs, resolveip — Resolve Host name to IP Address or Vice Versa
help option, resolveip — Resolve Host name to IP Address or Vice Versa
silent option, resolveip — Resolve Host name to IP Address or Vice Versa
version option, resolveip — Resolve Host name to IP Address or Vice Versa
resolve_stack_dump, Overview of MySQL Programs, resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
help option, resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
numeric-dump-file option, resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
symbols-file option, resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
version option, resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
resource limits
user accounts, Server System Variables, Setting Account Resource Limits, GRANT Syntax
restarting
the server, Unix Postinstallation Procedures
restore, MySQL Glossary
restrictions
character sets, Restrictions on Character Sets
events, Restrictions on Stored Programs
InnoDB, Limits on InnoDB Tables
performance_schema database, Restrictions on Performance Schema
pluggable authentication, Restrictions on Pluggable Authentication
server-side cursors, Restrictions on Server-Side Cursors
signal, Restrictions on Condition Handling
stored routines, Restrictions on Stored Programs
subqueries, Restrictions on Subqueries
triggers, Restrictions on Stored Programs
views, Restrictions on Views
XA transactions, Restrictions on XA Transactions
result-file option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqldump, mysqldump — A Database Backup Program
retrieving
data from tables, Retrieving Information from a Table
RETURN, RETURN Syntax
return (\r), String Literals, LOAD DATA INFILE Syntax
return values
UDFs, UDF Return Values and Error Handling
REVERSE(), String Functions
REVOKE, REVOKE Syntax
revoking
privileges, REVOKE Syntax
rhost option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
RIGHT JOIN, JOIN Syntax
RIGHT OUTER JOIN, JOIN Syntax
RIGHT(), String Functions
RLIKE, Regular Expressions
ROLLBACK, Transaction and Atomic Operation Differences, START TRANSACTION, COMMIT, and ROLLBACK Syntax
XA transactions, XA Transaction SQL Syntax
rollback, MySQL Glossary
rollback option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
rollback segment, Separate Tablespaces for InnoDB Undo Logs, MySQL Glossary
ROLLBACK TO SAVEPOINT, SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax
Rolling back
thread state, General Thread States
ROLLUP, GROUP BY Modifiers
root password, Securing the Initial MySQL Accounts
root user, Security Guidelines
password resetting, How to Reset the Root Password
ROUND(), Mathematical Functions
rounding, Precision Math
rounding errors, Numeric Type Overview
ROUTINES
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA ROUTINES Table
routines option
mysqldump, mysqldump — A Database Backup Program
ROW, Row Subqueries
row, MySQL Glossary
row format, MySQL Glossary
row lock, MySQL Glossary
row size
maximum, Limits on Table Column Count and Row Size
row subqueries, Row Subqueries
row-based replication, MySQL Glossary
advantages, Advantages and Disadvantages of Statement-Based and Row-Based Replication
disadvantages, Advantages and Disadvantages of Statement-Based and Row-Based Replication
row-level locking, Internal Locking Methods, MySQL Glossary
rows
counting, Counting Rows
deleting, Deleting Rows from Related Tables
locking, Transaction and Atomic Operation Differences
matching problems, Solving Problems with No Matching Rows
selecting, Selecting Particular Rows
sorting, Sorting Rows
rows option
mysql_find_rows, mysql_find_rows — Extract SQL Statements from Files
ROW_COUNT(), Information Functions
ROW_FORMAT
COMPACT, COMPACT and REDUNDANT Row Formats
COMPRESSED, Enabling Compression for a Table, DYNAMIC and COMPRESSED Row Formats
DYNAMIC, DYNAMIC and COMPRESSED Row Formats
REDUNDANT, COMPACT and REDUNDANT Row Formats
RPAD(), String Functions
Rpl_semi_sync_master_clients status variable, Server Status Variables
rpl_semi_sync_master_enabled system variable, Server System Variables
Rpl_semi_sync_master_net_avg_wait_time status variable, Server Status Variables
Rpl_semi_sync_master_net_waits status variable, Server Status Variables
Rpl_semi_sync_master_net_wait_time status variable, Server Status Variables
Rpl_semi_sync_master_no_times status variable, Server Status Variables
Rpl_semi_sync_master_no_tx status variable, Server Status Variables
Rpl_semi_sync_master_status status variable, Server Status Variables
Rpl_semi_sync_master_timefunc_failures status variable, Server Status Variables
rpl_semi_sync_master_timeout system variable, Server System Variables
rpl_semi_sync_master_trace_level system variable, Server System Variables
Rpl_semi_sync_master_tx_avg_wait_time status variable, Server Status Variables
Rpl_semi_sync_master_tx_waits status variable, Server Status Variables
Rpl_semi_sync_master_tx_wait_time status variable, Server Status Variables
rpl_semi_sync_master_wait_no_slave system variable, Server System Variables
Rpl_semi_sync_master_wait_pos_backtraverse status variable, Server Status Variables
Rpl_semi_sync_master_wait_sessions status variable, Server Status Variables
Rpl_semi_sync_master_yes_tx status variable, Server Status Variables
rpl_semi_sync_slave_enabled system variable, Server System Variables
Rpl_semi_sync_slave_status status variable, Server Status Variables
rpl_semi_sync_slave_trace_level system variable, Server System Variables
RPM file, Installing MySQL from RPM Packages on Linux
rpm option
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
RPM Package Manager, Installing MySQL from RPM Packages on Linux
RTRIM(), String Functions
Ruby API, MySQL Ruby APIs
running
ANSI mode, Running MySQL in ANSI Mode
batch mode, Using mysql in Batch Mode
multiple servers, Running Multiple MySQL Instances on One Machine
queries, Entering Queries
running CMake after prior invocation, Installing MySQL from a Standard Source Distribution, Dealing with Problems Compiling MySQL
rw-lock, MySQL Glossary
rwlock_instances table
performance_schema, The rwlock_instances Table
S
safe statement (replication)
defined, Determination of Safe and Unsafe Statements in Binary Logging
safe-mode option
mysqld, Server Command Options
safe-recover option
myisamchk, myisamchk Repair Options
safe-updates option, Using the --safe-updates Option
mysql, mysql Options
safe-user-create option
mysqld, Server Command Options
Sakila, History of MySQL
sandbox mode, Password Expiration and Sandbox Mode
SASL, Password-Protecting the memcached Interface through SASL
SAVEPOINT, SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax
savepoint, MySQL Glossary
Saving state
thread state, General Thread States
scalability, MySQL Glossary
scale
arithmetic, Precision Math
numeric, Data Types
scale out, MySQL Glossary
scale up, MySQL Glossary
schema, MySQL Glossary
altering, ALTER DATABASE Syntax
creating, CREATE DATABASE Syntax
deleting, DROP DATABASE Syntax
SCHEMA(), Information Functions
SCHEMATA
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA SCHEMATA Table
SCHEMA_PRIVILEGES
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
script files, Using mysql in Batch Mode
scripts, mysqld_safe — MySQL Server Startup Script, mysqld_multi — Manage Multiple MySQL Servers
mysql_install_db, Problems Running mysql_install_db
SQL, mysql — The MySQL Command-Line Tool
search index, MySQL Glossary
searching
and case sensitivity, Case Sensitivity in String Searches
full-text, Full-Text Search Functions
MySQL Web pages, How to Report Bugs or Problems
two keys, Searching on Two Keys
Searching rows for update
thread state, General Thread States
SECOND(), Date and Time Functions
secondary index, MySQL Glossary
InnoDB, Clustered and Secondary Indexes
secure-auth option
mysql, mysql Options
mysqld, Server Command Options
secure-file-priv option
mysqld, Server Command Options
secure_auth system variable, Server System Variables
secure_file_priv system variable, Server System Variables
security
against attackers, Making MySQL Secure Against Attackers
for the InnoDB memcached interface, Password-Protecting the memcached Interface through SASL
security system, The MySQL Access Privilege System
SEC_TO_TIME(), Date and Time Functions
segment, MySQL Glossary
SELECT
INTO, SELECT ... INTO Syntax
LIMIT, SELECT Syntax
optimizing, Optimizing Queries with EXPLAIN, EXPLAIN Syntax
Query Cache, The MySQL Query Cache
SELECT INTO TABLE, SELECT INTO TABLE Differences
SELECT speed, Speed of SELECT Statements
selecting
databases, Creating and Selecting a Database
selectivity, MySQL Glossary
select_limit variable, mysql Options
semi-consistent read, MySQL Glossary
InnoDB, InnoDB Startup Options and System Variables
semi-joins, Optimizing Subqueries with Semi-Join Transformations
semisynchronous replication, Semisynchronous Replication
administrative interface, Semisynchronous Replication Administrative Interface
configuration, Semisynchronous Replication Installation and Configuration
installation, Semisynchronous Replication Installation and Configuration
monitoring, Semisynchronous Replication Monitoring
semisynchronous replication plugins, Semisynchronous Replication Plugins
Sending binlog event to slave
thread state, Replication Master Thread States
sending cached result to client
thread state, Query Cache Thread States
SEQUENCE, Using AUTO_INCREMENT
sequence emulation, Information Functions
sequences, Using AUTO_INCREMENT
SERIAL, Numeric Type Overview
SERIAL DEFAULT VALUE, Data Type Default Values
SERIALIZABLE, MySQL Glossary
transaction isolation level, SET TRANSACTION Syntax
server, MySQL Glossary
connecting, Connecting to and Disconnecting from the Server, Connecting to the MySQL Server
debugging, Debugging a MySQL Server
disconnecting, Connecting to and Disconnecting from the Server
logs, MySQL Server Logs
restart, Unix Postinstallation Procedures
shutdown, Unix Postinstallation Procedures
signal handling, Server Response to Signals
starting, Unix Postinstallation Procedures
starting and stopping, Starting and Stopping MySQL Automatically
starting problems, Starting and Troubleshooting the MySQL Server
server administration, mysqladmin — Client for Administering a MySQL Server
server plugins, Server Plugins
server variables, SHOW VARIABLES Syntax (see system variables)
server-id option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqld, Replication and Binary Logging Options and Variables
server-public-key-path option
mysql, mysql Options
server-side cursor
restrictions, Restrictions on Server-Side Cursors
servers
multiple, Running Multiple MySQL Instances on One Machine
server_id system variable, Server System Variables
server_uuid system variable
mysqld, Replication and Binary Logging Options and Variables
service-startup-timeout option
mysql.server, mysql.server — MySQL Server Startup Script
services
for plugins, MySQL Services for Plugins
servlet, A Simple Servlet with Glassfish, Connector/J and MySQL
session variable
autocommit, Server System Variables
big_tables, Server System Variables
disconnect_on_expired_passwords, Server System Variables
error_count, Server System Variables
external_user, Server System Variables
foreign_key_checks, Server System Variables
identity, Server System Variables
insert_id, Server System Variables
last_insert_id, Server System Variables
profiling, Server System Variables
profiling_history_size, Server System Variables
proxy_user, Server System Variables
rand_seed1, Server System Variables
rand_seed2, Server System Variables
sql_auto_is_null, Server System Variables
sql_big_selects, Server System Variables
sql_buffer_result, Server System Variables
sql_notes, Server System Variables
sql_quote_show_create, Server System Variables
sql_safe_updates, Server System Variables
sql_warnings, Server System Variables
timestamp, Server System Variables
unique_checks, Server System Variables
warning_count, Server System Variables
session variables
and replication, Replication and Variables
session_account_connect_attrs table
performance_schema, Performance Schema Connection Attribute Tables
session_connect_attrs table
performance_schema, Performance Schema Connection Attribute Tables
SESSION_STATUS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
SESSION_USER(), Information Functions
SESSION_VARIABLES
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
SET, SET Syntax
CHARACTER SET, Connection Character Sets and Collations, SET Syntax
NAMES, Connection Character Sets and Collations, Configuring the Character Set and Collation for Applications, SET Syntax
ONE_SHOT, SET Syntax
size, Data Type Storage Requirements
SET data type, String Type Overview, The SET Type
SET GLOBAL sql_slave_skip_counter, SET GLOBAL sql_slave_skip_counter Syntax
Set option
thread command, Thread Command Values
SET PASSWORD, SET PASSWORD Syntax
SET PASSWORD statement, Assigning Account Passwords
SET sql_log_bin, SET sql_log_bin Syntax
SET statement
assignment operator, Assignment Operators
SET TRANSACTION, SET TRANSACTION Syntax
set-auto-increment[option
myisamchk, Other myisamchk Options
set-character-set option
myisamchk, myisamchk Repair Options
set-charset option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqldump, mysqldump — A Database Backup Program
set-collation option
myisamchk, myisamchk Repair Options
set-gtid-purged option
mysqldump, mysqldump — A Database Backup Program
setting
passwords, Assigning Account Passwords
setting passwords, SET PASSWORD Syntax
setting program variables, Using Options to Set Program Variables
setup
postinstallation, Postinstallation Setup and Testing
thread state, General Thread States
setup_actors table
performance_schema, The setup_actors Table
setup_consumers table
performance_schema, The setup_consumers Table
setup_instruments table
performance_schema, The setup_instruments Table
setup_objects table
performance_schema, The setup_objects Table
setup_timers table
performance_schema, The setup_timers Table
SHA(), Encryption and Compression Functions
SHA1(), Encryption and Compression Functions
SHA2(), Encryption and Compression Functions
sha256_password_private_key_path system variable, Server System Variables
sha256_password_public_key_path system variable, Server System Variables
shared lock, MySQL Glossary
shared tablespace, MySQL Glossary
shared-memory option
mysqld, Server Command Options
shared-memory-base-name option, Connecting to the MySQL Server
mysqld, Server Command Options
mysqlslap, mysqlslap — Load Emulation Client
shared_memory system variable, Server System Variables
shared_memory_base_name system variable, Server System Variables
sharp checkpoint, MySQL Glossary
shell syntax, Typographical and Syntax Conventions
short-form option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
SHOW AUTHORS, SHOW Syntax, SHOW AUTHORS Syntax
SHOW BINARY LOGS, SHOW Syntax, SHOW BINARY LOGS Syntax
SHOW BINLOG EVENTS, SHOW Syntax, SHOW BINLOG EVENTS Syntax
SHOW CHARACTER SET, SHOW Syntax, SHOW CHARACTER SET Syntax
SHOW COLLATION, SHOW Syntax, SHOW COLLATION Syntax
SHOW COLUMNS, SHOW Syntax, SHOW COLUMNS Syntax
SHOW CONTRIBUTORS, SHOW Syntax, SHOW CONTRIBUTORS Syntax
SHOW CREATE DATABASE, SHOW Syntax, SHOW CREATE DATABASE Syntax
SHOW CREATE EVENT, SHOW Syntax
SHOW CREATE FUNCTION, SHOW Syntax, SHOW CREATE FUNCTION Syntax
SHOW CREATE PROCEDURE, SHOW Syntax, SHOW CREATE PROCEDURE Syntax
SHOW CREATE SCHEMA, SHOW Syntax, SHOW CREATE DATABASE Syntax
SHOW CREATE TABLE, SHOW Syntax, SHOW CREATE TABLE Syntax
SHOW CREATE TRIGGER, SHOW Syntax, SHOW CREATE TRIGGER Syntax
SHOW CREATE VIEW, SHOW Syntax, SHOW CREATE VIEW Syntax
SHOW DATABASES, SHOW Syntax, SHOW DATABASES Syntax
SHOW ENGINE, SHOW Syntax, SHOW ENGINE Syntax
SHOW ENGINE INNODB MUTEX, More Compact Output of SHOW ENGINE INNODB MUTEX
SHOW ENGINE INNODB STATUS, SHOW ENGINE Syntax
and innodb_adaptive_hash_index, Controlling Adaptive Hash Indexing
and innodb_use_sys_malloc, Using Operating System Memory Allocators
SHOW ENGINES, SHOW Syntax, SHOW ENGINES Syntax
SHOW ERRORS, SHOW Syntax, SHOW ERRORS Syntax
SHOW EVENTS, SHOW Syntax, SHOW EVENTS Syntax
SHOW extensions, Extensions to SHOW Statements
SHOW FIELDS, SHOW Syntax, SHOW COLUMNS Syntax
SHOW FUNCTION CODE, SHOW Syntax, SHOW FUNCTION CODE Syntax
SHOW FUNCTION STATUS, SHOW Syntax, SHOW FUNCTION STATUS Syntax
SHOW GRANTS, SHOW Syntax, SHOW GRANTS Syntax
SHOW INDEX, SHOW Syntax, SHOW INDEX Syntax
SHOW KEYS, SHOW Syntax, SHOW INDEX Syntax
SHOW MASTER LOGS, SHOW Syntax, SHOW BINARY LOGS Syntax
SHOW MASTER STATUS, SHOW Syntax, SHOW MASTER STATUS Syntax
SHOW OPEN TABLES, SHOW Syntax, SHOW OPEN TABLES Syntax
SHOW PLUGINS, SHOW Syntax, SHOW PLUGINS Syntax
SHOW PRIVILEGES, SHOW Syntax, SHOW PRIVILEGES Syntax
SHOW PROCEDURE CODE, SHOW Syntax, SHOW PROCEDURE CODE Syntax
SHOW PROCEDURE STATUS, SHOW Syntax, SHOW PROCEDURE STATUS Syntax
SHOW PROCESSLIST, SHOW Syntax, SHOW PROCESSLIST Syntax
SHOW PROFILE, SHOW Syntax, SHOW PROFILE Syntax
SHOW PROFILES, SHOW Syntax, SHOW PROFILE Syntax, SHOW PROFILES Syntax
SHOW RELAYLOG EVENTS, SHOW RELAYLOG EVENTS Syntax
SHOW SCHEDULER STATUS, Event Scheduler Status
SHOW SCHEMAS, SHOW DATABASES Syntax
SHOW SLAVE HOSTS, SHOW Syntax, SHOW SLAVE HOSTS Syntax
SHOW SLAVE STATUS, SHOW Syntax, SHOW SLAVE STATUS Syntax
SHOW STATUS, SHOW Syntax
SHOW STORAGE ENGINES, SHOW ENGINES Syntax
SHOW TABLE STATUS, SHOW Syntax
SHOW TABLES, SHOW Syntax, SHOW TABLES Syntax
SHOW TRIGGERS, SHOW Syntax, SHOW TRIGGERS Syntax
SHOW VARIABLES, SHOW Syntax
SHOW WARNINGS, SHOW Syntax, SHOW WARNINGS Syntax
SHOW with WHERE, INFORMATION_SCHEMA Tables, Extensions to SHOW Statements
show-slave-auth-info option
mysqld, Replication Slave Options and Variables
show-table-type option
mysqlshow, mysqlshow — Display Database, Table, and Column Information
show-warnings option
mysql, mysql Options
showing
database information, mysqlshow — Display Database, Table, and Column Information
shutdown, The Shutdown Process, MySQL Glossary
Shutdown
thread command, Thread Command Values
shutdown_timeout variable, mysqladmin — Client for Administering a MySQL Server
shutting down
the server, Unix Postinstallation Procedures
sigint-ignore option
mysql, mysql Options
SIGN(), Mathematical Functions
SIGNAL, SIGNAL Syntax
signal
restrictions, Restrictions on Condition Handling
signals
server response, Server Response to Signals
silent column changes, Silent Column Specification Changes
silent option
myisamchk, myisamchk General Options
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqlimport, mysqlimport — A Data Import Program
mysqlslap, mysqlslap — Load Emulation Client
perror, perror — Explain Error Codes
resolveip, resolveip — Resolve Host name to IP Address or Vice Versa
SIN(), Mathematical Functions
single quote (\'), String Literals
single-transaction option
mysqldump, mysqldump — A Database Backup Program
size of tables, Limits on Table Size
sizes
display, Data Types
--skip option prefix, Program Option Modifiers
skip-column-names option
mysql, mysql Options
skip-comments option
mysqldump, mysqldump — A Database Backup Program
skip-concurrent-insert option
mysqld, Server Command Options
skip-database option
mysqlcheck, mysqlcheck — A Table Maintenance Program
skip-event-scheduler option
mysqld, Server Command Options
skip-external-locking option
mysqld, Server Command Options
skip-grant-tables option
mysqld, Server Command Options
skip-gtids option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
skip-host-cache option
mysqld, Server Command Options
skip-innodb option
mysqld, Server Command Options, InnoDB Startup Options and System Variables
skip-kill-mysqld option
mysqld_safe, mysqld_safe — MySQL Server Startup Script
skip-line-numbers option
mysql, mysql Options
skip-name-resolve option
mysqld, Server Command Options
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
skip-networking option
mysqld, Server Command Options
skip-opt option
mysqldump, mysqldump — A Database Backup Program
skip-partition option
mysqld, Server Command Options
skip-show-database option
mysqld, Server Command Options
skip-slave-start option
mysqld, Replication Slave Options and Variables
skip-ssl option, SSL Command Options
skip-stack-trace option
mysqld, Server Command Options
skip-symbolic-links option
mysqld, Server Command Options
skip-syslog option
mysqld_safe, mysqld_safe — MySQL Server Startup Script
skip-thread-priority option
mysqld, Server Command Options
skip-use-db option
mysql_find_rows, mysql_find_rows — Extract SQL Statements from Files
skip_external_locking system variable, Server System Variables
skip_name_resolve system variable, Server System Variables
skip_networking system variable, Server System Variables
skip_show_database system variable, Server System Variables
Slave has read all relay log; waiting for the slave I/O thread to update it
thread state, Replication Slave SQL Thread States
slave server, MySQL Glossary
slave-checkpoint-group option
mysqld, Replication Slave Options and Variables
slave-checkpoint-period option
mysqld, Replication Slave Options and Variables
slave-load-tmpdir option
mysqld, Replication Slave Options and Variables
slave-max-allowed-packet (mysqld), Replication Master Options and Variables
slave-net-timeout option
mysqld, Replication Slave Options and Variables
slave-parallel-workers option
mysqld, Replication Slave Options and Variables
slave-pending-jobs-size-max option
mysqld, Replication Slave Options and Variables
slave-rows-search-algorithms (mysqld), Replication Master Options and Variables
slave-skip-errors option
mysqld, Replication Slave Options and Variables
slave-sql-verify-checksum option
mysqld, Replication Slave Options and Variables
slave_checkpoint_group system variable, Replication Slave Options and Variables
slave_checkpoint_period system variable, Replication Slave Options and Variables
slave_compressed_protocol option
mysqld, Replication Slave Options and Variables
slave_compressed_protocol system variable, Replication Slave Options and Variables
slave_exec_mode system variable, Replication Slave Options and Variables
slave_load_tmpdir system variable, Replication Slave Options and Variables
slave_max_allowed_packet system variable, Replication Master Options and Variables
slave_net_timeout system variable, Replication Slave Options and Variables
slave_parallel_workers system variable, Replication Slave Options and Variables
slave_pending_jobs_size_max system variable, Replication Slave Options and Variables
slave_rows_search_algorithms system variable, Replication Master Options and Variables
slave_skip_errors system variable, Replication Slave Options and Variables
slave_sql_verify_checksum system variable, Replication Slave Options and Variables
slave_transaction_retries system variable, Replication Slave Options and Variables
slave_type_conversions system variable, Replication Slave Options and Variables
Sleep
thread command, Thread Command Values
sleep option
mysqladmin, mysqladmin — Client for Administering a MySQL Server
SLEEP(), Miscellaneous Functions
slow queries, mysqladmin — Client for Administering a MySQL Server
slow query log, The Slow Query Log, MySQL Glossary
slow shutdown, MySQL Glossary
slow-query-log option
mysqld, Server Command Options
slow-start-timeout option
mysqld, Server Command Options
slow_launch_time system variable, Server System Variables
slow_query_log system variable, Server System Variables
slow_query_log_file system variable, Server System Variables
SMALLINT data type, Numeric Type Overview
snapshot, MySQL Glossary
socket option, Connecting to the MySQL Server
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqld_safe, mysqld_safe — MySQL Server Startup Script
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_config, mysql_config — Display Options for Compiling Clients
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
mysql_convert_table_format, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_setpermission, mysql_setpermission — Interactively Set Permissions in Grant Tables
socket system variable, Server System Variables
socket_instances table
performance_schema, The socket_instances Table
socket_summary_by_event_name table
performance_schema, Socket Summary Tables
socket_summary_by_instance table
performance_schema, Socket Summary Tables
Solaris
installation, Installing MySQL on Solaris and OpenSolaris
Solaris installation problems, Installing MySQL on Solaris and OpenSolaris
Solaris troubleshooting, Dealing with Problems Compiling MySQL
Solaris x86_64 issues, Optimizing InnoDB Disk I/O
SOME, Subqueries with ANY, IN, or SOME
sort-index option
myisamchk, Other myisamchk Options
sort-records option
myisamchk, Other myisamchk Options
sort-recover option
myisamchk, myisamchk Repair Options
sorting
data, Sorting Rows
grant tables, Access Control, Stage 1: Connection Verification, Access Control, Stage 2: Request Verification
table rows, Sorting Rows
Sorting for group
thread state, General Thread States
Sorting for order
thread state, General Thread States
Sorting index
thread state, General Thread States
Sorting result
thread state, General Thread States
sort_buffer_size myisamchk variable, myisamchk General Options
sort_buffer_size system variable, Server System Variables
sort_key_blocks myisamchk variable, myisamchk General Options
SOUNDEX(), String Functions
SOUNDS LIKE, String Functions
source (mysql client command), Using mysql in Batch Mode, Executing SQL Statements from a Text File
source command
mysql, mysql Commands
source distribution
installing, Installing MySQL from Source
space ID, MySQL Glossary
SPACE(), String Functions
spassword option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
Spatial Extensions in MySQL, Introduction to MySQL Spatial Support
speed
increasing with replication, Replication
inserting, Speed of INSERT Statements
of queries, Optimizing SELECT Statements, Speed of SELECT Statements
spin, MySQL Glossary
sporadic-binlog-dump-fail option
mysqld, Binary Log Options and Variables
Spring framework, Using Connector/J with Spring
SQL, MySQL Glossary
defined, What is MySQL?
SQL Editor, MySQL SQL Editor
SQL mode, Server SQL Modes
ALLOW_INVALID_DATES, Server SQL Modes
and partitioning, Replication and Server SQL Mode, Restrictions and Limitations on Partitioning
and replication, Replication and Server SQL Mode
ANSI, Server SQL Modes
ANSI_QUOTES, Server SQL Modes
DB2, Server SQL Modes
ERROR_FOR_DIVISION_BY_ZERO, Server SQL Modes
HIGH_NOT_PRECEDENCE, Server SQL Modes
IGNORE_SPACE, Server SQL Modes
MAXDB, Server SQL Modes
MSSQL, Server SQL Modes
MYSQL323, Server SQL Modes
MYSQL40, Server SQL Modes
NO_AUTO_CREATE_USER, Server SQL Modes
NO_AUTO_VALUE_ON_ZERO, Server SQL Modes
NO_BACKSLASH_ESCAPES, Server SQL Modes
NO_DIR_IN_CREATE, Server SQL Modes
NO_ENGINE_SUBSTITUTION, Server SQL Modes
NO_FIELD_OPTIONS, Server SQL Modes
NO_KEY_OPTIONS, Server SQL Modes
NO_TABLE_OPTIONS, Server SQL Modes
NO_UNSIGNED_SUBTRACTION, Server SQL Modes
NO_ZERO_DATE, Server SQL Modes
NO_ZERO_IN_DATE, Server SQL Modes
ONLY_FULL_GROUP_BY, Server SQL Modes, MySQL Extensions to GROUP BY
ORACLE, Server SQL Modes
PAD_CHAR_TO_FULL_LENGTH, Server SQL Modes
PIPES_AS_CONCAT, Server SQL Modes
POSTGRESQL, Server SQL Modes
REAL_AS_FLOAT, Server SQL Modes
strict, Server SQL Modes
STRICT_ALL_TABLES, Server SQL Modes
STRICT_TRANS_TABLES, Server SQL Modes
TRADITIONAL, Server SQL Modes
SQL scripts, mysql — The MySQL Command-Line Tool
SQL statements
replication masters, SQL Statements for Controlling Master Servers
replication slaves, SQL Statements for Controlling Slave Servers
SQL-92
extensions to, MySQL Standards Compliance
sql-mode option
mysqld, Server Command Options
SQLState error codes, Mapping MySQL Error Numbers to JDBC SQLState Codes
sql_auto_is_null session variable, Server System Variables
SQL_BIG_RESULT, SELECT Syntax
sql_big_selects session variable, Server System Variables
SQL_BUFFER_RESULT, SELECT Syntax
sql_buffer_result session variable, Server System Variables
SQL_CACHE, Query Cache SELECT Options, SELECT Syntax
SQL_CALC_FOUND_ROWS, SELECT Syntax
sql_log_bin system variable, Server System Variables
sql_log_off system variable, Server System Variables
sql_mode system variable, Server System Variables
sql_notes session variable, Server System Variables
SQL_NO_CACHE, Query Cache SELECT Options, SELECT Syntax
sql_quote_show_create session variable, Server System Variables
sql_safe_updates session variable, Server System Variables
sql_select_limit system variable, Server System Variables
sql_slave_skip_counter, SET GLOBAL sql_slave_skip_counter Syntax
sql_slave_skip_counter system variable, Replication Slave Options and Variables
SQL_SMALL_RESULT, SELECT Syntax
SQL_THREAD_WAIT_AFTER_GTIDS(), GTID Functions
sql_warnings session variable, Server System Variables
SQRT(), Mathematical Functions
square brackets, Data Types
srcdir option
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
SRID(), General Geometry Functions
SSD, Working with InnoDB Compressed Tables, MySQL Glossary
SSH, Making MySQL Secure Against Attackers, Connecting to MySQL Remotely from Windows with SSH
SSL, Using SSL for Secure Connections, Connector/Net Connection String Options Reference, Connecting Securely Using SSL
command options, SSL Command Options
configuring, Configuring MySQL for SSL
establishing connections, Using SSL Connections
X509 Basics, Basic SSL Concepts
SSL certificates, Connector/Net Connection String Options Reference
ssl option, SSL Command Options
SSL options, Connecting to the MySQL Server
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
SSL related options, GRANT Syntax
ssl-ca option, SSL Command Options
ssl-capath option, SSL Command Options
ssl-cert option, SSL Command Options
ssl-cipher option, SSL Command Options
ssl-crl option, SSL Command Options
ssl-crlpath option, SSL Command Options
ssl-key option, SSL Command Options
ssl-verify-server-cert option, SSL Command Options
ssl_ca system variable, Server System Variables
ssl_capath system variable, Server System Variables
ssl_cert system variable, Server System Variables
ssl_cipher system variable, Server System Variables
ssl_crl system variable, Server System Variables
ssl_crlpath system variable, Server System Variables
ssl_key system variable, Server System Variables
standalone option
mysqld, Server Command Options
Standard Monitor
InnoDB, SHOW ENGINE INNODB STATUS and the InnoDB Monitors
Standard SQL
differences from, MySQL Differences from Standard SQL, GRANT Syntax
extensions to, MySQL Standards Compliance, MySQL Extensions to Standard SQL
standards compatibility, MySQL Standards Compliance
START
XA transactions, XA Transaction SQL Syntax
START SLAVE, START SLAVE Syntax
START TRANSACTION, START TRANSACTION, COMMIT, and ROLLBACK Syntax
start-datetime option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
start-position option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
starting
comments, '--' as the Start of a Comment
mysqld, How to Run MySQL as a Normal User
the server, Unix Postinstallation Procedures
the server automatically, Starting and Stopping MySQL Automatically
Starting many servers, Running Multiple MySQL Instances on One Machine
StartPoint(), LineString Functions
startup, MySQL Glossary
startup options
default, Using Option Files
startup parameters, Tuning Server Parameters
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
tuning, System Factors and Startup Parameter Tuning
start_row option
mysql_find_rows, mysql_find_rows — Extract SQL Statements from Files
statefile option
comp_err, comp_err — Compile MySQL Error Message File
statement-based replication, MySQL Glossary
advantages, Advantages and Disadvantages of Statement-Based and Row-Based Replication
disadvantages, Advantages and Disadvantages of Statement-Based and Row-Based Replication
unsafe statements, Advantages and Disadvantages of Statement-Based and Row-Based Replication
statements
compound, MySQL Compound-Statement Syntax
GRANT, Adding User Accounts
INSERT, Adding User Accounts
replication masters, SQL Statements for Controlling Master Servers
replication slaves, SQL Statements for Controlling Slave Servers
Statistics
thread command, Thread Command Values
statistics, MySQL Glossary
thread state, General Thread States
STATISTICS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA STATISTICS Table
stats option
myisam_ftdump, myisam_ftdump — Display Full-Text Index information
stats_method myisamchk variable, myisamchk General Options
status
tables, SHOW TABLE STATUS Syntax
status command
mysql, mysql Commands
results, mysqladmin — Client for Administering a MySQL Server
status logs (replication), Replication Relay and Status Logs
status option
mysqlshow, mysqlshow — Display Database, Table, and Column Information
status variable
Rpl_semi_sync_master_clients, Server Status Variables
Rpl_semi_sync_master_net_avg_wait_time, Server Status Variables
Rpl_semi_sync_master_net_waits, Server Status Variables
Rpl_semi_sync_master_net_wait_time, Server Status Variables
Rpl_semi_sync_master_no_times, Server Status Variables
Rpl_semi_sync_master_no_tx, Server Status Variables
Rpl_semi_sync_master_status, Server Status Variables
Rpl_semi_sync_master_timefunc_failures, Server Status Variables
Rpl_semi_sync_master_tx_avg_wait_time, Server Status Variables
Rpl_semi_sync_master_tx_waits, Server Status Variables
Rpl_semi_sync_master_tx_wait_time, Server Status Variables
Rpl_semi_sync_master_wait_pos_backtraverse, Server Status Variables
Rpl_semi_sync_master_wait_sessions, Server Status Variables
Rpl_semi_sync_master_yes_tx, Server Status Variables
Rpl_semi_sync_slave_status, Server Status Variables
status variables, Server Status Variables, SHOW STATUS Syntax
STD(), GROUP BY (Aggregate) Functions
STDDEV(), GROUP BY (Aggregate) Functions
STDDEV_POP(), GROUP BY (Aggregate) Functions
STDDEV_SAMP(), GROUP BY (Aggregate) Functions
stemming, MySQL Glossary
STOP SLAVE, STOP SLAVE Syntax
stop-datetime option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
stop-never option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
stop-never-slave-server-id option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
stop-position option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
stopping
the server, Starting and Stopping MySQL Automatically
stopword, MySQL Glossary
stopword list
user-defined, Fine-Tuning MySQL Full-Text Search
stopwords, Full-Text Stopwords
storage engine, MySQL Glossary
ARCHIVE, The ARCHIVE Storage Engine
InnoDB, The InnoDB Storage Engine
PERFORMANCE_SCHEMA, MySQL Performance Schema
storage engine plugins, Storage Engine Plugins
storage engines
choosing, Storage Engines
InnoDB as default, InnoDB as the Default MySQL Storage Engine
storage requirements
data type, Data Type Storage Requirements
storage space
minimizing, Optimizing Data Size
storage_engine system variable, Server System Variables
stored functions, Using Stored Routines (Procedures and Functions)
and INSERT DELAYED, INSERT Syntax
stored procedures, Using Stored Routines (Procedures and Functions)
calling from Connector/Net, Working with Stored Procedures
editing with Visual Studio, Editing Stored Procedures and Functions
with Connector/Net, Accessing Stored Procedures with Connector/Net
stored programs, MySQL Compound-Statement Syntax, Stored Programs and Views
reparsing, Caching of Prepared Statements and Stored Programs
stored routines
and replication, Replication of Invoked Features
LAST_INSERT_ID(), Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
metadata, Stored Routine Metadata
restrictions, Restrictions on Stored Programs
storing result in query cache
thread state, Query Cache Thread States
storing row into queue
thread state, Delayed-Insert Thread States
STRAIGHT_JOIN, Optimizing Queries with EXPLAIN, EXPLAIN Output Format, LEFT JOIN and RIGHT JOIN Optimization, SELECT Syntax, JOIN Syntax
STRCMP(), String Comparison Functions
strict mode, InnoDB Strict Mode, MySQL Glossary
strict SQL mode, Server SQL Modes
STRICT_ALL_TABLES SQL mode, Server SQL Modes
STRICT_TRANS_TABLES SQL mode, Server SQL Modes
string collating, String Collating Support for Complex Character Sets
string comparison functions, String Comparison Functions
string comparisons
case sensitivity, String Comparison Functions
string concatenation, String Literals, String Functions
string functions, String Functions
string literal introducer, String Literals, Character String Literal Character Set and Collation
string replacement
replace utility, replace — A String-Replacement Utility
string types, String Types, Data Type Storage Requirements
strings
defined, String Literals
escape sequences, String Literals
nondelimited, Date and Time Literals
striping
defined, Optimizing Disk I/O
STR_TO_DATE(), Date and Time Functions
ST_Contains(), Functions That Test Spatial Relationships Between Geometries
ST_Crosses(), Functions That Test Spatial Relationships Between Geometries
ST_Disjoint(), Functions That Test Spatial Relationships Between Geometries
ST_Equals(), Functions That Test Spatial Relationships Between Geometries
ST_Intersects(), Functions That Test Spatial Relationships Between Geometries
ST_Overlaps(), Functions That Test Spatial Relationships Between Geometries
ST_Touches(), Functions That Test Spatial Relationships Between Geometries
ST_Within(), Functions That Test Spatial Relationships Between Geometries
SUBDATE(), Date and Time Functions
sublist, MySQL Glossary
SUBPARTITION BY KEY
known issues, Restrictions and Limitations on Partitioning
subpartitioning, Subpartitioning
subpartitions, Subpartitioning
known issues, Restrictions and Limitations on Partitioning
subqueries, Subquery Syntax
correlated, Correlated Subqueries
errors, Subquery Errors
optimization, Optimizing Subqueries with EXISTS Strategy
restrictions, Restrictions on Subqueries
rewriting as joins, Rewriting Subqueries as Joins
with ALL, Subqueries with ALL
with ANY, IN, SOME, Subqueries with ANY, IN, or SOME
with EXISTS, Subqueries with EXISTS or NOT EXISTS
with NOT EXISTS, Subqueries with EXISTS or NOT EXISTS
with ROW, Row Subqueries
subquery (see subqueries)
subquery materialization, Optimizing Subqueries with Subquery Materialization
subquery optimization, Subquery Optimization
subselects, Subquery Syntax
SUBSTR(), String Functions
SUBSTRING(), String Functions
SUBSTRING_INDEX(), String Functions
SUBTIME(), Date and Time Functions
subtraction (-), Arithmetic Operators
suffix option
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
SUM(), GROUP BY (Aggregate) Functions
SUM(DISTINCT), GROUP BY (Aggregate) Functions
super-large-pages option
mysqld, Server Command Options
superuser, Securing the Initial MySQL Accounts
superuser option
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
support
for operating systems, Operating Systems Supported by MySQL Community Server
suppression
default values, Constraints on Invalid Data
supremum record, MySQL Glossary
surrogate key, MySQL Glossary
symbolic links, Using Symbolic Links, Using Symbolic Links for Databases on Windows
symbolic-links option
mysqld, Server Command Options
symbols-file option
resolve_stack_dump, resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
SymDifference(), Spatial Operators
sync_binlog system variable, Binary Log Options and Variables
sync_frm system variable, Server System Variables
sync_master_info system variable, Replication Slave Options and Variables
sync_relay_log system variable, Replication Slave Options and Variables
sync_relay_log_info system variable, Replication Slave Options and Variables
syntax
regular expression, Regular Expressions
syntax conventions, Typographical and Syntax Conventions
synthetic key, MySQL Glossary
SYSCONFDIR option
CMake, MySQL Source-Configuration Options
SYSDATE(), Date and Time Functions
sysdate-is-now option
mysqld, Server Command Options
syslog option
mysqld_safe, mysqld_safe — MySQL Server Startup Script
syslog-tag option
mysqld_safe, mysqld_safe — MySQL Server Startup Script
system
privilege, The MySQL Access Privilege System
security, General Security Issues
system command
mysql, mysql Commands
System lock
thread state, General Thread States
system optimization, System Factors and Startup Parameter Tuning
system table
optimizer, EXPLAIN Output Format, SELECT Syntax
system tablespace, MySQL Glossary
system variable
audit_log_buffer_size, Audit Log Plugin Options and Variables
audit_log_file, Audit Log Plugin Options and Variables
audit_log_flush, Audit Log Plugin Options and Variables
audit_log_policy, Audit Log Plugin Options and Variables
audit_log_rotate_on_size, Audit Log Plugin Options and Variables
audit_log_strategy, Audit Log Plugin Options and Variables
authentication_windows_log_level, Server System Variables
authentication_windows_use_principal_name, Server System Variables
automatic_sp_privileges, Server System Variables
auto_increment_increment, Replication Master Options and Variables
auto_increment_offset, Replication Master Options and Variables
back_log, Server System Variables
basedir, Server System Variables
bind_address, Server System Variables
binlog_cache_size, Binary Log Options and Variables
binlog_checksum, Binary Log Options and Variables
binlog_direct_non_transactional_updates, Binary Log Options and Variables
binlog_format, Binary Log Options and Variables
binlog_max_flush_queue_time, Binary Log Options and Variables
binlog_order_commits, Binary Log Options and Variables
binlog_rows_query_log_events, Binary Log Options and Variables
binlog_row_image, Binary Log Options and Variables
binlog_stmt_cache_size, Binary Log Options and Variables
bulk_insert_buffer_size, Server System Variables
character_sets_dir, Server System Variables
character_set_client, Server System Variables
character_set_connection, Server System Variables
character_set_database, Server System Variables
character_set_filesystem, Server System Variables
character_set_results, Server System Variables
character_set_server, Server System Variables
character_set_system, Server System Variables
collation_connection, Server System Variables
collation_database, Server System Variables
collation_server, Server System Variables
completion_type, Server System Variables
concurrent_insert, Server System Variables
connect_timeout, Server System Variables
core_file, Server System Variables
datadir, Server System Variables
datetime_format, Server System Variables
date_format, Server System Variables
debug, Server System Variables
debug_sync, Server System Variables
default_storage_engine, Server System Variables
default_tmp_storage_engine, Server System Variables
default_week_format, Server System Variables
delayed_insert_limit, Server System Variables
delayed_insert_timeout, Server System Variables
delayed_queue_size, Server System Variables
delay_key_write, Server System Variables
div_precision_increment, Server System Variables
end_markers_in_json, Server System Variables
engine_condition_pushdown, Server System Variables
event_scheduler, Server System Variables
expire_logs_days, Server System Variables
explicit_defaults_for_timestamp, Server System Variables
flush, Server System Variables
flush_time, Server System Variables
ft_boolean_syntax, Server System Variables
ft_max_word_len, Server System Variables
ft_min_word_len, Server System Variables
ft_query_expansion_limit, Server System Variables
ft_stopword_file, Server System Variables
general_log, Server System Variables
general_log_file, Server System Variables
group_concat_max_len, Server System Variables
gtid_done, Global Transaction ID Options and Variables
gtid_executed, Global Transaction ID Options and Variables
gtid_lost, Global Transaction ID Options and Variables
gtid_purged, Global Transaction ID Options and Variables
have_compress, Server System Variables
have_crypt, Server System Variables
have_csv, Server System Variables
have_dynamic_loading, Server System Variables
have_geometry, Server System Variables
have_innodb, Server System Variables
have_openssl, Server System Variables
have_partitioning, Server System Variables
have_profiling, Server System Variables
have_query_cache, Server System Variables
have_rtree_keys, Server System Variables
have_ssl, Server System Variables
have_symlink, Server System Variables
hostname, Server System Variables
ignore_builtin_innodb, InnoDB Startup Options and System Variables
ignore_db_dirs, Server System Variables
init_connect, Server System Variables
init_file, Server System Variables
init_slave, Replication Slave Options and Variables
innodb_adaptive_flushing, InnoDB Startup Options and System Variables
innodb_adaptive_hash_index, InnoDB Startup Options and System Variables
innodb_additional_mem_pool_size, InnoDB Startup Options and System Variables
innodb_autoextend_increment, InnoDB Startup Options and System Variables
innodb_autoinc_lock_mode, InnoDB Startup Options and System Variables
innodb_buffer_pool_instances, InnoDB Startup Options and System Variables
innodb_buffer_pool_size, InnoDB Startup Options and System Variables
innodb_change_buffering, InnoDB Startup Options and System Variables
innodb_checksums, InnoDB Startup Options and System Variables
innodb_commit_concurrency, InnoDB Startup Options and System Variables
innodb_concurrency_tickets, InnoDB Startup Options and System Variables
innodb_data_file_path, InnoDB Startup Options and System Variables
innodb_data_home_dir, InnoDB Startup Options and System Variables
innodb_disable_sort_file_cache, InnoDB Startup Options and System Variables
innodb_doublewrite, InnoDB Startup Options and System Variables
innodb_fast_shutdown, InnoDB Startup Options and System Variables
innodb_file_format, InnoDB Startup Options and System Variables
innodb_file_format_check, InnoDB Startup Options and System Variables
innodb_file_format_max, InnoDB Startup Options and System Variables
innodb_file_per_table, InnoDB Startup Options and System Variables
innodb_flush_log_at_timeout, InnoDB Startup Options and System Variables
innodb_flush_log_at_trx_commit, InnoDB Startup Options and System Variables
innodb_flush_method, InnoDB Startup Options and System Variables
innodb_force_recovery, InnoDB Startup Options and System Variables
innodb_io_capacity, InnoDB Startup Options and System Variables
innodb_locks_unsafe_for_binlog, InnoDB Startup Options and System Variables
innodb_lock_wait_timeout, InnoDB Startup Options and System Variables
innodb_log_buffer_size, InnoDB Startup Options and System Variables
innodb_log_files_in_group, InnoDB Startup Options and System Variables
innodb_log_file_size, InnoDB Startup Options and System Variables
innodb_log_group_home_dir, InnoDB Startup Options and System Variables
innodb_max_dirty_pages_pct, InnoDB Startup Options and System Variables
innodb_max_purge_lag, InnoDB Startup Options and System Variables
innodb_max_purge_lag_delay, InnoDB Startup Options and System Variables
innodb_mirrored_log_groups, InnoDB Startup Options and System Variables
innodb_old_blocks_pct, InnoDB Startup Options and System Variables
innodb_old_blocks_time, InnoDB Startup Options and System Variables
innodb_open_files, InnoDB Startup Options and System Variables
innodb_purge_batch_size, InnoDB Startup Options and System Variables
innodb_purge_threads, InnoDB Startup Options and System Variables
innodb_read_ahead_threshold, InnoDB Startup Options and System Variables
innodb_read_io_threads, InnoDB Startup Options and System Variables
innodb_replication_delay, InnoDB Startup Options and System Variables
innodb_rollback_on_timeout, InnoDB Startup Options and System Variables
innodb_spin_wait_delay, InnoDB Startup Options and System Variables
innodb_stats_method, InnoDB Startup Options and System Variables
innodb_stats_on_metadata, InnoDB Startup Options and System Variables
innodb_stats_sample_pages, InnoDB Startup Options and System Variables
innodb_strict_mode, InnoDB Startup Options and System Variables
innodb_support_xa, InnoDB Startup Options and System Variables
innodb_sync_spin_loops, InnoDB Startup Options and System Variables
innodb_table_locks, InnoDB Startup Options and System Variables
innodb_thread_concurrency, InnoDB Startup Options and System Variables
innodb_thread_sleep_delay, InnoDB Startup Options and System Variables
innodb_use_native_aio, InnoDB Startup Options and System Variables
innodb_use_sys_malloc, InnoDB Startup Options and System Variables
innodb_version, InnoDB Startup Options and System Variables
innodb_write_io_threads, InnoDB Startup Options and System Variables
interactive_timeout, Server System Variables
join_buffer_size, Server System Variables
keep_files_on_create, Server System Variables
key_buffer_size, Server System Variables
key_cache_age_threshold, Server System Variables
key_cache_block_size, Server System Variables
key_cache_division_limit, Server System Variables
large_files_support, Server System Variables
large_pages, Server System Variables
large_page_size, Server System Variables
lc_messages, Server System Variables
lc_messages_dir, Server System Variables
lc_time_names, Server System Variables
license, Server System Variables
local_infile, Server System Variables
locked_in_memory, Server System Variables
lock_wait_timeout, Server System Variables
log, Server System Variables
log_bin, Binary Log Options and Variables
log_bin_basename, Binary Log Options and Variables
log_bin_trust_function_creators, Server System Variables
log_bin_use_v1_row_events, Binary Log Options and Variables
log_error, Server System Variables
log_output, Server System Variables
log_queries_not_using_indexes, Server System Variables
log_slave_updates, Binary Log Options and Variables
log_slow_queries, Server System Variables
log_throttle_queries_not_using_indexes, Server System Variables
log_warnings, Server System Variables
long_query_time, Server System Variables
lower_case_file_system, Server System Variables
lower_case_table_names, Server System Variables
low_priority_updates, Server System Variables
master_info_repository, Replication Slave Options and Variables
master_verify_checksum, Binary Log Options and Variables
max_allowed_packet, Server System Variables
max_binlog_cache_size, Binary Log Options and Variables
max_binlog_size, Binary Log Options and Variables
max_binlog_stmt_cache_size, Binary Log Options and Variables
max_connections, Server System Variables
max_connect_errors, Server System Variables
max_delayed_threads, Server System Variables
max_error_count, Server System Variables
max_heap_table_size, Server System Variables
max_insert_delayed_threads, Server System Variables
max_join_size, Server System Variables
max_length_for_sort_data, Server System Variables
max_prepared_stmt_count, Server System Variables
max_relay_log_size, Server System Variables
max_seeks_for_key, Server System Variables
max_sort_length, Server System Variables
max_sp_recursion_depth, Server System Variables
max_tmp_tables, Server System Variables
max_user_connections, Server System Variables
max_write_lock_count, Server System Variables
metadata_locks_cache_size, Server System Variables
metadata_locks_hash_instances, Server System Variables
min_examined_row_limit, Server System Variables
myisam_data_pointer_size, Server System Variables
myisam_max_sort_file_size, Server System Variables
myisam_mmap_size, Server System Variables
myisam_recover_options, Server System Variables
myisam_repair_threads, Server System Variables
myisam_sort_buffer_size, Server System Variables
myisam_stats_method, Server System Variables
myisam_use_mmap, Server System Variables
named_pipe, Server System Variables
net_buffer_length, Server System Variables
net_read_timeout, Server System Variables
net_retry_count, Server System Variables
net_write_timeout, Server System Variables
new, Server System Variables
old, Server System Variables
old_alter_table, Server System Variables
old_passwords, Server System Variables
open_files_limit, Server System Variables
optimizer_join_cache_level, Server System Variables
optimizer_prune_level, Server System Variables
optimizer_search_depth, Server System Variables
optimizer_switch, Server System Variables
optimizer_trace, Server System Variables
optimizer_trace_features, Server System Variables
optimizer_trace_limit, Server System Variables
optimizer_trace_max_mem_size, Server System Variables
optimizer_trace_offset, Server System Variables
performance_schema, Performance Schema System Variables
performance_schema_accounts_size, Performance Schema System Variables
performance_schema_digests_size, Performance Schema System Variables
performance_schema_events_stages_history_long_size, Performance Schema System Variables
performance_schema_events_stages_history_size, Performance Schema System Variables
performance_schema_events_statements_history_long_size, Performance Schema System Variables
performance_schema_events_statements_history_size, Performance Schema System Variables
performance_schema_events_waits_history_long_size, Performance Schema System Variables
performance_schema_events_waits_history_size, Performance Schema System Variables
performance_schema_hosts_size, Performance Schema System Variables
performance_schema_max_cond_classes, Performance Schema System Variables
performance_schema_max_cond_instances, Performance Schema System Variables
performance_schema_max_file_classes, Performance Schema System Variables
performance_schema_max_file_handles, Performance Schema System Variables
performance_schema_max_file_instances, Performance Schema System Variables
performance_schema_max_mutex_classes, Performance Schema System Variables
performance_schema_max_mutex_instances, Performance Schema System Variables
performance_schema_max_rwlock_classes, Performance Schema System Variables
performance_schema_max_rwlock_instances, Performance Schema System Variables
performance_schema_max_socket_classes, Performance Schema System Variables
performance_schema_max_socket_instances, Performance Schema System Variables
performance_schema_max_stage_classes, Performance Schema System Variables
performance_schema_max_statement_classes, Performance Schema System Variables
performance_schema_max_table_handles, Performance Schema System Variables
performance_schema_max_table_instances, Performance Schema System Variables
performance_schema_max_thread_classes, Performance Schema System Variables
performance_schema_max_thread_instances, Performance Schema System Variables
performance_schema_session_connect_attrs_size, Performance Schema System Variables
performance_schema_setup_actors_size, Performance Schema System Variables
performance_schema_setup_objects_size, Performance Schema System Variables
performance_schema_users_size, Performance Schema System Variables
pid_file, Server System Variables
plugin_dir, Server System Variables
port, Server System Variables
preload_buffer_size, Server System Variables
protocol_version, Server System Variables
pseudo_slave_mode, Server System Variables
pseudo_thread_id, Server System Variables
query_alloc_block_size, Server System Variables
query_cache_limit, Server System Variables
query_cache_min_res_unit, Server System Variables
query_cache_size, Server System Variables
query_cache_type, Server System Variables
query_cache_wlock_invalidate, Server System Variables
query_prealloc_size, Server System Variables
range_alloc_block_size, Server System Variables
read_buffer_size, Server System Variables
read_only, Server System Variables
read_rnd_buffer_size, Server System Variables
relay_log, Replication Slave Options and Variables
relay_log_basename, Replication Slave Options and Variables
relay_log_index, Replication Slave Options and Variables
relay_log_info_file, Replication Slave Options and Variables
relay_log_info_repository, Replication Slave Options and Variables
relay_log_purge, Server System Variables
relay_log_recovery, Replication Slave Options and Variables
relay_log_space_limit, Server System Variables
report_host, Server System Variables
report_password, Server System Variables
report_port, Server System Variables
report_user, Server System Variables
rpl_semi_sync_master_enabled, Server System Variables
rpl_semi_sync_master_timeout, Server System Variables
rpl_semi_sync_master_trace_level, Server System Variables
rpl_semi_sync_master_wait_no_slave, Server System Variables
rpl_semi_sync_slave_enabled, Server System Variables
rpl_semi_sync_slave_trace_level, Server System Variables
secure_auth, Server System Variables
secure_file_priv, Server System Variables
server_id, Server System Variables
sha256_password_private_key_path, Server System Variables
sha256_password_public_key_path, Server System Variables
shared_memory, Server System Variables
shared_memory_base_name, Server System Variables
skip_external_locking, Server System Variables
skip_name_resolve, Server System Variables
skip_networking, Server System Variables
skip_show_database, Server System Variables
slave_checkpoint_group, Replication Slave Options and Variables
slave_checkpoint_period, Replication Slave Options and Variables
slave_compressed_protocol, Replication Slave Options and Variables
slave_exec_mode, Replication Slave Options and Variables
slave_load_tmpdir, Replication Slave Options and Variables
slave_max_allowed_packet, Replication Master Options and Variables
slave_net_timeout, Replication Slave Options and Variables
slave_parallel_workers, Replication Slave Options and Variables
slave_pending_jobs_size_max, Replication Slave Options and Variables
slave_rows_search_algorithms, Replication Master Options and Variables
slave_skip_errors, Replication Slave Options and Variables
slave_sql_verify_checksum, Replication Slave Options and Variables
slave_transaction_retries, Replication Slave Options and Variables
slave_type_conversions, Replication Slave Options and Variables
slow_launch_time, Server System Variables
slow_query_log, Server System Variables
slow_query_log_file, Server System Variables
socket, Server System Variables
sort_buffer_size, Server System Variables
sql_log_bin, Server System Variables
sql_log_off, Server System Variables
sql_mode, Server System Variables
sql_select_limit, Server System Variables
sql_slave_skip_counter, Replication Slave Options and Variables
ssl_ca, Server System Variables
ssl_capath, Server System Variables
ssl_cert, Server System Variables
ssl_cipher, Server System Variables
ssl_crl, Server System Variables
ssl_crlpath, Server System Variables
ssl_key, Server System Variables
storage_engine, Server System Variables
sync_binlog, Binary Log Options and Variables
sync_frm, Server System Variables
sync_master_info, Replication Slave Options and Variables
sync_relay_log, Replication Slave Options and Variables
sync_relay_log_info, Replication Slave Options and Variables
system_time_zone, Server System Variables
sysvar_stored_program_cache, Server System Variables
table_definition_cache, Server System Variables
table_open_cache, Server System Variables
table_open_cache_instances, Server System Variables
thread_cache_size, Server System Variables
thread_concurrency, Server System Variables
thread_handling, Server System Variables
thread_pool_algorithm, Server System Variables
thread_pool_high_priority_connection, Server System Variables
thread_pool_max_unused_threads, Server System Variables
thread_pool_prio_kickup_timer, Server System Variables
thread_pool_size, Server System Variables
thread_pool_stall_limit, Server System Variables
thread_stack, Server System Variables
timed_mutexes, Server System Variables
time_format, Server System Variables
time_zone, Server System Variables
tmpdir, Server System Variables
tmp_table_size, Server System Variables
transaction_alloc_block_size, Server System Variables
transaction_prealloc_size, Server System Variables
tx_isolation, Server System Variables
tx_read_only, Server System Variables
updatable_views_with_limit, Server System Variables
validate_password_dictionary_file, Password Validation Plugin Options and Variables
validate_password_length, Password Validation Plugin Options and Variables
validate_password_mixed_case_count, Password Validation Plugin Options and Variables
validate_password_number_count, Password Validation Plugin Options and Variables
validate_password_policy, Password Validation Plugin Options and Variables
validate_password_special_char_count, Password Validation Plugin Options and Variables
validate_user_plugins, Server System Variables
version, Server System Variables
version_comment, Server System Variables
version_compile_machine, Server System Variables
version_compile_os, Server System Variables
wait_timeout, Server System Variables
system variables, Server System Variables, Using System Variables, SHOW VARIABLES Syntax
and replication, Replication and Variables
disable_gtid_unsafe_statements, Global Transaction ID Options and Variables
enforce_gtid_consistency, Global Transaction ID Options and Variables
gtid_mode, Global Transaction ID Options and Variables
gtid_next, Global Transaction ID Options and Variables
gtid_owned, Global Transaction ID Options and Variables
system_time_zone system variable, Server System Variables
SYSTEM_USER(), Information Functions
sysvar_stored_program_cache system variable, Server System Variables
T
tab (\t), String Literals, LOAD DATA INFILE Syntax
tab option
mysqldump, mysqldump — A Database Backup Program
table, MySQL Glossary
changing, ALTER TABLE Syntax, Problems with ALTER TABLE
deleting, DROP TABLE Syntax
rebuilding, Rebuilding or Repairing Tables or Indexes
repair, Rebuilding or Repairing Tables or Indexes
row size, Data Type Storage Requirements
table aliases, SELECT Syntax
table cache, How MySQL Opens and Closes Tables, Using Connector/Net with Table Caching
table description
myisamchk, Obtaining Table Information with myisamchk
Table Designer, Editing Tables
Table Dump
thread command, Thread Command Values
table is full, Server System Variables, The table is full
table lock, MySQL Glossary
Table Monitor
InnoDB, SHOW ENGINE INNODB STATUS and the InnoDB Monitors, Troubleshooting InnoDB Data Dictionary Operations
table names
case sensitivity, MySQL Extensions to Standard SQL, Identifier Case Sensitivity
table option
mysql, mysql Options
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
table scan, Making the Buffer Pool Scan Resistant
table type, MySQL Glossary
choosing, Storage Engines
table-level locking, Internal Locking Methods
TableDirect commands, Connector/Net Connection String Options Reference
tables
BLACKHOLE, The BLACKHOLE Storage Engine
checking, myisamchk Check Options
closing, How MySQL Opens and Closes Tables
compressed, myisampack — Generate Compressed, Read-Only MyISAM Tables
compressed format, Compressed Table Characteristics
const, EXPLAIN Output Format
constant, How MySQL Optimizes WHERE Clauses
copying, CREATE TABLE Syntax, CREATE TABLE ... SELECT Syntax
counting rows, Counting Rows
creating, Creating a Table
CSV, The CSV Storage Engine
defragment, Dynamic Table Characteristics
defragmenting, Setting Up a MyISAM Table Maintenance Schedule, OPTIMIZE TABLE Syntax
deleting rows, Deleting Rows from Related Tables
displaying, mysqlshow — Display Database, Table, and Column Information
displaying status, SHOW TABLE STATUS Syntax
dumping, mysqldump — A Database Backup Program, mysqlhotcopy — A Database Backup Program
dynamic, Dynamic Table Characteristics
error checking, How to Check MyISAM Tables for Errors
EXAMPLE, The EXAMPLE Storage Engine
FEDERATED, The FEDERATED Storage Engine
flush, mysqladmin — Client for Administering a MySQL Server
fragmentation, OPTIMIZE TABLE Syntax
HEAP, The MEMORY Storage Engine
improving performance, Optimizing Data Size
information, Obtaining Table Information with myisamchk
information about, Getting Information About Databases and Tables
InnoDB, The InnoDB Storage Engine
loading data, Loading Data into a Table
maintenance, mysqlcheck — A Table Maintenance Program
maintenance schedule, Setting Up a MyISAM Table Maintenance Schedule
maximum size, Limits on Table Size
MEMORY, The MEMORY Storage Engine
MERGE, The MERGE Storage Engine
merging, The MERGE Storage Engine
multiple, Using More Than one Table
MyISAM, The MyISAM Storage Engine
names, Schema Object Names
open, How MySQL Opens and Closes Tables
opening, How MySQL Opens and Closes Tables
optimizing, MyISAM Table Optimization
partitioning, The MERGE Storage Engine
repair, mysqlcheck — A Table Maintenance Program
repairing, How to Repair MyISAM Tables
retrieving data, Retrieving Information from a Table
selecting columns, Selecting Particular Columns
selecting rows, Selecting Particular Rows
sorting rows, Sorting Rows
symbolic links, Using Symbolic Links for MyISAM Tables on Unix
system, EXPLAIN Output Format
too many, Disadvantages of Creating Many Tables in the Same Database
unique ID for last row, How to Get the Unique ID for the Last Inserted Row
TABLES
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA TABLES Table
tables option
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqldump, mysqldump — A Database Backup Program
TABLESPACE
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA TABLESPACES Table
tablespace, MySQL Glossary
tablespace dictionary, MySQL Glossary
Tablespace Monitor
InnoDB, File Space Management, Backing Up and Recovering an InnoDB Database, SHOW ENGINE INNODB STATUS and the InnoDB Monitors
table_definition_cache system variable, Server System Variables
table_io_waits_summary_by_index_usage table
performance_schema, The table_io_waits_summary_by_index_usage Table
table_io_waits_summary_by_table table
performance_schema, The table_io_waits_summary_by_table Table
table_lock_waits_summary_by_table table
performance_schema, The table_lock_waits_summary_by_table Table
table_open_cache, How MySQL Opens and Closes Tables
table_open_cache system variable, Server System Variables
table_open_cache_instances system variable, Server System Variables
TABLE_PRIVILEGES
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
TAN(), Mathematical Functions
tar
problems on Solaris, Installing MySQL on Solaris and OpenSolaris
tc-heuristic-recover option
mysqld, Server Command Options
Tcl API, MySQL Tcl API
tcp-ip option
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
TCP/IP, Selecting a MySQL Server Type, Testing The MySQL Installation, MySQL Source-Configuration Options, Environment Variables, Connecting to the MySQL Server, mysqld_safe — MySQL Server Startup Script, mysql Options, mysqlbinlog — Utility for Processing Binary Log Files, mysql_config — Display Options for Compiling Clients, Server Command Options, Running Multiple MySQL Instances on One Machine, Making MySQL Secure Against Attackers, Causes of Access-Denied Errors, How MySQL Uses Threads for Client Connections, Replication Slave Options and Variables, The socket_instances Table, Can't connect to [local] MySQL server
tee command
mysql, mysql Commands
tee option
mysql, mysql Options
temp-pool option
mysqld, Server Command Options
temporary file
write access, Problems Running mysql_install_db
temporary files, Where MySQL Stores Temporary Files
temporary table, MySQL Glossary
temporary tables
and replication, Replication and Temporary Tables
internal, How MySQL Uses Internal Temporary Tables
problems, TEMPORARY Table Problems
terminal monitor
defined, Tutorial
test option
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
testing
connection to the server, Access Control, Stage 1: Connection Verification
installation, Unix Postinstallation Procedures
of MySQL releases, Choosing Which Version of MySQL to Install
postinstallation, Postinstallation Setup and Testing
testing mysqld
mysqltest, The MySQL Test Suite
TEXT
size, Data Type Storage Requirements
text collection, MySQL Glossary
TEXT columns
default values, The BLOB and TEXT Types
indexing, Column Indexes, CREATE TABLE Syntax
TEXT data type, String Type Overview, The BLOB and TEXT Types
text files
importing, Executing SQL Statements from a Text File, mysqlimport — A Data Import Program, LOAD DATA INFILE Syntax
thread, MySQL Glossary
thread cache, How MySQL Uses Threads for Client Connections
thread command
Binlog Dump, Thread Command Values
Change user, Thread Command Values
Close stmt, Thread Command Values
Connect, Thread Command Values
Connect Out, Thread Command Values
Create DB, Thread Command Values
Daemon, Thread Command Values
Debug, Thread Command Values
Delayed insert, Thread Command Values
Drop DB, Thread Command Values
Error, Thread Command Values
Execute, Thread Command Values
Fetch, Thread Command Values
Field List, Thread Command Values
Init DB, Thread Command Values
Kill, Thread Command Values
Long Data, Thread Command Values
Ping, Thread Command Values
Prepare, Thread Command Values
Processlist, Thread Command Values
Query, Thread Command Values
Quit, Thread Command Values
Refresh, Thread Command Values
Register Slave, Thread Command Values
Reset stmt, Thread Command Values
Set option, Thread Command Values
Shutdown, Thread Command Values
Sleep, Thread Command Values
Statistics, Thread Command Values
Table Dump, Thread Command Values
Time, Thread Command Values
thread commands, Thread Command Values
thread state
After create, General Thread States
allocating local table, Delayed-Insert Thread States
altering table, General Thread States
Analyzing, General Thread States
Changing master, Replication Slave Connection Thread States
Checking master version, Replication Slave I/O Thread States
checking permissions, General Thread States
checking privileges on cached query, Query Cache Thread States
checking query cache for query, Query Cache Thread States
Checking table, General Thread States
cleaning up, General Thread States
Clearing, Event Scheduler Thread States
closing tables, General Thread States
committing alter table to storage engine, General Thread States
Connecting to master, Replication Slave I/O Thread States
converting HEAP to MyISAM, General Thread States
copy to tmp table, General Thread States
Copying to group table, General Thread States
Copying to tmp table, General Thread States
Copying to tmp table on disk, General Thread States
Creating delayed handler, Delayed-Insert Thread States
Creating index, General Thread States
Creating sort index, General Thread States
creating table, General Thread States
Creating tmp table, General Thread States
deleting from main table, General Thread States
deleting from reference tables, General Thread States
discard_or_import_tablespace, General Thread States
end, General Thread States
executing, General Thread States
Execution of init_command, General Thread States
Finished reading one binlog; switching to next binlog, Replication Master Thread States
Flushing tables, General Thread States
freeing items, General Thread States
FULLTEXT initialization, General Thread States
got handler lock, Delayed-Insert Thread States
got old table, Delayed-Insert Thread States
init, General Thread States
Initialized, Event Scheduler Thread States
insert, Delayed-Insert Thread States
invalidating query cache entries, Query Cache Thread States
Killed, General Thread States
Killing slave, Replication Slave Connection Thread States
logging slow query, General Thread States
login, General Thread States
Making temp file, Replication Slave SQL Thread States
manage keys, General Thread States
Master has sent all binlog to slave; waiting for binlog to be updated, Replication Master Thread States
NULL, General Thread States
Opening master dump table, Replication Slave Connection Thread States
Opening table, General Thread States
Opening tables, General Thread States
optimizing, General Thread States
preparing, General Thread States
preparing for alter table, General Thread States
Purging old relay logs, General Thread States
query end, General Thread States
Queueing master event to the relay log, Replication Slave I/O Thread States
Reading event from the relay log, Replication Slave SQL Thread States
Reading from net, General Thread States
Reading master dump table data, Replication Slave Connection Thread States
Rebuilding the index on master dump table, Replication Slave Connection Thread States
Reconnecting after a failed binlog dump request, Replication Slave I/O Thread States
Reconnecting after a failed master event read, Replication Slave I/O Thread States
Registering slave on master, Replication Slave I/O Thread States
Removing duplicates, General Thread States
removing tmp table, General Thread States
rename, General Thread States
rename result table, General Thread States
Reopen tables, General Thread States
Repair by sorting, General Thread States
Repair done, General Thread States
Repair with keycache, General Thread States
Requesting binlog dump, Replication Slave I/O Thread States
reschedule, Delayed-Insert Thread States
Rolling back, General Thread States
Saving state, General Thread States
Searching rows for update, General Thread States
Sending binlog event to slave, Replication Master Thread States
sending cached result to client, Query Cache Thread States
setup, General Thread States
Slave has read all relay log; waiting for the slave I/O thread to update it, Replication Slave SQL Thread States
Sorting for group, General Thread States
Sorting for order, General Thread States
Sorting index, General Thread States
Sorting result, General Thread States
statistics, General Thread States
storing result in query cache, Query Cache Thread States
storing row into queue, Delayed-Insert Thread States
System lock, General Thread States
update, General Thread States
Updating, General Thread States
updating main table, General Thread States
updating reference tables, General Thread States
upgrading lock, Delayed-Insert Thread States
User lock, General Thread States
User sleep, General Thread States
Waiting for commit lock, General Thread States
waiting for delay_list, Delayed-Insert Thread States
Waiting for global read lock, General Thread States
waiting for handler insert, Delayed-Insert Thread States
waiting for handler lock, Delayed-Insert Thread States
waiting for handler open, Delayed-Insert Thread States
Waiting for INSERT, Delayed-Insert Thread States
Waiting for master to send event, Replication Slave I/O Thread States
Waiting for master update, Replication Slave I/O Thread States
Waiting for next activation, Event Scheduler Thread States
Waiting for query cache lock, Query Cache Thread States
Waiting for scheduler to stop, Event Scheduler Thread States
Waiting for schema metadata lock, General Thread States
Waiting for slave mutex on exit, Replication Slave I/O Thread States, Replication Slave SQL Thread States
Waiting for stored function metadata lock, General Thread States
Waiting for stored procedure metadata lock, General Thread States
Waiting for table, General Thread States
Waiting for table level lock, General Thread States
Waiting for table metadata lock, General Thread States
Waiting for tables, General Thread States
Waiting for the next event in relay log, Replication Slave SQL Thread States
Waiting for the slave SQL thread to free enough relay log space, Replication Slave I/O Thread States
Waiting for trigger metadata lock, General Thread States
Waiting on cond, General Thread States
Waiting on empty queue, Event Scheduler Thread States
Waiting to finalize termination, Replication Master Thread States
Waiting to reconnect after a failed binlog dump request, Replication Slave I/O Thread States
Waiting to reconnect after a failed master event read, Replication Slave I/O Thread States
Waiting until MASTER_DELAY seconds after master executed event, Replication Slave SQL Thread States
Writing to net, General Thread States
thread states, Examining Thread Information
delayed inserts, Delayed-Insert Thread States
event scheduler, Event Scheduler Thread States
general, General Thread States
query cache, Query Cache Thread States
replication master, Replication Master Thread States
replication slave, Replication Slave I/O Thread States, Replication Slave SQL Thread States, Replication Slave Connection Thread States
thread support, Operating Systems Supported by MySQL Community Server
thread table
performance_schema, The threads Table
threaded clients, Writing C API Threaded Client Programs
threads, mysqladmin — Client for Administering a MySQL Server, SHOW PROCESSLIST Syntax, MySQL Internals
display, SHOW PROCESSLIST Syntax
monitoring, Examining Thread Information, SHOW PROCESSLIST Syntax, The INFORMATION_SCHEMA PROCESSLIST Table, The threads Table
thread_cache_size system variable, Server System Variables
thread_concurrency system variable, Server System Variables
thread_handling system variable, Server System Variables
thread_pool_algorithm system variable, Server System Variables
thread_pool_high_priority_connection system variable, Server System Variables
thread_pool_max_unused_threads system variable, Server System Variables
thread_pool_prio_kickup_timer system variable, Server System Variables
thread_pool_size system variable, Server System Variables
thread_pool_stall_limit system variable, Server System Variables
thread_stack system variable, Server System Variables
Time
thread command, Thread Command Values
TIME columns
with Connector/Net, Handling Date and Time Information in Connector/Net
TIME data type, Date and Time Type Overview, The TIME Type
time literals, Date and Time Literals
time representation
Event Scheduler, Event Metadata
time types, Data Type Storage Requirements
time zone problems, Time Zone Problems
time zone tables, mysql_tzinfo_to_sql — Load the Time Zone Tables
time zones
and replication, Replication and Time Zones
leap seconds, Time Zone Leap Second Support
support, MySQL Server Time Zone Support
upgrading, Staying Current with Time Zone Changes
TIME(), Date and Time Functions
TIMEDIFF(), Date and Time Functions
timed_mutexes system variable, Server System Variables
timeout, Server System Variables, Miscellaneous Functions, INSERT DELAYED Syntax
connect_timeout variable, mysql Options, mysqladmin — Client for Administering a MySQL Server
shutdown_timeout variable, mysqladmin — Client for Administering a MySQL Server
timeouts (replication), Replication Retries and Timeouts
TIMESTAMP
and NULL values, Problems with NULL Values
and replication, Replication and AUTO_INCREMENT
initialization and updating, Automatic Initialization and Updating for TIMESTAMP and DATETIME
TIMESTAMP data type, Date and Time Type Overview, The DATE, DATETIME, and TIMESTAMP Types
timestamp session variable, Server System Variables
TIMESTAMP(), Date and Time Functions
TIMESTAMPADD(), Date and Time Functions
TIMESTAMPDIFF(), Date and Time Functions
timezone option
mysqld_safe, mysqld_safe — MySQL Server Startup Script
time_format system variable, Server System Variables
TIME_FORMAT(), Date and Time Functions
TIME_TO_SEC(), Date and Time Functions
time_zone system variable, Server System Variables
TINYBLOB data type, String Type Overview
TINYINT data type, Numeric Type Overview
TINYTEXT data type, String Type Overview
tips
optimization, Other Optimization Tips
TMPDIR environment variable, Problems Running mysql_install_db, Environment Variables, Overview of MySQL Programs, Where MySQL Stores Temporary Files
tmpdir option
myisamchk, myisamchk Repair Options
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
mysqld, Server Command Options
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
tmpdir system variable, Server System Variables
tmp_table_size system variable, Server System Variables
to-last-log option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
Tomcat application server, Using Connector/J with Tomcat
tools
command-line, MySQL Installer Console, mysql — The MySQL Command-Line Tool
list of, Tools that were used to create MySQL
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqld_safe, mysqld_safe — MySQL Server Startup Script
torn page, InnoDB Disk I/O, MySQL Glossary
Touches(), Functions That Test Spatial Relationships Between Geometries
TO_BASE64(), String Functions
TO_DAYS(), Date and Time Functions
TO_SECONDS(), Date and Time Functions
TPS, MySQL Glossary
trace DBI method, Debugging mysqld under gdb
tracing
with Connector/Net, Using the MySQL Connector/Net Trace Source Object
TRADITIONAL SQL mode, Server SQL Modes
transaction, MySQL Glossary
transaction access mode, SET TRANSACTION Syntax
transaction ID, MySQL Glossary
transaction isolation level, SET TRANSACTION Syntax
READ COMMITTED, SET TRANSACTION Syntax
READ UNCOMMITTED, SET TRANSACTION Syntax
REPEATABLE READ, SET TRANSACTION Syntax
SERIALIZABLE, SET TRANSACTION Syntax
transaction-isolation option
mysqld, Server Command Options
transaction-read-only option
mysqld, Server Command Options
transaction-safe tables, Transaction and Atomic Operation Differences, The InnoDB Storage Engine
transactions, The InnoDB Transaction Model and Locking
and replication, Replication Retries and Timeouts, Replication and Transactions
isolation levels, The InnoDB Transaction Model and Locking, Transaction Isolation Level Index
metadata locking, Metadata Locking
support, Transaction and Atomic Operation Differences, The InnoDB Storage Engine
transaction_alloc_block_size system variable, Server System Variables
transaction_prealloc_size system variable, Server System Variables
Translators
list of, Documenters and translators
transportable tablespace, Copying Tablespaces to Another Server (Transportable Tablespaces), MySQL Glossary
trigger
restrictions, Restrictions on Stored Programs
triggers, CREATE TRIGGER Syntax, DROP TRIGGER Syntax, SHOW TRIGGERS Syntax, Stored Programs and Views, Using Triggers
and INSERT DELAYED, INSERT Syntax
and replication, Replication of Invoked Features, Replication and Triggers
editing with Visual Studio, Editing Triggers
LAST_INSERT_ID(), Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
metadata, Trigger Metadata
TRIGGERS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA TRIGGERS Table
triggers option
mysqldump, mysqldump — A Database Backup Program
TRIM(), String Functions
troubleshooting, Sources of Error Information, MySQL Glossary
ALTER TABLE problems, Problems with ALTER TABLE
C API, Common Questions and Problems When Using the C API
compiling MySQL server, Dealing with Problems Compiling MySQL
connection problems, Causes of Access-Denied Errors
Connector/J, Troubleshooting Connector/J Applications
Connector/ODBC connection problems, Troubleshooting ODBC Connection Problems
InnoDB deadlocks, Deadlock Detection and Rollback
InnoDB errors, InnoDB Error Handling
InnoDB recovery problems, Starting InnoDB on a Corrupted Database
InnoDB table fragmentation, Defragmenting a Table
JDBC, JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer
JDBC SQLState codes, Mapping MySQL Error Numbers to JDBC SQLState Codes
OS error codes, Operating System Error Codes
PHP, Common Problems with MySQL and PHP
replication, Troubleshooting Replication
startup problems, Starting and Troubleshooting the MySQL Server
with MySQL Enterprise Monitor, MySQL Enterprise Monitor
with MySQL Performance Schema, Using the Performance Schema to Diagnose Problems
TRUE, Number Literals, Boolean Literals
testing for, Comparison Functions and Operators
truncate, MySQL Glossary
TRUNCATE TABLE, TRUNCATE TABLE Syntax, TRUNCATE TABLE Reclaims Space
and replication, Replication and TRUNCATE TABLE
performance_schema database, Performance Schema General Table Characteristics, Restrictions on Performance Schema
TRUNCATE(), Mathematical Functions
tuning, Optimization
InnoDB compressed tables, Tuning Compression for InnoDB Tables
tuple, MySQL Glossary
tutorial, Tutorial
two-phase commit, Server Status Variables, InnoDB Startup Options and System Variables, MySQL Glossary
tx_isolation system variable, Server System Variables
tx_read_only system variable, Server System Variables
type codes
C prepared statement API, C API Prepared Statement Type Codes
type conversions, Type Conversion in Expression Evaluation, Comparison Functions and Operators
type option
MySQLInstallerConsole, MySQL Installer Console
mysql_convert_table_format, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
types
columns, Data Types, Choosing the Right Type for a Column
data, Data Types
date, Data Type Storage Requirements
Date and Time, Date and Time Types
numeric, Data Type Storage Requirements
of tables, Storage Engines
portability, Using Data Types from Other Database Engines
string, Data Type Storage Requirements
strings, String Types
time, Data Type Storage Requirements
Types namespace, MySql.Data.Types Namespace
typographical conventions, Typographical and Syntax Conventions
TZ environment variable, Environment Variables, Time Zone Problems
tz-utc option
mysqldump, mysqldump — A Database Backup Program
U
UCASE(), String Functions
UCS-2, Character Set Support
ucs2 character set, The ucs2 Character Set (UCS-2 Unicode Encoding)
UDFs, CREATE FUNCTION Syntax for User-Defined Functions, DROP FUNCTION Syntax
compiling, Compiling and Installing User-Defined Functions
defined, Adding New Functions to MySQL
return values, UDF Return Values and Error Handling
ulimit, 'File' Not Found and Similar Errors
UMASK environment variable, Environment Variables, Problems with File Permissions
UMASK_DIR environment variable, Environment Variables, Problems with File Permissions
unary minus (-), Arithmetic Operators
unbuffered option
mysql, mysql Options
UNCOMPRESS(), Encryption and Compression Functions
UNCOMPRESSED_LENGTH(), Encryption and Compression Functions
undo, MySQL Glossary
undo log, Managing InnoDB Tablespaces, Separate Tablespaces for InnoDB Undo Logs, MySQL Glossary
undo tablespace, MySQL Glossary
UNHEX(), String Functions
Unicode, Character Set Support
with Connector/J, Using Character Sets and Unicode
Unicode Collation Algorithm, Unicode Character Sets
UNINSTALL PLUGIN, UNINSTALL PLUGIN Syntax
uninstalling plugins, Installing and Uninstalling Plugins, UNINSTALL PLUGIN Syntax
UNION, Searching on Two Keys, UNION Syntax
Union(), Spatial Operators
UNIQUE, ALTER TABLE Syntax
unique constraint, MySQL Glossary
unique ID, How to Get the Unique ID for the Last Inserted Row
unique index, MySQL Glossary
unique key, MySQL Glossary
constraint, PRIMARY KEY and UNIQUE Index Constraints
unique keys
and partitioning keys, Partitioning Keys, Primary Keys, and Unique Keys
unique_checks session variable, Server System Variables
unique_subquery join type
optimizer, EXPLAIN Output Format
Unix, MySQL Connector/ODBC, MySQL Connector/Net
compiling clients on, Building C API Client Programs
UNIX_TIMESTAMP(), Date and Time Functions
UNKNOWN
testing for, Comparison Functions and Operators
unloading
tables, Retrieving Information from a Table
UNLOCK TABLES, LOCK TABLES and UNLOCK TABLES Syntax
unnamed views, Subqueries in the FROM Clause
unpack option
myisamchk, myisamchk Repair Options
unsafe statement (replication)
defined, Determination of Safe and Unsafe Statements in Binary Logging
unsafe statements (replication), Determination of Safe and Unsafe Statements in Binary Logging
UNSIGNED, Numeric Type Overview, Numeric Types
UNTIL, REPEAT Syntax
updatable views, Updatable and Insertable Views
updatable_views_with_limit system variable, Server System Variables
UPDATE, UPDATE Differences, UPDATE Syntax
update
thread state, General Thread States
update-state option
myisamchk, myisamchk Check Options
updates option
MySQLInstallerConsole, MySQL Installer Console
UpdateXML(), XML Functions
updating
releases of MySQL, How and When Updates Are Released
Updating
thread state, General Thread States
updating main table
thread state, General Thread States
updating reference tables
thread state, General Thread States
upgrade-system-tables option
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
upgrading, Upgrading or Downgrading MySQL, Upgrading MySQL
different architecture, Copying MySQL Databases to Another Machine
to ¤t-series;, Upgrading from MySQL 5.5 to 5.6
upgrading lock
thread state, Delayed-Insert Thread States
upgrading MySQL, mysql_upgrade — Check and Upgrade MySQL Tables
UPPER(), String Functions
uptime, mysqladmin — Client for Administering a MySQL Server
URLs for downloading MySQL, How to Get MySQL
USE, USE Syntax
use command
mysql, mysql Commands
USE INDEX, Index Hint Syntax
USE KEY, Index Hint Syntax
use-frm option
mysqlcheck, mysqlcheck — A Table Maintenance Program
use-mysqld_safe option
mysql.server, mysql.server — MySQL Server Startup Script
use-threads option
mysqlimport, mysqlimport — A Data Import Program
useConfigs connection properties, Properties Files for the useConfigs Option
user accounts
altering, ALTER USER Syntax
creating, CREATE USER Syntax
renaming, RENAME USER Syntax
resource limits, Server System Variables, Setting Account Resource Limits, GRANT Syntax
USER environment variable, Environment Variables, Connecting to the MySQL Server
User lock
thread state, General Thread States
user names
and passwords, User Names and Passwords
in account names, Specifying Account Names
in default accounts, Securing the Initial MySQL Accounts
user option, Connecting to the MySQL Server
mysql, mysql Options
mysql.server, mysql.server — MySQL Server Startup Script
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqld_safe, mysqld_safe — MySQL Server Startup Script
mysqlhotcopy, mysqlhotcopy — A Database Backup Program
mysqlimport, mysqlimport — A Data Import Program
MySQLInstallerConsole, MySQL Installer Console
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
mysql_convert_table_format, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
mysql_setpermission, mysql_setpermission — Interactively Set Permissions in Grant Tables
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
user privileges
adding, Adding User Accounts
deleting, Removing User Accounts, DROP USER Syntax
dropping, Removing User Accounts, DROP USER Syntax
User sleep
thread state, General Thread States
user table
sorting, Access Control, Stage 1: Connection Verification
user variables, User-Defined Variables
and replication, Replication and Variables
USER(), Information Functions
User-defined functions, CREATE FUNCTION Syntax for User-Defined Functions, DROP FUNCTION Syntax
user-defined functions
adding, Adding New Functions to MySQL, Adding a New User-Defined Function
editing with Visual Studio, Editing User Defined Functions (UDF)
users
adding, Unix Postinstallation Procedures
deleting, Removing User Accounts, DROP USER Syntax
root, Securing the Initial MySQL Accounts
users table
performance_schema, The users Table
USER_PRIVILEGES
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA USER_PRIVILEGES Table
using multiple disks to start data, Using Symbolic Links for Databases on Windows
UTC_DATE(), Date and Time Functions
UTC_TIME(), Date and Time Functions
UTC_TIMESTAMP(), Date and Time Functions
UTF-8, Character Set Support
utf16 character set, The utf16 Character Set (UTF-16 Unicode Encoding)
utf16le character set, The utf16le Character Set (UTF-16LE Unicode Encoding)
utf16_bin collation, Unicode Character Sets
utf32 character set, The utf32 Character Set (UTF-32 Unicode Encoding)
utf8 character set, The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)
utf8mb3 character set, The utf8mb3 “Character Set” (Alias for utf8)
utf8mb4 character set, The utf8mb4 Character Set (4-Byte UTF-8 Unicode Encoding)
utilities
program-development, Overview of MySQL Programs
utility programs, Overview of MySQL Programs
UUID(), Miscellaneous Functions
UUID_SHORT(), Miscellaneous Functions
V
valid numbers
examples, Number Literals
validate-password option
mysqld, Password Validation Plugin Options and Variables
validate_password plugin, The Password Validation Plugin
configuring, Password Validation Plugin Options and Variables
installing, Password Validation Plugin Installation
system variables, Password Validation Plugin Options and Variables
validate_password_dictionary_file system variable, Password Validation Plugin Options and Variables
validate_password_length system variable, Password Validation Plugin Options and Variables
validate_password_mixed_case_count system variable, Password Validation Plugin Options and Variables
validate_password_number_count system variable, Password Validation Plugin Options and Variables
validate_password_policy system variable, Password Validation Plugin Options and Variables
validate_password_special_char_count system variable, Password Validation Plugin Options and Variables
validate_user_plugins system variable, Server System Variables
VALUES(), Miscellaneous Functions
VARBINARY data type, String Type Overview, The BINARY and VARBINARY Types
VARCHAR
size, Data Type Storage Requirements
VARCHAR data type, String Type Overview, String Types
VARCHARACTER data type, String Type Overview
variables
and replication, Replication and Variables
environment, Overview of MySQL Programs
mysqld, Tuning Server Parameters
server, SHOW VARIABLES Syntax
status, Server Status Variables, SHOW STATUS Syntax
system, Server System Variables, Using System Variables, SHOW VARIABLES Syntax
user, User-Defined Variables
VARIANCE(), GROUP BY (Aggregate) Functions
VAR_POP(), GROUP BY (Aggregate) Functions
VAR_SAMP(), GROUP BY (Aggregate) Functions
verbose option
myisamchk, myisamchk General Options
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
myisam_ftdump, myisam_ftdump — Display Full-Text Index information
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqldumpslow, mysqldumpslow — Summarize Slow Query Log Files
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
mysql_convert_table_format, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
mysql_waitpid, mysql_waitpid — Kill Process and Wait for Its Termination
my_print_defaults, my_print_defaults — Display Options from Option Files
perror, perror — Explain Error Codes
verify-binlog-checksum option
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
version
choosing, Choosing Which MySQL Distribution to Install
latest, How to Get MySQL
VERSION file
CMake, MySQL Configuration and Third-Party Tools
version option
comp_err, comp_err — Compile MySQL Error Message File
myisamchk, myisamchk General Options
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
mysql, mysql Options
mysqlaccess, mysqlaccess — Client for Checking Access Privileges
mysqladmin, mysqladmin — Client for Administering a MySQL Server
mysqlbinlog, mysqlbinlog — Utility for Processing Binary Log Files
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysqld, Server Command Options
mysqldump, mysqldump — A Database Backup Program
mysqld_multi, mysqld_multi — Manage Multiple MySQL Servers
mysqlimport, mysqlimport — A Data Import Program
mysqlshow, mysqlshow — Display Database, Table, and Column Information
mysqlslap, mysqlslap — Load Emulation Client
mysql_config, mysql_config — Display Options for Compiling Clients
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
mysql_convert_table_format, mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
mysql_plugin, mysql_plugin — Configure MySQL Server Plugins
mysql_waitpid, mysql_waitpid — Kill Process and Wait for Its Termination
my_print_defaults, my_print_defaults — Display Options from Option Files
perror, perror — Explain Error Codes
resolveip, resolveip — Resolve Host name to IP Address or Vice Versa
resolve_stack_dump, resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols
version system variable, Server System Variables
VERSION(), Information Functions
version-check option
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
version_comment system variable, Server System Variables
version_compile_machine system variable, Server System Variables
version_compile_os system variable, Server System Variables
vertical option
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
victim, MySQL Glossary
Vietnamese, MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
view
restrictions, Restrictions on Views
views, CREATE VIEW Syntax, Stored Programs and Views, Using Views
algorithms, View Processing Algorithms
and replication, Replication and Views
metadata, View Metadata
updatable, CREATE VIEW Syntax, Updatable and Insertable Views
VIEWS
INFORMATION_SCHEMA table, The INFORMATION_SCHEMA VIEWS Table
Views
limitations, Restrictions on Views
privileges, Restrictions on Views
problems, Restrictions on Views
Vision, Using Connector/ODBC with SunSystems Vision
Visual Objects, Visual Objects
Visual Studio, Connector/Net Visual Studio Integration
W
wait, MySQL Glossary
wait option
myisamchk, myisamchk General Options
myisampack, myisampack — Generate Compressed, Read-Only MyISAM Tables
mysql, mysql Options
mysqladmin, mysqladmin — Client for Administering a MySQL Server
Waiting for commit lock
thread state, General Thread States
waiting for delay_list
thread state, Delayed-Insert Thread States
Waiting for event metadata lock
thread state, General Thread States
Waiting for event read lock
thread state, General Thread States
Waiting for global read lock
thread state, General Thread States
waiting for handler insert
thread state, Delayed-Insert Thread States
waiting for handler lock
thread state, Delayed-Insert Thread States
waiting for handler open
thread state, Delayed-Insert Thread States
Waiting for INSERT
thread state, Delayed-Insert Thread States
Waiting for master to send event
thread state, Replication Slave I/O Thread States
Waiting for master update
thread state, Replication Slave I/O Thread States
Waiting for next activation
thread state, Event Scheduler Thread States
Waiting for query cache lock
thread state, Query Cache Thread States
Waiting for scheduler to stop
thread state, Event Scheduler Thread States
Waiting for schema metadata lock
thread state, General Thread States
Waiting for slave mutex on exit
thread state, Replication Slave I/O Thread States, Replication Slave SQL Thread States
Waiting for stored function metadata lock
thread state, General Thread States
Waiting for stored procedure metadata lock
thread state, General Thread States
Waiting for table
thread state, General Thread States
Waiting for table level lock
thread state, General Thread States
Waiting for table metadata lock
thread state, General Thread States
Waiting for tables
thread state, General Thread States
Waiting for the next event in relay log
thread state, Replication Slave SQL Thread States
Waiting for the slave SQL thread to free enough relay log space
thread state, Replication Slave I/O Thread States
Waiting for trigger metadata lock
thread state, General Thread States
Waiting on cond
thread state, General Thread States
Waiting on empty queue
thread state, Event Scheduler Thread States
Waiting to finalize termination
thread state, Replication Master Thread States
Waiting to reconnect after a failed binlog dump request
thread state, Replication Slave I/O Thread States
Waiting to reconnect after a failed master event read
thread state, Replication Slave I/O Thread States
Waiting until MASTER_DELAY seconds after master executed event
thread state, Replication Slave SQL Thread States
wait_timeout system variable, Server System Variables
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), GTID Functions
warm backup, MySQL Glossary
warm up, MySQL Glossary
warn option
mysql_config_editor, mysql_config_editor — MySQL Configuration Utility
warnings command
mysql, mysql Commands
warning_count session variable, Server System Variables
Website Configuration Tool, MySQL Website Configuration Tool
WEEK(), Date and Time Functions
WEEKDAY(), Date and Time Functions
WEEKOFYEAR(), Date and Time Functions
WEIGHT_STRING(), String Functions
Well-Known Binary format, Well-Known Binary (WKB) Format
Well-Known Text format, Well-Known Text (WKT) Format
WHERE, How MySQL Optimizes WHERE Clauses
with SHOW, INFORMATION_SCHEMA Tables, Extensions to SHOW Statements
where option
mysqldump, mysqldump — A Database Backup Program
WHILE, WHILE Syntax
labels, Statement Label Syntax
widths
display, Data Types
Wildcard character (%), String Literals
Wildcard character (_), String Literals
wildcards
and LIKE, Comparison of B-Tree and Hash Indexes
in account names, Specifying Account Names
in mysql.columns_priv table, Access Control, Stage 2: Request Verification
in mysql.db table, Access Control, Stage 2: Request Verification
in mysql.procs_priv table, Access Control, Stage 2: Request Verification
in mysql.tables_priv table, Access Control, Stage 2: Request Verification
Windows, MySQL Connector/ODBC, MySQL Connector/Net, MySQL Glossary
compiling clients on, Building C API Client Programs
MySQL limitations, Limits Imposed by .frm File Structure, Windows Platform Limitations
path name separators, Using Option Files
pluggable authentication, The Windows Native Authentication Plugin
upgrading, Upgrading MySQL on Windows
Windows Failover Clustering, Overview of MySQL with Windows Failover Clustering
windows option
mysql_install_db, mysql_install_db — Initialize MySQL Data Directory
Windows Server Failover Clustering, Overview of MySQL with Windows Failover Clustering
Within(), Functions That Test Spatial Relationships Between Geometries
WITH_DEBUG option
CMake, MySQL Source-Configuration Options
WITH_DEFAULT_COMPILER_OPTIONS option
CMake, MySQL Source-Configuration Options
WITH_DEFAULT_FEATURE_SET option
CMake, MySQL Source-Configuration Options
WITH_EMBEDDED_SERVER option
CMake, MySQL Source-Configuration Options
WITH_EXTRA_CHARSETS option
CMake, MySQL Source-Configuration Options
WITH_LIBEDIT option
CMake, MySQL Source-Configuration Options
WITH_LIBWRAP option
CMake, MySQL Source-Configuration Options
WITH_READLINE option
CMake, MySQL Source-Configuration Options
WITH_SSL option
CMake, MySQL Source-Configuration Options
WITH_UNIXODBC option
CMake, MySQL Source-Configuration Options
WITH_ZLIB option
CMake, MySQL Source-Configuration Options
WKB format, Well-Known Binary (WKB) Format
WKT format, Well-Known Text (WKT) Format
workload, MySQL Glossary
wrappers
Eiffel, MySQL Eiffel Wrapper
write access
tmp, Problems Running mysql_install_db
write combining, MySQL Glossary
write-binlog option
mysqlcheck, mysqlcheck — A Table Maintenance Program
mysql_upgrade, mysql_upgrade — Check and Upgrade MySQL Tables
write_buffer_size myisamchk variable, myisamchk General Options
Writing to net
thread state, General Thread States
X
X(), Point Functions
X509/Certificate, Basic SSL Concepts
XA, MySQL Glossary
XA BEGIN, XA Transaction SQL Syntax
XA COMMIT, XA Transaction SQL Syntax
XA PREPARE, XA Transaction SQL Syntax
XA RECOVER, XA Transaction SQL Syntax
XA ROLLBACK, XA Transaction SQL Syntax
XA START, XA Transaction SQL Syntax
XA transactions, XA Transactions
restrictions, Restrictions on XA Transactions
transaction identifiers, XA Transaction SQL Syntax
xid
XA transaction identifier, XA Transaction SQL Syntax
xml option
mysql, mysql Options
mysqldump, mysqldump — A Database Backup Program
XOR
bitwise, Bit Functions
logical, Logical Operators
Y
Y(), Point Functions
yaSSL, Configuring MySQL for SSL
YEAR data type, Date and Time Type Overview, The YEAR Type
YEAR(), Date and Time Functions
YEARWEEK(), Date and Time Functions
Yen sign (Japanese), MySQL 5.6 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
young, MySQL Glossary
Your password does not satisfy the current policy requirements
password error, The Password Validation Plugin
Z
ZEROFILL, Numeric Type Overview, Numeric Types, C API Prepared Statement Problems
C Function Index
my_init()
Section 21.8.11.1, “my_init()”
Section 21.8.11.3, “mysql_thread_init()”
Section 21.8.5, “C API Function Overview”
mysql_affected_rows()
Section 13.2.5, “INSERT Syntax”
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.6.48, “mysql_num_rows()”
Section 21.8.10.1, “mysql_stmt_affected_rows()”
Section 21.8.6.72, “mysql_use_result()”
Section 13.2.8, “REPLACE Syntax”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
Section 12.14, “Information Functions”
Section 21.8.14.2, “What Results You Can Get from a Query”
mysql_autocommit()
Section 21.8.6.2, “mysql_autocommit()”
Section 21.8.5, “C API Function Overview”
mysql_change_user()
Section 21.8.6.3, “mysql_change_user()”
Section 21.8.5, “C API Function Overview”
mysql_character_set_name()
Section 21.8.6.4, “mysql_character_set_name()”
Section 21.8.5, “C API Function Overview”
mysql_client_find_plugin()
Section 21.8.13.1, “mysql_client_find_plugin()”
Section 21.8.5, “C API Function Overview”
mysql_client_register_plugin()
Section 21.8.13.2, “mysql_client_register_plugin()”
Section 21.8.5, “C API Function Overview”
mysql_close()
Section 21.8.6.5, “mysql_close()”
Section 21.8.6.6, “mysql_commit()”
Section 21.8.6.7, “mysql_connect()”
Section 21.8.6.36, “mysql_init()”
Section 21.8.6.58, “mysql_rollback()”
Section 21.8.5, “C API Function Overview”
Section C.5.2.11, “Communication Errors and Aborted Connections”
mysql_commit()
Section 21.8.6.6, “mysql_commit()”
Section 21.8.5, “C API Function Overview”
mysql_connect()
Section 21.8.11.1, “my_init()”
Section 21.8.6.5, “mysql_close()”
Section 21.8.6.7, “mysql_connect()”
Section 21.8.6.49, “mysql_options()”
Section 21.8.11.3, “mysql_thread_init()”
Section 21.8.5, “C API Function Overview”
Section 21.8.3.2, “Writing C API Threaded Client Programs”
mysql_create_db()
Section 21.8.6.8, “mysql_create_db()”
Section 21.8.5, “C API Function Overview”
mysql_data_seek()
Section 21.8.6.9, “mysql_data_seek()”
Section 21.8.6.59, “mysql_row_seek()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.5, “C API Function Overview”
mysql_debug()
Section 21.8.6.10, “mysql_debug()”
Section 21.8.5, “C API Function Overview”
mysql_drop_db()
Section 21.8.6.11, “mysql_drop_db()”
Section 21.8.5, “C API Function Overview”
mysql_dump_debug_info()
Section 21.8.6.12, “mysql_dump_debug_info()”
Section 21.8.5, “C API Function Overview”
mysql_eof()
Section 21.8.6.13, “mysql_eof()”
Section 21.8.5, “C API Function Overview”
mysql_errno()
Section 21.8.13.1, “mysql_client_find_plugin()”
Section 21.8.13.2, “mysql_client_register_plugin()”
Section 21.8.6.7, “mysql_connect()”
Section 21.8.6.13, “mysql_eof()”
Section 21.8.6.14, “mysql_errno()”
Section 21.8.6.22, “mysql_field_count()”
Section 21.8.13.3, “mysql_load_plugin()”
Section 21.8.6.47, “mysql_num_fields()”
Section 21.8.6.67, “mysql_sqlstate()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.6, “C API Function Descriptions”
Section 21.8.5, “C API Function Overview”
Section 13.6.7.5.1, “Signal Condition Information Items”
Section 6.3.11.2, “The Audit Log File”
Section C.2, “Types of Error Values”
Section 22.2.4.8, “Writing Audit Plugins”
mysql_error()
Section 21.8.13.1, “mysql_client_find_plugin()”
Section 21.8.13.2, “mysql_client_register_plugin()”
Section 21.8.6.7, “mysql_connect()”
Section 21.8.6.13, “mysql_eof()”
Section 21.8.6.15, “mysql_error()”
Section 21.8.13.3, “mysql_load_plugin()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.6, “C API Function Descriptions”
Section 21.8.5, “C API Function Overview”
Section 13.6.7.5.1, “Signal Condition Information Items”
Section C.2, “Types of Error Values”
Section 22.2.4.8, “Writing Audit Plugins”
mysql_escape_string()
Section 21.8.6.16, “mysql_escape_string()”
Section 21.8.5, “C API Function Overview”
Section 6.1.7, “Client Programming Security Guidelines”
mysql_fetch_field()
Section 21.8.6.17, “mysql_fetch_field()”
Section 21.8.6.23, “mysql_field_seek()”
Section 21.8.6.24, “mysql_field_tell()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
mysql_fetch_field_direct()
Section 21.8.6.18, “mysql_fetch_field_direct()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.5, “C API Function Overview”
mysql_fetch_fields()
Section 21.8.6.19, “mysql_fetch_fields()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.5, “C API Function Overview”
mysql_fetch_lengths()
Section 21.8.6.20, “mysql_fetch_lengths()”
Section 21.8.6.21, “mysql_fetch_row()”
Section 21.8.5, “C API Function Overview”
mysql_fetch_row()
Section 14.9.1, “FEDERATED Storage Engine Overview”
Section 21.8.6.13, “mysql_eof()”
Section 21.8.6.14, “mysql_errno()”
Section 21.8.6.20, “mysql_fetch_lengths()”
Section 21.8.6.21, “mysql_fetch_row()”
Section 21.8.6.60, “mysql_row_tell()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
Section 21.8.14.2, “What Results You Can Get from a Query”
mysql_field_count()
Section 21.8.6.22, “mysql_field_count()”
Section 21.8.6.47, “mysql_num_fields()”
Section 21.8.6.52, “mysql_query()”
Section 21.8.6.55, “mysql_real_query()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.5, “C API Function Overview”
mysql_field_seek()
Section 21.8.6.17, “mysql_fetch_field()”
Section 21.8.6.23, “mysql_field_seek()”
Section 21.8.6.24, “mysql_field_tell()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
mysql_field_tell()
Section 21.8.6.24, “mysql_field_tell()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.5, “C API Function Overview”
mysql_free_result()
Section C.5.2.14, “Commands out of sync”
Section 21.8.6.25, “mysql_free_result()”
Section 21.8.6.41, “mysql_list_dbs()”
Section 21.8.6.42, “mysql_list_fields()”
Section 21.8.6.43, “mysql_list_processes()”
Section 21.8.6.44, “mysql_list_tables()”
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.5, “C API Function Overview”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_get_character_set_info()
Section 21.8.6.26, “mysql_get_character_set_info()”
Section 21.8.5, “C API Function Overview”
Section 10.4.2, “Choosing a Collation ID”
mysql_get_client_info()
Section 21.8.6.7, “mysql_connect()”
Section 21.8.6.27, “mysql_get_client_info()”
Section 21.8.5, “C API Function Overview”
mysql_get_client_version()
Section 21.8.6.28, “mysql_get_client_version()”
Section 21.8.5, “C API Function Overview”
mysql_get_host_info()
Section 21.8.6.29, “mysql_get_host_info()”
Section 21.8.5, “C API Function Overview”
mysql_get_proto_info()
Section 21.8.6.30, “mysql_get_proto_info()”
Section 21.8.5, “C API Function Overview”
mysql_get_server_info()
Section 21.8.6.31, “mysql_get_server_info()”
Section 21.8.5, “C API Function Overview”
mysql_get_server_version()
Section 21.8.6.32, “mysql_get_server_version()”
Section 21.8.5, “C API Function Overview”
mysql_get_ssl_cipher()
Section 21.8.6.33, “mysql_get_ssl_cipher()”
Section 21.8.5, “C API Function Overview”
Section 6.3.9.3, “Using SSL Connections”
mysql_hex_string()
Section 21.8.6.34, “mysql_hex_string()”
Section 21.8.5, “C API Function Overview”
mysql_info()
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 21.8.6.35, “mysql_info()”
Section 21.8.6.49, “mysql_options()”
Section 1.8.6.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 13.2.11, “UPDATE Syntax”
Section 21.8.5, “C API Function Overview”
Section 21.8.14.2, “What Results You Can Get from a Query”
mysql_init()
Section 21.8.11.1, “my_init()”
Section 21.8.6.5, “mysql_close()”
Section 21.8.6.33, “mysql_get_ssl_cipher()”
Section 21.8.6.36, “mysql_init()”
Section 21.8.6.40, “mysql_library_init()”
Section 21.8.6.49, “mysql_options()”
Section 21.8.6.53, “mysql_real_connect()”
Section 21.8.6.68, “mysql_ssl_set()”
Section 21.8.11.3, “mysql_thread_init()”
Section 21.8.5, “C API Function Overview”
Section 21.8.3.2, “Writing C API Threaded Client Programs”
mysql_insert_id()
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8.6.37, “mysql_insert_id()”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
Section 21.8.14.3, “How to Get the Unique ID for the Last Inserted Row”
Section 12.14, “Information Functions”
Section 5.1.4, “Server System Variables”
Section 1.8.5.3, “Transaction and Atomic Operation Differences”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 21.8.14.2, “What Results You Can Get from a Query”
mysql_kill()
Section 21.8.6.38, “mysql_kill()”
Section 21.8.6.71, “mysql_thread_id()”
Section 21.8.5, “C API Function Overview”
Section 21.8.15, “Controlling Automatic Reconnection Behavior”
mysql_library_end()
Section 21.8.6.39, “mysql_library_end()”
Section 21.8.6.40, “mysql_library_init()”
Section 21.8.12.2, “mysql_server_end()”
Section 21.8.12, “C API Embedded Server Function Descriptions”
Section 21.8.5, “C API Function Overview”
Section 21.7, “libmysqld, the Embedded MySQL Server Library”
mysql_library_init()
Section 21.8.11.1, “my_init()”
Section 21.8.6.40, “mysql_library_init()”
Section 21.8.13.3, “mysql_load_plugin()”
Section 21.8.12.1, “mysql_server_init()”
Section 21.8.11.3, “mysql_thread_init()”
Section 21.8.12, “C API Embedded Server Function Descriptions”
Section 21.8.5, “C API Function Overview”
Section 21.7, “libmysqld, the Embedded MySQL Server Library”
Section 21.7.3, “Options with the Embedded Server”
Section 21.8.3.2, “Writing C API Threaded Client Programs”
mysql_list_dbs()
Section 21.8.6.25, “mysql_free_result()”
Section 21.8.6.41, “mysql_list_dbs()”
Section 21.8.5, “C API Function Overview”
mysql_list_fields()
Section 21.8.6.42, “mysql_list_fields()”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
mysql_list_processes()
Section 21.8.6.43, “mysql_list_processes()”
Section 21.8.5, “C API Function Overview”
mysql_list_tables()
Section 21.8.6.44, “mysql_list_tables()”
Section 21.8.5, “C API Function Overview”
mysql_load_plugin()
Section 21.8.13.3, “mysql_load_plugin()”
Section 21.8.13.4, “mysql_load_plugin_v()”
Section 21.8.5, “C API Function Overview”
Section 22.2.4.2.3, “Client Plugin Descriptors”
mysql_load_plugin_v()
Section 21.8.13.3, “mysql_load_plugin()”
Section 21.8.13.4, “mysql_load_plugin_v()”
Section 21.8.5, “C API Function Overview”
mysql_more_results()
Section 21.8.6.45, “mysql_more_results()”
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.10.17, “mysql_stmt_next_result()”
Section 21.8.5, “C API Function Overview”
Section 21.8.16, “C API Support for Multiple Statement Execution”
mysql_next_result()
Section 21.8.6.45, “mysql_more_results()”
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.6.53, “mysql_real_connect()”
Section 21.8.6.65, “mysql_set_server_option()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.5, “C API Function Overview”
Section 21.8.16, “C API Support for Multiple Statement Execution”
mysql_num_fields()
Section 21.8.6.18, “mysql_fetch_field_direct()”
Section 21.8.6.21, “mysql_fetch_row()”
Section 21.8.6.47, “mysql_num_fields()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.5, “C API Function Overview”
mysql_num_rows()
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.9, “mysql_data_seek()”
Section 21.8.6.48, “mysql_num_rows()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
Section 21.8.14.2, “What Results You Can Get from a Query”
mysql_options()
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.6.49, “mysql_options()”
Section 21.8.6.50, “mysql_options4()”
Section 21.8.6.51, “mysql_ping()”
Section 21.8.6.53, “mysql_real_connect()”
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.13, “C API Client Plugin Functions”
Section 21.8.5, “C API Function Overview”
Section 21.8.8, “C API Prepared Statement Data Structures”
Section 22.2.4.2.3, “Client Plugin Descriptors”
Section 10.1.4, “Connection Character Sets and Collations”
Section 21.8.15, “Controlling Automatic Reconnection Behavior”
Section 6.3.6, “Password Expiration and Sandbox Mode”
Section 20.9.7, “Performance Schema Connection Attribute Tables”
Section 22.2.2, “Plugin API Components”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”
Section 6.3.1, “User Names and Passwords”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”
Section 22.2.4.9.3, “Using the Authentication Plugins”
mysql_options4()
Section 21.8.6.49, “mysql_options()”
Section 21.8.6.50, “mysql_options4()”
Section 21.8.5, “C API Function Overview”
Section 20.9.7, “Performance Schema Connection Attribute Tables”
mysql_ping()
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.6.51, “mysql_ping()”
Section 21.8.6.71, “mysql_thread_id()”
Section 21.8.5, “C API Function Overview”
Section 21.8.15, “Controlling Automatic Reconnection Behavior”
mysql_plugin_options()
Section 21.8.13.5, “mysql_plugin_options()”
Section 21.8.5, “C API Function Overview”
mysql_query()
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.8, “mysql_create_db()”
Section 21.8.6.11, “mysql_drop_db()”
Section 21.8.6.17, “mysql_fetch_field()”
Section 21.8.6.38, “mysql_kill()”
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.6.52, “mysql_query()”
Section 21.8.6.53, “mysql_real_connect()”
Section 21.8.6.55, “mysql_real_query()”
Section 21.8.6.57, “mysql_reload()”
Section 21.8.6.64, “mysql_set_local_infile_handler()”
Section 21.8.6.65, “mysql_set_server_option()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.5, “C API Function Overview”
Section 21.8.16, “C API Support for Multiple Statement Execution”
Section 21.8.14.3, “How to Get the Unique ID for the Last Inserted Row”
Section 21.8.3.2, “Writing C API Threaded Client Programs”
mysql_real_connect()
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.3, “mysql_change_user()”
Section 21.8.6.7, “mysql_connect()”
Section 21.8.6.36, “mysql_init()”
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.6.49, “mysql_options()”
Section 21.8.6.53, “mysql_real_connect()”
Section 21.8.6.65, “mysql_set_server_option()”
Section 21.8.6.67, “mysql_sqlstate()”
Section 21.8.6.68, “mysql_ssl_set()”
Section 21.8.5, “C API Function Overview”
Section 21.8.16, “C API Support for Multiple Statement Execution”
Chapter 12, Functions and Operators
Section 12.14, “Information Functions”
Section 6.3.6, “Password Expiration and Sandbox Mode”
Section 5.1.4, “Server System Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 18.2.1, “Stored Routine Syntax”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”
Section 6.3.9.3, “Using SSL Connections”
mysql_real_escape_string()
Section 21.8.6.16, “mysql_escape_string()”
Section 21.8.6.54, “mysql_real_escape_string()”
Section 21.8.6.62, “mysql_set_character_set()”
Section 21.8.5, “C API Function Overview”
Section 6.1.7, “Client Programming Security Guidelines”
Section 12.18.4.4, “Populating Spatial Columns”
Section 9.1.1, “String Literals”
mysql_real_query()
Section 14.9.1, “FEDERATED Storage Engine Overview”
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.6.52, “mysql_query()”
Section 21.8.6.53, “mysql_real_connect()”
Section 21.8.6.55, “mysql_real_query()”
Section 21.8.6.65, “mysql_set_server_option()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.5, “C API Function Overview”
Section 21.8.16, “C API Support for Multiple Statement Execution”
mysql_refresh()
Section 21.8.6.56, “mysql_refresh()”
Section 21.8.5, “C API Function Overview”
mysql_reload()
Section 21.8.6.57, “mysql_reload()”
Section 21.8.5, “C API Function Overview”
mysql_rollback()
Section 21.8.6.58, “mysql_rollback()”
Section 21.8.5, “C API Function Overview”
mysql_row_seek()
Section 21.8.6.59, “mysql_row_seek()”
Section 21.8.6.60, “mysql_row_tell()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.5, “C API Function Overview”
mysql_row_tell()
Section 21.8.6.59, “mysql_row_seek()”
Section 21.8.6.60, “mysql_row_tell()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.5, “C API Function Overview”
mysql_select_db()
Section 21.8.6.61, “mysql_select_db()”
Section 21.8.5, “C API Function Overview”
mysql_server_end()
Section 21.8.12.2, “mysql_server_end()”
Section 21.8.5, “C API Function Overview”
mysql_server_init()
Section 21.8.11.1, “my_init()”
Section 21.8.12.1, “mysql_server_init()”
Section 21.8.11.3, “mysql_thread_init()”
Section 21.8.5, “C API Function Overview”
mysql_set_character_set()
Section 21.8.6.26, “mysql_get_character_set_info()”
Section 21.8.6.54, “mysql_real_escape_string()”
Section 21.8.6.62, “mysql_set_character_set()”
Section 21.8.5, “C API Function Overview”
mysql_set_local_infile_default()
Section 21.8.6.63, “mysql_set_local_infile_default()”
Section 21.8.5, “C API Function Overview”
mysql_set_local_infile_handler()
Section 21.8.6.63, “mysql_set_local_infile_default()”
Section 21.8.6.64, “mysql_set_local_infile_handler()”
Section 21.8.5, “C API Function Overview”
mysql_set_server_option()
Section 21.8.6.65, “mysql_set_server_option()”
Section 21.8.5, “C API Function Overview”
Section 21.8.16, “C API Support for Multiple Statement Execution”
mysql_shutdown()
Section 21.8.6.66, “mysql_shutdown()”
Section 21.8.5, “C API Function Overview”
mysql_sqlstate()
Section 21.8.6.14, “mysql_errno()”
Section 21.8.6.67, “mysql_sqlstate()”
Section 21.8.5, “C API Function Overview”
Section 13.6.7.5.1, “Signal Condition Information Items”
Section C.2, “Types of Error Values”
mysql_ssl_set()
Section 21.8.6.53, “mysql_real_connect()”
Section 21.8.6.68, “mysql_ssl_set()”
Section 21.8.5, “C API Function Overview”
Section 6.3.9.3, “Using SSL Connections”
mysql_stat()
Section 21.8.6.69, “mysql_stat()”
Section 21.8.5, “C API Function Overview”
mysql_stmt_affected_rows()
Section 21.8.10.1, “mysql_stmt_affected_rows()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.17, “mysql_stmt_next_result()”
Section 21.8.10.18, “mysql_stmt_num_rows()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_attr_get()
Section 21.8.10.2, “mysql_stmt_attr_get()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_attr_set()
Section 21.8.10.3, “mysql_stmt_attr_set()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.4, “C API Data Structures”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.8.2, “C API Prepared Statement Type Conversions”
Section E.3, “Restrictions on Server-Side Cursors”
mysql_stmt_bind_param()
Section 21.8.10.4, “mysql_stmt_bind_param()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.21, “mysql_stmt_prepare()”
Section 21.8.10.26, “mysql_stmt_send_long_data()”
Section 21.8.8, “C API Prepared Statement Data Structures”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.18, “C API Prepared Statement Handling of Date and Time Values”
mysql_stmt_bind_result()
Section 21.8.10.5, “mysql_stmt_bind_result()”
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.10.12, “mysql_stmt_fetch_column()”
Section 21.8.10.17, “mysql_stmt_next_result()”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.8, “C API Prepared Statement Data Structures”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.18, “C API Prepared Statement Handling of Date and Time Values”
mysql_stmt_close()
Section 21.8.10.6, “mysql_stmt_close()”
Section 21.8.10.15, “mysql_stmt_init()”
Section 21.8.8, “C API Prepared Statement Data Structures”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_data_seek()
Section 21.8.10.7, “mysql_stmt_data_seek()”
Section 21.8.10.24, “mysql_stmt_row_seek()”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_errno()
Section 21.8.10.8, “mysql_stmt_errno()”
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section C.2, “Types of Error Values”
mysql_stmt_error()
Section 21.8.10.9, “mysql_stmt_error()”
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.10.21, “mysql_stmt_prepare()”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section C.2, “Types of Error Values”
mysql_stmt_execute()
Section 21.8.10.1, “mysql_stmt_affected_rows()”
Section 21.8.10.3, “mysql_stmt_attr_set()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.10.17, “mysql_stmt_next_result()”
Section 21.8.10.26, “mysql_stmt_send_long_data()”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.8, “C API Prepared Statement Data Structures”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.18, “C API Prepared Statement Handling of Date and Time Values”
Section 21.8.8.2, “C API Prepared Statement Type Conversions”
Section 8.9.3.1, “How the Query Cache Operates”
mysql_stmt_fetch()
Section 21.8.10.5, “mysql_stmt_bind_result()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.10.25, “mysql_stmt_row_tell()”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.8, “C API Prepared Statement Data Structures”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.8.2, “C API Prepared Statement Type Conversions”
mysql_stmt_fetch_column()
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.10.12, “mysql_stmt_fetch_column()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_field_count()
Section 21.8.10.13, “mysql_stmt_field_count()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_free_result()
Section 21.8.10.3, “mysql_stmt_attr_set()”
Section 21.8.10.14, “mysql_stmt_free_result()”
Section 21.8.10.17, “mysql_stmt_next_result()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_init()
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.15, “mysql_stmt_init()”
Section 21.8.10.21, “mysql_stmt_prepare()”
Section 21.8.8, “C API Prepared Statement Data Structures”
Section 21.8.10, “C API Prepared Statement Function Descriptions”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.7, “C API Prepared Statements”
mysql_stmt_insert_id()
Section 21.8.10.16, “mysql_stmt_insert_id()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_next_result()
Section 21.8.10.17, “mysql_stmt_next_result()”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.19, “C API Support for Prepared CALL Statements”
mysql_stmt_num_rows()
Section 21.8.10.7, “mysql_stmt_data_seek()”
Section 21.8.10.18, “mysql_stmt_num_rows()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_param_count()
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.19, “mysql_stmt_param_count()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_param_metadata()
Section 21.8.10.20, “mysql_stmt_param_metadata()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_prepare()
Section 21.8.10.4, “mysql_stmt_bind_param()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.13, “mysql_stmt_field_count()”
Section 21.8.10.21, “mysql_stmt_prepare()”
Section 21.8.10.22, “mysql_stmt_reset()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.8, “C API Prepared Statement Data Structures”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.18, “C API Prepared Statement Handling of Date and Time Values”
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 8.9.3.1, “How the Query Cache Operates”
Section 13.5, “SQL Syntax for Prepared Statements”
mysql_stmt_reset()
Section 21.8.10.3, “mysql_stmt_attr_set()”
Section 21.8.10.22, “mysql_stmt_reset()”
Section 21.8.10.26, “mysql_stmt_send_long_data()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_result_metadata()
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.8.2, “C API Prepared Statement Type Conversions”
mysql_stmt_row_seek()
Section 21.8.10.24, “mysql_stmt_row_seek()”
Section 21.8.10.25, “mysql_stmt_row_tell()”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_row_tell()
Section 21.8.10.24, “mysql_stmt_row_seek()”
Section 21.8.10.25, “mysql_stmt_row_tell()”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_stmt_send_long_data()
Section 21.8.10.22, “mysql_stmt_reset()”
Section 21.8.10.26, “mysql_stmt_send_long_data()”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 5.1.4, “Server System Variables”
mysql_stmt_sqlstate()
Section 21.8.10.27, “mysql_stmt_sqlstate()”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section C.2, “Types of Error Values”
mysql_stmt_store_result()
Section 21.8.10.3, “mysql_stmt_attr_set()”
Section 21.8.10.7, “mysql_stmt_data_seek()”
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.10.18, “mysql_stmt_num_rows()”
Section 21.8.10.24, “mysql_stmt_row_seek()”
Section 21.8.10.25, “mysql_stmt_row_tell()”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.4, “C API Data Structures”
Section 21.8.9, “C API Prepared Statement Function Overview”
mysql_store_result()
Section C.5.2.14, “Commands out of sync”
Section 14.9.1, “FEDERATED Storage Engine Overview”
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.9, “mysql_data_seek()”
Section 21.8.6.13, “mysql_eof()”
Section 21.8.6.17, “mysql_fetch_field()”
Section 21.8.6.21, “mysql_fetch_row()”
Section 21.8.6.22, “mysql_field_count()”
Section 21.8.6.25, “mysql_free_result()”
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.6.47, “mysql_num_fields()”
Section 21.8.6.48, “mysql_num_rows()”
Section 21.8.6.59, “mysql_row_seek()”
Section 21.8.6.60, “mysql_row_tell()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.23, “mysql_stmt_result_metadata()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
Section 4.5.1, “mysql — The MySQL Command-Line Tool”
Section 21.8.14.2, “What Results You Can Get from a Query”
Section 21.8.3.2, “Writing C API Threaded Client Programs”
mysql_thread_end()
Section 21.8.11.2, “mysql_thread_end()”
Section 21.8.5, “C API Function Overview”
Section 21.7, “libmysqld, the Embedded MySQL Server Library”
Section 21.8.3.2, “Writing C API Threaded Client Programs”
mysql_thread_id()
Section 21.8.6.51, “mysql_ping()”
Section 21.8.6.71, “mysql_thread_id()”
Section 21.8.5, “C API Function Overview”
Section 21.8.15, “Controlling Automatic Reconnection Behavior”
mysql_thread_init()
Section 21.8.11.1, “my_init()”
Section 21.8.11.2, “mysql_thread_end()”
Section 21.8.11.3, “mysql_thread_init()”
Section 21.8.5, “C API Function Overview”
Section 21.7, “libmysqld, the Embedded MySQL Server Library”
Section 21.8.3.2, “Writing C API Threaded Client Programs”
mysql_thread_safe()
Section 21.8.11.4, “mysql_thread_safe()”
Section 21.8.5, “C API Function Overview”
mysql_use_result()
Section C.5.2.14, “Commands out of sync”
Section 21.8.6.9, “mysql_data_seek()”
Section 21.8.6.13, “mysql_eof()”
Section 21.8.6.21, “mysql_fetch_row()”
Section 21.8.6.25, “mysql_free_result()”
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.6.47, “mysql_num_fields()”
Section 21.8.6.48, “mysql_num_rows()”
Section 21.8.6.59, “mysql_row_seek()”
Section 21.8.6.60, “mysql_row_tell()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section C.5.2.8, “Out of memory”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
Section 4.5.1, “mysql — The MySQL Command-Line Tool”
Section 21.8.14.2, “What Results You Can Get from a Query”
Section 21.8.3.2, “Writing C API Threaded Client Programs”
mysql_warning_count()
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.6.73, “mysql_warning_count()”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 21.8.5, “C API Function Overview”
Section C.2, “Types of Error Values”
Command Index
A | B | C | D | E | G | H | I | K | L | M | N | O | P | R | S | T | U | V | W | Y | Z
A
Access
Section 13.2.2, “DELETE Syntax”
addgroup
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
addr2line
Section 22.4.1.5, “Using a Stack Trace”
adduser
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
apt-get
Section 2.5.2, “Installing MySQL on Linux using Native Package Manager”
B
bash
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 2.4.1, “General Notes on Installing MySQL on Mac OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 4.2.4, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”
bison
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 2.9.3, “Installing MySQL from a Development Source Tree”
Section 2.9, “Installing MySQL from Source”
bzr
Section 2.9.3, “Installing MySQL from a Development Source Tree”
C
c++filt
Section 22.4.1.5, “Using a Stack Trace”
cat
Section 4.5.1.1, “mysql Options”
chkconfig
Section 2.5.2, “Installing MySQL on Linux using Native Package Manager”
Section 2.10.1.2, “Starting and Stopping MySQL Automatically”
chroot
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
CMake
Section C.5.2.17, “Can't initialize character set”
Section 10.3, “Adding a Character Set”
Section 22.2.4.3, “Compiling and Installing Plugin Libraries”
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
Section 6.3.9.2, “Configuring MySQL for SSL”
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 2.12, “Environment Variables”
Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”
Section 2.9.3, “Installing MySQL from a Development Source Tree”
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 2.9, “Installing MySQL from Source”
Section 21.7, “libmysqld, the Embedded MySQL Server Library”
Section 22.2.5, “MySQL Services for Plugins”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 2.1.1, “Operating Systems Supported by MySQL Community Server”
Section 20.2.1, “Performance Schema Build Configuration”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.4, “Server System Variables”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 14.10, “The EXAMPLE Storage Engine”
Section 14.9, “The FEDERATED Storage Engine”
Section 5.7, “Tracing mysqld Using DTrace”
Section 4.2.3.3, “Using Option Files”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
cmake
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 14.2.9.4.1, “Password-Protecting the memcached Interface through SASL”
cmd
Section C.5.4.1.1, “Resetting the Root Password: Windows Systems”
cmd.exe
Section 4.2.1, “Invoking MySQL Programs”
Section 1.2, “Typographical and Syntax Conventions”
command.com
Section 4.2.1, “Invoking MySQL Programs”
Section 1.2, “Typographical and Syntax Conventions”
comp_err
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.1, “Overview of MySQL Programs”
configure
Section 2.12, “Environment Variables”
Section 1.7, “How to Report Bugs or Problems”
Section 1.2, “Typographical and Syntax Conventions”
copy
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
coreadm
Section 2.6, “Installing MySQL on Solaris and OpenSolaris”
Section 5.1.3, “Server Command Options”
cp
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
crash-me
Section 8.12.2, “The MySQL Benchmark Suite”
crc32
Section 14.2.6, “InnoDB Startup Options and System Variables”
cron
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 14.3.1, “MyISAM Startup Options”
Section 5.2.6, “Server Log Maintenance”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 3.5, “Using mysql in Batch Mode”
csh
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.4, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”
D
date
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
df
Section C.5.1, “How to Determine What Is Causing a Problem”
Directory Utility
Section 2.4.1, “General Notes on Installing MySQL on Mac OS X”
drwtsn32.exe
Section 22.4.1.3, “Using pdb to create a Windows crashdump”
dump
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
E
emerge
Section 2.5.2, “Installing MySQL on Linux using Native Package Manager”
G
gcc
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
Section 21.7.1, “Compiling Programs with libmysqld”
Section 2.13.3, “Problems Using the Perl DBI/DBD Interface”
gdb
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 22.4.1.4, “Debugging mysqld under gdb”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
gmake
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 2.9, “Installing MySQL from Source”
Section 2.8, “Installing MySQL on FreeBSD”
GnuPG
Section 2.1.4.2, “Signature Checking Using GnuPG”
gnutar
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
Section 2.9, “Installing MySQL from Source”
gogoc
Section 5.1.9.5, “Obtaining an IPv6 Address from a Broker”
gpg
Section 2.1.4.2, “Signature Checking Using GnuPG”
grep
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 3.3.4.7, “Pattern Matching”
groupadd
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
Section 2.6, “Installing MySQL on Solaris and OpenSolaris”
gtar
Section 2.7.1, “General Notes on Installing MySQL on HP-UX”
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
Section 2.9, “Installing MySQL from Source”
Section 2.6, “Installing MySQL on Solaris and OpenSolaris”
gunzip
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
gzip
Section 1.7, “How to Report Bugs or Problems”
Section 2.4, “Installing MySQL on Mac OS X”
H
hdparm
Section 14.2.6, “InnoDB Startup Options and System Variables”
help contents
Section 4.5.1.4, “mysql Server-Side Help”
hostname
Section C.5.2.2, “Can't connect to [local] MySQL server”
I
icc
Section 2.1.6, “Compiler-Specific Build Characteristics”
Section 22.4, “Debugging and Porting MySQL”
ifconfig
Section 5.1.9.1, “Verifying System Support for IPv6”
innochecksum
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 4.1, “Overview of MySQL Programs”
K
kill
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section E.6, “Restrictions on XA Transactions”
ksh
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.4, “Setting Environment Variables”
L
ldconfig
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
less
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
ln
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
logger
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
ls +L1
Section C.5.4.4, “Where MySQL Stores Temporary Files”
M
m4
Section 2.9, “Installing MySQL from Source”
make
Section 22.2.4.3, “Compiling and Installing Plugin Libraries”
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 2.9, “Installing MySQL from Source”
Section 2.8, “Installing MySQL on FreeBSD”
Section 2.13.3, “Problems Using the Perl DBI/DBD Interface”
make install
Section 22.2.4.3, “Compiling and Installing Plugin Libraries”
make package
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 2.9.4, “MySQL Source-Configuration Options”
make test
Section 2.9.3, “Installing MySQL from a Development Source Tree”
Section 2.13.1, “Installing Perl on Unix”
Section 22.1.2, “The MySQL Test Suite”
md5
Section 2.1.4.1, “Verifying the MD5 Checksum”
md5.exe
Section 2.1.4.1, “Verifying the MD5 Checksum”
md5sum
Section 2.1.4.1, “Verifying the MD5 Checksum”
memcached
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.9.5.2, “Adapting an Existing memcached Application for the Integrated memcached Daemon”
Section 14.2.9.5.1, “Adapting an Existing MySQL Schema for a memcached Application”
Section 14.2.9.5.5, “Adapting DML Statements to memcached Operations”
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 14.2.9.1, “Benefits of the InnoDB / memcached Combination”
Section 14.2.9.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.2.9.3, “Getting Started with InnoDB Memcached Plugin”
Section 14.2.9, “InnoDB Integration with memcached”
Section 14.2.9.3.2, “Installing and Configuring the InnoDB memcached Plugin”
Section 14.2.9.7, “Internals of the InnoDB memcached Plugin”
Section 14.2.9.4.1, “Password-Protecting the memcached Interface through SASL”
Section 14.2.9.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 14.2.9.3.1, “Prerequisites for the InnoDB memcached Plugin”
Section 14.2.9.4, “Security Considerations for the InnoDB memcached Plugin”
Section 14.2.9.8, “Troubleshooting the InnoDB memcached Plugin”
Section 14.2.9.5.3, “Tuning Performance of the InnoDB memcached Plugin”
Section 15.6, “Using MySQL with memcached”
Section 14.2.9.6, “Using the InnoDB memcached Plugin with Replication”
Section 14.2.9.3.3, “Verifying the InnoDB and memcached Setup”
Section 1.4, “What Is New in MySQL 5.6”
Section 14.2.9.5, “Writing Applications for the InnoDB memcached Interface”
memcapable
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
memcat
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 14.2.9.3.3, “Verifying the InnoDB and memcached Setup”
memcp
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
memflush
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
memrm
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
memslap
Section 14.2.9.5.3, “Tuning Performance of the InnoDB memcached Plugin”
mkdir
Section 13.1.8, “CREATE DATABASE Syntax”
mklink
Section 8.11.3.1.3, “Using Symbolic Links for Databases on Windows”
more
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
msql2mysql
Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with MySQL”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.1, “Overview of MySQL Programs”
msql2mysqlC-source-file ...
Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with MySQL”
mv
Section 5.2.6, “Server Log Maintenance”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”
my_print_defaults
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.7, “MySQL Program Development Utilities”
Section 4.1, “Overview of MySQL Programs”
myisam_ftdump
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 12.9, “Full-Text Search Functions”
Section 4.1, “Overview of MySQL Programs”
myisamchk
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 14.3.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 14.3.3, “MyISAM Table Storage Formats”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 10.5, “Character Set Configuration”
Section 14.3.3.3, “Compressed Table Characteristics”
Section 14.3.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 22.4.1, “Debugging a MySQL Server”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 14.3.3.2, “Dynamic Table Characteristics”
Section 8.10.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section E.10.3, “Limits on Table Size”
Section 17.3.4, “Maintenance of Partitions”
Section 22.4.1.7, “Making a Test Case If You Experience Table Corruption”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 4.6.3.4, “Other myisamchk Options”
Section 8.2.5, “Other Optimization Tips”
Section 4.1, “Overview of MySQL Programs”
Section 14.3.4.2, “Problems from Tables Not Being Closed Properly”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.1.3, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
Section 14.3.3.1, “Static (Fixed-Length) Table Characteristics”
Section 8.11.1, “System Factors and Startup Parameter Tuning”
Section 14.3, “The MyISAM Storage Engine”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 22.4.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
myisamchk *.MYI
Section 7.6.3, “How to Repair MyISAM Tables”
myisamchk tbl_name
Section 7.6.2, “How to Check MyISAM Tables for Errors”
myisamlog
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.1, “Overview of MySQL Programs”
myisampack
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.8.1, “MERGE Table Advantages and Disadvantages”
Section 14.3.3, “MyISAM Table Storage Formats”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 14.3.3.3, “Compressed Table Characteristics”
Section 8.10.5, “External Locking”
Section E.10.3, “Limits on Table Size”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 8.4.1, “Optimizing Data Size”
Section 4.1, “Overview of MySQL Programs”
Section 13.1.14.3, “Silent Column Specification Changes”
Section 14.8, “The MERGE Storage Engine”
Section 14.3, “The MyISAM Storage Engine”
mysql
Section 1.8.5.5, “'--' as the Start of a Comment”
Section 4.5.1, “mysql — The MySQL Command-Line Tool”
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 4.5.1.4, “mysql Server-Side Help”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section C.5.2.15, “Ignoring user”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 21.8.6.14, “mysql_errno()”
Section 21.8.6.67, “mysql_sqlstate()”
Section C.5.2.8, “Out of memory”
Section 17.2.3.1, “RANGE COLUMNS partitioning”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 6.3.2, “Adding User Accounts”
Section 14.2.2.4, “Backing Up and Recovering an InnoDB Database”
Section 7.1, “Backup and Recovery Types”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
Section 3.1, “Connecting to and Disconnecting from the Server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 5.1.9.4, “Connecting Using IPv6 Nonlocal Host Addresses”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host Address”
Section 10.1.4, “Connection Character Sets and Collations”
Section 21.8.15, “Controlling Automatic Reconnection Behavior”
Section 14.2.5.8, “Controlling Optimizer Statistics Estimation”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 2.11.5, “Copying MySQL Databases to Another Machine”
Section 3.3.1, “Creating and Selecting a Database”
Section 14.2.2.1, “Creating the InnoDB Tablespace”
Section 2.3.4.7, “Customizing the PATH for MySQL Tools”
Section 22.4.2, “Debugging a MySQL Client”
Section 18.1, “Defining Stored Programs”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”
Section 4.5.1.6.5, “Disabling mysql Auto-Reconnect”
Section 2.11.2, “Downgrading MySQL”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 3.2, “Entering Queries”
Section 2.12, “Environment Variables”
Section 18.4.2, “Event Scheduler Configuration”
Section 7.3, “Example Backup and Recovery Strategy”
Section 21.8.2, “Example C API Client Programs”
Section 3.6, “Examples of Common Queries”
Section 5.5.5, “Examples of Online DDL”
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Chapter 12, Functions and Operators
Section 2.4.1, “General Notes on Installing MySQL on Mac OS X”
Section 14.2.3.10, “How to Cope with Deadlocks”
Section C.5.1, “How to Determine What Is Causing a Problem”
Section 1.7, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 12.14, “Information Functions”
Section 4.5.1.6.1, “Input-Line Editing”
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
Section 4.2.1, “Invoking MySQL Programs”
Section 7.4.5.1, “Making a Copy of a Database”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 8.12.1, “Measuring the Speed of Expressions and Functions”
Section 10.6, “MySQL Server Time Zone Support”
Section 8.2.1.3, “Optimizing LIMIT Queries”
Section 4.2.3.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 4.1, “Overview of MySQL Programs”
Section C.5.2.10, “Packet Too Large”
Section 6.3.6, “Password Expiration and Sandbox Mode”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.3.7, “Pluggable Authentication”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 4.2.3.2, “Program Option Modifiers”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section C.5.4.1.3, “Resetting the Root Password: Generic Instructions”
Section E.9, “Restrictions on Pluggable Authentication”
Section 2.10.2, “Securing the Initial MySQL Accounts”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 5.1.3, “Server Command Options”
Section C.3, “Server Error Codes and Messages”
Section 5.1.4, “Server System Variables”
Section 5.1.10, “Server-Side Help”
Section 12.18.5, “Spatial Analysis Functions”
Section 4.2.3, “Specifying Program Options”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 2.10.1.2, “Starting and Stopping MySQL Automatically”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 9.1.1, “String Literals”
Section 11.4.3, “The BLOB and TEXT Types”
Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”
Section 6.3.7.2, “The SHA-256 Authentication Plugin”
Section 6.3.7.6, “The Socket Peer-Credential Authentication Plugin”
Section 18.3.1, “Trigger Syntax”
Section 14.2.4.7, “Troubleshooting InnoDB Data Dictionary Operations”
Section 21.2.4.8, “Tutorial: Using MySqlScript”
Section 1.2, “Typographical and Syntax Conventions”
Section 4.5.1.6.2, “Unicode Support on Windows”
Section 6.3.7.3.2.3, “Unix Password Authentication with Proxy Users and Group Mapping”
Section 6.3.7.3.2.1, “Unix Password Authentication without Proxy Users”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 3.5, “Using mysql in Batch Mode”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 7.4, “Using mysqldump for Backups”
Section 7.3.2, “Using Backups for Recovery”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 4.2.3.3, “Using Option Files”
Section 4.2.3.1, “Using Options on the Command Line”
Section 4.2.3.5, “Using Options to Set Program Variables”
Section 22.4.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 6.3.9.3, “Using SSL Connections”
Section 4.5.1.6.4, “Using the --safe-updates Option”
Section 1.4, “What Is New in MySQL 5.6”
Section 2.3.7, “Windows Postinstallation Procedures”
Section 12.11, “XML Functions”
mysql ...
Section 22.4.1.1, “Compiling MySQL for Debugging”
mysql {start|stop}
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
mysql-server
Section 2.8, “Installing MySQL on FreeBSD”
mysql-test-run.pl
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 22.1.2, “The MySQL Test Suite”
mysql-test-run.pl test_name
Section 22.1.2, “The MySQL Test Suite”
mysql.exe
Section 4.5.1.6.2, “Unicode Support on Windows”
mysql.script
Section 2.4.1, “General Notes on Installing MySQL on Mac OS X”
mysql.server
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 2.5, “Installing MySQL on Linux”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.1, “Overview of MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 2.10.1.2, “Starting and Stopping MySQL Automatically”
Section C.5.4.6, “Time Zone Problems”
mysql.server stop
Section 2.10.1.2, “Starting and Stopping MySQL Automatically”
mysql_config
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 21.8.3.1, “Building C API Client Programs”
Section 21.7.1, “Compiling Programs with libmysqld”
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 21.8.1, “MySQL C API Implementations”
Section 4.1, “Overview of MySQL Programs”
Section 22.2.2, “Plugin API Components”
mysql_config options
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
mysql_config_editor
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 2.12, “Environment Variables”
Section 4.1, “Overview of MySQL Programs”
Section 4.2.3.3, “Using Option Files”
Section 1.4, “What Is New in MySQL 5.6”
mysql_config_editor options command
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
mysql_convert_table_format
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.1, “Overview of MySQL Programs”
mysql_find_rows
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
Section 22.4.1.7, “Making a Test Case If You Experience Table Corruption”
Section 4.1, “Overview of MySQL Programs”
mysql_fix_extensions
Section 4.6.13, “mysql_fix_extensions — Normalize Table File Name Extensions”
Section 4.1, “Overview of MySQL Programs”
mysql_fix_extensions data_dir
Section 4.6.13, “mysql_fix_extensions — Normalize Table File Name Extensions”
mysql_install_db
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 6.3.2, “Adding User Accounts”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
Section 2.5.2, “Installing MySQL on Linux using Native Package Manager”
Section 2.4.2, “Installing MySQL on Mac OS X Using Native Packages”
Section 2.6.2, “Installing MySQL on OpenSolaris using IPS”
Section 14.2.7, “Limits on InnoDB Tables”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 2.10.2, “Securing the Initial MySQL Accounts”
Section 5.1.3, “Server Command Options”
Section 5.1.10, “Server-Side Help”
Section 5.6.1, “Setting Up Multiple Data Directories”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 5.1.2.2, “Using a Sample Default Server Configuration File”
Section 1.4, “What Is New in MySQL 5.6”
mysql_plugin
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.1, “Overview of MySQL Programs”
mysql_secure_installation
Section 4.4.5, “mysql_secure_installation — Improve MySQL Installation Security”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
Section 2.5.2, “Installing MySQL on Linux using Native Package Manager”
Section 2.6.2, “Installing MySQL on OpenSolaris using IPS”
Section 2.6.1, “Installing MySQL on Solaris using a Solaris PKG”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.2, “Securing the Initial MySQL Accounts”
mysql_setpermission
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.1, “Unix Postinstallation Procedures”
mysql_setpermissions
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
mysql_stmt_execute()
Section 5.1.6, “Server Status Variables”
mysql_stmt_prepare()
Section 5.1.6, “Server Status Variables”
mysql_tzinfo_to_sql
Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”
Section 10.6, “MySQL Server Time Zone Support”
Section 4.1, “Overview of MySQL Programs”
mysql_tzinfo_to_sql arguments
Section 4.4.6, “mysql_tzinfo_to_sql — Load the Time Zone Tables”
mysql_upgrade
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 2.11.2, “Downgrading MySQL”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 4.1, “Overview of MySQL Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 20.2.1, “Performance Schema Build Configuration”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section 5.1.3, “Server Command Options”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 2.11.1, “Upgrading MySQL”
Section 2.3.6, “Upgrading MySQL on Windows”
Section 1.4, “What Is New in MySQL 5.6”
mysql_waitpid
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.1, “Overview of MySQL Programs”
mysql_waitpid()
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
mysql_zap
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section 4.1, “Overview of MySQL Programs”
mysqlaccess
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 1.7, “How to Report Bugs or Problems”
Section 4.1, “Overview of MySQL Programs”
Section 2.10.1, “Unix Postinstallation Procedures”
mysqladmin
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section 13.1.8, “CREATE DATABASE Syntax”
Section 13.1.17, “DROP DATABASE Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 16.3.1.1, “Backing Up a Slave Using mysqldump”
Section 4.2.2, “Connecting to the MySQL Server”
Section 2.3.4.7, “Customizing the PATH for MySQL Tools”
Section 22.4.1, “Debugging a MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 21.8.2, “Example C API Client Programs”
Section 2.4.1, “General Notes on Installing MySQL on Mac OS X”
Section C.5.1, “How to Determine What Is Causing a Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
Section 5.2, “MySQL Server Logs”
Section 4.1, “Overview of MySQL Programs”
Section 6.3.6, “Password Expiration and Sandbox Mode”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.9, “Restrictions on Pluggable Authentication”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 2.10.2, “Securing the Initial MySQL Accounts”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”
Section 5.1.12, “The Shutdown Process”
Section 8.11.2, “Tuning Server Parameters”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 2.3.6, “Upgrading MySQL on Windows”
Section 4.2.3.3, “Using Option Files”
Section 4.2.3.1, “Using Options on the Command Line”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
mysqladmin debug
Section 13.7.1.4, “GRANT Syntax”
Section 22.4.1, “Debugging a MySQL Server”
Section 18.4.5, “Event Scheduler Status”
Section 6.2.1, “Privileges Provided by MySQL”
mysqladmin extended-status
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.7.5.36, “SHOW STATUS Syntax”
mysqladmin flush-hosts
Section C.5.2.6, “Host 'host_name' is blocked”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
Section 5.1.4, “Server System Variables”
mysqladmin flush-logs
Section 7.3.3, “Backup Strategy Summary”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.2.6, “Server Log Maintenance”
Section 5.2.4, “The Binary Log”
Section 5.2.2, “The Error Log”
Section 16.2.2.1, “The Slave Relay Log”
mysqladmin flush-privileges
Section 6.2.7, “Causes of Access-Denied Errors”
Section 2.11.5, “Copying MySQL Databases to Another Machine”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 6.2.2, “Privilege System Grant Tables”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 5.1.3, “Server Command Options”
Section 6.2.6, “When Privilege Changes Take Effect”
mysqladmin flush-tables
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 8.10.5, “External Locking”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 7.6.1, “Using myisamchk for Crash Recovery”
mysqladmin flush-xxx
Section 6.3.2, “Adding User Accounts”
mysqladmin kill
Section 13.7.6.4, “KILL Syntax”
Section C.5.2.9, “MySQL server has gone away”
Section C.5.4.3, “How MySQL Handles a Full Disk”
Section 12.16, “Miscellaneous Functions”
Section 6.2.1, “Privileges Provided by MySQL”
mysqladmin password
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 6.3.6, “Password Expiration and Sandbox Mode”
mysqladmin processlist
Section 13.7.6.4, “KILL Syntax”
Section 21.8.6.43, “mysql_list_processes()”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 6.3.2, “Adding User Accounts”
Section 8.12.5, “Examining Thread Information”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 22.1.1, “MySQL Threads”
Section 6.2.1, “Privileges Provided by MySQL”
mysqladmin processlist status
Section 22.4.1, “Debugging a MySQL Server”
mysqladmin refresh
Section 6.3.2, “Adding User Accounts”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 5.2.6, “Server Log Maintenance”
mysqladmin reload
Section 6.3.2, “Adding User Accounts”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 1.7, “How to Report Bugs or Problems”
Section 6.2.2, “Privilege System Grant Tables”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”
Section 6.2.6, “When Privilege Changes Take Effect”
mysqladmin reload version
Section 1.7, “How to Report Bugs or Problems”
mysqladmin shutdown
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 14.2.2.1, “Creating the InnoDB Tablespace”
Section 22.4.1.2, “Creating Trace Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.4.2, “Installing MySQL on Mac OS X Using Native Packages”
Section 22.4.1.7, “Making a Test Case If You Experience Table Corruption”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.21, “Replication and Temporary Tables”
Section 2.10.1.2, “Starting and Stopping MySQL Automatically”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 5.1.12, “The Shutdown Process”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
mysqladmin status
Section 21.8.6.69, “mysql_stat()”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
mysqladmin variables
Section C.5.2.9, “MySQL server has gone away”
Section 13.7.5.40, “SHOW VARIABLES Syntax”
mysqladmin variables extended-status processlist
Section 1.7, “How to Report Bugs or Problems”
mysqladmin ver
Section 22.4.1.1, “Compiling MySQL for Debugging”
mysqladmin version
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section C.5.2.9, “MySQL server has gone away”
Section 1.7, “How to Report Bugs or Problems”
Section 2.10.1, “Unix Postinstallation Procedures”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
mysqlanalyze
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
mysqlbackup
Section 14.2.2.4, “Backing Up and Recovering an InnoDB Database”
Section 7.1, “Backup and Recovery Types”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
mysqlbinlog
Section 4.5.1.1, “mysql Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.8.1, “mysqlbinlog Hex Dump Format”
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 13.7.6.1, “BINLOG Syntax”
Section 13.7.5.3, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.33, “SHOW RELAYLOG EVENTS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 14.2.2.4, “Backing Up and Recovering an InnoDB Database”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.7.1.2, “Command Probes”
Section 16.1.3.1, “GTID Concepts”
Section 16.4.5, “How to Report Replication Bugs or Problems”
Section C.5.8, “Known Issues in MySQL”
Section 12.16, “Miscellaneous Functions”
Section 4.1, “Overview of MySQL Programs”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”
Section 7.5.1, “Point-in-Time Recovery Using Event Times”
Section 16.4.1.32, “Replication and Variables”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”
Section 5.2.4, “The Binary Log”
Section 16.2.2.1, “The Slave Relay Log”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 7.3.2, “Using Backups for Recovery”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 1.4, “What Is New in MySQL 5.6”
mysqlbinlog binary-log-file | mysql
Section 22.4.1.7, “Making a Test Case If You Experience Table Corruption”
mysqlbinlog|mysql
Section C.5.8, “Known Issues in MySQL”
mysqlbug
Section 4.4.2, “mysqlbug — Generate Bug Report”
mysqlcheck
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 13.1.1, “ALTER DATABASE Syntax”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 17.3.4, “Maintenance of Partitions”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 4.1, “Overview of MySQL Programs”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server System Variables”
Section 14.3, “The MyISAM Storage Engine”
mysqld
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.3.1, “mysqld — The MySQL Server”
Section 5.7.1, “mysqld DTrace Probe Reference”
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section C.5.2.13, “Can't create/write to file”
Section C.5.2.17, “Can't initialize character set”
Section C.5.2.4, “Client does not support authentication protocol”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 13.7.6.3, “FLUSH Syntax”
Section C.5.2.6, “Host 'host_name' is blocked”
Section C.5.2.15, “Ignoring user”
Section 14.2.4.5, “InnoDB General Troubleshooting”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.3.1, “MyISAM Startup Options”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.49, “mysql_options()”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.4.2.3, “RESET SLAVE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section C.5.2.7, “Too many connections”
Section 22.3.2, “Adding a New User-Defined Function”
Section 22.3, “Adding New Functions to MySQL”
Section 14.2.2.2, “Adding, Removing, or Resizing InnoDB Data and Log Files”
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 14.2.2.4, “Backing Up and Recovering an InnoDB Database”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4.1, “Binary Logging Formats”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 2.1.2.2, “Choosing a Distribution Format”
Section C.5.2.11, “Communication Errors and Aborted Connections”
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 14.2.1.2, “Configuring InnoDB”
Section 6.3.9.2, “Configuring MySQL for SSL”
Section 14.3.4.1, “Corrupted MyISAM Tables”
Section 14.2.2.1, “Creating the InnoDB Tablespace”
Section 22.4.1.2, “Creating Trace Files”
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 22.4.1, “Debugging a MySQL Server”
Section 22.4, “Debugging and Porting MySQL”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 2.12, “Environment Variables”
Section 8.10.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.12.5.2, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 8.2.1.4, “How to Avoid Full Table Scans”
Section C.5.1, “How to Determine What Is Causing a Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 9.2.2, “Identifier Case Sensitivity”
Section 12.14, “Information Functions”
Section 14.2.9.3.2, “Installing and Configuring the InnoDB memcached Plugin”
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
Section 2.4.2, “Installing MySQL on Mac OS X Using Native Packages”
Section 2.6, “Installing MySQL on Solaris and OpenSolaris”
Section 22.4.1.7, “Making a Test Case If You Experience Table Corruption”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 12.16, “Miscellaneous Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 14.2.2.5, “Moving or Copying InnoDB Tables to Another Machine”
Section 2.3.1, “MySQL Installation Layout on Microsoft Windows”
Chapter 5, MySQL Server Administration
Section 4.3, “MySQL Server and Server-Startup Programs”
Section 5.2, “MySQL Server Logs”
Section 10.6, “MySQL Server Time Zone Support”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 22.1.1, “MySQL Threads”
Section C.5.6, “Optimizer-Related Issues”
Section 21.7.3, “Options with the Embedded Server”
Section 4.1, “Overview of MySQL Programs”
Section C.5.2.10, “Packet Too Large”
Section 20.2.2, “Performance Schema Startup Configuration”
Section 6.2.2, “Privilege System Grant Tables”
Section 14.3.4.2, “Problems from Tables Not Being Closed Properly”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section C.5.3.1, “Problems with File Permissions”
Section 4.2.3.2, “Program Option Modifiers”
Section 8.9.3.3, “Query Cache Configuration”
Section 16.1.4.1, “Replication and Binary Logging Option and Variable Reference”
Section 16.1.4, “Replication and Binary Logging Options and Variables”
Section 16.1.4.2, “Replication Master Options and Variables”
Section 16.2.2, “Replication Relay and Status Logs”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section C.5.4.1.3, “Resetting the Root Password: Generic Instructions”
Section C.5.4.1.2, “Resetting the Root Password: Unix Systems”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section C.5.5.5, “Rollback Failure for Nontransactional Tables”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 1.8.3, “Running MySQL in ANSI Mode”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 6.1.4, “Security-Related mysqld Options and Variables”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 1.8.2, “Selecting SQL Modes”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”
Section 22.2.4.2.2, “Server Plugin Status and System Variables”
Section 5.1.11, “Server Response to Signals”
Section 5.1.7, “Server SQL Modes”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 10.2, “Setting the Error Message Language”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”
Section 2.10.1.2, “Starting and Stopping MySQL Automatically”
Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 5.6.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 10.6.1, “Staying Current with Time Zone Changes”
Section 8.10.2, “Table Locking Issues”
Section C.5.2.19, “Table-Corruption Issues”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 14.3, “The MyISAM Storage Engine”
Section 5.2.4, “The Binary Log”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”
Section 8.9.3, “The MySQL Query Cache”
Section 5.1, “The MySQL Server”
Section 22.1.2, “The MySQL Test Suite”
Section 5.2.5, “The Slow Query Log”
Section C.5.4.6, “Time Zone Problems”
Section 5.7, “Tracing mysqld Using DTrace”
Section 14.2.4.5.1, “Troubleshooting InnoDB I/O Problems”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 8.11.2, “Tuning Server Parameters”
Section 1.2, “Typographical and Syntax Conventions”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 2.11.1, “Upgrading MySQL”
Section 2.3.6, “Upgrading MySQL on Windows”
Section 22.3.2.6, “User-Defined Function Security Precautions”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 22.4.1.3, “Using pdb to create a Windows crashdump”
Section 22.4.1.5, “Using a Stack Trace”
Section 4.2.3.3, “Using Option Files”
Section 22.4.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 8.11.3.1.3, “Using Symbolic Links for Databases on Windows”
Section 2.4.5, “Using the Bundled MySQL on Mac OS X Server”
Section 14.2.9.6, “Using the InnoDB memcached Plugin with Replication”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
Section 6.2.6, “When Privilege Changes Take Effect”
Section C.5.4.4, “Where MySQL Stores Temporary Files”
Section 22.2.4, “Writing Plugins”
mysqld mysqld.trace
Section 22.4.1.2, “Creating Trace Files”
mysqld-
Section 2.11.1, “Upgrading MySQL”
mysqld-debug
Section 2.1.2.2, “Choosing a Distribution Format”
Section 22.4.1.2, “Creating Trace Files”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 5.6.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
mysqld_multi
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
mysqld_safe
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section 14.2.4.5, “InnoDB General Troubleshooting”
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 14.2.2.1, “Creating the InnoDB Tablespace”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 8.11.4.2, “Enabling Large Page Support”
Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 10.6, “MySQL Server Time Zone Support”
Section 4.2.3.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 4.1, “Overview of MySQL Programs”
Section C.5.2.10, “Packet Too Large”
Section C.5.3.1, “Problems with File Permissions”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 2.10.1.2, “Starting and Stopping MySQL Automatically”
Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”
Section 5.2.2, “The Error Log”
Section C.5.4.6, “Time Zone Problems”
Section 8.11.2, “Tuning Server Parameters”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 5.1.2.2, “Using a Sample Default Server Configuration File”
Section 4.2.3.3, “Using Option Files”
mysqld_safe options
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
mysqldump
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.5, “mysqldump Tips”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”
Section 14.2.2.2, “Adding, Removing, or Resizing InnoDB Data and Log Files”
Section 16.3.1.3, “Backing Up a Master or Slave by Making It Read Only”
Section 16.3.1.1, “Backing Up a Slave Using mysqldump”
Section 14.2.2.4, “Backing Up and Recovering an InnoDB Database”
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 7.3.3, “Backup Strategy Summary”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”
Section 4.2.2, “Connecting to the MySQL Server”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 2.11.5, “Copying MySQL Databases to Another Machine”
Section 5.4.1.3, “Copying Tablespaces to Another Server (Transportable Tablespaces)”
Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 5.4, “Creating and Using InnoDB Tables and Indexes”
Section 2.3.4.7, “Customizing the PATH for MySQL Tools”
Section 7.2, “Database Backup Methods”
Section 5.3.4, “Defragmenting a Table”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 2.11.2, “Downgrading MySQL”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 5.4.1.1, “Enabling and Disabling File-Per-Table Mode”
Section 7.3.1, “Establishing a Backup Policy”
Section 7.3, “Example Backup and Recovery Strategy”
Section 1.8.5.4, “Foreign Key Differences”
Section 1.7, “How to Report Bugs or Problems”
Section 16.1.1, “How to Set Up Replication”
Section 9.2.2, “Identifier Case Sensitivity”
Section 7.4.5.1, “Making a Copy of a Database”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 14.2.2.5, “Moving or Copying InnoDB Tables to Another Machine”
Section 5.2, “MySQL Server Logs”
Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”
Section 4.1, “Overview of MySQL Programs”
Section C.5.5.8, “Problems with Floating-Point Values”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.3.4, “Replicating Different Databases to Different Slaves”
Section 16.2.2, “Replication Relay and Status Logs”
Section E.8, “Restrictions on Performance Schema”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section E.5, “Restrictions on Views”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.2.6, “Server Log Maintenance”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 16.1.1.8, “Setting Up Replication with Existing Data”
Section C.5.5.7, “Solving Problems with No Matching Rows”
Section 4.2.3, “Specifying Program Options”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 11.4.3, “The BLOB and TEXT Types”
Section 8.9.1, “The InnoDB Buffer Pool”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 10.1.11, “Upgrading from Previous to Current Unicode Support”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 7.4, “Using mysqldump for Backups”
Section 7.4.5.5, “Using mysqldump to Test for Upgrade Incompatibilities”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 16.3.1, “Using Replication for Backups”
Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”
Section 14.2.9.6, “Using the InnoDB memcached Plugin with Replication”
Section 12.11, “XML Functions”
mysqldump mysql
Section 6.2.7, “Causes of Access-Denied Errors”
mysqldumpslow
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.2.5, “The Slow Query Log”
mysqlhotcopy
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.1, “Overview of MySQL Programs”
mysqlhotcopy arguments
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
mysqlimport
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 7.1, “Backup and Recovery Types”
Section 2.11.5, “Copying MySQL Databases to Another Machine”
Section 7.2, “Database Backup Methods”
Section 2.11.2, “Downgrading MySQL”
Section 4.1, “Overview of MySQL Programs”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
mysqloptimize
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
mysqlrepair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
mysqlshow
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 13.7.5.15, “SHOW DATABASES Syntax”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 4.2.2, “Connecting to the MySQL Server”
Section 21.8.2, “Example C API Client Programs”
Section 4.1, “Overview of MySQL Programs”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 2.3.7, “Windows Postinstallation Procedures”
mysqlshow db_name
Section 13.7.5.38, “SHOW TABLES Syntax”
mysqlshow db_name tbl_name
Section 13.7.5.6, “SHOW COLUMNS Syntax”
mysqlshow mysql user
Section C.5.2.15, “Ignoring user”
mysqlslap
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.1, “Overview of MySQL Programs”
Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”
Section 8.12.3, “Using Your Own Benchmarks”
mysqltest
Section 6.3.6, “Password Expiration and Sandbox Mode”
Section 22.1.2, “The MySQL Test Suite”
Section 6.3.7.2, “The SHA-256 Authentication Plugin”
N
ndb_restore
Section 7.1, “Backup and Recovery Types”
ndb_size.pl
Section 11.6, “Data Type Storage Requirements”
NET
Section 2.3.4.8, “Starting MySQL as a Windows Service”
NET START
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
NET START MySQL
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section 2.3.6, “Upgrading MySQL on Windows”
NET STOP
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
NET STOP MySQL
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Netinfo Manager
Section 2.4.1, “General Notes on Installing MySQL on Mac OS X”
nm
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 22.4.1.5, “Using a Stack Trace”
O
openssl
Section 6.3.9.5, “Setting Up SSL Certificates and Keys for MySQL”
openssl md5 package_name
Section 2.1.4.1, “Verifying the MD5 Checksum”
P
perror
Section 4.8.1, “perror — Explain Error Codes”
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section C.5.2.13, “Can't create/write to file”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.2.3.14.2, “Operating System Error Codes”
Section 4.1, “Overview of MySQL Programs”
Section C.1, “Sources of Error Information”
pfexec
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
Section 2.6.2, “Installing MySQL on OpenSolaris using IPS”
PGP
Section 2.1.4.2, “Signature Checking Using GnuPG”
ping6
Section 5.1.9.5, “Obtaining an IPv6 Address from a Broker”
pkg
Section 2.6.2, “Installing MySQL on OpenSolaris using IPS”
pkgadd
Section 2.6.1, “Installing MySQL on Solaris using a Solaris PKG”
pkgrm
Section 2.6.1, “Installing MySQL on Solaris using a Solaris PKG”
ppm
Section 2.13, “Perl Installation Notes”
ps
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 8.11.4.1, “How MySQL Uses Memory”
Section C.5.1, “How to Determine What Is Causing a Problem”
Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”
ps auxw
Section 4.2.2, “Connecting to the MySQL Server”
ps xa | grep mysqld
Section C.5.2.2, “Can't connect to [local] MySQL server”
R
rename
Section 5.2.6, “Server Log Maintenance”
Section 5.2.2, “The Error Log”
Section 5.2.3, “The General Query Log”
replace
Section 1.8.5.5, “'--' as the Start of a Comment”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with MySQL”
Section 4.1, “Overview of MySQL Programs”
Section 16.3.3, “Using Replication for Scale-Out”
replace arguments
Section 4.8.2, “replace — A String-Replacement Utility”
resolve_stack_dump
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.1, “Overview of MySQL Programs”
Section 22.4.1.5, “Using a Stack Trace”
resolveip
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 4.1, “Overview of MySQL Programs”
rm
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
rpm
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 2.1.4.4, “Signature Checking Using RPM”
rpmbuild
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 2.9, “Installing MySQL from Source”
rsync
Section 7.1, “Backup and Recovery Types”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
S
scp
Section 7.1, “Backup and Recovery Types”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
sed
Section 3.3.4.7, “Pattern Matching”
service
Section 2.5.2, “Installing MySQL on Linux using Native Package Manager”
Service Control Manager
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Services
Section 2.3.4.8, “Starting MySQL as a Windows Service”
setenv
Section 4.2.4, “Setting Environment Variables”
sh
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.4, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”
sleep
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Start>Run>cmd.exe
Section 6.3.9.5, “Setting Up SSL Certificates and Keys for MySQL”
strings
Section 6.1.1, “Security Guidelines”
sudo
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
swinstall
Section 2.7.2, “Installing MySQL on HP-UX using DEPOT”
System Preferences...
Section 2.4.4, “Installing and Using the MySQL Preference Pane”
T
tar
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 2.1.2.2, “Choosing a Distribution Format”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 3.3, “Creating and Using a Database”
Section 2.7.1, “General Notes on Installing MySQL on HP-UX”
Section 1.7, “How to Report Bugs or Problems”
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
Section 2.9, “Installing MySQL from Source”
Section 2.4, “Installing MySQL on Mac OS X”
Section 2.6, “Installing MySQL on Solaris and OpenSolaris”
Section 2.13.1, “Installing Perl on Unix”
Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
tcpdump
Section 6.1.1, “Security Guidelines”
tcsh
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section 2.4.1, “General Notes on Installing MySQL on Mac OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.4, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”
tee
Section 4.5.1.2, “mysql Commands”
telnet
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 6.1.1, “Security Guidelines”
Section 14.2.9.3.3, “Verifying the InnoDB and memcached Setup”
Terminal
Section 2.4, “Installing MySQL on Mac OS X”
Text in this style
Section 1.2, “Typographical and Syntax Conventions”
top
Section C.5.1, “How to Determine What Is Causing a Problem”
U
ulimit
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 8.11.4.2, “Enabling Large Page Support”
Section C.5.2.10, “Packet Too Large”
Section 14.2.9.3.1, “Prerequisites for the InnoDB memcached Plugin”
Section 5.1.3, “Server Command Options”
useradd
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
Section 2.6, “Installing MySQL on Solaris and OpenSolaris”
usermod
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
V
vi
Section 4.5.1.2, “mysql Commands”
Section 3.3.4.7, “Pattern Matching”
W
WinDbg
Section 22.4.1.3, “Using pdb to create a Windows crashdump”
winMd5Sum
Section 2.1.4.1, “Verifying the MD5 Checksum”
WinZip
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 2.9, “Installing MySQL from Source”
WordPad
Section 13.2.6, “LOAD DATA INFILE Syntax”
Y
yacc
Section 2.9.5, “Dealing with Problems Compiling MySQL”
yum
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
Section 2.5.2, “Installing MySQL on Linux using Native Package Manager”
Z
zip
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 1.7, “How to Report Bugs or Problems”
zsh
Section 4.2.4, “Setting Environment Variables”
Function Index
Symbols | A | B | C | D | E | F | G | H | I | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y
Symbols
%
Section 1.8.4, “MySQL Extensions to Standard SQL”
A
ABS()
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 22.3, “Adding New Functions to MySQL”
Section 12.6.2, “Mathematical Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
ACOS()
Section 12.6.2, “Mathematical Functions”
ADDDATE()
Section 12.7, “Date and Time Functions”
addslashes()
Section 6.1.7, “Client Programming Security Guidelines”
ADDTIME()
Section 12.7, “Date and Time Functions”
AES_DECRYPT()
Section 12.13, “Encryption and Compression Functions”
AES_ENCRYPT()
Section 12.13, “Encryption and Compression Functions”
Area()
Section 12.18.5.2, “Geometry Property Functions”
Section 12.18.5.2.6, “MultiPolygon Functions”
Section 12.18.5.2.5, “Polygon Functions”
AsBinary()
Section 12.18.4.5, “Fetching Spatial Data”
Section 12.18.5.1, “Geometry Format Conversion Functions”
ASCII()
Section 12.5, “String Functions”
ASIN()
Section 12.6.2, “Mathematical Functions”
AsText()
Section 12.18.4.5, “Fetching Spatial Data”
Section 12.18.5.1, “Geometry Format Conversion Functions”
AsWKB()
Section 12.18.5.1, “Geometry Format Conversion Functions”
AsWKT()
Section 12.18.5.1, “Geometry Format Conversion Functions”
ATAN()
Section 12.6.2, “Mathematical Functions”
ATAN2()
Section 12.6.2, “Mathematical Functions”
AVG()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 11.1.2, “Date and Time Type Overview”
Section 8.13.14.1, “Loose Index Scan”
Section 11.4.4, “The ENUM Type”
Section 11.4.5, “The SET Type”
B
BdMPolyFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
BdMPolyFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
BdPolyFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
BdPolyFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
BENCHMARK()
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 8.12.1, “Measuring the Speed of Expressions and Functions”
Section 13.2.10.10, “Optimizing Subqueries”
Section 13.2.10.8, “Subqueries in the FROM Clause”
BIN()
Section 9.1.6, “Bit-Field Literals”
Section 12.5, “String Functions”
BIT_AND()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
BIT_COUNT()
Section 12.12, “Bit Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
BIT_LENGTH()
Section 12.5, “String Functions”
BIT_OR()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
BIT_XOR()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Boundary()
Section 12.18.5.2.1, “General Geometry Functions”
Buffer()
Section 12.18.5.3.2, “Spatial Operators”
C
CAST()
Section 10.1.9.2, “CONVERT() and CAST()”
Section 9.1.6, “Bit-Field Literals”
Section 12.10, “Cast Functions and Operators”
Section 12.3.2, “Comparison Functions and Operators”
Section 11.3.7, “Conversion Between Date and Time Types”
Section 12.7, “Date and Time Functions”
Section 9.1.4, “Hexadecimal Literals”
Section 1.8.5, “MySQL Differences from Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 10.1.7.7, “The BINARY Operator”
Section 12.2, “Type Conversion in Expression Evaluation”
Section 9.4, “User-Defined Variables”
CEIL()
Section 12.6.2, “Mathematical Functions”
CEILING()
Section 17.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Centroid()
Section 12.18.5.2.6, “MultiPolygon Functions”
CHAR()
Section 12.10, “Cast Functions and Operators”
Section 12.13, “Encryption and Compression Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.5, “String Functions”
CHAR_LENGTH()
Section 12.5, “String Functions”
CHARACTER_LENGTH()
Section 12.5, “String Functions”
CHARSET()
Section 12.14, “Information Functions”
Section 10.1.9.1, “Result Strings”
COALESCE()
Section 13.2.9.2, “JOIN Syntax”
Section 12.3.2, “Comparison Functions and Operators”
COERCIBILITY()
Section 10.1.7.5, “Collation of Expressions”
Section 12.14, “Information Functions”
COLLATION()
Section C.5.5.1, “Case Sensitivity in String Searches”
Section 12.14, “Information Functions”
Section 10.1.9.1, “Result Strings”
COMPRESS()
Section 12.13, “Encryption and Compression Functions”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”
CONCAT()
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 12.10, “Cast Functions and Operators”
Section 10.1.7.5, “Collation of Expressions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 5.1.7, “Server SQL Modes”
Section 12.5, “String Functions”
Section 10.1.8, “String Repertoire”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 12.2, “Type Conversion in Expression Evaluation”
Section 12.11, “XML Functions”
CONCAT_WS()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 12.5, “String Functions”
CONNECTION_ID()
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 20.9.9.3, “The threads Table”
Section 6.3.11.2, “The Audit Log File”
Contains()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
Section 1.4, “What Is New in MySQL 5.6”
CONV()
Section 12.6.2, “Mathematical Functions”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
CONVERT()
Section 10.1.9.2, “CONVERT() and CAST()”
Section 12.10, “Cast Functions and Operators”
Section 10.1.3.5, “Character String Literal Character Set and Collation”
Section 12.3.2, “Comparison Functions and Operators”
CONVERT_TZ()
Section 12.7, “Date and Time Functions”
Section 8.9.3.1, “How the Query Cache Operates”
Section 16.4.1.28, “Replication and Time Zones”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
ConvexHull()
Section 12.18.5.3.2, “Spatial Operators”
COS()
Section 12.6.2, “Mathematical Functions”
COT()
Section 12.6.2, “Mathematical Functions”
COUNT()
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 8.8.2, “EXPLAIN Output Format”
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 3.3.4.8, “Counting Rows”
Section 8.2.1.2, “How MySQL Optimizes WHERE Clauses”
Section 8.13.14.1, “Loose Index Scan”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 17.1, “Overview of Partitioning in MySQL”
Section C.5.5.3, “Problems with NULL Values”
Section 5.1.7, “Server SQL Modes”
Section 18.5.3, “Updatable and Insertable Views”
Section 18.5.2, “View Processing Algorithms”
CRC32()
Section 12.6.2, “Mathematical Functions”
Crosses()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
crypt()
Section 12.13, “Encryption and Compression Functions”
Section 5.1.4, “Server System Variables”
CURDATE()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
CURRENT_DATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.5, “Data Type Default Values”
Section 12.7, “Date and Time Functions”
CURRENT_DATE()
Section 11.3.7, “Conversion Between Date and Time Types”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
CURRENT_TIME
Section 12.7, “Date and Time Functions”
CURRENT_TIME()
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
CURRENT_TIMESTAMP
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 11.5, “Data Type Default Values”
Section 12.7, “Date and Time Functions”
CURRENT_TIMESTAMP()
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
CURRENT_USER
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 18.6, “Access Control for Stored Programs and Views”
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 6.2.2, “Privilege System Grant Tables”
Section 16.4.1.14, “Replication and System Functions”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 6.2.3, “Specifying Account Names”
CURRENT_USER()
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.2.4, “Access Control, Stage 1: Connection Verification”
Section 22.2.4.9.4, “Implementing Proxy User Support in Authentication Plugins”
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.14, “Replication and System Functions”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 6.2.3, “Specifying Account Names”
Section 6.3.12, “SQL-Based MySQL Account Activity Auditing”
Section 10.1.12, “UTF-8 for Metadata”
Section 22.2.4.9.1, “Writing the Server-Side Authentication Plugin”
CURTIME()
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 11.3.6, “Fractional Seconds in Time Values”
Section 8.9.3.1, “How the Query Cache Operates”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.12, “Replication and Fractional Seconds Support”
D
DATABASE()
Section 13.1.17, “DROP DATABASE Syntax”
Section 3.3.1, “Creating and Selecting a Database”
Section 3.4, “Getting Information About Databases and Tables”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section C.5.8, “Known Issues in MySQL”
Section 10.1.12, “UTF-8 for Metadata”
DATE()
Section 12.7, “Date and Time Functions”
DATE_ADD()
Section 13.1.9, “CREATE EVENT Syntax”
Section 12.6.1, “Arithmetic Operators”
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section 3.3.4.5, “Date Calculations”
Section 9.5, “Expression Syntax”
DATE_FORMAT()
Section 21.8.17, “C API Prepared Statement Problems”
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”
DATE_SUB()
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
DATEDIFF()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
DAY()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
DAYNAME()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”
DAYOFMONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
DAYOFWEEK()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
DAYOFYEAR()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Section 17.2, “Partitioning Types”
DECODE()
Section 12.13, “Encryption and Compression Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
DEFAULT()
Section 13.2.5, “INSERT Syntax”
Section 13.2.8, “REPLACE Syntax”
Section 11.5, “Data Type Default Values”
Section 12.16, “Miscellaneous Functions”
DEGREES()
Section 12.6.2, “Mathematical Functions”
DES_DECRYPT()
Section 12.13, “Encryption and Compression Functions”
Section 5.1.3, “Server Command Options”
DES_ENCRYPT()
Section 12.13, “Encryption and Compression Functions”
Section 5.1.3, “Server Command Options”
Difference()
Section 12.18.5.3.2, “Spatial Operators”
Dimension()
Section 12.18.5.2.1, “General Geometry Functions”
Disjoint()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
E
ELT()
Section C.5.8, “Known Issues in MySQL”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
ENCODE()
Section 12.13, “Encryption and Compression Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
ENCRYPT()
Section 12.13, “Encryption and Compression Functions”
Section 8.9.3.1, “How the Query Cache Operates”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section E.7, “Restrictions on Character Sets”
Section 5.1.4, “Server System Variables”
Section 6.3.1, “User Names and Passwords”
EndPoint()
Section 12.18.5.2.3, “LineString Functions”
Section 12.18.5.2.4, “MultiLineString Functions”
Section 12.18.5.3.1, “Geometry Functions That Produce New Geometries”
Envelope()
Section 12.18.5.2.1, “General Geometry Functions”
Section 12.18.5.3.1, “Geometry Functions That Produce New Geometries”
Equals()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
EXP()
Section 12.6.2, “Mathematical Functions”
EXPORT_SET()
Section 12.5, “String Functions”
expr IN ()
Section 12.3.2, “Comparison Functions and Operators”
expr NOT IN ()
Section 12.3.2, “Comparison Functions and Operators”
ExteriorRing()
Section 12.18.5.2.5, “Polygon Functions”
Section 12.18.5.3.1, “Geometry Functions That Produce New Geometries”
EXTRACT()
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
ExtractValue()
Section 12.11, “XML Functions”
F
FIELD()
Section 12.5, “String Functions”
FIND_IN_SET()
Section 12.5, “String Functions”
Section 11.4.5, “The SET Type”
FLOOR()
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
FORMAT()
Section 12.6.2, “Mathematical Functions”
Section 12.16, “Miscellaneous Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 10.7, “MySQL Server Locale Support”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
FOUND_ROWS()
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.14, “Replication and System Functions”
FROM_BASE64()
Section 12.5, “String Functions”
FROM_DAYS()
Section 12.7, “Date and Time Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
FROM_UNIXTIME()
Section 6.3.11.3, “Audit Log Plugin Logging Control”
Section 12.7, “Date and Time Functions”
Section 16.4.1.28, “Replication and Time Zones”
G
GeomCollFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
GeomCollFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
GeometryCollection()
Section 12.18.4.2.3, “Creating Geometry Values Using MySQL-Specific Functions”
GeometryCollectionFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
GeometryCollectionFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
GeometryFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
GeometryFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
GeometryN()
Section 12.18.5.2.7, “GeometryCollection Functions”
Section 12.18.5.3.1, “Geometry Functions That Produce New Geometries”
GeometryType()
Section 12.18.5.2.1, “General Geometry Functions”
GeomFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
Section 12.18.5.1, “Geometry Format Conversion Functions”
Section 12.18.4.4, “Populating Spatial Columns”
GeomFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
Section 12.18.5.1, “Geometry Format Conversion Functions”
GET_FORMAT()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
GET_LOCK()
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 21.8.6.3, “mysql_change_user()”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 21.8.15, “Controlling Automatic Reconnection Behavior”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 18.4.1, “Event Scheduler Overview”
Section 8.12.5.2, “General Thread States”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”
Section 16.4.1.14, “Replication and System Functions”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
gethostbyaddr()
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
gethostbyaddr_r()
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
gethostbyname()
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
gethostbyname_r()
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
GLength()
Section 12.18.5.2.3, “LineString Functions”
Section 12.18.5.2.4, “MultiLineString Functions”
Section 12.18.7, “MySQL Conformance and Compatibility”
GREATEST()
Section 12.3.2, “Comparison Functions and Operators”
Section 10.1.9.1, “Result Strings”
GROUP_CONCAT()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section C.5.8, “Known Issues in MySQL”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 5.1.4, “Server System Variables”
GTID_SUBSET()
Section 16.1.3.1, “GTID Concepts”
Section 12.15, “GTID Functions”
GTID_SUBTRACT()
Section 16.1.3.1, “GTID Concepts”
Section 12.15, “GTID Functions”
H
HEX()
Section 10.1.3.5, “Character String Literal Character Set and Collation”
Section 9.1.4, “Hexadecimal Literals”
Section 12.6.2, “Mathematical Functions”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
HOUR()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
I
IF()
Section 12.4, “Control Flow Functions”
Section C.5.8, “Known Issues in MySQL”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
IFNULL()
Section 12.4, “Control Flow Functions”
Section C.5.5.3, “Problems with NULL Values”
IN
Section 12.3.1, “Operator Precedence”
IN()
Section 8.8.2, “EXPLAIN Output Format”
Section E.4, “Restrictions on Subqueries”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 12.2, “Type Conversion in Expression Evaluation”
INET6_ATON()
Section 12.16, “Miscellaneous Functions”
INET6_NTOA()
Section 12.16, “Miscellaneous Functions”
INET_ATON()
Section 12.16, “Miscellaneous Functions”
INET_NTOA()
Section 12.16, “Miscellaneous Functions”
INSERT()
Section 12.5, “String Functions”
INSTR()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
InteriorRingN()
Section 12.18.5.2.5, “Polygon Functions”
Section 12.18.5.3.1, “Geometry Functions That Produce New Geometries”
Intersection()
Section 12.18.5.3.2, “Spatial Operators”
Intersects()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
INTERVAL()
Section 12.3.2, “Comparison Functions and Operators”
IS_FREE_LOCK()
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.16, “Miscellaneous Functions”
Section 16.4.1.14, “Replication and System Functions”
IS_IPV4()
Section 12.16, “Miscellaneous Functions”
IS_IPV4_COMPAT()
Section 12.16, “Miscellaneous Functions”
IS_IPV4_MAPPED()
Section 12.16, “Miscellaneous Functions”
IS_IPV6()
Section 12.16, “Miscellaneous Functions”
IS_USED_LOCK()
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.16, “Miscellaneous Functions”
Section 16.4.1.14, “Replication and System Functions”
IsClosed()
Section 12.18.5.2.4, “MultiLineString Functions”
IsEmpty()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
Section 12.18.5.2.1, “General Geometry Functions”
ISNULL()
Section 12.3.2, “Comparison Functions and Operators”
IsRing()
Section 12.18.5.2.3, “LineString Functions”
IsSimple()
Section 12.18.5.2.1, “General Geometry Functions”
L
LAST_DAY()
Section 12.7, “Date and Time Functions”
LAST_INSERT_ID()
Section 4.6.8.1, “mysqlbinlog Hex Dump Format”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8.6.37, “mysql_insert_id()”
Section 21.8.10.16, “mysql_stmt_insert_id()”
Section 12.3.2, “Comparison Functions and Operators”
Section 21.8.15, “Controlling Automatic Reconnection Behavior”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 21.8.14.3, “How to Get the Unique ID for the Last Inserted Row”
Section 12.14, “Information Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 5.1.4, “Server System Variables”
Section 18.2.4, “Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 1.8.5.3, “Transaction and Atomic Operation Differences”
Section 16.4.4, “Troubleshooting Replication”
Section 18.5.3, “Updatable and Insertable Views”
Section 3.6.9, “Using AUTO_INCREMENT”
LCASE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
LEAST()
Section 12.3.2, “Comparison Functions and Operators”
Section 10.1.9.1, “Result Strings”
LEFT()
Section 12.10, “Cast Functions and Operators”
Section 12.5, “String Functions”
LENGTH()
Section 12.5, “String Functions”
Length()
Section 12.18.5.2.3, “LineString Functions”
Section 12.18.5.2.4, “MultiLineString Functions”
Section 12.18.7, “MySQL Conformance and Compatibility”
LineFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
Section 12.18.5.1, “Geometry Format Conversion Functions”
LineFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
Section 12.18.5.1, “Geometry Format Conversion Functions”
LineString()
Section 12.18.4.2.3, “Creating Geometry Values Using MySQL-Specific Functions”
LineStringFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
LineStringFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
LN()
Section 12.6.2, “Mathematical Functions”
LOAD_FILE()
Section 13.2.7, “LOAD XML Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.14, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”
LOCALTIME
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
LOCALTIME()
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
LOCALTIMESTAMP
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
LOCALTIMESTAMP()
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
LOCATE()
Section 12.5, “String Functions”
LOG()
Section 17.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”
LOG10()
Section 12.6.2, “Mathematical Functions”
LOG2()
Section 12.6.2, “Mathematical Functions”
LOWER()
Section 12.10, “Cast Functions and Operators”
Section 10.1.7.9, “Collation and INFORMATION_SCHEMA Searches”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
Section 10.1.14.1, “Unicode Character Sets”
LPAD()
Section 12.5, “String Functions”
LTRIM()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
M
MAKE_SET()
Section 12.5, “String Functions”
MAKEDATE()
Section 12.7, “Date and Time Functions”
MAKETIME()
Section 12.7, “Date and Time Functions”
MASTER_POS_WAIT()
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.2.2, “MASTER_POS_WAIT() Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”
MATCH
Section 9.5, “Expression Syntax”
MATCH ()
Section 12.9, “Full-Text Search Functions”
MATCH()
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.5, “Full-Text Restrictions”
Section 12.9, “Full-Text Search Functions”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 1.4, “What Is New in MySQL 5.6”
MAX()
Section 8.8.2, “EXPLAIN Output Format”
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 8.3.1, “How MySQL Uses Indexes”
Section C.5.8, “Known Issues in MySQL”
Section 8.13.14.1, “Loose Index Scan”
Section 12.17.3, “MySQL Extensions to GROUP BY”
Section 11.1.1, “Numeric Type Overview”
Section 13.2.10.10, “Optimizing Subqueries”
Section 5.1.7, “Server SQL Modes”
Section 19.31.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 11.3.8, “Two-Digit Years in Dates”
Section 18.5.3, “Updatable and Insertable Views”
Section 8.13.5, “Use of Index Extensions”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 18.5.2, “View Processing Algorithms”
MBRContains()
Section 12.18.5.4.1, “Relations on Geometry Minimal Bounding Rectangles (MBRs)”
Section 12.18.6.2, “Using a Spatial Index”
MBRDisjoint()
Section 12.18.5.4.1, “Relations on Geometry Minimal Bounding Rectangles (MBRs)”
MBREqual()
Section 12.18.5.4.1, “Relations on Geometry Minimal Bounding Rectangles (MBRs)”
MBRIntersects()
Section 12.18.5.4.1, “Relations on Geometry Minimal Bounding Rectangles (MBRs)”
MBROverlaps()
Section 12.18.5.4.1, “Relations on Geometry Minimal Bounding Rectangles (MBRs)”
MBRTouches()
Section 12.18.5.4.1, “Relations on Geometry Minimal Bounding Rectangles (MBRs)”
MBRWithin()
Section 12.18.5.4.1, “Relations on Geometry Minimal Bounding Rectangles (MBRs)”
Section 12.18.6.2, “Using a Spatial Index”
MD5()
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 9.2, “Schema Object Names”
Section 6.1.1, “Security Guidelines”
MICROSECOND()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
MID()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
MIN()
Section 8.8.2, “EXPLAIN Output Format”
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 21.8.17, “C API Prepared Statement Problems”
Section 8.2.1.2, “How MySQL Optimizes WHERE Clauses”
Section 8.3.1, “How MySQL Uses Indexes”
Section C.5.8, “Known Issues in MySQL”
Section 8.13.14.1, “Loose Index Scan”
Section 12.17.3, “MySQL Extensions to GROUP BY”
Section 11.1.1, “Numeric Type Overview”
Section 13.2.10.10, “Optimizing Subqueries”
Section C.5.5.3, “Problems with NULL Values”
Section 11.3.8, “Two-Digit Years in Dates”
Section 18.5.3, “Updatable and Insertable Views”
Section 8.13.5, “Use of Index Extensions”
Section 18.5.2, “View Processing Algorithms”
MINUTE()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
MLineFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
MLineFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
MOD()
Section 12.6.1, “Arithmetic Operators”
Section 3.3.4.5, “Date Calculations”
Section 12.6.2, “Mathematical Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Section 5.1.7, “Server SQL Modes”
MONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Section 17.2, “Partitioning Types”
MONTHNAME()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”
MPointFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
MPointFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
MPolyFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
MPolyFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
MultiLineString()
Section 12.18.4.2.3, “Creating Geometry Values Using MySQL-Specific Functions”
MultiLineStringFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
MultiLineStringFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
MultiPoint()
Section 12.18.4.2.3, “Creating Geometry Values Using MySQL-Specific Functions”
MultiPointFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
MultiPointFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
MultiPolygon()
Section 12.18.4.2.3, “Creating Geometry Values Using MySQL-Specific Functions”
MultiPolygonFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
MultiPolygonFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
my_open()
Section 5.1.6, “Server Status Variables”
N
NAME_CONST()
Section 18.7, “Binary Logging of Stored Programs”
Section 12.16, “Miscellaneous Functions”
NOW()
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 11.5, “Data Type Default Values”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 11.3.6, “Fractional Seconds in Time Values”
Section 8.9.3.1, “How the Query Cache Operates”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.14, “Replication and System Functions”
Section 16.4.1.28, “Replication and Time Zones”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 11.3.3, “The YEAR Type”
Section 10.6.2, “Time Zone Leap Second Support”
NULLIF()
Section 12.4, “Control Flow Functions”
NumGeometries()
Section 12.18.5.2.7, “GeometryCollection Functions”
NumInteriorRings()
Section 12.18.5.2.5, “Polygon Functions”
NumPoints()
Section 12.18.5.2.3, “LineString Functions”
O
OCT()
Section 12.5, “String Functions”
OCTET_LENGTH()
Section 12.5, “String Functions”
OLD_PASSWORD()
Section C.5.2.4, “Client does not support authentication protocol”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2.3.8, “Password-Validation Plugins”
Section 5.1.4, “Server System Variables”
Section 6.1.2.6, “The Password Validation Plugin”
Section 1.4, “What Is New in MySQL 5.6”
ORD()
Section 12.5, “String Functions”
Overlaps()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
P
PASSWORD()
Section 13.7.1.2, “CREATE USER Syntax”
Section C.5.2.15, “Ignoring user”
Section 17.2.5, “KEY Partitioning”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.2.4, “Access Control, Stage 1: Connection Verification”
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.13, “Encryption and Compression Functions”
Section 8.9.3.1, “How the Query Cache Operates”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 2.10.2, “Securing the Initial MySQL Accounts”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 6.1.2.6, “The Password Validation Plugin”
Section 6.3.7.2, “The SHA-256 Authentication Plugin”
Section 6.3.1, “User Names and Passwords”
Section 1.4, “What Is New in MySQL 5.6”
PERIOD_ADD()
Section 12.7, “Date and Time Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
PERIOD_DIFF()
Section 12.7, “Date and Time Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
PI()
Section 9.2.4, “Function Name Parsing and Resolution”
Section 12.6.2, “Mathematical Functions”
POINT()
Section 12.18.3.1, “Well-Known Text (WKT) Format”
Point()
Section 12.18.4.2.3, “Creating Geometry Values Using MySQL-Specific Functions”
PointFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
Section 12.18.5.1, “Geometry Format Conversion Functions”
PointFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
Section 12.18.5.1, “Geometry Format Conversion Functions”
PointN()
Section 12.18.5.2.3, “LineString Functions”
Section 12.18.5.3.1, “Geometry Functions That Produce New Geometries”
PolyFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
PolyFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
Polygon()
Section 12.18.4.2.3, “Creating Geometry Values Using MySQL-Specific Functions”
PolygonFromText()
Section 12.18.4.2.1, “Creating Geometry Values Using WKT Functions”
PolygonFromWKB()
Section 12.18.4.2.2, “Creating Geometry Values Using WKB Functions”
POSITION()
Section 12.5, “String Functions”
POW()
Section 17.2.4, “HASH Partitioning”
Section 12.6.2, “Mathematical Functions”
POWER()
Section 17.2.4.1, “LINEAR HASH Partitioning”
Section 12.6.2, “Mathematical Functions”
Q
QUARTER()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
QUOTE()
Section 21.8.6.54, “mysql_real_escape_string()”
Section 12.5, “String Functions”
Section 9.1.1, “String Literals”
R
RADIANS()
Section 12.6.2, “Mathematical Functions”
RAND()
Section 4.6.8.1, “mysqlbinlog Hex Dump Format”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.6.2, “Mathematical Functions”
Section 16.4.1.14, “Replication and System Functions”
Section 5.1.4, “Server System Variables”
RELEASE_LOCK()
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”
Section 16.4.1.14, “Replication and System Functions”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
REPEAT()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
REPLACE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
REVERSE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
RIGHT()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
ROUND()
Section 12.6.2, “Mathematical Functions”
Section 12.19, “Precision Math”
Section 12.19.5, “Precision Math Examples”
Section 12.19.4, “Rounding Behavior”
ROW_COUNT()
Section 13.2.2, “DELETE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8.6.1, “mysql_affected_rows()”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 13.6.7.7.2, “Diagnostics Area Information Items”
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.14, “Replication and System Functions”
RPAD()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
RTRIM()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
S
SCHEMA()
Section 12.14, “Information Functions”
SEC_TO_TIME()
Section 12.7, “Date and Time Functions”
SECOND()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
SESSION_USER()
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 10.1.12, “UTF-8 for Metadata”
setrlimit()
Section 5.1.3, “Server Command Options”
SHA()
Section 12.13, “Encryption and Compression Functions”
SHA1()
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 6.1.1, “Security Guidelines”
SHA2()
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 6.1.1, “Security Guidelines”
SIGN()
Section 12.6.2, “Mathematical Functions”
SIN()
Section 12.6.2, “Mathematical Functions”
Section 22.3.2.3, “UDF Argument Processing”
SLEEP()
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.12.5.2, “General Thread States”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”
Section 16.4.1, “Replication Features and Issues”
Section 19.31.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”
SOUNDEX()
Section 22.3, “Adding New Functions to MySQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
SPACE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
SQL_THREAD_WAIT_AFTER_GTIDS()
Section 12.15, “GTID Functions”
SQRT()
Section 12.6.2, “Mathematical Functions”
SRID()
Section 12.18.5.2.1, “General Geometry Functions”
ST_Contains()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
Section 1.4, “What Is New in MySQL 5.6”
ST_Crosses()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
ST_Disjoint()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
ST_Equals()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
ST_Intersects()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
ST_Overlaps()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
ST_Touches()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
ST_Within()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
StartPoint()
Section 12.18.5.2.3, “LineString Functions”
Section 12.18.5.2.4, “MultiLineString Functions”
Section 12.18.5.3.1, “Geometry Functions That Produce New Geometries”
STD()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
STDDEV()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
STDDEV_POP()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
STDDEV_SAMP()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
STR_TO_DATE()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
STRCMP()
Section C.5.5.2, “Problems Using DATE Columns”
Section 12.5.1, “String Comparison Functions”
SUBDATE()
Section 12.7, “Date and Time Functions”
SUBSTR()
Section 12.5, “String Functions”
SUBSTRING()
Section 10.1.9.1, “Result Strings”
Section 6.3.12, “SQL-Based MySQL Account Activity Auditing”
Section 12.5, “String Functions”
SUBSTRING_INDEX()
Section 12.5, “String Functions”
SUBTIME()
Section 12.7, “Date and Time Functions”
SUM()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 22.3.2, “Adding a New User-Defined Function”
Section 11.1.2, “Date and Time Type Overview”
Section 8.13.14.1, “Loose Index Scan”
Section 17.1, “Overview of Partitioning in MySQL”
Section C.5.5.3, “Problems with NULL Values”
Section 11.4.4, “The ENUM Type”
Section 11.4.5, “The SET Type”
Section 18.5.3, “Updatable and Insertable Views”
Section 18.5.2, “View Processing Algorithms”
SymDifference()
Section 12.18.5.3.2, “Spatial Operators”
SYSDATE()
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 11.3.6, “Fractional Seconds in Time Values”
Section 8.9.3.1, “How the Query Cache Operates”
Section 16.4.1.12, “Replication and Fractional Seconds Support”
Section 16.4.1.14, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
SYSTEM_USER()
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 10.1.12, “UTF-8 for Metadata”
T
TAN()
Section 12.6.2, “Mathematical Functions”
thr_setconcurrency()
Section 5.1.4, “Server System Variables”
TIME()
Section 12.7, “Date and Time Functions”
TIME_FORMAT()
Section 12.7, “Date and Time Functions”
TIME_TO_SEC()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
TIMEDIFF()
Section 12.7, “Date and Time Functions”
TIMESTAMP()
Section 12.7, “Date and Time Functions”
TIMESTAMPADD()
Section 12.7, “Date and Time Functions”
TIMESTAMPDIFF()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
TO_BASE64()
Section 12.5, “String Functions”
TO_DAYS()
Section 17.2.4, “HASH Partitioning”
Section 12.7, “Date and Time Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 17.4, “Partition Pruning”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Section 17.2, “Partitioning Types”
TO_SECONDS()
Section 12.7, “Date and Time Functions”
Section 17.4, “Partition Pruning”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Section 17.2, “Partitioning Types”
Touches()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
TRIM()
Section 10.1.13, “Column Character Set Conversion”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
TRUNCATE()
Section 12.6.2, “Mathematical Functions”
U
UCASE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
UNCOMPRESS()
Section 12.13, “Encryption and Compression Functions”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”
UNCOMPRESSED_LENGTH()
Section 12.13, “Encryption and Compression Functions”
UNHEX()
Section 12.13, “Encryption and Compression Functions”
Section 12.5, “String Functions”
Union()
Section 12.18.5.3.2, “Spatial Operators”
UNIX_TIMESTAMP()
Section 17.2.1, “RANGE Partitioning”
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Section C.5.4.6, “Time Zone Problems”
UpdateXML()
Section 12.11, “XML Functions”
UPPER()
Section 12.10, “Cast Functions and Operators”
Section 10.1.7.9, “Collation and INFORMATION_SCHEMA Searches”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
Section 10.1.8, “String Repertoire”
Section 10.1.14.1, “Unicode Character Sets”
USER()
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 10.1.7.5, “Collation of Expressions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 22.2.4.9.4, “Implementing Proxy User Support in Authentication Plugins”
Section 12.14, “Information Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.14, “Replication and System Functions”
Section 6.3.12, “SQL-Based MySQL Account Activity Auditing”
Section 10.1.12, “UTF-8 for Metadata”
Section 22.2.4.9.1, “Writing the Server-Side Authentication Plugin”
UTC_DATE
Section 12.7, “Date and Time Functions”
UTC_DATE()
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
UTC_TIME
Section 12.7, “Date and Time Functions”
UTC_TIME()
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
UTC_TIMESTAMP
Section 12.7, “Date and Time Functions”
UTC_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 11.3.6, “Fractional Seconds in Time Values”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.12, “Replication and Fractional Seconds Support”
UUID()
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 21.2.6, “Connector/Net Connection String Options Reference”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.14, “Replication and System Functions”
Section 5.2.4.2, “Setting The Binary Log Format”
UUID_SHORT()
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.16, “Miscellaneous Functions”
V
VALIDATE_PASSWORD_STRENGTH()
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”
Section 22.2.3.8, “Password-Validation Plugins”
Section 6.1.2.6, “The Password Validation Plugin”
Section 1.4, “What Is New in MySQL 5.6”
VALUES()
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 12.16, “Miscellaneous Functions”
VAR_POP()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
VAR_SAMP()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
VARIANCE()
Section 12.17.1, “GROUP BY (Aggregate) Functions”
VERSION()
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section C.5.5.1, “Case Sensitivity in String Searches”
Section 10.1.7.5, “Collation of Expressions”
Section 12.14, “Information Functions”
Section 16.4.1.14, “Replication and System Functions”
Section 6.3.11.2, “The Audit Log File”
Section 10.1.12, “UTF-8 for Metadata”
W
WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS()
Section 12.15, “GTID Functions”
WEEK()
Section 12.7, “Date and Time Functions”
Section 5.1.4, “Server System Variables”
WEEKDAY()
Section 12.7, “Date and Time Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Section 17.2, “Partitioning Types”
WEEKOFYEAR()
Section 12.7, “Date and Time Functions”
WEIGHT_STRING()
Section 10.4, “Adding a Collation to a Character Set”
Section C.5.5.1, “Case Sensitivity in String Searches”
Section 12.5, “String Functions”
Section 10.1.14.1, “Unicode Character Sets”
Within()
Section 12.18.5.4.2, “Functions That Test Spatial Relationships Between Geometries”
X
X()
Section 12.18.5.2.2, “Point Functions”
Y
Y()
Section 12.18.5.2.2, “Point Functions”
YEAR()
Section 17.2.4, “HASH Partitioning”
Section 17.2.1, “RANGE Partitioning”
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 17.2.7, “How MySQL Partitioning Handles NULL”
Section 17.3.1, “Management of RANGE and LIST Partitions”
Section 17.4, “Partition Pruning”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Section 17.2, “Partitioning Types”
YEARWEEK()
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
INFORMATION_SCHEMA Index
C | E | F | G | I | K | O | P | R | S | T | U | V
C
CHARACTER_SETS
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 19.1, “The INFORMATION_SCHEMA CHARACTER_SETS Table”
COLLATION_CHARACTER_SET_APPLICABILITY
Section 19.3, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table”
COLLATIONS
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 21.8.4, “C API Data Structures”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 19.2, “The INFORMATION_SCHEMA COLLATIONS Table”
COLUMN_PRIVILEGES
Section 19.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
COLUMNS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 19.4, “The INFORMATION_SCHEMA COLUMNS Table”
Section 19.13, “The INFORMATION_SCHEMA PARAMETERS Table”
Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”
E
ENGINES
Section 19.6, “The INFORMATION_SCHEMA ENGINES Table”
EVENTS
Section 18.4.4, “Event Metadata”
Section 18.4.2, “Event Scheduler Configuration”
Section 16.4.1.10, “Replication of Invoked Features”
Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”
F
FILES
Section 19.8, “The INFORMATION_SCHEMA FILES Table”
G
GLOBAL_STATUS
Section 19.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”
GLOBAL_VARIABLES
Section 19.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”
I
INFORMATION_SCHEMA GLOBAL_STATUS
Section 19.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”
INFORMATION_SCHEMA GLOBAL_VARIABLES
Section 19.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”
INFORMATION_SCHEMA.COLLATIONS
Section 10.4.2, “Choosing a Collation ID”
INFORMATION_SCHEMA.COLUMNS
Section 20.1, “Performance Schema Quick Start”
INFORMATION_SCHEMA.ENGINES
Section 20.1, “Performance Schema Quick Start”
INFORMATION_SCHEMA.EVENTS
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 18.4.4, “Event Metadata”
Section 16.4.1.10, “Replication of Invoked Features”
Section E.1, “Restrictions on Stored Programs”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
INFORMATION_SCHEMA.INNODB_CMP
Section 5.4.6.3, “Tuning Compression for InnoDB Tables”
INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.4.6.3, “Tuning Compression for InnoDB Tables”
information_schema.innodb_ft_default_stopword
Section 12.9.4, “Full-Text Stopwords”
INFORMATION_SCHEMA.INNODB_METRICS
Section 14.2.6, “InnoDB Startup Options and System Variables”
INFORMATION_SCHEMA.KEY_COLUMN_USAGE
Section 1.8.6.2, “FOREIGN KEY Constraints”
Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
INFORMATION_SCHEMA.OPTIMIZER_TRACE
Section 1.4, “What Is New in MySQL 5.6”
INFORMATION_SCHEMA.PARTITIONS
Section 17.2.5, “KEY Partitioning”
Section 17.2.3.1, “RANGE COLUMNS partitioning”
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 17.2.7, “How MySQL Partitioning Handles NULL”
Section 17.3.5, “Obtaining Information About Partitions”
Section 5.1.3, “Server Command Options”
Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”
INFORMATION_SCHEMA.PLUGINS
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.11.1, “Installing the Audit Log Plugin”
Section 6.3.7.3.1, “Installing the PAM Authentication Plugin”
Section 6.3.7.4.1, “Installing the Windows Authentication Plugin”
Section 5.1.8.2, “Obtaining Server Plugin Information”
Section 6.1.2.6.1, “Password Validation Plugin Installation”
Section 22.2.1, “Plugin API Characteristics”
Section 22.2.2, “Plugin API Components”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”
Section 8.11.6.1, “Thread Pool Components and Installation”
Section 22.2.4.6, “Writing INFORMATION_SCHEMA Plugins”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.5, “Writing Daemon Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4.10, “Writing Password-Validation Plugins”
Section 22.2.4.9.1, “Writing the Server-Side Authentication Plugin”
INFORMATION_SCHEMA.PROCESSLIST
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 8.12.5, “Examining Thread Information”
Section 20.4, “Performance Schema Instrument Naming Conventions”
Section 20.9.4, “Performance Schema Stage Event Tables”
Section 19.16, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 20.9.9.3, “The threads Table”
INFORMATION_SCHEMA.ROUTINES
Chapter 19, INFORMATION_SCHEMA Tables
Section 21.2.6, “Connector/Net Connection String Options Reference”
Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”
INFORMATION_SCHEMA.TABLE_CONSTRAINTS
Section 19.18, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”
information_schema.table_constraints
Section 5.5.1, “Overview of Online DDL”
INFORMATION_SCHEMA.TABLES
Chapter 19, INFORMATION_SCHEMA Tables
Section 5.1.3, “Server Command Options”
INFORMATION_SCHEMA.TRIGGERS
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
INFORMATION_SCHEMA.VIEWS
Section 18.5.3, “Updatable and Insertable Views”
INNODB_CMP
Section 5.4.6.4, “Monitoring Compression at Runtime”
INNODB_CMP_PER_INDEX
Section 5.4.6.4, “Monitoring Compression at Runtime”
INNODB_FT_BEING_DELETED
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 14.2.6, “InnoDB Startup Options and System Variables”
INNODB_FT_CONFIG
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 14.2.6, “InnoDB Startup Options and System Variables”
INNODB_FT_DEFAULT_STOPWORD
Section 14.2.3.12.3, “FULLTEXT Indexes”
innodb_ft_default_stopword
Section 12.9.4, “Full-Text Stopwords”
INNODB_FT_DELETED
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 19.30.23, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
INNODB_FT_INDEX_CACHE
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 14.2.6, “InnoDB Startup Options and System Variables”
INNODB_FT_INDEX_TABLE
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 14.2.6, “InnoDB Startup Options and System Variables”
INNODB_SYS_FOREIGN
Section 1.8.6.2, “FOREIGN KEY Constraints”
Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
INNODB_SYS_FOREIGN_COLS
Section 1.8.6.2, “FOREIGN KEY Constraints”
Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
INNODB_SYS_INDEXES
Section 14.2.3.12.3, “FULLTEXT Indexes”
INNODB_SYS_TABLES
Section 14.2.3.12.3, “FULLTEXT Indexes”
K
KEY_COLUMN_USAGE
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 19.11, “The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table”
O
OPTIMIZER_TRACE
Section 19.12, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”
P
PARAMETERS
Section 19.13, “The INFORMATION_SCHEMA PARAMETERS Table”
Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”
PARTITIONS
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 17.2.7, “How MySQL Partitioning Handles NULL”
Section 17.3.5, “Obtaining Information About Partitions”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”
PLUGINS
Section 5.1.8.2, “Obtaining Server Plugin Information”
Section 19.15, “The INFORMATION_SCHEMA PLUGINS Table”
PROCESSLIST
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 8.12.5, “Examining Thread Information”
Section 19.16, “The INFORMATION_SCHEMA PROCESSLIST Table”
PROFILING
Section 13.7.5.31, “SHOW PROFILE Syntax”
Section 19.17, “The INFORMATION_SCHEMA PROFILING Table”
R
REFERENTIAL_CONSTRAINTS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 19.18, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”
ROUTINES
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 18.2.3, “Stored Routine Metadata”
Section 19.13, “The INFORMATION_SCHEMA PARAMETERS Table”
Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”
S
SCHEMA_PRIVILEGES
Section 19.21, “The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table”
SCHEMATA
Section 6.2.2, “Privilege System Grant Tables”
Section 19.20, “The INFORMATION_SCHEMA SCHEMATA Table”
SESSION_STATUS
Section 19.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”
SESSION_VARIABLES
Section 19.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”
STATISTICS
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 19.22, “The INFORMATION_SCHEMA STATISTICS Table”
T
TABLE_CONSTRAINTS
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 19.25, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”
TABLE_PRIVILEGES
Section 19.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
TABLES
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 19.23, “The INFORMATION_SCHEMA TABLES Table”
TABLESPACES
Section 19.24, “The INFORMATION_SCHEMA TABLESPACES Table”
TP_THREAD_GROUP_STATE
Section 19.31.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 19.31, “Thread Pool INFORMATION_SCHEMA Tables”
Section 8.11.6.1, “Thread Pool Components and Installation”
TP_THREAD_GROUP_STATS
Section 19.31.1, “The INFORMATION_SCHEMA TP_THREAD_STATE Table”
Section 19.31, “Thread Pool INFORMATION_SCHEMA Tables”
Section 8.11.6.1, “Thread Pool Components and Installation”
TP_THREAD_STATE
Section 19.31, “Thread Pool INFORMATION_SCHEMA Tables”
Section 8.11.6.1, “Thread Pool Components and Installation”
TRIGGERS
Section 13.7.5.13, “SHOW CREATE TRIGGER Syntax”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 18.3.2, “Trigger Metadata”
U
USER_PRIVILEGES
Section 19.28, “The INFORMATION_SCHEMA USER_PRIVILEGES Table”
V
VIEWS
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 18.5.4, “View Metadata”
Join Types Index
A
ALL
Section 8.13.12.2, “Block Nested-Loop Algorithm for Outer Joins and Semi-Joins”
Section 8.13.8, “Nested-Loop Join Algorithms”
C
const
Section 8.8.2, “EXPLAIN Output Format”
Section 8.13.13, “ORDER BY Optimization”
Section 13.2.9, “SELECT Syntax”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
E
eq_ref
Section 8.8.2, “EXPLAIN Output Format”
Section 14.8.1, “MERGE Table Advantages and Disadvantages”
Section 8.13.12.3, “Batched Key Access Joins”
Section 8.13.4, “Index Condition Pushdown Optimization”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
F
fulltext
Section 8.8.2, “EXPLAIN Output Format”
I
index
Section 8.8.2, “EXPLAIN Output Format”
Section 8.13.12.2, “Block Nested-Loop Algorithm for Outer Joins and Semi-Joins”
Section 8.13.8, “Nested-Loop Join Algorithms”
index_merge
Section 8.8.2, “EXPLAIN Output Format”
Section 8.13.2, “Index Merge Optimization”
index_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
R
range
Section 8.8.2, “EXPLAIN Output Format”
Section 8.13.12.2, “Block Nested-Loop Algorithm for Outer Joins and Semi-Joins”
Section 8.13.4, “Index Condition Pushdown Optimization”
Section 8.13.2, “Index Merge Optimization”
Section 8.13.14.1, “Loose Index Scan”
Section 8.13.8, “Nested-Loop Join Algorithms”
Section 8.13.1, “Range Optimization”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
ref
Section 8.8.2, “EXPLAIN Output Format”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.8.1, “MERGE Table Advantages and Disadvantages”
Section 8.13.12.3, “Batched Key Access Joins”
Section 8.13.4, “Index Condition Pushdown Optimization”
Section 8.13.16.3, “Optimizing Subqueries in the FROM Clause (Derived Tables)”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
ref_or_null
Section 8.8.2, “EXPLAIN Output Format”
Section 8.13.6, “IS NULL Optimization”
Section 8.13.4, “Index Condition Pushdown Optimization”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
S
system
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.9, “SELECT Syntax”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
U
unique_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
Operator Index
Symbols | A | B | C | D | E | I | L | N | O | R | X
Symbols
-
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.1.1, “Numeric Type Overview”
Section 17.6, “Restrictions and Limitations on Partitioning”
!
Section 9.5, “Expression Syntax”
Section 12.3.3, “Logical Operators”
Section 12.3.1, “Operator Precedence”
!=
Section 12.3.2, “Comparison Functions and Operators”
Section 12.3.1, “Operator Precedence”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
%
Section 12.6.1, “Arithmetic Operators”
&
Section 13.1.14, “CREATE TABLE Syntax”
Section 12.12, “Bit Functions”
Section 17.6, “Restrictions and Limitations on Partitioning”
&&
Section 12.3.3, “Logical Operators”
Section 1.8.4, “MySQL Extensions to Standard SQL”
>
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
>>
Section 12.12, “Bit Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 17.6, “Restrictions and Limitations on Partitioning”
>=
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
<
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 3.3.4.6, “Working with NULL Values”
<>
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 3.3.4.6, “Working with NULL Values”
<<
Section 12.12, “Bit Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 17.6, “Restrictions and Limitations on Partitioning”
<=
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
<=>
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 12.2, “Type Conversion in Expression Evaluation”
*
Section 12.6.1, “Arithmetic Operators”
Section 11.1.1, “Numeric Type Overview”
Section 17.6, “Restrictions and Limitations on Partitioning”
+
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.1.1, “Numeric Type Overview”
Section 17.6, “Restrictions and Limitations on Partitioning”
/
Section 12.6.1, “Arithmetic Operators”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server System Variables”
=
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.4, “Assignment Operators”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section E.4, “Restrictions on Subqueries”
Section 12.5.1, “String Comparison Functions”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 9.4, “User-Defined Variables”
Section 3.3.4.6, “Working with NULL Values”
^
Section 12.12, “Bit Functions”
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 17.6, “Restrictions and Limitations on Partitioning”
|
Section 12.12, “Bit Functions”
Section 17.6, “Restrictions and Limitations on Partitioning”
||
Section 10.1.7.3, “COLLATE Clause Precedence”
Section 9.5, “Expression Syntax”
Section 12.3.3, “Logical Operators”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 10.1.9.1, “Result Strings”
Section 5.1.7, “Server SQL Modes”
~
Section 12.12, “Bit Functions”
Section 17.6, “Restrictions and Limitations on Partitioning”
A
AND
Section 13.1.14, “CREATE TABLE Syntax”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.13.2, “Index Merge Optimization”
Section 12.3.3, “Logical Operators”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
Section E.4, “Restrictions on Subqueries”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 12.5.1, “String Comparison Functions”
Section 8.13.2.1, “The Index Merge Intersection Access Algorithm”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 18.5.2, “View Processing Algorithms”
B
BETWEEN
Section 8.8.2, “EXPLAIN Output Format”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 12.2, “Type Conversion in Expression Evaluation”
BINARY
Section 12.10, “Cast Functions and Operators”
Section 3.3.4.7, “Pattern Matching”
Section 3.3.4.4, “Sorting Rows”
Section 10.1.7.7, “The BINARY Operator”
BINARY str
Section 12.10, “Cast Functions and Operators”
C
CASE
Section 13.6.5.1, “CASE Syntax”
Section 12.4, “Control Flow Functions”
Section 9.5, “Expression Syntax”
Section 1.8.4, “MySQL Extensions to Standard SQL”
CASE value WHEN END
Section 12.4, “Control Flow Functions”
CASE WHEN END
Section 12.4, “Control Flow Functions”
CASE WHEN expr1 = expr2 THEN NULL ELSE expr1 END
Section 12.4, “Control Flow Functions”
D
DIV
Section 12.6.1, “Arithmetic Operators”
Section 17.6, “Restrictions and Limitations on Partitioning”
E
expr BETWEEN min AND max
Section 12.3.2, “Comparison Functions and Operators”
expr LIKE pat
Section 12.5.1, “String Comparison Functions”
expr NOT BETWEEN min AND max
Section 12.3.2, “Comparison Functions and Operators”
expr NOT LIKE pat
Section 12.5.1, “String Comparison Functions”
expr NOT REGEXP pat
Section 12.5.2, “Regular Expressions”
expr NOT RLIKE pat
Section 12.5.2, “Regular Expressions”
expr REGEXP pat
Section 12.5.2, “Regular Expressions”
expr RLIKE pat
Section 12.5.2, “Regular Expressions”
expr1 SOUNDS LIKE expr2
Section 12.5, “String Functions”
I
IS
Section 12.3.1, “Operator Precedence”
IS boolean_value
Section 12.3.2, “Comparison Functions and Operators”
IS NOT boolean_value
Section 12.3.2, “Comparison Functions and Operators”
IS NOT NULL
Section 12.3.2, “Comparison Functions and Operators”
Section C.5.5.3, “Problems with NULL Values”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 3.3.4.6, “Working with NULL Values”
IS NULL
Section 8.8.2, “EXPLAIN Output Format”
Section 8.13.6, “IS NULL Optimization”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
Section C.5.5.3, “Problems with NULL Values”
Section 5.1.4, “Server System Variables”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 3.3.4.6, “Working with NULL Values”
L
LIKE
Section 4.5.1.4, “mysql Server-Side Help”
Section 13.7.5.4, “SHOW CHARACTER SET Syntax”
Section 13.7.5.5, “SHOW COLLATION Syntax”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.15, “SHOW DATABASES Syntax”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 13.7.5.25, “SHOW OPEN TABLES Syntax”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 13.7.5.36, “SHOW STATUS Syntax”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 13.7.5.38, “SHOW TABLES Syntax”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 12.10, “Cast Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 19.32, “Extensions to SHOW Statements”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 20.2.3.2.1.1, “Pre-Filtering by Instrument”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 6.2.3, “Specifying Account Names”
Section 12.5.1, “String Comparison Functions”
Section 9.1.1, “String Literals”
Section 5.1.5.1, “Structured System Variables”
Section 11.4.1, “The CHAR and VARCHAR Types”
Section 11.4.5, “The SET Type”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 5.1.5, “Using System Variables”
LIKE 'pattern'
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
LIKE ... ESCAPE
Section C.5.8, “Known Issues in MySQL”
N
N % M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”
N MOD M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”
NOT
Section 12.3.3, “Logical Operators”
Section 5.1.7, “Server SQL Modes”
NOT LIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”
NOT REGEXP
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”
NOT RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”
O
OR
Section 13.7.1.4, “GRANT Syntax”
Section 9.5, “Expression Syntax”
Section 8.13.2, “Index Merge Optimization”
Section 12.3.3, “Logical Operators”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.7, “Server SQL Modes”
Section 12.5.1, “String Comparison Functions”
Section 8.13.2.3, “The Index Merge Sort-Union Access Algorithm”
Section 8.13.2.2, “The Index Merge Union Access Algorithm”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
R
REGEXP
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 12.5.2, “Regular Expressions”
Section E.7, “Restrictions on Character Sets”
RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.2, “Regular Expressions”
Section E.7, “Restrictions on Character Sets”
X
XOR
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 12.3.3, “Logical Operators”
Option Index
Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y
Symbols
--
Section 1.8.5.5, “'--' as the Start of a Comment”
Section 4.8.2, “replace — A String-Replacement Utility”
-#
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 5.1.3, “Server Command Options”
Section 22.4.3, “The DBUG Package”
-1
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
-?
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 4.2.3.1, “Using Options on the Command Line”
A
-A
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.3.4, “Other myisamchk Options”
-a
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.6.3.4, “Other myisamchk Options”
--abort-slave-event-count
Section 16.1.4.3, “Replication Slave Options and Variables”
--add-drop-database
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
--add-drop-table
Section 4.5.4, “mysqldump — A Database Backup Program”
--add-drop-trigger
Section 4.5.4, “mysqldump — A Database Backup Program”
--add-locks
Section 4.5.4, “mysqldump — A Database Backup Program”
--addtodest
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--all
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
--all-databases
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
--all-in-1
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--all-tablespaces
Section 4.5.4, “mysqldump — A Database Backup Program”
--allow-keywords
Section 4.5.4, “mysqldump — A Database Backup Program”
--allow-suspicious-udfs
Section 5.1.3, “Server Command Options”
Section 22.3.2.6, “User-Defined Function Security Precautions”
--allowold
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--analyze
Section 4.6.3.1, “myisamchk General Options”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.6.3.4, “Other myisamchk Options”
--ansi
Section 1.8.3, “Running MySQL in ANSI Mode”
Section 5.1.3, “Server Command Options”
antonio
Section 6.3.7.3.2.3, “Unix Password Authentication with Proxy Users and Group Mapping”
--apply-slave-statements
Section 4.5.4, “mysqldump — A Database Backup Program”
--audit-log
Section 6.3.11.4, “Audit Log Plugin Options and Variables”
Section 6.3.11.1, “Installing the Audit Log Plugin”
--auto-generate-sql
Section 4.5.7, “mysqlslap — Load Emulation Client”
--auto-generate-sql-add-autoincrement
Section 4.5.7, “mysqlslap — Load Emulation Client”
--auto-generate-sql-execute-number
Section 4.5.7, “mysqlslap — Load Emulation Client”
--auto-generate-sql-guid-primary
Section 4.5.7, “mysqlslap — Load Emulation Client”
--auto-generate-sql-load-type
Section 4.5.7, “mysqlslap — Load Emulation Client”
--auto-generate-sql-secondary-indexes
Section 4.5.7, “mysqlslap — Load Emulation Client”
--auto-generate-sql-unique-query-number
Section 4.5.7, “mysqlslap — Load Emulation Client”
--auto-generate-sql-unique-write-number
Section 4.5.7, “mysqlslap — Load Emulation Client”
--auto-generate-sql-write-number
Section 4.5.7, “mysqlslap — Load Emulation Client”
--auto-rehash
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
--auto-repair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--auto-vertical-output
Section 4.5.1.1, “mysql Options”
--autocommit
Section 5.1.4, “Server System Variables”
B
-B
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
-b
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.3, “Server Command Options”
--back_log
Section 2.6, “Installing MySQL on Solaris and OpenSolaris”
--backup
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
--base64-output
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 16.1.3.1, “GTID Concepts”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
--basedir
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”
Section 2.10.1, “Unix Postinstallation Procedures”
basedir
Section 2.3.4.2, “Creating an Option File”
Section 2.10.1.2, “Starting and Stopping MySQL Automatically”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
--batch
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
--big-tables
Section 5.1.3, “Server Command Options”
--binary-mode
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--bind-address
Section 4.5.1.1, “mysql Options”
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 5.1.9.2, “Configuring the MySQL Server to Permit IPv6 Connections”
Section 5.1.9.4, “Connecting Using IPv6 Nonlocal Host Addresses”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host Address”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 5.1.9.5, “Obtaining an IPv6 Address from a Broker”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
--binlog-checksum
Section 16.1.4.4, “Binary Log Options and Variables”
--binlog-do-db
Section 16.1.4.4, “Binary Log Options and Variables”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.2.4, “The Binary Log”
--binlog-format
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4.1, “Binary Logging Formats”
Section 5.1.3, “Server Command Options”
Section 5.2.4.2, “Setting The Binary Log Format”
--binlog-ignore-db
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.2.4, “The Binary Log”
--binlog-row-event-max-size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.2.1, “Changes to Server Defaults”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
--binlog-rows-query-log-events
Section 16.1.4.4, “Binary Log Options and Variables”
--binlog_format
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
--block-search
Section 4.6.3.4, “Other myisamchk Options”
--bootstrap
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 5.1.3, “Server Command Options”
--brief
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
C
-C
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 5.1.3, “Server Command Options”
-c
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
--cflags
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
--character-set-client-handshake
Section 5.1.3, “Server Command Options”
Section 10.1.14.7.1, “The cp932 Character Set”
--character-set-filesystem
Section 5.1.3, “Server Command Options”
--character-set-server
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
Section 16.4.1.2, “Replication and Character Sets”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”
--character-sets-dir
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section C.5.2.17, “Can't initialize character set”
Section 10.5, “Character Set Configuration”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 5.1.3, “Server Command Options”
--character_set_server
Section 2.9.4, “MySQL Source-Configuration Options”
--charset
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
--check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--check-only-changed
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--check-upgrade
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
--checkpoint
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--chroot
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 5.1.3, “Server Command Options”
CMAKE_INSTALL_PREFIX
Section 22.2.4.3, “Compiling and Installing Plugin Libraries”
Section 2.9.3, “Installing MySQL from a Development Source Tree”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
CMAKE_PREFIX_PATH
Section 2.9.4, “MySQL Source-Configuration Options”
--collation-server
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
Section 16.4.1.2, “Replication and Character Sets”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”
--collation_server
Section 2.9.4, “MySQL Source-Configuration Options”
--column-names
Section 4.5.1.1, “mysql Options”
Section 4.2.3.2, “Program Option Modifiers”
--column-type-info
Section 4.5.1.1, “mysql Options”
--columns
Section 4.5.5, “mysqlimport — A Data Import Program”
--comments
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
--commit
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.5.7, “mysqlslap — Load Emulation Client”
--comp
Section 4.2.3, “Specifying Program Options”
--compact
Section 4.5.4, “mysqldump — A Database Backup Program”
--compatible
Section 4.5.4, “mysqldump — A Database Backup Program”
COMPILATION_COMMENT
Section 5.1.4, “Server System Variables”
--complete-insert
Section 4.5.4, “mysqldump — A Database Backup Program”
--compr
Section 4.2.3, “Specifying Program Options”
--compress
Section 4.5.1.1, “mysql Options”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 6.3.9.1, “Basic SSL Concepts”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.2.3, “Specifying Program Options”
--concurrency
Section 4.5.7, “mysqlslap — Load Emulation Client”
--config-file
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
--connect-expired-password
Section 4.5.1.1, “mysql Options”
--console
Section 14.2.4.5, “InnoDB General Troubleshooting”
Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”
Section 14.2.2.1, “Creating the InnoDB Tablespace”
Section C.5.4.1.1, “Resetting the Root Password: Windows Systems”
Section 5.1.3, “Server Command Options”
Section 2.3.4.4, “Starting the Server for the First Time”
Section 5.2.2, “The Error Log”
--copy
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--core-file
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
--core-file-size
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.1.3, “Server Command Options”
--correct-checksum
Section 4.6.3.3, “myisamchk Repair Options”
--count
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
--create
Section 4.5.7, “mysqlslap — Load Emulation Client”
--create-options
Section 4.5.4, “mysqldump — A Database Backup Program”
--create-schema
Section 4.5.7, “mysqlslap — Load Emulation Client”
--csv
Section 4.5.7, “mysqlslap — Load Emulation Client”
--cxxflags
Section 2.9.5, “Dealing with Problems Compiling MySQL”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
D
-D
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section C.5.2.17, “Can't initialize character set”
Section 10.3, “Adding a Character Set”
Section 2.1.2.2, “Choosing a Distribution Format”
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 21.7.1, “Compiling Programs with libmysqld”
Section 22.4.2, “Debugging a MySQL Client”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 2.9.2, “Installing MySQL from a Standard Source Distribution”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 22.1.1, “MySQL Threads”
Section 20.2.1, “Performance Schema Build Configuration”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 14.10, “The EXAMPLE Storage Engine”
Section 14.9, “The FEDERATED Storage Engine”
Section 5.7, “Tracing mysqld Using DTrace”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
-d
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.4, “Server System Variables”
--data-file-length
Section 4.6.3.3, “myisamchk Repair Options”
--database
Section 4.5.1.1, “mysql Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--databases
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 7.4.5.1, “Making a Copy of a Database”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”
--datadir
Section 2.3.4.2, “Creating an Option File”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.6.1, “Setting Up Multiple Data Directories”
Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 4.2.3.3, “Using Option Files”
datadir
Section 2.3.4.2, “Creating an Option File”
Section 2.4.1, “General Notes on Installing MySQL on Mac OS X”
Section 2.10.1.2, “Starting and Stopping MySQL Automatically”
Section 2.3.5, “Troubleshooting a Microsoft Windows MySQL Server Installation”
Section E.10.6, “Windows Platform Limitations”
--db
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--debug
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 22.4.3, “The DBUG Package”
--debug-check
Section 4.5.1.1, “mysql Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
--debug-info
Section 4.5.1.1, “mysql Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
--debug-sync-timeout
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
--default-auth
Section 4.5.1.1, “mysql Options”
Section 21.8.13, “C API Client Plugin Functions”
Section 22.2.4.2.3, “Client Plugin Descriptors”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 6.3.7, “Pluggable Authentication”
Section 6.3.7.1, “The Native Authentication Plugins”
Section 22.2.4.9.3, “Using the Authentication Plugins”
--default-authentication-plugin
Section 13.7.1.2, “CREATE USER Syntax”
Section 5.1.3, “Server Command Options”
--default-character-set
Section 4.5.1.1, “mysql Options”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
Section 10.1.4, “Connection Character Sets and Collations”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Section 5.1.4, “Server System Variables”
Section 4.5.1.6.2, “Unicode Support on Windows”
Section 6.3.1, “User Names and Passwords”
--default-storage-engine
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.1, “Setting the Storage Engine”
Section 14.2.2.8, “Turning Off InnoDB”
default-storage-engine
Section 14.1, “Setting the Storage Engine”
--default-time-zone
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.28, “Replication and Time Zones”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
--default-tmp-storage-engine
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.3, “Server Command Options”
Section 14.2.2.8, “Turning Off InnoDB”
--default.key_buffer_size
Section 5.1.5.1, “Structured System Variables”
DEFAULT_CHARSET
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
Section 10.1.3.1, “Server Character Set and Collation”
DEFAULT_COLLATION
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
Section 10.1.3.1, “Server Character Set and Collation”
--defaults-extra-file
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.2.3.3, “Using Option Files”
--defaults-file
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 14.2.1.2, “Configuring InnoDB”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 21.7.3, “Options with the Embedded Server”
Section C.5.4.1.1, “Resetting the Root Password: Windows Systems”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 5.6.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
--defaults-group-suffix
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 2.12, “Environment Variables”
--delay-key-write
Section 14.3.1, “MyISAM Startup Options”
Section 8.10.5, “External Locking”
Section 5.1.3, “Server Command Options”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
--delay_key_write
Section 5.1.4, “Server System Variables”
Section 5.1.5, “Using System Variables”
--delayed-insert
Section 4.5.4, “mysqldump — A Database Backup Program”
--delete
Section 4.5.5, “mysqlimport — A Data Import Program”
--delete-master-logs
Section 4.5.4, “mysqldump — A Database Backup Program”
--delimiter
Section 4.5.1.1, “mysql Options”
Section 4.5.7, “mysqlslap — Load Emulation Client”
--demangle
Section 22.4.1.5, “Using a Stack Trace”
--des-key-file
Section 13.7.6.3, “FLUSH Syntax”
Section 12.13, “Encryption and Compression Functions”
Section 5.1.3, “Server Command Options”
--description
Section 4.6.3.4, “Other myisamchk Options”
--detach
Section 4.5.7, “mysqlslap — Load Emulation Client”
--disable
Section 4.2.3.2, “Program Option Modifiers”
--disable-auto-rehash
Section 4.5.1.1, “mysql Options”
--disable-gtid-unsafe-statements
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
--disable-keys
Section 4.5.4, “mysqldump — A Database Backup Program”
--disable-log-bin
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--disable-named-commands
Section 4.5.1.1, “mysql Options”
--disable-plugin_name
Section 5.1.8.1, “Installing and Uninstalling Plugins”
--disconnect-slave-event-count
Section 16.1.4.3, “Replication Slave Options and Variables”
--dryrun
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--dump
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
--dump-date
Section 4.5.4, “mysqldump — A Database Backup Program”
--dump-slave
Section 4.5.4, “mysqldump — A Database Backup Program”
E
-E
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup Program”
-e
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 13.2.7, “LOAD XML Syntax”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 4.2.3.1, “Using Options on the Command Line”
--embedded
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
--enable-cleartext-plugin
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 6.3.7.5, “The Cleartext Client-Side Authentication Plugin”
--enable-named-pipe
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 5.1.3, “Server Command Options”
--enable-plugin_name
Section 5.1.8.1, “Installing and Uninstalling Plugins”
--enforce-gtid-consistency
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 1.4, “What Is New in MySQL 5.6”
--engine
Section 4.5.7, “mysqlslap — Load Emulation Client”
event-scheduler
Section 18.4.2, “Event Scheduler Configuration”
--event-scheduler
Section 18.4.2, “Event Scheduler Configuration”
Section 5.1.3, “Server Command Options”
--events
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
--example
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
--exclude-gtids
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--execute
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 4.2.3.1, “Using Options on the Command Line”
--exit-info
Section 5.1.3, “Server Command Options”
--extend-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”
--extended
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--extended-insert
Section 4.5.4, “mysqldump — A Database Backup Program”
--external-locking
Section 14.3.1, “MyISAM Startup Options”
Section 8.10.5, “External Locking”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.11.1, “System Factors and Startup Parameter Tuning”
--extra-file
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
F
-F
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.2, “mysql Commands”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
-f
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 22.4.1.5, “Using a Stack Trace”
--fast
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--federated
Section 14.9, “The FEDERATED Storage Engine”
--fields-enclosed-by
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
--fields-escaped-by
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
--fields-optionally-enclosed-by
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
--fields-terminated-by
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
--fields-xxx
Section 4.5.4, “mysqldump — A Database Backup Program”
--fix-db-names
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--fix-table-names
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--flush
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
--flush-logs
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.2, “MySQL Server Logs”
--flush-privileges
Section 4.5.4, “mysqldump — A Database Backup Program”
--flush_time
Section 22.1.1, “MySQL Threads”
--flushlog
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--force
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 22.1.2, “The MySQL Test Suite”
Section 3.5, “Using mysql in Batch Mode”
--force-if-open
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--force-read
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
G
-G
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
-g
Section 22.4.1.1, “Compiling MySQL for Debugging”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
--gdb
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 5.1.3, “Server Command Options”
--general-log
Section 5.1.3, “Server Command Options”
--general_log
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”
Section 1.4, “What Is New in MySQL 5.6”
--general_log_file
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”
Section 1.4, “What Is New in MySQL 5.6”
--gtid-mode
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 2.11.1, “Upgrading MySQL”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 1.4, “What Is New in MySQL 5.6”
--gtid_mode
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
H
-H
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
-h
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.2.1, “Invoking MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 1.2, “Typographical and Syntax Conventions”
Section 4.2.3.1, “Using Options on the Command Line”
HAVE_EMBEDDED_PRIVILEGE_CONTROL
Section 21.7, “libmysqld, the Embedded MySQL Server Library”
--header_file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
--HELP
Section 4.6.3.1, “myisamchk General Options”
--help
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.1, “Overview of MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”
Section 8.11.2, “Tuning Server Parameters”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 4.2.3.3, “Using Option Files”
Section 4.2.3.1, “Using Options on the Command Line”
--hex-blob
Section 4.5.4, “mysqldump — A Database Backup Program”
--hexdump
Section 4.6.8.1, “mysqlbinlog Hex Dump Format”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--histignore
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
--host
Section 4.5.1.1, “mysql Options”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 5.1.9.2, “Configuring the MySQL Server to Permit IPv6 Connections”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.3.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 5.1.3, “Server Command Options”
Section 1.2, “Typographical and Syntax Conventions”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”
Section 4.2.3.3, “Using Option Files”
Section 4.2.3.1, “Using Options on the Command Line”
host
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.3.3, “Using Option Files”
--howto
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--html
Section 4.5.1.1, “mysql Options”
I
-I
Section 21.8.3.1, “Building C API Client Programs”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
-i
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 22.4.1.3, “Using pdb to create a Windows crashdump”
--i-am-a-dummy
Section 4.5.1.1, “mysql Options”
Section 4.5.1.6.4, “Using the --safe-updates Option”
--ignore
Section 4.5.5, “mysqlimport — A Data Import Program”
--ignore-builtin-innodb
Section 14.2.6, “InnoDB Startup Options and System Variables”
--ignore-db-dir
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
--ignore-lines
Section 4.5.5, “mysqlimport — A Data Import Program”
--ignore-spaces
Section 4.5.1.1, “mysql Options”
--ignore-table
Section 4.5.4, “mysqldump — A Database Backup Program”
--in_file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
--include
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
--include-gtids
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--include-master-host-port
Section 4.5.4, “mysqldump — A Database Backup Program”
--info
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
--Information
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
--information
Section 4.6.3.2, “myisamchk Check Options”
--init-command
Section 4.5.1.1, “mysql Options”
--init-file
Section 20.2.3, “Performance Schema Runtime Configuration”
Section C.5.4.1.2, “Resetting the Root Password: Unix Systems”
Section C.5.4.1.1, “Resetting the Root Password: Windows Systems”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.4, “The MEMORY Storage Engine”
--init-rpl-role
Section 1.4, “What Is New in MySQL 5.6”
--init_connect
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
--innodb
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.2.8, “Turning Off InnoDB”
innodb-status-file
Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”
--innodb-status-file
Section 14.2.6, “InnoDB Startup Options and System Variables”
--innodb-xxx
Section 5.1.3, “Server Command Options”
--innodb_checksums
Section 14.2.6, “InnoDB Startup Options and System Variables”
--innodb_file_per_table
Section 5.4.1.1, “Enabling and Disabling File-Per-Table Mode”
Section 5.1.3, “Server Command Options”
Section 8.11.3.1.3, “Using Symbolic Links for Databases on Windows”
innodb_file_per_table
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 5.1.3, “Server Command Options”
--innodb_rollback_on_timeout
Section 14.2.3.14, “InnoDB Error Handling”
Section 14.2.6, “InnoDB Startup Options and System Variables”
--innodb_support_xa
Section 5.2.4, “The Binary Log”
--insert-ignore
Section 4.5.4, “mysqldump — A Database Backup Program”
--install
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 5.1.3, “Server Command Options”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
--install-manual
Section 5.1.3, “Server Command Options”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
--iterations
Section 4.5.7, “mysqlslap — Load Emulation Client”
J
-j
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--join
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
K
-K
Section 4.5.4, “mysqldump — A Database Backup Program”
-k
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
--keep_files_on_create
Section 13.1.14, “CREATE TABLE Syntax”
--keepold
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--key_buffer_size
Section 5.1.3, “Server Command Options”
--keys
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
--keys-used
Section 4.6.3.3, “myisamchk Repair Options”
L
-L
Section 4.5.1.1, “mysql Options”
Section 21.8.3.1, “Building C API Client Programs”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 2.13.3, “Problems Using the Perl DBI/DBD Interface”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
-l
Section 4.6.3.3, “myisamchk Repair Options”
Section 21.8.6.39, “mysql_library_end()”
Section 21.8.3.1, “Building C API Client Programs”
Section 21.8.12, “C API Embedded Server Function Descriptions”
Section 21.8.5, “C API Function Overview”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 5.1.3, “Server Command Options”
--language
Section 5.1.3, “Server Command Options”
--large-pages
Section 8.11.4.2, “Enabling Large Page Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
--lc-messages
Section 5.1.3, “Server Command Options”
--lc-messages-dir
Section 5.1.3, “Server Command Options”
--ldata
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
--ledir
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
--length
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
--libmysqld-libs
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
--libs
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
--libs_r
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
--line-numbers
Section 4.5.1.1, “mysql Options”
--lines-terminated-by
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
--local
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
--local-infile
Section 4.5.1.1, “mysql Options”
Section 13.2.7, “LOAD XML Syntax”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
--local-load
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--local-service
Section 2.3.4.8, “Starting MySQL as a Windows Service”
--lock-all-tables
Section 4.5.4, “mysqldump — A Database Backup Program”
--lock-tables
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
--log
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.6”
--log-bin
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 7.3.3, “Backup Strategy Summary”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.4.5, “How to Report Replication Bugs or Problems”
Section C.5.8, “Known Issues in MySQL”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 16.3.6, “Switching Masters During Failover”
Section 5.2.4, “The Binary Log”
Section 16.4.4, “Troubleshooting Replication”
Section 16.4.3, “Upgrading a Replication Setup”
Section 7.3.2, “Using Backups for Recovery”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 1.4, “What Is New in MySQL 5.6”
--log-bin-index
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4, “The Binary Log”
--log-bin-trust-function-creators
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
--log-bin-use-v1-row-events
Section 16.1.4.4, “Binary Log Options and Variables”
Section 2.11.2.1, “Downgrading to MySQL 5.5”
--log-error
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.2.3.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.3, “Server Command Options”
Section 5.2.6, “Server Log Maintenance”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 2.3.4.4, “Starting the Server for the First Time”
Section 5.2.2, “The Error Log”
--log-isam
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 5.1.3, “Server Command Options”
--log-output
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”
--log-queries-not-using-indexes
Section 5.1.3, “Server Command Options”
--log-raw
Section 6.1.2.3, “Passwords and Logging”
Section 5.1.3, “Server Command Options”
Section 5.2.3, “The General Query Log”
--log-short-format
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.3, “Server Command Options”
Section 5.2.5, “The Slow Query Log”
--log-slave-updates
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.4.5, “How to Report Replication Bugs or Problems”
Section 16.3.5, “Improving Replication Performance”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.3.6, “Switching Masters During Failover”
Section 5.2.4, “The Binary Log”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
--log-slow-admin-statements
Section 5.1.3, “Server Command Options”
Section 5.2.5, “The Slow Query Log”
--log-slow-queries
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.6”
--log-slow-slave-statements
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.2.5, “The Slow Query Log”
--log-tc
Section 5.1.3, “Server Command Options”
--log-tc-size
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
--log-warnings
Section C.5.2.9, “MySQL server has gone away”
Section C.5.2.11, “Communication Errors and Aborted Connections”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.3, “Server Command Options”
Section 5.2.2, “The Error Log”
--login-path
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.2.3.3, “Using Option Files”
--loose
Section 4.2.3.2, “Program Option Modifiers”
--loose-opt_name
Section 4.2.3.3, “Using Option Files”
--low-priority
Section 4.5.5, “mysqlimport — A Data Import Program”
--low-priority-updates
Section 13.2.5, “INSERT Syntax”
Section 8.10.3, “Concurrent Inserts”
Section 5.1.3, “Server Command Options”
Section 8.10.2, “Table Locking Issues”
--lower-case-table-names
Section 9.2.2, “Identifier Case Sensitivity”
M
-m
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--malloc-lib
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
--master-connect-retry
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-data
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.2, “MySQL Server Logs”
Section 16.2.2, “Replication Relay and Status Logs”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
--master-host
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-info-file
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.2.2.2, “Slave Status Logs”
--master-info-repository
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.2.2, “Replication Relay and Status Logs”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.2.2.2, “Slave Status Logs”
Section 1.4, “What Is New in MySQL 5.6”
--master-password
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-port
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-retry-count
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-ssl
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-ssl-ca
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-ssl-capath
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-ssl-cert
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-ssl-cipher
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-ssl-key
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-user
Section 16.1.4.3, “Replication Slave Options and Variables”
--master-verify-checksum
Section 16.1.4.4, “Binary Log Options and Variables”
--max
Section 4.2.3.5, “Using Options to Set Program Variables”
--max-binlog-dump-events
Section 16.1.4.4, “Binary Log Options and Variables”
--max-binlog-size
Section 16.1.4.3, “Replication Slave Options and Variables”
--max-record-length
Section 4.6.3.3, “myisamchk Repair Options”
Section 13.7.2.5, “REPAIR TABLE Syntax”
--max-relay-log-size
Section 16.1.4.3, “Replication Slave Options and Variables”
--max-seeks-for-key
Section 8.2.1.4, “How to Avoid Full Table Scans”
Section C.5.6, “Optimizer-Related Issues”
--max_a
Section 4.2.3.5, “Using Options to Set Program Variables”
--max_join_size
Section 4.5.1.6.4, “Using the --safe-updates Option”
--maximum
Section 4.2.3.2, “Program Option Modifiers”
--maximum-query_cache_size
Section 4.2.3.2, “Program Option Modifiers”
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.5, “Using System Variables”
--maximum-var_name
Section 5.1.3, “Server Command Options”
Section 5.1.5, “Using System Variables”
--medium-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--memlock
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.2.3, “Using Raw Disk Partitions for the Shared Tablespace”
--method
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--min-examined-row-limit
Section 5.1.3, “Server Command Options”
--my-plugin
Section 5.1.8.1, “Installing and Uninstalling Plugins”
--my-print-defaults
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
--my_plugin
Section 5.1.8.1, “Installing and Uninstalling Plugins”
--myisam-block-size
Section 8.9.2.5, “Key Cache Block Size”
Section 5.1.3, “Server Command Options”
--myisam-recover
Section 5.1.3, “Server Command Options”
--myisam-recover-options
Section 14.3.1, “MyISAM Startup Options”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.5, “Other Optimization Tips”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section C.5.2.19, “Table-Corruption Issues”
Section 14.3, “The MyISAM Storage Engine”
Section 22.4.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
--myisam_sort_buffer_size
Section 4.6.3.6, “myisamchk Memory Usage”
MYSQL_MAINTAINER_MODE
Section 2.9.5, “Dealing with Problems Compiling MySQL”
MYSQL_TCP_PORT
Section 2.9.3, “Installing MySQL from a Development Source Tree”
Section 2.9.4, “MySQL Source-Configuration Options”
MYSQL_UNIX_ADDR
Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”
Section 2.9.3, “Installing MySQL from a Development Source Tree”
Section 2.9.4, “MySQL Source-Configuration Options”
--mysqladmin
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
--mysqld
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
--mysqld-version
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
N
-N
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
-n
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
--name_file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
--named-commands
Section 4.5.1.1, “mysql Options”
--ndb
Section 4.8.1, “perror — Explain Error Codes”
net_retry_count
Section 16.2.1, “Replication Implementation Details”
net_write_timeout
Section 16.2.1, “Replication Implementation Details”
--new
Section 4.2.3.3, “Using Option Files”
--nice
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
--no-auto-rehash
Section 4.5.1.1, “mysql Options”
--no-autocommit
Section 4.5.4, “mysqldump — A Database Backup Program”
--no-beep
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
--no-create-db
Section 4.5.4, “mysqldump — A Database Backup Program”
--no-create-info
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
--no-data
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
--no-defaults
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
--no-drop
Section 4.5.7, “mysqlslap — Load Emulation Client”
--no-log
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
--no-set-names
Section 4.5.4, “mysqldump — A Database Backup Program”
--no-symlinks
Section 4.6.3.3, “myisamchk Repair Options”
--no-tablespaces
Section 4.5.4, “mysqldump — A Database Backup Program”
--noindices
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--number-char-cols
Section 4.5.7, “mysqlslap — Load Emulation Client”
--number-int-cols
Section 4.5.7, “mysqlslap — Load Emulation Client”
--number-of-queries
Section 4.5.7, “mysqlslap — Load Emulation Client”
--numeric-dump-file
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
O
-O
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
-o
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 21.7.1, “Compiling Programs with libmysqld”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 8.11.3, “Optimizing Disk I/O”
--offset
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--old-alter-table
Section 5.1.3, “Server Command Options”
--old-style-user-limits
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”
--old_server
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
ON
Section 3.3.4.9, “Using More Than one Table”
--one-database
Section 4.5.1.1, “mysql Options”
--one-thread
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.6”
--only-print
Section 4.5.7, “mysqlslap — Load Emulation Client”
open-files-limit
Section C.5.2.7, “Too many connections”
--open-files-limit
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 5.1.3, “Server Command Options”
--opt
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
--opt_name
Section 4.2.3.3, “Using Option Files”
--optimize
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--order-by-primary
Section 4.5.4, “mysqldump — A Database Backup Program”
--out_dir
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
--out_file
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
P
-P
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.2.1, “Invoking MySQL Programs”
Section 5.1.3, “Server Command Options”
-p
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 6.3.2, “Adding User Accounts”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 4.2.1, “Invoking MySQL Programs”
Section C.5.2.5, “Password Fails When Entered Interactively”
Section 2.10.2, “Securing the Initial MySQL Accounts”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 2.3.6, “Upgrading MySQL on Windows”
Section 6.3.1, “User Names and Passwords”
Section 4.2.3.1, “Using Options on the Command Line”
Section 2.3.7, “Windows Postinstallation Procedures”
--pager
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
--parallel-recover
Section 4.6.3.3, “myisamchk Repair Options”
--partition
Section 5.1.3, “Server Command Options”
password
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.3.3, “Using Option Files”
--password
Section 4.5.1.1, “mysql Options”
Section 6.3.2, “Adding User Accounts”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 7.3, “Example Backup and Recovery Strategy”
Section 4.2.1, “Invoking MySQL Programs”
Section C.5.2.5, “Password Fails When Entered Interactively”
Section 6.3.7, “Pluggable Authentication”
Section 6.3.7.7, “The Test Authentication Plugin”
Section 6.3.1, “User Names and Passwords”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 4.2.3.1, “Using Options on the Command Line”
--performance-schema-consumer-consumer_name
Section 20.11, “Performance Schema Command Options”
--performance-schema-instrument
Section 20.11, “Performance Schema Command Options”
Section 20.2.2, “Performance Schema Startup Configuration”
--performance-schema-xxx
Section 5.1.3, “Server Command Options”
--performance_schema_max_mutex_classes
Section 20.5, “Performance Schema Status Monitoring”
--performance_schema_max_mutex_instances
Section 20.5, “Performance Schema Status Monitoring”
pid-file
Section 2.10.1.2, “Starting and Stopping MySQL Automatically”
--pid-file
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
--pipe
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 2.3.4.9, “Testing The MySQL Installation”
--plan
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--plugin
Section 5.1.3, “Server Command Options”
--plugin-dir
Section 4.5.1.1, “mysql Options”
Section 21.8.13.3, “mysql_load_plugin()”
Section 21.8.13, “C API Client Plugin Functions”
Section 22.2.4.2.3, “Client Plugin Descriptors”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 6.3.7, “Pluggable Authentication”
Section E.9, “Restrictions on Pluggable Authentication”
Section 22.2.4.9.3, “Using the Authentication Plugins”
--plugin-ini
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
--plugin-innodb_file_per_table
Section 5.1.3, “Server Command Options”
--plugin-load
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 6.3.11.4, “Audit Log Plugin Options and Variables”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.11.1, “Installing the Audit Log Plugin”
Section 6.3.7.3.1, “Installing the PAM Authentication Plugin”
Section 6.3.7.4.1, “Installing the Windows Authentication Plugin”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 6.1.2.6.1, “Password Validation Plugin Installation”
Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”
Section 6.3.7, “Pluggable Authentication”
Section 22.2.2, “Plugin API Components”
Section 22.2.4.2, “Plugin Data Structures”
Section 5.1.3, “Server Command Options”
Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”
Section 22.2, “The MySQL Plugin API”
Section 8.11.6.1, “Thread Pool Components and Installation”
Section 22.2.4.9.3, “Using the Authentication Plugins”
--plugin-load-add
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 5.1.3, “Server Command Options”
--plugin-sql-mode
Section 5.1.3, “Server Command Options”
--plugin-xxx
Section 5.1.3, “Server Command Options”
--plugin_dir
Section 2.9.4, “MySQL Source-Configuration Options”
Section 22.2.2, “Plugin API Components”
--plugin_name
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
--plugindir
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
--port
Section 4.5.1.1, “mysql Options”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 4.2.1, “Invoking MySQL Programs”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”
--port-open-timeout
Section 5.1.3, “Server Command Options”
--post-query
Section 4.5.7, “mysqlslap — Load Emulation Client”
--post-system
Section 4.5.7, “mysqlslap — Load Emulation Client”
--pre-query
Section 4.5.7, “mysqlslap — Load Emulation Client”
--pre-system
Section 4.5.7, “mysqlslap — Load Emulation Client”
--preview
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--print-defaults
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 2.11.1, “Upgrading MySQL”
--prompt
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
--protocol
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 2.3.4.4, “Starting the Server for the First Time”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”
Q
-Q
Section 4.5.4, “mysqldump — A Database Backup Program”
-q
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
--query
Section 4.5.7, “mysqlslap — Load Emulation Client”
--query-cache-size
Section 8.10.5, “External Locking”
--quick
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section C.5.2.8, “Out of memory”
Section 4.5.1, “mysql — The MySQL Command-Line Tool”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.3.3, “Using Option Files”
--quiet
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--quote-names
Section 4.5.4, “mysqldump — A Database Backup Program”
R
-R
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
-r
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 22.3.2, “Adding a New User-Defined Function”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 2.2, “Installing MySQL from Generic Binaries on Unix/Linux”
Section 5.1.3, “Server Command Options”
--random-passwords
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 1.4, “What Is New in MySQL 5.6”
--raw
Section 4.5.1.1, “mysql Options”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 1.4, “What Is New in MySQL 5.6”
--read-from-remote-master
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
--read-from-remote-server
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 1.4, “What Is New in MySQL 5.6”
--read-only
Section 4.6.3.2, “myisamchk Check Options”
Section 16.1.4.3, “Replication Slave Options and Variables”
--reconnect
Section 4.5.1.1, “mysql Options”
--record_log_pos
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--recover
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
--regexp
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--relative
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
--relay-log
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.3.5, “Improving Replication Performance”
Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
Section 4.2.3.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.2.2.1, “The Slave Relay Log”
--relay-log-index
Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.2.2.1, “The Slave Relay Log”
--relay-log-info-file
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.2.2.2, “Slave Status Logs”
--relay-log-info-repository
Section 16.2.2, “Replication Relay and Status Logs”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.2.2.2, “Slave Status Logs”
Section 1.4, “What Is New in MySQL 5.6”
--relay-log-purge
Section 16.1.4.3, “Replication Slave Options and Variables”
--relay-log-recovery
Section 16.2.2, “Replication Relay and Status Logs”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.12, “The Shutdown Process”
Section 1.4, “What Is New in MySQL 5.6”
--relay-log-space-limit
Section 16.1.4.3, “Replication Slave Options and Variables”
--relnotes
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--remove
Section 5.1.3, “Server Command Options”
Section 5.6.2.2, “Starting Multiple MySQL Instances as Windows Services”
Section 2.3.4.8, “Starting MySQL as a Windows Service”
--repair
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--replace
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
--replicate-*
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.4.3, “Replication Slave Options and Variables”
--replicate-*-db
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section E.1, “Restrictions on Stored Programs”
--replicate-*-table
Section 16.2.3.3, “Replication Rule Application”
--replicate-do-db
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 16.3.4, “Replicating Different Databases to Different Slaves”
Section 16.4.1.24, “Replication and Reserved Words”
Section 16.4.1.21, “Replication and Temporary Tables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.2.4, “The Binary Log”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
--replicate-do-table
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 16.2.3.2, “Evaluation of Table-Level Replication Options”
Section 16.4.1.24, “Replication and Reserved Words”
Section 16.4.1.21, “Replication and Temporary Tables”
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
--replicate-ignore-db
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 16.4.1.24, “Replication and Reserved Words”
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.2.4, “The Binary Log”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
--replicate-ignore-table
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 16.2.3.2, “Evaluation of Table-Level Replication Options”
Section 16.4.1.24, “Replication and Reserved Words”
Section 16.4.1.21, “Replication and Temporary Tables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
--replicate-rewrite-db
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
--replicate-same-server-id
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.4, “Replication and Binary Logging Options and Variables”
Section 16.1.4.3, “Replication Slave Options and Variables”
--replicate-wild-do-table
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 16.2.3.2, “Evaluation of Table-Level Replication Options”
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 16.3.4, “Replicating Different Databases to Different Slaves”
Section 16.4.1.21, “Replication and Temporary Tables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section E.1, “Restrictions on Stored Programs”
--replicate-wild-ignore-table
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 16.2.3.2, “Evaluation of Table-Level Replication Options”
Section 16.4.1.21, “Replication and Temporary Tables”
Section 16.1.4.3, “Replication Slave Options and Variables”
replication-ignore-table
Section 16.4.1.33, “Replication and Views”
--report-host
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”
Section 16.1.5.1, “Checking Replication Status”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server System Variables”
--report-password
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server System Variables”
--report-port
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server System Variables”
--report-user
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server System Variables”
--resetmaster
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--resetslave
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--result-file
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
--rhost
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--rollback
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--routines
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content Separately”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
--rows
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
--rpl-recovery-rank
Section 1.4, “What Is New in MySQL 5.6”
--rpm
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
S
-S
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.3.4, “Other myisamchk Options”
-s
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 5.1.3, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
--safe-mode
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.6”
--safe-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
--safe-updates
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.5.1.6.4, “Using the --safe-updates Option”
--safe-user-create
Section 5.1.3, “Server Command Options”
--secure-auth
Section 4.5.1.1, “mysql Options”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.3, “Server Command Options”
--secure-file-priv
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.10.1, “Unix Postinstallation Procedures”
--select_limit
Section 4.5.1.6.4, “Using the --safe-updates Option”
server-id
Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
Section 16.1, “Replication Configuration”
Section 16.1.4.2, “Replication Master Options and Variables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.1.1.1, “Setting the Replication Master Configuration”
Section 16.1.1.2, “Setting the Replication Slave Configuration”
Section 16.1.1.8, “Setting Up Replication with Existing Data”
--server-id
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 16.1.4, “Replication and Binary Logging Options and Variables”
Section 5.1.4, “Server System Variables”
Section 16.4.4, “Troubleshooting Replication”
--server-public-key
Section 4.5.1.1, “mysql Options”
Section 6.3.7.2, “The SHA-256 Authentication Plugin”
--server-public-key-path
Section 4.5.1.1, “mysql Options”
Section 6.3.7.2, “The SHA-256 Authentication Plugin”
--service-startup-timeout
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
--set-auto-increment
Section 4.6.3.4, “Other myisamchk Options”
--set-character-set
Section 4.6.3.3, “myisamchk Repair Options”
--set-charset
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
--set-collation
Section 4.6.3.3, “myisamchk Repair Options”
--set-gtid-purged
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
--shared-memory
Section 4.2.2, “Connecting to the MySQL Server”
Section 5.1.3, “Server Command Options”
Section 5.6.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 2.3.4.4, “Starting the Server for the First Time”
--shared-memory-base-name
Section 21.8.6.49, “mysql_options()”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.3, “Server Command Options”
Section 5.6.2.1, “Starting Multiple MySQL Instances at the Windows Command Line”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”
--short-form
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--show-slave-auth-info
Section 16.1.4.3, “Replication Slave Options and Variables”
--show-table-type
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
--show-warnings
Section 4.5.1.1, “mysql Options”
--sigint-ignore
Section 4.5.1.1, “mysql Options”
--silent
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
--single-transaction
Section 14.2.2.4, “Backing Up and Recovering an InnoDB Database”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.3.1, “Establishing a Backup Policy”
--skip
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.2.3.2, “Program Option Modifiers”
Section 5.1.3, “Server Command Options”
--skip-add-drop-table
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-add-locks
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-auto-rehash
Section 14.2.4.7, “Troubleshooting InnoDB Data Dictionary Operations”
--skip-character-set-client-handshake
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 10.1.14.7.1, “The cp932 Character Set”
--skip-column-names
Section 4.5.1.1, “mysql Options”
--skip-comments
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-concurrent-insert
Section 5.1.3, “Server Command Options”
--skip-database
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--skip-disable-keys
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-dump-date
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-engine_name
Section 13.7.5.17, “SHOW ENGINES Syntax”
--skip-event-scheduler
Section 5.1.3, “Server Command Options”
--skip-events
Section 7.4.5.3, “Dumping Stored Programs”
--skip-extended-insert
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-external-locking
Section 8.10.5, “External Locking”
Section 8.12.5.2, “General Thread States”
Section 5.1.3, “Server Command Options”
Section 8.11.1, “System Factors and Startup Parameter Tuning”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
--skip-grant-tables
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 18.4.2, “Event Scheduler Configuration”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.7, “Pluggable Authentication”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section C.5.4.1.3, “Resetting the Root Password: Generic Instructions”
Section 5.1.3, “Server Command Options”
Section 4.2.3.1, “Using Options on the Command Line”
Section 6.2.6, “When Privilege Changes Take Effect”
--skip-gtids
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--skip-host-cache
Section 6.2.7, “Causes of Access-Denied Errors”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
--skip-innodb
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.2.8, “Turning Off InnoDB”
Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”
--skip-innodb-checksums
Section 14.2.6, “InnoDB Startup Options and System Variables”
--skip-innodb_adaptive_hash_index
Section 14.2.6, “InnoDB Startup Options and System Variables”
--skip-innodb_checksums
Section 14.2.6, “InnoDB Startup Options and System Variables”
--skip-innodb_doublewrite
Section 14.2.6, “InnoDB Startup Options and System Variables”
--skip-kill-mysqld
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
--skip-line-numbers
Section 4.5.1.1, “mysql Options”
--skip-lock-tables
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-log-warnings
Section 16.1.4.3, “Replication Slave Options and Variables”
--skip-name-resolve
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
Section 2.10.2, “Securing the Initial MySQL Accounts”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.3.4.9, “Testing The MySQL Installation”
--skip-named-commands
Section 4.5.1.1, “mysql Options”
--skip-networking
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section C.5.2.9, “MySQL server has gone away”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
Section 6.3.7, “Pluggable Authentication”
Section C.5.4.1.3, “Resetting the Root Password: Generic Instructions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 16.4.3, “Upgrading a Replication Setup”
skip-networking
Section 16.1.1.1, “Setting the Replication Master Configuration”
Section 16.4.4, “Troubleshooting Replication”
--skip-new
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 22.4.1, “Debugging a MySQL Server”
Section 5.1.4, “Server System Variables”
--skip-opt
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-pager
Section 4.5.1.1, “mysql Options”
--skip-partition
Section 5.1.3, “Server Command Options”
--skip-plugin-innodb_file_per_table
Section 5.1.3, “Server Command Options”
--skip-plugin_name
Section 5.1.8.1, “Installing and Uninstalling Plugins”
--skip-quick
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-quote-names
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-reconnect
Section 4.5.1.1, “mysql Options”
Section 21.8.15, “Controlling Automatic Reconnection Behavior”
Section 4.5.1.6.5, “Disabling mysql Auto-Reconnect”
--skip-routines
Section 7.4.5.3, “Dumping Stored Programs”
--skip-secure-auth
Section 4.5.1.1, “mysql Options”
Section 5.1.3, “Server Command Options”
--skip-set-charset
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-show-database
Section 13.7.5.15, “SHOW DATABASES Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
--skip-slave-start
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 16.3.7, “Setting Up Replication Using SSL”
Section 16.1.1.8, “Setting Up Replication with Existing Data”
Section 16.4.4, “Troubleshooting Replication”
Section 16.4.3, “Upgrading a Replication Setup”
--skip-ssl
Section 6.3.9.4, “SSL Command Options”
--skip-stack-trace
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 5.1.3, “Server Command Options”
--skip-super-large-pages
Section 8.11.4.2, “Enabling Large Page Support”
Section 5.1.3, “Server Command Options”
--skip-symbolic-links
Section 13.1.14, “CREATE TABLE Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 8.11.3.1.3, “Using Symbolic Links for Databases on Windows”
--skip-syslog
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.2.2, “The Error Log”
--skip-thread-priority
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.6”
--skip-triggers
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.5.3, “Dumping Stored Programs”
--skip-tz-utc
Section 4.5.4, “mysqldump — A Database Backup Program”
--skip-use-db
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
--skip-version-check
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
--skip-warn
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
--skip-write-binlog
Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
--skip_grant_tables
Section 4.2.3.1, “Using Options on the Command Line”
--slave-checkpoint-group
Section 16.1.4.3, “Replication Slave Options and Variables”
--slave-checkpoint-period
Section 16.1.4.3, “Replication Slave Options and Variables”
--slave-load-tmpdir
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.2, “Database Backup Methods”
Section 16.1.4.3, “Replication Slave Options and Variables”
slave-max-allowed-packet
Section 16.1.4.2, “Replication Master Options and Variables”
--slave-max-allowed-packet
Section 16.1.4.2, “Replication Master Options and Variables”
--slave-net-timeout
Section 16.1.4.3, “Replication Slave Options and Variables”
--slave-parallel-workers
Section 16.1.4.3, “Replication Slave Options and Variables”
--slave-pending-jobs-size-max
Section 16.1.4.3, “Replication Slave Options and Variables”
slave-rows-search-algorithms
Section 16.1.4.2, “Replication Master Options and Variables”
--slave-skip-errors
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.4.1.25, “Slave Errors During Replication”
--slave-sql-verify-checksum
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.1.4.3, “Replication Slave Options and Variables”
--slave_compressed_protocol
Section 16.1.4.3, “Replication Slave Options and Variables”
--sleep
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
--slow-query-log
Section 5.1.3, “Server Command Options”
--slow-start-timeout
Section 5.1.3, “Server Command Options”
--slow_query_log
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”
Section 1.4, “What Is New in MySQL 5.6”
--slow_query_log_file
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.3, “Server Command Options”
Section 5.2.5, “The Slow Query Log”
Section 1.4, “What Is New in MySQL 5.6”
--socket
Section 4.5.1.1, “mysql Options”
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section C.5.4.5, “How to Protect or Change the MySQL Unix Socket File”
Section 4.2.1, “Invoking MySQL Programs”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.6.3, “Running Multiple MySQL Instances on Unix”
Section 5.1.3, “Server Command Options”
Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 5.6.4, “Using Client Programs in a Multiple-Server Environment”
socket
Section 2.4.1, “General Notes on Installing MySQL on Mac OS X”
--sort-index
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”
--sort-records
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”
--sort-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
--spassword
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--sporadic-binlog-dump-fail
Section 16.1.4.4, “Binary Log Options and Variables”
--sql-mode
Chapter 12, Functions and Operators
Section 1.8.2, “Selecting SQL Modes”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
sql-mode
Section 5.1.7, “Server SQL Modes”
--srcdir
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
--ssl
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
Section 6.3.9.4, “SSL Command Options”
--ssl*
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
--ssl-ca
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.9.5, “Setting Up SSL Certificates and Keys for MySQL”
Section 6.3.9.4, “SSL Command Options”
Section 6.3.9.3, “Using SSL Connections”
--ssl-capath
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.9.4, “SSL Command Options”
--ssl-cert
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.9.5, “Setting Up SSL Certificates and Keys for MySQL”
Section 6.3.9.4, “SSL Command Options”
Section 6.3.9.3, “Using SSL Connections”
--ssl-cipher
Section 6.3.9.4, “SSL Command Options”
--ssl-crl
Section 6.3.9.4, “SSL Command Options”
--ssl-crlpath
Section 6.3.9.4, “SSL Command Options”
--ssl-key
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.9.5, “Setting Up SSL Certificates and Keys for MySQL”
Section 6.3.9.4, “SSL Command Options”
Section 6.3.9.3, “Using SSL Connections”
--ssl-verify-server-cert
Section 6.3.9.4, “SSL Command Options”
--ssl-xxx
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 6.3.9.2, “Configuring MySQL for SSL”
Section 5.1.4, “Server System Variables”
Section 6.3.9.4, “SSL Command Options”
--standalone
Section 22.4.1.2, “Creating Trace Files”
Section 5.1.3, “Server Command Options”
Section 2.3.4.5, “Starting MySQL from the Windows Command Line”
--start-datetime
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event Times”
--start-position
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”
--start_row
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
--statefile
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
--stats
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
--status
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
--stop-datetime
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event Times”
--stop-never
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
--stop-never-slave-server-id
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
--stop-position
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event Positions”
--suffix
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
--super-large-pages
Section 8.11.4.2, “Enabling Large Page Support”
Section 5.1.3, “Server Command Options”
--superuser
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--symbolic-links
Section 5.1.3, “Server Command Options”
--symbols-file
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
SYSCONFDIR
Section 4.2.3.3, “Using Option Files”
--sysdate-is-now
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 12.7, “Date and Time Functions”
Section 16.4.1.14, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
--syslog
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 5.2.2, “The Error Log”
--syslog-tag
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
T
-T
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 5.1.3, “Server Command Options”
-t
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 5.1.3, “Server Command Options”
--tab
Section 7.1, “Backup and Recovery Types”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 7.4, “Using mysqldump for Backups”
--table
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
--table-cache
Section 1.4, “What Is New in MySQL 5.6”
--table_open_cache
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
--tables
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
--tc-heuristic-recover
Section 5.1.3, “Server Command Options”
--tcp-ip
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
--tee
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
--temp-pool
Section 5.1.3, “Server Command Options”
--test
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Text
Section 1.2, “Typographical and Syntax Conventions”
--thread_cache_size
Section 22.4.1.4, “Debugging mysqld under gdb”
--thread_handling
Section 5.1.3, “Server Command Options”
Section 1.4, “What Is New in MySQL 5.6”
--thread_stack
Section 8.11.5.1, “How MySQL Uses Threads for Client Connections”
--timezone
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.28, “Replication and Time Zones”
Section 5.1.4, “Server System Variables”
Section C.5.4.6, “Time Zone Problems”
tmpdir
Section 2.3, “Installing MySQL on Microsoft Windows”
--tmpdir
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section C.5.2.13, “Can't create/write to file”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 5.1.3, “Server Command Options”
Section C.5.4.4, “Where MySQL Stores Temporary Files”
--to-last-log
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.8.4, “Specifying the mysqlbinlog Server ID”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
--transaction-isolation
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.3.1, “The InnoDB Transaction Model and Locking”
--transaction-read-only
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
--triggers
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.5.3, “Dumping Stored Programs”
--type
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
--tz-utc
Section 4.5.4, “mysqldump — A Database Backup Program”
U
-U
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
-u
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.2.1, “Invoking MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 2.3.4.9, “Testing The MySQL Installation”
Section 6.3.1, “User Names and Passwords”
Section 2.3.7, “Windows Postinstallation Procedures”
--unbuffered
Section 4.5.1.1, “mysql Options”
--unpack
Section 4.6.3.3, “myisamchk Repair Options”
Section 14.3.3, “MyISAM Table Storage Formats”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
--update-state
Section 4.6.3.2, “myisamchk Check Options”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.3, “The MyISAM Storage Engine”
--upgrade-system-tables
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
--use-frm
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
--use-mysqld_safe
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
--use-threads
Section 4.5.5, “mysqlimport — A Data Import Program”
--user
Section 4.5.1.1, “mysql Options”
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.14, “mysql_setpermission — Interactively Set Permissions in Grant Tables”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.3.3, “mysql.server — MySQL Server Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”
Section 7.3, “Example Backup and Recovery Strategy”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 4.2.1, “Invoking MySQL Programs”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.2.3.6, “Option Defaults, Options Expecting Values, and the = Sign”
Section 6.3.7, “Pluggable Authentication”
Section C.5.4.1.2, “Resetting the Root Password: Unix Systems”
Section 5.1.3, “Server Command Options”
Section 6.3.7.6, “The Socket Peer-Credential Authentication Plugin”
Section 6.3.7.7, “The Test Authentication Plugin”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 6.3.1, “User Names and Passwords”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
Section 4.2.3.3, “Using Option Files”
user
Section 4.2.3.4, “Command-Line Options that Affect Option-File Handling”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.2.3.3, “Using Option Files”
V
-V
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 4.2.3.1, “Using Options on the Command Line”
-v
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.3.5, “Obtaining Table Information with myisamchk”
Section 5.1.3, “Server Command Options”
Section 4.2.3.1, “Using Options on the Command Line”
--validate-password
Section 6.1.2.6.1, “Password Validation Plugin Installation”
Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”
--var_name
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 5.1.3, “Server Command Options”
--verbose
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.6.9, “mysqldumpslow — Summarize Slow Query Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 4.5.1.5, “Executing SQL Statements from a Text File”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.3, “Server Command Options”
Section 2.10.1.3, “Starting and Troubleshooting the MySQL Server”
Section 8.11.2, “Tuning Server Parameters”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
Section 4.2.3.3, “Using Option Files”
Section 4.2.3.1, “Using Options on the Command Line”
--verify-binlog-checksum
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
--version
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.6.11, “mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”
Section 4.6.15, “mysql_waitpid — Kill Process and Wait for Its Termination”
Section 4.6.7, “mysqlaccess — Client for Checking Access Privileges”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 4.7.3, “my_print_defaults — Display Options from Option Files”
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”
Section 4.7.4, “resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”
Section 4.4.1, “comp_err — Compile MySQL Error Message File”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to IP Address or Vice Versa”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 5.1.3, “Server Command Options”
Section 4.2.3.1, “Using Options on the Command Line”
--version-check
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
--vertical
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 1.7, “How to Report Bugs or Problems”
W
-W
Section 4.5.1.1, “mysql Options”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 5.1.3, “Server Command Options”
-w
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File Contents”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup Program”
--wait
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
--warn
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”
--where
Section 4.5.4, “mysqldump — A Database Backup Program”
--windows
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
--with-mysql-sock
Section 21.9.4, “MySQL Functions (PDO_MYSQL) (MySQL (PDO))”
--with-pdo-mysql
Section 21.9.4, “MySQL Functions (PDO_MYSQL) (MySQL (PDO))”
--with-zlib-dir
Section 21.9.4, “MySQL Functions (PDO_MYSQL) (MySQL (PDO))”
WITH_DEBUG
Section 2.9.4, “MySQL Source-Configuration Options”
WITH_PERFSCHEMA_STORAGE_ENGINE
Section 20.2.1, “Performance Schema Build Configuration”
WITH_ZLIB
Section 2.9.4, “MySQL Source-Configuration Options”
--write-binlog
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
X
-X
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
-x
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
--xml
Section 4.5.1.1, “mysql Options”
Section 13.2.7, “LOAD XML Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 12.11, “XML Functions”
Y
-Y
Section 4.5.4, “mysqldump — A Database Backup Program”
-y
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Privileges Index
A | C | D | E | F | G | I | L | P | R | S | T | U
A
ALL
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
ALL PRIVILEGES
Section 6.2.1, “Privileges Provided by MySQL”
ALTER
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.1.26, “RENAME TABLE Syntax”
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
ALTER ROUTINE
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.21, “DROP PROCEDURE and DROP FUNCTION Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL Privileges”
C
CREATE
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.8, “CREATE DATABASE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.1.26, “RENAME TABLE Syntax”
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 6.2.1, “Privileges Provided by MySQL”
CREATE ROUTINE
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL Privileges”
CREATE TABLESPACE
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
CREATE TEMPORARY TABLES
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
CREATE USER
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.7.1.3, “DROP USER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.5, “RENAME USER Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
CREATE VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.5, “Restrictions on Views”
Section 19.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
D
DELETE
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 13.7.1.3, “DROP USER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.8, “REPLACE Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.2.1, “Privileges Provided by MySQL”
Section 14.8, “The MERGE Storage Engine”
Section 20.9.1.4, “The setup_objects Table”
Section 22.3.2.6, “User-Defined Function Security Precautions”
DROP
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.1.17, “DROP DATABASE Syntax”
Section 13.1.23, “DROP TABLE Syntax”
Section 13.1.25, “DROP VIEW Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.1.26, “RENAME TABLE Syntax”
Section 13.1.27, “TRUNCATE TABLE Syntax”
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 17.3.1, “Management of RANGE and LIST Partitions”
Section 20.8, “Performance Schema General Table Characteristics”
Section 6.2.1, “Privileges Provided by MySQL”
Section 20.9.9.1, “The host_cache Table”
Section 19.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 6.2, “The MySQL Access Privilege System”
E
EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.18, “DROP EVENT Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.9, “SHOW CREATE EVENT Syntax”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 18.4.1, “Event Scheduler Overview”
Section 18.4.3, “Event Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
EXECUTE
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.21, “DROP PROCEDURE and DROP FUNCTION Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 18.6, “Access Control for Stored Programs and Views”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL Privileges”
F
FILE
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 12.5, “String Functions”
Section 11.4.3, “The BLOB and TEXT Types”
G
GRANT OPTION
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
I
INDEX
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
INSERT
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.1.1, “ALTER USER Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 13.1.26, “RENAME TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.2.8, “REPLACE Syntax”
Section 18.6, “Access Control for Stored Programs and Views”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 6.3.2, “Adding User Accounts”
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 14.12.1, “Pluggable Storage Engine Architecture”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
Section 19.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 19.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 20.9.1.4, “The setup_objects Table”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
Section 22.3.2.6, “User-Defined Function Security Precautions”
L
LOCK TABLES
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”
P
PROCESS
Section 13.7.1.4, “GRANT Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 13.7.6.4, “KILL Syntax”
Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 6.3.2, “Adding User Accounts”
Section 18.4.2, “Event Scheduler Configuration”
Section 8.12.5, “Examining Thread Information”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.16, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 20.9.9.3, “The threads Table”
PROXY
Section 13.7.1.4, “GRANT Syntax”
Section 22.2.4.9.4, “Implementing Proxy User Support in Authentication Plugins”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 20.9.9.1, “The host_cache Table”
Section 6.3.7.3.2.3, “Unix Password Authentication with Proxy Users and Group Mapping”
Section 6.3.7.4.2, “Using the Windows Authentication Plugin”
PROXY ... WITH GRANT OPTION
R
REFERENCES
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 19.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
RELOAD
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 21.8.6.56, “mysql_refresh()”
Section 21.8.6.57, “mysql_reload()”
Section 13.7.6.6, “RESET Syntax”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 6.3.2, “Adding User Accounts”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 12.13, “Encryption and Compression Functions”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 20.9.9.1, “The host_cache Table”
REPLICATION CLIENT
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.2, “SHOW BINARY LOGS Syntax”
Section 13.7.5.24, “SHOW MASTER STATUS Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
REPLICATION SLAVE
Section 13.7.1.4, “GRANT Syntax”
Section 16.1.1.3, “Creating a User for Replication”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.3.7, “Setting Up Replication Using SSL”
S
SELECT
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.2.3, “CHECKSUM TABLE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 13.7.5.22, “SHOW GRANTS Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 18.6, “Access Control for Stored Programs and Views”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 21.2.6, “Connector/Net Connection String Options Reference”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 20.8, “Performance Schema General Table Characteristics”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.5, “Restrictions on Views”
Section 19.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 19.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 14.8, “The MERGE Storage Engine”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2, “The MySQL Access Privilege System”
Section 18.3.1, “Trigger Syntax”
SHOW DATABASES
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.15, “SHOW DATABASES Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
SHOW VIEW
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.5, “Restrictions on Views”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
SHUTDOWN
Section 13.7.1.4, “GRANT Syntax”
Section 21.8.6.66, “mysql_shutdown()”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 4.3.4, “mysqld_multi — Manage Multiple MySQL Servers”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 5.1.12, “The Shutdown Process”
SUPER
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.1.5, “ALTER SERVER Syntax”
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.7.6.1, “BINLOG Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.13, “CREATE SERVER Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.1.22, “DROP SERVER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 21.8.6.12, “mysql_dump_debug_info()”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.4.1.3, “SET sql_log_bin Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.5.2, “SHOW BINARY LOGS Syntax”
Section 13.7.5.24, “SHOW MASTER STATUS Syntax”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section C.5.2.7, “Too many connections”
Section 18.6, “Access Control for Stored Programs and Views”
Section 6.3.5, “Assigning Account Passwords”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 12.13, “Encryption and Compression Functions”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.1, “How to Set Up Replication”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 10.7, “MySQL Server Locale Support”
Section 10.6, “MySQL Server Time Zone Support”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.2, “Replication Formats”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 5.2.4, “The Binary Log”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
Section 5.1.5, “Using System Variables”
T
TRIGGER
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.24, “DROP TRIGGER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 18.6, “Access Control for Stored Programs and Views”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”
U
UPDATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.7.1.5, “RENAME USER Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 18.6, “Access Control for Stored Programs and Views”
Section 20.8, “Performance Schema General Table Characteristics”
Section 20.2.3, “Performance Schema Runtime Configuration”
Section 20.9.1, “Performance Schema Setup Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 19.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 14.8, “The MERGE Storage Engine”
Section 20.9.1.4, “The setup_objects Table”
Section 18.3.1, “Trigger Syntax”
USAGE
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
SQL Modes Index
A | D | E | H | I | M | N | O | P | R | S | T
A
ALLOW_INVALID_DATES
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section C.5.5.2, “Problems Using DATE Columns”
Section 5.1.7, “Server SQL Modes”
Section 11.3.1, “The DATE, DATETIME, and TIMESTAMP Types”
ANSI
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 5.1.7, “Server SQL Modes”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
ANSI_QUOTES
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 9.2, “Schema Object Names”
Section 5.1.7, “Server SQL Modes”
Section 9.1.1, “String Literals”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
D
DB2
Section 5.1.7, “Server SQL Modes”
E
ERROR_FOR_DIVISION_BY_ZERO
Section 12.19.3, “Expression Handling”
Section 12.19.5, “Precision Math Examples”
Section 5.1.7, “Server SQL Modes”
H
HIGH_NOT_PRECEDENCE
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 5.1.7, “Server SQL Modes”
I
IGNORE_SPACE
Section 4.5.1.1, “mysql Options”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 5.1.7, “Server SQL Modes”
M
MAXDB
Section 11.1.2, “Date and Time Type Overview”
Section 5.1.7, “Server SQL Modes”
Section 11.3.1, “The DATE, DATETIME, and TIMESTAMP Types”
MSSQL
Section 5.1.7, “Server SQL Modes”
MYSQL323
Section 5.1.7, “Server SQL Modes”
MYSQL40
Section 5.1.7, “Server SQL Modes”
N
NO_AUTO_CREATE_USER
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.2, “Adding User Accounts”
Section 5.1.7, “Server SQL Modes”
NO_AUTO_VALUE_ON_ZERO
Section 13.1.14, “CREATE TABLE Syntax”
Section 5.1.7, “Server SQL Modes”
Section 3.6.9, “Using AUTO_INCREMENT”
NO_BACKSLASH_ESCAPES
Section 5.1.7, “Server SQL Modes”
Section 12.5.1, “String Comparison Functions”
Section 9.1.1, “String Literals”
NO_DIR_IN_CREATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 16.4.1.9, “Replication and DIRECTORY Table Options”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.7, “Server SQL Modes”
Section 17.2.6, “Subpartitioning”
Section 5.2.4, “The Binary Log”
NO_ENGINE_SUBSTITUTION
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 5.1.7, “Server SQL Modes”
Section 14.1, “Setting the Storage Engine”
Section 5.1.2.2, “Using a Sample Default Server Configuration File”
Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”
NO_FIELD_OPTIONS
Section 5.1.7, “Server SQL Modes”
NO_KEY_OPTIONS
Section 5.1.7, “Server SQL Modes”
NO_TABLE_OPTIONS
Section 5.1.7, “Server SQL Modes”
NO_UNSIGNED_SUBTRACTION
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 11.1.1, “Numeric Type Overview”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.1.7, “Server SQL Modes”
NO_ZERO_DATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.10, “Cast Functions and Operators”
Section 11.3, “Date and Time Types”
Section C.5.5.2, “Problems Using DATE Columns”
Section 5.1.7, “Server SQL Modes”
NO_ZERO_IN_DATE
Section 13.1.14, “CREATE TABLE Syntax”
Section 11.3, “Date and Time Types”
Section C.5.5.2, “Problems Using DATE Columns”
Section 5.1.7, “Server SQL Modes”
O
ONLY_FULL_GROUP_BY
Section 3.3.4.8, “Counting Rows”
Section 12.17.3, “MySQL Extensions to GROUP BY”
Section 5.1.7, “Server SQL Modes”
ORACLE
Section 5.1.7, “Server SQL Modes”
P
PAD_CHAR_TO_FULL_LENGTH
Section 5.1.7, “Server SQL Modes”
Section 11.1.3, “String Type Overview”
Section 11.4.1, “The CHAR and VARCHAR Types”
PIPES_AS_CONCAT
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 5.1.7, “Server SQL Modes”
POSTGRESQL
Section 5.1.7, “Server SQL Modes”
R
REAL_AS_FLOAT
Section 11.1.1, “Numeric Type Overview”
Section 5.1.7, “Server SQL Modes”
S
STRICT_ALL_TABLES
Section 6.3.2, “Adding User Accounts”
Section 1.8.6.3, “Constraints on Invalid Data”
Section 12.19.3, “Expression Handling”
Section 5.1.7, “Server SQL Modes”
STRICT_TRANS_TABLES
Section 6.3.2, “Adding User Accounts”
Section 1.8.6.3, “Constraints on Invalid Data”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 12.19.3, “Expression Handling”
Section 5.1.7, “Server SQL Modes”
Section 5.1.2.2, “Using a Sample Default Server Configuration File”
T
TRADITIONAL
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 12.19.3, “Expression Handling”
Section 5.1.7, “Server SQL Modes”
Statement/Syntax Index
A | B | C | D | E | F | G | H | I | K | L | O | P | R | S | T | U | W | X
A
ALTER DATABASE
Section 13.1.1, “ALTER DATABASE Syntax”
Section 10.1.3.2, “Database Character Set and Collation”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 16.1.4.3, “Replication Slave Options and Variables”
ALTER EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 18.4.4, “Event Metadata”
Section 18.4.1, “Event Scheduler Overview”
Section 18.4.3, “Event Syntax”
Section 12.14, “Information Functions”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 16.4.1.10, “Replication of Invoked Features”
Section E.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
ALTER EVENT event_name ENABLED
Section 16.4.1.10, “Replication of Invoked Features”
ALTER FUNCTION
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.2.1, “Stored Routine Syntax”
ALTER PROCEDURE
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.2.1, “Stored Routine Syntax”
ALTER SCHEMA
Section 13.1.1, “ALTER DATABASE Syntax”
ALTER SERVER
Section 13.1.5, “ALTER SERVER Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.4.1.5, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”
ALTER TABLE
Section 4.6.3.1, “myisamchk General Options”
Section 13.1.6.2, “ALTER TABLE Examples”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.20, “DROP INDEX Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 1.8.6.2, “FOREIGN KEY Constraints”
Section 13.7.1.4, “GRANT Syntax”
Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.5.7, “InnoDB Strict Mode”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 14.3.1, “MyISAM Startup Options”
Section 14.3.3, “MyISAM Table Storage Formats”
Section 21.8.6.35, “mysql_info()”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 17.2.3.1, “RANGE COLUMNS partitioning”
Section 17.2.1, “RANGE Partitioning”
Section 13.1.26, “RENAME TABLE Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section C.5.7.2, “TEMPORARY Table Problems”
Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”
Section 14.2.5.9, “Better Error Handling when Dropping Indexes”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 10.1.3.4, “Column Character Set and Collation”
Section 10.1.13, “Column Character Set Conversion”
Section 5.5.4, “Combining or Separating DDL Statements”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 14.2.9.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 3.3.2, “Creating a Table”
Section 5.4, “Creating and Using InnoDB Tables and Indexes”
Section 12.18.4.3, “Creating Spatial Columns”
Section 12.18.6.1, “Creating Spatial Indexes”
Section 5.5.8, “DDL for Partitioned Tables”
Section 5.3.4, “Defragmenting a Table”
Section 5.4.6.2, “Enabling Compression for a Table”
Section 5.4.7.1, “Enabling File Formats”
Section 5.5.5, “Examples of Online DDL”
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9, “Full-Text Search Functions”
Section 8.12.5.2, “General Thread States”
Section 5.4.6.5, “How Compression Works for InnoDB Tables”
Section 5.5.7, “How Crash Recovery Works with Online DDL”
Section C.5.4.3, “How MySQL Handles a Full Disk”
Section 8.9.3.1, “How the Query Cache Operates”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 5.5.6, “Implementation Details of Online DDL”
Section 12.14, “Information Functions”
Section C.5.8, “Known Issues in MySQL”
Section 5.5.9, “Limitations of Online DDL”
Section E.10.3, “Limits on Table Size”
Section 17.3.4, “Maintenance of Partitions”
Section 17.3.2, “Management of HASH and KEY Partitions”
Section 17.3.1, “Management of RANGE and LIST Partitions”
Section 14.2.2.5, “Moving or Copying InnoDB Tables to Another Machine”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 5.4.8.1, “Overview of InnoDB Row Storage”
Section 5.5.1, “Overview of Online DDL”
Section 5.4.6.1, “Overview of Table Compression”
Section 17.3, “Partition Management”
Section 17.6.4, “Partitioning and Locking”
Section 17.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”
Section 5.5.2, “Performance and Concurrency Considerations for Online DDL”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5.7.1, “Problems with ALTER TABLE”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.24, “Replication and Reserved Words”
Section 16.2.2, “Replication Relay and Status Logs”
Section 16.4.1.8.1, “Replication with More Columns on Master or Slave”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section E.5, “Restrictions on Views”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.1, “Setting the Storage Engine”
Section 13.1.14.3, “Silent Column Specification Changes”
Section 5.4.1.2, “Specifying the Location of a Tablespace”
Section 5.4.8.2, “Specifying the Row Format for a Table”
Section 5.4.6.6, “SQL Compression Syntax Warnings and Errors”
Section 5.5.3, “SQL Syntax for Online DDL”
Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 11.1.3, “String Type Overview”
Section 10.1.3.3, “Table Character Set and Collation”
Section 14.6, “The ARCHIVE Storage Engine”
Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 14.4, “The MEMORY Storage Engine”
Section 14.3, “The MyISAM Storage Engine”
Section 5.2.5, “The Slow Query Log”
Section 5.4.4.1, “Traditional InnoDB Auto-Increment Locking”
Section 14.2.4.7, “Troubleshooting InnoDB Data Dictionary Operations”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 10.1.11, “Upgrading from Previous to Current Unicode Support”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 5.4.7.2, “Verifying File Format Compatibility”
Section 1.4, “What Is New in MySQL 5.6”
Section C.5.4.2, “What to Do If MySQL Keeps Crashing”
Section C.5.4.4, “Where MySQL Stores Temporary Files”
ALTER TABLE ... ADD FOREIGN KEY
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
ALTER TABLE ... DROP FOREIGN KEY
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
ALTER TABLE ... ENGINE = MEMORY
Section 16.4.1.20, “Replication and MEMORY Tables”
ALTER TABLE ... ENGINE=...
Section 1.4, “What Is New in MySQL 5.6”
ALTER TABLE ... ENGINE=InnoDB
Section 16.2.2, “Replication Relay and Status Logs”
ALTER TABLE ... EXCHANGE PARTITION
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”
Section 17.6.4, “Partitioning and Locking”
Section 1.4, “What Is New in MySQL 5.6”
ALTER TABLE ... IMPORT TABLESPACE
Section 5.4.1.3, “Copying Tablespaces to Another Server (Transportable Tablespaces)”
ALTER TABLE ... OPTIMIZE PARTITION
Section 17.6.2, “Partitioning Limitations Relating to Storage Engines”
ALTER TABLE ... PARTITION BY
Section 17.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”
ALTER TABLE ... PARTITION BY ...
Section 17.3.1, “Management of RANGE and LIST Partitions”
Section 17.6, “Restrictions and Limitations on Partitioning”
ALTER TABLE ... RENAME
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
ALTER TABLE ... TRUNCATE PARTITION
Section 17.3.4, “Maintenance of Partitions”
Section 17.3, “Partition Management”
Section 17.6.4, “Partitioning and Locking”
ALTER TABLE ... TRUNCATE PARTITION ALL
Section 17.3.4, “Maintenance of Partitions”
ALTER TABLE EXCHANGE PARTITION
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”
ALTER TABLE IGNORE
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
ALTER TABLE t TRUNCATE PARTITION ()
Section 13.2.2, “DELETE Syntax”
ALTER TABLE tbl_name FORCE
Section 13.1.6, “ALTER TABLE Syntax”
ALTER TABLESPACE
Section 19.8, “The INFORMATION_SCHEMA FILES Table”
ALTER USER
Section 13.7.1.1, “ALTER USER Syntax”
Section 6.3.6, “Password Expiration and Sandbox Mode”
Section 6.2.2, “Privilege System Grant Tables”
Section 1.4, “What Is New in MySQL 5.6”
ALTER VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 12.14, “Information Functions”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section E.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.5.2, “View Processing Algorithms”
ANALYZE TABLE
Section 4.6.3.1, “myisamchk General Options”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.8.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 14.2.5.8, “Controlling Optimizer Statistics Estimation”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 8.13.1.3, “Equality Range Optimization of Many-Valued Comparisons”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.12.5.2, “General Thread States”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section C.5.8, “Known Issues in MySQL”
Section 14.2.7, “Limits on InnoDB Tables”
Section 17.3.4, “Maintenance of Partitions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.13, “Replication and FLUSH”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.2.5, “The Slow Query Log”
B
BEGIN
Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”
Section 14.2.3.14, “InnoDB Error Handling”
Section 18.7, “Binary Logging of Stored Programs”
Section 16.4.1.29, “Replication and Transactions”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section E.1, “Restrictions on Stored Programs”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 14.2.3.1, “The InnoDB Transaction Model and Locking”
BEGIN ... END
Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”
Section 13.6.5.1, “CASE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.3, “DECLARE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 13.6.6.1, “Cursor CLOSE Syntax”
Section 18.1, “Defining Stored Programs”
Section 18.4.1, “Event Scheduler Overview”
Section 13.6.4.1, “Local Variable DECLARE Syntax”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 13.6, “MySQL Compound-Statement Syntax”
Section E.1, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.6.2, “Statement Label Syntax”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.3.1, “Trigger Syntax”
BINLOG
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 13.7.6.1, “BINLOG Syntax”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
C
CACHE INDEX
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 8.9.2.4, “Index Preloading”
Section 8.9.2.2, “Multiple Key Caches”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 13.3.3, “Statements That Cause an Implicit Commit”
CALL
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.37, “mysql_insert_id()”
Section 21.8.6.45, “mysql_more_results()”
Section 21.8.6.46, “mysql_next_result()”
Section 21.8.6.53, “mysql_real_connect()”
Section 21.8.6.65, “mysql_set_server_option()”
Section 21.8.10.17, “mysql_stmt_next_result()”
Section 18.6, “Access Control for Stored Programs and Views”
Section 18.7, “Binary Logging of Stored Programs”
Section 21.8.4, “C API Data Structures”
Section 21.8.17, “C API Prepared Statement Problems”
Section 21.8.16, “C API Support for Multiple Statement Execution”
Section 21.8.19, “C API Support for Prepared CALL Statements”
Section 13.5, “SQL Syntax for Prepared Statements”
Chapter 18, Stored Programs and Views
Section 18.2.1, “Stored Routine Syntax”
Section 18.3.1, “Trigger Syntax”
CALL p()
Section 13.6.7.4.3, “RESIGNAL with a Condition Value and Optional New Signal Information”
CALL stored_procedure()
Section 17.6.4, “Partitioning and Locking”
CASE
Section 13.6.5.1, “CASE Syntax”
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 12.4, “Control Flow Functions”
Section 13.6.5, “Flow Control Statements”
CHANGE MASTER TO
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.4.2.3, “RESET SLAVE Syntax”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 16.3.9, “Delayed Replication”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.3.1, “GTID Concepts”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.4, “Replication and Binary Logging Options and Variables”
Section 16.4.1.18, “Replication and Master or Slave Shutdowns”
Section 16.1, “Replication Configuration”
Section 8.12.5.8, “Replication Slave Connection Thread States”
Section 8.12.5.6, “Replication Slave I/O Thread States”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 8.12.5.7, “Replication Slave SQL Thread States”
Section 5.1.6, “Server Status Variables”
Section 16.1.1.10, “Setting the Master Configuration on the Slave”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
Section 16.3.7, “Setting Up Replication Using SSL”
Section 16.1.1.8, “Setting Up Replication with Existing Data”
Section 16.1.1.7, “Setting Up Replication with New Master and Slaves”
Section 16.2.2.2, “Slave Status Logs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 16.3.6, “Switching Masters During Failover”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 1.4, “What Is New in MySQL 5.6”
CHANGE MASTER TO ... MASTER_LOG_FILE = ... MASTER_LOG_POS = ...
Section 16.1.4.5, “Global Transaction ID Options and Variables”
CHECK TABLE
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 14.2.4.5, “InnoDB General Troubleshooting”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”
Section 14.2.2.4, “Backing Up and Recovering an InnoDB Database”
Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”
Section 14.3.4.1, “Corrupted MyISAM Tables”
Section 4.6.1, “innochecksum — Offline InnoDB File Checksum Utility”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 4.4.7, “mysql_upgrade — Check and Upgrade MySQL Tables”
Section 8.10.5, “External Locking”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 17.3.4, “Maintenance of Partitions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 14.3.4.2, “Problems from Tables Not Being Closed Properly”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section E.3, “Restrictions on Server-Side Cursors”
Section E.1, “Restrictions on Stored Programs”
Section E.5, “Restrictions on Views”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.8, “The MERGE Storage Engine”
Section 5.2.5, “The Slow Query Log”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
CHECK TABLE ... EXTENDED
Section 13.7.2.2, “CHECK TABLE Syntax”
CHECK TABLE ... FOR UPGRADE
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”
CHECKSUM TABLE
Section 13.7.2.3, “CHECKSUM TABLE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
CLOSE
Section 13.6.6.1, “Cursor CLOSE Syntax”
COMMIT
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 14.2.3.14, “InnoDB Error Handling”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 5.4.2, “Grouping DML Operations with Transactions”
Section 14.2.3.8, “Implicit Transaction Commit and Rollback”
Section 14.2.7, “Limits on InnoDB Tables”
Section 14.2.8, “MySQL and the ACID Model”
Section 13.3, “MySQL Transactional and Locking Statements”
Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”
Section 16.4.1.29, “Replication and Transactions”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 14.2.3.1, “The InnoDB Transaction Model and Locking”
Section 5.2.4, “The Binary Log”
Section 1.8.5.3, “Transaction and Atomic Operation Differences”
Section 18.3.1, “Trigger Syntax”
Section 3.6.9, “Using AUTO_INCREMENT”
CREATE DATABASE
Section 13.1.8, “CREATE DATABASE Syntax”
Section 21.8.6.8, “mysql_create_db()”
Section 13.7.5.8, “SHOW CREATE DATABASE Syntax”
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 7.1, “Backup and Recovery Types”
Section 21.8.5, “C API Function Overview”
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 10.1.3.2, “Database Character Set and Collation”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 9.2.2, “Identifier Case Sensitivity”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 20.4, “Performance Schema Instrument Naming Conventions”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 10.1.3.1, “Server Character Set and Collation”
Section 13.3.3, “Statements That Cause an Implicit Commit”
CREATE DATABASE dbx
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
CREATE DATABASE IF NOT EXISTS
Section 16.4.1.3, “Replication of CREATE ... IF NOT EXISTS Statements”
CREATE EVENT
Section 13.1.2, “ALTER EVENT Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.7.5.9, “SHOW CREATE EVENT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 18.4.4, “Event Metadata”
Section 18.4.3, “Event Syntax”
Section 12.14, “Information Functions”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 16.4.1.10, “Replication of Invoked Features”
Section E.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
CREATE EVENT IF NOT EXISTS
Section 16.4.1.3, “Replication of CREATE ... IF NOT EXISTS Statements”
CREATE FUNCTION
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.1.10, “CREATE FUNCTION Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 22.3, “Adding New Functions to MySQL”
Section 18.7, “Binary Logging of Stored Programs”
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 12.14, “Information Functions”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 16.4.1.10, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.2.1, “Stored Routine Syntax”
Section 22.3.2.1, “UDF Calling Sequences for Simple Functions”
Section 2.11.1, “Upgrading MySQL”
Section 22.3.2.6, “User-Defined Function Security Precautions”
CREATE INDEX
Section 13.1.11, “CREATE INDEX Syntax”
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 14.2.5.7, “InnoDB Strict Mode”
Section 14.2.5.9, “Better Error Handling when Dropping Indexes”
Section 14.2.9.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 12.18.6.1, “Creating Spatial Indexes”
Section 5.4.6.2, “Enabling Compression for a Table”
Section 5.5.5, “Examples of Online DDL”
Section 12.9, “Full-Text Search Functions”
Section 5.4.6.5, “How Compression Works for InnoDB Tables”
Section 5.5.7, “How Crash Recovery Works with Online DDL”
Section 8.7, “Optimizing for MEMORY Tables”
Section 5.5.1, “Overview of Online DDL”
Section 5.5.2, “Performance and Concurrency Considerations for Online DDL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.2.5, “The Slow Query Log”
CREATE LOGFILE GROUP
Section 4.5.4, “mysqldump — A Database Backup Program”
CREATE OR REPLACE VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section E.5, “Restrictions on Views”
CREATE PROCEDURE
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 12.14, “Information Functions”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 16.4.1.10, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.2.1, “Stored Routine Syntax”
CREATE SCHEMA
Section 13.1.8, “CREATE DATABASE Syntax”
CREATE SERVER
Section 13.1.5, “ALTER SERVER Syntax”
Section 13.1.13, “CREATE SERVER Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.9.2.2, “Creating a FEDERATED Table Using CREATE SERVER”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 14.9.2, “How to Create FEDERATED Tables”
Section 16.4.1.5, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”
CREATE TABLE
Section 4.5.1.1, “mysql Options”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.13, “CREATE SERVER Syntax”
Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 1.8.6.2, “FOREIGN KEY Constraints”
Section 17.2.4, “HASH Partitioning”
Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”
Section 14.2.2.6, “InnoDB and MySQL Replication”
Section 14.2.4.5, “InnoDB General Troubleshooting”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.5.7, “InnoDB Strict Mode”
Section 17.2.5, “KEY Partitioning”
Section 17.2.2, “LIST Partitioning”
Section 13.2.7, “LOAD XML Syntax”
Section 14.3.3, “MyISAM Table Storage Formats”
Section 17.2.3.1, “RANGE COLUMNS partitioning”
Section 17.2.1, “RANGE Partitioning”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.12, “SHOW CREATE TABLE Syntax”
Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 13.1.27, “TRUNCATE TABLE Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 7.1, “Backup and Recovery Types”
Section 14.2.5.9, “Better Error Handling when Dropping Indexes”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 10.1.3.4, “Column Character Set and Collation”
Section 8.3.4, “Column Indexes”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 14.9.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 3.3.2, “Creating a Table”
Section 5.4, “Creating and Using InnoDB Tables and Indexes”
Section 12.18.4.3, “Creating Spatial Columns”
Section 12.18.6.1, “Creating Spatial Indexes”
Section 7.2, “Database Backup Methods”
Section 10.1.3.2, “Database Character Set and Collation”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 5.4.6.2, “Enabling Compression for a Table”
Section 5.4.7.1, “Enabling File Formats”
Section 5.5.5, “Examples of Online DDL”
Section 1.8.5.4, “Foreign Key Differences”
Section 12.9, “Full-Text Search Functions”
Section 3.4, “Getting Information About Databases and Tables”
Section 5.4.8, “How InnoDB Stores Variable-Length Columns”
Section 5.4.6.5, “How Compression Works for InnoDB Tables”
Section 17.2.7, “How MySQL Partitioning Handles NULL”
Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”
Section 9.2.2, “Identifier Case Sensitivity”
Section 12.14, “Information Functions”
Section E.10.3, “Limits on Table Size”
Section 3.3.3, “Loading Data into a Table”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 17.3.1, “Management of RANGE and LIST Partitions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 8.5.6, “Optimizing InnoDB DDL Operations”
Section 8.4.1, “Optimizing Data Size”
Section 5.4.8.1, “Overview of InnoDB Row Storage”
Section 5.5.1, “Overview of Online DDL”
Section 17.1, “Overview of Partitioning in MySQL”
Section 5.4.6.1, “Overview of Table Compression”
Section 17.3, “Partition Management”
Section 17.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Section 17.2, “Partitioning Types”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.9, “Replication and DIRECTORY Table Options”
Section 16.4.1.2, “Replication and Character Sets”
Section 16.4.1.12, “Replication and Fractional Seconds Support”
Section 16.4.1.14, “Replication and System Functions”
Section 16.4.1.4, “Replication of CREATE TABLE ... SELECT Statements”
Section 16.4.1.8.1, “Replication with More Columns on Master or Slave”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.1, “Setting the Storage Engine”
Section 13.1.14.3, “Silent Column Specification Changes”
Section C.1, “Sources of Error Information”
Section 5.4.1.2, “Specifying the Location of a Tablespace”
Section 5.4.8.2, “Specifying the Row Format for a Table”
Section 5.4.6.6, “SQL Compression Syntax Warnings and Errors”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 11.1.3, “String Type Overview”
Section 17.2.6, “Subpartitioning”
Section 10.1.3.3, “Table Character Set and Collation”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 14.6, “The ARCHIVE Storage Engine”
Section 11.4.4, “The ENUM Type”
Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 14.2, “The InnoDB Storage Engine”
Section 14.4, “The MEMORY Storage Engine”
Section 14.3, “The MyISAM Storage Engine”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 5.4.4.1, “Traditional InnoDB Auto-Increment Locking”
Section 14.2.4.7, “Troubleshooting InnoDB Data Dictionary Operations”
Section 7.4, “Using mysqldump for Backups”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 3.3.4.9, “Using More Than one Table”
Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”
Section 8.11.3.1, “Using Symbolic Links”
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section E.10.6, “Windows Platform Limitations”
CREATE TABLE ... LIKE
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
CREATE TABLE ... SELECT
Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”
Section 1.8.5.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 18.7, “Binary Logging of Stored Programs”
Section 12.10, “Cast Functions and Operators”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section C.5.8, “Known Issues in MySQL”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 16.4.2, “Replication Compatibility Between MySQL Versions”
Section 16.4.1.4, “Replication of CREATE TABLE ... SELECT Statements”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
CREATE TABLE ... SELECT ...
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 17.3.1, “Management of RANGE and LIST Partitions”
CREATE TABLE IF NOT EXISTS
Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”
Section 16.4.1.3, “Replication of CREATE ... IF NOT EXISTS Statements”
CREATE TABLE IF NOT EXISTS ... LIKE
Section 16.4.1.3, “Replication of CREATE ... IF NOT EXISTS Statements”
CREATE TABLE IF NOT EXISTS ... SELECT
Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”
Section 16.4.1.3, “Replication of CREATE ... IF NOT EXISTS Statements”
CREATE TABLE new_table SELECT ... FROM old_table ...
Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”
Section 13.2.9, “SELECT Syntax”
CREATE TABLESPACE
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 19.8, “The INFORMATION_SCHEMA FILES Table”
CREATE TEMPORARY TABLE
Section 13.7.1.4, “GRANT Syntax”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section 5.1.4, “Server System Variables”
Section 14.1, “Setting the Storage Engine”
Section 13.3.3, “Statements That Cause an Implicit Commit”
CREATE TRIGGER
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.7.5.13, “SHOW CREATE TRIGGER Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 12.14, “Information Functions”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 16.4.1.10, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.3.1, “Trigger Syntax”
CREATE USER
Section 13.7.1.2, “CREATE USER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host Address”
Section 16.1.1.3, “Creating a User for Replication”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 22.2.4.9.4, “Implementing Proxy User Support in Authentication Plugins”
Section 6.3.7.3.1, “Installing the PAM Authentication Plugin”
Section 6.3.7.4.1, “Installing the Windows Authentication Plugin”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 6.3.7, “Pluggable Authentication”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 6.2.3, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.2, “The MySQL Access Privilege System”
Section 6.1.2.6, “The Password Validation Plugin”
Section 6.3.7.2, “The SHA-256 Authentication Plugin”
Section 6.3.1, “User Names and Passwords”
Section 6.3.7.3.2, “Using the PAM Authentication Plugin”
Section 6.3.7.4.2, “Using the Windows Authentication Plugin”
Section 1.4, “What Is New in MySQL 5.6”
CREATE VIEW
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 8.12.5.2, “General Thread States”
Section 12.14, “Information Functions”
Section 17.6.4, “Partitioning and Locking”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section E.5, “Restrictions on Views”
Section 9.2, “Schema Object Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 18.5.3, “Updatable and Insertable Views”
Section 18.5.2, “View Processing Algorithms”
D
DEALLOCATE PREPARE
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section E.1, “Restrictions on Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
DECLARE
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.6.3, “DECLARE Syntax”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.4.1, “Local Variable DECLARE Syntax”
Section 13.6.4, “Variables in Stored Programs”
DECLARE ... CONDITION
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.6.7, “Condition Handling”
DECLARE ... HANDLER
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.7, “Condition Handling”
Section 13.6.7.5.2, “Effect of Signals on Handlers, Cursors, and Statements”
DELETE
Section 4.5.1.1, “mysql Options”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.1.4, “GRANT Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.2.6, “InnoDB and MySQL Replication”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.2.9.2, “JOIN Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 17.2.2, “LIST Partitioning”
Section 14.8.2, “MERGE Table Problems”
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.48, “mysql_num_rows()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.13, “mysql_stmt_field_count()”
Section 21.8.10.18, “mysql_stmt_num_rows()”
Section 17.2.1, “RANGE Partitioning”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.1.27, “TRUNCATE TABLE Syntax”
Section 6.3.2, “Adding User Accounts”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 21.8.5, “C API Function Overview”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section C.5.5.6, “Deleting Rows from Related Tables”
Section 5.5.5, “Examples of Online DDL”
Section 1.8.5.4, “Foreign Key Differences”
Chapter 12, Functions and Operators
Section 8.12.5.2, “General Thread States”
Section 8.2.1.2, “How MySQL Optimizes WHERE Clauses”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 8.10.1, “Internal Locking Methods”
Section C.5.8, “Known Issues in MySQL”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 17.3.1, “Management of RANGE and LIST Partitions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 8.2.2, “Optimizing DML Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 5.5.1, “Overview of Online DDL”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.5, “Partition Selection”
Section 6.2.1, “Privileges Provided by MySQL”
Section 8.12.5.4, “Query Cache Thread States”
Section 16.4.1.15, “Replication and LIMIT”
Section 16.4.1.20, “Replication and MEMORY Tables”
Section 16.4.1.23, “Replication and the Query Optimizer”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section E.5, “Restrictions on Views”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 3.3.4.1, “Selecting All Data”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.2.2.3, “Speed of DELETE Statements”
Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”
Section 5.7.1.12, “Statement Probes”
Section 13.2.10.9, “Subquery Errors”
Section 13.2.10, “Subquery Syntax”
Section 8.10.2, “Table Locking Issues”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 14.4, “The MEMORY Storage Engine”
Section 14.8, “The MERGE Storage Engine”
Section 5.2.4, “The Binary Log”
Section 6.2, “The MySQL Access Privilege System”
Section 18.3.1, “Trigger Syntax”
Section 18.5.3, “Updatable and Insertable Views”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 4.5.1.6.4, “Using the --safe-updates Option”
Section 18.3, “Using Triggers”
Section 1.4, “What Is New in MySQL 5.6”
Section 21.8.14.2, “What Results You Can Get from a Query”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 22.2.4.8, “Writing Audit Plugins”
DELETE FROM ... WHERE ...
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
DELETE FROM t1,t2
Section 5.7.1.12, “Statement Probes”
DESCRIBE
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.8.1, “DESCRIBE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
Section 3.3.2, “Creating a Table”
Section 19.32, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and Tables”
Section 8.2.1.3, “Optimizing LIMIT Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 13.1.14.3, “Silent Column Specification Changes”
Section 3.6.6, “Using Foreign Keys”
Section 10.1.12, “UTF-8 for Metadata”
DO
Section 13.1.2, “ALTER EVENT Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 12.16, “Miscellaneous Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 17.6.4, “Partitioning and Locking”
Section E.1, “Restrictions on Stored Programs”
Section 13.2.10, “Subquery Syntax”
Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”
DROP DATABASE
Section 13.1.17, “DROP DATABASE Syntax”
Section 21.8.6.11, “mysql_drop_db()”
Section 21.8.5, “C API Function Overview”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 8.9.3.1, “How the Query Cache Operates”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section E.10.6, “Windows Platform Limitations”
DROP DATABASE IF EXISTS
Section 16.4.1.7, “Replication of DROP ... IF EXISTS Statements”
DROP EVENT
Section 13.1.18, “DROP EVENT Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 18.4.3, “Event Syntax”
Section 16.4.1.10, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
DROP FUNCTION
Section 13.1.3, “ALTER FUNCTION Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 13.1.19, “DROP FUNCTION Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 13.1.21, “DROP PROCEDURE and DROP FUNCTION Syntax”
Section 22.3, “Adding New Functions to MySQL”
Section 18.7, “Binary Logging of Stored Programs”
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 16.4.1.10, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.2.1, “Stored Routine Syntax”
Section 2.11.1, “Upgrading MySQL”
Section 22.3.2.6, “User-Defined Function Security Precautions”
DROP INDEX
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.20, “DROP INDEX Syntax”
Section 12.18.6.1, “Creating Spatial Indexes”
Section 5.5.5, “Examples of Online DDL”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 5.5.1, “Overview of Online DDL”
Section 5.1.3, “Server Command Options”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 5.2.5, “The Slow Query Log”
DROP PROCEDURE
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 13.1.21, “DROP PROCEDURE and DROP FUNCTION Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 16.4.1.10, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.2.1, “Stored Routine Syntax”
DROP SCHEMA
Section 13.1.17, “DROP DATABASE Syntax”
Section 5.1.4, “Server System Variables”
DROP SERVER
Section 13.1.22, “DROP SERVER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 16.4.1.5, “Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER”
Section 13.3.3, “Statements That Cause an Implicit Commit”
DROP TABLE
Section 4.5.1.1, “mysql Options”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.23, “DROP TABLE Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 13.1.27, “TRUNCATE TABLE Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 22.2.3.2, “Full-Text Parser Plugins”
Section 13.6.7.7.3, “How the Diagnostics Area is Populated”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 8.5.6, “Optimizing InnoDB DDL Operations”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.5, “Restrictions on Views”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 5.4.1.2, “Specifying the Location of a Tablespace”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 14.4, “The MEMORY Storage Engine”
Section 14.8, “The MERGE Storage Engine”
Section 14.2.4.7, “Troubleshooting InnoDB Data Dictionary Operations”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
DROP TABLE IF EXISTS
Section 16.4.1.7, “Replication of DROP ... IF EXISTS Statements”
DROP TEMPORARY TABLE
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
DROP TEMPORARY TABLE IF EXISTS
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
DROP TRIGGER
Section 13.1.24, “DROP TRIGGER Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.4.1.10, “Replication of Invoked Features”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.3.1, “Trigger Syntax”
DROP USER
Section 13.7.1.3, “DROP USER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 12.14, “Information Functions”
Section 6.2.1, “Privileges Provided by MySQL”
Section 6.3.3, “Removing User Accounts”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
DROP USER 'x'@'localhost'
Section 22.2.4.9.3, “Using the Authentication Plugins”
DROP VIEW
Section 13.1.25, “DROP VIEW Syntax”
Section E.5, “Restrictions on Views”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
DROP VIEW IF EXISTS
Section 16.4.1.7, “Replication of DROP ... IF EXISTS Statements”
E
EXECUTE
Section 13.5.2, “EXECUTE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section 21.8.19, “C API Support for Prepared CALL Statements”
Section E.1, “Restrictions on Stored Programs”
Section E.5, “Restrictions on Views”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
EXPLAIN
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.8.1, “DESCRIBE Syntax”
Section 8.13.15, “DISTINCT Optimization”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 8.13.6, “IS NULL Optimization”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 8.13.13, “ORDER BY Optimization”
Section 13.2.9, “SELECT Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 8.13.12.3, “Batched Key Access Joins”
Section 8.13.12.2, “Block Nested-Loop Algorithm for Outer Joins and Semi-Joins”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
Section 22.4.1, “Debugging a MySQL Server”
Section 8.13.3, “Engine Condition Pushdown Optimization”
Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”
Section 8.2.1.4, “How to Avoid Full Table Scans”
Section 8.13.4, “Index Condition Pushdown Optimization”
Section 13.2.9.3, “Index Hint Syntax”
Section 8.13.2, “Index Merge Optimization”
Section 8.13, “Internal Details of MySQL Optimizations”
Section 8.13.14.1, “Loose Index Scan”
Section 8.13.11, “Multi-Range Read Optimization”
Chapter 20, MySQL Performance Schema
Section 17.3.5, “Obtaining Information About Partitions”
Section C.5.6, “Optimizer-Related Issues”
Section 8.2.4, “Optimizing INFORMATION_SCHEMA Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 13.2.10.10, “Optimizing Subqueries”
Section 8.13.16.3, “Optimizing Subqueries in the FROM Clause (Derived Tables)”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”
Section 8.13.16.2, “Optimizing Subqueries with Subquery Materialization”
Section 8.2.5, “Other Optimization Tips”
Section E.1, “Restrictions on Stored Programs”
Section C.5.5.7, “Solving Problems with No Matching Rows”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 13.2.10.8, “Subqueries in the FROM Clause”
Section 8.13.2.1, “The Index Merge Intersection Access Algorithm”
Section 8.13.1.2, “The Range Access Method for Multiple-Part Indexes”
Section 8.8, “Understanding the Query Execution Plan”
Section 8.13.5, “Use of Index Extensions”
Section 12.18.6.2, “Using a Spatial Index”
Section 22.4.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 8.3.6, “Verifying Index Usage”
Section 1.4, “What Is New in MySQL 5.6”
EXPLAIN ... SELECT
Section 17.3.5, “Obtaining Information About Partitions”
EXPLAIN EXTENDED
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 8.13.3, “Engine Condition Pushdown Optimization”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”
Section 8.13.16.2, “Optimizing Subqueries with Subquery Materialization”
EXPLAIN PARTITIONS
Section 13.8.2, “EXPLAIN Syntax”
Section 17.3.5, “Obtaining Information About Partitions”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
EXPLAIN PARTITIONS SELECT
Section 17.3.5, “Obtaining Information About Partitions”
EXPLAIN PARTITIONS SELECT COUNT()
Section 17.2.1, “RANGE Partitioning”
EXPLAIN SELECT
Section 8.8.2, “EXPLAIN Output Format”
Section 14.2.3.10, “How to Cope with Deadlocks”
Section 1.7, “How to Report Bugs or Problems”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 17.3.5, “Obtaining Information About Partitions”
Section 8.13.16.3, “Optimizing Subqueries in the FROM Clause (Derived Tables)”
Section 13.2.10.8, “Subqueries in the FROM Clause”
EXPLAIN SELECT ... ORDER BY
Section 8.13.13, “ORDER BY Optimization”
EXPLAIN tbl_name
Section 8.8.1, “Optimizing Queries with EXPLAIN”
F
FETCH
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.6.3, “Cursor FETCH Syntax”
Section E.1, “Restrictions on Stored Programs”
FETCH ... INTO var_list
Section 13.6.4, “Variables in Stored Programs”
FLUSH
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.6.6, “RESET Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.3.1, “Establishing a Backup Policy”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.13, “Replication and FLUSH”
Section C.5.4.1.3, “Resetting the Root Password: Generic Instructions”
Section C.5.4.1.2, “Resetting the Root Password: Unix Systems”
Section C.5.4.1.1, “Resetting the Root Password: Windows Systems”
Section E.1, “Restrictions on Stored Programs”
Section 2.10.2, “Securing the Initial MySQL Accounts”
Section 13.3.3, “Statements That Cause an Implicit Commit”
FLUSH BINARY LOGS
Section 5.2.6, “Server Log Maintenance”
FLUSH DES_KEY_FILE
Section 12.13, “Encryption and Compression Functions”
FLUSH HOSTS
Section C.5.2.6, “Host 'host_name' is blocked”
Section 21.8.6.56, “mysql_refresh()”
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
Section 5.1.4, “Server System Variables”
Section 20.9.9.1, “The host_cache Table”
FLUSH LOGS
Section 13.7.6.3, “FLUSH Syntax”
Section 21.8.6.56, “mysql_refresh()”
Section 7.3.3, “Backup Strategy Summary”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.2, “MySQL Server Logs”
Section 16.4.1.13, “Replication and FLUSH”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.2.6, “Server Log Maintenance”
Section 5.1.11, “Server Response to Signals”
Section 5.1.6, “Server Status Variables”
Section 5.2.2, “The Error Log”
Section 16.2.2.1, “The Slave Relay Log”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
FLUSH MASTER
Section 16.4.1.13, “Replication and FLUSH”
FLUSH PRIVILEGES
Section 13.7.6.3, “FLUSH Syntax”
Section 21.8.6.56, “mysql_refresh()”
Section 21.8.6.57, “mysql_reload()”
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 6.2.2, “Privilege System Grant Tables”
Section 16.4.1.13, “Replication and FLUSH”
Section 5.1.3, “Server Command Options”
Section 5.1.11, “Server Response to Signals”
Section 6.3.4, “Setting Account Resource Limits”
Section 1.2, “Typographical and Syntax Conventions”
Section 6.2.6, “When Privilege Changes Take Effect”
FLUSH QUERY CACHE
Section 13.7.6.3, “FLUSH Syntax”
Section 8.9.3.4, “Query Cache Status and Maintenance”
FLUSH SLAVE
Section 16.4.1.13, “Replication and FLUSH”
FLUSH STATUS
Section 5.1.6, “Server Status Variables”
Section 8.13.5, “Use of Index Extensions”
FLUSH TABLE
Section 13.7.6.3, “FLUSH Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.13.5, “Use of Index Extensions”
FLUSH TABLES
Section 13.7.6.3, “FLUSH Syntax”
Section 13.2.4, “HANDLER Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 21.8.6.56, “mysql_refresh()”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 5.4.1.3, “Copying Tablespaces to Another Server (Transportable Tablespaces)”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 8.12.5.2, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”
Section 14.3.4.2, “Problems from Tables Not Being Closed Properly”
Section 8.9.3.4, “Query Cache Status and Maintenance”
Section 16.4.1.13, “Replication and FLUSH”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
FLUSH TABLES ... FOR EXPORT
Section 13.7.6.3, “FLUSH Syntax”
Section 5.4.1.2, “Specifying the Location of a Tablespace”
FLUSH TABLES tbl_list WITH READ LOCK
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
FLUSH TABLES tbl_name ... FOR EXPORT
Section 13.7.6.3, “FLUSH Syntax”
FLUSH TABLES tbl_name ... WITH READ LOCK
Section 13.7.6.3, “FLUSH Syntax”
FLUSH TABLES tbl_name WITH READ LOCK
Section 13.2.4, “HANDLER Syntax”
FLUSH TABLES WITH READ LOCK
Section 13.7.6.3, “FLUSH Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.3.1, “Establishing a Backup Policy”
Section 8.12.5.2, “General Thread States”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”
Section 16.4.1.13, “Replication and FLUSH”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
FLUSH USER_RESOURCES
Section 13.7.6.3, “FLUSH Syntax”
Section 6.3.4, “Setting Account Resource Limits”
G
GET DIAGNOSTICS
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
Section 13.6.7.4, “RESIGNAL Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.6.7, “Condition Handling”
Section 13.6.7.7.3, “How the Diagnostics Area is Populated”
Section E.2, “Restrictions on Condition Handling”
Section E.1, “Restrictions on Stored Programs”
Section 5.1.4, “Server System Variables”
Section 13.6.7.5.1, “Signal Condition Information Items”
Section 1.4, “What Is New in MySQL 5.6”
GRANT
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.7.5.22, “SHOW GRANTS Syntax”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 6.3.2, “Adding User Accounts”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 5.1.9.3, “Connecting Using the IPv6 Local Host Address”
Section 16.1.1.3, “Creating a User for Replication”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 22.2.4.9.4, “Implementing Proxy User Support in Authentication Plugins”
Section 12.14, “Information Functions”
Section 6.3.7.3.1, “Installing the PAM Authentication Plugin”
Section 6.3.7.4.1, “Installing the Windows Authentication Plugin”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 8.2.3, “Optimizing Database Privileges”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 16.4.1.13, “Replication and FLUSH”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 16.4.1.22, “Replication of the mysql System Database”
Section 6.1.1, “Security Guidelines”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 6.3.4, “Setting Account Resource Limits”
Section 6.2.3, “Specifying Account Names”
Section 6.3.9.4, “SSL Command Options”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 14.2.5.1, “Support for Read-Only Media”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2, “The MySQL Access Privilege System”
Section 6.1.2.6, “The Password Validation Plugin”
Section 6.3.1, “User Names and Passwords”
Section 6.3.9.3, “Using SSL Connections”
Section 6.3.9, “Using SSL for Secure Connections”
Section 6.3.7.3.2, “Using the PAM Authentication Plugin”
Section 6.3.7.4.2, “Using the Windows Authentication Plugin”
Section 1.4, “What Is New in MySQL 5.6”
Section 6.2.6, “When Privilege Changes Take Effect”
GRANT ALL
Section 13.7.1.4, “GRANT Syntax”
GRANT EVENT
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
GRANT USAGE
Section 13.7.1.4, “GRANT Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 6.3.4, “Setting Account Resource Limits”
H
HANDLER
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.2.4, “HANDLER Syntax”
Section 21.8.6.3, “mysql_change_user()”
Section 21.8.15, “Controlling Automatic Reconnection Behavior”
Section 1.8, “MySQL Standards Compliance”
Section 5.1.4, “Server System Variables”
HANDLER ... CLOSE
Section 13.7.5.25, “SHOW OPEN TABLES Syntax”
HANDLER ... OPEN
Section 13.7.5.25, “SHOW OPEN TABLES Syntax”
HANDLER ... READ
Section E.1, “Restrictions on Stored Programs”
HANDLER OPEN
Section 13.2.4, “HANDLER Syntax”
Section 13.1.27, “TRUNCATE TABLE Syntax”
HELP
Section 5.1.10, “Server-Side Help”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
I
IF
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 12.4, “Control Flow Functions”
Section 13.6.5, “Flow Control Statements”
INSERT
Section 4.5.1.1, “mysql Options”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.1.4, “GRANT Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.3.14.1, “InnoDB Error Codes”
Section 14.2.3.5, “InnoDB Record, Gap, and Next-Key Locks”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 17.2.2, “LIST Partitioning”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 14.8.2, “MERGE Table Problems”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.37, “mysql_insert_id()”
Section 21.8.6.48, “mysql_num_rows()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.13, “mysql_stmt_field_count()”
Section 21.8.10.16, “mysql_stmt_insert_id()”
Section 21.8.10.18, “mysql_stmt_num_rows()”
Section 21.8.10.21, “mysql_stmt_prepare()”
Section 21.8.6.70, “mysql_store_result()”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 1.8.6.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 17.2.1, “RANGE Partitioning”
Section 13.2.8, “REPLACE Syntax”
Section 13.7.5.28, “SHOW PROCEDURE CODE Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 6.3.2, “Adding User Accounts”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 7.1, “Backup and Recovery Types”
Section 18.7, “Binary Logging of Stored Programs”
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 21.8.5, “C API Function Overview”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.16, “C API Support for Multiple Statement Execution”
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 10.1.13, “Column Character Set Conversion”
Section 8.10.3, “Concurrent Inserts”
Section 5.4.4.2, “Configurable InnoDB Auto-Increment Locking”
Section 1.8.6.3, “Constraints on Invalid Data”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 14.9.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 11.5, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 7.3.1, “Establishing a Backup Policy”
Section 12.19.3, “Expression Handling”
Section 1.8.5.4, “Foreign Key Differences”
Section 8.12.5.2, “General Thread States”
Section 5.4.2, “Grouping DML Operations with Transactions”
Section 8.9.3.1, “How the Query Cache Operates”
Section 21.8.14.3, “How to Get the Unique ID for the Last Inserted Row”
Section 12.14, “Information Functions”
Section 8.10.1, “Internal Locking Methods”
Section 3.3.3, “Loading Data into a Table”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 17.3.1, “Management of RANGE and LIST Partitions”
Section 12.16, “Miscellaneous Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.2, “Optimizing DML Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.5, “Other Optimization Tips”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 5.5.1, “Overview of Online DDL”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 12.18.4.4, “Populating Spatial Columns”
Section 6.2.1, “Privileges Provided by MySQL”
Section 8.12.5.4, “Query Cache Thread States”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.26, “Replication and Server SQL Mode”
Section 16.4.1.14, “Replication and System Functions”
Section 16.4.1.32, “Replication and Variables”
Section 16.1.4.2, “Replication Master Options and Variables”
Section 16.2.3.3, “Replication Rule Application”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section E.1, “Restrictions on Stored Programs”
Section 5.7.1.7, “Row-Level Probes”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 16.4.1.25, “Slave Errors During Replication”
Section 8.2.2.1, “Speed of INSERT Statements”
Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”
Section 5.7.1.12, “Statement Probes”
Section 13.2.10, “Subquery Syntax”
Section 8.10.2, “Table Locking Issues”
Section 10.1.7.6, “The _bin and binary Collations”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 14.8, “The MERGE Storage Engine”
Section 14.3, “The MyISAM Storage Engine”
Section 5.2.4, “The Binary Log”
Section 6.2, “The MySQL Access Privilege System”
Section 8.9.3, “The MySQL Query Cache”
Section 5.1.12, “The Shutdown Process”
Section 5.4.4.1, “Traditional InnoDB Auto-Increment Locking”
Section 18.3.1, “Trigger Syntax”
Section 18.5.3, “Updatable and Insertable Views”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 18.3, “Using Triggers”
Section 1.4, “What Is New in MySQL 5.6”
Section 21.8.14.2, “What Results You Can Get from a Query”
Section 6.2.6, “When Privilege Changes Take Effect”
INSERT ... ()
Section 5.7.1.12, “Statement Probes”
INSERT ... ON DUPLICATE KEY UPDATE
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.37, “mysql_insert_id()”
Section 5.4.4.2, “Configurable InnoDB Auto-Increment Locking”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 12.16, “Miscellaneous Functions”
Section 17.6.4, “Partitioning and Locking”
INSERT ... SELECT
Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 21.8.6.37, “mysql_insert_id()”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 8.10.3, “Concurrent Inserts”
Section 5.4.4.2, “Configurable InnoDB Auto-Increment Locking”
Section C.5.8, “Known Issues in MySQL”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 16.4.1.15, “Replication and LIMIT”
Section 5.1.4, “Server System Variables”
Section 5.7.1.12, “Statement Probes”
Section 5.2.4, “The Binary Log”
INSERT ... SELECT ON DUPLICATE KEY UPDATE
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
INSERT ... SET
Section 13.2.5, “INSERT Syntax”
INSERT ... VALUES
Section 13.2.5, “INSERT Syntax”
Section 21.8.6.35, “mysql_info()”
INSERT DELAYED
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 8.12.5.3, “Delayed-Insert Thread States”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section C.5.8, “Known Issues in MySQL”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 22.1.1, “MySQL Threads”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 17.6.4, “Partitioning and Locking”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section E.1, “Restrictions on Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.10.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.4, “The MEMORY Storage Engine”
Section 20.9.9.3, “The threads Table”
Section 1.8.5.3, “Transaction and Atomic Operation Differences”
Section 18.5.3, “Updatable and Insertable Views”
INSERT IGNORE
Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”
Section 1.8.6.4, “ENUM and SET Constraints”
Section 13.2.5, “INSERT Syntax”
Section 1.8.6.3, “Constraints on Invalid Data”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 12.14, “Information Functions”
Section 5.1.7, “Server SQL Modes”
INSERT IGNORE ... SELECT
Section 13.2.5.1, “INSERT ... SELECT Syntax”
INSERT INTO ... SELECT
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 1.8.5.1, “SELECT INTO TABLE Differences”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 1.8.6.3, “Constraints on Invalid Data”
Section 16.4.1.4, “Replication of CREATE TABLE ... SELECT Statements”
Section 14.4, “The MEMORY Storage Engine”
INSERT INTO ... SELECT ...
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 21.8.6.35, “mysql_info()”
Section 21.8.14.2, “What Results You Can Get from a Query”
INSERT INTO ... SELECT FROM memory_table
Section 16.4.1.20, “Replication and MEMORY Tables”
INSERT LOW_PRIORITY
Section 8.2.5, “Other Optimization Tips”
INSTALL PLUGIN
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 13.7.5.26, “SHOW PLUGINS Syntax”
Section 6.3.11.4, “Audit Log Plugin Options and Variables”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.11.1, “Installing the Audit Log Plugin”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.8.2, “Obtaining Server Plugin Information”
Section 6.1.2.6.1, “Password Validation Plugin Installation”
Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”
Section 6.3.7, “Pluggable Authentication”
Section 14.12.1, “Pluggable Storage Engine Architecture”
Section 22.2.2, “Plugin API Components”
Section 22.2.4.2, “Plugin Data Structures”
Section 16.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.3, “Server Command Options”
Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”
Section 19.15, “The INFORMATION_SCHEMA PLUGINS Table”
Section 22.2, “The MySQL Plugin API”
Section 22.2.4.6, “Writing INFORMATION_SCHEMA Plugins”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.5, “Writing Daemon Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4.10, “Writing Password-Validation Plugins”
Section 22.2.4.9.1, “Writing the Server-Side Authentication Plugin”
ITERATE
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.2, “Statement Label Syntax”
K
KILL
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.6.4, “KILL Syntax”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.6.38, “mysql_kill()”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 4.6.16, “mysql_zap — Kill Processes That Match a Pattern”
Section 8.12.5.2, “General Thread States”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
KILL CONNECTION
Section 13.7.6.4, “KILL Syntax”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section 5.1.12, “The Shutdown Process”
KILL QUERY
Section 13.7.6.4, “KILL Syntax”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section 5.1.12, “The Shutdown Process”
L
LEAVE
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section 13.6.5.7, “RETURN Syntax”
Section 13.6.5, “Flow Control Statements”
Section E.1, “Restrictions on Stored Programs”
Section 13.6.2, “Statement Label Syntax”
LOAD DATA
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 8.10.3, “Concurrent Inserts”
Section 5.4.4.2, “Configurable InnoDB Auto-Increment Locking”
Section C.5.8, “Known Issues in MySQL”
Section 3.3.3, “Loading Data into a Table”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section E.1, “Restrictions on Stored Programs”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 3.3.4.1, “Selecting All Data”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 11.4.4, “The ENUM Type”
Section 9.4, “User-Defined Variables”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 1.4, “What Is New in MySQL 5.6”
LOAD DATA INFILE
Section 4.5.1.1, “mysql Options”
Section 4.6.8.1, “mysqlbinlog Hex Dump Format”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.3.1, “MyISAM Startup Options”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 6.3.11.3, “Audit Log Plugin Logging Control”
Section 6.3.11.5, “Audit Log Plugin Restrictions”
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 8.10.3, “Concurrent Inserts”
Section 7.2, “Database Backup Methods”
Section 10.1.3.2, “Database Character Set and Collation”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section C.5.4.3, “How MySQL Handles a Full Disk”
Section 12.14, “Information Functions”
Section C.5.8, “Known Issues in MySQL”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 8.2.5, “Other Optimization Tips”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 4.1, “Overview of MySQL Programs”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5.5.3, “Problems with NULL Values”
Section 7.4.4, “Reloading Delimited-Text Format Backups”
Section 16.4.1.16, “Replication and LOAD DATA INFILE”
Section 16.4.2, “Replication Compatibility Between MySQL Versions”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 8.12.5.7, “Replication Slave SQL Thread States”
Section E.7, “Restrictions on Character Sets”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.2.2.1, “Speed of INSERT Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 13.2.10, “Subquery Syntax”
Section 14.4, “The MEMORY Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section C.5.4.4, “Where MySQL Stores Temporary Files”
Section E.10.6, “Windows Platform Limitations”
LOAD DATA INFILE ...
Section 21.8.6.35, “mysql_info()”
Section 21.8.14.2, “What Results You Can Get from a Query”
LOAD DATA LOCAL
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 21.8.6.49, “mysql_options()”
Section 21.8.6.53, “mysql_real_connect()”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
LOAD DATA LOCAL INFILE
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 21.8.6.64, “mysql_set_local_infile_handler()”
Section 21.8.5, “C API Function Overview”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
LOAD INDEX INTO CACHE
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 8.9.2.4, “Index Preloading”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 13.3.3, “Statements That Cause an Implicit Commit”
LOAD INDEX INTO CACHE ... IGNORE LEAVES
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
LOAD XML
Section 13.2.7, “LOAD XML Syntax”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.5, “Partition Selection”
Section 1.4, “What Is New in MySQL 5.6”
LOAD XML INFILE
Section 13.2.7, “LOAD XML Syntax”
LOAD XML LOCAL
Section 13.2.7, “LOAD XML Syntax”
LOAD XML LOCAL INFILE
Section 13.2.7, “LOAD XML Syntax”
LOCK TABLE
Section 8.10.3, “Concurrent Inserts”
Section 8.12.5.2, “General Thread States”
Section C.5.7.1, “Problems with ALTER TABLE”
LOCK TABLES
Section 13.1.8, “CREATE DATABASE Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 13.3.5.2, “LOCK TABLES and Triggers”
Section 14.8.2, “MERGE Table Problems”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 14.2.3.9, “Deadlock Detection and Rollback”
Section 4.6.10, “mysqlhotcopy — A Database Backup Program”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 14.2.3.10, “How to Cope with Deadlocks”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 8.10.1, “Internal Locking Methods”
Section 14.2.7, “Limits on InnoDB Tables”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 17.6.4, “Partitioning and Locking”
Section 6.2.1, “Privileges Provided by MySQL”
Section 14.3.4.2, “Problems from Tables Not Being Closed Properly”
Section E.1, “Restrictions on Stored Programs”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.11.1, “System Factors and Startup Parameter Tuning”
Section 8.10.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 1.8.5.3, “Transaction and Atomic Operation Differences”
LOCK TABLES ... READ
Section 13.7.6.3, “FLUSH Syntax”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.7, “Limits on InnoDB Tables”
LOCK TABLES ... WRITE
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.7, “Limits on InnoDB Tables”
LOOP
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.2, “Statement Label Syntax”
O
OPEN
Section 13.6.6.4, “Cursor OPEN Syntax”
OPTIMIZE TABLE
Section 4.6.3.1, “myisamchk General Options”
Section 13.2.2, “DELETE Syntax”
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.7.6.4, “KILL Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 22.4.1, “Debugging a MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 14.3.3.2, “Dynamic Table Characteristics”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.12.5.2, “General Thread States”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section C.5.4.3, “How MySQL Handles a Full Disk”
Section C.5.8, “Known Issues in MySQL”
Section 17.3.4, “Maintenance of Partitions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.5, “Other Optimization Tips”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.13, “Replication and FLUSH”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 8.2.2.2, “Speed of UPDATE Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 14.3.3.1, “Static (Fixed-Length) Table Characteristics”
Section 14.6, “The ARCHIVE Storage Engine”
Section 19.30.23, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 19.30.22, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 19.30.21, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 5.1.12, “The Shutdown Process”
Section 5.2.5, “The Slow Query Log”
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
P
PREPARE
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 13.5.2, “EXECUTE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section 21.8.19, “C API Support for Prepared CALL Statements”
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 9.2.2, “Identifier Case Sensitivity”
Section 8.10.4, “Metadata Locking”
Section E.1, “Restrictions on Stored Programs”
Section E.5, “Restrictions on Views”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
PURGE BINARY LOGS
Section 13.7.1.4, “GRANT Syntax”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.3.1, “Establishing a Backup Policy”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.2.6, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
R
RELEASE SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax”
RENAME TABLE
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.1.26, “RENAME TABLE Syntax”
Section 8.12.5.2, “General Thread States”
Section 9.2.2, “Identifier Case Sensitivity”
Section 14.2.2.5, “Moving or Copying InnoDB Tables to Another Machine”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
RENAME USER
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.5, “RENAME USER Syntax”
Section 12.14, “Information Functions”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2.6, “When Privilege Changes Take Effect”
REPAIR TABLE
Section 4.6.3.1, “myisamchk General Options”
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 14.3.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash Recovery”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 11.3.4, “YEAR(2) Limitations and Migrating to YEAR(4)”
Section 14.3.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”
Section 4.5.3, “mysqlcheck — A Table Maintenance Program”
Section 8.10.5, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.12.5.2, “General Thread States”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section C.5.4.3, “How MySQL Handles a Full Disk”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section C.5.8, “Known Issues in MySQL”
Section 17.3.4, “Maintenance of Partitions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 6.2.1, “Privileges Provided by MySQL”
Section 14.3.4.2, “Problems from Tables Not Being Closed Properly”
Section C.5.7.1, “Problems with ALTER TABLE”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 16.4.1.13, “Replication and FLUSH”
Section 16.4.1.17, “Replication and REPAIR TABLE”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance Schedule”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 14.6, “The ARCHIVE Storage Engine”
Section 5.1.12, “The Shutdown Process”
Section 5.2.5, “The Slow Query Log”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
REPEAT
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.6, “REPEAT Syntax”
Section 18.1, “Defining Stored Programs”
Section 13.6.5, “Flow Control Statements”
Section 13.6.2, “Statement Label Syntax”
REPLACE
Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 14.8.2, “MERGE Table Problems”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.6.1, “mysql_affected_rows()”
Section 13.2.8, “REPLACE Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 5.4.4.2, “Configurable InnoDB Auto-Increment Locking”
Section 11.5, “Data Type Default Values”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 12.14, “Information Functions”
Section C.5.8, “Known Issues in MySQL”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 5.1.3, “Server Command Options”
Section 13.2.10, “Subquery Syntax”
Section 14.6, “The ARCHIVE Storage Engine”
Section 1.4, “What Is New in MySQL 5.6”
REPLACE ... SELECT
Section 5.4.4.2, “Configurable InnoDB Auto-Increment Locking”
Section C.5.8, “Known Issues in MySQL”
RESET
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.6.6, “RESET Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 13.3.3, “Statements That Cause an Implicit Commit”
RESET MASTER
Section 21.8.6.56, “mysql_refresh()”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.3.6, “Switching Masters During Failover”
Section 5.2.4, “The Binary Log”
Section 1.4, “What Is New in MySQL 5.6”
RESET QUERY CACHE
Section 8.12.5.4, “Query Cache Thread States”
RESET SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 21.8.6.56, “mysql_refresh()”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.4.2.3, “RESET SLAVE Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 16.3.9, “Delayed Replication”
Section 16.1.4, “Replication and Binary Logging Options and Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 1.4, “What Is New in MySQL 5.6”
RESIGNAL
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.7.4.1, “RESIGNAL Alone”
Section 13.6.7.4.4, “RESIGNAL Requires an Active Handler”
Section 13.6.7.4, “RESIGNAL Syntax”
Section 13.6.7.4.3, “RESIGNAL with a Condition Value and Optional New Signal Information”
Section 13.6.7.4.2, “RESIGNAL with New Signal Information”
Section 13.6.7, “Condition Handling”
Section 13.6.7.7.2, “Diagnostics Area Information Items”
Section 13.6.7.7.4, “Diagnostics Area-Related System Variables”
Section 13.6.7.7.3, “How the Diagnostics Area is Populated”
Section E.2, “Restrictions on Condition Handling”
Section E.1, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.6.7.5.1, “Signal Condition Information Items”
RETURN
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section 13.6.5.7, “RETURN Syntax”
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 13.6.5, “Flow Control Statements”
Section E.1, “Restrictions on Stored Programs”
REVOKE
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 12.14, “Information Functions”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 1.8.5, “MySQL Differences from Standard SQL”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.10.1.1, “Problems Running mysql_install_db”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 16.4.1.22, “Replication of the mysql System Database”
Section 6.1.1, “Security Guidelines”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 14.2.5.1, “Support for Read-Only Media”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
Section 6.2, “The MySQL Access Privilege System”
Section 6.3.1, “User Names and Passwords”
Section 6.2.6, “When Privilege Changes Take Effect”
REVOKE ALL PRIVILEGES
Section 13.7.1.4, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
ROLLBACK
Section 14.2.3.14, “InnoDB Error Handling”
Section 21.8.6.3, “mysql_change_user()”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 18.7, “Binary Logging of Stored Programs”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 14.2.3.9, “Deadlock Detection and Rollback”
Section 5.4.2, “Grouping DML Operations with Transactions”
Section 12.14, “Information Functions”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 14.2.8, “MySQL and the ACID Model”
Section 13.3, “MySQL Transactional and Locking Statements”
Section 16.4.1.29, “Replication and Transactions”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section C.5.5.5, “Rollback Failure for Nontransactional Tables”
Section 5.1.4, “Server System Variables”
Section 13.3.2, “Statements That Cannot Be Rolled Back”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 14.2.3.1, “The InnoDB Transaction Model and Locking”
Section 5.2.4, “The Binary Log”
Section 1.8.5.3, “Transaction and Atomic Operation Differences”
Section 18.3.1, “Trigger Syntax”
ROLLBACK TO SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax”
S
SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT Syntax”
SELECT
Section 4.5.1.1, “mysql Options”
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.7, “ALTER VIEW Syntax”
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.14.1, “CREATE TABLE ... SELECT Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 13.7.1.4, “GRANT Syntax”
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 13.2.4, “HANDLER Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.2.9.2, “JOIN Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 14.8.2, “MERGE Table Problems”
Section 7.6.4, “MyISAM Table Optimization”
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.17, “mysql_fetch_field()”
Section 21.8.6.22, “mysql_field_count()”
Section 21.8.6.47, “mysql_num_fields()”
Section 21.8.6.48, “mysql_num_rows()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.11, “mysql_stmt_fetch()”
Section 21.8.10.18, “mysql_stmt_num_rows()”
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 17.2.3.1, “RANGE COLUMNS partitioning”
Section 13.2.8, “REPLACE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 13.2.9, “SELECT Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.5.3, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.28, “SHOW PROCEDURE CODE Syntax”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 13.7.5.33, “SHOW RELAYLOG EVENTS Syntax”
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 13.2.9.4, “UNION Syntax”
Section 13.2.11, “UPDATE Syntax”
Section 12.3.4, “Assignment Operators”
Section 14.2.3.6, “Avoiding the Phantom Problem Using Next-Key Locking”
Section 18.7, “Binary Logging of Stored Programs”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.16, “C API Support for Multiple Statement Execution”
Section 21.8.19, “C API Support for Prepared CALL Statements”
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.10.3, “Concurrent Inserts”
Section 5.4.4.2, “Configurable InnoDB Auto-Increment Locking”
Section 10.1.4, “Connection Character Sets and Collations”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 14.9.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.6.3, “Cursor FETCH Syntax”
Section 14.2.3.9, “Deadlock Detection and Rollback”
Section 4.5.7, “mysqlslap — Load Emulation Client”
Section 8.4.3.2, “Disadvantages of Creating Many Tables in the Same Database”
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
Section 5.1.5.2, “Dynamic System Variables”
Section 3.2, “Entering Queries”
Section 18.4.2, “Event Scheduler Configuration”
Section 10.1.7.8, “Examples of the Effect of Collation”
Section 1.8.5.4, “Foreign Key Differences”
Chapter 12, Functions and Operators
Section 8.12.5.2, “General Thread States”
Section 5.4.2, “Grouping DML Operations with Transactions”
Section 8.2.1.2, “How MySQL Optimizes WHERE Clauses”
Section 17.2.7, “How MySQL Partitioning Handles NULL”
Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”
Section 8.9.3.1, “How the Query Cache Operates”
Section 14.2.3.10, “How to Cope with Deadlocks”
Section 1.7, “How to Report Bugs or Problems”
Section 9.2.1, “Identifier Qualifiers”
Section 13.2.9.3, “Index Hint Syntax”
Section 12.14, “Information Functions”
Section 8.10.1, “Internal Locking Methods”
Section C.5.8, “Known Issues in MySQL”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 14.2.3.4, “Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 17.3.1, “Management of RANGE and LIST Partitions”
Section 8.3.5, “Multiple-Column Indexes”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Chapter 20, MySQL Performance Schema
Section 12.9.1, “Natural Language Full-Text Searches”
Section 17.3.5, “Obtaining Information About Partitions”
Section 8.3, “Optimization and Indexes”
Section C.5.6, “Optimizer-Related Issues”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.1, “Optimizing SELECT Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.13.16.3, “Optimizing Subqueries in the FROM Clause (Derived Tables)”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”
Section 4.6.3.4, “Other myisamchk Options”
Section 8.2.5, “Other Optimization Tips”
Section 5.5.1, “Overview of Online DDL”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 20.4, “Performance Schema Instrument Naming Conventions”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5.5.2, “Problems Using DATE Columns”
Section C.5.5.8, “Problems with Floating-Point Values”
Section 8.9.3.2, “Query Cache SELECT Options”
Section 8.9.3.4, “Query Cache Status and Maintenance”
Section 8.12.5.4, “Query Cache Thread States”
Section 14.5.1, “Repairing and Checking CSV Tables”
Section 16.2, “Replication Implementation”
Section 16.1.4.2, “Replication Master Options and Variables”
Section 16.4.1.3, “Replication of CREATE ... IF NOT EXISTS Statements”
Section 16.4.1.10, “Replication of Invoked Features”
Section E.1, “Restrictions on Stored Programs”
Section E.5, “Restrictions on Views”
Section 3.3.4, “Retrieving Information from a Table”
Section 3.6.7, “Searching on Two Keys”
Section 2.10.2, “Securing the Initial MySQL Accounts”
Section 3.3.4.1, “Selecting All Data”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.4, “Server System Variables”
Section C.5.5.7, “Solving Problems with No Matching Rows”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 8.2.2.2, “Speed of UPDATE Statements”
Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”
Section 5.7.1.12, “Statement Probes”
Section 18.2.1, “Stored Routine Syntax”
Section 9.1.1, “String Literals”
Section 13.2.10.8, “Subqueries in the FROM Clause”
Section 13.2.10.6, “Subqueries with EXISTS or NOT EXISTS”
Section 13.2.10.9, “Subquery Errors”
Section 13.2.10, “Subquery Syntax”
Section 8.10.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 14.6, “The ARCHIVE Storage Engine”
Section 11.4.4, “The ENUM Type”
Section 20.9.9.1, “The host_cache Table”
Section 19.4, “The INFORMATION_SCHEMA COLUMNS Table”
Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 14.8, “The MERGE Storage Engine”
Section 20.9.9.3, “The threads Table”
Section 5.2.4, “The Binary Log”
Section 6.2, “The MySQL Access Privilege System”
Section 8.9.3, “The MySQL Query Cache”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 13.2.10.1, “The Subquery as Scalar Operand”
Section 18.3.1, “Trigger Syntax”
Section 1.2, “Typographical and Syntax Conventions”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 9.4, “User-Defined Variables”
Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 12.18.6.2, “Using a Spatial Index”
Section 22.4.1.6, “Using Server Logs to Find Causes of Errors in mysqld”
Section 5.1.5, “Using System Variables”
Section 4.5.1.6.4, “Using the --safe-updates Option”
Section 10.1.12, “UTF-8 for Metadata”
Section 1.4, “What Is New in MySQL 5.6”
Section C.5.4.4, “Where MySQL Stores Temporary Files”
Section 22.2.4.8, “Writing Audit Plugins”
SELECT *
Section 11.4.3, “The BLOB and TEXT Types”
SELECT * FROM t PARTITION ()
Section 17.1, “Overview of Partitioning in MySQL”
SELECT * INTO OUTFILE 'file_name' FROM tbl_name
Section 7.2, “Database Backup Methods”
SELECT ... FOR UPDATE
Section 14.2.3.2, “InnoDB Lock Modes”
Section 14.2.3.10, “How to Cope with Deadlocks”
Section 14.2.3.4, “Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
SELECT ... FROM
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
SELECT ... FROM ... FOR UPDATE
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
SELECT ... FROM ... LOCK IN SHARE MODE
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
SELECT ... INTO
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 1.8.5.1, “SELECT INTO TABLE Differences”
Section 13.2.9, “SELECT Syntax”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 16.4.1.14, “Replication and System Functions”
SELECT ... INTO DUMPFILE
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.4, “Server System Variables”
Section 2.10.1, “Unix Postinstallation Procedures”
SELECT ... INTO OUTFILE
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 1.8.5.1, “SELECT INTO TABLE Differences”
Section 7.1, “Backup and Recovery Types”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 7.4.3, “Dumping Data in Delimited-Text Format with mysqldump”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”
Section 1.2, “Typographical and Syntax Conventions”
Section E.10.6, “Windows Platform Limitations”
SELECT ... INTO OUTFILE 'file_name'
Section 13.2.9.1, “SELECT ... INTO Syntax”
SELECT ... INTO var_list
Section E.1, “Restrictions on Stored Programs”
Section 13.6.4, “Variables in Stored Programs”
SELECT ... LOCK IN SHARE MODE
Section 14.2.3.2, “InnoDB Lock Modes”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.2.3.4, “Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
SELECT ... PARTITION
Section 1.4, “What Is New in MySQL 5.6”
SELECT DISTINCT
Section 8.12.5.2, “General Thread States”
Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”
Section E.4, “Restrictions on Subqueries”
SELECT HIGH_PRIORITY
Section 8.2.5, “Other Optimization Tips”
SET
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section 12.3.4, “Assignment Operators”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 18.1, “Defining Stored Programs”
Section 4.6.12, “mysql_find_rows — Extract SQL Statements from Files”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 5.1.5.2, “Dynamic System Variables”
Section 18.4.2, “Event Scheduler Configuration”
Chapter 12, Functions and Operators
Section 13.6.7.7.3, “How the Diagnostics Area is Populated”
Section 12.14, “Information Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 17.6.4, “Partitioning and Locking”
Section 6.3.6, “Password Expiration and Sandbox Mode”
Section 8.9.3.3, “Query Cache Configuration”
Section 16.1.4.2, “Replication Master Options and Variables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.2.10, “Subquery Syntax”
Section 18.3.1, “Trigger Syntax”
Section 9.4, “User-Defined Variables”
Section 4.2.3.5, “Using Options to Set Program Variables”
Section 5.1.5, “Using System Variables”
Section 4.5.1.6.4, “Using the --safe-updates Option”
Section 13.6.4, “Variables in Stored Programs”
SET @@global.gtid_purged
Section 4.5.4, “mysqldump — A Database Backup Program”
SET autocommit
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 13.3, “MySQL Transactional and Locking Statements”
SET GLOBAL
Section 13.7.1.4, “GRANT Syntax”
Section 5.1.5.2, “Dynamic System Variables”
Section 8.9.2.2, “Multiple Key Caches”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.5, “Using System Variables”
SET GLOBAL sql_slave_skip_counter
Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Syntax”
SET GLOBAL TRANSACTION
Section 13.3.6, “SET TRANSACTION Syntax”
SET NAMES
Section 10.1.6, “Character Set for Error Messages”
Section 12.2, “Type Conversion in Expression Evaluation”
SET PASSWORD
Section 13.7.1.1, “ALTER USER Syntax”
Section C.5.2.4, “Client does not support authentication protocol”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 6.1.2.1, “End-User Guidelines for Password Security”
Section 12.14, “Information Functions”
Section 2.5.1, “Installing MySQL from RPM Packages on Linux”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 6.3.6, “Password Expiration and Sandbox Mode”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 22.2.3.8, “Password-Validation Plugins”
Section 6.1.2.3, “Passwords and Logging”
Section 6.2.2, “Privilege System Grant Tables”
Section 16.4.1.32, “Replication and Variables”
Section 16.4.1.6, “Replication of CURRENT_USER()”
Section 2.10.2, “Securing the Initial MySQL Accounts”
Section 5.1.4, “Server System Variables”
Section 6.2.3, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 6.1.2.6, “The Password Validation Plugin”
Section 6.3.7.2, “The SHA-256 Authentication Plugin”
Section 1.4, “What Is New in MySQL 5.6”
Section 6.2.6, “When Privilege Changes Take Effect”
SET SESSION
Section 5.1.5.2, “Dynamic System Variables”
Section 5.1.5, “Using System Variables”
SET SESSION TRANSACTION
Section 13.3.6, “SET TRANSACTION Syntax”
SET sql_mode='mode_value'
Section 1.8.2, “Selecting SQL Modes”
SET TIMESTAMP = value
Section 8.12.5, “Examining Thread Information”
SET TRANSACTION
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.3.1, “The InnoDB Transaction Model and Locking”
SET TRANSACTION ISOLATION LEVEL
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
SHOW
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 21.8.10.28, “mysql_stmt_store_result()”
Section 21.8.6.70, “mysql_store_result()”
Section 21.8.6.72, “mysql_use_result()”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 13.7.5.25, “SHOW OPEN TABLES Syntax”
Section 13.7.5.38, “SHOW TABLES Syntax”
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 21.8.4, “C API Data Structures”
Section 21.8.5, “C API Function Overview”
Section 3.3, “Creating and Using a Database”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
Section 19.32, “Extensions to SHOW Statements”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 20.1, “Performance Schema Quick Start”
Section E.1, “Restrictions on Stored Programs”
Section 13.4.1, “SQL Statements for Controlling Master Servers”
Section 19.1, “The INFORMATION_SCHEMA CHARACTER_SETS Table”
Section 19.3, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table”
Section 19.2, “The INFORMATION_SCHEMA COLLATIONS Table”
Section 19.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
Section 19.4, “The INFORMATION_SCHEMA COLUMNS Table”
Section 19.6, “The INFORMATION_SCHEMA ENGINES Table”
Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 19.8, “The INFORMATION_SCHEMA FILES Table”
Section 19.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”
Section 19.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”
Section 19.11, “The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table”
Section 19.14, “The INFORMATION_SCHEMA PARTITIONS Table”
Section 19.15, “The INFORMATION_SCHEMA PLUGINS Table”
Section 19.16, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 19.17, “The INFORMATION_SCHEMA PROFILING Table”
Section 19.18, “The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table”
Section 19.21, “The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table”
Section 19.20, “The INFORMATION_SCHEMA SCHEMATA Table”
Section 19.22, “The INFORMATION_SCHEMA STATISTICS Table”
Section 19.25, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”
Section 19.26, “The INFORMATION_SCHEMA TABLE_PRIVILEGES Table”
Section 19.23, “The INFORMATION_SCHEMA TABLES Table”
Section 19.24, “The INFORMATION_SCHEMA TABLESPACES Table”
Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 19.28, “The INFORMATION_SCHEMA USER_PRIVILEGES Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 5.2.4, “The Binary Log”
Section 10.1.12, “UTF-8 for Metadata”
SHOW AUTHORS
Section 13.7.5.1, “SHOW AUTHORS Syntax”
SHOW BINARY LOGS
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.7.5.2, “SHOW BINARY LOGS Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1, “SQL Statements for Controlling Master Servers”
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”
SHOW BINLOG EVENTS
Section 13.7.5.3, “SHOW BINLOG EVENTS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 16.1.3.1, “GTID Concepts”
Section E.3, “Restrictions on Server-Side Cursors”
Section 13.4.1, “SQL Statements for Controlling Master Servers”
SHOW CHARACTER SET
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.7.5.4, “SHOW CHARACTER SET Syntax”
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 10.1.2, “Character Sets and Collations in MySQL”
Section 10.1.14, “Character Sets and Collations That MySQL Supports”
Section 19.32, “Extensions to SHOW Statements”
SHOW COLLATION
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.7.5.5, “SHOW COLLATION Syntax”
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 21.8.4, “C API Data Structures”
Section 10.5, “Character Set Configuration”
Section 10.1.2, “Character Sets and Collations in MySQL”
Section 10.1.3.5, “Character String Literal Character Set and Collation”
Section 10.4.2, “Choosing a Collation ID”
Section 10.1.3.4, “Column Character Set and Collation”
Section 10.1.3.2, “Database Character Set and Collation”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 10.1.3.3, “Table Character Set and Collation”
Section 19.3, “The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table”
Section 19.2, “The INFORMATION_SCHEMA COLLATIONS Table”
SHOW COLUMNS
Section 13.8.2, “EXPLAIN Syntax”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 19.32, “Extensions to SHOW Statements”
Section 8.2.1.3, “Optimizing LIMIT Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
SHOW COLUMNS FROM tbl_name LIKE 'enum_col'
Section 11.4.4, “The ENUM Type”
SHOW CONTRIBUTORS
Section 13.7.5.7, “SHOW CONTRIBUTORS Syntax”
SHOW COUNT()
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
SHOW CREATE DATABASE
Section 13.7.5.8, “SHOW CREATE DATABASE Syntax”
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 5.1.4, “Server System Variables”
SHOW CREATE EVENT
Section 13.7.5.9, “SHOW CREATE EVENT Syntax”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 18.4.4, “Event Metadata”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
SHOW CREATE FUNCTION
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.7.5.10, “SHOW CREATE FUNCTION Syntax”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”
Section 1.7, “How to Report Bugs or Problems”
Section 18.2.3, “Stored Routine Metadata”
SHOW CREATE PROCEDURE
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.7.5.10, “SHOW CREATE FUNCTION Syntax”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”
Section 1.7, “How to Report Bugs or Problems”
Section 18.2.3, “Stored Routine Metadata”
SHOW CREATE SCHEMA
Section 13.7.5.8, “SHOW CREATE DATABASE Syntax”
SHOW CREATE TABLE
Section 13.1.6.1, “ALTER TABLE Partition Operations”
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 17.2.5, “KEY Partitioning”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.12, “SHOW CREATE TABLE Syntax”
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 11.5, “Data Type Default Values”
Section 3.4, “Getting Information About Databases and Tables”
Section 14.9.2, “How to Create FEDERATED Tables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 17.3.1, “Management of RANGE and LIST Partitions”
Section 17.3.5, “Obtaining Information About Partitions”
Section 2.11.4, “Rebuilding or Repairing Tables or Indexes”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.1.14.3, “Silent Column Specification Changes”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 3.6.6, “Using Foreign Keys”
SHOW CREATE TRIGGER
Section 13.7.5.13, “SHOW CREATE TRIGGER Syntax”
SHOW CREATE VIEW
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section E.5, “Restrictions on Views”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 18.5.4, “View Metadata”
SHOW DATABASES
Section 13.1.8, “CREATE DATABASE Syntax”
Section 13.7.1.4, “GRANT Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 13.7.5.15, “SHOW DATABASES Syntax”
Section 3.3, “Creating and Using a Database”
Section 19.32, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and Tables”
Section 9.2.2, “Identifier Case Sensitivity”
Section 20.2.1, “Performance Schema Build Configuration”
Section 6.2.2, “Privilege System Grant Tables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
SHOW ENGINE
Section 13.7.5.16, “SHOW ENGINE Syntax”
SHOW ENGINE INNODB MUTEX
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 5.1.4, “Server System Variables”
SHOW ENGINE INNODB STATUS
Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”
Section 14.2.4.4.1, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.4.4, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 14.2.3.12.6, “Adaptive Hash Indexes”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 14.2.3.10, “How to Cope with Deadlocks”
Section 14.2.2.5, “Moving or Copying InnoDB Tables to Another Machine”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section C.1, “Sources of Error Information”
Section 14.2.5.1, “Support for Read-Only Media”
Section 19.30.16, “The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
SHOW ENGINE PERFORMANCE_SCHEMA STATUS
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 20.5, “Performance Schema Status Monitoring”
SHOW ENGINES
Section 13.7.5.17, “SHOW ENGINES Syntax”
Section 14.2.2.7, “Checking InnoDB Availability”
Section 20.2.1, “Performance Schema Build Configuration”
Section 20.1, “Performance Schema Quick Start”
Section 2.3.4.3, “Selecting a MySQL Server Type”
Section 5.1.4, “Server System Variables”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 1.4, “What Is New in MySQL 5.6”
SHOW ERRORS
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
Section 5.4.5, “InnoDB and FOREIGN KEY Constraints”
Section 13.6.7.4.3, “RESIGNAL with a Condition Value and Optional New Signal Information”
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.6.7.7.3, “How the Diagnostics Area is Populated”
Section 5.1.4, “Server System Variables”
Section 13.6.7.5.1, “Signal Condition Information Items”
Section C.1, “Sources of Error Information”
SHOW EVENTS
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 18.4.4, “Event Metadata”
Section 16.4.1.10, “Replication of Invoked Features”
Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
SHOW FULL COLUMNS
Section 13.1.14, “CREATE TABLE Syntax”
Section 10.1.9.3, “SHOW Statements and INFORMATION_SCHEMA”
Section 19.5, “The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table”
SHOW FULL PROCESSLIST
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 8.12.5, “Examining Thread Information”
SHOW FULL TABLES
Section 13.7.5.38, “SHOW TABLES Syntax”
Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”
SHOW FUNCTION CODE
Section 13.7.5.20, “SHOW FUNCTION CODE Syntax”
Section 13.7.5.28, “SHOW PROCEDURE CODE Syntax”
SHOW FUNCTION STATUS
Section 13.7.5.21, “SHOW FUNCTION STATUS Syntax”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 18.2.3, “Stored Routine Metadata”
SHOW GLOBAL STATUS
Section 5.1.4, “Server System Variables”
Section 19.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”
SHOW GLOBAL VARIABLES
Section 19.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”
SHOW GRANTS
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.7.5.22, “SHOW GRANTS Syntax”
Section 13.7.5.27, “SHOW PRIVILEGES Syntax”
Section 6.3.2, “Adding User Accounts”
Section 6.2.2, “Privilege System Grant Tables”
Section 6.1.1, “Security Guidelines”
Section 6.2, “The MySQL Access Privilege System”
SHOW INDEX
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.23, “SHOW INDEX Syntax”
Section 13.2.9.3, “Index Hint Syntax”
Section 14.2.7, “Limits on InnoDB Tables”
Section 4.6.3.4, “Other myisamchk Options”
Section 19.22, “The INFORMATION_SCHEMA STATISTICS Table”
Section 19.25, “The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table”
SHOW MASTER LOGS
Section 13.7.5.2, “SHOW BINARY LOGS Syntax”
SHOW MASTER STATUS
Section 13.7.5.24, “SHOW MASTER STATUS Syntax”
Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”
Section 16.1.3.1, “GTID Concepts”
Section 16.4.5, “How to Report Replication Bugs or Problems”
Section 16.1.1.4, “Obtaining the Replication Master Binary Log Coordinates”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1, “SQL Statements for Controlling Master Servers”
Section 16.4.4, “Troubleshooting Replication”
SHOW OPEN TABLES
Section 13.7.5.25, “SHOW OPEN TABLES Syntax”
SHOW PLUGINS
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 13.7.5.26, “SHOW PLUGINS Syntax”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.11.1, “Installing the Audit Log Plugin”
Section 6.3.7.3.1, “Installing the PAM Authentication Plugin”
Section 6.3.7.4.1, “Installing the Windows Authentication Plugin”
Section 5.1.8.2, “Obtaining Server Plugin Information”
Section 6.1.2.6.1, “Password Validation Plugin Installation”
Section 6.3.7, “Pluggable Authentication”
Section 22.2.1, “Plugin API Characteristics”
Section 22.2.2, “Plugin API Components”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”
Section 19.15, “The INFORMATION_SCHEMA PLUGINS Table”
Section 8.11.6.1, “Thread Pool Components and Installation”
Section 22.2.4.6, “Writing INFORMATION_SCHEMA Plugins”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.5, “Writing Daemon Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4.10, “Writing Password-Validation Plugins”
Section 22.2.4.9.1, “Writing the Server-Side Authentication Plugin”
SHOW PRIVILEGES
Section 13.7.5.27, “SHOW PRIVILEGES Syntax”
SHOW PROCEDURE CODE
Section 13.7.5.20, “SHOW FUNCTION CODE Syntax”
Section 13.7.5.28, “SHOW PROCEDURE CODE Syntax”
SHOW PROCEDURE STATUS
Section 13.7.5.21, “SHOW FUNCTION STATUS Syntax”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 18.2.3, “Stored Routine Metadata”
SHOW PROCESSLIST
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.7.1.4, “GRANT Syntax”
Section 14.2.3.14, “InnoDB Error Handling”
Section 13.7.6.4, “KILL Syntax”
Section 21.8.6.43, “mysql_list_processes()”
Section 13.7.5.30, “SHOW PROCESSLIST Syntax”
Section 13.7.5.31, “SHOW PROFILE Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section C.5.2.7, “Too many connections”
Section 16.1.5.1, “Checking Replication Status”
Section 5.7.1.2, “Command Probes”
Section 5.7.1.1, “Connection Probes”
Section 16.3.9, “Delayed Replication”
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 18.4.2, “Event Scheduler Configuration”
Section 8.12.5, “Examining Thread Information”
Section 8.12.5.2, “General Thread States”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 20.4, “Performance Schema Instrument Naming Conventions”
Section 20.9.4, “Performance Schema Stage Event Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.7.1.6, “Query Execution Probes”
Section 5.7.1.3, “Query Probes”
Section 16.2.1, “Replication Implementation Details”
Section 16.3.6, “Switching Masters During Failover”
Section 19.16, “The INFORMATION_SCHEMA PROCESSLIST Table”
Section 20.9.9.3, “The threads Table”
Section 16.4.4, “Troubleshooting Replication”
SHOW PROFILE
Section 13.7.5.31, “SHOW PROFILE Syntax”
Section 13.7.5.32, “SHOW PROFILES Syntax”
Section 8.12.5, “Examining Thread Information”
Section 8.12.5.2, “General Thread States”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”
Section 19.17, “The INFORMATION_SCHEMA PROFILING Table”
SHOW PROFILES
Section 13.7.5.31, “SHOW PROFILE Syntax”
Section 13.7.5.32, “SHOW PROFILES Syntax”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”
Section 19.17, “The INFORMATION_SCHEMA PROFILING Table”
SHOW RELAYLOG EVENTS
Section 13.7.5.3, “SHOW BINLOG EVENTS Syntax”
Section 13.7.5.33, “SHOW RELAYLOG EVENTS Syntax”
Section 13.4.2, “SQL Statements for Controlling Slave Servers”
SHOW SCHEMAS
Section 13.7.5.15, “SHOW DATABASES Syntax”
SHOW SESSION STATUS
Section 19.9, “The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables”
SHOW SESSION VARIABLES
Section 19.10, “The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables”
SHOW SLAVE HOSTS
Section 13.7.5.34, “SHOW SLAVE HOSTS Syntax”
Section 16.1.5.1, “Checking Replication Status”
Section 16.1.4, “Replication and Binary Logging Options and Variables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 13.4.1, “SQL Statements for Controlling Master Servers”
SHOW SLAVE STATUS
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 16.1.5.1, “Checking Replication Status”
Section 16.3.9, “Delayed Replication”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.3.1, “GTID Concepts”
Section 16.4.5, “How to Report Replication Bugs or Problems”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.4, “Replication and Binary Logging Options and Variables”
Section 16.2.1, “Replication Implementation Details”
Section 8.12.5.6, “Replication Slave I/O Thread States”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.3.7, “Setting Up Replication Using SSL”
Section 16.4.1.25, “Slave Errors During Replication”
Section 16.2.2.2, “Slave Status Logs”
Section C.1, “Sources of Error Information”
Section 13.4.2, “SQL Statements for Controlling Slave Servers”
Section 16.4.4, “Troubleshooting Replication”
SHOW STATUS
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.7.5.36, “SHOW STATUS Syntax”
Section 22.2.1, “Plugin API Characteristics”
Section 8.9.3.4, “Query Cache Status and Maintenance”
Section 16.4.1.21, “Replication and Temporary Tables”
Section 16.2.1, “Replication Implementation Details”
Section 16.4.1.27, “Replication Retries and Timeouts”
Section E.1, “Restrictions on Stored Programs”
Section 16.3.8.3, “Semisynchronous Replication Monitoring”
Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”
Section 22.2.4.2.2, “Server Plugin Status and System Variables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.13.5, “Use of Index Extensions”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4, “Writing Plugins”
SHOW STATUS LIKE 'perf%'
Section 20.5, “Performance Schema Status Monitoring”
SHOW TABLE STATUS
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.7.5.6, “SHOW COLUMNS Syntax”
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 14.2.5.8, “Controlling Optimizer Statistics Estimation”
Section 5.4, “Creating and Using InnoDB Tables and Indexes”
Section 5.3.2, “File Space Management”
Section 14.2.7, “Limits on InnoDB Tables”
Section 17.3.5, “Obtaining Information About Partitions”
Section 14.2.3.12.7, “Physical Row Structure”
Section 14.6, “The ARCHIVE Storage Engine”
Section 5.4.4.1, “Traditional InnoDB Auto-Increment Locking”
SHOW TABLES
Chapter 19, INFORMATION_SCHEMA Tables
Section 13.7.5.37, “SHOW TABLE STATUS Syntax”
Section 13.7.5.38, “SHOW TABLES Syntax”
Section C.5.2.16, “Table 'tbl_name' doesn't exist”
Section C.5.7.2, “TEMPORARY Table Problems”
Section 3.3.2, “Creating a Table”
Section 19.32, “Extensions to SHOW Statements”
Section 9.2.2, “Identifier Case Sensitivity”
Section 9.2.3, “Mapping of Identifiers to File Names”
Section 5.1.3, “Server Command Options”
SHOW TRIGGERS
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 18.3.2, “Trigger Metadata”
SHOW VARIABLES
Section 13.7.5.40, “SHOW VARIABLES Syntax”
Section 22.2.4.3, “Compiling and Installing Plugin Libraries”
Section 18.4.2, “Event Scheduler Configuration”
Section 20.2.2, “Performance Schema Startup Configuration”
Section 22.2.1, “Plugin API Characteristics”
Section 16.1.4.2, “Replication Master Options and Variables”
Section 5.6, “Running Multiple MySQL Instances on One Machine”
Section 16.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.4, “Server System Variables”
Section 5.1.5, “Using System Variables”
Section 22.2.4.10, “Writing Password-Validation Plugins”
Section 22.2.4, “Writing Plugins”
SHOW WARNINGS
Section 13.1.6, “ALTER TABLE Syntax”
Section 13.1.21, “DROP PROCEDURE and DROP FUNCTION Syntax”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.6.7.3, “GET DIAGNOSTICS Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 1.8.6.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 10.4.4.3, “Diagnostics During Index.xml Parsing”
Section 13.6.7.5.2, “Effect of Signals on Handlers, Cursors, and Statements”
Section 9.2.4, “Function Name Parsing and Resolution”
Section 13.6.7.7.3, “How the Diagnostics Area is Populated”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 8.13.16.4, “Optimizing Subqueries with EXISTS Strategy”
Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”
Section 8.13.16.2, “Optimizing Subqueries with Subquery Materialization”
Section 5.1.4, “Server System Variables”
Section 13.6.7.5.1, “Signal Condition Information Items”
Section C.1, “Sources of Error Information”
SIGNAL
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.7.4, “RESIGNAL Syntax”
Section 13.6.7.5, “SIGNAL Syntax”
Section 13.6.7, “Condition Handling”
Section 13.6.7.7.2, “Diagnostics Area Information Items”
Section 13.6.7.5.2, “Effect of Signals on Handlers, Cursors, and Statements”
Section 13.6.7.7.3, “How the Diagnostics Area is Populated”
Section 12.14, “Information Functions”
Section E.2, “Restrictions on Condition Handling”
Section E.1, “Restrictions on Stored Programs”
Section 13.6.7.6, “Scope Rules for Handlers”
Section 13.6.7.5.1, “Signal Condition Information Items”
START SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.2.3, “RESET SLAVE Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section 16.3.9, “Delayed Replication”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.3.1, “GTID Concepts”
Section 6.1.2.3, “Passwords and Logging”
Section 16.1.5.2, “Pausing Replication on the Slave”
Section 16.3.4, “Replicating Different Databases to Different Slaves”
Section 16.1.4, “Replication and Binary Logging Options and Variables”
Section 16.2.1, “Replication Implementation Details”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 16.4.1.25, “Slave Errors During Replication”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 16.3.6, “Switching Masters During Failover”
Section 16.4.4, “Troubleshooting Replication”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
Section 1.4, “What Is New in MySQL 5.6”
START SLAVE UNTIL
Section 16.1.4.3, “Replication Slave Options and Variables”
START SLAVE UNTIL SQL_AFTER_MTS_GAPS
Section 16.1.4.3, “Replication Slave Options and Variables”
START TRANSACTION
Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”
Section 14.2.3.14, “InnoDB Error Handling”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 5.4.2, “Grouping DML Operations with Transactions”
Section 14.2.3.10, “How to Cope with Deadlocks”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 14.2.3.4, “Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 13.3, “MySQL Transactional and Locking Statements”
Section E.1, “Restrictions on Stored Programs”
Section 16.3.8, “Semisynchronous Replication”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 14.2.3.1, “The InnoDB Transaction Model and Locking”
Section 18.3.1, “Trigger Syntax”
Section 13.3.7.2, “XA Transaction States”
START TRANSACTION READ ONLY
Section 1.4, “What Is New in MySQL 5.6”
START TRANSACTION WITH CONSISTENT SNAPSHOT
Section 14.2.3.3, “Consistent Nonlocking Reads”
STOP SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.4.2.3, “RESET SLAVE Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section 16.1.5.1, “Checking Replication Status”
Section 16.3.9, “Delayed Replication”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication Environment”
Section 16.1.5.2, “Pausing Replication on the Slave”
Section 16.1.4, “Replication and Binary Logging Options and Variables”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 16.3.6, “Switching Masters During Failover”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
Section 1.4, “What Is New in MySQL 5.6”
STOP SLAVE SQL_THREAD
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
T
TRUNCATE TABLE
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.2.2, “DELETE Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.2.4, “HANDLER Syntax”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.8.2, “MERGE Table Problems”
Section 13.1.27, “TRUNCATE TABLE Syntax”
Section 14.3.3.3, “Compressed Table Characteristics”
Section 20.9.8.7, “Connection Summary Tables”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 20.2.3.2.1, “Event Pre-Filtering”
Section 20.9.8.1, “Event Wait Summary Tables”
Section 20.9.8.5, “File I/O Summary Tables”
Section 8.9.3.1, “How the Query Cache Operates”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 17.3.4, “Maintenance of Partitions”
Section 17.3.1, “Management of RANGE and LIST Partitions”
Section 20.9.8.4, “Object Wait Summary Table”
Section 8.5.6, “Optimizing InnoDB DDL Operations”
Section 20.9.6, “Performance Schema Connection Tables”
Section 20.2.3.1, “Performance Schema Event Timing”
Section 20.8, “Performance Schema General Table Characteristics”
Section 20.9.8, “Performance Schema Summary Tables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.20, “Replication and MEMORY Tables”
Section 16.4.1.31, “Replication and TRUNCATE TABLE”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 20.9.8.8, “Socket Summary Tables”
Section 20.9.8.2, “Stage Summary Tables”
Section 20.9.8.3, “Statement Summary Tables”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 20.9.6.1, “The accounts Table”
Section 20.9.4.1, “The events_stages_current Table”
Section 20.9.4.2, “The events_stages_history Table”
Section 20.9.4.3, “The events_stages_history_long Table”
Section 20.9.5.1, “The events_statements_current Table”
Section 20.9.5.2, “The events_statements_history Table”
Section 20.9.5.3, “The events_statements_history_long Table”
Section 20.9.3.1, “The events_waits_current Table”
Section 20.9.3.2, “The events_waits_history Table”
Section 20.9.3.3, “The events_waits_history_long Table”
Section 20.9.9.1, “The host_cache Table”
Section 20.9.6.2, “The hosts Table”
Section 19.30.8, “The INFORMATION_SCHEMA INNODB_SYS_INDEXES Table”
Section 19.30.7, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 14.4, “The MEMORY Storage Engine”
Section 20.9.1.5, “The setup_timers Table”
Section 20.9.8.6.2, “The table_io_waits_summary_by_index_usage Table”
Section 20.9.8.6.1, “The table_io_waits_summary_by_table Table”
Section 20.9.8.6.3, “The table_lock_waits_summary_by_table Table”
Section 20.9.6.3, “The users Table”
Section 14.2.9.6, “Using the InnoDB memcached Plugin with Replication”
Section 21.8.14.2, “What Results You Can Get from a Query”
TRUNCATE TABLE host_cache
Section 20.9.9.1, “The host_cache Table”
U
UNINSTALL PLUGIN
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 13.7.5.26, “SHOW PLUGINS Syntax”
Section 13.7.3.4, “UNINSTALL PLUGIN Syntax”
Section 4.4.4, “mysql_plugin — Configure MySQL Server Plugins”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 20.14, “Performance Schema and Plugins”
Section 14.12.1, “Pluggable Storage Engine Architecture”
Section 22.2.2, “Plugin API Components”
Section 22.2.4.2.1, “Server Plugin Library and Plugin Descriptors”
Section 19.15, “The INFORMATION_SCHEMA PLUGINS Table”
Section 22.2.4.6, “Writing INFORMATION_SCHEMA Plugins”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.5, “Writing Daemon Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4.10, “Writing Password-Validation Plugins”
Section 22.2.4.9.1, “Writing the Server-Side Authentication Plugin”
UNION
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.9, “SELECT Syntax”
Section 13.2.9.4, “UNION Syntax”
Section 21.8.4, “C API Data Structures”
Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”
Section 12.14, “Information Functions”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 11.2.5, “Numeric Type Attributes”
Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”
Section E.5, “Restrictions on Views”
Section 10.1.9.1, “Result Strings”
Section 3.6.7, “Searching on Two Keys”
Section 5.1.6, “Server Status Variables”
Section 13.2.10, “Subquery Syntax”
Section 14.8, “The MERGE Storage Engine”
Section 8.13.1.1, “The Range Access Method for Single-Part Indexes”
Section 18.5.3, “Updatable and Insertable Views”
Section 18.5.2, “View Processing Algorithms”
Section 12.11, “XML Functions”
UNION ALL
Section 13.2.9.4, “UNION Syntax”
Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”
Section 12.14, “Information Functions”
Section 18.5.3, “Updatable and Insertable Views”
Section 18.5.2, “View Processing Algorithms”
UNION DISTINCT
Section 13.2.9.4, “UNION Syntax”
UNLOCK TABLES
Section 13.7.6.3, “FLUSH Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 14.2.3.10, “How to Cope with Deadlocks”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 14.2.7, “Limits on InnoDB Tables”
Section E.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit Commit”
Section 8.11.1, “System Factors and Startup Parameter Tuning”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 1.8.5.3, “Transaction and Atomic Operation Differences”
UPDATE
Section 4.5.1.1, “mysql Options”
Section 4.6.8.2, “mysqlbinlog Row Event Display”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.1.16, “CREATE VIEW Syntax”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 13.7.1.4, “GRANT Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.3.5, “InnoDB Record, Gap, and Next-Key Locks”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.2.9.2, “JOIN Syntax”
Section 13.7.6.4, “KILL Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 21.8.6.1, “mysql_affected_rows()”
Section 21.8.6.35, “mysql_info()”
Section 21.8.6.37, “mysql_insert_id()”
Section 21.8.6.48, “mysql_num_rows()”
Section 21.8.6.49, “mysql_options()”
Section 21.8.10.10, “mysql_stmt_execute()”
Section 21.8.10.16, “mysql_stmt_insert_id()”
Section 21.8.10.18, “mysql_stmt_num_rows()”
Section 1.8.6.1, “PRIMARY KEY and UNIQUE Index Constraints”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 1.8.5.2, “UPDATE Differences”
Section 13.2.11, “UPDATE Syntax”
Section 6.2.5, “Access Control, Stage 2: Request Verification”
Section 6.3.2, “Adding User Accounts”
Section 16.1.2.1, “Advantages and Disadvantages of Statement-Based and Row-Based Replication”
Section 6.3.5, “Assigning Account Passwords”
Section 12.3.4, “Assignment Operators”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 21.8.5, “C API Function Overview”
Section 21.8.9, “C API Prepared Statement Function Overview”
Section 21.8.16, “C API Support for Multiple Statement Execution”
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 6.2.7, “Causes of Access-Denied Errors”
Section 10.1.13, “Column Character Set Conversion”
Section 5.4.4.2, “Configurable InnoDB Auto-Increment Locking”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 1.8.6.3, “Constraints on Invalid Data”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 14.9.2.1, “Creating a FEDERATED Table Using CONNECTION”
Section 11.5, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Chapter 12, Functions and Operators
Section 8.12.5.2, “General Thread States”
Section 8.2.1.2, “How MySQL Optimizes WHERE Clauses”
Section 8.9.3.1, “How the Query Cache Operates”
Section 12.14, “Information Functions”
Section 8.10.1, “Internal Locking Methods”
Section C.5.8, “Known Issues in MySQL”
Section 14.2.3.4, “Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 12.16, “Miscellaneous Functions”
Section 1.8.4, “MySQL Extensions to Standard SQL”
Section 8.2.2, “Optimizing DML Statements”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 5.5.1, “Overview of Online DDL”
Section 17.1, “Overview of Partitioning in MySQL”
Section 17.5, “Partition Selection”
Section 17.6.4, “Partitioning and Locking”
Section 20.2.2, “Performance Schema Startup Configuration”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.5.5.2, “Problems Using DATE Columns”
Section 16.4.1.15, “Replication and LIMIT”
Section 16.4.1.23, “Replication and the Query Optimizer”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section C.5.4.1.2, “Resetting the Root Password: Unix Systems”
Section C.5.4.1.1, “Resetting the Root Password: Windows Systems”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section E.5, “Restrictions on Views”
Section 13.2.10.11, “Rewriting Subqueries as Joins”
Section 2.10.2, “Securing the Initial MySQL Accounts”
Section 3.3.4.1, “Selecting All Data”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 16.4.1.25, “Slave Errors During Replication”
Section 8.2.2.2, “Speed of UPDATE Statements”
Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”
Section 5.7.1.12, “Statement Probes”
Section 13.2.10.9, “Subquery Errors”
Section 13.2.10, “Subquery Syntax”
Section 8.10.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and Conditions”
Section 10.1.7.6, “The _bin and binary Collations”
Section 14.6, “The ARCHIVE Storage Engine”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 14.8, “The MERGE Storage Engine”
Section 14.3, “The MyISAM Storage Engine”
Section 5.2.4, “The Binary Log”
Section 6.2, “The MySQL Access Privilege System”
Section 5.1.12, “The Shutdown Process”
Section 18.3.1, “Trigger Syntax”
Section 18.5.3, “Updatable and Insertable Views”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
Section 4.5.1.6.4, “Using the --safe-updates Option”
Section 18.3, “Using Triggers”
Section 1.4, “What Is New in MySQL 5.6”
Section 21.8.14.2, “What Results You Can Get from a Query”
Section 6.2.6, “When Privilege Changes Take Effect”
UPDATE ... ()
Section 14.2.3.3, “Consistent Nonlocking Reads”
UPDATE ... WHERE ...
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
UPDATE IGNORE
Section 13.2.11, “UPDATE Syntax”
UPDATE t1,t2 ...
Section 5.7.1.12, “Statement Probes”
USE
Section 4.5.1.1, “mysql Options”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Chapter 19, INFORMATION_SCHEMA Tables
Section 16.1.4.4, “Binary Log Options and Variables”
Section 7.4.5.2, “Copy a Database from one Server to Another”
Section 3.3.1, “Creating and Selecting a Database”
Section 3.3, “Creating and Using a Database”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 7.4.1, “Dumping Data in SQL Format with mysqldump”
Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”
Section 13.2.9.3, “Index Hint Syntax”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 18.2.1, “Stored Routine Syntax”
USE db2
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
USE db_name
Section 4.5.1.1, “mysql Options”
USE test
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
W
WHILE
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.8, “WHILE Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.2, “Statement Label Syntax”
X
XA COMMIT
Section 5.1.4, “Server System Variables”
Section 13.3.7.2, “XA Transaction States”
XA END
Section E.6, “Restrictions on XA Transactions”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”
XA PREPARE
Section 13.3.7.2, “XA Transaction States”
XA RECOVER
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”
XA ROLLBACK
Section 5.1.4, “Server System Variables”
Section 13.3.7.2, “XA Transaction States”
XA START
Section E.6, “Restrictions on XA Transactions”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”
System Variable Index
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W
A
audit_log_buffer_size
Section 6.3.11.3, “Audit Log Plugin Logging Control”
Section 6.3.11.4, “Audit Log Plugin Options and Variables”
audit_log_file
Section 6.3.11.3, “Audit Log Plugin Logging Control”
Section 6.3.11.4, “Audit Log Plugin Options and Variables”
Section 6.3.11.1, “Installing the Audit Log Plugin”
Section 6.3.11, “MySQL Enterprise Audit Log Plugin”
audit_log_flush
Section 6.3.11.3, “Audit Log Plugin Logging Control”
Section 6.3.11.4, “Audit Log Plugin Options and Variables”
audit_log_policy
Section 6.3.11.3, “Audit Log Plugin Logging Control”
Section 6.3.11.4, “Audit Log Plugin Options and Variables”
Section 6.3.11, “MySQL Enterprise Audit Log Plugin”
audit_log_rotate_on_size
Section 6.3.11.3, “Audit Log Plugin Logging Control”
Section 6.3.11.4, “Audit Log Plugin Options and Variables”
audit_log_strategy
Section 6.3.11.3, “Audit Log Plugin Logging Control”
Section 6.3.11.4, “Audit Log Plugin Options and Variables”
authentication_windows_log_level
Section 5.1.4, “Server System Variables”
Section 6.3.7.4.2, “Using the Windows Authentication Plugin”
authentication_windows_use_principal_name
Section 5.1.4, “Server System Variables”
Section 6.3.7.4.2, “Using the Windows Authentication Plugin”
auto_increment_increment
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 16.1.4.2, “Replication Master Options and Variables”
Section 5.4.4.1, “Traditional InnoDB Auto-Increment Locking”
Section 3.6.9, “Using AUTO_INCREMENT”
auto_increment_offset
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 16.1.4.2, “Replication Master Options and Variables”
Section 5.4.4.1, “Traditional InnoDB Auto-Increment Locking”
Section 3.6.9, “Using AUTO_INCREMENT”
AUTOCOMMIT
Section 16.4.1.29, “Replication and Transactions”
autocommit
Section 13.2.2, “DELETE Syntax”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 14.2.3.9, “Deadlock Detection and Rollback”
Section 5.5.5, “Examples of Online DDL”
Section 13.3.5.1, “Interaction of Table Locking and Transactions”
Section 14.2.7, “Limits on InnoDB Tables”
Section 14.2.3.4, “Locking Reads (SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE)”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 16.4.1.29, “Replication and Transactions”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section 5.1.4, “Server System Variables”
Section 8.11.6.2, “Thread Pool Operation”
Section 1.8.5.3, “Transaction and Atomic Operation Differences”
automatic_sp_privileges
Section 13.1.4, “ALTER PROCEDURE Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL Privileges”
B
back_log
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.4, “Server System Variables”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
basedir
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 5.1.4, “Server System Variables”
big_tables
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.6”
bind_address
Section 5.1.4, “Server System Variables”
binlog_cache_size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”
Section 5.2.4, “The Binary Log”
binlog_checksum
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.2.4, “The Binary Log”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 1.4, “What Is New in MySQL 5.6”
binlog_direct_non_transactional_updates
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.4.1.29, “Replication and Transactions”
binlog_format
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 12.7, “Date and Time Functions”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 16.1.2.3, “Determination of Safe and Unsafe Statements in Binary Logging”
Section 12.14, “Information Functions”
Section 5.2.4.4, “Logging Format for Changes to mysql Database Tables”
Section 12.6.2, “Mathematical Functions”
Section 12.16, “Miscellaneous Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.20, “Replication and MEMORY Tables”
Section 16.4.1.29, “Replication and Transactions”
Section 16.1.2, “Replication Formats”
Section 16.4.1.22, “Replication of the mysql System Database”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section 5.1.3, “Server Command Options”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.7, “The BLACKHOLE Storage Engine”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
Section 14.2.9.6, “Using the InnoDB memcached Plugin with Replication”
binlog_max_flush_queue_time
Section 16.1.4.4, “Binary Log Options and Variables”
binlog_order_commits
Section 16.1.4.4, “Binary Log Options and Variables”
binlog_row_image
Section 16.1.4.4, “Binary Log Options and Variables”
Section 1.4, “What Is New in MySQL 5.6”
binlog_rows_query_log_events
Section 16.1.4.4, “Binary Log Options and Variables”
binlog_stmt_cache_size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”
bulk_insert_buffer_size
Section 14.3.1, “MyISAM Startup Options”
Section 5.1.4, “Server System Variables”
Section 8.2.2.1, “Speed of INSERT Statements”
C
character_set_client
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.7.5.9, “SHOW CREATE EVENT Syntax”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 21.8.8.1, “C API Prepared Statement Type Codes”
Section 10.5, “Character Set Configuration”
Section 10.1.4, “Connection Character Sets and Collations”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”
Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 5.2.4, “The Binary Log”
character_set_connection
Section 10.1.9.2, “CONVERT() and CAST()”
Section 10.1.3.5, “Character String Literal Character Set and Collation”
Section 10.1.7.5, “Collation of Expressions”
Section 10.1.4, “Connection Character Sets and Collations”
Section 12.7, “Date and Time Functions”
Section 12.13, “Encryption and Compression Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 10.7, “MySQL Server Locale Support”
Section 16.4.1.32, “Replication and Variables”
Section 10.1.9.1, “Result Strings”
Section 5.1.4, “Server System Variables”
Section 9.1.1, “String Literals”
Section 10.1.8, “String Repertoire”
Section 12.2, “Type Conversion in Expression Evaluation”
character_set_database
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 10.1.4, “Connection Character Sets and Collations”
Section 10.1.3.2, “Database Character Set and Collation”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
character_set_filesystem
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”
character_set_results
Section 10.1.6, “Character Set for Error Messages”
Section 10.1.4, “Connection Character Sets and Collations”
Section 5.1.4, “Server System Variables”
Section 10.1.12, “UTF-8 for Metadata”
character_set_server
Section 10.5, “Character Set Configuration”
Section 10.1.4, “Connection Character Sets and Collations”
Section 10.1.3.2, “Database Character Set and Collation”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.2, “Replication and Character Sets”
Section 16.4.1.32, “Replication and Variables”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.4, “Server System Variables”
character_set_system
Section 10.5, “Character Set Configuration”
Section 5.1.4, “Server System Variables”
Section 10.1.12, “UTF-8 for Metadata”
character_sets_dir
Section 10.4.3, “Adding a Simple Collation to an 8-Bit Character Set”
Section 10.4.4.1, “Defining a UCA Collation using LDML Syntax”
Section 5.1.4, “Server System Variables”
collation_connection
Section 10.1.9.2, “CONVERT() and CAST()”
Section 13.7.5.9, “SHOW CREATE EVENT Syntax”
Section 13.7.5.11, “SHOW CREATE PROCEDURE Syntax”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 13.7.5.19, “SHOW EVENTS Syntax”
Section 13.7.5.29, “SHOW PROCEDURE STATUS Syntax”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 10.1.3.5, “Character String Literal Character Set and Collation”
Section 10.1.7.5, “Collation of Expressions”
Section 10.1.4, “Connection Character Sets and Collations”
Section 12.7, “Date and Time Functions”
Section 12.13, “Encryption and Compression Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 10.1.9.1, “Result Strings”
Section 5.1.4, “Server System Variables”
Section 19.7, “The INFORMATION_SCHEMA EVENTS Table”
Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”
Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 5.2.4, “The Binary Log”
Section 12.2, “Type Conversion in Expression Evaluation”
collation_database
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 10.1.4, “Connection Character Sets and Collations”
Section 10.1.3.2, “Database Character Set and Collation”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
collation_server
Section 10.1.4, “Connection Character Sets and Collations”
Section 10.1.3.2, “Database Character Set and Collation”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.2, “Replication and Character Sets”
Section 16.4.1.32, “Replication and Variables”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
completion_type
Section 21.8.6.6, “mysql_commit()”
Section 21.8.6.58, “mysql_rollback()”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 5.1.4, “Server System Variables”
concurrent_insert
Section 8.10.3, “Concurrent Inserts”
Section 8.10.1, “Internal Locking Methods”
Section 8.6.1, “Optimizing MyISAM Queries”
Section 8.2.5, “Other Optimization Tips”
Section 5.1.4, “Server System Variables”
connect_timeout
Section C.5.2.3, “Lost connection to MySQL server”
Section 21.8.6.53, “mysql_real_connect()”
Section C.5.2.11, “Communication Errors and Aborted Connections”
Section 5.1.4, “Server System Variables”
core_file
Section 5.1.4, “Server System Variables”
D
daemon_memcached_engine_lib_name
Section 14.2.9.3.2, “Installing and Configuring the InnoDB memcached Plugin”
daemon_memcached_engine_lib_path
Section 14.2.9.3.2, “Installing and Configuring the InnoDB memcached Plugin”
daemon_memcached_option
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 14.2.9.3.2, “Installing and Configuring the InnoDB memcached Plugin”
Section 14.2.9.4.1, “Password-Protecting the memcached Interface through SASL”
Section 14.2.9.8, “Troubleshooting the InnoDB memcached Plugin”
daemon_memcached_r_batch_size
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 14.2.9.3.2, “Installing and Configuring the InnoDB memcached Plugin”
Section 14.2.9.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 14.2.9.5.3, “Tuning Performance of the InnoDB memcached Plugin”
Section 14.2.9.6, “Using the InnoDB memcached Plugin with Replication”
daemon_memcached_w_batch_size
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 14.2.9.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 14.2.9.3.2, “Installing and Configuring the InnoDB memcached Plugin”
Section 14.2.9.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 14.2.9.5.3, “Tuning Performance of the InnoDB memcached Plugin”
Section 14.2.9.6, “Using the InnoDB memcached Plugin with Replication”
DATADIR
Section 5.4.1.2, “Specifying the Location of a Tablespace”
datadir
Section 2.3, “Installing MySQL on Microsoft Windows”
Section 5.1.4, “Server System Variables”
date_format
Section 5.1.4, “Server System Variables”
datetime_format
Section 5.1.4, “Server System Variables”
debug
Section 5.1.4, “Server System Variables”
debug_sync
Section 5.1.4, “Server System Variables”
default_storage_engine
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 14.1, “Setting the Storage Engine”
Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”
default_tmp_storage_engine
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.1, “Setting the Storage Engine”
default_week_format
Section 12.7, “Date and Time Functions”
Section 17.6.3, “Partitioning Limitations Relating to Functions”
Section 5.1.4, “Server System Variables”
delay_key_write
Section 13.1.14, “CREATE TABLE Syntax”
Section 5.1.4, “Server System Variables”
delayed_insert_limit
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.4, “Server System Variables”
delayed_insert_timeout
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.4, “Server System Variables”
delayed_queue_size
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.4, “Server System Variables”
disable_gtid_unsafe_statements
Section 16.1.4.5, “Global Transaction ID Options and Variables”
disconnect_on_expired_passwords
Section 6.3.6, “Password Expiration and Sandbox Mode”
Section 5.1.4, “Server System Variables”
div_precision_increment
Section 12.6.1, “Arithmetic Operators”
Section 5.1.4, “Server System Variables”
E
end_markers_in_json
Section 5.1.4, “Server System Variables”
enforce_gtid_consistency
Section 16.1.4.5, “Global Transaction ID Options and Variables”
engine_condition_pushdown
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
eq_range_index_dive_limit
Section 8.13.1.3, “Equality Range Optimization of Many-Valued Comparisons”
Section 5.1.4, “Server System Variables”
error_count
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.6.7.7.4, “Diagnostics Area-Related System Variables”
Section 5.1.4, “Server System Variables”
Section C.1, “Sources of Error Information”
event_scheduler
Section 18.4.2, “Event Scheduler Configuration”
Section 21.7.2, “Restrictions When Using the Embedded MySQL Server”
Section 5.1.4, “Server System Variables”
Section 18.4.6, “The Event Scheduler and MySQL Privileges”
expire_logs_days
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 5.2.6, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
explicit_defaults_for_timestamp
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP and DATETIME”
Section 11.5, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 5.1.4, “Server System Variables”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 1.4, “What Is New in MySQL 5.6”
external_user
Section 22.2.4.9.4, “Implementing Proxy User Support in Authentication Plugins”
Section 5.1.4, “Server System Variables”
Section 22.2.4.9.1, “Writing the Server-Side Authentication Plugin”
F
flush
Section 5.1.4, “Server System Variables”
flush_time
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.4, “Server System Variables”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
foreign_key_checks
Section 5.5.6, “Implementation Details of Online DDL”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 5.5.1, “Overview of Online DDL”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
ft_boolean_syntax
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.4, “Server System Variables”
ft_max_word_len
Section 12.9.2, “Boolean Full-Text Searches”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 22.2.3.2, “Full-Text Parser Plugins”
Section 5.1.4, “Server System Variables”
ft_min_word_len
Section 12.9.2, “Boolean Full-Text Searches”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 22.2.3.2, “Full-Text Parser Plugins”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 5.1.4, “Server System Variables”
ft_query_expansion_limit
Section 5.1.4, “Server System Variables”
ft_stopword_file
Section 12.9.2, “Boolean Full-Text Searches”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9, “Full-Text Search Functions”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 5.1.4, “Server System Variables”
G
general_log
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”
general_log_file
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”
group_concat_max_len
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section 5.1.4, “Server System Variables”
gtid_done
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.7.5.24, “SHOW MASTER STATUS Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
gtid_executed
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.7.5.24, “SHOW MASTER STATUS Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.3.1, “GTID Concepts”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
gtid_lost
Section 13.4.1.2, “RESET MASTER Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
gtid_mode
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 12.15, “GTID Functions”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
gtid_next
Section 13.1.5, “ALTER SERVER Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.7.6.2, “CACHE INDEX Syntax”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 13.7.2.2, “CHECK TABLE Syntax”
Section 13.1.13, “CREATE SERVER Syntax”
Section 13.1.22, “DROP SERVER Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 13.7.6.5, “LOAD INDEX INTO CACHE Syntax”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 13.7.2.5, “REPAIR TABLE Syntax”
Section 13.7.6.6, “RESET Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 13.4.2.6, “STOP SLAVE Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.3.1, “GTID Concepts”
gtid_owned
Section 16.1.4.5, “Global Transaction ID Options and Variables”
gtid_purged
Section 13.4.1.2, “RESET MASTER Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.3.1, “GTID Concepts”
Section 16.1.3.3, “Using GTIDs for Failover and Scaleout”
H
have_compress
Section 5.1.4, “Server System Variables”
have_crypt
Section 5.1.4, “Server System Variables”
have_csv
Section 5.1.4, “Server System Variables”
have_dynamic_loading
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.4, “Server System Variables”
have_geometry
Section 5.1.4, “Server System Variables”
have_innodb
Section 5.1.4, “Server System Variables”
have_openssl
Section 5.1.4, “Server System Variables”
have_partitioning
Section 5.1.4, “Server System Variables”
have_profiling
Section 5.1.4, “Server System Variables”
have_query_cache
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”
have_rtree_keys
Section 5.1.4, “Server System Variables”
have_ssl
Section 6.3.9.2, “Configuring MySQL for SSL”
Section 5.1.4, “Server System Variables”
have_symlink
Section 5.1.4, “Server System Variables”
Section 8.11.3.1.2, “Using Symbolic Links for MyISAM Tables on Unix”
Section 8.11.3.1.3, “Using Symbolic Links for Databases on Windows”
host_cache_size
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.6”
hostname
Section 5.1.4, “Server System Variables”
I
identity
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
ignore_db_dirs
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
init_connect
Section 10.1.5, “Configuring the Character Set and Collation for Applications”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server System Variables”
Section 20.9.9.1, “The host_cache Table”
init_file
Section 5.1.4, “Server System Variables”
init_slave
Section 16.1.4.3, “Replication Slave Options and Variables”
innodb
Section 14.2.5.1, “Support for Read-Only Media”
Section 1.4, “What Is New in MySQL 5.6”
innodb_adaptive_flushing
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_adaptive_hash_index
Section 14.2.3.12.6, “Adaptive Hash Indexes”
Section 14.2.5.5.4, “Dynamically Changing innodb_adaptive_hash_index”
innodb_adaptive_max_sleep_delay
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_api_bk_commit_interval
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 14.2.9.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
innodb_api_enable_binlog
Section 14.2.9.6, “Using the InnoDB memcached Plugin with Replication”
innodb_api_enable_mdl
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 14.2.9.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
innodb_api_trx_level
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 14.2.9.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
innodb_autoextend_increment
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.2.2, “Adding, Removing, or Resizing InnoDB Data and Log Files”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.2.1.2, “Configuring InnoDB”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
innodb_autoinc_lock_mode
Section 8.5.4, “Bulk Data Loading for InnoDB Tables”
Section 5.4.4.2, “Configurable InnoDB Auto-Increment Locking”
innodb_buffer_pool_dump_at_shutdown
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_buffer_pool_dump_now
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_buffer_pool_instances
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 8.9.1, “The InnoDB Buffer Pool”
Section 14.2.9.5.3, “Tuning Performance of the InnoDB memcached Plugin”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
innodb_buffer_pool_load_abort
Section 5.1.6, “Server Status Variables”
innodb_buffer_pool_load_at_startup
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.6, “Server Status Variables”
innodb_buffer_pool_load_now
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.6, “Server Status Variables”
innodb_buffer_pool_size
Section 14.2.3.14.1, “InnoDB Error Codes”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 5.1.6, “Server Status Variables”
Section 8.9.1, “The InnoDB Buffer Pool”
Section 14.2.9.5.3, “Tuning Performance of the InnoDB memcached Plugin”
innodb_change_buffer_max_size
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_change_buffering
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 14.2.5.1, “Support for Read-Only Media”
innodb_checksum_algorithm
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.2.1, “Changes to Server Defaults”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
innodb_checksums
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_cmp_per_index_enabled
Section 5.4.6.4, “Monitoring Compression at Runtime”
Section 19.30.2, “The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables”
Section 5.4.6.3, “Tuning Compression for InnoDB Tables”
innodb_compression_failure_threshold_pct
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.4.6.5, “How Compression Works for InnoDB Tables”
Section 5.4.6.3, “Tuning Compression for InnoDB Tables”
innodb_compression_level
Section 5.4.6.5, “How Compression Works for InnoDB Tables”
Section 5.4.6.3, “Tuning Compression for InnoDB Tables”
innodb_compression_pad_pct_max
Section 5.4.6.5, “How Compression Works for InnoDB Tables”
Section 5.4.6.3, “Tuning Compression for InnoDB Tables”
innodb_concurrency_tickets
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.5.8, “Optimizing InnoDB Configuration Variables”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
innodb_data_file_path
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.2.2, “Adding, Removing, or Resizing InnoDB Data and Log Files”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.2.1.2, “Configuring InnoDB”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 14.2.4.5.1, “Troubleshooting InnoDB I/O Problems”
Section 14.2.2.3, “Using Raw Disk Partitions for the Shared Tablespace”
innodb_data_home_dir
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.1.2, “Configuring InnoDB”
Section 14.2.4.5.1, “Troubleshooting InnoDB I/O Problems”
innodb_doublewrite
Section 14.2.8, “MySQL and the ACID Model”
Section 14.2.9.5.3, “Tuning Performance of the InnoDB memcached Plugin”
innodb_fast_shutdown
Section 14.2.2.2, “Adding, Removing, or Resizing InnoDB Data and Log Files”
Section 5.4.7.2.1, “Compatibility Check When InnoDB Is Started”
Section 5.1.12, “The Shutdown Process”
innodb_file_format
Section 13.1.14, “CREATE TABLE Syntax”
Section 5.4.8.3, “DYNAMIC and COMPRESSED Row Formats”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.4.7.2.1, “Compatibility Check When InnoDB Is Started”
Section 5.4.7.2.2, “Compatibility Check When a Table Is Opened”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 14.2.5.5.1, “Dynamically Changing innodb_file_per_table”
Section 5.4.6.2, “Enabling Compression for a Table”
Section 5.4.7.1, “Enabling File Formats”
Section 5.4.7.3, “Identifying the File Format in Use”
Section 5.4.8.1, “Overview of InnoDB Row Storage”
Section 5.4.6.6, “SQL Compression Syntax Warnings and Errors”
Section 14.2.5.4, “The Barracuda File Format”
innodb_file_format_check
Section 5.4.7.2.1, “Compatibility Check When InnoDB Is Started”
Section 5.4.7.2.2, “Compatibility Check When a Table Is Opened”
innodb_file_format_max
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_file_per_table
Section 13.1.14, “CREATE TABLE Syntax”
Section 13.7.6.3, “FLUSH Syntax”
Section 14.2.2.6, “InnoDB and MySQL Replication”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.4.4.2, “InnoDB Tablespace Monitor Output”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
Section 14.2.5.6, “TRUNCATE TABLE Reclaims Space”
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 14.2.2.1, “Creating the InnoDB Tablespace”
Section 14.2.5.5.1, “Dynamically Changing innodb_file_per_table”
Section 5.4.1.1, “Enabling and Disabling File-Per-Table Mode”
Section 5.4.6.2, “Enabling Compression for a Table”
Section 5.5.6, “Implementation Details of Online DDL”
Section 5.4.1, “Managing InnoDB Tablespaces”
Section 14.2.8, “MySQL and the ACID Model”
Section 5.4.8.1, “Overview of InnoDB Row Storage”
Section 14.2.3.12.7, “Physical Row Structure”
Section 16.3.4, “Replicating Different Databases to Different Slaves”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.4.6.6, “SQL Compression Syntax Warnings and Errors”
Section 14.2, “The InnoDB Storage Engine”
Section 14.2.4.7, “Troubleshooting InnoDB Data Dictionary Operations”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
innodb_flush_log_at_timeout
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_flush_log_at_trx_commit
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.8, “MySQL and the ACID Model”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 14.2.9.5.3, “Tuning Performance of the InnoDB memcached Plugin”
innodb_flush_method
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 5.1.6, “Server Status Variables”
Section 14.2.9.5.3, “Tuning Performance of the InnoDB memcached Plugin”
innodb_flush_neighbors
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_force_load_corrupted
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_force_recovery
Section 1.7, “How to Report Bugs or Problems”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 14.2.4.6, “Starting InnoDB on a Corrupted Database”
innodb_ft_aux_table
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 19.30.23, “The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table”
Section 19.30.22, “The INFORMATION_SCHEMA INNODB_FT_DELETED Table”
Section 19.30.21, “The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table”
Section 19.30.20, “The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table”
innodb_ft_cache_size
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_ft_enable_stopword
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9, “Full-Text Search Functions”
Section 12.9.1, “Natural Language Full-Text Searches”
innodb_ft_max_token_size
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
innodb_ft_min_token_size
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.1, “Natural Language Full-Text Searches”
innodb_ft_num_word_optimize
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
innodb_ft_server_stopword_table
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9, “Full-Text Search Functions”
Section 12.9.4, “Full-Text Stopwords”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 19.30.19, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”
innodb_ft_sort_pll_degree
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_ft_user_stopword_table
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9, “Full-Text Search Functions”
Section 12.9.4, “Full-Text Stopwords”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 19.30.19, “The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table”
innodb_io_capacity
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_io_capacity_max
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_large_prefix
Section 2.11.3, “Checking Whether Tables or Indexes Must Be Rebuilt”
Section 14.2.7, “Limits on InnoDB Tables”
innodb_lock_wait_timeout
Section 14.2.3.14.1, “InnoDB Error Codes”
Section 14.2.3.9, “Deadlock Detection and Rollback”
Section 14.2.5.5.3, “Dynamically Changing innodb_lock_wait_timeout”
Section 16.4.1.27, “Replication Retries and Timeouts”
Section 16.1.4.3, “Replication Slave Options and Variables”
innodb_locks_unsafe_for_binlog
Section 14.2.3.5, “InnoDB Record, Gap, and Next-Key Locks”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
innodb_log_buffer_size
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_log_file_size
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.2.1.2, “Configuring InnoDB”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 14.2.5.1, “Support for Read-Only Media”
Section 1.4, “What Is New in MySQL 5.6”
innodb_log_files_in_group
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 1.4, “What Is New in MySQL 5.6”
innodb_log_group_home_dir
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_lru_scan_depth
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_max_dirty_pages_pct
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_max_purge_lag
Section 14.2.3.11, “InnoDB Multi-Versioning”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_max_purge_lag_delay
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_monitor_disable
Section 19.30.17, “The INFORMATION_SCHEMA INNODB_METRICS Table”
innodb_monitor_enable
Section 19.30.17, “The INFORMATION_SCHEMA INNODB_METRICS Table”
innodb_monitor_reset
Section 19.30.17, “The INFORMATION_SCHEMA INNODB_METRICS Table”
innodb_monitor_reset_all
Section 19.30.17, “The INFORMATION_SCHEMA INNODB_METRICS Table”
innodb_old_blocks_pct
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 8.9.1, “The InnoDB Buffer Pool”
innodb_old_blocks_time
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.9.1, “The InnoDB Buffer Pool”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
innodb_online_alter_log_max_size
Section 5.5.6, “Implementation Details of Online DDL”
innodb_open_files
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
innodb_optimize_fulltext_only
Section 14.2.3.12.3, “FULLTEXT Indexes”
Section 13.7.2.4, “OPTIMIZE TABLE Syntax”
innodb_page_size
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 2.11.2.1, “Downgrading to MySQL 5.5”
Section 5.3.2, “File Space Management”
Section 5.4.6.5, “How Compression Works for InnoDB Tables”
Section 14.2.7, “Limits on InnoDB Tables”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 14.2.3.12.4, “Physical Structure of an InnoDB Index”
Section 14.2.9.8, “Troubleshooting the InnoDB memcached Plugin”
Section 1.4, “What Is New in MySQL 5.6”
innodb_print_all_deadlocks
Section 14.2.4.5, “InnoDB General Troubleshooting”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 14.2.3.10, “How to Cope with Deadlocks”
innodb_random_read_ahead
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_read_ahead_threshold
Section 14.2.5.11, “More Read-Ahead Statistics”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_read_io_threads
Section 14.2.4.4.1, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 22.1.1, “MySQL Threads”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_rollback_segments
Section 8.5.7, “Optimizing InnoDB Disk I/O”
innodb_sort_buffer_size
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_stats_auto_recalc
Section 13.1.14, “CREATE TABLE Syntax”
innodb_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
innodb_stats_on_metadata
Section 5.1.2.1, “Changes to Server Defaults”
Section 14.2.5.5.2, “Dynamically Changing innodb_stats_on_metadata”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
innodb_stats_persistent
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.7, “Limits on InnoDB Tables”
innodb_stats_persistent_sample_pages
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.7, “Limits on InnoDB Tables”
innodb_stats_sample_pages
Section 14.2.5.8, “Controlling Optimizer Statistics Estimation”
innodb_stats_transient_sample_pages
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.7, “Limits on InnoDB Tables”
innodb_strict_mode
Section 13.1.11, “CREATE INDEX Syntax”
Section 13.1.14, “CREATE TABLE Syntax”
Section 14.2.5.7, “InnoDB Strict Mode”
Section 5.4.6.5, “How Compression Works for InnoDB Tables”
Section 5.1.7, “Server SQL Modes”
Section 5.4.6.6, “SQL Compression Syntax Warnings and Errors”
innodb_support_xa
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 14.2.9.5.3, “Tuning Performance of the InnoDB memcached Plugin”
innodb_table_locks
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.7, “Limits on InnoDB Tables”
innodb_thread_concurrency
Section 14.2.4.4.1, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 8.5.8, “Optimizing InnoDB Configuration Variables”
innodb_thread_sleep_delay
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_undo_directory
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.5.1, “Support for Read-Only Media”
innodb_undo_logs
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.6, “Server Status Variables”
innodb_undo_tablespaces
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 14.2.5.1, “Support for Read-Only Media”
innodb_use_native_aio
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_use_sys_malloc
Section 14.2.6, “InnoDB Startup Options and System Variables”
innodb_write_io_threads
Section 14.2.4.4.1, “InnoDB Standard Monitor and Lock Monitor Output”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 22.1.1, “MySQL Threads”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
insert_id
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 5.1.4, “Server System Variables”
interactive_timeout
Section 21.8.6.53, “mysql_real_connect()”
Section C.5.2.11, “Communication Errors and Aborted Connections”
Section 5.1.4, “Server System Variables”
J
join_buffer_size
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.13.8, “Nested-Loop Join Algorithms”
Section 5.1.4, “Server System Variables”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
K
keep_files_on_create
Section 5.1.4, “Server System Variables”
key_buffer_size
Section 8.6.2, “Bulk Data Loading for MyISAM Tables”
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 8.8.4, “Estimating Query Performance”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 7.6.3, “How to Repair MyISAM Tables”
Section C.5.8, “Known Issues in MySQL”
Section 8.9.2.2, “Multiple Key Caches”
Section 8.9.2.6, “Restructuring a Key Cache”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.2.2.3, “Speed of DELETE Statements”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
Section 5.1.5.1, “Structured System Variables”
Section 8.9.2, “The MyISAM Key Cache”
Section 8.11.2, “Tuning Server Parameters”
Section 4.2.3.3, “Using Option Files”
key_cache_age_threshold
Section 8.9.2.3, “Midpoint Insertion Strategy”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”
key_cache_block_size
Section 8.9.2.5, “Key Cache Block Size”
Section 8.9.2.6, “Restructuring a Key Cache”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”
key_cache_division_limit
Section 8.9.2.3, “Midpoint Insertion Strategy”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”
L
large_files_support
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server System Variables”
large_page_size
Section 5.1.4, “Server System Variables”
large_pages
Section 5.1.4, “Server System Variables”
last_insert_id
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
lc_messages
Section 5.1.4, “Server System Variables”
Section 10.2, “Setting the Error Message Language”
lc_messages_dir
Section 5.1.4, “Server System Variables”
Section 10.2, “Setting the Error Message Language”
lc_time_names
Section 12.7, “Date and Time Functions”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 10.7, “MySQL Server Locale Support”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”
license
Section 5.1.4, “Server System Variables”
local
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.7, “LOAD XML Syntax”
Section 2.9.4, “MySQL Source-Configuration Options”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
local_infile
Section 5.1.4, “Server System Variables”
lock_wait_timeout
Section 5.1.4, “Server System Variables”
locked_in_memory
Section 5.1.4, “Server System Variables”
log
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.9.6, “Using the InnoDB memcached Plugin with Replication”
log_bin
Section 16.1.4.4, “Binary Log Options and Variables”
Section 1.4, “What Is New in MySQL 5.6”
log_bin_basename
Section 16.1.4.4, “Binary Log Options and Variables”
Section 1.4, “What Is New in MySQL 5.6”
log_bin_trust_function_creators
Section 16.1.4.4, “Binary Log Options and Variables”
Section 18.7, “Binary Logging of Stored Programs”
Section 5.1.4, “Server System Variables”
log_bin_use_v
Section 16.1.4.4, “Binary Log Options and Variables”
log_error
Section 5.1.4, “Server System Variables”
log_output
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”
Section 5.2.5, “The Slow Query Log”
log_queries_not_using_indexes
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”
log_slave_updates
Section 16.1.4.4, “Binary Log Options and Variables”
log_slow_admin_statements
Section 5.1.4, “Server System Variables”
log_slow_queries
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
log_slow_slave_statements
Section 16.1.4.3, “Replication Slave Options and Variables”
log_throttle_queries_not_using_indexes
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”
log_warnings
Section 5.1.4, “Server System Variables”
Section 5.2.2, “The Error Log”
long_query_time
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 5.2, “MySQL Server Logs”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”
low_priority_updates
Section 5.1.4, “Server System Variables”
Section 8.10.2, “Table Locking Issues”
Section 1.4, “What Is New in MySQL 5.6”
lower_case_file_system
Section 5.1.4, “Server System Variables”
lower_case_table_names
Section 13.7.1.4, “GRANT Syntax”
Section 13.7.1.6, “REVOKE Syntax”
Section 13.7.5.38, “SHOW TABLES Syntax”
Section 10.1.7.9, “Collation and INFORMATION_SCHEMA Searches”
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”
Section 1.7, “How to Report Bugs or Problems”
Section 9.2.2, “Identifier Case Sensitivity”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 19.30.9, “The INFORMATION_SCHEMA INNODB_SYS_COLUMNS Table”
Section 19.30.7, “The INFORMATION_SCHEMA INNODB_SYS_TABLES Table”
Section 13.1.14.2, “Using FOREIGN KEY Constraints”
M
master_info_repository
Section 16.1.4.3, “Replication Slave Options and Variables”
master_verify_checksum
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4, “The Binary Log”
max_allowed_packet
Section 12.17.1, “GROUP BY (Aggregate) Functions”
Section C.5.2.3, “Lost connection to MySQL server”
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.10.26, “mysql_stmt_send_long_data()”
Section 21.8.6.72, “mysql_use_result()”
Section 5.1.2.1, “Changes to Server Defaults”
Section C.5.2.11, “Communication Errors and Aborted Connections”
Section 12.3.2, “Comparison Functions and Operators”
Section C.5.5.6, “Deleting Rows from Related Tables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section C.5.2.10, “Packet Too Large”
Section 16.4.1.19, “Replication and max_allowed_packet”
Section 16.1.4.2, “Replication Master Options and Variables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”
Section 11.4.3, “The BLOB and TEXT Types”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 4.2.3.3, “Using Option Files”
Section 1.4, “What Is New in MySQL 5.6”
max_binlog_cache_size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2.4, “The Binary Log”
max_binlog_size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.2, “MySQL Server Logs”
Section 5.2.6, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
Section 16.2.2.1, “The Slave Relay Log”
max_binlog_stmt_cache_size
Section 16.1.4.4, “Binary Log Options and Variables”
max_connect_errors
Section 13.7.6.3, “FLUSH Syntax”
Section C.5.2.6, “Host 'host_name' is blocked”
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
Section 5.1.4, “Server System Variables”
Section 20.9.9.1, “The host_cache Table”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 1.4, “What Is New in MySQL 5.6”
max_connections
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section C.5.2.7, “Too many connections”
Section 5.1.2.1, “Changes to Server Defaults”
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.11.5.1, “How MySQL Uses Threads for Client Connections”
Section 20.12, “Performance Schema System Variables”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.11.6.2, “Thread Pool Operation”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
max_delayed_threads
Section 20.12, “Performance Schema System Variables”
Section 5.1.4, “Server System Variables”
max_error_count
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.6.7.4, “RESIGNAL Syntax”
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.6.7.7.4, “Diagnostics Area-Related System Variables”
Section 5.1.4, “Server System Variables”
max_heap_table_size
Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”
Section E.10.3, “Limits on Table Size”
Section 16.4.1.20, “Replication and MEMORY Tables”
Section 16.4.1.32, “Replication and Variables”
Section E.3, “Restrictions on Server-Side Cursors”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 14.4, “The MEMORY Storage Engine”
max_insert_delayed_threads
Section 5.1.4, “Server System Variables”
max_join_size
Section 4.5.1.1, “mysql Options”
Section 8.8.2, “EXPLAIN Output Format”
Section 5.1.4, “Server System Variables”
Section 5.1.5, “Using System Variables”
Section 1.4, “What Is New in MySQL 5.6”
max_length_for_sort_data
Section 8.13.13, “ORDER BY Optimization”
Section 5.1.4, “Server System Variables”
max_prepared_stmt_count
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
max_relay_log_size
Section 16.1.4.4, “Binary Log Options and Variables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server System Variables”
Section 16.2.2.1, “The Slave Relay Log”
max_seeks_for_key
Section 14.2.7, “Limits on InnoDB Tables”
Section 5.1.4, “Server System Variables”
max_sort_length
Section 13.1.14, “CREATE TABLE Syntax”
Section C.5.8, “Known Issues in MySQL”
Section 5.1.4, “Server System Variables”
Section 11.4.3, “The BLOB and TEXT Types”
max_sp_recursion_depth
Section 5.1.4, “Server System Variables”
Section 18.2.1, “Stored Routine Syntax”
max_tmp_tables
Section 5.1.4, “Server System Variables”
max_user_connections
Section 13.7.1.4, “GRANT Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.4, “Server System Variables”
Section 6.3.4, “Setting Account Resource Limits”
max_write_lock_count
Section 5.1.4, “Server System Variables”
Section 8.10.2, “Table Locking Issues”
metadata_locks_cache_size
Section 5.1.4, “Server System Variables”
metadata_locks_hash_instances
Section 5.1.4, “Server System Variables”
min_examined_row_limit
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”
myisam_data_pointer_size
Section 13.1.14, “CREATE TABLE Syntax”
Section E.10.3, “Limits on Table Size”
Section 5.1.4, “Server System Variables”
myisam_max_sort_file_size
Section 14.3.1, “MyISAM Startup Options”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server System Variables”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
myisam_mmap_size
Section 5.1.4, “Server System Variables”
myisam_recover_options
Section 5.1.4, “Server System Variables”
myisam_repair_threads
Section 5.1.4, “Server System Variables”
myisam_sort_buffer_size
Section 4.6.3.1, “myisamchk General Options”
Section 13.1.6, “ALTER TABLE Syntax”
Section 14.3.1, “MyISAM Startup Options”
Section 5.1.4, “Server System Variables”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
myisam_stats_method
Section 8.3.7, “InnoDB and MyISAM Index Statistics Collection”
Section 5.1.4, “Server System Variables”
myisam_use_mmap
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”
N
named_pipe
Section 5.1.4, “Server System Variables”
net_buffer_length
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup Program”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”
net_read_timeout
Section C.5.2.3, “Lost connection to MySQL server”
Section 5.1.4, “Server System Variables”
net_retry_count
Section 21.8.6.49, “mysql_options()”
Section 5.1.4, “Server System Variables”
net_write_timeout
Section 5.1.4, “Server System Variables”
new
Section 5.1.4, “Server System Variables”
O
old
Section 13.2.9.3, “Index Hint Syntax”
Section 5.1.4, “Server System Variables”
old_alter_table
Section 13.1.6, “ALTER TABLE Syntax”
Section 5.5.1, “Overview of Online DDL”
Section 5.5.2, “Performance and Concurrency Considerations for Online DDL”
Section 5.1.4, “Server System Variables”
Section 5.5.3, “SQL Syntax for Online DDL”
old_passwords
Section 13.7.1.1, “ALTER USER Syntax”
Section C.5.2.4, “Client does not support authentication protocol”
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing Changes in MySQL 4.1 for Application Programs”
Section 6.3.6, “Password Expiration and Sandbox Mode”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 6.3.7.2, “The SHA-256 Authentication Plugin”
open_files_limit
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.12, “Performance Schema System Variables”
Section 17.6, “Restrictions and Limitations on Partitioning”
Section 5.1.4, “Server System Variables”
optimizer_join_cache_level
Section 8.13.12.2, “Block Nested-Loop Algorithm for Outer Joins and Semi-Joins”
Section 8.13.12.1, “Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms”
Section 5.1.4, “Server System Variables”
optimizer_prune_level
Section 8.8.5.1, “Controlling Query Plan Evaluation”
Section 5.1.4, “Server System Variables”
optimizer_search_depth
Section 8.8.5.1, “Controlling Query Plan Evaluation”
Section 5.1.4, “Server System Variables”
optimizer_switch
Section 8.13.12.3, “Batched Key Access Joins”
Section 8.13.12.2, “Block Nested-Loop Algorithm for Outer Joins and Semi-Joins”
Section 8.8.5.2, “Controlling Switchable Optimizations”
Section 8.13.3, “Engine Condition Pushdown Optimization”
Section 8.13.4, “Index Condition Pushdown Optimization”
Section 8.13.12.1, “Join Buffer Management for Block Nested-Loop and Batched Key Access Algorithms”
Section 8.13.11, “Multi-Range Read Optimization”
Section 8.13.16.1, “Optimizing Subqueries with Semi-Join Transformations”
Section 8.13.16.2, “Optimizing Subqueries with Subquery Materialization”
Section 5.1.4, “Server System Variables”
Section 8.13.5, “Use of Index Extensions”
Section 1.4, “What Is New in MySQL 5.6”
optimizer_trace
Section 5.1.4, “Server System Variables”
Section 19.12, “The INFORMATION_SCHEMA OPTIMIZER_TRACE Table”
optimizer_trace_features
Section 5.1.4, “Server System Variables”
optimizer_trace_limit
Section 5.1.4, “Server System Variables”
optimizer_trace_max_mem_size
Section 5.1.4, “Server System Variables”
optimizer_trace_offset
Section 5.1.4, “Server System Variables”
P
performance_schema
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.1, “Performance Schema Quick Start”
Section 20.2.2, “Performance Schema Startup Configuration”
Section 20.12, “Performance Schema System Variables”
performance_schema_accounts_size
Section 20.12, “Performance Schema System Variables”
Section 20.9.6.1, “The accounts Table”
performance_schema_digests_size
Section 20.7, “Performance Schema Statement Digests”
Section 20.12, “Performance Schema System Variables”
Section 20.9.8.3, “Statement Summary Tables”
performance_schema_events_stages_history_long_size
Section 20.12, “Performance Schema System Variables”
Section 20.9.4.3, “The events_stages_history_long Table”
performance_schema_events_stages_history_size
Section 20.12, “Performance Schema System Variables”
Section 20.9.4.2, “The events_stages_history Table”
performance_schema_events_statements_history_long_size
Section 20.12, “Performance Schema System Variables”
Section 20.9.5.3, “The events_statements_history_long Table”
performance_schema_events_statements_history_size
Section 20.12, “Performance Schema System Variables”
Section 20.9.5.2, “The events_statements_history Table”
performance_schema_events_waits_history_long_size
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.12, “Performance Schema System Variables”
Section 20.9, “Performance Schema Table Descriptions”
Section 20.9.3.3, “The events_waits_history_long Table”
performance_schema_events_waits_history_size
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.12, “Performance Schema System Variables”
Section 20.9, “Performance Schema Table Descriptions”
Section 20.9.3.2, “The events_waits_history Table”
performance_schema_hosts_size
Section 20.12, “Performance Schema System Variables”
Section 20.9.6.2, “The hosts Table”
performance_schema_max_cond_classes
Section 20.12, “Performance Schema System Variables”
performance_schema_max_cond_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.12, “Performance Schema System Variables”
performance_schema_max_file_classes
Section 20.12, “Performance Schema System Variables”
performance_schema_max_file_handles
Section 20.12, “Performance Schema System Variables”
performance_schema_max_file_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.12, “Performance Schema System Variables”
performance_schema_max_mutex_classes
Section 20.5, “Performance Schema Status Monitoring”
Section 20.12, “Performance Schema System Variables”
performance_schema_max_mutex_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.12, “Performance Schema System Variables”
performance_schema_max_rwlock_classes
Section 20.12, “Performance Schema System Variables”
performance_schema_max_rwlock_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.12, “Performance Schema System Variables”
performance_schema_max_socket_classes
Section 20.12, “Performance Schema System Variables”
performance_schema_max_socket_instances
Section 20.12, “Performance Schema System Variables”
performance_schema_max_stage_classes
Section 20.12, “Performance Schema System Variables”
performance_schema_max_statement_classes
Section 20.12, “Performance Schema System Variables”
performance_schema_max_table_handles
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.12, “Performance Schema System Variables”
performance_schema_max_table_instances
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.12, “Performance Schema System Variables”
performance_schema_max_thread_classes
Section 20.12, “Performance Schema System Variables”
performance_schema_max_thread_instances
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 5.1.2.1, “Changes to Server Defaults”
Section 20.12, “Performance Schema System Variables”
performance_schema_session_connect_attrs_size
Section 20.12, “Performance Schema System Variables”
performance_schema_setup_actors_size
Section 20.12, “Performance Schema System Variables”
Section 20.9.1.1, “The setup_actors Table”
performance_schema_setup_objects_size
Section 20.12, “Performance Schema System Variables”
Section 20.9.1.4, “The setup_objects Table”
performance_schema_users_size
Section 20.12, “Performance Schema System Variables”
Section 20.9.6.3, “The users Table”
pid_file
Section 5.1.4, “Server System Variables”
plugin_dir
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-Defined Functions”
Section 13.7.3.3, “INSTALL PLUGIN Syntax”
Section 13.7.5.26, “SHOW PLUGINS Syntax”
Section 6.1.2.2, “Administrator Guidelines for Password Security”
Section 22.2.4.3, “Compiling and Installing Plugin Libraries”
Section 22.3.2.5, “Compiling and Installing User-Defined Functions”
Section 5.1.8.1, “Installing and Uninstalling Plugins”
Section 6.3.11.1, “Installing the Audit Log Plugin”
Section 6.3.7.3.1, “Installing the PAM Authentication Plugin”
Section 6.3.7.4.1, “Installing the Windows Authentication Plugin”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.1.2.6.1, “Password Validation Plugin Installation”
Section 6.3.7, “Pluggable Authentication”
Section 14.12.1, “Pluggable Storage Engine Architecture”
Section 22.2.2, “Plugin API Components”
Section E.9, “Restrictions on Pluggable Authentication”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 19.15, “The INFORMATION_SCHEMA PLUGINS Table”
Section 6.3.7.3, “The PAM Authentication Plugin”
Section 6.3.7.6, “The Socket Peer-Credential Authentication Plugin”
Section 6.3.7.7, “The Test Authentication Plugin”
Section 6.3.7.4, “The Windows Native Authentication Plugin”
Section 8.11.6.1, “Thread Pool Components and Installation”
Section 2.10.1, “Unix Postinstallation Procedures”
Section 22.3.2.6, “User-Defined Function Security Precautions”
Section 22.2.4.9.3, “Using the Authentication Plugins”
Section 22.2.4.6, “Writing INFORMATION_SCHEMA Plugins”
Section 22.2.4.8, “Writing Audit Plugins”
Section 22.2.4.5, “Writing Daemon Plugins”
Section 22.2.4.4, “Writing Full-Text Parser Plugins”
Section 22.2.4.10, “Writing Password-Validation Plugins”
Section 22.2.4.7, “Writing Semisynchronous Replication Plugins”
port
Section C.5.2.2, “Can't connect to [local] MySQL server”
Section 5.1.4, “Server System Variables”
preload_buffer_size
Section 5.1.4, “Server System Variables”
profiling
Section 13.7.5.31, “SHOW PROFILE Syntax”
Section 5.1.4, “Server System Variables”
Section 19.17, “The INFORMATION_SCHEMA PROFILING Table”
profiling_history_size
Section 13.7.5.31, “SHOW PROFILE Syntax”
Section 5.1.4, “Server System Variables”
protocol_version
Section 5.1.4, “Server System Variables”
proxy_user
Section 5.1.4, “Server System Variables”
pseudo_slave_mode
Section 5.1.4, “Server System Variables”
pseudo_thread_id
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Q
query_alloc_block_size
Section 5.1.4, “Server System Variables”
query_cache_limit
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”
query_cache_min_res_unit
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”
query_cache_size
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”
Section 8.9.3, “The MySQL Query Cache”
Section 5.1.5, “Using System Variables”
query_cache_type
Section 13.2.9, “SELECT Syntax”
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.9.3.2, “Query Cache SELECT Options”
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
query_cache_wlock_invalidate
Section 5.1.4, “Server System Variables”
query_prealloc_size
Section 5.1.4, “Server System Variables”
R
rand_seed
Section 5.1.4, “Server System Variables”
range_alloc_block_size
Section 5.1.4, “Server System Variables”
read_buffer_size
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”
Section 8.6.3, “Speed of REPAIR TABLE Statements”
read_only
Section 13.7.1.7, “SET PASSWORD Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 16.3.1.3, “Backing Up a Master or Slave by Making It Read Only”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.32, “Replication and Variables”
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 16.1.3.2, “Setting Up Replication Using GTIDs”
read_rnd_buffer_size
Section 8.13.13, “ORDER BY Optimization”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 8.13.11, “Multi-Range Read Optimization”
Section 5.1.4, “Server System Variables”
Section 8.11.2, “Tuning Server Parameters”
relay_log
Section 16.1.4.3, “Replication Slave Options and Variables”
relay_log_basename
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.6”
relay_log_index
Section 16.1.4.3, “Replication Slave Options and Variables”
relay_log_info_file
Section 16.1.4.3, “Replication Slave Options and Variables”
relay_log_info_repository
Section 16.1.4.3, “Replication Slave Options and Variables”
relay_log_purge
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 5.1.4, “Server System Variables”
relay_log_recovery
Section 13.4.2.5, “START SLAVE Syntax”
Section 16.1.4.3, “Replication Slave Options and Variables”
relay_log_space_limit
Section 8.12.5.6, “Replication Slave I/O Thread States”
Section 5.1.4, “Server System Variables”
report_host
Section 5.1.4, “Server System Variables”
report_password
Section 5.1.4, “Server System Variables”
report_port
Section 5.1.4, “Server System Variables”
report_user
Section 5.1.4, “Server System Variables”
rpl_semi_sync_master_enabled
Section 16.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 16.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.4, “Server System Variables”
rpl_semi_sync_master_timeout
Section 16.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.4, “Server System Variables”
rpl_semi_sync_master_trace_level
Section 5.1.4, “Server System Variables”
rpl_semi_sync_master_wait_no_slave
Section 5.1.4, “Server System Variables”
rpl_semi_sync_slave_enabled
Section 16.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.8.2, “Semisynchronous Replication Installation and Configuration”
Section 5.1.4, “Server System Variables”
rpl_semi_sync_slave_trace_level
Section 5.1.4, “Server System Variables”
S
secure_auth
Section 5.1.2.1, “Changes to Server Defaults”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.4, “Server System Variables”
secure_file_priv
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.9.1, “SELECT ... INTO Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”
server_id
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 4.6.8, “mysqlbinlog — Utility for Processing Binary Log Files”
Section 12.16, “Miscellaneous Functions”
Section 5.1.4, “Server System Variables”
Section 6.3.11.2, “The Audit Log File”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
server_uuid
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 16.1.3.1, “GTID Concepts”
Section 16.1.4, “Replication and Binary Logging Options and Variables”
sha
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 6.3.7.2, “The SHA-256 Authentication Plugin”
shared_memory
Section 5.1.4, “Server System Variables”
shared_memory_base_name
Section 5.1.4, “Server System Variables”
skip_external_locking
Section 8.10.5, “External Locking”
Section 5.1.4, “Server System Variables”
skip_name_resolve
Section 5.1.4, “Server System Variables”
skip_networking
Section 5.1.4, “Server System Variables”
skip_show_database
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
slave_allow_batching
Section 16.1.4.2, “Replication Master Options and Variables”
slave_checkpoint_group
Section 16.1.4.3, “Replication Slave Options and Variables”
slave_checkpoint_period
Section 16.1.4.3, “Replication Slave Options and Variables”
slave_compressed_protocol
Section 16.1.4.3, “Replication Slave Options and Variables”
slave_exec_mode
Section 16.4.1.20, “Replication and MEMORY Tables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.1.2.2, “Usage of Row-Based Logging and Replication”
slave_load_tmpdir
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server System Variables”
slave_max_allowed_packet
Section 16.1.4.2, “Replication Master Options and Variables”
slave_net_timeout
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.5.1, “Checking Replication Status”
Section 16.4.1.18, “Replication and Master or Slave Shutdowns”
Section 8.12.5.6, “Replication Slave I/O Thread States”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server System Variables”
slave_parallel_workers
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.5, “START SLAVE Syntax”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 1.4, “What Is New in MySQL 5.6”
slave_pending_jobs_size_max
Section 16.1.4.3, “Replication Slave Options and Variables”
slave_rows_search_algorithms
Section 16.1.4.2, “Replication Master Options and Variables”
slave_skip_errors
Section 16.1.4.3, “Replication Slave Options and Variables”
slave_sql_verify_checksum
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.2.4, “The Binary Log”
slave_transaction_retries
Section 16.4.1.27, “Replication Retries and Timeouts”
Section 16.1.4.3, “Replication Slave Options and Variables”
slave_type_conversions
Section 16.1.4.3, “Replication Slave Options and Variables”
slow_launch_time
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
slow_query_log
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”
slow_query_log_file
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.5, “The Slow Query Log”
socket
Section 5.1.4, “Server System Variables”
sort_buffer_size
Section 8.13.13, “ORDER BY Optimization”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 8.2.1.3, “Optimizing LIMIT Queries”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 1.4, “What Is New in MySQL 5.6”
sql_auto_is_null
Section 12.3.2, “Comparison Functions and Operators”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
sql_big_selects
Section 5.1.4, “Server System Variables”
sql_buffer_result
Section 5.1.4, “Server System Variables”
sql_log_bin
Section 13.4.1.3, “SET sql_log_bin Syntax”
Section 5.1.4, “Server System Variables”
Section 16.4.3, “Upgrading a Replication Setup”
sql_log_off
Section 5.2.1, “Selecting General Query and Slow Query Log Output Destinations”
Section 5.1.4, “Server System Variables”
Section 5.2.3, “The General Query Log”
SQL_MODE
Section 5.5.5, “Examples of Online DDL”
Section 5.5.1, “Overview of Online DDL”
sql_mode
Section 13.1.9, “CREATE EVENT Syntax”
Section 13.1.12, “CREATE PROCEDURE and CREATE FUNCTION Syntax”
Section 13.1.15, “CREATE TRIGGER Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.7.5.14, “SHOW CREATE VIEW Syntax”
Section 13.7.5.39, “SHOW TRIGGERS Syntax”
Section 5.1.2.1, “Changes to Server Defaults”
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”
Section 13.6.7.5.2, “Effect of Signals on Handlers, Cursors, and Statements”
Section 12.19.3, “Expression Handling”
Section 1.7, “How to Report Bugs or Problems”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section C.5.5.2, “Problems Using DATE Columns”
Section 16.4.1.32, “Replication and Variables”
Section 1.8.3, “Running MySQL in ANSI Mode”
Section 1.8.2, “Selecting SQL Modes”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 19.19, “The INFORMATION_SCHEMA ROUTINES Table”
Section 19.27, “The INFORMATION_SCHEMA TRIGGERS Table”
Section 19.29, “The INFORMATION_SCHEMA VIEWS Table”
Section 5.2.4, “The Binary Log”
Section 5.1.2.2, “Using a Sample Default Server Configuration File”
Section 5.1.5, “Using System Variables”
sql_notes
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.6.7.7.4, “Diagnostics Area-Related System Variables”
Section 5.1.4, “Server System Variables”
sql_quote_show_create
Section 13.7.5.8, “SHOW CREATE DATABASE Syntax”
Section 13.7.5.12, “SHOW CREATE TABLE Syntax”
Section 5.1.4, “Server System Variables”
sql_safe_updates
Section 5.1.4, “Server System Variables”
sql_select_limit
Section 5.1.4, “Server System Variables”
sql_slave_skip_counter
Section 13.4.2.4, “SET GLOBAL sql_slave_skip_counter Syntax”
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 16.1.4.5, “Global Transaction ID Options and Variables”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 16.1.3.4, “Restrictions on Replication with GTIDs”
sql_warnings
Section 5.1.4, “Server System Variables”
ssl_ca
Section 5.1.4, “Server System Variables”
ssl_capath
Section 5.1.4, “Server System Variables”
ssl_cert
Section 5.1.4, “Server System Variables”
ssl_cipher
Section 5.1.4, “Server System Variables”
ssl_crl
Section 5.1.4, “Server System Variables”
ssl_crlpath
Section 5.1.4, “Server System Variables”
ssl_key
Section 5.1.4, “Server System Variables”
storage_engine
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 16.3.2, “Using Replication with Different Master and Slave Storage Engines”
stored_program_cache
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Section 5.1.4, “Server System Variables”
sync_binlog
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 16.1.4.4, “Binary Log Options and Variables”
Section 14.2.8, “MySQL and the ACID Model”
Section 8.5.7, “Optimizing InnoDB Disk I/O”
Section 16.4.1.18, “Replication and Master or Slave Shutdowns”
Section 5.2.4, “The Binary Log”
sync_frm
Section 5.1.4, “Server System Variables”
sync_master_info
Section 5.1.2.1, “Changes to Server Defaults”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
sync_relay_log
Section 5.1.2.1, “Changes to Server Defaults”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
sync_relay_log_info
Section 5.1.2.1, “Changes to Server Defaults”
Section 16.4.1.18, “Replication and Master or Slave Shutdowns”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
system_time_zone
Section 10.6, “MySQL Server Time Zone Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
T
table_definition_cache
Section 5.1.2.1, “Changes to Server Defaults”
Section 5.1.4, “Server System Variables”
table_open_cache
Section C.5.2.18, “'File' Not Found and Similar Errors”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.2.1, “Changes to Server Defaults”
Section 8.12.5.2, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.11.2, “Tuning Server Parameters”
Section 2.11.1.1, “Upgrading from MySQL 5.5 to 5.6”
Section 1.4, “What Is New in MySQL 5.6”
table_open_cache_instances
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
thread_cache_size
Section 5.1.2.1, “Changes to Server Defaults”
Section 22.4.1.4, “Debugging mysqld under gdb”
Section 8.11.5.1, “How MySQL Uses Threads for Client Connections”
Section 8.2.5, “Other Optimization Tips”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
thread_concurrency
Section 5.1.4, “Server System Variables”
thread_handling
Section 5.1.4, “Server System Variables”
Section 8.11.6.1, “Thread Pool Components and Installation”
thread_pool_algorithm
Section 5.1.4, “Server System Variables”
Section 19.31.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 8.11.6.1, “Thread Pool Components and Installation”
thread_pool_high_priority_connection
Section 5.1.4, “Server System Variables”
Section 8.11.6.1, “Thread Pool Components and Installation”
Section 8.11.6.2, “Thread Pool Operation”
thread_pool_max_unused_threads
Section 5.1.4, “Server System Variables”
Section 8.11.6.1, “Thread Pool Components and Installation”
thread_pool_prio_kickup_timer
Section 5.1.4, “Server System Variables”
Section 19.31.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 19.31.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”
Section 8.11.6.1, “Thread Pool Components and Installation”
Section 8.11.6.2, “Thread Pool Operation”
Section 8.11.6.3, “Thread Pool Tuning”
thread_pool_size
Section 5.1.4, “Server System Variables”
Section 8.11.6.1, “Thread Pool Components and Installation”
Section 8.11.6.2, “Thread Pool Operation”
Section 8.11.6.3, “Thread Pool Tuning”
thread_pool_stall_limit
Section 5.1.4, “Server System Variables”
Section 19.31.2, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table”
Section 19.31.3, “The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table”
Section 8.11.6.1, “Thread Pool Components and Installation”
Section 8.11.6.2, “Thread Pool Operation”
Section 8.11.6.3, “Thread Pool Tuning”
thread_stack
Section 8.11.4.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”
Section 18.2.1, “Stored Routine Syntax”
time_format
Section 5.1.4, “Server System Variables”
time_zone
Section 13.1.9, “CREATE EVENT Syntax”
Section 12.7, “Date and Time Functions”
Section 18.4.4, “Event Metadata”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 11.3.1, “The DATE, DATETIME, and TIMESTAMP Types”
timed_mutexes
Section 13.7.5.16, “SHOW ENGINE Syntax”
Section 5.1.4, “Server System Variables”
timestamp
Section 14.9.3, “FEDERATED Storage Engine Notes and Tips”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
tmp_table_size
Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”
Section E.3, “Restrictions on Server-Side Cursors”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
tmpdir
Section C.5.2.13, “Can't create/write to file”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 8.13.13, “ORDER BY Optimization”
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.2, “Database Backup Methods”
Section 5.5.6, “Implementation Details of Online DDL”
Section 5.5.9, “Limitations of Online DDL”
Section 16.1.4.3, “Replication Slave Options and Variables”
Section 5.1.4, “Server System Variables”
transaction_alloc_block_size
Section 5.1.4, “Server System Variables”
transaction_prealloc_size
Section 5.1.4, “Server System Variables”
tx_isolation
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
tx_read_only
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
U
unique_checks
Section 5.4.3, “Converting Tables from MyISAM to InnoDB”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 16.4.1.32, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.2.4, “The Binary Log”
updatable_views_with_limit
Section 5.1.4, “Server System Variables”
Section 18.5.3, “Updatable and Insertable Views”
V
validate_password_dictionary_file
Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”
validate_password_length
Section 12.13, “Encryption and Compression Functions”
Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”
validate_password_mixed_case_count
Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”
validate_password_number_count
Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”
validate_password_policy
Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”
Section 6.1.2.6, “The Password Validation Plugin”
validate_password_special_char_count
Section 6.1.2.6.2, “Password Validation Plugin Options and Variables”
validate_user_plugins
Section 5.1.4, “Server System Variables”
version
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 12.14, “Information Functions”
Section 5.1.4, “Server System Variables”
Section 6.3.11.2, “The Audit Log File”
version_comment
Section 5.1.4, “Server System Variables”
version_compile_machine
Section 5.1.4, “Server System Variables”
version_compile_os
Section 5.1.4, “Server System Variables”
W
wait_timeout
Section C.5.2.9, “MySQL server has gone away”
Section 21.8.6.53, “mysql_real_connect()”
Section C.5.2.11, “Communication Errors and Aborted Connections”
Section 5.1.4, “Server System Variables”
warning_count
Section 13.7.5.18, “SHOW ERRORS Syntax”
Section 13.7.5.41, “SHOW WARNINGS Syntax”
Section 13.6.7.7.4, “Diagnostics Area-Related System Variables”
Section 13.6.7.5.2, “Effect of Signals on Handlers, Cursors, and Statements”
Section 5.1.4, “Server System Variables”
Section C.1, “Sources of Error Information”
Status Variable Index
A | B | C | D | F | H | I | K | L | M | N | O | P | Q | R | S | T | U
A
Aborted_clients
Section C.5.2.11, “Communication Errors and Aborted Connections”
Section 5.1.6, “Server Status Variables”
Aborted_connects
Section C.5.2.11, “Communication Errors and Aborted Connections”
Section 5.1.6, “Server Status Variables”
B
Binlog_cache_disk_use
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”
Section 5.2.4, “The Binary Log”
Binlog_cache_use
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”
Section 5.2.4, “The Binary Log”
Binlog_stmt_cache_disk_use
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”
Binlog_stmt_cache_use
Section 16.1.4.4, “Binary Log Options and Variables”
Section 5.1.6, “Server Status Variables”
Bytes_received
Section 5.1.6, “Server Status Variables”
Bytes_sent
Section 5.1.6, “Server Status Variables”
C
Com_flush
Section 5.1.6, “Server Status Variables”
Com_stmt_reprepare
Section 8.9.4, “Caching of Prepared Statements and Stored Programs”
Compression
Section 5.1.6, “Server Status Variables”
Connection_errors_accept
Section 5.1.6, “Server Status Variables”
Connection_errors_internal
Section 5.1.6, “Server Status Variables”
Connection_errors_max_connections
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Connection_errors_peer_addr
Section 5.1.6, “Server Status Variables”
Connection_errors_select
Section 5.1.6, “Server Status Variables”
Connection_errors_tcpwrap
Section 5.1.6, “Server Status Variables”
Connection_errors_xxx
Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”
Section 5.1.6, “Server Status Variables”
Section 1.4, “What Is New in MySQL 5.6”
Connections
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Created_tmp_disk_tables
Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 20.9.5.1, “The events_statements_current Table”
Created_tmp_files
Section 5.1.6, “Server Status Variables”
Created_tmp_tables
Section 13.7.5.36, “SHOW STATUS Syntax”
Section 8.4.3.3, “How MySQL Uses Internal Temporary Tables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 20.9.5.1, “The events_statements_current Table”
D
Delayed_errors
Section 5.1.6, “Server Status Variables”
Delayed_insert_threads
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.6, “Server Status Variables”
Delayed_writes
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.6, “Server Status Variables”
F
Flush_commands
Section 5.1.6, “Server Status Variables”
H
Handler_commit
Section 5.1.6, “Server Status Variables”
Handler_delete
Section 5.1.6, “Server Status Variables”
Handler_external_lock
Section 5.1.6, “Server Status Variables”
Handler_mrr_init
Section 5.1.6, “Server Status Variables”
Handler_prepare
Section 5.1.6, “Server Status Variables”
Handler_read_first
Section 5.1.6, “Server Status Variables”
Handler_read_key
Section 5.1.6, “Server Status Variables”
Handler_read_last
Section 5.1.6, “Server Status Variables”
Handler_read_next
Section 5.1.6, “Server Status Variables”
Section 8.13.5, “Use of Index Extensions”
Handler_read_prev
Section 5.1.6, “Server Status Variables”
Handler_read_rnd
Section 5.1.6, “Server Status Variables”
Handler_read_rnd_next
Section 5.1.6, “Server Status Variables”
Handler_rollback
Section 5.1.6, “Server Status Variables”
Handler_savepoint
Section 5.1.6, “Server Status Variables”
Handler_savepoint_rollback
Section 5.1.6, “Server Status Variables”
Handler_update
Section 5.1.6, “Server Status Variables”
Handler_write
Section 5.1.6, “Server Status Variables”
I
Innodb_available_undo_logs
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_bytes_data
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_bytes_dirty
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_dump_status
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_load_status
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_pages_data
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_pages_dirty
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_pages_flushed
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_pages_free
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_pages_latched
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_pages_misc
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_pages_total
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_read_ahead
Section 14.2.5.11, “More Read-Ahead Statistics”
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_read_ahead_evicted
Section 14.2.5.11, “More Read-Ahead Statistics”
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_read_requests
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_reads
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_wait_free
Section 5.1.6, “Server Status Variables”
Innodb_buffer_pool_write_requests
Section 5.1.6, “Server Status Variables”
Innodb_data_fsyncs
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 5.1.6, “Server Status Variables”
Innodb_data_pending_fsyncs
Section 5.1.6, “Server Status Variables”
Innodb_data_pending_reads
Section 5.1.6, “Server Status Variables”
Innodb_data_pending_writes
Section 5.1.6, “Server Status Variables”
Innodb_data_read
Section 5.1.6, “Server Status Variables”
Innodb_data_reads
Section 5.1.6, “Server Status Variables”
Innodb_data_writes
Section 5.1.6, “Server Status Variables”
Innodb_data_written
Section 5.1.6, “Server Status Variables”
Innodb_dblwr_pages_written
Section 5.1.6, “Server Status Variables”
Innodb_dblwr_writes
Section 5.1.6, “Server Status Variables”
Innodb_have_atomic_builtins
Section 5.1.6, “Server Status Variables”
Innodb_log_waits
Section 5.1.6, “Server Status Variables”
Innodb_log_write_requests
Section 5.1.6, “Server Status Variables”
Innodb_log_writes
Section 5.1.6, “Server Status Variables”
Innodb_num_open_files
Section 5.1.6, “Server Status Variables”
Innodb_os_log_fsyncs
Section 5.1.6, “Server Status Variables”
Innodb_os_log_pending_fsyncs
Section 5.1.6, “Server Status Variables”
Innodb_os_log_pending_writes
Section 5.1.6, “Server Status Variables”
Innodb_os_log_written
Section 5.1.6, “Server Status Variables”
Innodb_page_size
Section 5.1.6, “Server Status Variables”
Innodb_pages_created
Section 5.1.6, “Server Status Variables”
Innodb_pages_read
Section 5.1.6, “Server Status Variables”
Innodb_pages_written
Section 5.1.6, “Server Status Variables”
Innodb_row_lock_current_waits
Section 5.1.6, “Server Status Variables”
Innodb_row_lock_time
Section 5.1.6, “Server Status Variables”
Innodb_row_lock_time_avg
Section 5.1.6, “Server Status Variables”
Innodb_row_lock_time_max
Section 5.1.6, “Server Status Variables”
Innodb_row_lock_waits
Section 5.1.6, “Server Status Variables”
Innodb_rows_deleted
Section 5.1.6, “Server Status Variables”
Innodb_rows_inserted
Section 5.1.6, “Server Status Variables”
Innodb_rows_read
Section 5.1.6, “Server Status Variables”
Innodb_rows_updated
Section 5.1.6, “Server Status Variables”
Innodb_truncated_status_writes
Section 5.1.6, “Server Status Variables”
K
Key_blocks_not_flushed
Section 5.1.6, “Server Status Variables”
Key_blocks_unused
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Key_blocks_used
Section 5.1.6, “Server Status Variables”
Key_read_requests
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Key_reads
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Key_write_requests
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Key_writes
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
L
Last_query_cost
Section 5.1.6, “Server Status Variables”
Last_query_partial_plans
Section 5.1.6, “Server Status Variables”
M
Max_used_connections
Section 13.7.6.3, “FLUSH Syntax”
Section 5.1.6, “Server Status Variables”
N
Not_flushed_delayed_rows
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.6, “Server Status Variables”
O
Open_files
Section 5.1.6, “Server Status Variables”
Open_streams
Section 5.1.6, “Server Status Variables”
Open_table_definitions
Section 5.1.6, “Server Status Variables”
Open_tables
Section 5.1.6, “Server Status Variables”
Opened_files
Section 5.1.6, “Server Status Variables”
Opened_table_definitions
Section 5.1.6, “Server Status Variables”
Opened_tables
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
P
Performance_schema_mutex_classes_lost
Section 20.5, “Performance Schema Status Monitoring”
Performance_schema_mutex_instances_lost
Section 20.5, “Performance Schema Status Monitoring”
Performance_schema_session_connect_attrs_lost
Section 20.12, “Performance Schema System Variables”
Prepared_stmt_count
Section 5.1.6, “Server Status Variables”
Q
Qcache_free_blocks
Section 8.9.3.3, “Query Cache Configuration”
Section 8.9.3.4, “Query Cache Status and Maintenance”
Section 5.1.6, “Server Status Variables”
Qcache_free_memory
Section 5.1.6, “Server Status Variables”
Qcache_hits
Section 8.9.3.1, “How the Query Cache Operates”
Section 5.1.6, “Server Status Variables”
Qcache_inserts
Section 5.1.6, “Server Status Variables”
Qcache_lowmem_prunes
Section 8.9.3.3, “Query Cache Configuration”
Section 8.9.3.4, “Query Cache Status and Maintenance”
Section 5.1.6, “Server Status Variables”
Qcache_not_cached
Section 5.1.6, “Server Status Variables”
Qcache_queries_in_cache
Section 8.9.3.3, “Query Cache Configuration”
Section 5.1.6, “Server Status Variables”
Qcache_total_blocks
Section 8.9.3.3, “Query Cache Configuration”
Section 8.9.3.4, “Query Cache Status and Maintenance”
Section 5.1.6, “Server Status Variables”
Queries
Section 5.1.6, “Server Status Variables”
Questions
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 5.1.6, “Server Status Variables”
R
Rpl_semi_sync_master_clients
Section 16.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_net_avg_wait_time
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_net_wait_time
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_net_waits
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_no_times
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_no_tx
Section 16.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_status
Section 16.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_timefunc_failures
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_tx_avg_wait_time
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_tx_wait_time
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_tx_waits
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_wait_pos_backtraverse
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_wait_sessions
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_master_yes_tx
Section 16.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.6, “Server Status Variables”
Rpl_semi_sync_slave_status
Section 16.3.8.1, “Semisynchronous Replication Administrative Interface”
Section 16.3.8.3, “Semisynchronous Replication Monitoring”
Section 5.1.6, “Server Status Variables”
Rsa_public_key
Section 5.1.6, “Server Status Variables”
Section 6.3.7.2, “The SHA-256 Authentication Plugin”
S
Select_full_join
Section 5.1.6, “Server Status Variables”
Section 20.9.5.1, “The events_statements_current Table”
Select_full_range_join
Section 5.1.6, “Server Status Variables”
Section 20.9.5.1, “The events_statements_current Table”
Select_range
Section 5.1.6, “Server Status Variables”
Section 20.9.5.1, “The events_statements_current Table”
Select_range_check
Section 5.1.6, “Server Status Variables”
Section 20.9.5.1, “The events_statements_current Table”
Select_scan
Section 5.1.6, “Server Status Variables”
Section 20.9.5.1, “The events_statements_current Table”
Slave_heartbeat_period
Section 5.1.6, “Server Status Variables”
Slave_last_heartbeat
Section 5.1.6, “Server Status Variables”
Slave_open_temp_tables
Section 16.4.1.21, “Replication and Temporary Tables”
Section 5.1.6, “Server Status Variables”
Slave_received_heartbeats
Section 5.1.6, “Server Status Variables”
Slave_retried_transactions
Section 5.1.6, “Server Status Variables”
Slave_running
Section 13.7.5.35, “SHOW SLAVE STATUS Syntax”
Section 16.2.1, “Replication Implementation Details”
Section 5.1.6, “Server Status Variables”
Slow_launch_threads
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Slow_queries
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Sort_merge_passes
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 20.9.5.1, “The events_statements_current Table”
Sort_range
Section 5.1.6, “Server Status Variables”
Section 20.9.5.1, “The events_statements_current Table”
Sort_rows
Section 5.1.6, “Server Status Variables”
Section 20.9.5.1, “The events_statements_current Table”
Sort_scan
Section 5.1.6, “Server Status Variables”
Section 20.9.5.1, “The events_statements_current Table”
Ssl_accept_renegotiates
Section 5.1.6, “Server Status Variables”
Ssl_accepts
Section 5.1.6, “Server Status Variables”
Ssl_callback_cache_hits
Section 5.1.6, “Server Status Variables”
Ssl_cipher
Section 5.1.6, “Server Status Variables”
Section 6.3.9.3, “Using SSL Connections”
Ssl_cipher_list
Section 5.1.6, “Server Status Variables”
Ssl_client_connects
Section 5.1.6, “Server Status Variables”
Ssl_connect_renegotiates
Section 5.1.6, “Server Status Variables”
Ssl_ctx_verify_depth
Section 5.1.6, “Server Status Variables”
Ssl_ctx_verify_mode
Section 5.1.6, “Server Status Variables”
Ssl_default_timeout
Section 5.1.6, “Server Status Variables”
Ssl_finished_accepts
Section 5.1.6, “Server Status Variables”
Ssl_finished_connects
Section 5.1.6, “Server Status Variables”
Ssl_server_not_after
Section 5.1.6, “Server Status Variables”
Ssl_server_not_before
Section 5.1.6, “Server Status Variables”
Ssl_session_cache_hits
Section 5.1.6, “Server Status Variables”
Ssl_session_cache_misses
Section 5.1.6, “Server Status Variables”
Ssl_session_cache_mode
Section 5.1.6, “Server Status Variables”
Ssl_session_cache_overflows
Section 5.1.6, “Server Status Variables”
Ssl_session_cache_size
Section 5.1.6, “Server Status Variables”
Ssl_session_cache_timeouts
Section 5.1.6, “Server Status Variables”
Ssl_sessions_reused
Section 5.1.6, “Server Status Variables”
Ssl_used_session_cache_entries
Section 5.1.6, “Server Status Variables”
Ssl_verify_depth
Section 5.1.6, “Server Status Variables”
Ssl_verify_mode
Section 5.1.6, “Server Status Variables”
Ssl_version
Section 5.1.6, “Server Status Variables”
T
Table_locks_immediate
Section 8.10.1, “Internal Locking Methods”
Section 5.1.6, “Server Status Variables”
Table_locks_waited
Section 8.10.1, “Internal Locking Methods”
Section 5.1.6, “Server Status Variables”
Table_open_cache_hits
Section 5.1.6, “Server Status Variables”
Table_open_cache_misses
Section 5.1.6, “Server Status Variables”
Table_open_cache_overflows
Section 5.1.6, “Server Status Variables”
Tc_log_max_pages_used
Section 5.1.6, “Server Status Variables”
Tc_log_page_size
Section 5.1.6, “Server Status Variables”
Tc_log_page_waits
Section 5.1.6, “Server Status Variables”
Threads_cached
Section 8.11.5.1, “How MySQL Uses Threads for Client Connections”
Section 5.1.6, “Server Status Variables”
Threads_connected
Section 5.1.6, “Server Status Variables”
Threads_created
Section 8.11.5.1, “How MySQL Uses Threads for Client Connections”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Threads_running
Section 5.1.6, “Server Status Variables”
U
Uptime
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”
Section 5.1.6, “Server Status Variables”
Uptime_since_flush_status
Section 5.1.6, “Server Status Variables”
Transaction Isolation Level Index
R
READ COMMITTED
Section 14.2.3.5, “InnoDB Record, Gap, and Next-Key Locks”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 14.2.3.10, “How to Cope with Deadlocks”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.2.3.1, “The InnoDB Transaction Model and Locking”
READ UNCOMMITTED
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 14.2.9.2, “Architecture of InnoDB and memcached Integration”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 14.2.9.5.6, “Performing DML and DDL Statements on the Underlying InnoDB Table”
Section 5.2.4.2, “Setting The Binary Log Format”
Section 14.2.3.1, “The InnoDB Transaction Model and Locking”
READ-COMMITTED
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
READ-UNCOMMITTED
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
REPEATABLE READ
Section 14.2.3.5, “InnoDB Record, Gap, and Next-Key Locks”
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 14.2.9.5.4, “Controlling Transactional Behavior of the InnoDB memcached Plugin”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 8.5.2, “Optimizing InnoDB Transaction Management”
Section 14.2.3.1, “The InnoDB Transaction Model and Locking”
Section 13.3.7, “XA Transactions”
REPEATABLE-READ
Section 13.3.6, “SET TRANSACTION Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
S
SERIALIZABLE
Section 14.2.6, “InnoDB Startup Options and System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”
Section 14.2.3.3, “Consistent Nonlocking Reads”
Section 8.9.3.1, “How the Query Cache Operates”
Section 14.2.3.7, “Locks Set by Different SQL Statements in InnoDB”
Section 5.2.4.3, “Mixed Binary Logging Format”
Section 5.1.3, “Server Command Options”
Section 14.2.3.1, “The InnoDB Transaction Model and Locking”
Section 13.3.7, “XA Transactions”